
A Collaborative Architecture for

Distributed Intrusion Detection System

based on Lightweight Modules

by

Safaa Zaman

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2009

© Safaa Zaman 2009

 ii

AUTHOR'S DECLARATION

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any

required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Safaa Zaman

 iii

Abstract

A variety of intrusion prevention techniques, such as user authentication (e.g.: using passwords),

avoidance of programming errors, and information protection, have been used to protect computer

systems. However, intrusion prevention alone is not sufficient to protect our systems, as those

systems become ever more complex with the rapid growth and expansion of Internet technology and

local network systems. Moreover, programming errors, firewall configuration errors, and ambiguous

or undefined security policies add to the system’s complexity. An Intrusion Detection System (IDS)

is therefore needed as another layer to protect computer systems. The IDS is one of the most

important techniques of information dynamic security technology. It is defined as a process of

monitoring the events occurring in a computer system or network and analyzing them to differentiate

between normal activities of the system and behaviours that can be classified as suspicious or

intrusive.

 Current Intrusion Detection Systems have several known shortcomings, such as: low accuracy

(registering high False Positives and False Negatives); low real-time performance (processing a large

amount of traffic in real time); limited scalability (storing a large number of user profiles and attack

signatures); an inability to detect new attacks (recognizing new attacks when they are launched for the

first time); and weak system-reactive capabilities (efficiency of response). This makes the area of IDS

an attractive research field. In recent years, researchers have investigated techniques such as artificial

intelligence, autonomous agents, and distributed systems for detecting intrusion in network

environments. This thesis presents a novel IDS distributed architecture – Collaborative Distributed

Intrusion Detection System (C-dIDS), based on lightweight IDS modules – that integrates two main

concepts in order to improve IDS performance and the scalability: lightweight IDS and collaborative

architecture.

 To accomplish the first concept, lightweight IDS, we apply two different approaches: a features

selection approach and an IDS classification scheme. In the first approach, each detector (IDS

module) uses smaller amounts of data in the detection process by applying a novel features selection

approach called the Fuzzy Enhanced Support Vector Decision Function (Fuzzy ESVDF). This

approach improves the system scalability in terms of reducing the number of needed features without

degrading the overall system performance. The second approach uses a new IDS classification

scheme. The proposed IDS classification scheme employs multiple specialized detectors in each layer

 iv

of the TCP/IP network model. This helps collecting efficient and useful information for dIDS,

increasing the system’s ability to detect different attack types and reducing the system’s scalability.

 The second concept uses a novel architecture for dIDS called Collaborative Distributed Intrusion

Detection System (C-dIDS) to integrate these different specialized detectors (IDS modules) that are

distributed on different points in the network. This architecture is a single-level hierarchy dIDS with a

non-central analyzer. To make the detection decision for a specific IDS module in the system, this

module must collaborate with the previous IDS module (host) in the lower level of the hierarchy only.

Collaborating with other IDS modules improves the overall system accuracy without creating a heavy

system overload. Also, this architecture avoids both single point of failure and scalability bottleneck

problems.

 Integration of the two main concepts, lightweight IDS and a distributed collaborative architecture,

has shown very good results and has addressed many IDS limitations.

 v

Acknowledgements

For a long time, I have dreamt of this moment. The moment of realizing my dream: finishing my

PhD degree and returning home to Kuwait. At the same time I will feel sad for leaving behind the

people who supported me, gave me a hand when I needed, shared my hard times and always helped

me to find my path. To all of these people, I am grateful.

 First and foremost, I would like to express my sincere gratitude to my supervisor, Prof. Fakhri

Karray, for the opportunity of working with him and for his support and gentle guidance during my

research. He led me through many fruitful discussions and has been a constant source of motivation,

guidance, encouragement, and trust. His invaluable suggestions and ideas have helped me walk

through each stage of my research, while his passion and extraordinary dedication have inspired me

to work harder and succeed.

 My appreciation is also extended to my committee: Prof. Sagar Naik, Prof. Liang-Liang Xie and

Prof. Kumaraswamy Ponnambalam for offering many insightful comments, which improved my

work; and to the external examiner Dr. Azzedine Boukerche who kindly agreed to assess my work.

 Throughout my research, I was fortunate to meet and benefit from the support of many individuals

at the Pattern Analysis and Machine Intelligence (PAMI) lab. My warm thanks go to my fellow

PAMI members, in particular Dr. Mohammed El-Abd, Dr. Richard Khoury, and Arash Abghari for

their generous help with technical issues, and for their valuable discussions and feedback. I am

thankful to the PAMI administrative staff for all their cheerful assistance during my time in the

program. In particular, I wish to thank Wendy Boles, Lisa Hendel, Heidi Campbell, Rosalind Klein,

Sue Havitz, and Karen Critchley for providing me with a convenient research environment.

 Many thanks also go out to Kuwait University for providing the financial support that made this

work possible. I am also very grateful to Prof. Hassan Merza, Dr.Fatima Nazar, and my academic

advisors Nikki Chy and Stacy Dellinger for their help and support.

 I am deeply indebted to Sheikh Sabah Al-Nasser Al-Saud Al-Sabah for his amazing support and

encouragement of my research work. My special thanks go to my friend Dr. Mohamed Omran for his

valuable help and support. I also owe a great magnitude of thanks to Kuwait Society Engineers

(KSE), in particular Eng. Talal Al-Qahtani, Eng. Saud Al-Oteibi, Saleh Al-Moteri, Eng. Hummod Al-

Zeabe, Eng. Meajeb Al-ajmi, and Eng. Ahmed Al-Doseri for helping me overcome some stressful

situations, and being such great brothers.

 vi

 During this journey, I tragically lost my beloved mother, who had always dreamt of this day. I

would like to express my deep gratitude and love to her for everything that she offered to me without

any demand on her part. Her endless love, honest prayers, and true dedication to my cause made this

achievement possible. Also, my warmest thanks go to the memory of my father. He is and remains

always a great role model for me; though I cannot see him, I always feel that he is with me. Their

spirits will be with me forever. I am deeply in debt to my beloved sister Hanaa Zaman for her

unconditional support, love, and persistent confidence in me, which has lightened the load on my

shoulders.

 Finally, I would like to say “Thanks a lot!” to all of you: without you I would not have been able to

finish this work.

 vii

For my Beloved Mother

 viii

Table of Contents

List of Tables... x

List of Figures ..xi

Abbreviations..xii

Chapter 1 Introduction ..1

1.1 Problem Statement ...3

1.2 Thesis Motivation and Contributions ...4

1.3 Thesis Organization..10

Chapter 2 Background and Related Research...12

2.1 Computer Security..12

2.2 Intrusion Detection System (IDS) ..14

2.2.1 Evolution of IDS..14

2.2.2 Intrusion Detection Architecture ...16

2.2.3 IDS Functions and Goals...21

2.2.4 Computer Attacks Categories..22

2.2.5 Evaluation Criteria...24

2.2.6 IDS Approaches...25

2.2.7 Major IDS Challenges ...27

2.3 Soft Computing Approaches for IDS ...29

2.4 Distributed Intrusion Detection Systems..34

2.5 Conclusion..37

Chapter 3 Lightweight IDS..38

3.1 Features Selection Approach..39

3.1.1 Dimensionality Reduction ...39

3.1.2 Fuzzy ESVDF Approach...40

3.1.3 Experiments and Results ...47

3.1.4 Summary ...56

3.2 IDS Classification Scheme...58

3.2.1 TCP/IP Model and Attack Classification ..58

3.2.2 TCP/IP Attack Classification and IDS Categorization..62

3.2.3 IDS Classification Scheme based on TCP/IP ..64

 ix

3.2.4 Experiments and Results ...67

3.2.5 Summary ...71

3.3 Conclusion..72

Chapter 4 Collaborative Architecture for dIDS based on Lightweight IDSs73

4.1 Collaborative Architecture for dIDS ..74

4.1.1 Distributed Intrusion Detection Systems...74

4.1.2 Collaborative Architecture for dIDS ...76

4.1.3 Experiments and Results ...82

4.1.4 Summary ...87

4.2 Collaborative Architecture for dIDS based on Lightweight IDS ...88

4.2.1 Experiments and Results ...90

4.3 Conclusion..93

Chapter 5 Conclusions and Future Work ..95

5.1 Summary of Results and Thesis Contribution..95

5.2 Future Research Directions ..98

Appendices ..101

Appendix A: A Description of DARPA Dataset ..101

Bibliography..104

 x

List of Tables

3.1 Comparison Of Fuzzy ESVDF, The Six most Important Features, FS Features, And All 41

Features USING SVMs……………………………………………………………...…………52

3.2 Comparison of Fuzzy ESVDF, the six most important features, FS features, and all 41 features

USING NNs………………………………………..…………………………................……..52

3.3 Comparison of Different Datasets using SVMs………………………………………………..53

3.4 Comparison of Different Datasets using NNs……………………………….…………………53

3.5 Execution time comparison for the Different Datasets…………………………..…………….53

3.6 The Common Attacks for each TCP/IP layer…………………………………….…….………62

3.7 Comparison between All Layers, Application, Transport, and Network Layer for fuzzy ESVDF

approach………………………………………………………………………………………..69

3.8 Swapping Features between different IDS types using fuzzy ESVDF Approach….……..……69

3.9 The Features Set for different IDS types by using Fuzzy ESVDF approach…….………….…70

4.1 The Composition Table for the Final Decision Results…………………………………….……77

4.2 The Comparison between the three architectures: C-dIDS, non-cooperative, and central analyzer

in terms of FPR, CR and efficiency…………………………………………………………..…..85

4.3 The Comparison between the three architectures: C-dIDS, non-cooperative, and Central analyzer

in terms of amount of traffic…………………………………………………………………..….85

4.4 Comparison between the four structures terms of FPR, CR, and efficiency……………….…….92

4.5 Comparison between the four architectures in terms of Passed Traffic……………………….…92

 xi

List of Figures

2.1 IDS Architecture………………………………………………………………………………..16

2.2 Soft Computing Diagram……………………………………………………………………….30

3.1 Sugeno Fuzzy Inferencing Model for the Local Comparison…………………..………………..44

3.2 Sugeno Fuzzy Inferencing Model for the Global Comparison……………………..…………….45

3.3 Comparison of TCP/IP and ISO OSI network models…………………………………………...59

3.4 System Architecture……………………………………………………………………...……….64

3.5 The Network IDS ………………………………..……………………………………………….65

3.6 The Transport ID …………………………………………………………………………………65

3.7 The Application IDS ……………………………….…………………………………………….66

3.8 The Framework Architecture ……………………….……………………………………………66

4.1 The first scenario for C-dIDS architecture………………………………………………………..78

4.2 The second scenario for C-dIDS architecture……………………...……………………………..79

4.3 The third scenario for C-dIDS architecture……………………………….………………………80

4.4 The non-cooperative architecture for C-dIDS…………………………….……………………..81

4.5 The central analyzer architecture for C-dIDS………………………...…………………………..82

 xii

Abbreviations

AAFID Autonomous Agents for Intrusion Detection

ACO Ant Colony Optimization

AIDS Application-layer Intrusion Detection System

ANN Artificial Neural Network

AppIDS Application-based Intrusion Detection System

ARP Address Resolution Protocol

ASIM Automated Security Incident Measurement

BE Backward Elimination

BPL Back Propagation Learning

C-dIDS Collaborative Distributed Intrusion Detection System

CPN Colored Petri Net

CR Classification Rate

CSLIP Compressed Serial Line Internet Protocol

CSM Cooperative Security Managers

DARPA Defense Advanced Research Projects Agency

DDoS/DDOS Distributed Denial of Service

DHCP Dynamic Host Configuration Protocol

dIDS/DIDS Distributed Intrusion Detection System

DNS Domain Name System

DoS /DOS Denial of Service

DR Detection Rate

EMERALD Event Monitoring Enabling Response and to Anomalous Live Disturbances

ESVDF Enhanced Support Vector Decision Function

FIRE Fuzzy Intrusion Recognition Engine

FL Fuzzy Logic

FN False Negative

FNT Flexible Neural Tree

FP False Positive

FPR False Positive Rate

FS Forward Selection

FTP File Transfer Protocol

 xiii

GA Genetic Algorithm

GrIDS Graph-based Intrusion Detection System

HIDS Host-based Intrusion Detection System

HTTP Hyper Text Transfer Protocol

ICMP Internet Control Massage Protocol

ICN Integrated Computer Network

IDES Intrusion Detection Expert System

IRS Intrusion Recovery System

IDRS Intrusion Detection and Response System

IDS Intrusion Detection System

IP Internet Protocol

IPS Intrusion Prevention System

IRCP Internet Relay Chat Protocol

LAN Local Area Network

LDA Linear Discriminant Analysis

LIDS Link-layer Intrusion Detection System

MAC Media Access Control

MAIDS Mobile Agent Intrusion Detection System

MLP Multi Layer Perceptron

NADIR Network Anomaly Detector and Intrusion Reporter

NC-dIDS Collaborative Distributed Intrusion Detection System with non-specialized IDSs

NIDS Network-based Intrusion Detection System

NN Neural Network

PCA Principle Component Analysis

PHIDS Parallel Hierarchical Intrusion Detection System

POP/POP3 Post Office Protocol

PPP Point to Point Protocol

PSO Particle Swarm Optimization

R2L Unauthorized access from a Remote machine

RARP Reverse Address Resolution Protocol

RAS Remote Access Server

RBF Radial Basis Function

 xiv

RIDS Router-based Intrusion Detection System

RIP Routing Information Protocol

SC Soft Computing

SC-dIDS Collaborative Distributed Intrusion Detection System with specialized IDSs

SFT Software Fault Tree

SHIDS Serial Hierarchical Intrusion Detection System

SLIP Serial Line Internet Protocol

STAT Transition Analysis Technique

SVDF Support Vector Decision Function

SVM Support Vector Machine

TCP Transmission Control Protocol

TCP/IP Transmission Control Protocol / Internet Protocol

TIDS Transport-layer Intrusion Detection System

TN True Negative

TP True Positive

U2R Unauthorized access to Root

U2Su Unauthorized access to Super user

UCI Irvine Machine Learning Repository

UDP User Datagram Protocol

VLAN Virtual Local Area Network

WAN Wide Area Network

WLAN Wireless Local Area Network

 1

Chapter 1

Introduction

Information security plays an important role in all aspects of life, in particular the protection of an

organization's valuable resources, such as information, hardware, and software. Therefore,

information security is defined as a process of protecting data from unauthorized access, use,

disclosure, destruction, modification, or disruption. It is concerned with ensuring that information-

related risks are assessed, appropriate controls are implemented to manage those risks, and that the

adequacy of those controls is monitored on a regular basis. Generally, discussion of information

security falls under three generic headings:

1. Confidentiality: This is a requisite for maintaining the privacy of people whose personal

information the organization holds.

2. Integrity: This means that data cannot be created, changed, or deleted without authorization.

It also means that data stored in one part of a database system is in agreement with other

related data stored in another part of the database system (or on another system).

3. Availability: This means that the information, the computing systems used to process the

information, and the security controls used to protect the information are all available and

functioning correctly when the information is needed.

 The field of information security has evolved rapidly in recent years because of the swift growth

and widespread use of electronic data processing, and also of business conducted through the Internet

and other computer networks (LAN, WAN, etc.). These application areas make networks an attractive

target for abuse and thus an area of vulnerability. At the same time, the tools of the intruder and the

hacker have improved substantially. In order to both combat the growing number of attacks and to

maintain critical information services, both academic and industry groups have been developing

systems to monitor networks and to raise alarms over suspicious activities. These systems are called

Intrusion Detection Systems (IDS).

 Intrusion Detection is defined as “the problem of identifying individuals who are using a computer

system without authorization (i.e., crackers) and those who have legitimate access to the system but

are abusing their privileges (i.e., insider attack: threat)” [124]. An Intrusion Detection System (IDS)

gathers and analyzes information from various areas within a computer or a network to identify

 2

possible security breaches, which include both intrusions (attacks from outside the organization) and

misuse (attacks from within the organization). An IDS is designed to detect unscrupulous activities

that compromise the confidentiality, integrity, or availability of network or computer systems and to

analyze what happens – or what has happened – to indicate that the computer has been misused. The

IDS does not eliminate the use of a preventive mechanism, but rather works as a second defense

mechanism behind a firewall, which can monitor the network while not affecting network

performance. In conclusion, an IDS is the whole process that detects, audits, tracks, and identifies

unauthorized access and abnormal phenomena actions or events in the system. It can identify whether

the system is being accessed as it happens and take the appropriate actions to cut off network

connections, record events, and raise an alarm. It can also remind the system administrators to take

proper measures. More details on IDS are given in the next chapter.

 Recently, a number of innovative approaches and new models for IDS have been proposed. But

while many of the proposed techniques have relatively improved some of the shortcomings of

the earlier approaches, still a number of issues remain: low detection accuracy, low real-time

performance, and limited scalability. These problems make the area of IDS an attractive and open

research field. In recent years, researchers have investigated a variety of different computational tools

to improve IDS performance and overcome some of its limitations, such as Soft Computing (SC)

techniques [8], [16], [19], distributed systems [41], [61], [98], and autonomous agents (AA)[44],

[121], [99]. Still, a lot more needs to be done to deal with new technologies and tools developed by

intruders to break the systems.

 In this thesis, we try to overcome some of IDS limitations by proposing a new dIDS architecture

through the integration of two main concepts. The first concept is accomplished by using a

lightweight IDS module. Each IDS module used allows the detection process to function with a

smaller dataset. To build a lightweight IDS module, we apply two different approaches: features

selection, and an IDS classification scheme. The first approach is accomplished by using SC tools.

We use a novel features selection algorithm called Fuzzy Enhanced Support Vector Decision

Function (Fuzzy ESVDF). The Fuzzy ESVDF is an iterative algorithm based on a Support Vector

Decision Function (SVDF) and Forward Selection (FS) approach. A fuzzy inferencing model is used

to select the appropriate features set, in order to improve the performance of the IDS in terms of

accuracy and efficiency (training time and testing time) [118], [119]. For the second approach, the

IDS classification scheme [152] categorizes the IDS into four types depending on the TCP/IP network

model: Application layer IDS (AIDS); Transport layer IDS (TIDS); Network layer IDS (NIDS); and

 3

Link layer IDS (LIDS). Each of these IDS types is dedicated to a specific network device, so the

detection process will be distributed among all TCP/IP network model layers though the network

devices. Chapter 3 will provide additional detail about this proposed system.

 For the second concept, the lightweight IDS modules will be integrated using a distributed

collaborative architecture called Collaborative Architecture for dIDS (C-dIDS). This architecture, C-

dIDS, contains a single-level hierarchy collaborative dIDS. To make the detection decision for a

specific IDS module in the system, this IDS needs to collaborate with the previous IDS in the lower

level only. The transferred data can then be dispatched between the detectors with only crucial data

(just one bit of information). More details about this architecture will be provided in Chapter 4.

 This chapter starts with an overview of IDS in Section 1.1. Then, the motivations and goals behind

this thesis are discussed in Section 1.2. In Section 1.3, we present the thesis organization and describe

the content of each chapter.

1.1 Problem Statement

The field of information security has grown and evolved substantially in recent years because of the

rapid growth and widespread use of electronic data processing, and of business conducted through the

Internet and other computer networks (LANs, WANs, etc). These application areas make networks

attractive targets for abuse. At the same time, the tools of the intruder and the hacker have improved

substantially. Facing these daunting challenges, industry and academic institutions are working hard

to develop new devices, new approaches, and new security mechanisms to counter the challenges

from malicious intruders. These efforts have resulted in a great variety of security products such as

firewalls, encryption, authentication, vulnerability checking, and other measures. Nevertheless, most

computer systems are still susceptible to attacks from hackers, so it is essential to establish a second

line of defense for these systems in the form of an Intrusion Detection System (IDS).

 IDS [50], [63], [122] play an important role in achieving the survivability of information systems

and ensuring their safety from attacks. They aim to protect the availability, confidentiality, and

integrity of critical network information systems by analyzing what happens or has happened during

an intrusion, and attempting to identify signs that a computer has been misused. They can also take

appropriate actions to sever network connections, record events, raise alarms, and remind system

administrators to take proper measures.

 IDS are usually classified as host-based or network-based. Host-based systems [32], [123], base

their decisions on information obtained from a single host (usually log files, network traffic to and

 4

from the host, or information on processes running on the host), while network-based systems [45],

[56] obtain data by monitoring network traffic between hosts, and are usually run on a separate

machine.

 Most current IDS technology still suffers from three main problems which limit their detection

ability: low detection accuracy (registering high False Positive alarms and False Negative); low real-

time performance (processing large amounts of traffic data in real time); and limited scalability

(storing a large number of user profiles and attack signatures).

 Our proposed approach overcomes these limitations by integrating two main concepts: (1) Using

lightweight IDS modules and (2) Having a novel distributed collaborative architecture for the IDS.

Another key effort in our approach is that directed towards improving system robustness,

extensibility, configurability, and security.

1.2 Thesis Motivation and Contributions

The ideal approach for computer security is to establish and implement a security policy that prevents

any intrusion through the use of security measures. However, traditional preventive measures are not

always sufficient, for the following reasons:

• Bug-free software is seldom attainable.

• It is difficult to change user and organization behaviour, to oblige all users to follow

diligently security policy.

• Human errors in operations and maintenance are unavoidable; these errors can cause serious

security loopholes.

• The security measures and controls themselves can be compromised: for instance, the

cryptographic algorithms can be cracked, given sufficient time and computing power.

• It is almost impossible to prevent insider attacks because inside users naturally have greater

access to the system than do outside attackers.

• The cost of setting up a totally secure system is very high, which discourages their

implementation.

 Because of the above difficulties, we need to use other alternative or complementary techniques to

protect and secure our systems. One of the major techniques is the Intrusion Detection System (IDS).

Intrusion Detection is another type of security tool that must be created to protect and secure the

 5

information resources in the system. It complements firewalls by allowing a higher level of analysis

of traffic on a network, and by monitoring the behaviour of the sessions on the servers. In addition, it

possesses such special characteristics and benefits as:

� Networks are complex and difficult to monitor: an IDS can help reveal potential network

security problems by documenting network status.

� An IDS highlights intrusion traces, which help to identify and eliminate the security flaws

that enabled these intrusions in the first place.

� An IDS can assess the integrity of critical system and data files.

� An IDS provides real-time reporting of break-ins, allowing the system administrator to take

immediate action, lessening potential damage.

� In contrast to a firewall, an IDS is a passive system that does not influence network traffic.

Thus, most people attacking or trying to circumvent a system will not recognize the intrusion

detection node. In addition, an authorized user can log on without interruption.

 The current state of IDS technology is not yet fully reliable, which makes the area of IDS an

attractive and still open research field. A major problem with current IDS is their inability to

guarantee intrusion detection (low accuracy): the current IDS technology is not accurate enough to

provide reliable detection. This problem will lead to a high rate of false alarms (False Positives), and

missed alarms (False Negatives). A common complaint is that the large number of False Positives and

Negatives generated by Intrusion Detection Systems makes it hard to filter out false attacks without

potentially missing genuine attacks. Moreover, this low accuracy can lead to an incident handling

problem: that is, security administrators are uncertain how to respond to mitigate the risks if a certain

degree of accuracy cannot be achieved. There is no decision rule associated with each alert to tell the

security administrator whether he should ignore the alert or simply terminate the suspicious session.

 Another major problem is the speed of detection (low efficiency). The size of the feature space is

obviously very large, which leads to slow training and testing processes, heavy computational

resources, and low detection accuracy. Moreover, computer networks have a dynamic nature in the

sense that the data within them are continuously changing. Therefore, in order to detect an intrusion

accurately and promptly, the system has to operate in real time.

In addition to the problems outlined above, there are other limitations, such as:

 6

Inability to detect new attacks: The ability to recognize new attacks when they are launched for the

first time is very low; this reduces the overall system performance.

Limited scalability: The IDS is unable to achieve reliable scalability to gather and analyze the high-

volume of audit data correctly from the distributed host, which may cause severe network

performance degradation.

Lack of extensibility: It is difficult to extend the scope of IDS or reconfigure/add capabilities to the

IDS.

Difficult configurability: The IDS is unable to configure itself easily to the local requirements of

each host or each network component.

Monotonic analysis: Many network intrusions exploit the multiple points of a network. Thus, from a

single host, they might appear to be just a normal mistake. But if they are collectively monitored from

multiple points, they can be clearly identified as a single attack attempt.

Low robustness: In many cases, the IDS itself may fall under attack from a threat seeking to disable

it. An IDS should itself be resistant to attacks, should exhibit a high degree of fault tolerance, and

allow for graceful degradation.

Low reliability (Point of Failure): For most single IDS, if an intruder can somehow prevent the IDS

from working, the whole network is without protection.

 Recently, a number of innovative approaches and new models for IDS have been proposed to

improve IDS efficiency and performance, such as Distributed IDS (dIDS). The dIDS [89], [77] is one

of several options that allow computation load and diagnostic responsibilities to be distributed

throughout the network. It performs distributed data collection (and some pre-processing) by using

modules distributed in different hosts, which monitor separately and communicate and cooperate with

each other. The dIDS can provide the foundation for a complete solution to the complexities of real-

time detection, while maintaining fault-resistant behaviour. It has scalability to detect general attacks

or a specific attack. In addition, each module can be added to or removed from the system without

altering other system components, because they operate independently. Also, the system’s modules

can be configured or upgraded without disturbing the rest of the system, as long as their external

interface remains the same.

 7

 Another approach used to improve IDS efficiency is Soft Computing (SC). In general, applications

of SC are widely used with IDS, either for a detection model or for the generation of intrusion

features selection. They are suitable for handling such subjective estimates for a number of reasons:

- fast recognition and classification;

- learning abilities;

- adaptability;

- flexibility;

- low solution cost;

- fast computing;

- ease of design;

- ability to generalize from learned data;

- not easily misled by small variations in intrusion patterns;

- modular with both misuse and anomaly detection components.

 Researchers have proposed several approaches in this regard. Some researchers are more interested

in SC techniques for such detection models as Fuzzy Logic (FL)) [55], [56], Genetic Algorithms

(GA) [57], [14], [43], Neural Networks (NN) [125], [16], [8], Probabilistic Techniques [126],

AdaBoost [127], Immune System [128], and SVM [10], [17], [18]. Still others are interested in SC

techniques for IDS features selection models such as NN [63, 64], GA [65, 66], SVM [63, 69], and

other optimization tools [71, 72].

 Despite advances in research on intrusion detection technologies, the current IDS technology is not

accurate enough to provide reliable detection. Therefore, the main emphasis of this thesis is to

improve IDS accuracy, time performance, and scalability by combining two main concepts:

lightweight IDS, and a distributed collaborative architecture.

(1) Lightweight IDS

The first concept is being lightweight. To build a lightweight IDS module, we need to reduce the

amount of data/features needed to achieve successful detection by applying two different approaches.

The first approach is to use dimensionality reduction techniques (features selection approach). The

second approach is to use an IDS classification scheme. By using lightweight IDS, it will satisfy the

following requirements:

 8

Efficiency: A lightweight IDS can improve the generalization performance of intrusion

detection and make the detection more time-efficient. Faster training and testing helps to

build an efficient IDS and provides ease of maintenance or modification of the IDS.

Furthermore, a small number of input features leads to a reduction in execution times, which

is important for the on-line detection of attacks.

Accuracy: By applying the proposed lightweight approach, which contains a new

classification scheme, the overall system detection ability will be improved in three ways.

First, each IDS type can be specialized to detect a specific category of attacks, depending on

the layer. For example, to place an IDS in the router, we need to use NIDS, which has

extensive information on router attacks behaviours. Secondly, by distributing the IDS

through the TCP/IP layers as the second level defense after the firewall; the firewall will be

supported by IDS and overall system security will be improved. Furthermore, it is known that

one of the major issues in network security is securing network devices, which are

represented as system entry points for the attacks. Hence, by designing a specialized IDS for

each one of them, overall system performance will be improved.

Scalability: A lightweight IDS can improve scalability by reducing the amount of network

load on each IDS module in the system. Thus, the system becomes scalable enough to be able

to work correctly and efficiently with increased traffic on the network.

Generality: By splitting the detection process into different layers (levels) in the network

according to the proposed classification scheme, each IDS module will be specialized to

detect a specific attack type, which increases its ability to capture all or almost all known

attacks.

Intrusion’s Influences Reduction: Detection attacks in the first stages (higher or lower

TCP/IP layer) before they enter the network, will reduce any damage that may occur.

Extensibility: By using a lightweight and specialized IDS, system extensibility will be

improved. To extend the system, we need only add an IDS to the network device that we used

to extend it. This architecture allows for computation to be performed at any point where

enough information is available.

Flexibility: Because the lightweight IDS can be easily deployed on almost any node of a

network with minimal disruption to operations, they can be added and removed from the

system without altering other components.

 9

Configurability : Lightweight IDS can be cross-platform, have a small system footprint, and

be easily configured by system administrators who need to implement a specific security

solution in a short amount of time.

(2) Distributed and Collaborative Architecture (C-dIDS)

The second concept is collaborative distributed IDS with single-level hierarchy (C-dIDS). The dIDS

allows computation load and diagnostic responsibilities to be distributed throughout the network. It

delegates its responsibilities to a number of distributed components. A number of independent

intrusion detection processes monitoring only a small aspect of the IDS are deployed to protect the

overall computer infrastructure system. They operate concurrently and co-operate with each other.

Moreover, the C-dIDS can provide the foundation for a complete solution to the complexities of real-

time detection, while maintaining fault-resistant behaviour. The distributed nature of the data sources

allows patterns in the data to be seen that might not be detectable if each of the sources were

examined individually. In addition to the above benefits, it will satisfy the following requirements:

Scalability: By using a one-level hierarchy dIDS, the detection process will need just less

data (compared with other dIDS) to accomplish the cooperation process between different

IDS.

Extensibility: Each module can be added to or removed from the system without altering

other system components, because the intrusion detection processes are independent and thus

existing processes do not need to be modified when a new intrusion detection process is

added.

Configurability : A single intrusion detection process can be simply tailored to the local

requirements of a specific host without considering the various requirements of other hosts.

Reliability: Our detection process is distributed through four different network levels

(layers), and if the intruder is successful in attacking one level, the system will continue

applying the other levels of detection. The failure of one local intrusion detection process

does not cripple an entire IDS, even though it causes minimal degradation of overall detection

accuracy.

 10

Robustness: The proposed IDS will be difficult to attack, as it is divided into many detection

levels (depending on the number of devices in the network) that make attacking the system

much more difficult.

Flexibility: The modules will run in parallel and can act independently. Thus, they can be

added to and removed from the system without altering other components.

Minimum system load: To cooperate between different system IDS modules, each IDS

module does not need much transferred information (just one bit of information).

1.3 Thesis Organization

The thesis consists of five chapters, the first of which is the introduction. We provide a brief

description of Intrusion Detection Systems (IDS), followed by an overview of this thesis’ motivations

and goals.

 In Chapter 2, a brief review of security and IDS is given. We discuss IDS architecture: detection

method, analysis techniques, and response components. In addition, we discuss some approaches in

IDS such as distributed systems and the Soft Computing (SC) technique. We finish by presenting the

current state of the art in IDS and the limitations thereof.

 In Chapter 3, we present a lightweight IDS concept. To build a lightweight IDS, we apply two main

approaches: the features selection approach for IDS (Fuzzy Enhanced Support Vector Decision

Function- Fuzzy ESVDF), and an IDS classification scheme. This chapter is split into two main

sections. The first section describes the features selection approach. It starts by briefly reviewing the

dimensionality reduction problem for IDS. The proposed algorithm (Fuzzy ESVDF) is then

explained, followed by presentation of simulation results and an evaluation of the approach. For the

second section, the IDS classification scheme is presented. Essentially, we illustrate the motivation

behind the new IDS categorization (classification). We then describe the employed IDS classification

scheme while presenting some experimental results. The section closes with some discussion of the

approach, and with a conclusion regarding its utility.

 In Chapter 4, we present the second concept, a distributed collaborative architecture for IDS and the

proposed architecture of the thesis (C-dIDS based on lightweight IDS modules) through two main

sections. In the first section, we start by briefly reviewing the distributed IDS. After that, the proposed

“collaborative architecture for distributed IDS” (C-dIDS) is outlined. Then the simulation results are

presented along with analysis and recommendations. Section 2 of Chapter 4 presents the proposed

 11

architecture (C-dIDS based on lightweight IDS modules). This architecture combines two concepts,

which will have been discussed previously in this thesis: lightweight IDS and a distributed

collaborative architecture for IDS. To evaluate the C-dIDS, experiments have been carried out and

presented. We end the chapter with some conclusions.

 Finally, important conclusions and possible extensions to this work are outlined in Chapter 5. We

start with a brief review of the thesis’ summary and contributions, followed by a discussion of future

research directions.

 12

Chapter 2

Background and Related Research

This chapter begins with a brief overview on computer security (Section 2.1). We explain the main

security elements: security services, security mechanisms, and security policy. A theoretical

framework and introduction to Intrusion Detection Systems (IDS) are presented in the next section

(Section 2.2). First, a description and evaluation of IDS are given, followed by the presentation of its

components, architecture, goals, and functions. Next, an overview of different computer attack

categories is given. Then, we briefly review IDS evaluation criteria and different IDS approaches,

followed by the major IDS challenges. Finally, the concepts of Soft Computing (SC) and distributed

architecture for IDS are discussed in Section 2.3 and Section 2.4, respectively.

2.1 Computer Security

According to [129], computer security infrastructure is based on the following three main security

services: confidentiality, integrity, and availability in a computer system. Confidentiality is the

keeping of sensitive information from unauthorized disclosure, which means that unauthorized parties

cannot access information. It is also known as secrecy or privacy. Integrity concerns the protection of

sensitive information against unauthorized modifications that are not detectable to authorized users. It

provides a mechanism for protecting information against accidents or malicious tampering. Finally,

availability is the prevention of unauthorized withholding of information and resources. It is

responsible for keeping the computer system working without degradation of access to resources for

authorized users when they need it.

 Other important security services are authentication, access control, and non-repudiation.

Authentication is the act of verifying the identity of a user logging onto a network. It is the process of

determining whether someone or something is, in fact, who or what it is declared to be. Maintaining

access control means not only that users can access those resources and services to which they are

entitled, but also that they are not denied resources that they may legitimately expect to access. Non-

repudiation means that a person who sends a message cannot deny that he sent it and, conversely, that

a person who has received a message cannot deny that he received it. In addition to these technical

aspects, the conceptual reach of computer security is broad and multifaceted. Computer security

draws from such diverse disciplines as ethics and risk analysis, and is concerned with computer crime

 13

(i.e. the prevention, detection, and remediation of attacks), as well as identity and anonymity in

cyberspace.

 The security services described above provide preventive measures for ensuring the security of the

system by helping to avoid security policy violations that can occur. A security policy is an

organization's statement defining the rules and practices that guarantee confidentiality, authentication,

availability, and integrity in a computing system. It plays three major roles: makes clear what to

protect and why; it describes the responsibilities for that protection; and it defines the basis on which

to recover from damage caused by security breaches. It also regulates how to provide security and

handle intrusions. A security policy might include sections on virus detection and prevention, firewall

use and configuration, password strength and management, access control rules, physical security,

and many others.

 Security mechanisms are the means for implementing security services. They can be divided into

three broad categories: Prevention, Detection, and Recovery.

 An Intrusion Prevention System (IPS) is the first step in the convergence of networking and

security. It provides policies and rules for network traffic along with an intrusion detection system for

alerting network administrators to suspicious traffic, as well as allowing the administrator to take

action on being alerted. The IPS is not just a perimeter protection element; it delivers its greatest

value as a pervasive security element that is deployed at both internal and perimeter network

segments.

 Intrusion Detection System (IDS) is the second line of defense. It gathers and analyzes information

from various areas within a computer or a network to identify possible security breaches, which

include both intrusions (attacks from outside the organization) and misuse (attacks from within the

organization). The IDS is designed to detect unscrupulous activities that compromise the

confidentiality, integrity, or availability of network or computer systems and to analyze what happens

– or has happened – to indicate that the computer has been misused. It does not eliminate the use of a

preventive mechanism, but it works as the second defensive mechanism behind a firewall that can

monitor the network while leaving network performance unaffected.

 Intrusion Recovery System (IRS) is the third line of defense. It is comprised of the steps or actions

that need to be taken after the system has been compromised, in order to restore it to its previous

 14

condition and avoid further loss from intrusion. It will also terminate intrusion and protect against

reoccurrence.

 Detection and recovery mechanisms generally involve long-term activities and are necessary

because prevention alone can never be wholly adequate. In the following sections of this chapter, we

will briefly describe IDS.

2.2 Intrusion Detection System (IDS)

An intrusion is defined in [127] as any set of actions that attempt to compromise the integrity,

confidentiality, or availability of a resource by trying to violate a security policy. For example, if a

system security policy defines specific authorized users, then the action of sneaking into these users’

accounts and transferring these users’ files is an intrusion.

 Intrusion detection is the process of monitoring the events occurring in a computer system or

network and analyzing them for signs of intrusion. It aims to protect the confidentiality, integrity, and

availability of critical networked information systems by analyzing what happens or has happened

during an intrusion, and attempts to locate signs that the computer has been misused. It can also take

the appropriate actions to cut off network connections, record events, raise an alarm, and remind

system administrators to take proper measures.

 Intrusion detection System (IDS) is a system that gathers and analyzes information from various

areas within a computer or a network to identify attacks made against these components. The IDS

uses a number of generic methods for monitoring the exploitations of vulnerabilities. They are useful

not only in detecting successful breaches of security, but also in monitoring attempts to breach

security, which provides important information for timely countermeasures. Thus, the IDS is useful

even when strong, preventive steps are taken to protect computer systems, placing a high degree of

confidence in the security it provides [130].

2.2.1 Evolution of IDS

James Anderson’s paper [131] was the first document to describe the concept of an IDS. The paper

described computer security threat monitoring and surveillance. It debated the pros and cons of audit

trail data, log files tracking users’ access to data, and how the analysis of these documents enabled the

reader to detect unauthorized access to data [131].The author identified that the problem with this

 15

system of detection was that the files did not contain enough pertinent data on user access to be used

by the security staff reviewing them [131].

 Three years later, the first model IDS was developed under the name IDES (Intrusion Detection

Expert System). The system was inspired by Dr. Dorothy Denning’s paper “An Intrusion Detection

Expert Model.” The main focus of the paper was that it was possible to create models of users of a

system based on the actions of the users on the audit files, and that unauthorized access could be

detected by identifying abnormal behavioural patterns in those files [132]. This is the basis for the

anomaly-based detection techniques.

 The next major IDS was developed at Lawrence Livermore laboratories in 1988 under the name

Haystack. Haystack compared audit data to defined patterns of misuse in order to detect intrusions

�[133]. This was the basis of the signature-based technique for intrusion detection. The next iteration

of IDS development was the DIDS (Distributed Intrusion Detection System), where information on

client machines and servers was also tracked.

 In 1990, Todd Heberlein developed the Network Security Monitor at UC Davis. The Network

Security monitor is considered to be the first intrusion detection system. It was mainly used by major

government installations where network traffic monitoring was needed. [134] This system applied

knowledge of malicious behaviour in general, so it used not only log files but also network packets

for detecting patterns which could be malicious [135]. This system generated interesting results, and

increased the interest in IDS. With increased interest came increased investment and in the early 90s

IDS began to be developed commercially.

 Haystack Labs was the first vendor of a commercial IDS with their system called “Stalker.” SAIC,

another IDS vendor, developed the Computer Misuse Detection System in 1996 This was another

successful IDS. The United States Air Force was simultaneously developing an IDS called the

Automated Security Incident Measurement (ASIM). This IDS was the first to use software as well as

hardware in an IDS. The same group which developed ASIM later left the USAF and founded their

own company, Wheel Group, which later released Net Ranger, which was considered to be the first

commercially viable IDS. In 1997, Internet Security Systems Co. developed the Real Secure IDS,

which is another important IDS entry in the IDS market.

 16

2.2.2 Intrusion Detection Architecture

Modern IDS are extremely diverse in the techniques they employ to gather and analyze data. Most

rely, however, on a common architecture for their structure, as shown in Figure 2.1:

- A Detection Model: This gathers data that may contain evidence of intrusion. All modern IDS

monitor host computers, networks, routers or application links to capture intrusion-relevant

data.

- An Analysis Engine: This can also categorize three types of detections: misuse detection,

anomaly detection, and specification detection.

- The Response Component: This reports intrusions and takes other responses such as isolation,

changing logging or disconnection, etc.

Detection Model/ Information Sources

The first distinction can be made in terms of the placement of IDS. In this respect, IDS are usually

organized into host-based, network-based, router-based and application-based systems.

a. Host-based Intrusion Detection Systems (HIDS)

Host audit sources are the only way to gather information on the activities of the users of a given

machine [32], [123], [136]. Thus, Host Intrusion Detection Systems (HIDS) are present on each host

that requires monitoring and collects data concerning the operation of this host. This usually consists

Detection Model

Analysis Engine

Responses
Response

Component

Data Alarm

Specification Detection

Anomaly Detection

Misuse Detection

Application IDS

Router IDS

Network IDS

Host IDS

Figure �2.1 IDS Architecture

 17

of log files, network traffic to and from the host, or information on processes running on the host.

HIDS can determine if an attempted attack was indeed successful and can detect local attacks,

privilege escalation attacks, and attacks that are encrypted. However, such systems can be difficult to

deploy and manage, especially when the number of hosts needing protection is large. Furthermore,

these systems are unable to detect attacks against multiple targets on the network.

b. Network-based Intrusion Detection Systems (NIDS)

Network Intrusion Detection Systems (NIDS) monitor the traffic on the network containing the hosts

to be protected and are usually run on a separate machine, called a sensor [9], [13], [29], [31], [137].

NIDS are able to monitor a large number of hosts with relatively little deployment cost and are able to

identify attacks to and from multiple hosts. However, they are unable to detect whether an attempted

attack was successful, and are unable to deal with local or encrypted arracks.

c. Router-based Intrusion Detection Systems (RIDS)

Router Intrusion Detection Systems (RIDS) enable networks to cooperate in the detection of system

attacks and protect the greater network infrastructure [34]. This approach is close to the second

approach (NIDS) with a few exceptions. First, a RIDS protects network infrastructure and particularly

focuses on routing. Therefore, the target of analysis is mainly on specific protocol traffic instead of

general data traffic. Second, a RIDS analyzes the logical behaviour of routing in order to identify the

set of states that are indicative of security attacks. These systems ensure a safe, reliable connection

between computers over large networks.

d. Application-based Intrusion Detection Systems (AppIDS)

Application Intrusion Detection Systems (AppIDS) is being researched by Robert Sielken and Anita

Jones and University of Virginia [148], [149]. Their approach uses the semantics of the application as

a further basis for detection of intruders. The AppIDS examines the behaviour of the application: it

can observe interaction between the application and the user, and it is able to operate when incoming

data is encrypted. However, it is more susceptible to attack, less capable of detecting software

tampering, and may be taken in by forms of spoofing.

 18

Analysis Techniques

Once intrusion detection data have been gleaned, IDS uses its analysis to identify intrusions. Three

main approaches can be distinguished: misuse detection, anomaly detection, and specification-based

intrusion detection, the latter combining misuse and anomaly detection.

a. Misuse detection

 Misuse detection attempts to model abnormal behaviour, any occurrence of which clearly indicates

system abuse [8], [58], [68]. It aims to discover intrusion by searching for distinguishing patterns or

signatures of known attacks. It produces a minimal number of False Positives. Misuse detection can

attain high levels of accuracy, but it suffers from many limitations: (1) Difficulty in creating compact

models of attacks (models that cover all possible variants of attacks); (2) Inability to detect new

intrusions; (3) Signature updating bottleneck; (4) Intrusion variation detection; (5) It is difficult for

misused systems to identify attacks that may originate from more than one source, or vary in the

means by which they are conducted, or are protracted over long periods of time; (6) Extensive effort

is required to construct and maintain a misuse detection system since attack scenarios and system

vulnerabilities need to be analyzed and categorized, and the corresponding rules and patterns need to

be carefully hand-coded and verified. Misuse detection might be implemented by one of the following

techniques: expression matching [50], state transition analysis [50], dedicated languages [50], and

burglar alarms [50].

b. Anomaly detection

Anomaly detection attempts to model normal system behaviour, any events that violate this model are

considered to be suspicious [18], [48], [51], [117]. It is based on the assumption that intrusion

behaviour deviates significantly from previously learned normal behaviour, and employs the user

profile as the basis for detection. Any deviation from normal user behaviour is considered an

intrusion. Anomaly detection addresses the problem of detecting novel intrusions. However, it suffers

from many drawbacks, such as: (1) Inability to identify intrusion, in that it suffers from the problem

of how to correctly construct a baseline model of behaviour that is sufficient for complete and correct

operation of the system; (2) A higher false alarm rate; (3) Difficulty in determining whether

anomalies are caused by intrusions; (4) Concept drifting problem; (5) Mimicry attacks; (6) Intensive

computational cost; (7) User behaviour that can change dynamically and can be very inconsistent;

and (8) Some intrusions can only be detected by studying the sequential interrelation between events,

because each event alone can appear to be normal according to the statistical measures. Anomaly

 19

detection might be implemented by one of the following techniques: statistical models [48], [49],

which consist of many different techniques such as threshold measures, mean and standard deviation,

and many others [50]; an immune system approach [140]; protocol verification [50]; file checking

[50], taint checking [50]; neural networks [29], [117], [33]; fuzzy logic [93]; support vector machine

[17]; and data mining techniques [141], [142].

c. Specification detection

This approach was introduced more recently by University of California, Davis, and referred to as

specification-based intrusion detection [72], [143], [144], [143] relying on manually setting program

behavioural specifications that are used as a basis to detect attacks. It determines whether or not a

sequence of instructions violated a specification of how a program, or system, should behave. This

technique has been proposed as a promising alternative which combines the strength of misuse-based

and anomaly-based detection. Specification-based detection has the potential to provide a very low

False Positive rate. It is, however, difficult to model complex programs or systems and write security

specifications for them.

Response Component

One major concern is to ensure that in the case of an intrusion attempt, the system is able to detect

and to report it [99], [146], [147]. Once the detection is reliable, the next step is to protect the network

(responses). In other words, the IDS will be upgraded to an Intrusion Detection and Response System

(IDRS). Intrusion responses are a series of actions and countermeasures employed when an intrusion

is detected. These actions and measures can prevent further attacks and restore the system to a normal

state. Current intrusion response systems can be categorized depending on different criteria such as:

degree of autonomy; activity of triggered response; ability to adjust; time response; cooperation

ability; and response selection method.

Degree of autonomy is grouped into three categories:

• Notification Response System: notification or alert to the administrator could be the

displaying of a pop-up window, or generating an e-mail, pager or mobile phone message.

• Manual Response System: allows administrator to manually launch countermeasures against

a detected intrusion by choosing from a predetermined set of responses.

 20

• Automatic Response System: able to choose countermeasures themselves and respond to an

attack immediately without human intervention.

Activity of triggered response is grouped into two categories:

• Passive Response System: this is content with merely detecting an intrusion, leaving its

handling to a human agent.

• Active Response System: IDS automatically takes action in response to a detected intrusion,

reacting immediately to an intrusion as it occurs.

Ability to adjust is grouped into two categories:

• Static: The majority of these systems are static, as the response selection mechanism remains

the same during the attack period. These systems can be periodically upgraded by the

administrator; such support, however is manual, and often delayed until the moment when a

considerable number of intrusions expose the inadequacy of the current response mechanism.

Although this approach takes a conservative view of the system and environment, it is simple

and easy to maintain.

• Adaptive: The adaptability of the response is the ability of the system to dynamically adjust

the response selection to the changing environment during an attack. Adaptation capability

can be represented in several ways including (a) adjustment of system resources devoted to

intrusion response such as activation of additional IDS, or (b) consideration of success and

failure of responses previously made by the system.

Time response is grouped into two categories:

• Proactive: Proactive response systems allow the system to anticipate the incoming intrusion

before the attack has affected the resource. Such prediction is generally difficult and often

relies on probability measures and analysis of current user or system behaviour.

• Delay: The response action is delayed until the attack has been confirmed. Such assurance

may be provided through the confidence metrics of the IDS or the full match of the intrusive

trace with an existing attack signature.

Cooperation ability is grouped into two categories:

 21

• Autonomous: Autonomous response systems handle intrusions independently at the level at

which they are detected. As such, a host-based IDS detecting an intrusion on a single machine

will trigger a local response action such as terminating a process, shutting down the host, etc.

• Cooperative: Cooperative response systems refer to a set of response systems that combine

efforts to respond to an intrusion. Cooperative systems can consist of several autonomous

systems that are capable of detecting and responding to intrusions locally, though the final, or

additional, response strategy is determined and applied globally.

Response selection method is grouped into three categories:

• Static mapping: Static mapping systems are essentially automated manual response systems

that map an alert to a predefined response. For example, detecting an attack on a host can

trigger the dropping of incoming/outgoing network packets.

• Dynamic mapping: Dynamic response mapping systems are more advanced than static

mapping systems as the response selection is based on the certain attack metrics (confidence,

severity of attack, etc).

• Cost-sensitive mapping: Cost-sensitive response systems are the only response systems that

attempt to balance intrusion damage and response cost. The optimal response is determined

based on the cost-sensitive model that incorporates several cost and risk factors.

2.2.3 IDS Functions and Goals

Many studies have shown that most computer security incidents are caused by insiders; this results in

the need for extra security measures within the organization. IDS may complement other preventive

controls (e.g. firewalls) as the next line of defence within the organization. An IDS software or

hardware system is placed inside or at the boundary of the protected network to monitor what occurs

within the network. It offers the opportunity to detect an attacker who is able to pass through different

network devices. Detection can take place at the beginning of the attack, during the attack, or after it

has occurred. Once detection is reliable, the next step is to protect the network (responds). The

response can be activating an alarm, isolation, changing logging, disconnecting, etc.

 The goal of IDS is to accurately detect intrusions, sort out true intrusions from false alarms, and

notify network administrators of the activity. Many organizations now use IDS to help them

 22

determine if their systems have been compromised. Given the goal of an IDS, the functions of an IDS

can be:

• Monitor and analyze user and system activity

• Audit system configurations and vulnerabilities

• Detect a wide array of intrusions, including outside intrusions and insider attacks, of both

known and unknown varieties

• Detect intrusions in a timely fashion

• Present the analysis in a simple, easy-to-understand format

• Achieve a low false alarm rate (high accuracy)

• Inform the system of any suspicious behaviour by sending a report or sounding an alarm

• Assess the integrity of critical system and data files.

 An IDS may embody one or more of these functions, depending on the type of IDS, network

architecture, and user requirements. Moreover, the combination of these features allows system

administrators to more easily handle the monitoring, audit, and assessment of their systems and

networks.

2.2.4 Computer Attacks Categories

An intrusion is defined as any set of actions that attempt to compromise the confidentiality, integrity,

or availability of a resource to gain root privilege, whether by exploiting vulnerabilities in the system

configuration to access confidential data, or by relying on a legitimate system user to download and

run a seemingly legitimate Trojan horse program.

 With an increased understanding of how systems work, intruders have become skilled at

determining weaknesses in these systems and exploiting them to obtain system privileges and access

system resources. Intruders also use patterns of intrusion that are difficult to trace and identify. They

frequently employ a series of feints before breaking into target systems and rarely indulge in sudden

bursts of suspicious or anomalous activity. They also cover their tracks so that their activity on the

penetrated system is not easily discovered.

 23

In general, attack types fall into four main categories [138]:

• Probing: surveillance, among others

• DoS: Denial of Service

• U2Su/U2R: Unauthorized access to Local Super user (root) privileges

• R2L: Unauthorized access from a Remote machine

Probing

Probing is a class of attack where an attacker scans a network to gather information or find known

vulnerabilities. There are different types of probes, some of which abuse the computer’s legitimate

features and others that employ social engineering techniques. This class of attack is the most

common and requires very little technical expertise. Examples of this type include IPsweep, Saint,

and Satan.

DoS Attacks

Denial of service (DoS) is a class of attack where an attacker makes some computing or memory

resource too busy or too full to handle legitimate requests, thus denying legitimate users access to a

machine. There are different ways to launch DoS attacks, such as abusing the computer’s legitimate

features, targeting implementation bugs, or exploiting the system’s configuration errors. Examples of

this type of attack include DDoS, Pingflood, SYN flood, Mailbomb, and Process Table.

U2Su Attacks

User to root (U2Su) exploits are a class of attack where an attacker starts out with access to a normal

user account on the system and is able to exploit a vulnerability to gain root access. Most common

exploits in this class of attack are regular buffer overflows, which are caused by regular programming

mistakes and environment assumptions. Examples of this type of attack include Eject, Fdformat,

Loadmodule, and Perl.

R2L attacks

A remote to user (R2L) attack is a class of attack where an attacker sends packets to a machine over

the network, then exploits the machine’s vulnerability to illegally gain local access as a user.

Examples of this type of attack include Dictionary, FTP-write, Sendmail, and Xlock.

 24

2.2.5 Evaluation Criteria

To evaluate the efficiency of an IDS, there are a number of parameters to be considered [139]:

Accuracy: Accuracy deals with the proper detection of attacks and the absence of false alarms.

Inaccuracy occurs when an IDS flags a legitimate action in the environment as anomalous or

intrusive.

Efficiency: An IDS has to perform and propagate its analysis as quickly as possible to enable the

security officer to react before much damage has been done, and to prevent the attacker from

subverting the audit source or the IDS. The efficiency of the IDS not only encompasses the intrinsic

processing speed of the IDS but also the time required to propagate the information and react to it.

Generality: An IDS should capture all or almost all known attacks.

Real Time Performance: Computer networks have a dynamic nature in the sense that information

and the data within them are continuously changing. Therefore, to detect an intrusion accurately and

promptly, the system has to operate in real time.

Robustness: It should have multiple detection points, which are robust enough against attack and any

system faults of the IDS. If intruders already know the existence of an IDS and can subvert it, then the

effort to develop the IDS was futile.

Scalability: It is necessary to achieve reliable scalability in order to gather and analyze the high-

volume of audit data correctly from distributed hosts. In the case of a monolithic IDS, the audit trail

collection procedure is distributed and its analysis is centralized. However, it is very difficult to

forward all audit data to a single IDS for analysis without losing some of the data. Even if the IDS

scales for all audit data correctly, it may cause severe network performance degradation.

Extendibility: It should be easy to extend the scope of IDS monitoring by and for new hosts easily

and simply regardless of the operating system. When a new host is added to an existing network

environment, and especially when this new host runs an operating system that employs a different

format of audit data, it is difficult to monitor it in a consistent manner with existing IDS.

Completeness: Completeness is the ability of an IDS to detect all attacks. Incompleteness occurs

when the IDS fails to detect an attack. This measure is much more difficult to evaluate because it is

impossible to have global knowledge about attacks or abuses of privileges.

 25

 Even though various approaches have been developed and proposed, no existing IDS satisfy all of

these requirements completely.

2.2.6 IDS Approaches

There has been steadily growing interest in research and development of IDS. The main goal was to

create a system capable of detecting different kind of attacks. To accomplish this goal, researchers

have been exploring various tools and techniques such as Pattern Matching [58], [59], Statistical

Models [48], [49], State Transition Analysis Technique [60], Information Theoretic Measures [51],

Intrusion Correlation (Data Mining) [74], [75], [76], Immune System [52], [53], [54], File Checking

[78], Whitelisting [79], Colored Petri nets [81], etc.. The next paragraphs survey some of these

approaches, and give examples of currently available tools using them. No intrusion detection

approach stands alone as an ideal system which captures all attack types; each approach is technically

suited to identify a subset of security violations. The intent of this sub-section is to give a brief

overview of current intrusion detection techniques, to better identify how our proposed system (C-

dIDS) fits into the general scheme of things. Understanding the strengths and limitations of these

approaches will clarify the benefits, as well as the tradeoffs, to the approach presented in this thesis.

 Pattern Matching [58], [59], is the simplest technique used for anomaly IDS. This technique

searches an event stream for occurrences of specific patterns. Although this technique is fast, it

requires an understanding of the nature of the attack, which implies that human experts must work on

the analysis and representation of the attacks. This tends to be time-consuming and error-prone.

Moreover, this technique suffers from scalability issues, either in terms of speed or the number of

patterns to be searched, primarily due to limited and expensive logic resources. Only those attack

scenarios which are known and constructed into patterns by the system can be detected. Attacks

involving spoofing, and passive methods of attack like wire-tapping cannot be detected.

 Statistical Modeling [48], [49] is among the earliest methods used for anomaly detection in

electronic information systems. It measures the user and system behaviour by a number of variables

sampled over time, and builds profiles based on the variables of normal behaviour. The actual

variables are then compared against the profiles, and deviations are considered abnormal. There are

many statistical techniques such as threshold measures, mean and standard deviation, Markov process

model, clustering analysis, etc [50]. While these statistical techniques have some value, they are

insensitive to the order of the occurrence of events, which causes them to miss the sequential

interrelationships between events. For intrusions reflected by such an ordering of patterns, a statistical

 26

IDS will miss these intrusions. Moreover, this approach requires the construction of a model for

normal user behaviour, and any user behaviour that deviates significantly from this normal behaviour

is flagged as an intrusion. It can also be difficult to determine the correct anomaly threshold at which

behaviour is to be considered an intrusion. Also, to apply statistical techniques, one has to assume that

the underlying data comes from a quasi-stationary process, which may not always hold.

 State Transition Analysis Technique (STAT) [60] is one of the famous rule-based expert systems

for detecting penetrations. It was developed by the Reliable Software Group at UCSB for misuse

detection in UNIX systems, distributed systems, and networks. The STAT uses the state transitions of

the system to identify intrusions. This method constructs the state transition diagram, which is the

graphical representation of intrusion behaviour as a series of state changes that lead from an initial

secure state to a target compromised state. State transition diagrams list only the critical events that

must occur for the successful completion of the intrusion. The main advantage of this technique is

that it allows a complex intrusion scenario to be modeled in a simple way, and is capable of detecting

slow, distributed, and cooperative attacks, variations to known attacks, and attacks which span across

multiple user sessions. Too, it improves the ability to automatically determine the data to be collected

to support intrusion analysis. This enables a lightweight and scalable implementation of the network

probes. On the other hand, it may have difficulty in expressing the attacks scenarios. Also, it can only

construct patterns from sequences of events, not from more complex forms, and therefore some

attacks cannot be detected as they cannot be modeled with state transitions.

 Information theoretic measures is another technique that has been used by many researchers for IDS

[51], [62], [80]. This technique computes information content in data using information theoretic

measures such as entropy, conditional entropy, relative conditional entropy, information gain, and

information cost, and uses them to describe the characteristics of audit data and to build anomaly

detection models. It operates in an unsupervised mode. It requires, however, an information theoretic

measure sensitive enough to detect irregularity induced by very few outliers.

 Data mining generally refers to a process of non-trivial extraction of implicit, previously unknown,

and potentially useful information from databases. The key concepts of using data mining in IDS are

to discover consistent and useful patterns of system features that describe user behaviour, and to use

the set of relevant system features to compute classifiers which can recognize anomalies and known

intrusions [36], [74], [75], [84], [142]. These data mining techniques have been garnering increasing

research interest, since they can automatically discover detailed attack or normal models that can be

 27

easily understood by human beings. However, these techniques tend to generate a large number of

models, especially for large inputs of data. In addition, it requires extra human intervention to reduce

and refine the extracted models.

 Many immune systems have recently been developed for IDS [52], [53], [54], [76]. In the immune

system approach, applications are modeled in terms of sequences of system calls for a variety of

different conditions: normal behaviour, error conditions, and attempted exploits. Comparing this

model to observed event traces allows classification of normal or suspicious behaviour. In general,

this technique provides the computer system with a high level of protection from a specific number of

attacks in a robust, autonomous, adaptive, self-organization and distributed manner. However, it

cannot detect attacks based on race conditions or policy violations. Moreover, it faces other

difficulties, such as its inability to efficiently map the entire non-self universe, its definition of self-

ambiguous, and self/ non-self changes over time.

 Dedicated languages are the most widely used approach misuse detection. Each attack signature

takes the form of a specialized program, with row events as input. Any input triggering a filtering

program, or input that matches internal alert conditions, is recognized as an attack. Unfortunately,

there is no common language for describing attacks. In general, there are six different classes: event

languages [55], [56], [62], response languages, reporting languages [63], [64], correlation languages

[65], [66], [68], exploit languages [69], [70], and detection languages [65], [66], [68], [71], [72], [73].

These language classes define different scopes and goals. While the dedicated languages technique

offers great flexibility in matching attack scenarios, it needs significant understanding of protocols,

attacks involved, and programming ability. Moreover, attacks with a signature variations string may

not be captured.

 Nevertheless, there are common challenges in the current studies of IDS which are reflected on IDS

performance, such as high False Positive/Negative, limit scalability, etc. More detail about these

challenges is discussed in the following sub-section.

2.2.7 Major IDS Challenges

Considering the surveyed literature, it is clear that the current view of IDS is that it is far from a

reliable protective system. This sub-section briefly identifies some of the inherent characteristics that

limit the performance of the different IDS techniques. They are as follows:

 28

� High False Positives

False Positives are those sequences of innocuous events that the IDS classifies as intrusion. A

common complaint is that the large number of False Positives generated by ID systems

makes it hard to filter out false attacks without potentially missing true attacks. Another

crucial problem that arises from a high number of False Positives is related to incident

handling; that is, security administrators are uncertain how to respond to mitigate the risks if

a certain degree of accuracy cannot be achieved. There is no decision rule associated with

each alert to tell the security administrator whether he should ignore the alert or simply

terminate the suspicious session.

� High False Negatives

 False negatives refer to intrusion attempts that the IDS fails to report.

• Limited Scalability

It is very difficult to forward all audit data to a single IDS for analysis without losing the data.

Even if it scales for all audit data correctly, it may cause severe network performance

degradation.

� Lack of Context Information

Anomaly detection fails to provide adequate contextual information for the security

administrator in locating the attack. This weakness increases the difficulties of alert handling.

� Too Many Variants

Because of newly merging attack behaviours and quickly spreading malicious code, it is very

difficult to determine the nature of an event before significant damage has been done.

Another affliction is that the exploit codes targeting known vulnerabilities do not stay

unchanged forever. (If the computers can provide enough decision-supporting analysis

reports, then the system administrators can more easily determine the correct action to take in

a crisis.)

� Writing Signatures for IDS is a Very Difficult Task

In some cases, the appropriate balance between an overly specific signature (which is not able

to capture all attacks) and an overly general one (which recognizes legitimate actions as

intrusions) can be difficult to determine.

 29

� Skewed Class Distribution

The training set consists of many normal examples and a small number of attack examples –

an imbalance between these two data types may cause difficulties in recognizing the correct

patterns.

� Propagation of Number of Attacks

The rapidity of intruder tool improvement increases the number of attacks and strategies that

are used to attack the system.

• IDS maintenance

Like any other system, maintenance must be performed. In misused systems, signatures must

be updated at regular intervals, an onerous task in most cases.

� Other Difficulties

One of the major difficulties is that some actions can be normal in certain environments but

may be malicious in others.

2.3 Soft Computing Approaches for IDS

The application of Soft Computing (SC) is widely used for IDS because of its features, such as

accuracy (low False Positive and False Negative rates), flexibility (not easily fooled by small

variations in intrusion patterns), adaptability in new environments (modular with both misuse and

anomaly detection components), low solution cost, real-time performance (fast recognition and ability

to classify different attacks), and ability to generalize from learned data. The SC is the general term

for describing a set of optimization and processing techniques that are tolerant of imprecision and

uncertainty. The ability of SC tools to deal with uncertain and partially true data makes them suitable

for application in IDS. The SC is used to create a system of detecting and characterizing anomalous

network behaviour. The principal constituents of SC techniques are Neural Networks (NN), Fuzzy

Logic (FL), and evolution computation, as shown in Figure 2.2.

 30

 FL systems [6] are useful in situations when human expertise (expertise that cannot be translated

into a set of equations) needs to be incorporated into the decision-making process. Evolutionary

programming, evolutionary strategies, and genetic algorithms [150] are useful for optimization

problems whose particular difference is how they avoid local extremes. Finally, Artificial Neural

Networks (ANNs) [7] are useful when complex relationships (or patterns) in data need to be

extracted. ANNs are tolerant of imprecise data and uncertain information: with their ability to

generalize from learned data, they seem to be an appropriate approach to IDS.

 Based on IDS, most of the work conducted in the literature falls into two key areas: detection model

and generation, and intrusion features selection. For detection model and generation, numerous SC

techniques are adopted to build efficient detection models such as FL [11], [12], GA [13], [14], [15],

NN [8], [9], [10], [16], and Support Vector Machines (SVM) [17], [18]. For intrusion features

selection, much research has tried to select the important intrusion features using different SC

approaches, such as NN [19], [20], GA [21], [22], [23], [24], SVM [19], [25], [26], [34], and other

optimization tools [27], [28].

 The rest of this section briefly introduces the various SC techniques, such as FL, GA, NN, and

SVM approaches in both areas of IDS: detection model and generation, and intrusion features

selection. In addition, we mention some related works for each of these approaches.

 FL [6] is a mathematical technique for dealing with imprecise data and problems with many

solutions. FL works with ranges of values, solving problems in a way that more resembles human

SOFT COMPUTING

Evolutionary Computation Artificial Neural Networks

Evolutionary Strategies

Genetic Algorithms

Evolutionary Programming

Figure �2.2 Soft Computing Diagram

Fuzzy Logic

 31

logic. FL is often used in systems where state transitions should be softened when making decisions

with fuzzy boundaries. FL has been used in both IDS research areas: detection model and generation,

and intrusion features selection. For the detection model and generation area, many researchers have

proposed the application of FL such as Piyakul et al [11] and Zhang et al [12]. Dickerson et al [37]

proposed Fuzzy Intrusion Recognition Engine (FIRE), which is a network intrusion detection system

that uses fuzzy systems to assess malicious activity against computer networks. The system uses an

agent-based approach, and each agent performs its own fuzzification of input data sources. At the

end, all agents communicate with a fuzzy evaluation engine that combines the results of individual

agents using fuzzy rules to produce alerts that are true to a degree. For the intrusion Features

Selection area, Xin et al. [82] uses interactive data visualization to analyze the features of several

different intrusion detection scenarios. Visualizing the data helps to find the most import features that

are used to identify intrusions and if they can be characterized as fuzzy sets or by Boolean variables.

These features can then be input into a fuzzy cognitive map that serves to fuse the inputs to detect

more complex attacks. Most fuzzy approaches in this area are integrated with other SC methods [84],

[85], [86].

 GAs are a family of computational models based on principles of evolution and natural selection.

These algorithms convert the problem in a specific domain into a model by using a chromosome-like

data structure and evolve the chromosomes using selection, recombination, and mutation operators. In

the IDS detection model, GA can be used to evolve simple rules for network traffic. These rules are

used to differentiate normal network connections from anomalous connections. Recent researchers

[13], [14], [15] have demonstrated that the GA field is an emerging field in computer security,

especially with regard to IDS detection models. Moreover, GAs have been used as one aspect of the

IDS features selection approach [21], [22], [23], [24]. Shazzad et al. [21] proposed a hybrid features

selection method by combining Correlation-based Features Selection (CFS), SVM, and GA. The GA

is used to generate subsets of features from the given features set, which is then evaluated by CFS and

SVM to pick the best features set. They combined three different approaches and were able to reduce

the number of features from 41 to 12 for the DARPA dataset. Alexander et al. [22], [24] set out GA

that performs the tasks of features selection and architecture optimization for Radial Basis Function

(RBF) networks. Also, Kim et al. [23] proposed a features selection method identical to the previous

method, but they used GA techniques to obtain the optimal features set and the optimal parameters for

a kernel function of SVM.

 32

 ANNs have been extensively used to detect both misuse and anomaly patterns. ANNs are

algorithmic techniques [6], [7] used to first learn the relationship between two sets of information and

then generalize to obtain new input-output pairs in a reasonable way. The ANNs consist of a

collection of processing elements that are highly interconnected and transform a set of inputs to a set

of desired outputs. They are widely considered an efficient approach to adaptively classify patterns

due to their capability to compact knowledge representation, even if the data are complex or non-

deterministic. This capability makes them an effective implementation model for an IDS.

Researchers have proposed several approaches in this regard in order to improve IDS accuracy [29],

[30], [31], [32]. Jian et al. [33] use backpropagation (BPL) neural networks to detect anomalous user

activities. They have shown that NN can be used successfully as a method for training an IDS and

providing it with learning skills. Also, Lilia et al. [8] present a network detection method using a

Hamming net, which is a type of NN with special properties that make it suitable for real-time

classification. Moreover, Chunlin et al. [16] proposed two hierarchical IDS frameworks using Radial

Basis Functions (RBF). They used a serial hierarchical IDS (SHIDS) to identify accurately misuse

attacks and adaptively identify anomaly attacks, and then used parallel hierarchical IDS (PHIDS) to

enhance SHIDS functionality and performance. For the other IDS research area, features selections,

Sung et al. [19] exploited SVM and NN to categorize and identify features based on some

performance criteria by ranking feature importance for each kind of attack, such as probe, DoS, R2L,

and U2R. This approach is based on deleting one feature at a time; the resultant data set is then used

for training and testing of the classifier (either NN or SVM). Then the classifier’s performance is

compared to that of all features based on performance criteria. Finally, the important feature is ranked

according to a set of rules based on the performance comparison. Glovko et al. [20] proposed NN

architectures for the IDS. The proposed approach is based on combining two different NN: Principle

Component Analysis (PCA) and Multilayer Perceptron (MLP). PCA (linear and nonlinear PCA)

networks are employed for important data extraction and high dimensional data vectors reduction.

MLP is employed to detect and recognize attacks using extracted-features data instead of original

data.

 Recently, SVMs have been used to detect intrusion due to their good generalization characteristics

and ability to overcome the curse of dimensionality. SVM is a statistical machine learning algorithm

that maps input (real-value) feature vectors into a higher dimensional feature space through nonlinear

mapping. The SVM is primarily a classier method that performs classification tasks by constructing

linear classifying (hyperplanes) in a multidimensional space that separates cases of different class

 33

labels. A special property of SVM is that they simultaneously minimize the empirical classification

error and maximize the geometric margin by using a quadratic optimization problem with bound

constraints and one linear equality constraint. There are two other key concepts of SVM: Soft Margin

and Kernel concept. SVM are powerful tools for providing solutions to classification, regression, and

density-estimation problems. Kun et al. [18] proposed an approach to intrusion detection using SVM

for anomaly detection. It is a one-class SVM-based approach, which delivers a highly accurate rate on

the testing set. In addition, John et al. [17] proposed using the SVM learning approach to classify

network requests. They employed a new method – ArraySVM – and by their experiments showed

satisfactory system performance in terms of training time and accuracy. For IDS features selection,

Mukkamala et al. [25], [26], [34] proposed a router-based approach to detect DoS attacks by using

SVM. They identify DoS-pertinent features by using Support Vector Decision Function (SVDF) and

evaluate the applicability of using these features in the detection of online novel DoS attacks on a

performance network. SVDF calculates the weight of the features to rank their significance. For

example, in the equation features.

1

()
n

i i
i

F X W X b
=

= +� (1)

where W is the weight vector , b is a bias value, and n is the number of features. They ranked each

feature depending on the value of its weight. The features with large weight values are considered to

be the features of the greatest effect (important features) and are used for the detection process. In

[26], they used eleven features as important features for the detection process. In [34], they claimed

that using six important features from among the eleven features can give excellent performance.

 Several other Soft Computing (SC) techniques are used to improve the performance of the IDS and

much work has been done in this area. For example, GAO et al. [27] proposed Ant Colony

Optimization (ACO) and Srinoy [28] proposed Particle Swarm Optimization (PSO) to select the best

features set for IDS. Chen et al. [35] proposed Flexible Neural Tree (FNT) to identify important input

features in building an IDS that is computationally efficient and effective. The FNT structure is

developed using an evolutionary algorithm, and the parameters are optimized by a particle swarm

optimization algorithm. Li et al. [36] proposed a supervised clustering and classification algorithm

(CCAS) for IDS. This algorithm utilizes a heuristic in grid-based clustering. Several post-processing

techniques including data redistribution, supervised grouping of clusters, and removal of outliers are

used to enhance the scalability and robustness. Zanero et al. [38] proposed a two-tier architecture for

IDS: the first tier is an unsupervised clustering algorithm which reduces the network packets payload

 34

to a tractable size. The second tier is a traditional anomaly detection algorithm, whose efficiency is

improved by the availability of data on the packet payload content. Wang et al [39] proposed a new

clustering algorithm, FCC, for IDS based on the concept of fuzzy connectedness. This approach starts

with a single or a few seed points in each cluster, and all the data points are dynamically assigned to

the cluster that has the highest fuzzy connectedness value (strongest connection).

2.4 Distributed Intrusion Detection Systems

With the increasing connectivity and complexity of heterogeneous computer systems, it is likely

unrealistic to expect that an IDS should be capable of correctly classifying every event that occurs on

a given system. In addition, there are the limitations of a centralized IDS, such as: a single point of

failure; limited scalability; frequent overload; vulnerability to subversion; and difficulty in

configuring or adding capability to the IDS. An IDS should consist of multiple entities working

independently to cover the huge amount of data and traffic in the system, and should allow changes to

these entities without any modifications made to other entities; this is accomplished by using an IDS

with distributed architecture. Distributed IDSs (dIDSs) are based on distributed IDS entities located

on different locations within the network, which monitor separately and communicate and cooperate

with each other. The dIDS allows computation load and diagnostic responsibilities to be distributed

throughout the network. It can provide the foundation for a complete solution to the complexities of

real-time detection, while maintaining fault tolerance behaviour. It allows early detection of planned

and coordinated attacks, thereby allowing network administrators to take preventive measures. dIDS

also helps to control the spreading of worms, improves network monitoring, incident analysis, attack

tracing and so on. Also, it has scalability to detect general attacks or a specific attack, in addition to

providing significant advantages in flexibility, extendibility, and resistance to compromise.

 A number of dIDS have been proposed for a distributed environment. Early systems included DIDS

(Distributed Intrusion Detection System) [41], NADIR (Network Anomaly Detector and Intrusion

Reporter) [45], CSM (Cooperative Security Managers) [46], GrIDS (Graph-based Intrusion Detection

System) [42], EMERALD (Event Monitoring Enabling Response to Anomalous Live Disturbances)

[43], AAFID (Autonomous Agents for Intrusion Detection) [44], CIDF (Common Intrusion Detection

Framework) [156] and MAIDS (Mobile Agent Intrusion Detection System) [47]. The rest of this

section briefly introduces some of these projects.

 DIDS [41] incorporates Haystack and NSM (Network Security Monitor) in its framework. This

system requires the audit data collected from different places to be sent to a central location for

 35

analysis. The DIDS operates on a local area network (LAN) and consists of three major components:

the host monitor, the LAN monitor, and the central manager. Each host is monitored by a host

manager. This manager is a collection of processes running in the background of the host. Also, each

LAN is monitored by a LAN manager, which operates just like a host manager except that it analyzes

LAN traffic. Finally, there is a central manager which is placed at a single secure location and

controls the entire system. This central manager receives reports from various host and LAN

managers, and by processing and correlating these reports, it detects intrusions. The DIDS itself is not

fully distributed because it relies on both distributed and centralized resources to detect intrusions.

This technology faces a number of challenges such as its centralized nature, arbitrary definitions of

abnormal activities, and ineffective coordination between the DIDS modules.

 The NADIR system [45] performs distributed data collection by employing the existing service

nodes in the Los Alamos National Laboratory’s Integrated Computer Network (ICN) to collect audit

information. The NADIR examines the network traffic at the service and protocol level by using a

statistics-based anomaly detector and an expert system, which is then analyzed by a central expert

system. The major drawback of NADIR is its centralized analysis, which severely limits the

scalability of the detection algorithm. Moreover this system, NADIR, would not easily be ported to an

internetworked environment with many heterogeneous systems.

 The CSM [46] are employed to perform dIDS that does not need a hierarchical organization or a

central coordinator. Each individual CSM detects malicious activity on the local host. When

suspicious activity is detected, each CSM will report any noteworthy activity to the CSM on the host

from which the connection originated. The local CSM will not notify all networked systems, but

rather only the system immediately before it in the connection chain. The architecture of the system

allows for CSM to take reactive actions when an intrusion is detected. Unclear aspects are the

mechanisms through which CSM can be updated or reconfigured, and the intrusion detection

mechanisms that are used locally by each CSM.

 GrIDS [42] uses graph engines that build a graph representation of activity in the network to detect

possible intrusions. It aggregates computer and network information into activity graphs which reveal

the casual structure of network activity. The GrIDS is able to detect large-scale automated and

spreading attacks. Also, it facilitates reporting, policy statements, and process rules. It provides

mechanisms to allow third-party security tools to be used as data sources. On the other hand, the

judgment of intrusions still needs human input in order to complete.

 36

 EMERALD [43] is intended as a framework for distributed, interoperable computer and network

intrusion detection. It employs entities called service monitors that are deployed to hosts and perform

monitoring functions. They define several layers of monitors for performing data reduction in a

hierarchical fashion. Monitors can be programmed to perform any function. However, this model

does not scale well for large networks. The large number of events and devices distributed across the

network can generate too much network traffic and too much data to be stored in one location

efficiently. It also does not cover distributed services (e.g., DNS, firewalls).

 AAFID [44] is a distributed intrusion detection architecture and system, developed in CERIAS at

Purdue University. It is agent-based, employs a hierarchical structure and the data are collected and

analyzed locally. Nevertheless, there is still a highest-level entity in the AAFID architecture, which is

the bottleneck of this system and leads inevitably to the matter of a single point of failure. Also, if the

two or more IDS that are far part in the hierarchy detect a common intruder, the two detections cannot

be correlated until the messages from the different IDS reach a common high-level IDS. This will

require the messages to traverse multiple IDS resulting in communication overheads. In addition, it

has limited scalability, performance, user interface and security.

 CIDF [156] was an effort to standardize intrusion detection to some degree by enabling different

intrusion detection and response components to interoperate and share information and resources in a

distributed environment. The intrusion detection inter-component adaptive negotiation protocol helps

cooperating CIDF components to reach an agreement on each other’s needs and capabilities.

 MAIDS [47] are also typical distributed IDS. It is an end-to-end procedure for intrusion detection.

Known vulnerabilities of a system are expressed in an abstract "Software Fault Tree" (SFT) form,

then converted to a Colored Petri Net (CPN), and finally into a system of independent agents. These

systems suffer from a number of problems such as a lack of an effective coordination mechanism to

detect a complicated attack, and the security of the system itself is almost unconsidered.

 The research on dIDS [1], [2], [3], [4], [5], [155] is a rapidly growing area of interest because the

existence of dIDS techniques is increasingly unable to protect the global distributed information

infrastructure. So, the existing dIDS must be updated and improved constantly to adapt to the ever-

changing environment and they should be studied in greater depth in order to ensure better system

security.

 37

2.5 Conclusion

In this chapter, we presented a brief review of IDS (evolution, architecture and components, goals and

functions), followed by presenting the current approaches for IDS such as Pattern Matching,

Statistical Models, State Transition Analysis Technique, Information Theoretic Measures. Given the

shortcomings of current IDS, our research focus is on combining two main concepts to improve the

performance of IDS. The first concept is using lightweight IDS modules. To build a lightweight IDS

module, we use two approaches: features selection approach, and an IDS classification scheme. The

first approach depends on Soft Computing (SC) to select the appropriate features set for IDS. SC is

the general term for describing a set of optimization and processing techniques that are tolerant of

imprecision and uncertainty, and that make them attractive to be applied in IDS. The second approach

is the IDS classification scheme. This novel scheme employs multiple specialized detectors in each

layer of the network TCP/IP network model, which helps in the collection of efficient information.

This increases system efficiency and reduces the system’s scalability. The second concept used in this

thesis proposes a distributed collaborative architecture for the IDS. This architecture can be useful for

efficiently designing and maintaining secure networks; each module operates cooperatively yet

independently, providing for efficient, real-time response and distribution of resources.

 The proposed system, Collaborative Distributed Intrusion Detection System (C-dIDS) based on

lightweight IDS modules, combines two concepts: the SC approach to build a lightweight IDS, and

the dIDS approach with a novel architecture. A detailed description for each of these approaches is

given in Chapter 3 and Chapter 4 respectively.

 38

Chapter 3

Lightweight IDS

The intrusion detection system deals with huge amounts of data, which can contain irrelevant and

redundant features. This can cause a slow training and testing process, higher resource consumption,

and a poor detection rate. Therefore, using a lightweight IDS is an important issue in intrusion

detection. Lightweight IDSs are small, powerful, and flexible enough to be used as permanent

elements of the network security infrastructure. They should be easily configurable by system

administrators who need to implement a specific security solution in a hurry. Also, they should be

able to be easily incorporated into any network security architecture with minimal disruption to

operations.

 Building a Lightweight IDS is the first goal of this thesis, in order to improve the performance,

scalability, generality, and extensibility of IDS. Most current work builds a lightweight IDS by only

applying one features selection approach, which is usually consider to be inefficient. In our case,

however, we will use two different approaches to achieve a lightweight IDS.

 The first approach uses a features selection approach. We will apply a novel algorithm for features

selection based on a Support Decision Function (SVDF) and Forward Selection (FS) approach, with a

fuzzy inferencing model called Fuzzy ESVDF [118], [119]. The Fuzzy ESVDF is able to significantly

decrease training and testing times while retaining high detection rates with low False Positive rates.

 The second approach uses a new IDS classification scheme. The IDS classification scheme divides

the detection process into four types according to the TCP/IP network model (Application Layer,

Transport Layer, Network Layer, and Link Layer). This IDS classification can enhance an

organization’s ability to detect most types of attack (i.e., it improves system accuracy and generality).

Also, it can improve system scalability in reducing the amount of data (features) needed to

accomplish the detection process.

 This chapter is split into two main sections. Section 3.1 describes the features selection approach,

while Section 3.2 describes the IDS classification scheme. Our conclusion is drawn in Section 3.3.

 Section 3.1 presents the features selection approach for an IDS. Basically, it begins with a brief

overview of the dimensionality reduction problem, and then demonstrates the proposed approach

(Fuzzy ESVDF), followed by experimental results and discussion. Finally, summary is drawn.

 39

 Section 3.2 describes the IDS classification approach. It starts by providing an overview of the

TCP/IP model with attack classification, followed by the motivations behind this new IDS

classification scheme. After that, we present the proposed approach with some experiments and

results, ending with discussion and summary.

3.1 Features Selection Approach

One key problem which arises in a wide variety of fields, including pattern recognition and machine

learning, is the so-called “feature selection”. In complex classification domains, some features may be

redundant and/or irrelevant. Extra features can increase computation time, and can have an impact on

system accuracy. Features selection improves classification by searching for the subset of features

which best classify the training data. Accordingly, features selection is considered to be a very

important issue in IDS in achieving maximal performance. In this section, we introduce a novel

algorithm for features selection based on a Support Vector Decision Function (SVDF) and a Forward

Selection (FS) approach with a fuzzy inferencing model called Fuzzy ESVDF. This is the first

approach to build a lightweight IDS, with the goal of improving IDS’ performance in terms of

accuracy and efficiency (training time and testing time) [118], [119].

3.1.1 Dimensionality Reduction

Dimensionality reduction [87], [88] is an important topic in machine learning. Elimination of useless

(irrelevant and/or redundant) features [90] enhances the accuracy of the classification while speeding

up the computation. It simplifies the classification by searching for the subset of features which best

classifies the training set, and allows the extraction of easily interpretable rules, thus improving the

overall performance of the classifier and overcoming many problems, such as the risk of

“overfitting”. Moreover, it helps us to understand the data, and reduces the measurement and storage

requirements [91].

 Current dimensionality reduction methods can be categorized into two classes: features extraction

and features selection. Features extraction [92], [93] involves the production of a new set of features

from the original features in the data, through the application of mapping. The dominant features

extraction techniques are Principle Component Analysis (PCA) [94] and Linear Discriminant

Analysis (LDA) [95]. In contrast, features selection [96], [97], [100], [101], [102], [103] selects the

“best” subset of the original features. It reduces the number of features and removes irrelevant,

redundant, or noisy data. In terms of features selection, several researchers have proposed identifying

 40

important features through wrapper and filter approaches [90] [104]. The wrapper method [22], [26],

[34], [65] exploits a machine learning algorithm to evaluate the fitness of features or a feature set. It

provides better performance in the selection of suitable features, since it uses the performance of a

learning algorithm as an evaluation criterion. The most widely employed wrapper methods are

Forward Selection (FS) [105], Backward Elimination (BE) [105], and Genetic search [106].

 In contrast, the filter method doesn’t use a machine learning algorithm to filter out irrelevant and

redundant features; instead, it uses the underlying characteristics of the training data to evaluate the

relevance of the features (or feature set) by several independent measures, such as distance measures,

correlation measures, and consistency measures [107], [108]. The most widely employed techniques

in this area are Relief [109] and Focus [110]. In general, wrapper approaches demand heavy

computational resources, but they can achieve better results than filters because they are tuned to the

specific interaction between an induction algorithm and its training data. However, they tend to be

much slower than feature filters because they must repeatedly call the induction algorithm and must

be re-run when a different induction algorithm is used.

 On the whole, since the elimination of insignificant and/or useless inputs leads to a simplified

problem and possibly a faster and more accurate classification, features selection is considered to be a

very important issue in IDS in order to achieve maximal performance [151], [145]. Features selection

can improve the generalization performance of intrusion detection and make the detection more time

efficient. Faster training and testing helps to build lightweight IDS and provides ease of maintenance

or modification of an IDS. Furthermore, a small number of input features lead to a reduction in

execution times, which is important for on-line detection of attacks.

3.1.2 Fuzzy ESVDF Approach

We propose a new features selection approach called Fuzzy Enhanced Support Vector Decision

Function (Fuzzy ESVDF) based on a Support Vector Decision Function (SVDF) and Forward

Selection (FS) with a fuzzy inferencing model [118], [119]. The Fuzzy ESVDF is an iterative

algorithm, where each iteration consists of two steps: feature ranking and feature selecting. In feature

ranking, SVDF is evaluated to rank each specified candidate feature. Then in feature selecting, FS is

applied with the fuzzy inferencing model to select the features according to a set of fuzzy rules based

on a comparison of performance. As shown in Algorithm 3.1, the algorithm starts by picking three

features from the features set (S1) with the highest weight values (S1 contains all the features with

weight values equal to or greater than one; the weight value is calculated by SVDF (1)) and putting

 41

them in the features set (S2), then calculating the classification accuracy and training time for S2. The

feature with the next highest weight value from S1 is added to S2 while calculating their performance

metrics. Through this process, two types of comparisons are made: a local fuzzy comparison and a

global fuzzy comparison. The local fuzzy comparison compares the performance of S2 with the

performance from the previous iteration. If the first value is less than the second value, the added

feature is ignored; otherwise, it is kept in S2. In the global fuzzy comparison, the classification

accuracy of S2 is compared with the global accuracy, which is equal to the minimum of two values:

the accuracy of all the features and the accuracy of S1. If the classification accuracy of S2 is equal to

or greater than the global accuracy value, the algorithm will stop and S2 will be the selected features

set; otherwise, it will continue execution.

 The local fuzzy comparison is ranked according to a fuzzy system that takes two inputs: the

percentage of increase or decrease in training time as one input, and the percentage of increase or

decrease of accuracy as the second input. It compares the performance of the current value with the

performance of the previous. The first and the second input variables (percentage of change in the

training time and accuracy) are represented by three fuzzy sets: “increase,” “same,” and “decrease”

with their corresponding membership functions, as shown in Figure 3.1. “Increase” refers to the case

where the percentage of change (accuracy and time calculated by current selected features – accuracy and time

calculated by previous selected features) in the training time and accuracy is slightly positive. This means that the

training time and accuracy slightly increase after a feature is added. “Same” refers to the case where

the training time and accuracy remain almost the same. The system has one output ranging from “0”

to “1” where “0” represents a non-important feature and “1” represents an important feature in the

detection process.

 The knowledge base is implemented by means of “if-then” rules. Nine rules are needed to describe

the system and rank each feature as “important” or “non important,” according to the following rules:

1. If training time decreases and accuracy decreases, then the feature is non-important

2. If training time decreases and accuracy does not change, then the feature is important

3. If training time decreases and accuracy increases, then the feature is important

4. If training time does not change and accuracy decreases, then the feature is non-important

5. If training time does not change and accuracy does not change, then the feature is important

6. If training time does not change and accuracy increases, then the feature is important

7. If training time increases and accuracy decreases, then the feature is non important

8. If training time increases and accuracy does not change, then the feature is non-important

 42

9. If training time increases and accuracy increases, then the feature is non-important

 The global fuzzy comparison compares the classification accuracy of S2 with the global accuracy.

The comparison is ranked according to a fuzzy system that takes only one input variable (percentage

of change in accuracy). This input variable is represented by three fuzzy sets: “increase,” “same,” and

“decrease” with their corresponding membership functions, as shown in Figure 3.2. “Increase” refers

to the case where the percentage of change (selected features set accuracy – global accuracy) in

accuracy is slightly positive. This means that the training accuracy slightly increases after a feature is

added. “Same” refers to the case where there is no change in accuracy. The system has one output

ranging from “0” to “1”, where “0” represents a loop to continue and “1” represents a loop to stop.

The knowledge base is implemented with three “if-then” rules. Only three rules are needed to

describe the system and decide whether to continue adding features:

1. If accuracy increases, then stop adding features

2. If accuracy does not change, then stop adding features

3. If accuracy decreases, then continue adding features

 43

Algorithm 3.1 The Fuzzy ESVDF Algorithm

[1] Calculate the Global Accuracy

Calculate the accuracy and training time of all (41) features
(Accuracy41, Train41),

Calculate the accuracy and training time of the features with
weight >= 1 (Accuracy, Train),

Pick the Global accuracy
If Accuracy41 >= Accuracy

Global = Accuracy
Else

Global = Accuracy41
End if

[2] Create the features set
Sort the features set(S1)in descending order depending on its
 weight values,
Pick the first three features as an initial features set (S2),
Calculate the Accuracy and Training time of S2 (Accuracy1,
 Train1)
If (Global equal or less than Accuracy1)

Exit;
Else

continue_loop= 1,
count_loop = 0;
Do while (continue_loop ==1) & (count_loop <= length(S1))

Add the next feature f(i) from S1 into S2,
 Calculate the accuracy and training time of S2
 (Accuracy2,Train2)
 If (Accuracy2 less than Accuracy1) and (Train2 greater
 than Train1)

 Remove f(i) from S2,
 count_loop = count_loop + 1;

 Else
 Accuracy1 = Accuracy2,
 Train1= Train2,
 count_loop = count_loop + 1;
 If (Global equal or less than Accuracy1)

 continue_loop = 0,
 End if

 End if
 End while

 End if

[3] The selected features set = S2

 44

Input 1: Time

Input 2: Accuracy

Output: Feature Rank

Figure �3.1 Sugeno Fuzzy Inferencing Model for Local Comparison

 45

Example (1)

The following example illustrates the application of the Fuzzy ESVDF algorithm. The algorithm is

applied using a DARPA dataset [111] with 6000 samples of which 3000 are normal (50 %) and 3000

are abnormal (50 %), and each instance is characterized by 41 attributes plus a label of either normal

or attack.

In the first step of the algorithm, we calculate the global accuracy by taking the minimum of two

values: the accuracy of all the features and the accuracy of S1.

The accuracy of all features = 99.70%

The accuracy of the features set (S1) = 99.67%

��� � The Global = min (99.70, 99.67) = 99.67%

The second step of the Fuzzy ESVDF algorithm is to build the features set, and this step is done by:

(1) Sorting S1 in descending order by weight value,

S1(29) =[3, 23, 24, 5, 12 ,33 ,34 ,35, 4, 26, 2, 39, 38, 29, 25, 32, 36, 27, 28, 8, 41, 31, 40, 30, 37, 22, 1, 7, 16]

(2) Picking the first three features as an initial features set (S2), and calculating the accuracy and

training time of S2 (Accuracy1, Train1)

S2(3) = [3,23,24] � Accuracy1= 96.56%, Train1 = 13.41 sec

Input 1: Accuracy

Output: Action

Figure �3.2 Sugeno Fuzzy Inferencing Model for Global Comparison

 46

Global Comparison: Rule (3) fired � continue adding feature (go to step (3))

(3) Expanding the features set (S2) depends on the defined fuzzy rules

S2(4) = [3,23,24,5] � Accuracy2= 98.65%, Train2 = 3.14 sec

Local Comparison: Rule (3) fired ��� � feature (5) is important (keep feature (5))

 Accuracy1 � Accuracy2

 Time1 � Time2

Global Comparison: Rule (3) fired ��� � continue adding feature (add feature (12))

S2(5) = [3,23, 24, 5,12] � Accuracy2= 99.20%, Train2 = 3.31 sec

Local Comparison: Rule (6) fired ��� � feature (12) is important (keep feature (12))

 Accuracy1 � Accuracy2

 Time1 � Time2

Global Comparison: Rule (3) fired ��� � continue adding feature (add feature (33))

S2(6) = [3,23, 24, 5,12,33] � Accuracy2= 99.37%,Train2=3.78 sec

Local Comparison: Rule (5) fired ��� � feature (33) is important (keep feature (33))

 Accuracy1 � Accuracy2

 Time1� Time2

Global Comparison: Rule (3) fired ��� � continue adding feature (add feature (34))

S2(7)=[3,23,24,5,12,33,34] � Accuracy2=99.53%,Train2=3.73 sec

Local Comparison: Rule (5) is fired ��� � feature (34) is important (keep feature (34))

 Accuracy1 � Accuracy2

 Time1� Time2

Global Comparison: Rule (2) fired ��� � stop adding feature

At the end, the Fuzzy ESVDF is restricted to the features set = S2(7) = [3, 5, 12, 23, 24, 33, 34]

Example (2)

In the second example, we apply the proposed approach with the SPECT Heart dataset from UCI

Irvine Machine Learning Repository [112]. The dataset contains 267 samples, of which 55 are normal

(20.6 %) and 212 are abnormal (79.4 %). Each instance is characterized by 44 attributes plus a label

of either normal or abnormal.

 In the first step of the algorithm, we calculate the global accuracy by taking the minimum of two

values: the accuracy of all the features and the accuracy of S1

The accuracy of all features = 68.97%

The accuracy of the features set (S1) = 70.28%

��� � The Global = min (68.97, 70.28) = 68.97%

 47

The second step of the Fuzzy ESVDF algorithm is to build the features set, and this step is done as

follows:

(1) Sorting S1 in descending order by weight value,

S1(36) =[43, 40, 42, 37, 14, 1, 13, 4, 34, 31, 44, 27, 30, 8, 10, 2, 32, 16, 22, 15, 26, 6, 21, 7,12, 41, 2, 28, 29, 11, 36,

 25, 35, 39, 9, 18]

(2) Picking the first three features as an initial features set (S2), and calculating the accuracy and

training time of S2 (Accuracy1, Train1)

S2(3) = [43,40,42] ��� � Accuracy1= 65.28%, Train1 = 0.7 sec

Global Comparison: Rule (3) fired ��� � continue adding feature (go to step (3))

(3) Expanding the features set (S2) depends on the defined fuzzy rules

S2(4) = [43,40,42,37] � Accuracy2= 68.33%, Train2 = 0.39 sec

Local Comparison: Rule (6) fired ��� � the feature (37) is important (keep feature (37))

 Accuracy1� Accuracy2

 Time1 � Time2

Global Comparison: Rule (3) fired ��� � continue adding feature

S2(5) = [43,40, 42, 37,14] � Accuracy2=64.41%,Train2=1.08 sec

Local Comparison: Rule (7) fired � feature (14) is non- important (remove feature (14))

S2(5) = [43,40, 42, 37,1] � Accuracy2= 70.97%, Train2 = 0.78 sec

Local Comparison: Rule (6) fired ��� � feature (1) is important (keep feature (1))

 Accuracy1� Accuracy2

 Time1 � Time2

Global Comparison: Rule (1) fired ��� � stop adding feature

At the end, the Fuzzy ESVDF is restricted to the features set = S2(5) = [1,37,40,42,43]

3.1.3 Experiments and Results

For evaluating the performance of our proposed approach, we choose the Defense Advanced

Research Projects Agency (DARPA) KDD-99 benchmark dataset [111]. In addition, we select four

smaller datasets from the Irvine Machine Learning Repository (UCI) databases [112]. In this sub-

section, we initially describe the contents of the different datasets and the experimental settings,

followed by some experimental results and discussion.

Datasets Description

Five real datasets are considered. The first dataset is KDD-99 data, and the other four datasets are

taken from the UCI. The objective is to select a subset for the features using the Fuzzy ESVDF

 48

approach, and then to evaluate these selected features using both Neural Networks (NNs) and Support

Vector Machines (SVMs).

A. The DARPA Dataset

KDD-99 dataset [111] contains TCP/IP dump data for a network by simulating a typical U.S. Air

Force LAN to configure and evaluate Intrusion Detection Systems. It includes three independent sets:

whole KDD, 10 % KDD, and corrected KDD. In our experiment, 10 % KDD is used as our training

and testing datasets. These datasets contain 24 attack types, which fall into four main classes: Denial

of Service (DoS), Probe, User to Root (U2R), and Remote to Local (R2L). Both training and testing

datasets are made up of a large number of network traffic connections and each data sample is

represented with 41 features, plus a label of either normal or attack. Those 41 features can be divided

into three groups: the first group includes features describing the commands used in the connections

(instead of the commands themselves). These features describe the aspects of the commands that have

a key role in defining the attack scenarios (e.g., number of file creations, number of operations on

access control files, number of root accesses).

 The second group includes features describing the connection specifications. This group includes a

set of features that present the technical aspects of the connection (e.g., protocol types, flags, duration,

service types, and number of bytes from source).

 The third group includes features describing the connection to the same host in the last two seconds

(e.g., number of connections having the same destination and using the same service, percentage of

connections to the current host that have a reject error, percentage of different services on the current

host). In our experiments, we picked two different datasets for training and testing purposes. Each

dataset contains 6000 samples; of which 3000 are normal samples (50 %) and 3000 are attack

samples (50 %) (i.e., the total number of samples equals 12000).

B. The UCI Irvine Machine Learning Repository Dataset

In addition, we test our approach with other four datasets of various sizes. These datasets are selected

from the UCI datasets: the SPECT Heart dataset, the WDBC dataset, the Hill and Valley dataset, and

the WBC dataset [112].

 The first dataset, the SPECT Heart Dataset, describes the diagnosis of cardiac Single Proton

Emission Computed Tomography (SPECT) images. It contains 267 samples, of which 55 are normal

(20.6 %) and 212 are abnormal (79.4 %). Each instance is characterized by 44 attributes.

 The second dataset, Wisconsin Diagnostic Breast Cancer (WDBC), describes characteristics of the

cell nuclei present in the image as either benign or malignant. This dataset contains 569 samples, of

 49

which 357 are benign samples (62.74 %) and 212 are malignant samples (37.26 %). Each instance is

characterized by 30 real-value attributes.

 In the third dataset, the Hill and Valley Dataset, each record represents 100 points on a two-

dimensional graph. When plotted in order (from 1 through 100) on the Y co-ordinate, the points will

create either a Hill or a Valley. This dataset contains 1212 samples, of which 612 are hill samples

(50.5 %) and 600 are Valley samples (49.5 %). Each instance is characterized by 100 real-value

attributes.

 Finally, the Wisconsin Breast Cancer (WBC) dataset describes characteristics of the cell nuclei

present in the image as either benign or malignant. This dataset contains 699 samples;,of which 458

are benign samples (65.52 %) and 241 are malignant samples (34.48 %). Each instance is

characterized by nine attributes.

Experimental Settings

 To evaluate the performance of our proposed approach, we conducted two experiments. In the first

experiment, we chose the DARPA KDD-99 benchmark dataset. In the second one, we picked four

different smaller datasets from UCI databases.

A. The DARPA Dataset

The dataset used for this experiment is the DARPA KDD-99 dataset, which contains 41 features plus

a label of either normal or attack. Through this experiment, we will evaluate our approach [118],

[119] by comparing it with the performance of the approaches of [34] and [105] over all 41 features.

In [34], they claimed that the best features set includes the six features with largest weight (rank)

values. The weight values were evaluated using SVDF (1). In the second approach [105], they applied

FS to pick the features set.

 Our experiment was split into two main steps. In the first step, we applied the three different

approaches (Fuzzy ESVDF [118], [119], the six important features [34], and FS [105]) to select an

appropriate features set for the IDS. In the second step, we validated the results by using any classifier

type.

 In the first step, the proposed algorithms were repeated ten times over the training and testing

datasets. Each time about 30 % of the samples were randomly selected as a testing dataset; the

remaining 70 % were used as a training dataset of each dataset (we have 12000 samples, and they are

split into two datasets, each containing 6000 samples).

 50

 NN and SVM classifiers were used to evaluate the proposed algorithms in the second step. We

carried out four validation experiments using Fuzzy ESVDF features [118], [119], the six important

features [34], FS [105] features, and all 41 features. Each experiment was repeated five times for each

dataset (the total number of repetitions for both datasets was ten) and by randomly selecting the

training and the testing data using different splitting ratios, which were ((training %) / (testing %):

50/50, 40/60, 60/40, 30/70, and 70/30).

B. The UCI Irvine Machine Learning Repository Dataset

Four different datasets were picked from UCI databases for this experiment: SPECT Heart Dataset,

WDBC dataset, Hill and Valley dataset, and WBC dataset. Through this experiment, we applied our

approach in different domains (each has different number of features) in order to evaluate our

approach performance and behaviour with a different number of features. Similar to the DARPA

dataset experiments, the experiment was divided into two main steps. First, we applied the proposed

algorithm, Fuzzy ESVDF, to select the appropriate features set for each dataset. Second, we validated

the results by using SVM and NN.

 In the first step, the proposed algorithm is applied ten times with training and testing data. Each

time, about 40 % of the samples were randomly selected as the testing dataset; the remaining 60 %

were used as the training dataset.

 In the same manner as the previous experiment, NN and SVM classifiers were used to evaluate the

proposed algorithm in the second step. We carried out four validation experiments: SPECT Heart

Dataset, WDBC dataset, Hill and Valley dataset, and WBC dataset. Each experiment was repeated ten

times with a random selection of the training and the testing data with different ratios, which were

((training %) / (testing %): 50/50, 40/60, 60/40, 30/70, and 70/30).

C. Classifiers

For both experiments, the implementation of the proposed approach used the simple SVM library for

SVM [113]. The crossover parameters selection of our SVM included a range of basic SVM

parameters, various kernel functions, and their performance arguments. In our experiments, the C

parameters could take one of these values: 1, 100, 5000, or 10000. The SVM kernel functions we

considered were linear and radial basis kernels. The polynomial kernel was degree 1 and 2, and the

coefficient (scale) can be 0.5, 2, 3, or 4. � in a radial basis kernel at either 0.5, 1, 2, or 3.

 For evaluation of the different approaches with NN, we used the MTALB BPL toolbox for NN with

three layers (an input layer with the number equal to features neurons, a hidden layer with six

neurons, and an output layer with one neuron). We used the function “newff” from the MATLAB

 51

toolbox with sigmoidal activation function, performance function “MSE”, 45 epochs and a 0.001

learning rate.

Experimental Results

Fuzzy ESVDF was applied to the DARPA KDD-99 dataset and the four different datasets from UCI

databases (SPECT Heart Dataset, WDBC dataset, Hill and Valley dataset, and WBC dataset) to select

the best features set for the application. In these experiments, we used standard measurements such as

Detection Rate (DR), False Positive Rate (FPR), and overall Classification Rates (CR) to evaluate the

performance of our approach. We defined here True Positive (TP), True Negative (TN), False

Positive (FP) and False Negative (FN) where:

• True Positive (TP): The number of malicious records correctly identified.

• True Negative (TN): The number of legitimate records correctly classified.

• False Positive (FP): The number of records that were incorrectly identified as attacks, though

they were in fact legitimate activities.

• False Negative (FN): The number of records that were incorrectly classified as legitimate

activities, though they were in fact malicious.

Equations (2) to (4) given as:

TP

DR
TP FN

=
+

 (2)

FP
FPR

TN FP
=

+
 (3)

TP TN
CR

TP TN FP FN
+

=
+ + +

 (4)

A. The DARPA Dataset

Fuzzy ESVDF [118], [119], the six important features [34], and FS [105] approaches were applied to

the 41 features to select an appropriate features set for the IDS. To evaluate the approaches, we used

SVM and NN classifiers to classify a network traffic record as being either an attack or a normal

behaviour. The results of the SVM classifier for Fuzzy ESVDF features, the six important features,

FS features, and all 41 features are presented in Table 3.1. Table 3.2 presents the results of the NN

classifier for the Fuzzy ESVDF features, the six important features, FS features, and all 41 features.

The comparison between the three approaches and using 41 features is done with respect to different

performance indicators: number of features, DR, FPR, training time, and testing time.

 52

Table 3.1

Comparison of Fuzzy ESVDF, the six most important features, FS features, and the entire 41 features
using SVMs

Features Selection

Algorithm
No. of Features

DR

 (%)

FPR

(%)

Training Time

(sec)

Testing Time

(sec)

FuzzyESVDF 7 99.57 0.22 2.410 0.054

6 important 6 98.20 0.39 6.008 0.114

FS 8 99.23 0.35 2.246 0.056

Non 41 99.62 0.32 5.182 0.170

Table 3.2

Comparison of Fuzzy ESVDF, the six most important features, FS features, and the entire 41 features
using NNs

Features Selection

Algorithm
No. of Features

DR

(%)

FPR

(%)

Training Time

(sec)

Testing Time

(sec)

FuzzyESVDF 7 99.70 0.24 221.928 0.047

6 important 6 98.20 0.41 217.115 0.062

FS 8 98.41 0.56 233.343 0.053

Non 41 99.63 0.36 911.680 0.075

B. The UCI Irvine Machine Learning Repository Dataset

In this experiment, we selected four smaller datasets from UCI databases (SPECT Heart dataset,

WDBC dataset, Hill and Valley dataset, and WBC dataset) to test the effectiveness of our feature

selection approach (Fuzzy ESVDF) in different domains. We used SVM and NN classifiers to

classify a record as being either zero or one (binary classification). The results of the SVM classifier

for Fuzzy ESVDF for all datasets are presented in Table 3.3. The results of the NN classifier for

Fuzzy ESVDF for all datasets are presented in Table 3.4. The different datasets are compared with

respect to different performance indicators: number of features, CR, training time, and testing time.

Table 3.5 compares execution times for Fuzzy ESVDF approach for the four different datasets.

 53

Table 3.3

Comparison of different datasets using SVMs

Dataset No. Attributes
CR

(%)

Training Time

(sec)

Testing Time

(sec)

Selected Set (5) 76.73 0.330 0.010
SPECT Heart

Complete Set (44) 69.43 0.376 0.015

Selected Set (4) 96.65 0.452 0.000
WDBC

Complete Set (30) 96.42 0.476 0.012

Selected Set (11) 69.13 23.588 0.088
Hill and Valley

Complete Set(100) 66.77 42.450 0.152

Selected Set (3) 96.75 0.678 0.012
WBC

Complete Set (9) 94.72 0.850 0.016

Table 3.4

Comparison of different datasets using NNs

Table 3.5

Execution time comparison for the different datasets
Dataset No. of All Features No. of Selected Features Execution Time (sec)

SPECT Heart 44 5 125.093

WDBC 30 4 87.215

Hill and Valley 100 11 3000.025

WBC 9 3 0.725

Dataset No. Attributes
CR

(%)

Training Time

(sec)

Testing Time

(sec)

Selected Set (5) 74.14 33.940 0.006
SPECT Heart

Complete Set (44) 66.77 325.534 0.030

Selected Set (4) 94.85 38.031 0.012
WDBC

Complete Set (30) 94.63 206.144 0.013

Selected Set (11) 77.93 105.638 0.019
Hill and Valley

Complete Set(100) 75.84 2488.83 0.047

Selected Set (3) 95.91 43.738 0.016
WBC

Complete Set (9) 95.05 72.475 0.015

 54

Discussion

As shown in Table 3.1 and Table 3.2, a comparison of our approach (Fuzzy ESVDF) against all 41

features reveals a dramatic reduction in model building time with the reduced features using Fuzzy

ESVDF, as the proposed features selection algorithms have cut 83 % of the total number of features

(Fuzzy ESVDF selects seven features from among the 41 features). When an SVM classifier is used,

the DR and FPR for our approach and the entire 41 features are nearly the same. However, for the

training and testing time, the results show a significant improvement with our approach. The training

and testing times decrease by more than fifty per cent, as opposed to when all 41 features are used.

Also, evaluating the proposed approach with NN, DR and FPR do not show much difference to that

of using all 41 features. But training and testing times show an obvious improvement: it cuts 75.66 %

from the required training time for all features, and 69.41 % from the required testing time for all

features, which means that the proposed algorithms can achieve high accuracy with less training and

testing time. Moreover, the experimental results show that SVM outperform NN in classification

accuracy and training time.

 Comparing our approach with that of Mukkamala et al. [34], we see that they extracted six

important features as the features selection set. Table 3.1 and Table 3.2 show that by using NNs or

SVMs, Fuzzy ESVDF is better than using the six important features in terms of classification

performance (DR and FPR). For the SVM classifier, our approach outperforms using the six

important features in DR (DR increases from 98.20 % to 99.57 %), FPR (FPR reduces from 0.39 % to

0.22 %), training time is cut 60 % from the required training time for the entire 41 features, and 62.5

% from the required testing time. For the NN classifier case, there is an improvement in DR (DR

increases from 98.20 % to 99.70 %) and FPR (FPR reduces from 0.41 % to 0.24 %); however, the

training and testing are nearly the same. In general, Fuzzy ESVDF results are better than the six

important features approach because limiting the number of selection features to a specific value (e.g.,

6 or 11) as an indicator for highest rank value may affect the system performance. So, we need a

process that uses this rank value (weight value) to select an appropriate feature subset. Therefore,

SVDF needs to be manipulated to recover from these limitations: in our case, this is accomplished by

applying the FS algorithm.

 Comparing Fuzzy ESVDF against FS approaches [105], Table 3.1 shows that both approaches have

nearly the same performance. However, Table 3.2 shows an obvious improvement in terms of DR and

FPR (DR increases from 98.41 % to 99.70 %, and FPR decreases from 0.56 % to 0.24 %). The

training and testing times are nearly the same in both approaches.

 55

 In summary, for the first experiment, the proposed approach for features selection gives an excellent

performance in terms of training and testing times while retaining high classification accuracy,

regardless of the classifier used. Fast training and testing help to build lightweight IDS; they also

facilitate the retention or modification of the system and allow for the use of this model in a real-time

intrusion detection environment. Moreover, with the reduction of the features number, we can

identify relevant attack-specific features, simplifying the study and analysis of the behaviour of each

of these attacks. On the other hand, our approach does not guarantee the selection of the optimal

features set. In all cases, however, it shows a dramatic improvement in the detection process.

 For the second experiment, evaluating our approach with four different smaller datasets from the

UCI databases, Table 3.3 and Table 3.4 show that there is a dramatic reduction in the number of

features for all datasets after the application of Fuzzy ESVDF. For the SPECT Heart dataset, the

number of features is reduced from 44 to 5 (it eliminates nearly 88.6 %). For the WDBC dataset, the

number of features is reduced from 30 to 4 (it cuts nearly 86.7 %). For the Hill and Valley dataset, the

number of features is reduced from 100 to 11 (it cuts nearly 89 %). Finally, for the WBC dataset, the

number of features is reduced from 9 to 3 (it cuts nearly 66.67 %).

 For the SPECT Heart dataset, by using SVM, the CR based on the selected features set is 76.73 %,

which is better than the CR for the complete features set, which is 69.43 %. The training time and

testing time are nearly the same in both cases, as shown in Table 3.1. However, the NN classifier

shows an obvious improvement in both training and testing times. The five selected features from the

Fuzzy ESVDF approach cut 89.57 % from the required training time for all features, and the testing

time is cut by 78.67 %. The CR is also improved, as shown in Table 3.2.

 For the WDBC dataset, by using SVM, the CR, training time, and testing time based on the selected

features set are very near to their values in the system which used the entire features, as shown in

Table 3.3. Table 3.4 shows a significant improvement in training time for the selected features. The

proposed algorithm cuts 81.55 % from the required training time for all features. However, CR and

testing time in both experiments (using the four features selected from the Fuzzy ESVDF algorithm,

and using the entire 30 features) are nearly the same.

 For the Hill and Valley dataset, Table 3.3 shows a significant improvement in CR, training time,

and testing time for the selected 11 features (attributes) from the complete 100 features set. On the

other hand, Table 3.4 shows that the CR for both features sets (11 selected features and the entire 100

features) are nearly the same. However, there is an obvious improvement in training time (it is

 56

reduced by 95.76 % as compared with the required training time for all features), and testing time (it

is reduced by 59.57 % as compared with the required testing time for all features).

 For the WBC dataset, by using SVM, the overall system performance is improved based on the

selected features set, as shown in Table 3.3. On the other hand, Table 3.4 shows significant

improvement in training time (is reduced by 39.65 % as compared with the required training time for

all features) based on the selected features. However, the CR and testing time are nearly the same in

both cases (selected and all features).

 Comparing the different datasets’ execution time, Table 3.5 shows that the proposed approach,

Fuzzy ESVDF, becomes slow when the number of features increases to 100. When the number of

features is around 50 (in the case of SPECT Heart dataset), the algorithm is reasonably fast, but when

this number doubles (to 100 features), execution time increases greatly. Also, in the case of the WBC

dataset, the number of features is 9, but when the number of features triples (in the case of the WDBC

dataset), the execution time more than triples. On the whole, this amount of time does not depend on

the number of features alone. It does depend, however on how fast SVM are, because the ranking

approach depends on the system performance (CR and training time) that is calculated by SVM.

Moreover, the SVDF used in this approach also depends on SVM.

 In summary, the experimental results demonstrate the feasibility of the proposed approach. The

proposed approach, Fuzzy ESVDF, for a features selection based on SVDF and FS with the fuzzy

inferencing model, gives the best performance in terms of training and testing times, while retaining

high classification accuracy regardless of the classifier used. Consequently, the selected features

subset is representative and informative and, thus, can be used to replace the complete features. In

addition, this approach is considered to be a features selection approach regardless of the type of

classifier used, making this approach a suitable features selection method for many applications.

Lastly, the proposed algorithm is simple and does not require that many parameters be initialized, and

further, does not need heavy computational resources. This facilitates the retention or modification of

the system design and allows this model to be used in a real-time environment.

3.1.4 Summary

SVDF is used to rank the input features by giving a weight value to each of them. Using the weights

alone, however, as proposed in previous works [25], [26], [34], [114], we are unable to specify the

appropriate features set for a detection process because selecting features with the highest rank values

(weight) cannot guarantee that combining these features can create the best features set based on the

 57

correlations among candidate features. Moreover, limiting the number of selection features to a

specific value (e.g., 6 or 11 as mentioned in the previous works) as an indicator for highest rank value

may affect system performance.

 Our new approach overcomes these limitations by proposing a Fuzzy Enhanced Support Vector

Decision Function (Fuzzy ESVDF) [118], [119]. The Fuzzy ESVD approach improves the

classification process by integrating the feature ranking technique (evaluated by SVDF) with the

features selecting technique (applied by FS). The fuzzy inferencing model is used to accommodate

the learning approximation and the small differences in the decision-making steps of the FS approach.

The proposed approach (Fuzzy ESVDF) has a wealth of advantages that make it attractive for many

features selection applications.

 First, by employing a reduced number of features SVM may be more advantageous than other

conventional features selection methods [13], [22], [23], [65]. The advantage is conspicuous for many

applications, as our experiments show. With SVM, a satisfactory performance can be obtained much

more easily than with other approaches.

 Second, by evaluating the features weights through SVDF and then selecting between these features

through the application of the FS algorithm, this approach is able to efficiently select the appropriate

features set for the classification process.

 Third, ESVDF is considered to be a features selection approach regardless of the type of classifier

used, making this approach a suitable features selection method for many applications, as we showed

through our experiments.

 Finally, this approach is simple and efficient, and it does not require parameters initialization, which

facilitates modification and enhancement.

 To evaluate the proposed approach, we used SVM and NN classifiers and a KDD-99 dataset for our

experiments. The experimental results demonstrate that our approach can reduce training and testing

times while retaining a high classification accuracy for IDS. In addition, we used four different

datasets from UCI Irvine Machine Learning Repository (SPECT Heart Dataset, WDBC dataset, Hill

and Valley dataset, and WBC dataset) to test the effectiveness of our features selection approach in

different domains. The experimental results demonstrate that our approach can reduce the training

and testing times with high classification accuracy for any application in general. Thus, it combines

good effectiveness with high efficiency. It produces an efficient features subset, so it provides an

 58

effective solution to the dimensionality reduction problem in general. On the other hand, the

efficiency of Fuzzy ESVDF depends on how SVM are able to classify the dataset, which may

obstruct the modification and maintenance processes and impede the use of this approach in some

types of applications. Moreover, it can not guarantee the optimal solution in terms of minimizing the

number of features, but in all situations it gives a considerably reduced number of features with

excellent performance results.

3.2 IDS Classification Scheme

Previous studies [19], [115], [116], [117] showed that desired features for the IDS depend on the type

of attack. Accordingly, as each TCP/IP network layer is vulnerable to a specific type of network

attack, each TCP/IP network layer needs a specific type of IDS. In this section, we propose a new

classification scheme for IDS depending on the TCP/IP network model [152]: Application layer IDS

(AIDS), Transport layer IDS (TIDS), Network layer IDS (NIDS), and Link layer IDS (LIDS). This

new scheme can improve the overall performance of IDS for the following reasons. First, each of

these IDS types is specialized to a specific network device. So, the detection process will be

distributed among all TCP/IP network model layers through the network devices.

 Moreover, as is known, firewalls operate at different TCP/IP network layers by using different

criteria to restrict traffic, but this step is far from running an entirely secure network as not all traffic

will go through a firewall. They can protect the network from attackers coming from outside the

network, but they cannot protect it from attackers coming from inside the network; therefore, an IDS

must be allocated as a second line of defense behind the firewalls. In addition, the attacks usually gain

access to the network through the network devices distributed through different TCP/IP network

layers as entry points, and in order to adequately address security, all possible avenues of entry must

be evaluated and secured. An IDS must therefore be allocated to these entries or network devices.

 Finally, splitting the detection process into different levels and stages reduces the computational

load on the system and improves its scalability and performance. Accordingly, categorizing IDS into

different types depending on the TCP/IP layers becomes an essential issue for improving the overall

system detection ability.

3.2.1 TCP/IP Model and Attack Classification

A computer network is simply a system of interconnected computers using different network models.

There are two famous standard network models: the ISO/OSI model and the TCP/IP model, which are

 59

based on a layered concept. The layered concept of networking was developed to accommodate

changes in technology. Each layer of a specific network model may be responsible for different

functions of the network. Each layer passes information up and down to the next subsequent layer as

data is processed. The TCP/IP network model defines a set of rules to enable computers to

communicate over the network, specifying how data should be packaged, addressed, shipped, routed,

and delivered to the right destination. The TCP/IP family uses four layers while ISO/OSI uses seven

layers, as shown in Figure 3.3. The TCP/IP and ISO/OSI systems differ from each other significantly,

although they are very similar on the network and transport layers.

 In the TCP/IP model, each layer has its own functionality and services. The Data Link layer defines

physical media and cables. The Network layer handles the end-to-end communications; it is used for

basic communication, addressing and routing. The Transport layer is responsible for end-to-end

message transfer capabilities independent of the underlying network, along with error control,

fragmentation, and flow control. At the end, the Application layer provides network services to end-

users such as Web browsing (HTTP), remote access (Telnet), File transfer (FTP), and other services.

Figure 3.3 Comparison of TCP/IP and ISO OSI network models

 60

So, each layer of communication has its own software, hardware, configuration, protocols, and usage.

Accordingly, each layer will have its own unique attacks and security challenges, which means each

layer needs a specific protection process.

 The Data Link layer defines the device driver and network hardware (network interface card). It is

responsible for node-to-node (hop-to-hop) frame delivery between the Internet layer interfaces of two

different hosts on the same link. This layer describes the protocols used to describe the local network

topology and the interfaces needed to effect transmission of Internet layer datagrams to next neighbor

hosts such as SLIP (Serial Line Internet Protocol), CSLIP (Compressed SLIP), PPP (Point to Point

Protocol), Ethernet, Token Ring, Frame Relay, ATM, etc. Accordingly, this layer is vulnerable to

MAC Attacks, DHCP (Dynamic Host Configuration Protocol) Attacks, ARP (Address Resolution

Protocol) Attacks, STP, and VLAN-Related Attacks. The Data Link layer can be a very weak link in

terms of security, and worse yet, it can affect the upper layers by causing service disruptions or

security breaches.

 The Network layer of the TCP/IP model provides end-to-end packet delivery. It handles basic

communication, addressing and routing, and manages the movement of packets around the network; it

defines the addressing and routing structures used for the TCP/IP protocol suite. The primary

protocols in this scope are IP (Internet Protocol), ICMP (Internet Control Massage Protocol), ARP

(Address Resolution Protocol), RIP (Routing Information Protocol), and RARP (Reverse Address

Resolution Protocol). Typically, in this layer, the attackers exploit the fact that IP does not have a

robust mechanism for authentication such as IP Spoofing, IP Session Hijacking, Ping to Depth, and

Source Routing,

 The Transport layer handles end-to-end message transfer capabilities independent of the underlying

network, while providing reliable delivery. It handles the flow of data among applications, and

segments data into packets for transport over the network. This is where flow-control, error-

correction, and connection protocols exist, such as TCP (Transmission Control Protocol), UDP (User

Datagram Protocol), and ICMP (Internet Control Message Protocol). This layer is especially

vulnerable to Denial of Service (DoS) attack (or Distributed Denial of Service (DDOS) attack),

SYNC Flood, UDP Bomb, and Port Scan.

 Finally, the Application layer provides network services such as browsing, e-mail, file transfer,

remote access, etc. Accordingly, the common protocols used are HTTP (HyperText Transfer

Protocol), DNS (Domain Name System Protocol), FTP (File Transfer Protocol), IRCP (Internet Relay

Chat Protocol), and POP/ POP3 (Post Office Protocol). In order for the attackers to exploit system

 61

vulnerabilities more effectively, they have developed several sophisticated ways to attack the

application layer, such as Buffer overflow, Trojans, Backdoor, Cross Site Scripting, etc. The most

popular application attack types are E-Mail Attacks, FTP Attacks, Web Attacks, and DNS Attacks.

 On the whole, each layer of the TCP/IP layer has its own software, hardware, configuration,

protocols, and usage. Each layer needs a specific protection process against each type of attack.

Therefore, network security should be addressed at each TCP/IP layer for different vulnerabilities,

security challenges, and attack types. Table 3.6 presents common attacks for each TCP/IP layer.

 62

3.2.2 TCP/IP Attack Classification and IDS Categori zation

Network security should be addressed at each TCP/IP network layer for different vulnerabilities and

attack types. Features that tend to detect a particular type of attack may not be useful in the detection

of other attack types. Many researchers [19], [115], [116], [117] have shown that the choice of

network features for IDS is dependent on the network attack type to be detected. Some features were

good for detecting network attack traffic patterns, while other features were good for detecting

Table 3.6

The Common Attacks for each TCP/IP layer

TCP/IP Layer Common Attacks

Application Layer

Java, ActiveX, and Script Execution

WinNuke

E-Mail Attacks

FTP Attacks

Web Attacks

DNS Attacks

Transport Layer

SYN Flood

UDP Bomb

Port Scan

Landc

TCP Port Scans

UDP Application Attacks

RIP Attacks

Network Layer

Ping Flood

Ping of Death

IP Spoof

Address Scanning

Source Routing

ICMP Attacks

Data Link Layer

Sniffer/ Decoding

MAC Address Spoofing

WEP Attacks

 63

transport attack traffic patterns. Hence, studying the nature of the IDS environment is an important

issue for choosing the appropriate features to analyze the traffic pattern. Moreover, the features

selection phase in IDS implementation has a large impact on performance. Reducing the number of

features can improve system performance, speed up execution and training times, allow the extraction

of easily interpretable rules, and reduce the measurements and storage requirements (explained in

Section 3.1). Based on the attack classification (Data Link layer attacks, Network layer attacks,

Transport layer attack, and Application layer attacks) we will select the appropriate features for each

TCP/IP layer, so that for each layer there will be a specialized IDS. It is important that the different

types of security attacks be recognized in order to select the appropriate countermeasures.

 Furthermore, firewalls are a crucial piece of the network security, but this step is far from creating

an entirely secure network, because of their limitations. The firewalls can protect the network from

attackers that come from outside the network (intrusions), but they cannot protect it from attackers

that come from inside networks (misuses). Also, they can only guard against the traffic that passes

through them; they have only minor control over the data that passes through them. Certain traffic

types, such as a remote user’s dial-up connection to a Remote Access Server (RAS), would bypass

the firewall entirely. In addition to other limitations (such as an inability to tell the user that it has

been incorrectly configured), a firewall can't notify the administrator if someone has hacked into the

network. Proper configuration is a must to maintain the efficacy of any firewall system, and they

should be updated periodically to ensure that they are current with the internal and external

environment of the network. Activity logs should also be checked on a regular basis to find attempted

and successful intrusions. Accordingly, the IDS must be allocated as a second line of defense behind

the firewalls, and as the firewalls operate at different TCP/IP network layers, the IDS also needs to be

allocated in same manner as the firewall.

 Moreover, the IDS should monitor traffic at entry points (network devices) on the network or

interconnected set of networks which are considered to be the target of the intruder. By securing these

devices, which are distributed through the network layers, the overall security of the system will be

improved, the detection process can be performed at any point where enough information is available,

and the data can be collected from multiple sources. This combines the best characteristics of

traditional Router-based, Network-based, and Host-based IDS.

 Finally, splitting the detection process into different levels (layers) reduces the computation load on

the system and improves its scalability and performance, as the experiments in the next section will

 64

show. Accordingly, categorizing the IDS into different types depends on the TCP/IP network model

becomes an essential issue for improving overall system detection ability and scalability.

 Most of the work done [19], [20], [28], [105] falls into the realm of splitting detection into different

attack types. These are broadly categorized into four groups: Probes, Denial of Service (DoS), User to

Root (U2R), and Root to Local (R2L). They are then designed a specific IDS for each of these attack

categories. This categorization does not participate in reducing the system load, or improving its

scalability. Others [10], [22] concentrated on analyzing and detecting each attack separately, which is

considered to be impractical with the fast pace of change in attack tools. In this chapter, we propose a

new IDS classification scheme that depends on the TCP/IP network model [152], which distributes

the detection process between different network devices, thus improving both system performance

and scalability, as the experiments will show in Section 4.2.3.

3.2.3 IDS Classification Scheme based on TCP/IP

We propose four different types of IDS based on the TCP/IP network model [152] - AIDS, TIDS,

NIDS, and LIDS - to accommodate detecting different attack types in each TCP/IP network layer and

to improve overall IDS performance, efficiency, and scalability. Figure 3.4 shows the architecture for

the proposed approach. The proposed approach categorizes the IDS into four types, with each type

responsible for the different network devices that are distributed through the TCP/IP network layers.

This would include routers in the Network layer, switches in Data Link layer, etc..

Figure 3.4 System Architecture

 65

 The NIDS operates on the Network layer devices (i.e. router) that in turn are located at the network

border or on an isolated host connected to the network layer devices, allowing it to analyze the traffic

that passes between different networks as it shown in Figure 3.5. For the Transport layer devices, the

TIDS is loaded on either Transport layer devices (i.e. switch) or on an isolated machine that is

connected to the transport layer devices, allowing it to analyze network traffic that enters the subnet

(Figure 3.6). The LIDS is also installed on either the Link layer devices or on an isolated machine that

is connected to the transport layer devices to detect different transport attacks. Finally, AIDS refers to

the class of intrusion detection systems that reside on and monitor an individual host machine. The

AIDS must be loaded on each workstation in the network as it is shown in Figure 3.8. Each IDS type

has its own features set depending on its TCP/IP network layer; so instead of using all connection

features as has been the case in previous works, we use only a specific number of features for each

IDS. The framework architecture of the integrated IDSs is shown in Figure 3.8.

Network 1

Network 2

NIDS

Figure 3.5 The Network IDS (NIDS)

Subnet1

Subnet2

Subnet3

TIDS

Network n

Figure 3.6 The Transport IDS (TIDS)

 66

 To design the different types of IDS (AIDS, TIDS, NIDS, and LIDS), we can use any features

selection approach to pick the appropriate features set for each layer in the TCP/IP model. In our case,

we will use the Fuzzy ESVDF approach that it is explained in Section 3.1 [118], [119] to select the

appropriate features for each IDS type (the LIDS is not covered in this study because there are

insufficient link layer attack samples).

 To apply the Fuzzy ESVDF approach, there are two main steps. First, we prepare different datasets

for training and testing purposes. Each IDS type has its own dataset; for example the AIDS dataset

contains normal behaviour and application layer attack samples, and the NIDS dataset contains

AIDS

AIDS

AIDS

AIDS

Subnet n

Figure 3.7 The Application IDS (AIDS)

 : IDS

S: Subnet

Figure 3.8 The Framework Architecture

S

S

S

S S

S

S

S

 67

normal behaviour and network layer attack samples. In the second step, we apply the Fuzzy ESVDF

approach for each dataset to select the most effective features set for each IDS type.

 The Fuzzy ESVDF [118], [119], as it is described in Algorithm 3.1, is based on a Support Vector

Decision Function (SVDF) (1) and Forward Selection (FS) approach with a fuzzy inferencing model

to select the best features as inputs for an IDS. The algorithm is iterative, where each iteration

consists of two steps: feature ranking and feature selecting. First, feature ranking, is evaluated by

SVDF to rank each specified candidate feature. Then feature selecting (FS) is applied, with the fuzzy

inferencing model, to select the features according to a set of rules based on a comparison of

performance.

 The experimental results in the next section will show that each IDS type has its own features and

that is because each TCP/IP network layer is subject to its own attacks. Therefore, classifying IDS

depending on the network layers is an essential issue to improve system accuracy, scalability,

generality, and to speed up the detection process for the IDS.

3.2.4 Experiments and Results

For evaluating the effects of categorizing the IDS into different types depends on the TCP/IP network

layers (AIDS, TIDS, NIDS, and LIDS) in improving both system performance and scalability, we

choose the DARPA KDD-99 benchmark dataset [111]. In this sub-section, we initially describe the

contents of the used dataset. Then, the experimental settings are presenting; followed by some

experimental results and discussions.

Datasets Description

We used the same dataset (KDD-99 dataset [111]) as was used in previous section (Section 3.3.1). In

these experiments, we picked two different datasets for training and testing purposes. Each dataset

contained 6000 samples, of which 3000 were normal samples (50 %) and 3000 were attack samples

(50 %) (i.e., the total number of samples was 12000).

Experimental Settings

Our experiment was split into three main steps. In the first step, we prepared the different datasets for

AIDS, TIDS, NIDS, and all layers IDS (the LIDS was not covered in this study). Second, we applied

the features selection approach (Fuzzy ESVDF) to each dataset in order to select the most effective

features set for each of IDS type. Finally, we evaluated the features set results using Neural Networks

(NN) and Support Vector Machines (SVM) as two different classifiers.

 68

 In the first step of the experiment, we prepared the four datasets for each IDS type. For AIDS, the

dataset we used contained the normal behaviour patterns and the application layer attack patterns,

such as: back, pod, smurf, buffer_overflow, loadmodule,perl, guess_passwd, imap, multihop,

warezmaster, ftp_write, nmap, and satan. For the TIDS, the dataset contained the normal behaviour

pattern and transport layer attack patterns: land, neptune, teardrop, buffer overflow, port sweep, and

nmap. The NIDS dataset contained only smurf, pod, overflow, and IP sweep as the network layer

attacks, in addition to the normal behaviour patterns. Finally, all layers of the IDS dataset contained

all attack types and normal behaviour patterns.

 For the second step, applying the features selection approach, we used the Fuzzy ESVDF [118],

[119] approach to select the most effective features for the three IDS types (AIDS, TIDS, and NIDS)

and all layers of IDS. The proposed algorithms were performed ten times for each IDS type over

training and testing data. Each time about 30 % of the samples were randomly selected as the test

data; the remaining 70 % were used as the training data (we had 12000 samples, which were split into

two datasets each containing 6000 samples).

 Finally, the evaluation was done using NN and SVM classifiers for AIDS, TIDS, NIDS and all

layers of IDS features. Each experiment was repeated five times for each dataset (the total number of

repetition for both datasets was ten) and by randomly selecting the training and the testing data using

different splitting ratios which were ((training %) / (testing %): 50/50, 40/60, 60/40, 30/70, and

70/30).

Experimental Results

We applied the Fuzzy ESVDF approach [118], [119] on 41 features to select the best features set for

each type of IDS (AIDS, TIDS, NIDS, and all layers). To evaluate our approach, we used NN and

SVM classifiers. They classify a network traffic pattern as being either an attack or a normal

behaviour. The results of the classifiers performance for AIDS, TIDS, NIDS and all layers by using

the Fuzzy ESVDF approach are presented in Table 3.7. The comparison between the different IDS

types was done with respect to different performance indicators: number of features, CR, training

time and testing time. On the other hand, Table 3.8 shows the results after swapping the features set

between AIDS, TIDS, and NIDS by using the Fuzzy ESVDF approach and the evaluation was done

using an NN classifier. The selected features from the Fuzzy ESVDF for each layer are listed in Table

3.9.

 69

Table 3.7

Comparison between All layers, Application, Transport, and Network layer for Fuzzy ESVDF

Approach

Classifier Method IDS Type
Number of

Features
CR (%) Training

Time (sec)

Testing

Time (sec)

All Layers IDS 7 99.34 4.834 0.030

AIDS 5 99.62 2.594 0.022

TIDS 4 99.75 1.586 0.020

Support Vector Machine

(SVM)

NIDS 4 99.73 2.328 0.020

All Layers IDS 7 99.41 180.650 0.038

AIDS 5 99.73 162.734 0.034

TIDS 4 99.84 139.296 0.031
Neural Network (NN)

NIDS 4 99.77 144.281 0.032

Table 3.8

Swapping features between IDS types using Fuzzy ESVDF and evaluated it by NN

Detection Layer Used Features
CR

(%)

Training Time

(sec)

Testing Time

(sec)

Application Transport 85.04 139.750 0.041

Application Network 98.43 141.219 0.041

Application Application 99.73 162.734 0.034

Transport Application 98.98 162.172 0.031

Transport Network 98.78 149.641 0.031

Transport Transport 99.84 139.296 0.031

Network Application 98.61 163.828 0.035

Network Transport 91.16 148.406 0.038

Network Network 99.77 144.281 0.032

 70

Discussion

By using the Fuzzy ESVDF approach, as shown in Table 3.7, splitting the detection process into

different layers improves both the system performance and the scalability comparing with all IDS

layers. Improving the performance is in terms of increasing the classification accuracy to more than

0.28 % with the SVM classifier and 0.32 % with the NN classifier. Also, the training time and the

testing time have been decreased for both SVMs and NNs. Improving the scalability is accomplished

by reducing the features number. It is reduced from seven features to five features in AIDS, four

features in TIDS, and four features in NIDS, as shown in Table 3.9.

 Each layer in the TCP/IP network mode is subject to a specific form of attack, and therefore needs a

custom IDS to face those attacks. Table 3.8 shows system performance in a case where the features

are swapped between the three different layers (AIDS, TIDS, and NIDS) using the Fuzzy ESVDF

approach. As shown, if we use the application features in the transport layer the accuracy will drop to

85.04 % from 99.73 % in application layer. The training and testing time do not show much change

because they depend more on the number of features. Also, when the application features are used in

the network layer, system accuracy will be affected, dropping to 98.43 % from 99.73 % in the

application layer. The same situation is seen in the two other layers.

 So, the choice of features depends on the network attack type to be detected: when we swap the

features between the layers, the system performance will be affected. Some features were good for

detecting application attacks, other features were good for network attacks. Consequently, studying

the nature of the IDS environment and the behaviour of the attacks are important issues for choosing

the appropriate features to analyze the traffic pattern.

 As shown in Table 3.9, the features selected for detecting intrusion at all layers do not cover all the

features for the separate layers, which means that when we are more specific on the types of attack,

Table 3.9

The features set for different IDS types by using Fuzzy ESVDF approach

IDS Type Feature index

NIDS 3, 12, 37, 40

TIDS 2, 3, 12, 32

AIDS 3, 5, 12, 31, 36

IDS (all layers) 3, 4, 5, 12, 23, 24, 33

 71

the features become more accurate because each attack has its own behaviours depending the nature

of the layer that it tried to attack. Moreover, each IDS type has its own custom attacks and therefore

needs its own custom protection. Therefore, each attack type has its own behaviour and design, which

leads us to analyze each attack-type pattern with its own features. However, there is some overlapping

between the IDS features and that comes from the overlapping between some attacks. Some attacks

target more than one layer such as “nmap”, which attacks transport and application layers. Others can

attack all layers such as the “buffer overflow” attack.

3.2.5 Summary

In general, security can take three main forms: (1) end-to-end security at the TCP/IP application layer,

(2) end-to-end security at the TCP/IP transport layer, and (3) link-to-link security at the TCP/IP

network and link layers. In this section, we propose a new classification scheme for IDS depending

on the TCP/IP network model that accommodates the three main forms of security measures [152].

This classification scheme improves the performance and scalability of the IDS. The performance

improvement is in terms of improving the system detection ability and the time performance, which is

accomplished through three main points. First, each IDS type can be specialized to detect a specific

category of attack depending on the layer. For example, to place IDS in the router, we need to use

NIDS, which knows much about router attack behaviour. Secondly, by distributing the IDS through

the TCP/IP layers as the second level of defense after the firewall, the firewall will be supported by

the IDS and the overall system security will be improved. Furthermore, it is known that one of the

major issues in network security is to secure network devices, which are represented as system entry

points for the attacks. Also, by this approach, we can integrate intrusion-related information

distributed around the network. Hence, by designing a specialized IDS for each one of network layer,

the overall system performance will be improved. The proposed approach can also improve system

scalability in terms of reducing the number of needed features (five features in AIDS, four features in

TIDS, and four features in NIDS). Therefore, splitting the IDS into sub-systems can accommodate

reduced system scalability and improve its performance.

 We have implemented the different IDS types by using the Fuzzy ESVDF approach to select the

appropriate features set for each IDS type, and validated their performance by using NN and SVM

classifiers. Experimental results demonstrate that our approach improves system accuracy, efficiency

(training time and testing time), and scalability.

 72

3.3 Conclusion

Building a lightweight IDS is an important issue in intrusion detection, when considering how to

improve IDS efficiency, performance, and scalability. In addition, a lightweight IDS is flexible

enough to be used as permanent elements of the network security infrastructure, and is easily

incorporated into any network security architecture with minimal disruption to operations. In this

chapter, we built a lightweight IDS by applying two different approaches. In the first approach, the

features selection approach, we used a novel features selection algorithm based on a Support Decision

Function (SVDF) and Forward Selection (FS) approach with a fuzzy inferencing model called Fuzzy

ESVDF [118], [119]. The Fuzzy ESVDF is able to significantly decrease training and testing times

while retaining high detection rates. In addition, it is simple and efficient, and it does not require

parameters initialization, which facilitates a modification and enhancement process.

 The second approach employs a new IDS classification scheme. This scheme classifies the IDS into

different categories based on the TCP/IP network model (AIDS,TIDS, NIDS, and LIDS) [152]. By

designing a specialized IDS for each layer in the TCP/IP network model, overall system performance

will be improved, as will the system scalability, generality, and extensibility. In addition, the new

classification scheme can reduce intrusion influences and damage that may occur as a result of

detection attacks in the first stage (higher or lower TCP/IP layer) before they can enter the network.

 We have implemented a number of experiments to evaluate the first approach, the Fuzzy ESVDF

algorithm [118], [119], using the KDD-99 dataset [111], and four other datasets from UCI Irvine

Machine Learning Repository [112]. The experimental results demonstrate that our approach can

reduce training and testing times while retaining high classification accuracy.

 For the second approach, the IDS classification scheme, we have implemented the different IDS

types (AIDS, TIDS, and NIDS) by using the Fuzzy ESVDF approach to select the appropriate

features set for each IDS type and validating their performance by using NN and SVM classifiers.

Experimental results demonstrate that classifying IDS into different types improves system accuracy,

efficiency (training time and testing time), and scalability even more. It is reduced from seven

features (in case of using all attack types) to five features in AIDS, four features in TIDS, and four

features in NIDS, as shown in Table 3.9.

 Therefore, combining the two approaches, features selection and the IDS classification scheme, can

build an efficient lightweight IDS that is small, powerful, and flexible enough to be used as a

permanent element of a network security infrastructure.

 73

Chapter 4

Collaborative Architecture for dIDS based on Lightw eight IDSs

In this thesis, we propose a new architecture for IDS, called a Collaborative architecture for dIDS (C-

dIDS) based on lightweight IDS modules, to overcome the heavy network traffic problem while

improving system performance and scalability [153]. This architecture, C-dIDS, combines two main

concepts. The first concept, the C-dIDS uses lightweight IDS (Chapter 3), where each detector (IDS

module or host) uses small amounts of data in the detection process by applying two different

approaches: features selection approach and IDS classification scheme.

 For the first approach, a novel features selection approach called Fuzzy Enhanced Support Vector

Decision Function (Fuzzy ESVDF) [118], [119] is used in order to improve system scalability in

terms of reducing the number of needed features without affecting overall system performance.

 The second approach uses a new IDS classification scheme by employing multiple specialized

detectors in each layer of the network TCP/IP network model [152]. This helps in the collecting of

efficient and useful information for dIDS, increasing the system’s ability to detect different attack

types and reducing the system’s scalability. To integrate the system’s IDS modules, we propose a new

architecture, Collaborative dIDS, as a second concept used in this thesis. The C-IDS contains a

single-level hierarchy dIDS with a non-central analyzer [154]. To make the detection decision for a

specific IDS module in the system, this IDS needs to collaborate with the previous IDS in the lower

level of the hierarchy only. This architecture improves overall system performance. It overcomes the

distributed IDS (dIDS) limitations: the central management problem and the scalability bottleneck.

Moreover, the cooperation between the IDS modules is done with less network load. In this chapter,

first we explain the new architecture, C-dIDS. Then, we integrate the two concepts (lightweight and

C-dIDS) in order to improve system performance, efficiency, scalability, generality, configurability,

reliability, robustness, flexibility, and extensibility with minimum network load. To design this

architecture, several experiments have been conducted which indicate that the proposed architecture

can deliver satisfactory results.

 This chapter splits into three sections. The first section (Section 4.1) describes the C-dIDS

architecture. It starts by giving a brief background of dIDS. The proposed architecture C-IDS is then

presented with some experimental results and discussion, followed by reviewing the summary of the

 74

section. Section 4.2 describes the proposed system (C-dIDS based on lightweight IDS) with some

experiments and results. Our conclusion is drawn in Section 4.3.

4.1 Collaborative Architecture for dIDS

Due to the many issues associated with monolithic architecture for an IDS, such as limited scalability,

single point of failure, a lack of extensibility, much overload (computational bottleneck), vulnerable

to subversion, difficult to configure or add capability among others, a distributed Intrusion Detection

System (dIDS) is required to allocate multiple IDS modules across a network to monitor security

events and to collect data. However, most dIDS architectures have two primary shortcomings. First,

the central management and processing of data represents a single point of failure. Second, the

scalability bottleneck often results in these systems suffering from a slow response time to new

threats. In this section, we propose a new architecture to overcome these two limitations [154], called

a Collaborative architecture for dIDS (C-dIDS). The C-dIDS contains a single-level hierarchy dIDS.

To make the detection decision for a specific IDS module in the system, this IDS module needs to

collaborate with the previous IDS in the lower level only. Coordinated deployment of multiple IDS

promises to generate greater confidence in the results, and improve the coverage of intrusion

detection. This can be accomplished with less network load (just one bit of information), which in

turn improves system scalability. Moreover, by using single-level hierarchy, there is no central

management and processing of data and so no chance of a single point of failure. We have examined

the feasibility of our dIDS architecture by conducting several experiments using the DARPA dataset

[111]. The experimental results indicate that the proposed architecture can deliver satisfactory system

performance with less network load.

4.1.1 Distributed Intrusion Detection Systems

Many network-based and host-based IDS perform data collection and analysis centrally using a

monolithic architecture (meaning that the data are collected by a single host and analyzed by a single

module). This architecture suffers from significant problems that limit the performance of IDS [120],

[121], [122]. First, a single point of failure: if an intruder can somehow prevent the IDS from

working, the entire network is unprotected. Second, limited scalability: processing all the information

on a single host implies a limit on the size of the network that can be monitored. After that limit, the

central analyzer is unable to keep up with the flow of information. Third, a lack of extensibility: it is

difficult to reconfigure or add capabilities to the IDS. Finally, the analysis of network data can be

 75

flawed. As a result, intrusions can be conducted through several steps that occur on different hosts,

and such intrusions consequently cannot be detected by a single IDS.

 These problems make the area of IDS an attractive research field. In recent years, researchers have

investigated different distributed approaches for IDS [42], [98], [99], [121]. The distributed IDS

(dIDS) [77], [89] is one of several options that allow computation load and diagnostic responsibilities

to be distributed throughout the network. It performs distributed data collection (and some pre-

processing) by using modules distributed among different hosts, which monitor separately and

communicate and cooperate with each other. The dIDS can provide the foundation for a complete

solution to the complexities of real-time detection, while maintaining fault-resistant behaviour. In

addition, each module can be added or removed from the system without altering other system

components, as they operate independently. Moreover, the system’s modules can be configured or

upgraded without disturbing the rest of the system as long as their external interface remains the

same. Nonetheless, the collected data are still shipped to a central location where they are analyzed by

a monolithic engine. Also, it may result in a scalability bottleneck. To address these limitations, many

techniques use a hierarchical structure [42], [43], [44], [46], [67] which describe a cooperative system

without centralized analysis components. In these approaches, the local intrusion detection

components look for local intrusions and pass the results of their analysis to the upper levels of the

hierarchy. The components at the upper levels analyze the refined data from multiple lower level

components and seek to establish a global view of the system state. This helps address scalability and

allows a system to be deployed across large enterprise-scale networks. Moreover, it helps address the

single point of failure problem, because if a higher node hierarchy should fail the lower tiers can

typically continue to function, but with less detection capabilities.

 The major disadvantages of hierarchical dIDS are the limited detection process (it limits the kind of

intrusions that can be detected at the highest levels) and the network latency (the delay between each

level in the architecture). Moreover, there is still one highest-level entity, which is the bottleneck of

this system and leads to a single point of failure. The hierarchical structures usually give attackers the

opportunity to harm the IDS by cutting off a control branch or even by taking out the root command.

Our proposed approach overcomes these problems by eliminating the need for so much transferred

data and speeding up the detection process [154]. Also, it addresses the single point of failure

problem without losing any detection capability, and improves the overall scalability of the system.

 76

 This architecture is called Collaborative architecture for dIDS (C-dIDS). The C-dIDS contains a

single-level hierarchy architecture. Each IDS module (host) in the system needs to receive one

information bit from the IDS in the lower level and pass the results of its analysis to the IDS in the

upper level. Therefore, to make the detection decision for each IDS module in the system, this IDS

needs to get one bit of information (the analysis results) from the previous IDS in the lower level

only, without proceeding to the more than one level or the root node. Thus, improves the overall

system performance, avoids a single point of failure problem and speeds up the detection process with

less network load.

4.1.2 Collaborative Architecture for dIDS

We propose a new architecture for distributed IDS (dIDS) called a “Collaborative architecture for

dIDS” (C-dIDS) to overcome the single point of failure, heavy network traffic and network latency

problems, while improving system performance. This architecture, C-dIDS, organizes the cooperation

process between different IDS modules (hosts) that are distributed on different points in the network

by using single-level hierarchy dIDS with non-central analyzer. Each IDS module (host) in the system

needs to receive a single bit of information from the previous IDS module to make its own detection

decision. This bit of information can be either zero (to indicate that the network traffic is normal), one

(to indicate that the network traffic is attack), or two (to indicate that the network traffic is undefined,

which means that the network traffic has two values: normal and attack). To make a detection

decision for each IDS module, the IDS module needs to use this bit of information from the previous

IDS module in the lower level with the six rules described by Table 4.1. Where T = zero (normal), F

= one (attack), and U= two (Undefined); X1 is the detection value from the current IDS module and

X2 is the detection value that it is sent from the previous IDS in the lower level of the hierarchy.

 77

 As it is shown in Table 1 that “X1” takes only two values either True (normal) or False (attack),

because “X1” is the analysis result from the IDS module. However, “X2” can take three values: True

(normal), False (attack) and Undefined; because “X2” is the information bit that comes from previous

IDS module in the lower level. This bit is actually the outcome of Table 4.1, and, as it shown, it has

three values.

 Then, only normal and undefined traffic are allowed to pass to the next IDS module in the upper

level; attack traffic is blocked and denied passage to the next stage. Moreover, for initializing the

information bit at the first IDS module (host), there are three different scenarios. The first scenario is

to initialize the bit (X2) with one (attack: F). Figure 4.1 describes this scenario. The second scenario

is to initialize the bit with two (undefined: U). Figure 4.2 describes this scenario. The third scenario is

to initialize the bit with zero (normal: T). Figure 4.3 describes this scenario. (Suppose the number of

IDS modules equals three).

Table 4.1

The Composition Table for the Final Decision Results

X1 X2 The Decision Result

T T T

T F U

T U T

F T U

F F F

F U F

 78

T+F=U

Figure 4.1 The first scenario for C-dIDS architecture

Network Traffic

T+U=T

F+F=F

T+T=T

F+T=U

(X2= F)

F+U=F

IDS

module

(2)

IDS

module

(3)

IDS

module

(1)

 79

T+U=T

Figure 4.2 The second scenario for C-dIDS architecture

Network Traffic

F+U=F

(X2= U)

F+U=F

IDS

module

(2)

IDS

module

(3)

IDS

module

(1)

T+T=T

F+T=U

T+T=T

T+U=T

F+T=U

 80

 As shown in the above figures, the initialization of the information bit (X2) affects the system

behaviour in the first stages only. In scenario (1), after the system has filtered the traffic it will allow

for only the normal to pass on to the first two stages; then it will allow all traffic to pass in the third

stage, and after that it will allow the normal and undefined traffic to pass the rest of the stages. For

scenario (2), the system at the first stage will allow the normal to pass only. For the second stage, it

will allow all traffic to pass to the next stage, and then it will allow the normal and undefined traffic

to pass the rest of the stages. Finally, in scenario (3), for the first stage it will allow all traffic to pass

and then only normal and undefined traffic will be allowed for the rest of the stages.

 Another feature of this C-dIDS architecture is its flexibility in terms of its ability to be converted to

other distributed architectures (non-cooperative dIDS and central analyzer dIDS) by changing the

value of the information bit (the bit that it is received from the previous IDS in the lower level) to fix

value either zero (normal/T) or one (attack/F). If the information bit (X2) has a value of one, the

Figure 4.3 The third scenario for C-dIDS architecture

Network Traffic

F+U=F

(X2= T)

F+U=F

IDS

module

(2)

IDS

module

(3)

IDS

module

(1)

T+T=T

T+U=T

F+T=U

T+T=T

F+T=U

T+T=T

T+U=T

F+T=U

 81

system’s structure becomes like a non-cooperative dIDS; and if it has a value of zero, the system’s

structure becomes like a central analyzer dIDS.

 The non-cooperative dIDS architecture is a distributed architecture where each IDS module does it

own detection decision without any cooperation with others. The C-dIDS can be converted to this

architecture by fixing the information bit (X2) value to one (attack/F) always as it is shown in

Figure4.4.

 In the central analyzer dIDS, each IDS module does its detection decision. At the end, all IDS

modules will send their results to the central analyzer, which will aggregate all decisions into a single

decision using an aggregation technique. The C-dIDS can be converted to this architecture by fixing

the information bit (X2) with zero value (normal/T), as it is shown in Figure 4.5.

T+F=U

Figure 4.4 The non-cooperative architecture for C-dIDS

Network Traffic

T+F=U

F+F=F

(X2= F in all steps)

F+F=F

IDS

module

(2)

IDS

module

(3)

IDS

module

(1)

F+F=F

T+F=U

 82

 As a result, the proposed architecture, C-dIDS, reduces the network traffic load while improving

overall system performance. Moreover, there is no central management and processing of data so

there is no chance for a single point of failure. In addition, C-dIDS is a flexible system. It can be

converted to other dIDS architectures: non-cooperative dIDS or central analyzer dIDS. The

experimental results in the next section will prove some of these features.

4.1.3 Experiments and Results

 To evaluate the performance of our proposed approach, we compare it with two other architectures-

central analyzer dIDS and non-cooperative dIDS - by using the DARPA KDD-99 benchmark dataset

[111]. In this section, we initially describe the contents of the DARPA KDD-99 dataset and the

experimental settings, followed by some experimental results and discussion.

Datasets Description

We use the same dataset (KDD-99 dataset [111]) as employed in the previous section (Section 3.3.1).

In these experiments, we pick two different datasets for training and testing purposes. Each dataset

T+T=F

F+T=U

Figure 4.4 The non-cooperative architecture for C-dIDS

Network Traffic (X2= T in all steps)

IDS

module

(1)

IDS

module

(2)

IDS

module

(3)

F

The

Central

Analyzer

T+T=F

F+T=U T+T=F

F+T=U

T

 83

contains 6000 samples, of which 3000 are normal samples (50 %) and 3000 are attack samples (50 %)

(i.e., the total number of samples equals 12000).

Experimental Settings

Our experiment has two main steps. In the first step, we build three IDS modules (hosts). Each

module is implemented using different technique. Secondly, we integrate these different IDS modules

using three different architectures: C-dIDS, non-cooperative dIDS, and central analyzer dIDS.

 For the first step and for building three IDS modules, we use: Back Propagation (PB) Neural

Networks to implement IDS module (1), Radial Basis Function (RBF) neural network to implement

IDS module (2), and for IDS module (3) we use Support Vector Machines (SVMs). (Note: there is no

reason behind picking these SC tools to build the IDS modules; our focus here to build three IDS

modules regardless of the tools that are used)

 For implementing BP NN, we use the function “newff” from the MATLAB toolbox with three

layers (an input layer with 41 neurons, a hidden layer with six neurons, and an output layer with one

neuron), sigmoidal activation function, performance function “MSE”, 30 epochs and 0.001 learning

rate. For RBF NN, we use the function “newrb” from MATLAB toolbox with goal value equal to

zero, spread value equal to one, and maximum number of neurons equal to fifty. For SVM

implementation, we use the simpleSVM library for SVM [113]. The crossover parameters selection of

the SVM includes a range of basic SVM parameters, various kernel functions, and their performance

arguments. In our experiments, we set the crossover parameters as follows: C can take one of these

values 1, 100, 5000, or 10000. The kernel functions for SVM were taken as linear and radial basis

kernels. The polynomial kernel with degree 1 and 2 and the coefficient (scale) can be 0.5, 2, 3, or 4. �

in a radial basis kernel at either 0.5, 1, 2, or 3.

 For the second step, we integrate the three modules (IDS module (1), IDS module (2), and IDS

module (3)) using three different dIDS architectures: C-dIDS, non-cooperative dIDS, and central

analyzer dIDS.

 In the C-dIDS architecture, each IDS module makes its detection decision by using one bit of

information from the previous IDS in the lower level of hierarchy (as it is explained in Section 4.1.2).

Network traffic first enters the IDS module (1) that will divide the traffic into normal and attack,

which are the values of “X1”. Then IDS module (1) applies the six rules that are mentioned in

Table4.1 on its result analysis “X1” and the information bit “X2” sent from a previous IDS module to

 84

make the final decision. After that, it only allows normal and undefined traffic to pass to the next

module. Normal and undefined traffic will again be scrutinized at the IDS module (2) which will

divide the traffic once more into normal and attack, and also applies the six rules on them to get the

final analysis results. Then IDS module (2) allows only normal and undefined traffic to pass on to the

next module. The same situation applies to the IDS module (3).

 The non-cooperative dIDS is a distributed architecture where each IDS module does its own

detection decision, without any cooperation with others. In our case, we have three different IDS

modules. The network traffic first enters the IDS module (1) which will divide the traffic into normal

and attack, and allow only the normal traffic to pass to the next IDS module in the upper level; the

remaining attack traffic will be blocked. Normal traffic will again be scrutinized at the next IDS

module, which will divide the traffic once more into normal and attack, and allow only the normal

traffic to pass on to the next IDS module. This process will happen repeatedly until the filtered

network traffic is received at the last IDS module.

 In the central analyzer architecture, each IDS module in the system makes its own detection

decision. At the end, all IDS modules will send their results to the central analyzer, which will

aggregate all decisions into one final decision using an aggregation technique. In our case, we have

three IDS modules (three votes). To aggregate these votes, we use a vote aggregation method. So,

there might be three normals, or two normals and one attack; in both cases, “normal” wins. Or there

can be three attacks, or two attacks and one normal; in both cases, “attack” wins.

 Each experiment is repeated ten times by randomly selecting 40 % of samples as the test data; the

remaining 60 % are used as the training data.

Experimental Results

The comparisons of the different dIDS architectures {C-dIDS [C-dIDS (1), C-dIDS (2) and C-dIDS

(3)], non-cooperative dIDS, and central analyzer dIDS} are presented in Table 4.1 and Table 4.2

respectively. These comparisons are done with respect to different performance indicators: FPR, CR,

training time, and testing time (Table 4.2), the average amount of traffic that enters each IDS module,

and the total amount of traffic (Table 4.3). (Note: C-dIDS (1) refers to the first scenario for C-dIDS,

C-dIDS (2) refers to the second scenario for C-dIDS, and C-dIDS (3) refers to the third scenario for

C-dIDS).

 85

Note: “+” means the amount of traffic plus the information bits (the bits that are added from the

cooperation process between the modules). For example “2391.2 x 41 = 98039.2 +”, means that

98039.2 + 2391.2 = 100430.4. The total traffic amount includes this additional amount (the added

information bits), and 41 represents the number of the information bits in each record of the network

traffic.

Table 4.3

The Comparison between the three architectures: C-dIDS, non-cooperative, and central analyzer in

terms of amount of traffic

Architecture Traffic (IDS1) Traffic (IDS2) Traffic (IDS3) Total traffic

C-dIDS (1)
(2391.2 x 41)

98039.2 +

(1345.2 x 41)

55153.2 +

(1200.6 x 41)

49224.6 +
207354

C-dIDS (2)
(2391.2 x 41)

98039.2 +

(1345.2 x 41)

55153.2 +

(1280.7 x 41)

52508.7 +
210718.2

C-dIDS (3)
(2391.2 x 41)

98039.2 +

(2391.2 x 41)

98039.2 +

(1199.6 x 41)

49183.6 +
251244

non-cooperative
(2391.2 x 41)

98039.2

(1345.2 x 41)

55153.2

(1200.6 x 41)

49224.6
202417

central analyzer
(2391.2 x 41)

98039.2

(2391.2 x 41)

98039.2

(2391.2 x 41)

98039.2
294117.6

Table 4.2

The Comparison between the three architectures: C-dIDS, non-cooperative, and central analyzer in

terms of FPR, CR, and efficiency

Architecture
FPR

(%)

CR

 (%)

Training Time

(sec)

Testing Time

(sec)

C-dIDS (1) 1.00 x 10-6 99.304 402.822 0.233

C-dIDS (2) 1.00 x 10-6 99.609 402.822 0.247

C-dIDS (3) 0.84 x 10-6 99.711 402.823 0.390

non-cooperative 1.2 x 10-6 99.292 402.822 0.239

central analyzer 0.336574 99.774 402.822 0.444

 86

Discussion

As shown in Table 4.2, comparison between C-dIDS (C-dIDS (1), C-dIDS (2), C-dIDS (3)) and non-

cooperative dIDS reveals a significant improvement in terms of CR with similar FPR is maintained.

The C-dIDS (1), C-dIDS (2), and non-cooperative dIDS have nearly the same testing time. However,

the testing time is increased in C-dIDS (3) because the C-dIDS (3) allows more traffic to pass at the

first stage of detection, as is shown in Table 4.3. In general the proposed architecture improves the

system efficiency (time) without creating a heavy network load on the system or reducing system

accuracy. Moreover, the non-cooperative dIDS represents dIDS with no central analyzer and without

any cooperation between the IDS modules. Each IDS module works independently and filters

network traffic according to its own decision, which causes a reduction in overall system accuracy,

because each layer adds some portion of error through blocking attack records, which may contain

some normal records (False Positive); also, aggregating more than one decision is better than an

individual decision. The C-dIDS mitigates these limitations by allowing more traffic to pass to the

next IDS module in the system (it allows the normal and undefined traffic instead of only the normal

traffic) and cooperating with the other IDS module to make the final detection decision.

 Comparing C-dIDS (C-dIDS (1), C-dIDS (2), and C-dIDS (3)) with the central analyzer dIDS, the

central analyzer dIDS outperforms the C-dIDS in terms of CR; however, it has the largest FPR value

and testing time. In the central analyzer dIDS, each IDS module works independently, and the result

of each module is aggregated in order to generate more global alerts. Therefore, all data will be

shipped to all dIDS modules, and then sent to a central location for aggregating the alerts, which

causes heavy network traffic as shown in Table 4.3. The total amount of traffic is 294117.6, which is

higher than other architectures. Moreover, the central analyzer dIDS suffers from the single point of

failure problem, and that may prevent IDS from working and cause the entire network to experience a

loss of protection.

 Comparing C-dIDS (1), C-dIDS (2), and C-dIDS (3) shows that allowing more traffic to pass

between system’s IDS modules at the first stages can improve the overall system performance (as

shown in Table 4.2) while increasing the testing time (as shown in Table 4.2) and the system load (as

shown in Table 4.3). Moreover, it is obvious from the above figures that dIDS (1) works as a non-

cooperative architecture in the first two stages. dIDS (2) also works as a non-cooperative architecture,

but only in the first stage. For dIDS (3), the system does not do that at all, which means that changing

the value of initialization bit can only affect the system in the first stages. For the rest of the stages, all

scenarios will follow the same behaviour. As a result, there is no preference between these three

 87

scenarios. Each one has its own benefits, depending on user requirements. The C-dIDS (1) scenario

can be used in applications in which time plays a critical role (it has the least testing time = 0.233).

On the other hand, if system accuracy is the most important issue in the application, the C-dIDS (3)

scenario is recommended (it has the best CR = 99.711 and FPR = 0.84 x 10-6). Accordingly, if time

and system accuracy have the same priority, dIDS (2) is recommended. As shown in Table 4.2 and

Table 4.3, the C-dIDS (1) has the best value in terms of the traffic amount and the testing time, and C-

dIDS (3) has the best system accuracy among other C-dIDS scenarios. The application type will then

determine which scenario is the most appropriate. In general, the idea of C-dIDS is to improve the

non-cooperative architecture by allowing more traffic to pass between the system’s IDS modules.

Instead of allowing only the normal traffic to pass, the C-dIDS allows normal and undefined traffic.

Moreover, cooperating processes between system modules can improve the overall system accuracy.

 In summary, these results demonstrate the feasibility of the proposed architecture (C-dIDS). The C-

dIDS seems to be the most appropriate approach because it uses a non-central analyzer dIDS, and it

allows the modules to cooperate with less network load (one bit of information through single-level

hierarchy dIDS). It is also shown that the C-dIDS is a flexible system; it can be converted to either a

central analyzer dIDS or a non-cooperative dIDS by changing only the value of the information bit.

4.1.4 Summary

The most common shortcomings in existing distributed Intrusion Detection System (dIDS)

architectures are that they are built around a central management that does the aggregation and

processing of the system’s alerts. A heavy network load results in very large amounts of data being

transmitted between the detectors (hosts). This section presents a novel architecture for dIDS to

overcome these limitations, called Collaborative architecture for dIDS (C-dIDS) [154]. The C-dIDS

demonstrates that detection IDS modules can be run in a distributed fashion, with each one running

independently of the others while cooperating and communicating to provide a truly distributed

detection mechanism with no single point of failure. There is no central processing location; all IDS

modules process the information available to them independently and relay any suspicious activity to

other IDS modules on the network. The C-dIDS is based on the idea of independent IDS cooperating

to detect different attack types across the network. Each IDS module makes its own traffic analysis

while cooperating with other detectors to make the final detection decision. The main goals of this

architecture are to reduce network traffic load while achieving better intrusion detection.

 88

 By using single-level hierarchy dIDS with a non-central analyzer, each IDS module in the system

needs to communicate with other IDS modules by transferring one bit of information. Cooperating

with other IDS modules (detectors or hosts) can improve the system’s ability to detect attacks that

might not be detectable if each IDS module was examined individually, with low network load.

Moreover, by using single hierarchy level, there is no central management and processing of data so

there is no chance for a single point of failure. In addition, fewer data are transferred between these

modules (just one bit of information). The C-dIDS is a flexible system. It can be used as a central

analyzer dIDS or a non-cooperative dIDS simply by fixing the value of its information bit to either

one or zero.

 We evaluate the proposed architecture, C-dIDS, by comparing it with other dIDS architectures:

non-cooperative dIDS and central analyzer dIDS. The experimental results illustrate that the C-dIDS

is a suitable architecture in terms of system performance and network load.

4.2 Collaborative Architecture for dIDS based on Li ghtweight IDS

To even further improve the efficiency of the C-dIDS in terms of system scalability and network load,

we use lightweight IDS as system detectors (hosts). So, the proposed architecture of the dIDS will

integrate two different concepts: lightweight IDS and a distributed collaborative architecture.

 In the first concept, lightweight IDS (Chapter 3), the detection process uses fewer data for the

detection process by using lightweight IDS modules. The lightweight IDS is a small, flexible, and

highly capable system that is in use around the world on both large and small networks. It

accomplishes its essential tasks with minimal data, and it is dynamically updatable and upgradable,

simpler, and faster to transport (due to its smaller size). To build a lightweight IDS module, we need

to reduce the amount of data/features that are needed to accomplish the detection process. Most

researchers in this area use one of the features selection approaches to design a lightweight IDS,

which is considered to be inefficient in most cases. In this thesis, we build a lightweight IDS by

integrating two different approaches: features selection and an IDS classification scheme. For the first

approach, we apply a novel features selection algorithm called Fuzzy Enhancing Support Vector

Decision Function (Fuzzy ESVDF). The Fuzzy ESVDF is an iterative algorithm based on Support

Vector Decision Function (SVDF) and Forward Selection (FS) with a fuzzy inferencing model [118],

[119]. Using the Soft Computing (SC) approach for IDS features selection is suitable for handling

such subjective estimates, due to their high performance, low solution cost, fast recognition and

classification of different attacks, and ability to generalize from learned data. In the second approach,

 89

we present a new IDS classification scheme based on a TCP/IP network model. In this scheme,

specialized IDS are placed at each of the four layers of a TCP/IP network model (Application layer

IDS, Transport layer IDS, Network layer IDS, and Link layer IDS) to detect specific types of attack

corresponding to each layer. This scheme would enhance an organization’s ability to detect most

types of attack by identifying correct locations to place an IDS for the following reasons. First, each

TCP/IP layer has different vulnerabilities, security challenges and types of attacks. The studies in

[115], [116], [19], [117] showed that the choice of network features for IDS depends on the network

attack type to be detected. Network attacks can be categorized into four major types: (1) Application

Layer attacks, (2) Transport Layer attacks, (3) Network Layer attacks, and (4) Link Layer attacks.

The IDS can also be categorized into AIDS, TIDS, NIDS, and LIDS. Second, as is known, firewalls

operate at different TCP/IP network layers by using different criteria to restrict traffic, but this is a

long step from running an entirely secure network. Because of that, IDS must be allocated as a second

line of defense behind the firewalls. Third, the attacks usually gain access to the network through the

network devices distributed through different TCP/IP network layers as entry points, and in order to

be able to adequately address security, all possible avenues of entry must be evaluated and secured.

So, IDS must be allocated at these entry points or network devices. Finally, splitting the detection

process into different levels and stages reduces the computation load on the system and improves its

scalability and performance. Accordingly, the proposed lightweight IDS improves system accuracy,

efficiency, scalability, generality, extendibility, flexibility, and configurability.

 Due to the increasing connectivity of heterogeneous computer systems and the rapid growth,

sophistication, coordination and cooperation of attack tools and strategies, using distributed IDS

(dIDS) becomes essential in designing an IDS. The dIDS consists of multiple entities working

independently and allows changes to these entities without any modifications made to other entities.

The dIDS is capable of improving system performance, scalability, and extensibility, and can provide

the foundation for a complete solution to the complexities of real-time detection, while maintaining

fault-resistant behaviour. However, it suffers from a number of limitations, such as a scalability

bottleneck, a limited detection process, and network latency.

 In this thesis, we propose a novel collaborative architecture for distributed intrusion detection as a

second concept (Section 4.1) in order to overcome some of the limitations of the current approaches

in dIDS. This Collaborative distributed IDS (C-dIDS) is based on a single-level hierarchy dIDS with

a non-central analyzer. Each IDS module in the system needs to receive a single bit of information

from the previous IDS module to make its own detection decision, without proceeding to the root

 90

node or more than one IDS. Transferred data can be dispatched between the detectors with only

crucial data (just one bit of information), which will reduce network load. Moreover, data collection

and information analysis are performed locally without referring to the central management unit.

Therefore, there is no scalability bottleneck or single point of failure. In addition, it is capable of

improving accuracy, real-time performance, efficiency, flexibility, adaptability, extensibility,

robustness, and fault tolerance, as explained in Section 4.1.

 In this section, we integrate the above two concepts (lightweight IDS and Collaborative dIDS) in

order to improve the overall system performance. Using a lightweight IDS can improve system

efficiency, accuracy, scalability, generality, extendibility, flexibility, and configurability. The second

concept, C-dIDS, can also improve system scalability, extendibility, configurability, and flexibility. In

addition, it can improve system reliability and robustness with minimum network load.

4.2.1 Experiments and Results

To evaluate the performance of our proposed approach, we compare it with other architectures by

using the DARPA KDD-99 benchmark dataset [111]. In this sub-section, we initially describe the

contents of the DARPA KDD-99 dataset and the experimental settings, followed by some

experimental results and discussions.

Datasets Description

We use the same dataset (KDD-99 dataset [111]) as already used in the previous section (Section

3.3.1). In these experiments, we pick two different datasets for training and testing purposes. Each

dataset contains 6000 samples; of which 3000 are normal samples (50 %) and 3000 are attack

samples (50 %) (i.e., the total number of samples equals 12000).

Experimental Settings

Our experiment has two main steps. In the first step, we build three IDS modules. Secondly, we

integrate these different IDS modules to build different dIDS architectures. We build four

architectures: C-dIDS with specialized IDS module, C-dIDS with non-specialized IDS module, non-

cooperative dIDS with non-specialized IDS module, and central analyzer dIDS with non-specialized

IDS module. (Note: specialized IDS modules means that we use Network layer IDS (NIDS),

Transport layer IDS (TIDS), and Application layer IDS (AIDS) that we had already built in Section

3.2, and a non-specialized IDS module means that IDS modules use all 41 features).

 91

 For the first step, we use the results of previous experiments (Section 3.2) to build the C-dIDS with

specialized IDS modules. The specialized IDS modules will be NIDS, TIDS, and AIDS. For other

architectures, we use non-specialized IDS modules.

 For the second step, we integrate the three modules (NIDS, TIDS, and AIDS) to build a C-dIDS

with a specialized IDS module. Also, we integrate the non-specialized IDS modules to build the other

architectures: C-dIDS with non-specialized IDS module, non-cooperative dIDS with non-specialized

IDS module, and central analyzer dIDS with non-specialized IDS module. The different architectures

are explained in Section 4.1.2.

 Each experiment is repeated ten times by randomly selecting 40 % of the samples as the test data;

the remaining 60 % are used as the training data.

Experimental Results

For C-dIDS with specialized modules, we apply the Fuzzy ESVDF on 41 features [118], [119] to

select the best features set for each type of IDS module: AIDS, TIDS, and NIDS (Section 3.2). The

resulting features sets for AIDS, TIDS, and NIDS are presented in Table 3.9. The comparisons of the

different architectures - C-dIDS with specialized (we will used scenario (2) of the C-dIDS), C-dIDS

with non-specialized (we will used scenario (2) of the C-dIDS), non-cooperative with non-specialized

dIDS, and central analyzer with non-specialized dIDS - are presented in Table 4.4 and Table 4.5. The

comparison of the different dIDS architectures is done with respect to different performance

indicators: FPR, DR, CR, training time, and testing time (Table 4.3), the average amount of traffic

that enters each IDS module, and the total amount traffic (Table 4.4).

For the sake of simplicity, we re-named each architecture as follows:

- SC-dIDS: C-dIDS (2) with specialized IDS

- NC-dIDS: C-dIDS (2) with non-specialized IDS

- non-cooperative : non-cooperative with non- specialized IDS

- central analyzer: central analyzer with non- specialized IDS

 92

Note: “+” means that the amount of the traffic plus the information bits (the bits that are added from

the cooperation process between the modules). For example “2385.3 x 4 = 9541.2 +”, means that

9541.2 + 2385.3 = 11926.5. The total traffic amount reflects this additional amount (the added

information bits).

Discussion

As shown in Table 4.4, comparison between SC-dIDS and NC-dIDS reveals a significant

improvement in terms of training time (it is reduced from 3099.0 sec to 572.372 sec) and testing time

(it is reduced from 0.143 sec to 0.103 sec) while keeping nearly the same CR, DR, and FPR in both

cases. Also, Table 4.5 shows significant improvement in terms of the amount of the traffic between

the modules in SC-dIDS (25782 information bits) and NC-dIDS (207219.6 information bits). In

Table 4.4

Comparison between the four structures in terms of FPR, DR, CR, and efficiency

Architecture
FPR

(%)

DR

(%)

CR

(%)

Training Time

(sec)

Testing Time

(sec)

SC-dIDS 9.2 x 10-5 96.642 97.312 572.372 0.103

NC-dIDS 8.3 x 10-6 96.528 97.762 3099.00 0.143

non-cooperative 8.4 x 10-6 96.535 97.486 3099.00 0.128

central analyzer 0.4384 99.768 99.703 3099.00 0.178

Table 4.5

Comparison between the four architectures in terms of passed traffic

Architecture Traffic (IDS1) Traffic (IDS2) Traffic (IDS3) Total traffic

SC-dIDS
(2385.3x4)

9541.2 +

(1330.5x 4)

5322 +

(1200.5x5)

6002.5 +
25782

NC-dIDS
(2385.3x41)

97797.3 +

(1328.3x41)

54460.3 +

(1220.2x41)

50028.2 +
207219.6

non-cooperative
(2385.3x41)

97797.3

(1330.5x41)

54550.5

(1182.5x41)

48482.5
200830.3

central analyzer
(2385.3x41)

97797.3

(2385.3x41)

97797.3

(2385.3x41)

97797.3
293391.9

 93

general, the results indicate that using a lightweight IDS module can improve overall system

efficiency (training time and testing time) and system load without affecting system accuracy.

 In comparing SC-dIDS with non-cooperative architecture, we find that although SC-dIDS does not

use all 41 features, both non-cooperative dIDS and SC-dIDS architecture have nearly the same DR,

CR, and FPR. On the other hand, Table 4.4 shows the obvious improvement in training time and

testing time. Also, Table 4.5 reveals significant improvement in terms of the total amount of traffic.

The SC-dIDS has 25782 information bits, while non-cooperative architecture has 200830.3

information bits. As a result, the proposed architecture (SC-dIDS) has the ability to improve system

efficiency with a high accuracy value and a lighter network load.

 Comparing SC-dIDS with a central analyzer architecture, the central analyzer dIDS outperforms the

SC-dIDS in terms of CR and DR; however, it has the largest FPR. Also, its training and testing time

are greater than the training and testing time in the case of SC-dIDS, as shown in Table 4.3. Table 4.4

shows that the traffic passed between the IDS module in the central analyzer architecture is higher

than SC-dIDS; this is because all data in the central analyzer will be shipped to all dIDS modules and

then sent to a central location for aggregating the alerts. Accordingly, a central analyzer architecture

causes heavy network traffic on the system. This is in addition to the central management problem.

 In summary, the proposed architecture, C-dIDS with a specialized IDS module (SC-dIDS), can

improve the overall system efficiency (training time and testing time), scalability, and network load

while still delivering satisfactory system accuracy.

4.3 Conclusion

The most common shortcomings in the current IDS are low accuracy, low efficiency, and limited

scalability. This chapter presents a novel IDS distributed architecture –Collaborative Distributed

Intrusion Detection System (C-dIDS) based on lightweight IDS modules [153]. The C-dIDS is based

on the idea of lightweight, independent IDS cooperating to detect different attack types in each

TCP/IP network layer, by employing multiple specialized detectors at various layers of the network

TCP/IP model with a cooperative architecture. Each detector is specialized to detect different types of

attacks by cooperating with other detectors to increase user confidence in the alert. The main goals of

this architecture are to reduce network traffic load while improving system performance (accuracy

and efficiency). These goals are accomplished through use of two different concepts.

 94

 First, using lightweight IDS modules (Chapter 3), the detection process uses less data by applying

two different approaches: features selection and an IDS classification scheme. For the features

selection approach (Section 3.1), we use a novel algorithm called the Fuzzy Enhanced Support Vector

Decision Function (Fuzzy ESVDF) [118], [119]. The Fuzzy ESVDF integrates the Support Vector

Decision Function (SVDF) and Forward Selection (FS) approaches with the fuzzy inferencing model

to select the most appropriate features set for the IDS. It produces an efficient features set by using a

fast and simple approach. The second approach is the IDS classification scheme (Section 3.2). This

scheme employs multiple specialized detectors in each layer of the network TCP/IP model, and data

can be collected from multiple sources [152]. Thus, combining the best characteristics of traditional

host-based, network-based, and router-based IDS can improve the overall performance and scalability

of the system. Moreover, this categorization gives the architecture extended and maintained ability.

 Secondly, using a single-level hierarchy dIDS with a non-central analyzer (Section 4.1), each IDS

module in the system needs to communicate with another IDS module by transferring one bit of

information [154]. Cooperating with other IDS modules (detectors) can improve the system’s ability

to detect attacks that might not be detectable if each of the IDS was examined individually, with less

network load. Moreover, by using single hierarchy level, there is no central management and

processing of data, so there is no chance for a single point of failure; in addition, fewer data are

transferred between these modules (just one bit of information). The C-dIDS is a flexible system. It

can be used as a central analyzer dIDS or a non-cooperative dIDS simply by fixing the value of its

information bit to either one or zero, as explained in Section 4.1.2. By comparing the proposed

architecture with other architectures, we illustrate that the C-dIDS is a suitable architecture in terms

of system accuracy, efficiency, scalability, and system load.

 By integrating the above two concepts, lightweight IDS and C-dIDS, the overall performance of

the IDS is improved. The experimental results show that a C-dIDS based on lightweight IDS modules

improves overall system performance, efficiency (training time and testing time), and scalability

without creating a heavy system load.

 95

Chapter 5

Conclusions and Future Work

In this chapter, we briefly present a summary and contribution of the thesis in Section 5.1, followed

by future work in Section 5.2.

5.1 Summary of Results and Thesis Contribution

In this thesis, we have primarily investigated the intrusion detection problem. Current IDS usually

have several major shortcomings such as low accuracy, low real-time performance (low efficiency),

and limited scalability. In particular, we have proposed a novel IDS architecture –Collaborative

Distributed Intrusion Detection System (C-dIDS) based on lightweight IDS modules— that integrates

two different concepts in order to work around these limitations [153]. First, the C-dIDS uses

lightweight IDS, where each detector (IDS module) uses smaller amounts of data in the detection

process by using two approaches: a features selection approach, and an IDS classification scheme.

For the former, we apply a Fuzzy Enhanced Support Vector Decision Function (Fuzzy ESVDF) as a

feature selection technique, which ensures that this technique will improve system efficiency,

scalability, and reduce the network traffic load while retaining high classification accuracy.

 The second approach is the IDS classification scheme. This scheme employs multiple specialized

detectors in each layer of the network TCP/IP model, which helps in the collection of efficient and

useful information for the dIDS, increasing the system’s ability to detect different attack types and

reducing the system’s scalability. The second concept is accomplished by using Collaborative

architecture (C-dIDS) for the IDS. The C-dIDS contains a single-level hierarchy dIDS with a non-

central analyzer. To make the detection decision for a specific IDS module in the system, this IDS

needs to collaborate with the previous IDS only, improving system accuracy without increasing the

traffic load. Moreover, this architecture protects the system from single point of failure and the

scalability bottleneck.

 For the first approach, using lightweight IDS modules (detectors) (Chapter 3), the detection process

uses fewer amounts of data for the detection process by employing two different concepts. The first

approach is applying a novel feature selection technique (Fuzzy Enhanced Support Vector Decision

Function) [118], [119]. The Fuzzy SVDF is based on a Support Vector Decision Function (SVDF)

and Forward Selection (FS) with a fuzzy inferencing model. It is an iterative algorithm, where each

iteration consists of two steps: feature ranking and feature selecting. Taking feature ranking first, the

 96

Support Vector Decision Function (SVDF) is evaluated to rank each specified candidate feature.

Next, feature selecting, a Forward Selection approach (FS) is applied with the fuzzy inferencing

model to select the features according to a set of rules based on a comparison of performance.

 To examine the feasibility of our approach, we conduct several experiments and comparisons. For

evaluating the performance of the Fuzzy SVDF approach, we compare it with [34], [105] approaches

by using the DARPA KDD-99 benchmark dataset [111]. In addition, we select four smaller datasets

from the UCI databases [112] to evaluate the proposed approach (Fuzzy SVDF) in different domains,

and its behaviour with a different number of features (each dataset has a varying number of features).

Also, we use two different classifiers (SVM and NN) to evaluate the resulted features set. The

experimental results demonstrate the feasibility of the proposed approach. The proposed approach

gives the best performance in terms of training and testing times while retaining high classification

accuracy, allowing this approach to be used in a real-time environment. In addition, this approach is

considered to be a features selection approach regardless of the type of classifier used, making this

approach a suitable features selection method for other applications rather than an IDS.

 For the second approach, the IDS classification scheme, by employing multiple specialized

detectors in each layer of the network TCP/IP model, data can be collected from multiple sources

[152]. Thus, combining the best characteristics of traditional host-based, network-based, and router-

based IDS can improve the overall performance and scalability of the system. Moreover, this

architecture can be easily extended and maintained. We design three different types of IDS: NIDS,

TIDS, and AIDS (LIDS is not included) by using Fuzzy ESVDF. Several experiments have been

conducted to evaluate the effects of categorizing the IDS into these different types. We compare the

performance of the specialized IDS modules (NIDS, TIDS, and AIDS) with the performance of the

IDS that is designed to detect any attacks by using two different classifiers, NN and SVM. Moreover,

we swap the features between the three different specialized IDS modules to evaluate the affect of

each feature on the detection process. The experimental results indicate that each IDS type is subject

to its own “custom” attacks and therefore needs its own custom protection. Also, categorizing IDS

into different types can improve the overall system performance (accuracy and efficacy) and

scalability.

 For the second concept (Section 4.1), a distributed collaborative architecture, we propose a new

architecture called a Collaborative architecture for dIDS (C-dIDS) [154]. The C-dIDS contains a

single-level hierarchy dIDS with a non-central analyzer. Each IDS module in the system needs to

communicate with another IDS module by transferring one bit of information. Cooperating with other

 97

IDS modules (detectors) can improve the system’s ability to detect attacks that might not be

detectable if each module of the IDS was examined individually, with less network load. Moreover,

by using single hierarchy level, there is no central management and processing of data, so there is no

chance for a single point of failure. We have examined the feasibility of our dIDS architecture by

conducting several experiments using the DARPA dataset, and compared the proposed architecture

(C-dIDS) with other dIDS architectures: non-cooperative dIDS and central analyzer dIDS

architecture. For each of these architectures, we use three different IDS modules. Module (1) is

implemented by using Back Propagation (PB) Neural Networks; Module (2) employs a Radial Basis

Function (RBF) Neural Network; Module (3) is implemented by Support Vector Machines (SVM).

The experimental results show that the C-dIDS is a suitable architecture in terms of system

performance and network load, as it allows the modules to cooperate with less network load (one bit

of information through a single-level hierarchy dIDS). In addition, the C-dIDS is a flexible system. It

can be used as a central analyzer dIDS or a non-cooperative dIDS simply by fixing the value of its

information bit to either one or zero.

 We join the above two concepts (Section 4.2): lightweight IDS (Chapter 3), and distributed

collaborative architecture (Section 4.1) in order to improve system accuracy, efficiency, and

scalability while reducing the overall system load [153]. Therefore, many IDS modules can be

installed and work in a collaborative manner without creating a heavy network load. Each one is

concerned with some specific part of the network. It is then necessary to make them cooperate to

achieve a global vision of the intrusion, while avoiding a single point of failure. Another point that

vindicates this cooperative approach is the possibility to combine IDS that work differently. We

implement the C-dIDS architecture using three specialized IDS modules: NIDS, TIDS, and AIDS that

were already implemented in Section 3.2. For evaluating the proposed architectures, we compare the

proposed approach (C-dIDS) with non-specialized C-dIDS, non-cooperative, and central analyzer

architecture. The experimental results demonstrate that the proposed architecture can improve the

overall system efficiency (training time and testing time) and scalability while it delivers satisfactory

system accuracy.

 In summary, these results demonstrate the feasibility of the proposed architecture (C-dIDS based on

lightweight IDS modules). By integrating the two concepts (lightweight IDS and distributed

collaborative architecture for the IDS), the system accuracy, efficiency (training and testing time),

and scalability are improved without creating extra network load on the system. It provides a layer of

 98

defense which monitors network traffic for predefined suspicious activity or patterns, and alerts

system administrators when potential hostile traffic is detected. Other advantages accrue as well.

 First, it can be easily extended and maintained. Each module can be added or removed from the

system without altering other system components, because intrusion detection processes are

independent, so existing processes do not need to be modified when a new intrusion detection process

is added.

 Second, splitting the detection onto different levels (or stages) in the network reduces the

intrusion’s influences, which reduces any damage that may occur.

 Third, the proposed architecture improves the reliability of the system. Because it distributes the

detection onto different levels, an intruder successful in attacking single level affects that single level

only: the system will continue applying detection to the other levels. The failure of one local intrusion

detection process does not cripple an entire IDS, even though it causes some degradation of overall

detection accuracy.

 Finally, it improves system robustness. The IDS will be difficult to attack, as it is divided into many

detection levels (depending on the number of devices in the network) that make attacking the system

much more difficult. Nevertheless, there remain unresolved problems to building an effective IDS

which are not covered in this thesis, such as an inability to detect new attacks and weak system

reactive capabilities, etc.. More details about future work planning are given in the next section.

5.2 Future Research Directions

IDS modeling in this thesis has been focused on improving the detection model in terms of detection

accuracy, efficiency, and scalability, without creating a heavy network load on the system. We

believe there are many possible extensions for the IDS problem. Therefore, below are presented other

suggestions to further improve the IDS.

- Implement the C-dIDS using autonomous agents. With autonomous agents, the architecture can

be easily extended and maintained. In addition, they can enable ongoing interaction with the

environment and cooperating with other agents.

- Build a testing methodology to test the proposed architecture in terms of its robustness, security,

feasibility, reliability, and other criteria, and compare it with other dIDS architectures.

- Investigate the feasibility of implementing the C-dIDS in real-time intrusion detection

environments.

 99

- Security, or secure message handling between system components, by using different approaches

to accomplish confidentiality, integrity, and authentication for communications, could prevent the

blocking of messages or the generation of false messages.

We have already implemented the first part of the IDS, which is the detection model. We need to

focus on the other IDS parts:

• Response Mechanisms: most current IDS implementations have limited response (reactive)

capabilities; an IDS needs to be capable of preventing, not just reporting an attack. We are

planning to extend our study to build an efficient response system.

• Build a friendly interface agent. The user interface is an important issue for future work. Most

of the recent works in IDS has focused on how to implement detection, but very little has

been done in the way of presenting the information to the user, or how to allow the user to

specify policies that the IDS can understand and enforce. IDS should offer a user interface to

facilitate better control over intrusion detection activity and better understanding of the alert

information.

- Investigate other major limitations of IDS such as:

• New and Unknown Attack Recognition: The intelligent method of attack detection will be

researched further to overcome the problem of detection of unknown and novel attack forms.

• Dynamic nature: Provided with a dynamic nature, the IDS automatically learns new intrusion

methods on their own, without a central controller having predefined information. This area

needs to be studied deeply through the interaction with changing network environments,

various security requirements, and other intrusion detection processes.

- There are several areas where C-dIDS requires additional work before it can become more

responsive to the demands of a wide range of environments prevalent in networking applications,

such as:

• A layered framework for the placement of dIDS devices needs to be investigated.

• The effectiveness of dIDS depends also on how much of the data traffic is transferred

between the system components on the distributed environment (in our case the components

are the IDS modules). Therefore, the relationship between the proposed architecture and

traffic needs to be explored in order to improve the overall dIDS effectiveness.

 100

• We did not consider the balance between system performance and system cost. High

performance always entails a high system cost. We will do more work on improving system

performance with a reasonable system cost.

 Finally, IDS are not the answer to all network security problems. They require a certain level of

maturity and are only effective if monitored and maintained. This thesis is only one among many

preliminary starts in the field. There are many topics for possible future work, but we hope that our

work will be of service to the growing population of IDS users and researchers.

 101

Appendices

Appendix A: A Description of DARPA Dataset

The DARPA KDD-99 dataset [111] is based on DARPA 98 Intrusion detection dataset, which aims to

provide data for researchers working on intrusion detection in general. The DARPA KDD-99 dataset

contains network data to configure and evaluate intrusion detection systems. This recorded network

data contains 22 attack types and normal connections.

The attack types are:

(1) back
(2) buffer_overflow
(3) ftp_write
(4) guess_passwd
(5) imap
(6) ipsweep
(7) land
(8) loadmodule
(9) multihop
(10) neptune
(11) nmap
(12) perl
(13) phf
(14) pod
(15) portsweep
(16) rootkit
(17) satan
(18) smurf
(19) spy
(20) teardrop
(21) warezclient
(22) warezmaster

 In the KDD-99, a connection is represented by 41 features, 22 of these features describe the

connection itself and 19 of them describe the properties of connections to the same host in the same

host in last two seconds (IDS should analyze the service types used by the same user in previous

connections and for this purpose there are 10 features included in the 41 feature vector). These 41

features can be divided into different groups:

Basic features:

(1) Duration of connection

(2) Protocol type (3 different symbols: TCP, UDP, ICMP)

 102

(3) Service type (70 different symbols: FTP, HTTP, Telnet...)

(4) Status flag (11 different symbols)

(5) Total bytes sent to destination host

(6) Total bytes sent to source host

(7) Whether source and destination addresses are the same or not

(8) Number of wrong fragments

(9) Number of urgent packets

 (10-41) 32 derived features, falling into three categories:

(1) Content features: domain knowledge is used to assess the payload of the

original TCP packets. (Ex: number of failed login attempts)

(2) Time-based traffic features: these features are designed to capture properties

that mature over a two seconds temporal window. (Ex: number of

connections to the same host over the two seconds interval)

(3) Host based traffic features: utilize a historical window estimated over the

number of connections. Host-based features are therefore designed to assess

attacks, which span interval longer than two seconds.

The 41 features are as the following:

(1) duration: continuous.
(2) protocol_type: symbolic.
(3) service: symbolic.
(4) flag: symbolic.
(5) src_bytes: continuous.
(6) dst_bytes: continuous.
(7) land: symbolic.
(8) wrong_fragment: continuous.
(9) urgent: continuous.
(10) hot: continuous.
(11) num_failed_logins: continuous.
(12) logged_in: symbolic.
(13) num_compromised: continuous.
(14) root_shell: continuous.
(15) su_attempted: continuous.
(16) num_root: continuous.
(17) num_file_creations: continuous.

 103

(18) num_shells: continuous.
(19) num_access_files: continuous.
(20) num_outbound_cmds: continuous.
(21) is_host_login: symbolic.
(22) is_guest_login: symbolic.
(23) count: continuous.
(24) srv_count: continuous.
(25) serror_rate: continuous.
(26) srv_serror_rate: continuous.
(27) rerror_rate: continuous.
(28) srv_rerror_rate: continuous.
(29) same_srv_rate: continuous.
(30) diff_srv_rate: continuous.
(31) srv_diff_host_rate: continuous.
(32) dst_host_count: continuous.
(33) dst_host_srv_count: continuous.
(34) dst_host_same_srv_rate: continuous.
(35) dst_host_diff_srv_rate: continuous.
(36) dst_host_same_src_port_rate: continuous.
(37) dst_host_srv_diff_host_rate: continuous.
(38) dst_host_serror_rate: continuous.
(39) dst_host_srv_serror_rate: continuous.
(40) dst_host_rerror_rate: continuous.
(41) dst_host_srv_rerror_rate: continuous.

Sample of DARPA dataset

0,udp,private,SF,105,146,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0.00,0.00,0.00,0.00,1.00,0.00,0.00,255,254,1.00,0.01,0.00,0.00,0.00,0.00

,0.00,0.00,normal

0,udp,private,SF,105,146,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0.00,0.00,0.00,0.00,1.00,0.00,0.00,255,254,1.00,0.01,0.00,0.00,0.00,0.00

,0.00,0.00, portsweep

 104

Bibliography

[1] Y. Wu, B. Foo, Y. Mei, and S. Bagchi. “Collaborative Intrusion Detection System (CIDS): A

Framework for Accurate and Efficient IDS”, Proceedings of the 19th Annual Computer

Security Applications Conference (ACSAC 03), Page(s): 234 – 244, 8-12 December 2003.

[2] J. Yu; Reddy, R. Reddy, S. Selliah, S. Kankanahalli. S. Reddy, and V. Bharadwaj, “A

Collaborative Architecture for Intrusion Detection Systems with Intelligent Agents and

Knowledge-Based Alert Evaluation”, Proceedings of the 8th International Conference on

Computer Supported Cooperative Work in Design, Vol. 2, Page(s): 271 – 276, 26-28 May

2004.

[3] R. Zhang, D. Qian, H. Chen, and W. Wu, “Collaborative Intrusion Detection Based on

Coordination Agent”, Proceedings of the Fourth International Conference in Parallel

Distributed Computing, Applications and Technologies, Page(s): 175- 179, 27-29 August

2003.

[4] D. Ye, W. Hui-Qiang, and P. Yong-Gang, “Design of a Distributed Intrusion Detection

System Based on Independent Agents”, Proceedings of the International Conference on

Intelligent Sensing and Information, Page(s): 254 – 257, 2004.

[5] Q. Xue, L. Guo, and J. Sun, “The Design of a Distributed Network Intrusion Detection

System IA-NIDS”. Proceedings of the International Conference on Machine Learning and

Cybernetics, Vol.4, Page(s): 2305- 2308, 2-5 November 2003.

[6] F. Karray, and C. Silva, “Soft Computing and Intelligent Systems Design: Theory, Tools and

Applications”, Addison Wesley Publishing, 2004.

[7] J. Hertz, A. Krogh, and R. Palmer, “Introduction to the Theory of Neural Computation”,

Addison Wesley Publishing, 1991.

[8] L. Silva, A. Santos, J. Silva, and A. Montes, “A Neural Network Application for Attack

Detection in Computer Networks”, Proceedings of the IEEE International Joint Conference

on Neural Network, Vol.2, Page(s):1569 – 1574, 25-29 July 2004.

[9] A. Bivens, C. Palagiri, R. Smith, B. Szymanski, and M. Embrechts. “Network-Based

Intrusion Detection Using Neural Networks”, unpublished technical report, Rensselaer

Polytechnic Institute, Troy, New York. http://www.cs.rpi.edu/~szymansk/papers/annie02.pdf

(March 2009).

 105

[10] S. Mukkamala and A. Sung, “Artificial Intelligent Techniques for Intrusion Detection”,

Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Vol.2,

Page(s): 1266- 1271, October 2003.

[11] P. Tillapart, Th. Thumthawatworn and P. Santiprabhob, “Fuzzy Intrusion Detection System”,

Vol.6, No. 2, Page(s): 109-114, October 2002.

[12] Z. Jian, D. Yong, and G. Jian, “Intrusion Detection System Based on Fuzzy Default Logic”,

Proceedings of the the 12th IEEE International Conference on Fuzzy Systems, Vol.2, Page(s):

1350- 1356, May 2003.

[13] M. Pillai, j. Eloff, and H. Venter, “An Approach to Implement a Network Intrusion Detection

System using Genetic Algorithms”, Proceedings of the 2004 annual research conference of

the South African institute of computer scientists and information technologists on IT

research in developing countries, Vol. 75, Page(s): 221 – 221, 2004.

[14] A. Chittur, “Model Generation for an Intrusion Detection System Using Genetic Algorithms”,

November 27, 2001.

[15] W. Li, “Using Genetic Algorithm for Network Intrusion Detection”, Unpublished technical

report. Department of Computer Science and Engineering, Mississippi State University.

http://www.security.cse.msstate.edu/docs/Publications/wli/DOECSG2004.pdf.

[16] C. Zhang, J. Jiang, and M. Kamel, “Intrusion Detection using Hierarchical Neural Networks”,

Pattern Recognition Letters 26, Page(s): 779–791, 16 February 2004.

[17] J. Mill and A. Tnoue, “Support Vector Classifiers and Network Intrusion Detection”,

Proceedings of the IEEE International Conference on Fuzzy Systems, Page(s): 407- 410, 25-

29 July 2004.

[18] K. Li, H. Huang, S. Tian and W. Xu, “Improving One-Class SVM for Anomaly Detection”,

Proceedings of the Second International Conference on Machine Learning and Cybernetics,

Page(s): 3077- 3081, 2-5 November 2003.

[19] A. Sung and Srinivas Mukkamala, “Identifying Important Features for Intrusion Detection

Using Support Vector Machines and Neural Networks”, Symposium on Application and

Internet (SAINT’03), Page(s): 209- 216, 27-31 January. 2003.

[20] V. Golovko, L. Vaitsekhovich, P. Kochurko and U. Rubanau, “Dimensionality Reduction and

Attack Recognition using Neural Network Approaches”, Proceedings of the International

Joint Conference on Neural Networks, Page(s): 2734-2739, 12-17 August 2007.

 106

[21] K. Shazzad and J. Park, “Optimization of Intrusion Detection through Fast Hybrid Feature

Selection”, Proceeding of the Sixth International Conference on Parallel and Distributed

Computing, Applications and Technologies, 2005, (PDCAT’05), Page(s): 264 – 267, 05-08

December 2005.

[22] A. Hofmann, T. Horeis, and B. Sick, “Feature Selection for Intrusion Detection: An

Evolutionary Wrapper Approach”, Proceedings of the IEEE International Joint Conference

on Neural Networks, Page(s): 1563- 1568, 25-29 July 2004.

[23] D. Kim, H. Nguyen, and J. Park, “Genetic Algorithm to Improve SVM Based Network

Intrusion Detection System”, Proceedings of the 19th International Conference on Advanced

Information Networking and Applications, 2005 (AINA 2005), Page(s): 155 – 158, 28-30

March 2005.

[24] A. Hofmann and B. Sick, „Evolutionary Optimization of Radial Basis Function Networks for

Intrusion Detection”, Proceedings of the international Joint Conference on Neural Networks,

Page(s): 415- 420, 20-24 July 2003.

[25] S. Mukkamala and A. Sung, “Feature Selection for Intrusion Detection using Neural

Networks and Support Vector Machines”, Technical Report, Unpublished paper.

[26] Mukkamala and A.Sung, “Detecting Denial of Service Attacks Using Support Vector

Machines”, Proceedings of the 12th IEEE International Conference on Fuzzy Systems, 2003,

Page(s): 1231 – 1236, 25-28 May 2003.

[27] H. Gao, H. Yang, and X. Wang, “Ant Colony Optimization Based Network Intrusion Feature

Selection and Detection”, Proceedings of The Fourth International Conference on Machine

Learning and Cybernetics, Page(s): 18-21, August 2005.

[28] S. Srinoy, “Intrusion Detection Model Based On Particle Swarm Optimization and Support

Vector Machine”, Proceedings of the 2007 IEEE Symposium on Computational Intelligence

in Security and Defense Applications (CISDA 2007), Page(s): 186-192, 1-5 April 2007.

[29] P. Lichodzijewski, A. Zincir-Heywood, and M. Heywood, “Dynamic Intrusion Detection

Using Self-Organizing Maps”, Unpublished technical report, Dalhosie University, Halifax.

http://citeseer.ist.psu.edu/lichodzijewski02dynamic.html. (March 2009)

[30] W. Jing-xin, W. Zhi-ying, and D. Kui, “A Network Intrusion Detection System based on the

Artificial Neural Networks:, Proceedings of the 3rd international conference on Information

security, ACM International Conference Proceeding Series, Vol. 85, Page(s): 166 – 170,

2004.

 107

[31] J. Lei and A. Ghorbani, “Network Intrusion Detection Using an Improved Competitive

Learning Neural Network”, Proceedings of the Second Annual Conference on

Communication Networks and Services Research (CNSR'04), IEEE Computer Society,

Page(s): 190 – 197, 2004.

[32] P. Lichodzijewski and A. Zincir, “Host-Based Detection Using Self-Organizing Maps”,

Proceedings of the 2002 International Joint Conference on Neural Networks, Vol. 2, Page(s):

1714-1719, 2002.

[33] J. Li, G. Zhang, and G. Gu, “The Research and Implementation of Intelligent Intrusion

Detection System Based on Artificial Neural Network”, Proceedings of the Third IEEE

International Conference on Machine Laming and Cybernetics, Shanghai, Vol. 5,

Page(s):3178 – 3182, August 2004.

[34] S. Mukkamala and A. Sung, “A Framework for Countering Denial of Service Attacks”,

Proceedings of the IEEE International Conference on Systems, Man and Cybernetics,

Page(s): 3273 – 3278, 10-13 October 2004.

[35] Y. Chen, A. Abraham, B. Yang, “Hybrid Flexible Neural-Tree-Based Intrusion Detection

Systems”,. International Journal of Intelligent Systems. Vol. 22, No. 2, Page(s): 337 – 352,

2007.

[36] X. Li and N. Ye, “Mining Normal and Intrusive Activity Patterns for Computer Intrusion

Detection”, Lecture Notes in Computer Science, Springer Berlin / Heidelberg. Page(s): 226-

238, August 2004.

[37] J. Dickerson, J. Juslin, O. Koukousoula, and J. Dickerson, “Fuzzy Intrusion Detection”,

Proceedings of the International Joint 9th Conference on IFSA World Congress and 20th

NAFIPS, Vol. 3, Page(s): 1506-1510, 25-28 July 2001.

[38] S. Zanero and S. Savaresi, “Unsupervised Learning Algorithms for Intrusion Detection”,

Proceedings of the 2004 ACM Symposium on Applied Computing, Pages: 412 – 419, 2004.

[39] Q. Wang and V. Megalooikonomou, “A Clustering Algorithm for Intrusion Detection”,

Proceedings of the SPIE Conference on Data Mining, Intrusion Detection, Information

Assurance, and Data Networks Security, Vol. 5812, Page(s): 31-38, March 28 - April 1, 2005.

[40] D. Novikov, R. Yampolskiy, and L. Reznik, “Artificial Intelligence Approaches for Intrusion

Detection”, Proceedings of the IEEE Conference on Systems, Applications and Technology,

Page(s): 1-8, May 2006.

 108

[41] S. Snapp, J. Brentano, G. Dias, T. Goan, T. Grance, L. Heberlein, C. Ho, K. Levitt, B.

Mukherjee, D. Mansur, K. Pon, and S. Smaha, “A System for Distributed Intrusion Detection

[C]”, Proceedings of the 14th Conference on National Computer Security Conference,

Vol.9, Page(s): 170-176, 25 Feb-1 March 1991.

[42] S. Staniford-Chen, S. Cheung, R. Crawford, M. Dilger, J. Frank, J. Hoagland, K. Levitt, C.

Wee, R. Yip, and D. Zerkle, “GrIDS: A Graph Based Intrusion Detection System for Large

Networks”, In Proceedings of the 19th National Information Systems Security Conference,

Vol. 1, Page(s): 361–370, October 1996.

[43] P. Porras and P. Neumann, “EMERALD: Event monitoring enabling responses to anomalous

live disturbances”, Proceedings of the 20th National Information Systems Security

Conference, 1997.

[44] E. Spafford and D. Zamboni, “Intrusion Detection using Autonomous Agents”, The

International Journal of Computer and Telecommunications Networking, Page(s): 547-570,

2000.

[45] J. Hochberg, K. Jackson, C. Stallings, J. McClary, D. DuBois, and J. Ford, “NADIR: An

Automated System for Detecting Network Intrusion and Misuse”, Proceedings of the

Conference on Computers and Security, Page(s): 235–248, May 1993.

[46] G. White, E. Fisch, and U. Pooch, “Cooperating Security Managers: A Peer-Based Intrusion

Detection System”, IEEE Net-work, Vol. 10, No. 1, Pags(s): 20–23, January/February 1996.

[47] M. Slagell, “The Design and Implementation of MAIDS (Mobile Agent Intrusion

Detection)”, Technical Report TROI-07, Iowa State University, Department of Computer

Science, 2001.

[48] J. Li and C. Manikopoulos, “Early Statistical Anomaly Intrusion Detection of DOS Attacks

using MIB Traffic Parameters”, Information Assurance Workshop, IEEE Systems, Man and

Cybernetics Society. Page(s): 53 – 59, 18-20 June 2003.

[49] W. Teng, M. Hsieh and M. Chen, “A statistical framework for mining substitution rules”,

Knowledge and Information Systems Journal, Vol. 7, No. 2, Page(s): 158 – 178, 2005.

[50] Th. Verwoerd and R. Hunt, “Intrusion Detection Techniques and Approaches”, Journal in

Computer Communications, Page(s): 1356-1365. 2002.

[51] W. Lee and D. Xiang, “Information-Theoretic Measures for Anomaly Detection”,

Proceedings of the 2001 IEEE Symposium on Security and Privacy, Page: 130, 2001.

 109

[52] P. Williams, K. Anchor, J. Bebo, G. Gunsch, and G. Lamont, “ CDIS: Towards a Computer

Immune System for Detecting Network Intrusions”, Proceedings of the 4th International

Symposium on Recent Advances in Intrusion Detection 2001, Page(s): 117-133, 2001.

[53] Ch. Ehret and U. Ultes-Nitsche, „Immune System Based Intrusion Detection System”,

Technical Report, http://icsa.cs.up.ac.za/issa/2008/Proceedings/Full/50.pdf. (March 2009)

[54] S. Forrest, S. Hofmeyr, and A. Somayaji, “Computer Immunology”, Book: Communications

of the ACM, Vol. 40, No. 10, Page(s): 88-96, 1997.

[55] S. Microsystems, “ Installing, Administering, and Using the Basic Security Module”,

December 1991.

[56] V.Paxson, “Bro: A System for Detecting Network Intruders in Real-Time. Proceedings of the

Symposium on USENIX Security, January 1998, ftp://ftp.ee.IbI.gov/papers/bro-usenix98-

revised.ps.Z. (March 2009)

[57] Snort-the Open Source Network Intrusion Detection System, http://www.snort.org/. (March

2009)

[58] S. Kumar and E. Spafford, “Pattern Matching Model for Misuse Intrusion Detection.

Proceedings of the 17th National Computer Security Conference, 1994.

[59] Z. Chunyue, L. Yun, and Z. Hongke, “A Pattern matching based Network Intrusion Detection

System”, Proceedings of the 9th International Conference on Control, Automation, Robotics

and Vision (ICARCV ‘06), Page(s): 1-4, December 2006.

[60] K. Ilgun, R. Kemmerer, and P. Porras, “State Transition Analysis: A Rule-Based Intrusion

Detection Approach”, IEEE Transactions on Software Engineering, Vol. 20, No. 5, March

1995.

[61] A. Mounji, “Languages and Tools for Rule-Based Distributed Intrusion Detection”, PhD

thesis, Facult´es Universitaires Notre-Dame de la Paix Namur (Belgium), September 1997.

[62] syslog(3). UNIX documentation.

[63] Common Intrusion Detection Framework Working Group, “A CISL” Tutorial.

http://www.gidos.org/tutorial.html. (March 2009)

[64] D. Curry, “Intrusion Detection Message Exchange Format: Extensible Markup Language

(XML) Document Type Definition”, January 2009.

[65] S. Eckmann, G. Vigna, and R. Kemmerer, “STATL”, Technical report, UCSB, 2000.

[66] S. Eckmann, G. Vigna, and R. Kemmerer, “STATL: An Attack Language for State-based

Intrusion Detection”. Journal of Computer Security, Vol. 10, No. 1/2, Page(s): 71-104, 2002.

 110

[67] J. Balasubramaniyan, J. Garcia-Fernandez, D. Isacoff, E. Spafford, and D. Zamboni, “An

Architecture for Intrusion Detection using Autonomous Agents” Proceedings of the

Fourteenth Annual Computer Security Applications Conference, Page(s): 13–24, December

1998.

[68] U. Lindqvist and P.A. Porras, “Detecting Computer and Network Misuse with the

Production-Based Expert System Toolset (P-BEST)”, Proceedings of the IEEE Symposium

on Security and Privacy, May 1999.

[69] Secure Networks, “Custom Attack Simulation Language (CASL)”, January 1998.

[70] R. Deraison, “The Nessus Attack Scripting Language Reference Guide”, 2000.

http://www.nessus.org. (March 2009)

[71] M. Ranum, K. Landfield, M. Stolarchuck, M. Sienkiewicz, A. Lambeth, and E. Wall,

“Implementing a Generalized Tool for Network Monitoring”, Proceedings of the Eleventh

Conference on Systems Administration (LISA ’97), USENIX, October 1997.

[72] C. Ko, M. Ruschitzka, and K. Levitt, “Execution Monitoring of Security-Critical Programs in

Distributed Systems: A Specification-based Approach”, Proceedings of the 1997 IEEE

Symposium on Security and Privacy, Page(s): 175–187, 1997.

[73] R. Sekar and P. Uppuluri, “Synthesizing Fast Intrusion Detection/Prevention Systems from

High-Level Specifications”, Proceedings of the USENIX Security Symposium, 1999.

[74] W. Lee, S. Stolfo, Ph. Chan, E. Eskin, W. Fan, M. Miller, Sh. Hershkop and J. Zhang, “Real

Time Data Mining-based Intrusion Detection”, Proceedings of DISCEX II, June 2001.

[75] S Terry Brugger, “Data Mining Methods for Network Intrusion Detection”, UC Davis

Dissertation Proposal, 9 June 2004.

[76] D. Dasgupta, “Immunity-based Intrusion Detection Systems: A General Framework”,

Proceedings of the 22nd National Information Systems Security Conference, Page(s): 18-21,

1999.

[77] R. Robbins, “Distributed Intrusion Detection Systems: An Introduction and Review”, GSEC

Practical Assignment, version 1.4b, Option 1, January 2, 2002.

[78] G. Kim and E. Spafford, “Experience with Tripwire: Using Integrity Checkers for Intrusion

Detection”, Systems Administration, Networking and Security Conference III, USENIX,

1994.

[79] M. Ranum, “Artificial Ignorance: How-to guide. Firewall Wizards Mailing List”,

http://lists.insecure.org/firewall-wizards/1997/Sep/0096.html. (March 2009)

 111

[80] E. Eiland and L. Liebrock, “An Application of Information Theory to Intrusion Detection”,

Proceedings of the Fourth IEEE International Workshop on Information Assurance, Page(s):

119 – 134, 2006.

[81] M. Crosbie, B. Dole, T. Ellis, I. Krsul, and E. Spafford, “IDIOT Users Guide”, Purdue

University, 1996.

[82] J. Xin, J. Dickerson, and J. Dickerson, “Fuzzy Feature Extraction and Visualization for

Intrusion Detection”, Proceeding of the 12th IEEE International Conference on Fuzzy

Systems, Vol.2, Page(s): 1249- 1254, 25-28 May 2003.

[83] J. Tian, Y. Fu, Y. Xu, and J. Wang, “Intrusion Detection Combining Multiple Decision Trees

by Fuzzy logic”, The Sixth International Conference on Parallel and Distributed Computing,

Application and Technologies PDCAT 2005, Page(s): 256- 258, 05-08 December 2005.

[84] Y. Dhanalakshmi and I. Babu, “Intrusion Detection Using Data Mining Along Fuzzy Logic

and Genetic Algorithms”, IJCSNS International Journal of Computer Science and Network

Security, Vol.8, No.2, February 2008.

[85] N. Bashah, I. Shanmugam, and A. Ahmed, “Hybrid Intelligent Intrusion Detection System”,

Proceedings of World Academy of Science, Engineering and Technology, Vol. 6, Page(s):

1307-6884, June 2005.

[86] J. Gomez and D. Dasgupta, “Evolving Fuzzy Classifiers for Intrusion Detection”,

Proceedings of the 2002 IEEE Workshop on Information Assurance, June 2001.

[87] P. Cunningham. Dimension Reduction, Technical Report. UCD-CSI-2007-7. August 2007.

[88] I. Fodor, “A Survey of Dimension Reduction Techniques”, Technical Report UCRL-ID-

148494, Lawrence Livermore Nat’l Laboratory, Center for Applied Scientific Computing,

June 2002.

[89] M. Treaster, “A Survey of Distributed Intrusion Detection Approaches”, ArXiv Computer

Science e-prints: cs/0501001. December 2005, Available at: http://arxiv.org/abs/cs/0501001.

(March 2009)

[90] G. John , R. Kohavi, and K. Pleger, “Irrelevant Features and the Subset Selection Problem”,

Proceeding of the 11th Int. Conference on Machine Learning, Page(s): 121-129, 1994.

[91] S. Raudys and A. Jain, “Small Sample Size Effects in Statistical Pattern Recognition:

Recommendations for Practitioners”, IEEE Transactions on Pattern Analysis and Machine

Intelligence, Vol. 13, No. 3, Page(s): 252-264, March 1991.

 112

[92] A. Jain, R. Duin, and J. Mao, “Statistical Pattern Recognition: A Review”, IEEE Transaction

on Pattern Analysis and Machine Intelligence, Vol. 22, No. 1, Page(s): 4-37, January 2000.

[93] A.R. Webb, “Statistical Pattern Recognition”, second edition, Wiley, 2002.

[94] M. Ringner, “What is Principal Component Analysis?”, Nature Publishing Group, Vol. 26,

No. 3, Page(s): 303-304, March 2008. http://www.nature.com/naturebiotechnology

[95] K. Teknomo, “Discriminant Analysis” Tutorial.

http://people.revoledu.com.proxy.lib.uwaterloo.ca/kardi/ tutorial/LDA/ (March 2009)

[96] H. Peng, F. Long, and C. Ding, “Feature Selection Based on Mutual Information: Criteria of

Max-Dependency, Max-Relevance, and Min-Redundancy”. IEEE Transactions on Pattern

Analysis and Machine Intelligence, Vol. 27, No. 8, Page(s):1226 – 1238, August 2005.

[97] P. Mitra, C. Murthy, and S. Pal, “Unsupervised Feature Selection Using Feature Similarity”,

IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol. 24, No. 3, Page(s):

301-312, March 2002.

[98] S. Snapp, J. Brentano, and G. Dias, “DIDS (Distributed Intrusion Detection System) –

motivation, architecture, and an early prototype”, Proceedings of the 14th National Computer

Security Conference, October 1991.

[99] J. Barrus and N. Rowe, “A Distributed Autonomous-Agent Network-Intrusion Detection and

Response System”, Proceedings of the Symposium on Command and Control Research and

Technology, Page(s): 577-586, June 1998.

[100] B. Krishnapuram, A. Hartemink, L. Carin, and M. Figueiredo, “A Bayesian Approach to Joint

Feature Selection and Classifier Design”, IEEE Transaction on Pattern Analysis and

Machine Intelligence, Vol. 26, No. 9, Page(s): 1105-1111, September 2004.

[101] M. Law, M. Figueiredo, and A. Jain, “Simultaneous Feature Selection and Clustering Using

Mixture Models”, IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol. 26,

No. 9, Page(s): 1154-1166, September 2004.

[102] S. Pal, R. De, and J. Basak. “Unsupervised Feature Evaluation: A Neuro-Fuzzy Approach.”

IEEE Transaction on Neural Networks, Vol. 11, No. 2, Page(s): 366-376, March 2000.

[103] Hua-Liang Wei and Stephen A. Billings, “Feature Subset Selection and Ranking for Data

Dimensionality Reduction”, IEEE Transactions on Pattern Analysis And Machine

Intelligence, Vol. 29, No. 1, Page(s):162 – 166, January 2007.

 113

[104] H. Liu, L. Yu, “Toward Integrating Feature Selection Algorithms for Classification and

Clustering”, IEEE Transaction on Knowledge and Data Engineering, Vol. 17, No.: 4,

Page(s): 491–502, April 2005.

[105] A. Tamilarasan, S. Mukkamala, A. Sung, and K. Yendrapalli, “Feature Ranking and

Selection for Intrusion Detection Using Artificial Neural Networks and Statistical Methods”,

Proceedings of the 2006 International Joint Conference on Neural Networks (IJCNN’06),

Page(s):4754 - 4761, July 16-21, 2006.

[106] G. Stein, B. Chen, A. S. Wu, and K. A. Hua, “Decision Tree Classifier For Network Intrusion

Detection With GA-based Feature Selection”, Proceedings of the 43rd ACM Southeast

Conference, March 2005.

[107] M. Dash, H. Liu, and H. Motoda, “Consistency based feature selection”, Proceedings of the

4th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2002),

Page(s): 98-109, 2002.

[108] H. Almuallim and T. Dietterich, "Learning Boolean Concepts in the Presence of Many

Irrelevant Features", Artificial Intelligence, Vol. 69, No. 1-2, Page(s): 279-305, 1994.

[109] K. Kira and L. Rendell, “The Feature Selection Problem: Traditional Methods and a New

Algorithm”, Proceedings of the AAAI-92, Page(s): 129-134, 1992.

[110] H. Almuallim and T. G. Dietterich, “ Learning with Many Irrelevant Features”, Proceedings

of the AAAI-91, Page(s): 547-551, 1991.

[111] http://www.ll.mit.edu/mission/communications/ist/index.html (March 2009)

[112] http://archive.ics.uci.edu/ml/ (March 2009)

[113] G. Loosli. Toolbox SimpleSVM Documentation.

http://cbio.ensmp.fr/sirene/documentationSimpleSVM.pdf (March 2009)

[114] I. Guyon, J. Weston, S. Barnhill, M.D. and V. Vapnik, “Gene Selection for Cancer

Classification using Support Vector Machines”, Journal on Machine Learning, Page(s): 389-

422, October 31, 2004.

[115] I. Onut and A. Ghorbani, “A Feature Classification Scheme for Network Intrusion

Detection”, International Journal of Network Security, Page(s): 1–15, July 2007.

[116] I. Onut and A. Ghorbani, “Features vs. Attacks: A Comprehensive Feature Selection Model

for Network Based Intrusion Detection Systems”, Lecture notes in Computer Science,

Page(s): 19–36, Springer-Verlag Berlin Heidelberg 2007.

 114

[117] D. Novikov, R. Yampolskiy, and L Reznik, “ Anomaly Detection Based Intrusion Detection”,

Proceedings of the third International Conference on Information Technology,, Page(s):420 –

425, April 2006.

[118] S. Zaman S., F. Karray, „Fuzzy ESVDF approach for Intrusion Detection System”

Proceedings of the 23rd IEEE International Conference on Advanced Information Networking

and Applications (AINA-09), May 26-29, 2009.

[119] S. Zaman and F. Karray, “Features Selection Using Fuzzy ESVDF for Data Dimensionality

Reduction”, Proceedings of the International Conference on Computer Engineering and

Technology ICCET’08, Vol. 1, Page(s): 81-87, 22-24 January 2009.

[120] F. Barika, N. Kadhi, K. Ghedira, “Intelligent and Mobile Agent for Intrusion Detection

System: IMA-IDS”, Technical Report, November 2003.

[121] D. Ye, W. Hui-Qiang, and P. Yong-Gang, “Design of A Distributed Intrusion Detection

System Based on Independent Agents”, Proceedings of International Conference on

Intelligent Sensing and Information Processing, Page(s): 254 – 257, 2004.

[122] B. Mukherjee, L.T. Heberlein, and K.N. Levitt, “Network Intrusion Detection” IEEE

Network, Page(s): 26-41, Vo1.8, No.3, May-June 1994.

[123] M. Yasin and A. Awan, “A Study of Host-Based IDS using System Calls”, Proceedings of

the International Conference on Networking and Communication 2004, Page(s): 36- 41, June

2004.

[124] R. Heady, G. Luger, A. Maccabe, and M. Servilla, “The architecture of a network level

intrusion detection system”, Technical Report CS90-20, Department of Computer Science,

University of New Mexico, August 1990.

[125] S. Lee and D. Heinbuch, ” Training a Neural-Network Based Intrusion Detector to Recognize

Novel Attacks”, IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems And

Humans, Vol. 31, No. 4, Page(s): 294-299, July 2001.

[126] N. Ye, X. Li, Q. Chen, S. Emran, and M. Xu, “Probabilistic Techniques for Intrusion

Detection Based on Computer Audit Data”. IEEE Transactions on Systems, Man, and

Cybernetics—Part A: Systems And Humans, Vol. 31, No. 4, July 2001.

[127] W. Hu, W. Hu, S. Maybank, “AdaBoost-Based Algorithm for Network Intrusion Detection”,

IEEE Transactions on Systems, Man, and Cybernetics —Part B, Vol. 38, No. 2, Page(s): 577-

583, April 2008.

 115

[128] D. Dasgupta and F. Gonzalez, “An Immunity-based Technique to Characterize Intrusions in

Computer Networks”. IEEE Transactions on Evolutionary Computing, Vol. 6, No. 3, Page(s):

281-291, June 2002.

[129] D. Russell and G. Gangemi, “Computer Security Basics”, O'Reilly & Associates, Sebastopol,

CA, 1991.

[130] S. Kumar, “Classification and Detection of Computer Intrusions”, PhD thesis, Purdue

University, 1995.

[131] J. Anderson, “Computer security threat monitoring and surveillance”, Technical Report,

James P. Anderson Co., Fort Washington, PeNNylvania, 1980,

[132] D. Denning. “An intrusion detection model”. IEEE Transactions on Software Engineering,

Vol. 13, No.: 2, Page(s): 222–232, 1987.

[133] S. Smaha, “Haystack: An intrusion detection system”, Proceedings of the 14th Conference on

Aerospace Computer Security Applications, Page(s): 37–44, 1988.

[134] L. Heberlein. K. Levitt, and B. Mukherjee, “A method to detect intrusive activity in a

networked environment”, Proceedings of the 14th Conference on National Computer Security

Conference, Page(s): 362–371, 1991.

[135] T. Heberlein and M. Bishop, “Attack Class: Address Spoofing”, Addison- Wesley Pub Co,

1998.

[136] A. Rapaka, A. Novokhodko, and D. Wunsch, “Intrusion Detection Using Radial Basis

Function Network on Sequences of System Calls”, Proceedings of the International Joint

Conference on Neural Networks, Page(s): 1820- 1825 Vol.3, July 2003.

[137] M. Moradi and M. Zulkernine, “A Neural Network Based System for Intrusion Detection and

Classification of Attacks”, Unpublished technical report, this work was supported in part by

the Natural Sciences and Engineering Research Council of Canada (NSERC).

http://www.cs.queensu.ca/~moradi/148-04-MM-MZ.pdf.

[138] S. Mukkamala and A. Sung, “A Comparative Study of Techniques for Intrusion Detection”,

Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence,

Page: 570, 2003.

[139] H. Debar, “An Introduction to Intrusion-Detection Systems”, Proceedings of Connect’2000,

April 29th-May 1st, 2000.

 116

[140] P. Williams, K. Anchor, J. Bebo, G. Gunsch, and G. Lamont, “CDIS: Towards a Computer

Immune System for Detecting Network Intrusions”, Proceedings 4th Int’l Symposium, Recent

Advances in Intrusion Detection, Page(s): 117–133, 2001.

[141] W. Frawley, G. Piatetsky-Shapiro, and C. Matheus, "Knowledge Discovery Database: an

Overview”, AI Magazine, Page(s):57-70 Vol. 13, 1992.

[142] J. Pei, Sh. Upadhyaya, F. Farooq, and V. Govindaraju, “Data Mining for Intrusion Detection:

Techniques, Applications and Systems”, Proceedings 20th International Conference on Data

Engineering, Page(s): 877- 877, 30 March-2 April 2004.

[143] R. Sekar, A. Gupta, J. Frullo, T. Shanbhag, A. Tiwari, H. Yang and S. Zhou, “Specification-

based Anomaly Detection: A New Approach for Detecting Network Intrusions”,

Proceedings of the 9th ACM conference on Computer and communications security, Page(s):

265 – 274, 2002.

[144] P. Uppuluri and R. Sekar, “Experiences with Specification-based Intrusion Detection”,

Proceedings of the 4th International Symposium on Recent Advances in Intrusion Detection,

Lecture Notes In Computer Science, Vol. 2212, Page(s): 172 – 189, 2001.

[145] S. Webster, “The Development and Analysis of Intrusion Detection Algorithms”, M.S.

Thesis, Massachusetts Institute of Technology, 1998.

[146] H. Kai, H. Zhu, K. Eguchi, N. Sun, and T. Tabata, “A Novel Intelligent Intrusion Detection,

Decision, Response System”, IEICE Transactions on Fundamentals of Electronics,

Communications and Computer Sciences archive, Vol. E89-A, Page(s): 1630-1637, June

2006.

[147] A. Curtis, and J. Carver, “Intrusion Response Systems: A Survey”, Technical Report,

Department of Computer Science, Texas A&M University, 2000.

[148] R. Sielken and A. Jones, “Application Intrusion Detection Systems: The Next Step”. ACM

Transactions on Information Security, August 1999.

[149] R. Sielken, “Application Intrusion Detection Source”, Technical Report: CS-99-17, 1999.

[150] B. Thomas, “Evolutionary Algorithms in Theory and Practice: Evolution Strategies,

Evolutionary Programming, Genetic Algorithms”, 1996.

[151] K. Kendall, “A Database of Computer Attacks for the Evaluation of Intrusion Detection

Systems”, Master's Thesis, Massachusetts Institute of Technology, 1998.

 117

[152] S.Zaman and F. Karray, “TCP/IP Model and Intrusion Detection Systems”, Proceedings of

the IEEE 23rd International Conference on Advanced Information Networking and

Applications (AINA-09), 26-29 May 2009.

[153] S. Zaman, and F. Karray, “Collaborative Architecture for Distributed Intrusion Detection

System based on Lightweight IDS Modules”, Proceedings of the 2009 IEEE International

Conference on Information Privacy, Security, Risk and Trust (PASSAT), 29-30 August 2009.

[154] S. Zaman, and F. Karray, “A Collaborative Architecture for Distributed Intrusion Detection

System”, Proceedings of the Second IEEE Symposium on Computational Intelligence for

Security and Defense Applications, 8-20 July 2009.

[155] A. Abraham, R. Jain, J. Thomas, S. Han, “D-SCIDS: Distributed Soft Computing Intrusion

Detection System”, Journal of Network and Computer Applications, Vol.30 , No. 1, January

2007.

[156] S. Staniford-Chen, S. Tung, D. Schnackenberg, “The Common Intrusion Detection

Framework (CIDF)”, Proceedings of the information survivability workshop, October 1998.

