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Abstract

A variety of intrusion prevention techniques, swh user authentication (e.g.: using passwords),
avoidance of programming errors, and informatiootgution, have been used to protect computer
systems. However, intrusion prevention alone is sufficient to protect our systems, as those
systems become ever more complex with the rapiditirand expansion of Internet technology and
local network systems. Moreover, programming errfirewall configuration errors, and ambiguous
or undefined security policies add to the systecasiplexity. An Intrusion Detection System (IDS)
is therefore needed as another layer to protectpatan systems. The IDS is one of the most
important techniques of information dynamic segutiéchnology. It is defined as a process of
monitoring the events occurring in a computer syste network and analyzing them to differentiate
between normal activities of the system and behasidhat can be classified as suspicious or
intrusive.

Current Intrusion Detection Systems have seviemalwn shortcomings, such as: low accuracy
(registering high False Positives and False Negs}iMow real-time performance (processing a large
amount of traffic in real time); limited scalabyli{storing a large number of user profiles andcktta
signatures); an inability to detect new attacksdgmizing new attacks when they are launched ®r th
first time); and weak system-reactive capabili{igfficiency of response). This makes the area & ID
an attractive research field. In recent years,amesers have investigated techniques such a<attifi
intelligence, autonomous agents, and distributedtesys for detecting intrusion in network
environments. This thesis presents a novel IDSilliged architecture — Collaborative Distributed
Intrusion Detection System (C-dIDS), based on Wghght IDS modules — that integrates two main
concepts in order to improve IDS performance aedsttalability: lightweight IDS and collaborative
architecture.

To accomplish the first concept, lightweight ID&8e apply two different approaches: a features
selection approach and an IDS classification schdmehe first approach, each detector (IDS
module) uses smaller amounts of data in the detegiocess by applying a novel features selection
approach called the Fuzzy Enhanced Support Vecexisidn Function (Fuzzy ESVDF). This
approach improves the system scalability in terimr@ducing the number of needed features without
degrading the overall system performance. The sk@pproach uses a new IDS classification

scheme. The proposed IDS classification schemeamphultiple specialized detectors in each layer



of the TCP/IP network model. This helps collectiefficient and useful information for dIDS,
increasing the system’s ability to detect differattbck types and reducing the system’s scalability

The second concept uses a novel architecturdIf2® called Collaborative Distributed Intrusion
Detection System (C-dIDS) to integrate these diffierspecialized detectors (IDS modules) that are
distributed on different points in the network. larchitecture is a single-level hierarchy dIDShwet
non-central analyzer. To make the detection datifio a specific IDS module in the system, this
module must collaborate with the previous IDS medtiost) in the lower level of the hierarchy only.
Collaborating with other IDS modules improves tkherall system accuracy without creating a heavy
system overload. Also, this architecture avoid$tsamgle point of failure and scalability bottlekec
problems.

Integration of the two main concepts, lightweitfnS and a distributed collaborative architecture,

has shown very good results and has addressed ID&rymitations.
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Chapter 1

Introduction

Information securityplays an important role in all aspects of life,particular the protection of an
organization's valuable resources, such as infeomathardware, and software. Therefore,
information security is defined as a process oftgmting data from unauthorized access, use,
disclosure, destruction, modification, or disruptidt is concerned with ensuring that information-
related risks are assessed, appropriate contrelgrgiemented to manage those risks, and that the
adequacy of those controls is monitored on a redodsis. Generally, discussion of information

security falls under three generic headings:

1. Confidentiality: This is a requisite for maintaining the privacy pgople whose personal
information the organization holds.

2. Integrity: This means that data cannot be created, change@)eied without authorization.
It also means that data stored in one part of abdae system is in agreement with other
related data stored in another part of the databagem (or on another system).

3. Availability: This means that the information, the computingesys used to process the
information, and the security controls used to grbthe information are all available and

functioning correctly when the information is neéde

The field of information security has evolvegidly in recent years because of the swift growth
and widespread use of electronic data processimbaio of business conducted through the Internet
and other computer networks (LAN, WAN, etc.). Thapelication areas make networks an attractive
target for abuse and thus an area of vulnerabtythe same time, the tools of the intruder arel th
hacker have improved substantially. In order tchbatmbat the growing number of attacks and to
maintain critical information services, both acaderand industry groups have been developing
systems to monitor networks and to raise alarms swspicious activities. These systems are called
Intrusion Detection Systems (IDS).

Intrusion Detections defined as “the problem of identifying individsavho are using a computer
system without authorization (i.e., crackers) amosé who have legitimate access to the system but
are abusing their privileges (i.e., insider attatkeat)” [124]. Anintrusion Detection System (IDS)

gathers and analyzes information from various akeitisin a computer or a network to identify
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possible security breaches, which include bothugitns (attacks from outside the organization) and
misuse (attacks from within the organization). A¥Slis designed to detect unscrupulous activities
that compromise the confidentiality, integrity, arailability of network or computer systems and to
analyze what happens — or what has happened ditaia that the computer has been misused. The
IDS does not eliminate the use of a preventive rmeism, but rather works as a second defense
mechanism behind a firewall, which can monitor thetwork while not affecting network
performance. In conclusion, an IDS is the wholecpss that detects, audits, tracks, and identifies
unauthorized access and abnormal phenomena aoti@vents in the system. It can identify whether
the system is being accessed as it happens andthitakappropriate actions to cut off network
connections, record events, and raise an alarcanltalso remind the system administrators to take
proper measures. More details on IDS are givehamext chapter.

Recently, a number of innovative approaches reewl models for IDS have been proposed. But
while many of the proposed techniques have relstivemproved some of the shortcomings of
the earlier approaches, still a number of issuesame low detection accuracy, low real-time
performance, and limited scalability. These proldemake the area of IDS an attractive and open
research field. In recent years, researchers maastigated a variety of different computationall$o
to improve IDS performance and overcome some ofirtggations, such as Soft Computing (SC)
techniques [8], [16], [19], distributed systems Jj4[61], [98], and autonomous agents (AA)[44],
[121], [99]. Still, a lot more needs to be donedaal with new technologies and tools developed by
intruders to break the systems.

In this thesis, we try to overcome some of IDSitations by proposing a new dIDS architecture
through the integration of two main concepts. Tivst fconcept is accomplished by using a
lightweight IDS module. Each IDS module used a#otue detection process to function with a
smaller dataset. To build a lightweight IDS moduke apply two different approaches: features
selection, and an IDS classification scheme. Trst &pproach is accomplished by using SC tools.
We use a novel features selection algorithm cafedzy Enhanced Support Vector Decision
Function (Fuzzy ESVDF). The Fuzzy ESVDF is an tiemalgorithm based on a Support Vector
Decision Function (SVDF) and Forward Selection (Bffproach. A fuzzy inferencing model is used
to select the appropriate features set, in ordémiwove the performance of the IDS in terms of
accuracy and efficiency (training time and testimge) [118], [119]. For the second approach, the
IDS classification scheme [152] categorizes the il8 four types depending on the TCP/IP network
model: Application layer IDS (AIDS); Transport lay®S (TIDS); Network layer IDS (NIDS); and
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Link layer IDS (LIDS). Each of these IDS typesdisdicated to a specific network device, so the
detection process will be distributed among all TIEmMmetwork model layers though the network
devices. Chapter 3 will provide additional detdibat this proposed system.

For the second concept, the lightweight IDS nhesluwill be integrated using a distributed
collaborative architecture called Collaborative Witecture for dIDS (C-dIDS). This architecture, C-
dIDS, contains a single-level hierarchy collabaatdIDS. To make the detection decision for a
specific IDS module in the system, this IDS needsdllaborate with the previous IDS in the lower
level only. The transferred data can then be ditat between the detectors with only crucial data
(just one bit of information). More details abdlis architecture will be provided in Chapter 4.

This chapter starts with an overview of IDS ecfon 1.1. Then, the motivations and goals behind
this thesis are discussed in Section 1.2. In Sedti8, we present the thesis organization and ibescr

the content of each chapter.

1.1 Problem Statement

The field of information security has grown and leed substantially in recent years because of the
rapid growth and widespread use of electronic getaessing, and of business conducted through the
Internet and other computer networks (LANs, WANE).eThese application areas make networks
attractive targets for abuse. At the same timetdbts of the intruder and the hacker have improved
substantially. Facing these daunting challengehystry and academic institutions are working hard
to develop new devices, new approaches, and newitsemechanisms to counter the challenges
from malicious intruders. These efforts have reslih a great variety of security products such as
firewalls, encryption, authentication, vulneralyilthecking, and other measures. Nevertheless, most
computer systems are still susceptible to attaak® hackers, so it is essential to establish argkco
line of defense for these systems in the form dhémision Detection System (IDS).

IDS [50], [63], [122] play an important role achieving the survivability of information systems
and ensuring their safety from attacks. They ainpttotect the availability, confidentiality, and
integrity of critical network information systemyg hnalyzing what happens or has happened during
an intrusion, and attempting to identify signs thatomputer has been misused. They can also take
appropriate actions to sever network connectioesord events, raise alarms, and remind system
administrators to take proper measures.

IDS are usually classified as host-based or odtlvased. Host-based systems [32], [123], base

their decisions on information obtained from a &nigost (usually log files, network traffic to and
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from the host, or information on processes runminghe host), while network-based systems [45],
[56] obtain data by monitoring network traffic b&t®n hosts, and are usually run on a separate
machine.

Most current IDS technology still suffers fraimee main problems which limit their detection
ability: low detection accuracy (registering higal$e Positive alarms and False Negative); low real-
time performance (processing large amounts ofitrafata in real time); and limited scalability
(storing a large number of user profiles and attaghatures).

Our proposed approach overcomes these limigtynintegrating two main concepts: (1) Using
lightweight IDS modules and (2) Having a novel wlsited collaborative architecture for the IDS.
Another key effort in our approach is that directemlvards improving system robustness,

extensibility, configurability, and security.

1.2 Thesis Motivation and Contributions

The ideal approach for computer security is tol#sta and implement a security policy that prevents
any intrusion through the use of security measuesvever, traditional preventive measures are not

always sufficient, for the following reasons:

* Bug-free software is seldom attainable.

* It is difficult to change user and organization &ébur, to oblige all users to follow
diligently security policy.

* Human errors in operations and maintenance areoigehle; these errors can cause serious
security loopholes.

 The security measures and controls themselves eamompromised: for instance, the
cryptographic algorithms can be cracked, givenigefit time and computing power.

» It is almost impossible to prevent insider attabksause inside users naturally have greater
access to the system than do outside attackers.

» The cost of setting up a totally secure system asy vhigh, which discourages their

implementation.

Because of the above difficulties, we need ® atber alternative or complementary techniques to
protect and secure our systems. One of the majbnigues is the Intrusion Detection System (IDS).

Intrusion Detection is another type of securityltdat must be created to protect and secure the
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information resources in the system. It complemérngsvalls by allowing a higher level of analysis
of traffic on a network, and by monitoring the beioar of the sessions on the servers. In addiiton,

possesses such special characteristics and beasefits

Networks are complex and difficult to monitor: @S can help reveal potential network
security problems by documenting network status.

An IDS highlights intrusion traces, which help ttentify and eliminate the security flaws
that enabled these intrusions in the first place.

An IDS can assess the integrity of critical systerd data files.

An IDS provides real-time reporting of break-infpwing the system administrator to take
immediate action, lessening potential damage.

In contrast to a firewall, an IDS is a passive eysthat does not influence network traffic.
Thus, most people attacking or trying to circumvastystem will not recognize the intrusion

detection node. In addition, an authorized usereg on without interruption.

The current state of IDS technology is not ydtyfreliable, which makes the area of IDS an
attractive and still open research field. A majpwoblem with current IDS is their inability to
guarantee intrusion detectioloW accuracy): the current IDS technology is not accurate ehotag
provide reliable detection. This problem will letmda high rate of false alarms (False Positivas), a
missed alarms (False Negatives). A common compigithiat the large number of False Positives and
Negatives generated by Intrusion Detection Systewkes it hard to filter out false attacks without
potentially missing genuine attacks. Moreover, tbis accuracy can lead to an incident handling
problem: that is, security administrators are utaterow to respond to mitigate the risks if a amrt
degree of accuracy cannot be achieved. There éeaigion rule associated with each alert to tel th
security administrator whether he should ignoredalleet or simply terminate the suspicious session.

Another major problem is the speed of detecflow efficiency). The size of the feature space is
obviously very large, which leads to slow trainiagd testing processes, heavy computational
resources, and low detection accuracy. Moreovanpeer networks have a dynamic nature in the
sense that the data within them are continuousiygimg. Therefore, in order to detect an intrusion
accurately and promptly, the system has to opénat=al time.

In addition to the problems outlined above, thesedaher limitations, such as:



Inability to detect new attacks: The ability to recognize new attacks when theylanaeched for the

first time is very low; this reduces the overald®m performance.

Limited scalability: The IDS is unable to achieve reliable scalabtlityyather and analyze the high-
volume of audit data correctly from the distributbédst, which may cause severe network

performance degradation.

Lack of extensibility: It is difficult to extend the scope of IDS or refignre/add capabilities to the
IDS.

Difficult configurability: The IDS is unable to configure itself easily to tbeal requirements of
each host or each network component.

Monotonic analysis:Many network intrusions exploit the multiple poimisa network. Thus, from a
single host, they might appear to be just a normsatake. But if they are collectively monitoredriro

multiple points, they can be clearly identifiedeasingle attack attempt.

Low robustness:In many cases, the IDS itself may fall under attiokn a threat seeking to disable
it. An IDS should itself be resistant to attacksod exhibit a high degree of fault tolerance, and

allow for graceful degradation.

Low reliability (Point of Failure): For most single IDS, if an intruder can somehoewvpnt the IDS

from working, the whole network is without protexsti

Recently, a number of innovative approaches @& models for IDS have been proposed to
improve IDS efficiency and performance, such adribigted IDS (dIDS). The dIDS [89], [77] is one
of several options that allow computation load ahdgnostic responsibilities to be distributed
throughout the network. It performs distributedadabllection (and some pre-processing) by using
modules distributed in different hosts, which mongeparately and communicate and cooperate with
each other. The dIDS can provide the foundatiorafoomplete solution to the complexities of real-
time detection, while maintaining fault-resistaehhviour. It has scalability to detect generalcka
or a specific attack. In addition, each module baradded to or removed from the system without
altering other system components, because theyatepardependently. Also, the system’s modules
can be configured or upgraded without disturbing tést of the system, as long as their external

interface remains the same.



Another approach used to improve IDS efficieizxc$oft Computing (SC). In general, applications
of SC are widely used with IDS, either for a detactmodel or for the generation of intrusion
features selection. They are suitable for handlinth subjective estimates for a number of reasons:

- fast recognition and classification;

- learning abilities;

- adaptability;

- flexibility;

- low solution cost;

- fast computing;

- ease of design;

- ability to generalize from learned data;

- not easily misled by small variations in intrusjuetterns;

- modular with both misuse and anomaly detection aomepts.

Researchers have proposed several approactigs regard. Some researchers are more interested
in SC techniques for such detection models as Fupgyc (FL) ) [55], [56], Genetic Algorithms
(GA) [ 57], [14], [43], Neural Networks (NN) [125]16], [8], Probabilistic Techniques [126],
AdaBoost [127], Immune System [128], and SVM [1Q]¢], [18]. Still others are interested in SC
techniques for IDS features selection models sscNM [63, 64], GA [65, 66], SVM [63, 69], and
other optimization tools [71, 72].

Despite advances in research on intrusiorctietetechnologies, the current IDS technologyds n
accurate enough to provide reliable detection. dfloee, the main emphasis of this thesis is to
improve IDS accuracy, time performance, and schthabby combining two main concepts:

lightweight IDS, and a distributed collaborativelgtecture.

(1) Lightweight IDS

The first concept is being lightweight. To buildightweight IDS module, we need to reduce the
amount of data/features needed to achieve sucteeséction by applying two different approaches.
The first approach is to use dimensionality reductiechniques (features selection approach). The
second approach is to use an IDS classificatioeraeh By using lightweight IDS, it will satisfy the

following requirements:



Efficiency: A lightweight IDS can improve the generalizatiperformance of intrusion
detection and make the detection more time-effici€aster training and testing helps to
build an efficient IDS and provides ease of maiate® or modification of the IDS.
Furthermore, a small number of input features ldadsreduction in execution times, which

is important for the on-line detection of attacks.

Accuracy: By applying the proposed lightweight approach, alhicontains a new
classification scheme, the overall system detecdioifity will be improved in three ways.
First, each IDS type can be specialized to detesptegific category of attacks, depending on
the layer. For example, to place an IDS in the eguive need to use NIDS, which has
extensive information on router attacks behaviourSecondly, by distributing the IDS
through the TCP/IP layers as the second level defaifter the firewall; the firewall will be
supported by IDS and overall system security wellifaproved. Furthermore, it is known that
one of the major issues in network security is gagunetwork devices, which are
represented as system entry points for the att&tdsce, by designing a specialized IDS for
each one of them, overall system performance willhiproved.

Scalability: A lightweight IDS can improve scalability by redog the amount of network
load on each IDS module in the system. Thus, teesybecomes scalable enough to be able

to work correctly and efficiently with increasedftic on the network.

Generality: By splitting the detection process into differeaydrs (levels) in the network
according to the proposed classification schemeh éBS module will be specialized to
detect a specific attack type, which increasesliiity to capture all or almost all known
attacks.

Intrusion’s Influences Reduction: Detection attacks in the first stages (higher awdr
TCP/IP layer) before they enter the network, valiluce any damage that may occur.
Extensibility: By using a lightweight and specialized IDS, systertensibility will be
improved. To extend the system, we need only ad®8&rto the network device that we used
to extend it. This architecture allows for compistatto be performed at any point where
enough information is available.

Flexibility: Because the lightweight IDS can be easily deployedamost any node of a
network with minimal disruption to operations, thegn be added and removed from the

system without altering other components.
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Configurability : Lightweight IDS can be cross-platform, have a lssystem footprint, and
be easily configured by system administrators whednto implement a specific security

solution in a short amount of time.

(2) Distributed and Collaborative Architecture (&)

The second concept is collaborative distributed dth single-level hierarchy (C-dIDS). The dIDS
allows computation load and diagnostic responsidito be distributed throughout the network. It
delegates its responsibilities to a number of isted components. A number of independent
intrusion detection processes monitoring only alsaspect of the IDS are deployed to protect the
overall computer infrastructure system. They omeraincurrently and co-operate with each other.
Moreover, the C-dIDS can provide the foundationda@omplete solution to the complexities of real-
time detection, while maintaining fault-resistaebhviour. The distributed nature of the data saurce
allows patterns in the data to be seen that mightbe detectable if each of the sources were

examined individually. In addition to the above éfits, it will satisfy the following requirements:

Scalability: By using a one-level hierarchy dIDS, the detecioocess will need just less
data (compared with other dIDS) to accomplish theperation process between different
IDS.

Extensibility: Each module can be added to or removed from theesywithout altering
other system components, because the intrusioctaetgrocesses are independent and thus
existing processes do not need to be modified wherew intrusion detection process is
added.

Configurability : A single intrusion detection process can be gjympilored to the local

requirements of a specific host without considethrgyvarious requirements of other hosts.

Reliability: Our detection process is distributed through fdifferent network levels

(layers), and if the intruder is successful in ctilag one level, the system will continue
applying the other levels of detection. The failafeone local intrusion detection process
does not cripple an entire IDS, even though it eausinimal degradation of overall detection

accuracy.



Robustness:The proposed IDS will be difficult to attack, assi divided into many detection
levels (depending on the number of devices in #tevork) that make attacking the system

much more difficult.

Flexibility: The modules will run in parallel and can act inglggeently. Thus, they can be

added to and removed from the system without aljesther components.

Minimum system load: To cooperate between different system IDS modwesh IDS

module does not need much transferred informajimt ¢ne bit of information).

1.3 Thesis Organization

The thesis consists of five chapters, the firstwiifich is the introduction. We provide a brief
description of Intrusion Detection Systems (ID$)ldwed by an overview of this thesis’ motivations
and goals.

In Chapter 2, a brief review of security and IB3Sgiven. We discuss IDS architecture: detection
method, analysis techniques, and response comorerdddition, we discuss some approaches in
IDS such as distributed systems and the Soft Cangp(¢$C) technique. We finish by presenting the
current state of the art in IDS and the limitatitmsreof.

In Chapter 3, we present a lightweight IDS cqic€o build a lightweight IDS, we apply two main
approaches: the features selection approach for (RM&zy Enhanced Support Vector Decision
Function- Fuzzy ESVDF), and an IDS classificatiaeme. This chapter is split into two main
sections. The first section describes the featseésction approach. It starts by briefly reviewthg
dimensionality reduction problem for IDS. The prepd algorithm (Fuzzy ESVDF) is then
explained, followed by presentation of simulati@sults and an evaluation of the approach. For the
second section, the IDS classification scheme éseted. Essentially, we illustrate the motivation
behind the new IDS categorization (classificatidfle then describe the employed IDS classification
scheme while presenting some experimental restiiis.section closes with some discussion of the
approach, and with a conclusion regarding itstutili

In Chapter 4, we present the second concefistrébdted collaborative architecture for IDS ahé t
proposed architecture of the thesis (C-dIDS bagsetightweight IDS modules) through two main
sections. In the first section, we start by brieflyiewing the distributed IDS. After that, the posed
“collaborative architecture for distributed IDS” @IDS) is outlined. Then the simulation results are

presented along with analysis and recommendati®astion 2 of Chapter 4 presents the proposed
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architecture (C-dIDS based on lightweight IDS medl This architecture combines two concepts,
which will have been discussed previously in thiesis: lightweight IDS and a distributed
collaborative architecture for IDS. To evaluate @@lIDS, experiments have been carried out and
presented. We end the chapter with some conclusions

Finally, important conclusions and possible esiens to this work are outlined in Chapter 5. We
start with a brief review of the thesis’ summaryl aontributions, followed by a discussion of future

research directions.
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Chapter 2

Background and Related Research

This chapter begins with a brief overview on comepigecurity (Section 2.1). We explain the main
security elements: security services, security raeigms, and security policy. A theoretical
framework and introduction to Intrusion Detectiopst@ms (IDS) are presented in the next section
(Section 2.2). First, a description and evaluatbiDS are given, followed by the presentationtef i
components, architecture, goals, and functions.t,Nax overview of different computer attack
categories is given. Then, we briefly review IDSalenation criteria and different IDS approaches,
followed by the major IDS challenges. Finally, #@ncepts of Soft Computing (SC) and distributed

architecture for IDS are discussed in Section AdB%ection 2.4, respectively.

2.1 Computer Security

According to [129], computer security infrastrueus based on the following three main security
services:confidentiality integrity, and availability in a computer system. Confidentiality is the
keeping of sensitive information from unauthoriziésclosure, which means that unauthorized parties
cannot access information. It is also known asesgrcor privacy. Integrity concerns the protectién o
sensitive information against unauthorized modif@as that are not detectable to authorized uders.
provides a mechanism for protecting informationiagfaaccidents or malicious tampering. Finally,
availability is the prevention of unauthorized witiiding of information and resources. It is
responsible for keeping the computer system workiitgout degradation of access to resources for

authorized users when they need it.

Other important security services aathentication, access contrond non-repudiation
Authentication is the act of verifying the identdfa user logging onto a network. It is the precels
determining whether someone or something is, if falbo or what it is declared to be. Maintaining
access control means not only that users can atltess resources and services to which they are
entitled, but also that they are not denied resesutbat they may legitimately expect to access.-Non
repudiation means that a person who sends a mesaaget deny that he sent it and, conversely, that
a person who has received a message cannot ddnlyetaceived it. In addition to these technical
aspects, the conceptual reach of computer secgriroad and multifaceted. Computer security

draws from such diverse disciplines as ethics @atdanalysis, and is concerned with computer crime
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(i.e. the prevention, detection, and remediatioratbfcks), as well as identity and anonymity in

cyberspace.

The security services described above providegmtive measures for ensuring the security of the
system by helping to avoid security policy violasothat can occur. Asecurity policyis an
organization's statement defining the rules andtjmes that guarantee confidentiality, authentaati
availability, and integrity in a computing systeth.plays three major roles: makes clear what to
protect and why; it describes the responsibilit@sthat protection; and it defines the basis onciwh
to recover from damage caused by security breathatso regulates how to provide security and
handle intrusions. A security policy might incluskections on virus detection and prevention, firéwal
use and configuration, password strength and mamage access control rules, physical security,

and many others.

Security mechanisnege the means for implementing security serviéégy can be divided into

three broad categories: Prevention, Detection Rewbvery.

An Intrusion Prevention System (IP®) the first step in the convergence of networkand
security. It provides policies and rules for netiwtraffic along with an intrusion detection systémn
alerting network administrators to suspicious tcafis well as allowing the administrator to take
action on being alerted. The IPS is not just ampetér protection element; it delivers its greatest
value as a pervasive security element that is gegdlaat both internal and perimeter network

segments.

Intrusion Detection System (ID&S)the second line of defense. It gathers andyaeslinformation
from various areas within a computer or a netwarkidentify possible security breaches, which
include both intrusions (attacks from outside thgaaization) and misuse (attacks from within the
organization). The IDS is designed to detect unmdous activities that compromise the
confidentiality, integrity, or availability of netwk or computer systems and to analyze what happens
— or has happened - to indicate that the compatebhen misused. It does not eliminate the use of a
preventive mechanism, but it works as the secorfendeve mechanism behind a firewall that can

monitor the network while leaving network performarunaffected.

Intrusion Recovery System (IRS}he third line of defense. It is comprised ¢ steps or actions

that need to be taken after the system has beeproamsed, in order to restore it to its previous
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condition and avoid further loss from intrusion.wiill also terminate intrusion and protect against

reoccurrence.

Detection and recovery mechanisms generally Mevdong-term activities and are necessary
because prevention alone can never be wholly atlegmathe following sections of this chapter, we

will briefly describe IDS.

2.2 Intrusion Detection System (IDS)

An intrusion is defined in [127] as any set of actions thaerafit to compromise the integrity,
confidentiality, or availability of a resource biying to violate a security policy. For example aif
system security policy defines specific authorimsdrs, then the action of sneaking into these 'users

accounts and transferring these users’ files istansion.

Intrusion detections the process of monitoring the events occuriimga computer system or
network and analyzing them for signs of intrusilbraims to protect the confidentiality, integrignd
availability of critical networked information syshs by analyzing what happens or has happened
during an intrusion, and attempts to locate sipas the computer has been misused. It can algo tak
the appropriate actions to cut off network conmedj record events, raise an alarm, and remind

system administrators to take proper measures.

Intrusion detection Syste(fDS) is a system that gathers and analyzes irdbam from various
areas within a computer or a network to identiffaeits made against these components. The IDS
uses a number of generic methods for monitoringettpoitations of vulnerabilities. They are useful
not only in detecting successful breaches of sggulbut also in monitoring attempts to breach
security, which provides important information tomely countermeasures. Thus, the IDS is useful
even when strong, preventive steps are taken tiegiroomputer systems, placing a high degree of

confidence in the security it provides [130].

2.2.1 Evolution of IDS

James Anderson’s paper [131] was the first docurteedescribe the concept of an IDS. The paper
described computer security threat monitoring angesllance. It debated the pros and cons of audit
trail data, log files tracking users’ access tadand how the analysis of these documents endided

reader to detect unauthorized access to data [I8dJauthor identified that the problem with this
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system of detection was that the files did not amneénough pertinent data on user access to be used

by the security staff reviewing them [131].

Three years later, the first model IDS was daped under the name IDES (Intrusion Detection
Expert System). The system was inspired by Dr. gr®enning’s paper “An Intrusion Detection
Expert Model.” The main focus of the paper was thatas possible to create models of users of a
system based on the actions of the users on the fdes, and that unauthorized access could be
detected by identifying abnormal behavioural paten those files [132]. This is the basis for the

anomaly-based detection techniques.

The next major IDS was developed at Lawrencesfiohore laboratories in 1988 under the name
Haystack. Haystack compared audit data to defirsteims of misuse in order to detect intrusions
[133]. This was the basis of the signature-baseldnigue for intrusion detection. The next iteration
of IDS development was the DIDS (Distributed IntomsDetection System), where information on

client machines and servers was also tracked.

In 1990, Todd Heberlein developed the Networkusigy Monitor at UC Davis. The Network
Security monitor is considered to be the firstuston detection system. It was mainly used by major
government installations where network traffic noring was needed. [134] This system applied
knowledge of malicious behaviour in general, sosiéd not only log files but also network packets
for detecting patterns which could be malicious5JL3 his system generated interesting results, and
increased the interest in IDS. With increased @gecame increased investment and in the early 90s

IDS began to be developed commercially.

Haystack Labs was the first vendor of a comnagid€lS with their system called “Stalker.” SAIC,
another IDS vendor, developed the Computer Misusedlion System in 1996 This was another
successful IDS. The United States Air Force wasulianeously developing an IDS called the
Automated Security Incident Measurement (ASIM).STH)S was the first to use software as well as
hardware in an IDS. The same group which develdxeidM later left the USAF and founded their
own company, Wheel Group, which later released Reetger, which was considered to be the first
commercially viable IDS. In 1997, Internet Secur8ystems Co. developed the Real Secure IDS,

which is another important IDS entry in the IDS ker
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2.2.2 Intrusion Detection Architecture

Modern IDS are extremely diverse in the technigihey employ to gather and analyze data. Most

rely, however, on a common architecture for thieircture, as shown in Figure 2.1:

- A Detection ModelThis gathers data that may contain evidence afisian. All modern IDS
monitor host computers, networks, routers or apfibo links to capture intrusion-relevant

data.

- An Analysis EngineThis can also categorize three types of detectionisuse detection,

anomaly detection, and specification detection.

- The Response Componenhis reports intrusions and takes other resposisels as isolation,

changing logging or disconnection, etc.

Responses
Data Alarm Response
Detection Model »  Analysis Engine > :::>
Componer
—— Host IDS —— Misuse Detectio
—— Network IDE —— Anomaly Detectio
— Router ID¢ —— Specification Detection
—— Application IDS

Figure2.1 IDS Architecture

Detection Model/ Information Sources

The first distinction can be made in terms of thecement of IDS. In this respect, IDS are usually

organized into host-based, network-based, routeedband application-based systems.

a. Host-based Intrusion Detection Systems (HIDS)

Host audit sources are the only way to gather imédion on the activities of the users of a given
machine [32], [123], [136]. Thus, Host IntrusiontB&tion Systems (HIDS) are present on each host

that requires monitoring and collects data concgriine operation of this host. This usually cossist

16



of log files, network traffic to and from the host; information on processes running on the host.
HIDS can determine if an attempted attack was iddegccessful and can detect local attacks,
privilege escalation attacks, and attacks thataoeypted. However, such systems can be difficult t
deploy and manage, especially when the number stishweeding protection is large. Furthermore,

these systems are unable to detect attacks agaifighle targets on the network.

b. Network-based Intrusion Detection Systems (NIDS)

Network Intrusion Detection Systems (NIDS) monitioe traffic on the network containing the hosts
to be protected and are usually run on a separathime, called a sensor [9], [13], [29], [31], [137
NIDS are able to monitor a large number of hosth velatively little deployment cost and are aldle t
identify attacks to and from multiple hosts. Howewtbey are unable to detect whether an attempted

attack was successful, and are unable to deallegti or encrypted arracks.

c. Router-based Intrusion Detection Systems (RIDS)

Router Intrusion Detection Systems (RIDS) enablgvoeks to cooperate in the detection of system
attacks and protect the greater network infrastnec{34]. This approach is close to the second
approach (NIDS) with a few exceptions. First, a RIprotects network infrastructure and particularly
focuses on routing. Therefore, the target of amaligssmainly on specific protocol traffic insteafl o
general data traffic. Second, a RIDS analyzesdbiedl behaviour of routing in order to identifyeth
set of states that are indicative of security &tadhese systems ensure a safe, reliable connectio

between computers over large networks.

d. Application-based Intrusion Detection Systemp®S)

Application Intrusion Detection Systems (AppIDS)ising researched by Robert Sielken and Anita
Jones and University of Virginia [148], [149]. Thaipproach uses the semantics of the application as
a further basis for detection of intruders. The g examines the behaviour of the application: it
can observe interaction between the applicationta@diser, and it is able to operate when incoming
data is encrypted. However, it is more susceptibleattack, less capable of detecting software

tampering, and may be taken in by forms of spoofing
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Analysis Techniques

Once intrusion detection data have been gleane8,uges its analysis to identify intrusions. Three
main approaches can be distinguished: misuse deteeinomaly detection, and specification-based

intrusion detection, the latter combining misusd anomaly detection.

a. Misuse detection

Misuse detection attempts to model abnormal belayvany occurrence of which clearly indicates
system abuse [8], [58], [68]. It aims to discovetrusion by searching for distinguishing patterns o
signatures of known attacks. It produces a minimathber of False Positives. Misuse detection can
attain high levels of accuracy, but it suffers framany limitations: (1) Difficulty in creating compta
models of attacks (models that cover all possilddants of attacks); (2) Inability to detect new
intrusions; (3) Signature updating bottleneck; I@yusion variation detection; (5) It is difficutor
misused systems to identify attacks that may oaigirfrom more than one source, or vary in the
means by which they are conducted, or are prottamter long periods of time; (6) Extensive effort
is required to construct and maintain a misusectiete system since attack scenarios and system
vulnerabilities need to be analyzed and categoriaed the corresponding rules and patterns need to
be carefully hand-coded and verified. Misuse deiaanight be implemented by one of the following
techniques: expression matching [50], state trimmsianalysis [50], dedicated languages [50], and

burglar alarms [50].

b. Anomaly detection

Anomaly detection attempts to model normal systefmeliour, any events that violate this model are
considered to be suspicious [18], [48], [51], [11[X]is based on the assumption that intrusion
behaviour deviates significantly from previoushatleed normal behaviour, and employs the user
profile as the basis for detection. Any deviatiooni normal user behaviour is considered an
intrusion. Anomaly detection addresses the prol@édetecting novel intrusions. However, it suffers
from many drawbacks, such as: (1) Inability to tifgrintrusion, in that it suffers from the problem
of how to correctly construct a baseline model effidviour that is sufficient for complete and correc
operation of the system; (2) A higher false alaratey (3) Difficulty in determining whether
anomalies are caused by intrusions; (4) Concefitrdriproblem; (5) Mimicry attacks; (6) Intensive
computational cost; (7) User behaviour that camghadynamically and can be very inconsistent;
and (8) Some intrusions can only be detected lyystg the sequential interrelation between events,

because each event alone can appear to be norowmdizg to the statistical measures. Anomaly
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detection might be implemented by one of the foitmywtechniques: statistical models [48], [49],
which consist of many different techniques sucthasshold measures, mean and standard deviation,
and many others [50]; an immune system approacl];[fotocol verification [50]; file checking
[50], taint checking [50]; neural networks [29]1[4], [33]; fuzzy logic [93]; support vector machine
[17]; and data mining techniques [141], [142].

c. Specification detection

This approach was introduced more recently by Usitse of California, Davis, and referred to as
specification-based intrusion detection [72], [143}4], [143] relying on manually setting program
behavioural specifications that are used as a lbasietect attacks. It determines whether or not a
sequence of instructions violated a specificatibimawv a program, or system, should behave. This
technique has been proposed as a promising altervathich combines the strength of misuse-based
and anomaly-based detection. Specification-baséettien has the potential to provide a very low
False Positive rate. It is, however, difficult todel complex programs or systems and write security

specifications for them.

Response Component

One major concern is to ensure that in the casmahtrusion attempt, the system is able to detect
and to report it [99], [146], [147]. Once the détew is reliable, the next step is to protect tkénork
(responses). In other words, the IDS will be upgeatb an Intrusion Detection and Response System
(IDRS). Intrusion responses are a series of actmascountermeasures employed when an intrusion
is detected. These actions and measures can pffevibrer attacks and restore the system to a normal
state. Current intrusion response systems cantegarized depending on different criteria such as:
degree of autonomy; activity of triggered resporeeijity to adjust; time response; cooperation

ability; and response selection method.
Degree of autonomy is grouped into three categories

* Notification Response System: notification or aléot the administrator could be the

displaying of a pop-up window, or generating anaitppager or mobile phone message.

* Manual Response System: allows administrator toualnlaunch countermeasures against

a detected intrusion by choosing from a predetegthget of responses.
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Automatic Response System: able to choose courdgsumes themselves and respond to an

attack immediately without human intervention.

Activity of triggered response is grouped into teaiegories:

Passive Response System: this is content with yneletiecting an intrusion, leaving its

handling to a human agent.

Active Response System: IDS automatically take®m@adh response to a detected intrusion,

reacting immediately to an intrusion as it occurs.

Ability to adjust is grouped into two categories:

Static: The majority of these systems are staticha response selection mechanism remains
the same during the attack period. These systemsbeaperiodically upgraded by the
administrator; such support, however is manual, @teh delayed until the moment when a
considerable number of intrusions expose the inzaggof the current response mechanism.
Although this approach takes a conservative viethefsystem and environment, it is simple

and easy to maintain.

Adaptive: The adaptability of the response is thititp of the system to dynamically adjust
the response selection to the changing environmernihg an attack. Adaptation capability
can be represented in several ways including (mjstident of system resources devoted to
intrusion response such as activation of additidB&, or (b) consideration of success and

failure of responses previously made by the system.

Time response is grouped into two categories:

Proactive: Proactive response systems allow theersyto anticipate the incoming intrusion
before the attack has affected the resource. Stegtigtion is generally difficult and often

relies on probability measures and analysis ofeciruser or system behaviour.

Delay: The response action is delayed until thackthas been confirmed. Such assurance
may be provided through the confidence metrichefIDS or the full match of the intrusive

trace with an existing attack signature.

Cooperation ability is grouped into two categories:
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» Autonomous: Autonomous response systems handlgsiotrs independently at the level at
which they are detected. As such, a host-basedldd&ting an intrusion on a single machine

will trigger a local response action such as teatiitg a process, shutting down the host, etc.

» Cooperative: Cooperative response systems refarset of response systems that combine
efforts to respond to an intrusion. Cooperativetesys can consist of several autonomous
systems that are capable of detecting and respgphalimtrusions locally, though the final, or

additional, response strategy is determined antieabglobally.
Response selection method is grouped into thregoaés:

» Static mapping: Static mapping systems are es#igraistomated manual response systems
that map an alert to a predefined response. Fangbea detecting an attack on a host can

trigger the dropping of incoming/outgoing netwodcgets.

* Dynamic mapping: Dynamic response mapping systemasn@ore advanced than static
mapping systems as the response selection is baste certain attack metrics (confidence,

severity of attack, etc).

» Cost-sensitive mapping: Cost-sensitive responstemsigsare the only response systems that
attempt to balance intrusion damage and resporste Thoe optimal response is determined

based on the cost-sensitive model that incorpossesral cost and risk factors.

2.2.3 IDS Functions and Goals

Many studies have shown that most computer sedactgents are caused by insiders; this results in
the need for extra security measures within themeation. IDS may complement other preventive
controls (e.g. firewalls) as the next line of deferwithin the organization. An IDS software or
hardware system is placed inside or at the bounafattye protected network to monitor what occurs
within the network. It offers the opportunity totdet an attacker who is able to pass through @iffier
network devices. Detection can take place at tiginbéng of the attack, during the attack, or after
has occurred. Once detection is reliable, the & is to protect the network (responds). The

response can be activating an alarm, isolatiomgihg logging, disconnecting, etc.

The goal of IDS is to accurately detect intrasiosort out true intrusions from false alarms, and

notify network administrators of the activity. Mamyrganizations now use IDS to help them
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determine if their systems have been compromiseanGhe goal of an IDS, the functions of an IDS
can be:

* Monitor and analyze user and system activity
* Audit system configurations and vulnerabilities

» Detect a wide array of intrusions, including ougsidtrusions and insider attacks, of both

known and unknown varieties
» Detect intrusions in a timely fashion
* Present the analysis in a simple, easy-to-undetgtamat
* Achieve a low false alarm rate (high accuracy)
* Inform the system of any suspicious behaviour Ingdsey a report or sounding an alarm

» Assess the integrity of critical system and ddesfi

An IDS may embody one or more of these functialepending on the type of IDS, network
architecture, and user requirements. Moreover,ctirabination of these features allows system
administrators to more easily handle the monitqriagdit, and assessment of their systems and

networks.

2.2.4 Computer Attacks Categories

An intrusionis defined as any set of actions that attempbtopromise the confidentiality, integrity,
or availability of a resource to gain root privilegvhether by exploiting vulnerabilities in the ®m
configuration to access confidential data, or Hyimg on a legitimate system user to download and

run a seemingly legitimate Trojan horse program.

With an increased understanding of how systenwskwintruders have become skilled at
determining weaknesses in these systems and eérgltlitem to obtain system privileges and access
system resources. Intruders also use patterngragion that are difficult to trace and identifyhdy
frequently employ a series of feints before breglkirio target systems and rarely indulge in sudden
bursts of suspicious or anomalous activity. Thesp alover their tracks so that their activity on the

penetrated system is not easily discovered.
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In general, attack types fall into four main catég®[138]:
» Probing: surveillance, among others
* DoS: Denial of Service
» U2Su/U2R: Unauthorized access to Local Super ueet)(privileges

« R2L: Unauthorized access from a Remote machine

Probing

Probing is a class of attack where an attackerssaametwork to gather information or find known

vulnerabilities. There are different types of prebgome of which abuse the computer’s legitimate
features and others that employ social enginedahniques. This class of attack is the most
common and requires very little technical expertiEeamples of this type include IPsweep, Saint,

and Satan.
DoS Attacks

Denial of service (DoS) is a class of attack whameattacker makes some computing or memory
resource too busy or too full to handle legitimegquests, thus denying legitimate users access to a
machine. There are different ways to launch Do&chst, such as abusing the computer’s legitimate
features, targeting implementation bugs, or exjplgithe system’s configuration errors. Examples of
this type of attack include DDoS, Pingflood, SYNdH, Mailbomb, and Process Table.

U2Su Attacks

User to root (U2Su) exploits are a class of attabkre an attacker starts out with access to a norma
user account on the system and is able to exploitirzerability to gain root access. Most common
exploits in this class of attack are regular buéfeerflows, which are caused by regular programming
mistakes and environment assumptions. Examplesisftype of attack include Eject, Fdformat,

Loadmodule, and Perl.

R2L attacks

A remote to user (R2L) attack is a class of attabkre an attacker sends packets to a machine over

the network, then exploits the machine’s vulneighbib illegally gain local access as a user.

Examples of this type of attack include Dictiondff,P-write, Sendmail, and Xlock.
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2.2.5 Evaluation Criteria

To evaluate the efficiency of an IDS, there areialber of parameters to be considered [139]:

Accuracy: Accuracy deals with the proper detection of attaakel the absence of false alarms.
Inaccuracy occurs when an IDS flags a legitimatgoacin the environment as anomalous or

intrusive.

Efficiency: An IDS has to perform and propagate its analysiguaskly as possible to enable the
security officer to react before much damage hasnbdone, and to prevent the attacker from
subverting the audit source or the IDS. The efficieof the IDS not only encompasses the intrinsic

processing speed of the IDS but also the time redud propagate the information and react to it.
Generality: An IDS should capture all or almost all known at&c

Real Time Performance:Computer networks have a dynamic nature in theseséimat information
and the data within them are continuously changitgrefore, to detect an intrusion accurately and

promptly, the system has to operate in real time.

Robustness:lt should have multiple detection points, which areust enough against attack and any
system faults of the IDS. If intruders already knitvy existence of an IDS and can subvert it, then t

effort to develop the IDS was futile.

Scalability: It is necessary to achieve reliable scalabilityorder to gather and analyze the high-
volume of audit data correctly from distributed tsodn the case of a monolithic IDS, the auditltrai
collection procedure is distributed and its analyisi centralized. However, it is very difficult to
forward all audit data to a single IDS for analysighout losing some of the data. Even if the IDS

scales for all audit data correctly, it may causeese network performance degradation.

Extendibility: It should be easy to extend the scope of IDS mangadby and for new hosts easily
and simply regardless of the operating system. Wherew host is added to an existing network
environment, and especially when this new host am®perating system that employs a different

format of audit data, it is difficult to monitoriih a consistent manner with existing IDS.

Completeness:Completeness is the ability of an IDS to detecta#iacks. Incompleteness occurs
when the IDS fails to detect an attack. This measimuch more difficult to evaluate because it is

impossible to have global knowledge about attacksbases of privileges.
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Even though various approaches have been dexckkapd proposed, no existing IDS satisfy all of

these requirements completely.

2.2.6 IDS Approaches

There has been steadily growing interest in rebeand development of IDS. The main goal was to
create a system capable of detecting different kihdttacks. To accomplish this goal, researchers
have been exploring various tools and techniqued si$ Pattern Matching [58], [59], Statistical
Models [48], [49], State Transition Analysis Teaiune [60], Information Theoretic Measures [51],
Intrusion Correlation (Data Mining) [74], [75], [F;@mmune System [52], [53], [54], File Checking
[78], Whitelisting [79], Colored Petri nets [81]tce The next paragraphs survey some of these
approaches, and give examples of currently availabbls using them. No intrusion detection
approach stands alone as an ideal system whichreapll attack types; each approach is technically
suited to identify a subset of security violatiod$ie intent of this sub-section is to give a brief
overview of current intrusion detection techniquispetter identify how our proposed system (C-
dIDS) fits into the general scheme of things. Ustierding the strengths and limitations of these

approaches will clarify the benefits, as well as tfadeoffs, to the approach presented in thisghes

Pattern Matching [58], [59], is the simplestheiue used for anomaly IDS. This technique
searches an event stream for occurrences of gpgufierns. Although this technique is fast, it
requires an understanding of the nature of thelgttahich implies that human experts must work on
the analysis and representation of the attackss Témds to be time-consuming and error-prone.
Moreover, this technique suffers from scalabilggues, either in terms of speed or the number of
patterns to be searched, primarily due to limited axpensive logic resources. Only those attack
scenarios which are known and constructed intcepattby the system can be detected. Attacks

involving spoofing, and passive methods of attélak Wire-tapping cannot be detected.

Statistical Modeling [48], [49] is among the lesst methods used for anomaly detection in
electronic information systems. It measures the asd system behaviour by a number of variables
sampled over time, and builds profiles based onwuéables of normal behaviour. The actual
variables are then compared against the profiles,deviations are considered abnormal. There are
many statistical techniques such as threshold megssmean and standard deviation, Markov process
model, clustering analysis, etc [50]. While thesatistical techniques have some value, they are
insensitive to the order of the occurrence of evemthich causes them to miss the sequential

interrelationships between events. For intrusi@fiected by such an ordering of patterns, a sitzdist
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IDS will miss these intrusions. Moreover, this aggh requires the construction of a model for
normal user behaviour, and any user behaviourdingates significantly from this normal behaviour
is flagged as an intrusion. It can also be diffitaldetermine the correct anomaly threshold attvhi
behaviour is to be considered an intrusion. Als@pply statistical techniques, one has to asshaie t

the underlying data comes from a quasi-stationewggss, which may not always hold.

State Transition Analysis Technique (STAT) [@®Jone of the famous rule-based expert systems
for detecting penetrations. It was developed byRlediable Software Group at UCSB for misuse
detection in UNIX systems, distributed systems, a@tivorks. The STAT uses the state transitions of
the system to identify intrusions. This method ¢artds the state transition diagram, which is the
graphical representation of intrusion behaviouaaseries of state changes that lead from an initial
secure state to a target compromised state. $gatsitton diagrams list only the critical eventatth
must occur for the successful completion of theusibn. The main advantage of this technique is
that it allows a complex intrusion scenario to bedeied in a simple way, and is capable of detecting
slow, distributed, and cooperative attacks, vaiatito known attacks, and attacks which span across
multiple user sessions. Too, it improves the abititautomatically determine the data to be calidct
to support intrusion analysis. This enables a Vigight and scalable implementation of the network
probes. On the other hand, it may have difficuttgxpressing the attacks scenarios. Also, it céy on
construct patterns from sequences of events, ot imore complex forms, and therefore some

attacks cannot be detected as they cannot be nobgdlestate transitions.

Information theoretic measures is another teghnthat has been used by many researchers for IDS
[51], [62], [80]. This technique computes infornaati content in data using information theoretic
measures such as entropy, conditional entropytivelaonditional entropy, information gain, and
information cost, and uses them to describe theacheristics of audit data and to build anomaly
detection models. It operates in an unsupervisedemiv requires, however, an information theoretic

measure sensitive enough to detect irregularityéed by very few outliers.

Data mining generally refers to a process of-tnial extraction of implicit, previously unknown
and potentially useful information from databasése key concepts of using data mining in IDS are
to discover consistent and useful patterns of sy$eatures that describe user behaviour, and to use
the set of relevant system features to computesifilxs which can recognize anomalies and known
intrusions [36], [74], [75], [84], [142]. Thesetdamining techniques have been garnering increasing

research interest, since they can automaticallyoder detailed attack or normal models that can be
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easily understood by human beings. However, thegentques tend to generate a large number of
models, especially for large inputs of data. Initold, it requires extra human intervention to reelu

and refine the extracted models.

Many immune systems have recently been develtgredS [52], [53], [54], [76]. In the immune
system approach, applications are modeled in tefmsequences of system calls for a variety of
different conditions: normal behaviour, error cdiugis, and attempted exploits. Comparing this
model to observed event traces allows classifinatibnormal or suspicious behaviour. In general,
this technique provides the computer system whigh level of protection from a specific number of
attacks in a robust, autonomous, adaptive, selrorgtion and distributed manner. However, it
cannot detect attacks based on race conditionsobcypviolations. Moreover, it faces other
difficulties, such as its inability to efficientijap the entire non-self universe, its definitionseff-

ambiguous, and self/ non-self changes over time.

Dedicated languages are the most widely usedoapp misuse detection. Each attack signature
takes the form of a specialized program, with roxgngs as input. Any input triggering a filtering
program, or input that matches internal alert ctmia$, is recognized as an attack. Unfortunately,
there is no common language for describing attackgeneral, there are six different classes: event
languages [55], [56], [62], response languagerteyy languages [63], [64], correlation languages
[65], [66], [68], exploit languages [69], [70], adetection languages [65], [66], [68], [71], [7R]13].
These language classes define different scopeg@ald. While the dedicated languages technique
offers great flexibility in matching attack scery; it needs significant understanding of protgcols
attacks involved, and programming ability. MoreqQ\attacks with a signature variations string may

not be captured.

Nevertheless, there are common challenges iautrent studies of IDS which are reflected on IDS
performance, such as high False Positive/Negalivet scalability, etc. More detail about these

challenges is discussed in the following sub-sectio

2.2.7 Major IDS Challenges

Considering the surveyed literature, it is cleattthe current view of IDS is that it is far from a
reliable protective system. This sub-section byialentifies some of the inherent characteristic t

limit the performance of the different IDS techréguThey are as follows:
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High False Positives

False Positives are those sequences of innocuemssethat the IDS classifies as intrusion. A
common complaint is that the large number of Fdlesitives generated by ID systems
makes it hard to filter out false attacks withowtgmtially missing true attacks. Another
crucial problem that arises from a high number afs& Positives is related to incident
handling; that is, security administrators are utace how to respond to mitigate the risks if
a certain degree of accuracy cannot be achieveeleTis no decision rule associated with
each alert to tell the security administrator wiethe should ignore the alert or simply

terminate the suspicious session.

High False Negatives

False negatives refer to intrusion attempts tred@$ fails to report.
Limited Scalability

It is very difficult to forward all audit data tosangle IDS for analysis without losing the data.
Even if it scales for all audit data correctly, ntay cause severe network performance

degradation.
Lack of Context Information

Anomaly detection fails to provide adequate contaktinformation for the security

administrator in locating the attack. This weakriasseases the difficulties of alert handling.
Too Many Variants

Because of newly merging attack behaviours andkbugpreading malicious code, it is very
difficult to determine the nature of an event bef@ignificant damage has been done.
Another affliction is that the exploit codes taiggt known vulnerabilities do not stay
unchanged forever. (If the computers can provideugh decision-supporting analysis
reports, then the system administrators can maiéyetetermine the correct action to take in

a crisis.)
Writing Signatures for IDS is a Very Difficult kas

In some cases, the appropriate balance betweevealy specific signature (which is not able
to capture all attacks) and an overly general omeich recognizes legitimate actions as

intrusions) can be difficult to determine.
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Skewed Class Distribution

The training set consists of many normal examptesaasmall number of attack examples —
an imbalance between these two data types may dhffisalties in recognizing the correct
patterns.

Propagation of Number of Attacks

The rapidity of intruder tool improvement increasies number of attacks and strategies that

are used to attack the system.
* |IDS maintenance

Like any other system, maintenance must be perfdrinemisused systems, signatures must

be updated at regular intervals, an onerous tastost cases.
Other Difficulties

One of the major difficulties is that some acti@a® be normal in certain environments but

may be malicious in others.

2.3 Soft Computing Approaches for IDS

The application of Soft Computing (SC) is widelyedsfor IDS because of its features, such as
accuracy (low False Positive and False Negativesjatflexibility (not easily fooled by small
variations in intrusion patterns), adaptabilityrniew environments (modular with both misuse and
anomaly detection components), low solution cestl-time performance (fast recognition and ability
to classify different attacks), and ability to gealeze from learned data. The SC is the generat ter
for describing a set of optimization and procesgithniques that are tolerant of imprecision and
uncertainty. The ability of SC tools to deal withcertain and partially true data makes them sugtabl
for application in IDS. The SC is used to creatystem of detecting and characterizing anomalous
network behaviour. The principal constituents of ®@Chniques aré&eural Networks (NN), Fuzzy

Logic (FL), andevolution computatiogras shown in Figure 2.2.
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Figure2.2 Soft Computing Diagram

FL systems [6] are useful in situations whemban expertise (expertise that cannot be translated
into a set of equations) needs to be incorporatéal the decision-making process. Evolutionary
programming, evolutionary strategies, and genekijpradhms [150] are useful for optimization
problems whose particular difference is how thegi@vocal extremes. Finally, Artificial Neural
Networks (ANNs) [7] are useful when complex relasbips (or patterns) in data need to be
extracted. ANNs are tolerant of imprecise data andertain information: with their ability to

generalize from learned data, they seem to be pmoppate approach to IDS.

Based on IDS, most of the work conducted inliteeature falls into two key areas: detection mode
and generation, and intrusion features selection.détection model and generation, numerous SC
techniques are adopted to build efficient detectimdels such as FL [11], [12], GA [13], [14], [15],
NN [8], [9], [10], [16], and Support Vector MachimgSVM) [17], [18]. For intrusion features
selection, much research has tried to select thmoritant intrusion features using different SC
approaches, such as NN [19], [20], GA [21], [22Z3]; [24], SVM [19], [25], [26], [34], and other
optimization tools [27], [28].

The rest of this section briefly introduces thaious SC techniques, such as FL, GA, NN, and
SVM approaches in both areas of IDS: detection maae generation, and intrusion features

selection. In addition, we mention some relatedkador each of these approaches.

FL [6] is a mathematical technique for dealing withprecise data and problems with many

solutions. FL works with ranges of values, solvprgblems in a way that more resembles human
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logic. FL is often used in systems where statesttioms should be softened when making decisions
with fuzzy boundaries. FL has been used in both i&®arch areas: detection model and generation,
and intrusion features selection. For the deteatiodel and generation area, many researchers have
proposed the application of FL such as Piyaktuhl [11] and Zhanget al [12]. Dickersonet al [37]
proposed Fuzzy Intrusion Recognition Engine (FIRM®)ich is a network intrusion detection system
that uses fuzzy systems to assess malicious gctigainst computer networks. The system uses an
agent-based approach, and each agent performsmiduzzification of input data sources. At the
end, all agents communicate with a fuzzy evaluaéingine that combines the results of individual
agents using fuzzy rules to produce alerts thattare to a degree. For the intrusion Features
Selection area, Xiret al. [82] uses interactive data visualization to analylze features of several
different intrusion detection scenarios. Visualgzihe data helps to find the most import featunes t
are used to identify intrusions and if they carcbaracterized as fuzzy sets or by Boolean variables
These features can then be input into a fuzzy ¢tegnmap that serves to fuse the inputs to detect
more complex attacks. Most fuzzy approaches inaréa are integrated with other SC methods [84],
[85], [86].

GAs are a family of computational models basedguonciples of evolution and natural selection.
These algorithms convert the problem in a spedidimain into a model by using a chromosome-like
data structure and evolve the chromosomes usiegtimi, recombination, and mutation operators. In
the IDS detection model, GA can be used to evalvple rules for network traffic. These rules are
used to differentiate normal network connectiormnfranomalous connections. Recent researchers
[13], [14], [15] have demonstrated that the GAdiés an emerging field in computer security,
especially with regard to IDS detection models. &orer, GAs have been used as one aspect of the
IDS features selection approach [21], [22], [22}][ Shazzaet al.[21] proposed a hybrid features
selection method by combining Correlation-basedufea Selection (CFS), SVM, and GA. The GA
is used to generate subsets of features from te® geatures set, which is then evaluated by CHES an
SVM to pick the best features set. They combineeethuifferent approaches and were able to reduce
the number of features from 41 to 12 for the DAR®Aaset. Alexandest al. [22], [24] set out GA
that performs the tasks of features selection ackitacture optimization for Radial Basis Function
(RBF) networks. Also, Kinet al.[23] proposed a features selection method iddntiicthe previous
method, but they used GA techniques to obtain gtienal features set and the optimal parameters for

a kernel function of SVM.
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ANNs have been extensively used to detect botbuge and anomaly patterns. ANNs are
algorithmic techniques [6], [7] used to first ledhe relationship between two sets of informatiod a
then generalize to obtain new input-output pairsaimeasonable way. The ANNs consist of a
collection of processing elements that are hightgriconnected and transform a set of inputs td a se
of desired outputs. They are widely considered finient approach to adaptively classify patterns
due to their capability to compact knowledge repméstion, even if the data are complex or non-
deterministic. This capability makes them an efectimplementation model for an IDS.
Researchers have proposed several approaches iredfard in order to improve IDS accuracy [29],
[30], [31], [32]. Jiaret al.[33] use backpropagation (BPL) neural networkdetect anomalous user
activities. They have shown that NN can be usedessfully as a method for training an IDS and
providing it with learning skills. Also, Liliset al. [8] present a network detection method using a
Hamming net, which is a type of NN with special pedies that make it suitable for real-time
classification. Moreover, Chunliet al.[16] proposed two hierarchical IDS frameworks gskadial
Basis Functions (RBF). They used a serial hieraedHDS (SHIDS) to identify accurately misuse
attacks and adaptively identify anomaly attacksl tren used parallel hierarchical IDS (PHIDS) to
enhance SHIDS functionality and performance. Ferdther IDS research area, features selections,
Sung et al. [19] exploited SVM and NN to categorize and idgntieatures based on some
performance criteria by ranking feature importafureeach kind of attack, such as probe, DoS, R2L,
and U2R. This approach is based on deleting caterk at a time; the resultant data set is thed use
for training and testing of the classifier (eithtéN or SVM). Then the classifier's performance is
compared to that of all features based on perfocenarnteria. Finally, the important feature is radk
according to a set of rules based on the performanmparison. Glovket al. [20] proposed NN
architectures for the IDS. The proposed approadiased on combining two different NN: Principle
Component Analysis (PCA) and Multilayer Percept(®fiLP). PCA (linear and nonlinear PCA)
networks are employed for important data extracdod high dimensional data vectors reduction.
MLP is employed to detect and recognize attacksgusitracted-features data instead of original

data.

Recently, SVMs have been used to detect itnudue to their good generalization characteristics
and ability to overcome the curse of dimensional8yM is a statistical machine learning algorithm
that maps input (real-value) feature vectors intogher dimensional feature space through nonlinear
mapping. The SVM is primarily a classier methodt gtharforms classification tasks by constructing

linear classifying (hyperplanes) in a multidimemsibspace that separates cases of different class
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labels. A special property of SVM is that they sitaneously minimize the empirical classification
error and maximize the geometric margin by usinguadratic optimization problem with bound
constraints and one linear equality constraint.rétaee two other key concepts of SVM: Soft Margin
and Kernel concept. SVM are powerful tools for pdinvg solutions to classification, regression, and
density-estimation problems. Kt al. [18] proposed an approach to intrusion detect&ingiSVM

for anomaly detection. It is a one-class SVM-basgproach, which delivers a highly accurate rate on
the testing set. In addition, Joleh al. [17] proposed using the SVM learning approach léssify
network requests. They employed a new method —y&i& — and by their experiments showed
satisfactory system performance in terms of tr@rime and accuracy. For IDS features selection,
Mukkamalaet al. [25], [26], [34] proposed a router-based approtcdetect DoS attacks by using
SVM. They identify DoS-pertinent features by uskgpport Vector Decision Function (SVDF) and
evaluate the applicability of using these featurethe detection of online novel DoS attacks on a
performance network. SVDF calculates the weighthef features to rank their significance. For

example, in the equation features.

F(X)= WX +b 1)

i=1

whereW is the weight vector b is a bias value, andlis the number of features. They ranked each
feature depending on the value of its weight. Téadures with large weight values are considered to
be the features of the greatest effect (importaatures) and are used for the detection process. In
[26], they used eleven features as important feattor the detection process. In [34], they claimed
that using six important features from among tleweh features can give excellent performance.

Several other Soft Computing (SC) techniques agd ts improve the performance of the IDS and
much work has been done in this area. For exan(®kQ et al. [27] proposed Ant Colony
Optimization (ACO) and Srinoy [28] proposed Padi@warm Optimization (PSO) to select the best
features set for IDS. Cheat al. [35] proposed Flexible Neural Tree (FNT) to idgntmportant input
features in building an IDS that is computationadf§icient and effective. The FNT structure is
developed using an evolutionary algorithm, and gheameters are optimized by a particle swarm
optimization algorithm. Liet al. [36] proposed a supervised clustering and clasgiin algorithm
(CCAS) for IDS. This algorithm utilizes a heuristic grid-based clustering. Several post-processing
techniques including data redistribution, supevigeouping of clusters, and removal of outliers are
used to enhance the scalability and robustnes®rdanal. [38] proposed a two-tier architecture for

IDS: the first tier is an unsupervised clusteritgpathm which reduces the network packets payload
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to a tractable size. The second tier is a tradii@amomaly detection algorithm, whose efficiency is
improved by the availability of data on the pachkayload content. Wanet al [39] proposed a new
clustering algorithm, FCGor IDS based on the concept of fuzzy connectedridss approach starts
with a single or a few seed points in each clusted all the data points are dynamically assigoed t

the cluster that has the highest fuzzy connectedvedse (strongest connection).

2.4 Distributed Intrusion Detection Systems

With the increasing connectivity and complexity lidterogeneous computer systems, it is likely
unrealistic to expect that an IDS should be capabt®rrectly classifying every event that occuns o
a given system. In addition, there are the linttadi of a centralized IDS, such as: a single pdint o
failure; limited scalability; frequent overload; merability to subversion; and difficulty in
configuring or adding capability to the IDS. An IDshould consist of multiple entities working
independently to cover the huge amount of datatiaffic in the system, and should allow changes to
these entities without any modifications made teeotentities; this is accomplished by using an IDS
with distributed architecture. Distributed IDSs[ids) are based on distributed IDS entities located
on different locations within the network, which nior separately and communicate and cooperate
with each other. The dIDS allows computation load diagnostic responsibilities to be distributed
throughout the network. It can provide the fourmatior a complete solution to the complexities of
real-time detection, while maintaining fault toleca behaviour. It allows early detection of planned
and coordinated attacks, thereby allowing netwalhiaistrators to take preventive measures. dIDS
also helps to control the spreading of worms, impsonetwork monitoring, incident analysis, attack
tracing and so on. Also, it has scalability to degeneral attacks or a specific attack, in additm
providing significant advantages in flexibility, texdibility, and resistance to compromise.

A number of dIDS have been proposed for a thisteid environment. Early systems included DIDS
(Distributed Intrusion Detection System) [41], NADI(Network Anomaly Detector and Intrusion
Reporter) [45], CSM (Cooperative Security Managét8], GrIDS (Graph-based Intrusion Detection
System) [42], EMERALD (Event Monitoring Enabling $gmnse to Anomalous Live Disturbances)
[43], AAFID (Autonomous Agents for Intrusion Detamt) [44], CIDF (Common Intrusion Detection
Framework) [156] and MAIDS (Mobile Agent Intrusidbetection System) [47]. The rest of this
section briefly introduces some of these projects.

DIDS [41] incorporates Haystack and NSM (Netw&#curity Monitor) in its framework. This

system requires the audit data collected from wdffe places to be sent to a central location for
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analysis. The DIDS operates on a local area net@gkR) and consists of three major components:
the host monitor, the LAN monitor, and the centr@nager. Each host is monitored by a host
manager. This manager is a collection of processeting in the background of the host. Also, each
LAN is monitored by a LAN manager, which operatest jike a host manager except that it analyzes
LAN traffic. Finally, there is a central manager ietn is placed at a single secure location and
controls the entire system. This central manageeives reports from various host and LAN
managers, and by processing and correlating tlegeets, it detects intrusions. The DIDS itselfas n
fully distributed because it relies on both digttdd and centralized resources to detect intrusions
This technology faces a number of challenges sadksacentralized nature, arbitrary definitions of

abnormal activities, and ineffective coordinatia@ivikeen the DIDS modules.

The NADIR system [45] performs distributed datalection by employing the existing service
nodes in the Los Alamos National Laboratory’s Inéegd Computer Network (ICN) to collect audit
information. The NADIR examines the network traféit the service and protocol level by using a
statistics-based anomaly detector and an expettraysvhich is then analyzed by a central expert
system. The major drawback of NADIR is its cengedi analysis, which severely limits the
scalability of the detection algorithm. MoreoveistBystem, NADIR, would not easily be ported to an

internetworked environment with many heterogenesyssems.

The CSM [46] are employed to perform dIDS thaés not need a hierarchical organization or a
central coordinator. Each individual CSM detectsliciaus activity on the local host. When
suspicious activity is detected, each CSM will m@my noteworthy activity to the CSM on the host
from which the connection originated. The local C8MI not notify all networked systems, but
rather only the system immediately before it in to@nection chain. The architecture of the system
allows for CSM to take reactive actions when amusibn is detected. Unclear aspects are the
mechanisms through which CSM can be updated ornfegwed, and the intrusion detection

mechanisms that are used locally by each CSM.

GrIDS [42] uses graph engines that build a graphnesentation of activity in the network to detec
possible intrusions. It aggregates computer andar&tinformation into activity graphs which reveal
the casual structure of network activity. The GriixSable to detect large-scale automated and
spreading attacks. Also, it facilitates reportiqpglicy statements, and process rules. It provides
mechanisms to allow third-party security tools ® Used as data sources. On the other hand, the

judgment of intrusions still needs human inputiides to complete.
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EMERALD [43] isintended as a framework for distributed, interopkracomputer and network
intrusion detection. It employs entities calledvéms monitors that are deployed to hosts and perfor
monitoring functions. They define several layersnadnitors for performing data reduction in a
hierarchical fashion. Monitors can be programmegéeocform any function. However, this model
does not scale well for large networks. The largenioer of events and devices distributed across the
network can generate too much network traffic amol much data to be stored in one location

efficiently. It also does not cover distributedwsees (e.g., DNS, firewalls).

AAFID [44] is a distributed intrusion detecti@nchitecture and system, developed in CERIAS at
Purdue University. It is agent-based, employs aahihical structure and the data are collected and
analyzed locally. Nevertheless, there is stillghlest-level entity in the AAFID architecture, whiish
the bottleneck of this system and leads inevitéblghe matter of a single point of failure. Alsbthie
two or more IDS that are far part in the hierardiyect a common intruder, the two detections cannot
be correlated until the messages from the diffelB& reach a common high-level IDS. This will
require the messages to traverse multiple IDS tiaguih communication overheads. In addition, it

has limited scalability, performance, user integfaod security.

CIDF [156] was an effort to standardize intrusibetection to some degree by enabling different
intrusion detection and response components toojpeeate and share information and resources in a
distributed environment. The intrusion detectioreircomponent adaptive negotiation protocol helps

cooperating CIDF components to reach an agreenmegach other’'s needs and capabilities.

MAIDS [47] are also typical distributed IDS.i#t an end-to-end procedure for intrusion detection.
Known vulnerabilities of a system are expressedrimbstract "Software Fault Tree" (SFT) form,
then converted to a Colored Petri Net (CPN), andllfy into a system of independent agents. These
systems suffer from a number of problems such laslkaof an effective coordination mechanism to

detect a complicated attack, and the security@&iistem itself is almost unconsidered.

The research on dIDS [1], [2], [3], [4], [5],98] is a rapidly growing area of interest becaumge t
existence of dIDS techniques is increasingly undblerotect the global distributed information
infrastructure. So, the existing dIDS must be updand improved constantly to adapt to the ever-
changing environment and they should be studiegréater depth in order to ensure better system

security.
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2.5 Conclusion

In this chapter, we presented a brief review of [B%lution, architecture and components, goals and
functions), followed by presenting the current agmhes for IDS such as Pattern Matching,
Statistical Models, State Transition Analysis Tdghe, Information Theoretic Measures. Given the
shortcomings of current IDS, our research focusni€£ombining two main concepts to improve the
performance of IDS. The first concept is using tigight IDS modules. To build a lightweight IDS
module, we use two approaches: features selectiproach, and an IDS classification scheme. The
first approach depends on Soft Computing (SC) tect¢he appropriate features set for IDS. SC is
the general term for describing a set of optim@atand processing techniques that are tolerant of
imprecision and uncertainty, and that make thenactite to be applied in IDS. The second approach
is the IDS classification scheme. This novel schem@loys multiple specialized detectors in each
layer of the network TCP/IP network model, whichpsein the collection of efficient information.
This increases system efficiency and reduces thiesys scalability. The second concept used in this
thesis proposes a distributed collaborative archite for the IDS. This architecture can be ustful
efficiently designing and maintaining secure nekgspreach module operates cooperatively yet

independently, providing for efficient, real-timesponse and distribution of resources.

The proposed system, Collaborative Distributettusion Detection System (C-dIDS) based on
lightweight IDS modules, combines two concepts: $ii@ approach to build a lightweight IDS, and
the dIDS approach with a novel architecture. A idedadescription for each of these approaches is

given in Chapter 3 and Chapter 4 respectively.
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Chapter 3
Lightweight IDS

The intrusion detection system deals with huge art®oof data, which can contain irrelevant and
redundant features. This can cause a slow trasmmigtesting process, higher resource consumption,
and a poor detection rate. Therefore, using auigight IDS is an important issue in intrusion
detection. Lightweight IDSs are small, powerful daflexible enough to be used as permanent
elements of the network security infrastructureeyltshould be easily configurable by system
administrators who need to implement a specifiasgcsolution in a hurry. Also, they should be
able to be easily incorporated into any networkusgc architecture with minimal disruption to

operations.

Building a Lightweight IDS is the first goal this thesis, in order to improve the performance,
scalability, generality, and extensibility of IDBlost current work builds a lightweight IDS by only
applying one features selection approach, whichsigally consider to be inefficient. In our case,

however, we will use two different approaches thiewe a lightweight IDS.

The first approach uses a features selectioroapp. We will apply a novel algorithm for features
selection based on a Support Decision Function (S\dhd Forward Selection (FS) approach, with a
fuzzy inferencing model called Fuzzy ESVDF [118]19]. The Fuzzy ESVDF is able to significantly

decrease training and testing times while retaihigh detection rates with low False Positive rates

The second approach uses a new IDS classificatibeme. The IDS classification scheme divides
the detection process into four types accordinghto TCP/IP network model (Application Layer,
Transport Layer, Network Layer, and Link Layer).ighDS classification can enhance an
organization’s ability to detect most types of elttéi.e., it improves system accuracy and gengjalit
Also, it can improve system scalability in reducitige amount of data (features) needed to

accomplish the detection process.

This chapter is split into two main sectionscti® 3.1 describes the features selection approach
while Section 3.2 describes the IDS classificaoneme. Our conclusion is drawn in Section 3.3.

Section 3.1 presents the features selectionoapprfor an IDS. Basically, it begins with a brief
overview of the dimensionality reduction problenmdathen demonstrates the proposed approach

(Fuzzy ESVDF), followed by experimental results amtussion. Finally, summary is drawn.
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Section 3.2 describes the IDS classificationre@gh. It starts by providing an overview of the
TCP/IP model with attack classification, followed/ ihe motivations behind this new IDS
classification scheme. After that, we present thepgsed approach with some experiments and

results, ending with discussion and summary.

3.1 Features Selection Approach

One key problem which arises in a wide varietyieldf, including pattern recognition and machine
learning, is the so-called “feature selection”céimplex classification domains, some features neay b
redundant and/or irrelevant. Extra features carease computation time, and can have an impact on
system accuracy. Features selection improves fitaggin by searching for the subset of features
which best classify the training data. Accordinglgatures selection is considered to be a very
important issue in IDS in achieving maximal perfarme. In this section, we introduce a novel
algorithm for features selection based on a Suppector Decision Function (SVDF) and a Forward
Selection (FS) approach with a fuzzy inferencingdelocalled Fuzzy ESVDF. This is the first
approach to build a lightweight IDS, with the gaal improving IDS’ performance in terms of
accuracy and efficiency (training time and testinge) [118], [119].

3.1.1 Dimensionality Reduction

Dimensionality reduction [87], [88] is an importanpic in machine learning. Elimination of useless
(irrelevant and/or redundant) features [90] enharbe accuracy of the classification while speeding
up the computation. It simplifies the classificatioy searching for the subset of features which bes
classifies the training set, and allows the exioacof easily interpretable rules, thus improvig t
overall performance of the classifier and overcgmimany problems, such as the risk of
“overfitting”. Moreover, it helps us to understatite data, and reduces the measurement and storage

requirements [91].

Current dimensionality reduction methods carcéiegorized into two classes: features extraction
and features selection. Features extraction [92], ihvolves the production of a new set of feature
from the original features in the data, through #pplication of mapping. The dominant features
extraction techniques are Principle Component Agialy(PCA) [94] and Linear Discriminant
Analysis (LDA) [95]. In contrast, features seleatif96], [97], [100], [101], [102], [103kelects the
“best” subset of the original features. It reduties number of features and removes irrelevant,

redundant, or noisy data. In terms of featuresctiele, several researchers have proposed iderdifyin
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important features through wrapper and filter apphes [90] [104]. The wrapper method [22], [26],
[34], [65] exploits a machine learning algorithmewealuate the fitness of features or a featureltset.
provides better performance in the selection ofable features, since it uses the performance of a
learning algorithm as an evaluation criterion. Tiest widely employed wrapper methods are
Forward Selection (FS) [105], Backward Eliminat{®&t) [105], and Genetic search [106].

In contrast, the filter method doesn’t use amrae learning algorithm to filter out irrelevantdan
redundant features; instead, it uses the underlgiragacteristics of the training data to evaluhee t
relevance of the features (or feature set) by séwadependent measures, such as distance measures,
correlation measures, and consistency measure$ [108]. The most widely employed techniques
in this area are Relief [109] and Focus [110]. kengral, wrapper approaches demand heavy
computational resources, but they can achieverbetselts than filters because they are tunedeo th
specific interaction between an induction algoritand its training data. However, they tend to be
much slower than feature filters because they memtatedly call the induction algorithm and must

be re-run when a different induction algorithm sed.

On the whole, since the elimination of insigrafit and/or useless inputs leads to a simplified
problem and possibly a faster and more accurassifization, features selection is considered ta be
very important issue in IDS in order to achieve it performance [151], [145]. Features selection
can improve the generalization performance of sitnu detection and make the detection more time
efficient. Faster training and testing helps tddlightweight IDS and provides ease of maintenance
or modification of an IDS. Furthermore, a small tam of input features lead to a reduction in

execution times, which is important for on-lineatgton of attacks.

3.1.2 Fuzzy ESVDF Approach

We propose a new features selection approach ckledy Enhanced Support Vector Decision
Function (Fuzzy ESVDF) based on a Support Vectocidgden Function (SVDF) and Forward
Selection (FS) with a fuzzy inferencing model [1L18119]. The Fuzzy ESVDF is an iterative
algorithm, where each iteration consists of twestdeature ranking and feature selecting. In featu
ranking, SVDF is evaluated to rank each specifimudadate feature. Then in feature selecting, FS is
applied with the fuzzy inferencing model to selinet features according to a set of fuzzy rulesdase
on a comparison of performance. As shown in Algonit3.1, the algorithm starts by picking three
features from the features set (S1) with the highesght values (S1 contains all the features with

weight values equal to or greater than one; th@hteialue is calculated by SVDF (1)) and putting
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them in the features set (S2), then calculatingtassification accuracy and training time for $Be
feature with the next highest weight value fromisSadded to S2 while calculating their performance
metrics. Through this process, two types of congoms are made: a local fuzzy comparison and a
global fuzzy comparison. The local fuzzy comparismmpares the performance of S2 with the
performance from the previous iteration. If thestfivalue is less than the second value, the added
feature is ignored; otherwise, it is kept in S2.tle global fuzzy comparison, the classification
accuracy of S2 is compared with the global accuratych is equal to the minimum of two values:
the accuracy of all the features and the accurd8Aolf the classification accuracy of S2 is eguaal

or greater than the global accuracy value, therdlgo will stop and S2 will be the selected feature
set; otherwise, it will continue execution.

The local fuzzy comparison is ranked accordiogatfuzzy system that takes two inputs: the
percentage of increase or decrease in training dsnene input, and the percentage of increase or
decrease of accuracy as the second input. It c@spghe performance of the current value with the
performance of the previous. The first and the sedaput variables (percentage of change in the

training time and accuracy) are represented byetfugzy sets: “increase,” “same,” and “decrease”
with their corresponding membership functions, leas in Figure 3.1. “Increase” refers to the case
where the percentage of change (accuracy and difiQed by current selected featuress &CCUracy and time
calculated by previous selected fearrdd) the training time and accuracy is slightly iiee. This means that the
training time and accuracy slightly increase aftdeature is added. “Same” refers to the case where
the training time and accuracy remain almost theesdl’'he system has one output ranging from “0”
to “1” where “0” represents a non-important featarel “1” represents an important feature in the
detection process.

The knowledge base is implemented by meansf-¢iién” rules. Nine rules are needed to describe
the system and rank each feature as “importaritham important,” according to the following rules:

1. If training time decreasesd accuracy decreasdhen the feature is non-important
If training time decreasesd accuracy does not changleen the feature is important
If training time decreasesd accuracy increasethen the feature is important
If training time does not changad accuracy decreasdben the feature is non-important
If training time does not changad accuracy does not changleen the feature is important
If training time does not changad accuracy increasesien the feature is important

If training time increasesnd accuracy decreasdben the feature is non important

© N o g b~ w DN

If training time increaseand accuracy does not changeen the feature is non-important
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9. |If training time increaseand accuracy increasethen the feature is non-important

The global fuzzy comparison compares the classibn accuracy of S2 with the global accuracy.
The comparison is ranked according to a fuzzy systet takes only one input variable (percentage
of change in accuracy). This input variable is espnted by three fuzzy sets: “increase,” “samed’ an
“decrease” with their corresponding membership fioms, as shown in Figure 3.2. “Increase” refers
to the case where the percentage of change (stlézt¢ures set accuracy — global accuracy) in
accuracy is slightly positive. This means thatttiaging accuracy slightly increases after a featar
added. “Same” refers to the case where there ishaoge in accuracy. The system has one output
ranging from “0” to “1”, where “0” represents a joto continue and “1” represents a loop to stop.
The knowledge base is implemented with three ‘@rhrules. Only three rules are needed to
describe the system and decide whether to contiddmg features:

1. If accuracy increasethen stop adding features

2. If accuracy does not changleen stop adding features

3. If accuracy decreasdhgen continue adding features
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Algorithm 3.1 The Fuzzy ESVDF Algorithm

[1] Calculate the Global Accuracy
Calculate the accuracy and training time of all (41) features
(Accuracy4l, Train4l),

Calculate the accuracy and training time of the features with
weight >= 1 (Accuracy, Train),

Pick the Global accuracy
If Accuracy4l >= Accuracy
Global = Accuracy
Else
Global = Accuracy41
End if

[2] Create the features set
Sort the features set(S1)in descending order depending on its
weight values,
Pick the first three features as an initial features set (S2),
Calculate the Accuracy and Training time of S2 (Accuracyl,
Trainl)
If (Global equal or less than Accuracyl)
Exit;
Else
continue_loop=1,
count_loop = 0;
Do while (continue_loop ==1) & (count_loop <= length(S1))
Add the next feature f(i) from S1 into S2,
Calculate the accuracy and training time of S2
(Accuracy2,Train2)
If (Accuracy? less than Accuracyl) and (Train2 greater
than Trainl)
Remove f(i) from S2,
count_loop = count_loop + 1;
Else
Accuracyl = Accuracy?,
Trainl= Train2,
count_loop = count_loop + 1;
If (Global equal or less than Accuracyl)
continue_loop =0,
End if
End if
End while
End if

[3] The selected features set = S2
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Example (1)

The following example illustrates the applicationtlee Fuzzy ESVDF algorithm. The algorithm is

applied using a DARPA dataset [111] with 6000 sa&®@f which 3000 are normal (50 %) and 3000
are abnormal (50 %), and each instance is chaizstely 41 attributes plus a label of either normal
or attack.

In the first step of the algorithm, we calculate tifiobal accuracy by taking the minimum of two

values: the accuracy of all the features and toaracy of S1.

The accuracy of all features = 99.70%
The accuracy of the features set (S1) = 99.67%
The Global = min (99.70, 99.67) = 99.67%

The second step of the Fuzzy ESVDF algorithm isuitd the features set, and this step is done by:
(1) Sorting S1 in descending order by weight value,
S1(29) =[3, 23, 24, 5, 12,33 ,34,35, 4, 26, 2, 39, 38, 29, 25, 32, 36, 27, 28, 8, 41, 31, 40, 30, 37, 22, 1, 7, 16]
(2) Picking the first three features as an initial feas set (S2), and calculating the accuracy and
training time of S2 (Accuracyl, Trainl)
S2(3) =[3,23,24] Accuracyl= 96.56%, Trainl = 13.41 sec
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Global Comparison: Rule (3) fired  continue adding feature (go to step (3))
(3) Expanding the features set (S2) depends on theetefuzzy rules
S2(4) =[3,23,24,5]  Accuracy2= 98.65%, Train2 = 3.14 sec
Local Comparison: Rule (3) fired feature (5) is important (keep feature (5))
Accuracyl  Accuracy2
Timel Time2

Global Comparison: Rule (3) fired continue adding feature (add feature (12))

S2(5) =[3,23, 24, 5,12]  Accuracy2= 99.20%, Train2 = 3.31 sec

Local Comparison: Rule (6) fired feature (12) is important (keep feature (12))
Accuracyl  Accuracy2
Timel  Time2

Global Comparison: Rule (3) fired continue adding feature (add feature (33))

S2(6) = [3,23, 24, 5,12,33]  Accuracy2= 99.37%,Train2=3.78 sec

Local Comparison: Rule (5) fired feature (33) is important (keep feature (33))
Accuracyl  Accuracy2
Timel Time2

Global Comparison: Rule (3) fired continue adding feature (add feature (34))

S2(7)=[3,23,24,5,12,33,34]  Accuracy2=99.53%,Train2=3.73 sec

Local Comparison: Rule (5) is fired feature (34) is important (keep feature (34))
Accuracyl  Accuracy2
Timel Time2

Global Comparison: Rule (2) fired stop adding feature

At the end, the Fuzzy ESVDF is restricted to thauees set =s2(7) = [3, 5, 12, 23, 24, 33, 34]

Example (2)
In the second example, we apply the proposed appradgth the SPECT Heart dataset from UCI
Irvine Machine Learning Repository [112]. The datasontains 267 samples, of which 55 are normal
(20.6 %) and 212 are abnormal (79.4 %). Each insta characterized by 44 attributes plus a label
of either normal or abnormal.

In the first step of the algorithm, we calculéte global accuracy by taking the minimum of two

values: the accuracy of all the features and tharacy of S1

The accuracy of all features = 68.97%
The accuracy of the features set (S1) = 70.28%
The Global = min (68.97, 70.28) = 68.97%
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The second step of the Fuzzy ESVDF algorithm ibuitd the features set, and this step is done as
follows:

(1) Sorting S1 in descending order by weight value,

S1(36) =[43, 40, 42, 37, 14, 1, 13, 4, 34, 31, 44, 27, 30, 8, 10, 2, 32, 16, 22, 15, 26, 6, 21, 7,12, 41, 2, 28, 29, 11, 36,
25, 35, 39, 9, 18]

(2) Picking the first three features as an initial fieas set (S2), and calculating the accuracy and
training time of S2 (Accuracyl, Trainl)

S2(3) = [43,40,42] Accuracyl= 65.28%, Trainl = 0.7 sec
Global Comparison: Rule (3) fired continue adding feature (go to step (3))
(3) Expanding the features set (S2) depends on theedefuzzy rules
S2(4) =[43,40,42,37]  Accuracy2= 68.33%, Train2 = 0.39 sec
Local Comparison: Rule (6) fired the feature (37) is important (keep feature (37))
Accuracyl Accuracy?2
Timel Time2

Global Comparison: Rule (3) fired continue adding feature

S2(5) = [43,40, 42, 37,14]  Accuracy2=64.41%,Train2=1.08 sec
Local Comparison: Rule (7) fired feature (14) is non- important (remove feature (14))

S2(5) = [43,40, 42, 37,1]  Accuracy2= 70.97%, Train2 = 0.78 sec

Local Comparison: Rule (6) fired feature (1) is important (keep feature (1))
Accuracyl Accuracy2
Timel Time2

Global Comparison: Rule (1) fired stop adding feature

At the end, the Fuzzy ESVDF is restricted to theudees set =s2(5) = [1,37,40,42,43]

3.1.3 Experiments and Results

For evaluating the performance of our proposed agmlr, we choose the Defense Advanced
Research Projects Agency (DARPA) KDD-99 benchmataskt [111]. In addition, we select four
smaller datasets from the Irvine Machine Learnirepésitory (UCI) databases [112]. In this sub-
section, we initially describe the contents of tliferent datasets and the experimental settings,

followed by some experimental results and discussio

Datasets Description

Five real datasets are considered. The first datad€DD-99 data, and the other four datasets are

taken from the UCI. The objective is to select assi for the features using the Fuzzy ESVDF
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approach, and then to evaluate these selecteddeatsing both Neural Networks (NNs) and Support
Vector Machines (SVMs).

A. The DARPA Dataset

KDD-99 dataset [111] contains TCP/IP dump datadaretwork by simulating a typical U.S. Air
Force LAN to configure and evaluate Intrusion DatecSystems. It includes three independent sets:
whole KDD, 10 % KDD, and corrected KDD. In our erpgent, 10 % KDD is used as our training
and testing datasets. These datasets containdsk &ypes, which fall into four main class&senial

of Service (DoS), Probe, User to Root (U2&)dRemote to Local (R2LBoth training and testing
datasets are made up of a large number of netwaflict connections and each data sample is
represented with 41 features, plus a label of eitlbemal or attack. Those 41 features can be divide
into three groups: the first group includes feaduitescribing the commands used in the connections
(instead of the commands themselves). These feati@seribe the aspects of the commands that have
a key role in defining the attack scenarios (engmber of file creations, number of operations on
access control files, number of root accesses).

The second group includes features describingdheextion specifications. This group includes a
set of features that present the technical aspétie connection (e.g., protocol types, flagsation,
service types, and number of bytes from source).

The third group includes features describingdtsenection to the same host in the last two sexond
(e.g., number of connections having the same dggiimand using the same service, percentage of
connections to the current host that have a rejeot, percentage of different services on theenurr
host). In our experiments, we picked two differdatasets for training and testing purposes. Each
dataset contains 6000 samples; of which 3000 armalosamples (50 %) and 3000 are attack
samples (50 %) (i.e., the total number of sampiesis 12000).

B. The UCI Irvine Machine Learning Repository Dataset

In addition, we test our approach with other foatadets of various sizes. These datasets areesklect
from the UCI datasets: the SPECT Heart datase\WDBC dataset, the Hill and Valley dataset, and
the WBC dataset [112].

The first dataset, the SPECT Heart Dataset, ritbesc the diagnosis of cardiac Single Proton
Emission Computed Tomography (SPECT) images. ritasns 267 samples, of which 55 are normal
(20.6 %) and 212 are abnormal (79.4 %). Each iest@characterized by 44 attributes.

The second dataset, Wisconsin Diagnostic Bi@aster (WDBC), describes characteristics of the

cell nuclei present in the image as either benigmalignant. This dataset contains 569 samples, of
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which 357 are benign samples (62.74 %) and 212natignant samples (37.26 %). Each instance is
characterized by 30 real-value attributes.

In the third dataset, the Hill and Valley Datassach record represents 100 points on a two-
dimensional graph. When plotted in order (from fotigh 100) on the Y co-ordinate, the points will
create either a Hill or a Valley. This dataset eorg 1212 samples, of which 612 are hill samples
(50.5 %) and 600 are Valley samples (49.5 %). Hastance is characterized by 100 real-value
attributes.

Finally, the Wisconsin Breast Cancer (WBC) detagescribes characteristics of the cell nuclei
present in the image as either benign or maligriems dataset contains 699 samples;,of which 458
are benign samples (65.52 %) and 241 are maligsaniples (34.48 %). Each instance is

characterized by nine attributes.

Experimental Settings

To evaluate the performance of our proposed approse conducted two experiments. In the first
experiment, we chose the DARPA KDD-99 benchmarlagktt In the second one, we picked four
different smaller datasets from UCI databases.

A. The DARPA Dataset

The dataset used for this experiment is the DARPDIKO9 dataset, which contains 41 features plus
a label of either normal or attack. Through thipemment, we will evaluate our approach [118],

[119] by comparing it with the performance of thgpeoaches of [34] and [105] over all 41 features.
In [34], they claimed that the best features seluntes the six features with largest weight (rank)
values. The weight values were evaluated using S@DHAN the second approach [105], they applied
FS to pick the features set.

Our experiment was split into two main steps.the first step, we applied the three different
approaches (Fuzzy ESVDF [118], [119], the six intgor features [34], and FS [105]) to select an
appropriate features set for the IDS. In the secbep, we validated the results by using any diassi
type.

In the first step, the proposed algorithms wexpeated ten times over the training and testing
datasets. Each time about 30 % of the samples vem@domly selected as a testing dataset; the
remaining 70 % were used as a training datasedaf dataset (we have 12000 samples, and they are

split into two datasets, each containing 6000 sag)pl
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NN and SVM classifiers were used to evaluateptaposed algorithms in the second step. We
carried out four validation experiments using FUESNVDF features [118], [119], the six important
features [34], FS [105] features, and all 41 fesguEach experiment was repeated five times fdr eac
dataset (the total number of repetitions for botitadets was ten) and by randomly selecting the
training and the testing data using different spbit ratios, which were ((training %) / (testing :%)
50/50, 40/60, 60/40, 30/70, and 70/30).

B. The UCI Irvine Machine Learning Repository Dataset

Four different datasets were picked from UCI dasabdgor this experiment: SPECT Heart Dataset,
WDBC dataset, Hill and Valley dataset, and WBC skettaThrough this experiment, we applied our
approach in different domains (each has differamiiver of features) in order to evaluate our
approach performance and behaviour with a differamhber of features. Similar to the DARPA
dataset experiments, the experiment was dividedtib main steps. First, we applied the proposed
algorithm, Fuzzy ESVDF, to select the appropriatgdres set for each dataset. Second, we validated
the results by using SVM and NN.

In the first step, the proposed algorithm iplegal ten times with training and testing data. lieac
time, about 40 % of the samples were randomly sadeas the testing dataset; the remaining 60 %
were used as the training dataset.

In the same manner as the previous experimétamd SVM classifiers were used to evaluate the
proposed algorithm in the second step. We carrigdfaur validation experiments: SPECT Heart
Dataset, WDBC dataset, Hill and Valley dataset, WRIC dataset. Each experiment was repeated ten
times with a random selection of the training ahne testing data with different ratios, which were
((training %) / (testing %): 50/50, 40/60, 60/40/7), and 70/30).

C. Classifiers

For both experiments, the implementation of theppsed approach used the simple SVM library for
SVM [113]. The crossover parameters selection af 8¥M included a range of basic SVM
parameters, various kernel functions, and theifop@ance arguments. In our experiments, the C
parameters could take one of these values: 1, 3@10), or 10000. The SVM kernel functions we
considered were linear and radial basis kernels. gdlynomial kernel was degree 1 and 2, and the
coefficient (scale) can be 0.5, 2, 3, or 4n a radial basis kernel at either 0.5, 1, 2,.0r 3

For evaluation of the different approaches W, we used the MTALB BPL toolbox for NN with
three layers (an input layer with the number edoafeatures neurons, a hidden layer with six

neurons, and an output layer with one neuron). 8&duhe function “newff” from the MATLAB
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toolbox with sigmoidal activation function, perfoamce function “MSE”, 45 epochs and a 0.001

learning rate.

Experimental Results

Fuzzy ESVDF was applied to the DARPA KDD-99 datas®l the four different datasets from UCI
databases (SPECT Heart Dataset, WDBC datasetrtilValley dataset, and WBC dataset) to select
the best features set for the application. In tlegeriments, we used standard measurements such as
Detection Rate (DR), False Positive Rate (FRiRdoverall Classification Rates (CR) evaluate the
performance of our approach. We defined h€&rae Positive (TP), True Negative (TN), False
Positive (FP)andFalse Negative (FNyhere:
» True Positive (TR)The number of malicious records correctly ideatif
» True Negative (TN)The number of legitimate records correctly cliadi
» False Positive (FR)The number of records that were incorrectly idiexat as attacks, though
they were in fact legitimate activities.
* False Negative (FN)The number of records that were incorrectly dfeesk as legitimate
activities, though they were in fact malicious.
Equations (2) to (4) given as:

R:L (2)
TP+ FN
FPR=_ P 3)
TN+ FP
TP+ TN

(4)

:TP+ TN+ FP+ FN
A. The DARPA Dataset
Fuzzy ESVDF [118], [119], the six important feawif84], and FS [105] approaches were applied to
the 41 features to select an appropriate featwte®sthe IDS. To evaluate the approaches, we used
SVM and NN classifiers to classify a network traffiecord as being either an attack or a normal
behaviour. The results of the SVM classifier fozEy ESVDF features, the six important features,
FS features, and all 41 features are presente@iteT3.1. Table 3.2 presents the results of the NN
classifier for the Fuzzy ESVDF features, the sipamant features, FS features, and all 41 features.
The comparison between the three approaches amgl 4iifeatures is done with respect to different

performance indicators: number of features, DR, RRifing time, and testing time.
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Table 3.1
Comparison of Fuzzy ESVDF, the six most importaatdires, FS features, and the entire 41 features

using SVMs
Features Selection DR FPR Training Time Testing Time
] No. of Features
Algorithm (%) (%) (sec) (sec)
FuzzyESVDF 7 99.57 0.22 2.410 0.054
6 important 6 98.20 0.39 6.008 0.114
FS 8 99.23 0.35 2.246 0.056
Non 41 99.62 0.32 5.182 0.170
Table 3.2
Comparison of Fuzzy ESVDF, the six most importaatdres, FS features, and the entire 41 features
using NNs
Features Selection DR FPR Training Time Testing Time
) No. of Features
Algorithm (%) (%) (sec) (sec)
FuzzyESVDF 7 99.70 0.24 221.928 0.047
6 important 6 98.20 0.41 217.115 0.062
FS 8 98.41 0.56 233.343 0.053
Non 41 99.63 0.36 911.680 0.075

B. The UCI Irvine Machine Learning Repository Da&tas

In this experiment, we selected four smaller dasag®mm UCI databases (SPECT Heart dataset,
WDBC dataset, Hill and Valley dataset, and WBC siatato test the effectiveness of our feature
selection approach (Fuzzy ESVDF) in different domeaiWe used SVM and NN classifiers to
classify a record as being either zero or one (pinkassification). The results of the SVM classifi
for Fuzzy ESVDF for all datasets are presentedabld 3.3. The results of the NN classifier for
Fuzzy ESVDF for all datasets are presented in Talle The different datasets are compared with
respect to different performance indicators: nundfefeatures, CR, training time, and testing time.

Table 3.5 compares execution times for Fuzzy ES¥pproach for the four different datasets.
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Table 3.3
Comparison of different datasets using SVMs

] CR Training Time Testing Time
Dataset No. Attributes
(%) (sec) (sec)
Selected Set (5) 76.73 0.330 0.010
SPECT Heart
Complete Set (44) 69.43 0.376 0.015
Selected Set (4) 96.65 0.452 0.000
WDBC
Complete Set (30) 96.42 0.476 0.012
_ Selected Set (11) 69.13 23.588 0.088
Hill and Valley
Complete Set(100) 66.77 42.450 0.152
Selected Set (3) 96.75 0.678 0.012
WBC
Complete Set (9) 94.72 0.850 0.016
Table 3.4
Comparison of different datasets using NNs
) CR Training Time Testing Time
Dataset No. Attributes
(%) (sec) (sec)
Selected Set (5) 74.14 33.940 0.006
SPECT Heart
Complete Set (44) 66.77 325.534 0.030
Selected Set (4) 94.85 38.031 0.012
WDBC
Complete Set (30) 94.63 206.144 0.013
_ Selected Set (11) 77.93 105.638 0.019
Hill and Valley
Complete Set(100) 75.84 2488.83 0.047
WBC Selected Set (3) 95.91 43.738 0.016
Complete Set (9) 95.05 72.475 0.015
Table 3.5
Execution time comparison for the different dataset
Dataset No. of All Features No. of Selected Featige Execution Time (sec)
SPECT Heart 44 5 125.093
WDBC 30 4 87.215
Hill and Valley 100 11 3000.025
WBC 9 3 0.725
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Discussion

As shown in Table 3.1 and Table 3.2, a comparidoouo approach (Fuzzy ESVDF) against all 41
features reveals a dramatic reduction in modeldingl time with the reduced features using Fuzzy
ESVDF, as the proposed features selection algosithave cut 83 % of the total number of features
(Fuzzy ESVDF selects seven features from amongihfeatures). When an SVM classifier is used,
the DR and FPR for our approach and the entireedfufes are nearly the same. However, for the
training and testing time, the results show a $iggmt improvement with our approach. The training
and testing times decrease by more than fifty pet,@as opposed to when all 41 features are used.
Also, evaluating the proposed approach with NN, @@ FPR do not show much difference to that
of using all 41 features. But training and testiinges show an obvious improvement: it cuts 75.66 %
from the required training time for all featuresda69.41 % from the required testing time for all
features, which means that the proposed algorittansachieve high accuracy with less training and
testing time. Moreover, the experimental resultswshihat SVM outperform NN in classification
accuracy and training time.

Comparing our approach with that of Mukkamalaal. [34], we see that they extracted six
important features as the features selection s#ileT3.1 and Table 3.2 show that by using NNs or
SVMs, Fuzzy ESVDF is better than using the six ingpat features in terms of classification
performance (DR and FPR). For the SVM classifieur approach outperforms using the six
important features in DR (DR increases from 98.20%9.57 %), FPR (FPR reduces from 0.39 % to
0.22 %), training time is cut 60 % from the reqditeaining time for the entire 41 features, anb62.
% from the required testing time. For the NN clssicase, there is an improvement in DR (DR
increases from 98.20 % to 99.70 %) and FPR (FPRce=dfrom 0.41 % to 0.24 %); however, the
training and testing are nearly the same. In gén€rezy ESVDF results are better than the six
important features approach because limiting threlrar of selection features to a specific value.(e.g
6 or 11) as an indicator for highest rank value raffgct the system performance. So, we need a
process that uses this rank value (weight valuegetect an appropriate feature subset. Therefore,
SVDF needs to be manipulated to recover from thiestations: in our case, this is accomplished by
applying the FS algorithm.

Comparing Fuzzy ESVDF against FS approached,[T@ble 3.1 shows that both approaches have
nearly the same performance. However, Table 3.@slam obvious improvement in terms of DR and
FPR (DR increases from 98.41 % to 99.70 %, and BE&eases from 0.56 % to 0.24 %). The
training and testing times are nearly the sameth bpproaches.
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In summary, for the first experiment, the praggbapproach for features selection gives an extelle
performance in terms of training and testing tindsile retaining high classification accuracy,
regardless of the classifier used. Fast trainingj t@sting help to build lightweight IDS; they also
facilitate the retention or modification of the s and allow for the use of this model in a réakt
intrusion detection environment. Moreover, with theduction of the features number, we can
identify relevant attack-specific features, simptify the study and analysis of the behaviour oheac
of these attacks. On the other hand, our approaels dot guarantee the selection of the optimal
features set. In all cases, however, it shows iaalia improvement in the detection process.

For the second experiment, evaluating our ambreeth four different smaller datasets from the
UCI databases, Table 3.3 and Table 3.4 show tleae tls a dramatic reduction in the number of
features for all datasets after the applicatiofFozzy ESVDF. For the SPECT Heart dataset, the
number of features is reduced from 44 to 5 (it lates nearly 88.6 %). For the WDBC dataset, the
number of features is reduced from 30 to 4 (it oetgrly 86.7 %). For the Hill and Valley dataskg t
number of features is reduced from 100 to 11 (is cearly 89 %). Finally, for the WBC dataset, the
number of features is reduced from 9 to 3 (it cgtarly 66.67 %).

For the SPECT Heart dataset, by using SVM, tReb@sed on the selected features set is 76.73 %,
which is better than the CR for the complete fesgset, which is 69.43 %. The training time and
testing time are nearly the same in both caseshawn in Table 3.1. However, the NN classifier
shows an obvious improvement in both training aasding times. The five selected features from the
Fuzzy ESVDF approach cut 89.57 % from the requiraithing time for all features, and the testing
time is cut by 78.67 %. The CR is also improvedstaswvn in Table 3.2.

For the WDBC dataset, by using SVM, the CRnirgj time, and testing time based on the selected
features set are very near to their values in yisé¢em which used the entire features, as shown in
Table 3.3. Table 3.4 shows a significant improveimeriraining time for the selected features. The
proposed algorithm cuts 81.55 % from the requirathing time for all features. However, CR and
testing time in both experiments (using the foatdiees selected from the Fuzzy ESVDF algorithm,
and using the entire 30 features) are nearly theesa

For the Hill and Valley dataset, Table 3.3 shawsignificant improvement in CR, training time,
and testing time for the selected 11 featuresilfates) from the complete 100 features set. On the
other hand, Table 3.4 shows that the CR for badtufes sets (11 selected features and the enfire 10

features) are nearly the same. However, there isbamous improvement in training time (it is
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reduced by 95.76 % as compared with the requiaddimg time for all features), and testing time (it
is reduced by 59.57 % as compared with the requégtihg time for all features).

For the WBC dataset, by using SVM, the overgditam performance is improved based on the
selected features set, as shown in Table 3.3. @nother hand, Table 3.4 shows significant
improvement in training time (is reduced by 39.6&%compared with the required training time for
all features) based on the selected features. Hewehwe CR and testing time are nearly the same in
both cases (selected and all features).

Comparing the different datasets’ execution tifiable 3.5 shows that the proposed approach,
Fuzzy ESVDF, becomes slow when the number of featincreases to 100. When the number of
features is around 50 (in the case of SPECT Hesaisdt), the algorithm is reasonably fast, but when
this number doubles (to 100 features), executioe increases greatly. Also, in the case of the WBC
dataset, the number of features is 9, but whemtnaber of features triples (in the case of the WDBC
dataset), the execution time more than triplestt@nwhole, this amount of time does not depend on
the number of features alone. It does depend, hemen how fast SVM are, because the ranking
approach depends on the system performance (CRrainthg time) that is calculated by SVM.
Moreover, the SVDF used in this approach also dégpen SVM.

In summary, the experimental results demonstiaefeasibility of the proposed approach. The
proposed approach, Fuzzy ESVDF, for a featuresti@ebased on SVDF and FS with the fuzzy
inferencing model, gives the best performance fimseof training and testing times, while retaining
high classification accuracy regardless of the sifi@s used. Consequently, the selected features
subset is representative and informative and, ttars,be used to replace the complete features. In
addition, this approach is considered to be a featgelection approach regardless of the type of
classifier used, making this approach a suitabégufes selection method for many applications.
Lastly, the proposed algorithm is simple and dagsequire that many parameters be initialized, and
further, does not need heavy computational reseuifidas facilitates the retention or modificatian o

the system design and allows this model to be ursadeal-time environment.

3.1.4 Summary
SVDF is used to rank the input features by givingedght value to each of them. Using the weights

alone, however, as proposed in previous works [2%], [34], [114], we are unable to specify the
appropriate features set for a detection procesause selecting features with the highest rankegalu

(weight) cannot guarantee that combining thesaifeatcan create the best features set based on the
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correlations among candidate features. Moreovanititig the number of selection features to a
specific value (e.g., 6 or 11 as mentioned in tle¥ipus works) as an indicator for highest rankueal

may affect system performance.

Our new approach overcomes these limitationprimposing a Fuzzy Enhanced Support Vector
Decision Function (Fuzzy ESVDF) [118], [119]. TheuzZy ESVD approach improves the
classification process by integrating the featuaeking technique (evaluated by SVDF) with the
features selecting technique (applied by FS). Tzzyf inferencing model is used to accommodate
the learning approximation and the small differenicethe decision-making steps of the FS approach.
The proposed approach (Fuzzy ESVDF) has a wealtluwdntages that make it attractive for many
features selection applications.

First, by employing a reduced number of feau®s/M may be more advantageous than other
conventional features selection methods [13], [EZ], [65]. The advantage is conspicuous for many
applications, as our experiments show. With SVMatsfactory performance can be obtained much

more easily than with other approaches.

Second, by evaluating the features weights tiitddVDF and then selecting between these features
through the application of the FS algorithm, thipmach is able to efficiently select the apprdpria
features set for the classification process.

Third, ESVDF is considered to be a featuresctiele approach regardless of the type of classifier
used, making this approach a suitable featurestgmtemethod for many applications, as we showed

through our experiments.

Finally, this approach is simple and efficiearid it does not require parameters initializatighich

facilitates modification and enhancement.

To evaluate the proposed approach, we used SMAWN& classifiers and a KDD-99 dataset for our
experiments. The experimental results demonsthatiedur approach can reduce training and testing
times while retaining a high classification accyrdor IDS. In addition, we used four different
datasets from UCI Irvine Machine Learning Repogit8PECT Heart Dataset, WDBC dataset, Hill
and Valley dataset, and WBC dataset) to test tfeetefeness of our features selection approach in
different domains. The experimental results dematestthat our approach can reduce the training
and testing times with high classification accurémyany application in general. Thus, it combines

good effectiveness with high efficiency. It prodsican efficient features subset, so it provides an
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effective solution to the dimensionality reductipmoblem in general. On the other hand, the
efficiency of Fuzzy ESVDF depends on how SVM ardeaio classify the dataset, which may
obstruct the modification and maintenance proceasdsimpede the use of this approach in some
types of applications. Moreover, it can not guagarthe optimal solution in terms of minimizing the
number of features, but in all situations it givesonsiderably reduced number of features with

excellent performance results.

3.2 IDS Classification Scheme

Previous studies [19], [115], [116], [117] showédttdesired features for the IDS depend on the type
of attack. Accordingly, as each TCP/IP network taigevulnerable to a specific type of network
attack, each TCP/IP network layer needs a spdgifie of IDS. In this section, we propose a new
classification scheme for IDS depending on the TRREtwork model [152]: Application layer IDS
(AIDS), Transport layer IDS (TIDS), Network laydd$ (NIDS), and Link layer IDS (LIDS). This
new scheme can improve the overall performanceD&f for the following reasons. First, each of
these IDS types is specialized to a specific ndtwadgvice. So, the detection process will be

distributed among all TCP/IP network model layéretgh the network devices.

Moreover, as is known, firewalls operate atedight TCP/IP network layers by using different
criteria to restrict traffic, but this step is faom running an entirely secure network as notralfffic
will go through a firewall. They can protect thetwmerk from attackers coming from outside the
network, but they cannot protect it from attackesming from inside the network; therefore, an IDS
must be allocated as a second line of defense théinfirewalls. In addition, the attacks usualiyrg
access to the network through the network devigssiltlted through different TCP/IP network
layers as entry points, and in order to adequateétiress security, all possible avenues of entryt mus

be evaluated and secured. An IDS must therefomlbeated to these entries or network devices.

Finally, splitting the detection process intdfetient levels and stages reduces the computational
load on the system and improves its scalability p@dormance. Accordingly, categorizing IDS into
different types depending on the TCP/IP layers besan essential issue for improving the overall

system detection ability.

3.2.1 TCP/IP Model and Attack Classification

A computer network is simply a system of intercastad computers using different network models.

There are two famous standard network models:SRE®S| model and the TCP/IP model, which are
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based on a layered concept. The layered concepetwforking was developed to accommodate
changes in technology. Each layer of a specifizvadt model may be responsible for different
functions of the network. Each layer passes infoionaup and down to the next subsequent layer as
data is processed. The TCP/IP network model defmeset of rules to enable computers to
communicate over the network, specifying how datuid be packaged, addressed, shipped, routed,
and delivered to the right destination. The TCRaRily uses four layers while ISO/OSI uses seven
layers, as shown in Figure 3.3. The TCP/IP and @&Dkystems differ from each other significantly,

although they are very similar on the network aadgport layers.

IS0 OS5I TCPIP
Lpplicatin Lpplicatin
Program Program
Application
Prasentation Application
Sezdon
Transport Transport
MNetwork MWetwork
DataLink |
DataLink
Phvsical

Figure 3.3 Comparison of TCP/IP and ISO OSI netwnddels

In the TCP/IP model, each layer has its own tionality and services. The Data Link layer defines
physical media and cables. The Network layer hantiile end-to-end communications; it is used for
basic communication, addressing and routing. Thengdport layer is responsible for end-to-end
message transfer capabilities independent of thadenying network, along with error control,
fragmentation, and flow control. At the end, thephgation layer provides network services to end-

users such as Web browsing (HTTP), remote accesdsdf], File transfer (FTP), and other services.

59



So, each layer of communication has its own softwiaardware, configuration, protocols, and usage.
Accordingly, each layer will have its own uniquéaaks and security challenges, which means each
layer needs a specific protection process.

The Data Link layer defines the device drived aetwork hardware (network interface card). It is
responsible for node-to-node (hop-to-hop) framévde) between the Internet layer interfaces of two
different hosts on the same link. This layer démsithe protocols used to describe the local né&twor
topology and the interfaces needed to effect trassam of Internet layer datagrams to next neighbor
hosts such as SLIP (Serial Line Internet Protod@§LIP (Compressed SLIP), PPP (Point to Point
Protocol), Ethernet, Token Ring, Frame Relay, ATé¥. Accordingly, this layer is vulnerable to
MAC Attacks, DHCP (Dynamic Host Configuration Prood) Attacks, ARP (Address Resolution
Protocol) Attacks, STP, and VLAN-Related AttackbeTData Link layer can be a very weak link in
terms of security, and worse yet, it can affect tipper layers by causing service disruptions or
security breaches.

The Network layer of the TCP/IP model providewl-¢o-end packet delivery. It handles basic
communication, addressing and routing, and mani@gesiovement of packets around the network; it
defines the addressing and routing structures tdeedhe TCP/IP protocol suite. The primary
protocols in this scope are IP (Internet Protoc®@MP (Internet Control Massage Protocol), ARP
(Address Resolution Protocol), RIP (Routing Infotima Protocol), and RARP (Reverse Address
Resolution Protocol). Typically, in this layer, thttackers exploit the fact that IP does not have a
robust mechanism for authentication such as IP fappdP Session Hijacking, Ping to Depth, and
Source Routing,

The Transport layer handles end-to-end messagsfér capabilities independent of the underlying
network, while providing reliable delivery. It haed the flow of data among applications, and
segments data into packets for transport over thigvark. This is where flow-control, error-
correction, and connection protocols exist, suci@B (Transmission Control Protocol), UDP (User
Datagram Protocol), and ICMP (Internet Control Megs Protocol). This layer is especially
vulnerable to Denial of Service (DoS) attack (osstbbuted Denial of Service (DDOS) attack),
SYNC Flood, UDP Bomb, and Port Scan.

Finally, the Application layer provides netwaoskrvices such as browsing, e-mail, file transfer,
remote access, etc. Accordingly, the common prddocsed are HTTP (HyperText Transfer
Protocol), DNS (Domain Name System Protocol), Ffike(Transfer Protocol), IRCP (Internet Relay
Chat Protocol), and POP/ POP3 (Post Office Projotwlorder for the attackers to exploit system
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vulnerabilities more effectively, they have develdpseveral sophisticated ways to attack the
application layer, such as Buffer overflow, TrojaBackdoor, Cross Site Scripting, etc. The most
popular application attack types are E-Mail AttgdKEP Attacks, Web Attacks, and DNS Attacks.

On the whole, each layer of the TCP/IP layer hasown software, hardware, configuration,
protocols, and usage. Each layer needs a spectieqiion process against each type of attack.
Therefore, network security should be addressesheh TCP/IP layer for different vulnerabilities,

security challenges, and attack types. TablgpB6ents common attacks for each TCP/IP layer.
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Table 3.6
The Common Attacks for each TCP/IP layer
TCP/IP Layer Common Attacks
Java, ActiveX, and Script Execution
WinNuke
E-Mail Attacks
FTP Attacks
Web Attacks
DNS Attacks
SYN Flood
UDP Bomb

Port Scan

Application Layer

Transport Layer Landc
TCP Port Scans
UDP Application Attacks
RIP Attacks

Ping Flood
Ping of Death
IP Spoof
Network Layer )
Address Scanning
Source Routing

ICMP Attacks

Sniffer/ Decoding
Data Link Layer MAC Address Spoofing
WEP Attacks

3.2.2 TCP/IP Attack Classification and IDS Categori  zation

Network security should be addressed at each TG#tWork layer for different vulnerabilities and
attack types. Features that tend to detect a pkatitype of attack may not be useful in the dédect

of other attack types. Many researchers [19], [LI5]6], [117] have shown that the choice of
network features for IDS is dependent on the netvattack type to be detected. Some features were

good for detecting network attack traffic pattermgyile other features were good for detecting
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transport attack traffic patterns. Hence, studyimg nature of the IDS environment is an important
issue for choosing the appropriate features toyamathe traffic pattern. Moreover, the features
selection phase in IDS implementation has a langgatt on performance. Reducing the number of
features can improve system performance, speesdagquton and training times, allow the extraction
of easily interpretable rules, and reduce the nreasents and storage requirements (explained in
Section 3.1). Based on the attack classificatioatdDLink layer attacks, Network layer attacks,
Transport layer attack, and Application layer d&tdave will select the appropriate features forheac
TCP/IP layer, so that for each layer there willébspecialized IDS. It is important that the differe
types of security attacks be recognized in ordeetect the appropriate countermeasures.

Furthermore, firewalls are a crucial piece @& tletwork security, but this step is far from ciregat
an entirely secure network, because of their litiwites. The firewalls can protect the network from
attackers that come from outside the network (swms), but they cannot protect it from attackers
that come from inside networks (misuses). Alsoytban only guard against the traffic that passes
through them; they have only minor control over tlaga that passes through them. Certain traffic
types, such as a remote user’s dial-up connectiam Remote Access Server (RAS), would bypass
the firewall entirely. In addition to other limitahs (such as an inability to tell the user thatas
been incorrectly configured), a firewall can't fptihe administrator if someone has hacked into the
network. Proper configuration is a must to maintdia efficacy of any firewall system, and they
should be updated periodically to ensure that they current with the internal and external
environment of the network. Activity logs should@be checked on a regular basis to find attempted
and successful intrusions. Accordingly, the IDS trhesallocated as a second line of defense behind
the firewalls, and as the firewalls operate atedéht TCP/IP network layers, the IDS also needmeto
allocated in same manner as the firewall.

Moreover, the IDS should monitor traffic at gnpoints (network devices) on the network or
interconnected set of networks which are considaydzt the target of the intruder. By securing ¢hes
devices, which are distributed through the netwaylers, the overall security of the system will be
improved, the detection process can be performadyapoint where enough information is available,
and the data can be collected from multiple sourdéss combines the best characteristics of
traditional Router-based, Network-based, and Haseld IDS.

Finally, splitting the detection process intéfetient levels (layers) reduces the computation loa

the system and improves its scalability and peréoroe, as the experiments in the next section will
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show. Accordingly, categorizing the IDS into difet types depends on the TCP/IP network model
becomes an essential issue for improving overatesy detection ability and scalability.

Most of the work done [19], [20], [28], [105]lginto the realm of splitting detection into difent
attack types. These are broadly categorized intodooups: Probes, Denial of Service (DoS), User to
Root (U2R), and Root to Local (R2L). They are tlesigned a specific IDS for each of these attack
categories. This categorization does not partieipatreducing the system load, or improving its
scalability. Others [10], [22] concentrated on gaalg and detecting each attack separately, wisich i
considered to be impractical with the fast pacehainge in attack tools. In this chapter, we propose
new IDS classification scheme that depends on E/IP network model [152], which distributes
the detection process between different networkcdsy thus improving both system performance

and scalability, as the experiments will show ictidsm 4.2.3.

3.2.3 IDS Classification Scheme based on TCP/IP

We propose four different types of IDS based onTld#/IP network model [152] - AIDS, TIDS,

NIDS, and LIDS - to accommodate detecting differatteck types in each TCP/IP network layer and
to improve overall IDS performance, efficiency, aualability. Figure 3.4 shows the architecture for
the proposed approach. The proposed approach caegthe IDS into four types, with each type
responsible for the different network devices tat distributed through the TCP/IP network layers.

This would include routers in the Network layerjtsives in Data Link layer, etc..

NIDZ

—>| MNetwork laver Device ‘

TIDS

HIDS —b| Transpert layer Device |
—>| Link laver Device ‘

AIDS

—>| Application layer H Servers |

Figure 3.4 System Architecture
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The NIDS operates on the Network layer devites outer) that in turn are located at the nekwor
border or on an isolated host connected to thear&tiayer devices, allowing it to analyze the tiaff
that passes between different networks as it showdigure 3.5. For the Transport layer devices, the
TIDS is loaded on either Transport layer devices. (§witch) or on an isolated machine that is
connected to the transport layer devices, allowirtg analyze network traffic that enters the subne
(Figure 3.6). The LIDS is also installed on eittier Link layer devices or on an isolated machir th
is connected to the transport layer devices toctleliferent transport attacks. Finally, AIDS refe¢o
the class of intrusion detection systems that eesidl and monitor an individual host machine. The
AIDS must be loaded on each workstation in the ogtvas it is shown in Figure 3.8. Each IDS type
has its own features set depending on its TCP/tiRark layer; so instead of using all connection
features as has been the case in previous workssev@nly a specific number of features for each
IDS. The framework architecture of the integrat®8s is shown in Figure 3.8.

Figure 3.5 The Network IDS (NIDS)

Network n

(-

Fiqure 3.tThe Transport ID(TIDS)
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Figure 3.7 The Application IDS (AIDS)

.: IDS
S: Subne

Figure 3.8 The Framework Architecture

To design the different types of IDS (AIDS, TIDBIDS, and LIDS), we can use any features
selection approach to pick the appropriate featsee$or each layer in the TCP/IP model. In ouecas
we will use the Fuzzy ESVDF approach that it islax®@d in Section 3.1 [118], [119] to select the
appropriate features for each IDS type (the LIDSha$ covered in this study because there are
insufficient link layer attack samples).

To apply the Fuzzy ESVDF approach, there arerham steps. First, we prepare different datasets
for training and testing purposes. Each IDS type ilmown dataset; for example the AIDS dataset
contains normal behaviour and application layeacktitsamples, and the NIDS dataset contains
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normal behaviour and network layer attack samptethe second step, we apply the Fuzzy ESVDF
approach for each dataset to select the most ifefetatures set for each IDS type.

The Fuzzy ESVDF [118], [119], as it is describedAlgorithm 3.1, is based on a Support Vector
Decision Function (SVDF) (1) and Forward Select{B8) approach with a fuzzy inferencing model
to select the best features as inputs for an ID& algorithm is iterative, where each iteration
consists of two steps: feature ranking and feasatecting. First, feature ranking, is evaluated by
SVDF to rank each specified candidate feature. Taature selecting (FS) is applied, with the fuzzy
inferencing model, to select the features accordm@ set of rules based on a comparison of
performance.

The experimental results in the next sectio stibw that each IDS type has its own features and
that is because each TCP/IP network layer is subgeits own attacks. Therefore, classifying IDS
depending on the network layers is an essentialeid® improve system accuracy, scalability,

generality, and to speed up the detection procedbé IDS.

3.2.4 Experiments and Results

For evaluating the effects of categorizing the IDt® different types depends on the TCP/IP network
layers (AIDS, TIDS, NIDS, and LIDS) in improving thosystem performance and scalability, we
choose the DARPA KDD-99 benchmark dataset [111}hla sub-section, we initially describe the

contents of the used dataset. Then, the experiineatings are presenting; followed by some

experimental results and discussions.

Datasets Description

We used the same dataset (KDD-99 dataset [111}pasused in previous section (Section 3.3.1). In
these experiments, we picked two different datafetsraining and testing purposes. Each dataset
contained 6000 samples, of which 3000 were norasapses (50 %) and 3000 were attack samples
(50 %) (i.e., the total number of samples was 12000

Experimental Settings

Our experiment was split into three main stepghénfirst step, we prepared the different datafeets

AIDS, TIDS, NIDS, and all layers IDS (the LIDS wast covered in this study). Second, we applied
the features selection approach (Fuzzy ESVDF) th @ataset in order to select the most effective
features set for each of IDS type. Finally, we eatdd the features set results using Neural Nesvork

(NN) and Support Vector Machines (SVM) as two digf& classifiers.
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In the first step of the experiment, we prepaterifour datasets for each IDS type. For AIDS, the
dataset we used contained the normal behaviouerpatand the application layer attack patterns,
such as: back, pod, smurf, buffer_overflow, loadolegberl, guess passwd, imap, multihop,
warezmaster, ftp_write, nmap, and satan. For tiESTthe dataset contained the normal behaviour
pattern and transport layer attack patterns: laeg@iune, teardrop, buffer overflow, port sweep, and
nmap. The NIDS dataset contained only smurf, pedsflow, and IP sweep as the network layer
attacks, in addition to the normal behaviour patefFinally, all layers of the IDS dataset contdine
all attack types and normal behaviour patterns.

For the second step, applying the features ts@heapproach, we used the Fuzzy ESVDF [118],
[119] approach to select the most effective featdoe the three IDS types (AIDS, TIDS, and NIDS)
and all layers of IDS. The proposed algorithms wegeformed ten times for each IDS type over
training and testing data. Each time about 30 %hefsamples were randomly selected as the test
data; the remaining 70 % were used as the traotatg (we had 12000 samples, which were split into
two datasets each containing 6000 samples).

Finally, the evaluation was done using NN andVS®lassifiers for AIDS, TIDS, NIDS and all
layers of IDS features. Each experiment was repdate times for each dataset (the total number of
repetition for both datasets was ten) and by ramgleglecting the training and the testing datagisin
different splitting ratios which were ((training %)(testing %): 50/50, 40/60, 60/40, 30/70, and
70/30).

Experimental Results

We applied the Fuzzy ESVDF approach [118], [119}drfeatures to select the best features set for
each type of IDS (AIDS, TIDS, NIDS, and all layer$p evaluate our approach, we used NN and
SVM classifiers. They classify a network traffictiesn as being either an attack or a normal
behaviour. The results of the classifiers perforoeafor AIDS, TIDS, NIDS and all layers by using
the Fuzzy ESVDF approach are presented in TableT®& comparison between the different IDS
types was done with respect to different performeaimtlicators: number of features, CR, training
time and testing time. On the other hand, TablesB@vs the results after swapping the features set
between AIDS, TIDS, and NIDS by using the Fuzzy E&Vapproach and the evaluation was done
using an NN classifier. The selected features fitwenFuzzy ESVDF for each layer are listed in Table
3.9.
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Table 3.7
Comparison between All layers, Application, Transpand Network layer for Fuzzy ESVDF

Approach
-~ Number of - Testing
Classifier Method IDS Type CR (%) Training _
Features Time (sec) Time (sec)
All Layers IDS 7 99.34 4.834 0.030
Support Vector Machine AIDS 5 99.62 2.594 0.022
(SVM) TIDS 4 99.75 1.586 0.020
NIDS 4 99.73 2.328 0.020
All Layers IDS 7 99.41 180.650 0.038
Neural Network (NN) AIDS 5 99.73 162.734 0.034
TIDS 4 99.84 139.296 0.031
NIDS 4 99.77 144.281 0.032
Table 3.8
Swapping features between IDS types using Fuzzyl#Sahd evaluated it by NN
) CR Training Time  Testing Time
Detection Layer Used Features
(%) (sec) (sec)
Application Transport 85.04 139.750 0.041
Application Network 98.43 141.219 0.041
Application Application 99.73 162.734 0.034
Transport Application 98.98 162.172 0.031
Transport Network 98.78 149.641 0.031
Transport Transport 99.84 139.296 0.031
Network Application 98.61 163.828 0.035
Network Transport 91.16 148.406 0.038
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Table 3.9
The features set for different IDS types by usingZy ESVDF approach

IDS Type Feature index
NIDS 3,12,37,40
TIDS 2,3,12,32
AIDS 3,5,12,31, 36

IDS (all layers) 3,4,5,12, 23, 24, 33

Discussion

By using the Fuzzy ESVDF approach, as shown in &@&of, splitting the detection process into
different layers improves both the system perforceaand the scalability comparing with all IDS
layers. Improving the performance is in terms af@asing the classification accuracy to more than
0.28 % with the SVM classifier and 0.32 % with tH&l classifier. Also, the training time and the
testing time have been decreased for both SYMd\i& Improving the scalability is accomplished
by reducing the features number. It is reduced femwen features to five features in AIDS, four
features in TIDS, and four features in NIDS, asmgha Table 3.9.

Each layer in the TCP/IP network mode is suliieet specific form of attack, and therefore needs
custom IDS to face those attacks. Table 3.8 shgwt®mm performance in a case where the features
are swapped between the three different layers $AIDIDS, and NIDS) using the Fuzzy ESVDF
approach. As shown, if we use the application fesgtin the transport layer the accuracy will drop t
85.04 % from 99.73 % in application layer. Thenna§ and testing time do not show much change
because they depend more on the number of feaidszs. when the application features are used in
the network layer, system accuracy will be affectépping to 98.43 % from 99.73 % in the
application layer. The same situation is seenéntio other layers.

So, the choice of features depends on the nktattack type to be detected: when we swap the
features between the layers, the system performailcee affected. Some features were good for
detecting application attacks, other features vgaad for network attacks. Consequently, studying
the nature of the IDS environment and the behawduhe attacks are important issues for choosing
the appropriate features to analyze the traffitepat

As shown in Table 3.9, the features selectediébecting intrusion at all layers do not covertlad
features for the separate layers, which meansithah we are more specific on the types of attack,

70



the features become more accurate because eack ladts its own behaviours depending the nature
of the layer that it tried to attack. Moreover, ledDS type has its own custom attacks and therefore
needs its own custom protection. Therefore, eaeltlatype has its own behaviour and design, which
leads us to analyze each attack-type pattern tgitbwin features. However, there is some overlapping
between the IDS features and that comes from teéapping between some attacks. Some attacks
target more than one layer such as “nmap”, whitdcks transport and application layers. Others can

attack all layers such as the “buffer overflowaak.

3.2.5 Summary

In general, security can take three main formse(i}-to-end security at the TCP/IP applicationiaye
(2) end-to-end security at the TCP/IP transporedaynd (3) link-to-link security at the TCP/IP
network and link layers. In this section, we prapasnew classification scheme for IDS depending
on the TCP/IP network model that accommodateshireetmain forms of security measures [152].
This classification scheme improves the performasmog scalability of the IDS. The performance
improvement is in terms of improving the systenmedgon ability and the time performance, which is
accomplished through three main points. First, dB&type can be specialized to detect a specific
category of attack depending on the layer. For gkeyro place IDS in the router, we need to use
NIDS, which knows much about router attack behaviodBecondly, by distributing the IDS through
the TCP/IP layers as the second level of defertee tife firewall, the firewall will be supported by
the IDS and the overall system security will be iayed. Furthermore, it is known that one of the
major issues in network security is to secure ngtwdevices, which are represented as system entry
points for the attacks. Also, by this approach, @an integrate intrusion-related information
distributed around the network. Hence, by desigairspecialized IDS for each one of network layer,
the overall system performance will be improvede fioposed approach can also improve system
scalability in terms of reducing the number of reskéeatures (five features in AIDS, four featumes i
TIDS, and four features in NIDS). Therefore, sjplgtthe IDS into sub-systems can accommodate
reduced system scalability and improve its perforcea

We have implemented the different IDS typesubing the Fuzzy ESVDF approach to select the
appropriate features set for each IDS type, andlatgld their performance by using NN and SVM
classifiers. Experimental results demonstrate diatapproach improves system accuracy, efficiency

(training time and testing time), and scalability.
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3.3 Conclusion

Building a lightweight IDS is an important issue iittrusion detection, when considering how to
improve IDS efficiency, performance, and scalapilin addition, a lightweight IDS is flexible
enough to be used as permanent elements of theomkewecurity infrastructure, and is easily
incorporated into any network security architectwiéh minimal disruption to operations. In this
chapter, we built a lightweight IDS by applying twidferent approaches. In the first approach, the
features selection approach, we used a novel t=at@lection algorithm based on a Support Decision
Function (SVDF) and Forward Selection (FS) approaith a fuzzy inferencing model called Fuzzy
ESVDF [118], [119]. The Fuzzy ESVDF is able to siigantly decrease training and testing times
while retaining high detection rates. In additidnis simple and efficient, and it does not require

parameters initialization, which facilitates a nfadition and enhancement process.

The second approach employs a new IDS classiiicacheme. This scheme classifies the IDS into
different categories based on the TCP/IP networkeh@AIDS,TIDS, NIDS, and LIDS) [152]. By
designing a specialized IDS for each layer in tR#TP network model, overall system performance
will be improved, as will the system scalabilityergrality, and extensibility. In addition, the new
classification scheme can reduce intrusion inflesnand damage that may occur as a result of

detection attacks in the first stage (higher ordoWCP/IP layer) before they can enter the network.

We have implemented a number of experimentsy/atuate the first approach, the Fuzzy ESVDF
algorithm [118], [119], using the KDD-99 datasell]], and four other datasets from UCI Irvine
Machine Learning Repository [112]. The experimenmtdults demonstrate that our approach can

reduce training and testing times while retainiightclassification accuracy.

For the second approach, the IDS classificaicimeme, we have implemented the different IDS
types (AIDS, TIDS, and NIDS) by using the Fuzzy HEBV approach to select the appropriate
features set for each IDS type and validating tpeiformance by using NN and SVM classifiers.
Experimental results demonstrate that classifylD§ Into different types improves system accuracy,
efficiency (training time and testing time), andalability even more. It is reduced from seven
features (in case of using all attack types) te fieatures in AIDS, four features in TIDS, and four
features in NIDS, as shown in Table 3.9.

Therefore, combining the two approaches, feataedection and the IDS classification scheme, can
build an efficient lightweight IDS that is smallpwerful, and flexible enough to be used as a
permanent element of a network security infrastnect
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Chapter 4
Collaborative Architecture for dIDS based on Lightw eight IDSs

In this thesis, we propose a new architectured@&, Icalled a Collaborative architecture for dIDS (C
dIDS) based on lightweight IDS modules, to overcaime heavy network traffic problem while
improving system performance and scalability [193]is architecture, C-dIDS, combines two main
concepts. The first concept, the C-dIDS uses ligigit IDS (Chapter 3), where each detector (IDS
module or host) uses small amounts of data in #tection process by applying two different

approaches: features selection approach and IBSifetation scheme.

For the first approach, a novel features salactipproach called Fuzzy Enhanced Support Vector
Decision Function (Fuzzy ESVDF) [118], [119] is dsm order to improve system scalability in

terms of reducing the number of needed featurdsowitaffecting overall system performance.

The second approach uses a new IDS classificatitbeme by employing multiple specialized
detectors in each layer of the network TCP/IP ndtwoodel [152]. This helps in the collecting of
efficient and useful information for dIDS, increagithe system’s ability to detect different attack
types and reducing the system’s scalability. Tegraite the system’s IDS modules, we propose a new
architecture, Collaborative dIDS, as a second qanased in this thesis. The C-IDS contains a
single-level hierarchy dIDS with a non-central gaat [154]. To make the detection decision for a
specific IDS module in the system, this IDS neexsdllaborate with the previous IDS in the lower
level of the hierarchy only. This architecture ilmpes overall system performance. It overcomes the
distributed IDS (dIDS) limitations: the central nagement problem and the scalability bottleneck.
Moreover, the cooperation between the IDS moddetone with less network load. In this chapter,
first we explain the new architecture, C-dIDS. Thee integrate the two concepts (lightweight and
C-dIDS) in order to improve system performanceiceficy, scalability, generality, configurability,
reliability, robustness, flexibility, and extendity with minimum network load. To design this
architecture, several experiments have been coedwehich indicate that the proposed architecture

can deliver satisfactory results.

This chapter splits into three sections. Thetfisection (Section 4.1) describes the C-dIDS
architecture. It starts by giving a brief backgrdwi dIDS. The proposed architecture C-IDS is then

presented with some experimental results and digsmusfollowed by reviewing the summary of the
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section. Section 4.2 describes the proposed syffediDS based on lightweight IDS) with some

experiments and results. Our conclusion is draw®eiction 4.3.

4.1 Collaborative Architecture for dIDS

Due to the many issues associated with monolittubitecture for an IDS, such as limited scalahility
single point of failure, a lack of extensibility,uch overload (computational bottleneck), vulnerable
to subversion, difficult to configure or add capifpiamong others, a distributed Intrusion Detegtio
System (dIDS) is required to allocate multiple IB®dules across a network to monitor security
events and to collect data. However, most dIDSitrctures have two primary shortcomings. First,
the central management and processing of dataseie a single point of failure. Second, the
scalability bottleneck often results in these aystesuffering from a slow response time to new
threats. In this section, we propose a new arduite¢o overcome these two limitations [154], adlle
a Collaborative architecture for dIDS (C-dIDS). T@alIDS contains a single-level hierarchy dIDS.
To make the detection decision for a specific ID&aole in the system, this IDS module needs to
collaborate with the previous IDS in the lower legaly. Coordinated deployment of multiple IDS
promises to generate greater confidence in theltsesand improve the coverage of intrusion
detection. This can be accomplished with less nétwaad (just one bit of information), which in
turn improves system scalability. Moreover, by gssingle-level hierarchy, there is no central
management and processing of data and so no ch&acgngle point of failure. We have examined
the feasibility of our dIDS architecture by condogtseveral experiments using the DARPA dataset
[111]. The experimental results indicate that theppsed architecture can deliver satisfactory syste

performance with less network load.

4.1.1 Distributed Intrusion Detection Systems

Many network-based and host-based IDS perform dalection and analysis centrally using a
monolithic architecture (meaning that the datacaléected by a single host and analyzed by a single
module). This architecture suffers from significanbblems that limit the performance of IDS [120],
[121], [122]. First, a single point of failure: d@n intruder can somehow prevent the IDS from
working, the entire network is unprotected. Secdindted scalability: processing all the informatio
on a single host implies a limit on the size of tie#work that can be monitored. After that limitet
central analyzer is unable to keep up with the fadvinformation. Third, a lack of extensibility: i

difficult to reconfigure or add capabilities to th@S. Finally, the analysis of network data can be
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flawed. As a result, intrusions can be conductedutph several steps that occur on different hosts,

and such intrusions consequently cannot be detégtadsingle IDS.

These problems make the area of IDS an atteactisearch field. In recent years, researchers have
investigated different distributed approaches 106 1[42], [98], [99], [121]. The distributed IDS
(dIDS) [77], [89] is one of several options thdbal computation load and diagnostic responsibsitie
to be distributed throughout the network. It perierdistributed data collection (and some pre-
processing) by using modules distributed amongergfit hosts, which monitor separately and
communicate and cooperate with each other. The ai@Sprovide the foundation for a complete
solution to the complexities of real-time detectiovhile maintaining fault-resistant behaviour. In
addition, each module can be added or removed fiensystem without altering other system
components, as they operate independently. Moreolversystem’s modules can be configured or
upgraded without disturbing the rest of the sysesmong as their external interface remains the
same. Nonetheless, the collected data are siipshito a central location where they are analiged
a monolithic engine. Also, it may result in a stélty bottleneck. To address these limitationspga
techniques use a hierarchical structure [42], [E82]], [46], [67] which describe a cooperative gyst
without centralized analysis components. In thegpraaches, the local intrusion detection
components look for local intrusions and pass #wilts of their analysis to the upper levels of the
hierarchy. The components at the upper levels aaallye refined data from multiple lower level
components and seek to establish a global vielWweogystem state. This helps address scalability and
allows a system to be deployed across large eigerpcale networks. Moreover, it helps address the
single point of failure problem, because if a highede hierarchy should fail the lower tiers can

typically continue to function, but with less ddien capabilities.

The major disadvantages of hierarchical dIDStlaedimited detection process (it limits the kioid
intrusions that can be detected at the highestdpaad the network latency (the delay between each
level in the architecture). Moreover, there isl siiie highest-level entity, which is the bottlenexk
this system and leads to a single point of failtitee hierarchical structures usually give attackiees
opportunity to harm the IDS by cutting off a cohtboanch or even by taking out the root command.
Our proposed approach overcomes these probleménmiyating the need for so much transferred
data and speeding up the detection process [194p, At addresses the single point of failure

problem without losing any detection capabilitydamproves the overall scalability of the system.
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This architecture is called Collaborative aretitire for dIDS (C-dIDS). The C-dIDS contains a
single-level hierarchy architecture. Each IDS med(lhost) in the system needs to receive one
information bit from the IDS in the lower level apdss the results of its analysis to the IDS in the
upper level. Therefore, to make the detection dmtifor each IDS module in the system, this IDS
needs to get one bit of information (the analysisults) from the previous IDS in the lower level
only, without proceeding to the more than one lawethe root node. Thus, improves the overall
system performance, avoids a single point of faijproblem and speeds up the detection process with

less network load.

4.1.2 Collaborative Architecture for dIDS

We propose a new architecture for distributed IDEE) called a “Collaborative architecture for
dIDS” (C-dIDS) to overcome the single point of tai, heavy network traffic and network latency
problems, while improving system performance. ®rshitecture, C-dIDS, organizes the cooperation
process between different IDS modules (hosts)dhadistributed on different points in the network
by using single-level hierarchy dIDS with non-cahttnalyzer. Each IDS module (host) in the system
needs to receive a single bit of information frdra previous IDS module to make its own detection
decision. This bit of information can be eithera@éo indicate that the network traffic is normalpe

(to indicate that the network traffic is attack),tewo (to indicate that the network traffic is ufided,
which means that the network traffic has two valuasrmal and attack). To make a detection
decision for each IDS module, the IDS module negedsse this bit of information from the previous
IDS module in the lower level with the six rulessdebed by Table 4.1. Where T = zero (normal), F
= one (attack), and U= two (Undefined); X1 is thetettion value from the current IDS module and

X2 is the detection value that it is sent from pihevious IDS in the lower level of the hierarchy.
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The Composition Table for the Final Decision Result

Table 4.1

X1 X2 The Decision Result
T T T

T F U

T U T

F T U

F F F

F U F

As it is shown in Table 1 that “X1” takes onlyd values either True (normal) or False (attack),
because “X1” is the analysis result from the IDSdde. However, “X2” can take three values: True
(normal), False (attack) and Undefined; becaus€ 1X#he information bit that comes from previous

IDS module in the lower level. This bit is actuathe outcome of Table 4.1, and, as it shown, it has

three values.

Then, only normal and undefined traffic are wld to pass to the next IDS module in the upper
level; attack traffic is blocked and denied passegéhe next stage. Moreover, for initializing the
information bit at the first IDS module (host), theare three different scenarios. The first scenari
to initialize the bit (X2) with one (attack: F).dtire 4.1 describes this scenario. The second soenar
is to initialize the bit with two (undefined: U)idtre 4.2 describes this scenario. The third séemsr

to initialize the bit with zero (normal: T). Figu#e3 describes this scenario. (Suppose the nuniber o

IDS modules equals three).
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Figure 4.1 The first scenario for C-dIDS architeetu
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Figure 4.3 The third scenario for C-dIDS architeetu

As shown in the above figures, the initializatiof the information bit (X2) affects the system
behaviour in the first stages only. In scenarig éffer the system has filtered the traffic it vellow
for only the normal to pass on to the first twogsts then it will allow all traffic to pass in thleird
stage, and after that it will allow the normal amtlefined traffic to pass the rest of the stages. F
scenario (2), the system at the first stage witivalthe normal to pass only. For the second stiage,
will allow all traffic to pass to the next stagedathen it will allow the normal and undefined fiaf
to pass the rest of the stages. Finally, in scer(&), for the first stage it will allow all traffito pass

and then only normal and undefined traffic willdde®wed for the rest of the stages.

Another feature of this C-dIDS architecturetssfiexibility in terms of its ability to be conved to
other distributed architectures (non-cooperatii@Slland central analyzer dIDS) by changing the
value of the information bit (the bit that it isceeved from the previous IDS in the lower level)ito

value either zero (normal/T) or one (attack/F)thié information bit (X2) has a value of one, the
80



system’s structure becomes like a non-cooperatiidand if it has a value of zero, the system'’s

structure becomes like a central analyzer dIDS.

The non-cooperative dIDS architecture is a ithisted architecture where each IDS module does it
own detection decision without any cooperation vdthers. The C-dIDS can be converted to this
architecture by fixing the information bit (X2) we to one (attack/F) always as it is shown in
Figure4.4.

In the central analyzer dIDS, each IDS modulesdids detection decision. At the end, all IDS
modules will send their results to the central yred, which will aggregate all decisions into agén
decision using an aggregation technique. The C-di&$be converted to this architecture by fixing

the information bit (X2) with zero value (normal/8s it is shown in Figure 4.5.

Network Traffic
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Figure 4.4 The non-cooperative architecture forllGSi
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Figure 4.4 The non-cooperative architecture forlC&i

As a result, the proposed architecture, C-di@8uces the network traffic load while improving
overall system performance. Moreover, there is aeotral management and processing of data so
there is no chance for a single point of failure.addition, C-dIDS is a flexible system. It can be
converted to other dIDS architectures: non-cooperatliDS or central analyzer dIDS. The

experimental results in the next section will preeene of these features.

4.1.3 Experiments and Results

To evaluate the performance of our proposedagubr, we compare it with two other architectures-
central analyzer dIDS and non-cooperative dIDS using the DARPA KDD-99 benchmark dataset
[111]. In this section, we initially describe thentents of the DARPA KDD-99 dataset and the

experimental settings, followed by some experinmaetsults and discussion.

Datasets Description

We use the same dataset (KDD-99 dataset [111]natoged in the previous section (Section 3.3.1).

In these experiments, we pick two different datdet training and testing purposes. Each dataset
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contains 6000 samples, of which 3000 are normaptes1{50 %) and 3000 are attack samples (50 %)

(i.e., the total number of samples equals 12000).

Experimental Settings

Our experiment has two main steps. In the firsp,stee build three IDS modules (hosts). Each
module is implemented using different techniquecdBely, we integrate these different IDS modules

using three different architectures: C-dIDS, nopgerative dIDS, and central analyzer dIDS.

For the first step and for building three IDS dules, we use: Back Propagation (PB) Neural
Networks to implement IDS module (1), Radial Bdsimction (RBF) neural network to implement
IDS module (2), and for IDS module (3) we use Suppector Machines (SVMs). (Note: there is no
reason behind picking these SC tools to build 8 modules; our focus here to build three IDS

modules regardless of the tools that are used)

For implementing BP NN, we use the function “fiévirom the MATLAB toolbox with three
layers (an input layer with 41 neurons, a hiddgedavith six neurons, and an output layer with one
neuron), sigmoidal activation function, performarieection “MSE”, 30 epochs and 0.001 learning
rate. For RBF NN, we use the function “newrb” frafATLAB toolbox with goal value equal to
zero, spread value equal to one, and maximum nurobemreurons equal to fifty. For SVM
implementation, we use the simpleSVM library forNdY113]. The crossover parameters selection of
the SVM includes a range of basic SVM parametaspus kernel functions, and their performance
arguments. In our experiments, we set the crosgov@meters as followg can take one of these
values 1, 100, 5000, or 10000. The kernel functionsSVM were taken as linear and radial basis
kernels. The polynomial kernel with degree 1 ar@h@ the coefficient (scale) can be 0.5, 2, 3, or 4.

in a radial basis kernel at either 0.5, 1, 2, or 3.

For the second step, we integrate the three leedIDS module (1), IDS module (2), and IDS
module (3)) using three different dIDS architectur€-dIDS, non-cooperative dIDS, and central
analyzer dIDS.

In the C-dIDS architecture, each IDS module resaite detection decision by using one bit of
information from the previous IDS in the lower Iee¢ hierarchy (as it is explained in Section 4)1.2
Network traffic first enters the IDS module (1) thaill divide the traffic into normal and attack,
which are the values of “X1". Then IDS module (Pphes the six rules that are mentioned in

Table4.1 on its result analysis “X1” and the infation bit “X2” sent from a previous IDS module to
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make the final decision. After that, it only allomsrmal and undefined traffic to pass to the next
module. Normal and undefined traffic will again berutinized at the IDS module (2) which will

divide the traffic once more into normal and attaaid also applies the six rules on them to get the
final analysis results. Then IDS module (2) allawdy normal and undefined traffic to pass on to the

next module. The same situation applies to theri@8ule (3).

The non-cooperative dIDS is a distributed asdtiire where each IDS module does its own
detection decision, without any cooperation withess. In our case, we have three different IDS
modules. The network traffic first enters the ID8dule (1) which will divide the traffic into normal
and attack, and allow only the normal traffic tepdo the next IDS module in the upper level; the
remaining attack traffic will be blocked. Normahtffic will again be scrutinized at the next IDS
module, which will divide the traffic once more enhormal and attack, and allow only the normal
traffic to pass on to the next IDS module. Thisgass will happen repeatedly until the filtered

network traffic is received at the last IDS module.

In the central analyzer architecture, each ID&ue in the system makes its own detection
decision. At the end, all IDS modules will sendithesults to the central analyzer, which will
aggregate all decisions into one final decisiomgisin aggregation technique. In our case, we have
three IDS modules (three votes). To aggregate thetss, we use a vote aggregation method. So,
there might be three normals, or two normals arel attack; in both cases, “normal” wins. Or there

can be three attacks, or two attacks and one npmmiadth cases, “attack” wins.

Each experiment is repeated ten times by rangdgsiecting 40 % of samples as the test data; the

remaining 60 % are used as the training data.

Experimental Results

The comparisons of the different dIDS architecty@slIDS [C-dIDS (1), C-dIDS (2) and C-dIDS
(3)], non-cooperative dIDS, and central analyzddS}l are presented in Table 4.1 and Table 4.2
respectively. These comparisons are done with cespalifferent performance indicators: FPR, CR,
training time, and testing time (Table 4.2), therage amount of traffic that enters each IDS mqdule
and the total amount of traffic (Table 4.3). (No&=dIDS (1) refers to the first scenario for C-dIDS
C-dIDS (2) refers to the second scenario for C-dIBx&1 C-dIDS (3) refers to the third scenario for
C-dIDS).
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The Comparison between the three architecturedDS;chon-cooperative, and central analyzer in

Table 4.2

terms of FPR, CR, and efficiency

The Comparison between the three architecture$sDS;chon-cooperative, and central analyzer in

terms of amount of traffic

Architecture FPR CR Training Time Testing Time
(%) (%) (sec) (sec)
C-dIDS (1) 1.00 x 16 99.304 402.822 0.233
C-dIDS (2) 1.00 x 16 99.609 402.822 0.247
C-dIDS (3) 0.84 x 18 99.711 402.823 0.390
non-cooperative 1.2 x 10 99.292 402.822 0.239
central analyzer 0.336574 99.774 402.822 0.444
Table 4.3

Architecture Traffic (IDS1) | Traffic (IDS2) |Traffic (IDS3) | Total traffic
(2391.2 x41) | (1345.2x41)| (1200.6 x 41)
C-dIDS (1) 207354
98039.2 + 55153.2 + 49224.6 +
(2391.2 x41) | (1345.2x41)| (1280.7 x 41)
C-dIDS (2) 210718.2
98039.2 + 55153.2 + 52508.7 +
(2391.2 x41) | (2391.2x41)| (1199.6 x 41)
C-dIDS (3) 251244
98039.2 + 98039.2 + 49183.6 +
) (2391.2 x41) | (1345.2x41)| (1200.6 x 41)
non-cooperative 202417
98039.2 55153.2 49224.6
(2391.2 x41) | (2391.2x41)| (2391.2x41)
central analyzer 294117.6
98039.2 98039.2 98039.2

Note: “+" means the amount of traffic plus theamhation bits (the bits that are added from the
cooperation process between the modules). For dgaf@f391.2 x 41 = 98039.2 +”, means that
98039.2 + 2391.2 = 100430.4. The total traffic antaacludes this additional amount (the added
information bits), and 41 represents the numbehefinformation bits in each record of the network

traffic.
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Discussion

As shown in Table 4.2, comparison between C-dIDSII{@S (1), C-dIDS (2), C-dIDS (3)) and non-
cooperative dIDS reveals a significant improvemarterms of CR with similar FPR is maintained.
The C-dIDS (1), C-dIDS (2), and non-cooperative 8liBave nearly the same testing time. However,
the testing time is increased in C-dIDS (3) becdheeC-dIDS (3) allows more traffic to pass at the
first stage of detection, as is shown in Table th3yeneral the proposed architecture improves the
system efficiency (time) without creating a heawtwork load on the system or reducing system
accuracy. Moreover, the non-cooperative dIDS repmssdIDS with no central analyzer and without
any cooperation between the IDS modules. Each Ifflube works independently and filters
network traffic according to its own decision, whicauses a reduction in overall system accuracy,
because each layer adds some portion of error ghrblocking attack records, which may contain
some normal records (False Positive); also, agtireganore than one decision is better than an
individual decision. The C-dIDS mitigates theseitations by allowing more traffic to pass to the
next IDS module in the system (it allows the noriewadl undefined traffic instead of only the normal
traffic) and cooperating with the other IDS modidenake the final detection decision.

Comparing C-dIDS (C-dIDS (1), C-dIDS (2), andIDS (3)) with the central analyzer dIDS, the
central analyzer dIDS outperforms the C-dIDS imt®iof CR; however, it has the largest FPR value
and testing time. In the central analyzer dIDShd@S module works independently, and the result
of each module is aggregated in order to generate mlobal alerts. Therefore, all data will be
shipped to all dIDS modules, and then sent to dra@elocation for aggregating the alerts, which
causes heavy network traffic as shown in Table Bh&. total amount of traffic is 294117.6, which is
higher than other architectures. Moreover, thereéanalyzer dIDS suffers from the single point of
failure problem, and that may prevent IDS from wogkand cause the entire network to experience a

loss of protection.

Comparing C-dIDS (1), C-dIDS (2), and C-dIDS &jows that allowing more traffic to pass
between system’s IDS modules at the first stagesiroprove the overall system performance (as
shown in Table 4.2) while increasing the testimgeti(as shown in Table 4.2) and the system load (as
shown in Table 4.3). Moreover, it is obvious frone tabove figures that dIDS (1) works as a non-
cooperative architecture in the first two stagd®3d(2) also works as a non-cooperative architegtur
but only in the first stage. For dIDS (3), the systdoes not do that at all, which means that cingngi
the value of initialization bit can only affect tegstem in the first stages. For the rest of taged, all

scenarios will follow the same behaviour. As a ltedhere is no preference between these three
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scenarios. Each one has its own benefits, depemdingser requirements. The C-dIDS (1) scenario
can be used in applications in which time playsitical role (it has the least testing time = 0.233
On the other hand, if system accuracy is the mopbitant issue in the application, the C-dIDS (3)
scenario is recommended (it has the best CR = 9%iifl FPR = 0.84 x 1. Accordingly, if time
and system accuracy have the same priority, dID3$s(Becommended. As shown in Table 4.2 and
Table 4.3, the C-dIDS (1) has the best value im$enf the traffic amount and the testing time, &xd
dIDS (3) has the best system accuracy among otfi#DE scenarios. The application type will then
determine which scenario is the most appropriategeneral, the idea of C-dIDS is to improve the
non-cooperative architecture by allowing more tcatb pass between the system’s IDS modules.
Instead of allowing only the normal traffic to patse C-dIDS allows normal and undefined traffic.

Moreover, cooperating processes between systemlasdan improve the overall system accuracy.

In summary, these results demonstrate the fiéisitf the proposed architecture (C-dIDS). The C-
dIDS seems to be the most appropriate approachuecauses a non-central analyzer dIDS, and it
allows the modules to cooperate with less netwodd |(one bit of information through single-level
hierarchy dIDS). It is also shown that the C-dIB% flexible system; it can be converted to either

central analyzer dIDS or a non-cooperative dIDSMtmnging only the value of the information bit.

4.1.4 Summary

The most common shortcomings in existing distridutimtrusion Detection System (dIDS)
architectures are that they are built around arakmbanagement that does the aggregation and
processing of the system’s alerts. A heavy netioakl results in very large amounts of data being
transmitted between the detectors (hosts). Thisosepresents a novel architecture for dIDS to
overcome these limitations, called Collaborativehdecture for dIDS (C-dIDS) [154]. The C-dIDS
demonstrates that detection IDS modules can bénrandistributed fashion, with each one running
independently of the others while cooperating anthmunicating to provide a truly distributed
detection mechanism with no single point of failufbere is no central processing location; all IDS
modules process the information available to thedependently and relay any suspicious activity to
other IDS modules on the network. The C-dIDS ishasn the idea of independent IDS cooperating
to detect different attack types across the netwigdch IDS module makes its own traffic analysis
while cooperating with other detectors to make fthal detection decision. The main goals of this

architecture are to reduce network traffic loadlevaichieving better intrusion detection.
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By using single-level hierarchy dIDS with a nocentral analyzer, each IDS module in the system
needs to communicate with other IDS modules bystearing one bit of information. Cooperating
with other IDS modules (detectors or hosts) canrawg the system’s ability to detect attacks that
might not be detectable if each IDS module was éxadhindividually, with low network load.
Moreover, by using single hierarchy level, thermascentral management and processing of data so
there is no chance for a single point of failureatdition, fewer data are transferred betweerethes
modules (just one bit of information). The C-dIDSa flexible system. It can be used as a central
analyzer dIDS or a non-cooperative dIDS simply byng the value of its information bit to either

one or zero.

We evaluate the proposed architecture, C-dIBS¢dmparing it with other dIDS architectures:
non-cooperative dIDS and central analyzer dIDS. @&merimental results illustrate that the C-dIDS

is a suitable architecture in terms of system perémce and network load.

4.2 Collaborative Architecture for dIDS based on Li  ghtweight IDS

To even further improve the efficiency of the C-&h terms of system scalability and network load,
we use lightweight IDS as system detectors (hoSis).the proposed architecture of the dIDS will
integrate two different concepts: lightweight ID&laa distributed collaborative architecture.

In the first concept, lightweight IDS (Chaptey, &he detection process uses fewer data for the
detection process by using lightweight IDS modulBse lightweight IDS is a small, flexible, and
highly capable system that is in use around theldvon both large and small networks. It
accomplishes its essential tasks with minimal datal it is dynamically updatable and upgradable,
simpler, and faster to transport (due to its smaiiee). To build a lightweight IDS module, we need
to reduce the amount of data/features that areedeéal accomplish the detection process. Most
researchers in this area use one of the featutestise approaches to design a lightweight IDS,
which is considered to be inefficient in most cadasthis thesis, we build a lightweight IDS by
integrating two different approaches: featuresciiele and an IDS classification scheme. For thst fir
approach, we apply a novel features selection ilgorcalled Fuzzy Enhancing Support Vector
Decision Function (Fuzzy ESVDF). The Fuzzy ESVDFRaisiterative algorithm based on Support
Vector Decision Function (SVDF) and Forward SetattFS) with a fuzzy inferencing model [118],
[119]. Using the Soft Computing (SC) approach fo6Ifeatures selection is suitable for handling
such subjective estimates, due to their high perdoce, low solution cost, fast recognition and
classification of different attacks, and abilitygeneralize from learned data. In the second approa
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we present a new IDS classification scheme based @CP/IP network model. In this scheme,
specialized IDS are placed at each of the fourrtagé a TCP/IP network model (Application layer
IDS, Transport layer IDS, Network layer IDS, andahk.ilayer IDS) to detect specific types of attack
corresponding to each layer. This scheme would reséh@n organization’s ability to detect most
types of attack by identifying correct locationsplace an IDS for the following reasons. First,heac
TCP/IP layer has different vulnerabilities, seguiihallenges and types of attacks. The studies in
[115], [116], [19], [117] showed that the choicermtwork features for IDS depends on the network
attack type to be detected. Network attacks cacabegorized into four major types: (1) Application
Layer attacks, (2) Transport Layer attacks, (3)wadek Layer attacks, and (4) Link Layer attacks.
The IDS can also be categorized into AIDS, TIDSDHN] and LIDS. Second, as is known, firewalls
operate at different TCP/IP network layers by ugiiféerent criteria to restrict traffic, but this &

long step from running an entirely secure netwBscause of that, IDS must be allocated as a second
line of defense behind the firewalls. Third, theaeks usually gain access to the network through th
network devices distributed through different T®&Prletwork layers as entry points, and in order to
be able to adequately address security, all passiténues of entry must be evaluated and secured.
So, IDS must be allocated at these entry pointsetwork devices. Finally, splitting the detection
process into different levels and stages reduasdimputation load on the system and improves its
scalability and performance. Accordingly, the pregm lightweight IDS improves system accuracy,
efficiency, scalability, generality, extendibilitflexibility, and configurability.

Due to the increasing connectivity of heterogerse computer systems and the rapid growth,
sophistication, coordination and cooperation oheittools and strategies, using distributed IDS
(dIDS) becomes essential in designing an IDS. TH&Sdconsists of multiple entities working
independently and allows changes to these entitig®ut any modifications made to other entities.
The dIDS is capable of improving system performascalability, and extensibility, and can provide
the foundation for a complete solution to the camnjtles of real-time detection, while maintaining
fault-resistant behaviour. However, it suffers framnumber of limitations, such as a scalability
bottleneck, a limited detection process, and netvaiency.

In this thesis, we propose a novel collaboratixehitecture for distributed intrusion detecticnaa
second concept (Section 4.1) in order to overcoongesof the limitations of the current approaches
in dIDS. This Collaborative distributed IDS (C-dIPS based on a single-level hierarchy dIDS with
a non-central analyzer. Each IDS module in theesysteeds to receive a single bit of information

from the previous IDS module to make its own débectecision, without proceeding to the root
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node or more than one IDS. Transferred data cadidmatched between the detectors with only
crucial data (just one bit of information), whichillweduce network load. Moreover, data collection
and information analysis are performed locally with referring to the central management unit.
Therefore, there is no scalability bottleneck argk point of failure. In addition, it is capablé o
improving accuracy, real-time performance, efficygn flexibility, adaptability, extensibility,
robustness, and fault tolerance, as explainedéticdsed. 1.

In this section, we integrate the above two epix (lightweight IDS and Collaborative dIDS) in
order to improve the overall system performanceingys lightweight IDS can improve system
efficiency, accuracy, scalability, generality, endility, flexibility, and configurability. The ssnd
concept, C-dIDS, can also improve system scalgpdittendibility, configurability, and flexibilityln

addition, it can improve system reliability and uglness with minimum network load.

4.2.1 Experiments and Results

To evaluate the performance of our proposed approse compare it with other architectures by
using the DARPA KDD-99 benchmark dataset [111]tHis sub-section, we initially describe the
contents of the DARPA KDD-99 dataset and the expental settings, followed by some

experimental results and discussions.

Datasets Description

We use the same dataset (KDD-99 dataset [111]Jready used in the previous section (Section
3.3.1). In these experiments, we pick two differdatasets for training and testing purposes. Each
dataset contains 6000 samples; of which 3000 armalosamples (50 %) and 3000 are attack
samples (50 %) (i.e., the total number of sampigsis 12000).

Experimental Settings

Our experiment has two main steps. In the firsp,stee build three IDS modules. Secondly, we
integrate these different IDS modules to build afigiht dIDS architectures. We build four
architectures: C-dIDS with specialized IDS mod@edIDS with non-specialized IDS module, non-
cooperative dIDS with non-specialized IDS modulg] aentral analyzer dIDS with non-specialized
IDS module. (Note: specialized IDS modules medrat tve use Network layer IDS (NIDS),

Transport layer IDS (TIDS), and Application lay&3 (AIDS) that we had already built in Section

3.2, and a non-specialized IDS module means thatmiddules use all 41 features).
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For the first step, we use the results of pneviexperiments (Section 3.2) to build the C-dID8wi
specialized IDS modules. The specialized IDS madwél be NIDS, TIDS, and AIDS. For other

architectures, we use non-specialized IDS modules.

For the second step, we integrate the three leedMIDS, TIDS, and AIDS) to build a C-dIDS
with a specialized IDS module. Also, we integrdie hon-specialized IDS modules to build the other
architectures: C-dIDS with non-specialized IDS megdunon-cooperative dIDS with non-specialized
IDS module, and central analyzer dIDS with non-ggdized IDS module. The different architectures

are explained in Section 4.1.2.

Each experiment is repeated ten times by ranglseiecting 40 % of the samples as the test data;

the remaining 60 % are used as the training data.

Experimental Results

For C-dIDS with specialized modules, we apply thedy ESVDF on 41 features [118], [119] to
select the best features set for each type of ID8ube: AIDS, TIDS, and NIDS (Section 3.2). The
resulting features sets for AIDS, TIDS, and NID$ presented in Table 3.9. The comparisons of the
different architectures - C-dIDS with specializede(will used scenario (2) of the C-dIDS), C-dIDS
with non-specialized (we will used scenario (2}te# C-dIDS), non-cooperative with non-specialized
dIDS, and central analyzer with non-specialized3IHare presented in Table 4.4 and Table 4.5. The
comparison of the different dIDS architectures el with respect to different performance
indicators: FPR, DR, CR, training time, and testimge (Table 4.3), the average amount of traffic
that enters each IDS module, and the total amoafiict (Table 4.4).

For the sake of simplicity, we re-named each aechitre as follows:
- SC-dIDS: C-dIDS (2) with specialized IDS
- NC-dIDS: C-dIDS (2) with non-specialized IDS
- non-cooperative : non-cooperative with non- spemdl IDS

- central analyzer: central analyzer with non- sdizgd IDS
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Table 4.4

Comparison between the four structures in termidRiR, DR, CR, and efficiency

. FPR DR CR Training Time Testing Time
Architecture
(%) (%) (%) (sec) (sec)
SC-dIDS 9.2x 19 96.642 97.312 572.372 0.103
NC-dIDS 8.3x 10 96.528 97.762 3099.00 0.143
non-cooperative 8.4xT0| 96.535 97.486 3099.00 0.128
central analyzer 0.4384 99.768 99.703 3099.00 80.17
Table 4.5

Comparison between the four architectures in terhpassed traffic

Architecture Traffic (IDS1) | Traffic (IDS2) |Traffic (IDS3) Total traffic
(2385.3x4) (1330.5x 4) (1200.5x5)
SC-dIDS 25782
9541.2 + 5322 + 6002.5 +
(2385.3x41) (1328.3x41) (1220.2x41)
NC-dIDS 207219.6
97797.3 + 54460.3 + 50028.2 +
] (2385.3x41) (1330.5x41) (1182.5x41)
non-cooperative 200830.3
97797.3 54550.5 48482.5
(2385.3x41) (2385.3x41) (2385.3x41)
central analyzer 293391.9
97797.3 97797.3 97797.3

Note: “+” means that the amount of the trafficpthe information bits (the bits that are addednfro
the cooperation process between the modules). ¥aon@e “2385.3 x 4 = 9541.2 +”, means that
9541.2 + 2385.3 = 11926.5. The total traffic amoteftects this additional amount (the added

information bits).

Discussion

As shown in Table 4.4, comparison between SC-dIDfE &C-dIDS reveals a significant
improvement in terms of training time (it is redddeom 3099.0 sec to 572.372 sec) and testing time
(it is reduced from 0.143 sec to 0.103 sec) whieping nearly the same CR, DR, and FPR in both
cases. Also, Table 4.5 shows significant improvanmerierms of the amount of the traffic between

the modules in SC-dIDS (25782 information bits) ed@-dIDS (207219.6 information bits). In
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general, the results indicate that using a lighgiweilDS module can improve overall system

efficiency (training time and testing time) andteys load without affecting system accuracy.

In comparing SC-dIDS with non-cooperative arettitire, we find that although SC-dIDS does not
use all 41 features, both non-cooperative dIDS S@eldIDS architecture have nearly the same DR,
CR, and FPR. On the other hand, Table 4.4 showslk®us improvement in training time and
testing time. Also, Table 4.5 reveals significanprovement in terms of the total amount of traffic.
The SC-dIDS has 25782 information bits, while noojerative architecture has 200830.3
information bits. As a result, the proposed ardiitee (SC-dIDS) has the ability to improve system
efficiency with a high accuracy value and a lightetwork load.

Comparing SC-dIDS with a central analyzer asgdtire, the central analyzer dIDS outperforms the
SC-dIDS in terms of CR and DR; however, it hasl#ngest FPR. Also, its training and testing time
are greater than the training and testing timééndase of SC-dIDS, as shown in Table 4.3. Talle 4.
shows that the traffic passed between the IDS neodfuthe central analyzer architecture is higher
than SC-dIDS; this is because all data in the akatralyzer will be shipped to all dIDS modules and
then sent to a central location for aggregatingatleets. Accordingly, a central analyzer architeetu
causes heavy network traffic on the system. Thiis &ldition to the central management problem.

In summary, the proposed architecture, C-dID$ wai specialized IDS module (SC-dIDS), can
improve the overall system efficiency (training éirand testing time), scalability, and network load

while still delivering satisfactory system accuracy

4.3 Conclusion

The most common shortcomings in the current IDSlane accuracy, low efficiency, and limited

scalability. This chapter presents a novel IDSrithisted architecture —Collaborative Distributed

Intrusion Detection System (C-dIDS) based on lighgiut IDS modules [153]. The C-dIDS is based
on the idea of lightweight, independent IDS coopiegato detect different attack types in each
TCP/IP network layer, by employing multiple speiciel detectors at various layers of the network
TCP/IP model with a cooperative architecture. Edetector is specialized to detect different typles o
attacks by cooperating with other detectors toeiase user confidence in the alert. The main gdals o
this architecture are to reduce network trafficdlaeghile improving system performance (accuracy

and efficiency). These goals are accomplished tirause of two different concepts.
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First, using lightweight IDS modules (Chapter tBe detection process uses less data by applying
two different approaches: features selection andlCe#h classification scheme. For the features
selection approach (Section 3.1), we use a nogerighm called the Fuzzy Enhanced Support Vector
Decision Function (Fuzzy ESVDF) [118], [119]. Thaz2y ESVDF integrates the Support Vector
Decision Function (SVDF) and Forward Selection (Bfproaches with the fuzzy inferencing model
to select the most appropriate features set fofQBe It produces an efficient features set by gisin
fast and simple approach. The second approacle it classification scheme (Section 3.2). This
scheme employs multiple specialized detectors ah é@yer of the network TCP/IP model, and data
can be collected from multiple sources [152]. Thamnbining the best characteristics of traditional
host-based, network-based, and router-based ID8rgaove the overall performance and scalability

of the system. Moreover, this categorization givesarchitecture extended and maintained ability.

Secondly, using a single-level hierarchy dID$wva non-central analyzer (Section 4.1), each IDS
module in the system needs to communicate withhemdDS module by transferring one bit of
information [154]. Cooperating with other IDS moesil(detectors) can improve the system’s ability
to detect attacks that might not be detectabladheof the IDS was examined individually, with less
network load. Moreover, by using single hierarcleyel, there is no central management and
processing of data, so there is no chance for glesipoint of failure; in addition, fewer data are
transferred between these modules (just one hitfofmation). The C-dIDS is a flexible system. It
can be used as a central analyzer dIDS or a nopecative dIDS simply by fixing the value of its
information bit to either one or zero, as explainedSection 4.1.2. By comparing the proposed
architecture with other architectures, we illustrtitat the C-dIDS is a suitable architecture imger

of system accuracy, efficiency, scalability, andteyn load.

By integrating the above two concepts, lightieilDS and C-dIDS, the overall performance of
the IDS is improved. The experimental results stiwat a C-dIDS based on lightweight IDS modules
improves overall system performance, efficiencgifiing time and testing time), and scalability

without creating a heavy system load.
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Chapter 5

Conclusions and Future Work

In this chapter, we briefly present a summary amatrdoution of the thesis in Section 5.1, followed

by future work in Section 5.2.

5.1 Summary of Results and Thesis Contribution

In this thesis, we have primarily investigated thiusion detection problem. Current IDS usually
have several major shortcomings such as low acgulaw real-time performance (low efficiency),
and limited scalability. In particular, we have posed a novel IDS architecture —Collaborative
Distributed Intrusion Detection System (C-dIDS) dm®n lightweight IDS modules— that integrates
two different concepts in order to work around thdsnitations [153]. First, the C-dIDS uses
lightweight IDS, where each detector (IDS modulsgsismaller amounts of data in the detection
process by using two approaches: a features smieapproach, and an IDS classification scheme.
For the former, we apply a Fuzzy Enhanced Suppedtdf Decision Function (Fuzzy ESVDF) as a
feature selection technique, which ensures tha téchnique will improve system efficiency,
scalability, and reduce the network traffic loadle/netaining high classification accuracy.

The second approach is the IDS classificatidres®. This scheme employs multiple specialized
detectors in each layer of the network TCP/IP modkich helps in the collection of efficient and
useful information for the dIDS, increasing theteyss ability to detect different attack types and
reducing the system’s scalability. The second ephds accomplished by using Collaborative
architecture (C-dIDS) for the IDS. The C-dIDS cam$aa single-level hierarchy dIDS with a non-
central analyzer. To make the detection decisiorafgpecific IDS module in the system, this IDS
needs to collaborate with the previous IDS onlypliaving system accuracy without increasing the
traffic load. Moreover, this architecture protethe system from single point of failure and the
scalability bottleneck.

For the first approach, using lightweight IDSdutes (detectors) (Chapter 3), the detection psoces
uses fewer amounts of data for the detection psobgsemploying two different concepts. The first
approach is applying a novel feature selectionrtegle (Fuzzy Enhanced Support Vector Decision
Function) [118], [119]. The Fuzzy SVDF is baseda®upport Vector Decision Function (SVDF)
and Forward Selection (FS) with a fuzzy inferenamgdel. It is an iterative algorithm, where each

iteration consists of two steps: feature rankind ature selecting. Taking feature ranking fitisg
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Support Vector Decision Function (SVDF) is evaldate rank each specified candidate feature.
Next, feature selecting, a Forward Selection apgro@&S) is applied with the fuzzy inferencing
model to select the features according to a setle$ based on a comparison of performance.

To examine the feasibility of our approach, waduct several experiments and comparisons. For
evaluating the performance of the Fuzzy SVDF apghrpave compare it with [34], [105] approaches
by using the DARPA KDD-99 benchmark dataset [11d]addition, we select four smaller datasets
from the UCI databases [112] to evaluate the meg@pproach (Fuzzy SVDF) in different domains,
and its behaviour with a different number of featufeach dataset has a varying number of features).
Also, we use two different classifiers (SVM and Nit) evaluate the resulted features set. The
experimental results demonstrate the feasibilitythaf proposed approach. The proposed approach
gives the best performance in terms of training tsting times while retaining high classification
accuracy, allowing this approach to be used inaktmme environment. In addition, this approach is
considered to be a features selection approachidiega of the type of classifier used, making this
approach a suitable features selection methodtf@r @pplications rather than an IDS.

For the second approach, the IDS classificasoheme, by employing multiple specialized
detectors in each layer of the network TCP/IP modata can be collected from multiple sources
[152]. Thus, combining the best characteristicsraditional host-based, network-based, and router-
based IDS can improve the overall performance asalability of the system. Moreover, this
architecture can be easily extended and maintamWeddesign three different types of IDS: NIDS,
TIDS, and AIDS (LIDS is not included) by using FyzESVDF. Several experiments have been
conducted to evaluate the effects of categoriigIDS into these different types. We compare the
performance of the specialized IDS modules (NIDR)S, and AIDS) with the performance of the
IDS that is designed to detect any attacks by usuogdifferent classifiers, NN and SVM. Moreover,
we swap the features between the three differestialized IDS modules to evaluate the affect of
each feature on the detection process. The expetaesults indicate that each IDS type is subject
to its own “custom” attacks and therefore needws custom protection. Also, categorizing IDS
into different types can improve the overall systperformance (accuracy and efficacy) and
scalability.

For the second concept (Section 4.1), a digetbeollaborative architecture, we propose a new
architecture called a Collaborative architecture dtDS (C-dIDS) [154]. The C-dIDS contains a
single-level hierarchy dIDS with a non-central gmalr. Each IDS module in the system needs to

communicate with another IDS module by transferong bit of information. Cooperating with other
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IDS modules (detectors) can improve the systemiityalto detect attacks that might not be
detectable if each module of the IDS was examindiidually, with less network load. Moreover,
by using single hierarchy level, there is no céntranagement and processing of data, so there is no
chance for a single point of failure. We have exwsdithe feasibility of our dIDS architecture by
conducting several experiments using the DARPAs#dfaand compared the proposed architecture
(C-dIDS) with other dIDS architectures: non-coopgesa dIDS and central analyzer dIDS
architecture. For each of these architectures, see toree different IDS modules. Module (1) is
implemented by using Back Propagation (PB) Neuetindrks; Module (2) employs a Radial Basis
Function (RBF) Neural Network; Module (3) is implented by Support Vector Machines (SVM).
The experimental results show that the C-dIDS isudable architecture in terms of system
performance and network load, as it allows the rfexito cooperate with less network load (one bit
of information through a single-level hierarchy &P In addition, the C-dIDS is a flexible systein. |
can be used as a central analyzer dIDS or a nopecative dIDS simply by fixing the value of its

information bit to either one or zero.

We join the above two concepts (Section 4.@jhtWeight IDS (Chapter 3), and distributed
collaborative architecture (Section 4.1) in order improve system accuracy, efficiency, and
scalability while reducing the overall system lodd3]. Therefore, many IDS modules can be
installed and work in a collaborative manner withoteating a heavy network load. Each one is
concerned with some specific part of the networks Ilthen necessary to make them cooperate to
achieve a global vision of the intrusion, while &g a single point of failure. Another point that
vindicates this cooperative approach is the pdggiib combine IDS that work differently. We
implement the C-dIDS architecture using three sizeid IDS modules: NIDS, TIDS, and AIDS that
were already implemented in Section 3.2. For evmlgahe proposed architectures, we compare the
proposed approach (C-dIDS) with non-specializedI@Sd non-cooperative, and central analyzer
architecture. The experimental results demonstiae the proposed architecture can improve the
overall system efficiency (training time and tegtirme) and scalability while it delivers satisfat

system accuracy.

In summary, these results demonstrate the figsif the proposed architecture (C-dIDS based on
lightweight IDS modules). By integrating the two ncepts (lightweight IDS and distributed
collaborative architecture for the IDS), the systaocuracy, efficiency (training and testing time),

and scalability are improved without creating exteswork load on the system. It provides a layer of
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defense which monitors network traffic for predefinsuspicious activity or patterns, and alerts
system administrators when potential hostile tcaffidetected. Other advantages accrue as well.

First, it can be easily extended and maintaigzth module can be added or removed from the
system without altering other system componentgalbee intrusion detection processes are
independent, so existing processes do not neeel noodified when a new intrusion detection process
is added.

Second, splitting the detection onto differeatvels (or stages) in the network reduces the
intrusion’s influences, which reduces any damageé itimy occur.

Third, the proposed architecture improves theb#ity of the system. Because it distributes the
detection onto different levels, an intruder sustilsn attacking single level affects that sintgeel
only: the system will continue applying detectiorthe other levels. The failure of one local inioas
detection process does not cripple an entire ID8n ¢hough it causes some degradation of overall
detection accuracy.

Finally, it improves system robustness. The WiEbe difficult to attack, as it is divided intmany
detection levels (depending on the number of devicghe network) that make attacking the system
much more difficult. Nevertheless, there remainesotved problems to building an effective IDS
which are not covered in this thesis, such as ability to detect new attacks and weak system

reactive capabilities, etc.. More details aboutifeitwork planning are given in the next section.

5.2 Future Research Directions

IDS modeling in this thesis has been focused orrdripg the detection model in terms of detection
accuracy, efficiency, and scalability, without dieg a heavy network load on the system. We
believe there are many possible extensions foldseproblem. Therefore, below are presented other
suggestions to further improve the IDS.

- Implement the C-dIDS using autonomous agents. \Alilonomous agents, the architecture can
be easily extended and maintained. In additiony tten enable ongoing interaction with the
environment and cooperating with other agents.

- Build a testing methodology to test the proposethitgcture in terms of its robustness, security,
feasibility, reliability, and other criteria, andmpare it with other dIDS architectures.

- Investigate the feasibility of implementing the (8 in real-time intrusion detection

environments.
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- Security, or secure message handling between sygiemponents, by using different approaches

to accomplish confidentiality, integrity, and autkieation for communications, could prevent the

blocking of messages or the generation of falsesags.

We have already implemented the first part of th&,lwhich is the detection model. We need to

focus on the other IDS parts:

Response Mechanisms: most current IDS implementti@ve limited response (reactive)
capabilities; an IDS needs to be capable of prawgnhot just reporting an attack. We are
planning to extend our study to build an efficiesgponse system.

Build a friendly interface agent. The user inteef@& an important issue for future work. Most
of the recent works in IDS has focused on how tplément detection, but very little has
been done in the way of presenting the informatmthe user, or how to allow the user to
specify policies that the IDS can understand aridree. IDS should offer a user interface to
facilitate better control over intrusion detectiactivity and better understanding of the alert

information.

- Investigate other major limitations of IDS such as:

New and Unknown Attack Recognition: The intelligenéthod of attack detection will be
researched further to overcome the problem of deteof unknown and novel attack forms.

Dynamic nature: Provided with a dynamic nature,llb® automatically learns new intrusion
methods on their own, without a central controlaring predefined information. This area
needs to be studied deeply through the interaatith changing network environments,

various security requirements, and other intrusietection processes.

- There are several areas where C-dIDS requiresiamaitwork before it can become more

responsive to the demands of a wide range of emviemts prevalent in networking applications,

such as:

A layered framework for the placement of dIDS desgioeeds to be investigated.

The effectiveness of dIDS depends also on how nufcthe data traffic is transferred
between the system components on the distributeidoement (in our case the components
are the IDS modules). Therefore, the relationsiepvben the proposed architecture and

traffic needs to be explored in order to improve ¢lverall dIDS effectiveness.
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* We did not consider the balance between systenomeshce and system cost. High
performance always entails a high system cost. \ledew more work on improving system

performance with a reasonable system cost.

Finally, IDS are not the answer to all netwodcwity problems. They require a certain level of
maturity and are only effective if monitored andimta@ined. This thesis is only one among many
preliminary starts in the field. There are manyi¢degdor possible future work, but we hope that our

work will be of service to the growing populatiohlDS users and researchers.
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Appendices

Appendix A: A Description of DARPA Dataset
The DARPA KDD-99 dataset [111] is based on DARPA&8usion detection dataset, which aims to

provide data for researchers working on intrusietedtion in general. The DARPA KDD-99 dataset
contains network data to configure and evaluateisitin detection systems. This recorded network

data contains 22 attack types and normal connextion

The attack types are:

(1) back

(2) buffer_overflow
(3) ftp_write

(4) guess_passwd
(5) imap

(6) ipsweep

(7) land

(8) loadmodule

(9) multihop

(10) neptune

(11) nmap

(12) perl

(13) phf

(14) pod

(15) portsweep
(16) rootkit
(17) satan

(18) smurf

(19) spy

(20) teardrop

(21) warezclient
(22) warezmaster

In the KDD-99, a connection is represented byfddtures, 22 of these features describe the
connection itself and 19 of them describe the ptigseof connections to the same host in the same
host in last two seconds (IDS should analyze theice types used by the same user in previous
connections and for this purpose there are 10 riemtincluded in the 41 feature vector). These 41

features can be divided into different groups:
Basic features
(1) Duration of connection

(2) Protocol type (3 different symbols: TCP, UDEBMP)
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3)
(4)
(5)
(6)
(7)
(8)
(9)

Service type (70 different symbols: FTP, HTTEInet...)
Status flag (11 different symbols)

Total bytes sent to destination host

Total bytes sent to source host

Whether source and destination addresses asathe or not
Number of wrong fragments

Number of urgent packets

(10-41) 32 derived features, falling into thoagegories:

The 41

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)

(1) Content features domain knowledge is used to assess the payloatieof

original TCP packets. (Ex: number of failed logtteenpts)

(2) Time-based traffic featuresghese features are designed to capture properties
that mature over a two seconds temporal window.: (BMmber of

connections to the same host over the two seconeival)

(3) Host based traffic featuresutilize a historical window estimated over the
number of connections. Host-based features areftrerdesigned to assess

attacks, which span interval longer than two sesond

features are as the following:

duration: continuous.
protocol_type: symbolic.
service: symbolic.

flag: symbolic.

src_hytes: continuous.
dst_bytes: continuous.

land: symbolic.
wrong_fragment: continuous.
urgent: continuous.

hot: continuous.
num_failed_logins: continuous.
logged_in: symbolic.
num_compromised: continuous.
root_shell: continuous.
su_attempted: continuous.
num_root: continuous.
num_file_creations: continuous.
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(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
(40)
(41)

num_shells: continuous.
num_access_files: continuous.
num_outbound_cmds: continuous.
is_host_login: symbolic.
is_guest_login: symbolic.

count: continuous.

srv_count: continuous.

serror_rate: continuous.
srv_serror_rate: continuous.
rerror_rate: continuous.
srv_rerror_rate: continuous.
same_srv_rate: continuous.
diff_srv_rate: continuous.
srv_diff_host_rate: continuous.
dst_host_count: continuous.
dst_host_srv_count: continuous.
dst_host_same_srv_rate: continuous.
dst_host_diff_srv_rate: continuous.
dst_host_same_src_port_rate: continuous.
dst_host_srv_diff _host_rate: continuous.
dst_host_serror_rate: continuous.
dst_host_srv_serror_rate: continuous.
dst_host_rerror_rate: continuous.
dst_host_srv_rerror_rate: continuous.

Sample of DARPA dataset

0,udp,private,SF,105,146,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0.00,0.00,0.00,0.00,1.00,0.00,0.00,255,254,1.00,0.01,0.00,0.00,0.00,0.00

,0.00,0.00,normal

0,udp,private,SF,105,146,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0.00,0.00,0.00,0.00,1.00,0.00,0.00,255,254,1.00,0.01,0.00,0.00,0.00,0.00

,0.00,0.00, portsweep
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