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Abstract 

A variety of intrusion prevention techniques, such as user authentication (e.g.: using passwords), 

avoidance of programming errors, and information protection, have been used to protect computer 

systems. However, intrusion prevention alone is not sufficient to protect our systems, as those 

systems become ever more complex with the rapid growth and expansion of Internet technology and 

local network systems. Moreover, programming errors, firewall configuration errors, and ambiguous 

or undefined security policies add to the system’s complexity. An Intrusion Detection System (IDS) 

is therefore needed as another layer to protect computer systems. The IDS is one of the most 

important techniques of information dynamic security technology. It is defined as a process of 

monitoring the events occurring in a computer system or network and analyzing them to differentiate 

between normal activities of the system and behaviours that can be classified as suspicious or 

intrusive.  

   Current Intrusion Detection Systems have several known shortcomings, such as: low accuracy 

(registering high False Positives and False Negatives); low real-time performance (processing a large 

amount of traffic in real time); limited scalability (storing a large number of user profiles and attack 

signatures); an inability to detect new attacks (recognizing new attacks when they are launched for the 

first time); and weak system-reactive capabilities (efficiency of response). This makes the area of IDS 

an attractive research field. In recent years, researchers have investigated techniques such as artificial 

intelligence, autonomous agents, and distributed systems for detecting intrusion in network 

environments. This thesis presents a novel IDS distributed architecture – Collaborative Distributed 

Intrusion Detection System (C-dIDS), based on lightweight IDS modules – that integrates two main 

concepts in order to improve IDS performance and the scalability: lightweight IDS and collaborative 

architecture.  

   To accomplish the first concept, lightweight IDS, we apply two different approaches: a features 

selection approach and an IDS classification scheme. In the first approach, each detector (IDS 

module) uses smaller amounts of data in the detection process by applying a novel features selection 

approach called the Fuzzy Enhanced Support Vector Decision Function (Fuzzy ESVDF). This 

approach improves the system scalability in terms of reducing the number of needed features without 

degrading the overall system performance. The second approach uses a new IDS classification 

scheme. The proposed IDS classification scheme employs multiple specialized detectors in each layer 
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of the TCP/IP network model. This helps collecting efficient and useful information for dIDS, 

increasing the system’s ability to detect different attack types and reducing the system’s scalability.  

   The second concept uses a novel architecture for dIDS called Collaborative Distributed Intrusion 

Detection System (C-dIDS) to integrate these different specialized detectors (IDS modules) that are 

distributed on different points in the network. This architecture is a single-level hierarchy dIDS with a 

non-central analyzer. To make the detection decision for a specific IDS module in the system, this 

module must collaborate with the previous IDS module (host) in the lower level of the hierarchy only. 

Collaborating with other IDS modules improves the overall system accuracy without creating a heavy 

system overload. Also, this architecture avoids both single point of failure and scalability bottleneck 

problems. 

   Integration of the two main concepts, lightweight IDS and a distributed collaborative architecture, 

has shown very good results and has addressed many IDS limitations. 
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Chapter 1 

Introduction 

Information security plays an important role in all aspects of life, in particular the protection of an 

organization's valuable resources, such as information, hardware, and software. Therefore, 

information security is defined as a process of protecting data from unauthorized access, use, 

disclosure, destruction, modification, or disruption. It is concerned with ensuring that information-

related risks are assessed, appropriate controls are implemented to manage those risks, and that the 

adequacy of those controls is monitored on a regular basis. Generally, discussion of information 

security falls under three generic headings: 

 

1. Confidentiality:  This is a requisite for maintaining the privacy of people whose personal 

information the organization holds. 

2. Integrity: This means that data cannot be created, changed, or deleted without authorization. 

It also means that data stored in one part of a database system is in agreement with other 

related data stored in another part of the database system (or on another system).  

3. Availability:  This means that the information, the computing systems used to process the 

information, and the security controls used to protect the information are all available and 

functioning correctly when the information is needed. 

  

   The field of information security has evolved rapidly in recent years because of the swift growth 

and widespread use of electronic data processing, and also of business conducted through the Internet 

and other computer networks (LAN, WAN, etc.). These application areas make networks an attractive 

target for abuse and thus an area of vulnerability. At the same time, the tools of the intruder and the 

hacker have improved substantially. In order to both combat the growing number of attacks and to 

maintain critical information services, both academic and industry groups have been developing 

systems to monitor networks and to raise alarms over suspicious activities. These systems are called 

Intrusion Detection Systems (IDS). 

   Intrusion Detection is defined as “the problem of identifying individuals who are using a computer 

system without authorization (i.e., crackers) and those who have legitimate access to the system but 

are abusing their privileges (i.e., insider attack: threat)” [124]. An Intrusion Detection System (IDS) 

gathers and analyzes information from various areas within a computer or a network to identify 



 

 2 

possible security breaches, which include both intrusions (attacks from outside the organization) and 

misuse (attacks from within the organization). An IDS is designed to detect unscrupulous activities 

that compromise the confidentiality, integrity, or availability of network or computer systems and to 

analyze what happens – or what has happened – to indicate that the computer has been misused. The 

IDS does not eliminate the use of a preventive mechanism, but rather works as a second defense 

mechanism behind a firewall, which can monitor the network while not affecting network 

performance. In conclusion, an IDS is the whole process that detects, audits, tracks, and identifies 

unauthorized access and abnormal phenomena actions or events in the system. It can identify whether 

the system is being accessed as it happens and take the appropriate actions to cut off network 

connections, record events, and raise an alarm. It can also remind the system administrators to take 

proper measures.  More details on IDS are given in the next chapter. 

   Recently, a number of innovative approaches and new models for IDS have been proposed. But 

while many of the proposed techniques have relatively improved some of the shortcomings of 

the earlier approaches, still a number of issues remain: low detection accuracy, low real-time 

performance, and limited scalability. These problems make the area of IDS an attractive and open 

research field. In recent years, researchers have investigated a variety of different computational tools 

to improve IDS performance and overcome some of its limitations, such as Soft Computing (SC) 

techniques [8], [16], [19], distributed systems [41], [61], [98], and autonomous agents (AA)[44], 

[121], [99]. Still, a lot more needs to be done to deal with new technologies and tools developed by 

intruders to break the systems.  

   In this thesis, we try to overcome some of IDS limitations by proposing a new dIDS architecture 

through the integration of two main concepts. The first concept is accomplished by using a 

lightweight IDS module.  Each IDS module used allows the detection process to function with a 

smaller dataset. To build a lightweight IDS module, we apply two different approaches: features 

selection, and an IDS classification scheme. The first approach is accomplished by using SC tools. 

We use a novel features selection algorithm called Fuzzy Enhanced Support Vector Decision 

Function (Fuzzy ESVDF). The Fuzzy ESVDF is an iterative algorithm based on a Support Vector 

Decision Function (SVDF) and Forward Selection (FS) approach. A fuzzy inferencing model is used 

to select the appropriate features set, in order to improve the performance of the IDS in terms of 

accuracy and efficiency (training time and testing time) [118], [119]. For the second approach, the 

IDS classification scheme [152] categorizes the IDS into four types depending on the TCP/IP network 

model: Application layer IDS (AIDS); Transport layer IDS (TIDS); Network layer IDS (NIDS); and 
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Link layer IDS (LIDS).  Each of these IDS types is dedicated to a specific network device, so the 

detection process will be distributed among all TCP/IP network model layers though the network 

devices. Chapter 3 will provide additional detail about this proposed system.  

   For the second concept, the lightweight IDS modules will be integrated using a distributed 

collaborative architecture called Collaborative Architecture for dIDS (C-dIDS). This architecture, C-

dIDS, contains a single-level hierarchy collaborative dIDS. To make the detection decision for a 

specific IDS module in the system, this IDS needs to collaborate with the previous IDS in the lower 

level only. The transferred data can then be dispatched between the detectors with only crucial data 

(just one bit of information).  More details about this architecture will be provided in Chapter 4.  

   This chapter starts with an overview of IDS in Section 1.1. Then, the motivations and goals behind 

this thesis are discussed in Section 1.2. In Section 1.3, we present the thesis organization and describe 

the content of each chapter. 

1.1 Problem Statement  

The field of information security has grown and evolved substantially in recent years because of the 

rapid growth and widespread use of electronic data processing, and of business conducted through the 

Internet and other computer networks (LANs, WANs, etc). These application areas make networks 

attractive targets for abuse. At the same time, the tools of the intruder and the hacker have improved 

substantially. Facing these daunting challenges, industry and academic institutions are working hard 

to develop new devices, new approaches, and new security mechanisms to counter the challenges 

from malicious intruders. These efforts have resulted in a great variety of security products such as 

firewalls, encryption, authentication, vulnerability checking, and other measures. Nevertheless, most 

computer systems are still susceptible to attacks from hackers, so it is essential to establish a second 

line of defense for these systems in the form of an Intrusion Detection System (IDS).    

   IDS [50], [63], [122] play an important role in achieving the survivability of information systems 

and ensuring their safety from attacks. They aim to protect the availability, confidentiality, and 

integrity of critical network information systems by analyzing what happens or has happened during 

an intrusion, and attempting to identify signs that a computer has been misused.  They can also take 

appropriate actions to sever network connections, record events, raise alarms, and remind system 

administrators to take proper measures.  

   IDS are usually classified as host-based or network-based. Host-based systems [32], [123], base 

their decisions on information obtained from a single host (usually log files, network traffic to and 
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from the host, or information on processes running on the host), while network-based systems [45], 

[56] obtain data by monitoring network traffic between hosts, and are usually run on a separate 

machine.   

    Most current IDS technology still suffers from three main problems which limit their detection 

ability: low detection accuracy (registering high False Positive alarms and False Negative); low real-

time performance (processing large amounts of traffic data in real time); and limited scalability 

(storing a large number of user profiles and attack signatures).  

   Our proposed approach overcomes these limitations by integrating two main concepts: (1) Using 

lightweight IDS modules and (2) Having a novel distributed collaborative architecture for the IDS. 

Another key effort in our approach is that directed towards improving system robustness, 

extensibility, configurability, and security.    

1.2 Thesis Motivation and Contributions 

The ideal approach for computer security is to establish and implement a security policy that prevents 

any intrusion through the use of security measures. However, traditional preventive measures are not 

always sufficient, for the following reasons:  

 

• Bug-free software is seldom attainable.  

• It is difficult to change user and organization behaviour, to oblige all users to follow 

diligently security policy. 

• Human errors in operations and maintenance are unavoidable; these errors can cause serious 

security loopholes. 

• The security measures and controls themselves can be compromised: for instance, the 

cryptographic algorithms can be cracked, given sufficient time and computing power. 

• It is almost impossible to prevent insider attacks because inside users naturally have greater 

access to the system than do outside attackers. 

• The cost of setting up a totally secure system is very high, which discourages their 

implementation. 

 

   Because of the above difficulties, we need to use other alternative or complementary techniques to 

protect and secure our systems. One of the major techniques is the Intrusion Detection System (IDS). 

Intrusion Detection is another type of security tool that must be created to protect and secure the 
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information resources in the system. It complements firewalls by allowing a higher level of analysis 

of traffic on a network, and by monitoring the behaviour of the sessions on the servers. In addition, it 

possesses such special characteristics and benefits as: 

 

�  Networks are complex and difficult to monitor: an IDS can help reveal potential network 

security problems by documenting network status. 

�  An IDS highlights intrusion traces, which help to identify and eliminate the security flaws 

that enabled these intrusions in the first place. 

�  An IDS can assess the integrity of critical system and data files. 

�  An IDS provides real-time reporting of break-ins, allowing the system administrator to take 

immediate action, lessening potential damage. 

�  In contrast to a firewall, an IDS is a passive system that does not influence network traffic. 

Thus, most people attacking or trying to circumvent a system will not recognize the intrusion 

detection node.  In addition, an authorized user can log on without interruption. 

 

   The current state of IDS technology is not yet fully reliable, which makes the area of IDS an 

attractive  and still open research field. A major problem with current IDS is their inability to 

guarantee intrusion detection (low accuracy): the current IDS technology is not accurate enough to 

provide reliable detection. This problem will lead to a high rate of false alarms (False Positives), and 

missed alarms (False Negatives). A common complaint is that the large number of False Positives and 

Negatives generated by Intrusion Detection Systems makes it hard to filter out false attacks without 

potentially missing genuine attacks. Moreover, this low accuracy can lead to an incident handling 

problem: that is, security administrators are uncertain how to respond to mitigate the risks if a certain 

degree of accuracy cannot be achieved. There is no decision rule associated with each alert to tell the 

security administrator whether he should ignore the alert or simply terminate the suspicious session.  

   Another major problem is the speed of detection (low efficiency). The size of the feature space is 

obviously very large, which leads to slow training and testing processes, heavy computational 

resources, and low detection accuracy. Moreover, computer networks have a dynamic nature in the 

sense that the data within them are continuously changing. Therefore, in order to detect an intrusion 

accurately and promptly, the system has to operate in real time.  

In addition to the problems outlined above, there are other limitations, such as: 
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Inability to detect new attacks: The ability to recognize new attacks when they are launched for the 

first time is very low; this reduces the overall system performance. 

Limited scalability:  The IDS is unable to achieve reliable scalability to gather and analyze the high-

volume of audit data correctly from the distributed host, which may cause severe network 

performance degradation. 

Lack of extensibility: It is difficult to extend the scope of IDS or reconfigure/add capabilities to the 

IDS.   

Difficult configurability: The IDS is unable to configure itself easily to the local requirements of 

each host or each network component.  

Monotonic analysis: Many network intrusions exploit the multiple points of a network. Thus, from a 

single host, they might appear to be just a normal mistake. But if they are collectively monitored from 

multiple points, they can be clearly identified as a single attack attempt. 

Low robustness: In many cases, the IDS itself may fall under attack from a threat seeking to disable 

it. An IDS should itself be resistant to attacks, should exhibit a high degree of fault tolerance, and 

allow for graceful degradation.  

Low reliability (Point of Failure):  For most single IDS, if an intruder can somehow prevent the IDS 

from working, the whole network is without protection.  

 

    Recently, a number of innovative approaches and new models for IDS have been proposed to 

improve IDS efficiency and performance, such as Distributed IDS (dIDS). The dIDS [89], [77] is one 

of several options that allow computation load and diagnostic responsibilities to be distributed 

throughout the network. It performs distributed data collection (and some pre-processing) by using 

modules distributed in different hosts, which monitor separately and communicate and cooperate with 

each other. The dIDS can provide the foundation for a complete solution to the complexities of real-

time detection, while maintaining fault-resistant behaviour. It has scalability to detect general attacks 

or a specific attack. In addition, each module can be added to or removed from the system without 

altering other system components, because they operate independently. Also, the system’s modules 

can be configured or upgraded without disturbing the rest of the system, as long as their external 

interface remains the same.  
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    Another approach used to improve IDS efficiency is Soft Computing (SC). In general, applications 

of SC are widely used with IDS, either for a detection model or for the generation of intrusion 

features selection. They are suitable for handling such subjective estimates for a number of reasons: 

- fast recognition and classification; 

- learning abilities; 

- adaptability; 

- flexibility;  

- low solution cost; 

- fast computing; 

- ease of design; 

- ability to generalize from learned data; 

- not easily misled by small variations in intrusion patterns; 

- modular with both misuse and anomaly detection components.  

 

   Researchers have proposed several approaches in this regard. Some researchers are more interested 

in SC techniques for such detection models as Fuzzy Logic (FL) ) [55], [56], Genetic Algorithms 

(GA) [ 57], [14], [43], Neural Networks (NN) [125], [16], [8], Probabilistic Techniques [126], 

AdaBoost [127], Immune System [128], and SVM [10], [17], [18]. Still others are interested in SC 

techniques for IDS features selection models such as NN [63, 64], GA [65, 66], SVM [63, 69], and 

other optimization tools [71, 72].  

     Despite advances in research on intrusion detection technologies, the current IDS technology is not 

accurate enough to provide reliable detection. Therefore, the main emphasis of this thesis is to 

improve IDS accuracy, time performance, and scalability by combining two main concepts: 

lightweight IDS, and a distributed collaborative architecture.  

 

(1) Lightweight IDS 

The first concept is being lightweight. To build a lightweight IDS module, we need to reduce the 

amount of data/features needed to achieve successful detection by applying two different approaches. 

The first approach is to use dimensionality reduction techniques (features selection approach). The 

second approach is to use an IDS classification scheme. By using lightweight IDS, it will satisfy the 

following requirements:  
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Efficiency: A lightweight IDS can improve the generalization performance of intrusion 

detection and make the detection more time-efficient. Faster training and testing helps to 

build an efficient IDS and provides ease of maintenance or modification of the IDS. 

Furthermore, a small number of input features leads to a reduction in execution times, which 

is important for the on-line detection of attacks.  

Accuracy: By applying the proposed lightweight approach, which contains a new 

classification scheme, the overall system detection ability will be improved in three ways. 

First, each IDS type can be specialized to detect a specific category of attacks, depending on 

the layer. For example, to place an IDS in the router, we need to use NIDS, which has 

extensive information on router attacks behaviours.  Secondly, by distributing the IDS 

through the TCP/IP layers as the second level defense after the firewall; the firewall will be 

supported by IDS and overall system security will be improved. Furthermore, it is known that 

one of the major issues in network security is securing network devices, which are 

represented as system entry points for the attacks. Hence, by designing a specialized IDS for 

each one of them, overall system performance will be improved.  

Scalability: A lightweight IDS can improve scalability by reducing the amount of network 

load on each IDS module in the system. Thus, the system becomes scalable enough to be able 

to work correctly and efficiently with increased traffic on the network.  

Generality: By splitting the detection process into different layers (levels) in the network 

according to the proposed classification scheme, each IDS module will be specialized to 

detect a specific attack type, which increases its ability to capture all or almost all known 

attacks.  

Intrusion’s Influences Reduction: Detection attacks in the first stages (higher or lower 

TCP/IP layer) before they enter the network, will reduce any damage that may occur. 

Extensibility:  By using a lightweight and specialized IDS, system extensibility will be 

improved. To extend the system, we need only add an IDS to the network device that we used 

to extend it. This architecture allows for computation to be performed at any point where 

enough information is available. 

Flexibility:  Because the lightweight IDS can be easily deployed on almost any node of a 

network with minimal disruption to operations, they can be added and removed from the 

system without altering other components. 
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Configurability : Lightweight IDS can be cross-platform, have a small system footprint, and 

be easily configured by system administrators who need to implement a specific security 

solution in a short amount of time. 

 

(2) Distributed and Collaborative Architecture (C-dIDS) 

The second concept is collaborative distributed IDS with single-level hierarchy (C-dIDS). The dIDS 

allows computation load and diagnostic responsibilities to be distributed throughout the network. It 

delegates its responsibilities to a number of distributed components. A number of independent 

intrusion detection processes monitoring only a small aspect of the IDS are deployed to protect the 

overall computer infrastructure system. They operate concurrently and co-operate with each other. 

Moreover, the C-dIDS can provide the foundation for a complete solution to the complexities of real-

time detection, while maintaining fault-resistant behaviour. The distributed nature of the data sources 

allows patterns in the data to be seen that might not be detectable if each of the sources were 

examined individually. In addition to the above benefits, it will satisfy the following requirements: 

 

Scalability: By using a one-level hierarchy dIDS, the detection process will need just less 

data (compared with other dIDS) to accomplish the cooperation process between different 

IDS.  

Extensibility:  Each module can be added to or removed from the system without altering 

other system components, because the intrusion detection processes are independent and thus 

existing processes do not need to be modified when a new intrusion detection process is 

added.  

Configurability : A single intrusion detection process can be simply tailored to the local 

requirements of a specific host without considering the various requirements of other hosts. 

Reliability:  Our detection process is distributed through four different network levels 

(layers), and if the intruder is successful in attacking one level, the system will continue 

applying the other levels of detection. The failure of one local intrusion detection process 

does not cripple an entire IDS, even though it causes minimal degradation of overall detection 

accuracy. 
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Robustness: The proposed IDS will be difficult to attack, as it is divided into many detection 

levels (depending on the number of devices in the network) that make attacking the system 

much more difficult. 

Flexibility:  The modules will run in parallel and can act independently. Thus, they can be 

added to and removed from the system without altering other components. 

Minimum system load: To cooperate between different system IDS modules, each IDS 

module does not need much transferred information (just one bit of information).   

1.3 Thesis Organization 

The thesis consists of five chapters, the first of which is the introduction. We provide a brief 

description of Intrusion Detection Systems (IDS), followed by an overview of this thesis’ motivations 

and goals.  

   In Chapter 2, a brief review of security and IDS is given. We discuss IDS architecture: detection 

method, analysis techniques, and response components. In addition, we discuss some approaches in 

IDS such as distributed systems and the Soft Computing (SC) technique. We finish by presenting the 

current state of the art in IDS and the limitations thereof. 

   In Chapter 3, we present a lightweight IDS concept. To build a lightweight IDS, we apply two main 

approaches: the features selection approach for IDS (Fuzzy Enhanced Support Vector Decision 

Function- Fuzzy ESVDF), and an IDS classification scheme. This chapter is split into two main 

sections. The first section describes the features selection approach. It starts by briefly reviewing the 

dimensionality reduction problem for IDS. The proposed algorithm (Fuzzy ESVDF) is then 

explained, followed by presentation of simulation results and an evaluation of the approach. For the 

second section, the IDS classification scheme is presented. Essentially, we illustrate the motivation 

behind the new IDS categorization (classification). We then describe the employed IDS classification 

scheme while presenting some experimental results. The section closes with some discussion of the 

approach, and with a conclusion regarding its utility. 

   In Chapter 4, we present the second concept, a distributed collaborative architecture for IDS and the 

proposed architecture of the thesis (C-dIDS based on lightweight IDS modules) through two main 

sections. In the first section, we start by briefly reviewing the distributed IDS. After that, the proposed 

“collaborative architecture for distributed IDS” (C-dIDS) is outlined. Then the simulation results are 

presented along with analysis and recommendations. Section 2 of Chapter 4 presents the proposed 
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architecture (C-dIDS based on lightweight IDS modules). This architecture combines two concepts, 

which will have been discussed previously in this thesis: lightweight IDS and a distributed 

collaborative architecture for IDS. To evaluate the C-dIDS, experiments have been carried out and 

presented. We end the chapter with some conclusions.  

   Finally, important conclusions and possible extensions to this work are outlined in Chapter 5. We 

start with a brief review of the thesis’ summary and contributions, followed by a discussion of future 

research directions.  
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Chapter 2 

Background and Related Research 

This chapter begins with a brief overview on computer security (Section 2.1). We explain the main 

security elements: security services, security mechanisms, and security policy. A theoretical 

framework and introduction to Intrusion Detection Systems (IDS) are presented in the next section 

(Section 2.2). First, a description and evaluation of IDS are given, followed by the presentation of its 

components, architecture, goals, and functions. Next, an overview of different computer attack 

categories is given. Then, we briefly review IDS evaluation criteria and different IDS approaches, 

followed by the major IDS challenges. Finally, the concepts of Soft Computing (SC) and distributed 

architecture for IDS are discussed in Section 2.3 and Section 2.4, respectively. 

2.1 Computer Security 

According to [129], computer security infrastructure is based on the following three main security 

services: confidentiality, integrity, and availability in a computer system. Confidentiality is the 

keeping of sensitive information from unauthorized disclosure, which means that unauthorized parties 

cannot access information. It is also known as secrecy or privacy. Integrity concerns the protection of 

sensitive information against unauthorized modifications that are not detectable to authorized users. It 

provides a mechanism for protecting information against accidents or malicious tampering. Finally, 

availability is the prevention of unauthorized withholding of information and resources. It is 

responsible for keeping the computer system working without degradation of access to resources for 

authorized users when they need it.  

   Other important security services are authentication, access control, and non-repudiation. 

Authentication is the act of verifying the identity of a user logging onto a network. It is the process of 

determining whether someone or something is, in fact, who or what it is declared to be. Maintaining 

access control means not only that users can access those resources and services to which they are 

entitled, but also that they are not denied resources that they may legitimately expect to access. Non-

repudiation means that a person who sends a message cannot deny that he sent it and, conversely, that 

a person who has received a message cannot deny that he received it. In addition to these technical 

aspects, the conceptual reach of computer security is broad and multifaceted. Computer security 

draws from such diverse disciplines as ethics and risk analysis, and is concerned with computer crime 
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(i.e. the prevention, detection, and remediation of attacks), as well as identity and anonymity in 

cyberspace.  

   The security services described above provide preventive measures for ensuring the security of the 

system by helping to avoid security policy violations that can occur. A security policy is an 

organization's statement defining the rules and practices that guarantee confidentiality, authentication, 

availability, and integrity in a computing system. It plays three major roles: makes clear what to 

protect and why; it describes the responsibilities for that protection; and it defines the basis on which 

to recover from damage caused by security breaches. It also regulates how to provide security and 

handle intrusions. A security policy might include sections on virus detection and prevention, firewall 

use and configuration, password strength and management, access control rules, physical security, 

and many others.  

   Security mechanisms are the means for implementing security services. They can be divided into 

three broad categories: Prevention, Detection, and Recovery.  

   An Intrusion Prevention System (IPS) is the first step in the convergence of networking and 

security. It provides policies and rules for network traffic along with an intrusion detection system for 

alerting network administrators to suspicious traffic, as well as allowing the administrator to take 

action on being alerted. The IPS is not just a perimeter protection element; it delivers its greatest 

value as a pervasive security element that is deployed at both internal and perimeter network 

segments.  

   Intrusion Detection System (IDS) is the second line of defense. It gathers and analyzes information 

from various areas within a computer or a network to identify possible security breaches, which 

include both intrusions (attacks from outside the organization) and misuse (attacks from within the 

organization). The IDS is designed to detect unscrupulous activities that compromise the 

confidentiality, integrity, or availability of network or computer systems and to analyze what happens 

– or has happened – to indicate that the computer has been misused. It does not eliminate the use of a 

preventive mechanism, but it works as the second defensive mechanism behind a firewall that can 

monitor the network while leaving network performance unaffected.  

   Intrusion Recovery System (IRS) is the third line of defense. It is comprised of the steps or actions 

that need to be taken after the system has been compromised, in order to restore it to its previous 
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condition and avoid further loss from intrusion. It will also terminate intrusion and protect against 

reoccurrence.  

   Detection and recovery mechanisms generally involve long-term activities and are necessary 

because prevention alone can never be wholly adequate. In the following sections of this chapter, we 

will briefly describe IDS.  

2.2 Intrusion Detection System (IDS) 

An intrusion is defined in [127] as any set of actions that attempt to compromise the integrity, 

confidentiality, or availability of a resource by trying to violate a security policy. For example, if a 

system security policy defines specific authorized users, then the action of sneaking into these users’ 

accounts and transferring these users’ files is an intrusion.  

   Intrusion detection is the process of monitoring the events occurring in a computer system or 

network and analyzing them for signs of intrusion. It aims to protect the confidentiality, integrity, and 

availability of critical networked information systems by analyzing what happens or has happened 

during an intrusion, and attempts to locate signs that the computer has been misused.  It can also take 

the appropriate actions to cut off network connections, record events, raise an alarm, and remind 

system administrators to take proper measures.     

      Intrusion detection System (IDS) is a system that gathers and analyzes information from various 

areas within a computer or a network to identify attacks made against these components. The IDS 

uses a number of generic methods for monitoring the exploitations of vulnerabilities. They are useful 

not only in detecting successful breaches of security, but also in monitoring attempts to breach 

security, which provides important information for timely countermeasures. Thus, the IDS is useful 

even when strong, preventive steps are taken to protect computer systems, placing a high degree of 

confidence in the security it provides [130]. 

2.2.1 Evolution of IDS 

James Anderson’s paper [131] was the first document to describe the concept of an IDS. The paper 

described computer security threat monitoring and surveillance. It debated the pros and cons of audit 

trail data, log files tracking users’ access to data, and how the analysis of these documents enabled the 

reader to detect unauthorized access to data [131].The author identified that the problem with this 
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system of detection was that the files did not contain enough pertinent data on user access to be used 

by the security staff reviewing them [131]. 

   Three years later, the first model IDS was developed under the name IDES (Intrusion Detection 

Expert System). The system was inspired by Dr. Dorothy Denning’s paper “An Intrusion Detection 

Expert Model.” The main focus of the paper was that it was possible to create models of users of a 

system based on the actions of the users on the audit files, and that unauthorized access could be 

detected by identifying abnormal behavioural patterns in those files [132]. This is the basis for the 

anomaly-based detection techniques.  

   The next major IDS was developed at Lawrence Livermore laboratories in 1988 under the name 

Haystack. Haystack compared audit data to defined patterns of misuse in order to detect intrusions 

�[133]. This was the basis of the signature-based technique for intrusion detection. The next iteration 

of IDS development was the DIDS (Distributed Intrusion Detection System), where information on 

client machines and servers was also tracked.   

   In 1990, Todd Heberlein developed the Network Security Monitor at UC Davis. The Network 

Security monitor is considered to be the first intrusion detection system. It was mainly used by major 

government installations where network traffic monitoring was needed. [134] This system applied 

knowledge of malicious behaviour in general, so it used not only log files but also network packets 

for detecting patterns which could be malicious [135]. This system generated interesting results, and 

increased the interest in IDS. With increased interest came increased investment and in the early 90s 

IDS began to be developed commercially.  

   Haystack Labs was the first vendor of a commercial IDS with their system called “Stalker.” SAIC, 

another IDS vendor, developed the Computer Misuse Detection System in 1996 This was another 

successful IDS. The United States Air Force was simultaneously developing an IDS called the 

Automated Security Incident Measurement (ASIM). This IDS was the first to use software as well as 

hardware in an IDS. The same group which developed ASIM later left the USAF and founded their 

own company, Wheel Group, which later released Net Ranger, which was considered to be the first 

commercially viable IDS. In 1997, Internet Security Systems Co. developed the Real Secure IDS, 

which is another important IDS entry in the IDS market. 
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2.2.2 Intrusion Detection Architecture 

Modern IDS are extremely diverse in the techniques they employ to gather and analyze data. Most 

rely, however, on a common architecture for their structure, as shown in Figure 2.1:  

- A Detection Model: This gathers data that may contain evidence of intrusion. All modern IDS 

monitor host computers, networks, routers or application links to capture intrusion-relevant 

data. 

- An Analysis Engine: This can also categorize three types of detections: misuse detection, 

anomaly detection, and specification detection. 

- The Response Component: This reports intrusions and takes other responses such as isolation, 

changing logging or disconnection, etc. 

         

Detection Model/ Information Sources  

The first distinction can be made in terms of the placement of IDS. In this respect, IDS are usually 

organized into host-based, network-based, router-based and application-based systems.  

a. Host-based Intrusion Detection Systems (HIDS) 

Host audit sources are the only way to gather information on the activities of the users of a given 

machine [32], [123], [136]. Thus, Host Intrusion Detection Systems (HIDS) are present on each host 

that requires monitoring and collects data concerning the operation of this host. This usually consists 
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of log files, network traffic to and from the host, or information on processes running on the host. 

HIDS can determine if an attempted attack was indeed successful and can detect local attacks, 

privilege escalation attacks, and attacks that are encrypted. However, such systems can be difficult to 

deploy and manage, especially when the number of hosts needing protection is large. Furthermore, 

these systems are unable to detect attacks against multiple targets on the network.  

b. Network-based Intrusion Detection Systems (NIDS) 

Network Intrusion Detection Systems (NIDS) monitor the traffic on the network containing the hosts 

to be protected and are usually run on a separate machine, called a sensor [9], [13], [29], [31], [137]. 

NIDS are able to monitor a large number of hosts with relatively little deployment cost and are able to 

identify attacks to and from multiple hosts. However, they are unable to detect whether an attempted 

attack was successful, and are unable to deal with local or encrypted arracks. 

c. Router-based Intrusion Detection Systems (RIDS) 

Router Intrusion Detection Systems (RIDS) enable networks to cooperate in the detection of system 

attacks and protect the greater network infrastructure [34]. This approach is close to the second 

approach (NIDS) with a few exceptions. First, a RIDS protects network infrastructure and particularly 

focuses on routing. Therefore, the target of analysis is mainly on specific protocol traffic instead of 

general data traffic. Second, a RIDS analyzes the logical behaviour of routing in order to identify the 

set of states that are indicative of security attacks. These systems ensure a safe, reliable connection 

between computers over large networks.  

d. Application-based Intrusion Detection Systems (AppIDS) 

Application Intrusion Detection Systems (AppIDS) is being researched by Robert Sielken and Anita 

Jones and University of Virginia [148], [149]. Their approach uses the semantics of the application as 

a further basis for detection of intruders. The AppIDS examines the behaviour of the application: it 

can observe interaction between the application and the user, and it is able to operate when incoming 

data is encrypted. However, it is more susceptible to attack, less capable of detecting software 

tampering, and may be taken in by forms of spoofing. 
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Analysis Techniques  

Once intrusion detection data have been gleaned, IDS uses its analysis to identify intrusions. Three 

main approaches can be distinguished: misuse detection, anomaly detection, and specification-based 

intrusion detection, the latter combining misuse and anomaly detection.   

a. Misuse detection 

 Misuse detection attempts to model abnormal behaviour, any occurrence of which clearly indicates 

system abuse [8], [58], [68]. It aims to discover intrusion by searching for distinguishing patterns or 

signatures of known attacks. It produces a minimal number of False Positives. Misuse detection can 

attain high levels of accuracy, but it suffers from many limitations: (1) Difficulty in creating compact 

models of attacks (models that cover all possible variants of attacks); (2) Inability to detect new 

intrusions; (3) Signature updating bottleneck; (4) Intrusion variation detection; (5) It is difficult for 

misused systems to identify attacks that may originate from more than one source, or vary in the 

means by which they are conducted, or are protracted over long periods of time; (6) Extensive effort 

is required to construct and maintain a misuse detection system since attack scenarios and system 

vulnerabilities need to be analyzed and categorized, and the corresponding rules and patterns need to 

be carefully hand-coded and verified. Misuse detection might be implemented by one of the following 

techniques: expression matching [50], state transition analysis [50], dedicated languages [50], and 

burglar alarms [50]. 

b. Anomaly detection 

Anomaly detection attempts to model normal system behaviour, any events that violate this model are 

considered to be suspicious [18], [48], [51], [117]. It is based on the assumption that intrusion 

behaviour deviates significantly from previously learned normal behaviour, and employs the user 

profile as the basis for detection. Any deviation from normal user behaviour is considered an 

intrusion. Anomaly detection addresses the problem of detecting novel intrusions. However, it suffers 

from many drawbacks, such as: (1) Inability to identify intrusion, in that it suffers from the problem 

of how to correctly construct a baseline model of behaviour that is sufficient for complete and correct 

operation of the system; (2) A higher false alarm rate; (3) Difficulty in determining whether 

anomalies are caused by intrusions; (4) Concept drifting problem; (5) Mimicry attacks; (6) Intensive 

computational cost; (7) User behaviour that can change dynamically and can be very inconsistent;  

and (8) Some intrusions can only be detected by studying the sequential interrelation between events, 

because each event alone can appear to be normal according to the statistical measures. Anomaly 
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detection might be implemented by one of the following techniques: statistical models [48], [49], 

which consist of many different techniques such as threshold measures, mean and standard deviation, 

and many others [50]; an immune system approach [140]; protocol verification [50]; file checking 

[50], taint checking [50]; neural networks [29], [117], [33]; fuzzy logic [93]; support vector machine 

[17]; and data mining techniques [141], [142].  

c. Specification detection 

This approach was introduced more recently by University of California, Davis, and referred to as 

specification-based intrusion detection [72], [143], [144], [143] relying on manually setting program 

behavioural specifications that are used as a basis to detect attacks. It determines whether or not a 

sequence of instructions violated a specification of how a program, or system, should behave. This 

technique has been proposed as a promising alternative which combines the strength of misuse-based 

and anomaly-based detection. Specification-based detection has the potential to provide a very low 

False Positive rate. It is, however, difficult to model complex programs or systems and write security 

specifications for them.  

Response Component 

One major concern is to ensure that in the case of an intrusion attempt, the system is able to detect 

and to report it [99], [146], [147]. Once the detection is reliable, the next step is to protect the network 

(responses). In other words, the IDS will be upgraded to an Intrusion Detection and Response System 

(IDRS). Intrusion responses are a series of actions and countermeasures employed when an intrusion 

is detected. These actions and measures can prevent further attacks and restore the system to a normal 

state. Current intrusion response systems can be categorized depending on different criteria such as: 

degree of autonomy; activity of triggered response; ability to adjust; time response; cooperation 

ability; and response selection method. 

Degree of autonomy is grouped into three categories: 

• Notification Response System: notification or alert to the administrator could be the 

displaying of a pop-up window, or generating an e-mail, pager or mobile phone message. 

• Manual Response System: allows administrator to manually launch countermeasures against 

a detected intrusion by choosing from a predetermined set of responses. 
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• Automatic Response System: able to choose countermeasures themselves and respond to an 

attack immediately without human intervention. 

Activity of triggered response is grouped into two categories: 

• Passive Response System: this is content with merely detecting an intrusion, leaving its 

handling to a human agent.  

• Active Response System: IDS automatically takes action in response to a detected intrusion, 

reacting immediately to an intrusion as it occurs.  

Ability to adjust is grouped into two categories: 

• Static: The majority of these systems are static, as the response selection mechanism remains 

the same during the attack period. These systems can be periodically upgraded by the 

administrator; such support, however is manual, and often delayed until the moment when a 

considerable number of intrusions expose the inadequacy of the current response mechanism. 

Although this approach takes a conservative view of the system and environment, it is simple 

and easy to maintain. 

• Adaptive: The adaptability of the response is the ability of the system to dynamically adjust 

the response selection to the changing environment during an attack. Adaptation capability 

can be represented in several ways including (a) adjustment of system resources devoted to 

intrusion response such as activation of additional IDS, or (b) consideration of success and 

failure of responses previously made by the system. 

Time response is grouped into two categories: 

• Proactive: Proactive response systems allow the system to anticipate the incoming intrusion 

before the attack has affected the resource. Such prediction is generally difficult and often 

relies on probability measures and analysis of current user or system behaviour.  

• Delay: The response action is delayed until the attack has been confirmed. Such assurance 

may be provided through the confidence metrics of the IDS or the full match of the intrusive 

trace with an existing attack signature. 

Cooperation ability is grouped into two categories: 
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• Autonomous: Autonomous response systems handle intrusions independently at the level  at 

which they are detected. As such, a host-based IDS detecting an intrusion on a single machine 

will trigger a local response action such as terminating a process, shutting down the host, etc. 

• Cooperative: Cooperative response systems refer to a set of response systems that combine 

efforts to respond to an intrusion. Cooperative systems can consist of several autonomous 

systems that are capable of detecting and responding to intrusions locally, though the final, or 

additional, response strategy is determined and applied globally. 

Response selection method is grouped into three categories: 

• Static mapping: Static mapping systems are essentially automated manual response systems 

that map an alert to a predefined response. For example, detecting an attack on a host can 

trigger the dropping of incoming/outgoing network packets. 

• Dynamic mapping: Dynamic response mapping systems are more advanced than static 

mapping systems as the response selection is based on the certain attack metrics (confidence, 

severity of attack, etc). 

• Cost-sensitive mapping: Cost-sensitive response systems are the only response systems that 

attempt to balance intrusion damage and response cost. The optimal response is determined 

based on the cost-sensitive model that incorporates several cost and risk factors. 

2.2.3 IDS Functions and Goals 

Many studies have shown that most computer security incidents are caused by insiders; this results in 

the need for extra security measures within the organization. IDS may complement other preventive 

controls (e.g. firewalls) as the next line of defence within the organization. An IDS software or 

hardware system is placed inside or at the boundary of the protected network to monitor what occurs 

within the network. It offers the opportunity to detect an attacker who is able to pass through different 

network devices. Detection can take place at the beginning of the attack, during the attack, or after it 

has occurred. Once detection is reliable, the next step is to protect the network (responds). The 

response can be activating an alarm, isolation, changing logging, disconnecting, etc.  

   The goal of IDS is to accurately detect intrusions, sort out true intrusions from false alarms, and 

notify network administrators of the activity. Many organizations now use IDS to help them 
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determine if their systems have been compromised. Given the goal of an IDS, the functions of an IDS 

can be: 

• Monitor and analyze user and system activity 

• Audit system configurations and vulnerabilities 

• Detect a wide array of intrusions, including outside intrusions and insider attacks, of both 

known and unknown varieties 

• Detect intrusions in a timely fashion 

• Present the analysis in a simple, easy-to-understand format 

• Achieve a low false alarm rate (high accuracy)  

• Inform the system of any suspicious behaviour by sending a report or sounding an alarm 

• Assess the integrity of critical system and data files. 

 

   An IDS may embody one or more of these functions, depending on the type of IDS, network 

architecture, and user requirements. Moreover, the combination of these features allows system 

administrators to more easily handle the monitoring, audit, and assessment of their systems and 

networks.  

2.2.4 Computer Attacks Categories  

An intrusion is defined as any set of actions that attempt to compromise the confidentiality, integrity, 

or availability of a resource to gain root privilege, whether by exploiting vulnerabilities in the system 

configuration to access confidential data, or by relying on a legitimate system user to download and 

run a seemingly legitimate Trojan horse program.  

   With an increased understanding of how systems work, intruders have become skilled at 

determining weaknesses in these systems and exploiting them to obtain system privileges and access 

system resources. Intruders also use patterns of intrusion that are difficult to trace and identify. They 

frequently employ a series of feints before breaking into target systems and rarely indulge in sudden 

bursts of suspicious or anomalous activity. They also cover their tracks so that their activity on the 

penetrated system is not easily discovered. 
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In general, attack types fall into four main categories [138]: 

• Probing: surveillance, among others 

• DoS: Denial of Service 

• U2Su/U2R: Unauthorized access to Local Super user (root) privileges 

• R2L: Unauthorized access from a Remote machine 

Probing  

Probing is a class of attack where an attacker scans a network to gather information or find known 

vulnerabilities. There are different types of probes, some of which abuse the computer’s legitimate 

features and others that employ social engineering techniques. This class of attack is the most 

common and requires very little technical expertise. Examples of this type include IPsweep, Saint, 

and Satan. 

DoS Attacks 

Denial of service (DoS) is a class of attack where an attacker makes some computing or memory 

resource too busy or too full to handle legitimate requests, thus denying legitimate users access to a 

machine. There are different ways to launch DoS attacks, such as abusing the computer’s legitimate 

features, targeting implementation bugs, or exploiting the system’s configuration errors. Examples of 

this type of attack include DDoS, Pingflood, SYN flood, Mailbomb, and Process Table. 

U2Su Attacks 

User to root (U2Su) exploits are a class of attack where an attacker starts out with access to a normal 

user account on the system and is able to exploit a vulnerability to gain root access. Most common 

exploits in this class of attack are regular buffer overflows, which are caused by regular programming 

mistakes and environment assumptions. Examples of this type of attack include Eject, Fdformat, 

Loadmodule, and Perl. 

R2L attacks 

A remote to user (R2L) attack is a class of attack where an attacker sends packets to a machine over 

the network, then exploits the machine’s vulnerability to illegally gain local access as a user.  

Examples of this type of attack include Dictionary, FTP-write, Sendmail, and Xlock. 
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2.2.5 Evaluation Criteria  

To evaluate the efficiency of an IDS, there are a number of parameters to be considered [139]:  

Accuracy: Accuracy deals with the proper detection of attacks and the absence of false alarms. 

Inaccuracy occurs when an IDS flags a legitimate action in the environment as anomalous or 

intrusive. 

Efficiency: An IDS has to perform and propagate its analysis as quickly as possible to enable the 

security officer to react before much damage has been done, and to prevent the attacker from 

subverting the audit source or the IDS. The efficiency of the IDS not only encompasses the intrinsic 

processing speed of the IDS but also the time required to propagate the information and react to it. 

Generality: An IDS should capture all or almost all known attacks.  

Real Time Performance: Computer networks have a dynamic nature in the  sense that information 

and the data within them are continuously changing. Therefore, to detect an intrusion accurately and 

promptly, the system has to operate in real time.  

Robustness: It should have multiple detection points, which are robust enough against attack and any 

system faults of the IDS. If intruders already know the existence of an IDS and can subvert it, then the 

effort to develop the IDS was futile. 

Scalability: It is necessary to achieve reliable scalability in order to gather and analyze the high-

volume of audit data correctly from distributed hosts. In the case of a monolithic IDS, the audit trail 

collection procedure is distributed and its analysis is centralized. However, it is very difficult to 

forward all audit data to a single IDS for analysis without losing some of the data. Even if the IDS 

scales for all audit data correctly, it may cause severe network performance degradation. 

Extendibility: It should be easy to extend the scope of IDS monitoring by and for new hosts easily 

and simply regardless of the operating system. When a new host is added to an existing network 

environment, and especially when this new host runs an operating system that employs a different 

format of audit data, it is difficult to monitor it in a consistent manner with existing IDS. 

Completeness: Completeness is the ability of an IDS to detect all attacks. Incompleteness occurs 

when the IDS fails to detect an attack. This measure is much more difficult to evaluate because it is 

impossible to have global knowledge about attacks or abuses of privileges. 
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   Even though various approaches have been developed and proposed, no existing IDS satisfy all of 

these requirements completely. 

2.2.6 IDS Approaches 

There has been steadily growing interest in research and development of IDS.  The main goal was to 

create a system capable of detecting different kind of attacks. To accomplish this goal, researchers 

have been exploring various tools and techniques such as Pattern Matching [58], [59], Statistical 

Models [48], [49], State Transition Analysis Technique [60], Information Theoretic Measures [51], 

Intrusion Correlation (Data Mining) [74], [75], [76], Immune System [52], [53], [54], File Checking 

[78], Whitelisting [79], Colored Petri nets [81], etc.. The next paragraphs survey some of these 

approaches, and give examples of currently available tools using them. No intrusion detection 

approach stands alone as an ideal system which captures all attack types; each approach is technically 

suited to identify a subset of security violations. The intent of this sub-section is to give a brief 

overview of current intrusion detection techniques, to better identify how our proposed system (C-

dIDS) fits into the general scheme of things. Understanding the strengths and limitations of these 

approaches will clarify the benefits, as well as the tradeoffs, to the approach presented in this thesis.      

   Pattern Matching [58], [59], is the simplest technique used for anomaly IDS. This technique 

searches an event stream for occurrences of specific patterns. Although this technique is fast, it 

requires an understanding of the nature of the attack, which implies that human experts must work on 

the analysis and representation of the attacks. This tends to be time-consuming and error-prone. 

Moreover, this technique suffers from scalability issues, either in terms of speed or the number of 

patterns to be searched, primarily due to limited and expensive logic resources. Only those attack 

scenarios which are known and constructed into patterns by the system can be detected. Attacks 

involving spoofing, and passive methods of attack like wire-tapping cannot be detected. 

   Statistical Modeling [48], [49] is among the earliest methods used for anomaly detection in 

electronic information systems. It measures the user and system behaviour by a number of variables 

sampled over time, and builds profiles based on the variables of normal behaviour. The actual 

variables are then compared against the profiles, and deviations are considered abnormal. There are 

many statistical techniques such as threshold measures, mean and standard deviation, Markov process 

model, clustering analysis, etc [50]. While these statistical techniques have some value, they are 

insensitive to the order of the occurrence of events, which causes them to miss the sequential 

interrelationships between events. For intrusions reflected by such an ordering of patterns, a statistical 
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IDS will miss these intrusions. Moreover, this approach requires the construction of a model for 

normal user behaviour, and any user behaviour that deviates significantly from this normal behaviour 

is flagged as an intrusion. It can also be difficult to determine the correct anomaly threshold at which 

behaviour is to be considered an intrusion. Also, to apply statistical techniques, one has to assume that 

the underlying data comes from a quasi-stationary process, which may not always hold.  

   State Transition Analysis Technique (STAT) [60] is one of the famous rule-based expert systems 

for detecting penetrations. It was developed by the Reliable Software Group at UCSB for misuse 

detection in UNIX systems, distributed systems, and networks. The STAT uses the state transitions of 

the system to identify intrusions. This method constructs the state transition diagram, which is the 

graphical representation of intrusion behaviour as a series of state changes that lead from an initial 

secure state to a target compromised state. State transition diagrams list only the critical events that 

must occur for the successful completion of the intrusion. The main advantage of this technique is 

that it allows a complex intrusion scenario to be modeled in a simple way, and is capable of detecting 

slow, distributed, and cooperative attacks, variations to known attacks, and attacks which span across 

multiple user sessions. Too, it improves the ability to automatically determine the data to be collected 

to support intrusion analysis. This enables a lightweight and scalable implementation of the network 

probes. On the other hand, it may have difficulty in expressing the attacks scenarios. Also, it can only 

construct patterns from sequences of events, not from more complex forms, and therefore some 

attacks cannot be detected as they cannot be modeled with state transitions. 

   Information theoretic measures is another technique that has been used by many researchers for IDS 

[51], [62], [80]. This technique computes information content in data using information theoretic 

measures such as entropy, conditional entropy, relative conditional entropy, information gain, and 

information cost, and uses them to describe the characteristics of audit data and to build anomaly 

detection models. It operates in an unsupervised mode. It requires, however, an information theoretic 

measure sensitive enough to detect irregularity induced by very few outliers.  

   Data mining generally refers to a process of non-trivial extraction of implicit, previously unknown, 

and potentially useful information from databases. The key concepts of using data mining  in IDS are 

to discover consistent and useful patterns of system features that describe user behaviour, and to use 

the set of relevant system features to compute classifiers which can recognize anomalies and known 

intrusions [36], [74], [75], [84], [142].  These data mining techniques have been garnering increasing 

research interest, since they can automatically discover detailed attack or normal models that can be 
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easily understood by human beings. However, these techniques tend to generate a large number of 

models, especially for large inputs of data. In addition, it requires extra human intervention to reduce 

and refine the extracted models. 

   Many immune systems have recently been developed for IDS [52], [53], [54], [76]. In the immune 

system approach, applications are modeled in terms of sequences of system calls for a variety of 

different conditions: normal behaviour, error conditions, and attempted exploits. Comparing this 

model to observed event traces allows classification of normal or suspicious behaviour. In general, 

this technique provides the computer system with a high level of protection from a specific number of 

attacks in a robust, autonomous, adaptive, self-organization and distributed manner. However, it 

cannot detect attacks based on race conditions or policy violations. Moreover, it faces other 

difficulties, such as its inability to efficiently map the entire non-self universe, its definition of self-

ambiguous, and self/ non-self changes over time.  

   Dedicated languages are the most widely used approach misuse detection. Each attack signature 

takes the form of a specialized program, with row events as input. Any input triggering a filtering 

program, or input that matches internal alert conditions, is recognized as an attack. Unfortunately, 

there is no common language for describing attacks. In general, there are six different classes: event 

languages [55], [56], [62], response languages, reporting languages [63], [64], correlation languages 

[65], [66], [68], exploit languages [69], [70], and detection languages [65], [66], [68], [71], [72], [73]. 

These language classes define different scopes and goals. While the dedicated languages technique 

offers great flexibility in matching attack scenarios, it needs significant understanding of protocols, 

attacks involved, and programming ability. Moreover, attacks with a signature variations string may 

not be captured.  

   Nevertheless, there are common challenges in the current studies of IDS which are reflected on IDS 

performance, such as high False Positive/Negative, limit scalability, etc. More detail about these 

challenges is discussed in the following sub-section.  

2.2.7 Major IDS Challenges  

Considering the surveyed literature, it is clear that the current view of IDS is that it is far from a 

reliable protective system. This sub-section briefly identifies some of the inherent characteristics that 

limit the performance of the different IDS techniques. They are as follows: 
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�  High False Positives 

False Positives are those sequences of innocuous events that the IDS classifies as intrusion. A 

common complaint is that the large number of False Positives generated by ID systems 

makes it hard to filter out false attacks without potentially missing true attacks. Another 

crucial problem that arises from a high number of False Positives is related to incident 

handling; that is, security administrators are uncertain how to respond to mitigate the risks if 

a certain degree of accuracy cannot be achieved. There is no decision rule associated with 

each alert to tell the security administrator whether he should ignore the alert or simply 

terminate the suspicious session. 

�  High False Negatives  

     False negatives refer to intrusion attempts that the IDS fails to report.  

• Limited Scalability 

It is very difficult to forward all audit data to a single IDS for analysis without losing the data. 

Even if it scales for all audit data correctly, it may cause severe network performance 

degradation. 

�  Lack of Context Information 

Anomaly detection fails to provide adequate contextual information for the security 

administrator in locating the attack. This weakness increases the difficulties of alert handling.  

�  Too Many Variants 

Because of newly merging attack behaviours and quickly spreading malicious code, it is very 

difficult to determine the nature of an event before significant damage has been done. 

Another affliction is that the exploit codes targeting known vulnerabilities do not stay 

unchanged forever. (If the computers can provide enough decision-supporting analysis 

reports, then the system administrators can more easily determine the correct action to take in 

a crisis.) 

�  Writing Signatures for IDS  is a Very Difficult Task 

In some cases, the appropriate balance between an overly specific signature (which is not able 

to capture all attacks) and an overly general one (which recognizes legitimate actions as 

intrusions) can be difficult to determine. 
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�  Skewed Class Distribution  

The training set consists of many normal examples and a small number of attack examples – 

an imbalance between these two data types may cause difficulties in recognizing the correct 

patterns. 

�  Propagation of Number of  Attacks 

The rapidity of intruder tool improvement increases the number of attacks and strategies that 

are used to attack the system. 

• IDS maintenance 

Like any other system, maintenance must be performed. In misused systems, signatures must 

be updated at regular intervals, an onerous task in most cases. 

�  Other Difficulties  

One of the major difficulties is that some actions can be normal in certain environments but 

may be malicious in others. 

2.3 Soft Computing Approaches for IDS 

The application of Soft Computing (SC) is widely used for IDS because of its features, such as 

accuracy (low False Positive and False Negative rates), flexibility (not easily fooled by small 

variations in intrusion patterns), adaptability in new environments (modular with both misuse and 

anomaly detection components), low solution cost, real-time performance (fast recognition and ability 

to classify different attacks), and ability to generalize from learned data. The SC is the general term 

for describing a set of optimization and processing techniques that are tolerant of imprecision and 

uncertainty. The ability of SC tools to deal with uncertain and partially true data makes them suitable 

for application in IDS. The SC is used to create a system of detecting and characterizing anomalous 

network behaviour. The principal constituents of SC techniques are Neural Networks (NN), Fuzzy 

Logic (FL), and evolution computation, as shown in Figure 2.2. 
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    FL systems [6] are useful in situations when human expertise (expertise that cannot be translated 

into a set of equations) needs to be incorporated into the decision-making process. Evolutionary 

programming, evolutionary strategies, and genetic algorithms [150] are useful for optimization 

problems whose particular difference is how they avoid local extremes. Finally, Artificial Neural 

Networks (ANNs) [7] are useful when complex relationships (or patterns) in data need to be 

extracted. ANNs are tolerant of imprecise data and uncertain information: with their ability to 

generalize from learned data, they seem to be an appropriate approach to IDS.  

   Based on IDS, most of the work conducted in the literature falls into two key areas: detection model 

and generation, and intrusion features selection. For detection model and generation, numerous SC 

techniques are adopted to build efficient detection models such as FL [11], [12], GA [13], [14], [15], 

NN [8], [9], [10], [16], and Support Vector Machines (SVM) [17], [18].  For intrusion features 

selection, much research has tried to select the important intrusion features using different SC 

approaches, such as NN [19], [20], GA [21], [22], [23], [24], SVM [19], [25], [26], [34], and other 

optimization tools [27], [28].  

   The rest of this section briefly introduces the various SC techniques, such as FL, GA, NN, and 

SVM approaches in both areas of IDS: detection model and generation, and intrusion features 

selection. In addition, we mention some related works for each of these approaches. 

   FL [6] is a mathematical technique for dealing with imprecise data and problems with many 

solutions. FL works with ranges of values, solving problems in a way that more resembles human 
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logic. FL is often used in systems where state transitions should be softened when making decisions 

with fuzzy boundaries. FL has been used in both IDS research areas: detection model and generation, 

and intrusion features selection. For the detection model and generation area, many researchers have 

proposed the application of FL such as Piyakul et al [11] and Zhang et al [12]. Dickerson et al [37] 

proposed Fuzzy Intrusion Recognition Engine (FIRE), which is a network intrusion detection system 

that uses fuzzy systems to assess malicious activity against computer networks. The system uses an 

agent-based approach, and each agent performs its own fuzzification of input data sources. At the 

end, all agents communicate with a fuzzy evaluation engine that combines the results of individual 

agents using fuzzy rules to produce alerts that are true to a degree. For the intrusion Features 

Selection area, Xin et al. [82] uses interactive data visualization to analyze the features of several 

different intrusion detection scenarios. Visualizing the data helps to find the most import features that 

are used to identify intrusions and if they can be characterized as fuzzy sets or by Boolean variables. 

These features can then be input into a fuzzy cognitive map that serves to fuse the inputs to detect 

more complex attacks. Most fuzzy approaches in this area are integrated with other SC methods [84], 

[85], [86].  

   GAs are a family of computational models based on principles of evolution and natural selection. 

These algorithms convert the problem in a specific domain into a model by using a chromosome-like 

data structure and evolve the chromosomes using selection, recombination, and mutation operators. In 

the IDS detection model, GA can be used to evolve simple rules for network traffic. These rules are 

used to differentiate normal network connections from anomalous connections. Recent researchers 

[13], [14], [15] have demonstrated that the GA field is an emerging field in computer security, 

especially with regard to IDS detection models. Moreover, GAs have been used as one aspect of the 

IDS features selection approach [21], [22], [23], [24]. Shazzad et al. [21] proposed a hybrid features 

selection method by combining Correlation-based Features Selection (CFS), SVM, and GA.  The GA 

is used to generate subsets of features from the given features set, which is then evaluated by CFS and 

SVM to pick the best features set. They combined three different approaches and were able to reduce 

the number of features from 41 to 12 for the DARPA dataset. Alexander et al. [22], [24] set out GA 

that performs the tasks of features selection and architecture optimization for Radial Basis Function 

(RBF) networks. Also, Kim et al. [23] proposed a features selection method identical to the previous 

method, but they used GA techniques to obtain the optimal features set and the optimal parameters for 

a kernel function of SVM.   
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   ANNs have been extensively used to detect both misuse and anomaly patterns. ANNs are 

algorithmic techniques [6], [7] used to first learn the relationship between two sets of information and 

then generalize to obtain new input-output pairs in a reasonable way. The ANNs consist of a 

collection of processing elements that are highly interconnected and transform a set of inputs to a set 

of desired outputs. They are widely considered an efficient approach to adaptively classify patterns 

due to their capability to compact knowledge representation, even if the data are complex or non-

deterministic. This capability makes them an effective implementation model for an IDS.  

Researchers have proposed several approaches in this regard in order to improve IDS accuracy [29], 

[30], [31], [32]. Jian et al. [33] use backpropagation (BPL) neural networks to detect anomalous user 

activities. They have shown that NN can be used successfully as a method for training an IDS and 

providing it with learning skills. Also, Lilia et al. [8] present a network detection method using a 

Hamming net, which is a type of NN with special properties that make it suitable for real-time 

classification. Moreover, Chunlin et al. [16] proposed two hierarchical IDS frameworks using Radial 

Basis Functions (RBF). They used a serial hierarchical IDS (SHIDS) to identify accurately misuse 

attacks and adaptively identify anomaly attacks, and then used parallel hierarchical IDS (PHIDS) to 

enhance SHIDS functionality and performance. For the other IDS research area, features selections, 

Sung et al. [19] exploited SVM and NN to categorize and identify features based on some 

performance criteria by ranking feature importance for each kind of attack, such as probe, DoS, R2L, 

and U2R.  This approach is based on deleting one feature at a time; the resultant data set is then used 

for training and testing of the classifier (either NN or SVM). Then the classifier’s performance is 

compared to that of all features based on performance criteria. Finally, the important feature is ranked 

according to a set of rules based on the performance comparison.  Glovko et al. [20] proposed NN 

architectures for the IDS. The proposed approach is based on combining two different NN: Principle 

Component Analysis (PCA) and Multilayer Perceptron (MLP). PCA (linear and nonlinear PCA) 

networks are employed for important data extraction and high dimensional data vectors reduction. 

MLP is employed to detect and recognize attacks using extracted-features data instead of original 

data.  

    Recently, SVMs have been used to detect intrusion due to their good generalization characteristics 

and ability to overcome the curse of dimensionality. SVM is a statistical machine learning algorithm 

that maps input (real-value) feature vectors into a higher dimensional feature space through nonlinear 

mapping. The SVM is primarily a classier method that performs classification tasks by constructing 

linear classifying (hyperplanes) in a multidimensional space that separates cases of different class 
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labels. A special property of SVM is that they simultaneously minimize the empirical classification 

error and maximize the geometric margin by using a quadratic optimization problem with bound 

constraints and one linear equality constraint. There are two other key concepts of SVM: Soft Margin 

and Kernel concept. SVM are powerful tools for providing solutions to classification, regression, and 

density-estimation problems. Kun et al. [18] proposed an approach to intrusion detection using SVM 

for anomaly detection. It is a one-class SVM-based approach, which delivers a highly accurate rate on 

the testing set. In addition, John et al. [17] proposed using the SVM learning approach to classify 

network requests. They employed a new method – ArraySVM – and by their experiments showed 

satisfactory system performance in terms of training time and accuracy. For IDS features selection, 

Mukkamala et al. [25], [26], [34] proposed a router-based approach to detect DoS attacks by using 

SVM. They identify DoS-pertinent features by using Support Vector Decision Function (SVDF) and 

evaluate the applicability of using these features in the detection of online novel DoS attacks on a 

performance network. SVDF calculates the weight of the features to rank their significance. For 

example, in the equation features. 
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where W is the weight vector , b is a bias value, and n is the number of features. They ranked each 

feature depending on the value of its weight. The features with large weight values are considered to 

be the features of the greatest effect (important features) and are used for the detection process. In 

[26], they used eleven features as important features for the detection process. In [34], they claimed 

that using six important features from among the eleven features can give excellent performance. 

    Several other Soft Computing (SC) techniques are used to improve the performance of the IDS and 

much work has been done in this area. For example, GAO et al. [27] proposed Ant Colony 

Optimization (ACO) and Srinoy [28] proposed Particle Swarm Optimization (PSO) to select the best 

features set for IDS. Chen et al. [35] proposed Flexible Neural Tree (FNT) to identify important input 

features in building an IDS that is computationally efficient and effective.  The FNT structure is 

developed using an evolutionary algorithm, and the parameters are optimized by a particle swarm 

optimization algorithm. Li et al. [36] proposed a supervised clustering and classification algorithm 

(CCAS) for IDS. This algorithm utilizes a heuristic in grid-based clustering. Several post-processing 

techniques including data redistribution, supervised grouping of clusters, and removal of outliers are 

used to enhance the scalability and robustness. Zanero et al. [38] proposed a two-tier architecture for 

IDS: the first tier is an unsupervised clustering algorithm which reduces the network packets payload 
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to a tractable size. The second tier is a traditional anomaly detection algorithm, whose efficiency is 

improved by the availability of data on the packet payload content. Wang et al [39] proposed a new 

clustering algorithm, FCC, for IDS based on the concept of fuzzy connectedness. This approach starts 

with a single or a few seed points in each cluster, and all the data points are dynamically assigned to 

the cluster that has the highest fuzzy connectedness value (strongest connection).  

2.4 Distributed Intrusion Detection Systems  

With the increasing connectivity and complexity of heterogeneous computer systems, it is likely 

unrealistic to expect that an IDS should be capable of correctly classifying every event that occurs on 

a given system. In addition, there are the limitations of a centralized IDS, such as: a single point of 

failure; limited scalability; frequent overload; vulnerability to subversion; and difficulty in 

configuring or adding capability to the IDS. An IDS should consist of multiple entities working 

independently to cover the huge amount of data and traffic in the system, and should allow changes to 

these entities without any modifications made to other entities; this is accomplished by using an IDS 

with distributed architecture. Distributed IDSs (dIDSs) are based on distributed IDS entities located 

on different locations within the network, which monitor separately and communicate and cooperate 

with each other. The dIDS allows computation load and diagnostic responsibilities to be distributed 

throughout the network. It can provide the foundation for a complete solution to the complexities of 

real-time detection, while maintaining fault tolerance behaviour. It allows early detection of planned 

and coordinated attacks, thereby allowing network administrators to take preventive measures. dIDS 

also helps to control the spreading of worms, improves network monitoring, incident analysis, attack 

tracing and so on. Also, it has scalability to detect general attacks or a specific attack, in addition to 

providing significant advantages in flexibility, extendibility, and resistance to compromise.  

   A number of dIDS have been proposed for a distributed environment. Early systems included DIDS 

(Distributed Intrusion Detection System) [41], NADIR (Network Anomaly Detector and Intrusion 

Reporter) [45], CSM (Cooperative Security Managers) [46], GrIDS (Graph-based Intrusion Detection 

System) [42], EMERALD (Event Monitoring Enabling Response to Anomalous Live Disturbances) 

[43], AAFID (Autonomous Agents for Intrusion Detection) [44], CIDF (Common Intrusion Detection 

Framework) [156] and MAIDS (Mobile Agent Intrusion Detection System) [47]. The rest of this 

section briefly introduces some of these projects. 

   DIDS [41] incorporates Haystack and NSM (Network Security Monitor) in its framework. This 

system requires the audit data collected from different places to be sent to a central location for 
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analysis. The DIDS operates on a local area network (LAN) and consists of three major components: 

the host monitor, the LAN monitor, and the central manager. Each host is monitored by a host 

manager. This manager is a collection of processes running in the background of the host. Also, each 

LAN is monitored by a LAN manager, which operates just like a host manager except that it analyzes 

LAN traffic. Finally, there is a central manager which is placed at a single secure location and 

controls the entire system. This central manager receives reports from various host and LAN 

managers, and by processing and correlating these reports, it detects intrusions. The DIDS itself is not 

fully distributed because it relies on both distributed and centralized resources to detect intrusions. 

This technology faces a number of challenges such as its centralized nature, arbitrary definitions of 

abnormal activities, and ineffective coordination between the DIDS modules. 

   The NADIR system [45] performs distributed data collection by employing the existing service 

nodes in the Los Alamos National Laboratory’s Integrated Computer Network (ICN) to collect audit 

information. The NADIR examines the network traffic at the service and protocol level by using a 

statistics-based anomaly detector and an expert system, which is then analyzed by a central expert 

system. The major drawback of NADIR is its centralized analysis, which severely limits the 

scalability of the detection algorithm. Moreover this system, NADIR, would not easily be ported to an 

internetworked environment with many heterogeneous systems.    

    The CSM [46] are employed to perform dIDS that does not need a hierarchical organization or a 

central coordinator. Each individual CSM detects malicious activity on the local host. When 

suspicious activity is detected, each CSM will report any noteworthy activity to the CSM on the host 

from which the connection originated. The local CSM will not notify all networked systems, but 

rather only the system immediately before it in the connection chain. The architecture of the system 

allows for CSM to take reactive actions when an intrusion is detected. Unclear aspects are the 

mechanisms through which CSM can be updated or reconfigured, and the intrusion detection 

mechanisms that are used locally by each CSM. 

   GrIDS [42] uses graph engines that build a graph representation of activity in the network to detect 

possible intrusions. It aggregates computer and network information into activity graphs which reveal 

the casual structure of network activity. The GrIDS is able to detect large-scale automated and 

spreading attacks. Also, it facilitates reporting, policy statements, and process rules. It provides 

mechanisms to allow third-party security tools to be used as data sources. On the other hand, the 

judgment of intrusions still needs human input in order to complete. 
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   EMERALD [43] is intended as a framework for distributed, interoperable computer and network 

intrusion detection. It employs entities called service monitors that are deployed to hosts and perform 

monitoring functions. They define several layers of monitors for performing data reduction in a 

hierarchical fashion. Monitors can be programmed to perform any function. However, this model 

does not scale well for large networks. The large number of events and devices distributed across the 

network can generate too much network traffic and too much data to be stored in one location 

efficiently. It also does not cover distributed services (e.g., DNS, firewalls).  

   AAFID [44] is a distributed intrusion detection architecture and system, developed in CERIAS at 

Purdue University. It is agent-based, employs a hierarchical structure and the data are collected and 

analyzed locally. Nevertheless, there is still a highest-level entity in the AAFID architecture, which is 

the bottleneck of this system and leads inevitably to the matter of a single point of failure. Also, if the 

two or more IDS that are far part in the hierarchy detect a common intruder, the two detections cannot 

be correlated until the messages from the different IDS reach a common high-level IDS. This will 

require the messages to traverse multiple IDS resulting in communication overheads. In addition, it 

has limited scalability, performance, user interface and security. 

   CIDF [156] was an effort to standardize intrusion detection to some degree by enabling different 

intrusion detection and response components to interoperate and share information and resources in a 

distributed environment. The intrusion detection inter-component adaptive negotiation protocol helps 

cooperating CIDF components to reach an agreement on each other’s needs and capabilities.  

   MAIDS [47] are also typical distributed IDS. It is an end-to-end procedure for intrusion detection. 

Known vulnerabilities of a system are expressed in an abstract "Software Fault Tree" (SFT) form, 

then converted to a Colored Petri Net (CPN), and finally into a system of independent agents. These 

systems suffer from a number of problems such as a lack of an effective coordination mechanism to 

detect a complicated attack, and the security of the system itself is almost unconsidered. 

   The research on dIDS [1], [2], [3], [4], [5], [155] is a rapidly growing area of interest because the 

existence of dIDS techniques is increasingly unable to protect the global distributed information 

infrastructure. So, the existing dIDS must be updated and improved constantly to adapt to the ever-

changing environment and they should be studied in greater depth in order to ensure better system 

security. 
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2.5 Conclusion  

In this chapter, we presented a brief review of IDS (evolution, architecture and components, goals and 

functions), followed by presenting the current approaches for IDS such as Pattern Matching, 

Statistical Models, State Transition Analysis Technique, Information Theoretic Measures. Given the 

shortcomings of current IDS, our research focus is on combining two main concepts to improve the 

performance of IDS. The first concept is using lightweight IDS modules. To build a lightweight IDS 

module, we use two approaches: features selection approach, and an IDS classification scheme. The 

first approach depends on Soft Computing (SC) to select the appropriate features set for IDS. SC is 

the general term for describing a set of optimization and processing techniques that are tolerant of 

imprecision and uncertainty, and that make them attractive to be applied in IDS. The second approach 

is the IDS classification scheme. This novel scheme employs multiple specialized detectors in each 

layer of the network TCP/IP network model, which helps in the collection of efficient information. 

This increases system efficiency and reduces the system’s scalability. The second concept used in this 

thesis proposes a distributed collaborative architecture for the IDS. This architecture can be useful for 

efficiently designing and maintaining secure networks; each module operates cooperatively yet 

independently, providing for efficient, real-time response and distribution of resources. 

   The proposed system, Collaborative Distributed Intrusion Detection System (C-dIDS) based on 

lightweight IDS modules, combines two concepts: the SC approach to build a lightweight IDS, and 

the dIDS approach with a novel architecture. A detailed description for each of these approaches is 

given in Chapter 3 and Chapter 4 respectively.   
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Chapter 3 

Lightweight IDS   

The intrusion detection system deals with huge amounts of data, which can contain irrelevant and 

redundant features.  This can cause a slow training and testing process, higher resource consumption, 

and a poor detection rate. Therefore, using a lightweight IDS is an important issue in intrusion 

detection. Lightweight IDSs are small, powerful, and flexible enough to be used as permanent 

elements of the network security infrastructure. They should be easily configurable by system 

administrators who need to implement a specific security solution in a hurry. Also, they should be 

able to be easily incorporated into any network security architecture with minimal disruption to 

operations.  

   Building a Lightweight IDS is the first goal of this thesis, in order to improve the performance, 

scalability, generality, and extensibility of IDS. Most current work builds a lightweight IDS by only 

applying one features selection approach, which is usually consider to be inefficient. In our case, 

however, we will use two different approaches to achieve a lightweight IDS.  

   The first approach uses a features selection approach. We will apply a novel algorithm for features 

selection based on a Support Decision Function (SVDF) and Forward Selection (FS) approach, with a 

fuzzy inferencing model called Fuzzy ESVDF [118], [119]. The Fuzzy ESVDF is able to significantly 

decrease training and testing times while retaining high detection rates with low False Positive rates.  

   The second approach uses a new IDS classification scheme. The IDS classification scheme divides 

the detection process into four types according to the TCP/IP network model (Application Layer, 

Transport Layer, Network Layer, and Link Layer). This IDS classification can enhance an 

organization’s ability to detect most types of attack (i.e., it improves system accuracy and generality). 

Also, it can improve system scalability in reducing the amount of data (features) needed to 

accomplish the detection process.  

   This chapter is split into two main sections. Section 3.1 describes the features selection approach, 

while Section 3.2 describes the IDS classification scheme.  Our conclusion is drawn in Section 3.3. 

   Section 3.1 presents the features selection approach for an IDS. Basically, it begins with a brief 

overview of the dimensionality reduction problem, and then demonstrates the proposed approach 

(Fuzzy ESVDF), followed by experimental results and discussion. Finally, summary is drawn. 
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   Section 3.2 describes the IDS classification approach. It starts by providing an overview of the 

TCP/IP model with attack classification, followed by the motivations behind this new IDS 

classification scheme. After that, we present the proposed approach with some experiments and 

results, ending with discussion and summary.   

3.1 Features Selection Approach  

One key problem which arises in a wide variety of fields, including pattern recognition and machine 

learning, is the so-called “feature selection”. In complex classification domains, some features may be 

redundant and/or irrelevant. Extra features can increase computation time, and can have an impact on 

system accuracy. Features selection improves classification by searching for the subset of features 

which best classify the training data. Accordingly, features selection is considered to be a very 

important issue in IDS in achieving maximal performance. In this section, we introduce a novel 

algorithm for features selection based on a Support Vector Decision Function (SVDF) and a Forward 

Selection (FS) approach with a fuzzy inferencing model called Fuzzy ESVDF. This is the first 

approach to build a lightweight IDS, with the goal of improving IDS’ performance in terms of 

accuracy and efficiency (training time and testing time) [118], [119].   

3.1.1 Dimensionality Reduction  

Dimensionality reduction [87], [88] is an important topic in machine learning. Elimination of useless 

(irrelevant and/or redundant) features [90] enhances the accuracy of the classification while speeding 

up the computation. It simplifies the classification by searching for the subset of features which best 

classifies the training set, and allows the extraction of easily interpretable rules, thus improving the 

overall performance of the classifier and overcoming many problems, such as the risk of 

“overfitting”. Moreover, it helps us to understand the data, and reduces the measurement and storage 

requirements [91]. 

   Current dimensionality reduction methods can be categorized into two classes: features extraction 

and features selection. Features extraction [92], [93] involves the production of a new set of features 

from the original features in the data, through the application of mapping. The dominant features 

extraction techniques are Principle Component Analysis (PCA) [94] and Linear Discriminant 

Analysis (LDA) [95]. In contrast, features selection [96], [97], [100], [101], [102], [103] selects the 

“best” subset of the original features. It reduces the number of features and removes irrelevant, 

redundant, or noisy data. In terms of features selection, several researchers have proposed identifying 
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important features through wrapper and filter approaches [90] [104]. The wrapper method [22], [26], 

[34], [65] exploits a machine learning algorithm to evaluate the fitness of features or a feature set. It 

provides better performance in the selection of suitable features, since it uses the performance of a 

learning algorithm as an evaluation criterion. The most widely employed wrapper methods are 

Forward Selection (FS) [105], Backward Elimination (BE) [105], and Genetic search [106].   

   In contrast, the filter method doesn’t use a machine learning algorithm to filter out irrelevant and 

redundant features; instead, it uses the underlying characteristics of the training data to evaluate the 

relevance of the features (or feature set) by several independent measures, such as distance measures, 

correlation measures, and consistency measures [107], [108]. The most widely employed techniques 

in this area are Relief [109] and Focus [110]. In general, wrapper approaches demand heavy 

computational resources, but they can achieve better results than filters because they are tuned to the 

specific interaction between an induction algorithm and its training data. However, they tend to be 

much slower than feature filters because they must repeatedly call the induction algorithm and must 

be re-run when a different induction algorithm is used.   

   On the whole, since the elimination of insignificant and/or useless inputs leads to a simplified 

problem and possibly a faster and more accurate classification, features selection is considered to be a 

very important issue in IDS in order to achieve maximal performance [151], [145]. Features selection 

can improve the generalization performance of intrusion detection and make the detection more time 

efficient. Faster training and testing helps to build lightweight IDS and provides ease of maintenance 

or modification of an IDS. Furthermore, a small number of input features lead to a reduction in 

execution times, which is important for on-line detection of attacks. 

3.1.2 Fuzzy ESVDF Approach 

We propose a new features selection approach called Fuzzy Enhanced Support Vector Decision 

Function (Fuzzy ESVDF) based on a Support Vector Decision Function (SVDF) and Forward 

Selection (FS) with a fuzzy inferencing model [118], [119]. The Fuzzy ESVDF is an iterative 

algorithm, where each iteration consists of two steps: feature ranking and feature selecting. In feature 

ranking, SVDF is evaluated to rank each specified candidate feature. Then in feature selecting, FS is 

applied with the fuzzy inferencing model to select the features according to a set of fuzzy rules based 

on a comparison of performance. As shown in Algorithm 3.1, the algorithm starts by picking three 

features from the features set (S1) with the highest weight values (S1 contains all the features with 

weight values equal to or greater than one; the weight value is calculated by SVDF (1)) and putting 
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them in the features set (S2), then calculating the classification accuracy and training time for S2. The 

feature with the next highest weight value from S1 is added to S2 while calculating their performance 

metrics. Through this process, two types of comparisons are made: a local fuzzy comparison and a 

global fuzzy comparison. The local fuzzy comparison compares the performance of S2 with the 

performance from the previous iteration. If the first value is less than the second value, the added 

feature is ignored; otherwise, it is kept in S2. In the global fuzzy comparison, the classification 

accuracy of S2 is compared with the global accuracy, which is equal to the minimum of two values: 

the accuracy of all the features and the accuracy of S1. If the classification accuracy of S2 is equal to 

or greater than the global accuracy value, the algorithm will stop and S2 will be the selected features 

set; otherwise, it will continue execution.  

   The local fuzzy comparison is ranked according to a fuzzy system that takes two inputs: the 

percentage of increase or decrease in training time as one input, and the percentage of increase or 

decrease of accuracy as the second input. It compares the performance of the current value with the 

performance of the previous. The first and the second input variables (percentage of change in the 

training time and accuracy) are represented by three fuzzy sets: “increase,” “same,” and “decrease” 

with their corresponding membership functions, as shown in Figure 3.1. “Increase” refers to the case 

where the percentage of change (accuracy and time calculated by current selected features – accuracy and time 

calculated by previous selected features) in the training time and accuracy is slightly positive. This means that the 

training time and accuracy slightly increase after a feature is added. “Same” refers to the case where 

the training time and accuracy remain almost the same. The system has one output ranging from “0” 

to “1” where “0” represents a non-important feature and “1” represents an important feature in the 

detection process. 

   The knowledge base is implemented by means of “if-then” rules. Nine rules are needed to describe 

the system and rank each feature as “important” or “non important,” according to the following rules: 

1. If training time decreases and accuracy decreases, then the feature is non-important  

2. If training time decreases and accuracy does not change, then the feature is important  

3. If training time decreases and accuracy increases, then the feature is important  

4. If training time does not change and accuracy decreases, then the feature is non-important 

5. If training time does not change and accuracy does not change, then the feature is important  

6. If training time does not change and accuracy increases, then the feature is important  

7. If training time increases and accuracy decreases, then the feature is non important  

8. If training time increases and accuracy does not change, then the feature is non-important  
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9. If training time increases and accuracy increases, then the feature is non-important  

 

   The global fuzzy comparison compares the classification accuracy of S2 with the global accuracy. 

The comparison is ranked according to a fuzzy system that takes only one input variable (percentage 

of change in accuracy). This input variable is represented by three fuzzy sets: “increase,” “same,” and 

“decrease” with their corresponding membership functions, as shown in Figure 3.2. “Increase” refers 

to the case where the percentage of change (selected features set accuracy – global accuracy) in 

accuracy is slightly positive. This means that the training accuracy slightly increases after a feature is 

added. “Same” refers to the case where there is no change in accuracy. The system has one output 

ranging from “0” to “1”, where “0” represents a loop to continue and “1” represents a loop to stop.  

The knowledge base is implemented with three “if-then” rules. Only three rules are needed to 

describe the system and decide whether to continue adding features: 

1. If accuracy increases, then stop adding features 

2. If accuracy does not change, then stop adding features 

3. If accuracy decreases, then continue adding features 
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Algorithm 3.1  The Fuzzy ESVDF Algorithm 

 
[1] Calculate the Global Accuracy 

Calculate the accuracy and training time of all (41) features 
(Accuracy41, Train41), 
 
Calculate the accuracy and training time of the features with 
weight >= 1 (Accuracy, Train), 
 
Pick the Global accuracy 
If Accuracy41 >=  Accuracy 

Global = Accuracy 
Else  

Global = Accuracy41 
End if 
 

[2] Create the features set  
Sort the features set(S1)in descending order depending on its 
 weight values, 
Pick the first three features as an initial features set (S2), 
Calculate the Accuracy and Training time of S2 (Accuracy1, 
 Train1) 
If (Global equal or less than  Accuracy1) 

Exit; 
Else  

continue_loop= 1, 
count_loop = 0; 
Do while (continue_loop ==1) & (count_loop <= length(S1)) 

Add the next feature f(i) from S1 into S2, 
     Calculate the accuracy and training time of S2 
     (Accuracy2,Train2) 
     If (Accuracy2 less than Accuracy1) and (Train2 greater 
          than Train1)  

    Remove f(i) from S2, 
     count_loop = count_loop + 1; 

    Else  
    Accuracy1 = Accuracy2, 
    Train1= Train2, 
    count_loop = count_loop + 1; 
   If (Global equal or less than  Accuracy1) 

 continue_loop = 0, 
   End if 

   End if 
     End while 

    End if 
 

[3] The selected features set = S2 
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Input 1: Time 

 

  
Input 2: Accuracy 

 

 
Output: Feature Rank 

 
 

Figure �3.1 Sugeno Fuzzy Inferencing Model for Local Comparison 
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Example (1) 

The following example illustrates the application of the Fuzzy ESVDF algorithm. The algorithm is 

applied using a DARPA dataset [111] with 6000 samples of which 3000 are normal (50 %) and 3000 

are abnormal (50 %), and each instance is characterized by 41 attributes plus a label of either normal 

or attack.  

In the first step of the algorithm, we calculate the global accuracy by taking the minimum of two 

values: the accuracy of all the features and the accuracy of S1. 

The accuracy of all features = 99.70% 

The accuracy of the features set (S1) = 99.67% 

��� �  The Global = min (99.70, 99.67) = 99.67% 

The second step of the Fuzzy ESVDF algorithm is to build the features set, and this step is done by: 

(1) Sorting S1 in descending order by weight value, 

S1(29) =[3, 23, 24, 5, 12 ,33 ,34 ,35, 4, 26, 2, 39, 38, 29, 25, 32, 36, 27, 28, 8, 41, 31, 40, 30, 37, 22, 1, 7, 16] 

(2) Picking the first three features as an initial features set (S2), and calculating the accuracy and 

training time of S2 (Accuracy1, Train1) 

S2(3) = [3,23,24]  �  Accuracy1= 96.56%, Train1 = 13.41 sec 

 
Input 1: Accuracy  

 
 

 
Output: Action 

 
 

Figure �3.2 Sugeno Fuzzy Inferencing Model for Global Comparison 
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Global Comparison: Rule (3) fired �  continue adding feature (go to step (3)) 

(3) Expanding the features set (S2) depends on the defined fuzzy rules 

S2(4) = [3,23,24,5] �  Accuracy2= 98.65%, Train2 = 3.14 sec 

Local Comparison: Rule (3) fired    ��� �    feature (5) is important (keep feature (5)) 

                                                               Accuracy1 �  Accuracy2 

                                                              Time1 � Time2 

Global Comparison: Rule (3) fired   ��� �   continue adding feature (add feature (12)) 

 

S2(5) = [3,23, 24, 5,12] �  Accuracy2= 99.20%, Train2 = 3.31 sec 

Local Comparison: Rule (6) fired    ��� �   feature (12) is important (keep feature (12)) 

                                                              Accuracy1 �  Accuracy2 

                                                              Time1 �   Time2 

Global Comparison: Rule (3) fired  ��� �    continue adding feature (add feature (33)) 

 

S2(6) = [3,23, 24, 5,12,33] �  Accuracy2= 99.37%,Train2=3.78 sec 

Local Comparison: Rule (5) fired    ��� �    feature (33) is important (keep feature (33)) 

                                                              Accuracy1 �  Accuracy2 

                                                              Time1�   Time2 

Global Comparison: Rule (3) fired   ��� �   continue adding feature (add feature (34)) 

 

S2(7)=[3,23,24,5,12,33,34] �  Accuracy2=99.53%,Train2=3.73 sec 

Local Comparison: Rule (5) is fired    ��� �    feature (34) is important (keep feature (34)) 

                                                                   Accuracy1 �  Accuracy2 

                                                                   Time1�  Time2 

Global Comparison: Rule (2) fired     ��� �   stop adding feature 

 

At the end, the Fuzzy ESVDF is restricted to the features set =  S2(7) = [3, 5, 12, 23, 24, 33, 34] 

 

Example (2) 

In the second example, we apply the proposed approach with the SPECT Heart dataset from UCI 

Irvine Machine Learning Repository [112]. The dataset contains 267 samples, of which 55 are normal 

(20.6 %) and 212 are abnormal (79.4 %). Each instance is characterized by 44 attributes plus a label 

of either normal or abnormal. 

   In the first step of the algorithm, we calculate the global accuracy by taking the minimum of two 

values: the accuracy of all the features and the accuracy of S1 

The accuracy of all features = 68.97% 

The accuracy of the features set (S1) = 70.28% 

��� �  The Global = min (68.97, 70.28) = 68.97% 
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The second step of the Fuzzy ESVDF algorithm is to build the features set, and this step is done as 

follows: 

(1) Sorting S1 in descending order by weight value, 

S1(36) =[43, 40, 42, 37, 14, 1, 13, 4, 34, 31, 44, 27, 30, 8, 10, 2, 32, 16, 22, 15, 26, 6, 21, 7,12, 41, 2, 28, 29, 11, 36,  

               25, 35, 39, 9, 18] 

(2) Picking the first three features as an initial features set (S2), and calculating the accuracy and 

training time of S2 (Accuracy1, Train1) 

S2(3) = [43,40,42]  ��� �  Accuracy1= 65.28%, Train1 = 0.7 sec 

Global Comparison: Rule (3) fired  ��� �     continue adding feature (go to step (3)) 

(3) Expanding the features set (S2) depends on the defined fuzzy rules 

S2(4) = [43,40,42,37] �  Accuracy2= 68.33%, Train2 = 0.39 sec 

Local Comparison: Rule (6) fired    ��� �    the feature (37) is important (keep feature (37)) 

                                                             Accuracy1�  Accuracy2 

                                                             Time1 �  Time2 

Global Comparison: Rule (3) fired   ��� �   continue adding feature 

 

S2(5) = [43,40, 42, 37,14] �  Accuracy2=64.41%,Train2=1.08 sec 

Local Comparison: Rule (7) fired    �     feature (14) is non- important (remove feature (14)) 

 

S2(5) = [43,40, 42, 37,1] �  Accuracy2= 70.97%, Train2 = 0.78 sec 

Local Comparison: Rule (6) fired    ��� �     feature (1) is important (keep feature (1)) 

                                                               Accuracy1�  Accuracy2 

                                                               Time1 �   Time2 

Global Comparison: Rule (1) fired   ��� �    stop adding feature 

 

At the end, the Fuzzy ESVDF is restricted to the features set =  S2(5) = [1,37,40,42,43] 

3.1.3 Experiments and Results  

For evaluating the performance of our proposed approach, we choose the Defense Advanced 

Research Projects Agency (DARPA) KDD-99 benchmark dataset [111]. In addition, we select four 

smaller datasets from the Irvine Machine Learning Repository (UCI) databases [112]. In this sub-

section, we initially describe the contents of the different datasets and the experimental settings, 

followed by some experimental results and discussion.    

Datasets Description 

Five real datasets are considered. The first dataset is KDD-99 data, and the other four datasets are 

taken from the UCI. The objective is to select a subset for the features using the Fuzzy ESVDF 



 

 48 

approach, and then to evaluate these selected features using both Neural Networks (NNs) and Support 

Vector Machines (SVMs).  

A. The DARPA Dataset 

KDD-99 dataset [111] contains TCP/IP dump data for a network by simulating a typical U.S. Air 

Force LAN to configure and evaluate Intrusion Detection Systems. It includes three independent sets: 

whole KDD, 10 % KDD, and corrected KDD. In our experiment, 10 % KDD is used as our training 

and testing datasets. These datasets contain 24 attack types, which fall into four main classes: Denial 

of Service (DoS), Probe, User to Root (U2R), and Remote to Local (R2L). Both training and testing 

datasets are made up of a large number of network traffic connections and each data sample is 

represented with 41 features, plus a label of either normal or attack. Those 41 features can be divided 

into three groups: the first group includes features describing the commands used in the connections 

(instead of the commands themselves). These features describe the aspects of the commands that have 

a key role in defining the attack scenarios (e.g., number of file creations, number of operations on 

access control files, number of root accesses).  

    The second group includes features describing the connection specifications. This group includes a 

set of features that present the technical aspects of the connection (e.g., protocol types, flags, duration, 

service types, and number of bytes from source).  

   The third group includes features describing the connection to the same host in the last two seconds 

(e.g., number of connections having the same destination and using the same service, percentage of 

connections to the current host that have a reject error, percentage of different services on the current 

host). In our experiments, we picked two different datasets for training and testing purposes. Each 

dataset contains 6000 samples; of which 3000 are normal samples (50 %) and 3000 are attack 

samples (50 %) (i.e., the total number of samples equals 12000).  

B. The UCI Irvine Machine Learning Repository Dataset 

In addition, we test our approach with other four datasets of various sizes. These datasets are selected 

from the UCI datasets: the SPECT Heart dataset, the WDBC dataset, the Hill and Valley dataset, and 

the WBC dataset [112]. 

   The first dataset, the SPECT Heart Dataset, describes the diagnosis of cardiac Single Proton 

Emission Computed Tomography (SPECT) images.  It contains 267 samples, of which 55 are normal 

(20.6 %) and 212 are abnormal (79.4 %). Each instance is characterized by 44 attributes.  

   The second dataset, Wisconsin Diagnostic Breast Cancer (WDBC), describes characteristics of the 

cell nuclei present in the image as either benign or malignant. This dataset contains 569 samples, of 
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which 357 are benign samples (62.74 %) and 212 are malignant samples (37.26 %). Each instance is 

characterized by 30 real-value attributes. 

   In the third dataset, the Hill and Valley Dataset, each record represents 100 points on a two-

dimensional graph. When plotted in order (from 1 through 100) on the Y co-ordinate, the points will 

create either a Hill or a Valley. This dataset contains 1212 samples, of which 612 are hill samples 

(50.5 %) and 600 are Valley samples (49.5 %). Each instance is characterized by 100 real-value 

attributes. 

   Finally, the Wisconsin Breast Cancer (WBC) dataset describes characteristics of the cell nuclei 

present in the image as either benign or malignant. This dataset contains 699 samples;,of which 458 

are benign samples (65.52 %) and 241 are malignant samples (34.48 %). Each instance is 

characterized by nine attributes. 

Experimental Settings 

 To evaluate the performance of our proposed approach, we conducted two experiments. In the first 

experiment, we chose the DARPA KDD-99 benchmark dataset. In the second one, we picked four 

different smaller datasets from UCI databases.  

A. The DARPA Dataset 

The dataset used for this experiment is the DARPA KDD-99 dataset, which contains 41 features plus 

a label of either normal or attack. Through this experiment, we will evaluate our approach [118], 

[119] by comparing it with the performance of the approaches of [34] and [105] over all 41 features. 

In [34], they claimed that the best features set includes the six features with largest weight (rank) 

values. The weight values were evaluated using SVDF (1). In the second approach [105], they applied 

FS to pick the features set.   

   Our experiment was split into two main steps. In the first step, we applied the three different 

approaches (Fuzzy ESVDF [118], [119], the six important features [34], and FS [105]) to select an 

appropriate features set for the IDS. In the second step, we validated the results by using any classifier 

type.  

   In the first step, the proposed algorithms were repeated ten times over the training and testing 

datasets. Each time about 30 % of the samples were randomly selected as a testing dataset; the 

remaining 70 % were used as a training dataset of each dataset (we have 12000 samples, and they are 

split into two datasets, each containing 6000 samples).  
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   NN and SVM classifiers were used to evaluate the proposed algorithms in the second step. We 

carried out four validation experiments using Fuzzy ESVDF features [118], [119], the six important 

features [34], FS [105] features, and all 41 features. Each experiment was repeated five times for each 

dataset (the total number of repetitions for both datasets was ten) and by randomly selecting the 

training and the testing data using different splitting ratios, which were ((training %) / (testing %): 

50/50, 40/60, 60/40, 30/70, and 70/30). 

B. The UCI Irvine Machine Learning Repository Dataset 

Four different datasets were picked from UCI databases for this experiment: SPECT Heart Dataset, 

WDBC dataset, Hill and Valley dataset, and WBC dataset. Through this experiment, we applied our 

approach in different domains (each has different number of features) in order to evaluate our 

approach performance and behaviour with a different number of features. Similar to the DARPA 

dataset experiments, the experiment was divided into two main steps. First, we applied the proposed 

algorithm, Fuzzy ESVDF, to select the appropriate features set for each dataset. Second, we validated 

the results by using SVM and NN.  

    In the first step, the proposed algorithm is applied ten times with training and testing data. Each 

time, about 40 % of the samples were randomly selected as the testing dataset; the remaining 60 % 

were used as the training dataset.  

   In the same manner as the previous experiment, NN and SVM classifiers were used to evaluate the 

proposed algorithm in the second step. We carried out four validation experiments: SPECT Heart 

Dataset, WDBC dataset, Hill and Valley dataset, and WBC dataset. Each experiment was repeated ten 

times with a random selection of the training and the testing data with different ratios, which were 

((training %) / (testing %): 50/50, 40/60, 60/40, 30/70, and 70/30). 

C. Classifiers 

For both experiments, the implementation of the proposed approach used the simple SVM library for 

SVM [113]. The crossover parameters selection of our SVM included a range of basic SVM 

parameters, various kernel functions, and their performance arguments. In our experiments, the C 

parameters could take one of these values: 1, 100, 5000, or 10000. The SVM kernel functions we 

considered were linear and radial basis kernels. The polynomial kernel was degree 1 and 2, and the 

coefficient (scale) can be 0.5, 2, 3, or 4. �  in a radial basis kernel at either 0.5, 1, 2, or 3.  

   For evaluation of the different approaches with NN, we used the MTALB BPL toolbox for NN with 

three layers (an input layer with the number equal to features neurons, a hidden layer with six 

neurons, and an output layer with one neuron). We used the function “newff” from the MATLAB 
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toolbox with sigmoidal activation function, performance function “MSE”, 45 epochs and a 0.001 

learning rate. 

Experimental Results 

Fuzzy ESVDF was applied to the DARPA KDD-99 dataset and the four different datasets from UCI 

databases (SPECT Heart Dataset, WDBC dataset, Hill and Valley dataset, and WBC dataset) to select 

the best features set for the application. In these experiments, we used standard measurements such as 

Detection Rate (DR), False Positive Rate (FPR), and overall Classification Rates (CR) to evaluate the 

performance of our approach. We defined here True Positive (TP), True Negative (TN), False 

Positive (FP) and False Negative (FN) where:  

• True Positive (TP): The number of malicious records correctly identified. 

• True Negative (TN): The number of legitimate records correctly classified. 

• False Positive (FP): The number of records that were incorrectly identified as attacks, though 

they were in fact legitimate activities.  

• False Negative (FN): The number of records that were incorrectly classified as legitimate 

activities, though they were in fact malicious. 

Equations (2) to (4) given as: 

 
TP

DR
TP FN

=
+

                                       (2) 

FP
FPR

TN FP
=

+
                                         (3) 

TP TN
CR

TP TN FP FN
+

=
+ + +

                          (4) 

A. The DARPA Dataset 

Fuzzy ESVDF [118], [119], the six important features [34], and FS [105] approaches were applied to 

the 41 features to select an appropriate features set for the IDS. To evaluate the approaches, we used 

SVM and NN classifiers to classify a network traffic record as being either an attack or a normal 

behaviour. The results of the SVM classifier for Fuzzy ESVDF features, the six important features, 

FS features, and all 41 features are presented in Table 3.1. Table 3.2 presents the results of the NN 

classifier for the Fuzzy ESVDF features, the six important features, FS features, and all 41 features. 

The comparison between the three approaches and using 41 features is done with respect to different 

performance indicators: number of features, DR, FPR, training time, and testing time.  
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Table 3.1 

Comparison of Fuzzy ESVDF, the six most important features, FS features, and the entire 41 features 
using SVMs 

Features Selection 

Algorithm 
No. of Features 

DR 

 (%) 

FPR  

(%) 

Training Time 

(sec) 

Testing Time 

(sec) 

FuzzyESVDF 7 99.57  0.22 2.410 0.054 

6 important 6 98.20   0.39 6.008 0.114 

FS 8 99.23  0.35 2.246 0.056 

Non 41 99.62  0.32 5.182 0.170 

 

 

 

Table 3.2 

Comparison of Fuzzy ESVDF, the six most important features, FS features, and the entire 41 features 
using NNs 

Features Selection 

Algorithm 
No. of Features 

DR  

(%) 

FPR  

(%) 

Training Time 

(sec) 

Testing Time 

(sec) 

FuzzyESVDF 7  99.70  0.24 221.928 0.047 

6 important 6  98.20 0.41 217.115 0.062 

FS 8  98.41  0.56 233.343 0.053 

Non 41 99.63  0.36 911.680 0.075 

 

 

B. The UCI Irvine Machine Learning Repository Dataset 

In this experiment, we selected four smaller datasets from UCI databases (SPECT Heart dataset, 

WDBC dataset, Hill and Valley dataset, and WBC dataset) to test the effectiveness of our feature 

selection approach (Fuzzy ESVDF) in different domains. We used SVM and NN classifiers to 

classify a record as being either zero or one (binary classification). The results of the SVM classifier 

for Fuzzy ESVDF for all datasets are presented in Table 3.3. The results of the NN classifier for 

Fuzzy ESVDF for all datasets are presented in Table 3.4. The different datasets are compared with 

respect to different performance indicators: number of features, CR, training time, and testing time. 

Table 3.5 compares execution times for Fuzzy ESVDF approach for the four different datasets. 
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Table 3.3 

Comparison of different datasets using SVMs 

Dataset No. Attributes 
CR  

(%) 

Training Time 

(sec) 

Testing Time 

(sec) 

Selected Set (5) 76.73 0.330 0.010 
SPECT Heart 

Complete Set (44) 69.43 0.376 0.015 

Selected Set (4) 96.65 0.452 0.000 
WDBC 

Complete Set (30) 96.42 0.476 0.012 

Selected Set (11) 69.13 23.588 0.088 
Hill and Valley 

Complete Set(100) 66.77 42.450 0.152 

Selected Set (3) 96.75 0.678 0.012 
WBC 

Complete Set (9) 94.72 0.850 0.016 

 

 

Table 3.4 

Comparison of different datasets using NNs 

 

Table 3.5 

Execution time comparison for the different datasets  
Dataset No. of All Features No. of Selected Features Execution Time (sec) 

SPECT Heart 44 5 125.093 

WDBC 30 4 87.215 

Hill and Valley 100 11 3000.025 

WBC 9 3 0.725 

   

Dataset No. Attributes 
CR  

(%) 

Training Time 

(sec) 

Testing Time 

(sec) 

Selected Set (5) 74.14 33.940 0.006 
SPECT Heart 

Complete Set (44) 66.77 325.534 0.030 

Selected Set (4) 94.85 38.031 0.012 
WDBC 

Complete Set (30) 94.63 206.144 0.013 

Selected Set (11) 77.93 105.638 0.019 
Hill and Valley 

Complete Set(100) 75.84 2488.83 0.047 

Selected Set (3) 95.91 43.738 0.016 
WBC 

Complete Set (9) 95.05 72.475 0.015 
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Discussion 

As shown in Table 3.1 and Table 3.2, a comparison of our approach (Fuzzy ESVDF) against all 41 

features reveals a dramatic reduction in model building time with the reduced features using Fuzzy 

ESVDF, as the proposed features selection algorithms have cut 83 % of the total number of features 

(Fuzzy ESVDF selects seven features from among the 41 features). When an SVM classifier is used, 

the DR and FPR for our approach and the entire 41 features are nearly the same. However, for the 

training and testing time, the results show a significant improvement with our approach. The training 

and testing times decrease by more than fifty per cent, as opposed to when all 41 features are used. 

Also, evaluating the proposed approach with NN, DR and FPR do not show much difference to that 

of using all 41 features. But training and testing times show an obvious improvement: it cuts 75.66 % 

from the required training time for all features, and 69.41 % from the required testing time for all 

features, which means that the proposed algorithms can achieve high accuracy with less training and 

testing time. Moreover, the experimental results show that SVM outperform NN in classification 

accuracy and training time. 

   Comparing our approach with that of Mukkamala et al. [34], we see that they extracted six 

important features as the features selection set. Table 3.1 and Table 3.2 show that by using NNs or 

SVMs, Fuzzy ESVDF is better than using the six important features in terms of classification 

performance (DR and FPR). For the SVM classifier, our approach outperforms using the six 

important features in DR (DR increases from 98.20 % to 99.57 %), FPR (FPR reduces from 0.39 % to 

0.22 %), training time is cut 60 % from the required training time for the entire 41 features, and 62.5 

% from the required testing time. For the NN classifier case, there is an improvement in DR (DR 

increases from 98.20 % to 99.70 %) and FPR (FPR reduces from 0.41 % to 0.24 %); however, the 

training and testing are nearly the same. In general, Fuzzy ESVDF results are better than the six 

important features approach because limiting the number of selection features to a specific value (e.g., 

6 or 11) as an indicator for highest rank value may affect the system performance. So, we need a 

process that uses this rank value (weight value) to select an appropriate feature subset. Therefore, 

SVDF needs to be manipulated to recover from these limitations: in our case, this is accomplished by 

applying the FS algorithm.  

   Comparing Fuzzy ESVDF against FS approaches [105], Table 3.1 shows that both approaches have 

nearly the same performance. However, Table 3.2 shows an obvious improvement in terms of DR and 

FPR (DR increases from 98.41 % to 99.70 %, and FPR decreases from 0.56 % to 0.24 %). The 

training and testing times are nearly the same in both approaches.  



 

 55 

   In summary, for the first experiment, the proposed approach for features selection gives an excellent 

performance in terms of training and testing times while retaining high classification accuracy, 

regardless of the classifier used. Fast training and testing help to build lightweight IDS; they also 

facilitate the retention or modification of the system and allow for the use of this model in a real-time 

intrusion detection environment. Moreover, with the reduction of the features number, we can 

identify relevant attack-specific features, simplifying the study and analysis of the behaviour of each 

of these attacks. On the other hand, our approach does not guarantee the selection of the optimal 

features set. In all cases, however, it shows a dramatic improvement in the detection process. 

   For the second experiment, evaluating our approach with four different smaller datasets from the 

UCI databases, Table 3.3 and Table 3.4 show that there is a dramatic reduction in the number of 

features for all datasets after the application of Fuzzy ESVDF.  For the SPECT Heart dataset, the 

number of features is reduced from 44 to 5 (it eliminates nearly 88.6 %). For the WDBC dataset, the 

number of features is reduced from 30 to 4 (it cuts nearly 86.7 %). For the Hill and Valley dataset, the 

number of features is reduced from 100 to 11 (it cuts nearly 89 %). Finally, for the WBC dataset, the 

number of features is reduced from 9 to 3 (it cuts nearly 66.67 %).  

   For the SPECT Heart dataset, by using SVM, the CR based on the selected features set is 76.73 %, 

which is better than the CR for the complete features set, which is 69.43 %. The training time and 

testing time are nearly the same in both cases, as shown in Table 3.1. However, the NN classifier 

shows an obvious improvement in both training and testing times. The five selected features from the 

Fuzzy ESVDF approach cut 89.57 % from the required training time for all features, and the testing 

time is cut by 78.67 %. The CR is also improved, as shown in Table 3.2. 

   For the WDBC dataset, by using SVM, the CR, training time, and testing time based on the selected 

features set are very near to their values in the system which used the entire features, as shown in 

Table 3.3. Table 3.4 shows a significant improvement in training time for the selected features. The 

proposed algorithm cuts 81.55 % from the required training time for all features. However, CR and 

testing time in both experiments (using the four features selected from the Fuzzy ESVDF algorithm, 

and using the entire 30 features) are nearly the same. 

   For the Hill and Valley dataset, Table 3.3 shows a significant improvement in CR, training time, 

and testing time for the selected 11 features (attributes) from the complete 100 features set. On the 

other hand, Table 3.4 shows that the CR for both features sets (11 selected features and the entire 100 

features) are nearly the same. However, there is an obvious improvement in training time (it is 
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reduced by 95.76 % as compared with the required training time for all features), and testing time (it 

is reduced by 59.57 % as compared with the required testing time for all features). 

   For the WBC dataset, by using SVM, the overall system performance is improved based on the 

selected features set, as shown in Table 3.3. On the other hand, Table 3.4 shows significant 

improvement in training time (is reduced by 39.65 % as compared with the required training time for 

all features) based on the selected features. However, the CR and testing time are nearly the same in 

both cases (selected and all features). 

   Comparing the different datasets’ execution time, Table 3.5 shows that the proposed approach, 

Fuzzy ESVDF, becomes slow when the number of features increases to 100. When the number of 

features is around 50 (in the case of SPECT Heart dataset), the algorithm is reasonably fast, but when 

this number doubles (to 100 features), execution time increases greatly. Also, in the case of the WBC 

dataset, the number of features is 9, but when the number of features triples (in the case of the WDBC 

dataset), the execution time more than triples. On the whole, this amount of time does not depend on 

the number of features alone.  It does depend, however on how fast SVM are, because the ranking 

approach depends on the system performance (CR and training time) that is calculated by SVM. 

Moreover, the SVDF used in this approach also depends on SVM. 

   In summary, the experimental results demonstrate the feasibility of the proposed approach. The 

proposed approach, Fuzzy ESVDF, for a features selection based on SVDF and FS with the fuzzy 

inferencing model, gives the best performance in terms of training and testing times, while retaining 

high classification accuracy regardless of the classifier used. Consequently, the selected features 

subset is representative and informative and, thus, can be used to replace the complete features.  In 

addition, this approach is considered to be a features selection approach regardless of the type of 

classifier used, making this approach a suitable features selection method for many applications. 

Lastly, the proposed algorithm is simple and does not require that many parameters be initialized, and 

further, does not need heavy computational resources. This facilitates the retention or modification of 

the system design and allows this model to be used in a real-time environment. 

3.1.4 Summary  

SVDF is used to rank the input features by giving a weight value to each of them. Using the weights 

alone, however, as proposed in previous works [25], [26], [34], [114], we are unable to specify the 

appropriate features set for a detection process because selecting features with the highest rank values 

(weight) cannot guarantee that combining these features can create the best features set based on the 
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correlations among candidate features. Moreover, limiting the number of selection features to a 

specific value (e.g., 6 or 11 as mentioned in the previous works) as an indicator for highest rank value 

may affect system performance.  

   Our new approach overcomes these limitations by proposing a Fuzzy Enhanced Support Vector 

Decision Function (Fuzzy ESVDF) [118], [119]. The Fuzzy ESVD approach improves the 

classification process by integrating the feature ranking technique (evaluated by SVDF) with the 

features selecting technique (applied by FS). The fuzzy inferencing model is used to accommodate 

the learning approximation and the small differences in the decision-making steps of the FS approach. 

The proposed approach (Fuzzy ESVDF) has a wealth of advantages that make it attractive for many 

features selection applications.  

    First, by employing a reduced number of features SVM may be more advantageous than other 

conventional features selection methods [13], [22], [23], [65]. The advantage is conspicuous for many 

applications, as our experiments show. With SVM, a satisfactory performance can be obtained much 

more easily than with other approaches. 

   Second, by evaluating the features weights through SVDF and then selecting between these features 

through the application of the FS algorithm, this approach is able to efficiently select the appropriate 

features set for the classification process.  

   Third, ESVDF is considered to be a features selection approach regardless of the type of classifier 

used, making this approach a suitable features selection method for many applications, as we showed 

through our experiments. 

   Finally, this approach is simple and efficient, and it does not require parameters initialization, which 

facilitates modification and enhancement. 

   To evaluate the proposed approach, we used SVM and NN classifiers and a KDD-99 dataset for our 

experiments. The experimental results demonstrate that our approach can reduce training and testing 

times while retaining a high classification accuracy for IDS. In addition, we used four different 

datasets from UCI Irvine Machine Learning Repository (SPECT Heart Dataset, WDBC dataset, Hill 

and Valley dataset, and WBC dataset) to test the effectiveness of our features selection approach in 

different domains. The experimental results demonstrate that our approach can reduce the training 

and testing times with high classification accuracy for any application in general. Thus, it combines 

good effectiveness with high efficiency. It produces an efficient features subset, so it provides an 
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effective solution to the dimensionality reduction problem in general. On the other hand, the 

efficiency of Fuzzy ESVDF depends on how SVM are able to classify the dataset, which may 

obstruct the modification and maintenance processes and impede the use of this approach in some 

types of applications. Moreover, it can not guarantee the optimal solution in terms of minimizing the 

number of features, but in all situations it gives a considerably reduced number of features with 

excellent performance results. 

3.2 IDS Classification Scheme  

Previous studies [19], [115], [116], [117] showed that desired features for the IDS depend on the type 

of attack. Accordingly, as each TCP/IP network layer is vulnerable to a specific type of network 

attack, each TCP/IP network layer needs a specific type of IDS. In this section, we propose a new 

classification scheme for IDS depending on the TCP/IP network model [152]: Application layer IDS 

(AIDS), Transport layer IDS (TIDS), Network layer IDS (NIDS), and Link layer IDS (LIDS).  This 

new scheme can improve the overall performance of IDS for the following reasons. First, each of 

these IDS types is specialized to a specific network device. So, the detection process will be 

distributed among all TCP/IP network model layers through the network devices.  

   Moreover, as is known, firewalls operate at different TCP/IP network layers by using different 

criteria to restrict traffic, but this step is far from running an entirely secure network as not all traffic 

will go through a firewall. They can protect the network from attackers coming from outside the 

network, but they cannot protect it from attackers coming from inside the network; therefore, an IDS 

must be allocated as a second line of defense behind the firewalls. In addition, the attacks usually gain 

access to the network through the network devices distributed through different TCP/IP network 

layers as entry points, and in order to adequately address security, all possible avenues of entry must 

be evaluated and secured. An IDS must therefore be allocated to these entries or network devices.  

   Finally, splitting the detection process into different levels and stages reduces the computational 

load on the system and improves its scalability and performance. Accordingly, categorizing IDS into 

different types depending on the TCP/IP layers becomes an essential issue for improving the overall 

system detection ability. 

3.2.1 TCP/IP Model and Attack Classification 

A computer network is simply a system of interconnected computers using different network models. 

There are two famous standard network models: the ISO/OSI model and the TCP/IP model, which are 
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based on a layered concept. The layered concept of networking was developed to accommodate 

changes in technology. Each layer of a specific network model may be responsible for different 

functions of the network. Each layer passes information up and down to the next subsequent layer as 

data is processed. The TCP/IP network model defines a set of rules to enable computers to 

communicate over the network, specifying how data should be packaged, addressed, shipped, routed, 

and delivered to the right destination. The TCP/IP family uses four layers while ISO/OSI uses seven 

layers, as shown in Figure 3.3. The TCP/IP and ISO/OSI systems differ from each other significantly, 

although they are very similar on the network and transport layers.    

 

 

   In the TCP/IP model, each layer has its own functionality and services. The Data Link layer defines 

physical media and cables. The Network layer handles the end-to-end communications; it is used for 

basic communication, addressing and routing. The Transport layer is responsible for end-to-end 

message transfer capabilities independent of the underlying network, along with error control, 

fragmentation, and flow control. At the end, the Application layer provides network services to end-

users such as Web browsing (HTTP), remote access (Telnet), File transfer (FTP), and other services. 

 
 

 
 

Figure 3.3 Comparison of TCP/IP and ISO OSI network models 
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So, each layer of communication has its own software, hardware, configuration, protocols, and usage. 

Accordingly, each layer will have its own unique attacks and security challenges, which means each 

layer needs a specific protection process.     

   The Data Link layer defines the device driver and network hardware (network interface card). It is 

responsible for node-to-node (hop-to-hop) frame delivery between the Internet layer interfaces of two 

different hosts on the same link. This layer describes the protocols used to describe the local network 

topology and the interfaces needed to effect transmission of Internet layer datagrams to next neighbor 

hosts such as SLIP (Serial Line Internet Protocol), CSLIP (Compressed SLIP), PPP (Point to Point 

Protocol), Ethernet, Token Ring, Frame Relay, ATM, etc. Accordingly, this layer is vulnerable to 

MAC Attacks, DHCP (Dynamic Host Configuration Protocol) Attacks, ARP (Address Resolution 

Protocol) Attacks, STP, and VLAN-Related Attacks. The Data Link layer can be a very weak link in 

terms of security, and worse yet, it can affect the upper layers by causing service disruptions or 

security breaches.  

   The Network layer of the TCP/IP model provides end-to-end packet delivery. It handles basic 

communication, addressing and routing, and manages the movement of packets around the network; it 

defines the addressing and routing structures used for the TCP/IP protocol suite. The primary 

protocols in this scope are IP (Internet Protocol), ICMP (Internet Control Massage Protocol), ARP 

(Address Resolution Protocol), RIP (Routing Information Protocol), and RARP (Reverse Address 

Resolution Protocol). Typically, in this layer, the attackers exploit the fact that IP does not have a 

robust mechanism for authentication such as IP Spoofing, IP Session Hijacking, Ping to Depth, and 

Source Routing,  

   The Transport layer handles end-to-end message transfer capabilities independent of the underlying 

network, while providing reliable delivery. It handles the flow of data among applications, and 

segments data into packets for transport over the network. This is where flow-control, error-

correction, and connection protocols exist, such as TCP (Transmission Control Protocol), UDP (User 

Datagram Protocol), and ICMP (Internet Control Message Protocol). This layer is especially 

vulnerable to Denial of Service (DoS) attack (or Distributed Denial of Service (DDOS) attack), 

SYNC Flood, UDP Bomb, and Port Scan.  

   Finally, the Application layer provides network services such as browsing, e-mail, file transfer, 

remote access, etc. Accordingly, the common protocols used are HTTP (HyperText Transfer 

Protocol), DNS (Domain Name System Protocol), FTP (File Transfer Protocol), IRCP (Internet Relay 

Chat Protocol), and POP/ POP3 (Post Office Protocol). In order for the attackers to exploit system 
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vulnerabilities more effectively, they have developed several sophisticated ways to attack the 

application layer, such as Buffer overflow, Trojans, Backdoor, Cross Site Scripting, etc. The most 

popular application attack types are E-Mail Attacks, FTP Attacks, Web Attacks, and DNS Attacks.  

   On the whole, each layer of the TCP/IP layer has its own software, hardware, configuration, 

protocols, and usage. Each layer needs a specific protection process against  each type of attack. 

Therefore, network security should be addressed at each TCP/IP layer for different vulnerabilities, 

security challenges, and attack types. Table 3.6 presents common attacks for each TCP/IP layer.  
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3.2.2 TCP/IP Attack Classification and IDS Categori zation  

Network security should be addressed at each TCP/IP network layer for different vulnerabilities and 

attack types. Features that tend to detect a particular type of attack may not be useful in the detection 

of other attack types. Many researchers [19], [115], [116], [117] have shown that the choice of 

network features for IDS is dependent on the network attack type to be detected. Some features were 

good for detecting network attack traffic patterns, while other features were good for detecting 

Table 3.6 

The Common Attacks for each TCP/IP layer 

TCP/IP Layer Common Attacks 

Application Layer 

Java, ActiveX, and Script Execution 

WinNuke 

E-Mail Attacks 

FTP Attacks 

Web Attacks 

DNS Attacks 

Transport Layer 

SYN Flood 

UDP Bomb 

Port Scan 

Landc 

TCP Port Scans 

UDP Application Attacks 

RIP Attacks 

Network Layer 

Ping Flood 

Ping of Death 

IP Spoof 

Address Scanning 

Source Routing 

ICMP Attacks 

Data Link Layer 

Sniffer/ Decoding 

MAC Address Spoofing 

WEP Attacks 
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transport attack traffic patterns. Hence, studying the nature of the IDS environment is an important 

issue for choosing the appropriate features to analyze the traffic pattern. Moreover, the features 

selection phase in IDS implementation has a large impact on performance. Reducing the number of 

features can improve system performance, speed up execution and training times, allow the extraction 

of easily interpretable rules, and reduce the measurements and storage requirements (explained in 

Section 3.1). Based on the attack classification (Data Link layer attacks, Network layer attacks, 

Transport layer attack, and Application layer attacks) we will select the appropriate features for each 

TCP/IP layer, so that for each layer there will be a specialized IDS. It is important that the different 

types of security attacks be recognized in order to select the appropriate countermeasures.  

   Furthermore, firewalls are a crucial piece of the network security, but this step is far from creating 

an entirely secure network, because of their limitations. The firewalls can protect the network from 

attackers that come from outside the network (intrusions), but they cannot protect it from attackers 

that come from inside networks (misuses). Also, they can only guard against the traffic that passes 

through them; they have only minor control over the data that passes through them. Certain traffic 

types, such as a remote user’s dial-up connection to a Remote Access Server (RAS), would bypass 

the firewall entirely. In addition to other limitations (such as an inability to tell the user that it has 

been incorrectly configured), a firewall can't notify the administrator if someone has hacked into the 

network. Proper configuration is a must to maintain the efficacy of any firewall system, and they 

should be updated periodically to ensure that they are current with the internal and external 

environment of the network. Activity logs should also be checked on a regular basis to find attempted 

and successful intrusions. Accordingly, the IDS must be allocated as a second line of defense behind 

the firewalls, and as the firewalls operate at different TCP/IP network layers, the IDS also needs to be 

allocated in same manner as the firewall.  

   Moreover, the IDS should monitor traffic at entry points (network devices) on the network or 

interconnected set of networks which are considered to be the target of the intruder. By securing these 

devices, which are distributed through the network layers, the overall security of the system will be 

improved, the detection process can be performed at any point where enough information is available, 

and the data can be collected from multiple sources. This combines the best characteristics of 

traditional Router-based, Network-based, and Host-based IDS.  

   Finally, splitting the detection process into different levels (layers) reduces the computation load on 

the system and improves its scalability and performance, as the experiments in the next section will 
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show. Accordingly, categorizing the IDS into different types depends on the TCP/IP network model 

becomes an essential issue for improving overall system detection ability and scalability. 

   Most of the work done [19], [20], [28], [105] falls into the realm of splitting detection into different 

attack types. These are broadly categorized into four groups: Probes, Denial of Service (DoS), User to 

Root (U2R), and Root to Local (R2L). They are then designed a specific IDS for each of these attack 

categories. This categorization does not participate in reducing the system load, or improving its 

scalability. Others [10], [22] concentrated on analyzing and detecting each attack separately, which is 

considered to be impractical with the fast pace of change in attack tools. In this chapter, we propose a 

new IDS classification scheme that depends on the TCP/IP network model [152], which distributes 

the detection process between different network devices, thus improving both system performance 

and scalability, as the experiments will show in Section 4.2.3. 

3.2.3 IDS Classification Scheme based on TCP/IP 

We propose four different types of IDS based on the TCP/IP network model [152] - AIDS, TIDS, 

NIDS, and LIDS - to accommodate detecting different attack types in each TCP/IP network layer and 

to improve overall IDS performance, efficiency, and scalability. Figure 3.4 shows the architecture for 

the proposed approach. The proposed approach categorizes the IDS into four types, with each type 

responsible for the different network devices that are distributed through the TCP/IP network layers.  

This would include routers in the Network layer, switches in Data Link layer, etc..  

 

 

 

 
 
 

Figure 3.4 System Architecture 
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   The NIDS operates on the Network layer devices (i.e. router) that in turn are located at the network 

border or on an isolated host connected to the network layer devices, allowing it to analyze the traffic 

that passes between different networks as it shown in Figure 3.5. For the Transport layer devices, the 

TIDS is loaded on either Transport layer devices (i.e. switch) or on an isolated machine that is 

connected to the transport layer devices, allowing it to analyze network traffic that enters the subnet 

(Figure 3.6). The LIDS is also installed on either the Link layer devices or on an isolated machine that 

is connected to the transport layer devices to detect different transport attacks. Finally, AIDS refers to 

the class of intrusion detection systems that reside on and monitor an individual host machine. The 

AIDS must be loaded on each workstation in the network as it is shown in Figure 3.8. Each IDS type 

has its own features set depending on its TCP/IP network layer; so instead of using all connection 

features as has been the case in previous works, we use only a specific number of features for each 

IDS. The framework architecture of the integrated IDSs is shown in Figure 3.8. 

 

            

 

                             

 

Network 1 

 

Network 2 

NIDS 

Figure 3.5 The Network IDS (NIDS) 
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Figure 3.6 The Transport IDS (TIDS) 
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   To design the different types of IDS (AIDS, TIDS, NIDS, and LIDS), we can use any features 

selection approach to pick the appropriate features set for each layer in the TCP/IP model. In our case, 

we will use the Fuzzy ESVDF approach that it is explained in Section 3.1 [118], [119] to select the 

appropriate features for each IDS type (the LIDS is not covered in this study because there are 

insufficient link layer attack samples).  

   To apply the Fuzzy ESVDF approach, there are two main steps. First, we prepare different datasets 

for training and testing purposes. Each IDS type has its own dataset; for example the AIDS dataset 

contains normal behaviour and application layer attack samples, and the NIDS dataset contains 

AIDS 

AIDS 

AIDS 

AIDS 

Subnet n 

Figure 3.7 The Application IDS (AIDS) 
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Figure 3.8 The Framework Architecture 
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normal behaviour and network layer attack samples. In the second step, we apply the Fuzzy ESVDF 

approach for each dataset to select the most effective features set for each IDS type.  

   The Fuzzy ESVDF [118], [119], as it is described in Algorithm 3.1, is based on a Support Vector 

Decision Function (SVDF) (1) and Forward Selection (FS) approach with a fuzzy inferencing model 

to select the best features as inputs for an IDS. The algorithm is iterative, where each iteration 

consists of two steps: feature ranking and feature selecting. First, feature ranking, is evaluated by 

SVDF to rank each specified candidate feature. Then feature selecting (FS) is applied, with the fuzzy 

inferencing model, to select the features according to a set of rules based on a comparison of 

performance. 

   The experimental results in the next section will show that each IDS type has its own features and 

that is because each TCP/IP network layer is subject to its own attacks. Therefore, classifying IDS 

depending on the network layers is an essential issue to improve system accuracy, scalability, 

generality, and to speed up the detection process for the IDS.  

3.2.4 Experiments and Results 

For evaluating the effects of categorizing the IDS into different types depends on the TCP/IP network 

layers (AIDS, TIDS, NIDS, and LIDS) in improving both system performance and scalability, we 

choose the DARPA KDD-99 benchmark dataset [111]. In this sub-section, we initially describe the 

contents of the used dataset. Then, the experimental settings are presenting; followed by some 

experimental results and discussions.  

Datasets Description 

We used the same dataset (KDD-99 dataset [111]) as was used in previous section (Section 3.3.1). In 

these experiments, we picked two different datasets for training and testing purposes. Each dataset 

contained 6000 samples, of which 3000 were normal samples (50 %) and 3000 were attack samples 

(50 %) (i.e., the total number of samples was 12000). 

Experimental Settings 

Our experiment was split into three main steps. In the first step, we prepared the different datasets for 

AIDS, TIDS, NIDS, and all layers IDS (the LIDS was not covered in this study). Second, we applied 

the features selection approach (Fuzzy ESVDF) to each dataset in order to select the most effective 

features set for each of IDS type. Finally, we evaluated the features set results using Neural Networks 

(NN) and Support Vector Machines (SVM) as two different classifiers.  



 

 68 

   In the first step of the experiment, we prepared the four datasets for each IDS type. For AIDS, the 

dataset we used contained the normal behaviour patterns and the application layer attack patterns, 

such as: back, pod, smurf, buffer_overflow, loadmodule,perl, guess_passwd, imap, multihop, 

warezmaster, ftp_write, nmap, and satan. For the TIDS, the dataset contained the normal behaviour 

pattern and transport layer attack patterns: land, neptune, teardrop, buffer overflow, port sweep, and 

nmap.  The NIDS dataset contained only smurf, pod, overflow, and IP sweep as the network layer 

attacks, in addition to the normal behaviour patterns. Finally, all layers of the IDS dataset contained 

all attack types and normal behaviour patterns.  

   For the second step, applying the features selection approach, we used the Fuzzy ESVDF [118], 

[119] approach to select the most effective features for the three IDS types (AIDS, TIDS, and NIDS) 

and all layers of IDS. The proposed algorithms were performed ten times for each IDS type over 

training and testing data. Each time about 30 % of the samples were randomly selected as the test 

data; the remaining 70 % were used as the training data (we had 12000 samples, which were split into 

two datasets each containing 6000 samples).   

   Finally, the evaluation was done using NN and SVM classifiers for AIDS, TIDS, NIDS and all 

layers of IDS features. Each experiment was repeated five times for each dataset (the total number of 

repetition for both datasets was ten) and by randomly selecting the training and the testing data using 

different splitting ratios which were ((training %) / (testing %): 50/50, 40/60, 60/40, 30/70, and 

70/30). 

Experimental Results 

We applied the Fuzzy ESVDF approach [118], [119] on 41 features to select the best features set for 

each type of IDS (AIDS, TIDS, NIDS, and all layers). To evaluate our approach, we used NN and 

SVM classifiers. They classify a network traffic pattern as being either an attack or a normal 

behaviour. The results of the classifiers performance for AIDS, TIDS, NIDS and all layers by using 

the Fuzzy ESVDF approach are presented in Table 3.7. The comparison between the different IDS 

types was done with respect to different performance indicators: number of features, CR, training 

time and testing time. On the other hand, Table 3.8 shows the results after swapping the features set 

between AIDS, TIDS, and NIDS by using the Fuzzy ESVDF approach and the evaluation was done 

using an NN classifier. The selected features from the Fuzzy ESVDF for each layer are listed in Table 

3.9.  
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Table 3.7 

Comparison between All layers, Application, Transport, and Network layer for Fuzzy ESVDF 

Approach 

Classifier Method IDS Type 
Number of 

Features 
CR (%) Training 

Time (sec) 

Testing 

Time (sec) 

All Layers IDS 7 99.34 4.834 0.030 

AIDS 5 99.62 2.594 0.022 

TIDS 4 99.75 1.586 0.020 

Support Vector Machine 

(SVM) 

NIDS 4 99.73 2.328 0.020 

All Layers IDS 7 99.41 180.650 0.038 

AIDS 5 99.73 162.734 0.034 

TIDS 4 99.84 139.296 0.031 
Neural Network (NN) 

NIDS 4 99.77 144.281 0.032 

 

Table 3.8 

Swapping features between IDS types using Fuzzy ESVDF and evaluated it by NN 

Detection Layer Used Features 
CR  

(%) 

Training Time 

(sec) 

Testing Time 

(sec) 

Application Transport 85.04 139.750 0.041 

Application Network 98.43 141.219 0.041 

Application Application 99.73 162.734 0.034 

Transport Application 98.98 162.172 0.031 

Transport Network 98.78 149.641 0.031 

Transport Transport 99.84 139.296 0.031 

Network Application 98.61 163.828 0.035 

Network Transport 91.16 148.406 0.038 

Network Network 99.77 144.281 0.032 
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Discussion 

By using the Fuzzy ESVDF approach, as shown in Table 3.7, splitting the detection process into 

different layers improves both the system performance and the scalability comparing with all IDS 

layers. Improving the performance is in terms of increasing the classification accuracy to more than 

0.28 % with the SVM classifier and 0.32 % with the NN classifier. Also, the training time and the 

testing time have been decreased for both SVMs and NNs. Improving the scalability is accomplished 

by reducing the features number. It is reduced from seven features to five features in AIDS, four 

features in TIDS, and four features in NIDS, as shown in Table 3.9.  

   Each layer in the TCP/IP network mode is subject to a specific form of attack, and therefore needs a 

custom IDS to face those attacks. Table 3.8 shows system performance in a case where the features 

are swapped between the three different layers (AIDS, TIDS, and NIDS) using the Fuzzy ESVDF 

approach. As shown, if we use the application features in the transport layer the accuracy will drop to 

85.04 % from 99.73 % in application layer. The training and testing time do not show much change 

because they depend more on the number of features. Also, when the application features are used in 

the network layer, system accuracy will be affected, dropping to 98.43 % from 99.73 % in the 

application layer. The same situation is seen in the two other layers.  

   So, the choice of features depends on the network attack type to be detected: when we swap the 

features between the layers, the system performance will be affected. Some features were good for 

detecting application attacks, other features were good for network attacks. Consequently, studying 

the nature of the IDS environment and the behaviour of the attacks are important issues for choosing 

the appropriate features to analyze the traffic pattern. 

   As shown in Table 3.9, the features selected for detecting intrusion at all layers do not cover all the 

features for the separate layers, which means that when we are more specific on the types of attack, 

Table 3.9 

The features set for different IDS types by using Fuzzy ESVDF approach 

IDS Type Feature index 

NIDS 3, 12, 37, 40 

TIDS 2, 3, 12, 32 

AIDS 3, 5, 12, 31, 36 

IDS (all layers) 3, 4, 5, 12, 23, 24, 33 
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the features become more accurate because each attack has its own behaviours depending the nature 

of the layer that it tried to attack. Moreover, each IDS type has its own custom attacks and therefore 

needs its own custom protection. Therefore, each attack type has its own behaviour and design, which 

leads us to analyze each attack-type pattern with its own features. However, there is some overlapping 

between the IDS features and that comes from the overlapping between some attacks. Some attacks 

target more than one layer such as “nmap”, which attacks transport and application layers. Others can 

attack all layers such as the “buffer overflow” attack. 

3.2.5 Summary  

In general, security can take three main forms: (1) end-to-end security at the TCP/IP application layer, 

(2) end-to-end security at the TCP/IP transport layer, and (3) link-to-link security at the TCP/IP 

network and link layers. In this section, we propose a new classification scheme for IDS depending 

on the TCP/IP network model that accommodates the three main forms of security measures [152]. 

This classification scheme improves the performance and scalability of the IDS. The performance 

improvement is in terms of improving the system detection ability and the time performance, which is 

accomplished through three main points. First, each IDS type can be specialized to detect a specific 

category of attack depending on the layer. For example, to place IDS in the router, we need to use 

NIDS, which knows much about router attack behaviour.  Secondly, by distributing the IDS through 

the TCP/IP layers as the second level of defense after the firewall, the firewall will be supported by 

the IDS and the overall system security will be improved. Furthermore, it is known that one of the 

major issues in network security is to secure network devices, which are represented as system entry 

points for the attacks. Also, by this approach, we can integrate intrusion-related information 

distributed around the network. Hence, by designing a specialized IDS for each one of network layer, 

the overall system performance will be improved. The proposed approach can also improve system 

scalability in terms of reducing the number of needed features (five features in AIDS, four features in 

TIDS, and four features in NIDS). Therefore, splitting the IDS into sub-systems can accommodate 

reduced system scalability and improve its performance. 

    We have implemented the different IDS types by using the Fuzzy ESVDF approach to select the 

appropriate features set for each IDS type, and validated their performance by using NN and SVM 

classifiers. Experimental results demonstrate that our approach improves system accuracy, efficiency 

(training time and testing time), and scalability.  
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3.3 Conclusion 

Building a lightweight IDS is an important issue in intrusion detection, when considering how to 

improve IDS efficiency, performance, and scalability. In addition, a lightweight IDS is flexible 

enough to be used as permanent elements of the network security infrastructure, and is easily 

incorporated into any network security architecture with minimal disruption to operations. In this 

chapter, we built a lightweight IDS by applying two different approaches. In the first approach, the 

features selection approach, we used a novel features selection algorithm based on a Support Decision 

Function (SVDF) and Forward Selection (FS) approach with a fuzzy inferencing model called Fuzzy 

ESVDF [118], [119]. The Fuzzy ESVDF is able to significantly decrease training and testing times 

while retaining high detection rates. In addition, it is simple and efficient, and it does not require 

parameters initialization, which facilitates a modification and enhancement process.  

   The second approach employs a new IDS classification scheme. This scheme classifies the IDS into 

different categories based on the TCP/IP network model (AIDS,TIDS, NIDS, and LIDS) [152]. By 

designing a specialized IDS for each layer in the TCP/IP network model, overall system performance 

will be improved, as will the system scalability, generality, and extensibility. In addition, the new 

classification scheme can reduce intrusion influences and damage that may occur as a result of 

detection attacks in the first stage (higher or lower TCP/IP layer) before they can enter the network.  

   We have implemented a number of experiments to evaluate the first approach, the Fuzzy ESVDF 

algorithm [118], [119], using the KDD-99 dataset [111], and four other datasets from UCI Irvine 

Machine Learning Repository [112]. The experimental results demonstrate that our approach can 

reduce training and testing times while retaining high classification accuracy. 

   For the second approach, the IDS classification scheme, we have implemented the different IDS 

types (AIDS, TIDS, and NIDS) by using the Fuzzy ESVDF approach to select the appropriate 

features set for each IDS type and validating their performance by using NN and SVM classifiers. 

Experimental results demonstrate that classifying IDS into different types improves system accuracy, 

efficiency (training time and testing time), and scalability even more. It is reduced from seven 

features (in case of using all attack types) to five features in AIDS, four features in TIDS, and four 

features in NIDS, as shown in Table 3.9.  

   Therefore, combining the two approaches, features selection and the IDS classification scheme, can 

build an efficient lightweight IDS that is small, powerful, and flexible enough to be used as a 

permanent element of a network security infrastructure.  
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Chapter 4 

Collaborative Architecture for dIDS based on Lightw eight IDSs 

In this thesis, we propose a new architecture for IDS, called a Collaborative architecture for dIDS (C-

dIDS) based on lightweight IDS modules, to overcome the heavy network traffic problem while 

improving system performance and scalability [153]. This architecture, C-dIDS, combines two main 

concepts. The first concept, the C-dIDS uses lightweight IDS (Chapter 3), where each detector (IDS 

module or host) uses small amounts of data in the detection process by applying two different 

approaches: features selection approach and IDS classification scheme.  

   For the first approach, a novel features selection approach called Fuzzy Enhanced Support Vector 

Decision Function (Fuzzy ESVDF) [118], [119] is used in order to improve system scalability in 

terms of reducing the number of needed features without affecting overall system performance.  

   The second approach uses a new IDS classification scheme by employing multiple specialized 

detectors in each layer of the network TCP/IP network model [152]. This helps in the collecting of 

efficient and useful information for dIDS, increasing the system’s ability to detect different attack 

types and reducing the system’s scalability. To integrate the system’s IDS modules, we propose a new 

architecture, Collaborative dIDS, as a second concept used in this thesis. The C-IDS contains a 

single-level hierarchy dIDS with a non-central analyzer [154]. To make the detection decision for a 

specific IDS module in the system, this IDS needs to collaborate with the previous IDS in the lower 

level of the hierarchy only. This architecture improves overall system performance. It overcomes the 

distributed IDS (dIDS) limitations: the central management problem and the scalability bottleneck. 

Moreover, the cooperation between the IDS modules is done with less network load. In this chapter, 

first we explain the new architecture, C-dIDS. Then, we integrate the two concepts (lightweight and 

C-dIDS) in order to improve system performance, efficiency, scalability, generality, configurability, 

reliability, robustness, flexibility, and extensibility with minimum network load. To design this 

architecture, several experiments have been conducted which indicate that the proposed architecture 

can deliver satisfactory results.  

   This chapter splits into three sections. The first section (Section 4.1) describes the C-dIDS 

architecture. It starts by giving a brief background of dIDS. The proposed architecture C-IDS is then 

presented with some experimental results and discussion, followed by reviewing the summary of the 
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section. Section 4.2 describes the proposed system (C-dIDS based on lightweight IDS) with some 

experiments and results.  Our conclusion is drawn in Section 4.3.  

4.1 Collaborative Architecture for dIDS 

Due to the many issues associated with monolithic architecture for an IDS, such as limited scalability, 

single point of failure, a lack of extensibility, much overload (computational bottleneck), vulnerable 

to subversion, difficult to configure or add capability among others, a distributed Intrusion Detection 

System (dIDS) is required to allocate multiple IDS modules across a network to monitor security 

events and to collect data. However, most dIDS architectures have two primary shortcomings. First, 

the central management and processing of data represents a single point of failure. Second, the 

scalability bottleneck often results in these systems suffering from a slow response time to new 

threats. In this section, we propose a new architecture to overcome these two limitations [154], called 

a Collaborative architecture for dIDS (C-dIDS). The C-dIDS contains a single-level hierarchy dIDS. 

To make the detection decision for a specific IDS module in the system, this IDS module needs to 

collaborate with the previous IDS in the lower level only. Coordinated deployment of multiple IDS 

promises to generate greater confidence in the results, and improve the coverage of intrusion 

detection. This can be accomplished with less network load (just one bit of information), which in 

turn improves system scalability. Moreover, by using single-level hierarchy, there is no central 

management and processing of data and so no chance of a single point of failure.  We have examined 

the feasibility of our dIDS architecture by conducting several experiments using the DARPA dataset 

[111]. The experimental results indicate that the proposed architecture can deliver satisfactory system 

performance with less network load. 

4.1.1 Distributed Intrusion Detection Systems 

Many network-based and host-based IDS perform data collection and analysis centrally using a 

monolithic architecture (meaning that the data are collected by a single host and analyzed by a single 

module). This architecture suffers from significant problems that limit the performance of IDS [120], 

[121], [122]. First, a single point of failure: if an intruder can somehow prevent the IDS from 

working, the entire network is unprotected. Second, limited scalability: processing all the information 

on a single host implies a limit on the size of the network that can be monitored. After that limit, the 

central analyzer is unable to keep up with the flow of information. Third, a lack of extensibility: it is 

difficult to reconfigure or add capabilities to the IDS. Finally, the analysis of network data can be 



 

 75 

flawed. As a result, intrusions can be conducted through several steps that occur on different hosts, 

and such intrusions consequently cannot be detected by a single IDS. 

   These problems make the area of IDS an attractive research field. In recent years, researchers have 

investigated different distributed approaches for IDS [42], [98], [99], [121]. The distributed IDS 

(dIDS) [77], [89] is one of several options that allow computation load and diagnostic responsibilities 

to be distributed throughout the network. It performs distributed data collection (and some pre-

processing) by using modules distributed among different hosts, which monitor separately and 

communicate and cooperate with each other. The dIDS can provide the foundation for a complete 

solution to the complexities of real-time detection, while maintaining fault-resistant behaviour. In 

addition, each module can be added or removed from the system without altering other system 

components, as they operate independently. Moreover, the system’s modules can be configured or 

upgraded without disturbing the rest of the system as long as their external interface remains the 

same. Nonetheless, the collected data are still shipped to a central location where they are analyzed by 

a monolithic engine. Also, it may result in a scalability bottleneck. To address these limitations, many 

techniques use a hierarchical structure [42], [43], [44], [46], [67] which describe a cooperative system 

without centralized analysis components. In these approaches, the local intrusion detection 

components look for local intrusions and pass the results of their analysis to the upper levels of the 

hierarchy. The components at the upper levels analyze the refined data from multiple lower level 

components and seek to establish a global view of the system state. This helps address scalability and 

allows a system to be deployed across large enterprise-scale networks. Moreover, it helps address the 

single point of failure problem, because if a higher node hierarchy should fail the lower tiers can 

typically continue to function, but with less detection capabilities.  

   The major disadvantages of hierarchical dIDS are the limited detection process (it limits the kind of 

intrusions that can be detected at the highest levels) and the network latency (the delay between each 

level in the architecture). Moreover, there is still one highest-level entity, which is the bottleneck of 

this system and leads to a single point of failure. The hierarchical structures usually give attackers the 

opportunity to harm the IDS by cutting off a control branch or even by taking out the root command. 

Our proposed approach overcomes these problems by eliminating the need for so much transferred 

data and speeding up the detection process [154]. Also, it addresses the single point of failure 

problem without losing any detection capability, and improves the overall scalability of the system.  
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   This architecture is called Collaborative architecture for dIDS (C-dIDS). The C-dIDS contains a 

single-level hierarchy architecture. Each IDS module (host) in the system needs to receive one 

information bit from the IDS in the lower level and pass the results of its analysis to the IDS in the 

upper level. Therefore, to make the detection decision for each IDS module in the system, this IDS 

needs to get one bit of information (the analysis results) from the previous IDS in the lower level 

only, without proceeding to the more than one level or the root node. Thus, improves the overall 

system performance, avoids a single point of failure problem and speeds up the detection process with 

less network load. 

4.1.2 Collaborative Architecture for dIDS 

We propose a new architecture for distributed IDS (dIDS) called a “Collaborative architecture for 

dIDS” (C-dIDS) to overcome the single point of failure, heavy network traffic and network latency 

problems, while improving system performance. This architecture, C-dIDS, organizes the cooperation 

process between different IDS modules (hosts) that are distributed on different points in the network 

by using single-level hierarchy dIDS with non-central analyzer. Each IDS module (host) in the system 

needs to receive a single bit of information from the previous IDS module to make its own detection 

decision. This bit of information can be either zero (to indicate that the network traffic is normal), one 

(to indicate that the network traffic is attack), or two (to indicate that the network traffic is undefined, 

which means that the network traffic has two values: normal and attack). To make a detection 

decision for each IDS module, the IDS module needs to use this bit of information from the previous 

IDS module in the lower level with the six rules described by Table 4.1. Where T = zero (normal), F 

= one (attack), and U= two (Undefined); X1 is the detection value from the current IDS module and 

X2 is the detection value that it is sent from the previous IDS in the lower level of the hierarchy. 
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   As it is shown in Table 1 that “X1” takes only two values either True (normal) or False (attack), 

because “X1” is the analysis result from the IDS module. However, “X2” can take three values: True 

(normal), False (attack) and Undefined; because “X2” is the information bit that comes from previous 

IDS module in the lower level. This bit is actually the outcome of Table 4.1, and, as it shown, it has 

three values.  

   Then, only normal and undefined traffic are allowed to pass to the next IDS module in the upper 

level; attack traffic is blocked and denied passage to the next stage. Moreover, for initializing the 

information bit at the first IDS module (host), there are three different scenarios. The first scenario is 

to initialize the bit (X2) with one (attack: F). Figure 4.1 describes this scenario. The second scenario 

is to initialize the bit with two (undefined: U). Figure 4.2 describes this scenario. The third scenario is 

to initialize the bit with zero (normal: T). Figure 4.3 describes this scenario. (Suppose the number of 

IDS modules equals three).  

 

 

                                      

 

 

 

 

Table 4.1 

The Composition Table for the Final Decision Results  

X1 X2 The Decision Result 

T T T 

T F U 

T U T 

F T U 

F F F 

F U F 
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Figure 4.1 The first scenario for C-dIDS architecture 
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T+U=T 

Figure 4.2 The second scenario for C-dIDS architecture 

Network Traffic 

F+U=F 

(X2= U) 

F+U=F 

IDS 

module 

(2) 

IDS 

module 

(3) 

IDS 

module 

(1) 

T+T=T 

F+T=U 

T+T=T 

T+U=T 

F+T=U 



 

 80 

 

   As shown in the above figures, the initialization of the information bit (X2) affects the system 

behaviour in the first stages only. In scenario (1), after the system has filtered the traffic it will allow 

for only the normal to pass on to the first two stages; then it will allow all traffic to pass in the third 

stage, and after that it will allow the normal and undefined traffic to pass the rest of the stages. For 

scenario (2), the system at the first stage will allow the normal to pass only. For the second stage, it 

will allow all traffic to pass to the next stage, and then it will allow the normal and undefined traffic 

to pass the rest of the stages. Finally, in scenario (3), for the first stage it will allow all traffic to pass 

and then only normal and undefined traffic will be allowed for the rest of the stages.  

   Another feature of this C-dIDS architecture is its flexibility in terms of its ability to be converted to 

other distributed architectures (non-cooperative dIDS and central analyzer dIDS) by changing the 

value of the information bit (the bit that it is received from the previous IDS in the lower level) to fix 

value either zero (normal/T) or one (attack/F). If the information bit (X2) has a value of one, the 

Figure 4.3 The third scenario for C-dIDS architecture 
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system’s structure becomes like a non-cooperative dIDS; and if it has a value of zero, the system’s 

structure becomes like a central analyzer dIDS.  

   The non-cooperative dIDS architecture is a distributed architecture where each IDS module does it 

own detection decision without any cooperation with others. The C-dIDS can be converted to this 

architecture by fixing the information bit (X2) value to one (attack/F) always as it is shown in 

Figure4.4.   

   In the central analyzer dIDS, each IDS module does its detection decision. At the end, all IDS 

modules will send their results to the central analyzer, which will aggregate all decisions into a single 

decision using an aggregation technique. The C-dIDS can be converted to this architecture by fixing 

the information bit (X2) with zero value (normal/T), as it is shown in Figure 4.5.  
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Figure 4.4 The non-cooperative architecture for C-dIDS 
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   As a result, the proposed architecture, C-dIDS, reduces the network traffic load while improving 

overall system performance. Moreover, there is no central management and processing of data so 

there is no chance for a single point of failure. In addition, C-dIDS is a flexible system. It can be 

converted to other dIDS architectures: non-cooperative dIDS or central analyzer dIDS. The 

experimental results in the next section will prove some of these features.   

4.1.3 Experiments and Results 

   To evaluate the performance of our proposed approach, we compare it with two other architectures- 

central analyzer dIDS and non-cooperative dIDS - by using the DARPA KDD-99 benchmark dataset 

[111]. In this section, we initially describe the contents of the DARPA KDD-99 dataset and the 

experimental settings, followed by some experimental results and discussion.     

Datasets Description 

We use the same dataset (KDD-99 dataset [111]) as employed in the previous section (Section 3.3.1). 

In these experiments, we pick two different datasets for training and testing purposes. Each dataset 
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Network Traffic (X2= T in all steps) 

IDS 

module 

(1) 

IDS 

module 

(2) 

IDS 

module 

(3) 

F 

The 

Central 

Analyzer 

T+T=F 

F+T=U T+T=F 

F+T=U 

T 



 

 83 

contains 6000 samples, of which 3000 are normal samples (50 %) and 3000 are attack samples (50 %) 

(i.e., the total number of samples equals 12000). 

Experimental Settings 

Our experiment has two main steps. In the first step, we build three IDS modules (hosts). Each 

module is implemented using different technique. Secondly, we integrate these different IDS modules 

using three different architectures:  C-dIDS, non-cooperative dIDS, and central analyzer dIDS.   

   For the first step and for building three IDS modules, we use: Back Propagation (PB) Neural 

Networks to implement IDS module (1), Radial Basis Function (RBF) neural network to implement 

IDS module (2), and for IDS module (3) we use Support Vector Machines (SVMs). (Note: there is no 

reason behind picking these SC tools to build the IDS modules; our focus here to build three IDS 

modules regardless of the tools that are used) 

   For implementing BP NN, we use the function “newff” from the MATLAB toolbox with three 

layers (an input layer with 41 neurons, a hidden layer with six neurons, and an output layer with one 

neuron), sigmoidal activation function, performance function “MSE”, 30 epochs and 0.001 learning 

rate.  For RBF NN, we use the function “newrb” from MATLAB toolbox with goal value equal to 

zero, spread value equal to one, and maximum number of neurons equal to fifty. For SVM 

implementation, we use the simpleSVM library for SVM [113]. The crossover parameters selection of 

the SVM includes a range of basic SVM parameters, various kernel functions, and their performance 

arguments. In our experiments, we set the crossover parameters as follows: C can take one of these 

values 1, 100, 5000, or 10000. The kernel functions for SVM were taken as linear and radial basis 

kernels. The polynomial kernel with degree 1 and 2 and the coefficient (scale) can be 0.5, 2, 3, or 4. �  

in a radial basis kernel at either 0.5, 1, 2, or 3.  

   For the second step, we integrate the three modules (IDS module (1), IDS module (2), and IDS 

module (3)) using three different dIDS architectures: C-dIDS, non-cooperative dIDS, and central 

analyzer dIDS.  

   In the C-dIDS architecture, each IDS module makes its detection decision by using one bit of 

information from the previous IDS in the lower level of hierarchy (as it is explained in Section 4.1.2). 

Network traffic first enters the IDS module (1) that will divide the traffic into normal and attack, 

which are the values of “X1”. Then IDS module (1) applies the six rules that are mentioned in 

Table4.1 on its result analysis “X1” and the information bit “X2” sent from a previous IDS module to 
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make the final decision. After that, it only allows normal and undefined traffic to pass to the next 

module. Normal and undefined traffic will again be scrutinized at the IDS module (2) which will 

divide the traffic once more into normal and attack, and also applies the six rules on them to get the 

final analysis results. Then IDS module (2) allows only normal and undefined traffic to pass on to the 

next module. The same situation applies to the IDS module (3).  

   The non-cooperative dIDS is a distributed architecture where each IDS module does its own 

detection decision, without any cooperation with others. In our case, we have three different IDS 

modules. The network traffic first enters the IDS module (1) which will divide the traffic into normal 

and attack, and allow only the normal traffic to pass to the next IDS module in the upper level; the 

remaining attack traffic will be blocked. Normal traffic will again be scrutinized at the next IDS 

module, which will divide the traffic once more into normal and attack, and allow only the normal 

traffic to pass on to the next IDS module. This process will happen repeatedly until the filtered 

network traffic is received at the last IDS module.  

   In the central analyzer architecture, each IDS module in the system makes its own detection 

decision. At the end, all IDS modules will send their results to the central analyzer, which will 

aggregate all decisions into one final decision using an aggregation technique. In our case, we have 

three IDS modules (three votes). To aggregate these votes, we use a vote aggregation method. So, 

there might be three normals, or two normals and one attack; in both cases, “normal” wins. Or there 

can be three attacks, or two attacks and one normal; in both cases, “attack” wins.   

   Each experiment is repeated ten times by randomly selecting 40 % of samples as the test data; the 

remaining 60 % are used as the training data.  

Experimental Results 

The comparisons of the different dIDS architectures {C-dIDS [C-dIDS (1), C-dIDS (2) and C-dIDS 

(3)], non-cooperative dIDS, and central analyzer dIDS} are presented in Table 4.1 and Table 4.2 

respectively. These comparisons are done with respect to different performance indicators: FPR, CR, 

training time, and testing time (Table 4.2), the average amount of traffic that enters each IDS module, 

and the total amount of traffic (Table 4.3). (Note: C-dIDS (1) refers to the first scenario for C-dIDS, 

C-dIDS (2) refers to the second scenario for C-dIDS, and C-dIDS (3) refers to the third scenario for 

C-dIDS). 
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Note:  “+” means the amount of traffic plus the information bits (the bits that are added from the 

cooperation process between the modules). For example “2391.2 x 41 = 98039.2 +”, means that 

98039.2 + 2391.2 = 100430.4. The total traffic amount includes this additional amount (the added 

information bits), and 41 represents the number of the information bits in each record of the network 

traffic. 

 
 

Table 4.3 

The Comparison between the three architectures: C-dIDS, non-cooperative, and central analyzer in 

terms of amount of traffic 

Architecture Traffic (IDS1) Traffic (IDS2) Traffic (IDS3) Total traffic 

C-dIDS (1) 
(2391.2 x 41) 

98039.2 + 

(1345.2 x 41) 

55153.2 + 

(1200.6 x 41) 

49224.6 + 
207354 

C-dIDS (2) 
(2391.2 x 41) 

98039.2 + 

(1345.2 x 41) 

55153.2 + 

(1280.7 x 41) 

52508.7 + 
210718.2 

C-dIDS (3) 
(2391.2 x 41) 

98039.2 + 

(2391.2 x 41) 

98039.2 + 

(1199.6 x 41) 

49183.6 + 
251244 

non-cooperative 
(2391.2 x 41) 

98039.2  

(1345.2 x 41) 

55153.2 

(1200.6 x 41) 

49224.6 
202417 

central analyzer 
(2391.2 x 41) 

98039.2 

(2391.2 x 41) 

98039.2 

(2391.2 x 41) 

98039.2 
294117.6 

 

 

 
Table 4.2 

The Comparison between the three architectures: C-dIDS, non-cooperative, and central analyzer in 

terms of FPR, CR, and efficiency 

Architecture 
FPR  

(%) 

CR 

 (%) 

Training Time 

(sec) 

Testing Time 

(sec) 

C-dIDS (1) 1.00 x 10-6 99.304 402.822 0.233 

C-dIDS (2) 1.00 x 10-6 99.609 402.822 0.247 

C-dIDS (3) 0.84 x 10-6 99.711 402.823 0.390 

non-cooperative 1.2 x 10-6 99.292 402.822 0.239 

central analyzer 0.336574 99.774 402.822 0.444 
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Discussion  

As shown in Table 4.2, comparison between C-dIDS (C-dIDS (1), C-dIDS (2), C-dIDS (3)) and non-

cooperative dIDS reveals a significant improvement in terms of CR with similar FPR is maintained. 

The C-dIDS (1), C-dIDS (2), and non-cooperative dIDS have nearly the same testing time. However, 

the testing time is increased in C-dIDS (3) because the C-dIDS (3) allows more traffic to pass at the 

first stage of detection, as is shown in Table 4.3. In general the proposed architecture improves the 

system efficiency (time) without creating a heavy network load on the system or reducing system 

accuracy. Moreover, the non-cooperative dIDS represents dIDS with no central analyzer and without 

any cooperation between the IDS modules. Each IDS module works independently and filters 

network traffic according to its own decision, which causes a reduction in overall system accuracy, 

because each layer adds some portion of error through blocking attack records, which may contain 

some normal records (False Positive); also, aggregating more than one decision is better than an 

individual decision. The C-dIDS mitigates these limitations by allowing more traffic to pass to the 

next IDS module in the system (it allows the normal and undefined traffic instead of only the normal 

traffic) and cooperating with the other IDS module to make the final detection decision. 

   Comparing C-dIDS (C-dIDS (1), C-dIDS (2), and C-dIDS (3)) with the central analyzer dIDS, the 

central analyzer dIDS outperforms the C-dIDS in terms of CR; however, it has the largest FPR value 

and testing time. In the central analyzer dIDS, each IDS module works independently, and the result 

of each module is aggregated in order to generate more global alerts. Therefore, all data will be 

shipped to all dIDS modules, and then sent to a central location for aggregating the alerts, which 

causes heavy network traffic as shown in Table 4.3. The total amount of traffic is 294117.6, which is 

higher than other architectures. Moreover, the central analyzer dIDS suffers from the single point of 

failure problem, and that may prevent IDS from working and cause the entire network to experience a 

loss of protection.  

   Comparing C-dIDS (1), C-dIDS (2), and C-dIDS (3) shows that allowing more traffic to pass 

between system’s IDS modules at the first stages can improve the overall system performance (as 

shown in Table 4.2) while increasing the testing time (as shown in Table 4.2) and the system load (as 

shown in Table 4.3). Moreover, it is obvious from the above figures that dIDS (1) works as a non-

cooperative architecture in the first two stages. dIDS (2) also works as a non-cooperative architecture, 

but only in the first stage. For dIDS (3), the system does not do that at all, which means that changing 

the value of initialization bit can only affect the system in the first stages. For the rest of the stages, all 

scenarios will follow the same behaviour. As a result, there is no preference between these three 
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scenarios. Each one has its own benefits, depending on user requirements. The C-dIDS (1) scenario 

can be used in applications in which time plays a critical role (it has the least testing time = 0.233). 

On the other hand, if system accuracy is the most important issue in the application, the C-dIDS (3) 

scenario is recommended (it has the best CR = 99.711 and FPR = 0.84 x 10-6). Accordingly, if time 

and system accuracy have the same priority, dIDS (2) is recommended. As shown in Table 4.2 and 

Table 4.3, the C-dIDS (1) has the best value in terms of the traffic amount and the testing time, and C-

dIDS (3) has the best system accuracy among other C-dIDS scenarios. The application type will then 

determine which scenario is the most appropriate. In general, the idea of C-dIDS is to improve the 

non-cooperative architecture by allowing more traffic to pass between the system’s IDS modules.  

Instead of allowing only the normal traffic to pass, the C-dIDS allows normal and undefined traffic. 

Moreover, cooperating processes between system modules can improve the overall system accuracy.  

   In summary, these results demonstrate the feasibility of the proposed architecture (C-dIDS). The C-

dIDS seems to be the most appropriate approach because it uses a non-central analyzer dIDS, and it 

allows the modules to cooperate with less network load (one bit of information through single-level 

hierarchy dIDS).  It is also shown that the C-dIDS is a flexible system; it can be converted to either a 

central analyzer dIDS or a non-cooperative dIDS by changing only the value of the information bit.  

4.1.4 Summary 

The most common shortcomings in existing distributed Intrusion Detection System (dIDS) 

architectures are that they are built around a central management that does the aggregation and 

processing of the system’s alerts. A heavy network load results in very large amounts of data being 

transmitted between the detectors (hosts). This section presents a novel architecture for dIDS to 

overcome these limitations, called Collaborative architecture for dIDS (C-dIDS) [154]. The C-dIDS 

demonstrates that detection IDS modules can be run in a distributed fashion, with each one running 

independently of the others while cooperating and communicating to provide a truly distributed 

detection mechanism with no single point of failure. There is no central processing location; all IDS 

modules process the information available to them independently and relay any suspicious activity to 

other IDS modules on the network. The C-dIDS is based on the idea of independent IDS cooperating 

to detect different attack types across the network. Each IDS module makes its own traffic analysis 

while cooperating with other detectors to make the final detection decision. The main goals of this 

architecture are to reduce network traffic load while achieving better intrusion detection. 



 

 88 

   By using single-level hierarchy dIDS with a non-central analyzer, each IDS module in the system 

needs to communicate with other IDS modules by transferring one bit of information. Cooperating 

with other IDS modules (detectors or hosts) can improve the system’s ability to detect attacks that 

might not be detectable if each IDS module was examined individually, with low network load. 

Moreover, by using single hierarchy level, there is no central management and processing of data so 

there is no chance for a single point of failure. In addition, fewer data are transferred between these 

modules (just one bit of information). The C-dIDS is a flexible system. It can be used as a central 

analyzer dIDS or a non-cooperative dIDS simply by fixing the value of its information bit to either 

one or zero.  

   We evaluate the proposed architecture, C-dIDS, by comparing it with other dIDS architectures: 

non-cooperative dIDS and central analyzer dIDS. The experimental results illustrate that the C-dIDS 

is a suitable architecture in terms of system performance and network load.  

4.2 Collaborative Architecture for dIDS based on Li ghtweight IDS   

To even further improve the efficiency of the C-dIDS in terms of system scalability and network load, 

we use lightweight IDS as system detectors (hosts). So, the proposed architecture of the dIDS will 

integrate two different concepts: lightweight IDS and a distributed collaborative architecture. 

   In the first concept, lightweight IDS (Chapter 3), the detection process uses fewer data for the 

detection process by using lightweight IDS modules. The lightweight IDS is a small, flexible, and 

highly capable system that is in use around the world on both large and small networks. It 

accomplishes its essential tasks with minimal data, and it is dynamically updatable and upgradable, 

simpler, and faster to transport (due to its smaller size). To build a lightweight IDS module, we need 

to reduce the amount of data/features that are needed to accomplish the detection process. Most 

researchers in this area use one of the features selection approaches to design a lightweight IDS, 

which is considered to be inefficient in most cases. In this thesis, we build a lightweight IDS by 

integrating two different approaches: features selection and an IDS classification scheme. For the first 

approach, we apply a novel features selection algorithm called Fuzzy Enhancing Support Vector 

Decision Function (Fuzzy ESVDF). The Fuzzy ESVDF is an iterative algorithm based on Support 

Vector Decision Function (SVDF) and Forward Selection (FS) with a fuzzy inferencing model [118], 

[119]. Using the Soft Computing (SC) approach for IDS features selection is suitable for handling 

such subjective estimates, due to their high performance, low solution cost, fast recognition and 

classification of different attacks, and ability to generalize from learned data. In the second approach, 
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we present a new IDS classification scheme based on a TCP/IP network model. In this scheme, 

specialized IDS are placed at each of the four layers of a TCP/IP network model (Application layer 

IDS, Transport layer IDS, Network layer IDS, and Link layer IDS) to detect specific types of attack 

corresponding to each layer. This scheme would enhance an organization’s ability to detect most 

types of attack by identifying correct locations to place an IDS for the following reasons. First, each 

TCP/IP layer has different vulnerabilities, security challenges and types of attacks. The studies in 

[115], [116], [19], [117] showed that the choice of network features for IDS depends on the network 

attack type to be detected. Network attacks can be categorized into four major types: (1) Application 

Layer attacks, (2) Transport Layer attacks, (3) Network Layer attacks, and (4) Link Layer attacks.  

The IDS can also be categorized into AIDS, TIDS, NIDS, and LIDS. Second, as is known, firewalls 

operate at different TCP/IP network layers by using different criteria to restrict traffic, but this is a 

long step from running an entirely secure network. Because of that, IDS must be allocated as a second 

line of defense behind the firewalls. Third, the attacks usually gain access to the network through the 

network devices distributed through different TCP/IP network layers as entry points, and in order to 

be able to adequately address security, all possible avenues of entry must be evaluated and secured. 

So, IDS must be allocated at these entry points or network devices. Finally, splitting the detection 

process into different levels and stages reduces the computation load on the system and improves its 

scalability and performance. Accordingly, the proposed lightweight IDS improves system accuracy, 

efficiency, scalability, generality, extendibility, flexibility, and configurability.  

   Due to the increasing connectivity of heterogeneous computer systems and the rapid growth, 

sophistication, coordination and cooperation of attack tools and strategies, using distributed IDS 

(dIDS) becomes essential in designing an IDS. The dIDS consists of multiple entities working 

independently and allows changes to these entities without any modifications made to other entities. 

The dIDS is capable of improving system performance, scalability, and extensibility, and can provide 

the foundation for a complete solution to the complexities of real-time detection, while maintaining 

fault-resistant behaviour. However, it suffers from a number of limitations, such as a scalability 

bottleneck, a limited detection process, and network latency.  

   In this thesis, we propose a novel collaborative architecture for distributed intrusion detection as a 

second concept (Section 4.1) in order to overcome some of the limitations of the current approaches 

in dIDS. This Collaborative distributed IDS (C-dIDS) is based on a single-level hierarchy dIDS with 

a non-central analyzer. Each IDS module in the system needs to receive a single bit of information 

from the previous IDS module to make its own detection decision, without proceeding to the root 
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node or more than one IDS. Transferred data can be dispatched between the detectors with only 

crucial data (just one bit of information), which will reduce network load. Moreover, data collection 

and information analysis are performed locally without referring to the central management unit. 

Therefore, there is no scalability bottleneck or single point of failure. In addition, it is capable of 

improving accuracy, real-time performance, efficiency, flexibility, adaptability, extensibility, 

robustness, and fault tolerance, as explained in Section 4.1.  

   In this section, we integrate the above two concepts (lightweight IDS and Collaborative dIDS) in 

order to improve the overall system performance. Using a lightweight IDS can improve system 

efficiency, accuracy, scalability, generality, extendibility, flexibility, and configurability. The second 

concept, C-dIDS, can also improve system scalability, extendibility, configurability, and flexibility. In 

addition, it can improve system reliability and robustness with minimum network load. 

4.2.1 Experiments and Results 

To evaluate the performance of our proposed approach, we compare it with other architectures by 

using the DARPA KDD-99 benchmark dataset [111]. In this sub-section, we initially describe the 

contents of the DARPA KDD-99 dataset and the experimental settings, followed by some 

experimental results and discussions.     

Datasets Description 

We use the same dataset (KDD-99 dataset [111]) as already used in the previous section (Section 

3.3.1). In these experiments, we pick two different datasets for training and testing purposes. Each 

dataset contains 6000 samples; of which 3000 are normal samples (50 %) and 3000 are attack 

samples (50 %) (i.e., the total number of samples equals 12000). 

Experimental Settings 

Our experiment has two main steps. In the first step, we build three IDS modules. Secondly, we 

integrate these different IDS modules to build different dIDS architectures. We build four 

architectures: C-dIDS with specialized IDS module, C-dIDS with non-specialized IDS module, non-

cooperative dIDS with non-specialized IDS module, and central analyzer dIDS with non-specialized 

IDS module.  (Note: specialized IDS modules means that we use Network layer IDS (NIDS), 

Transport layer IDS (TIDS), and Application layer IDS (AIDS) that we had already built in Section 

3.2, and a non-specialized IDS module means that IDS modules use all 41 features).  
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   For the first step, we use the results of previous experiments (Section 3.2) to build the C-dIDS with 

specialized IDS modules. The specialized IDS modules will be NIDS, TIDS, and AIDS. For other 

architectures, we use non-specialized IDS modules.  

   For the second step, we integrate the three modules (NIDS, TIDS, and AIDS) to build a C-dIDS 

with a specialized IDS module. Also, we integrate the non-specialized IDS modules to build the other 

architectures: C-dIDS with non-specialized IDS module, non-cooperative dIDS with non-specialized 

IDS module, and central analyzer dIDS with non-specialized IDS module. The different architectures 

are explained in Section 4.1.2. 

   Each experiment is repeated ten times by randomly selecting 40 % of the samples as the test data; 

the remaining 60 % are used as the training data.  

Experimental Results 

For C-dIDS with specialized modules, we apply the Fuzzy ESVDF on 41 features [118], [119] to 

select the best features set for each type of IDS module: AIDS, TIDS, and NIDS (Section 3.2). The 

resulting features sets for AIDS, TIDS, and NIDS are presented in Table 3.9. The comparisons of the 

different architectures - C-dIDS with specialized (we will used scenario (2) of the C-dIDS), C-dIDS 

with non-specialized (we will used scenario (2) of the C-dIDS), non-cooperative with non-specialized 

dIDS, and central analyzer with non-specialized dIDS - are presented in Table 4.4 and Table 4.5. The 

comparison of the different dIDS architectures is done with respect to different performance 

indicators: FPR, DR, CR, training time, and testing time (Table 4.3), the average amount of traffic 

that enters each IDS module, and the total amount traffic (Table 4.4).  

For the sake of simplicity, we re-named each architecture as follows: 

- SC-dIDS:  C-dIDS (2) with specialized IDS 

- NC-dIDS:  C-dIDS (2) with non-specialized IDS 

- non-cooperative : non-cooperative with non- specialized IDS 

- central analyzer: central analyzer with non- specialized IDS 
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Note:  “+” means that the amount of the traffic plus the information bits (the bits that are added from 

the cooperation process between the modules). For example “2385.3 x 4 = 9541.2 +”, means that 

9541.2 + 2385.3 = 11926.5. The total traffic amount reflects this additional amount (the added 

information bits).   

Discussion 

As shown in Table 4.4, comparison between SC-dIDS and NC-dIDS reveals a significant 

improvement in terms of training time (it is reduced from 3099.0 sec to 572.372 sec) and testing time 

(it is reduced from 0.143 sec to 0.103 sec) while keeping nearly the same CR, DR, and FPR in both 

cases. Also, Table 4.5 shows significant improvement in terms of the amount of the traffic between 

the modules in SC-dIDS (25782 information bits) and NC-dIDS (207219.6 information bits). In 

Table 4.4 

Comparison between the four structures in terms of FPR, DR, CR, and efficiency 

Architecture 
FPR  

(%) 

DR  

(%) 

CR  

(%) 

Training Time 

(sec) 

Testing Time 

(sec) 

SC-dIDS  9.2 x 10-5 96.642 97.312 572.372 0.103 

NC-dIDS  8.3 x 10-6 96.528 97.762 3099.00 0.143 

non-cooperative  8.4 x 10-6 96.535 97.486 3099.00 0.128 

central analyzer  0.4384 99.768 99.703 3099.00 0.178 

 
 
 

Table 4.5 

Comparison between the four architectures in terms of passed traffic 

Architecture Traffic (IDS1) Traffic (IDS2) Traffic (IDS3) Total traffic 

SC-dIDS 
(2385.3x4) 

9541.2 + 

(1330.5x 4) 

5322 + 

(1200.5x5) 

6002.5 + 
25782 

NC-dIDS 
(2385.3x41) 

97797.3 + 

(1328.3x41) 

54460.3 + 

(1220.2x41) 

50028.2 + 
207219.6 

non-cooperative 
(2385.3x41) 

97797.3 

(1330.5x41) 

54550.5 

(1182.5x41) 

48482.5 
200830.3 

central analyzer 
(2385.3x41) 

97797.3 

(2385.3x41) 

97797.3 

(2385.3x41) 

97797.3 
293391.9 
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general, the results indicate that using a lightweight IDS module can improve overall system 

efficiency (training time and testing time) and system load without affecting system accuracy.  

   In comparing SC-dIDS with non-cooperative architecture, we find that although SC-dIDS does not 

use all 41 features, both non-cooperative dIDS and SC-dIDS architecture have nearly the same DR, 

CR, and FPR. On the other hand, Table 4.4 shows the obvious improvement in training time and 

testing time. Also, Table 4.5 reveals significant improvement in terms of the total amount of traffic. 

The SC-dIDS has 25782 information bits, while non-cooperative architecture has 200830.3 

information bits. As a result, the proposed architecture (SC-dIDS) has the ability to improve system 

efficiency with a high accuracy value and a lighter network load.  

   Comparing SC-dIDS with a central analyzer architecture, the central analyzer dIDS outperforms the 

SC-dIDS in terms of CR and DR; however, it has the largest FPR. Also, its training and testing time 

are greater than the training and testing time in the case of SC-dIDS, as shown in Table 4.3. Table 4.4 

shows that the traffic passed between the IDS module in the central analyzer architecture is higher 

than SC-dIDS; this is because all data in the central analyzer will be shipped to all dIDS modules and 

then sent to a central location for aggregating the alerts. Accordingly, a central analyzer architecture 

causes heavy network traffic on the system. This is in addition to the central management problem. 

   In summary, the proposed architecture, C-dIDS with a specialized IDS module (SC-dIDS), can 

improve the overall system efficiency (training time and testing time), scalability, and network load 

while still delivering satisfactory system accuracy.  

4.3 Conclusion 

The most common shortcomings in the current IDS are low accuracy, low efficiency, and limited 

scalability. This chapter presents a novel IDS distributed architecture –Collaborative Distributed 

Intrusion Detection System (C-dIDS) based on lightweight IDS modules [153]. The C-dIDS is based 

on the idea of lightweight, independent IDS cooperating to detect different attack types in each 

TCP/IP network layer, by employing multiple specialized detectors at various layers of the network 

TCP/IP model with a cooperative architecture. Each detector is specialized to detect different types of 

attacks by cooperating with other detectors to increase user confidence in the alert. The main goals of 

this architecture are to reduce network traffic load while improving system performance (accuracy 

and efficiency). These goals are accomplished through use of two different concepts.  
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   First, using lightweight IDS modules (Chapter 3), the detection process uses less data by applying 

two different approaches: features selection and an IDS classification scheme. For the features 

selection approach (Section 3.1), we use a novel algorithm called the Fuzzy Enhanced Support Vector 

Decision Function (Fuzzy ESVDF) [118], [119]. The Fuzzy ESVDF integrates the Support Vector 

Decision Function (SVDF) and Forward Selection (FS) approaches with the fuzzy inferencing model 

to select the most appropriate features set for the IDS. It produces an efficient features set by using a 

fast and simple approach. The second approach is the IDS classification scheme (Section 3.2). This 

scheme employs multiple specialized detectors in each layer of the network TCP/IP model, and data 

can be collected from multiple sources [152]. Thus, combining the best characteristics of traditional 

host-based, network-based, and router-based IDS can improve the overall performance and scalability 

of the system. Moreover, this categorization gives the architecture extended and maintained ability. 

   Secondly, using a single-level hierarchy dIDS with a non-central analyzer (Section 4.1), each IDS 

module in the system needs to communicate with another IDS module by transferring one bit of 

information [154]. Cooperating with other IDS modules (detectors) can improve the system’s ability 

to detect attacks that might not be detectable if each of the IDS was examined individually, with less 

network load. Moreover, by using single hierarchy level, there is no central management and 

processing of data, so there is no chance for a single point of failure; in addition, fewer data are 

transferred between these modules (just one bit of information). The C-dIDS is a flexible system. It 

can be used as a central analyzer dIDS or a non-cooperative dIDS simply by fixing the value of its 

information bit to either one or zero, as explained in Section 4.1.2. By comparing the proposed 

architecture with other architectures, we illustrate that the C-dIDS is a suitable architecture in terms 

of system accuracy, efficiency, scalability, and system load. 

    By integrating the above two concepts, lightweight IDS and C-dIDS, the overall performance of 

the IDS is improved. The experimental results show that a C-dIDS based on lightweight IDS modules 

improves overall system performance, efficiency (training time and testing time), and scalability 

without creating a heavy system load.   
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Chapter 5 

Conclusions and Future Work 

In this chapter, we briefly present a summary and contribution of the thesis in Section 5.1, followed 

by future work in Section 5.2.  

5.1 Summary of Results and Thesis Contribution 

In this thesis, we have primarily investigated the intrusion detection problem. Current IDS usually 

have several major shortcomings such as low accuracy, low real-time performance (low efficiency), 

and limited scalability. In particular, we have proposed a novel IDS architecture –Collaborative 

Distributed Intrusion Detection System (C-dIDS) based on lightweight IDS modules— that integrates 

two different concepts in order to work around these limitations [153]. First, the C-dIDS uses 

lightweight IDS, where each detector (IDS module) uses smaller amounts of data in the detection 

process by using two approaches: a features selection approach, and an IDS classification scheme. 

For the former, we apply a Fuzzy Enhanced Support Vector Decision Function (Fuzzy ESVDF) as a 

feature selection technique, which ensures that this technique will improve system efficiency, 

scalability, and reduce the network traffic load while retaining high classification accuracy.  

   The second approach is the IDS classification scheme. This scheme employs multiple specialized 

detectors in each layer of the network TCP/IP model, which helps in the collection of efficient and 

useful information for the dIDS, increasing the system’s ability to detect different attack types and 

reducing the system’s scalability.  The second concept is accomplished by using Collaborative 

architecture (C-dIDS) for the IDS. The C-dIDS contains a single-level hierarchy dIDS with a non-

central analyzer. To make the detection decision for a specific IDS module in the system, this IDS 

needs to collaborate with the previous IDS only, improving system accuracy without increasing the 

traffic load. Moreover, this architecture protects the system from single point of failure and the 

scalability bottleneck.  

   For the first approach, using lightweight IDS modules (detectors) (Chapter 3), the detection process 

uses fewer amounts of data for the detection process by employing two different concepts. The first 

approach is applying a novel feature selection technique (Fuzzy Enhanced Support Vector Decision 

Function) [118], [119]. The Fuzzy SVDF is based on a Support Vector Decision Function (SVDF) 

and Forward Selection (FS) with a fuzzy inferencing model. It is an iterative algorithm, where each 

iteration consists of two steps: feature ranking and feature selecting. Taking feature ranking first, the 
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Support Vector Decision Function (SVDF) is evaluated to rank each specified candidate feature. 

Next, feature selecting, a Forward Selection approach (FS) is applied with the fuzzy inferencing 

model to select the features according to a set of rules based on a comparison of performance.  

   To examine the feasibility of our approach, we conduct several experiments and comparisons. For 

evaluating the performance of the Fuzzy SVDF approach, we compare it with [34], [105] approaches 

by using the DARPA KDD-99 benchmark dataset [111]. In addition, we select four smaller datasets 

from the UCI  databases [112] to evaluate the proposed approach (Fuzzy SVDF) in different domains, 

and its behaviour with a different number of features (each dataset has a varying number of features). 

Also, we use two different classifiers (SVM and NN) to evaluate the resulted features set. The 

experimental results demonstrate the feasibility of the proposed approach. The proposed approach 

gives the best performance in terms of training and testing times while retaining high classification 

accuracy, allowing this approach to be used in a real-time environment. In addition, this approach is 

considered to be a features selection approach regardless of the type of classifier used, making this 

approach a suitable features selection method for other applications rather than an IDS.  

   For the second approach, the IDS classification scheme, by employing multiple specialized 

detectors in each layer of the network TCP/IP model, data can be collected from multiple sources 

[152]. Thus, combining the best characteristics of traditional host-based, network-based, and router-

based IDS can improve the overall performance and scalability of the system. Moreover, this 

architecture can be easily extended and maintained. We design three different types of IDS: NIDS, 

TIDS, and AIDS (LIDS is not included) by using Fuzzy ESVDF. Several experiments have been 

conducted to evaluate the effects of categorizing the IDS into these different types. We compare the 

performance of the specialized IDS modules (NIDS, TIDS, and AIDS) with the performance of the 

IDS that is designed to detect any attacks by using two different classifiers, NN and SVM. Moreover, 

we swap the features between the three different specialized IDS modules to evaluate the affect of 

each feature on the detection process. The experimental results indicate that each IDS type is subject 

to its own “custom” attacks and therefore needs its own custom protection. Also, categorizing IDS 

into different types can improve the overall system performance (accuracy and efficacy) and 

scalability. 

   For the second concept (Section 4.1), a distributed collaborative architecture, we propose a new 

architecture called a Collaborative architecture for dIDS (C-dIDS) [154]. The C-dIDS contains a 

single-level hierarchy dIDS with a non-central analyzer. Each IDS module in the system needs to 

communicate with another IDS module by transferring one bit of information. Cooperating with other 
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IDS modules (detectors) can improve the system’s ability to detect attacks that might not be 

detectable if each module of the IDS was examined individually, with less network load. Moreover, 

by using single hierarchy level, there is no central management and processing of data, so there is no 

chance for a single point of failure. We have examined the feasibility of our dIDS architecture by 

conducting several experiments using the DARPA dataset, and compared the proposed architecture 

(C-dIDS) with other dIDS architectures: non-cooperative dIDS and central analyzer dIDS 

architecture. For each of these architectures, we use three different IDS modules. Module (1) is 

implemented by using Back Propagation (PB) Neural Networks; Module (2) employs a Radial Basis 

Function (RBF) Neural Network; Module (3) is implemented by Support Vector Machines (SVM). 

The experimental results show that the C-dIDS is a suitable architecture in terms of system 

performance and network load, as it allows the modules to cooperate with less network load (one bit 

of information through a single-level hierarchy dIDS). In addition, the C-dIDS is a flexible system. It 

can be used as a central analyzer dIDS or a non-cooperative dIDS simply by fixing the value of its 

information bit to either one or zero.  

    We join the above two concepts (Section 4.2): lightweight IDS (Chapter 3), and distributed 

collaborative architecture (Section 4.1) in order to improve system accuracy, efficiency, and 

scalability while reducing the overall system load [153]. Therefore, many IDS modules can be 

installed and work in a collaborative manner without creating a heavy network load. Each one is 

concerned with some specific part of the network. It is then necessary to make them cooperate to 

achieve a global vision of the intrusion, while avoiding a single point of failure. Another point that 

vindicates this cooperative approach is the possibility to combine IDS that work differently. We 

implement the C-dIDS architecture using three specialized IDS modules: NIDS, TIDS, and AIDS that 

were already implemented in Section 3.2. For evaluating the proposed architectures, we compare the 

proposed approach (C-dIDS) with non-specialized C-dIDS, non-cooperative, and central analyzer 

architecture. The experimental results demonstrate that the proposed architecture can improve the 

overall system efficiency (training time and testing time) and scalability while it delivers satisfactory 

system accuracy.  

   In summary, these results demonstrate the feasibility of the proposed architecture (C-dIDS based on 

lightweight IDS modules). By integrating the two concepts (lightweight IDS and distributed 

collaborative architecture for the IDS), the system accuracy, efficiency (training and testing time), 

and scalability are improved without creating extra network load on the system. It provides a layer of 



 

 98 

defense which monitors network traffic for predefined suspicious activity or patterns, and alerts 

system administrators when potential hostile traffic is detected. Other advantages accrue as well. 

   First, it can be easily extended and maintained. Each module can be added or removed from the 

system without altering other system components, because intrusion detection processes are 

independent, so existing processes do not need to be modified when a new intrusion detection process 

is added.  

   Second, splitting the detection onto different levels (or stages) in the network reduces the 

intrusion’s influences, which reduces any damage that may occur.  

   Third, the proposed architecture improves the reliability of the system. Because it distributes the 

detection onto different levels, an intruder successful in attacking single level affects that single level 

only: the system will continue applying detection to the other levels. The failure of one local intrusion 

detection process does not cripple an entire IDS, even though it causes some degradation of overall 

detection accuracy.  

   Finally, it improves system robustness. The IDS will be difficult to attack, as it is divided into many 

detection levels (depending on the number of devices in the network) that make attacking the system 

much more difficult. Nevertheless, there remain unresolved problems to building an effective IDS 

which are not covered in this thesis, such as an inability to detect new attacks and weak system 

reactive capabilities, etc.. More details about future work planning are given in the next section.  

5.2 Future Research Directions 

IDS modeling in this thesis has been focused on improving the detection model in terms of detection 

accuracy, efficiency, and scalability, without creating a heavy network load on the system. We 

believe there are many possible extensions for the IDS problem. Therefore, below are presented other 

suggestions to further improve the IDS. 

- Implement the C-dIDS using autonomous agents. With autonomous agents, the architecture can 

be easily extended and maintained. In addition, they can enable ongoing interaction with the 

environment and cooperating with other agents.  

- Build a testing methodology to test the proposed architecture in terms of its robustness, security, 

feasibility, reliability, and other criteria, and compare it with other dIDS architectures. 

- Investigate the feasibility of implementing the C-dIDS in real-time intrusion detection 

environments.  



 

 99 

- Security, or secure message handling between system components, by using different approaches 

to accomplish confidentiality, integrity, and authentication for communications, could prevent the 

blocking of messages or the generation of false messages.  

 

We have already implemented the first part of the IDS, which is the detection model. We need to 

focus on the other IDS parts: 

• Response Mechanisms: most current IDS implementations have limited response (reactive) 

capabilities; an IDS needs to be capable of preventing, not just reporting an attack. We are 

planning to extend our study to build an efficient response system. 

• Build a friendly interface agent. The user interface is an important issue for future work. Most 

of the recent works in IDS has focused on how to implement detection, but very little has 

been done in the way of presenting the information to the user, or how to allow the user to 

specify policies that the IDS can understand and enforce. IDS should offer a user interface to 

facilitate better control over intrusion detection activity and better understanding of the alert 

information. 

 

- Investigate other major limitations of IDS such as: 

• New and Unknown Attack Recognition: The intelligent method of attack detection will be 

researched further to overcome the problem of detection of unknown and novel attack forms. 

• Dynamic nature: Provided with a dynamic nature, the IDS automatically learns new intrusion 

methods on their own, without a central controller having predefined information. This area 

needs to be studied deeply through the interaction with changing network environments, 

various security requirements, and other intrusion detection processes.  

 

- There are several areas where C-dIDS requires additional work before it can become more 

responsive to the demands of a wide range of environments prevalent in networking applications, 

such as: 

• A layered framework for the placement of dIDS devices needs to be investigated. 

• The effectiveness of dIDS depends also on how much of the data traffic is transferred 

between the system components on the distributed environment (in our case the components 

are the IDS modules). Therefore, the relationship between the proposed architecture and 

traffic needs to be explored in order to improve the overall dIDS effectiveness.  
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• We did not consider the balance between system performance and system cost. High 

performance always entails a high system cost. We will do more work on improving system 

performance with a reasonable system cost. 

 

   Finally, IDS are not the answer to all network security problems. They require a certain level of 

maturity and are only effective if monitored and maintained. This thesis is only one among many 

preliminary starts in the field. There are many topics for possible future work, but we hope that our 

work will be of service to the growing population of IDS users and researchers.  
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Appendices 

Appendix A: A Description of DARPA Dataset 

The DARPA KDD-99 dataset [111] is based on DARPA 98 Intrusion detection dataset, which aims to 

provide data for researchers working on intrusion detection in general. The DARPA KDD-99 dataset 

contains network data to configure and evaluate intrusion detection systems. This recorded network 

data contains 22 attack types and normal connections.  

The attack types are: 

(1)  back  
(2)  buffer_overflow  
(3)  ftp_write  
(4)  guess_passwd  
(5)  imap  
(6)  ipsweep  
(7)  land  
(8)  loadmodule  
(9)  multihop  
(10)  neptune  
(11)  nmap  
(12)  perl  
(13)  phf  
(14)  pod  
(15)  portsweep  
(16)  rootkit  
(17)  satan  
(18)  smurf  
(19)  spy  
(20)  teardrop  
(21)  warezclient  
(22)  warezmaster  

 

   In the KDD-99, a connection is represented by 41 features, 22 of these features describe the 

connection itself and 19 of them describe the properties of connections to the same host in the same 

host in last two seconds (IDS should analyze the service types used by the same user in previous 

connections and for this purpose there are 10 features included in the 41 feature vector). These 41 

features can be divided into different groups:  

Basic features: 

(1) Duration of connection 

(2) Protocol type (3 different symbols: TCP, UDP, ICMP) 
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(3) Service type (70 different symbols: FTP, HTTP, Telnet...) 

(4) Status flag (11 different symbols) 

(5) Total bytes sent to destination host 

(6) Total bytes sent to source host 

(7) Whether source and destination addresses are the same or not 

(8) Number of wrong fragments 

(9) Number of urgent packets 

   (10-41) 32 derived features, falling into three categories: 

(1) Content features: domain knowledge is used to assess the payload of the 

original TCP packets. (Ex: number of failed login attempts) 

(2) Time-based traffic features: these features are designed to capture properties 

that mature over a two seconds temporal window. (Ex: number of 

connections to the same host over the two seconds interval) 

(3) Host based traffic features: utilize a historical window estimated over the 

number of connections. Host-based features are therefore designed to assess 

attacks, which span interval longer than two seconds.   

 

The 41 features are as the following: 

(1)  duration: continuous. 
(2)  protocol_type: symbolic. 
(3)  service: symbolic. 
(4)  flag: symbolic. 
(5)  src_bytes: continuous. 
(6)  dst_bytes: continuous. 
(7)  land: symbolic. 
(8)  wrong_fragment: continuous. 
(9)  urgent: continuous. 
(10)  hot: continuous. 
(11)  num_failed_logins: continuous. 
(12)  logged_in: symbolic. 
(13)  num_compromised: continuous. 
(14)  root_shell: continuous. 
(15)  su_attempted: continuous. 
(16)  num_root: continuous. 
(17)  num_file_creations: continuous. 
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(18)  num_shells: continuous. 
(19)  num_access_files: continuous. 
(20)  num_outbound_cmds: continuous. 
(21)  is_host_login: symbolic. 
(22)  is_guest_login: symbolic. 
(23)  count: continuous. 
(24)  srv_count: continuous. 
(25)  serror_rate: continuous. 
(26)  srv_serror_rate: continuous. 
(27)  rerror_rate: continuous. 
(28)  srv_rerror_rate: continuous. 
(29)  same_srv_rate: continuous. 
(30)  diff_srv_rate: continuous. 
(31)  srv_diff_host_rate: continuous. 
(32)  dst_host_count: continuous. 
(33)  dst_host_srv_count: continuous. 
(34)  dst_host_same_srv_rate: continuous. 
(35)  dst_host_diff_srv_rate: continuous. 
(36)  dst_host_same_src_port_rate: continuous. 
(37)  dst_host_srv_diff_host_rate: continuous. 
(38)  dst_host_serror_rate: continuous. 
(39)  dst_host_srv_serror_rate: continuous. 
(40)  dst_host_rerror_rate: continuous. 
(41)  dst_host_srv_rerror_rate: continuous. 

 

 

Sample of DARPA dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0,udp,private,SF,105,146,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0.00,0.00,0.00,0.00,1.00,0.00,0.00,255,254,1.00,0.01,0.00,0.00,0.00,0.00

,0.00,0.00,normal 

 

0,udp,private,SF,105,146,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0.00,0.00,0.00,0.00,1.00,0.00,0.00,255,254,1.00,0.01,0.00,0.00,0.00,0.00

,0.00,0.00, portsweep 
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