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Abstract

Non-linear Bayesian estimation, or estimation of the state of a non-linear stochas-

tic system from a set of indirect noisy measurements is a problem encountered in

several fields of science. The particle filter and the ensemble Kalman filter are both

used to get sub-optimal solutions of Bayesian inference problems, particularly for

high-dimensional non-Gaussian and non-linear models. Both are essentially Monte

Carlo techniques that compute their results using a set of estimated trajectories

of the variable to be monitored. It has been shown that in a linear and Gaussian

environment, solutions obtained from both these filters converge to the optimal

solution obtained by the Kalman Filter. However, it is of interest to explore how

the two filters compare to each other in basic methodology and construction, es-

pecially due to the similarity between them. In this work, we take up a specific

problem of Bayesian inference in a restricted framework and compare analytically

the results obtained from the particle filter and the ensemble Kalman filter. We

show that for the chosen model, under certain assumptions, the two filters become

methodologically analogous as the sample size goes to infinity.
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Chapter 1

Introduction

1.1 Background

Estimation of the state of a stochastic system from indirect noisy measurements is

a problem encountered in several fields of science. These include a diverse class of

problems in econometrics, biostatistics, geology and meteorology as well as many

typical statistical signal processing problems such as target tracking, time series

analysis, communications and satellite navigation. In all these problems, one es-

sentially has the task of accurately estimating a certain set of variables that evolve

over time, from a set of noisy measurements. Such a problem comes under the cat-

egory of Bayesian inference problems, a sub-class of statistical inference where

the likelihood of a hypothesis is updated sequentially in the light of observed data.

Many such problems are formulated as discrete time hidden Markov models, where

it is assumed that the present state of the system depends only on the state at

the preceding instant. The evolution of the state variables and their mathematical

relation with the observed data may be known or may be hypothesized based on

experience. Either ways, the model connecting the observations and the variables

of interest is in general a probabilistic one, due to the presence of noise and/or

other uncertainties; and as such there is a need to determine a scheme that would

lead to an optimum or sub-optimal solution.

1.2 The Optimum Solution

When the dynamics of this model are entirely linear and the noises involved are

additive, following Gaussian distributions with known parameters, the optimum

solution is given by the Kalman filter (Kalman [1960]). The discrete Kalman

filter is a very robust and useful tool that has found its application in a wide variety
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of problems encountered in various fields of science and technology, and is based

on minimizing the estimation errors. However, a linear and Gaussian environment

accounts for a very small subset of Bayesian inference problems; in most cases the

system dynamics are non-linear and the noises non-Gaussian. In such situations

analytical solutions are often intractable. Higher dimensionality of the system also

adds to the complexity of the problem. Even for linear and Gaussian models, the

Kalman filter may not be a feasible scheme to apply when the state dimensions

are too high. For instance, if the state dimension is N = 106, then execution of

the Kalman filter involves storage of an N × N matrix that would occupy a huge

amount of memory.

1.3 Sub-optimal Approaches

Among these, the extended Kalman filter (Maskell and Gordon [2001]) can be

utilised when the problem involves one or more non-linear function. Essentially, it

linearizes the non-linear function locally at several regions using the first term of

its Taylor series expansion. Some versions of this filter also use a few higher order

terms of the expansion, but these are not used extensively for the obvious rise in

computational complexity. The method assumes the noises to be Gaussian and uses

the equations of the discrete Kalman filter to obtain the final estimate at each step

of estimation. Because it assumes a Gaussian environment, this method would

not work well when the distributions are significantly non-Gaussian. Moreover,

it does not give good results under severe non-linearity, because then the local

linearisations do not emulate well enough the original function.

While the extended Kalman filter attempts to emulate an optimal solution by

linearizing the non-linear functions, the approximate grid-based methods at-

tempt the same by discretising a continuous state space. In the latter, the contin-

uous state domain is divided into a finite number of states around certain points

within the domain and probability density functions involved in the estimation are

reduced to probability mass functions. Prediction and update equations are formed

using the conditional probabilities of each state with respect to the observations.

For this model to approximate closely the actual dynamics of the state variable, in

general, the discrete grid must be dense enough. It is intuitive that if the original

space is known beforehand to be sparse, and the regions of high occurrence are

known too, this method can be useful. However, in most cases one has no a priori

knowledge of the distribution of the state space, and hence it is not possible to

partition it unevenly by assigning greater resolution to the regions of greater likeli-

hood. Another disadvantage of this method is the inevitable truncation of certain

portions of the state space.
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1.4 Monte Carlo Methods

The ensemble Kalman filter and the particle filter both are essentially Monte Carlo

estimation methods and work on the following basic principle. First, a domain of

possible input points is defined. For Bayesian estimation problems, this is equiv-

alent to defining the a priori probability distribution. Next, a fixed number of

sample points are generated from this domain or distribution. Using these sample

points, finally, the required variables or parameters are estimated by performing

a numerical integration. It is intuitively evident, therefore, that these methods

rely on the law of large numbers, as they tend to replace integrations involving

probability terms with deterministically computed sums and averages, effectively

approximating probability with relative frequency of occurrence when the sample

size is sufficiently large.

The fact that Monte Carlo methods such as the ones mentioned above can

be used to solve complicated integrals numerically was known for a considerable

time. However, the implementation of these methods for practical computational

purposes was not feasible until recently. Over the recent years, thanks to advances

in the fields of computing there has been an increased interest and popularity in

these techniques. Monte Carlo methods are widely applied to a variety of problems

in several fields of science. Many of these problems involve simulation of a physical

system, many other involve prediction and estimation of unknown variables. The

particle filter and the ensemble Kalman filter are both extensively used to get

sub-optimal solutions of Bayesian inference problems, particularly in case of high-

dimensional non-Gaussian and non-linear models.

The particle filter (Moral [1996]) is a recursive filtering method that generates

multiple copies of the variable of interest from a sample population, associates a

specific weight to each of these copies and then computes their weighted average

to get the final estimate. Samples for the unknown states are drawn from an ap-

proximate distribution, and the optimal estimate is obtained by taking a weighted

average of the samples, where the weights are assigned using the principle of impor-

tance sampling. This method has been called bootstrap filtering, sequential Monte

Carlo method, the condensation algorithm, interacting particle approximation and

survival of the fittest by different authors and researchers (Maskell and Gordon

[2001]). The Monte Carlo characterisations tend to approach the original distri-

bution as the sample size becomes sufficiently large, and the filter approaches the

optimal Bayesian estimate.

Simply put, this technique draws samples for the state variable from a dummy

distribution q(·) in lieu of the original distribution p(·) as sampling from the latter

directly may not be feasible. The dummy distribution, also known as the pro-

posal distribution q(·) is related to the original distribution in terms of importance
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weights. Finally the required estimate is computed by combining the sample points

drawn from q(·) with the corresponding importance weights. At each point, the

state estimates are being developed simultaneously from each realisation of the

sample along separate trajectories. The use of importance weights basically ensure

that trajectories that more closely emulate the observations are assigned greater

importances.

The ensemble Kalman filter (Evensen [1994]), on the other hand is an ap-

proximate extension of the discrete Kalman Filter used for non-linear Bayesian

filtering. This method involves generating ensembles of model states and arriving

at the final result using those samples and the observed measurements. An ensem-

ble of forecast estimates is predicted here based on the estimates at the previous

instant, and then those forecasts are tuned using an ensemble Kalman gain once

the most recent observations arrive. It may be noted that the ensemble Kalman

filter works best under Gaussian environments and do not give desired results when

the probability distribution of the relevant variable deviates significantly from the

Gaussian distribution.

It has been shown that under a linear and Gaussian environment, solutions

obtained from both these filters converge to the optimal solution obtained by the

Kalman Filter (Mandel et al. [2009], Butala et al. [2008], Saygin [2004]). Several

convergence results for the particle filter under different conditions have also been

derived and analyzed. Issues such as the asymptotic convergence of the filter so-

lution to the optimal solution, error accumulation with time, convergence of the

mean square error and convergence of the empirical distributions to the true ones

have been addressed (Crisan and Doucet [2002]). Given the similar natures of the

two filtering mechanisms, it would be an interesting problem to explore how they

compare and relate to each other in basic methodology and construction.

1.5 Problem Description

In this work, we would take up a specific problem of Bayesian inference in a re-

stricted framework. Namely, the noises involved are assumed to be zero-mean

Gaussian with known covariance matrices, and the observations are linearly related

to the states. For a model of this kind, an analytical comparison of the results

obtained from the particle filter and the ensemble Kalman filter would be done. It

would be shown that for the given model, the two methods closely resemble each

other in their approaches, though they differ in their ultimate results.

More specifically, it would be shown that when the sample size is sufficiently

large, the two filters essentially follow the same procedure to create estimate tra-

jectories. However, even when the sample size is significantly large, the particle
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filter, because it ascribes greater importance weights to trajectories that are more

likely to produce the observed measurements, is, in general, more likely to give

more accurate results.

The basic problem being considered is the determination or prediction of a

parameter θ that changes over some variable, usually time, using a series of noisy

observations x. The parameter of interest θ is generally assumed to evolve over time

following some known probabilistic model, depending on its previous state(s) and

external disturbances. The observed variable x is some function of θ , contaminated

with some noise.

Let us now enumerate the contents of this work. A discrete time formulation

of the problem would be considered, where state evolution and availability of mea-

surement both are assumed to occur at the same instants. Starting from a general

description of the problem we would narrow our attention to a special case. We

would then look at the development of a general Bayesian filtering approach, ap-

plicable to both linear and non-linear models; and show how such an analytical

method would fail to provide a direct solution in many cases because of the in-

tegrals that it involve. Then, we would take up separately the two methods of

interest in this study, discuss their working principles and formulate the structure

of the solutions given by them. Here, we would attempt to solve a standard prob-

lem of Bayesian inference in case of a Gaussian system where the observations are

linearly related to the parameter of interest but the state evolution dynamics of the

parameter itself are non-linear.

We would then study how the two solutions relate to each other. We would

establish, under certain assumptions, an analytical relation between the set of so-

lutions provided by the two methods and show that as the ensemble size goes to

infinity, the ensemble Kalman filter trajectories approximate the particle filter tra-

jectories. The general similarity would also be demonstrated through simulation.

Finally, we would briefly discuss the implications of this results and the future

directions of work in this regard.

5



Chapter 2

Related Work

As seen in the previous chapter, except for a very limited scenario, it is not easy to

estimate the optimum solutions for the states of a stochastic process directly from a

set of noisy observations. Subsequently, several sub-optimal approximate methods

have been derived over the years. The fact that solutions for high-dimensional non-

linear state estimation problems can be derived by manipulating a large number of

sample points was well known from a theoretical perspective, and with the recent

advances in computing abilities, such methods have begun to gain popularity in a

wide range of practical fields.

The particle filter and the ensemble Kalman filter are both sequential Monte

Carlo methods that estimate the state variables using a large number of sampled

data points. A detailed and rigorous mathematical formulation of the particle filter

can be found in Moral [1996] where the technique is elaborately explained starting

from the first principles, while Doucet et al. [2000], too, provides a comprehen-

sive study. Ensemble Kalman filters, on the other hand were introduced as an

approximation of the Kalman filter in Evensen [1994]. Several convergence results

have been derived for the particle filter, and some for the ensemble Kalman filter.

However, analytical comparisons between the two filters with an aim to establish a

correlation between the two do not seem to have been abundant.

2.1 Convergence Results for the Particle Filter

A thorough discussion on the convergence results for the particle filter is available in

Crisan and Doucet [2002]. After providing a detailed mathematical framework for

the filter, this paper explores some results on almost sure convergence, convergence

of the mean square error and a large deviations result. Specifically, it has been

shown that under the assumption that the transition Markov kernel is Feller, and
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that the likelihood function (this is the conditional probability density function of

the observed variables given the state variables) is bounded, continuous and strictly

positive, the empirical distribution obtained from the particle filter converges almost

surely to the true distribution of the state. Further, it shows that convergence of

the mean square error towards zero is guaranteed and it occurs with a rate in 1/N

when a standard resampling scheme is used and the importance weights are upper

bounded.

Another result presented in this work implies that a uniform convergence of

the particle filter is ensured if the ‘true’ optimal filter is quickly mixing, while a

considerable amount of error accumulation will prevent such a convergence when

the optimal filter has a ‘long memory’. This indicates that for Markov processes,

one would expect a uniform convergence. Again, in a fairly recent work, Hu et al.

[2008], it has been shown that the approximate solution given by the particle filter

converges to the true optimal estimate, even when the function to be estimated is

unbounded, as the sample size goes to infinity.

In a recent study (Bengtsson et al. [2008]) that analytically explores the perfor-

mance of sequential Monte Carlo based methods, and the particle filter in particular,

it has been shown that for models with high dimensions, the sequential importance

sampling method tends to collapse to a single point mass within a few cycles of

observation. The paper provides general conditions under which the maximum of

the importance weights associated with the individual trajectories of the particle

filter approaches unity, if the particle size is sub-exponential in the cube root of the

system dimension. The convergence result is derived for a Gaussian setting, but it

has been argued that the result would also hold for observation models with any

other independent and identically distributed (iid) kernel. The study also asserts

that even though methods such as resampling may be employed as a remedy to this

degeneracy phenomenon for small scale models, they would not be able to eliminate

the problem of slow convergence rates for systems with large dimensions.

In Saygin [2004] it has been shown that for the linear Gaussian state model, the

optimal solution given by the interactive particle systems converges asymptotically

to the real predictor conditional density given by the optimal Kalman Filter. The

proof is first given for a uni-dimensional model and is then extended for the multi-

dimensional case. Further, this work has explored how large the sample size is

required to be for the filter to follow this asymptotic behaviour.
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2.2 Convergence Results for the Ensemble Kalman

Filter

Though the ensemble Kalman filter has not yet been as rigorously analyzed as its

counterpart, some recent works have studied the nature of its convergence under

certain restricted conditions. In Furrer and Bengtsson [2007], it has been mentioned

that an asymptotic convergence of the ensemble Kalman filter can be shown using

Slutsky’s theorem, without providing a rigorous proof. Butala et al. [2008] provides

a more convincing result by showing that as the size of the ensemble grows expo-

nentially, the ensemble Kalman filter estimates converge in probability to LMMSE

optimal estimates obtained by the Kalman Filter for a linear and Gaussian model.

This work also provides a formal argument for the proposition that the ensemble

Kalman filter is a Monte Carlo method that converges to a well defined limit.

In another recent work (Mandel et al. [2009]), it has been shown that the filter

converges to the discrete Kalman filter as the ensemble size goes to infinity for a

linear and Gaussian model and constant state space dimension. This work has first

proved that the ensemble members are exchangeable random variables bounded in

Lp and has then used this result, Slutsky’s theorem and the Weak Law of Large

Numbers to establish their final conclusion.

Since the ensemble Kalman filter approximates covariance terms by averaging

over a large number of data points, it is expected to give better results as the

ensemble size increases. This has been demonstrated in Gillijns et al. [2006], where

simulation results show a steady fall in estimation errors as the ensemble size grows.

2.3 Experimental Comparisons of the Two Meth-

ods

Some studies have examined and compared the performances of the two filtering

methods in a real experiment. In these experiments, in general, the particle filter

has been seen to outperform its counterpart in terms of accuracy, because of its more

sound mathematical foundations and also because of the fact that it makes lesser

assumptions about the nature of the distribution to be estimated. The ensemble

Kalman filter implicitly assumes the distribution to be Gaussian by relying only on

the first two moments for estimation, and this makes it unreliable when the system

dynamics are significantly non-Gaussian.

In Nakamura et al. [2009], the authors explore the merits of the two filters with

respect to each other for data assimilation and tsunami simulation models. The

models used are Gaussian and non-linear; and experimental results show that the
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particle filter outperforms its rival quite convincingly in terms of accurate estima-

tion.

In some of the practical applications though, a choice between the two filters

involve a trade-off between accuracy and computational burden; and the ensemble

Kalman filter may in fact be preferred because it is relatively simpler in formulation

and also because it might involve less computational burden.

The work Weerts and El Serafy [2006], for instance, has taken up the task of

comparing the performances of several non-linear filters (and in particular the two

filters in our study), in the context of flood prediction, a key issue in hydrology.

This paper suggests that since the particle filter utilises the full prior density, with-

out making assumptions on the prior distribution of the model states, as opposed

to the ensemble Kalman filter, it has a greater sensitivity towards the tails of the

distribution and this makes it extremely advantageous in flood forecasting. How-

ever, this advantage is achieved at the cost of higher computational complexities.

Also, it is said that the particle filter is more affected by error in measurement

or system modeling, while the ensemble Kalman filter is more robust in that re-

spect. It is thus stated that the ensemble Kalman filter appears to be more efficient

than the particle filter for low flows, because of its relatively lesser susceptibility to

uncertainties and misspecification of model parameters.

The theoretical studies imply that both the models would give optimal solutions

under certain restricted conditions, as the sample size or ensemble size goes to

infinity. The experimental studies indicate that even though the particle filter is

theoretically superior, in some practical applications the ensemble Kalman filter

may in fact be preferred to reduce computational burden. Since both the filters

are used to solve similar estimation problems and also use similar techniques, it

is of interest to explore how the schemes relate to each other from an analytical

perspective. With this motivation, let us now proceed to describe the details of the

actual problem that would be approached.
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Chapter 3

Analytical Approach to the

Problem

3.1 A Generalized Problem Formulation

Having briefly discussed the objectives of this study, let us now first describe the

problem in details. Subsequently we would formulate the steps of a general solution.

As mentioned before, the problem that we are concerned with is to estimate states of

a hidden Markov chain from a set of noisy observations. For the ease of construction,

a discrete time formulation is being considered, where the state evolution occurs

at fixed instants, and these are the same instants when measured observations are

made available. Clearly, since we have two sets of variables in this problem, of

which one, viz., the state vector, evolves over time and the other, viz., the set of

measurements, changes accordingly, we would require two mathematical models,

or two sets of equations to describe the system. One of them would describe the

evolution of the state with time while the other would relate the measured data

with the present state. For the most general case, these two sets of equations would

have the following forms.

The state evolution of the parameter of interest θt would be described by the

following hidden Markov model:

θt+1 = ft(θt,wt) ∀ t ∈ N (3.1)

The observations would be related to the state variables as per the following

equations:

xt = ht(θt,vt) ∀ t ∈ N (3.2)

10



where ft : RNθ × RNw → RNθ and ht : RNθ × RNv → RNx are any functions,

possibly non-linear.

3.2 The Analytical Approach

Let us now proceed to construct an analytical solution of this inference problem.

Since both the state evolution and the observations are mixed with unknown dis-

turbances in the form of random noise, and hence are probabilistic, it is useful to

consider probabilistic models for estimation. The general framework of methods

that solve such problems is typically based on the Bayesian approach. The aim

is to determine the posterior probability density function (pdf) of the state using

all the information available from past history of the state and the measured data

(Maskell and Gordon [2001]). Given the transition equation (which, in our case is

equation (3.1)) that describes the evolution of a hidden Markov process {θt; t ∈ N},
an observation equation (which, in this case is equation (3.2)) that describes the

conditional likelihood of the observations given the process, and the sequence of

observations {xt; t ∈ N} over t; this method attempts to find a best estimate of the

conditional probability p(θ1,θ2, . . . ,θt|xt,x2, . . . ,xt) (denoted by p(θ1:t|x1:t)).

Often the requirement is to only obtain the optimal estimate for the present

instant and not the entire path of trajectory; in which case we attempt to obtain

the conditional distribution of the variable at the present instant only. Instead

of determining p(θ1:t|x1:t), then, we only need to find out p(θt|x1:t). Since the

measurement needs to be updated every time a new data entry is received, a recur-

sive filter would be convenient for the purpose. Once this probability is obtained,

estimation of any function g(·) of θt can be done (provided g(θ1:t)p(θ1:t|x1:t) is in-

tegrable); a very special (yet common) example is where g(α) = α, in which case

the requirement would be the estimation of θt itself. In these kind of estimation

problems, the initial conditional pdf p(θ0|x0) is either known or is assigned an a

priori value. Depending on the nature of the functions involved, this initialisation

may or may not influence the convergence of the filter significantly.

Such a filter has two stages: prediction and update. In the prediction stage,

the state pdf at some instant t is forecasted based on all the prior information up

to the instant t − 1 . In the update stage, this forecasted estimate is tuned and

modified using the latest measurements for the instant t.

Let us suppose that up to the instant t − 1, t ∈ N, the pdf p(θt−1|x1:t−1) is

available, i.e., it is either known or has been estimated. Because of the Markov

property of the process, we also have p(θt|θt−1,x1:t−1) = p(θt|θt−1), i.e., the dis-

tribution at the present instant depends only on the distribution at the previous

instant and is independent of distributions at any instant prior to the last instant.
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At the prediction stage, then, the posterior for the next instant can be predicted

as follows.

p(θt|x1:t−1) =

∫
p(θt ∩ θt−1|x1:t−1)dθt−1

=

∫
p(θt ∩ θt−1 ∩ x1:t−1)

p(x1:t−1)
dθt−1

=

∫
p(θt|θt−1,x1:t−1)p(θt−1 ∩ x1:t−1)

p(x1:t−1)
dθt−1

=

∫
p(θt|θt−1,x1:t−1)

p(θt−1 ∩ x1:t−1)

p(x1:t−1)
dθt−1

=

∫
p(θt|θt−1,x1:t−1)p(θt−1|x1:t−1)dθt−1 (3.3)

Using the fact the θt is Markovian, and hence depend only on θt−1, we get

p(θt|x1:t−1) =

∫
p(θt|θt−1)p(θt−1|x1:t−1)dθt−1 (3.4)

At each step, the integration is over the entire domain of θt−1 which is in fact

the domain of θt, in general, for all t.

In the next stage, once measured data for the current instant arrive, the above

prediction (or the prior) is modified to obtain the optimal posterior density, using

Bayes’ rule.

p(θt|x1:t) =
p(xt|θt)p(θt|x1:t−1)

p(xt|x1:t−1)
(3.5)

where the denominator is a normalizing constant, given by the Chapman-Kolmogorov

equation as follows.

p(xt|x1:t−1) =

∫
p(xt|θt)p(θt|x1:t)dθt (3.6)

In the above sets of equations, p(θt|θt−1) is the state transition probability dis-

tribution for θt while p(xt|θt) is the conditional probability of xt given θt. Ideally,

both these probabilities should be available when the functions involved and noise

distributions are known and hence the solution of the problem may appear to be

straightforward at a glance. However, even when the functions are known, in gen-

eral, the integrals involved in (3.4) and (3.6) cannot be determined analytically,

except for a few special cases. For instance, an optimum solution can be derived

when the functions are linear and the noises are additive and Gaussian. As one
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would expect, the solution derived under this specific model is the same as that

obtained by the Kalman filter. For most cases though, a direct solution is either

not feasible or not tractable and one has to depend on approximate methods for

sub-optimal solutions. In fact, the above set of recursive equations only gives a

conceptual framework of the solution.

3.3 A More Specific Model

So far we have described the problem from a general point of view where both the

functions ft, ht may be non-linear, the noises may not be additive and they may

not be Gaussian either. Let us now describe the special case of this problem which

we are about to explore.

It is assumed that the state evolution follows a known non-linear function while

the observations are linearly related to the present states. We thus replace the

non-linear function ht(·) with a matrix Ht. Noises involved at state evolution

and observations are assumed to additive and zero-mean Gaussian with known

covariance matrices.

Under these conditions the parameter of interest θt is modeled as a discrete-time

non-linear system with the following dynamics:

θt+1 = f(θt) +wt ∀ t ∈ N (3.7)

The observations are described by the following equations:

xt = Htθt + vt ∀ t ∈ N (3.8)

where, θt is the realisation of the unknown parameter θ at the instant t ∈ N,

and xt is the observation vector at each instant t. We assume that the noises wt,vt
are i.i.d. and follow Gaussian distributions with mean zero and known covariance

matrices Qt,Rt respectively. The function f(θt) that determines evolution of the

state is known and defined for t > 0. It is also assumed that θt,wt and vt are

uncorrelated. The state variable θt and the observation xt are both vectors with

finite dimensions N and M respectively and in general, N > M . Then, wt and vt
are vectors of dimensions N and M respectively; Ht is a real matrix of dimension

M ×N ; and Qt,Rt are N ×N and M ×M square matrices.

Evidently, for the specific problem we are interested in, p(θt|θt−1) is the pdf of

a Normal Distribution with mean f(θt−1) and covariance matrix Qt; while p(xt|θt)
is the density of a Normal distribution with mean Htθt and covariance matrix Rt.

13



This means that for this problem, the integral in 3.4 would also involve the non-

linear function f(·), and depending on its nature it may or may not be tractable.
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Chapter 4

The Particle Filter

4.1 Introduction

A Particle filter (Moral [1996], Doucet et al. [2000], Maskell and Gordon [2001])

is essentially a sequential Monte Carlo estimation technique that is used for solv-

ing a wide variety of problems involving non-linearity and high dimensionality. In

different papers and works, different terms have been used to describe this filter-

ing mechanism. These names include bootstrap filtering, sequential Monte Carlo

method, the condensation algorithm, interacting particle approximation and sur-

vival of the fittest. There are some minor differences in the different versions of the

particle filter that are in use, and some algorithms use additional steps that are

not employed by others, but fundamentally they are all based on the same basic

principle. The method uses a set of point mass random samples (called ‘particles’)

of probability densities and constructs a representation of the posterior density

function by combining them, using a set of so-called ‘importance weights’. There

are several variants of the particle filter which can be broadly categorized into two

groups (Haug [2005]). In one, the same particles are re-used as trajectories while

in the other particles are not re-used and fresh particles are generated at each

step. Since our aim is to do a comparison of the particle filter with the ensemble

Kalman filter, we have chosen to consider the filter that comes to the first category

because of its intuitive similarity to the ensemble Kalman filter. Moreover, this

model, known as the sequential importance sampling (SIS) particle filter is also

more popular compared to its counterpart.

In this scheme, starting from the same initial conditions, several dynamic re-

alisations or trajectories of the state are developed over time, using the available

information from past and present. The optimal solution at each step is a weighted

average of all these different trajectories. The weights attached to the different

paths of realisation indicate the relative likelihood of the corresponding trajectory.
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As the number of samples increase, the solution of this filter approaches the opti-

mal Bayesian estimate. To further facilitate the procedure, an additional step is

included, which is known as resampling. This is done to eliminate the effects of fil-

ter degeneracy, or the situation when only a few of the trajectories being computed

have a weight large enough to contribute to the final solution, while the weights

associated with the rest are too insignificant to have any prominence. Under such

conditions, particles are resampled and the optimum estimate is computed using

modified weights.

4.2 Description of the Algorithm

The basic steps involved in the particle filter algorithm are now described (Maskell

and Gordon [2001]). Let {θ̂it; t ∈ N, i = 1(1)Ns} be a set of samples of size Ns

drawn from a distribution that is an approximate representation of the posterior.

Let ωit be the respective weights associated with the sample points. By definition,

initial points θ̂i0 = θ0 for all i. The posterior density at an instant t can then be

estimated as:

p(θ0:t|x1:t) ≈
Ns∑
i=1

ωitδ(θ0:t − θ̂i0:t) (4.1)

where the weights are normalized, i.e.,

Ns∑
i=1

ωit = 1 (4.2)

It follows that the estimates for θt over time are given by a weighted sum of

the individual particle trajectories, where the weights are defined in equations (4.1)

and (4.2).

θ̂0:t,PF |x1:t =
Ns∑
i=1

ωitθ̂
i
0:t (4.3)

When only an estimate at the present instant t is of interest, the above reduces

to

θ̂t,PF |x1:t =
Ns∑
i=1

ωitθ̂
i
t (4.4)
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It is evident, then, that this method consists of two major steps, viz., selection of

a suitable distribution to draw samples for θ̂it, and assignment of proper weights ωit
to those samples. An ideal distribution to draw samples from would be the posterior

itself, but that is impossible in most cases. As such, a method called Importance

Sampling is employed. Here one requires to identify a proposal density q(·) from

which samples can be drawn easily. The true weights, then are evaluated from the

following equations :

ωi∗t =
p(θ̂i0:t|x1:t)

q(θ̂i0:t|x1:t)
(4.5)

and, after normalizing,

ωit =
ωi∗t∑Ns
i=1ω

i∗
t

(4.6)

When the proposal distribution q(·) satisfies the following properties,

q(θ0:t|x1:t) = q(θt|θ0:t−1,x1:t)q(θ0:t−1|x1:t−1) (4.7)

q(θt|θ0:t−1,x1:t) = q(θt|θt−1,xt) (4.8)

the importance weights can be shown to follow a simple recursive relation as

follows:

ωit ∝ ωit−1

p(xt|θit)p(θ̂it|θ̂it−1)

q(θ̂it|θ̂it−1,xt)
(4.9)

The estimate equation for the posterior then reduces to

p(θt|x1:t) ≈
Ns∑
i=1

ωitδ(θt − θ̂it) (4.10)

4.3 Choices of Proposal Distribution and Impor-

tance Weights

Critical in this method are the choices of the proposal distribution q(·) and those of

the importance weights ωit. As is apparent from the discussion so far, choice of the

proposal q(·) plays a crucial role in this methodology during the sampling stage,
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while a good choice of importance weights becomes important while combining the

samples to get the best estimate. A good choice is to select that q(θt|θt−1) which

minimizes the variance of real weights ωi∗t , given θ̂it−1 and xt. Such a choice max-

imizes the effective sample size Ns,eff ; thereby reducing the effects of degeneracy

of the filter. The optimal importance density function based on this consideration

can be shown to be

q(θt|θ̂it−1,xt)optimal = p(θt|θ̂it−1,xk) =
p(xt|θt, θ̂it−1)p(θt|θ̂it−1)

p(xt|θ̂it−1)
(4.11)

Under these conditions, the weights given by (4.9) become:

ωit ∝ ωit−1p(xt|θ̂it−1) (4.12)

The above gives a general framework for the operation of the particle filter. It

may be noted that the model described thus far is one among several variants of the

so-called particle filter and these variants have minor differences in their operating

principles.

To obtain the optimal importance density it is required to draw samples from

p(θt|θ̂it−1,xk) and subsequently evaluate an integral; which may not be straightfor-

ward in many cases, depending on the dynamics of the system. There are special

cases, however, where the integration may be analytically feasible. The model used

in this discussion, which assumes the noises to be i.i.d. Gaussian and the relation

between the observed data and the system parameters to be linear, is one such ex-

ample where the integration is not intractable and the parameters of the required

distributions can be easily determined.

4.4 Parameters for the Specified Model

Referring to the model described by (3.7) and (3.8), we can then construct the

following conditional probabilities (Doucet et al. [2000]):

p(θ̂it|θ̂it−1,xt) = N(θ̂it;µ
i
t,ψt) (4.13)

where

µit = (Q−1
t−1 +HT

t R
−1
t Ht)

−1(Q−1
t−1f(θ̂it−1) +HT

t R
−1
t xt) (4.14)
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(ψt)
−1 = Q−1

t−1 +HT
t R

−1
t Ht ∀ i = 1(1)Ns (4.15)

where Ns is the sample size.

The importance weights of the different trajectories ωit would be recursively

obtained using the following conditional probability in equation (4.12).

p(xt|θ̂it−1) = N(xt;Htf(θ̂it−1),Rt +HtQt−1H
T
t ) (4.16)

where N(a;µ,ψ) denotes the probability density function of a vector a that

follows a Normal distribution with mean µ and covariance matrix ψ.

For the recursive equations described by (4.12) we would start with an initial-

isation of equal weights for each trajectory, meaning that all the realisations are

considered equally important at the initial stage. At the subsequent steps, the

importance weights would be modified according to (4.16), which would assign

greater importance to trajectories that are more likely to generate the recorded

observations. The optimal solution for θ̂t at any instant t would be its conditional

expectation computed using the probability given by (4.4).

4.5 Resampling

An additional step introduced in this particular algorithm is resampling. This is

performed to reduce the effects of filter degeneracy. Degeneracy is the situation that

arises when only a few of the sampled trajectories contribute to the final computed

values by means of their higher weights, while others play a very insignificant role

in the estimation as their corresponding weights are exceedingly small. Such a

situation would ruin the main purpose of the strategy because final estimation

would effectively involve only a small proportion of the samples actually generated.

This would also mean that a lot of computation done in generating samples with

lesser weights is remaining underutilised.

To avoid degeneracy, therefore, proper steps are taken. After computation of

the different weights ωit, the effective sample size Ns,eff is defined as follows.

Ns,eff =
Ns

1 + V ar(ωi∗t )
(4.17)

A simple estimate N̂s,eff for Ns,eff is given by Doucet et al. [2000] as

N̂s,eff =
1∑Ns

i=1(ω
i
t)

2
(4.18)
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The quantity N̂s,eff is an indicator of the filter degeneracy. It can be taken as

an approximate measure of the number of particles out of the ones sampled that

actually play a significant role in the estimation. When this number goes below a

certain predefined threshold, therefore, resampling is performed, thereby diminish-

ing the scope of degeneracy. A new sample set of xi∗t of size Ns is redrawn from

an approximate discrete representation of p(θt|x1:t)Resampling, where the probabil-

ity of a particle being chosen is the same as its relative weight computed at the

corresponding step (i.e., p(xi∗t = xjt) = ωit). This is illustrated in equation (4.19).

p(θt|x1:t)Resampling ≈
Ns∑
i=1

ωitδ(θt − θit) (4.19)

In this case, the final estimate is given by the arithmetic mean of the resampled

particles, i.e., by replacing the terms ωit in equation (4.4) with 1
Ns

. It may be noted

here that although the method just described is frequently employed in particle

filter algorithms, there can be other resampling schemes as well.

Degeneracy of sample paths is caused by the iterative nature of the importance

weight update equations (4.9,4.12) and would therefore happen only when sequen-

tial importance sampling is done. If the importance weights of the paths at each

step are calculated independent of their previous weights, then the effect of weights

of certain paths becoming small would not accumulate sequentially, and hence there

would be no significant degeneracy. Consequently, there would be no requirement

of resampling in such a scenario.

The steps involved in estimation of the unknown state variables by a particle

filter are illustrated in the flow-chart of 4.1.
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Figure 4.1: Flow chart illustrating particle filter algorithm
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Chapter 5

The Ensemble Kalman Filter

We shall now construct the solution of this problem using the ensemble Kalman fil-

ter technique (Evensen [2003], Gillijns et al. [2006]). This filter is derived from the

classical Kalman filter, a tool that provides optimal solutions for linear Gaussian

models. It provides sub-optimal solutions for problems involving extremely high or-

ders and non-linearity, and has in particular gained popularity in the field of weather

forecasting, among other areas. It may be noted that this filter does not give very

good results under non-Gaussian environments and is hence used mostly when the

model is Gaussian. The reason for this is that this filter obtains its estimates using

only the first and second moments of the error terms, thereby making an implicit

Gaussian assumption. In essence, it is a Monte Carlo approximation of the Kalman

filter, where it replaces the actual covariance with the sample covariance calculated

over an ensemble of realisations. Different realisations or trajectories of the state

evolution are generated using the Kolmogorov Forward Equation.

In order to understand the principle behind this filter, therefore, it is required

to first understand the fundamental ideas of the classical discrete Kalman filter

(Kalman [1960]), which gives the optimum estimate for a discrete time Bayesian

estimation problem in a linear and Gaussian environment. The Kalman filter is a

recursive filtering method that uses only the current observed data and the esti-

mate of the state at the last instant to estimate the state at the present instant.

Thus, it is ideally suited for the estimation of linear and Gaussian hidden Markov

models. As is the case for any Bayesian estimation method, the Kalman filter, too

entails the two standard steps of prediction and update. In the prediction stage,

estimates are produced based on the last estimates of the state variables, and then

subsequently, in the update phase, the predicted estimate is refined and improved

using measurement information at the current instant of time.
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5.1 The Discrete Kalman Filter

Let us consider the system described by the following equations:

Yt+1 = AtYt +Wt (5.1)

Zt = BtYt + Vt (5.2)

where Yt,Zt are the state vector and observation vector respectively, Wt,Vt are

uncorrelated white Gaussian noises with covariance matrices Qt, Rt respectively.

At and Bt are matrices defining the system dynamics.

The state estimation equation for the Kalman filter for a linear and Gaussian

dynamic system is derived by minimizing the estimated error covariances. The

optimal estimation of Yt for such a system is given by the following equations:

The prediction phase consists of equations (5.3) and (5.4) while the update

phase is given by equations (5.5) to (5.7).

Yt|t−1 = AtYt−1|t−1 (5.3)

Pt|t−1 = AtPt−1|t−1A
T
t +Qt−1 (5.4)

Kt = Pt|t−1B
T
t (BtPt|t−1B

T
t +Rt)

−1 (5.5)

Yt|t = Yt|t−1 +Kt(Zt −BtYt|t−1) (5.6)

Pt|t = (1−KtBt)Pt|t−1 (5.7)

In the above set of equations, Yt|t−1 is the a priori estimate of Yt|t, i.e., the es-

timate at the prediction stage; Ŷt = E[Yt|t] is the updated estimate of Yt, Pt|t−1 is

the a priori estimate error covariance and Pt|t is the a posteriori estimate error co-

variance, obtained by updating the a priori using the Kalman gain. It is essentially

an indicative measure of the accuracy of the state estimation. The Kalman gain

Kt given by (5.5) can be arrived at by minimizing the a posteriori error covariance.

These optimal solutions however are only achievable under a linear and Gaussian

environment. When the condition of linearity is not met, approximate derivatives

of the Kalman filter, such as the extended Kalman filter and the ensemble Kalman

filter are used.
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5.2 The Ensemble Kalman Filter Algorithm

The ensemble Kalman filter works on the same principle as above, i.e., it too, at-

tempts to minimize the error covariance but in this case the error statistics are

modeled using an ensemble of predicted states. Instead of calculating the error

covariance matrices in their exact terms, this method approximates them by creat-

ing a set of estimate points; thereby reducing the computational burden associated

with the inversion of high-dimension matrices. Let us now describe the different

steps employed in this scheme (Gillijns et al. [2006]).

Let us consider an instant t − 1, when the latest observation recorded is xt−1.

The latest sub-optimal estimate for θ obtained at this time is that corresponding to

t− 1. The model would first come up with a set of predictions for θ at the instant

t, and subsequently modify this set once new observation xt is available.

The method starts by generating a finite number of estimate points for the

state parameter θt from an a priori distribution. Let us denote this predicted or

forecasted ensemble of state estimates by Θf
t . and let the fixed sample size be Ns.

Θf
t = {θfit }; i = 1(1)Ns (5.8)

An ensemble of the same size Ns consisting of observations is also generated by

adding small perturbations to the current observation. A reasonable method would

be to create perturbations that have the same distribution as the observation error.

Let the observation ensemble be denoted by Xf
t

Xf
t = {xfit }; i = 1(1)Ns (5.9)

Given a system described by equations (3.7) and (3.8), the samples for the state

model ensemble may be drawn using the following rule:

θfit = f(θ̂it−1) +wfi
t−1 (5.10)

where θ̂it−1 is the updated estimate for the ith trajectory, and wfi
t−1 are random

noise with covariance Qt−1. The observation ensemble at the current instant may

be generated by adding zero-mean random noise vfit with covariance matrix Rt

to the actual observation. To generate the forecasted observation ensemble, the

following equation can be employed:

xfit = Htθ
fi
t + vfit (5.11)
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The state ensemble error matrix Ef
θ,t and the observation ensemble error matrix

Ef
x,t are then defined as follow:

Ef
θ,t = [θf,1t − θ̄

f
t , · · · θ

f,Ns
t − θ̄ft ]; i = 1(1)Ns (5.12)

Ef
x,t = [xf,1t − x̄

f
t , · · · x

f,Ns
t − x̄ft ]; i = 1(1)Ns (5.13)

where θ̄ft , x̄ft are the ensemble averages for the state and the observations; i.e.,

θ̄ft =
1

Ns

Ns∑
i=1

θfit (5.14)

x̄ft =
1

Ns

Ns∑
i=1

xfit (5.15)

Clearly, θ̄ft is the estimate at the prediction stage. Next, the estimated error

covariance P̄ f
θx,t and estimated observation covariance P̄ f

xx,t are computed using the

following equations.

P̄ f
θx,t =

1

Ns − 1
Ef
θ,t[E

f
x,t]

T (5.16)

P̄ f
xx,t =

1

Ns − 1
Ef
x,t[E

f
x,t]

T (5.17)

Finally, the updated estimates for each trajectory are computed using the fol-

lowing equations:

θ̂it,EKF,Ns = θfit + (P̄ f
θx,t)(P̄

f
xx,t)

−1(xit −Htθ
fi
t ) (5.18)

These are the update equations. The xit are generated by adding zero-mean

perturbations of covariance matrix Rt to the actual measured observation at the

current instant t.

For the sake of simplicity, we would drop the suffix Ns from the above expression

in later discussions, and use θ̂it,EKF .

At any stage, the best-guess solution is the ensemble mean of the updated

realisations, i.e., the mean of θ̂it,EKF . Also, at any instant, the relative frequency of

a data point, 1
Ns
N(θ̂it,EKF ∈ φ) acts as an estimator of the probability of P (θt ∈ φ),

where φ is some subset in the domain of θt.
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When required to obtain the estimate for some function F (·) of θ in this method,

the procedure is to approximate the expectation of that function by a weighted sum

of the values of the function calculated for each trajectory, in the following way

E[F (θt)] =

∫
F (θt)p(θt)dt

'
∫
F (θt)

Ns∑
i=1

δ(θt − θ̂it,EKF )dt

' 1

Ns

Ns∑
i=1

F (θ̂it,EKF ) (5.19)

Evidently, as Ns goes to infinity, these relative frequencies would approach the

actual probabilities, and the integral approximation would approach the true value

of the integral.

It is interesting to compare the above solution with the optimum solution given

by the Kalman filter in equations 5.3 to 5.7. There are two differences in the

formation of the solutions. Firstly, as one would expect, the predicted value of the

next state is a non-linear function of the current state instead of a linear function

as was the case for the Kalman filter. Secondly, instead of using the exact cross-

covariance and covariance terms the ensemble Kalman filter has replaced them with

their estimates. Computation of such estimates would be easier than computation

of the corresponding quantities exactly when system dimension is high.

At this point, it is seen that the ensemble Kalman filter implicitly assumes the

distributions to be Gaussian. This becomes apparent from the fact that it only uses

the first and second moments to estimate the distribution, even though the first

two moments would completely define a distribution only when the distribution is

Gaussian. When system dynamics are highly non-Gaussian, this assumption affects

the performance of this filter and for this reason its use is not recommended in such

situations.
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Figure 5.1: Flow chart illustrating ensemble Kalman filter algorithm
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Chapter 6

An Analytical Comparison of the

Two Schemes

6.1 Introduction

Having illustrated the methodologies followed in the two techniques, let us now

proceed to make a comparison of the two filters. From the descriptions of the two

methods a close similarity is apparent. It is seen that both methods develop a set

of realisations for the variable of interest using certain sequential iterative methods,

and obtain the best estimate based on these realisations.

We would now show that the similarity seen with intuition can be established

mathematically. More specifically, we would show that, as the sample size goes

to infinity, if at any stage, the particle filter and the ensemble Kalman filter start

with the same set of ensemble points, then at the next step, the expected values

of the estimates of the ensemble Kalman filter trajectories would be equal to the

expectations of the sampling distributions of the particle filter, and the covariances

of the individual estimates provided by the ensemble Kalman filter would be equal

to the covariances of the mentioned sampling distributions. This effectively means

that the ensemble Kalman filter methodologically is an approximated version of the

particle filter, without the step involving importance weights.

Let us now illustrate a brief outline of the proof. We would first show that

the terms involved in the ensemble Kalman filter equations developed at different

steps of its derivation would converge in distribution to fixed expressions containing

some known matrices. This would follow from the realisation that these terms are

approximations of certain covariance quantities related to the state variable θt, the

observation variable xt and the noises wt and vt. We would then, under certain

restrictions on the ensemble Kalman filter estimates, obtain the expectation and
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covariance of the estimates given by each estimate. Finally, we would relate these

quantities with the expectation and covariance of the particle filter.

6.2 Convergence Results for the Ensemble Kalman

Filter Estimates

First let us state our assumptions on the bounds of the ensemble Kalman filter

estimates.

Let, at any instant t, and for any trajectory i, t ∈ N, i ∈ {1 · · ·Ns}, θ̂it,EKF,Ns,α
denote the αth element of the column vector θ̂it,EKF,Ns , α ∈ {1 · · ·N}. We assume

that for all α, β, and for all i, θ̂it,EKF,Ns,α, (θ̂it,EKF,Ns,α)2 and θ̂it,EKF,Ns,αθ̂
i
t,EKF,Ns,β

are all uniformly integrable.

This means that, at any instant t, and for all trajectories i, for every ε > 0,

there exist Kα = Kα(ε), Lα = Lα(ε) and Cα,β = Cα,β(ε) such that all the following

inequalities from 6.1 to 6.3 hold, for all α, β ∈ {1 · · ·N}.

sup
Ns∈N

E[|θ̂it,EKF,Ns,α|I{|θ̂it,EKF,Ns,α|>Kα}] < ε (6.1)

sup
Ns∈N

E[|(θ̂it,EKF,Ns,α)2|I{|(θ̂it,EKF,Ns,α)2|>Lα}] < ε (6.2)

and

sup
Ns∈N

E[|θ̂it,EKF,Ns,αθ̂
i
t,EKF,Ns,β|I{|θ̂it,EKF,Ns,αθ̂it,EKF,Ns,β |>Cα,β}] < ε (6.3)

Let us recall that the variables θ and x are both vectors with finite dimen-

sions.The sample size for the particle filter and the ensemble size for the ensemble

Kalman filter are both assumed to be equal to some integer Ns. For such a formu-

lation, the optimum solution for the particle filter and the ensemble Kalman filter

are given by equations (4.13) through (4.16) and (5.8) through (5.18) respectively.

Let us first analyze the solutions given by the latter and examine where they would

converge to, when the ensemble size is sufficiently large.

We consider equations (5.10) and (5.11) which describe the drawing of samples

at the forecast stage. Since the random noises wfi
t and vfit that are added as

perturbations to generate the ensemble sets for the state variables and observations

are both zero-mean, it follows that
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E[θfit+1,EKF ] = f(θ̂it,EKF ) (6.4)

E[xfit+1] = Htf(θ̂it,EKF ) (6.5)

E[θfit+1,EKF ], f(θ̂it,EKF ), and E[xfit+1] are column vectors of dimensions N , N

and M respectively. Let us denote θ̃j as the jth element of f(θ̂it,EKF ), θ̄j as the jth

element of E[θfit+1,EKF ], x̃k as the kth element of xfit+1 and x̄k as the kth element

of E[xft ] respectively, for j = 1(1)N and k = 1(1)M . Also let, wj and vk denote

the jth and kth element of the noise vectors wfi
t−1 and vfit . Let qab and rcd be the

(a, b)th and (c, d)th elements of the noise covariance matrices Qt−1 and Rt, where

a = 1(1)N , b = 1(1)N , c = 1(1)M , d = 1(1)M . Finally, let hpq denote the (p, q)th

element of the coefficient matrix Ht; p = 1(1)M , q = 1(1)N .

From equations (6.4) and (6.5) then, we have

θ̃j = θ̄j + wj (6.6)

x̃k =
N∑
l=1

hklθ̃l + vk (6.7)

and

x̄k =
N∑
l=1

hklθ̄l (6.8)

It is easy to see from the definition of P̄ f
θx,t and P̄ f

xx,t in equations (5.16) and

(5.17) that they are estimates of the cross-covariance matrix of θt, xt and the

covariance matrix of xt respectively, since

C(θft ,x
f
t ) = E[[θft − E[θft ]][xft − E[xft ]]

T ] (6.9)

A(xft ) = E[[xft − E[xft ]][x
f
t − E[xft ]]

T ] (6.10)

whereC(α,β), A(α) denote the cross-covariance matrix of α, β and covariance

matrix of β respectively.

Consequently, as the ensemble size becomes large they would respectively con-

verge in distribution to the cross-covariance of θft , xft and the covariance of xft in

distribution, i.e.,
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lim
Ns→∞

P̄ f
θx,t = C(θft ,x

f
t ) (6.11)

lim
Ns→∞

P̄ f
xx,t = A(xft ) (6.12)

Let us now compute the above quantities. As before, for simplicity of notation,

we drop some of the suffixes and define c(i, j) as the (i, j)th element of the matrix

C(θft ,x
f
t ), and a(i, j) as the (i, j)th element of the matrix A(xft ). Then,

c(j, k) = E[(θ̃j − θ̄j)(x̃k − x̄k)] (6.13)

Making use of the results expressed in equations (6.6), (6.7) and (6.8) we get

c(j, k) = E[wj(x̃k −
N∑
l=1

hklθ̄l)] (6.14)

Using the expression for x̃k and noting that wt−1 and vt are independent and

hence uncorrelated,

c(j, k) = E[wj(
N∑
q=1

hkq(θ̄q + wq)−
N∑
l=1

hklθ̄l)]

= E[
N∑
q=1

hkq(wjwq)]

=
N∑
q=1

hkqE[wjwq] (6.15)

Thus,

c(j, k) =
N∑
q=1

hkq(qjq) (6.16)

In terms of matrices this becomes

C(θft ,x
f
t ) = Qt−1H

T
t (6.17)

Let us now examine P̄ f
xx,t and A(xft ). We have,
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a(j, k) = E[(x̃j − x̄j)(x̃k − x̄k)] (6.18)

Or,

a(j, k) = E[(
N∑
q=1

hjq(θ̄q + wq)−
N∑
l=1

hjlθ̄l)(
N∑
p=1

hkp(θ̄p + wp)−
N∑
t=1

hktθ̄t)]

+E[vjvk] (6.19)

where we have expanded the terms involving x and made use of the fact that

wt−1 and vt are independent and hence uncorrelated. From the above, we get

a(j, k) = E[(
N∑
q=1

hjqwq)(
N∑
p=1

hkpwp)] + E[vjvk]

=
N∑
q=1

hjq(
N∑
p=1

hkpE[wqwp]) + E[vjvk]

=
N∑
q=1

hjq(
N∑
p=1

qqphkp) + rjk (6.20)

It is easy to see that in terms of matrices, this would be

A(xft ) = HtQt−1H
T
t +Rt (6.21)

Since P̄ f
θx,t and P̄ f

xx,t are estimates of C(θft ,x
f
t ) and A(xft ), from the results

obtained in equations (6.17) and (6.21) we get

lim
Ns→∞

P̄ f
θx,t = Qt−1H

T
t (6.22)

lim
Ns→∞

P̄ f
xx,t = HtQt−1H

T
t +Rt (6.23)

We can then use the above results in equation (5.18) to get the final solution

for each trajectory i of the ensemble Kalman filter technique as follows.

lim
Ns→∞

θ̂it,EKF,Ns = θfit + (Qt−1H
T
t )(HtQt−1H

T
t +Rt)

−1(xit −Htθ
fi
t ) (6.24)
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The above expression resembles closely the expression for the solution in case

of the discrete Kalman filter described in equations (5.5) through (5.7). It is to be

noted here that the above holds only when the observation vector and the state

vector are linearly related, as has been assumed for this problem.

Having obtained the above results, let us now proceed to compare the solu-

tions arrived at by the two schemes. Let at some instant t, the ensemble estimate

θ̂it,EKF,Ns be equal to the estimate θ̂it,PF of the particle filter for some trajectory

i ∈ {1, · · · , Ns}, without loss of generality. At this stage, the next step forecasts

θfit+1 are generated by adding perturbations wfi
t to f(θ̂it). The conditional expecta-

tion of the solution generated by the ensemble Kalman filter at the next instant of

estimation is then given by

lim
Ns→∞

E[θ̂it+1|θ̂it] = E[ lim
Ns→∞

θ̂it+1|θ̂it]

= E[θfit+1 + (QtH
T
t+1)(Ht+1QtH

T
t+1 +Rt+1)

−1(xit+1 −Ht+1θ
fi
t+1)]

= f(θ̂it) + (QtH
T
t+1)(Ht+1QtH

T
t+1 +Rt+1)

−1(xt+1 −Ht+1f(θ̂it))

= (I −QtH
T
t+1)(Ht+1QtH

T
t+1 +Rt+1)

−1Ht+1f(θ̂it)

+QtH
T
1 (Ht+1QtH

T
t+1 +Rt+1)

−1xt+1 (6.25)

where we have removed the suffixes EKF,Ns for ease of notation.

In the above derivation, we have used our assumptions of uniform integrability

on the elements of θ̂it,EKF,Ns , as stated in (6.1) to (6.3), and have hence been able

to interchange the limit and expectation. Then, equation (6.4) has been used to

obtain E[θfit+1].

This is the conditional expectation of the estimate of trajectory i of the ensemble

Kalman filter at some time t+ 1, given its estimate at the previous instant t.

At this stage, samples for the particle filter trajectories would be drawn from

a distribution which would have the following conditional expectation, obtained

directly from equation (4.14).

µiPF,t+1|θ̂it = (Q−1
t +HT

t+1R
−1
t+1Ht+1)

−1(Q−1
t f(θ̂it) +HT

t+1R
−1
t+1xt+1)

= (Q−1
t +HT

t+1R
−1
t+1Ht+1)

−1Q−1
t f(θ̂it)

+(Q−1
t +HT

t+1R
−1
t+1Ht+1)

−1HT
t+1R

−1
t+1xt+1 (6.26)

Thus we have,
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lim
Ns→∞

E[θ̂it+1|θ̂it] = (I −QtH
T
t+1)(Ht+1QtH

T
t+1 +Rt+1)

−1Ht+1f(θ̂it)

+QtH
T
1 (Ht+1QtH

T
t+1 +Rt+1)

−1xt+1 (6.27)

µiPF,t+1|θ̂it = (Q−1
t +HT

t+1R
−1
t+1Ht+1)

−1Q−1
t f(θ̂it) + (Q−1

t

+HT
t+1R

−1
t+1Ht+1)

−1HT
t+1R

−1
t+1xt+1 (6.28)

6.3 A Relation between the Expectations of the

Solutions of the Two Methods

We would now prove that, given that we have equal estimates from an ensemble

Kalman filter trajectory and a particle filter trajectory at some time instant t, at

the next step t + 1, the expectation of the estimate of the ensemble Kalman filter

trajectory will be equal to the mean of the distribution from which samples are

drawn for the particle filter trajectory. To prove this result, we make use of the

Matrix Inversion Theorem, and obtain.

(Q−1
t +HT

t+1R
−1
t+1Ht+1)

−1 = Qt−QtH
T
t+1(Rt+1 +Ht+1QtH

T
t+1)

−1Ht+1Qt (6.29)

Post-multiplying the above by Q−1
t , we get

(Q−1
t +HT

t+1R
−1
t+1Ht+1)

−1Q−1
t = I−QtH

T
t+1(Rt+1 +Ht+1QtH

T
t+1)

−1Ht+1 (6.30)

Again,

(Ht+1QtH
T
t+1 +Rt+1)

−1 = R−1
t+1(Ht+1QtH

T
t+1R

−1
t+1 + I)−1 (6.31)

Whence, pre-multiplying both sides by QtH
T
t+1,

QtH
T
t+1(Ht+1QtH

T
t+1 +Rt+1)

−1 = QtH
T
t+1R

−1
t+1(Ht+1QtH

T
t+1R

−1
t+1 + I)−1 (6.32)

Post-multiplying both sides by the factor (Ht+1QtH
T
t+1R

−1
t+1+I) and re-arranging,
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QtH
T
t+1R

−1
t+1 −QtH

T
t+1(Rt+1 +Ht+1QtH

T
t+1)

−1(Ht+1QtH
TR−1

t+1 + I) = 0 (6.33)

Rearranging once more, we get

(I −QtH
T
t+1(Rt+1 +Ht+1QtH

T
t+1)

−1Ht+1)QtH
T
t+1R

−1
t+1 =

QtH
T
t+1(Ht+1QtH

T
t+1 +Rt+1)

−1 (6.34)

It has already been shown in equation (6.30) that the first factor on the left-hand

side of the last equality is the same as (Q−1
t +HT

t+1R
−1
t+1Ht+1)

−1Q−1
t . Therefore,

we now have

(Q−1
t +HT

t+1R
−1
t+1Ht+1)

−1HT
t+1R

−1
t+1 = QtH

T
t+1(Ht+1QtH

T
t+1 +Rt+1)

−1 (6.35)

Combining the result obtained in (6.30) and (6.35) in the expressions (6.27) and

(6.28), we finally get

lim
Ns→∞

E[θ̂it+1,EKF,Ns ] = µit+1,PF,Ns (6.36)

Thus we see that if at any step t, the ith sample estimate for the ensemble

Kalman filter is equal to that of the particle filter for some i, then at the next

step t + 1, the expected value of the estimate from the corresponding ensemble

trajectory would be equal to the expectation of the distribution from which the

next estimate of the particle filter trajectory would be drawn, as the sample size

Ns goes to infinity. This result is formally stated in Theorem 6.1.

Theorem 6.1 Let us consider the discrete time system described by equation (3.7)

and equation (3.8). Let the states of the system θt at any time t be estimated

simultaneously by the particle filter and the ensemble Kalman filter, both of which

use samples of equal size Ns.

Let θ̂it,PF , θ̂it,EKF denote the estimates of the ith trajectories of the particle filter

and the ensemble Kalman filter respectively, at instant t; and θ̂it,PF ∼ N(µit,ψt).

Then, under the assumption of uniform integrability (as stated in assumptions

6.1 to 6.3), and as Ns →∞,

θ̂it,PF = θ̂it,EKF ⇒ E[θ̂it+1,PF ] = µit+1,PF,Ns (6.37)
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6.4 A Relation between the Covariances of the

Solutions of the Two Methods

In order to get a better understanding of how the two methods relate to each other,

let us now compare the covariances of the two solutions.

Using our assumptions of uniform integrability on the elements of θ̂it,EKF,Ns ,

their squares and their pairwise products for any time instant t, as stated in 6.1 to

6.3, we have

lim
Ns→∞

V ar(θ̂it,EKF,Ns) = V ar( lim
Ns→∞

θ̂it,EKF,Ns) (6.38)

The above holds because under our assumption, the limits and expectations

become interchangeable for each of the terms involved in the covariance matrix,

and thereby become interchangeable for the covariance itself.

Then, from the result obtained in equation (6.24), we get

lim
Ns→∞

V ar(θ̂it+1,EKF,Ns) = V ar(θfit+1 + (QtH
T
t+1)(Ht+1QtH

T
t+1 +

Rt+1)
−1(xit+1 −Ht+1θ

fi
t+1)) (6.39)

It is known that for a given ensemble, the xit+1’s represent the perturbed mea-

surements. As the process of measurement is independent of the actual process that

generates these xit+1’s, the terms xt+1 and θft+1 in equation (6.39) are independent,

and hence uncorrelated. The above equation can then be simplified to

lim
Ns→∞

V ar(θ̂it+1,EKF,Ns) = V ar(I − (QtH
T
t+1)(Ht+1QtH

T
t+1 +Rt+1)

−1Ht+1θ
fi
t+1)

+ V ar((QtH
T
t+1)(Ht+1QtH

T
t+1 +Rt+1)

−1xit+1) (6.40)

We can replace the co-efficient matrices in the above using the results derived

in (6.30) and (6.34), whence we get the following.

lim
Ns→∞

V ar(θ̂it+1,EKF,Ns) = V ar((Q−1
t +HT

t+1R
−1
t+1Ht+1)

−1Q−1
t θ

fi
t+1)

+ V ar((Q−1
t +HT

t+1R
−1
t+1Ht+1)

−1

HT
t+1R

−1
t+1x

i
t+1) (6.41)
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Let us denote (Q−1
t +HT

t+1R
−1
t+1Ht+1)

−1 by Bt for the ease of notations. Since

both Rt+1 and Qt+1 are covariance matrices of some variable, they must be sym-

metric, and therefore, the matrix Bt, too is symmetric, given its definition. Then,

the covariance relation above reduces to

lim
Ns→∞

V ar(θ̂it+1,EKF,Ns) = V ar(BtQ
−1
t θ

fi
t+1) + V ar(BtH

T
t+1R

−1
t+1x

i
t+1) (6.42)

Or,

lim
Ns→∞

V ar(θ̂it+1,EKF,Ns) = BtV ar(Q
−1
t θ

fi
t+1)B

T
t

+BtV ar(H
T
t+1R

−1
t+1x

i
t+1)B

T
t (6.43)

Because Bt is symmetric, Bt = BT
t , and hence,

lim
Ns→∞

V ar(θ̂it+1,EKF,Ns) = BtV ar(Q
−1
t θ

fi
t+1)Bt +BtV ar(H

T
t+1R

−1
t+1x

i
t+1)Bt

= Bt(V ar(Q
−1
t θ

fi
t+1)Bt + V ar(HT

t+1R
−1
t+1x

i
t+1)Bt)

= Bt(V ar(Q
−1
t θ

fi
t+1) + V ar(HT

t+1R
−1
t+1x

i
t+1))Bt (6.44)

At this stage, we note that θfit+1 and xit+1 are generated by adding zero-mean

noises of covariance matrices Qt and Rt+1 to f(θ̂t) and xt+1 respectively. Since

f(θ̂t) and xt+1 are already known,

V ar(θfit+1) = Qt (6.45)

V ar(xit+1) = Rt+1 (6.46)

Using these results, we get

lim
Ns→∞

V ar(θ̂it+1,EKF,Ns) = Bt(Q
−1
t QtQ

−1
t +HT

t+1R
−1
t+1Rt+1R

−1
t+1Ht+1)Bt

= Bt(Q
−1
t +HT

t+1R
−1
t+1Ht+1)Bt

= BtB
−1
t Bt

= Bt

= (Q−1
t +HT

t+1R
−1
t+1Ht+1)

−1 (6.47)
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But by definition (Q−1
t + HT

t+1R
−1
t+1Ht+1)

−1 = ψt+1 is the covariance of the

sampling distributions of the particle filter at the step t + 1. This means that if

at any step t, the ith sample estimate for the ensemble Kalman filter is equal to

that of the particle filter for some i, then at the next step t + 1, the covariance

of the estimate from the corresponding ensemble trajectory would be equal to the

covariance of the distributions from which the next estimate of the particle filter

trajectories are drawn, as the sample size Ns goes to infinity.

A formal statement of this result is given in Theorem 6.2.

Theorem 6.2 Let us consider the discrete time system described by equation (3.7)

and equation (3.8). Let the states of the system θt at any time t be estimated

simultaneously by the particle filter and the ensemble Kalman filter, both of which

use samples of equal size Ns.

Let θ̂it,PF , θ̂it,EKF denote the estimates of the ith trajectories of the particle filter

and the ensemble Kalman filter respectively, at instant t; and θ̂it,PF ∼ N(µit,ψt).

Then, under the assumption of uniform integrability (as stated in assumptions

6.1 to 6.3), and as Ns →∞,

θ̂it,PF = θ̂it,EKF ⇒ V ar[θ̂it+1,EKF,Ns ] = ψt+1,PF,Ns (6.48)

6.5 General Remarks

Our results indicate that when the relation between the states and observations is

linear and the noises are zero-mean Gaussian with known covariance matrices, then

as the sample size goes to infinity, the ensemble Kalman filter method is effectively

equivalent to an approximation of the particle filter technique without the final

step involving the importance weights. In more precise terms, if at some time t,

some trajectory of the ensemble Kalman filter produces an estimate equal to that

produced by a particle filter trajectory, then the expectation and covariance of the

next step estimates of these two trajectories would be equal. If at some time t the

ensemble Kalman filter trajectories have estimates each individually equal to those

of the particle filter trajectories; the estimates of the corresponding trajectories of

the two filters at the next step t+1 would have the same expectation and covariance.

Since the distributions in question are Gaussian the expectation and the co-

variance are sufficient to completely specify the distributions. This means that for

the given model, methodologically, the ensemble Kalman filter closely mimics the

particle filter and approaches the latter as the sample size goes to infinity. The

procedure to generate updated ensemble estimates is an approximation of drawing
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samples for the particle filter trajectories. The two, then, only differ in the final

results because one of the two employs importance weights.

When the ensemble size is sufficiently large, the ensemble Kalman filter trajecto-

ries would closely approach the particle filter trajectories. Under such large sample

sizes, if the particle filter algorithm does not perform the final step, and instead just

computes an arithmetic mean of the samples drawn, it would effectively be almost

the same as the ensemble Kalman filter. However, taking a weighted average of the

sampled points at the end step instead of a simple average ensures that trajectories

that are more likely to produce the observed data are given a greater importance.

This final step indicates that for the given model, the particle filter would provide

better estimates than the ensemble Kalman filter; and can be thus seen as a more

precise version of the latter.
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Chapter 7

Simulation Results

In this chapter, we would demonstrate and discuss a few simulation results where

the states of the same system were simultaneously estimated by the particle filter

and the ensemble Kalman filter. These results are consistent with our theoretically

established result, where it was shown that the ensemble Kalman filter trajectories

tend to follow the particle filter trajectories when the ensemble size is sufficiently

large.

We consider a system where the state variable θt is 3-dimensional and the ob-

servation vector xt is 2-dimensional, i.e., in the notations used, Nθ = N = 3 and

Nx = M = 2. The evolution dynamics of the state variables of the system under

consideration is given by the following set of equations.

 θt+1,1

θt+1,2

θt+1,3

 =

 θt,1 + cos(θt,2) + 1.2sin(θt,3)

0.5(θt,1 + θt,2)

0.8θt,3 + 0.5

+

 wt,1
wt,2
wt,3

 (7.1)

The noise covariance matrices Qt and Rt and the matrix Ht that relates the

observed data with the state realisations are assumed to be constant over time and

are hence denoted by Q, R and H respectively. They are defined as follows.

Q =

 1 0.5 0.2

0.5 0.8 0.4

0.2 0.4 0.9


R =

[
1 0.6

0.6 0.9

]

H =

[
4 5 1

3 7 2

]
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Finally, the states are initialized at the following point:

 θ0,1

θ0,2

θ0,3

 =

 12

10

16


With the system described as above we proceed to simulate its state evolution on

MATLAB, for 400 observations, and we use both the particle filter and the ensemble

Kalman filter simultaneously to estimate the state variables at every instant, using

the above information and the measured observations. For each simulation run, the

same sample size Ns is chosen for both the filters to allow a comparison of their

performances. We take samples of size 5, 20, 50, 100 and 200. First, estimation

error patterns on individual simulation runs are considered, followed by the average

errors computed over 25 simulations.

The errors are obtained and plotted against time for both filters and for each of

the above sample sizes. These plots are given below (Figures 7.1 to 7.8). In each

of these figures, the three lines represent the error accumulated along the three

dimensions of θt. These errors are the exact errors accumulated on a particular

realisation of the state variables and not average errors.

Figure 7.1: Ns = 5, error versus time plot for particle filter

While the analysis in the previous chapter lead us to conclusions regarding the

relation among the particle filter and Ensemble Kalman filter trajectories, we get

to demonstrate the general pattern of their performances via these simulations. It
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Figure 7.2: Ns = 5, error versus time plot for ensemble Kalman filter

Figure 7.3: Ns = 20, error versus time plot for particle filter
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Figure 7.4: Ns = 20, error versus time plot for ensemble Kalman filter

Figure 7.5: Ns = 50, error versus time plot for particle filter
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Figure 7.6: Ns = 50, error versus time plot for ensemble Kalman filter

Figure 7.7: Ns = 100, error versus time plot for particle filter
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Figure 7.8: Ns = 100, error versus time plot for ensemble Kalman filter

is seen that the ensemble Kalman filter has a relatively slower response compared

to the particle filter. The former accumulates a considerable error before correcting

itself and getting back to the right track, unlike the particle filter. One reason

for this is the fact that the particle filter associates importance weights with each

trajectories, thereby associating a higher importance to those realisations that are

more likely to produce the recorded measurements. Another reason is that while

the ensemble Kalman filter uses estimates of the covariance quantities, the particle

filter uses directly the values of Q and R to obtain the required parameters of its

sampling distributions. Unless the sample size is significantly large, the quantities

P̄ f
θx,t and P̄ f

xx,t would not match the true values of their corresponding covariance

terms closely enough; and hence the ensemble Kalman filter estimates would not

be sufficiently accurate.

Let us now present the average error curves for the same ensemble sizes, each

calculated over 25 simulation runs. These plots are given in figures 7.9 to 7.16.

It is seen that, on an average, the particle filter and the ensemble Kalman filter

give very similar results. Especially, for Ns = 100, the average error plots for

the two filters seem to be almost identical, for the same realisation of θt. This

observation is in unison with our theoretical conclusion, which implied that the

two would produce very close results when the sample size is large enough.

The mean error values are tabulated in Table 7.1 and they are seen to be re-

markably close.
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Figure 7.9: Ns = 5, average error versus time plot for particle filter

Figure 7.10: Ns = 5, average error versus time plot for ensemble Kalman filter
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Figure 7.11: Ns = 20, average error versus time plot for particle filter

Figure 7.12: Ns = 20, average error versus time plot for ensemble Kalman filter
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Figure 7.13: Ns = 50, average error versus time plot for particle filter

Figure 7.14: Ns = 50, average error versus time plot for ensemble Kalman filter
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Figure 7.15: Ns = 100, average error versus time plot for particle filter

Figure 7.16: Ns = 100, average error versus time plot for ensemble Kalman filter
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Table 7.1: Average estimation errors for the particle filter and the ensemble Kalman

filter for different sample sizes

Average Errors for the particle filter and the ensemble Kalman filter

Sample Size Ns
Average error for Average error for

particle filter ensemble Kalman filter

5

-0.0281 -0.0209

-0.0336 -0.0307

-0.0543 -0.0591

20

0.0117 0.0228

0.0076 -0.0058

-0.0795 -0.0505

50

0.0058 0.0217

-0.0158 -0.0341

-0.0462 -0.0862

100

0.0209 0.0263

-0.0401 -0.0476

0.0856 0.1056
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Chapter 8

Conclusion and Future Work

Having described the functioning principles of the two filters and having obtained

a relation between them, we would now attempt to interpret these results. In

this work we have presented an analytical comparison of the particle filter and

the ensemble Kalman filter and explored their inter relations and similarities in

the context of estimating a variable from a set of noisy measurements. It has

been shown that for a non-linear evolution model of the hidden Markov chain

that generates the variable of interest, a linear relation between the states and the

observations and a Gaussian setting; the two methods are closely related to each

other, when the sample size is sufficiently large. More specifically, if the estimate of

an ensemble trajectory is equal to the estimate of a particle trajectory at any step,

then the expectations and covariance of the estimate of that ensemble trajectory

at the next step would be equal to those of the sampling population from which

the next estimate of that particle trajectory would be drawn. In simpler words, the

trajectories in the two filters evolve the same way for a large sample size.

Essentially, thus, when the ensemble size is sufficiently large, the two methods

would yield a similar set of trajectories; or more precisely, would generate the

trajectories in analogous ways, when one starts with the same initial point(s).

However, because of the inclusion of the weighted averaging scheme at the final

stage of the particle filter, its final result is likely to be closer to the true values of

the states as compared to that obtained from its counterpart. Since the ensemble

Kalman filter attributes an equal weight to each of the estimates of the ensemble

while computing the final estimate; the problem of degeneracy would never occur

there, and consequently there would be no need to resample.

It is important to note that the result is based mainly on the convergence of

the ensemble estimates of the covariance quantities to their respective true values.

Firstly, these results hold under the assumption of uniform integrability as stated

in (6.1) to (6.3). Secondly, these convergences occur as the ensemble size goes to
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infinity. It would be an interesting problem to determine how large the ensemble

size needs to be to ensure that the estimates closely follow the actual values of the

corresponding terms. In general, the performance of the ensemble Kalman filter

should improve as the ensemble size is increased. Again, when the relation between

θt and xt is of a linear nature, and when the dimension of the system is not too

high, it would be useful to directly calculate the actual values of C(θft ,x
f
t ) and

A(xft ) in terms of the known quantities Qt, Rt and Ht using equations (6.17) and

(6.21), instead of approximating them from the ensemble members.

Since the particle filter uses all the available information to draw samples instead

of making prior forecasts for the trajectories and then updating them, the sampling

step in the particle filter is basically equivalent to the aggregate of all the steps

involved in the ensemble Kalman filter. Again, since both methods are attempts

to solve the same integrals described earlier in chapter 3, the results are likely to

be close when the problem dynamics are relatively well-defined, as was the case

here. The particle filter, by using actual covariance quantities to generate means

and covariances of the sampling distributions instead of approximating them from

the sample, is in fact likely to provide a better result even if the final step involving

importance weights is not used. Finally, by assigning importance weights on the

trajectories according to their probability of closeness to reality, the particle filter

prefers to choose the relatively ‘better’ trajectories, thereby further optimizing its

solution.

An interesting consequence of this result is that this can be used to modify

both the particle filter and the ensemble Kalman filter method, thereby reducing

their computational burden, when the observations are linearly related to the state

variables and the noises are Gaussian. It has been shown that the generation

of ensemble members is methodologically an approximation of drawing samples

for the particle filter under the said scenario. Depending on the dimensions and

general nature of the system, it might be easier to draw samples from a priori

populations or compute estimates using the ensemble Kalman gains. For instance,

when the system dimension is significantly high, instead of inverting large matrices

involved in the computations for the particle filter, it might be beneficial to use

the ensemble Kalman filter approximations for the covariance terms. On the other

hand, for low dimensional models, where matrix inversions would not be too critical

an issue, trajectories should preferably be generated using the sequential importance

sampling methods as used for the particle filter.

Since both methods would give approximately similar trajectories, one can make

the two algorithms complement each other. That is, the particle filter may also use

the ensemble members of the ensemble Kalman filter as its own trajectories and

then compute the final estimate using the weighted averaging method. In general,

though, since the particle filter can give at least as good a result as the ensemble
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Kalman filter right after drawing the samples, it would be more efficient compared

to its counterpart, and should therefore be used even if the final steps of importance

weight and resampling are replaced by simple averaging to save computational

burden. At all point, it is also to be remembered that the trajectories of the

ensemble Kalman filter would approach the particle filter trajectories only when

the ensemble size is sufficiently large and therefore complementary use of these

schemes should be done with caution.

In this work a first step analysis of the two recursive algorithms has been done,

i.e., we have established some relations between two trajectories of the two filters at

some instant t+1 when it was given that the two corresponding estimates were equal

at the previous instant t. It would be of interest to explore how the trajectories of

the two filters relate to each other in the long run. It is intuitive that they should

still be sufficiently close to each other, given that both are sub-optimal solutions

for the problem chosen and are both based on similar principles; but it still would

be an interesting problem to examine how far the trajectories would drift apart

from each other as time goes by. Specifically, given that the estimate of a particle

filter trajectory and that of an ensemble Kalman filter trajectory were equal at

some instant t, we would like to find out how the two trajectories relate at a future

instant t+ T .

The result obtained in this study, namely the strong correspondence between the

two methods, is only valid for a very restricted scenario, i.e., when the observations

are linearly related to the states and the noises involved with the state evolution

and observations are both zero-mean with known covariance matrices. However,

in reality, these two methods are most extensively used in non-linear and non-

Gaussian environments, where the solutions would take more involved forms for

both the filters, and in general, it would not be easy to derive such simple yet strong

relations. It would, nevertheless, be interesting to explore the relation between these

two filters for a general case where there is no restriction on either the observation

equation or the noises involved, or even for less relaxed system considerations; for

instance when either the dynamics are Gaussian but entirely non-linear or when

the dynamics are linear but non-Gaussian.

In a more general scenario, there would still be similarities owing to the fact that

both are derived from similar first principles, but the two filters may not have as

strong a correlation as was the case for the particular model chosen in this study. It

would be of interest to explore their inter relations in such a generalized framework.

It is intuitive that the particle filter would give more accurate results and a faster

convergence under such a framework, given its generic nature as compared to the

ensemble Kalman filter. The latter is an approximate model and only uses the

first and second moments of the variables involved; a strategy that would make

its accuracy doubtful in environments that are highly non-Gaussian. However, in
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certain cases, it may still be chosen over the former because it may in fact involve

lesser computational complexity.

Another interesting direction for future research can be to compare some of

the other sub-optimal methods under different conditions with the particle filter or

the ensemble Kalman filter. For instance, one might compare the results derived

from the extended Kalman filter under a Gaussian assumption with those obtained

from either of the two filters studied in this thesis. The grid-based methods may

also be considered for comparison. Such comparative studies and analytical and

experimental results derived from them would be helpful to determine the most

efficient filter for a given problem under specific priorities.
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APPENDIX

The MATLAB source code used for simulation has been presented here.

%Simulation of the estimation of the states of a system using the

%Particle Filter and the Ensemble Kalman Filter Algorithm

N = 400; %Defining number of data points to be simulated

Ns = 100; %Defining ensemble size/ particle size

%Initialization of the variables that would contain the state

%realizations and the observations

theta = zeros(3,N);

obs = zeros(2,N);

%Initializion of all variables used in the Particle Filter

%algorithm, including importance weights, means and variances of

% sampling distributions, variables involved in the development

%of trajectories and the final estimates

sum w = 0;

var1 = zeros(3);

p=zeros(N,Ns);

mu = zeros(3,N,Ns);

w = (1/Ns)*ones(N,Ns);

w new = (1/Ns)*ones(N,Ns);

theta hat = zeros(3,N,Ns);

f theta hat = zeros(3,N,Ns);

theta hat new = zeros(3,Ns);

theta pf = zeros(3,N);

%Defining threshold/ minimum effective sample size, below which

%resampling will be done

N min = 0.6*Ns;

%Initializion of all variables used in the Ensemble Kalman Filter

%algorithm, including the predicted ensemble values for the state
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%and the observation set, variables involved in the development of

%trajectories and the final estimate

theta hat1 = zeros(3,N,Ns);

theta hat f = zeros(3,N,Ns);

f theta hat1 = zeros(3,N,Ns);

obs f = zeros(2,Ns);

P theta obs = zeros(3,2);

P obs obs = zeros(2,2);

E theta= zeros(3,Ns);

E obs = zeros(2,Ns);

theta ekf = zeros(3,N);

%Simulation of System Dynamics and Observations

%Setting the initial conditions for all relevant variables including

%theta, the state variable and the variables that store the estimates

theta(:,1)= [12;10;16];

theta hat new(:,1)= [12;10;16];

for j= 1:Ns

f theta hat(:,1,j) = [12;10;16];

theta hat(:,1,j) = [12;10;16];

theta hat1(:,1,j) = [12;10;16];

theta hat f(:,1,j) = [12;10;16];

end

theta pf(:,1)= [12;10;16];

theta ekf(:,1)= [12;10;16];

%Defining the system parameters: H,Q and R

H = [4 5 1; 3 7 2];

Q = [1.0 0.5 0.2; 0.5 0.8 0.4; 0.2 0.4 0.9];

R= [1.0 0.6; 0.6 0.9];

%Evolution of the state dynamics using the state transition equation

%f(theta n+1)=f(theta n)+w n

Q chol = chol(Q);

for i = 1:N−1
theta(:,i+1)= [theta(1,i)+cos(theta(2,i))+ 1.2*sin(theta(3,i));

0.5*(theta(1,i)+theta(2,i));

0.8*theta(3,i)+0.5;] + (randn(1,3)*Q chol)';

end

56



%Simulation of observations using the equation x n = H*theta n + v n

R chol = chol(R);

for i=1:N

obs(:,i) = H*theta(:,i) + (randn(1,2)*R chol)';

end

%Particle Filter Algorithm

var1 = inv(inv(Q)+H'*inv(R)*H);

sigma = R+H*Q*H';

for i = 1:N−1

sum w=0;

%Defining mu, the mean of the sampling distribution

for j= 1:Ns

f theta hat(1,i+1,j)=theta hat(1,i,j)+cos(theta hat(2,i,j))

+ 1.2*sin(theta hat(3,i,j));

f theta hat(2,i+1,j)=0.5*(theta hat(1,i,j)+theta hat(2,i,j));

f theta hat(3,i+1,j)=0.8*theta hat(3,i,j)+0.5;

mu(:,i+1,j) = var1*(inv(Q)*f theta hat(:,i+1,j)

+ H'*inv(R)*obs(:,i+1));

%Drawing samples from the importance distribution

theta hat(:,i+1,j)= mu(:,i+1,j)+ (randn(1,3)*chol(var1))';

%Determination of importance weights using the relevant expression

p(i+1,j)= (2*pi)ˆ(−1*Ns/2)*sqrt(det(sigma))*exp(−0.5*(obs(:,i+1)
−H*f theta hat(:,i+1,j))'*inv(sigma)*(obs(:,i+1)

−H*f theta hat(:,i+1,j)));

w(i+1,j)= p(i+1,j)*w new(i,j);

sum w=sum w+w(i+1,j);

end

%Normalization of importance weights

for j=1:Ns

w new(i+1,j)=w(i+1,j)/sum w;

end

%Provision for Resampling when N effective < N minimum

if 1/(w new(i+1,:)*(w new(i+1,:))')< N min
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index = discretesample(w new(i+1,:),Ns);

for j=1:Ns

theta hat new(:,j) = theta hat(:,i+1,index(j));

w new(i+1,j)=1/Ns;

end

theta hat(:,i+1,:) = theta hat new;

end

%Final estimate: result obtaine as weighted sum of the different

%estimates on the different trajectories

for j=1:Ns

theta pf(:,i+1)=theta pf(:,i+1)+w new(i+1,j)*theta hat(:,i+1,j);

end

end

%Ensemble Kalman Filter Algorithm

for i = 1:N−1
obs recent = obs(:,i+1);

%Prediction/Forecast of ensemble members for the state and the

%observations for the next instant

for j= 1:Ns

f theta hat1(1,i+1,j)= theta hat1(1,i,j)+cos(theta hat1(2,i,j))

+ 1.2*sin(theta hat1(3,i,j));

f theta hat1(2,i+1,j)= 0.5*(theta hat1(1,i,j)+theta hat1(2,i,j));

f theta hat1(3,i+1,j)= 0.8*theta hat1(3,i,j)+0.5;

theta hat f(:,i+1,j)=f theta hat1(:,i+1,j)+(randn(1,3)*chol(Q))';

obs f(:,j) = H*theta hat f(:,i+1,j)+ (randn(1,2)*R chol)';

end

%Calculation of error quantities

for j=1:Ns

E theta(:,j) = theta hat f(:,i+1,j)−mean(theta hat f(:,i+1,j));

E obs(:,j)= obs f(:,j)−mean(obs f,2);

end

%Estimation of covariance matrices P theta obs and P obs obs using the

%error matricres

P theta obs=(1/(Ns−1))*E theta*(E obs)';

P obs obs= (1/(Ns−1))*E obs*(E obs)';
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%Update of the current state using current measurement data

for j=1:Ns

theta hat1(:,i+1,j) = theta hat f(:,i+1,j)+P theta obs*inv(P obs obs)

*(obs recent−H*theta hat f(:,i+1,j));

end

%Final estimate as the arithmetic mean of the ensemble members

theta ekf(:,i+1) = mean(theta hat1(:,i+1,:),3);

end
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