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Multi-Resolution Approximate
Inverses

This thesis presents a new preconditioner for elliptic PDE problems on unstructured meshes.
Using ideas from second generation wavelets, a multi-resolution basis is constructed to effec-
tively compress the inverse of the matrix, resolving the sparsity vs. quality problem of standard
approximate inverses. This finally allows the approximate inverse approach to scale well, giv-
ing fast convergence for Krylov subspace accelerators on a wide variety of large unstructured
problems. Implementation details are discussed, including ordering and construction of fac-
tored approximate inverses, discretization and basis construction in one and two dimensions.
and possibilities for parallelism. The numerical experiments in one and two dimensions con-
firm the capabilities of the scheme. Along the way [ highlight many new avenues for research,
including the connections to multigrid and other multi-resolution schemes.
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Chapter 1

Prelimingries

1.1 Introduction

One of the biggest challenges facing scientific computing today is accurately solving partial
differential equations. Advances in computer performance help fuel this demand for higher
quality numerical solutions to problems from science, engineering, finance, etc. However, ef-
fectively using the increased power of workstations and supercomputers requires new methods:
algorithms that worked in the past often don’t scale well to the new architectures and bigger
problems.

This thesis proposes a new technique for solving the systems of linear equations which take
up so much of the time for elliptic PDE’s on unstructured meshes. Current approximate inverse
preconditioners do not scale well: there must be a trade-off between sparsity and quality in the
approximation, with the disparity quickly growing as the problem size increases. However, by
compressing the inverse with techniques from second generation wavelets, a sparse and high
quality preconditioner can be found, giving fast and scalable convergence for iterative methods.
Furthermore, the attractive parallelism of approximate inverses is retained.

The main effort in this work is to present the essential ideas and motivations behind multi-
resolution approximate inverses, with proofs of concept showing their capabilities in one and
two dimensions. This is not a theoretical treatise proving optimality of the method, nor is it



a blueprint for a high-performance implementation. I have instead striven for a practical and
intuitive middle route that will ease the way for progress in all directions.

1.2 Elliptic PDE’s

This thesis is concerned with the numerical solution of elliptic partial differential equations
(PDE's). More specifically, second order linear scalar problems will be considered:

Lu=f on Q (L.D)

where Q is the region of interest, f is some forcing function, and the differential operator L is
of the form:
Lu=V - (AVu-bu)+cu

Here A’ is a positive definite second order tensor field, b is a vector field, and ¢ is a scalar
field. Note that these coefficients may vary over Q—in some applications, possibly with jump
discontinuities of several orders of magnitude.

One can physically interpret 1.1 as describing the concentration u of some quantity—e.g.
heat, a chemical dissolved in fluid, neutrons, etc. The expression (A'Vu — bu) is the “flux”,
measuring how fast and in what direction the quantity is flowing. The AV u term represents
diffusion, how the quantity naturally flows from regions of high concentration towards regions
of low concentration at a rate proportional to the gradient (though if A is not a scalar multiple of
the identity, anisotropy in the underlying medium can distort this flow). The bu term represents
the convection of the quantity by some underlying flow field—a current in the medium described
by b carries the quantity along with it. Thus ¥ - (K'Vu ~ bu) at a point gives the total change
in u at that point due to flow of the quantity. The final term cu represents reaction, where the
quantity is created (¢ > 0) or destroyed (¢ < 0) at a rate proportional to its concentration. In
the former case, ¢ > 0, the problem may become indefinite or even ill-posed.

There are several special examples of elliptic equations which don't exactly fall under this
interpretation. For example, irrotational, inviscid, incompressible fluid flow can be determined
by solving Laplace’s equation

Vie=V-Vo=0

(L]



for a potential function ¢, giving the velocity field v = V. Another example is the Helmholtz
equation arising in electromagnetics

Vie+ Ky =f

Of course, 1.1 is under-determined without appropriate boundary conditions. For example,
the value or derivatives of u could be specified along the boundary. To be precise, letting the
boundary 92 of §2 be partitioned into 9Qp, 9Qy, and dQp, impose the following on 1.1:

u=gp on dQp

(KVu)-n=gxy on 0y
(KVu)-A+au=gp on dQx

Here 7 denotes the normal vector to the boundary. The first condition, where u is specified,
is called a Dirichlet condition. The second condition, where the diffusive flux through the
boundary is specified, is the physical generalization of the Neumann boundary condition Vu -
n = g. The third, a linear combination of the first two, is the generalization of the Robin
condition Vu - f2 + au = g. Note in particular that specifying the combined diffusive and
convective flux, (K'Vu — bu) - it = (KVu) - i + (=b- #t)u, is a special case of this third type.

An important application of solving equations like 1.1 arises in the implicit numerical solu-
tion of time-dependent parabolic partial differential equations, of the form:
d
6t—u =Lu on 2, t>0
Another big application is non-linear elliptic problems, where each step of Newton's method
will involve solving a linearized problem of the type 1.1, with the coefficients depending on the
solution from the previous step.

Finally, the problem 1.1 is also seen in inverse iteration methods for finding eigenvalues and
eigenfunctions of the operator, i.e. scalars A and functions u such that Lu = Au.



1.3 Discretization

To numerically approximate the solution of the PDE, the equation .1 must be discretized, re-
ducing it from an infinite dimensional linear system to a finite dimensional one. Typically this is
done by first determining a set of points (the “nodes™) in the region where the approximate val-
ues of u are sought. A mesh is generated that connects those nodes, breaking up the region into
small and simple subregions—e.g. sub-intervals in 1D, triangles or quadrilaterals in 2D, tetra-
hedra or prisms in 3D. For each node, a linear equation involving nearby nodes is determined
from the mesh, attempting to approximate the true equation 1.1 or the boundary condition at
that node. The resulting finite system of equations is then solved for the approximate values of
u at the nodes. The system will be written as Au = f, where A is the matrix of coefficients of
the equations, u is the vector of unknown values of u at the nodes, and f is the known right-hand
side vector arising from f and the boundary conditions.

This thesis is concerned with problems on unstructured meshes, that is meshes that are not
regularly arranged grids. This is of particular interest for two reasons. First, most real life
problems involve regions of such geometric complexity that it is difficult to faithfully represent
them with a structured grid. Second. in most real life problems the magnitudes of the derivatives
of the solution, which govern the accuracy of the discretization, vary considerably: in regions
of rapid changes, more nodes are required for adequate accuracy. This “adaptive meshing” is
often difficult to manage with structured grids.

For discretizing a PDE on an unstructured mesh, either the finite volume method or the finite
element method is normally used. Particularly for difficult problems with discontinuities in the
coefficients, fairly low-order approximations using many nodes are preferred. In this case, the
finite element method can often be interpreted as a type of finite volume method or vice versa,
and so in fact often the two methods are used together. See sections 4.2 and 5.2 for details.

1.4 Iterative Solvers

The meshes on which PDE’s are discretized are often very fine, using many nodes, in order to
give more accurate solutions. This gives rise to very large systems of equations to be solved.
Fortunately, the coefficient matrices are sparse: almost all the entries are zero. The traditional
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approach of using Gaussian elimination to decompose the matrix into triangular factors, then
solving triangular systems, can be enhanced to exploit this sparsity. Modemn “direct methods”
use sophisticated reorderings of the rows and columns to keep the storage requirements for the
factors as low as possible, and clever data structure algorithms to reduce the factorization and
solution time to a minimum.

However, as problems have continued to grow and computer architecture changed, direct
methods have hit serious difficulties. Matrices with millions of rows are becoming common, and
at that size just storing the factors can be too expensive, let alone computing them! Furthermore,
Gaussian elimination and triangular solves can be difficult to effectively parallelize, resulting in
poor efficiency on todays high performance machines with tens, hundreds or even thousands of
processors.

Alternatives include “fast solvers,” which typically use the Fast Fourier Transform to solve
certain PDE problems very efficiently. Unfortunately their use is generally restricted to some
special constant coefficient PDE’s discretized only on uniform Cartesian grids, which is inade-
quate for many applications.

The search for scalable algorithms for effectively solving very large problems, especially
on parallel computers, tumns instead to “iterative methods”. The essential idea behind these
schemes is that starting with an initial guess u® for the solution of Au = f, refinements are
made to get better guesses ul, u?, .... The process is halted when u’ is deemed accurate
enough, say when [|[Au’ - f|| < 10~%||Au® - fJ].

There are many possibilities for determining better guesses at the solution. The most pop-
ular general purpose algorithms are called “Krylov subspace accelerators”. There are many
different schemes in this framework, but it is widely accepted that the choice of accelerator isn't
crucial compared to the choice of preconditioner, explained below. In this thesis I follow a pop-
ular choice of using the Conjugate Gradient method for symmetric positive definite matrices,
and the Biconjugate Gradient Stabilized (BiCGStab) method for all other problems. See [32]
for an exposition of these and other methods.

The advantages of these iterative methods are twofold: firstly, there are no large factors
needed—just the matrix and a few auxiliary vectors—and secondly, only easily parallelized
matrix-vector multiplies are used. On the other hand, the major disadvantage of iterative meth-
ods is robustness. The rate of convergence to the correct solution depends upon the condition
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number' which is often so large that the accelerator simply won’t converge at all: finite pre-
cision arithmetic errors build up faster than the theoretical convergence. This is especially a
problem for large, highly nonuniform unstructured meshes: the condition number increases not
only with the size of the problem. but also with the degree of irregularity in the mesh. For
problems with highly variable coefficients, or that show strong anisotropy, or that are indefinite
or close to indefinite, the condition number is still worse. It is generally agreed that not much
improvement can be made to the standard accelerators: the key is instead “preconditioning”.

A preconditioner in general is a pair of non-singular linear operators M and M g such that
M AMp = I. Note that they don’t have to be explicitly known in matrix form, instead being
implicitly represented by linear algorithms or products of matrices for example. Special cases
where one of the operators is just the identity (and so is ignored) are referred to as left or right
preconditioning. The key observation is that the system Au = f is equivalent to the system
(MLAMRg)v = Mf, u = Mpv, but the second system should be much easier to solve
iteratively thanks to its improved condition number. The goal then is to find preconditioners
that are effective in improving the condition number, but that are cheap to compute, store, and

apply.

1.5 Approximate Inverse Preconditioners

One preconditioning strategy exemplified by [LU and Gauss-Seidel (see [32]) is to determine
very sparse approximations to the triangular factors of A. Triangular solves can then be used
to approximate the application of A, just as a direct method uses the exact factors to exactly
apply A, modulo rounding errors. Even though this can be much cheaper than full Gaussian
climination, since the full factors need not be computed, the approach inherits the parallelism
problems of direct methods, and so much research has been devoted to alternative schemes.

Of particular interest today are approximate inverse preconditioners where A™! is directly
approximated with a sparse matrix, or more generally, a product of sparse matrices. This re-
stores the attractive parallelism of accelerators, since to apply the preconditioner again only
easily parallelized matrix-vector multiplies are needed.

'"The condition number of A. denoted by x(A). is a measure of how far the matrix is from the identity L. [t is
generally defined as x(A) = |JA]| - |]A™"]| for some appropriate matrix norm.
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Several algorithms have been proposed for constructing approximate inverses. These can
be loosely categorized first by their result: some algorithms produce a single sparse matrix ap-
proximating A —e.g. SPAI[22], Chow and Saad’s MR method[15, 16], Tang and Wan’s local
inverse[35]—and others produce factored approximations (approximate inverses of the trian-
gular factors)—e.g. FSAI[25], AINV([4]. The factored form has the advantages of guaranteed
non-singularity, extra sparsity from good orderings, and apparently more effect per nonzero
thanks to its more implicit nature. However. the non-factored form has the advantages of ro-
bustness with respect to orderings—bad pivots are not an issue—and more parallel application.

The algorithms can secondly be classified according to their general approach: minimization
of the Frobenius norm of the error between the preconditioned matrix and the identity under
sparsity constraints (e.g. SPAL, FSAI), limited optimization of that error (e.g. Chow and Saad’s
MR method, Tang and Wan's local inverse), or incomplete inversion algorithms (e.g. AINV).

There is much work to be done in improving these algorithms—implementation details,
parallelism in construction, finding good sparsity patterns, etc.—but it appears at the moment
that the factored, incomplete inversion algorithms are the most practical. The algorithm used in
this thesis is AINV.

1.6 Discrete Green’s Functions

One general method for analytically solving 1.1 is to find the Green's function. a function
G : Q x Q — R which satisfies:
L.G(z.y)=d(x~y), for r,yeq, (y held fixed) (1.2)

and suitable boundary conditions on 9. Here the derivatives are with respect to z, and § is the
Dirac delta distribution. Neglecting the boundary conditions for simplicity, the solution to 1.1
is:

u(z) = /Q G(z.y)f(y) dy (1.3)

since then

Llu(z)) = € fn Glz.y)f(y) dy

7



= /ﬂ L G(z,y)f(y)dy

- /9 5z - y)f(y) dy
(z)

Suppose 1.1 has been discretized as Au = f, where A approximates £, u approximates u
with u; = u(z;), and f approximates f with f; = f(z;), again ignoring boundary conditions
for simplicity. With the matrix A™! satisfying

AAl =1 (1.4
write the discrete solution as:

u= A, e wi=) Al (1.5)
J

Note that the identity matrix I is the discrete Dirac delta: [;; = 4; j- The analogy between
1.2 and 1.4, and between 1.3 and 1.5 is then clear. The matrix A™! is a discrete version of the
Green’s function G.

For most elliptic problems the Green's function G is known to be nonzero on all of Q x ©,
and possibly significantly large on a lot of that domain. If the discretization A of the operator
C is of any value, A™! must similarly be mostly nonzero with possibly many large entries.
Unfortunately this means a sparse yet high quality approximation is impossible in general—
there is no hope for scalable approximate inverses. That is, in the standard basis: the aim of this
thesis is to find a better basis where sparsity and quality aren’t mutually exclusive.

1.7 Multi-Resolution Bases

Before going further, I shall introduce some notation. Take  to be the (bounded) domain of
interest. Suppose there are n points zy,....z, € Q identified at which the value of some
function f : @ — R is known; call the vector £ = (fy,..., f.) € R*, where fi = f(z:). the
discretized version of f. Often the word “signal” is used instead of function.



The standard basis vectors for R* are e!,... e", with ej- = §;j. for example, e =
(0,1,0,0,...,0). Thus expressing the discretized function as f = (fir-eosfn) = frel +
.-+ + fne™ uses the standard basis. The coefficients of f in a different basis v!.....v" are the
real numbers ay, ..., a, such that f = a;v! +- - - +a,v". The dual basis consists of the vectors
w! ..., w" such that a; = f - w’. If the basis is orthogonal (v* - v/ = di;) then the dual basis

is the basis itself; in general, the two are distinct but biorthogonal (v* - w/ = di;).

A multi-resolution basis is a choice of basis vectors that seeks to represent smooth functions
efficiently—if f is smooth, most of the coefficients in its multi-resolution representation will
be very close to zero. (This opens the way for data compression, as a very good approximation
to f is retained when only the few large coefficients are stored and the rest are assumed zero).
Smoothness essentially means that large changes in the function value only happen over large
length scales. In other words, most of the information in the signal is at a low resolution. Then
what is needed is a basis that includes a few vectors with variation over long length scales,
spanning a low resolution subspace, and is filled up with other vectors that vary on shorter
length scales, giving the high resolution components. The coefficients for the handful of low
resolution vectors will be large, but the coefficients for the high resolution vectors. which form
the greater part of the basis, should be small. A natural way of adapting to different degrees of
smoothness in functions is to in fact have a whole spectrum or hierarchy of different resolution
vectors—hence the name multi-resolution.

The simplest multi-resolution basis is the Fourier basis, constructed from the functions
1, sin(z), cos(z), sin(2x), cos(2z), sin(3z), ... on the interval [0, 2], with a uniform spacing
of the points z1, ..., z, usually assumed. This gives a spectrum of resolutions, with sin(kz) or
cos(kz) varying on a length scale of O(1/k). Many theorems have been proved showing the
link between smoothness (precisely characterized by bounded derivatives of a certain order, for
example) and small coefficients for the high resolution components.

Unfortunately, the Fourier basis has a significant flaw: global smoothness is required. For
example. a single jump discontinuity in an otherwise extremely smooth function will give rel-
atively large coefficients even in the high resolutions. The problems that these singularities
can cause for the Fourier basis have again been precisely characterized in many theorems. In
our application, compression of discrete Green’s functions with multi-resolution bases, this is
devastating—there is a guaranteed singularity along the diagonal produced by the Diruc delta,
not to mention the possibility of singularities from discontinuous coefficients.

9



The remedy is “compact support”, or more generally, fast decay of the dual basis vectors.
If w' is zero or very small far away from z;, the coefficient a; will be completely or mostly
independent of the values of f far away—and thus unaffected by distant singularities. Where
the function is smooth, the high resolution coefficients will be small.

Wavelets are an attractive class of multi-resolution bases with this compact support property.
They also are constructed to allow very fast transformation algorithms, converting a signal from
the standard basis to wavelet coefficients or vice versa in O(n) time, and to handle noisy signals.
The next chapter will deal with them more thoroughly.

1.8 Related Methods

Probably the first multi-resolution method for solving linear systems was multigrid[23]. The
most basic idea behind multigrid is instead of directly solving the original problem, “restrict”
the initial guess to a coarser grid, correct all the lower resolution errors there at lower cost, then
project the corrected solution back to the original grid and cheaply correct the remaining high
resolution errors—but do this recursively with a hierarchy of grids for greater efficiency. This
works remarkably well for many problems, and is backed up with considerable theory showing
optimal O(n) complexity is achieved for some equations on regular grids. Extending multigrid
to more challenging PDE’s and to irregular meshes is a subject of current research.

This research began by considering how to improve the Wavelet Sparse Approximate In-
verse proposed in [14]. As will be elaborated in the next chapter, the weakness of this method
is its restriction to uniformly spaced regular grids that scale strictly by powers of two, due to
using classical wavelets (such as the Daubechies D4 wavelet[18)) for the multi-resolution basis.

The hierarchical basis technique[28] is similar to the technique proposed here—in fact, it
can be viewed as a special case where the mesh is well structured, the interpolation (see later)
is simple linear, and the approximate inverse is trivial.

There are also classes of algebraic multi-resolution methods, where the actual mesh and
PDE are forgotten and only the matrix A is available. Examples of this include algebraic
multigrid[31 ], BILUM{[33], and repeated red-black ILU[8].
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1.9 Roadmap

Chapter two begins with a brief review of classical wavelets. The main work is an exposition
of a popular construction of second generation wavelets, going into the details of the transform
algorithms and presenting new ideas about construction on unstructured meshes.

The general multi-resolution approximate inverse algorithm is laid out in chapter three,
complete with sections on interpolation, factored approximate inverse construction, and order-
ing.

Chapters four and five contain implementation details for one dimension and two dimen-
sions respectively. After going through the discretization and the multi-resolution basis con-
struction, test results are presented showing some of the capabilities of the algorithm.

Chapter six summarizes the main results of the thesis, and finishes with some open prob-
lems.
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Chapter 2

Constructing a Wavelet Basis

2.1 Overview

From the mathematical side, wavelets and their name came about in an attempt to fix the sin-
gularity problem of the Fourier basis. Taking the full sine and cosine waves and modifying
them to get compact support produces smaller abbreviated waves, or “wave-lets”. From the
signal processing side, quadrature mirror filters, which apply a recursive sequence of low and
high-pass filters, gave a fast O(n) linear transform that could handle noisy signals, implicitly
defining a multi-resolution basis.

As the initial motivation for wavelets came from improving the Fourier basis or Fast Fourier
Transform, classical wavelets were developed in the same context: uniform sampling (with a
small multiple of a power of two sample points) in one dimension along an interval with periodic
boundaries!. Higher dimensional wavelets on similarly structured Cartesian grids are formed
as tensor products of one dimensional wavelets.

However, the periodic boundary conditions necessary for the algorithms and theory caused
problems for many applications—for example, wavelet transforming a typical non-periodic
photograph would implicitly find a jump discontinuity at the boundary, degrading analysis and

'Just as with Fourier series, uniform sampling along the infinite real line is also studied but of course is of less
practical interest, and will not be considered here.



compression nearby. The restriction to powers of two and uniform sampling, and the simplistic
tensor product approach to higher dimensions, similarly grew inconvenient. While develop-
ments in classical wavelet theory could fix some of these problems, it became clear that a new
approach was required.

The general term for these new methods is second generation wavelets: bases that preserve
the multi-resolution, compact support, fast transform, and noise tolerance properties but that
can be applied on irregular multi-dimensional domains with all kinds of boundary conditions.
The popular approach used in this research is the lifting scheme[34]; other possibilities include
Harten’s work[1].

2.2 Classical Wavelets

Classical wavelets, described in [18) for example, are constructed from two functions on the
real line, the scaling function ¢(x) and the wavelet function ¥(z). For this simple review, it
is assumed they are zero outside of the interval [0, 2V — 1), where .V is some positive integer.
Define their periodic translates and dyadic (power of two) dilates:

0j(z) = ¢(2'z—j mod 2'q)
¥i(z) = w(2r—j mod 2'q)

for some integer ¢ > 2NV — 1. The modulo operation reduces the argument to a number in the
interval 0, 2q) by subtracting multiples of 2*q, making the functions g-periodic.

Biorthogonal wavelets also implicitly have dual functions 5(1') and u;'(z). along with their
translates and dilates, for the dual basis. To keep things simple, I shall assume that an orthogonal
basis is constructed, so 5(::) = ¢(z) and -_J(.t) = ¥(z).

The lowest possible resolution, scaling level 0, is provided by the functions
of(z), olz) ... o)_y(z)
The next resolution, wavelet level 0, is given by
w(z), wi(@) ... e (2)

13



Higher resolutions consist of dilates of the wavelet function—wavelet level i contains the 2'q
functions

o), ..y W,y (2)
For n = 2¥q sample points, the basis stops at wavelet level k& — 1 for a total of ¢ + ¢ + 29 +
.-+ 2%=1g = 2kg = n discretized basis functions. For orthogonal wavelets these functions
should all be orthogonal, both in the continuous and discrete settings.

The multi-resolution property comes from the dilations: level i functions handle features
with variations on a length scale of O(2~*). Compact support comes from restricting ¥(r) = 0
outside [0, 2NV —1) so that ¥/}(z) is nonzero only in the length 2~(2N — 1) interval starting at
2745,

The fast transforms are derived from the dilation equations:

IN-1

oo(z) = zajo}(l‘)
=0

2N-1

i) = ) bjok(z)
=0

for some constant coefficients ag, ..., aay-y and by, ..., bon_; to be determined. Assume the
discrete input signal f has the continuous form

2y

1
flz) =3 fiok(z)

=0

The level k — 1 wavelet coefficients, ;™" for basis function w§'(x), can be easily computed
by:

it = [t
= /oq (Z f;cg),."(z)) vy~ () dx
= 30 [ ottt e e

2N-1
= X f /0 "ot() (Z br¢é3+r) dz

r=0
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IN-1

= S b [ kel e
' r=0
aIN-1

= Z brf"]+r

using orthogonality. Each coefficient then takes 2V flops® to compute. Temporary scaling level
k — 1 coefficients, ,uf - for oj‘-"l(x). can similarly be computed as:

2N

k-1
B = Z ar faj+r

r=0

with 2N flops. From these scaling level k — 1 coefficients both sets of level k — 2 coefficients
can be computed:

IN-1

k-2

H; = Za’”"ﬁr
’N—

ch—2

i = Zb'“"ﬁ—r
r=0

and the process recursively continues until the level 0 coefficients are found. Including the tem-
porary scaling levels, there are a little less than 2n coefficients computed at 2N flops a-piece,
giving a total run-time of about 4N'n for the forward transform. Typically N is very small, so
this is effectively O(n). Note also that at each level, all coefficients can be computed indepen-
dently in parallel, allowing an optimum parallel complexity of O(logn). Using orthogonality,
a similar inverse transform algorithm can be derived with the same complexity.

From the signal processing viewpoint, the a coefficients define a low-pass filter, blurring out
the high resolution components of the signal and keeping just the smoother low resolution part.
This is what gives the noise tolerance property: if a smooth signal is contaminated by high-
resolution noise, the low-pass filter cuts it out so lower levels only see the underlying smooth
signal without random artifacts, and can then properly process it. This concept is made precise
by the idea of moment preservation. The j'th moment of a function f is the value [z f(z)dz
a generalization of the average value (when j = 0). A faithful lower resolution representation

:Flop stands for floating point operation. A multiply and add are traditionally counted together as one flop.
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Figure 2.1: The D4 scaling and wavelet functions

phi(x) psi(x)
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of the original signal is ensured by requiring that the first s moments are preserved:

/.t‘j (pr'zdaf'z(z)) d:r=/.rjf(:t)dz for j=0,...,s-1

Applying the dilation equation reduces this to s conditions on the b coefficients.

The b coefficients define a complementary high-pass filter, differencing out the lower reso-
lution components and isolating the high resolution part. This can be made precise by the idea
of vanishing moments, requiring that the wavelet coefficients of the ideally smooth functions
1. z, 22, ..., z* be zero. From orthogonality, this is equivalent to the moment preservation

condition on the a’s.

Other conditions to be imposed on the a and b coefficients result from requiring orthogo-
nality in this case, and possibly other desirable features. Of course, more conditions require
more coefficients, i.e. larger NV, which both slows down the transform algorithms and makes the
support larger and hence the basis more susceptible to damage from singularities. One common
choice. used in [14] for example, is the D4 wavelet of Daubechies[18], an orthogonal basis with
N = 2 and two preserved moments. See figure 2.1 for a picture of its fundamental functions.

At the core of classical wavelet theory are the dilation equations, which unfortunately are
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also the root cause of all the restrictions: powers of two, periodic boundaries, uniform sampling,
etc. The key to second generation wavelets is to focus instead on the transform algorithm.

2.3 The Lifting Scheme

The lifting scheme[34] proposed by Sweldens is a way of constructing biorthogonal second gen-
eration wavelets—ones that retain the essential properties of multi-resolution, compact support,
fast transforms, and noise tolerance, but not the limitation to such regular domains.

The core of the lifting scheme is its transform algorithms, rather than what the basis func-
tions actually are. Of course, any invertible linear transformation can be viewed as a change-
of-basis, and it is possible to recover the j’th basis function simply by inverting e’ (and the j'th
dual basis function by transforming e/).

Figures 2.2 and 2.3 give the general forms of the forward transform algorithm and inverse
transform algorithm respectively. Note that the resolution levels are in reverse from the follow-
ing section on classical wavelets, so level 0 is the highest resolution.

2.4 The Multi-Resolution Property

The lifting scheme is a natural way of arranging for small wavelet coefficients where the func-
tion is smooth-—presumably at those points, the prediction will be very accurate, so the predic-
tion error 4/ will be close to zero. This can also be naturally interpreted as the multi-resolution
property: the coarsest level M gives the lowest resolution view of the function, with 4/ giving
the next higher resolution details that were missed, then 4/~! the further level of resolution
details that were missed, etc., finishing with 4! giving the highest resolution details. Smooth
functions will naturally have near negligible high resolution details, hence small v coefficients.

In order for this to be successful, the P at each level must be accurate of course. One of
the fundamental requirements for the partition into fine and coarse nodes is then that each fine
node should be easily predicted from the coarse nodes. Normally this will mean that there
should be coarse nodes in close proximity to every fine node—the fine and coarse nodes must
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Figure 2.2: The forward transform for the lifting scheme.

e Start with the function values fy, ..., f, at sample points z1, ..., r,.
o Let ) = fiforalli,C® = {zy,...,z,},and j = 0.
e Begin loop:
o Split up the sample points C? into two disjoint subsets, the fine nodes F?*! and the
coarse nodes C/+1.
o Predict AL, the values at the fine nodes, from AL, the values at the coarse nodes,
with some linear prediction operator P: A, = PAL.
o Store the wavelet coefficient v/ ™" = X! — (PAL); for each fine node r; € Fi~1.
e Update the value at each coarse node by A/ ™! = A + (U4J*1); foreach r; € 3!
so that the required moments will be preserved. This update operator U must also
be linear.

e If |C/*}| is small enough, below some constant, break out of the loop. Otherwise,

set j «— j + 1 and continue.

o Return M from the coarsest level along with the wavelet coefficients 1. ... v/ from
each level.

Figure 2.3: The inverse transform for the lifting scheme.

Start with )/ and the wavelet coefficients 41, ..., /.

Begin loop:
e Reconstruct Agl at the coarse nodes by /\{ “lo /\{ ~ (U~4); foreach r; € C.
e Reconstruct A" at the fine nodes by M ™! = 4/ + (PALTY); for each r; € Fi.
e Continue with j « j — 1l until j = 1.

Rewm f; = A! forall i.
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be fully intermingled. This might be achieved in one dimension, for example, by selecting
every even node to be coarse and every odd node to be fine.* Continuing in one dimension, P
could then be defined to do linear interpolation between the two coarse nodes surrounding each
fine node. Usually P is defined to do polynomial interpolation through the surrounding coarse
nodes, which corresponds precisely to vanishing moments as discussed in the previous section.

2.5 Compact Support

Compact support is arranged by making each P and U a sparse matrix, so that the prediction at
each fine node and the update at each coarse node depend upon only a small number of nearby
nodes. For example, linear-interpolating P in one dimension satisfies this by only using the
two surrounding coarse nodes to predict at the fine node between. The basic goal of compact
support, containing the damage done by singularities, is naturally achieved in this way: although
the prediction will likely be inaccurate near the singularity, the wavelet coefficients 7 further
away are completely independent of the function values at the singularity and thus cannot be
adversely affected.

2.6 Fast Transforms

Choosing the P and U operators very sparse also makes the transform algorithms fast. For
example, if each fine node is predicted from at most ¢ nearby coarse nodes, taking at most q
flops. then the operation P will take at most |F7*+!|q flops. Adding up the operations for
the entire transform, noting that the fine node sets are disjoint, we have a strict upper bound
of nq flops for the predict operations. Similarly if each coarse node is updated from at most q
nearby fine nodes, the operation U~/ will take at most |C/+!|q flops. The coarse node sets
are nested, not disjoint, but if we assume that the number of coarse nodes is at least halved at
each level (|C771| < |C7]/2), then from the geometric sum we still have an upper bound of nq
flops for all update operations. Therefore under these assumptions both transform algorithms
run in O(n) time, in fact bounded by 2ngq flops, twice as fast as classical wavelets.

’Based on this. Swelden’s original presentation of the scheme actually uses the terms even and odd instead of
coarse and fine throughout
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2.7 Noise Tolerance

Just as with classical wavelets, the key to noise tolerance is moment preservation. The update
operator U is chosen so that approximating the input function by zeroing out wavelet coeffi-
cients preserves its moments. Particularly on a multi-dimensional irregularly sampled domain,
the classical definition of moment isn't necessarily meaningful, thus I forward the notion of
generalized moments m; = f, a;(x)f(r) dz for some smooth moment kernel functions o i(x).
(The classical 1D choice is a(z) = r’.) The discrete form is then:

mj =Y Sif;
=1

for some appropriate discretization S;; =~ Jc oj(z) dz with C; a small cell around ;. Letting
m be the vector of moments, this can be written as

m = Sf

At each transform step, the original function is A/ and the coarsened function is:

M= L+ Uy
= M+ UM - PAL)
= (I-UP)\. + U,
The approximate function reconstructed without wavelet coefficients v/ *! is given by:
X, = M*tl-vUo
(I - UP)AL + UM,
A = 0+PX,
= P(I-UP))M- + PUX,

Splitting up the moment kernel matrix S into Sg for the fine node columns and S¢ for the
coarse node columns, we then require:

S¥ = SV
SrX: +ScAs = SpXh+Schi

I
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SrAp+8cX. = Sr(P(I-UP)AL +PUN,)
+Sc (T-UPLY + UN,)
(Sr —SFPU - ScU)M; = (SpP ~ SpPUP ~ ScUP)AL
(SF —=SFPU-ScU)A. = (Sp-SrPU - ScU)PAL

This is true automatically if the prediction is perfect, i.e. the function perfectly fits our notion
of smoothness. However. this should be true for any function, irregardless of the independent
values of A% and A%, so we must have:

SF-SFPU-ScU = 0
(SFP +Sc)U = Spg

This equation coupled with the sparsity constraints should determine the entries of U.

Each column of U can be computed independently, and actually only involves solving a
small submatrix of S;P + S¢ thanks to the sparsity constraint. Note that for the submatrix to
be invertible it must be square, so the number of ~ coefficients used to update each coarse node
must equal the number of preserved moments.

Generalizing the notion of moment preservation even further, I here propose constructing
the small system independently for each coarse node, allowing different sets of moments to be
locally preserved at different places. This might be desirable, for example, if it is inconvenient
to arrange for all coarse nodes to use the same number of ~ coefficients in the update step.

2.8 Additional Algorithm Features

Another nice feature of these algorithms is that they can work in place: 4/™! can overwrite A}
and M*! can overwrite AL in the forward transform; vice versa for the inverse transform. In
particular, this is irregardless of the order in which the fine nodes are predicted and the order in
which the coarse nodes are updated.

These algorithms are also naturally parallel. Not only can each fine node be predicted
simultaneously and each coarse node updated simultaneously, but assuming that only nearby
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neighbours are used for both operations only a small amount of local communication between
nodes is needed. Again assuming that the number of coarse nodes is halved at each level, there
are only O(log n) steps in the algorithms, so with O(n) processors it is theoretically possible to
do the transforms in O(log n) time.

2.9 The Matrix Formulation

The transform algorithms can also be described with matrix notation. Assume that the nodes
are ordered from finest to coarsest, namely with F! first, then F2, ..., then F7, and finally ¢’
last. Let P* and U* be the prediction and update operators at step . Then the forward transtorm
can be written with the following product:

3! frm
, =Mf=MJ'---M2M1
J ‘
Y fFj
M fe;

Step ¢ of the transform is given by M;:

1
! I ' I l !
| I I P ||t
A U 1 | ,\"C-l

e

M,

The inverse transform can similarly be written:

,yl .71
f=M"| [ =MP M- M| ©
‘yJ 7.’
N pVj



where the inverse transform at step i is Mfl:

3 1

v I l I ’ !

e I P I ¥

Airl I -U' 1 A
Mt'

Of course, these matrices should be treated as sparse matrices, i.c. only the nonzeros and
their locations should be saved. Standard sparse matrix multiplication routines can then be used
to do the waveiet transform efficiently.

As will be the case in section 3.6, these algorithms can furthermore operate in sparse-sparse
mode, where the vector to be transformed is sparse too. The matrix formulation is then simplest
to use, since again standard sparse-sparse multiply routines can be used.



Chapter 3

The General Algorithm

3.1 Overview

As the preceding chapters have suggested, the basic idea behind the multi-resolution approx-
imate inverse is to construct, via the lifting scheme, a multi-resolution basis for compressing
the discrete Green’s function. Later chapters will deal with the details of basis construction for
one or two dimensional problems; this chapter will cover the details that are independent of
dimension.

3.2 Using the Multi-Resolution Basis

The goal is to compress A™, obtaining an accurate but highly sparse approximate inverse from
Just the large coefficients in its multi-resolution representation. However, A~} is unknown of
course, so this is not just a simple matter of applying the transform algorithm.

Recall that A™! is the discrete version of the Green's function G(z, y), which is defined on
Q2 x . Itis then natural to look for a basis IT on (the discretized form of) © x € that is a tensor
product of two bases a and 3 on Q: II = o ® 3. Each clement p € Il is then a separable
function p;; = a;b; witha € a and b € 3. (In the continuous form, p(z.y) = a(x)b(y).)
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Let the bases be a = {a',a®...,a"}, 3 = {b',b%,...,b"}, and their tensor product
1= {p! p,....p",....p""}. where p¥} = a¥bl. To express the discrete Green's function
in the basis II, find coefficients Q; so that:

n n

A = ZZQHP:‘L}

k=1 (=1

= 22 Qualt;

k=1 I=1
n n
k 4
>_al Y Quib
k=1 =1

In this last expression. viewing j as fixed, observe 3"/_, Qb is the k'th coefficient of the

basis representation of column j of A™t. Then letting j vary again, Qy is the {'th coefficient of
the 3 basis representation of those k'th coefficients. If M,, is the forward transform operator
from the standard basis to the a basis, My is the forward transform to J, and the Qy are
arranged as an n x n matrix, this can be written more clearly as

Qu = (My(M,A™)T )y
or simply
Q=M. A'M7

which is equivalent to
—1 _ np-l -T
A7 =M, QM;

Of course, the same result can be obtained by first viewing i as fixed and the rows of A~ being
compressed with 3.

The preconditioner is going to be a compressed form of A™!, where small IT coefficients
have been dropped, i.e. M;‘QM;T for Q a sparse approximation to Q. If the IT basis does a
good job, a very sparse yet high quality approximation will be possible. Notice that

Q= M, A'M] = (M;TAM;!)™

so Q is in fact a sparse approximate inverse for M;TAMgl. All of these matrices are known,
so we now have a tractable proposition. The general outline of the algorithm is given in figure
3.1



Figure 3.1: The multi-resolution approximate inverse algorithm.

e Compute the transform coefficients for a and 3 through the lifting scheme.
e Compute a sparse approximate inverse Q = (M;TAMgl)‘l.

o The preconditioner is then M7'QM;T ~ A™%.

There is some flexibility in choosing the preconditioned system. In exact arithmetic with
Q = Q all of (M;'QM;T)A, (QM;T)AMM!). (M;T)A(M;'Q). and A(M;'GM;T)
are equal to the identity—and if Q is in factored form, even more possibilities exist. The choice
of which is best when 6 # Q should generally be made according to how C~2 is constructed;
see section 3.6 for details on the choice made for this thesis.

The preconditioned system must be non-singular, thus in particular 6 must be non-singular.
At the same time, we want 6 to be very sparse; an obvious goal is then to make Q as close as
possible to a diagonal matrix, with diagonal entries much larger than off-diagonal entries. (This
is especially the case for factored approximate inverse algorithms without pivoting.) Intuitively
speaking this should naturally be the case, since the Green's function should be smooth off
the diagonal—allowing very small off-diagonal Q coefficients—but should have a singularity
along the diagonal caused by the Dirac delta—giving large diagonal Q coefficients. The next
few sections will outline how to best achieve this.

Notice that the bases a and 3 can be constructed completely independently; not only can
the choices of prediction and update operators be different, but the hierarchy of fine/coarse
nodes can be completely different too. Later this flexibility in choosing different predictions
will be exploited, but throughout the rest of the thesis it will be assumed that the hierarchies
are the same. The first advantage of this restriction is that it is possible to speak about a coarse
node unambiguously; this much simplifies analysis of the algorithm. Also important for order-
ing the nodes prior to computing a factored approximate inverse, some degree of symmetry is
preserved—if A is structuraily symmetric, and the prediction and update operators for a and 3
have the same structure, then M;7 AM7! is structurally symmetric too.



3.3 PDE-Interpolation

Examine more closely what the a basis transform does in compressing the columns of A™!.
Since AA™! = I, the j’th column of A™! is the solution of Au = e/, which is the discretized
form of Lu(z) = d(x — z;) (cf. section 1.6). Thus each column being transformed satisfies
Lu = 0 everywhere except at the diagonal.

A better choice than the usual polynomial interpolation for P, now presents itself, what [
call "PDE-interpolation”. When predicting the value at fine node z; from nearby coarse nodes
Tji» ---+ Lj,. treat it as a small PDE problem Cu = 0 with an unknown at z; and specified
“boundary” values at r;,, ..., rj, . After defining a small mesh on these nodes, the discretization
routine can be called to give the linear equation approximating Lu = 0 at the fine node, and
this can be immediately solved since we know the values at all the other points. In particular, if
the discretization at z; is

0= Lu=aiu; +aiju), + -+ aijuy,

then the prediction should be

PO L T
hE Qi ar @i fx
Of course, at boundary nodes the boundary condition should be discretized rather than the PDE.

Similar arguments can be made for 3, only since ATA™T = I the rows of A~ are discrete
solutions of the adjoint problem. If £ is not self-adjoint, this makes a crucial difference. P,
should be generated by discretizing Lu at the fine node and neighbouring coarse nodes, trans-
posing the resulting small matrix to get the discrete adjoint operator, and then solving for the
fine node value.

For nearly self-adjoint problems, i.e. those with relatively weak convection, the extra storage
spent on distinct P,,'s and P;'s might not be worth it, and the symmetrized equation should be
used instead. However, testing results in later chapters show the benefit of choosing P, # Py
for strong convection PDE's.

Note that constructing the PDE-interpolation is only a constant factor more expensive than
linear interpolation—once the neighbouring nodes have been found, which can be done in o(1)
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amortized time[12], there is only O(1) work left to do. Further note that the local mesh and
discretization need only be computed once; the coefficients —a;j, /a;, ..., —a;j, /ai; can then
be stored in P, for future use. The construction costs can be further amortized if there are many
solves to be done, and even if the PDE coefficients change between solves (as in a non-linear
problem or some time-dependent problems) at least the local mesh construction costs may be
amortized.

Reassuringly, PDE-interpolation often reduces to polynomial interpolation when £ is the
Laplacian operator V2. In D for example, suppose the fine node is at point r; with coarse
neighbours ;_; to the left and z,.; to the right. The normal second order discretization of
Lu=v"=0atz;is:

2u,-+1 2'11.,' 2'!1,'_1

- + =0
(Zin —Zi)(Tin =Tia)  (Tim—Zi)(Ti—Tic1)  (Ti—Tio )(Tie) —Liny)

Solving for u; gives:

Li—T;i| Li4l =L
Ui = | ——— JUin + | —— | ui|
Ligl —Li-1 Livl —Li-l
which is just linear interpolation.

The same thing happens in 2D for piecewise linear finite elements on triangles. If the fine
node is inside a triangle of three coarse nodes, linear interpolation in this triangle is equivalent to
splitting the triangle into three subtriangles, constructing the linear finite element discretization,
and solving for the fine node.

Notice that it is important that the discretization not be limited to fine meshes for stability
and accuracy; the interpolation will need to be carried out at the coarser levels where the distance
between nodes is much larger than in the original mesh. For example, a scheme like upwinding
should be used for the convection term, and discontinuous coefficients must be handled physi-
cally correctly (e.g. with harmonic means in one dimension). Ideally the PDE coefficients them-
selves should be coarsened along with the mesh in some homogenization procedure—perhaps
taking appropriate averages of the coefficients at nearby fine nodes. [ leave this coefficient
homogenization problem for future research.

The expense of setting up these local meshes, even when amortized, might not be worth-
while for simple problems, but the benefit should be clear for tough PDE's. For example, if
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there is strong convection, the naturally centrally weighted polynomial interpolants will give
equal weight to downstream values—a clear mistake—when the PDE-interpolant correctly em-
phasizes the upstream values. If the diffusion coefficient is discontinuous then solutions won’t
be smooth at the discontinuities, violating the assumption underlying polynomial interpolants,
but appropriate PDE-interpolation should still work.

As an addendum, other methods for improving on polynomial interpolation, algebraic in na-
ture, have arisen in multigrid, such as the energy minimization approach from [13] or “Blackbox
Multigrid™ in [2]. It would be interesting to compare the performance and robustness of these
interpolations—whether the discretization approximations or the algebraic approximations are
better.

3.4 Forgetting Moments

It turns out that taking U = 0, so moments are nor preserved, appears to be the best choice.
The next chapter illustrates this with numerical experiments: this section provides a theoretical
justification.

In signal processing, the noise tolerance provided by preserving moments is crucial. The
functions being transformed often have random fluctuations due to background noise or erors
in the sampling process, so added to the underlying smooth signal is a high resolution error.
Without an update step in the transform the function values at the coarse nodes are unchanged
at lower resolutions, and so the high resolution error is carried down into a low resolution
error. Then at all levels the error would cause problems for the prediction, so despite the fact
that the signal really is smooth at lower resolutions, the lower resolution wavelet coefficients
won’t be small. The introduction of a sparse update step means moments are preserved locally,
maintaining local average values and thus smoothing out the function for lower resolutions. This
damps out the high resolution error so it can only harm the high resolution wavelet coefficients.

However, in this application there should be no high resolution fluctuations. The accuracy
of a solution generally is related to the size of its derivatives:; small-scale oscillations would
make those large, indicating that the discretization is of little value and probably sutfers from
instability. Therefore the real need for an update step is gone. It is true that some indefinite prob-
lems or problems with rapidly fluctuating coefficients will inherently give rise to solutions with
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small-scale oscillations, in which case a multi-resolution method is bound to meet difficulties
at low resolutions, though in the latter case a coefficient homogenization procedure might help.
Perhaps here multi-resolution methods are simply not suitable; [ leave this for future research.

Thus in the cases of interest, though it appears not to be crucially important, can the update
step still be of some use?

Write out the first step of the transformation with fine nodes ordered before coarse nodes
and A™ decomposed as (B $):

A—l

)G ()

Carrying out the prediction step gives:

I B-P,D-CPJ+P,EP] C-P,E\ (I UT
U, I D - EP? E I

Now, if the prediction operators are accurate for C and D from E (i.e. C — P,E =~ 0and
D-—EP?; = 0), they necessarily are close to ideal PDE-interpolation, since in these off-diagonal
portions of A™' we have Lu = 0 everywhere. Then the prediction P,D or CP7 for B will be
accurate except at the diagonal, where Lu = 1 instead of 0. So the prediction error roughly will
be 0 away from the diagonal, and 1/a;; (the coefficient in the rediscretization) on the diagonal.
If A is the diagonal matrix with these coefficients on the diagonal, then B — P,D ~ A and
B - CP?,' = A. So the scheme will approximately give:

(o 1) (G 2)(" )

Thus the predict step achieves exactly what is needed: a near diagonal matrix. However, this is
the result if the update step is then applied:

A AU?
U,A E+U,AUY
The attractive near zero blocks that were created by the prediction have been filled in with scaled

versions of the update matrices. Furthermore, the coarsened system E has been perturbed in a
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way that won’t necessarily improve later prediction, and will probably mean that it is no longer
a discrete Green's function of the PDE—making PDE-interpolation useless. The problem is
that there is an essential singularity on the diagonal that we want to keep sharp—the error in
prediction at the diagonal is beneficial; the algorithm should maintain it at lower resolutions,
rather than trying to blur it out with an update step.

Finally, it's clear that including an update step adds expense in storage space and transfor-
mation time, not to mention complicating analysis of the algorithm. Therefore I shall assume
U = 0 from now on. Since moment preservation is an essential feature of wavelets, [ have
adopted the name multi-resolution approximate inverse rather than wavelet approximate in-

verse.

3.5 Multiplying out the Transforms

A second look at the forward transform algorithm (figure 2.2) shows that without the update
step, the coarsened signals A* are just sub-samplings of the original signal f, values unchanged.
In particular then, all the A*'s are immediately available, so the predictions are independent and
may be done simuitaneously.

This fact may be seen by multiplying out the matrix product form of the forward transform:
M=M;---MaM,;

For example, multiplying the first two steps together gives:

M.M; =




The off-diagonal —P’s simply add, thanks to the diagonal identity blocks and the order of
multiplication. It’s simple to see how this continues, giving

( )

\ .y

The forward transform is now reduced to a single sparse matrix multiply.

On the other hand, the inverse transform cannot be similarly reduced. Reconstructing A*
depends on v**! in the inverse transform algorithm (figure 2.3) even when U = 0; the steps
must be done one after the other. From a matrix viewpoint, this can be seen in the fill-in that
results when the inverse transform is multiplied out, caused by the reversed order of the factors.
For example, multiplying M7'M;! gives:

C | e | [

O

I

L My
Not only is the storage requirement increased when the matrices are multiplied out, but the time
required for the inverse transform similarly increases.

However, observe that the forward transform matrix is upper triangular, so the inverse trans-
form can be applied by the backwards substitution of a triangular solve. In fact, the inverse
transform algorithm can be interpreted as doing exactly this, but with the potential for paral-
lelism made explicit: nodes from the same level can be solved independently.

As an aside, recall from the previous section that the ideal action of the prediction steps is
to reduce A to near diagonal form: M, A™' M7, is almost a diagonal matrix X, neglecting the
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small sub-matrix of coarsest nodes. Then similarly the inverse is close to diagonal:
M;TAM;! = A

Since M:’; is lower triangular and M, is upper triangular, this can now be interpreted as an
incomplete L DU factorization:
A=x M?;A"l M,

The transformation to the multi-resolution basis is now seen as an incomplete factorization pre-
conditioner, using triangular solves with approximate factors. This is analogous to BILUM[33]
or repeated red-black ILU[8], where the triangular factors are found with a multi-level algebraic
algorithm rather than the interpolation approach here. Inspired from this analogy, an interest-
ing extension to this thesis would be an algebraic version of the multi-resolution approximate
inverse preconditioner, where the prediction operators are determined algebraically from the
original matrix A.

However, return now to the problem of computing Q, realizing that the inverse transform
matrices are only available in factored form.

3.6 Computing the Approximate Inverse

Although M7, A, and M! are known, their product M;TAM;l is not explicitly known—as
discussed in the previous section, even just multiplying out the inverse transforms will incur a
penalty. Thus Q must be found with an approximate inverse algorithm that works when the
matrix is known only as a linear operator. Actually, a little more is known: the adjoint of the

operator
(MzTAMY)T = MTATMS!

may be used in the algorithm as well.

This rules out the Frobenius norm minimization algorithms such as SPAI[22] and FSAI[25],
as well as Tang and Wan's local inverse method([35], since they all require the ability to access
submatrices of MQTAM; L. Chow and Saad’s MR method[15, 16]is a possibility as it only uses
the matrix as an operator. However, the impressive performance[5) of the incomplete inverse
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factorization algorithms makes them the most attractive choice. [ chose to adapt the AINV[4]
algorithm.

The original form of AINV is a column-oriented, left-looking, dot-product based algorithm
that constructs a factored approximate inverse via biconjugation, shown in figure 3.2. Given a
matrix B it returns upper triangular matrices W and Z along with a diagonal matrix D, where
the columns of W and Z are approximately B-biconjugate: WTBZ = D. It can be interpreted
as a generalization of the classical Gram-Schmidt orthogonalization algorithm, beginning with
the standard basis vectors and making them B-biconjugate.

AINV gives an approximation to the I/ DL factorization of B!, since the biconjugation
condition is equivalent to
B! ~zZD'wT
However, the choice of preconditioned system should naturally follow the construction of the
preconditioner: either D~ (WTBZ) or (WTBZ)D™. These choices guarantee a unit diago-
nal in the preconditioned system, which is often a good property.

Observe that the storage and work can be cut in half when B is symmetric: then W = Z,
so only Z need be computed. In addition, if B is symmetric positive definite and the algorithm
is accurate enough, D should only have non-negative entries, so D~%2 can be used. Then an
approximate inverse of the upper Cholesky factor is ZD "2, and the preconditioned system
D2ZTBZD "2 not only has a unit diagonal but is also symmetric positive definite, a definite
advantage in iterative methods.

The algorithm above works fine even if B and BT are only available as operators; though
the rows and columns of B are actually found explicitly by multiplying with the standard basis
vectors, only one row or column needs to be stored at a time, and each is required only once. Of
course, it is imperative to do these multiplies in sparse-sparse mode or else the algorithm will
run very slowly.

3.7 Improving AINV

The problem with using this algorithm, elaborated in [9], is that the biconjugation j loops are
often doing too much work. As it stands the algorithm runs in at least O(n?) time. even if much
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Figure 3.2: The original dot-product form of AINV.

| @ Take B, an n x n matrix, and some drop tolerance o > 0 as input.

e Fori=1,....n
O Initialize columns i of W and Z 1o the i'th standard basis vector
e SetW; =e'and Z; = €.
D Make column i of W biconjugate with previous columns
e Getrowiof B: r = (¢/)TB = (BTe!)7.
e Forj=1,...,i-1
oW, W, - LD%W j
© Make column i of Z biconjugate with previous columns
e Getcolumn i of B: ¢ = B; = Be'.
efForj=1L1,...,i-1
e Z,«2 - V—Z:chj
© Drop small entries to keep W and Z sparse
¢ Zero any above-diagonal entry of W; or Z; with magnitude < 4.
> Find the “pivot” Dy
e Set D;; = WTBZ,—.
e Return W, Z, and D.
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less than O(n?) nonzeros are input and output. Typically, the majority of the time spent in the
algorithm is wasted computing the sparse dot-products rZ; and ch when they turn out to be
identically zero, due to the vectors having no nonzero entries in common.

There are inexpensive symbolic methods to cut down the j loops from (1. ....i — 1) to
much smaller lists (especially if the nodes are ordered in a good manner—see the next section).
Unfortunately, these symbolic methods make crucial use of the nonzero structure of the matrix
B and its elimination tree[26] or related structures, which aren’t directly available here. The
structures of the factors in M‘;TAM,;l are available, so it may be possible to recover these
symbolic methods and use the dot-product algorithm efficiently. However, I leave this problem
for future research and instead tum to a different form of AINV.

Reversing the nesting of the loops, the algorithm can be rearranged into a right-looking
outer-product based method, shown in figure 3.3. The same comments about unit diagonals and
symmetry apply here. Note that the dropping strategy is slightly different: instead of zeroing
out small entries of W; and Z; after they have been fully computed, small updates simply are
not added.

The benefit of this formulation is that the inner ¢ loops can be easily trimmed to just what is
needed: a loop over the non-zero values of 1 or u. Normally | and u will be quite sparse so this
means big savings (especially for good orderings of the nodes—see the next section).

Another potential slow-down is the calculation of 1 and u; if computed as dense vectors.
this takes O(n) time via the lifting scheme, making the whole algorithm at least O(n®). This
can be avoided by doing them in sparse-sparse mode. Potentially even faster is a hybrid mode
described in [9] that uses efficient sparse-dense multiplies but keeps track of where nonzeros
are created for a fast “gather” operation back to a sparse result.

The down side of this formulation is that whereas the original form constructed the columns
of W and Z one at a time, here all of columns j + 1, ..., n are being updated as the algorithm
proceeds. Dynamic linked list data structures are required to store the unfinished columns.
inevitably bringing up worries about efficiency—e.g. in [4], where a vector processor was used,
this outer-product form was dismissed as inappropriate. However, tests comparing this version
to the original with symbolic enhancements (for explicitly known B), running on a modern
superscalar workstation, show that it is competitive. In fact, since the symbolic algorithms
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Figure 3.3: The outer-product form of AINV.

e Take as input B and 4.
e SetW=1TIandZ =1
e Forj=1,....n

e Setl=BZ;

° Setu=BTWJ-

Set D_,'j = uTZ,-

e Fori=j+1,....n
e Update W; « W, — drop (5"—Wj,5) . where entries of the update vector

11

with magnitude < J are dropped.

Fori=j+1,....n
e Update Z; « Z; - drop (E"IIJ-Z,-,J)‘

e Returm W, Z, and D.
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cannot account for sparsity due to the dropping of small elements, but the outer-product form
automatically does, this version often is more efficient![9]

3.8 Ordering

Before using AINV, one more thing must be considered: the ordering of the nodes. In [6, 10] it
was made clear that ordering has a significant effect on the construction time of the approximate
inverse, and on the convergence of the preconditioned system. For fairly isotropic problems, the
heuristic of inverse factor fill reduction has proven to be very effective; ordering algorithms like
Nested Dissection, Minimum Degree, and Minimum Inverse Penalty[10] do a good job. These
often handle more difficult problems, but [10] showed that anisotropic matrices can be better
handled by algorithms sensitive to the numerical entries in the matrix. The question of how best
to deal with anisotropy still requires more research, so in this thesis I have ignored the issue.

I'have chosen to work with Nested Dissection. Despite indications in [10] that there may be
slightly superior orderings for convergence, this is not well understood at all, whereas it is clear
that Nested Dissection is the best fill reduction and execution speed—oparticularly on parallel
machines—with good implementations like Metis[24].

Unfortunately there is a major difficulty to overcome before running the ordering algorithm:
ML;TAM,;1 is known only in factored form, so the nonzero structure required is not explicitly
available. '

Before going further, recall the graph theory notation often used in sparse matrix ordering.
With a given n x n matrix B, associate the graph Gg, or simply G if the context makes it
clear, defined on nodes {1,...,n} with a directed edge i — j if and only if B;; # 0. Thus the
nonzero structure of B and the graph Gg may be identified. As an abbreviation, write i — j to
mean the statement that the directed edge i — j exists in G. The neighbourhood of a node i is
the set of j such that ¢ — j. A path is a sequence of distinct nodes iy, .. .. i such that Iy = ia,
ia = i3, ....and ix_| — i, often written i; — --- — iy, or simply iy ~ i;. The transitive
closure G* of a graph G is one constructed on the same nodes but having i — j whenever i ~ j
in G. For a fuller treatment, see [20, 21].

As is shown in [21], assuming here and for the rest of this section that there is no felicitous
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cancellation, the structure of B~ is given by the transitive closure of the graph of Gg. As was
mentioned before, when the forward transform M, is multiplied out (with no update steps), the
off-diagonal —P’s are just added—no fill-in occurs. Then the graph of M, satisfies i — j iff
at some level / is a fine node whose prediction uses coarse node j. Therefore the graph of M}
has i — j iff there is a chain of prediction dependencies i ~ j.

Define the support of a node j to be the set supp(j) of nodes i such that (M!); j # 0—this
1s actually the support of the j'th multi-resolution basis function. From the transitive closure
characterization of inverses, observe that the supports have a nested structure: if i € supp(j)
then supp(i) C supp(j). Notice that if j is a fine node at the highest resolution level, supp(j) =
{7}, but that if j is at the lowest re<olution level its support may be very dense—more justifica-
tion never to multiply out the inverse transform!

Now examine the structure of M;TAM; !. Assume that A has symmetric structure (4, j#
0iff 4j; # 0) and My and M, have the same structure. Then the product has symmetric
structure, and one can speak unambiguously about coarse/fine nodes and the support of a node.
Observe

(MzTAMY); = ZZ Dok Au (M7 )y

k=1 1=1

= 3 (M AuMZ),
k=1 =1
Then (ML','TAM;‘)U # 0 iff there exist nodes & and ! with k € supp(i), | € supp(j). and
k — lin A. In other words, i — j in the product iff their supports are adjacent in A. Using the
nested structure of the supports, it is then clear that the neighbourhood of any node j contains
the neighbourhoods of all nodes in supp(j).

Now, the location of nonzeros in column i of the upper inverse triangular factor Z of a
symmetric structure matrix B can be characterized as follows. Z; has an entry for each node
before i and reachable from i, via paths in B using nodes before i. (One easy proof uses
induction and the dot-product form of AINV.)

Consider the effect of swapping the positions of i # j in some ordering, when i € supp(j).
Clearly the number of nonzeros in columns in Z ordered before both i and j or after both will
not be changed. However, the columns in between may be altered. Since the neighbourhood of
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J contains the neighbourhood of i, any nodes reachable on paths through ¢ are reachable through
J. but not necessarily the other way around. Therefore ordering i before J can’t result in more
nonzeros in Z, but putting j before i might.

Thus any ordering of the nodes should respect j ordered after all other nodes in supp(j).
Since supp(j) is the set of i such that (M!);; # O, this is equivalent to requiring that i be
ordered before j whenever i ~ j in M,. This is clearly equivalent to ordering : before j
whenever ¢ — j in M, which can be enforced by the algorithm in figure 3.4.

Essentially the algorithm outputs the nodes in the existing order except when a coarse node
comes before any of its fine dependents. Then the coarse node is made to wait until all the
fine dependents have been ordered, at which point it's put on a queue to be ordered as soon
as possible. The value numdep(i) serves as a counter of how many fine nodes dependent on
have yet to be ordered—since i is only put into p when this reaches zero. the ordering must be
consistent.

The initialization loop, assuming sparse storage of the matrix, takes time on the order of
the number of nonzeros in the matrix, which should be O(n) as mentioned in section 2.3. The
complexity of the main loop is a little more difficult to prove:

First note that both i and j begin at | and never are decremented. Let d =
i numdep(i), so before the main loop begins d = nnz(M,) - n, the num-

ber of off-diagonal nonzeros in M. Values in numdep are never incremented so d
never increases.

A node can only be marked as waiting in the final else clause, and since i is incre-
mented there it can never be marked as waiting again. The only way an entry in
numdep can be decremented to zero is if it had been marked as waiting, and when
it hits 0 its marked as not waiting, so it can never be decremented past 0. Therefore
d is always non-negative.

Suppose i is incremented past n + L—this can only happen if i = n + 1 at the start
of an iteration with the queue empty. There must be some unordered nodes left, as
otherwise j would have been incremented past n and the loop would have stopped.
If any of the unordered nodes had numdep equal to zero, they either would have
started at zero, in which case the first else clause would have been executed for that
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Figure 3.4: Modifying an ordering to respect the multi-resolution basis.

o Take as input the structure of M,, or M; (multiplied out).
e Fori=1,....n
e Set numdep(i) = number of nodes j with j — i, not including  itself.

e Set waiting(?) to false.

[nitialize a queue with room for n entries, empty at first.

Set i = 1, the first node to attempt to order.

Set j = 1, the first index into the modified ordering p.

While j <n
o [f the queue is not empty then
e Remove the first node & from the front of the queue.
e Setp; =kand j « j+ 1.
e Consider, in order, each [ # k with k — [ and waiting(l) true; decrement
numdep(l), and if this is 0 set wairing(l) to false and append ! to the queue.
o Else if numdep(i) = 0 then
e Setp; =i, j—j+1l,andii+1.
e Consider, in order, each | # i with i — [ and waiting(l) true; decrement
numdep(l), and if this is 0 set waiting(l) to false and append { to the queue.
o Else (numdep(i) > 0)

o Set waiting(i) to true, and i «— i + 1.

e Return the modified ordering p.
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value of ¢, or they would have been decremented to zero and added to the queue—
in either case implying that they must now be ordered, a contradiction. Thus all the
unordered nodes have positive numdep counters. However, some unordered node
v must be from the finest resolution level of all unordered nodes, and so cannot
have any unordered dependent fine nodes—and so must have numdep(v) = 0, a
contradiction. Therefore ¢ never is incremented past n + 1.

Clearly j can never be incremented past n + 1 thanks to the loop condition. There-
fore, since in each iteration either j is incremented, i is incremented, or at least one
of the values in numdep is decremented, there can be at most n + nnz(M.,,) itera-
tions. In fact, assuming constant time queue operations (e.g. as in a simple array
implementation) the time spent in the main loop is O(n) + O(nnz(M,,)), which
again should be O(n) (see section 2.3). Thus the entire algorithm is O(n).

[ now propose the following simple scheme: order A with Nested Dissection, and then
run the above algorithm to make the ordering consistent with the multi-resolution basis. The
only worry is that the modification will destroy the good fill-reducing qualities of the original
ordering. However, the bulk of the nodes should be at the finest level and thus have trivial
supports, so the modification can’t change their relative order. The only nodes that can be
greatly affected by the ordering modification are the very coarse nodes, which are in a very
small minority. Thus the potential damage is very limited.

3.9 Parallel Ordering and Construction

The only unresolved issue is parallelism in the construction and ordering. Although many
opportunities exist for limited fine-grain parallelism, probably the most practical approach is
coarse-grain, based on the successful parallel AINV described in [7].

Begin by partitioning the graph of A into disconnected subgraphs (distributed to differ-
ent processors) and a separator set of the nodes separating the subgraphs. Packages such as
Metis[24] provide good parallel routines to do this so that the subgraphs are roughly balanced
in size and the separator is small. Conceptually the global ordering will put the subgraphs first
and the separator set last, thus restricting fill in the inverse factors and making the subgraph
computations independent.



In each subgraph, the nodes can be ordered with Nested Dissection or some other good
method, and the modification algorithm from the previous section run to make it consistent
with the multi-resolution basis. In this case, some coarse nodes may be discovered with fine de-
pendents in other subgraphs; these nodes must be moved to the separator set. This modification
now ensures that the partition is also good for the transformed matrix M;TAMgl. The mod-
ification can then continue in the separator set to make it consistent with the multi-resolution
basis. While each subgraph ordering can be done independently on different processors, doing
the separator set in parallel probably will be very challenging, so provided it’s not too large
doing it serially on one processor should be acceptable.

As soon as the ordering of a subgraph is determined, serial outer-product AINV can be run
for those columns of W and Z: no information from other nodes is required. The bottleneck
is again the separator set, which must receive and combine information from all the subgraphs.
Possibly the best approach is to use the block dot-product form of AINV from [9] to get the
contributions from the subgraphs in parallel—each subgraph providing one block column. with
sparse blocks—and then continue with serial outer-product AINV on one processor. The exact
details of the implementation are left for future work.

3.10 The Relationship with Multigrid

Although the multi-resolution approximate inverse technique was motivated quite differently
from multigrid—using wavelets to compress the discrete Green's function rather than using a
hierarchy of grids to damp all the different resolution components of the error etficiently—it
appears they are fundamentally very similar. In fact, the software developed here for finding the
hierarchy of coarse nodes and the prediction operators could be used with only cosmetic changes
in an unstructured mesh node-nested! multigrid package, and vice versa. The multi-resolution
basis part of the thesis can then be seen as more or less independent of the approximate inverse
part, though of course some details of the basis are decided with consideration for implementing
the approximate inverse.

'A multigrid method is node-nested if the nodes in each coarse mesh are also nodes of the next finer mesh. so
the coarsening procedure consists of selecting a subset of the fine mesh nodes (o be coarse rather than introducing
new nodes.
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The relationship can be made more precise by interpreting the multi-resolution approximate
inverse as an additive node-nested multigrid algorithm. For simplicity I only consider the “two
grid” case, where there are only two levels in the hierarchy: the original problem and one coarse
problem. As usual for analysis, I assume that all the fine nodes are ordered before all the coarse
nodes, with matrices partitioned accordingly.

The approximation to A™ is M;‘QM;T. Of course Q might be available only as a product
of matrices, but for this analysis assume it is explicitly known. Writing this out in matrix form
gives:

-1 -1Ara-T
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Now, define the mesh transfer operators: the prolongation P = (P[“) and the restriction R =
(E;J)T. The prolongation takes a coarse mesh version of a function and returns the interpolated
(predicted) fine mesh version. The restriction takes a fine mesh version of a function and returns
a coarse mesh version—notice that this process is not simple injection (sub-sampling of just the
coarse node values) but instead assigns to each coarse node a linear combination of the coarse
node and its fine neighbours. The standard multigrid choice of taking the restriction equal to

the transpose of the prolongation corresponds to taking P, = P,

While general multigrid is not constrained to this form for the prolongation and restriction,
the only real assumptions underlying this form are:

e The restriction of a function at a particular coarse node should only depend on the func-
tion values at that coarse node and possibly some fine nodes.

e The prolongation at a particular coarse node only depends on the value in the coarse mesh
version.



Equivalently stated for the Galerkin (or Petrov-Galerkin) viewpoint of multigrid, the support
of a coarse mesh basis function should include only one coarse node. Under these assump-
tions, the coarse part of the two operators becomes diagonal and can be trivially rescaled to the
identity. These seem quite reasonable assumptions to make; if the need arises. however, there
is the possibility of simply generalizing the lifting scheme transform algorithm, replacing the
appropriate identity block with an invertible matrix.

Rewriting the approximation gives:
ata ] Qu (I 0)+PQu (I 0)+ 1) 81R + PGnr
0 0

which can be viewed as additive multigrid. The coarse mesh correction corresponds to the
PQ;»—;’R term (with 622 playing the part of the coarse mesh solver). The Ple(I 0) and
(5)61272 terms correspond to pre- and post-smoothing respectively, and the (3)611(1 0) term
smooths just the fine nodes independently of the coarse node operations (see [35] for an example
of approximate inverses used as smoothers in standard multigrid).
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Chapter 4

Implementation in One Dimension

4.1 Overview

One dimensional problems serve as a useful test of the method. Issues such as the coarse/fine
splitting and the prediction are easier to deal with, and testing very fine meshes takes less
computer resources. Of course, approximate inverse methods would never be used for one-
dimensional problems in the real world, since other direct or special methods achieve optimally
efficient, robust solutions (at least if the problem isn’t too ill-conditioned). However, some of
the lessons gained in 1D can be brought to higher dimensional problems where there is real
interest in using approximate inverses.

4.2 Discretization

In one dimension the operator £ is of the form:

d d
- — e _bu
Lu (Ada:u ) +cu

where all coefficients are scalars (possibly functions of ). Without loss of generality the equa-
tion Lu = f can be taken on the unit interval [0, 1].
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For a finite volume discretization, choose points 0 = 7, < 2 < --- < z, = 1 on the
interval, at which the solution will be approximated. Let z;,;» be the midpoint between r;
and z;.;. Define vertex-centred cells (known as finite volumes or control volumes) from these

points, with half-cells at the endpoints:

Ci = [z1.210p] =[0.2102]
Ci = [riop Zian] for i=2,...,n-1
Cn = [-’l’n_v_z,.l'n] = [‘rn—my ll

Integrating the equation over an interior cell gives:

d [ .d _
/C'E<I\Eu—bu)+cudx = /C.fdr

d Liy12
[K—u—bu] +/ cudr / fdr
C, Cc

dr
A mid-point approximation for the integrals and a second order finite difference approximation
for du/dzx gives:

L=E, i

( Y
Uiv] — Uy
- bivptinp

Ui — i d = (T — Licyp) fi

) + bg_mui_v_)

+ (Titn = Ticp)ciu;

The value K, )» could plausibly be taken as A'(r;,). but it turns out that a better choice
is some kind of mean value of A" on the interval between z; and r,.,. Continuity of the flux
or homogenization theory arguments show that the harmonic mean of A in this interval is the
correct value. A different intuitive reason for this can be found in the physical interpretation of
u as the concentration of some quantity {7 that diffuses at rate A’; then A is the average speed
of the tiny particles of U at a given point as they randomly move about. The average speed
on a path from z; to z;4 is the harmonic mean of the speeds along the way: moving distance
dz takes time 1/K () dz, so the total time is [*~' 1/K(z) dz, giving average speed (;; —
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zi)/ . :‘ **'1/K(z)dz. Assuming K is only known at the vertices, the natural approximation
is: !
Kinp = Y ——
- t e+ 1

The value b, is handled differently—in the physical model, unlike the A" term represent-
ing diffusion of randomly moving particles, b represents the deterministic underlying current
which convects the quantity. Again assume that b is only known at the vertices. There are two
cases to consider: where b is the same sign at the vertices, and where b changes sign. In the
first case, it is reasonable to appeal to smoothness in b for lack of a better idea, and estimate
bi+i2 = (bi + biv1)/2. In the second case, at some point between r; and r;.y eitherb =0or
b has a discontinuity spanning 0; this stagnation/source/sink point means there is no convective
connection between u; and u;1, so b;,» should be 0.

The term u;,)» appearing in the convection term also requires thought. First order up-
streaming simply selects u; 15 to be the upstream value u; when b;,,, > 0 and u;,, when
b; 112 < 0. This is motivated by the physical reasoning that values of u downstream should not
effect (via convection) any values that are upstream. It can be more mathematically justified as
a sufficient condition for stability of the discretization, guaranteeing amongst other things that
the linear system will be an M-matrix (at least if ¢ < 0). Upstreaming is used throughout this
thesis with no exceptions.

Diffusive flux (generalized Neumann) boundary conditions are easy to handle. For example,
if Kdu/dz - i = h at the left boundary, then there is just an extra source term when integrating
the PDE over C with the convective flux bu(0) set to 0 and the reaction term ¢(0) setto 0:

= (W)
— | RKR—u-bu} = dr +h
Lz(*% 1
d Elei2
[K—u - bu] = fdr+h
dz =0 Ci

The above approximations can then be made. In fact, if the discretization code constructs the
equations interval by interval (not cell by cell) as is usually done, the only differences between
a diffusive flux boundary and an interior point is the slightly different cell-width, the condition
¢ = 0, and the additional h term on the right-hand side.

Generalized Robin boundary conditions then simply require the addition of the au term at
the boundary node (or taking ¢ = a). In the special case of full flux specification, a x (—b) - i.
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Dirichlet boundary conditions, e.g. u(z,) = g, might be discretized “as is™: simply take the
equation u, = g. However, there is a major problem with this approach. For example, consider
u” = 0 with 4’(0) = 0 and u(1) = 1 discretized on a uniform mesh of three points {0,1/2,1}.
Putting the resulting linear equations in matrix form gives:

-2 2 0 uy 0
2 -4 2 us | =10
0 0 1 ug 1

Notice the PDE problem was self-adjoint, yet the matrix is not. In fact, the transpose of the
matrix doesn’t represent a discretization of any related PDE, and the multi-resolution method is
bound to fail in compressing the rows of the inverse.

The solution is to only approximately enforce the Dirichlet condition, the so-called “big
number” approach, by thinking of the Dirichlet condition as the limit as @ — ~ of the Robin
condition (A'Vu)-fi+au = ag on the boundary or the PDE with extra reaction term Cu +au =
ag in the interior. These conditions naturally give correct discretizations for the adjoint.

Begin with the normal flux conditions, or if the Dirichlet point is in the interior of the
domain, the normal discretization—which as mentioned is usually handled by the same code.
However, then increase the diagonal by a very large number (e.g. 10'%) and change the corre-
sponding entry in the right-hand side appropriately:

-2 2 0 uy 0
2 -4 2 Us = 0
0 2 -—10% u3 -10%0

It’s true that u, now will only be approximately equal to g, but that should be so much more
accurate than the other approximations made that this is no cause for worry. The matrix on the
other hand is now symmetric; in general the transpose of the matrix will be a discretization of
the adjoint problem, exactly as desired.

At first sight this might seem to pose the danger of making the system badly scaled and
ill-conditioned; however, even the simplest of preconditioners will correct this essentially ar-
tificial scaling problem. The real issue with this technique is evaluating convergence in an
iterative method. When looking at the residual Au — f, the Dirichlet entries are disproportion-
ately weighted by the big number. Then reducing the norm of the residual by some factor like
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1078 can often be accomplished simply by correcting the Dirichlet entries—even if the rest of
the approximate solution is completely wrong! Thus it is important to unweight the Dirichlet
entries of the residual—divide by the big number—before taking the usual norm in evaluating
convergence.

4.3 Basis construction

Although it’s not clear that this is necessarily the best idea, a natural scheme for splitting the
nodes into coarse and fine subsets in 1D is to simply take every second node coarse and the rest
fine. As mentioned before, this is the original even/odd splitting proposed in [34]. One slight
modification for this application is to always choose Dirichlet nodes as coarse: their value isn't
naturally predictable from nearby nodes, plus as coarse nodes they are perfectly handled by the
simplest approximate inverse. The same thing applies to Robin condition nodes with dominant
Dirichlet part.

The simplest choices for prediction are linear interpolation between the two neighbouring
coarse nodes, or cubic interpolation if another two nodes (one on each side) are used. Off-
centered interpolation or extrapolation must be used for fine nodes on or near the boundary.
A more sophisticated approach is to use PDE-interpolation (see section 3.3), which naturally
handles fine flux condition boundary nodes in addition to the interior nodes.

The choices for the update step are nothing (U = 0), first two moments (up to linear)
preserved using the two neighbouring fine nodes, or first four moments (up to cubic) preserved
using an extra node on each side. Near boundaries the nodes used must also be off-center, as
with prediction.

4.4 Test Problems

The following five problems were selected to test a variety of the difficulties that are sometimes
encountered. Uniform meshes of various sizes were tested along with some nonuniform meshes
(where the nodes were moved to increase accuracy). Besides the multi-resoiution approximate
inverses, standard basis AINV was tested for comparison.
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The following subsections give the details of the testing; section 4.5 summarizes the results.

4.4.1 Testing Protocol

The methods listed in the tables are:

e AINV(J): the standard basis inner-product AINV with drop tolerance 4.

e MrLin(d): a multi-resolution basis with linear interpolation but no update, then outer-
product AINV with drop tolerance 4.

¢ Mr.LinUpd(d): a multi-resolution basis with linear interpolation and moments up to linear
preserved with an update step, then outer-product AINV with drop tolerance 4.

e Mr.Cub(d): cubic interpolation, no update, drop tolerance 4.
e Mr.CubUpd(d): cubic interpolation and moments up to cubic preserved, drop tolerance 4.

e Mr.PDE(d): PDE-interpolation, no update, drop tolerance 4.

For the muiti-resolution bases, enough levels were allowed so that the coarsest level had about
100 nodes.

The ordering was nested dissection for standard AINV, with the modification algorithm
applied for muiti-resolution bases with no update step. For the bases with an update step,
the basis-transformed matrix was actually multiplied out before nested dissection ordering and
AINV.

The drop tolerances were chosen to give approximately the same total number of nonzeros
(including prediction and update operators where applicable) for each preconditioner. about
7000 for a problem on 1000 nodes (or 9000 for problem 3).

The symmetric definite problems were solved with CG and the preconditioned systemn
D12ZT(M-TAM™)ZD 2. BiCGStab with D'WT(M;TAM;')Z was used for the oth-
ers. Convergence was flagged when the 2-norm of the residual (with Dirichlet nodes rescaled
appropriately, as mentioned before) was decreased by a factor of 10~% beginning from an initial
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guess of all zeros; if convergence wasn’t reached after 500 iterations, the problem was marked
unsolved with an asterisk (*).

After each iteration count in the tables, the “work per unknown” is included in parentheses:
the number of iterations times the number of nonzeros in the preconditioner (prediction and
update operators included), divided by the number of unknowns. This allows a somewhat fairer
comparison between different preconditioners and problems.

Timing counts are not included, as parts of the code run interpreted under MATLAB and
other parts in C, some tuned for performance and others not, thus any timing could be mis-
representative. This means in particular that the efficient use of cache memory, superscalar or
superpipelined architecture, etc. is not measured at all. However, as all the preconditioner opera-
tions essentially boil down to sparse matrix multiplication, which can be coded very effectively,
no major problems are anticipated for a real implementation.

44.2 Problem 1: Simple Heat Problem

This is the simplest problem, a sample solve from a fully implicit method for the heat equation
on a uniform bar with heat applied in one spot:

v -0lu=f

where

-1 : 04<r<05
f(z) = )
0 : otherwise

and the boundary conditions are Dirichlet:
u(0) =u(l)=0
See 4.1 for a plot of the solution.

Figure 4.2 shows in 3D the negative of the discrete Green's function (the inverse of the
matrix) and figure 4.3 shows it in 2D in different bases, symmetrically scaled to have unit
diagonal (darker shading indicates larger magnitude). Note how in the standard basis many off-
diagonal entries are significantly large, suggesting difficulties for an approximate inverse. In the
multi-resolution bases most of the off-diagonal entries are nearly zero (except at the coarsest
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Figure 4.1: Solution of 1D problem 1 (simple heat problem).
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level in the bottom right corner)—with some exceptions for the cubic interpolation or those
with update steps. The iteration results in table 4.1 confirm the suspicion that the linear and
PDE-interpolation bases do the best jobs.

As justified earlier, preserving moments is not a good thing; the convergence is slowed
enormously or lost altogether for larger problems. From now on, results for bases with updates
will not be included.

AINV in the standard basis is reasonably effective for small n, but the work per unknown
grows linearly—giving an O(n>) solution on a serial machine.

The cubic interpolation is a little disappointing. Though providing more efficient solutions
than the standard basis, with the work per unknown a very slow growing function of n, it is
nowhere near as good as the linear and PDE-interpolation bases. Despite giving a higher order
prediction, it takes much more work (and a much higher drop tolerance in the approximate
inverse, indicating poorer compression). The essential problem here is that the solutions are
not smooth enough to warrant the high order accuracy. I suspect but haven't proven that just
as linear interpolation corresponds to PDE-interpolation for the Laplacian (z” in ID), cubic
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Figure 4.2: Negative of the discrete Green's function for 1D problem 1.
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Table 4.1: CG iterations for 1D problem ! (simple heat problem) to reduce the residual norm by 1076,
with flops per unknown in parentheses: no convergence is marked by *. Each preconditioner’s drop
tolerance 4 is chosen to give roughly the same number of nonzeros. Sce page 51 for details.
| Method(s) n=1000 n=2000 n=4000 n = 3000
AINV(0.03) 23 (I157) 39 (269) 73 (506) 141 (980)
MrLin5-107%) | 3 (18) 34 3 b 3 (10
MrLinUpd(0.07) | 44 (323) 74 (466) 102 (606) *
Mr.Cub(0.063) 4 (165) 26 (171 27 (1700 29 (179)
Mr.CubUpd(0.3) | 231 (1937) = * *
Mr.PDE(10~'9) 2 (D 2 (D 2 (6) 2 (6)




Figure 4.3: Inverse of problem | matrix in different bases.
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Table 4.2: CG iterations for 1D problem 2 (discontinuous heat problem) to reduce the residual norm
by 10~%, with flops per unknown in parentheses: no convergence is marked by *. Each preconditioner’s
drop tolerance 4 is chosen to give roughly the same number of nonzeros. See page 51 for details.

| Method(6) n=1000 n=2000 n=4000 n=3000
AINV(0.01) 12 (82) 16 (118) 25 (197) *
MrLin(5-107%) | 3 (D) 3 (22 3.(23) 3 (24)
Mr.Cub(0.063) 71 (486) 226 (1493) = *
Mr.PDE(1071%) | 2 (10) 3 (15 315 3 (15)

interpolation corresponds to PDE-interpolation for the biharmonic operator (¢ in 1D), and
thus is clearly inappropriate for second order problems.

The highly desirable phenomenon of “grid-independent convergence™ is clear in the linear
and PDE-interpolation bases. Here the work per unknown stays constant, giving an optimal
O(n) solution on a serial machine and potentially optimal scalability on parallel machines.

Linear interpolation does a remarkably good job. aimost giving a direct solution. However,
PDE interpolation does even better, accounting as it does for the reaction term—not only is less
work required, but the smaller drop tolerance indicates better compression.

4.4.3 Problem 2: Discontinuous Heat Problem

Problem 2 is identical to problem 1 except that the boundaries are insulated (so the condition is
Neumann at steady state), the time step is larger (so the reaction term is —10~2u), and there is
a jump discontinuity in the diffusion coefficient:

1 : r<0.5
K(zr) = -
(z) {10-6 : r>05

The solution is shown in figure 4.4, and the inverse of the matrix in different bases in figure 4.5.
Table 4.2 gives the iteration results.

Now that the problem really isn’t so smooth, the cubic interpolation method fails. In fact,
the standard basis is better, although still not robust and still not scaling well. The linear and
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Figure 4.4: Solution of problem 2 (discontinuous heat probiem).
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PDE-interpolation methods perform very well again, with grid-independent convergence, the
PDE method just a bit better.

44.4 Problem 3: Convection with a Boundary Layer

The next problem is not self-adjoint, dominated by strong convection:

%(10—6u'—(x+1)u)=f

where
-1 r <02
/=) ={ 0 : r>02

and the boundary conditions are Dirichlet:
u(0) =u(l)=0

A very sharp boundary layer is present at the right boundary—upstream weighting is essential
for stability here in particular. See figure 4.6 for a plot of the solution, and figure 4.7 for a
picture of the matrix inverse in different bases. The iteration results are shown in table 4.3.
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Figure 4.5: Inverse of problem 2 matrix in different bases.
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Linear interpolation Cubic interpolation

Table 4.3: Bi-CGstab iterations for 1D problem 3 (convection problem) to reduce the residual norm by
10~8. with flops per unknown in parentheses; no convergence is marked by *. Each preconditioner’s
drop tolerance d is chosen to give roughly the same number of nonzeros. See page 51 for details.

| Method(d) n=1000 n=2000 n=4000 n =3000
AINV(0.3) 5 45 7 (70) 7 (0N 9 (109)
Mr.Lin(0.25) 47 (335) 33 (205) 39 (23 49 (288)
Mr.Cub(0.4) 71 (492) 99 (687) 103 (718) 123 (859)
MrPDE0.002) | 5 (33) 5 (29 5 (28) 7 (44

58



Figure 4.6: Solution of problem 3 (convection with a boundary layer).
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As mentioned before, the linear and cubic prediction are centred, equally weighting down-
stream information as upstream information, and this really shows in their poor convergence.
The standard basis is much superior.

However, despite having the additional overhead of the different adjoint prediction, the
PDE-interpolation method again works beautifully and shows grid-independent convergence.
The drop tolerance is still fairly low showing the superior compression.

To better resolve the boundary layer, [ tried a nonuniform mesh such that the spacing Ar
decreased cubically near the right boundary. This was much too difficult for convergence with
either the standard basis or the cubic interpolation basis, so I have only included the linear and
PDE-interpolation results in table 4.4.

Despite the increased difficulty, PDE-interpolation still works fine.
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Figure 4.7: Inverse of problem 3 matrix in different bases.

Standard basis PDE-interpolation

Linear interpolation Cubic interpolation

Table 4.4: Iterations for 1D problem 3 on a stretched mesh. Standard basis and cubic interpolation basis
methods didn’t converge at all.

| Method() n=1000 n=2000 n=4000 n=3000 |
MrLin0.245) | 137 (1070) 99 (743) 289 (2081) 321 (2224)
MCPDE0.003) | 5 (35 7 @5 T (43) 7 (43)




Figure 4.8: Solution of problem 4 (Indefinite Diffusion-Reaction).
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4.4.5 Problem 4: Indefinite Diffusion-Reaction

Problem 4 is self-adjoint without any discontinuities, but is indefinite by virtue of the reaction

term:
103" +u=f

where

-1 : 04<r<0.3
f(z) = )
0 : otherwise

and the boundary conditions are the natural Robin conditions. Figure 4.8 shows the solution and
figure 4.9 the matrix inverse in different bases (the inverse is not scaled so that the oscillations
are clearly apparent). Table 4.5 contains the iteration results.

Again the PDE-interpolation is a clear winner. The linear interpolation doesn't do so badly
because the problem is self-adjoint, but is still much less effective.

For higher accuracy, I tried an adaptive mesh, where the uniform mesh was modified to
improve the error based on the second derivative of the computed solution, and then smoothed
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Figure 4.9: Inverse of problem 4 matrix in different bases.
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Table 4.5: CG iterations for 1D problem 4 (indefinite diffusion-reaction) to reduce the residual norm
by 10~8, with flops per unknown in parentheses; no convergence is marked by *. Each preconditioner’s
drop tolerance d is chosen to give roughly the same number of nonzeros. See page 51 for details.

| Method(9) n=1000 n=2000 n=4000 n =3000
AINV(0.035) 73 (531) 315 (1940) * *
Mr.Lin(4-107%) 29 (209) 25 (205) 27 (110) 25 (88)
Mr.Cub(0.07) 355 (2172) o+ * *
MrPDE(1-10"19) [ 5 (35) 5 (38) 5 @h 5 29




Table 4.6: Iterations for 1D problem 4, adaptive mesh. The iteration count is followed by the
flops per unknown in parentheses.

| Method(6) n=1000 n=2000 n=4000 n = 8000
AINV(0.035) 251 (1618) * * *
MrLin(4-107% | 17 (119 19 (99 19 (78) 19 (68)
Mr.Cub(0.07) * * * *
MrPDE(L-1075) | 5 (33) 5 (30 7 (35) 9 (38 |

a litle. The results are shown in table 4.6. The standard basis and cubic interpolation per-
form abysmally as with the previous nonuniform mesh, but probably thanks to the symmetry
of the PDE the linear interpolation doesn’t do badly at all. In fact, the performance of linear
interpolation is improved dramatically, presumably because in the new mesh not only is the so-
lution error diminished, but also the prediction error which also relies on the second derivative.
The performance of PDE interpolation is decreased slightly (but still consistently beats linear
interpolation), probably because not much improvement is made in prediction error while the
problem is now worse conditioned.

4.4.6 Problem 5: Combined Difficulties

The final problem has a discontinuous diffusion coefficient, strong convection that changes
direction, and an oscillating reaction term:

%(Ku' - (lz — 0.5 - 0.05)u) - sin(57z) = —

where

1 : <03
K(z) = =
(z) { 103 : r>03

with Neumann boundary conditions:

u'(0) =u'(1)=0

Figures 4.10 and 4.11 show the solution and the matrix inverse as before. Because of the
difficulty of this problem, I aimed for 9000 nonzeros in the preconditioners when n = 1000;
the results are given in table 4.7.
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Figure 4.10: Solution of problem 5 (combined difficulties).

12

10}

0.6

0.8

Table 4.7: Bi-CGstab iterations for 1D problem 5 (combined difficulties) to reduce the residual norm
by 108, with flops per unknown in parentheses: no convergence is marked by *. Each preconditioner’s

drop tolerance 4 is chosen to give roughly the same number of nonzeros. Sce page 51 for details.

Method(d) n = 1000 n=2000 n=4000 n =3000
AINV(0.11) 127 (1170) 487 (4296) * *
Mr.Lin(0.003) 15 (136) [ 9 15 (103) 13 (74)
Mr.Cub(0.063) 103 (898) * * *
MrPDE(4-107Y | 9 (83) 7 (5D 7 @49 9 (59)




Figure 4.11: Inverse of problem 5 matrix in different bases.
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4.5 Summary

In one dimension, the multi-resolution basis with linear or PDE-interpolation is much superior
to the standard basis, enabling fast grid-independent convergence for tough problems where
AINV wouldn’t otherwise converge at all.

It is clear that the update step and cubic interpolation are inappropriate. While linear inter-
polation sometimes works very well, it can have problems with really tough problems. PDE-
interpolation gives by far the fastest convergence for all problems tested and should normally be
the first choice. [n situations where the same mesh is re-used for many problems with different
(but not too challenging) coefficients, it might be worthwhile to stick with linear interpolation
which need only be set up once, rather than recompute the PDE-interpolation for each problem,
but for robustness the PDE-interpolation is definitely best.
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Chapter 5

Implementation in Two Dimensions

5.1 Overview

[n two dimensions, on unstructured meshes, the matrices to solve are no longer trivial with any
method. This is an application of interest to the real world. The lessons from one dimension
(stick with linear or PDE-interpolation, no update step) carry over, but interpolation is trickier,
to say nothing of new challenges in partitioning the nodes into coarse and fine sets and in
deciding the nonzero structure of the prediction operators.

5.2 Discretization

There are still many questions left as to the best way of discretizing elliptic operators on two di-
mensional unstructured meshes, beginning with the choice of mesh itself. For some applications
there are packages which use meshes of quadrilaterals, which give nice properties (e.g. near or-
thogonality) when close to rectangular. However, it is trivial to convert a quadrilateral mesh
to a triangle mesh by splitting each quadrilateral along a diagonal, and good discretizations on
these triangles can maintain the qualities which make quadrilaterals attractive in the first place.
(I's generally impossible to go the other way, convert a triangle mesh into a quadrilateral mesh
without adding or moving points.) Triangles are very flexible, able to connect up any collection
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of points in the plane even if the prescribed boundary is non-convex. Finally, triangles have the
advantage of simpler discretization. Therefore [ have chosen to only consider triangle meshes.

There are then several choices for which triangulation should be used. Although the dis-
cretization scheme will work on any non-degenerate mesh, the accuracy of the result is highly
dependent on the quality of the mesh.

For elliptic problems, the Delaunay triangulation is the usual choice since it features, among
other things:

o fast algorithms,

¢ good geometry (e.g. maximizing the minimum interior angle of any triangle in the mesh),
and

e good discretization properties (e.g. linear finite element discretizations of Laplace's equa-
tion produce M-matrices, thus strictly maintaining the maximum/minimum properties of
the original PDE).

Of course, Delaunay triangulation has its faults. For example, it doesn't directly control the
maximum angle and thus may still produce nearly degenerate triangles—this is a particular
problem for highly stretched meshes used in aerodynamics, and has prompted the use of a
“MinMax" triangulation(3]. This issue hasn’t come up during the testing for this thesis, so [
have not followed this possibility.

Another problem with Delaunay triangulation is that an M-matrix (and accompanying max-
imum/minimum properties) is not guaranteed for elliptic PDE’s other than Laplace's equation,
particularly if the diffusion tensor is highly anisotropic. This suggests modifying the edge-
swapping optimization procedure (see figure 5.1) of some incremental Delaunay triangulation
algorithms to attempt to produce the desired M -matrices in the discretization, rather than op-
timize geometry features: edges should be swapped to make off-diagonal entries in the matrix
more positive and the diagonal more negative. Delaunay triangulation is then just the special
case for Laplace’s equation. So-called “coefficient-adaptive triangulation” shows promise for
simple problems, but lacks robustness for highly variable coefficients. However, as demon-
strated later the results can be improved dramatically if the domain is first split up into separate
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Figure 5.1: Given two adjacent triangles forming a convex quadrilateral, edge swapping may
reconfigure the triangles as shown (swapping the diagonal) to locally optimize some property
of the triangulation.

=

regions with roughly constant coefficients, the regions coefficient-adaptively triangulated. and
then the full mesh stitched back together. Further research is definitely required.

Once the mesh has been determined, there are two popular approaches to discretizing
Lu = f. The finite volume discretization used in ID can be extended to 2D with the ap-
propriate definition of a cell around each vertex—an integral of the PDE over a cell can be
reduced to a boundary integral which is straightforward to approximate. Usually a polygonal
region is made using the midpoints of the triangle edges along with some point in the interior
of each triangle, such as the centroid. (Of course around boundary nodes the cell is chopped in
half, just like the half-cells used at the boundaries in 1D.) Although the centroid is a reasonable
choice and is quite popular, it may cause badly shaped cells inappropriate for convection prob-
lems: see figure 5.2 for an example. A much better choice is to use the circumcentre, where
the perpendicular bisectors of the triangle meet—then the problem is that the circumcentre is
outside the triangle for obtuse triangles. It is in general impossible to get a triangulation with
no obtuse triangles without adding extra points, so one possible remedy is to use the circum-
centre for acute triangles, but the midpoint of the side closest to the circumcentre for obtuse
triangles. See figure 5.3 for an example. Another possibility not explored here is to use the cir-
cumcentres nevertheless—despite giving the non-intuitive property that the interface between
two cells sometimes doesn’t intersect the line joining them, this has the advantage of naturally
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Figure 5.2: An example of problems using centroids for finite volumes.
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corresponding to a finite element method, and if a Delaunay triangulation is used, making the
finite volumes the Voronoi cells.

The method of finite elements is the second popular choice. It is not as easy to interpret
physically, but its simple mathematical structure makes proofs of convergence and generaliza-
tions to higher order approximations simpler. The Galerkin formulation of the method essen-
tially approximates u as a linear combination 3_7_, u;; of a finite set of basis functions o,
then seeks to solve the PDE in a weak sense by requiring fQ Luo; = fQ foi for all i. This is
just a finite linear system for the coefficients u;. Typically the basis functions are piecewise La-
grange polynomials, with ¢; equal to 1 at node i and 0 at other nodes so u; represents the value
of u at node . If the diffusion term is integrated by parts, the differentiability requirement on
the basis functions is reduced, and so actually the most popular choice for second order elliptic

equations is piecewise Lagrange polynomials which are linear in each triangle.

It can be shown that often the two methods give exactly the same (or almost the same)

70



Figure 5.3: An example of cells using circumcentres or midpoints.
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discretization. In fact, proofs of convergence for finite volumes often go the route of interpret-
ing the method as a finite elements with a particular choice of numerical quadrature for the
integrals. It’s similarly possible to interpret the linear/triangle finite element method as a finite
volume technique. Since finite volumes are particularly good at convection (allowing upstream
weighting to be easily implemented) whereas finite elements handle diffusion in a simpler and
more elegant way, many people exploit their compatibility in combining the techniques. This is
how [ have chosen to discretize the PDE.

As noted in 1D, discontinuities in the diffusion coefficient must be handled carefully. Un-
fortunately, it is not yet clear how to properly treat discontinuous anisotropic diffusion tensors
in 2D. For example, the simple-minded approach of taking component-wise harmonic means
is clearly wrong since it is not rotationally invariant. Return instead to the physical intuition
of K measuring the average speed of randomly moving particles. The negative gradient of the
quantity —V'u represents the natural diffusive “force”™ (I use the term with hesitation, as the
physics of this argument haven’t been clearly worked out) propelling particles. The possibly
anisotropic resistance of the medium then results in an average velocity of — A’V u.

Now, let ¢; be the piecewise linear basis function for node i, and approximate the solution
as u = }°7_) u;0;. The Galerkin condition for the diffusion term (ignoring the other terms for
now) gives the following for every ¢;:

/ (V- KVu)g; dody = / for dz dy
Q Q
Integrating by parts:

/ (KVu)o; - nds — /(I\'Vu) -Vao;drdy = / foidzdy
an Q Q

As in 1D, the natural boundary conditions are based on the diffusive flux (A'Vu) - 72, and
so the boundary integral can be treated as a known quantity to subtract from the right-hand side
(or can simply be assumed O for Dirichlet nodes ¢). This reduces the problem to evaluating:

—/(KVu)-V(bidxdy = —/ !\"VZujcpj -Vaoidrdy

= u; (—/Q(KV:DJ-) . V@idxdy>

i=1
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Then the diffusion contribution to the matrix is:
.4,']' = - / (I\’thj) -Vo;dr dy
Q

Since each o; is linear on each triangle, it is natural to break up this integral into integrals over
each triangle where both ¢; and @, are nonzero. Normally the full matrix is “assembled” in this
fashion, computing the submatrix of nonzero components from each triangle separately.

The problem is then reduced to evaluating
- [(EVa) - Vodzdy
A

for some triangle A over which ¢; and o j are nonzero. Note that that means ¢ and j must
be vertices of A; for the moment, assume that i # j. As mentioned above the vector —Vo N
represents the diffusive “force” propelling particles away from node j, and since Vo; is a vector
pointing in the direction of node i, the term can be interpreted as the average speed of particles
diffusing from node j towards node i. Then what the term should be is not an arithmetic mean
of speeds over the triangle, but a harmonic mean over paths from j to i in the triangle. Noting
that Vo; and V¢; are constant from linearity and assuming that A is only known at the nodes,
the approximation is:

HM(-|A(K;V9;) - Vo, —|A|(KiVa;) - Vo;)

where HM is the harmonic mean and |4 is the area of triangle A. It is possible for non-
constant A" that the K; and the K; speeds will have different signs, in which case the harmonic
mean is inappropriate and the arithmetic mean is used instead. Finally, just as the diffusion part
of the operator is zero for constant functions, the matrix should be zero for constant vectors
(or equivalently, since the PDE conserves mass, the discretization should as well). This means

A =- ZJ;‘» .4.']'.

Notice that reassuringly this scheme gives a self-adjoint matrix when A is self-adjoint, and
for A" constant it reverts to the standard, well-studied finite element approximation. For non-
constant A this discretization scheme is debatable of course, but can be viewed as a particular
first-order correct quadrature rule for the standard method's integrals, thus guaranteeing reason-
able behaviour—in any case, this is not a central issue for this thesis.
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For the convection term, define the cells with midpoints of edges and circumcentres or
nearest midpoints, as discussed before. Then integrating the convective term over a cell gives:

/—V-(bu)dxdy = -/ ub-nds
C, ac,
= - > [ ub-ids
e dC, V7

where the summation is over the segments o making up the boundary of cell C;. The usual
approximations are made:

/ -V - (bu)dzdy =~ - Z loijl(b- R)ijrouijap
C, i)
Here the summation is over nodes j connected to node i, o; j s the segment of the interface
between cells around ¢ and j,

oij| its length, (b - )1 an approximate value for b - 7 along
oij (with normal pointing from i towards j), and U;;+12 AN approximate value for u along the
gij- Asin ID, (b - #i);j,1» can be taken to be cither the average of b; - 2 and b; - n if they have
the same sign, or zero if the sign changes. Similarly, the upstream choice for u;;» is u; if
(b-7)ij 412 > 0and u; otherwise. Upstream weighting is used without exception in this thesis.

Some confusion surrounds the reaction term cu. From the pure finite element approach, the
contribution to A;; should be Jq coi0;. However, since the support of the @;'s overlap, this will
be nonzero for j # i, i.e. off the diagonal; besides spreading out the term in a somewhat non-
intuitive way, this has the undesirable effect of automatically losing the .M -matrix property and
accompanying stability guarantees. The accepted remedy is called mass-lumping, essentially
moving the off-diagonal contributions to the diagonal, which is now fQ c®;. Approximating
this with ¢; [, @; allows a nice interpretation as a finite volume method, with Jq i being the
area of the cell formed (for example) in the midpoint and centroid construction. However, the
better shaped cells used in the convection term don't necessarily have this same area; there is a
somewhat disconcerting inconsistency in this approach that demands further investigation.

5.3 Basis Construction

The only requirements for the prediction operator are that it be reasonably accurate yet sparse;
in principle, unstructured interpolation methods such as distance weighted averages of nearby
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Figure 5.4: For simple linear interpolation, a triangular mesh of just the coarse nodes is first
constructed. For each fine node, the containing triangle is found, and the fine value is predicted

from its coarse corners by the plane passing through them.
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points might be used. However, the effectiveness of linear and PDE-interpolation in 1D suggest
that a structured approach is the best route to follow.

Linear interpolation works by triangulating the set of coarse nodes and then constructing
the piecewise linear interpolant through those nodes. The predicted value at a fine node is the
appropriate linear combination of the values at the three coarse corners of the coarse triangle
containing it: see figure 5.4. One of the benefits here is that the prediction operator has guaran-
teed sparsity: at most 3 nonzeros per fine node.

PDE-interpolation requires that a small mesh be constructed joining the fine node to nearby
coarse nodes, upon which the PDE is re-discretized. This local mesh doesn’t in principle require
any global mesh triangulating the coarse nodes. However, a natural approach to constructing the
local meshes would be to begin with a global coarse mesh and, with an incremental triangulation
algorithm, insert the fine node and take the new triangles (see figure 5.5). On the other hand,
particularly with stretched meshes, such an approach might connect the fine node to too many
coarse nodes, allowing problems not only for the sparsity of the prediction operator but also for
its accuracy if those connections are inappropriate: see figure 5.6 for an example with Delaunay
retriangulation.
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Figure 5.5: Remeshing for PDE-interpolation: add the fine node to the coarse triangle mesh,
and take the newly created triangles as the local mesh on which the PDE is discretized.

1r

1
08¢ 0.8
0.6t 0.6}
04f 0.4¢
0.2 0.2t
oo 0.2 0.4 06 08 1 oo 0.2 0.4 0.6 0.8 1

Figure 5.6: Remeshing around a fine node for PDE-interpolation gone bad: before and after.
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The solution I have implemented is limited retriangulation. Begin with the three coarse
nodes of the coarse triangle containing the fine node, just as with linear interpolation. One could
then simply connect the fine node to these three and discretize on the resulting triangles, but
there are difficulties with degenerate triangles if the fine node happened to be on or very close to
an edge. (Although as mentioned before, it turns out that for Laplace's equation, this simplifies
to linear interpolation.) Instead consider using the three additional coarse nodes from the edge-
neighbouring triangles; apply the edge-swapping test of the Delaunay or coefficient-adaptive
optimization routine on each of the original coarse triangle’s edges, excepting boundary edges
of course. Then the prediction operator again has guaranteed sparsity, at most 6 nonzeros per
fine node.

Just as in 1D, Dirichlet nodes should be carried through without prediction. However, Neu-
mann boundary nodes pose somewhat of a problem. For linear prediction, some form of ex-
trapolation might be used: of course, extrapolation doesn’t really fit a homogeneous Neumann
boundary condition, where the solution should be flat in the normal direction. This wasn't a big
issue in 1D, where there are at most two Neumann nodes, but for 2D a considerable proportion
of the unknowns could be on Neumann boundaries. A slightly more reasonable choice is to
do 1D linear interpolation along the boundary curve, using the neighbouring coarse boundary
nodes.

For PDE-interpolation at Neumann boundary nodes, the only difficulty is figuring out the
local retriangulation now that the node might not be contained in any coarse triangle, and that
even if it is, it shouldn’t be treated that way since in reality it is on the boundary. The obvious
solution is to begin with the two neighbouring coarse boundary nodes and possibly the third
node of their coarse triangle if the swapping test succeeds.

Since linear interpolation can be viewed as a special case of PDE-interpolation with the
Laplacian operator and very restricted retriangulation, but might be preferable to PDE-inter-
polation for some applications, a third possibility suggests itself: do the PDE-interpolation de-
scribed above with the Laplacian instead of the actual PDE. This simplifies the code somewhat
(no convection or reaction terms need to be discretized) and gives predictions that are applicable
to many different problems. With more coarse nodes involved, hopefully the accuracy will be
improved over simple linear interpolation.
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5.4 Automatic Mesh Coarsening

The remaining problem is to select the coarse nodes at each level. This is a challenging open
issue shared with unstructured multigrid; as will be seen in the test results, the methods pre-
sented here show promise but fall short of robustness. The simplest solution that sometimes
is adopted is to expect the user to provide the hierarchy of coarse meshes—possibly the resuit
of an adaptive refinement process, where the coarse mesh is created first and nodes are added
where higher resolution is needed. Unfortunately, even if such a hierarchy exists, there may
be problems such as geometric smoothing operations changing the location of nodes in finer
meshes or inadequacies in the quality of the hierarchy for a multi-resolution basis.

A more attractive approach is automatic mesh coarsening, where just given the finest mesh,
and possibly the matrix or PDE coefficients, the computer automatically constructs the hierar-
chy. The difficulty of course is making such a method robust over irregular meshes and varied
coefficients.

One class of methods, which [ call top-down approaches, begin with the finest mesh, select
a minimal set of nodes to be coarse that still allow good prediction for the remaining nodes,
retriangulate the coarse nodes, and continue recursively. The simplest example is that proposed
for multigrid in [12], where only the graph structure of the mesh is considered. Every second
boundary node is chosen to be coarse, and then a maximal independent set is chosen from the
interior nodes via a greedy algorithm on a breadth-first search from a randomly chosen root node
(see figure 5.7 for an example). The maximality guarantees that each fine node is adjacent to at
least one coarse node, hopefully allowing good prediction. On the other hand, the independence
of the coarse nodes guarantees that there won't be too many of them, roughly a third or a quarter
of the nodes for mostly regular meshes.

Some simple but important refinements to this independent set algorithm are to make sure
that the fine nodes are contained inside the coarse boundary—otherwise the interpolation will
be technically difficult and probably inaccurate no matter what—and to allow the user to specify
a few important points, such as corners of the domain, that should be kept in all meshes. Note
that Dirichlet nodes may and should be eliminated from coarser meshes to reduce the size of
coarser meshes; they just shouldn’t be treated as fine nodes which can be predicted.

One difficuity caused by ignoring the geometry and the PDE is that stretched meshes or
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Figure 5.7: In top-down unweighted coarsening, every second boundary node along with a
maximal independent set of interior nodes form the coarse nodes. They are retriangulated, and
the process may continue recursively.
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anisotropic problems may be handled incorrectly. If there is strong coupling in one direction
the coarsening should only take place along that direction, since predicting a fine node from
weakly coupled nodes will inevitably fail. This technique is known as “semi-coarsening”, and
has proven to be invaluable for multigrid. To correct this deficiency in the independent set al-
gorithm, [ propose a simple modification: pre-process the graph of the mesh, deleting weak
couplings. Discretize the PDE on the mesh to get a matrix A, and to each directed edge i — j
of the graph, attach the weight | A;;| + |A;;|. This models the size of the PDE or adjoint inter-
polation coefficient when predicting j from i (recall that I use the same coarse node hierarchy
for the PDE and its adjoint). Then delete any directed edges i — j with magnitude less than
half the maximum of any edge to j. Now, the independent set algorithm will only mark a node
as fine if there is a neighbouring coarse node giving a large PDE or adjoint interpolation coeffi-
cient, i.e. if there is a coarse neighbour that can be used for effective prediction. To ensure this
happens at the boundary as well, any boundary nodes with a strong connection to an interior
node should be kept coarse. Note that the discretization and subsequent dropping of small en-
tries is only used for constructing the hierarchy of meshes, nor for interpolation. See figure 5.8
for an example.
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Figure 5.8: In top-down weighted coarsening, the maximal independent set of interior nodes
is chosen from a graph of the fine mesh with weak connections removed. Here the strong
connections are in bold; the second image shows the retriangulation of coarse nodes. Notice
how coarsening is done only in the direction orthogonal to the stretching: semi-coarsening.
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For problems with anisotropic coefficients, the retriangulation of the coarse nodes (in order
to generate the next level) may run into difficulties if simple Delaunay triangulation is used.
Coefficient-adaptive triangulation potentially can do a better job, as will be seen in the testing,
serving to undo the anisotropies in the coefficients via cancelling anisotropies in the mesh.

Another class of coarsening algorithms, which [ call the decremental approach, begin with
the finest mesh and select nodes one by one, deleting and retriangulating at each step. The node
picked at each step should be the one easiest to predict; after enough nodes have been deleted,
the mesh is saved as the next coarsest level, and the process continues. An example is of this
approach is given in [27]. The serial nature of these algorithms discouraged me however. If
a decremental algorithm were parallelized, say by eliminating many non-interacting nodes at
cach step, the result would probably be a somewhat obfuscated top-down approach anyhow.

A third class of coarsening algorithms I call the bottom-up approach. A potential prob-
lem with the top-down approach is that the quality of the meshes may be degraded as they get
coarser. Seemingly inconsequential details like specifying that the greedy independent set algo-
rithm should work on a breadth-first search actually can have a big effect. A kind of instability
may be apparent: mistakes made at one level (e.g. marking an essential node at some kind of
junction as fine) can be propagated down to lower levels. Another difficulty is when to stop:
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automatically identifying when the coarsest possible mesh (that will allow useful accuracy) has
been reached. A more robust alternative would be to choose the coarsest mesh first, designed
to approximate the solution of the PDE as well as possible (and presumably in this construc-
tion, there would be a way to identify how useful the mesh is). The intermediate meshes in the
hierarchy can then be filled in by adding nodes that will allow good prediction at finer levels.

One bottom-up method I have begun to investigate is to choose the coarsest nodes as a set
of p-centres in the graph of the fine mesh (possibly weighted in a way similar to that discussed
above), i.e. a set of p nodes so that the graph distance between any other node and a coarsest
node is minimized. Unfortunately this is an NP-complete problem[19], but a heuristic algorithm
might prove effective. A plausible approach is to take an initial guess (e.g. the coarsest level
from a top-down algorithm) and iteratively improve it with small, greedy adjustments. Coupling
this with a multi-level acceleration, as is done with spectacular success for the NP-complete
problem of graph partitioning[24], might prove to be ideal.

5.5 Test Problems

The following two-dimensional test problems were chosen to be representative of the actual
problems faced in several different applications. They include irregular meshes. discontinuous
coefficients, anisotropy, and convection.

The following subsections give the details of the testing; section 5.6 summarizes the results.

5.5.1 Testing Protocol
The methods listed in the tables are:

e ILUT(d): the drop-tolerance form of ILU, a popular and generally high quality pre-
conditioner for PDE problems. See [32] for details. The ordering is Reverse Cuthill-
McKee[20, 11].

e AINV(J): the standard basis inner-product AINV with drop tolerance 4, after nested
dissection ordering.
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e Mr.Lin(d): a multi-resolution basis with linear interpolation, based on unweighted coars-
ening. Outer-product AINV with drop tolerance 4 is then used, with nested dissection
ordering modified for the multi-resolution basis.

¢ Mr.Lap(d): a multi-resolution basis with Laplacian interpolation, based on unweighted
coarsening. Outer-product AINV with drop tolerance ¢ is then used, with modified nested
dissection ordering.

¢ Mr.PDE(d): PDE-interpolation with unweighted coarsening; AINV with drop tolerance
4 after modified nested dissection ordering.

* +Mr.Lin(d), +Mr.Lap(d), +Mr.PDE(&): the same as above, only with weighted coarsening
using Delaunay retriangulation.

o ++Mr.Lin(d), ++Mr.Lap(d). ++Mr.PDE(d): the same as above, with weighted coarsening
using coefficient-adaptive retriangulation.

¢ «Mr.Lin(d), *Mr.Lap(d), »Mr.PDE(): the same as above, with weighted coarsening us-
ing coefficient-adaptive retriangulation applied separately to each region with near con-
stant coefficients. then stitched up into a global triangulation.

For the multi-resolution bases, enough levels were allowed so that the coarsest level had about
100 nodes, except as noted in the problem commentary.

The drop tolerances were chosen to give roughly the same number of nonzeros in each
preconditioner on the coarsest mesh tested for a particular problem.

The symmetric definite problems were solved with CG and the preconditioned system
D-2ZT(MTAM™)ZD 2. BiCGStab with D-'WT(M;T AM;!)Z was used for the oth-
ers. Convergence was flagged when the 2-norm of the residual (with Dirichlet nodes rescaled
appropriately, as mentioned before) was decreased by a factor of 10~6 beginning from an initial
guess of all zeros; if convergence wasn't reached after 1000 iterations, the problem was marked
unsolved with an asterisk (*).

After each iteration count in the tables, the “work per unknown” is included in parentheses:
the number of iterations times the number of nonzeros in the preconditioner (prediction and
update operators included), divided by the number of unknowns. This allows a somewhat fairer
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comparison between different preconditioners and problems. However, it should be noted that
this may be somewhat misrepresentative, particularly as the matrix multiplies of approximate
inverses often can be better implemented than the triangular solves of ILU on high performance
hardware; as shown in [4] for example, even when the number of flops required by an ap-
proximate inverse is the same as ILU, the approximate inverse can still run significantly faster.
Unfortunately the code is still in the prototype stage, with some parts running interpreted in
MATLAB and others compiled in C or FORTRAN, so timing counts are not included here.

The triangulation routines for coarsening were adapted from TRIPACK[30].

5.5.2 Problem 1: Poisson equation on a uniform disc

This is Poisson’s equation on an unstructured but fairly uniform mesh of a disc (see figure 5.9.
To be precise, the PDE is:
Vou=f
where
0 : <0
-1 : =£>0

f(x.y)={

and all boundaries are homogeneous Dirichlet. The solution is plotted in figure 5.10.

For the iterations both the simple independent set coarsening and the weighted independent
set coarsening (figure 5.11) were used, stopping at around 100 nodes in the coarsest mesh. Table
5.1 gives the iteration results, with a plus sign before the bases with weighted independent set
coarsening. For this problem. PDE-interpolation and Laplacian interpolation are the same thing,
so only one is listed.

It is interesting to note that in 2D, the difference between the standard basis and the multi-
resolution basis isn’t nearly as dramatic. The basic reason for this is that the Green’s function
decays linearly in 1D but logarithmically in 2D, making a sparse approximate inverse in the
standard basis more feasible (since more entries are close to zero), while at the same time the
prediction operators become denser and less attractive. Furthermore, while in 1D the optimal
interpolation actually becomes exact giving the cyclic reduction direct method, optimal inter-
polation in 2D still falls short of exact—fine nodes are no longer independent of each other.
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Figure 5.9: Unstructured but uniform triangulation of the disc.
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Table 5.1: CG iterations for 2D problem 1 (Poisson equation) to reduce the residual norm by 1076, with
flops per unknown in parentheses: no convergence is marked by *. Each preconditioner’s drop tolerance
d is chosen to give roughly the same number of nonzeros. Note that [LUT is generally slower than the
flop count suggests. See page 81 for details.

[Method®) [n=1195 n=4939 n=20011 n = 79531
ILUT(0.009) | 13(84) 24(164) 47(327) 92 (643)
AINV(0.08) | 32(200) 63(417) 126(851) 251 (1724)
MrLin(0.12) | 23(147) 26(177) 32(222)  35(240)
MrLap0.) | 18(120) 21(149) 23(167)  26(191)
+MrLin(0.12) | 22(142)  26(176) 29(201)  37(258)
+MrLap0.1) | 19(122) 20(136)  21(145)  25(172)




Figure 5.10: Solution of 2D problem 1 (Poisson equation).
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As the problem size increases, ILUT and standard basis AINV both slow down roughly
like O(n¥?). The multi-resolution bases don't quite achieve grid-independent convergence, but
come very close. The weighted coarsening is superior to the unweighted, but for this problem
the difference isn’t terribly significant—the finest mesh and problem are basically isotropic, so
there isn’t much opportunity for semi-coarsening. Clearly the denser prediction operators in
Laplacian interpolation are more effective than extra nonzeros in the approximate inverse with
sparser linear interpolation, but both provide fast solutions.

5.5.3 Problem 2: heat equation on a uniform disc

This is just a step in an implicit solve of the heat equation on an unstructured but fairly uniform
mesh of a disc (see figure 5.9. To be precise, the PDE is:

Viu-0lu= f
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Figure 5.11: Coarsening of uniform disc (unweighted above, weighted below)
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Figure 5.12: Solution of 2D problem 2 (heat equation).
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where
0 : =<0
T,y)=
f(z.y) {—l >0

and all boundaries are Robin (steady state Neumann plus the reaction term from the time deriva-
tive). The solution is plotted in figure 5.12, and iteration results are given in table 5.2.

There are no surprises here. PDE-interpolation is slightly better than Laplacian interpola-
tion, but the PDE is so close to the Laplacian the difference isn’t remarkable.

5.54 Problem 3: heat equation on a stretched mesh

This problem is also an implicit step of solving the same heat equation with non-homogeneous
boundary conditions:
Vu - i = sign(cos(200))

where 6 is the angle from the origin and the x-axis. The mesh is exponentially stretched towards
the boundary—beginning with the same uniform mesh as before, the new distance 7 from the
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Table 5.2: CG iterations for 2D problem 2 (heat equation) to reduce the residual norm by 10~8. with
flops per unknown in parentheses: no convergence is marked by *. Each preconditioner’s drop tolerance
d is chosen to give roughly the same number of nonzeros. Note that [LUT is generally slower than the
flop count suggests. See page 81 for details.

[ Method(d) n=1195 n=4939 n=20011 n = 79531
ILUT(0.01) 22 (IS1) 41 (284) 79 (549) 154 (1069)
AINV/(0.085) 34 (375 108 (733) 218 (1462) 434 (2898)
Mr.Lin(0.12) 36 (244) 40 (279) 46 (319) 33 (373)
Mr.Lap(0.1) 28 (195) 30 (216) 34 (250) 38 (278)
Mr.PDE(0.1) 28 (194) 30 (214) 34 (246) 38 (274)
+MrLin(0.11) |33 (239) 38 (277 42 (308) 49 (339)
+Mr.Lap(0.1) 27 (183) 29 (202) 31 (216) 35 (24
+MrPDE(0.09) | 26 (180) 28 (198) 30 (212) 34 (239)

originis 1 — 257", See figures 5.13 and 5.14 for the mesh and the solution, and table 5.3 for the
iteration results.

Now the advantage of semi-coarsening begins to become apparent: see figure 5.15 for a
comparison of the coarser meshes in the hierarchies. The unweighted approach preserves the
stretching in the coarser levels, causing near degenerate triangles by the boundary. On the
other hand, the weighted approach works to undo the anisotropy, leaving considerably better
conditioned meshes from which more accurate interpolation is possible.

5.5.5 Problem 4: Laplace’s equation around a simple airfoil

The next problem is Laplace's equation V2u = 0 around a simple airfoil. There are homo-
geneous Neumann boundary conditions around each section of the airfoil, and a farfield wind
coming slightly from below is approximated by imposing the Dirichlet condition u = r + 0.3y
on the exterior boundary. See figure 5.16 for a plot of the mesh, which is highly nonuniform but
not stretched, and figure 5.17 for the solution. The mesh hierarchies were constructed with the
trailing tip of the foil specified as a key point to keep coarse. Iteration results are given in table
54.

88



Figure 5.13: Stretched mesh on disc.

89



Figure 5.14: Solution of 2D problem 3 (stretched mesh heat equation).

Table 5.3: CG iterations for 2D problem 3 (stretched mesh heat equation) to reduce the residual norm
by 108, with flops per unknown in parentheses: no convergence is marked by *. Each preconditioner’s
drop tolerance ¢ is chosen to give roughly the same number of nonzeros. Note that ILUT is generally
slower than the flop count suggests. See page 81 for details.

Method(9) n=1195 n=4939 n = 20011 n = 79531
ILUT(0.009) 22 (149) 42 (293) 73 (513) 153 (1071)
AINV(0.085) 61 (411) 125 (865) 215 (1415) 432 (2806)
Mr.Lin(0.13) 51 (339) 65 (446) 78 (532) 84 (566)
Mr.Lap(0.12) 35 (232) 36 (250) 43 (298) 46 (319)
Mr.PDE(0.11) 35 (237 34 (239) (281 4 (309)
+Mr.Lin(0.095) |29 (2000 32 (226) (276) 42 (309)
+Mr.Lap(0.075) | 21 (141) 23 (168) (178) 28 (194)
+Mr.PDE(0.075) | 21 (141) 23 (166) (174) 28 (189)

LB RS




Figure 5.15: Sample coarsening hierarchies for stretched disc mesh (unweighted method above,
weighted method below)
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Table 5.4: CG iterations for 2D problem 4 (simple airfoil) to reduce the residual norm by 10-%. with
flops per unknown in parentheses: no convergence is marked by *. Each preconditioner’s drop tolerance
d is chosen to give roughly the same number of nonzeros. Note that [LUT is generally slower than the
flop count suggests. See page 81 for details.

| Method(8) n = 6691
ILUTQ.0) | 49 (314)
AINV(0.09) | 144 (939)
MrLin0.12) | 62 (402)
MrLap(0.12) | 35 (242)
+MrLin(Q.11) | 36 (234)
+MrLap(0.11) | 30 (203)
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Figure 5.16: Mesh for 2D problem 4 (simple airfoil).

‘Q{I 5#‘:#)72\
‘ :s s 7:'% #‘VA‘\VAVAV\
JAV..2TA% 37, 0

zoom 230x zoom 340x

T RER
v, <ZN\\]
SENVNDELAN
N R DRI
PaAraVAWAR, AV
AL :("(A‘ﬁ::;'-jf": [ALfs
K




Figure 5.17: Solution of 2D problem 4.

5.5.6 Problem 5: Laplace’s equation around a multi-segment airfoil

This ime a multi-segment airfoil with stretched mesh is used, making the problem considerably
more difficult. Figure 5.18 shows the new mesh and figure 5.19 the solution. All trailing
tips were kept coarse, and to allow for the complex geometry, the coarsening was stopped at
about 200 nodes: adequately representing the geometry with fewer nodes appears too difficult.
Iteration results are given in table 5.5.

This is probably the best example of the importance of semi-coarsening. The unweighted
independent set algorithm gives such a bad hierarchy that the standard basis is better, and
the normally more accurate Laplacian interpolation is actually worse than linear interpolation.
However, the weighted independent set method gives reasonable convergence—perhaps not as
good as one might hope, but probably there is still considerable room for improvement in the
coarsening.
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Figure 5.18: Mesh for 2D problem 5 (multi-segment airfoil).
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Figure 5.19: Solution of 2D problem 5.

Table 5.5: CG iterations for 2D problem 5 (multi-segment airfoil) to reduce the residual norm by 1078,
with flops per unknown in parentheses; no convergence is marked by *. Each preconditioner’s drop
tolerance ¢ is chosen to give roughly the same number of nonzeros. Note that ILUT is generally slower
than the flop count suggests. See page 81 for details.

| Method(d) n = 8607
[LUT(0.004) 43 (229)
AINV(0.08) 170 (908)
Mr.Lin(0.2) 189 (1023)
Mr.Lap(0.4) 291 (1666)
+Mr.Lin(0.12) 54 (299)
+Mr.Lap(0.25) | 44 (247
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Figure 5.20: Mesh for problem 6 (discontinuous heat equation).
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5.5.7 Problem 6: discontinuous coefficient heat equation

We now try introducing discontinuous coefficients in the heat problem on the irregular mesh in
figure 5.20, generated with MATLAB’s PDETOOL. The PDE is:

V-RVu-103%u=f

where

. 1 : <0
Klzg) = {10-6 L r>0

and f = —1 on the left disc but O elsewhere, with Neumann boundary conditions. The sharp
comers of the mesh, apart from the tiny step in the bottom straight section, are kept coarse.

For this problem, clearly linear interpolation is doing the wrong thing, and Laplacian inter-
polation is even worse. PDE-interpolation works very nicely still. The mesh is fairly isotropic,
so semi-coarsening only helps a little.
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Figure 5.21: Solution of 2D problem 6.

Table 5.6: CG iterations for 2D problem 6 (discontinuous heat equation) to reduce the residual norm
by 10~%, with flops per unknown in parentheses: no convergence is marked by *. Each preconditioner’s
drop tolerance d is chosen to give roughly the same number of nonzeros. Note that [LUT is generally
slower than the flop count suggests. See page 81 for details.

Method(d) n = 1918 n=7420
[LUT(0.009) 25 (145) 50 (310)
AINV(0.08) 66 (404) 140 (814

Mr.Lin(0.15) 287 (1964) *
Mr.Lap(0.3) 522 (3247) *
Mr.PDE(0.11) 31 (202) 34 (225)
+Mr.Lin(0.2) 712 (4024) *
+Mr.Lap(0.4) * *
+MrPDE.11) | 27 (178) 31 (206)
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Figure 5.22: Solution of 2D problem 7 (simple anisotropy).

0.8+
0.6 4
0.4
0.24

0.8

5.5.8 Problem 7: simple anisotropy

This is a rather simple constant coefficient problem on a uniform square mesh, but the diffusion
tensor coefficient is highly anisotropic. The PDE is:

1
1000u, + u, = %sin(IOTry)

with homogeneous Neumann boundaries for y > 0.25 and the Dirichlet boundary condition
u = r for y < 0.25. See figure 5.22 for the solution.

For the multi-resolution bases, the comers of the mesh are kept coarse. As shown in fig-
ures 5.23 unweighted coarsening, the semi-coarsening with Delaunay retriangulation, and semi-
coarsening with coefficient-adaptive retriangulation are tested—this last is marked with two
plusses in front of the method in table 5.22. Note that while semi-coarsening with Delaunay re-
triangulation begins with the correct choices of coarse nodes. on the boundary the out-of-phase
placement of coarse nodes causes the Delaunay algorithm to generate inappropriate triangles.
The mistake is amplified in coarser levels, a fundamental problem with the top-down approach.

The unweighted coarsening does a terrible job, while the semi-coarsening is effective. How-
ever, coefficient-adaptive retriangulation is much more effective—it appears not just by a con-
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Table 5.7: CG iterations for 2D problem 7 (simple anisotropy) to reduce the residual norm by 10~%,
with flops per unknown in parentheses: no convergence is marked by *. Each preconditioner's drop
tolerance 4 is chosen to give roughly the same number of nonzeros. Note that ILUT is generally slower
than the flop count suggests. See page 81 for details.

| Method(d) n=900 n=3600 n=14400
ILUT@3.2-107%) | 21 (128) 38 (224) 65 (380)
AINV(0.01) 31 (167) 59 (396) 114 (828)
Mr.Lin(0.3) 488 (2623) 605 (3399) 592 (3422)
Mr.Lap(0.45) 433 (2387) 541 (3230) 525 (3243)
Mr.PDE(0.4) 314 (1695) 340 (1993) 354 (2146)
+Mr.Lin(0.01) 23 (144) 47 (366) 8l (656)

+Mr.Lap(0.55) 488 (2553) 610 (3505) 752 (4451
+Mr.PDE(0.008) 19 (118) 35 (269) 59 (460)
++Mr.Lin(0.01) 15 (79) 21 (122) 32 (195)
++Mr.Lap(0.55) 458 (2400) 770 (4408) *
++Mr.PDE(0.008) | 13 (65) 18 (100) 24 (137
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Figure 5.24: Solution of 2D problem 8 (ANISO).

stant factor, but actually improving the scalability. However, grid-independent convergence is
still not achieved. As always, PDE-interpolation is the best method (though fails with an in-
appropriate hierarchy). It is interesting to note that for semi-coarsening, linear interpolation is
better than Laplacian interpolation here: though both make the mistake of giving equal weight
to weakly coupled nodes in the y direction, the Laplacian prediction confounds the mistake by
including more weakly couples nodes.

5.5.9 Problem 8: ANISO

The ANISO problem[17] is a highly anisotropic discontinuous coefficient problem. It splits the
unit square into quarters, the south-west and north-east quarters satisfying 1000u, + u, = f
and the other two satisfying u + 1000u, = f. The right-hand side and boundary conditions
are the same as in problem 7. See figure 5.24 for the solution.

Unweighted coarsening is useless here too. However, the discontinuities confuse the edge-
swapping routine so much that coefficient-adaptive retriangulation is even worse—see figure
5.25 for an example of what goes wrong. However, adaptively retriangulating each quarter
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Figure 5.25: Coefficient-adaptive triangulation gone wrong.
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separately works well, as can be seen in table 5.8 where this method is labelled with stars.

As expected for an anisotropic problem, the Laplacian interpolation is terrible; PDE-interp-
olation is best, with linear close behind. However, even these work very poorly on the Delaunay
retriangulated coarsened hierarchy; the advantage over the standard basis is only realized with
the more sophisticated hierarchy. This underscores the over-riding important of good coarsen-
ing: it is the most sensitive and difficult part of the multi-resolution scheme.

5.5.10 Problem 9: a model reactor

The final self-adjoint problem is an indefinite problem that loosely models neutron diffusion
and reaction. There are 21 circular rods of radius 0.2 arranged neatly in a disc of radius 0.9,
with an outer shield going out to radius I. The PDE is:

V-KVu+cu=f
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Table 5.8: CG iterations for 2D problem 8 (ANISO) to reduce the residual norm by 1076, with flops
per unknown in parentheses; no convergence is marked by *. Each preconditioner's drop tolerance 4 is
chosen to give roughly the same number of nonzeros. Note that ILUT is generally slower than the flop
count suggests. See page 81 for details.

| Method(9) n=900 n=3600 n=14400
ILUTE.7-107% | 21 (110) 47 (256) 82 (429)
AINV(0.006) 39 (201 66 (459) 113 (950)

+Mr.Lin(0.15) 133 (706) 336 (2098) 410 (2158)
+Mr.Lap(0.45) 399 (2096) 415 (2381) 486 (2894)
+Mr.PDE(0.15) 126 (656) 306 (1716) 341 (1784)
*Mr.Lin(0.01) 14 (N 16 (89) 20 (118)
*Mr.Lap(0.4) 333 (1800) 382 (2217) 428 (2583)
*Mr.PDE(0.01) 13 (69) 14 (76) 17 (94)

where A = 1 and ¢ = 0.3 in the rods, A” = 0.005 and ¢ = —0.2 in the disc. and A = 10~%
and ¢ = 0 in the outer shield. The right-hand side f is —1 inside the reactor and 0 on the shield.
All boundary nodes are homogeneous Neumann. See figure 5.26 for the solution.

The multi-resolution basis convergence is disappointing. PDE-interpolation still provides
a better solution than the standard basis, but it’s still rather slow. The discontinuities and lo-
cally indefinite regions in the rods cause catastrophic difficulties for the linear and Laplacian
interpolation.

Surprisingly, the semi-coarsening is less effective than the unweighted coarsening, a further
indication that this might be the real issue in unstructured multi-resolution methods, and that
either the top-down approach needs to be made much more sophisticated or a different approach
should be adopted.

5.5.11 Problem 10: simple convection
This is a convection-diffusion equation on a 100 x 100 square grid:
0.01V?u = V- (bu) = f
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Figure 5.26: Solution of 2D problem 9 (model reactor).
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Table 5.9: CG iterations for 2D problem 9 (model reactor) to reduce the residual norm by 10~%. with
Hlops per unknown in parentheses: no convergence is marked by *. Each preconditioner’s drop tolerance
d is chosen to give roughly the same number of nonzeros. Note that ILUT is generally slower than the
flop count suggests. See page 81 for details.

| Method(d) n=4195 n=16613 n=66121 |
ILUT(0.009) 78 (546) 132 (963) 256 (1840)
AINV(0.08) 181 (1260) 355 (2473) 744 (5136)

Mr.Lin(0.15) * * *
Mr.Lap(0.3) * * *
Mr.PDE(0.11) 89 (666) 141 (1031) 132 (945)
+Mr.Lin(0.2) * * *
+Mr.Lap(0.4) * * *

+MrPDE(O.11) | 112 (860) 154 (1143) 227 (1621)
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Figure 5.27: Solutions to 2D problem 10 (simple convection)

where
b(z,y) = (e*,0)

with Dirichlet conditions at the sides of the square and Neumann conditions on the top and
bottom:

u(0,y) = sign(cos(107y))
u(l,y) = 0

uy(z,0) = uy(z,1) = 0
A slightly more difficult problem arises when b is taken to vary with y:
b= (e*(1 - (2y - 1)*),0)
Figure 5.27 shows the solutions, and table 5.10 has the results for the two problems.

The somewhat mixed results are further evidence that though PDE-interpolation works well,
coarsening needs further research for robustness; the linear and Laplacian interpolation behave
inconsistently, probably indicating some subtle troubles.



Table 5.10: Bi-CGstab iterations for 2D problem 10 (simple convection) to reduce the residual norm
by 1076, with flops per unknown in parentheses: no convergence is marked by *. Each preconditioner’s
drop tolerance 4 is chosen to give roughly the same number of nonzeros. Note that ILUT is generally
slower than the flop count suggests. See page 81 for details.

Method(d) h=e b=e(l-(2y-1))]
ILUT(0.015) 17 (154 25 (260
AINV(0.1) 75 (7Y

Mr.Lin(0.2) * 69 (584)
Mr.Lap(0.2) 91 (7400 191 (1504)

Mr.PDE(0.25) 71 (796) 31 (340)
++MrLin(0.13) |93 (1020) 31 (342)
++Mr.Lap(0.12) * 65 (627)
++MrPDE(0.12) | 17 (216) 3 (273)

5.5.12 Problem 11: circular convection

This is a rather more difficult problem, as the streamlines are not straight lines but rather closed
circles. The PDE is on the unit disc:

V- V- (bu) - 1072u=f

where
b(z.y) = (—~1000y, 1000z)
and
-1 : <40

with the natural Robin boundary conditions. This is essentially one time-step in a solid-body
rotation. The discretization is on the uniform triangulation of the disc from earlier problems,
with solution shown in figure 5.28

Like many anisotropic problems, this should be easier since it essentially consists of a set of
very weakly coupled one dimensional problems. The difficulty is that automatic methods have
to detect this; if they treat the problem incorrectly very bad things can happen. The additional
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Figure 5.28: Solution to 2D problem 11 (circular convection)
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Table 5.11: Bi-CGstab iterations for 2D problem 1 (circular convection) to reduce the residual norm
by 10~¢, with flops per unknown in parentheses: no convergence is marked by *. Each preconditioner’s
drop tolerance d is chosen to give roughly the same number of nonzeros. Note that ILUT is generally
slower than the flop count suggests. See page 81 for details.

| Method(é) n=1195 n=4939 n=19627 n= 78763
ILUT(0.01) 33 (360) 53 (604) 1Ll (1229) *
AINV(0.12) | 77 (833) 275 (2694) 755 (6532)  *

Mr.Lin(0.23) 103 (1103) 933 (9620) 255 (2150) 691 (4896)
Mr.PDE(0.32) 73 (750) 135 (1411) 297 (2970) 879 (8554)
+Mr.Lin(0.18) 69 (709) 157 (1402) 389 (3216) *
+MrPDE(0.23) | 71 (739) 177 (1774) 497 (4900) *

twist in this problem is that the one-dimensional problems are periodic, since the streamlines
are closed; this means for example that 4 is far from triangular, making life more difficult for
factored preconditioners.

The results for the multi-resolution approximate inverse are disappointing. I cut back the
number of coarse levels to a maximum of two to improve convergence. and while this is still
better than the standard basis, it loses scalability. Allowing more levels slows convergence. The
problem is that the coarsening and interpolation should happen only along the stream-lines; at
low resolutions the stream-lines are very curved so retriangulation is bound to do the wrong
thing. A convection-aware coefficient-adaptive triangulation might do the job, but [ have left
this for future work.

Table 5.11 gives the iteration results, for unweighted and weighted coarsening (with Delau-
nay retriangulation). The Laplacian interpolation basis is completely unsuited to this problem,
and thus is not included. It is clear that the coarsening is a major difficulty—counter-intuitively,
the PDE-interpolation works better with the unweighted coarsening than with the weighted
scheme.
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5.5.13 Problem 12: barrier option pricing

The final problem comes from computational finance, a two-asset barrier option pricing problem
in [29]. The PDE, in conservative form!, is:

with coefficients given by:

. 1 r’o? LYpPoGa
K (z.y) = 5 ( . 6 9
2\ ryporo2  y-os
bz.y) = -—x(r—cr'f — po102/2)
’ —y(r — 03 - po102/2)
= -3r+ af + o% + pa0a

Here 7 = —¢ is backwards time, r and y are the prices of the underlying assets, and oy, 09,
p. and r are constants describing the stochastic evolution of prices. In this example, o, = 0.4,
o2 = 0.2, r = 0.05, and p = —0.5. The payoff function (initial condition) is a basket call,
u(z,y, 7 =0) = max(é(:z + y) — 100, 0), except for this example I assume the barrier is
applied immediately before, setting u = 0 outside of a small ellipse. The boundary conditions
are Dirichlet, u - r/2asr — coand u = y/2 as y — oc.

The domain is the square {0, 200] x [0, 200], with an unstructured mesh that is refined around
the boundary of the barrier—see figure 5.29. Iteration counts for an initial fully implicit timestep
of size¢ A7 = 0.01 years (a fairly long step of about half a week) are given in table 5.12,
and for a timestep of size A7 = 0.0001 years (a more typical step of roughly 50 minutes) in
table 5.13, both with the unweighted coarsening and the weighted coarsening with Delaunay
retriangulation.

For the long timestep, there is considerable correlation between distant nodes. This makes
the multi-resolution method more effective than the standard basis, though clearly only with
PDE-interpolation—linear or Laplacian interpolation fail. For the largest problem, the superior
scaling of PDE interpolation beats even ILUT in flop count.

! Although the original equation is non-conservative, and perhaps should be treated as such, it is simpler for the
current discretization code to deal with the conservative form
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Figure 5.29: Mesh for 2D problem 12 (option pricing)
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Table 5.12: Bi-CGstab iterations for 2D problem 12 (option pricing) with long timestep to reduce the
residual norm by 10~%, with flops per unknown in parentheses: no convergence 1s marked by *. Each
preconditioner’s drop tolerance 4 is chosen to give roughly the same number of nonzeros. Note that
ILUT is generally slower than the flop count suggests. See page 81 for details.

| Method(d) n=3495 n=13905 n=55473
ILUT(0.01) I(112) 23 (47) 37 (398)
AINV(0.08) 25 (256) S5 (625) 85 (1013)
MrLin0.14) | 89 (877) 157 (1563) *
MrLap@.15) | 129 (1276) 331 (3287) =
MrPDE0.35) | 31 (314) 33 (344) 37 (390)
+MrLin(0.13) | 165 (1644) 217 (2232) =
+MrLap(0.2) | 141 (1408) 481 (3795 *
+MrPDE0.24) | 21 (210) 29 (296) 29 (296)
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Table 5.13: Bi-CGstab iterations for 2D problem 12 (option pricing) with short timestep to
reduce the residual norm by 106, with flops per unknown in parentheses: no convergence is
marked by *. Each preconditioner’s drop tolerance § is chosen to give roughly the same number
of nonzeros. Note that ILUT is generally slower than the flop count suggests. See page 81 for
details.

| Method(6) n=3495 n=13905 n=55473]
ILUT0.0002) | 5 (50) 5 (1) 5 (o)
AINV(0.003) | 5 (500 5 (93) 5 (177)
McLin(0.25) | 583 (6002) * *
MrLap(03) | 585 (5992) * *
MrPDE0.28) | 15 (145) 1S (I53) 19 (201)
+MrLin(0.28) | 557 (S606) * *
+Mr.Lap(0.33) * * *
+MrPDE0.2) | 11 (106) 13 (130) 15 (153)

However, for the short timestep the matrix is very diagonally dominant; there is little cor-
relation for the multi-resolution basis to exploit, yet fast decay in the Green's function to the
benefit of the standard basis. Even with PDE-interpolation, the basis transforms are essentially
a waste of storage that could be better spent on the approximate inverse, although the flop counts
show that the multi-resolution method is scaling better and might be more effective for larger
problems.

5.6 Summary

Every test problem was successfully solved with PDE-interpolation and appropriate coarsening
in the multi-resolution basis: no other method showed this level of robustness. Furthermore,
the multi-resolution method almost always outperformed the standard methods, at least on the
largest meshes: their greater scalability is apparent, often running an order of magnitude or
more faster. (The exceptions are the strongly diagonally dominant matrices arising from the
short timesteps in problem 12.)
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It’s true the standard methods were more competitive in 2D than in D, with [LUT somtimes
giving the best flop counts for smaller meshes. However, as mentioned before this performance
measure should be taken with a grain of salt since applying the [LUT preconditioner is often
more expensive than the approximate inverses, particularly on parallel machines. The fairer
comparison with standard AINV always came out in favour of the multi-resolution methods,
again apart from problem 12.

The downside of the multi-resolution methods is their sensitivity with respect to the auto-
matic mesh coarsening. Particularly for the anisotropic problems, appropriate semi-coarsening
with coefficient-adaptive triangulation (which often required the domain to be first partitioned
into regions of roughly constant coefficients for robustness) is crucial. However, these problems
were solved with ease once a good hierarchy was found. The only really troubling issue was
with the nontrivial convection in problem 11, which featured closed and curved streamlines.
The current automatic mesh coarsening algorithms could not find a good hierarchy, so even
though standard methods did worse, the multi-resolution results were still far from optimal.



Chapter 6

Conclusions and Future Work

['have presented a new preconditioner for elliptic PDE's, based on the idea of using second gen-
eration wavelets to compress the inverse for approximation with sparse matrices. This resolves
the inherent scalability problem of existing approximate inverses: in the standard basis, sparsity
and quality become increasingly compatible as the problem size grows. Along the way I have
pointed out where algorithms are naturally parallel. The test results show that for many fairly
difficult problems the method scales well. much better than the standard basis approximate
inverse, and even for small problems often gives significantly better convergence.

The key points brought home are:

e Wavelets are a natural choice for approximate inverses, but only when moments are nor
preserved with an update step.

e Interpolation should be chosen carefully with knowledge of the problem:; in general, PDE-
interpolation is essential for robust convergence. Methods that are higher order than the
PDE are useless.

¢ Good automatic coarsening is crucial, perhaps more important than the choice of inter-
polation. Simple approaches are bound to fail for tough problems with anisotropy or
discontinuities; finding a robust algorithm, especially for convection problems, is still an
open problem.
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Along the way, several interesting questions have been raised. I will briefly summarize them
here.

The parallels to multigrid and other methods would make a comparative study very useful.
In particular, the theoretical machinery used for analyzing the convergence of multigrid proba-
bly can be put to good use here, and similarly the new perspective of compressing the discrete
Green's function might lead to new results for other multi-resolution techniques. On a prac-
tical level, the multi-resolution components of the software are compatible with node-nested
multigrid, so code may be re-used (and the two techniques could be compared directly).

Developing an algebraic multi-resolution approximate inverse where the prediction opera-
tors are derived directly from the matrix might make for simpler and more robust code—the
issue of retriangulation in coarsening might be avoided in particular.

Adapting approximate inverse algorithms other than AINV (e.g. Chow and Saad’s MR
method) may be very useful. In particular, other approaches have more natural parallelism
in the construction phase, though perhaps not showing as good convergence rates.

The particle model that served as an intuition for harmonic weighting of the diffusion term
deserves more thought—perhaps a discretization based directly on the underlying statistical
mechanics rather than via the continuum approximation of the PDE will give a rigourous and
powerful solution to the inconsistencies and ad hoc nature of the current schemes. Coefficient
homogenization for coarsening might also fall naturally out of this research.

Coefficient-adaptive triangulation was used to great effect in a controlled setting, but the
present implementation’s instability for variable coefficients is clear, as well as the difficulties
of convection problems.

The bottom-up approach in automatic unstructured mesh coarsening needs to be considered
along with improvements to the weighted top-down approach suggested here. Theoretical work
on the best possible node placement for the coarsest mesh could cross-fertilize with adaptive
meshing research. This also leads the way to the question of what is the coarsest possible useful
representation of a given problem.

Probably the most telling weakness with the method as it stands is the restriction to scalar
problems. Most real-life problems involve systems of PDE’s, often with some variables fol-
lowing an elliptic or parabolic nature and others with a hyperbolic character (so called mixed
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systems). From an abstract viewpoint, the general scheme of the multi-resolution approximate
inverse appears to apply here, but the problem of good interpolation may be challenging, to say
nothing of coefficient dependent coarsening.

Another obvious direction is in implementing the method for higher order PDE’s or dis-
cretizations. (This arises in structural analysis, flux limiter methods for convection problems,
etc.) There doesn’t appear to be any great difficulty in doing this, but interpolation again could
pose problems, especially determining the coarse nodes used to predict a fine node.

A third and perhaps most challenging direction is the implementation for 3D problems.
Here Green's functions decay even faster (reducing the need for multi-resolution compression),
interpolation operators are necessarily denser and more expensive, and unstructured meshing
is frought with technical difficulties to name only a few problems. Although similar multi-
resolution methods can be proven to give “optimal” O(n) convergence even for 3D problems,
the constant factor obscured by the O notation is often so large that other preconditioners are
more effective for the problem sizes of interest today. It may be that though multi-resolution
bases have a role to play, they will only be useful for really big problems—e.g. perhaps coars-
ening should be stopped at hundreds of thousands of nodes. Of course, some 3D problems have
anisotropy or strong convection that essentially reduce them to sets of weakly coupled lower di-
mensional problems, albeit potentially with very complicated geometry; multi-resolution meth-
ods appear to have more potential here.

Finally, although theoretically the algorithms presented in this thesis should be able to run
effectively in parallel, this is a far cry from a working parallel implementation. The creation of
a truly scalable, parallel high performance multi-resolution approximate inverse will be a real
test of the method.
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