Flexible Monitoring of Storage I/O

by

Tim Benke

A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Mathematics in Computer Science

Waterloo, Ontario, Canada, 2009

© Tim Benke 2009
I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.
Abstract

For any computer system, monitoring its performance is vital to understanding and fixing problems and performance bottlenecks. In this work we present the architecture and implementation of a system for monitoring storage devices that serve virtual machines. In contrast to existing approaches, our system is more flexible because it employs a query language that can capture both specific and detailed information on I/O transfers. Therefore our monitoring solution provides the user with enough statistics to enable him or her to find and solve problems, but not overwhelm them with too much information. Our system monitors I/O activity in virtual machines and supports basic distributed query processing. Experiments show the performance overhead of the prototype implementation to be acceptable in many realistic settings.
Acknowledgements

I would like to thank my supervisors Professor Martin Karsten and Professor Kenneth Salem for their patience and great support. I would also like to thank Oguzhan Ozmen, Umar Farooq, Patrick Kling and Jeff Pound for having an open ear for my problems. I thank Professor Ashraf Aboulnaga and Professor Johnny W. Wong for being my thesis readers. I also want to thank the staff of the University of Waterloo for making this possible.
Dedication

This is dedicated to Maewen.
Contents

List of Tables viii

List of Figures ix

1 Introduction 1

2 Background 4

2.1 I/O Monitoring Tools . 4

2.2 Virtual Machine Monitor . 6

2.2.1 Operating System-level Virtualization 7

2.2.2 Hardware Virtualization . 8

2.2.3 Software-assisted Full Virtualization 8

2.2.4 Paravirtualization . 8

2.2.5 Hardware-assisted Full Virtualization 9

2.2.6 Hybrid Virtualization . 9

2.2.7 The Xen VMM . 10

2.2.8 Xen Blocktap . 10

2.3 Data Stream Management System 14

2.3.1 DSMS Query Languages . 15

2.3.2 DSMS Optimization/Plan Generation 15

3 System Design 17

3.1 System Organization . 17

3.2 Data Model . 20

3.2.1 Timestamps . 22

3.2.2 Request ID . 23
Table of Contents

3.2.3 Categorical Fields ... 23
3.2.4 Other Numerical Fields 23
3.3 Extending Blocktap ... 23
3.4 Extending STREAM .. 24
3.5 Monitoring Queries ... 24
 3.5.1 Query 0: Baseline Query 25
 3.5.2 Query 1: Filter Specific I/O Requests 25
 3.5.3 Query 4: Response Times 25
 3.5.4 Query 8: Filter Tuples with High Response Time 27

4 Experimental Results .. 30
 4.1 Overview of Experiments 30
 4.2 Experimental Testbed ... 30
 4.2.1 Virtual Machine Configuration 31
 4.2.2 Measurement Tools 31
 4.2.3 Experiment Methodology 31
 4.3 Experiments ... 32
 4.3.1 Experiment 1: Overhead of Tracing I/O Tuples 33
 4.3.2 Experiment 2: Impact of Query Complexity 34
 4.3.3 Experiment 3: Parallel Query Execution Scalability . 36
 4.3.4 Experiment 4: Impact of Offloading on Utilization .. 37
 4.3.5 Experiment 5: Effect of Filtering 39
 4.3.6 Experiment 6: Virtual/Physical Machine Scalability .. 40

5 Conclusions and Future Work 44
 5.1 Conclusions ... 44
 5.2 Future Work .. 44

Appendix .. 46

References .. 53
List of Tables

3.1 Record Schemata at Various Points in the Monitoring System . . . 21
3.2 Filter \texttt{STREAM} input example . 21
3.3 Query 1 Sample Input . 26
3.4 Query 1 Sample Output . 26
3.5 Query 4 Sample Input . 27
3.6 Query 4 Sample Output . 27
3.7 Query 8 Sample Input . 29
3.8 Query 8 Sample Output . 29
List of Figures

1.1 Problem Setting .. 2

2.1 IO Ring ... 11

2.2 Blocktap Modes [45] .. 13

3.1 I/O Monitoring Architecture 18

3.2 Guest Domain ... 18

3.3 Server Node Domain 0 .. 19

3.4 Server and Monitor Node 20

3.5 Query 1 ... 25

3.6 Query 4 ... 26

3.7 Query 8 ... 28

4.1 Execution of Experiments 32

4.2 Results of Experiment 1 34

4.3 Results of Experiment 2 35

4.4 Results of Experiment 3 37

4.5 Distributed Configurations 38

4.6 Results of Experiment 4 38

4.7 Configuration with Filter Query 40

4.8 Filter Query ... 40

4.9 Results of Experiment 5 41

4.10 Results of Experiment 6 42

1 Query 2: Sum of the Size of I/O Requests 46

2 Query 3: Interarrival Times 47

3 Query 5: Percentage of Sequential Requests 48
Query 6: Variance of Request Sizes .. 49
Query 7: Histogram of Starting Sectors 50
Query 9: Number of Unresolved Requests 50
Query 10: iostat for Xen .. 51
Query 10M: iostat for Xen on the monitor node 52
Chapter 1

Introduction

System monitoring enables the user to find performance bottlenecks, detect failures or anomalies, tune the system’s performance, automate resource allocation, characterize a workload, and build models of the system. The New Oxford American Dictionary [34] defines monitoring as:

1. observe[ing] and check[ing] the progress or quality [of a system] over a period of time
2. keep[ing] [a system] under systematic review

We are focussing on monitoring storage devices, such as disk drives. Computers transfer data between disks and memory using requests and responses. Requests tell the disk where data should be written to or read from. Conversely, the disk signals completion of requests with responses. This work presents a system to monitor requests and responses and measure performance statistics.

The objective of I/O monitoring is to keep track of I/O statistics for administrators or automated administrative tools. Examples of questions that administrators might ask are how high the throughput of a particular physical disk is, what the mean and maximum response time of disk requests is, how many requests are read or write requests, or how the response times are distributed.

Existing approaches for I/O monitoring can be classified as event-driven or sampling [27] monitors. The former activate exactly when an I/O-related event happens while the latter only activate periodically. Relevant events are the issuance and the completion of requests.

Similarly, Jain classifies the presentation of results in two categories: online and batch [27]. Online monitors either display the results continuously or at frequent intervals, while batch monitors amass data that another program can analyse later. Alternatively, the terms off-line or periodic are used for batch, and rolling is sometimes used to mean online.
Another classification of monitors is based on whether a user can customize what is monitored and displayed for a particular use. Some monitors offer a rigid set of statistics to the user while customizable monitors enable a user to procure a theoretically infinite number of statistics.

The approach presented in this thesis is event-driven, online, and customizable. This is in contrast to existing monitoring solutions which are often sampling-based, online and rigid. The popular UNIX tool `iostat` is an example of such a monitor while approaches that use tracing capabilities in the kernel, such as `DTrace` [17], can be classified as event-driven and online monitors. `DTrace` also offers simple filter capabilities and is thus customizable, but cannot directly aggregate results across machines. `DTrace` is compared to our approach in more detail in Section 2.1.

Another popular method is to trace events in an event-driven batch monitor to perform analysis later. Then the analysis can in principle compute any statistic on the data. For some monitoring tasks administrative tools require a real-time analysis, for instance to raise alarms or control available resources. This renders batch monitors useless for real-time monitoring.

We apply our approach to the limited problem setting of monitoring I/O to and from virtual machines hosted on physical nodes in a cluster (See Figure 1.1 for an overview).

![Figure 1.1: Problem Setting](image)

The server nodes each host several virtual machines backed by image files located on hard disks. I/O requests from and responses to the virtual machines are monitored by storing the relevant properties of the events. A filter on each server node discards monitoring data that are irrelevant to the user’s queries. The remaining data are sent over the network to a dedicated monitoring node.

On the monitoring node incoming streams of data from several nodes are aggregated and statistics for end-users are computed. The end-user issues queries to the monitor, which evaluates the queries and produces results. The monitor may
split user queries into two parts: a filter query to be executed at one or more server nodes, and a residual query to execute at the monitor node.

The advantage of this architecture is that by using distributed aggregation from several machines, we are able to centrally monitor groups of computers. The query interface presents the end-user with a flexible and easy to use access to monitored data. To implement this distributed architecture, we have had to answer several questions:

Where and how to measure request properties?

To trace I/O requests we have to use a hook in one of the software layers through which I/O requests pass. The different layers are the application layer, operating system layer, and the virtual machine layer. We are taking advantage of existing hooks in the I/O interface for virtual machines. Using a wrapper, requests are forwarded to a database on the server node.

We have chosen to trace at the virtual machine level because virtualization plays an important role in data centres as physical machines are migrated to virtual machines to save energy and cooling costs. Resources are constrained and monitoring the performance is essential, e.g., for testing new applications. Virtualization technology is widely used. The Xen virtualization machine monitor (VMM), which we are using, already includes hooks for monitoring I/O events.

What statistics to measure?

Rather than producing predefined statistics, we provide customizability by allowing clients to define statistics of interest to them. As described in Section 2.3, we use a data stream management system (DSMS) [13] to provide this customizability.

To summarize, this work contributes the following:

1. An architecture for distributed, customizable I/O monitoring, and a prototype implementation of that architecture.

2. Experimental analysis of the overhead associated with monitoring. It turns out that the overhead of flexible statistics may be high, but by calculating statistics on a separate monitor node, the performance impact on the server nodes can be minimized.

3. Experimental analysis of filtering mechanisms at the server nodes. This demonstrates that the volume of data sent to the monitor node can be reduced with little impact on the server nodes.

In Chapter 2, background material for this work is given. Chapter 3 explains the system. Chapter 4 presents the experimental methodology and results. Conclusions and future work are described in Chapter 5.
Chapter 2

Background

2.1 I/O Monitoring Tools

Tools that monitor I/O activity try to store the equivalent of the “header” of I/O requests and the times at which they are issued, worked on and completed. Which of these properties are recorded and the granularity at which they are recorded depend on the specific tool. Currently there are several disk I/O monitoring tools available for use in production systems.

`iostat` is a simple UNIX tool for basic disk I/O monitoring. In its Linux implementation `iostat` is only about 500 lines of code. It is “monitoring device loading by observing the time the devices are active in relation to their average transfer rates” according to its manual page [30]. I/O statistics, such as the time that a device is active and its transfer rates, are obtained through the kernel’s pseudo-filesystem `procfs`.

`procfs` makes information from the kernel’s internals available to user programs. Available are counters for issued read and write requests, completed requests, and small requests merged into large requests. Other counters keep track of time spent on reading, writing, and performing I/O requests as well as the number of currently outstanding requests. The values are updated when an I/O event occurs or a program reads the pseudo-file containing the counters. All of these counters are available per physical disk and some of the request counters are also available for individual partitions.

`iostat` and other simple monitoring tools that compute statistics based on these counters have an insignificant performance impact because of their limited power. `procfs` and `iostat` do not provide information on individual requests, such as their location on disk or size. Furthermore, it is not possible to obtain statistics, such as variances or quantities other than averages.

Generally, the arithmetic mean may often not suffice as a statistic. As an example consider a workload consisting of 50% very small write requests and 50% very large write requests. If the throughput of this workload were low it would not
be visible in the arithmetic mean of the requests sizes. In this case it would be useful to look at a histogram of the request sizes to see this imbalance.

Many other tools offer the same limited I/O statistics and some have a more accessible or usable presentation of these statistics. collecti [21] is one of them. It shows all of iostat’s statistics and uses the same information available in procfs. Aside from a command-line interface it can directly convert measured data to a diagram or csv-file.

If tools do not get information from procfs, they usually instrument the kernel themselves. Some tools like fs_usage that is available for Mac OS X can trace filesystem related system calls and page faults for specific processes [31]. A more general version called sc_usage traces all system calls [32]. For Linux, strace does the same job. These tracing instruments record which system call was executed with what parameters, but not how the kernel fulfills the actual I/O request. Moreover, the data generated this way may become overwhelming very quickly and a significant performance penalty may be incurred as the data are collected. Moreover strace only works on a per-process basis.

A more powerful and flexible tool is SUN’s DTrace [17]. DTrace instruments the kernel and user programs with so-called probes. In contrast to strace, it can monitor individual processes or the kernel or a whole system. It provides the user with a query interface to specify what DTrace should do when a probe is activated. It can compute or print expressions based on the values collected by the probe when it is activated. It features a C-like programming language with awk-like predicates and it has the following built-in aggregation functions: sum, count, maximum, average, minimum and histograms.

DTrace scripts are compiled in user-space and transferred to the DTrace virtual machine in the kernel. Probes belong to a so-called provider that registers with the DTrace virtual machine. Examples of providers are io for I/O-related probes or syscall for system calls. A more fine-grained monitoring is available with the function boundary testing (fbt) provider; it offers probes for the entry and exit of every kernel function.

To monitor hard disk I/O, the io provider has access to most of the relevant information available. DTrace can relate an I/O request to the corresponding file, process, and device. For each request its file name, path, and offset are available. The process id and the process’s file and path can be procured as well as the major and minor number of the used device. More detailed information like the request’s start and completion time, if it is a read or write request and if it is synchronous or not, are available, too.

DTrace offers support for simple filtering. It is available for Solaris, Mac OS X and FreeBSD. An analogous project called SystemTap is under development for Linux, but not yet in a stable state.

DTrace is not trying to address all of the same issues as our approach is. It is a low-level source for monitoring data similar to our approach that logs information
from the I/O to and from virtual machines. In addition to that it is able to trace many more different types of events and to perform some filtering on the collected data. It runs in a virtual machine in the kernel and while our source of information is the VMM, most filtering and processing is performed on the user-level. In addition to DTrace’s capabilities, our approach can provide distributed aggregation of I/O traces from several machines and can also perform potentially more complicated processing without any concerns of decreasing the operating system performance. Within our architecture it would be possible to use DTrace as an alternative means of collecting I/O event information from individual server nodes.

VMware has developed a similar service for monitoring virtual machines called VProbes [42]. It is part of the current versions of VMware Workstation and VMware Fusion. Expressions and functions are written in a Lisp-like language, but more constrained than DTrace. It can record start and finish times of I/O requests as well as the operation performed and their size and location on the virtual disk.

VProbes shares the essentially same source into I/O transfers as our approach but not the same privilege level of filtering and processing. The database we are using runs on the user-level as opposed to VProbes and DTrace that run in the VMM and the operating system kernel. Moreover expressions in VProbes are even more limited than in DTrace because of technical limitations of the VMM.

2.2 Virtual Machine Monitor

Virtualization is the abstraction of an operating system from its underlying physical hardware. A familiar analogy is how operating systems offer abstraction from the hardware. Without this abstraction each process would have to directly communicate with the hardware and only one process could run at a time. An operating system allows processes to share the underlying hardware. In addition, it abstracts from the given hardware and offers a more general interface to the devices. For example, each different model of a network interface card uses different chips and circuits but a driver in the operating system offers one general interface to the operating system that is used to present an even simpler socket interface to the user. Multiplexing and time-sharing of the hardware are other abilities of the operating system. The scheduler allocates a share of the processor’s time to each process, so more than one process can be run on one processor concurrently. When several processes want to use the same network interface card and send packets over the network, the operating system multiplexes the packets and allocates each process a share of the network interface card’s bandwidth.

Similarly, adding virtualization between the hardware and the operating system allows one to simultaneously run more than one operating system on the virtualized resources. A virtual machine monitor (VMM), or hypervisor, is the component that implements this abstraction layer. Some of the reasons for virtualization are the same as for operating systems, e.g., higher utilization of CPU and devices. In
addition, VMMs offer improved performance isolation, and the ability to migrate virtual machines between VMMs on different machines, which results in higher availability and security. By using so-called virtual appliances – simple virtual machines serving a single purpose – failures of user software and operating systems can be isolated in a virtual machine and do not affect other services on the same physical machine [14]. By replacing several under-utilized physical machines with virtual machines managed by a VMM, maintenance costs and power consumption can be reduced. This is important because according to the US Environmental Protection Agency the power consumption of data centres is increasing rapidly [10].

There are several VMMs available. Microsoft [3], Parallels [5], VMware [11], XenSource [14], Sun [7], IBM [8], and many others have developed virtualization solutions. Notable open-source VMMs are Bochs [1], KVM [39], OpenVZ [4], QEMU [15], User Mode Linux [22] and Xen [14]. We focus on the VMM Xen, because it is open-source and it provides software device drivers, which have direct access to the I/O events. First we give an overview of different approaches to virtualization, and then we focus on Xen and how it handles disk I/O in particular.

2.2.1 Operating System-level Virtualization

Instead of virtualizing a whole machine, the operating system kernel usually stays the same but different isolated user-spaces are made available. Each user-space instance – sometimes called container – appears as an independent machine to the user. In contrast to this, the OS-level virtualization solution Solaris Zones [38] offers the ability to host different Solaris kernels and Linux distributions.

Because it is less flexible, this solution only results in a small performance impact. For Linux, OpenVZ provides Operating System-level virtualization. OpenVZ is the basis for Parallels commercial product Virtuozzo. Another example of OS-level virtualization is FreeBSD Jails [28]. Both approaches share the property that the original operating system’s kernel is serving multiple containers. Therefore this approach is limited to running only one type of operating system. The different containers can be limited in their access to the hosting operating system. Additionally some approaches allow the administrator to schedule the resources among the containers.

Because of the tight coupling between virtual machines and the hosting operating system, these approaches can often offer high performance. One of the disadvantages at least of OpenVZ’s solution is that it offers less performance isolation between the different operating system instances in comparison to software-assisted full virtualization and paravirtualization approaches [33].
2.2.2 Hardware Virtualization

Before the x86 architecture became successful IBM had already produced virtualization solutions. This had been done on special versions of the S/360 and S/370 architecture [20]. Unfortunately the x86 architecture is not easily virtualizable. Popek and Goldberg [37] have put forward universal requirements for what is needed to virtualize any processor architecture. One of the requirements is that any instruction that changes the configuration of the machine should be executed in privileged mode, or trap if it is not. Unfortunately the x86 architecture has 17 instructions that do not fulfill this requirement [20]. Several different virtualization approaches try to solve this problem in different ways. The solutions include software-assisted full virtualization, hardware-assisted full virtualization, and paravirtualization. They are described in the following subsections.

2.2.3 Software-assisted Full Virtualization

This technique is also called binary translation or binary rewriting [20]. The sequence of instructions until the next jump instruction is scanned for any of the unsafe instructions in the x86 instruction set. Each such instruction is marked and emulated when it is reached. After each jump the next sequence of instructions is scanned and marked if necessary [20].

This scanning and replacement of instructions often makes this approach slower than other approaches. An advantage of binary rewriting is that the VMM can run unmodified guest operating systems.

2.2.4 Paravirtualization

The term paravirtualization has been used first in connection with the operating system Denali [46]. Denali and later Xen [14] use this technique to support virtualization even on the x86 architecture. Unlike Denali, which only hosts single-user single application operating systems, Xen hosts a general-purpose multi-user operating system [14].

For paravirtualization, parts of the operating system have to be ported for the specific VMM. One example is very simple generic drivers that replace device drivers for specific hardware models. This absolves the VMM from offering complicated implementation or emulation of these device drivers. Because the paravirtualized operating systems are aware that they are running in a virtual machine, they can be specifically optimized for virtualization. The clock, for example, can be handled better, because the kernel can be modified to not continually expect timer interrupts. This is useful if a virtual machine has to keep track of time even if it is not always running. In comparison to software-assisted and hardware-assisted full virtualization, the performance of devices can be much better because those
approaches have to emulate devices. In this work we are exclusively using paravirtualized guest domains.

2.2.5 Hardware-assisted Full Virtualization

Software-assisted full virtualization and paravirtualization solutions have increased the interest in x86 virtualization. Thus, AMD and Intel have recently begun to add virtualization extensions and corrections to x86 processors. Some of the aforementioned virtualization software projects can take advantage of some of these new processor extensions although their original approach was purely software-assisted or paravirtual.

With support from these processor extensions, it is possible to support full virtualization without modifying the operating system or using binary rewriting. There are many performance advantages of this approach, but one disadvantage in comparison to paravirtualized machines is the more complicated emulation of virtual device drivers.

The drivers in a virtualization-unaware operating system have been written for a specific hardware. Thus this hardware has to be emulated by the VMM. To accomplish this emulation, any communication from the actual driver that interacts with the hardware has to be first translated to an intermediate simple interface and then back to the specific interface the driver in the guest domain expects. Therefore hardware-assisted solutions can sometimes not achieve the same I/O throughput as paravirtualized guest domains. Xen can switch from these emulated drivers to drivers that behave like paravirtual drivers after boot up [20].

An advantage of the new processor extensions is that they offer an additional higher processor priority level or so-called ring that can be used by a VMM to run in. An unvirtualized operating system runs in ring 0, which allows it to execute privileged instructions. When using paravirtualization the VMM has to be able to perform the privileged instructions and the operating system has to run in a lower priority ring. When a virtualized operating system has to perform an action that requires a privileged instruction, it has to perform a so-called “hypercall” [20] to the hypervisor. With the newer processor extensions an additional processor priority level is introduced. This lets the hypervisor run at the new priority level and the unmodified guest operating systems can continue running in its original ring. The VMM can specify which privileged instructions should be trapped to the VMM. This absolves the VMM from providing the infrastructure to perform hypercalls.

2.2.6 Hybrid Virtualization

The combination of paravirtualization and hardware-assisted virtualization is called hybrid virtualization [36]. Besides hardware-assisted full virtualization, the guest OS uses simple virtual block and network devices and makes use of the knowledge that it runs in a virtual machine, e.g., when dealing with timer interrupts [36].
2.2.7 The Xen VMM

Xen originated from a research project at the University of Cambridge. Because it uses paravirtualization and leverages device support from the Linux kernel, Xen can offer high performance and support for many devices. Currently Xen supports many Unix-like operating systems as a privileged so-called Domain 0. Domain 0 hosts device drivers for the actual hardware and user-space daemons to manage the virtual machines. With general availability of virtualization-aware processors, support for hardware-assisted full virtualization has been added to Xen [24].

In the context of I/O, Xen offers several mechanisms to access block devices in a virtual machine. Virtual storage devices can be implemented using physical disk partitions or using files stored on the physical disk in Domain 0. File images can be accessed using a so-called loop device or using an approach called Blocktap. The loop device can be used to mount a file as a filesystem. Any access to this loop device is then propagated to the filesystem containing the file.

2.2.8 Xen Blocktap

Blocktap is part of the current version of Xen as one of its user-level applications (called “tools”). It allows for the implementation of a software layer between Domain 0’s Linux I/O subsystem and the guest domain’s I/O subsystem, i.e., a kernel-level or user-level I/O interface [44].

Blocktap uses three mechanisms provided by Xen: Grant Tables, event channels and XenStore. Grant Tables are used to share memory between domains. Event channels are used for asynchronous communication. XenStore saves configuration state and can signal events.

Grant Tables support two operations at 4K-page granularity: mapping and transferring. They are called tables because domains can write entries describing the memory they want to share into the their Grant Table. When a page frame is mapped or transferred from one domain to another it is available in the receiving domain’s address space. The difference between mapping and transferring is that when mapping a page it remains in both domains’ address spaces, while a transferred page is only available in the receiving domain’s address space. Xen transfers pages to support dynamic memory resizing.

Blocktap uses Grant Tables to share memory between guest domains and paravirtualized devices in their respective driver domain. The default driver domain is Domain 0. The data structure used to coordinate any transfer of data between the drivers and the guest domains is an I/O ring (See Figure 2.1). Grant Tables are used to map the pages – between the driver domain and the guest domain – on which I/O rings are stored.

I/O rings have five components: the buffer itself and start- and end-pointers for both the producer and consumer. The pointers are advanced when a request/response is enqueued or completed. When the producer’s start-pointer reaches
the consumer’s end-pointer the ring is full. The pointers correspond to pages that are transferred between the domains using Grant Tables. I/O block devices use this version of I/O rings, but some device drivers use two less complicated I/O rings; one ring solely for requests and one ring solely for responses. For some devices like e.g., graphics cards, this is necessary because there is no 1:1 relation between requests and responses.

Event channels are similar to Unix signals and are used for notifications from the hypervisor to guests or between guests. The main use of events for Blocktap is as a “paravirtual interrupt request” to signal that data for paravirtual devices is available.

The XenStore offers storage that is shared among all guests. It has a structure similar to a filesystem, but it is not intended to store large amounts of data. Rather it is intended to be used to transfer small amounts of information between domains. Instead of files, Xen stores key-value pairs similar to Windows’ registry. Blocktap uses the XenStore to store its configuration information and communicate it to guests in other domains. Using Xenstore it is also possible to implement hotplugging devices for Linux by monitoring XenStore, which communicates with the Linux device enumeration mechanisms. XenStore is used for communication between domains by using watch points on subtrees in the filesystem-like hierarchy.

XenBus is built on top of XenStore and offers a way to list available devices to an unprivileged domain. Aside from a XenStore entry a XenBus device also uses shared memory page for the ring buffers and an event channel to signal activity in the ring asynchronously.

Blocktap is built on top of Xen’s split device drivers \[45, 23]\. The split device driver model aims at providing safe isolation of the guest from the hardware and from faulty drivers. The original driver is split into a back-end driver that accesses the hardware and a front-end driver in the guest connected using a very simple interface. Therefore, the front-end driver is also simple and an existing driver can be used in a special minimal driver domain as the back-end driver.
All of these data structures are used in the same way in Blocktap as in the split device driver: data structures containing metadata about requests are enqueued in the ring buffer and issued and responses are written to the same buffer. Data is transferred out-of-band using grant references, which makes fast DMA transfers possible [20]. Note that because of limited space in the I/O ring, the maximum request size is 44 KB [20].

Blocktap’s addition to the split device driver model is an interface to so-called soft devices, kernel-level or user-level software that can be used to monitor and filter I/O to existing device drivers or to fully implement device drivers. These different uses are reflected in three different modes offered by Blocktap, which have different performance penalties (See Figure 2.2).

1. **MODE_PASSTHROUGH**:
 In this mode requests are passed straight to the I/O subsystem in Domain 0.

2. **MODE_INTERPOSE**:
 Here, requests are passed to an application in userspace that reads them from “shared memory rings, exported over a character device that may be mapped into application memory” [43]. This way requests can be modified in-flight. Requests are passed back to a back-end ring in the kernel and are served.

3. **MODE_INTERCEPT_FE**:
 In this mode, the back-end ring is disabled, and the application has control on the messages and may use common system calls to perform I/O requests.

MODE_INTERPOSE is the mode used exclusively in this work. Requests are entirely handled in the user-level portion of Blocktap in our implementation and it is thus on the critical path between the front-end and the back-end driver.

Warfield et al. [45] evaluated the performance of Blocktap by copying 4GB of sequential data to and from disk. The results show that Blocktap’s modes **MODE_INTERPOSE** and **MODE_PASSTHROUGH** write throughput is about 85% of native write throughput. No difference was measured when comparing results in the two modes with native read throughput. In comparison to a system without Blocktap **MODE_PASSTHROUGH** causes almost no change in per-request latency, while **MODE_INTERPOSE** doubles the latency, but still does not exceed one millisecond.

Warfield notes that for performance reasons the Blocktap soft device might be executed in the back-end driver domain [43]. Installing it in a separate driver domain causes some overhead because of an additional VM switch but increases isolation and flexibility because any OS can be used to implement the device driver. By default Xen 3.1 runs device drivers and Blocktap in Domain 0.

Blocktap offers support for many virtual image file formats and for both asynchronous or synchronous modes. In this thesis, the asynchronous driver for raw images is used because it offers the best performance.
Examples of Forwarding Modes in the Block Tap

Example A: \texttt{MODE_PASSTHROUGH}

Example B: \texttt{MODE_INTERPOSE}

Example C: \texttt{MODE_INTERCEPT_FE}

Figure 2.2: Blocktap Modes \cite{45}
Aside from the split device driver model, Blocktap has the following components in Domain 0 for devices:

character devices are used to communicate the issuance and completion of requests.

tapdisk is a user-level process, also called a tapdisk driver, that works with at least one image file.

blktapctrl is a user-level daemon that controls the start and termination of tapdisk processes.

named pipes are used for communication between the tapdisk processes and the blktapctrl daemon for driver configuration and startup synchronization.

Meyer et al. [35] have redesigned Blocktap to use small reusable processing blocks to facilitate the development of soft devices. Instead of forcing the user to build his or her own user-level software device driver, they provide a set of reusable processing blocks that can be specified in a declarative language. This approach is also able to provide simple I/O request filtering, but no specific details of the power of this language are given.

2.3 Data Stream Management System

Data stream management systems (DSMS) are a specialized type of database for dealing with streams of data. The problem of monitoring large amounts of data is well known. Monitoring financial data, e.g. stock market tickers, or detecting intrusions in a network system by monitoring all incoming network packets are popular applications of DSMSs [13]. A data stream is a “real-time, continuous, ordered (implicitly by arrival time or explicitly by timestamp) sequence of items” [25]. Typically the size of the incoming data items is small, but the high arrival rate of incoming items poses a challenging problem. Some of the requirements for a DSMS are listed by Golab et al. [25]: query semantics must allow time- and order-based operations, and no blocking operators that have to consume the whole input may be used. A side-effect of dynamic changes is that the database may encounter changes in the stream’s characteristics, e.g., its rate or burstiness.

Several projects have implemented DSMS prototypes. The most complete projects available for academic purposes are STREAM [26] and Borealis [9]. Some technology from the predecessor of Borealis, called Aurora, is used in a commercial product and is advertised as a monitoring solution for networks and financial stream data [40]. It is also used in surveillance and military operations. Another university project called PIPES follows a different idea [16]. Instead of offering a monolithic DSMS, it implements only a programming library that has to be customized for a particular use case. There are many other smaller projects: TelegraphCQ [18],
which uses a query language similar to that of PostgreSQL, the commercial kdb+ database \cite{20}, and others. Further research has been done in StatStream \cite{48} on the computation of statistics and could potentially be useful for efficient computation of statistic properties of single streams and pairs of streams. In particular, correlations can be computed very efficiently in StatStream using Fourier transformations \cite{48}.

2.3.1 DSMS Query Languages

Most DSMSs support a query language that is a subset of SQL and extend SQL with windows. One notable exception is Borealis, which lets a user essentially specify the exact physical operator plan. This way, query plan generation becomes much easier and no higher-level language has to be defined.

We are using the DSMS STREAM (STanford sTReam dAta Manager), that supports queries expressed in CQL (Continuous Query Language) \cite{12}. CQL supports some basic commands from SQL and introduces a notion of streams in addition to static relations. STREAM \cite{26} was developed at Stanford University. The project was officially wound down in 2006.

DSMSs usually keep stream data in memory to improve performance. However, DSMS are more than in-memory database management systems. Because the amount of incoming data is unlimited, the data somehow have to be limited to fit in memory \cite{25}. This is usually achieved by using summaries of data – called synopses – and by only considering sets of recent tuples. These sets are called windows and are usually defined by a tuple count limit or by a time interval. Additionally, some DSMSs allow the user to specify when an update of an observed window is produced. Windows in DSMSs are often specified as sliding windows. Here, all tuples in a recent time interval are included in the window on the stream. For example a window of 30 seconds includes all tuples that arrived in the last 30 seconds. Similarly one can define a window over the last 30 requests.

Tumbling windows are different in that they never overlap with previous windows. In a 30 second tumbling window, after 30 seconds one window is reported and after 60 seconds the second window is reported. Every 30 seconds a new non-overlapping window is reported.

2.3.2 DSMS Optimization/Plan Generation

All DSMSs have the problem in common that the optimization process should be dynamic, to account for fluctuating incoming streams. In a conventional relational DBMS, the number of tuples in relations involved in a query might be measured, indexed, sampled, or estimated before executing the query, while this is impossible for a stream. Input rates might be measured and estimated but only after the query has begun execution. Therefore, a query plan should be dynamic and able to react to increasing or decreasing input rates.
STREAM does optimizations to reduce the memory consumption when processing streams [13] but does not perform dynamic optimization of query plans. For Borealis [11] dynamic query plan optimization can be performed using a plain load-balancing scheme or a scheme that is based on the correlation between streams [17]. These schemes aim to evenly balance the load on all machines in contrast to our goal of reducing the load on the server nodes.

Cheung and Madden [19] have done work in the area of DSMS, that addresses problems similar to the ones we tackle in our work. They monitor the execution of user applications by activating certain probes in an application’s code. This is very similar to DTrace’s and VProbes’ aquisitional framework. The information gathered from these probes includes function invocations, variable values and memory usage. Any such information is forwarded to a DSMS that performs query processing, in much the same way as we use STREAM to process queries over I/O event records. For distributing the processing on several servers they have devised optimizations to reduce the load on the server nodes. Part of the processing of the DSMS is executed on the server nodes and some is performed on other nodes. They have considered the trade-off between CPU utilization on the server node and the network’s bandwidth.

In general it is more favourable to keep the CPU utilization on the server node as low as possible so as to not interfere with applications that are being monitored, but when network bandwidth is scarce it might be better to perform more filtering. We use the same rationale for optimizations in our approach.

The main differences between this work and the approach by Cheung and Madden, called EndoScope [19], is the different application domain, which also results in a very different optimization goal. EndoScope instruments an application with probes and thus the focus of optimization is to determine the probes that incur the least performance impact. In our work only one continuous data source at one fixed location is considered.
Chapter 3
System Design

3.1 System Organization

In this thesis we present a system for monitoring storage I/O activity in virtual machines. The monitored statistics can be customized using a flexible query language. The data stream management system STREAM processes the logged data on I/O requests by executing the user’s queries. The DSMS is distributed on the server nodes that host the virtual machines and a central monitoring node.

Figure 3.1 illustrates our architecture. We monitor the storage I/O to and from virtual machines hosted on server nodes. Each of these server nodes hosts several virtual machines that are backed by image files on local hard disks. In each of the server nodes an instance of a DSMS is running in Domain 0. Another DSMS is running on a central monitoring node that is receiving packets over the network from the DSMS instances on the server nodes. We call a DSMS instance on a server node a “filter” DSMS, because this instance mainly filters selected tuples from the monitored data. Conversely, the DSMS receiving tuples on the monitoring node is called the “monitor” DSMS. It performs any remaining processing on the tuples.

Inside the server nodes, the filter instances receive the data about I/O requests from an extension to the normal mechanism that virtualizes disk I/O in Xen. On top of serving the I/O requests, it logs the properties of requests to a Unix domain socket, which is read by the filter DSMS.

In order to explain the different components of our system, we look at what events occur in the virtual machines, the server’s Domain 0, and the monitoring node. The active components of our system in the virtual machine – or user domain as opposed to Domain 0 – are described in Figure 3.2. The terms user domain and Domain 0 are abbreviated to DomU and Dom0. Any workload that performs I/O operations in the virtual machines can access several underlying virtual disks. In the example there is a virtual root partition /dev/sda1 and a virtual swap partition. In the virtual machine’s Linux kernel all of the requests are sent to a frontend driver (Xen blkfront) and are ultimately performed by a backend (Xen Blocktap) in Domain 0. The interface in Domain 0’s kernel is called blktap.
Figure 3.1: I/O Monitoring Architecture

Figure 3.2: Guest Domain
Figure 3.3 illustrates the components in Domain 0. The I/O requests and responses are received in the kernel by the backend driver Blocktap and are forwarded to a user process that performs the I/O using Linux’s asynchronous I/O (AIO) framework – this is one of the so-called Blocktap drivers. As blktap is running in MODE_INTERPOSE the user process tapdisk has to serve the requests itself instead of letting blktap serve them. When requests arrive from the backend driver, they are immediately logged to a Unix domain socket and responses are logged when they arrive from the AIO framework.

In the filter DSMS, an input operator reads the tuples from the socket and processes them. The results are sent over a UDP channel to the monitor DSMS on the monitoring node (See Figure 3.4). After aggregation and additional processing in the monitor DSMS, the query results are delivered to the user.

When the user issues a query, it is first analyzed by the optimizer, which splits the query into a filter query and a residual monitor query that are executed by the two DSMS instances. For the purposes of this work, queries are optimized (split into filter and residual parts) manually. Xing et al. [47] present an optimizer that automatically and dynamically transfers operators between nodes. However the design and implementation of such an optimizer is out of the scope of this thesis.
3.2 Data Model

Users can issue queries to the optimizer that use all of the fields mentioned in Table 3.1 (See Table 3.2 for an example of actual data). Each of the different components – tapdisk, the filter STREAM instance and the monitor STREAM instance – adds more information to each monitored request. The column “STREAM name” in Table 3.1 shows the abbreviated name of the field as it is used in queries. The “Type” column specifies the type and possible range of values if applicable. The datatypes used in the data model are 32-bit signed integers (for numbers) and null-terminated fixed-size character arrays (for strings).

Each component has access to information collected in previous components and adds fields to the incoming tuples. The last three columns specify in which component the fields are available. The column labelled “tapdisk” indicates that the fields are available in tuples generated by tapdisk. The “Filter DSMS” column lists the fields available in tuples produced by the Filter DSMS instance and the “Monitor DSMS” column lists fields available in the Monitor DSMS. Users can formulate queries with all the fields. An optimizer should then split the query into a portion that can be performed by the Filter DSMS and a portion that is performed by the Monitor DSMS.

The example data shown in Table 3.2 contains requests denoted with a ‘Q’ in the Type column and responses denoted with an ‘R’. From the example one can see that the request ID and the timestamps increase. The request ID associates responses with the corresponding requests. In the input operator of the monitor STREAM another timestamp (Monitor DSMS Timestamp) and the IP address of the server node (Source Node IP) are added.

Figure 3.4: Server and Monitor Node
<table>
<thead>
<tr>
<th>Field</th>
<th>STREAM name</th>
<th>Type</th>
<th>tap-disk</th>
<th>Filter DSMS</th>
<th>Monitor DSMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blocktap Timestamp</td>
<td>BlktapTS</td>
<td>32-bit int</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Record Type</td>
<td>Type</td>
<td>char[2]:</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Read/Write</td>
<td>IOOp</td>
<td>char[2]:</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Request ID</td>
<td>ReqId</td>
<td>32-bit int</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Sector on Virtual Disk</td>
<td>Sector</td>
<td>32-bit int</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Number of Sectors</td>
<td>Size</td>
<td>32-bit int</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Virtual Machine Name</td>
<td>VMName</td>
<td>char[15]</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Virtual Disk Device</td>
<td>VDisk</td>
<td>char[10]</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Physical Disk Device</td>
<td>PDisk</td>
<td>char[10]</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Filter DSMS Timestamp</td>
<td>FtrTS</td>
<td>32-bit int</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Monitor DSMS Timestamp</td>
<td>MtrTS</td>
<td>32-bit int</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Source Node IP</td>
<td>IP</td>
<td>32-bit int</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Table 3.1: Record Schemata at Various Points in the Monitoring System

<table>
<thead>
<tr>
<th>BlktapTS</th>
<th>Type</th>
<th>IOOp</th>
<th>ReqId</th>
<th>Sector</th>
<th>Size</th>
<th>VMName</th>
<th>VDisk</th>
<th>PDisk</th>
<th>FtrTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>21295029</td>
<td>Q</td>
<td>w</td>
<td>788</td>
<td>6512</td>
<td>8</td>
<td>muscatvm51</td>
<td>/dev/sda1</td>
<td>/dev/sda3</td>
<td>305890</td>
</tr>
<tr>
<td>21301076</td>
<td>R</td>
<td>w</td>
<td>788</td>
<td>6512</td>
<td>8</td>
<td>muscatvm51</td>
<td>/dev/sda1</td>
<td>/dev/sda3</td>
<td>4033818</td>
</tr>
<tr>
<td>21301263</td>
<td>Q</td>
<td>w</td>
<td>789</td>
<td>6520</td>
<td>8</td>
<td>muscatvm51</td>
<td>/dev/sda1</td>
<td>/dev/sda3</td>
<td>303842</td>
</tr>
<tr>
<td>21301272</td>
<td>Q</td>
<td>w</td>
<td>790</td>
<td>6608</td>
<td>8</td>
<td>muscatvm51</td>
<td>/dev/sda1</td>
<td>/dev/sda3</td>
<td>303847</td>
</tr>
<tr>
<td>21301278</td>
<td>Q</td>
<td>w</td>
<td>791</td>
<td>6696</td>
<td>16</td>
<td>muscatvm51</td>
<td>/dev/sda1</td>
<td>/dev/sda3</td>
<td>303852</td>
</tr>
<tr>
<td>21308471</td>
<td>R</td>
<td>w</td>
<td>789</td>
<td>6520</td>
<td>8</td>
<td>muscatvm51</td>
<td>/dev/sda1</td>
<td>/dev/sda3</td>
<td>3041796</td>
</tr>
<tr>
<td>21309371</td>
<td>R</td>
<td>w</td>
<td>790</td>
<td>6608</td>
<td>8</td>
<td>muscatvm51</td>
<td>/dev/sda1</td>
<td>/dev/sda3</td>
<td>3041804</td>
</tr>
<tr>
<td>21309378</td>
<td>R</td>
<td>w</td>
<td>791</td>
<td>6696</td>
<td>16</td>
<td>muscatvm51</td>
<td>/dev/sda1</td>
<td>/dev/sda3</td>
<td>3041809</td>
</tr>
<tr>
<td>21309438</td>
<td>Q</td>
<td>w</td>
<td>792</td>
<td>6712</td>
<td>8</td>
<td>muscatvm51</td>
<td>/dev/sda1</td>
<td>/dev/sda3</td>
<td>3041814</td>
</tr>
<tr>
<td>21315419</td>
<td>R</td>
<td>w</td>
<td>792</td>
<td>6712</td>
<td>8</td>
<td>muscatvm51</td>
<td>/dev/sda1</td>
<td>/dev/sda3</td>
<td>3045853</td>
</tr>
</tbody>
</table>

Table 3.2: Filter STREAM input example
3.2.1 Timestamps

Timestamps are collected at three logical components of the system:

1. At the tapdisk process, when the request is first queued and when it has been completed (BlktapTS).
2. In the input operator of the Filter STREAM instance on the server node (FtrTS).
3. In the input operator of the Monitor STREAM instance on the monitor node (MtrTS).

The BlktapTS records the times when a request is actually queued and completed. For technical reasons two other timestamps have to be recorded for STREAM.

STREAM internally uses timestamps, e.g., to calculate when a tuple is not contained in a time-based window anymore. STREAM requires tuples to arrive in non-decreasing timestamp order. Our monitoring system consists of several different processes running on several physical machines. In this setting it would be difficult to guarantee perfect synchronization of clocks. Scheduling of different processes and network congestion can modify the order the requests arrive in the DSMS. This is a common problem in distributed DSMSs. STREAM does not address this problem and treats out-of-order timestamps as fatal errors. An acceptable work-around to this problem would be to ensure synchronized clocks with another technique such as the network time protocol (NTP) at regular intervals. Then the maximum difference in the clocks of the different virtual and physical machines could be specified. The DSMS should then regard tuples arriving at different timestamps within the interval specified by this imprecision as arriving at the same time instant. To accomplish this with STREAM, one would have to implement a notion of imprecision in all of STREAM’s operators, but this modification is out of the scope of this work. In our simple work-around to this general problem, each STREAM instance collects a new timestamp for a tuple when it is read in STREAM’s input filter. Thus the timestamp will never decrease.

Originally, timestamps in STREAM are measured in seconds, but disk access times, seek times and rotational latency are usually on the order of milliseconds. Microsecond granularity has been chosen for this work because it allows us to capture these I/O related durations.

Timestamps are stored using signed 32-bit integers. Ideally, timestamps would be recorded as unsigned 64-bit integers but this datatype is not supported by STREAM. Adding this datatype would have required significant changes to STREAM’s parser and operators. Instead we use the built-in 32-bit integer type. Due to this very limited size of timestamps we do not use timestamps relative to the Unix epoch. When we consider a granularity of microseconds, signed 32-bit integers can only cover time periods of up to 35 minutes. Therefore the three timestamps refer to the start of the respective component as a point of reference. For a more realistic scenario the problem of clock synchronization should be addressed and a more
flexible datatype for timestamps should be added to STREAM. These changes are out of the scope of this work.

3.2.2 Request ID

The request ID associates a request with its response. Request IDs are unique with respect to a particular virtual disk. Together with the IP address of the physical machine, the name of the virtual machine, and the virtual disk, a request ID is a globally unique identifier for a response/request pair. With the Type field that specifies if the tuple is a request or response, all tuples can be uniquely identified.

3.2.3 Categorical Fields

The fields abbreviated as VMName, VirtDisk, PhysDisk record the name of the virtual machine and paths to the virtual and physical disk devices as seen in the virtual machine and Domain 0. IP records the IP address of the sending physical node as a 32-bit integer.

Each I/O event is a request, response or an error. The Type field distinguishes among these types of events. For requests we use “Q”, for responses “R”. Errors are simply encoded with an “E” or more specifically if the operation is not supported with an “N”. If a request is trying to write, its IOOp column contains “w”. If it is a read request, the IOOp is “r”.

3.2.4 Other Numerical Fields

The “Sector on Virtual Disk” field is simply the sector offset in the image file or partition and the field “Number of Sectors” records the size of the request measured in sectors. Requests are always multiples of the page size as this is the unit Xen deals with, e.g., multiples of 8 as there are 8 sectors in a 4K page. The requests used by Xen are limited to up to 11 pages, i.e. 88 sectors, but could be merged again in Domain 0’s kernel [20].

3.3 Extending Blocktap

Blocktap is Xen’s recommended method for using image files to back virtual machines. It uses the Linux asynchronous I/O framework and has better throughput than the loop device. We have merely modified its user-level component (tapon) to log issued and completed requests to a pipe or Unix domain socket. Information about Xen’s configuration is obtained from the XenStore and is used to populate the Virtual Disk Device, Physical Disk Device and Virtual Machine Name fields in the tuples generated by Blocktap.
3.4 Extending STREAM

STREAM is modified mainly in two areas: input and output operators and operator scheduling. The last released version of STREAM (0.6.0) features a command line interface and a Java GUI client. Both assume that input tuples are read from a file in a CSV-like file format. Each tuple in this file defines a tuple in an input stream. One has to specify the timestamp at which the tuple can be read by STREAM at the granularity of seconds. To measure significant numbers for I/O requests this granularity was changed to microseconds, which allows a maximum of 35 minutes of experiment runtime (See Section 3.2.1). Instead of using the script input operator, an input operator for UDP sockets was added.

In order to measure STREAM’s performance we are comparing the CPU utilization of different CQL queries, but STREAM is using a scheduler that essentially busy-waits on all the operators. When an operator is scheduled it processes a fixed number of tuples before returning control to the scheduler. If operators have no input to process, they simply return immediately to the scheduler, which hands control to another operator. If STREAM has no tuples to process, it effectively continuously polls for new tuples. The effect of this is that STREAM always fully utilizes one processor of the computer. We have changed this by simply adding a sleep call for the STREAM thread of 100 microseconds in case none of the operators have any tuples to process. As a result, STREAM will have higher CPU utilization when it has more tuples to process or more work per tuple, and we can use measurements of CPU utilization to quantify the costs of monitoring I/O activity. We have implemented this simple approach, but an alternate solution would be to use the poll system call in the input operator to find out when there is new data to process.

3.5 Monitoring Queries

To demonstrate the capabilities of our monitoring system we list some example queries. Some of the queries were chosen to show the greater flexibility of our approach compared with such tools as iostat while others show how different queries affect the performance differently. A subset of the queries is explained below. The remaining queries that are used in the experiments are shown in the Appendix.

The queries are expressed in CQL. The semantics of CQL are described in the STREAM manual [6], the CQL grammar specification [2] and the technical report on the design of CQL [12]. For each query we provide a sample of the beginning of the input to STREAM and the corresponding output according to the query. The input stream from Blocktap is called IOstream and the names of the different fields are listed in Table 3.1. Sample input and output were given for a filter STREAM instance that reads tuples directly from Blocktap. The data presented is from an experiment as defined in Chapter 4.
3.5.1 Query 0: Baseline Query

In all the baseline experiments the filter STREAM instance only forwards tuples without performing any processing on them. As in SQL, this identity filter query is formulated as:

```sql
select * from IOstream;
```

IOstream specifies the input stream for both Monitor and Filter STREAM instances. The query output is the same as the input example given in Figure 3.2 on page 21.

3.5.2 Query 1: Filter Specific I/O Requests

```sql
# Type = "Q" specifies requests
query :
select * from IOstream as IO
where IO.Type = "Q" and IO.VMName = "muscatvm51";
```

Figure 3.5: Query 1

This simple query (See Figure 3.5) only adds some filtering conditions so that only I/O requests, from the first virtual machine, called “muscatvm51” are output. Because there is one response for every request, this query halves the number of tuples forwarded. The second condition potentially further reduces the output rate. The first 10 lines of sample input and the corresponding output of the query are shown in Table 3.3 and Table 3.4.

3.5.3 Query 4: Response Times

In this query we calculate the time between the arrival of a request at the tapdisk process and the arrival of its response (See Figure 3.6). According to the data model, a request and a response share the same request ID. By joining requests and responses from the last 3 seconds on their request ID we can compute the response time of the requests. A time interval of 3 seconds has been chosen because any file transfer will be finished after this time period. A user could also supply a different time interval that is larger than the maximum response time, but smaller window sizes also require more frequent updates to assess what tuples are included in the window.
Table 3.3: Query 1 Sample Input

<table>
<thead>
<tr>
<th>BlktapTS</th>
<th>Type</th>
<th>IOOp</th>
<th>ReqId</th>
<th>Sector</th>
<th>Size</th>
<th>VMName</th>
<th>VDisk</th>
<th>PDisk</th>
<th>FtrTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>21184390</td>
<td>Q</td>
<td>w</td>
<td>780</td>
<td>599544</td>
<td>8</td>
<td>muscatvm51</td>
<td>/dev/sda1 /dev/sda3</td>
<td>3879860</td>
<td></td>
</tr>
<tr>
<td>21194843</td>
<td>R</td>
<td>w</td>
<td>780</td>
<td>599544</td>
<td>8</td>
<td>muscatvm51</td>
<td>/dev/sda1 /dev/sda3</td>
<td>3894011</td>
<td></td>
</tr>
<tr>
<td>21194999</td>
<td>Q</td>
<td>w</td>
<td>781</td>
<td>6464</td>
<td>8</td>
<td>muscatvm51</td>
<td>/dev/sda1 /dev/sda3</td>
<td>3894018</td>
<td></td>
</tr>
<tr>
<td>21195008</td>
<td>Q</td>
<td>w</td>
<td>782</td>
<td>6552</td>
<td>8</td>
<td>muscatvm51</td>
<td>/dev/sda1 /dev/sda3</td>
<td>3894023</td>
<td></td>
</tr>
<tr>
<td>21195015</td>
<td>Q</td>
<td>w</td>
<td>783</td>
<td>6640</td>
<td>24</td>
<td>muscatvm51</td>
<td>/dev/sda1 /dev/sda3</td>
<td>3894028</td>
<td></td>
</tr>
<tr>
<td>21204824</td>
<td>R</td>
<td>w</td>
<td>781</td>
<td>6464</td>
<td>8</td>
<td>muscatvm51</td>
<td>/dev/sda1 /dev/sda3</td>
<td>3899858</td>
<td></td>
</tr>
<tr>
<td>21206538</td>
<td>R</td>
<td>w</td>
<td>782</td>
<td>6552</td>
<td>88</td>
<td>muscatvm51</td>
<td>/dev/sda1 /dev/sda3</td>
<td>3899885</td>
<td></td>
</tr>
<tr>
<td>21206546</td>
<td>R</td>
<td>w</td>
<td>783</td>
<td>6640</td>
<td>24</td>
<td>muscatvm51</td>
<td>/dev/sda1 /dev/sda3</td>
<td>3899869</td>
<td></td>
</tr>
<tr>
<td>21206612</td>
<td>Q</td>
<td>w</td>
<td>784</td>
<td>6664</td>
<td>8</td>
<td>muscatvm51</td>
<td>/dev/sda1 /dev/sda3</td>
<td>3899874</td>
<td></td>
</tr>
<tr>
<td>21212584</td>
<td>R</td>
<td>w</td>
<td>784</td>
<td>6664</td>
<td>8</td>
<td>muscatvm51</td>
<td>/dev/sda1 /dev/sda3</td>
<td>3907900</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.4: Query 1 Sample Output

<table>
<thead>
<tr>
<th>BlktapTS</th>
<th>Type</th>
<th>IOOp</th>
<th>ReqId</th>
<th>Sector</th>
<th>Size</th>
<th>VMName</th>
<th>VDisk</th>
<th>PDisk</th>
<th>FtrTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>21184390</td>
<td>Q</td>
<td>w</td>
<td>780</td>
<td>599544</td>
<td>8</td>
<td>muscatvm51</td>
<td>/dev/sda1 /dev/sda3</td>
<td>3879860</td>
<td></td>
</tr>
<tr>
<td>21194999</td>
<td>Q</td>
<td>w</td>
<td>781</td>
<td>6464</td>
<td>8</td>
<td>muscatvm51</td>
<td>/dev/sda1 /dev/sda3</td>
<td>3894018</td>
<td></td>
</tr>
<tr>
<td>21195008</td>
<td>Q</td>
<td>w</td>
<td>782</td>
<td>6552</td>
<td>8</td>
<td>muscatvm51</td>
<td>/dev/sda1 /dev/sda3</td>
<td>3894023</td>
<td></td>
</tr>
<tr>
<td>21195015</td>
<td>Q</td>
<td>w</td>
<td>783</td>
<td>6640</td>
<td>24</td>
<td>muscatvm51</td>
<td>/dev/sda1 /dev/sda3</td>
<td>3894028</td>
<td></td>
</tr>
<tr>
<td>21206612</td>
<td>Q</td>
<td>w</td>
<td>784</td>
<td>6664</td>
<td>8</td>
<td>muscatvm51</td>
<td>/dev/sda1 /dev/sda3</td>
<td>3899874</td>
<td></td>
</tr>
</tbody>
</table>

#- calculate the response time by joining the requests
and responses based on their request id.
#- the window contains the tuples that arrived in the last
3000000 micro-seconds = 3 seconds
#- we assume in this query that only one virtual machine
with one virtual disk is active

query:

```sql
select IOresp.BlktapTS - IOreq.BlktapTS
from I0stream [range 3000000 second] as IOreq,
     I0stream [range 3000000 second] as IOresp
where IOreq.Type = "Q" and IOresp.Type = "R"
   and IOreq.ReqId = IOresp.ReqId;
```

Figure 3.6: Query 4
The output in Table 3.6 is what one would intuitively expect from Table 3.5’s input. For each arriving response tuple we obtain one new response time. We have added the corresponding request ID column for each output tuple for better readability.

<table>
<thead>
<tr>
<th>BlktapTS</th>
<th>Type</th>
<th>IOOp</th>
<th>ReqId</th>
<th>Sector</th>
<th>Size</th>
<th>VMName</th>
<th>VDisk</th>
<th>PDisk</th>
<th>FtrTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>21128269</td>
<td>Q</td>
<td>w</td>
<td>784</td>
<td>599632</td>
<td>8</td>
<td>muscatvm51</td>
<td>/dev/sda1</td>
<td>/dev/sda3</td>
<td>3658847</td>
</tr>
<tr>
<td>21142381</td>
<td>R</td>
<td>w</td>
<td>784</td>
<td>599632</td>
<td>8</td>
<td>muscatvm51</td>
<td>/dev/sda1</td>
<td>/dev/sda3</td>
<td>3674820</td>
</tr>
<tr>
<td>21142535</td>
<td>Q</td>
<td>w</td>
<td>785</td>
<td>6456</td>
<td>88</td>
<td>muscatvm51</td>
<td>/dev/sda1</td>
<td>/dev/sda3</td>
<td>3674827</td>
</tr>
<tr>
<td>21142544</td>
<td>Q</td>
<td>w</td>
<td>786</td>
<td>6544</td>
<td>88</td>
<td>muscatvm51</td>
<td>/dev/sda1</td>
<td>/dev/sda3</td>
<td>3674832</td>
</tr>
<tr>
<td>21142550</td>
<td>Q</td>
<td>w</td>
<td>787</td>
<td>6632</td>
<td>24</td>
<td>muscatvm51</td>
<td>/dev/sda1</td>
<td>/dev/sda3</td>
<td>3674837</td>
</tr>
<tr>
<td>21159268</td>
<td>R</td>
<td>w</td>
<td>785</td>
<td>6456</td>
<td>88</td>
<td>muscatvm51</td>
<td>/dev/sda1</td>
<td>/dev/sda3</td>
<td>3690820</td>
</tr>
<tr>
<td>21159277</td>
<td>R</td>
<td>w</td>
<td>786</td>
<td>6544</td>
<td>88</td>
<td>muscatvm51</td>
<td>/dev/sda1</td>
<td>/dev/sda3</td>
<td>3690827</td>
</tr>
<tr>
<td>21159283</td>
<td>R</td>
<td>w</td>
<td>787</td>
<td>6632</td>
<td>24</td>
<td>muscatvm51</td>
<td>/dev/sda1</td>
<td>/dev/sda3</td>
<td>3690831</td>
</tr>
<tr>
<td>21159360</td>
<td>Q</td>
<td>w</td>
<td>788</td>
<td>6656</td>
<td>8</td>
<td>muscatvm51</td>
<td>/dev/sda1</td>
<td>/dev/sda3</td>
<td>3690836</td>
</tr>
<tr>
<td>21165320</td>
<td>R</td>
<td>w</td>
<td>788</td>
<td>6656</td>
<td>8</td>
<td>muscatvm51</td>
<td>/dev/sda1</td>
<td>/dev/sda3</td>
<td>3698819</td>
</tr>
</tbody>
</table>

Table 3.5: Query 4 Sample Input

<table>
<thead>
<tr>
<th>RespTime</th>
<th>ReqId</th>
</tr>
</thead>
<tbody>
<tr>
<td>14112</td>
<td>784</td>
</tr>
<tr>
<td>16733</td>
<td>785</td>
</tr>
<tr>
<td>16733</td>
<td>786</td>
</tr>
<tr>
<td>16733</td>
<td>787</td>
</tr>
<tr>
<td>5960</td>
<td>788</td>
</tr>
</tbody>
</table>

Table 3.6: Query 4 Sample Output

3.5.4 Query 8: Filter Tuples with High Response Time

The tuples in the output of this query represent I/O requests that have a higher than average response time. In general, I/O requests with much higher than average response time might suggest that there is some inefficiency in how I/O requests are fulfilled or the virtual machines might be competing for the system’s I/O bandwidth. Such events could trigger a reaction by a self-tuning system or be relayed to an administrator.

This query filters out requests that took 25% longer to be completed than the current average response time of all responses received so far. The response times were computed as in Query 4. The average response time is computed in the subquery DiffAvg and compared to the newest computed response time from Diff2 (See Figure 3.7). We make sure that only the last computed average response time is considered using a join on the request ID.
#- response time as in query 4
#- additionally the request id is recorded
#- we assume in this query that only one virtual machine
with one virtual disk is active

vquery:
select IOreq.ReqId, IOresp.BlktapTS - IOreq.BlktapTS
from IOstream [range 3000000 second] as IOreq,
 IOstream [range 3000000 second] as IOresp
where IOreq.Type = "Q" and IOresp.Type = "R"
 and IOreq.ReqId = IOresp.ReqId;

vtable: register stream
Diff2(ReqId integer, Value integer);

#- compute the sum of response times and the number of response
to compute an average response time.
#- the most recent request ID is computed with the third
aggregation operator and used in a join in the last subquery.

vquery:
Istream(
 select Sum(D2.Value), Count(*), Max(D2.ReqId) from Diff2 as D2);

we have to avoid STREAM’s keywords Sum, Count
in the attribute names of the output
vtable: register stream
DiffAvg(IOSum integer, IOCount integer, ReqId integer);

#- each new individual request’s (Diff2.Value) response time
is compared to the average (DAvg.IOSum/DAvg.IOCount).
#- the join on the request ID ensures that only
the last average is used for comparison.
#- we have to scale the values by 4 and 5 because
casting types is not supported.
query:
select D2.ReqId, DAvg.IOSum/DAvg.IOCount, D2.Value
from Diff2 as D2, DiffAvg as DAvg
where 4*(D2.Value) >= 5*(DAvg.IOSum/DAvg.IOCount)
 and D2.ReqId = DAvg.ReqId;

Figure 3.7: Query 8
In the sample input of the first 5 tuples (See Table 3.7) two response times are computed. The subquery Diff2 calculates the response times of when the responses arrive. Its values are 7,433 and 16,006 microseconds. The second response time is more than 25% higher than the average response time of 11,719 (See Table 3.8). We have also indicated the corresponding values for the first response time as a comment. In this case the average and current response times are equal and the response time is not written to the output.

<table>
<thead>
<tr>
<th>BlktapTS</th>
<th>Type</th>
<th>IOOp</th>
<th>ReqId</th>
<th>Sector</th>
<th>Size</th>
<th>VMName</th>
<th>VDisk</th>
<th>PDisk</th>
<th>FtrTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>18972991</td>
<td>Q</td>
<td>r</td>
<td>784</td>
<td>623248</td>
<td>8</td>
<td>muscatvm51</td>
<td>/dev/sda1 /dev/sda3</td>
<td>555850</td>
<td></td>
</tr>
<tr>
<td>18980424</td>
<td>R</td>
<td>r</td>
<td>784</td>
<td>623248</td>
<td>8</td>
<td>muscatvm51</td>
<td>/dev/sda1 /dev/sda3</td>
<td>569938</td>
<td></td>
</tr>
<tr>
<td>21485228</td>
<td>Q</td>
<td>w</td>
<td>785</td>
<td>475280</td>
<td>8</td>
<td>muscatvm51</td>
<td>/dev/sda1 /dev/sda3</td>
<td>3067784</td>
<td></td>
</tr>
<tr>
<td>21501234</td>
<td>R</td>
<td>w</td>
<td>785</td>
<td>475280</td>
<td>8</td>
<td>muscatvm51</td>
<td>/dev/sda1 /dev/sda3</td>
<td>3083784</td>
<td></td>
</tr>
<tr>
<td>21501291</td>
<td>Q</td>
<td>w</td>
<td>786</td>
<td>407584</td>
<td>8</td>
<td>muscatvm51</td>
<td>/dev/sda1 /dev/sda3</td>
<td>3083794</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.7: Query 8 Sample Input

<table>
<thead>
<tr>
<th>ReqId</th>
<th>AvgRespTime</th>
<th>RespTime</th>
</tr>
</thead>
<tbody>
<tr>
<td>784</td>
<td>7433</td>
<td>7433</td>
</tr>
<tr>
<td>785</td>
<td>11719</td>
<td>16006</td>
</tr>
</tbody>
</table>

Table 3.8: Query 8 Sample Output

Comments in bold font
Chapter 4

Experimental Results

4.1 Overview of Experiments

We have conducted a series of experiments to show how the system performs in comparison to a baseline and how different circumstances modify these results. In particular we answer the following questions:

1. What is the overhead of collecting I/O event tuples?
2. How does the overhead vary with the complexity of the query?
3. How does the performance scale with the number of concurrently executed queries?
4. Can we reduce the performance impact on the server node by offloading processing to the monitor node?
5. Does filtering of requests at the server node reduce load on the monitor node?
6. How does the system scale with the number of server nodes and virtual machines?

4.2 Experimental Testbed

The equipment used for the experiments is an IBM Blade Center. The Blade Center has a Model H chassis containing 28 blades, model number LS-21. From these we used four of the blades, with up to three as the server node and one as the monitoring node. The blades used have two AMD dual-core 2212 HE CPUs at 2.0 GHz, 10GB of RAM, and a single 67GB 10000 RPM internal hard disk. The disk’s vendor is Fujitsu and the model used is a MBB2073RC. The virtual machines are backed by image files on this local hard disk. The nodes are connected over an internal network with 1Gb of bandwidth.
The operating system installed on the machines is OpenSuSE 10.3 with the distribution package of Xen, which is in version 3.1. The source code of the user-level processes providing Blocktap functionality is modified for some of the experiments. In all experiments the Linux kernel version 2.6.22 is used. The experiment driver node is another computer that only executes a script that starts and stops components and evaluates their output.

4.2.1 Virtual Machine Configuration

In our experiments we use paravirtualized guest domains. The guest domains run Debian 4.0 Linux in a very minimal version. The guest domains use the same Linux kernel 2.6.22 with Xen modifications as Domain 0. Each virtual machine has one ext3 filesystem backed by an image file as root partition of size 4.8GB. The root partition uses the Blocktap backend driver. No swap partition is used in the experiments. The root partition image is stored on a 19GB ext3 partition on the internal hard disk. Each of the virtual machines uses a fixed 256MB of the server node’s 10GB of RAM. Domain 0 uses all of the remaining RAM not used by guest domains.

Each virtual machine is assigned a different processor core. Use of a predetermined core for each virtual machine guarantees that we are not liable to any unfairness in CPU scheduling, that could slow down one virtual machine in favour of another.

4.2.2 Measurement Tools

In the experiments xentop is used to measure CPU utilization in Domain 0 and in the guest domains. Version 3.1 of xentop is patched to flush its output to disk when terminated.

xentop reports one utilization value and does not differentiate between system or user time and scales all results to the number of virtual cpus allocated to a virtual machine. For a virtual machine with four virtual CPUs, xentop reports a number from 0 to 400. With four virtual CPUs of which one is fully utilized, xentop reports 100% utilization. In the experiments each guest domain and Domain 0 are assigned one VCPU. Thus the maximum utilization for measurements is 100%.

4.2.3 Experiment Methodology

Figure 4.1 illustrates how the experiments are set up. The experiment driver running on the experiment node runs the experiments in five steps:

1. The monitor DSMS instance is started, if the experiment requires it.
2. The filter DSMS instance is started.

3. `xentop` is started in Domain 0 on the server node and on the monitor node, if required.

4. The virtual machine(s) are started on the server node(s).

5. The workload is started in the virtual machine(s) using SSH.

When the experiment finishes the components are stopped in the reverse order and their output is collected.

![Execution of Experiments](image)

Figure 4.1: Execution of Experiments

4.3 Experiments

The test workload used in all of the experiments is a program that copies a large file. The test workload is allowed to run for 60 seconds, at which point the execution is interrupted and the number of bytes copied is recorded. This has been implemented by modifying the source code of GNU’s `cp` to accept an additional parameter that
specifies a “timeout” value when the copy process should be interrupted. For the experiments the test workload is executed in one or several virtual machines.

STREAM by default writes a query’s result to an output file. In all of the experiments in this section query results are written to a file on another NFS partition. This does not interfere with the I/O workload on the local disk on the server node. The query results are written in binary format. On the monitoring node the output is also written to an NFS partition.

For each configuration of the system or CQL query the steps described in Section 4.2.3 have been repeated 15 times and the reported results are averages over the 15 runs. Confidence intervals for a significance level of 95% are displayed. For some experiments they might not be visible because of the size of the figures.

For each run the reported utilization is the arithmetic mean of measurements over 5 second intervals. For each interval the used measurement tools compute utilization as averages over the given time period. The measurements from the first three intervals and the last interval are discarded. This effectively discards the measured utilization in the first 15 seconds and the last 5 seconds of the experiment, in order to focus on the performance of the system when it has started up and is under load.

4.3.1 Experiment 1: Overhead of Tracing I/O Tuples

In order to determine the overhead of tracing I/O events in **Blocktap** and reading them into **STREAM** we have conducted an experiment comparing three different configurations of our system:

- **B0**: *No tracing of I/O events* **Blocktap** is serving the virtual machine I/O requests but the requests are not traced.

- **B1**: *I/O events are traced and read* A modified version of **Blocktap** logs metadata for each request to a Unix domain socket. The fields in each of these tuples are defined in the data model in Section 3.2. Tuples are read in blocking mode from the socket by a simple application in Domain 0 and discarded. Tuples are neither stored nor processed.

- **Q0**: *I/O events are read by STREAM* Instead of a simple reader, the filter **STREAM** instance reads the tuples from the Unix domain socket and executes Query 0. This query neither filters any tuples nor processes their fields. The query results are written to a file on a different NFS partition in binary format.

Figure 4.2 shows average Domain 0 CPU utilization under each of these configurations. A comparison of the utilizations for configurations B0 and B1 shows that tracing to and reading from the Unix domain socket increases average CPU utilization in Domain 0 by only 3% and is therefore not expensive. Replacing the
simple reader with a \texttt{STREAM} instance incurs an increase in CPU utilization of 1.32\% from 15.08\% (B1) to 16.41\% (Q0) in Domain 0. The amount of work done does not depend on which configuration is used. No statistically significant difference in the number of bytes copied in the virtual machine has been observed when comparing the different configurations. Overall logging I/O requests in \texttt{Blocktap} and reading the corresponding tuples in \texttt{STREAM} does add overhead, but the additional overhead is not too great, and in particular it is much less than the overhead incurred in Domain 0 to support I/O in the guest VM.

\subsection{Experiment 2: Impact of Query Complexity}

In this experiment we evaluate the impact of a query’s complexity on \texttt{STREAM’s} performance. The configuration is the same as in configuration Q0; the workload is performed in a single virtual machine and a filter \texttt{STREAM} instance reads the monitored data from a Unix domain socket and writes to a file on another partition. Instead of Query 0, the more complicated Queries 1 to 10 are executed by a filter \texttt{STREAM} instance. No monitor \texttt{STREAM} instance is used. We are measuring the CPU utilization in Domain 0 to show that \texttt{STREAM’s} performance depends on the numbers of operators, joins, and tuples that have to be processed for a particular query. The different queries are presented in Section 3.5 and in the Appendix.

The differences in CPU utilization compared to the baseline query Q0 range from \(-0.03\%\) for Query 1 to \(+3.53\%\) for Query 10 (See Figure 4.3). The complexity of a query does not modify the amount of work done. There is no statistically
Figure 4.3: Results of Experiment 2
significant difference in the number of bytes copied in the virtual machine among the different queries. In Query 1 an additional filter selects only 50% of the input tuples and therefore offsets the processing costs for this selection with lower costs to output tuples. The most expensive queries, Query 9 and 10, make use of group by statements in connection with time-based windows. The time-based windows frequently have to remove outdated tuples from the input. The resulting relation is then processed by the group by statement. Especially Query 10, with three queries with independent output files and with three group by statements for several fields, emphasizes the performance impact of this sequence of operators. Query 8, which extends Query 4 with an additional Istream operator and a join of two streams, increases the utilization notably. The most expensive queries Query 8, 9, and 10 compute statistics that involve both requests and responses. However Query 5 selects only requests and still has a considerable performance impact because of the use of small tuple-based windows that have to be updated frequently.

Queries 1, 2, 6, and 7, which only perform simple filtering and do not have small time- or tuple based windows in conjunction with group by statements or joins, have little performance impact. We conclude that arbitrary queries should not be executed on the server node. Instead only simple queries with low overhead should be run on the server node. Filter queries that only select portions of the input stream without further processing are good candidates for this. More complicated queries with more processing costs should be offloaded to the monitor node instead.

4.3.3 Experiment 3: Parallel Query Execution Scalability

In practice many users might simultaneously issue queries to the monitoring system to analyze I/O activity. The purpose of this experiment is to show how the number of simultaneously executed queries modifies the performance of STREAM. The setup of the experiment is as follows. The performance of STREAM is evaluated by measuring the CPU utilization in Domain 0. One filter STREAM instance executes Query 5 or Query 9 multiple times. Each query reads from the same input stream and writes to a different output file. STREAM sets a limit on how many operators, synopses, and outputs are used. Therefore the queries can be executed at most 8 times in parallel. In this experiment the query was executed 1, 2, 4, and 8 times in parallel. We denote the last configuration by Q5x8 for Query 5.

Queries 5 and 9 cause an overhead of approximately 1.43% and 2% CPU utilization relative to Query 0 when executed a single time. This difference in utilization to Query 0 increases almost linearly with the number of parallel executions of queries 5 and 9 (See Figure 4.4). The overhead of STREAM for the three queries does not scale linearly with the number of parallel executions because all queries use one single input stream. Thus all input tuples have to be read exactly once from the socket regardless of the number of parallel query executions. The high overhead observed in this experiment shows that no large number of queries should be executed on the server node. Instead the processing should then be offloaded to the monitor node.
4.3.4 Experiment 4: Impact of Offloading on Utilization

This experiment shows the effect on utilization of offloading query processing from the server node to the monitoring node. A filter instance of STREAM runs on the server node and a monitor STREAM instance runs on the monitor node. The query results of the filter STREAM instance are written to a UDP socket instead of a file in this experiment. The monitor STREAM instance reads the tuples from the socket and performs all of the processing for Query 5x8 instead of the filter STREAM instance. We measure the CPU utilization in Domain 0 on the server node and on the monitor node to show that we can offload the load on the server node to the monitor node.

The filter STREAM instance does not process the input tuples but instead forwards all of them to the monitoring node. The corresponding CQL query is Query 0 and the configurations is therefore denoted by Q0Q5x8. We also compare the performance of this query to the baseline configuration Q0Q0 to show what the cost for sending and receiving tuples over a UDP connection is. Figure 4.5 illustrates the configuration Q0 and the new configuration Q0Q5x8.

In Figure 4.6, the measured utilizations in Domain 0 on both the server node and the monitor node for the configurations with and without offloading are shown. The utilization on the server node for Configuration Q0Q0 increased slightly relative to Configuration Q0. Thus, sending the tuples over the UDP connection instead of writing them to a file incurs only a small performance increase. A CPU utilization
Figure 4.5: Distributed Configurations

Figure 4.6: Results of Experiment 4
of 4.07% was measured on the monitoring node for Configuration Q0Q0.

As expected the performance of the offloaded Query Q5x8 on the server node does not differ from the baseline performance Q0Q0. The utilization on the monitoring node for Query Q5x8 is approximately 16.5%. This is exactly the same overhead STREAM causes on the server node. It is computed by subtracting the performance impact of Blocktap of 12% from the CPU utilization of 28% for Query Q5x8. The CPU utilization of Configuration Q0Q0 on the monitor node matches STREAM’s overhead for Query 0 on the server node.

The chart also contains the utilizations on the server node for the queries that do not employ offloading. The measurements show that offloading to the monitoring node does not greatly increase the sum of utilizations in server and monitor node. Thus the overall overhead of offloading is small. Additionally offloading has the advantage of decreasing the load on the server node and is therefore a viable option if the CPU resources on the server node are scarce.

4.3.5 Experiment 5: Effect of Filtering

In this experiment the query processing is split between the filter STREAM instance on the server node and the monitor STREAM instance on the monitor node. Instead of simply forwarding all tuples as in Experiment 4, the filter STREAM filters some of the tuples using a simple condition before forwarding the remaining tuples to the monitor node. The purpose of this experiment is to show that simple filter queries do not incur a significant performance impact on the server node, while they simultaneously reduce the load on the monitor node and the network. If tuples can be filtered at the server node they do not contribute to the network traffic and do not have to be read and processed at the monitor node. To evaluate this effect we measure the CPU utilization on the server node and on the monitor node as well as the amount of network traffic over the course of the query execution. We compare the measurements to the measurements for the configuration that uses offloading but no filtering.

This experiment is based on Query 5, which has been split into two parts. The first part, the filter query (F), is shown in Figure 4.8 and is executed by the server node. The second part, denoted by Q5’ consists of the remainder of Q5, which is shown in the Appendix. Q5’ is executed 8 times in parallel at the monitor node. This configuration, denoted QFQ5’x8, is illustrated in Figure 4.7.

Figure 4.9 shows that filtering reduces the CPU utilization on both the server node and the monitor node. On the server node the utilization drops by 1.2% because fewer tuples have to be sent over the network. The CPU utilization also drops by a small amount (1.8%) on the monitor node, because fewer tuples have to be read from the UDP socket and the filter for requests is not executed.

Figure 4.9 also shows the bandwidth usage between the server and the monitoring node over the course of the complete experiment for the offloading and the

39
select * from IOstream where IOstream.Type = "Q";

filtering configuration. The bandwidth usage has been computed by measuring how many tuples have been sent over the network and multiplying this by the size of each sent tuple. As the filter selects only the requests and not their responses it is not surprising that half of the bandwidth is saved using filtering.

In general the benefits of filtering will depend on the selectivity of the filter query. Other simple filters could for example select only read/write requests or I/O transfers for a particular virtual machine or virtual disk.

4.3.6 Experiment 6: Virtual/Physical Machine Scalability

In this experiment we examine how the monitor STREAM’s performance scales with the number of virtual and physical machines. In a more realistic setting the ability to monitor multiple machines in a cluster is very important. In our setup the number of physical machines scales from one to three, each hosting up to three virtual machines. Thus the experiment workload is performed in up to nine virtual machine. The configuration of the virtual machines is identical. When one up to three virtual machines are used, they are all hosted on the first server node. The fourth up to the sixth virtual machine are hosted on the second node and in the experiment with seven or more virtual machines all three server nodes are used.

The filter STREAM instances on each server node simply forward all tuples from all virtual machines by performing Query 0. We compare the CPU utilization incurred
Figure 4.9: Results of Experiment 5
by performing Query 10 or Query 0 on the monitor node. The monitor STREAM instance performs a slightly modified version of Query 10 denoted by \texttt{Q10M}. Query 10 computes statistics similar to \texttt{iostat’s} for each virtual disk. For execution on the monitor node the query has to be modified to differentiate between the virtual machines hosted on different server nodes. Therefore the field \texttt{IP} is added in the \texttt{group by} statement and the \texttt{select} clause. See Figure 8 in the Appendix for the exact CQL formulation.

![Graph](image)

Figure 4.10: Results of Experiment 6

Figure 4.10 shows that when only one virtual machine is used, an average utilization of roughly 10% is measured for the \texttt{Q10M} monitoring query. As the number of virtual machines is increased to two and three, the CPU utilization decreases. This happens because the virtual machines on the first server node interfere with each other when performing their I/O workload and thus decrease the overall I/O throughput. With four virtual machines the second server nodes hosts a single virtual machine and the CPU utilization increases again by nearly 10%. The same decrease of utilization can be observed when the number of virtual machines is scaled up to six virtual machines. As the third physical node has a lower I/O capacity than the first two physical node, the CPU utilization only increases by about 7% when seven virtual machines are used. When scaling to the maximum of nine virtual machines the overall I/O throughput drops slightly again. The same
scaling behaviour can be observed when Query 0 is executed on the monitor node instead of Query 10M.

We conclude that the performance of the monitoring system scales linearly with the number of input tuples. The number of virtual machines does not affect the performance negatively. When the workload is I/O-bound an increasing number of virtual machines interfere more and more and therefore the input rate to \textsc{Stream} decreases.
Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this work we have contributed the following:

1. We designed a distributed, customizable I/O monitoring architecture. To create a prototype implementation we have modified two existing pieces of software: Blocktap and STREAM. A facility for logging of I/O request metadata to Unix domain sockets has been added to Blocktap. For STREAM, input and output operators for UDP have been introduced. Example queries show that the architecture can be used for more flexible and detailed analysis of I/O transfers.

2. We have performed experiments involving Blocktap and STREAM to analyze the overhead of the prototype. For that, STREAM’s scheduler has been modified to avoid busy-looping to make CPU utilization measurements possible. The results show that I/O monitoring can potentially cause significant overhead, but that by offloading query processing to a separate monitor node, the performance impact on the server nodes can be minimized.

3. Additionally we have analyzed how simple filtering at the server nodes and performing residual queries at the monitoring node can reduce the load on the monitoring node and the volume of data sent over the network. Filtering does not require a significant amount of CPU resources.

5.2 Future Work

As a next step we would like to implement more data sources for I/O requests. In the course of the thesis we have determined that DTrace could probably be used as an input source. Its current capabilities could thus be extended for distributed
and hopefully more flexible queries. With its probes in the Solaris kernel very fine-grained analysis of I/O requests could be performed.

Another interesting project would be to improve the support for distribution in our system. A very interesting modification of STREAM would be support for differing schemata. Currently both DSMS instances share the same schema and no complicated queries that change the schema can be supported. A facility for changing schemata would dramatically decrease the amount of data sent over the network in some cases. We also would like to try to port our input sources to other DSMSs with more support for distribution. For example Borealis would be one candidate. It already has some notion of load-balancing and is perhaps able to support a more automated query optimization for our optimization goal.

Another goal is the design of an automated resource allocation mechanism using queries that signal poor performance. Currently Xen does not support fine-grained scheduling of I/O resources, but we would like to build a basic mechanism for this. Another approach to a self-tuning system could be to assign I/O intensive workloads to less utilized virtual machines. With the current system it might also be possible to devise a mechanism that analyzes a virtual machine workload and automatically optimizes the storage configuration for this workload.

Some minor technical goals would be to improve the fault-tolerance and autonomy of the system by introducing special control and error tuples to signal problems to the STREAM instances.
Appendix

In this appendix the actual CQL code is shown for the remaining queries, that have not been explained in Section 3.5 due to space constraints. Comments have been added to explain the goal and the technical details of each query. The first line of each listing states the desired result of the query. The input for each query is the stream \texttt{IOstream} with all the fields available to a filter DSMS instance (See the data model in Table 3.1 on page 21).

```cql
# compute the sum of all I/O transfers
# produces new output for every new response tuple

# must select either responses or requests
# as both contain the request size
query : Istream (     
select Sum(IO.Size) from IOstream as IO where IO.Type = "R"
);  
```

Figure 1: Query 2: Sum of the Size of I/O Requests
#- compute the interarrival time between requests
#- produces new output for every new request tuple
#- we assume in this query that only one virtual machine
with one virtual disk is active

select only requests
vquery :
select * from IOstream as IO where IO.Type = "Q";
vtable :
register stream
IOstreamq (BlktapTS integer, Type char(2), IOOp char(2),
ReqId integer, Sector integer, Size integer,
VMName char(15), VDisk char(10), P Disk char(10),
FtrTS integer);

a window on the 2 most recent requests allows to
to compute the interarrival time between them
vquery :
select Max(IOQ.BlktapTS), Min(IOQ.BlktapTS)
from IOstreamq [rows 2] as IOQ
vtable :
register stream Diff1(IOMax integer, IOMin integer);

we need an additional subquery here because STREAM
does not allow mixing of aggregations and arithmetic
operations
query :
select D.IOMax - D.IOMin from Diff1 as D
where D.IOMax - D.IOMin > 0;

Figure 2: Query 3: Interarrival Times
computes the percentage of sequential requests
produces a new updated count for every request tuple,
after the first sequential request has arrived
we assume in this query that only one virtual machine
with one virtual disk is active

select only requests
vquery:
select * from I0stream as IO where IO.Type = "Q";

vtable: register stream
I0streamq (BlktapTS integer, Type char(2), IOOp char(2),
ReqId integer, Sector integer, Size integer,
VMName char(15), VDisk char(10), PDisk char(10),
FtrTS integer);

calculate the seek distance from the 1st to the 2nd request,
i.e. the difference between the sector where the 1st request
finishes and 2nd request begins.
we need a window of the two most recent tuples and establish
their order based on their request ID.
vquery:
Istream(
select IOreq2.Sector - (IOreq1.Sector + IOreq1.Size)
from I0streamq [rows 2] as IOreq1, I0streamq [rows 1] as IOreq2
where IOreq1.ReqId + 1 = IOreq2.ReqId);

vtable: register stream DiskHeadMove(HeadMove integer);

count all requests
vquery:
select Count(*) from I0streamq;

vtable: register stream CountRequest(Counter integer);

count the sequential requests:
requests where the head would have to move 0 sectors
vquery:
select Count(*) from DiskHeadMove as DHM where DHM.HeadMove = 0;

vtable: register stream CountSequentialReq(Counter integer);

scale the count to a percentage from 1 to 100
query:
select 100*CSR.Counter/CR.Counter
from CountSequentialReq as CSR, CountRequest as CR;

Figure 3: Query 5: Percentage of Sequential Requests
computes the variance of request sizes
produces new output for every new response tuple

select only requests
vquery :
select * from IOstream as IO where IO.Type = "Q";

vtable :
register stream
IOstreamq (BlktapTS integer, Type char(2), IOOp char(2),
ReqId integer, Sector integer, Size integer,
VMName char(15), VDisk char(10), PDisk char(10),
FtrTS integer);

arithmetic expressions cannot be mixed with aggregation
vquery :
select IOQ.Size*IOQ.Size from IOstreamq as IOQ;

vtable :
register stream IOSizeSquared(IOSquare integer);

vquery :
select Count(*),Avg(ISS.IOSquare) from IOSizeSquared as ISS;

vtable :
register stream AvgSquaredIOS(Counter integer, SizeAvg float);

vquery :
select Count(*),Avg(IOQ.Size) from IOstreamq as IOQ;

vtable :
register stream AvgIOS(Counter integer, SizeAvg float);

computes the variance as the difference between the
average and the squared average
the join on the count ensures that only the most
recent averages are compared. otherwise one new tuple
would first trigger a new squared average and then
a new average.
query :
select ASIOS.SizeAvg - (AIOS.SizeAvg*AIOS.SizeAvg)
from AvgSquaredIOS [rows 1] as ASIOS, AvgIOS [rows 1] as AIOS
where ASIOS.Counter = AIOS.Counter;

Figure 4: Query 6: Variance of Request Sizes
Figure 5: Query 7: Histogram of Starting Sectors

Figure 6: Query 9: Number of Unresolved Requests
compute some of iostat's statistics for each virtual disk over a
sliding window of the last 3 seconds.
3 queries are performed parallely and written to 3 separate files
new statistics are computed for the first 2 queries when new
request tuples arrive. The third query computes new response
times, when a new response tuple arrives. Results are also
updated when a tuple is older than 3 seconds.

number of requests and average/count/sum of request sizes
for each virtual disk over the last 3 seconds.
query :
select IO.VMName, IO.VDisk, Avg(IO.Size), Count(*), Sum(IO.Size)
from IOstream [range 3000000 second] as IO where IO.Type = "Q"
group by IO.VMName, IO.VDisk;

statistics are computed seperately for read and write requests
query :
select IO.VMName, IO.VDisk, IO.IOOp, Avg(IO.Size), Count(*), Sum(IO.Size)
from IOstream [range 3000000 second] as IO where IO.Type = "Q"
group by IO.VMName, IO.VDisk, IO.IOOp;

response times grouped by the virtual disk over
the last 3 seconds.

table : register stream
ResponseTimes(VMName char(15), VDisk char(10), Time integer);
query : select RT.VMName, RT.VDisk, Avg(RT.Time)
from ResponseTimes as RT group by RT.VMName, RT.VDisk;

Figure 7: Query 10: iostat for Xen
compute some of iostat's statistics for each virtual disk over a
sliding window of the last 3 seconds.
3 queries are performed parallely and written to 3 separate files
new statistics are computed for the first 2 queries when new
request tuples arrive. The third query computes new response
times, when a new response tuple arrives. Results are also
updated when a tuple is older than 3 seconds.

number of requests and average/count/sum of request sizes
for each virtual disk over the last 3 seconds.
query :
select IO.IP,IO.VMName,IO.VDisk,Avg(IO.Size),Count(*),Sum(IO.Size)
from IOstream [range 3000000 second] as IO where IO.Type = "Q"
group by IO.IP,IO.VMName,IO.VDisk;

statistics are computed seperately for read and write requests
query :
select IO.IP,IO.VMName,IO.VDisk,IO.IOOp,Avg(IO.Size),Count(*),Sum(IO.Size)
from IOstream [range 3000000 second] as IO where IO.Type = "Q"
group by IO.IP,IO.VMName,IO.VDisk,IO.IOOp;

response times grouped by the virtual disk
over the last 3 seconds.
vquery :
select
IOrsp.IP,IOrsp.VMName,IOrsp.VDisk,IOrsp.BlktapTS - IOreq.BlktapTS
from IOstream [range 3000000 second] as IOreq,
 IOstream [range 3000000 second] as IOrsp
where IOreq.Type = "Q" and IOrsp.Type = "R"
and IOreq.ReqId = IOrsp.ReqId
and IOreq.IP = IOrsp.IP
and IOreq.VMName = IOrsp.VMName
and IOreq.VDisk = IOrsp.VDisk;

vtable : register stream ResponseTimes
(IP integer, VMName char(15), VDisk char(10), Time integer);

query : select RT.IP, RT.VMName, RT.VDisk, Avg(RT.Time)
from ResponseTimes as RT group by RT.IP,RT.VMName, RT.VDisk;

Figure 8: Query 10M: iostat for Xen on the monitor node
References

