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Abstract

Over time astrocytes have been thought to function in an auxiliary manner, pro-
viding neurons with metabolic and structural support. However, recent research
suggests they may play a fundamental role in the generation and propagation of
focal epileptic seizures by causing synchronized electrical bursts in neurons. It
would be helpful to have a simple mathematical model that represents this dy-
namic and incorporates these updated experimental results. We have created a
two-compartment model of a typical neuron found in the hippocampal CA1 region,
an area often thought to be the origin of these seizures. The focus is on prop-
erly modeling the astrocytic input to examine the pathological excitation of these
neurons and subsequent transmission of the signals. In particular, we consider
the intracellular astrocytic calcium fluctuations which are associated with slow in-
ward currents in neighbouring neurons. Using our model, a variety of experimental
results are reproduced, and comments are made about the potential differences
between graded and “all-or-none” astrocytes.

iii



Acknowledgements

I would like to express my deep gratitude to my supervisor, Dr. Sue Ann Campbell.
Her mathematical expertise and outstanding work ethic have been an inspiration
to me throughout this project. Her encouragement and support continues to play
an essential role in my research. I express many thanks for her tireless reading of
this thesis and her detailed and constructive comments.

I acknowledge the partial financial support provided by the Department of Applied
Mathematics through the graduate teaching assistantships.

I would like to express my gratitude to the professors and researchers in the Applied
Mathematics Department, who have inspired me for many years. A special thanks
to my graduate committee: Dr. Sue Ann Campbell, Dr. Brian Ingalls, and Dr.
Marek Stastna.

I would also like to thank my father, sisters, and Justin, who have selflessly sup-
ported me throughout these years. I express my thanks to my sister, Amanda, for
proof-reading endlessly without complaint. I am deeply grateful to my mother, who
supported me throughout my life, and continues to be my greatest inspiration.

iv



Dedication

This thesis is dedicated to my mother, Patti Ferguson.

v





Contents

List of Tables xi

List of Figures xv

1 Introduction 1

1.1 Outline of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Physiology Background 3

2.1 Epilepsy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Divisions of the brain . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Cerebral cortex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 Hippocampal formation . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.5 Neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.6 Synapses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6.1 Chemical synapses . . . . . . . . . . . . . . . . . . . . . . . 11

2.7 Glial cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.7.1 Astrocytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Neuron Electrophysiology 17

3.1 Excitable cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Methods of measurement . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 The voltage clamp technique . . . . . . . . . . . . . . . . . . 20

3.2.2 The current clamp technique . . . . . . . . . . . . . . . . . . 22

3.2.3 The patch clamp technique . . . . . . . . . . . . . . . . . . . 22

3.3 The current-voltage relations of ion channels . . . . . . . . . . . . . 22

vii



3.3.1 Ions involved in an action potential . . . . . . . . . . . . . . 22

3.3.2 How ion currents affect membrane permeability . . . . . . . 23

3.4 The cell as an R.C. circuit . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 The conductances gL, gNa and gK . . . . . . . . . . . . . . . . . . . 28

3.5.1 The potassium conductance . . . . . . . . . . . . . . . . . . 29

3.5.2 The sodium conductance . . . . . . . . . . . . . . . . . . . . 30

3.5.3 A description of the action potential . . . . . . . . . . . . . 32

3.5.4 The leak conductance . . . . . . . . . . . . . . . . . . . . . . 32

3.6 The full Hodgkin-Huxley model . . . . . . . . . . . . . . . . . . . . 34

3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Literature Review 37

4.1 The Traub et al. (1991) model . . . . . . . . . . . . . . . . . . . . . 38

4.1.1 The ionic currents and conductance densities . . . . . . . . . 39

4.1.2 The synaptic currents . . . . . . . . . . . . . . . . . . . . . 40

4.1.3 The gating variables . . . . . . . . . . . . . . . . . . . . . . 40

4.1.4 CA1 cell model behaviour . . . . . . . . . . . . . . . . . . . 41

4.2 The Pinsky and Rinzel (1994) model . . . . . . . . . . . . . . . . . 41

4.2.1 The synaptic currents . . . . . . . . . . . . . . . . . . . . . 44

4.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 An astrocytic basis of epilepsy . . . . . . . . . . . . . . . . . . . . . 46

4.4 Astrocytic calcium levels stimulate glutamate release . . . . . . . . 48

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 An Isolated CA1 Neuron Model 51

5.1 Why reduce a model? . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 The reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2.1 Ion channel segregation . . . . . . . . . . . . . . . . . . . . . 53

5.3 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3.1 Applied currents . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3.2 Ionic currents . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3.3 The membrane potential . . . . . . . . . . . . . . . . . . . . 61

5.3.4 Numerics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.5 Bursting mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

viii



6 A Coupled Neuron Model 73

6.1 The AMPA synapse model . . . . . . . . . . . . . . . . . . . . . . . 73

6.2 Results for the AMPA synapse . . . . . . . . . . . . . . . . . . . . . 74

6.3 An inhibitory synapse . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7 An Astrocytic Influence 79

7.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.2 The astrocytic calcium and results . . . . . . . . . . . . . . . . . . 81

7.2.1 A step of astrocytic calcium . . . . . . . . . . . . . . . . . . 82

7.2.2 A wave of astrocytic calcium . . . . . . . . . . . . . . . . . . 82

7.2.3 A pulse of astrocytic calcium . . . . . . . . . . . . . . . . . 84

7.2.4 Results with a pulse of astrocytic calcium . . . . . . . . . . 84

7.2.5 All-or-none astrocytes . . . . . . . . . . . . . . . . . . . . . 90

7.3 NMDA receptors mediate depolarization shifts . . . . . . . . . . . . 90

7.4 Physiological relevance and limitations . . . . . . . . . . . . . . . . 95

7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

8 Conclusion 97

8.1 Physiological relevance and limitations . . . . . . . . . . . . . . . . 98

8.2 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

References 100

ix





List of Tables

3.1 Parameter values and units of Hodgkin and Huxley’s model . . . . . 34

5.1 Traub’s conductance densities for Traub’s CA1 neuron model . . . . 55

5.2 Conductance densities for our CA1 model . . . . . . . . . . . . . . 55

5.3 Parameter values for our isolated model . . . . . . . . . . . . . . . . 62

5.4 Initial conditions for our isolated model . . . . . . . . . . . . . . . . 62

xi





List of Figures

2.1 Some of the primary functional components of the brain . . . . . . 5

2.2 The cerebral cortex . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 The hippocampal formation . . . . . . . . . . . . . . . . . . . . . . 9

(a) A cross section of the hippocampal formation . . . . . . . . . 9

(b) The hippocampal formation has a curved c-shape . . . . . . . 9

2.4 Projections of the hippocampal formation . . . . . . . . . . . . . . 9

2.5 A typical neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.6 A chemical synapse . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.7 A typical astrocyte . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 An excitable cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 A voltage clamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Hodgkin and Huxley’s separation of ionic currents . . . . . . . . . . 24

3.4 Sodium and potassium currents . . . . . . . . . . . . . . . . . . . . 25

3.5 The squid giant axon represented as an R.C. circuit . . . . . . . . . 27

3.6 An action potential, the Na+ and K+ currents, and their gating
variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 A schematic representation of the Traub 19-compartment model . . 39

4.2 A schematic representation of Pinsky and Rinzel’s two-compartment
CA3 neuron model . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.1 A schematic representation of our two-compartment CA1 neuron
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2 Time constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3 Characteristic qualities of a CA1 neuron are reproduced . . . . . . . 65

(a) A sustained somatic current of IS = 1.25 µA/cm2 is applied . 65

xiii



(b) A sustained dendritic current of ID = 1.25 µA/cm2 is applied 65

5.4 A typical transient burst followed by an action potential . . . . . . 66

5.5 When the dendritic outward currents are not strong enough to coun-
teract the effect of the inward ICa,D, a burst is generated . . . . . . 68

5.6 Increased levels of the slow variables decrease bursting activity . . . 69

(a) The somatic and dendritic intracellular calcium concentrations
(in red), overlaying the bursting and spiking from Figure 5.4 . 69

(b) q1 and q2 for the burst and spike sequence in (a) . . . . . . . . 69

6.1 Cell models synchronize if gAMPA2
is sufficiently large . . . . . . . . 75

(a) A weak connection, and the two cell models are not synchro-
nized. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

(b) A strong connection, and the two cell models are sychronized. 75

6.2 Cell 2 is synchronized to cell 1 until t = 500 ms, at which point it
desynchronizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

(a) The voltage of cell 1 and IScell1
(t) . . . . . . . . . . . . . . . . 76

(b) The voltage of cell 2 and IScell1
(t) . . . . . . . . . . . . . . . . 76

7.1 Neuronal SICs vs. astrocytic calcium concentration with a fit of
Parpura and Haydon’s (2000) data . . . . . . . . . . . . . . . . . . 81

7.2 A step of astrocytic calcium . . . . . . . . . . . . . . . . . . . . . . 82

7.3 The influence of a wave of astrocytic calcium on two neurons . . . . 83

(a) Neuron 1 with astrocytic input . . . . . . . . . . . . . . . . . 83

(b) Neuron 2 with AMPA input from neuron 1 . . . . . . . . . . . 83

7.4 The percentage increase in fluorescence (fluo-3) vs. time, from Parpura
and Haydon (2000) . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.5 Different pulses of astrocytic calcium produces different levels of neu-
ronal depolarization . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

(a) A weak pulse of astrocytic calcium produces a weak response
from the neighbouring neuron . . . . . . . . . . . . . . . . . . 85

(b) A strong pulse of astrocytic calcium produces a strong response
from the neighbouring neuron . . . . . . . . . . . . . . . . . . 85

7.6 A pulse of astrocytic calcium with peak 215.5 nM produced a SIC . 86

7.7 A pulse of astrocytic calcium with peak 139 nM produced a SIC . . 87

(a) SIC using a small maximal NMDA conductance . . . . . . . . 87

(b) SIC when maximal NMDA conductance was increased . . . . 87

xiv



7.8 A pulse of astrocytic calcium with peak 549 nM produced a SIC . . 89

(a) SIC using a small maximal NMDA conductance . . . . . . . . 89

(b) SIC when maximal NMDA conductance was increased . . . . 89

7.9 Our model reproduces the experimental result of Parpura and Hay-
don’s Figure 5A (2000) . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.10 The “all-or-none” astrocytic response from Parpura and Haydon’s
Figure 5B (2000), with a corresponding fit . . . . . . . . . . . . . . 91

7.11 Our model reproduces the experimental results of Tian et al. (2005,
Figure 1): synaptic activity among neurons is not required for PDSs 93

(a) An application of a potassium blocker, 4-AP, causes epilepti-
form bursting activity . . . . . . . . . . . . . . . . . . . . . . 93

(b) TTX, a sodium blocker is added to the 4-AP, and PDSs are
prevalent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

(c) 4-AP and VGCC blockers are applied. Bursting activity still
exists. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

(d) 4-AP, VGCC blockers, and TTX are applied, and yet the PDSs
are not supressed . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.12 Simulations reproducing results found by Tian et al. (2005) . . . . . 94

(a) No AMPA input. The two cells, with slightly different dynam-
ics, synchronize to the NMDA input. . . . . . . . . . . . . . . 94

(b) Potassium, sodium and calcium blockers are applied as in Fig-
ure 7.11, making the synchronized PDSs evident. Since the
PDSs are subthreshold, the AMPA synapses are not activated,
and the cells do not communicate with each other. . . . . . . 94

xv



Chapter 1

Introduction

Focal epileptic seizures affect millions of people worldwide, and are characterized by
excessive and often synchronous neuronal discharges (World Health Organization,
2001). Tian et al. (2005) suggests that these seizures may actually be caused by
pathologies in astrocytes, and not in neurons as was once thought. This may greatly
influence the target of anti-eptileptic drugs, which currently focus on suppressing
neuronal transmission. A simple mathematical model, which incorporates these
new experimental results, would be helpful to examine the dynamics involved in
the excessive discharges. Thus we created a two-compartment mathematical model
(based on a reduction of Traub et al.’s (1991) 19-compartment model) of a CA1
pyramidal neuron, a neuron which is often the focus of seizure generation. To
model the astrocytic input, we consider a synaptic current which is mediated by
intracellular astrocytic calcium fluctuations. We aim to reproduce a variety of
experimental results, and we discuss the physiological relevance of our model as
well as its limitations.

1.1 Outline of thesis

The structure of this thesis is as follows. In Chapter 2, we discuss the necessary
background biology. We start with a brief description of epilepsy, and then consider
the components of the brain on multiple levels. We discuss in detail the cellular
components of the brain (i.e. neurons and glial cells), and how they communicate
with each other. In Chapter 3, we give a review of neuron electrophysiology. We
comment on the methods of measurement used for excitable cells, and represent
the cell as an R.C. circuit. We consider the dynamics of the currents and their
respective conductances, which are involved in action potential generation. Finally,
we derive the Hodgkin-Huxley equations for a squid giant axon. In Chapter 4, we
give a literature review of the four articles which most influenced our project. First
we review an article by Traub et al. (1991), in which a 19-compartment model of a
hippocampal pyramidal neuron is created. Second we discuss an article by Pinsky
and Rinzel (1994), in which a reduced two-compartment model for a CA3 neuron
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is derived from Traub et al.’s (1991) model. Third, we review an article by Tian
et al. (2005), in which an astrocytic basis of epilepsy is implied. Finally, we review
Parpura and Haydon’s (2000) article, in which the physiological astrocytic calcium
signalling involved in neuronal modulation is considered. In Chapter 5, we consider
an isolated neuron model of a CA1 hippocampal neuron. We describe the impor-
tance of model reduction, and how this reduction was accomplished. We create a
mathematical description of the isolated neuron, and show that the characteristic
behaviour of a CA1 neuron is reproduced. We analyse the bursting mechanics, de-
termining the key parameters involved in such behaviour. In Chapter 6, we couple
the CA1 neuron model with other neurons through an excitatory AMPA synapse,
and discuss the results. In Chapter 7, we model the astrocytic influence on the CA1
neuron through an NMDA synapse. We consider the calcium signalling from astro-
cytes to be essential to the activation of the synapse, and model this intracellular
astrocytic calcium concentration in a variety of ways. We reproduce many differ-
ent experimental findings from both Tian et al. (2005) and Parpura and Haydon
(2000), and discuss the results. In Chapter 9, we summarize our findings, discuss
the physiological relevance of our model as well as its limitations, and directions
that such research may take in the future.
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Chapter 2

Physiology Background

Epilepsy is a neurological disorder that affects people of all ages worldwide. It is
identified by recurrent unprovoked seizures, which are characterized by an excessive
discharge (and often synchronization) of a large group of electrical impulses in the
brain. Thus we begin this chapter with a brief description of this disease and its
epidemiology. Although we will model the dynamics of these synchronized electrical
signals on the cellular level, the effects of these cells on the rest of the brain must be
considered. Therefore we will continue with a brief summary of the structural and
functional organization of the brain, increasing in complexity and focus until we
can properly describe the cells we plan to model. There are many ways to classify
different regions of the brain, but we have chosen to do so using the principal of
“functional localization”: we break down the brain into components based on both
function and the region in which it is located (Martin, 2003).

2.1 Epilepsy

Approximately 50 million people worldwide are affected by epilepsy (World Health
Organization, 2001), a neurological disorder which is primarily identified by re-
occuring unprovoked seizures. Although characterized by its seizures, symptoms
of epilepsy vary significantly among patients, and thus epilepsy is often thought
of as a group of disorders rather than a single disease (Milton and Jung, 2003).
Head trauma, degenerative disease, infection, hemorrhage, and genetic dispositions
are all possible causes of epilepsy (Vinters et al., 1993), and thus epilepsy affects
people of all ages and economic status (Milton and Jung, 2003). The mortality of
the population with epilepsy increases two to three fold compared to the general
population, with the majority of epilepsy-related deaths involving suicide (associ-
ated with depression), trauma associated with seizures, sudden unexpected death
in epilepsy (SUDEP), and status-epilepticus (where the brain is in a continuous
state of seizure) (Hitiris et al., 2007).

Seizures are created by the excessive discharge of electrical activity in the brain,
and are often categorized by their place of origin and their severity. This abnormal
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electrical activity can be detected by an Electroencephalogram (EEG), which is
the most common diagnotic tool when detecting epilepsy (Milton and Jung, 2003).
The process involves measuring the electrical activity of the brain cells by placing
sensitive recorders on the patient’s scalp. It is very difficult to localize the origin
of some seizures, and these are called generalized seizures, whereas others originate
in a specific location in the brain, and are known as partial seizures. According
to Williamson et al. (1997a), those who suffer from partial epilepsy comprise over
50% of all epileptic patients. Partial seizures can be further categorized into those
in which consciousness of the patients remains throughout the seizure, called par-
tial simple seizures, and into those in which consciousness is lost, called partial
complex seizures (Milton and Jung, 2003). Antiepileptic drugs, also known as “an-
ticonvulsants”, are able to successfully treat approximately 70 − 80% of patients
with epileptic seizures (when the medication is available) (Milton and Jung, 2003).
Patients with reoccuring epileptic seizures which do not respond well to medication
(or sometimes even surgery) are often said to have Medically Intractable Epilepsy
(MIE). In MIE, seizures become more frequent over time (known as the “boom-
bust” cycle), and less receptive to anticonvulsant medication (Milton and Jung,
2003). The most common type of MIE is called Temporal Lobe Epilepsy (TLE),
which is characterized by a particular type of partial seizure originating in a portion
of the brain known as the temporal lobe (Milton and Jung, 2003). Temporal Lobe
Epilepsy is especially hard to treat (Williamson et al., 1997b), and patients with
this type of epilepsy comprise approximately 80% of those suffering from partial
epilepsy. Patients with TLE can be categorized into those with Lateral Temporal
Lobe Epilepsy (LTLE), and those with Mesial Temporal Lobe Epilepsy (MTLE).
Those suffering from MTLE comprise the majority of patients who are unresponsive
to antiepileptic medication (Babb and Brown, 1987). Surgery, although often quite
effective according to Wieser and Williamson (1993), is a less appealing option due
to the risks involved. Seizures involved in MTLE often originate deep in the tempo-
ral lobe in structures known as the hippocampus and the amygdala, regions which
are well known for their involvement in memory consolidation and emotions (Mar-
tin, 2003). In particular, much recent research on MTLE has involved a specialized
type of cell found in the hippocampus, called a CA1 pyramidal neuron, which is
highly succeptible to strong electical discharges (Duvernoy, 2005). We will first
consider the function and location of the regions of the brain involved in MTLE.

2.2 Divisions of the brain

We consider the brain of a vertebrate: along with the spinal cord it composes the
central nervous system (CNS). Together the CNS and the peripheral nervous system
(PNS) control behaviour and sensory information processing. In fact, the brain also
contains components that regulate heart beat, balance and other unconscious but
life-saving functions. How does it do so? The brain is composed of two main types
of cells: nerve cells (called neurons), and glial cells. These cells are connected
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with each other in many ways, creating a complex network that relays information
in the form of electrical and chemical signals. In fact, the influence of glial cells
on neurons has received much recent attention from researchers interested in the
dynamics behind the generation of seizures. Of course, before this cellular level is
discussed in further detail we must first understand the larger components of the
brain.

The brain can be organized into two components: the forebrain (or the pros-
encephalon) and the brain stem (Martin, 2003). The brain stem is responsible for
many important functions such as cardiac and respiratory functioning, and simple
sensory processing such as pain. The forebrain is of greater interest when consider-
ing Temporal Lobe Epilepsy, however, since it encompasses the regions of the brain
known as the cerebrum (known also as the telencephalon), and the interbrain (or
the diencephalon) (Martin, 2003). The interbrain includes the thalamus, hypothal-
mus, and other important structures known for their involvement in consciousness
and processing of metabolic and sensory information. The thalamus in particular is
an important relay centre which processes information from the cerebrum. It is the
cerebrum, however, that includes the temporal lobe, and thus the hippocampus.
This is our primary stucture of interest, as it contains an area called Corpus Am-
monus 1 (CA1), which is made up of the specific type of brain cell that is known for
its irregular electrical discharges (Duvernoy, 2005). The main components of the
cerebrum are the cerebral cortex and the basal ganglia (Carlson, 2001). A summary
of this organization of the brain is shown in Figure 2.1.

Cerebrum //

,,XXXXXXX CerebralCortex

BasalGanglia

Forebrain

55jjjjjjjjjjjjjjj

,,XXXXXX

Interbrain //

,,XXXXXX Thalamus

Hypothalamus

Brain

;;
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

++WWWWWWW

Brain Stem

Figure 2.1: A summary of some of the primary functional components of the brain.

2.3 Cerebral cortex

The cerebral cortex composes the largest and most developed part of the human
brain, and includes structures such as the amygdala (thought to be responsible for
emotion), the hippocampal formation (thought to be involved in learning and mem-
ory), and the neocortex cortex (involved in higher functioning) (Martin, 2003). The
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cerebral cortex is composed of grooves, called sulci and fissures, and convolutions,
called gyri. Since the majority of the surface area is found in the grooves, this com-
position greatly increases its surface area (by approximately three times) (Carlson,
2001). For example, in a human cerebral cortex, the surface area is approximately
2360 cm2, with a thickness of only about 3 mm. Thus a large network of neurons
is possible within a small volume of cortical tissue.

The cerebral cortex is often divided into four main regions: the frontal lobe, the
parietal lobe, the occipital lobe, and the temporal lobe. These lobes are named after
the cranial bones which overlie them, and are separated by primary sulci and fissures
such as the Central Sulcus (dividing the frontal and parietal lobes). The location
and shape of these structures are shown in Figure 2.2. The cerebral cortex receives
information from the sensory organs, and although information is shared amongst
the lobes, each lobe is primarily responsible for the processing of different aspects
of the sensory information. For example, the frontal lobe contains the primary
motor cortex, which controls movement, and is involved in decision making and
planning. The parietal lobe contains the primary somatosensory cortex, which is
responsible for processing spatial information, whereas the occipital lobe contains
the primary visual cortex, and is responsible for the processing of visual information.
Finally, the temporal lobe contains the primary auditory cortex, and is responsible
for the perception and localization of sounds (Martin, 2003). The temporal lobe
also contains the hippocampal formation, and the amygdala: crucial components
of the limbic system. The limbic system is composed of interconnected structures
which are primarily involved in memory, emotion and motivation (Carlson, 2001).
As mentioned, the hippocampal formation is of particular interest when studying
seizures originating in the mesial temporal lobe.

2.4 Hippocampal formation

The hippocampal formation received its name from Arantius (in 1587) when he
compared its shape to a mythical creature known as a hippocampus or sea horse
(Duvernoy, 2005). The hippocampal formation plays an integral role in the limbic
system, and is known for its strong influence in learning and consolidation of long-
term memory. Damage to the hippocampal formation may lead to impairments in
semantic memory (knowledge of facts), and episodic memory (memory of spatial
and temporal events), but patients are often able to retain implicit memories involv-
ing well-learned actions or facts (Martin, 2003). The hippocampal formation helps
regulate emotion, especially that of pain, and is thought to influence mechanisms
of drug addiction (Duvernoy, 2005). It may influence motor reactions involved in
emotion, and regulation of hypothalamic functions (such as the secretion of hor-
mones) (Duvernoy, 2005). The hippocampal formation is usually larger in higher
species, and many believe this is because of increased capabilities in learning and
memory (Duvernoy, 2005).
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Figure 2.2: The cerebral cortex is often categorized into four lobes: the frontal lobe,
the parietal lobe, the occipital lobe, and the temporal lobe. The division for these
lobes are determined by prominent sulci, fissures, and gyri, such as the Sylvian
Fissure and the Central Sulcus. The structures in gray denote the cerebellum and
a part of the brainstem known as the medulla.

7



Located in the medial temporal lobe, the hippocampal formation is composed
of the hippocampus proper, the subiculum, and the dentate gyrus (DG). This com-
position is variable, as many do not include the subiculum in the structure of the
hippocampal formation (Martin, 2003). The hippocampus proper is categorized
into four regions called Cornu Ammonis 1, 2, 3, and 4 (abbreviated by CA1, CA2,
CA3, and CA4). Cornu Ammonis, meaning “Ram’s Horn”, was named because
of its curved shape. It is densly packed with neurons called “pyramidal neurons”
because of their triangular cell body. The dentate gyrus and the hippocampus
proper are rolled together, forming a spiral cross-section, shown in Figure 2.3(a).
The entorhinal cortex (EC) serves as the primary input to the hippocampal for-
mation, and these pathways are called “perforant pathways”. The most prominant
input from the EC is to the granuale cells in the DG (Martin, 2003). From the
DG, the neurons communicate with pyramidal cells of the hippocampal proper re-
gion CA3. The CA3 region relays to the CA1 region through a set of fibers called
Schaffer collaterals. CA1 then sends the information as direct output, as well as
to the subiculum. These long output fibers, known as axons, intertwine to create
a structure called the fornix. The output fibers from the subiculum send infor-
mation to the mammillary bodies in the hypothalamus (see Figure 2.3(b)), which
eventually relay back to the EC. Thus a circuit is formed, called the “trisynaptic
circuit” (Martin, 2003). The fornix fibers from the CA1 region relay information
to the septal nuclei, a reward center for the brain. These main projections in the
hippocampal formation are summarized in Figure 2.4. The CA1 region is of par-
ticular interest when concerned with seizure generation, since damage to the CA1
region is the most common form of mesial temporal sclerosis: neurological damage
which is commonly found in patients with temporal lobe epilepsy. However, the
research community is still unsure whether this damage is the cause or result of
hippocampal seizures (Duvernoy, 2005).

2.5 Neurons

The neuron is considered to be the brain’s primary functional cellular unit (Mar-
tin, 2003). Neurons use the exchange of chemical and electrical signals to process
and transmit information, and there are estimated to be approximately 100 billion
neurons in the human brain (Carlson, 2001). Most neurons (including those in the
hippocampus) are electrically excitable, using an electrical impulse called an action
potential to communicate with each other. These impulses have a stereotypical
amplitude and shape, and are created by a difference in potential across the cell
membrane. Information is carried through rate and timing of these action poten-
tials. (These impulses will be discussed in more detail in chapter 3). Although
neurons vary in function, their general components remain consistent: each neuron
is composed of dendrites, a soma, an axon, and axon terminals. A typical neuron
is depicted in Figure 2.5, and its main components are labelled. Most neurons are
multipolar, and thus have one axon and multiple dendrites. However, some neurons
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(a) (b)

Figure 2.3: (a) A cross section of the hippocampal formation, showing how the
dentate gyrus and the hippocampus proper are rolled together. (b) The hippocam-
pal formation has a curved c-shape. The output from the CA1 regions and the
subiculum form the fornix, which connects with the mammillary bodies.

Figure 2.4: The main projections of the hippocampal formation, showing the pri-
mary input as the entorhinal cortex. The hippocampal formation is composed of
the dentate gyrus, the hippocampus (or hippocampus proper), and the subiculum.
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are bipolar, with one axon and one dendrite, or unipolar, with one branch from the
soma which splits into both an axon and a dendrite.

Figure 2.5: A depiction of a typical neuron. The dendrites (with their many
branches), the soma, the axon and the axon terminals are labelled. The myelin
sheath, which wraps around the axon and insulates it, is also labelled.

Dendrites typically receive signals from other neurons and relay them to the
soma. It is appropriate that dendrites were named after the word “dendron”,
Greek for tree, as they often have a large branching structure which enables them
to receive signals from many different sources (Carlson, 2001). They are usually
passive, but this is not always the case: the dendrites of the hippocampal CA1
neurons can produce their own action potentials, called dendritic spikes. However,
the threshold for the excitation of these spikes is rather high (Carlson, 2001). The
signals from all the dendritic branches are integrated into the cell body of the
neuron, called the soma. The shape of the soma varies depending on the function
of the neuron. For example, CA1 neurons are called “pyramidal” because of their
triangular shape. These neurons have two main branches of dendritic trees: one
branch at the apex of the neurons (called apical dendrites), and one at the base
of the neurons (called basilar dendrites) (Duvernoy, 2005). The soma contains
the nucleus (which produces ribosomes for protein synthesis and chromosomes for
production of DNA), and mitochondria (which is responsible for the production of
energy in the form of ATP - adenosine triphosphate) (Carlson, 2001). The interior
of the soma is composed of a substance called cytoplasm, and the cell works to keep
it at a much different ionic composition than the extracellular fluid (fluid outside of
the cell membrane). The cell membrane is made up of a lipid bilayer, with proteins
forming channels and pumps to enable the cell to discriminate between ions and
maintain this desired ionic composition. Once the signals are integrated into the
soma, the electrically excitable soma “decides” whether it will send a signal or not.
That is, if the integrated signal is strong enough, it will send an electrical signal
(in the form of an action potential) down the axon, beginning at the portion of
the axon closest to the soma (called the initial segment). Axons can be very long
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(up to a meter or longer in humans), and thus to maintain this potential difference
the long axons are often covered by an insulating layer known as a myelin sheath
(Carlson, 2001). This lipid sheath ensures the fast speed of transmission of these
signals, and enables the cell to use less energy to maintain the signal: the axon
then acts as a cable until it reaches a gap between the sheaths. This gap is called
the Node of Ranvier, and allows the difference in the intracellular and extracellular
ionic composition to restore the action potential to its full amplitude. The axons
are usually passive, and carry the signal to the axon terminals (also known as the
terminal buttons). The axon may branch at the ends many times in order to send
the signal to many potential receivers, but the signal remains the same strength in
all branches (Carlson, 2001). At the ends of these branches lie small knobs (the
axon terminals), where a chemical known as a neurotransmitter is released into a
gap (called a synaptic cleft) between the axon terminal and the neighbouring cell.
By releasing these neurotransmitters, the neurons are able to communicate with
neighbouring cells by exciting or inhibiting them. Thus the information from an
electrical signal is relayed chemically through what is called a chemical synapse.
There are also electrical synapses, and the distinction between the two are described
in the next section.

2.6 Synapses

The word synapse comes from the Greek word “sunaptein”, which literally means
“join together”. Cells relay information to each other through a synapse in the
form of an electrical or a chemical signal. In electrical synapses (also known as gap
junctions), two cells are physically connected, allowing an electrical signal to be
passed between them. The two cells are found in very close proximity, and their
cell membranes share a common channel, and therefore a common ionic composi-
tion. Thus a depolarizing or hyperpolarizing potential across one membrane will
create a similar signal across the other. Glial cells, which will be discussed in sec-
tion 2.7, often communicate in this way. However, chemical synapses involved in
communication with CA1 neurons have received much recent attention (Parpura
and Haydon, 2000), so it is important to provide a more detailed description of
how these synapses function. This summary will be based on a description from
Carlson (2001). We will refer to the cell sending the signal as the presynaptic cell,
and the cell receiving the signal as the postsynaptic cell.

2.6.1 Chemical synapses

Chemical synapses allow cells to relay signals by releasing chemicals into a small
gap known as the synaptic cleft. This gap is variable in size, but is usually around
20 nm wide, and lies between the presynaptic and postsynaptic cells. Where do
these chemicals come from? The Golgi apparatus in the presynaptic soma produces
“synaptic vesicles” - vesicles containing chemicals called neurotransmitters. These
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vesicles are transported to the axon terminal by fast axoplasmic transporters (i.e.
transporters in the axon cytoplasm) called kinesin. The transporters move the
vesicles down thick bundles of proteins which run the length of the axon, known
as microtubules. The process is an active one, thus requiring energy in the form
of ATP (adenosine triphosphate). The vesicles, filled with neurotransmitters, are
transported down the axon into the axon terminals. Clusters of protein molecules
are found on the presynaptic membrane, as well as on the surface of the synaptic
vesicles. These protein clusters can bind together, and the synaptic vesicles are
“docked” on the cell membrane. Axon terminals contain many voltage-dependent
calcium channels. Therefore when an electrical signal reaches the terminal, the
membrane is depolarized and the calcium channels open. Since the calcium is
kept at a much higher concentration in the extracellular space, it quickly diffuses
into the cell. This calcium binds to the clusters of protein molecules, and force
the protein molecules to separate, creating a hole in the cell membrane known as a
“fusion pore”. Thus the neurotransmitters are released into the extracellular space.
Everytime the synaptic vesicle joins with the presynaptic membrane, the axon
terminal increases in size. This is regulated through a process called pinocytosis,
in which pieces of the membrane are pinched off into the cytoplasm. This process
provides a method of recycling, as the small pieces of pinched off membrane are
used to create more synaptic vesicles.

Once the neurotransmitters are released into the synaptic cleft, they diffuse
across and join with receptors on the postsynaptic membrane. Each neurotrans-
mitter has a complementary shape to the receptor with which it binds, ensuring
that specific neurotransmitters bind to specific receptors. When a chemical binds to
a receptor in such a way, it can be referred to as a ligand, which in Latin means “to
bind”. This process is summarized in a cartoon shown in Figure 2.6. The receptors
may be ionotropic or metabotropic: ionotropic receptors open neurotransmitter-
dependent ion channels directly, whereas metabotropic receptors act indirectly and
require metabolic energy. Once activated, a metabotropic receptor can respond in
a variety of ways. Initially, the neutransmitter-bound metabotropic receptor acti-
vates a special protein bound to the membrane, called a G-protein. However, this
activated G-protein may in turn activate a specific ion channel, or may activate
a target enzyme. The activated enzyme may then produce a second messenger to
open the ion channel. This metabotropic process is obviously more complicated
than an ionotropic process, and requires more energy, but its effects last longer and
may affect ion channels over larger distances.

The ion channels which open begin a series of events which may depolarize or
hyperpolarize the postsynaptic membrane depending on whether the neurotrans-
mitter is excitatory or inhibitory. There are four major types of ion channels which
open due to neurotransmitter reception: sodium, potassium, chloride and calcium.
When the sodium channels open, an excitatory post synaptic potential (EPSP)
results (the cell is depolarized), and when potassium channels open an inhibitory
post synaptic potential (IPSP) arises (the cell is hyperpolarized). An EPSP greatly
increases the chances that the neuron will generate an action potential. If the cell

12



Figure 2.6: A cartoon showing the process involved in a chemical synapse. For sim-
plicity, the presynaptic voltage-dependent calcium channels are not shown. Once
these channels open, calcium rushes in, causing the protein clusters which join the
synaptic vesicles with the presynaptic membrane to separate. The neurotransmit-
ters are released into the synaptic cleft, and bind to postsynaptic receptors.

membrane is depolarized, then the opening of chloride channels will produce an
influx of chloride ions, serving to repolarize the membrane. Therefore, chloride
is said to neutralize the EPSP. Activated calcium channels results in an EPSP,
which are often accompanied by important biochemical and structural changes. It
is possible that some synapses of a neuron receive excitatory signals, and others
inhibitory: the neuron integrates these signals and responds appropriately. The
whole chemical synaptic process happens quite quickly. After the receptors release
the neurotransmitter into the extracellular space, and the postsynaptic receptors
are activated, the neurotransmitters are released and transported quickly back into
the axon terminal of the presynaptic cell. For a particular neurotransmitter known
as acetylcholine (ACh), enzymes are released into the synaptic cleft to destroy the
chemicals (called enzymatic deactivation).

There are many different types of neurotransmitters, producing variable ef-
fects. Glutamate and acetylcholine are two common excitatory neurotransmit-
ters, whereas γ-Aminobutyric acid (GABA) and glycine are common inhibitory
neurotransmitters. Others, such as dopamine and serotonin, have various effects
(Martin, 2003). Two distinct GABA receptors have been identified: the fast
activating, fast deactivating ionotropic GABAA receptors are known to activate
chloride channels, and the metabotropic GABAB receptors activate potassium
channels. According to Carlson (2001), glutamate is the main excitatory neu-
rotransmitter found in the central nervous system. There are four main types
of glutamate receptors: the ionotropic NMDAr (N-methyl-D-aspartate receptors),
the ionotropic AMPAr (α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate recep-
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tors), the ionotropic kainate receptors, and the metabotropic glutamate receptors
(mGluR). Excitatory synapses between neurons most often involve AMPAr. These
are fast activating and fast deactivating receptors that respond to α-amino-3-
hydroxyl-5-methyl-4-isoxazole-propionate (AMPA), a synthetic amino acid which
mimics the effects of glutamate. These receptors control sodium channels and pro-
duce EPSPs. Similarily, N-methyl-D-aspartate (NMDA) is a synthetic substance
derived from an amino acid, which is a selective agonist for these particular chan-
nels which are now called NMDAr. These receptors are fast activating, but slow
deactivating, and are unique in that they are ligand dependent and voltage depen-
dent. The NMDAr activate calcium and sodium channels. However, the calcium
channels are initially blocked by magnesium, which naturally moves from the ex-
tracellular space and binds to a binding site deep in the calcium channel. Thus
when the receptors are activated by gluatamate (or aspartate), the calcium chan-
nels open but calcium can not enter the cell. If, however, the neuron is depolarized,
then the magnesium is released, and the ion channel is free to admit calcium into
the cell. The calcium depolarizes the cell, and may initiate important structural
or biochemical changes. These NMDA receptors are found in great numbers in the
hippocampal formation, especially in the CA1 area.

2.7 Glial cells

Another type of cell is found in the brain - the glial cell - and they outnumber
neurons by 10:1 (Martin, 2003). Glial cells are best known for their structural,
functional and metabolic support, and have been considered to be the glue that
physically holds the brain together. They are known to insulate neurons so that
communication remains private and messages stay clear, to provide nutrition to
neurons, and to remove dead cells. There are two major groups of glial cells:
microglia and macroglia (Martin, 2003). Microglia play a phagocytic role, meaning
that they remove dead or dying cells, destroy unwanted microorganisms, and aid in
the repair of injured cells. Macroglia can be separated into four types: astrocytes,
oligodendrocytes, Schwann cells, and ependymal cells. The oligodendrocyte’s main
function is to produce myelin for neurons in the central nervous system, whereas the
Schwann cells produce myelin for neurons in the peripheral nervous system, and
perform some phagocytotic activity. The ependymal cells help produce cerebral
spinal fluid, whereas the astrocytes are known to provide physical support and
perform phagocytotic activity. Although for many years glial cells were thought to
perform auxillary functions, they are now considered to play a much larger role.
In particular, the astrocyte is thought to influence neuronal signalling in the CA1
area of the hippocampus proper, and may even play a crucial role in the generation
of seizures.
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2.7.1 Astrocytes

Astrocytes are “star-shaped”, and although they do not have dendrites nor axons,
their many long processes that extend from their soma enable them to have many
levels of communication (Carlson, 2001). They are most known for their structural
support and phagocytotic activity, however they also provide nutrition. Astrocytes
can help regulate the chemical composition of the extracellular space, by taking
in and releasing chemicals which must be kept at particular levels. Astrocytes
surround somatic and dendritic membranes as well as many surrounding capillaries,
and thus are thought to extract glucose from the capillaries and break it down
to lactate for neuronal uptake, which neurons use for metabolic energy (Carlson,
2001). Their long branches also surround neuron-neuron synapses, and help prevent
scrambling of signals by insulating the neurons.

Due to their absence of a sufficient number of sodium channels, astrocytes are
not electrically excitable as most neurons are. This has contributed to their lack
of attention over the years, as their membrane potential is difficult to measure.
However, with modern imaging techniques, scientists have been able to learn much
more about these cells. In fact, they are now known to communicate with both
neurons and other astrocytes (Carlson, 2001). Astrocytes interact with neurons by
wrapping around synapses, and are thought to monitor up to 90% of cells in the
cerebral cortex (Carlson, 2001). For this reason, and since they are known to have
a variety of both ionotropic and metabotropic neurotransmitter receptors, they are
thought to modulate neuron activity. In particular, electrically excited neurons are
able to signal astrocytes through their synaptic release of glutamate. Astrocytes
have metabotropic glutamate receptors (mGluRs) on their membrane, which be-
come activated when the neuronal glutamate diffuses through the synaptic cleft.
When these receptors are activated, a messenger protein called Inositol Triphos-
phate (IP3) is released into the astrocytic cytosol. This protein activates the IP3
receptors that are found on the membrane of internal calcium stores, namely the
endoplasmic reticulum (ER). Once activated, calcium is released into the intra-
cellular space (Nadkarni and Jung, 2005). Astrocytes usually communicate with
each other through gap junctions and therefore are directly connected. Thus one
activated astrocyte will result in waves of calcium across neighbouring astrocytes.
However astrocytes communicate directly with neurons, modulating neuronal activ-
ity through chemical synapses. Thus one activated astrocyte will be able to access
and affect a multitude of neurons. Astrocytes most commonly use glutamate to
communicate with neighbouring neurons. The increase in the internal astrocytic
calcium concentration leads to glutamate release into the synaptic cleft, activating
the neuronal NMDA receptors and producing an excitatory effect. Since astrocytes
can modulate neuronal activity, perhaps pathologies in these cells (instead of in
neurons), play a role in seizure generation. In fact, many studies have recently
been done to understand the effect of astrocytes on pyramidal neurons found in the
hippocampus (Parpura and Haydon, 2000; Tian et al., 2005). It has been implied
that upregulation of mGluRs on the membrane of astrocytes can lead to excessive
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activity of neighbouring neurons (Nadkarni and Jung, 2005).

Figure 2.7: A drawing of a typical astrocyte. Its long processes permit it many
levels of communication, both with other astrocytes and with neurons.

2.8 Discussion

Epilepsy affects many people worldwide, and yet the cause of epileptic seizures re-
mains a mystery. Epilepsy is a diverse disease with variable symptoms affecting a
variety of brain structures. Therefore to obtain a better understanding of seizure
generation, it is important to focus on a particular type of epilepsy and the cor-
responding structures involved. We concentrate on mesial temporal lobe epilepsy
(MTLE), as it is the most common form of medically intractable epilepsy (MIE),
and thus very difficult to treat. In this form of epilepsy, the hippocampus is often
the focal point of seizure generation, resulting in potential deficiencies in memory
and learning. In particular, neurons known as CA1 neurons receive attention for
their ability to easily produce excessive electrical discharges. Astrocytes have also
been a focus in recent research, as they play a role in modulating the behaviour
of these neurons. The function and structure of the neurons, the glial cells, and
the synapses through which they communicate, have been reviewed. A better un-
derstanding of how all the parties involved communicate and affect each other is
essential for more effective treatments and eventually a cure for this deadly disease.
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Chapter 3

Neuron Electrophysiology

Fundamental to most nerve cells is the action potential: an all-or-none pulse of
voltage that is produced near the cell body and propagated down the axon. This
electrical impulse is the primary mode of communication for a neuron, carrying
information quickly and efficiently. Through a series of equations, Hodgkin and
Huxley have created a means of describing the ionic mechanisms that generate these
action potentials (Hodgkin and Huxley, 1952d). These equations have been used
in our two-compartment model of the CA1 pyramidal neuron, so a brief overview
is required. Before we can outline the principal characteristics of the Hodgkin
and Huxley model, we must understand some important concepts. Firstly, what
makes a cell “excitable” (ie. able to attain an action potential)? Secondly, what
techniques have been used to measure the properties of these cells? Next, what are
ion channels, and how do they work? Hodgkin and Huxley were unaware of the
existence of individual ion channels when their model was developed, but for a solid
understanding of the dynamics of a cell, we will discuss the conductances of these
ion channels and the currents that pass through them (instead of simply the overall
permeability of the membrane). Throughout each section in this chapter, we will
discuss the influences of each of these properties on the production of an action
potential. Since Hodgkin and Huxley based their model around the concepts of
electrophysiology, the idea of a cell represented as an R.C. circuit will be introduced.
Then, once the necessary background information has been discussed, a summary
of the Hodgkin and Huxley model of action potential generation will be provided.

3.1 Excitable cells

The cell membrane is composed of a phospholipid bilayer, with hydrophilic polar
heads facing the extracellular and intracellular space, and hydrophobic non-polar
tails (which face each other). This bilayer serves as a very thin insulator, preventing
ions and other solutes from crossing. That is, it separates charges from the intra-
cellular and extracellular space, acting as a capacitor. To provide the cell with a
means of controlling the influx and efflux of ions, the membrane contains pore-like
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proteins called ion channels and ion pumps. The ion channels use passive transport
to allow ions to move along their electrochemical gradient into or out of the intra-
cellular space, whereas ion pumps use energy (known as active transport) to move
the ions against their electrochemical gradient. These channels and pumps can dis-
criminate between the ions (although not perfectly), allowing one particular ion to
cross the membrane and not the others. The movement of these ions through their
respective channels or pumps causes an ion flux, which has an immediate effect on
the potential across the membrane. Since the ion channels have been shown to play
a crucial role in generating an action potential (Hille, 1992), we will concentrate on
the dynamics of these channels, and not the pumps.

Most cells maintain a constant potential across the membrane when no stimulus
or synaptic input is applied. That is, the cell works to keep a constant difference
in electrical potential between the intracellular and extracellular space. This is
called the cell’s “resting potential”. It is customary to define the potential across a
membrane (Em) as the difference between the intracellular potential (Ei) and the
extracellular potential (Ee) such that

Em(t) = Ei(t) − Ee(t) (3.1)

where t represents time. To determine Em, the following approach is often used.
A very thin glass micropipette electrode attached to an amplifier is sent into the
extracellular space. The amplifier is set to zero, and the electrode is advanced until
it enters the cell. An immediate change in recording will be seen, and this is the
resting membrane potential (Hille, 1992). Experiments by Cole and Curtis (1939)
and by Hodgkin and Huxley (1952d) demonstrated that when at rest, the membrane
potential for a cell is negative (Ei < Em). The specific potential varies depending
on the cell (usually from −30 mV to −90 mV ), but most excitable cells have a
resting potential of about −60 mV to −70 mV (Fall and Keiser, 2002). When a
stimulus or synaptic input is applied, the electrical response of the nerve cell is
not necessarily proportional to the signal it received. This is because nerve cells
are “excitable cells”. That is, when a small signal is received by the cell, a small
perturbation in the membrane potential occurs. However, if an excitatory stimulus
is applied that surpasses a particular threshold, a large non-linear depolarization
results that is determined by the cell properties, and not the impulse received.
This burst of electrostatic energy is called an action potential, and has a consistent
amplitude and stereotypical shape. Information is conveyed by varying the time
and rate of these pulses (called “spike trains”). A typical action potential and its
properties are shown in Figure 3.1.

To understand an action potential, one must consider the forces that interact to
create the membrane potential. The cell membrane acts as a boundary between the
extracellular fluid and the cell’s intracellular fluid. Both these substances contain a
vast number of ions, and so electrical forces and forces of diffusion are in constant
conflict. Walther Nernst, a German physical chemist, formulated an equation to
determine the equilibrium potential for these ions - the balance between electrical
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Figure 3.1: Top: An excitable cell undergoes an action potential when it is de-
polarized past a threshold. The key properties of an action potential are labeled.
Bottom: The subthreshold and superthreshold stimuli applied.

attraction and diffusion due to concentration gradient. Consider two ions, chloride
(Cl−) and potassium (K+), which are in a solution on either side of a membrane
which is semi-permeable to K+ (i.e. only K+ is permitted to cross the membrane).
Say that the left side of the membrane has a high concentration of this solution, and
the right side has a low concentration of the solution. Because of this concentration
difference, K+ will initially flow from high concentration to low concentration by
diffusion. Since Cl− is unable to move across the membrane, the electrical charge
will no longer be balanced. The right side of the membrane will become more
positive, and the left more negative. The electrical potential gradient will cause
K+ to be pulled to the negative side. Thus the equilibrium in this case is a balance
of both diffusion and electrical attraction. Each ion has a different equilibrium,
called the Nernst potential, or the reversal potential. The Nernst Equation is given
by:

ENernst =
RT

zF
ln

[ion]out

[ion]in
(3.2)

where R is the universal gas constant, F is Faraday’s constant, T is the absolute
temperature in Kelvin, and z is the valence of an ion (or the charge number of the
electrode reaction). For more information on the Nernst equation, see Hille (1992).
Since this Nernst potential is derived using thermodynamics, the membrane poten-
tial will tend towards this value regardless of its initial starting potential. How does

19



one describe current when ions flow across the membrane? Goldman (1943) and
Hodgkin and Katz (1949) derive a current-voltage relation, describing the current
across a particular ion channel S (denoted IS), with respect to the membrane poten-
tial (Em) and the concentration of ions in the intracellular and extracellular space
([Ci] and [Co] respectively). This relation is known as the “Goldman-Hodgkin-Katz
Current Equation” (or GHK current equation), and is given by:

IS =
PSzS

2F 2Em

RT

([Ci] − [Co]e
−zsEmF/(RT ))

1 − e−zsEmF/(RT )
(3.3)

where PS is the permeability of the membrane, zS is the valence of the ion, F is
Faraday’s constant, R is the gas constant, and T is the temperature in Kelvin. It is
interesting to note that when the membrane potential, Em, is the Nernst potential
for the ion S, then IS = 0. To derive this GHK current equation, they made the
assumption that the electric field across the membrane is constant. For a full deriva-
tion and explanation of this equation, see Goldman (1943) and Hodgkin and Katz
(1949). This relation between current and voltage leads us to contemplate which
ion channels are fundamental to the production of an action potential. Moreover,
how do they individually affect the membrane potential? Before these problems
are addressed, the methods used to measure the voltage and current of an excitable
cell will be summarized.

3.2 Methods of measurement

Throughout history, a few innovative methods changed the way we look at excitable
cells. In particular, the voltage-clamp technique enabled scientists to observe the
influence of an applied step of voltage on the currents flowing in and out of the cell.
On the other hand, the current clamp enabled them to observe how an applied
current may influence the membrane potential. Finally, the patch clamp technique
allowed scientists to isolate a single ion channel and observe its dynamics. This
discussion follows Guevara (2003) and describes these three methods, along with a
brief description of how the squid giant axon was used to further our understanding
of action potentials.

3.2.1 The voltage clamp technique

The voltage clamp technique, developed by Cole (1949), Marmont (1949), and
Hodgkin, Huxley, and Katz (1949), enables one to control the voltage in a cell mem-
brane through a feedback loop. One external electrode and two internal electrodes
are needed for this method. First, electrodes are placed into both the extracellular
and the intracellular space. These are called “voltage wires”, and they determine
the difference in potential across the membrane. Secondly, a “current wire” is
placed inside the membrane, and injects a current into the cell. The electrodes
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are attached to an amplifier so that once the membrane potential is recorded, the
amplifier compares the actual potential with the desired fixed membrane potential.
The error between the two determines the input from the amplifier into the current
wire, and an appropriate signal is fed back to maintain the desired fixed voltage.
The input current is thus equal to the ionic current passing through the membrane
at the clamped potential. Using this technique, an increase in injected current can
be applied to step the membrane potential up from one fixed value to another. For
example, the membrane potential can be stepped up from its resting potential to a
superthreshold potential, and the resulting response from the ion channels can be
recorded (Figure 3.2).

Figure 3.2: A voltage clamp. The membrane potential is measured (by the voltage
wires) and fed into an amplifier. The actual potential is compared with the desired
membrane potential, and a signal is sent back through the current wire as negative
feedback to maintain the desired potential.

The voltage clamp technique was originally used on the squid giant axon. This
is a giant axon, found in the stellate nerve of the squid (the North Atlantic squid
is used in North America), which is used to initiate movement when escaping from
predators. Thus the conduction velocity must be quite fast. This is achieved by
the axon’s extremely large diameter (up to 1 mm), and therefore low resistance to
the signal propagation. This large diameter also permits a much easier insertion
of the internal electrode. In fact, during the voltage clamp experiments with the
squid giant axon, the electrodes are inserted longitudinally into the axon. This
clamped the squid axon uniformly along its length, ensuring isopotentiality along
this portion of axon. Therefore the total current response of that portion of the axon
can be attributed to one membrane potential. Currents are generally measured in
µA/cm2.
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3.2.2 The current clamp technique

The current clamp technique provides scientists with a means of determining how
current affects the membrane potential. The set up is similar to that of the voltage
clamp, but instead the voltage is permitted to vary and the current is clamped.
Therefore if natural changes in current (or an applied current) causes a change
in the membrane potential, the amplifier will record these changes. Using this
mechanism and an appropriate stimulation, an action potential can be produced
and examined. It is important to note that current flowing into the cell is taken to
be negative, and current flowing out is taken to be positive, by convention.

3.2.3 The patch clamp technique

The patch clamp technique is used to study single ion channels found on a patch
of membrane of an excitable cell. A glass micropipette (with a tip diameter on the
order of 1 µm) is pressed against the surface of the membrane, and is suctioned
to provide a strong seal. The micropipette is filled with liquid which is similar
in composition to the bath solution (or extracellular fluid). An electrode is placed
inside the micropipette solution to conduct current, and is attached to an amplifier.
Then the electrical activity through the membrane is recorded. It is possible to
isolate only one ion channel in the clamped patch of membrane. In this case, the
opening and closing of the ion channel can be recorded. The recordings show that
in the “open” state, a fixed amount of current is able to flow through the channel.
The Nobel prize in Physiology or Medicine was awarded to Neher and Sakmann
in 1991 for their development of the patch clamp technique (in the late 1970s and
early 1980s).

3.3 The current-voltage relations of ion channels

The voltage clamp and current clamp techniques allowed the currents involved in
an action potential to be disected and analysed. Hodgkin and Huxley (1952a)
were able to identify which ion channels were fundamental to the production of
an action potential in the squid giant axon. This section follows Hille (1992). We
outline how Hodgkin and Huxley identified the principal channels, their current-
voltage relations, how these relations affect an action potential, and how the ionic
currents can be modeled mathematically.

3.3.1 Ions involved in an action potential (in the squid giant
axon)

Hodgkin and Katz noticed that during an action potential, the peak membrane
potential of a squid giant axon approached that of the Nernst potential of sodium
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(ENa ≈ 50 mV ) (Hodgkin and Katz, 1949). Therefore they proposed the “sodium
hypothesis”. That is, they proposed that during an action potential, the membrane
became much more permeable to sodium. Thus, with sodium in a much higher con-
centration in the extracellular space than inside the cell, sodium would rush in, and
the membrane potential would climb toward the sodium Nernst potential. To test
their hypothesis, they reduced the extracellular sodium chloride and found that
the action potential was also reduced (but not the resting potential). If the ex-
tracellular sodium was removed entirely, the cell became reversibly inexcitable (i.e.
no action potential could be obtained) (Hodgkin and Katz, 1949). They asserted
that potassium ions also played a lead role in generating an action potential, as
on the downstroke, the potential approached that of the potassium Nernst poten-
tial (EK = −90 mV ). With potassium in a much higher concentration inside the
cell, these dynamics seemed reasonable. Thus Hodgkin and Katz (1949) identified
sodium (Na+), potassium (K+) and a small voltage-independent leak current to
be the fundamental currents involved in the generation of an action potential in a
squid giant axon. These findings concur with current experimental data achieved
using present technology (Hille, 1992).

Using the voltage clamp technique, Hodgkin and Huxley (1952a) proposed a
method of determining how each ion contributed to the total ionic current. They
measured the ionic currents obtained from stepping the voltage up from the resting
potential of −65 mV to −9 mV . This current was attributed to both the influx
of sodium and the efflux of potassium. They then replaced 90 % of the sodium in
the bath solution (or extracellular fluid) with ions which could not permeate the
membrane, and again recorded the ionic currents over the same step of voltage.
As sodium and potassium were determined to be the only strong influences on
an action potential, and most of the sodium had been replaced, they attributed
this leftover current to the efflux of potassium ions. Then, the difference between
the two currents gave them the inward current due to sodium. Using Hodgkin
and Huxley’s model (outlined in section 3.6), these results have been simulated
(Figure 3.3).

To consider the individual influences of the sodium and potassium currents on
an action potential, Hodgkin and Huxley (1952a) measured these currents while
the squid giant axon underwent a step of voltage, and plotted the results (see Fig-
ure 3.4). These currents were simulated using the Hodgkin-Huxley model in sec-
tion 3.6. It is interesting to note that the sodium current rose and fell (even though
the voltage was clamped), but the potassium current did not. This led Hodgkin
and Huxley to consider how these ion currents affect the membrane permeability.

3.3.2 How ion currents affect membrane permeability

Hodgkin and Huxley (1952b) wished to determine how these ionic currents altered
the membrane permeability. That is, was a conductance-based model justified? To
answer this question, they sought to test their theory of an “independence rela-
tion”: that the permeability of the membrane to a particular ion was not affected
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Figure 3.3: A method proposed by Hodgkin and Huxley (1952a) to separate the
total ionic current during a step of voltage into the inward current of sodium and the
outward current of potassium. The sodium in the extracellular fluid was replaced
with impermeant choline ions, and the current was measured over the same step in
voltage. This current could be attributed to the efflux of potassium alone. Then
the difference between the two currents gave the inward current of sodium. Results
were simulated using Hodgkin and Huxley’s model (described in section 3.6).

by the presence of other ions. They first depolarized the membrane significantly
such that the permeability to sodium ions was high. They then stepped up the
voltage, and immediately measured the change in current (before the membrane
had time to change permeability: within 10−30 µs). Hodgkin and Huxley (1952b)
discovered that the current-voltage relation was approximately linear. Similarly, if
the same experiment was performed such that the membrane was first depolarized
for high potassium permeability, a linear current-voltage relation would again re-
sult. Therefore a conductance-based model was justified, and Ohm’s law could be
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Figure 3.4: The voltage is clamped at Vm = 60 mV . The sodium current has a fast
increase and decrease in size, whereas the potassium current increases slowly and
monotonically. Note that the sodium current is negative because of its direction of
flow (into the intracellular space).

used to descibe these conductances:

g∗
Na(Vm) =

INa

Em − ENa

(3.4)

g∗
K(Vm) =

IK

Em − EK

(3.5)

g∗
L =

IL

Em − EL

(3.6)

(3.7)

where g∗
Na and g∗

K represent the voltage-dependent (and hence time-dependent)
conductance for the membrane permeability to Na+ and K+ ions respectively, g∗

L

represents the constant conductance for the leak, INa, IK and IL represent the
ionic currents, Em is the membrane potential, and ENa, EK and EL are the Nernst
potential for these ions. To simplify the mathematical analysis, this Ohmic relation
is often written (Hodgkin and Huxley, 1952a) as:
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gNa(Vm) =
INa

Vm − VNa

(3.8)

gK(Vm) =
IK

Vm − VK

(3.9)

gL =
IL

Vm − VL

(3.10)

Such that

Vm = Em − Er (3.11)

VNa = ENa − Er (3.12)

VK = EK − Er (3.13)

VL = EL − Er (3.14)

where Er is the absolute value of the resting potential. Thus Vm, VNa, VK and VL

are taken to be their displacement from the resting potential, Vrest = 0 mV . Ohm’s
law is useful when the current-voltage relation is linear, but some currents (such
as calcium) are less linear than others. In these cases, the GHK equation (Equa-
tion 3.3) may be used instead of the Ohmic approximation, where permeability PS

can represent the conductance.

3.4 The cell as an R.C. circuit

The study of the change in current and voltage in a cell led to the depiction of
the cell as an electric circuit. Hodgkin and Huxley (1952d) described such a model
based on their commonly used squid giant axon. Basic laws of physics were used to
represent the relationship of a cell with its external surroundings. This was done
based on three major concepts. Firstly, they recognized that the cell membrane is
an insulating lipid bilayer, through which current cannot directly flow. By accu-
mulating a charge of electricity, the membrane acts as a capacitor. Secondly, the
selective permeability of the membrane controls the current flow by providing re-
sistance, acting as an electronic resistor. Finally, the extracellular and intracellular
potential difference creates a source of electrical energy, performing as a battery.
Hodgkin and Huxley (1952d) then represented their squid giant axon as a parallel
R.C. circuit (Figure 3.5), allowing laws of electric circuits to be used.

Ohm’s law relates current, voltage and resistance (equations (3.8)-(3.10)). Since
the membrane functions as a capacitor, the current across the membrane, Icap, is
given by:

Icap = Cm(
dVm

dt
) (3.15)
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Figure 3.5: The squid giant axon represented as an R.C. circuit. The arrows denote
the voltage dependence of the sodium and potassium conductances.

where Cm is the membrane capacitance, and Vm is the potential across the mem-
brane (defined in equation (3.11)). By Kirchoff’s law, the capacitive current must
be equal to the ionic current and any applied currents. Recalling that our conven-
tion for the direction of positive current flow is outwards, we have

Icap = −Iion + Iapplied (3.16)

= −INa − IK − IL + Iapplied (3.17)

where Iion is the sum of all ionic currents, which according to Hodgkin and Katz
(1949) involved sodium, potassium, and a leak current, and where Iapplied represents
any applied current. Combining equations (3.8)-(3.10), (3.15), and (3.17), we have

Cm
dVm

dt
= −gNa(Vm)(Vm−VNa)−gK(Vm)(Vm−VK)−gL(Vm−VL)+Iapplied (3.18)

which provides us with a means of describing the membrane potential. The question
remains: how can these voltage-dependent conductances be represented mathemat-
ically? Hodgkin and Huxley (1952a) used the voltage clamp technique to study the
independent sodium and potassium currents with respect to a depolarizing step. In
particular, they were interested in how the permeability to these ions change with
voltage and time.
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3.5 The conductances gL, gNa and gK

Hodgkin and Huxley were able to separate and examine the sodium and potas-
sium ion currents which flowed across the membrane during a depolarization of
the cell (Hodgkin and Huxley, 1952a), as described in the previous section. Using
Ohm’s law, i.e. equations (3.8)-(3.10), and their their knowledge of the ion cur-
rents obtained from their voltage clamp experiments, they were able to plot the
conductances for sodium and potassium for a fixed voltage over time. This section
describes the dynamics of these sodium and potassium and leak conductances, and
the Hodgkin and Huxley model used to represent them. This discussion follows
Hille (1992), Nelson and Rinzel (1998), and Hodgkin and Huxley (1952a).

From these voltage clamp experiments, Hodgkin and Huxley noticed that the
sodium conductance behaved quite differently from the potassium conductance.
When the membrane potential was held under a depolarizing step of voltage, the
sodium conductance increased quickly, reached a peak, and then decreased at a
slower rate. However, under this same depolarization, the potassium conductance
increased approximately ten times slower than the sodium conductance (Hille,
1992), and maintained this increased value. Thus the sodium conductance is said
to have a fast activation and slower inactivation, whereas the potassium conduc-
tance is said to undergo a very slow activation, and no inactivation (Hodgkin and
Huxley, 1952a). If the depolarization is removed when the membrane has very high
sodium permeability (i.e. it is at the peak of its upstroke), before the sodium con-
ductance has a chance to inactivate, then the sodium conductance returns to rest
quickly and exponentially. If the depolarization is removed when permeability to
potassium is high, then the current decays slowly and exponentially. Hodgkin and
Huxley did this same experiment for a variety of depolarizations, to determine the
overall behaviour of the ion channels (Hodgkin and Huxley, 1952a). They noted
that as the depolarization increased, the conductance for sodium and potassium
became larger, and increased at faster rate. However, these conductances were
found to saturate at some maximum value. Therefore, the conductance of each ion
can be represented as its maximum conductance times the fraction of the maxi-
mal conductance that actually occurs. Again, we note that Hodgkin and Huxley
were unaware of the existence of individual ion channels when their model was de-
veloped, but their reasoning remains accurate. For simplicity, we will discuss the
conductances in terms of these ion channels instead of the overall permeability. We
consider each ion channel to have a small number of “gates” regulating the flow of
ions across the channel. These gates can be in one of two states: a permissive state
and a non-permissive state. If all the gates are in the permissive state, then the ion
channel is in its open state, and ions can pass through. However, if even one of the
gates are in the non-permissive state, then the ion channel is considered closed, and
no ions can be transported across the membrane (Nelson and Rinzel, 1998). Since
we are dealing with a whole population of ions, we can consider a “gating variable”
to be the fraction of gates in the permissive state, and thus will be a dimensionless
number between zero and one. The next step is to see if our gating variables give
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us an accurate expression of our ionic conductances. We begin by examining our
potassium conductance.

3.5.1 The potassium conductance

We know that the potassium conductance is characterized by its slow activation un-
der a constant depolarization, with no inactivation. This conductance curve follows
an s-shape upon depolarization, and decreases exponentially upon repolarization.
We let the potassium activation gating variable be expressed by ‘n’. Since the per-
missivity of the gates are only dependent on the membrane potential Vm (and thus
indirectly on time), then n can be modeled with first order kinetics:

(1 − n)
αn
−⇀↽−
βn

n (3.19)

where (1 − n) is the fraction of gates in the non-permissive state, n is the fraction
of gates in the permissive state, and αn and βn are the rate constants under which
this transformation occurs. Then this can be expressed mathematically as:

dn

dt
= αn(1 − n) − βnn (3.20)

Hodgkin and Huxley (1952a) then defined the time constant τn and the steady state
value n∞ as:

τn =
1

αn + βn

(3.21)

and

n∞ =
αn

αn + βn

(3.22)

Using equations (3.21), and (3.22), we can rearrange equation (3.20) to get:

dn

dt
=

n∞ − n

τn

(3.23)

Using the initial condition n(t = 0) = n0, this problem can be solved to give

n = n∞ − (n∞ − n0)e
−t/τn (3.24)

Then considering the known conductance curves for a membrane potential clamped
at some uniform value, Vc, Hodgkin and Huxley attempted to fit this curve by
finding the values τn, n∞ and the initial n0 (Hodgkin and Huxley, 1952a). They
let gK = ḡKn, where ḡK is the maximal potassium conductance. Thus to fit this
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curve for n to their conductance curve, they must first scale their gating variable
by the maximal conductance for potassium. Hodgkin and Huxley found that they
could not fit the s-shaped part of the potassium conductance curve well with their
gating variable. Rather, they could achieve a much better fit using n4 (Hodgkin
and Huxley, 1952a). Therefore, the opening of the potassium channels can be
considered to be dependent on four independent gates, all of which must be in the
permissive state in order to open the channel. Thus the potassium conductance
can be expressed as:

gK = ḡKn4 (3.25)

Then, from Ohm’s law (equation 3.9), the potassium current can be expressed as:

IK = ḡKn4(Vm − VK) (3.26)

3.5.2 The sodium conductance

The sodium conductance undergoes a fast activation and a slow inactivation under a
uniform depolarization. Recall that the peak conductance increases with increased
depolarization, and the activation and inactivation become faster. To model this
dynamic with one gating variable, Hodgkin and Huxley would have been required
use at least a second order differential equation. Instead, they chose to use two
gating variables, an “activation variable”, m, and an “inactivation variable”, h, and
therefore were able to maintain first order kinetics (Hodgkin and Huxley, 1952a).

(1 − m)
αm
−−⇀↽−−
βm

m (3.27)

(1 − h)
αh
−⇀↽−
βh

h (3.28)

This can be expressed as:

dm

dt
= αm(1 − m) − βmm (3.29)

dh

dt
= αh(1 − h) − βhh (3.30)

Then as before,

dm

dt
=

m∞ − m

τm

(3.31)

dh

dt
=

h∞ − h

τh

(3.32)
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where

τm =
1

αm + βm

(3.33)

τh =
1

αh + βh

(3.34)

and

m∞ =
αm

αm + βm

(3.35)

h∞ =
αh

αh + βh

(3.36)

Hodgkin and Huxley set out to fit the sodium conductance curve as they did
previously with potassium. They first needed the conductance curves for the gating
variables when the membrane potential is clamped at some uniform value, Vc.
Thus, it would be helpful if they had a means of separating these activation and
inactivation gating variables. This was achieved by measuring the inactivation by
a “two-pulse experiment” (Hille, 1992). In this technique, the membrane is held
under a constant depolarization so that full inactivation occurs. The membrane is
then immediately repolarized to its resting potential, and remains there for some
variable period of time. Over this short period of time, some of the channels recover
from the inactivation, and some do not. The membrane is again depolarized (to
the same value as before), and it becomes evident what fraction of the channels
have recovered from the inactivation. Varying the interval between the two pulses
provides scientists with a time course for the inactivation (see Hille (1992) for more
details).

Then Hodgkin and Huxley were able to fit their sodium conductance activation
and inactivation curves in the same manner as before (with the potassium conduc-
tance). That is, they fit the values τm, τh, m∞, h∞, at some clamped membrane
potential Vc, and fit the initial values m(t = 0) = m0 and h(t = 0) = h0, when

m = m∞ − (m∞ − m0)e
−t/τm (3.37)

h = h∞ − (h∞ − h0)e
−t/τh (3.38)

by using the relation

gNa = ḡNam
3h (3.39)

Here ḡNa is the maximal potassium conductance (Hodgkin and Huxley, 1952a).
Thus the sodium channel is in an open state when all three activating gates are in
their permissive state, as well as the one inactivating gate. The sodium current can
be expressed, using Ohm’s law (equation 3.8), as

INa = ḡNam
3h(Vm − VNa) (3.40)
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3.5.3 A description of the action potential using the sodium
and potassium conductances

The sodium and potassium conductances can be used to gain a deeper understand-
ing of the action potential. In Figure 3.6, these conductances, their respective gat-
ing variables, and the action potential were all simulated using the Hodgkin-Huxley
model in section 3.6. Using this information, we are able to give a more detailed
description of the dynamics of an action potential. With enough depolarization,
the ionic currents passing through their respective channels will generate an action
potential. First, an excitatory stimulus causes voltage-gated sodium channels to
open. The sodium gradient forces it to diffuse in, and the cell is depolarized. If the
membrane potential crosses a particular threshold, an action potential results. As
the cell depolarizes, more voltage-dependent sodium channels open, and the influx
of sodium continues to increase. If the sodium channels were the only active chan-
nels, the cell would settle at ENa. However, the voltage-gated potassium channels
eventually open, causing potassium to flow along its gradient out of the cell. At
this time, the voltage-sensitive sodium inactivation channels have already started
to close, and the influx of sodium has decreased. At approx Vm = 100 mV , the
membrane potential reaches its peak, and the cell begins to repolarize. The repo-
larization continues as the sodium inactivation channels close, and the potassium
channels open. The influx of sodium is now minimal, and the flow of potassium out-
ward is steadily increasing. The membrane potential begins to drop back toward
EK . The voltage-gated potassium channels are also time-dependent: they close
slower than the other channels. Therefore even after the cell has repolarized back
to resting potential, some potassium channels are still open. Potassium continues
to flow out, and the cell membrane becomes “hyperpolarized” (more negative than
the resting potential). Thus, for approximately the 1 ms after the channels have
fully closed, the threshold to create a new action potential is harder to obtain. This
is called the refractory period, and ensures uni-directional propagation of the action
potential.

3.5.4 The leak conductance

The leak conductance was very simple for Hodgkin and Huxley to describe in
comparison to the sodium and potassium conductances, because it was voltage-
independent. From Ohm’s law (equation (3.10)), they could immediately describe
the leak current as

IL = ḡL(Vm − VL) (3.41)

where ḡL is the constant conductance, and VL is the equilibrium (Nernst) potential
for this current. To solve for these constants, Hodgkin and Huxley eliminated the
sodium current by putting the axon in a sodium-free bath solution (Hodgkin and
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Figure 3.6: Top: An action potential generated by a pulse of applied current (of
15 µA/cm2 at time = 15 ms for one ms). Middle: The sodium conductance rises
and falls very quickly, the potassium current rises and falls on a much slower scale.
Bottom: The sodium activation and inactivation gating variables (m and h) are
shown, as well as the potassium activation gating variable (n). Note that initially,
h is high and m is low, but once the membrane is depolarized, h becomes low and
m becomes high.

Huxley, 1952a). Using a voltage clamp to maintain a constant membrane potential,
Kirchoff’s law and the capacitance law (equations (3.17) and (3.15)) give

I∗
applied = IK + IL = ḡKn4(Vm − VK) + ḡL(Vm − VL) (3.42)

Then they clamped the membrane potential at two particular voltages: firstly
at Vm = VK , the Nernst potential for potassium, and secondly at a very small
potential (specifically at Vm = −84 mV ). The clamp at Vm = VK ensured that
no potassium current would flow (since it is in its equilibrium), and so they have
reduced equation (3.42) to

I∗
applied(VK) = ḡL(VK − VL) (3.43)

The second clamp reduces equation (3.42) to

I∗
applied(−84) = ḡL(−84 − VL) (3.44)
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Solving these two equations allowed Hodgkin and Huxley to solve for ḡL and VL, and
thus they obtained a full mathematical description for this leak current described
by equation (3.41). Therefore Hodgkin and Huxley were able to mathematically
express all the ionic currents involved in the generation of an action potential. The
full model will be summarized in the next section.

3.6 The full Hodgkin-Huxley model of a squid

giant axon

From Kirchoff’s law and our law of capacitances (equations (3.17) and (3.15)) we
know

Icap = −INa − IK − IL + Iapplied

and

Icap = Cm(
dVm

dt
)

Then using our expressions for the sodium and potassium currents given in the
previous section, we have a model for the rate of change of the membrane potential:

Cm
dVm

dt
= −ḡNam

3h(Vm − VNa) − ḡKn4(Vm − VK) − ḡL(Vm − VL) + Iapplied (3.45)

where Cm is the membrane capacitance, Vm is the membrane potential, ḡNa, ḡK ,
and ḡL are the maximal conductances for the sodium, potassium and leak channels
respectively, VNa, VK , and VL are the Nernst potential for the respective ions, and
Iapplied is some applied current. The “Nernst potential” for the leak current was
chosen so that the total ionic currents are zero at the resting membrane potential
(Vm = 0 mV ). All values are taken from Hodgkin and Huxley (1952a) and are
shown in Table 3.1.

Parameter Parameter Value Unit
Cm 1 µF/cm2

ḡNa 120 mS/cm2

ḡK 36 mS/cm2

ḡL 0.3 mS/cm2

VNa 115 mV
VK −12 mV
VL 10.613 mV

Table 3.1: Parameter values and units of Hodgkin and Huxley’s model Hodgkin
and Huxley (1952a)

The gating variables are expressed as in equations (3.29), (3.30), and (3.20):
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dm

dt
= αm(1 − m) − βmm

dh

dt
= αh(1 − h) − βhh

dn

dt
= αn(1 − n) − βnn

where

αm =
0.1(25 − Vm)

e(25−Vm)/10 − 1
(3.46)

βm = 4e−Vm/18 (3.47)

αh = 0.07e−Vm/20 (3.48)

βh =
1

e(30−Vm)/10 + 1
(3.49)

αn =
0.01(10 − Vm)

e(10−Vm)/10 − 1
(3.50)

βn = 0.125e−Vm/80 (3.51)

The values of the α’s and β’s (again taken from Hodgkin and Huxley (1952a))
were all found at a temperature of 6.3◦C. To determine αn and βn, the potas-
sium rate constants, Hodgkin and Huxley considered the potassium conductance,
gK . Using a chosen maximal conductance value of ḡK = 36 mS/cm2, they used
equation (3.25), gK = ḡKn4, to calculate n∞ at various voltages. They determined
values for αn and βn by using the relations

αn =
n∞(Vm)

τn(Vm)
(3.52)

βn =
1 − n∞(Vm)

τn(Vm)
(3.53)

Hodgkin and Huxley plotted these αn and βn values with respect to the membrane
potential, Vm. Thus to find continuous curves for the rate constants as a function of
the membrane potential, the rate constants were fit to Vm (see equations (3.50) and
(3.51). In general, βn was small compared to αn, therefore they did not consider
it to be essential to have an exact fit. Thus they used the simplest reasonable
fit for βn. The rate constants for the sodium current, given by equations (3.46),
(3.47), (3.48), and (3.49), were determined in a similar manner. Thus Hodgkin and
Huxley developed a complete mathematical model of the electrical potential of a
squid giant axon.
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3.7 Discussion

Using first order differential equations, Hodgkin and Huxley (1952a) were able to
describe the action potential of a squid giant axon. They did so by describing the
change in membrane potential in terms of sodium, potassium, and leak currents,
an applied current (or external stimulus), and the membrane capacitance. These
ionic currents were described in detail, as were the measurement techniques used to
discover them. Hodgkin and Huxley considered the permeability of the membrane
and how it affected the action potential. In particular, they noted that the fast
activation of the sodium conductance played an integral role in the initiation of an
action potential, and the slow activation of the potassium conductance played a
large role in the repolarization and hyperpolarization of the membrane. Hodgkin
and Huxley’s model is a widely accepted model of action potential generation, and
is used to describe many different types of cells and their membrane potential. In
1963 they won the Nobel Prize in Physiology and Medicine for their work. We
followed their model in our description of a CA1 hippocampal neuron.
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Chapter 4

Literature Review

Hippocampal CA1 pyramidal neurons easily produce large electrical discharges,
and are thus often the focus of partial seizures in patients with Mesial Temporal
Lobe Epilepsy (MTLE). Empirical researchers have focused on these neurons and
their synchronous bursting behaviour when examining experimental epileptic-type
seizures (referred to as “epileptiform seizures”) (Tian et al., 2005). It would be
helpful to model their behaviour in a simplified way to be able to qualitatively re-
produce the observed behaviour in a physiologically realistic manner. As a starting
point, we consider the 19-compartment model of a pyramidal neuron created by
Traub et al. (1991), which we will refer to as “Traub’s model”. Traub et al. (1991)
were able to use their model to simulate key characteristics of a CA1 neuron, such
as its calcium-dependent potassium channels, its dendritic excitability resulting in
dendritic calcium spikes, and its bursting behaviour. However, a more simplified
model may be useful to examine the effects of key parameters, to create a network
model, or to reduce the computational demand in order to extend the model in
other ways. This leads us to consider Pinsky and Rinzel’s two-compartment model
of a CA3 pyramidal neuron (Pinsky and Rinzel, 1994). They based their simplified
model on Traub’s model, using Traub’s conductance values as a starting point to
determine their own. In Chapter 5 we reduce Traub’s model of a CA1 neuron in a
similar manner. Traub et al. (1991) and Pinsky and Rinzel (1994) both wrote quite
intricate articles, examining the CA3 model neuron behaviour in a variety of ways.
However, since we are concerned with the behaviour of a CA1 neuron, this review
will concentrate on the models themselves, and only mention the key results. For
more details, please refer to the articles.

Although CA1 pyramidal neurons are often the focus of epileptiform bursting,
some hypothesize that astrocytes are actually responsible for initiating these bursts
(Tian et al., 2005). In fact, Tian et al. (2005) suggests that astrocyte pathologies
may be the genesis of epilepsy, as well as the target of many anti-epileptic drugs.
They examine the enduced seizure activity of a large group of neurons, while elimi-
nating neuronal communication by applying a series of channel blockers. They find
underlying slow depolarization shifts of the neurons, which result from increased
calcium concentrations in the astrocytic cytosol. These depolarizations may be the
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root of excessive neuronal discharges. We use our model to reproduce many of Tian
et al.’s experimental observations, and thus a brief summary of their experiments
is required. Finally, we consider the changes in the astrocytic calcium concentra-
tions in more detail, following (Parpura and Haydon, 2000). Parpura and Haydon
examine how slow inward currents (which cause the slow neuronal depolarization
shifts) are initiated by the astrocytic release of the glutamate, which are in turn
caused by increased astrocytic intracellular calcium levels. Therefore, the four most
important articles for this thesis, by Traub et al. (1991), Pinsky and Rinzel (1994),
Tian et al. (2005), and Parpura and Haydon (2000), are reviewed.

4.1 “A Model of a CA3 Hippocampal Pyramidal

Neuron Incorporating Voltage-Clamp Data

on Intrinsic Conductances”,

Traub et al. (1991)

Traub et al. were particularily interested in modeling hippocampal pyramidal neu-
rons because of their dendritic excitability, bursting behaviour, and because as a
population, these neurons are succeptible to synchronized epileptiform bursting.
They created a 19-compartment model of a pyramidal neuron, focusing their at-
tention on CA3 neurons, but considering CA1 neurons as well. This review will
concentrate on their 1991 work with CA1 neurons. Their goal was to create a
physiologically realistic model which could reproduce the behaviour of a pyrami-
dal neuron in a network and when isolated, and make accurate predictions about
pyramidal neuron behaviour.

Traub et al.’s 1991 model was composed of 19 cylindrical compartments: eight
compartments representing the basilar dendrites, ten representing the apical den-
drites, and one representing the soma. The compartments were numbered 1 through
19, as can be seen in Figure 4.1. Although the cylindrical shape of the soma
was not realistic, the somatic membrane area was reasonable. The basilar den-
drites were represented by cylindrical compartments which were equivalent in size
(as were the apical dendrites), and the ends of the dendritic compartments were
sealed. Each dendritic compartment represented 0.1λ, where λ is the length of the
core conductor. That is, since Traub et al. assumed extracellular isopotentiality,
λ =

√

(Rm/Ri)(d/4), where Rm and Ri represent the membrane resistance and the
intracellular resistivity of the cytoplasm respectively, and d is the diameter of the
cylinder. Therefore, since the dendritic compartments were sufficiently small, the
model maintained its physolological relevance.
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Figure 4.1: A schematic representation of the Traub 19-compartment model. Com-
partments are labelled 1 through 19, with the soma at compartment 9, the basilar
dendrites on the left (1 through 8), and the apical dendrites on the right (10 through
19). The figure was reproduced from Traub et al. (1991).

4.1.1 The ionic currents and conductance densities

By assuming that the dendrites contained the same ionic channels as the soma,
and that the dendrites had significant calcium dynamics (based on calcium imag-
ing done on the dendrites), Traub et al. chose a (non-unique) distribution of ionic
conductance densities for both the CA3 and the CA1 neurons. Each compart-
ment contained six active ionic conductances: the sodium conductance (gNa), the
calcium conductance (gCa), the delayed rectifier potassium conductance (gK(DR)),
the A-type of transient potassium conductance (gK(A)), the long duration calcium-
dependent afterhyperpolarizing potassium conductance (gK(AHP )), and the short-
duration voltage and calcium-dependent potassium conductance (gK(C)). The con-
ductance densities they chose for CA1 are shown in Table 5.1 in section 5.2. Con-
sidering the difference in potential across the membrane for each compartment
(Vk), measured with respect to the resting potential of −60 mV , Traub et al. used
Kirchoff’s law to give:

Ck
dVk

dt
= γk−1,k(Vk−1 − Vk) + γk+1,k(Vk+1 − Vk) − Iionic,k

where Ck is the membrane capacitance of compartment k (in nF ), γl,k is the con-
ductance between compartments l and k (in µS), Vi for i = k − 1, k, k + 1 are
the membrane potentials of compartment i with respect to the resting membrane
potential Vrest = −60 mV , and Iionic,k is a sum of all the ionic currents for com-
partment k (including the leak current and the synaptic current) (in nA). Then
considering the six active currents and their Hodgkin-Huxley type gating variables,
Iionic,k can be written as:

Iionic,k = ḡL,kVk + Isynaptic,k + ḡNam
2
khk(Vk − VNa) + ḡCas

2
krk(Vk − VCa)

+ ḡK(DR)nk(Vk − VK) + ḡK(A)akbk(Vk − VK) + ḡK(AHP )qk(Vk − VK)

+ ḡK(C)ck × min(1 +
χk

250
) × (Vk − VK) − Iinjected,k

where ḡj,k represents the maximal conductance for j in the compartment k and
Vj represents the reversal potential for j, where j = L, Na, Ca, K(DR), K(A),
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K(AHP ), or K(C). The synaptic current in compartment k is given by Isynaptic,k.
Note that the calcium and voltage dependent potassium current, IK(C), depends on
χk, the intracellular calcium in a shell beneath the membrane for compartment k
(as does the gating variable for IK(AHP ), q). Then an expression for the production
of χk is given by:

dχk

dt
= −φkICa,k − βχχk

The variable χk is dimensionless since the depth of the shell of calcium is unknown.
The constant φk scales the inward calcium current into the production of intracellu-
lar calcium, and varies depending on the compartment. The inverse time constant,
βχ = 0.075 ms−1, was determined experimentally.

4.1.2 The synaptic currents

Traub et al. considered two different types of excitatory synaptic currents: those ini-
tiated by quisqualate (QUIS), and those initiated by N-methyl D-aspartate (NMDA).
The QUIS currents were only considered to affect compartments 3 and 15, com-
partments which were 0.6λ away from the soma in either the apical or the basilar
direction, and the NMDA currents were only considered to affect compartment 15.
The QUIS current was a fast excitatory current given by cQUISte−t/2× (Vk−VQUIS)
where VQUIS = −60 mV was the reversal potential, and cQUIS = 4 nS. This current
was activated when the presynaptic cell spikes, i.e. when its somatic membrane po-
tential exceeds 20 mV (Traub et al., 1992). However, the NMDA current was more
complicated to model, as it is a slow decaying voltage-dependent and magnesium-
dependent (as well as ligand-dependent) current. Therefore, Traub et al. described
the NDMA current by :

INMDA = g(t) ×
1

1 + [Mg2+]
3

× e−0.07(Vk−ξ)
× (Vk − VNMDA)

where VNMDA = −60 mV is the reversal potential, ξ = −60 mV , [Mg2+] = 2 mM ,
and g(t) is the ligand-dependent conductance which peaks at 2 ms and decays over
100 − 150 ms. Similarily, the NMDA current is activated when the presynaptic
membrane potential exceeds a threshold of 20 mV (Traub et al., 1992).

4.1.3 The gating variables

The Hodgkin Huxley gating variables for the ionic currents can be described by
first order kinetics. Therefore the gating variable x in compartment k (xk) can be
described by:

dxk

dt
= αx(Ψk)(1 − xk) − βx(Ψk)xk
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where αx and βx are the rate constants involved, and Ψ = Vk (or χk for the
gating variable q). Traub et al. assume for simplicity (and because a lack of data)
that the kinetics of the gating variables are the same in the soma and the dendrites,
and thus αx and βx do not depend on the compartment. Then if the steady state
value x∞ = αx/(αx + βx) and the time constant τx = 1/(αx + βx) are known, the
values of αx and βx can be determined.

4.1.4 CA1 cell model behaviour

To determine that their CA1 model captured the characteristic behaviours of a
CA1 pyramidal neuron, Traub et al. performed a series of simulations. They
found that, in accordance with experimental data, the behaviour of the neuron
depended on where it was stimulated. When an applied current of < 1 nA was
given to the somatic compartment, the neuron model exhibited a train of action
potentials in its soma, and subthreshold depolarizations in the distal dendrites. An
application of the same current into the proximal dendrites, 0.3λ from the soma,
resulted in similar behaviour, but with slightly larger subthreshold depolarizations
in the dendrites. However, if a current with the same magnitude was applied to
the distal dendrites (for example, 0.6λ away from the soma), the distal dendrites
exhibited a full calcium spike associated with a somatic burst. If a large current
was applied (> 1.15 nA) to either the soma or the dendrite, a somatic burst and
a full calcium spike were exhibited. Traub et al. commented on a key difference
between the behaviour of the CA1 neurons and the CA3 neurons: under a steady
applied current, the CA1 neurons do not physiologically exhibit periodic bursting.
The model also was able to make predictions about cell behaviour which were later
verified. One of such predictions was the ability of a burst in one CA3 neuron to
initiate a burst in a neighbouring neuron. Another is that a burst in a single neuron
can synchronize bursting in an entire network.

4.2 “Intrinsic and Network Rhythmogenesis in a

Reduced Traub Model for CA3 Neurons”

Pinsky and Rinzel (1994)

Pinsky and Rinzel modeled a CA3 hippocampal pyramidal neuron by reducing
Traub’s 19-compartment model (Traub et al., 1991) to a two-compartment model.
In doing so, they were able to maintain much of the same behaviour as in Traub’s
model, such as the major currents and gating kinetics, but greatly reduced the
number of variables. Pinsky and Rinzel identified six major currents involved in
the electrical behaviour the CA3 neuron: a sodium current (INa), a delayed recti-
fier potassium current (IK−DR), a calcium dependent potassium current (IK−C), a
afterhyperpolarizing potassium current (IK−AHP ), a calcium current (ICa), and a
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leak current (IL). They did not include Traub’s seventh current, IK−A, as accord-
ing to Traub et al. (1991), it did not greatly contribute to the model. Pyramidal
neurons in the hippocampus often have excitable dendrites as well as excitable so-
mas, and their ion channels have significantly different conductances depending on
the distance from the soma (Traub et al., 1991). They identified the maximal con-
ductance densities of the currents by performing current clamp experiments on the
neurons in vitro (Traub et al., 1991). In the Traub model, the fast currents, such
as the sodium and delayed rectifier potassium current, were found primarily in the
soma and proximal dendrites, whereas the calcium and calcium dependent currents
were found primarily (≈ 62%) in the distal dendritic currents. Based on this crite-
ria, Pinsky and Rinzel lumped Traub’s 19-compartments into two compartments, a
“somatic compartment” and a “dendritic compartment”. Compartmental models
are created based on the assumption of spatial homogeneity in the compartments.
With this assumption, each compartment can be calculated separately, but the ca-
ble behaviour of the neuron remains accurate. However, the compartments used by
Pinsky and Rinzel corresponded to a length of 0.5λ or more, a much larger length
than would allow such an assumption to be made. Therefore their results must be
thought of as phenomenological, rather than physiological.

Pinsky and Rinzel connected their two compartments through a coupling con-
ductance, gC . The potential across the membrane was measured with respect to a
reference potential of −60 mV , and was given by VS and VD for the somatic and
dendritic compartments respectively. They let p be the proportion of the cell mem-
brane area taken up by the soma (1− p for the dendritic compartment), and added
applied currents IS and ID to the somatic and dendritic compartments respectively.
A schematic representation of the Pinsky and Rinzel model is shown in Figure 4.2.

Figure 4.2: A schematic representation of Pinsky and Rinzel’s two-compartment
CA3 neuron model. This picture was drawn based on Fig. 1A of Pinsky and Rinzel
(1994, pg. 42).
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Then by Kirchoff’s Law,

dVS

dt
=

1

Cm

{

− Ileak,S(VS) − INa(VS, h) − IK−DR(VS, n)

+
gc

p
∗ (VD − VS) +

IS

p

}

dVD

dt
=

1

Cm

{

− Ileak,D(VD) − IK−AHP (VD, w) − ICa(VD, s)

−IK−C(VD, [Ca2+], c) +
ISY N

(1 − p)

+
gc

1 − p
∗ (VS − VD) +

ID

1 − p

}

where Cm represents the membrane capacitance. Each current was described as
a function of their membrane potentials (either VS or VD), their maximal conduc-
tance strengths, and their respective Hodgkin-Huxley like gating variable. Pinsky
and Rinzel used current densities, with units µA/cm2. Therefore, to calculate the
applied currents, IS and ID, from Traub et al.’s (1991) model, they divided by the
total area of Traub’s neuron model. As in the Traub et al. (1991) model, the calcium
and voltage dependent potassium current, IK−C , and the calcium dependent after-
hyperpolarizing potassium current, IK−AHP , were also functions of the amount of
calcium in a “shell” beneath the membrane ([Ca2+]). As the thickness of this shell
is unknown, the scaling constant (φ), used to convert the inward calcium current
into the concentration of intracellular calcium, is given with units cm2/(µA · ms)
so that [Ca2+] remains a dimensionless number. Then the calcium concentration
in this intracellular shell was described by:

d[Ca2+]

dt
= −φICa − β[Ca2+][Ca2+]

where φ = 0.13, and β[Ca2+] = 0.075 is the inverse time constant with which [Ca2+]
degrades. Note that due to convention, a calcium current flowing into the neuron is
negative, and thus for production of [Ca2+], a scaling constant of −φ is required. By
describing these currents as a function of their maximal conductances and gating
variables, we have:

IK−AHP (VD, w) = ḡK−AHP w(VD − VK)

and

IK−C(VD, [Ca2+], c) = ḡK−Ccχ([Ca2+])(VD − VK)

where χ([Ca2+]) = min(1,
[Ca2+]

250
),
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VK is the reversal potential for potassium, and the maximum conductances are
given by gK−AHP and gK−C . The gating variable for IK−AHP , i.e. w, is dependent
on [Ca2+]. Similarily, the IK−C current is dependent on both a voltage-dependent
gating variable, c, and a [Ca2+] dependent gating variable, χ([Ca2+]). The gating
variable χ([Ca2+]) was chosen (Traub et al., 1991) based on the experimentally de-
termined maximum magnitude of intracellular calcium concentration of 250. The
currents which are only dependent on the potential across the membrane are given
by:

Ileak,s(VS) = ḡleak(VS − Vleak)

Ileak,d(VD) = ḡleak(VD − Vleak)

INa(VS, h) = ḡNam
2
∞h(VS − VNa)

IK−DR(VS, n) = ḡK−DRn(VS − VK)

ICa(VD, s) = ḡCas
2(VD − VCa)

where Vi represents the reversal potential for the particular channel i = leak, Na, K, Ca.
Then, assuming the gating variables follow first order kinetics, i.e.,

(1 − y)
αy(U)
−−−⇀↽−−−
βy(U)

y,

the dynamics of the gating variables are given by

dy

dt
=

y∞(U) − y

τy(U)

where y∞(U) =
αy(U)

αy(U) + βy(U)

and τy(U) =
1

αy(U) + βy(U)

with U =







VS for y = h, n
VD for y = s, c
[Ca2+] for y = w

4.2.1 The synaptic currents

Pinsky and Rinzel considered two synaptic currents, found only in their dendritic
compartment: a fast rising, fast decaying AMPA (α-amino-3-hydroxyl-5-methyl-
4-isoxazole-propionate) current and a fast rising, slow decaying NMDA (N-methyl
D-aspartate) current. Pinsky and Rinzel used a similar form for their synaptic
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currents as Traub et al. (1991), but modelled the connection to the presynaptic cell
using gating variables. The NMDA current is voltage and magnesium dependent,
as well as ligand dependent, and was given by

INMDA =
ḡNMDASi(t) × (VD − VSY N)

1 + 0.28e−0.062(VD−60)

where ḡNMDA is the maximal NMDA conductance, VSY N = 60 mV is the NMDA
reversal potential, and VD is the membrane potential of the dendritic compartment.
Then the gating variable, Si(t), was expressed as:

S ′
i =

∑

j

H(VS,j − 10) − Si/150

where H(x) is the Heaviside function such that H(x) = 1 for x ≥ 0, and H(x) = 0
otherwise. The sum is taken over all cells j which synapse onto the cell i, and VS,j

is the membrane potential of the somatic compartment of cell j. Therefore, if the
voltage from a presynaptic cell is greater than the threshold of 10 mV , then the
fraction of open gating channels increases. In accordance with the slow decaying
NMDA channel, the degradation time constant is large (150 ms). The AMPA
current was thought to be the main synchronizing current for the cells, and was
given by:

IAMPA = ḡAMPAWi(t)(VD − VSY N)

where
W ′

i =
∑

j

H(VS,j − 20) − Wi/2

Then
ISY N = INMDA + IAMPA

4.2.2 Results

Pinsky and Rinzel found that with the standard coupling parameters, their model
exhibited the same key behaviours as the CA3 neuron model in Traub et al.’s
(1991) paper. In particular, they found that stimulating the somatic compartment
resulted in a train of action potentials, whereas dendritic stimulation resulted in
somatic bursting. They analysed this behaviour with respect to the slow variables,
q and [Ca2+], and found that these variables (which affected the outward IK−AHP

and IK−C) determined the length of the interspike interval. Pinsky and Rinzel
then analysed the dynamics of the burst, concluding that it was not simply a
series of sodium spikes sitting on a long dendritic calcium-dependent depolarization,
but in fact was due to a complex interaction between the dendritic and somatic
compartments. They discussed the effects of the coupling parameters, gC and p,
on the model, and noted that for large gc, the model effectively acted as a single
compartment model, and for small gC , it acted as two isolated models. Thus their
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model only exhibited the desired behaviours for a limited range of the coupling
parameters. Pinsky and Rinzel also created a network model, by creating 100
two-compartment cell models. Each neuron received input through their synaptic
channels from 20 randomly chosen cells. They used this network to describe the
significant differences the two synaptic currents and how they modify the network.
The fast AMPA currents were primarily responsible for the synchronizing behaviour
of the network model, while the slower NMDA current (which is influenced by the
level of ḡNMDA), determined the sustained bursting behaviour of the network model.
Overall, Pinsky and Rinzel created a significantly reduced model based on Traub
et al.’s (1991) model, and performed an indepth analysis of the key behaviours
exhibited by this model.

4.3 “An astrocytic basis of epilepsy”

et al. (2005)

The excitatory neurotransmitter, glutamate, is suspected of playing a key role in
seizure generation. In fact, glutamate receptor (GluR) agonists are known to cause
excessive neuronal discharges, whereas GluR antagonists suppress them (Tian et al.,
2005). Tian et al. decided to examine these excessive and synchronous discharges
while eliminating neuronal communication. To do so, they first applied a bath of
potassium channel blockers to CA1 pyramidal neurons in rat hippocampal slices.
The potassium channel blocker, called 4-aminopyridine (4-AP), is a convulsant
known to induce seizure activity in animals and epileptiform bursting in vitro slices.
Then they applied a bath of sodium channel blockers called tetrodotoxin (TTX),
suppressing neuronal firing. To completely suppress firing, they also applied a vari-
ety of voltage gated calcium channel blockers (VGCC blockers). Although excessive
bursting was suppressed, they found slow underlying depolarizations, called parox-
ysmal depolarization shifts (PDSs), which were largely (70 − 90%) unaffected by
TTX and VGCC blockers, and were synchronized among the neurons. These pro-
longed depolarizations, thought to be the root of the excessive neuronal firing, were
obviously not spread by the communication of neurons through chemical synapses.
Thus, Tian et al. considered other influences that could cause these PDSs. Two
key observations led them to focus their attention on astrocytes. First, activated
astrocytes release glutamate into the extracellular space. Second, astrogliosis, an in-
crease in the size and number of astrocytes, is a known characteristic of an epileptic
brain (Tian et al., 2005). They hypothesized that glutamate released from activated
astrocytes cause these abnormal and prolonged depolarizations, which underly the
synchronous neuronal firing in experimental seizures.

To determine how the extracellular glutamate initiates the neuronal action po-
tential independent PDSs, Tian et al. study the activity of a variety of neuro-
transmitter receptors by applying receptor blockers. First, as before, they generate
epileptiform seizures by applying a bath of 4-AP (potassium channel blockers).
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They then add TTX and VGCC blockers (sodium and voltage gated calcium chan-
nel blockers) to cut off action potential generation, and thus neuronal communi-
cation. They found that the action potential independent PDSs were reduced in
both frequency and amplitude when APV (2-amino-5-phoshonovalerate), a NMDA
receptor inhibitor, and CNQX (6-cyano-7-nitroquinoxaline-2,3-dione), an AMPA
receptor inhibitor, were applied. When a series of non-selective metabotropic glu-
tamate receptors (mGluRs) were inhibited, the PDSs were not affected. Thus the
glutamate that causes these PDSs activates ionotropic glutamate receptors. In
particular, the majority of the PDSs (≈ 57%) were affected by the combination of
TTX and APV (where only ≈ 26% were affected by TTX and CNQX), implying
that NMDA receptors activated on the neuronal membrane were responsible for the
majority of experimental seizure generation in neurons. As well as glutamate recep-
tors, neurons have a number of glutamate transporters on their membrane, which
are responsible for the reuptake of glutamate from the synapse. To rule out the
possibility of inverted transport of glutamate, Tian et al. applied glutamate trans-
port inhibitors and found that the frequency and amplitude of the PDSs increased
significantly. In addition, to confirm that the astrocytic release of glutamate was
not simply a response to excessive neuronal firing from the bath of 4-AP, Tian et
al. added TTX to the bath before 4-AP, and the PDSs were only reduced slightly.

Since seizures can be generated in a variety of ways, Tian et al. (2005) wanted
to test their theory that seizures are induced by PDSs caused by glutamate released
from astrocytes. Thus, they used multiple methods to initiate seizure activity, and
applied TTX to measure the resulting action potential independent PDSs. First,
they removed magnesium (Mg+) from the extracellular space, which was known to
excite a large group of neurons by removing the Mg+ block from NMDA receptors.
The majority of PDSs remained present after the application of TTX, whereas APV
and CNQX (the NMDA and AMPA receptor inhibitors) blocked more than 80% of
the depolarization shifts. Second, they considered bicuculline and penicillin, which
were also known to initiate seizures. Instead of activating excitatory receptors, they
were thought to repress inhibitory GABAA receptors. However, Tian et al. sug-
gested that bicuculline and penicillin may actually affect extrasynaptic glutamate
receptors, as the application of APV and CNQX significantly reduced the frequency
and amplitude of the PDSs. Finally, they considered the effects of a calcium-free
solution, and found the same results: TTX insensitive PDSs were generated, and
APV and CNQX significantly reduced their frequency and amplitude. Thus their
theory that glutamate induced TTX insensitive PDSs seemed reasonable, and they
must next determine if these glutamate signals were sent from astrocytes.

To determine how astrocytes were altered by each method of seizure generation,
Tian et al. loaded hippocampal slices with a calcium indicator (fluo-4/AM), and
viewed these slices using a two-photon laser scanning microscopy. Thus, they were
able to determine how the cytosolic calcium levels in the astrocyte change due to the
seizure-inducing agents. For each method discussed above, the astrocytic calcium
levels were increased, even in the absence of the neuronal action potentials. In fact,
in cultured astrocytes, 4-AP initiated the increased cytosolic calcium levels without
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the presence of neurons. This is also true for the other seizure inducing agents, and
therefore these increased calcium levels are not a direct effect of neuronal activation.
In addition, the application of TTX did not affect the astrocytes, because they have
a limited number of sodium channels. When Tian et al. photoreleased the caged
calcium in astrocytes (i.e. released calcium by administering pulses of light), they
found that PDSs were triggered the majority of the time, and when glutamate
release from astrocytes was reduced through channel inhibitors, the frequency and
amplitude of the PDSs were decreased. Also, the PDSs, which occur synchronously
in a large group of neurons, seem to remain in physiologically relevant spatial
territories for astrocytes. That is, since astrocytes often use gap junctions to send
signals to other astrocytes, cytosolic calcium oscillations of one astrocyte are usually
also found in one to three neighbouring astrocytes. Thus, PDSs should be seen in
neurons which are neighbouring these astrocytes - i.e. within a small space of <
50−200 µm. Electrodes spaced less than 100 µm apart showed that approximately
56% of PDSs were temporally synchronized, whereas electrodes spaced 100−200 µm
apart showed that only about 4.8% of PDSs were synchronized. Finally, Tian
et al. noted that three common anti-epileptic drugs, valproate, gabapentin and
phenytoin, inhibited the increase in astrocytic calcium levels which was triggered
by the seizure generating agent. This calcium signalling was also depressed when no
seizure generating agent was applied, demonstrating that these drugs were directly
affecting the astrocytes, and not simply supressing neuronal excitation.

Tian et al.’s study suggests that astrocytic pathologies may be a contributing
factor in epileptic seizures, and the excessive neuronal discharges are driven by
these pathologies. They hypothesize that calcium signalling from astrocytes causes
glutamate to be released into the extracellular space. This glutamate signals the
neurons primarily through NMDA receptors, inducing prolonged depolarizations
which result in excessive spiking. Perhaps then, anti-epileptic drugs which focus
on inhibiting the calcium signalling in astrocytes, instead of supressing neuronal
transmission, would be more effective.

4.4 “Physiological astrocytic calcium levels stim-

ulate glutamate release to modulate adjacent

neurons”

Parpura and Haydon (2000)

Intracellular astrocytic calcium elevations cause glutamate release, which can lead
to prolonged neuronal depolarizations through the activation of ionotropic gluta-
mate receptors. Is this astrocytic glutamate release a pathological condition, or do
these mechanisms involved in astrocyte-to-neuron signalling occur physiologically
as well? This question existed because the level of astrocytic calcium required to
signal the release of glutamate, and what concentrations of internal calcium were
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physiological as opposed to pathological, were yet to be determined. Parpura and
Haydon (2000) attempted to resolve these issues.

Increased astrocytic calcium concentrations were thought to increase astrocytic
glutamate release, causing slow inward currents (SIC) on neighbouring neurons
(which result in the depolarization shifts seen by Tian et al. (2005)). To examine
this effect experimentally, Parpura and Haydon needed to be able to determine
and control the intracellular levels of astrocytic calcium. Working in vitro, growing
single neurons on microislands of astrocytes, they coloaded astrocytes with a cal-
cium indicator, a fluorescence called fluo-3, and the calcium cage NP-EGTA. They
found the resting astrocytic calcium level to be 87 nM , and used this and a stan-
dard calibration curve to determine the level of fluo-3 when the astrocyte was at
rest (F0). Then using flash photolysis, a train of six UV pulses were administered
which significantly increased the astrocytic calcium levels (∆F/F0 = 186 ± 29%).
To confirm that this effect was not a result of damage done to the astrocyte by
the UV pulses, they administered the same pulses of light when the astrocytes
were loaded with fluo-3, but not NP-EGTA. In this case, no increase in astrocytic
calcium levels were seen. Therefore, Parpura and Haydon (2000) determined that
flash photolysis could be used to increase the intracellular calcium concentrations in
astrocytes. Through these experiments, and their knowledge of the resting calcium
levels, they were able to derive a relationship between the fluo-3 and the calcium
levels:

[Ca2+]i = 87nM × e0.0094×∆F/F0

By recording the neuronal glutamate-dependent currents, Parpura and Haydon
examined the relationship between the astrocytic calcium increases and the release
of glutamate. By voltage clamping the neurons at −60 mV , they found that the
UV pulses led to astrocytic calcium increases, which caused SICs in neurons. If the
astrocytes were only coloaded with fluo-3, and not NP-EGTA, then neither calcium
increases, nor SICs resulted from the UV pulses. They also tested neurons cultured
without astrocytes, and determined that the UV pulses did not themselves produce
SICs. Thus they demonstrated a connection between the astrocytic calcium levels
and the neuronal SICs. To show that this connection was glutamate dependent,
they administered D-AP5 (a NMDA receptor antagonist) and CNQX (an AMPA
receptor antagonist), and found that the neuronal SICs were significantly reduced,
while the levels of astrocytic calcium were unaffected.

Parpura and Haydon created a number of plots (which will be reproduced using
our model in Chapter 7), which demonstrated the relationship between astrocytic
calcium concentration and SICs. Interestingly, they found two types of effects
resulting from the increase in calcium. Some neurons demonstrated a graded re-
sponse, while others exhibited an all-or-none response to calcium increases. In these
all-or-none responses, once the astrocytic calcium passed a particular threshold, the
neuron exhibited a large SIC, which did not change in strength for continued astro-
cytic calcium increases. Parpura and Haydon were unsure of the underlying cause
of these all-or-none responses, hypothesizing that they may be due to a saturation
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of the neuronal glutamate receptors, or from the cytosolic calcium signalling a large
release of glutamate from the astrocyte. However, they stated that it was not a
result of damage to the cell, as multiple pulses of UV stimulated multiple SICs.

To determine if the calcium-enduced SICs were physiologically relevant, or only
occured under pathological conditions, Parpura and Haydon administered gluta-
mate receptor agonists and simultaneously monitor the astrocytic calcium levels.
They used 50 µM of glutamate, norepinephrine, and dopamine - agonists which
were normally found in the hippocampus and which commonly affect metabotropic
glutamate receptors on the astrocytic membrane. They found that these agonists
caused increases in the astrocytic calcium concentrations well beyond 140 nM , a
level above which consistent neuronal SICs resulted. Thus, Parpura and Haydon
concluded that the calcium-dependent release of glutamate from astrocytes was a
physiological process, which affected neighbouring neurons, and may play a role in
synaptic transmission and neuronal modulation.

4.5 Discussion

Hippocampal pyramidal neurons have received much attention in the study of
epileptiform bursting. To model these neurons, we have first considered Traub
et al.’s (1991) 19-compartment model of a CA3 and CA1 pyramidal cell. Through
a series of current-clamp experiments, they came up with a (non-unique) set of
conductance densities for each compartment. Their model was able to accurately
reproduce the key characteristics of a CA1 neuron, and their detailed model pro-
vided them with a description of the discrete cable properties of the neuron. How-
ever, a simplified model would be useful to examine the effects of key parameters,
to create large networks, or to expand on the model in other ways. Thus we review
Pinsky and Rinzel’s (1994) two-compartment model of a CA3 neuron. Although
they significantly reduced the complexity of the model, they were able to reproduce
many of the characterists of the CA3 neuron which Traub had introduced.

How these CA1 neurons initiate the excessive discharge in experimental seizures
is essential to our model. Therefore, Tian et al.’s (2005) article on the astrocytic
influence of epileptiform bursting was introduced. They did a series of experi-
ments which suggested that increases in intracellular astrocytic calcium caused
the release of glutamate. This glutamate was shown to initiate paroxysmal depo-
larization shifts in neighbouring neurons, which were thought to influence seizure
activity. They suggested that if anticonvulsant drugs focused on the increased cy-
tosolic calcium in the astrocytes, the epileptiform bursting may be affected without
elimiating neuronal transmission. Then, Parpura and Haydon (2000) performed
a series of experiments to determine whether the increased calcium levels occured
physiologically, or just pathologically. They suggested that the intracellular astro-
cytic calcium levels fluctuate naturally, and that astrocytes may modulate normal
neuronal behaviour. These four articles give us a good starting point to create a
physiologically realistic model of a CA1 neuron.
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Chapter 5

An Isolated CA1 Neuron Model

The mechanisms of hippocampal seizures may become clearer with a solid un-
derstanding of the epileptiform bursting activity that can be generated in CA1
pyramidal neurons. This understanding will be facilitated by the existence of bio-
logically realistic models that correspond with current empirical data and are able
to make accurate predictions. Traub’s model (see section 4.1) serves as a good
representation of the structure and behaviour of the CA1 pyramidal neuron. It
would be helpful, however, to have a further simplified model in order to dissect
and analyze the inner workings of the cell. This new model must be simple enough
to permit a detailed analysis of the key parameters, and maintain a realistic rep-
resentation of the cell’s kinetics. Furthermore, the correlation between internal
astrocytic calcium waves and epileptiform bursting in CA1 neurons requires some
attention while modeling the neuronal synapses. We first discuss in more detail why
we have chosen to reduce Traub’s model, and then how the behaviour of a typical
CA1 neuron influences our reduction of the Traub model. Finally we give a more
detailed description of the reduced model by producing a schematic representation,
and a mathematical model to represent the voltage, the ionic, applied and synaptic
currents, and the coupling between the two neurons.

5.1 Why reduce a model?

We aim to reduce the complexity of Traub’s CA1 neuron model while maintaining
its key characteristics. The reduction can be done in two ways: we can reduce
the membrane complexity by decreasing the number of active ion channels, or we
can reduce the geometric complexity by decreasing the number of compartments.
Using both of these techniques permits us to explore how much of the key behaviour
is dependent on the parameters and variables that remain. It also reduces the
computational demand of the model, allowing large networks to be created and
examined efficiently, and particular ion or synaptic channels to be modeled in more
detail. In our analysis we concentrate on the latter of the two.
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5.2 The reduction

Our reduced model does not maintain the same level of detail as Traub’s 19-
compartment model, so we must ensure that the characteristic qualities of the CA1
neuron are retained. It is important when reducing any model to first identify these
characteristic behaviours. Traub et al. (1991) finds that the CA1 neuron exhibits
trains of action potentials when a small current (< 1 nA) is applied to the soma,
but a full calcium spike and burst followed by trains of action potentials when the
same small current is applied to the distal dendrites (0.6λ from soma). Thus we
immediately recognize a distinction between the electrical properties in different
parts of the neuron. In addition, small synaptic excitation leads to afterdepolariza-
tion, whereas large synaptic excitation (or a large somatic applied current) leads
to bursting and/or a depolarization shift. The dynamics of the bursting behaviour
that commonly occurs in CA1 neurons will be examined in detail in section 5.5.
However, it is important to note that modeling this behaviour requires the spatial
separation of different channel types and the proper current flow between them
(Traub et al., 1991). Thus our model must have at least two compartments.

To separate these compartments we observe that the ionic channels are segre-
gated such that their conductance strength varies significantly in the distal den-
drites compared to the proximal dendrites and the somatic compartment (Traub
et al., 1991). Therefore we used the general approach of Pinsky and Rinzel (1994)
by lumping Traub’s soma and proximal dendrite compartments (Traub compart-
ments 6 through 12) into one soma compartment, and the distal dendrite compart-
ments (Traub compartments 1 through 5 and compartments 13 through 19) into
one dendrite compartment. The assumption that the electrical behaviour of the
axon can be neglected is common in compartmental models and has been adopted.
Although there is merit in this assumption, as the axon in pyramidal neurons is
often electrically passive compared to the dendrites and soma (Traub and Llinás,
1979), Koch (1998) has noted that this idea may require further scientific analysis.
A basic assumption of compartmentalized models is that each compartment repre-
sents an isopotential section of the neuron. The compartmental dimensions should
be small enough (a fraction of the characteristic length, such as 0.1λ) such that the
computational error of this assumption is minimal. Since we maintain the same
volume/area ratio as Traub, and Traub’s compartments have a length of 0.1λ, this
gives our lumped compartments a length greater than 0.5λ. Thus, like Pinsky &
Rinzel’s model (see section 4.2 for more details), our model should be considered
as phenomenological rather than physiological.

Each compartment is assumed to have its own active and passive membrane
channels, and the two compartments are connected through the coupling param-
eters gC , the strength of coupling, and p, the percentage of the cell model’s total
area taken up by the somatic compartment. These parameters in our two compart-
ment model were taken from Pinsky and Rinzel (1994), which were adopted from
the passive cable parameters of Traub’s 19-compartment CA3 neuron model. To
get an initial estimate for gC , we consider a single cable of length l to represent
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the soma and dendrites of a CA1 neuron. We split this cable into two compart-
ments representing the soma and proximal dendrites in one compartment, and the
distal dendrites in the other. We normalize the membrane area by letting p be
the proportion of the cell membrane area taken up by the soma, and 1 − p be the
proportion taken up by the dendrite. The coupling conductance should then be
ĝC = A/(lRi) where A is the cross-sectional area of the cable (πr2 for radius r),
and Ri is the cytoplasmic resistivity (in Ωcm). For our model with normalized
total area (Atot=1) we deal with conductance densities (in mS/cm2). Therefore we
divide the core conductance by the surface area of our two compartments (2πrl).
This gives gC = r/(2Ril

2). However, using the values in Traub et al. (1991) we
obtain gC = 0.18 mS/cm2, which is not large enough for the current flow between
the two compartments to create the desired bursting behaviour. Thus, similar to
Pinsky and Rinzel (1994), we increase our conductance so that gC = 1.5 mS/cm2

for most simulations, noting that this is not a purely physical value.

5.2.1 Ion channel segregation

To separate the ion channels into the appropriate compartments we must first
determine which ion currents dominate in the distal dendrites, and which dominate
in the soma and proximal dendrites. This is done by examining the ion channel
conductances determined by Traub et al. (1991) in their 19-compartment model
of a CA1 neuron, given in Table 5.1. They found this non-unique distribution of
these conductance densities by trial and error, through current clamp experiments
on whole neurons and apical dendrites of pyramidal CA1 neurons of rats.

The active maximal conductance densities are represented by ḡNa for sodium,
ḡCa for calcium, ḡK−DR for delayed rectifier potassium, ḡK−AHP for long-duration
calcium-dependent potassium, ḡK−C for short-duration voltage and calcium-dependent
potassium, and ḡK−A for A-type of transient potassium, whereas the passive leak
conductance is represented by ḡL. Traub et al. (1991) states that a model for a
CA1 neuron can be obtained by slightly altering the dynamics of the CA3 model –
specifically by decreasing the dendritic ḡCa and ḡK−C , and increasing the somatic
ḡK−DR. Since Pinsky and Rinzel (1994) have successfully captured the dynamics
of a CA3 neuron in their reduced model, we also use their conductance densities as
a starting point to determine our own.

Pinsky and Rinzel did not represent a calcium channel in their somatic compart-
ment, as they determined that most calcium is found in the dendrites of the CA3
neuron. But according to Traub et al. (1991), the somatic calcium current is larger
than the dendritic calcium current in CA1 neurons. Therefore it is essential that we
model this current in both compartments. Consequently, the calcium-dependent
currents (i.e. those with conductances ḡK−AHP and ḡK−C) must be represented in
our somatic compartment as well as our dendritic compartment. The conductance
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densities of each of the ion channels in our model is shown in Table 5.2. In the
following we describe how these conductance densities were determined.

The sodium conductance, ḡNa, is restricted to soma and proximal dendrites
– compartments 6 through 12 in the Traub model, with the soma represented as
compartment 9. This is the same distribution as with CA3, and so we adopt Pinsky
and Rinzel (1994) value of ḡNa = 30 mS/cm2 (the exact value at the soma). In
accordance with Traub’s (1991) conductance distributions, our sodium channel is
only found in the somatic compartment.

For this same reason, we put delayed rectifier potassium channels only in the
somatic compartment, with a conductance strength of ḡK−DR. Following Traub’s
(1991) comments on deriving a CA1 neuron model from the CA3 model, we raised
the conductance density from Pinsky and Rinzel (1994) chosen value of 15 mS/cm2

to 17 mS/cm2.

A calcium conductance density of ḡCa is present in both our somatic and den-
dritic compartments, and according to Traub and Llinás (1979), ḡCa should be
slightly stronger in the proximal dendrites (and therefore the somatic compart-
ment) than in the distal dendrites. These values are essential to reproduce the
desired bursting, spiking and afterdepolarization behaviour, and thus some adjust-
ments were required. The dendritic ḡCa from Pinsky and Rinzel’s (1994) CA3 model
is reduced from 10 mS/cm2 to ḡCa,D = 5 mS/cm2. The somatic conductance is
increased from 0 mS/cm2 to ḡCa,S = 6 mS/cm2.

Both the long-duration calcium-dependent potassium conductance density (ḡK−AHP )
and the short-duration voltage and calcium-dependent potassium conductance strength
(ḡK−C) depend on the concentration of free calcium beneath the membrane. Since
in our model we have calcium currents in both our compartments, these calcium-
dependent currents should also be represented in both compartments. From Ta-
ble 5.1, it is obvious that we should choose ḡK−AHP,S = ḡK−AHP,D = 0.8 mS/cm2.
Determining the conductance density, ḡK−C , is not quite as simple. Pinsky and
Rinzel (1994) modeled a K-C current only in the dendritic compartent. Traub
et al. (1991) represented the conductance strengths in the somatic compartment
and proximal dendritic compartments (i.e. compartments 6-12) of both the CA1
neuron model and the CA3 model as the same. Therefore, we adopt Pinsky
and Rinzel’s value for ḡK−C , but place this in our somatic compartment (i.e.
ḡK−C,S = 15 mS/cm2). Traub’s CA1 model has less ḡK−C in the distal dendritic
compartments than CA3, so we put a smaller conductance strength in our dendritic
compartment. Since all the K-C conductances in the distal dendrite compartments
for Traub’s CA1 model are the same, we let ḡK−C,D = 5 mS/cm2.

We ignore ḡK−A since it is found only in the Traub’s somatic compartment and
is quite small. Traub et al. (1991) stated that this effect of this omission is not
significant.
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Table 5.1: Ionic maximal conductance densities (mS/cm2) for Traub’s CA1 cell
model (reproduced from Traub et al. (1991))

Compartment ḡNa ḡCa ḡK−DR ḡK−AHP ḡK−C ḡK−A ḡL

1 0.0 0.0 0.0 0.0 0.0 0.0 0.1
2 0.0 5.0 0.0 0.8 5.0 0.0 0.1
3 0.0 5.0 0.0 0.8 5.0 0.0 0.1
4 0.0 7.0 0.0 0.8 5.0 0.0 0.1
5 0.0 7.0 0.0 0.8 5.0 0.0 0.1
6 20.0 12.0 20.0 0.8 10.0 0.0 0.1
7 0.0 5.0 5.0 0.8 5.0 0.0 0.1
8 15.0 8.0 10.0 0.8 20.0 0.0 0.1

9(soma) 30.0 4.0 25.0 0.8 10.0 5.0 0.1
10 15.0 8.0 10.0 0.8 20.0 0.0 0.1
11 0.0 5.0 5.0 0.8 5.0 0.0 0.1
12 20.0 17.0 20.0 0.8 15.0 0.0 0.1
13 0.0 7.0 0.0 0.8 5.0 0.0 0.1
14 0.0 7.0 0.0 0.8 5.0 0.0 0.1
15 0.0 7.0 0.0 0.8 5.0 0.0 0.1
16 0.0 5.0 0.0 0.8 5.0 0.0 0.1
17 0.0 5.0 0.0 0.8 5.0 0.0 0.1
18 0.0 5.0 0.0 0.8 5.0 0.0 0.1
19 0.0 0.0 0.0 0.0 0.0 0.0 0.1

Table 5.2: Ionic conductance densities (mS/cm2) for our reduced CA1 cell model

Compartment ḡNa ḡCa ḡK−DR ḡK−AHP ḡK−C ḡL

Somatic 30.0 6.0 17.0 0.8 15.0 0.1
Dendritic 0.0 5.0 0.0 0.8 5.0 0.1
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5.3 The model

In the previous section we determined the ionic currents present in each compart-
ment and their respective conductance densities. In this section we will expand this
to a full model. A schematic representation of our model was developed in accor-
dance with Pinsky and Rinzel’s model of the CA3 pyramidal neuron (Figure 5.1).
The schematic shows the ionic currents (INa, ICa, IK−DR, IK−C , and IK−AHP )
present in each compartment, with the direction of current flow represented by
an arrow. The applied currents (ID, IS), the synaptic current (ISY N), and the
coupling conductance (gC) are also shown. The difference in potential across the
membrane is denoted by VS and VD for the somatic and dendritic compartments
respectively, and represents the deviation (in mV) from the resting membrane po-
tential of −60 mV .

Figure 5.1: A schematic representation of our two-compartment CA1 neuron model.

The somatic compartment has five ionic current channels: sodium and cal-
cium are the inward currents (INa and ICa,S respectively), and the outward cur-
rents are the delayed rectifier potassium current (IK−DR), long-duration calcium-
dependent AHP potassium current (IK−AHP,S), and short-duration voltage and
calcium-dependent potassium (IK−C,S). The dendrite compartment has three ionic
current channels: an inward calcium current (ICa,D), and the outward IK−AHP,D

and IK−C,D. There is a small leak current in both the soma and dendrite compart-
ments. As mentioned, the strength of the coupling between the compartments is
controlled by the coupling conductance gC , and p represents the proportion of the
cell area that is taken up by the soma. We use Cm to represent the membrane
capacitance in units F/cm2. All currents in this model have the unit µA/cm2 and
all conductances have the unit mS/cm2.
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5.3.1 Applied currents

The applied currents, IS and ID, model electrode currents that are applied to the
somatic or dendritic compartment. We deal with current densities, and thus must
divide Traub et al. (1991) applied current by the total area of the Traub model.
Thus the values of IS and ID are divided by p and 1− p respectively, since they are
only applied to that proportion of our cell model. In our simulations we will use
a variety of applied currents, usually constant, which we have taken from Traub
et al. (1991) in the described manner. Unless otherwise stated, we assume that
IS = ID = 0 µA/cm2.

5.3.2 Ionic currents

Ionic currents are given as a function of their maximal conductance strengths and
their corresponding Hodgkin-Huxley-like gating variables, in accordance with Traub
et al. (1991). The voltage dependent currents are given by:

Ileak,S(VS) = ḡleak(VS − Vleak,S) (5.1)

Ileak,D(VD) = ḡleak(VD − Vleak,D) (5.2)

INa(VS, h) = ḡNam
2
∞(VS)h(VS − VNa) (5.3)

IK−DR(VS, n) = ḡK−DRn(Vs − VK) (5.4)

ICa,S(VS, s1) = ḡCa,Ss1
2(VS − VCa) (5.5)

ICa,D(VD, s2) = ḡCa,Ds2
2(VD − VCa) (5.6)

where VS and VD are the membrane potentials for the somatic and dendritic com-
partments respectively, and Vi is the reversal potential of the specific ion channel
that i represents. Sodium has an activation variable, m, and an inactivation vari-
able, h. Since sodium activates almost instantaneously compared to the other
variables, its activation variable is represented by the steady state value of m, m∞,
which is voltage dependent.

The activation of the other ion channels depends on the concentration of calcium
inside the cell. Following standard practice (Traub et al., 1991), we represent
the intracellular calcium concentration in a “shell” beneath the cell membrane as
[Ca2+]S and [Ca2+]D, for the somatic and dendritic compartments respectively. The
internal calcium concentration grows as the calcium current flows in, and degrades
with a time constant of 1/β[Ca2+]. We do not explicitly model the intracellular
release of calcium, and the calcium does not diffuse between compartments. Thus

d[Ca2+]i
dt

= −φICa,i − β[Ca2+][Ca2+]i (5.7)
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where i = S,D representing the somatic or dendritic compartment, φ is the scaling
constant that converts the inward calcium current to the internal calcium concen-
tration, and β[Ca2+] is defined above. We chose φ = 0.13 and β[Ca2+] = 0.075 ms−1

in accordance with Pinsky and Rinzel (1994) and Traub et al. (1991). The scaling
constant, φ, was chosen based on numerous simulations by Traub and Llinás (1979),
aimed at reproducing the firing rate–injected current curves. The appropriate range
for this constant was determined by considering φ = c/Ad, where c was a constant
converting current (in nA) to millimoles of divalent ions (c = 5.2×10−12 mmol/nC),
A was the area of the soma membrane (3320µm2), and d = 5 × 10−4 µm was the
thickness of the thin submembrane shell (Traub and Llinás, 1979). Thus, using this
φ = c/Ad relationship, [Ca2+]i had dimensions mmol/(L ·m2). However, since the
depth of the submembrane shells are yet to be determined, [Ca2+]S and [Ca2+]D are
given as dimensionless variables, and the relation φ = c/Ad is only used to deter-
mine an appropriate range of values. This leaves the units of φ to be cm2/(µA ·ms).
The ionic K-AHP currents are given by

IK−AHP,S(VS, q1) = ḡK−AHP q1(VS − VK) (5.8)

IK−AHP,D(VD, q2) = ḡK−AHP q2(VD − VK) (5.9)

The activation of K −AHP ion channels is calcium dependent, thus the gating
variables q1 and q2 are a function of [Ca2+]S and [Ca2+]D respectively. The K −C
ion channels depends on both voltage and the intracellular calcium concentration.
The gating variables for these currents are therefore expressed as a product of a
voltage-dependent gating variable, c1 or c2, and a saturating variable representing
the proportion of intracellular calcium with respect to a maximum internal calcium
concentration, [Ca2+]0. Traub and Llinás (1979) set [Ca2+]0 = 250 to be the value
such that when [Ca2+] > [Ca2+]0 the gating variable takes the maximum value of
one.

IK−C,S(VS, [Ca2+]S, c1) = ḡK−C,S × c1 × min(1,
[Ca2+]S

250
) × (VS − VK)

(5.10)

IK−C,D(VD, [Ca2+]D, c2) = ḡK−C,D × c2 × min(1,
[Ca2+]D

250
) × (VD − VK)

(5.11)

The gating variables h, n, s1, s2, c1, c2, q1, and q2 are of the form:

dy

dt
=

y∞(U) − y

τy(U)
(5.12)

where y∞(U) =
αy(U)

αy(U) + βy(U)
(5.13)

and τy(U) =
1

αy(U) + βy(U)
(5.14)
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with U =















VS for y = h, n, s1, c1

VD for y = s2, c2

[Ca2+]S for y = q1

[Ca2+]D for y = q2

The rate constants, given by αy and βy where y represents each gating variable,
are functions of voltage but not time. They were measured empirically and are
given below. These rate constants were taken directly from Traub et al. (1991).
Note that for j = 1, U = VS, and for j = 2, U = VD. The time constants are
plotted in Figure 5.2.

αm(VS) =
0.32 × (13.1 − VS)

e(13.1−VS)/4 − 1

βm(VS) =
0.28 × (VS − 40.1)

e(VS−40.1)/5 − 1

αh(VS) = 0.128 × e(17−VS)/18

βh(VS) =
4

e(40−VS)/5 + 1

αn(VS) =
0.016 × (35.1 − VS)

e(35.1−VS)/5 − 1

βn(VS) = 0.25 × e(0.5−0.025VS)

αsj
(U) =

1.6

1 + e−0.072×(U−65)

βsj(U) =
0.02 × (U − 51.1)

e(U−51.1)/5 − 1

αcj
(U) =

{

2 × e(6.5−U)/27 if U > 50
(e{((U−10)/11)−((U−6.5)/27)})/18.975 otherwise

βcj
(U) =

{

0 if U > 50
2 × e(6.5−U)/27 − αcj

(U) otherwise

αqj
[Ca2+]U = min(0.00002 × [Ca2+]U , 0.01)

βqj
= 0.001

The synaptic current, ISY N , represents the currents the CA1 neuron receives
from other neurons, interneurons, and glial cells through chemical synapses. We
do not consider gap junctional synapses (electrical synapses) in this model. The
neuron mostly receives the synaptic signal on its dendrites, so ISY N is modeled in
the dendritic compartment. In particular we model the fast-rising and fast-decaying
AMPA synapse, the fast-rising, and the slow-decaying NMDA synapse. Then ISY N

represents the sum of all the synaptic currents:

ISY N = IAMPA + INMDA + IGABA (5.15)
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Figure 5.2: The time constants τm, τh, τn, τs1
, and τc1 are plotted against VS.

The time constants τs2
and τc2 are plotted against VD, and the time constants τq1

and τq2
are plotted against [Ca2+]S and [Ca2+]D respectively. Note the long time

constants for the calcium-dependent q1 and q2 variables.
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5.3.3 The membrane potential

Now that the ionic and applied currents have been described, the voltage change for
each compartment can be explicitly expressed. For now, we consider the synaptic
current to be zero (ISY N = 0 mS/cm2), meaning that the isolated cell model does
not receive input from other excitatory or inhibitory cells. According to Kirchoff’s
law (section 3.4), the rate of change of the potential across each membrane (soma
and dendrite respectively) can be represented as:

dVS

dt
=

1

Cm

{

− Ileak,S(VS) − INa(VS, h) − IK−DR(VS, n) − ICa,S(VS, s1)

− IK−C,S(VS, [Ca2+]S, c1) − IK−AHP,S(VS, q1)

+
gc

p
∗ (VD − VS) +

IS

p

}

(5.16)

dVD

dt
=

1

Cm

{

− Ileak,D(VD) − IK−AHP,D(VD, q2) − ICa,D(VD, s2)

−
ISY N

1 − p
− IK−C,D(VD, [Ca2+]D, c2) +

gc

1 − p
∗ (VS − VD) +

ID

1 − p

}

(5.17)

Unless otherwise stated, the maximal conductances, reversal potentials, cou-
pling parameters and membrane capacitance are as stated in Table 5.3, and the
initial conditions are as stated in Table 5.4.

5.3.4 Numerics

The model was implemented in Windows using XPPAUT, an ordinary differential
equation solver. The program, XPPAUT, was created to show the dynamics of an
excitable membrane (Ermentrout, 2002), and is useful for simulating and analyzing
these dynamics. The Runge-Kutta fourth-order explicit method was used with a
fixed timestep of 0.05 ms. This classic Range-Kutta method, with a timestep of h,
has accuracy of order O(h4). Consider a differential equation of the form

dx

dt
= f(t, x)

with the initial condition x(t0) = x0. The Runge-Kutta approximation of x(tn+1)
can be written as xn+1, where tn+1 = tn + h,

xn+1 = xn +
h

6
(k1 + 2k2 + 2k3 + k4)
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Table 5.3: The parameter values for our isolated CA1 neuron model.

Parameter Unit Parameter Value
ḡL mS/cm2 0.1
ḡNa mS/cm2 30

ḡK−DR mS/cm2 17
ḡCa,S mS/cm2 6
ḡCa,D mS/cm2 5

ḡK−AHP,S mS/cm2 0.8
ḡK−AHP,D mS/cm2 0.8
ḡK−C,S mS/cm2 15
ḡK−C,D mS/cm2 5
ḡNMDA mS/cm2 0
ḡAMPA mS/cm2 0
VNa mV 120
VCa mV 140
VK mV -15
VL mV 0

VEXC mV 60
VINH mV -15
IS µA/cm2 -0.25
ID µA/cm2 -0.25
gC mS/cm2 1.5
p 0.5

Cm µF/cm2 3

Table 5.4: The initial conditions of the variables in our isolated CA1 neuron model.
Recall that VS and VD are the differences in the membrane potential (for the somatic
and dendritic compartments respectively) relative to rest (where Vrest = −60 mV ).
These values were taken from Traub et al. (1991), and from Pinsky and Rinzel
(1994).

Variable Initial Value
VS (mV ) -4.6
VD (mV ) -4.5

h 0.999
n 0.001

s1, s2 0.009
c1, c2 0.007
q1, q2 0.010

[Ca2+]S, [Ca2+]D 0.2
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and

k1 = f(t, xn)

k2 = f(t +
h

2
, xn +

hk1

2
)

k3 = f(t +
h

2
, xn +

hk2

2
)

k4 = f(t + h, xn + hk3)

Our model was relatively stiff, due to the fast dynamics of the spiking and the slow
dynamics of the interspike interval. However, our fixed timestep of 0.05 ms was
sufficiently small, and we were able to accurately capture the desired dynamics.

5.4 Results

Before we consider synaptic influence, we need to ensure that our isolated neuron
model simulates the electrophysiological properties of a typical CA1 pyramidal
neuron. We compare simulations from our model (where the model is given in the
previous section) to those of Traub’s model. The primary behaviours of interest of
a CA1 neuron are discussed, as well as the range of key variables for which this
behaviour is maintained. Since Traub’s isolated neuron model is much more detailed
than ours, there will inevitably be characteristics of the neuron that Traub’s model
captures and ours does not. Thus we conclude with a discussion of the limitations
of our model.

We must first clearly define an action potential and a burst. Following Pinsky
and Rinzel (1994), we define a somatic burst as a depolarization of at least VS =
10 mV , with a miniumum of three separate peaks. The dynamics of a burst will
be discussed more in section 5.5. Again, following Pinsky and Rinzel’s (1994)
definition, we say an action potential exists when VS has a maximum of at least
50 mV and a minimum below 5 mV .

From section 4.1, we recall Traub et al. (1991) determined that when a current
of < 1 nA (≈ 2.5 µA/cm2) is injected into the soma of a CA1 pyramidal neuron,
repetitive somatic firing occurs. The distal dendrites depolarize slightly, and pro-
duce subthreshold voltage transients. Stimulation in the proximal dendrites (at
0.3λ from the soma) results in a similar pattern of firing, but with greater depolar-
ization in the distal dendrites. However, if the distal dendrites are stimulated (0.6λ
from the soma), then a full dendritic calcium spike associated with a somatic burst
is enduced. The somatic burst is followed by repetitive action potentials.

By injecting a sustained current into our somatic compartment (IS) and later
into our dendritic compartment (ID), we reproduce these results. In Figure 5.3(a),
the somatic and dendritic voltage (VS and VD respectively) are shown when a
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sustained current is applied to the somatic compartment. As expected, a steady
train of somatic action potentials is produced with no bursting. Subthreshold den-
dritic voltage spikes ensue. The interspike interval (i.e. the interval between action
potentials) lengthens over time, which is consistent with Traub’s (1979) findings
for CA1 neurons. When a current of the same strength is applied to the den-
dritic compartment, our model accurately simulates the dendritic calcium spike
and somatic burst, followed by action potentials (Figure 5.3(b)). It is obvious from
Figure 5.3 that when a current is applied to the dendritic compartment, the train
of action potentials occurs at a lower frequency than when the same current is
applied to the somatic compartment. The large dendritic calcium spike triggers
the calcium-dependent outward potassium channel IK−AHP,D, resulting in a longer
afterhyperpolarization (due to the large time constant), and therefore larger inter-
spike intervals. Again, this characteristic CA1 neuron behaviour only occurs for
applied currents smaller than approximately 2.5 µA/cm2. For the simulations in
Figure 5.3, we use a constant applied current of either IS or ID = 1.25 µA/cm2

(which translates to approximately 0.48 nA from Traub’s model), while the applied
current to the other compartment is held constant at −0.25 µA/cm2. We have cho-
sen to hold the current at −0.25 µA/cm2 so that it is slightly below our rheobase
– the minimum amount of current required to excite the neuron – which is found
to be approximately −0.175 µA/cm2 when p = 0.5. We did so in accordance with
Pinsky and Rinzel (1994) and Traub et al. (1991), who applied a small negative
current to suppress spontaneous firing. The coupling parameters are kept for now
at the standard values of gC = 1.5 mS/cm2 and p = 0.5.

The desired behaviour can be observed when the applied current is in a spe-
cific range. For example, when gC = 1.5 mS/cm2, p = 0.5 and a sustained cur-
rent is applied to the somatic compartment, the characteristic train of action po-
tentials are produced for 0 µA/cm2 < IS < 3.5 µA/cm2. However, within this
range the frequency of spiking varies significantly, decreasing as the applied cur-
rent decreases. According to Traub (1979), the minimum firing rate of a typi-
cal CA1 neuron with a somatic depolarization is approximately 20 impulses/sec.
Thus we restict our range of IS so our model produces physiologically relevant
results, leaving us with 1.25 µA/cm2 ≤ IS < 3.5 µA/cm2. Similarily, when a
dendritic current is applied (with the same coupling parameters as stated above),
our desired bursting behaviour with subsequent action potentials is produced when
0.5 µA/cm2 < ID < 4 µA/cm2. This is an approximate range, and of course
depends on the particular definition of a burst.

It is important to recognize that, as with Pinsky and Rinzel’s model (1994), our
model only demonstrates the desired characteristic CA1 behaviour for a limited
range of the coupling conductance, gC . A very large coupling conductance essen-
tially makes our model a single compartment model, and a very small gC leaves
us with isolated compartments. However, if gC is only slightly reduced then no
bursting occurs, and if gC is slightly increased then aperiodic bursting occurs. In
fact, with an applied current of ID = 1.25 µA/cm2, the desired bursting behaviour
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(a) A sustained somatic current of IS = 1.25 µA/cm2 is applied
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(b) A sustained dendritic current of ID = 1.25 µA/cm2 is applied

Figure 5.3: The membrane voltage when a (a) somatic and (b) dendritic current
is applied. Characteristic qualities of a CA1 neuron are reproduced: (a) A train of
action potentials with increasing interspike interval, (b) a burst with a full dendritic
calcium spike, followed by repetitive spiking.

is reproduced for 1.35 mS/cm2 ≤ gC ≤ 1.7 mS/cm2.

Our results were produced with a small negative holding current, following
Traub et al. (1991). The holding current prevented spontaneous neural activity
in Traub’s experiments, and eliminated very low frequency spiking in our model.
Without this small current, our model produced the same results with spiking at
a very slightly higher frequency. The simulations in the remainder of this thesis
are created with this holding current, but have been reproduced without it as well,
and the results remain consistent with experimental findings. In the next section,
we consider the underlying mechanism behind the generation of a burst.

5.5 Bursting mechanics

As we have shown in the previous section, a moderate sustained current of less
than 2.5 µA/cm2 applied to the dendritic compartment will cause an initial tran-
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sient burst in the somatic compartment followed by a train of action potentials.
What causes this transient burst? To explain this qualitatively, we analyze the dy-
namics of the burst and compare it with a single spike. For simplicity, we examine a
single isolated model CA1 neuron with no synaptic input. The coupling parameters
are kept at their usual values of gC = 1.5 mS/cm2 and p = 0.5, and maintaining
IS = −0.25 µA/cm2, a constant applied dendritic current of ID = 1.25 µA/cm2 is
used to create the initial burst followed by the action potential shown in Figure 5.4.
We show that the dendritic calcium current, ICa,D, is the primary cause of burst-
ing: more specifically it is the interplay between the outward dendritic currents
IK−C,D and IK−AHP,D with the inward dendritic current ICa,D. Since the calcium-
dependent potassium currents are essential to the bursting behaviour, we look at
the associated variables [Ca2+] and q . In addition, the coupling parameters, gC

and p, are identified as key elements in generating this characteristic behaviour.

0 50 100 150 200

0

20

40

60

80

Time (ms)

V
ol

ta
ge

 (
m

V
)

 

 

V
S

V
D

Figure 5.4: A typical transient burst and an action potential is produced from our
isolated model when a sustained current of ID = 1.25 µA/cm2 is applied to the
dendritic compartment. The burst is initiated by a somatic spike. The dendritic
voltage, VD, is significantly larger than the somatic voltage, VS (compared to the
single action potential case). The coupling component alternately deplolarizes the
two compartments, resulting in a burst. In the case of the action potential, VS has
a full sodium spike but VD is not large enough to send the somatic compartment
into a second spike.

So what is happening in our simulations? Initially, the applied dendritic cur-
rent (ID) depolarizes the dendritic compartment, but the dendritic voltage (VD)
is not large enough for a full calcium spike. The coupling between the compart-
ments quickly depolarizes the somatic compartment, enough so that it surpasses its
threshold and creates an action potential. This is known as a sodium spike since
the somatic sodium current (INa,S) activates at lower voltages than the somatic
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calcium current (ICa,S). The key is that if the outward dendritic currents IK−C,D

and IK−AHP,D are strong enough to counteract the inward ICa,D (Figure 5.5, right
inset), then the dendritic voltage, VD, will decrease at approximately the same rate
as the somatic voltage, VS. Thus, the difference in the two voltages will be small,
and very little current will be transferred due to coupling. This permits the two
compartments to repolarize, and relax to their resting potentials. In this case only
an action potential will be produced.

However, if IK−AHP,D and IK−C,D are not strong enough to counteract the in-
ward ICa,D (Figure 5.5, left inset), the difference between VD and VS after the
somatic spike is large. The coupling further depolarizes the somatic compartment
and a second Na+-spike occurs. Since the soma has not fully recovered from its
initial action potential (IK−DR,S > 0 µA/cm2), this second spike will be partial in
size (note the decreased amplitude in the second spike in the burst in Figure 5.4).
Although VD increases due to coupling, it may still not be large enough to sur-
pass the threshold for a full calcium spike. In this case the process continues: the
depolarized dendritic compartment sends the somatic compartment into another
partial somatic spike — depolarizing the dendritic compartment yet again through
the coupling current. This cycle repeats until finally VD passes the threshold and
produces a full dendritic calcium-mediated spike. This broad dendritic spike initi-
ates a strong depolarizing current flow between the compartments. The short time
scale does not allow IK−DR to recover, and the soma is “over-driven” — i.e. no
somatic sodium spikes can be produced. Once VS, VD, and IK−DR have begun to
recover, the soma is no longer in over-drive, and a small somatic Na+-spike may
occur. This time the difference in voltage is not enough to initiate another burst
sequence, thus VS and VD are repolarized.

To determine why our model is much more likely to produce a single transient
burst than repetitive bursting, we consider the dynamics of the outward potassium
currents IK−C,D, and IK−AHP,D. Recall that the K-C ion channels activate depend-
ing on both the fast voltage-dependent gating variables, c1 and c2, and the slower
intracellular calcium concentrations, [Ca2+]S and [Ca2+]D (section 5.3 ). Therefore
the time constant of this outward potassium channel largely depends on the slow
decay time (1/β[Ca2+]) of the concentration of internal calcium. Similarily, the de-
cay time of the potassium current IK−AHP,D depends on the slow gating variable q2,
which is also a function of [Ca2+]D. Thus the dendritic calcium spikes repolarize in
accordance with the time constants of the slow variables [Ca2+]S, [Ca2+]D, q1 and
q2. The length of the “quiet period” of VS – when the soma is overdriven – during
such a dendritic calcium spike is also determined mainly by these slow variables.
From Figure 5.6(b) it is evident that the levels of q2 are low at the time of burst-
ing, and are significantly elevated during the action potentials. In general, the q1

and q2 variables of our CA1 neuron model are initially low, allowing for the char-
acteristic transient burst. High q values permit greater outward flow of IK−AHP ,
allowing the voltage to recover faster, thereby reducing the probability of burst-
ing. Similarily, the intracellular calcium concentration is low during the initiation
of a burst. Increased levels of [Ca2+] activates the K − C channels directly (and
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Figure 5.5: The currents IK−AHP,D, IK−C,D and ICa,D are shown during the burst
and spike triggered from the applied current of ID = 1.25 µA/cm2 from Figure 5.4.
A magnified view of the currents from the upper figure during the burst (left inset)
and the spike (right inset). The outward currents are denoted as positive and
the inward as negative by convention. When the outward currents are not strong
enough to counteract the effect of the inward ICa,D, a burst is generated. When
they are sufficiently strong, a single action potential is generated. Notice the inward
ICa,D is much larger during the burst than the action potential.

K − AHP channels indirectly), permitting the compartmental voltage to repolar-
ize faster. This faster recovery implies a decreased chance of bursting, resulting in
single action potentials (Figure 5.6(a)). However, a large dendritic calcium conduc-
tance, ḡCa,D, creates a large inward calcium current flow. This makes it difficult
for the outward potassium currents to counteract the inward flow, increasing the
possibility of a burst.

It is obvious that the coupling parameters, gC and p, play an essential role in
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Figure 5.6: (a) The somatic and dendritic intracellular calcium concentrations,
[Ca2+]S and [Ca2+]D (in red), overlaying the bursting and spiking from Figure 5.4.
(b) q1 and q2 for the burst and spike sequence in (a). Therefore an applied dendritic
current of ID = 1.25 µA/cm2 as in Figure 5.4 results in the same voltage burst and
spike. It is evident that increased levels of the slow variables [Ca2+]S, [Ca2+]D, q1,
and q2 decrease bursting activity. The characteristic transient burst occurs because
of the initially low q values.

generating bursts. Since the currents are voltage-dependent, they are also depen-
dent on the coupling. Increased coupling results in increased flow of electrotonic
current, elevating the q and [Ca2+] levels, as well as the inward current flow. Al-
though the model will be more effective in creating the bursts, it will also recover
faster, shortening the length of the burst. Thus, if the coupling parameter gC is
increased, the greater current flow between the two compartments will be more ef-
fective in intiating a burst. Similarily, the effects of the two compartments depend
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on their proportional size, p: the larger the dendritic compartment is compared to
the somatic compartment, the more influence it will have.

5.6 Discussion

Pyramidal neurons from the CA1 region of the hippocampus have been focused on
in the study of epileptiform bursts, because of their ability to generate excessive and
synchronous electrical discharges. Traub et al. (1991) created a 19-compartment
model (discussed in detail in section 4.1), which elegantly described the structure
and behaviour of these neurons. However, a simplified model would be useful,
allowing one to identify the key parameters, and analyse the mechanisms behind the
epileptiform bursting. We used Pinsky and Rinzel’s (1994) two-compartment model
of a CA3 neuron as inspiration while reducing Traub’s model. However, Pinsky
and Rinzel’s CA3 model and our CA1 model had a few key differences. First of all,
the two neurons responded differently to dendritic stimulation. When a moderate
dendritic stimulus was applied, a CA1 soma exhibited a burst followed by a train of
action potentials, whereas a CA3 soma exhibited repetitive bursting (Traub et al.,
1991). This was due to the different calcium dynamics of the two neurons. Unlike
a CA3 neuron, the soma and proximal dendrites of a CA1 neuron exhibited larger
calcium currents than the distal dendrites. Thus, we had to model the calcium
current in both compartments, instead of only the dendritic compartment as in
Pinsky and Rinzel’s CA3 neuron model (Pinsky and Rinzel, 1994). Finally, in
accordance with Traub et al. (1991), the conductances of the ion channels differed
between the two models. Therefore, using Pinsky and Rinzel’s (1994) CA3 model,
and Traub’s model and conductance densities, as a starting point, we created a
two-compartment model of a CA1 neuron. The mathematical model provided a
representation of the membrane potential, the ionic, and applied currents, and
the coupling between the two compartments. In this section we considered an
isolated cell, and therefore took the synaptic currents to be zero. We were able to
reproduce the characteristic behaviours of a CA1 neuron, as described by Traub
et al. (1991), and to examine the key parameters involved in the generation of a
burst. We found that the coupling parameters gC and p and the dynamics between
the inward dendritic calcium current and the two outward dendritic potassium
currents were especially important to the generation of a burst. In addition, the
slow parameters, q and [Ca2+], were determined to be essential influences in the
length of the interspike interval as well as the generation of a burst.

It is not surprising that there are some characteristics of the CA1 neuron that
our reduced model will not capture. When creating such a reduced model, it
is important to recognize the level of detail one wishes to obtain. For example,
according to Traub and Llinás (1979), about 25% of CA1 neurons produce very
small all-or-nothing spikes called “d-spikes”. These spikes are small in amplitude
(approximately 2−15 mV ) and peak quickly. They can be produced spontaneously,
and are capable of exhibiting bursting. Traub’s model accounts for these small
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spikes, while our reduced model does not. However, for the purpose of our study,
we are not concerned about such a detail.
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Chapter 6

A Coupled Neuron Model

To create the basis for a potential network of CA1 neurons, we must first consider
how two CA1 neurons communicate with each other. The physiological details of
this neuron-neuron communication are given in section 2.6, and thus we just discuss
the key points briefly. When excited, the presynaptic neuron releases neurotrans-
mitters into the synaptic cleft to signal its postsynaptic neighbour. According to
Pinsky and Rinzel (1994) and Traub (1992), the AMPA synapse is the dominant
mechanism involved in the synchronization of two pyramidal neurons. Thus we con-
clude that the neurotransmitters from the presynaptic cell primarily activate the
AMPA receptors on the postsynaptic neuronal membrane. Using this knowledge,
we construct an appropriate synapse model which synchronizes coupled cell models
under a strong connection, and desynchronizes the coupled models immediately
once the strong connection is removed. The influence of an inhibitory interneuron
on a CA1 neuron is modeled through a simple GABAA synapse.

6.1 The AMPA synapse model

The idea of coupling two cell models requires some discussion. We attach a subscript
to our variables to denote the appropriate cell to which it belongs. For example,
we say VSi

is the ith cell’s somatic voltage for i = 1, 2, .... Consider two cells, a
presynaptic cell (cell 2) and a postsynaptic cell (cell 1). Using the gating variable
W1 and the maximal conductance ḡAMPA1

, we represent the synaptic current due
to the AMPA receptors by:

IAMPA1
= ḡAMPA1

W1(VD1
− VEXC) (6.1)

where VD1
is the voltage of the dendritic compartment of the postsynaptic cell,

and the reversal potential of the excitatory synapse is given by VEXC = 60 mV in
accordance with Traub (1991). So as not to confuse which synaptic currents are
involved in our simulations, the maximal conductances, ḡAMPA1

and ḡAMPA2
, are

set to be 0.0 mS/cm2, unless otherwise stated. During a signal (or spike) from
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the presynaptic cell, the presynaptic voltage increases. The presynaptic voltage is
denoted VS2

and VD2
for somatic and dendritic voltage respectively. If VS2

surpasses
some threshold, VW , then the AMPA current of the postsynaptic cell activates with
a time constant of 1 ms. Otherwise, the current will not activate. The activation
degrades with a time constant τW . Then

dW1

dt
= H(VS2

− VW ) −
W1

τW

(6.2)

where H(x) is the heaviside function H(x) =

{

1 if x ≥ 0
0 otherwise

,

VW = 40 mV and τW = 2 ms in accordance with Traub (1992) and Nadkarni &
Jung (2005).

To maintain a biologically realistic model, the two individual cell models should
not be identical. Thus we alter some variables of “cell 2” slightly, while keep-
ing them close to the values for cell 1. Unless otherwise stated, we have ḡNa2

=
28 mS/cm2, ḡK−AHP 2

= 0.7 mS/cm2, and all other variables stay as stated in
section 5.2.

6.2 Results for the AMPA synapse

Before we consider any other synaptic input, we should determine whether this
modeled neuron-to-neuron coupling corresponds with the results of Traub et al.
(1991). Traub et al. stated that the AMPA synapse is primarily responsible for the
synchronization of two neurons. To demonstrate that this characteristic is upheld
in our model, we couple two cell models with an AMPA synapse, disregarding all
other synaptic input (INMDA = 0 µA/cm2). Different non-zero input is applied to
each of the two cell models (ID1

6= ID2
), but only the second cell model receives

AMPA input (ḡAMPA1
= 0.0 mS/cm2, and ḡAMPA2

6= 0.0 mS/cm2). If the second
cell model receives weak AMPA input, then the two models will not synchronize
(Figure 6.1(a). However, if a significantly strong AMPA input connects the second
cell model to the first, then it synchronizes to that cell.

Next, we consider a sinusoidal input, applied to the somatic compartment of
both cell 1 and cell 2. We set the frequency and strength of the input to be different
for both cell 1 and cell 2, so the cells do not synchronize on their own. Then, if
neuron models are connected with a sufficiently strong AMPA conductance, and
the first input (IS1

) has a higher amplitude than the second (IS2
), then the second

neuron model should synchronize to the first. Physiologically, when AMPA blockers
are applied, the neurons are reported to desynchronize rapidly (Traub et al., 1991).
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Figure 6.1: An input of ID1
= 2.0 µA/cm2 and ID1

= 1.25 µA/cm2 is applied.
(a) a weak connection : ḡAMPA2

= 0.04 mS/cm2. The two cell models are not
synchronized. (b) a strong connection: ḡAMPA2

= 0.2 mS/cm2. The two cell
models are sychronized.

We show these results in Figure 6.2, by connecting the cells strongly (ḡAMPA1
=

ḡAMPA2
= 0.2 mS/cm2) until t = 500 ms, and weakly (ḡAMPA1

= ḡAMPA2
=

0.01 mS/cm2) after t = 500 ms. We set the input to be IScell1
(t) = IS1

sin(2πt/100)+
IS1

− 0.25 where IS1
= 1.25 so IScell1

(t) fluctuates between −0.25 and 2.25. Simi-
larily we set IScell2

(t) = IS2
sin(2πt/130) + IS2

− 0.25, where IS2
= 1.25, so IScell2

(t)
has a slightly different period.
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Figure 6.2: (a) The voltage of cell 1 and its corresponding input, IScell1
(t). Note

the synchronization to its input. (b) The voltage of cell 2 and the input from cell
1, IScell1

(t). Cell 2 is synchronized to cell 1 until t = 500 ms, at which point it
desynchronizes. At t = 500 ms the connection goes from strong to weak, and the
applied sinusoidal current to cell 2 dominates.

6.3 An inhibitory synapse

Pyramidal neurons often receive input from inhibitory interneurons through a
GABAA synapse. Over the years, it has been suggested that a lack of inhibitory
input may initiate seizure generation, and thus is it important to include the
interneuron-pyramidal neuron dynamic in our model. However, like Nadkarni and
Jung (2005), we find that a lack of inhibitory input is not sufficent for seizure
generation.

The GABAA synapse can be modeled in a very similar manner to the AMPA
synapse. We represent the small inhibitory synaptic input from the surrounding
interneurons by:

IGABA1
= ḡGABA1

G1(VD1
− VINH) (6.3)

where VD1
is the voltage of the dendritic compartment of the postsynaptic cell, and
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the equilibrium potential of the inhibitory synapse is given by VINH = −15 mV
(Traub et al., 1992; Nadkarni and Jung, 2005). The maximal conductance, ḡGABA1

is set to be 0.1 mS/cm2 in accordance with Nadkarni and Jung (2005). The gating
variable, G1, ideally depends on the voltage of the presyaptic interneuron. In order
to avoid modeling this interneuron, we make the assumption that the channels are
open at all times. Thus the gating variable is given by G1 = 1, and inhibition in
the postsynaptic cell is always present.

Using this model, we find that the influence of the inhibitory interneuron on the
CA1 neuron is minimal. It inhibits the neuron by reducing the membrane potential,
but its effects are insignificant. That is, we can reproduce all our results with only
slight changes to the input values. We conclude that with our model, the inhibitory
input is not sufficient to suppress epileptiform bursting, and a lack of this input is
not sufficient to cause the bursting.

6.4 Discussion

The AMPA synapse is thought of as the primary method of synchronization be-
tween two cells. Although our model is relatively simple, it is a very commonly used
representation of the AMPA synapse. Most importantly, it successfully reproduces
the desired synchronization results: the two models are synchronized under strong
coupling, and desynchronize under weak coupling. This is an essential property of
the AMPA synapse, and is useful if a network model is to be produced. However,
as always it is important to consider the dynamics one wishes to reproduce. For ex-
ample, the release of neurotransmitters from the presynaptic cell and their diffusion
across the synaptic cleft could be considered in more detail. The influence of an
inhibitory interneuron was modeled through a GABAA synapse, and the effects of
the synapse were minimal. This modeled synapse could be improved by including
a model of an actual interneuron, rather than assuming that the synaptic channels
were open at all times.
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Chapter 7

An Astrocytic Influence

Now that we have discussed how two CA1 neurons communicate with each other,
we focus our attention on synaptic input from other sources. In particular, we are
concerned with the synaptic communication between a CA1 neuron and an astro-
cyte. In section 4.4 it is discussed in detail how Parpura and Haydon (2000) propose
a link between the internal astrocytic calcium concentration (denoted [Ca2+]astro)
and an inward synaptic current to neighbouring neurons. Tian et al. (2005) take this
theory a step further by examining the particular synaptic connections involved.
They note that subthreshold depolarizations, known as paroxysmal depolarization
shifts (PDSs), occur in neurons when the levels of the internal astrocytic calcium
are elevated (see section 4.3 for more details). These PDSs are directly associated
with synchronized neuronal bursts, even when communication between the neurons
is blocked (Parpura and Haydon, 2000). The theory is that these elevated calcium
levels cause the astrocytes to release glutamate into the extracellular space. The
glutamate activates a particular type of receptor known as N-methyl D-aspartate
(NMDA) receptors on a neuron’s dendrite, creating a slow inward current (SIC) into
the cell (Parpura and Haydon, 2000). This results in a depolarization in the form
of a PDS from the neurons. These PDSs, however, can be significantly reduced
by applying a NMDA antagonist known as (2R)-amino-5-phosphonovaleric acid
(APV) (Tian et al., 2005), singling out the NMDA synapse as crucial to astrocyte-
neuron communication. Since this particular synapse plays such an important role
in the communication between a neuron and an astrocyte, we will concentrate on
modeling this dynamic.

7.1 The model

Modeling a NMDA synapse is slightly more complicated than modeling an AMPA
synapse. This is because it does not depend only on a gating variable, S1, and
a maximal conductance ḡNMDA, but also on a voltage- and magnesium-dependent
term. The NMDA receptors are blocked by magnesium until a particular membrane
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voltage threshold is reached (Martin, 2003). Then the magnesium is released, and
the receptor is free to activate. This synaptic current is modeled as

INMDA =
ḡNMDA × S1 × (VD − VEXC)

1 + 0.28 × e−0.062×(VD−60)
(7.1)

where VD and VEXC are defined as in chapter 6, and the denominator represents the
magnesium- and voltage-dependent dynamics measured empirically. For our pur-
poses, we set the maximal conductance, ḡNMDA, to 0.0 mS/cm2 (unless otherwise
stated) and VEXC = 60 mS/cm2 as before. We assume that the gating variable
S1 follows first order kinetics. Then, motivated by models for NMDA synapses
between neurons, we represent S1 in a new way:

dS1

dt
= αSf([Ca2+]astro)(1 − S1) − βSS1 (7.2)

Thus S1 opens with respect to the inverse time constant αS and a function f([Ca2+]astro),
which provides the link between the synaptic dynamics and the internal astrocytic
calcium concentration, [Ca2+]astro. It closes with an inverse time constant βS. The
inverse time constants are given by:

αS =
1

τSrise

, βS =
1

τSfall

(7.3)

where τSrise = 2 ms and τSfall = 150 ms represent the fast rise and slow decay of
the NMDA synaptic input (Traub et al., 1991).

To determine f([Ca2+]astro), we use experimental data which describes how
[Ca2+]astro affects the neuronal SIC. In particular, we examine a figure from Parpura
and Haydon’s paper (Parpura and Haydon, 2000, Fig. 5B). This figure shows how
the estimated [Ca2+]astro corresponds with the peak neuronal synaptic inward cur-
rent when the membrane potential is held at −60 mV . To use this data, we first
convert the inward current unit of pA to our current per unit area of µA/cm2.
Parpura and Haydon (2000) do not specify the surface area of the neurons they
used. However, they use hippocampal neurons in their study, and so we calcu-
late the typical total surface area of the neuron model from Traub et al. (1991)
— 38584 µm2. In addition, Parpura and Haydon (2000) mention a key point: the
resting level of internal astrocytic calcium is [Ca2+]astro = 87 nM . We add this
point to our graph, setting the synaptic inward current of the neuron to zero when
the astrocyte is at rest. Thus we determine f([Ca2+]astro) by fitting the newly
converted plot (Figure 7.1). The program ‘Engauge’ was used to plot the points
accurately, and then MATLAB’s ‘lsqcurvefit’ function was used to fit the curve.

Following Perkel et al. (1981), a sigmoid function of the form

g(Vpre) = 1/(1 + exp(−(Vpre − θsyn)/2)
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Figure 7.1: A plot of neuronal SICs vs. astrocytic calcium concentration (open
circles), and a corresponding fit (solid line). The graph was taken from Parpura
and Haydon (2000, Fig. 5B), and a conversion was made to change the inward
current to units of µA/cm2. The fit was made using MATLAB’s “lsqcurvefit”
function.

can be used to represent transmitter release, g(Vpre), based on the presynaptic
voltage, Vpre. We use a similar method, normalizing f([Ca2+]astro) so our gating
variable S1 represents the fraction of open NMDA channels. Then the fit for this
graph can be described as

f([Ca2+]astro) =
1

1 + k1 × ek2×([Ca2+]astro−k3)
(7.4)

where k1 = 0.0009, k2 = −0.0646 and k3 = 318.5. For our fit, the squared 2-norm
of the residual is 0.0211, which is reasonable for our qualitative simulations.

7.2 The astrocytic calcium and results

We now know how to describe the NMDA synapse as a function of the internal
astrocytic calcium concentration, [Ca2+]astro. In this section, the [Ca2+]astro is
described in a variety of ways, and the resulting simulations for each method are
discussed. In these simulations, a maximal conductance of ḡNMDA = 0.4 mS/cm2

is used, unless otherwise stated. These values are taken indirectly from Traub et al.
(1991), as they stated that no cell should have a greater NMDA conductance than
187.5 nS/cell – which translates to 0.49 mS/cm2 in our model. Although this value
is for a CA3 cell, not a CA1 cell, it gives us an appropriate range with which we
estimate our ḡNMDA. Unless otherwise stated, ḡAMPA = 0.0 mS/cm2. That is, we
are studying a single CA1 cell with astrocytic input.
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7.2.1 A step of astrocytic calcium

According to Parpura and Haydon (2000), the [Ca2+]astro decays quite slowly as
compared to the slow inward current (SIC) it produces. For simplicity, we begin by
adding a single step of calcium, with a long duration (500 ms in the example below)
to account for the slow decay. The amplitude of the step can vary to represent a
large or small [Ca2+]astro, which results in a correspondingly large or small SIC. The
Figure below (Figure 7.2) shows how a relatively large step of [Ca2+]astro (250 nM),
results in an activated neuron. However, once the [Ca2+]astro returns to its resting
value, the neuron immediately returns to rest.
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Figure 7.2: A step of [Ca2+]astro, 250 nM in amplitude, 500 ms in duration, results
in an activated neuron during the step.

It can be shown that a smaller step of [Ca2+]astro results in a smaller depolar-
ization of the cell. However, before we do a detailed analysis of these dynamics,
perhaps a better representation of the astrocytic calcium should be considered.

7.2.2 A wave of astrocytic calcium

Tian et al. (2005) give experimental evidence for astrocytic intracellular calcium
oscillations. It may be beneficial to examine our neuron model under an such
an oscillatory influence. Although the astrocytic waves in theory have very large
period (the decay of calcium is extremely slow), we first examine the neuron under
a smaller period. This allows us to see the synchronization of the neuron model
to the calcium waves, and leads us to consider the synchronization of two CA1
neuron models. First, we consider a single neuron with an astrocytic input, where
the [Ca2+]astro is represented by:

A × sin2

(

2πt

T

)

+ 87

where A = 213 nM , T = 280 ms which oscillates between the resting value of
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[Ca2+]astro = 87 nM and 300 nM (Figure 7.3(a)). It is evident that the neuron
spikes in synchrony with the calcium oscillations. Then if we consider the neuron to
be coupled to a second neuron through an AMPA synapse (see chapter 6 ), the sec-
ond neuron will also synchronize with the astrocytic calcium waves (Figure 7.3(b)).
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(a) Neuron 1 with astrocytic input. The wave of astrocytic intracellular calcium is represented
by the dotted line, VS1

by the solid line.
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(b) Neuron 2 with AMPA input from neuron 1. The second neuron synchronizes with the
astrocytic calcium wave involved in the input to neuron 1.

Figure 7.3: The influence of a wave of [Ca2+]astro on two neurons. In these simu-
lations, ḡNMDA1

= 0.4 mS/cm2, ḡNMDA2
= 0.0 mS/cm2, ḡAMPA1

= 0.0 mS/cm2,
and ḡAMPA2

= 0.2 mS/cm2.

Although an interesting case, this representation of the calcium as a wave may
not be entirely realistic. The calcium wave is shown by Parpura and Haydon (2000)
to decay exponentially, and at a much slower rate. To create a better model, we
turn once again to Parpura and Haydon (2000).
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7.2.3 A pulse of astrocytic calcium

Recall (from section 4.4) that Parpura and Haydon (2000) used a particular fluores-
cence (fluo-3) to identify the amount of internal astrocytic calcium released. Then
[Ca2+]astro is expressed in terms of the percentage increase in the fluorescence and
of the resting internal calcium level of 87 nM . Using the resting calcium concen-
tration of 87 nM , the resting level of fluo-3 was identified as F0, and the change in
fluo-3 as ∆F . Then, from Parpura and Haydon (2000):

[Ca2+]astro = 87 × e0.94×∆F/F0 (7.5)

where ∆F/F0 is the percentage increase in fluorescence. To identify ∆F/F0 we turn
to another graph provided by Parpura and Haydon (2000), shown in Figure 7.4.

Figure 7.4: Parpura and Haydon (2000, Fig. 2E). A plot of the percentage increase
in fluorescence (fluo-3) vs. time (in ms). The increase in the [Ca2+]astro can be
expressed using Equation (7.5)

The amount of fluorescence degrades at different rates depending on the initial
pulse. In most of the experiments, Parpura and Haydon (2000) gave six consecutive
pulses to step the calcium concentration up to an appropriate level. So we examine
Figure 7.4 from Parpura and Haydon (2000), but consider a single large pulse and
only the final slow degradation. Then we express ∆F/F0 as:

∆F/F0 = pulse × e−k4(t−t0)

where k4 = 0.0002 was determined by fitting the degradation of the last pulse in
Figure 7.4. The time when the pulse is given is denoted by t0. Now [Ca2+]astro is
expressed as a function of time, giving the NMDA gating variable S1 as a function
of time.

7.2.4 Results with a pulse of astrocytic calcium

By implementing the expression for [Ca2+]astro as a slowly decaying exponential
into our model, simulations that correspond with Parpura and Haydon’s (2000)
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experimental findings are produced. It is evident from Figure 7.5 that increased
levels of [Ca2+]astro produce increased neuronal depolarization.
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Figure 7.5: Different pulses of [Ca2+]astro produces different levels of neuronal depo-
larization. (a)A weak pulse of [Ca2+]astro produces a weak response from the neigh-
bouring neuron. We use pulse = 0.5, which implies the initial [Ca2+]astro is approx-
imately 139 nM . (b) A strong pulse of [Ca2+]astro produces a strong response from
the neighbouring neuron. We use pulse = 1.25, which implies the initial [Ca2+]astro

is approximately 282 nM . In both simulations we use ḡNMDA1
= 0.4 mS/cm2.

Parpura and Haydon showed that when a pulse of light released [Ca2+]astro, a
neighbouring neuron obtained a SIC (Parpura and Haydon, 2000, Fig. 3C). In their
experiment, the voltage was clamped at its resting value of −60 mV (Parpura and
Haydon, 2000). In our model, since we have normalized the voltage, we fixed VS and
VD to 0 mV . We attempted to reproduce the SIC that Parpura and Haydon (2000)
found resulted from a pulse of [Ca2+]astro. To do so, we considered three separate
cases. First, we took a peak astrocytic calcium value directly from Figure 7.1. Using
ḡNMDA1

= 0.11 mS/cm2 and pulse = 0.965, which implied the initial calcium level
of [Ca2+]astro = 215.5 nM , we obtained the SIC in Figure 7.6. This SIC had an
appropriate peak magnitude, based on value given in Figure 7.1, and shape, based
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on the shape of the SIC in Parpura and Haydon (2000, Fig. 3C). We note that the
peak SIC value was not the exact value of the point taken from Figure 7.1, since we
used the fit of these points to represent the gating variable, S1, and not the inward
current itself.
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Figure 7.6: Using pulse = 0.965, a pulse of [Ca2+]astro with peak 215.5 nM pro-
duced a SIC. With ḡNMDA1

= 0.11 mS/cm2, the SIC had a peak of −0.514 µA/cm2.
The resulting peak amplitude of the SIC corresponded closely with that of Parpura
and Haydon’s Fig. 5B (2000). The shape of the SIC was in agreement with the
SIC found in Fig. 3C from Parpura and Haydon (2000).

Second, Parpura and Haydon (2000) stated that an initial astrocytic calcium
pulse of 140±15 nM produced a neuronal SIC with a peak of −391±139 pA (which
was equivalent to −1.01±0.36 µA/cm2). To reproduce this finding, we used a small
pulse (pulse = 0.5) to release 139 nM of [Ca2+]astro. Figure 7.7(a) shows that this
pulse resulted in a neuronal SIC with the appropriate shape, but with a peak of
−0.19 µA/cm2, which was well below the desired range. This occurred because
the point given by Parpura and Haydon (2000) did not fall near the fit curve in
Figure 7.1: compared to the rest of the points, the given SIC was very large for the
magnitude of the calcium pulse. We noted that Figure 7.1 was created by elevating
the astrocytic calcium levels in three separate tests. Perhaps the magnitude of the
SIC peak was higher in this test because of the particular astrocyte used. Obviously,
more information about the astrocytic calcium-SIC relationship, preferably using
a larger number of cells, would be helpful to improve our model. In the meantime,
we were able to reproduce the desired results by considering a larger maximal
conductance, ḡNMDA1

= 0.5 mS/cm2 (Figure 7.7(b)).

Third, Parpura and Haydon (2000) found that an initial astrocytic calcium
pulse of 549 ± 118.64 nM produced a neuronal SIC with a peak of −475 ± 128 pA
(which is equivalent to −1.23± 0.332 µA/cm2). To simulate the release of 549 nM
of [Ca2+]astro, we used pulse = 1.96. The resulting SIC is shown in Figure 7.8(a).
Both the amplitude of the peak and the shape of the SIC were inconsistent with
Parpura and Haydon’s Fig. 3C (2000). As in the previous case, the magnitude of
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Figure 7.7: Using pulse = 0.5, a pulse of [Ca2+]astro with peak 139 nM enduced a
SIC. a) Using ḡNMDA1

= 0.11 mS/cm2, the SIC had a peak at −0.19 µA/cm2, which
was well below the desired range of −1.01±0.36 µA/cm2. The shape of the SIC was
consistent with Parpura and Haydon’s (2000) findings in their Fig. 3C. b) The peak
amplitude of the SIC could be adjusted to fall within the range given by Parpura
and Haydon’s (2000) by increasing the maximal NMDA conductance (ḡNMDA1

=
0.5 mS/cm2). With this new value, the SIC reaches a peak of −0.88 µA/cm2.
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the peak current was too small. Again, this may have been due to the particular
astrocyte or neuron used for the experiment. The maximal NMDA conductance was
increased to ḡNMDA1

= 0.25 mS/cm2 to adjust the peak value into the appropriate
range (Figure 7.8(b)). However, our SIC “peak” was still too flat, due to our lack of
information about the astrocytic calcium-SIC relationship for large calcium levels.
Recall that Figure 7.1 did not give any information about neuronal inward currents
for astrocytic calcium levels above 300 nM . Since we fit Parpura and Haydon’s
Fig. 5B (2000) with a sigmoid function, any calcium pulse with a peak beyond
300 nM resulted in a SIC with a set maximal value (−0.52 µA/cm2 when ḡNMDA1

=
0.11 mS/cm2). This maximal SIC value was maintained until the astrocytic calcium
level dropped below a particular value (approximately 250 nM), resulting in a
plateau shaped “peak”. Parpura and Haydon (2000) also stated that when the
astrocytes were removed, the same pulse of light did not enduce a response from
the neuron. The pulse of light was directly associated with the pulse of [Ca2+]astro

in our model, thus when the connection between the astrocyte and the neuron was
cut (ḡNMDA1

= 0.0 mS/cm2), it was obvious that the neuron model did not have
any activity.

We were able to reproduce another experimental finding from Parpura and
Haydon (2000, Fig. 5A). Parpura and Haydon applied a series of pulses of light to
release [Ca2+]astro, and measured the corresponding neuronal SIC over time. Since
the data was from a single experiment (and not an average over multiple trials),
some alterations in our variables were required to reproduce the result. Specifically,
in the fit made for Figure 7.1 in Equation 7.4, the variable k2 was adjusted from
−0.0447 to −0.065. Then, using ḡNMDA1

= 0.11 mS/cm2, the SIC and [Ca2+]astro

can be seen as a function of time in Figure 7.9.

Thus we have found that it is reasonable to model [Ca2+]astro as a pulse of
calcium, decaying slowly and exponentially over time. The larger the pulse, the
larger the neighbouring neuron’s depolarization. As in experimental trials (Parpura
and Haydon, 2000), once voltage-clamped, the slow inward current resulting from
an astrocytic rise in calcium is reproduced with our model (Figure 7.6, 7.7, 7.8).
Similarily, if the astrocytic input is cut off, it is obvious that our model will not
produce the same neuronal SICs, in correspondence with Parpura and Haydon’s
experimental data. The characteristic fast rise and slow decay of the NMDA current
is captured, and the experimental data of Parpura and Haydon (2000, Fig. 5A) is
reproduced by our model in Figure 7.9. Thus it seems that we accurately model
Parpura and Haydon’s (2000) empirical findings with our representation of the
astrocytic input to a CA1 neuron.
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Figure 7.8: Using pulse = 1.96, a pulse of [Ca2+]astro with peak 549 nM enduced
a SIC. a) Using ḡNMDA1

= 0.11 mS/cm2, a SIC was produced with a peak of
−0.52 µA/cm2, which was well below the desired range of −1.23 ± 0.332 µA/cm2.
b) The peak amplitude of the SIC could be adjusted to fall within the range
given by Parpura and Haydon’s (2000) by increasing the maximal NMDA con-
ductance (ḡNMDA1

= 0.25 mS/cm2). With this new value, the SIC reached a peak
of −1.18 µA/cm2. The shape of the peak of the SIC was inconsistent with the
shape shown in Parpura and Haydon’s Fig. 3C (2000).
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Figure 7.9: Our model reproduces the experimental result of Parpura and Haydon
(2000, Fig. 5A). The parameter k2 = −0.065 instead of its usual value of −0.0447,
and ḡNMDA1

= 0.11 mS/cm2. These values are within a reasonable range of the pa-
rameters, and were chosen to fit Parpura and Haydon’s experimental data. Arrows
indicate when the pulse of [Ca2+]astro occurred (at 60 and 120 ms). The voltage is
clamped at 0 mV , and the SIC results from these pulses.

7.2.5 All-or-none astrocytes

We consider Parpura and Haydon’s (2000) “all-or-none” astrocytes. These are
astrocytes which either produce large SICs to the neighbouring neurons, or produce
no signal at all. The corresponding plot from Parpura and Haydon (2000), with
converted units from pA to µA/cm2, was reproduced with “Engauge” and is shown
in Figure 7.10. A notable quality of our NMDA synapse model its ability to adapt
to different types of astrocytes: with a change in parameters, the data for these
special astrocytic responses can be fit with our function f([Ca2+]astro) (given by
Equation (7.4)). The implications of this are discussed in section 7.4.

7.3 NMDA receptors mediate depolarization shifts

Tian et al. (2005) state that glutamate (a neurotransmitter) released from astro-
cytes mediates the paroxysmal depolarization shifts (PDS) found in neurons. These
PDSs are related to epileptiform activity, and are found in electroencephalogram
(EEG) readings between seizures (Tian et al., 2005). Tian et al. perform a series of
experiment to show that the signals producing the PDSs originate from astrocytes,
and are mostly received by the neuron through the NMDA synapse. Tian et al.’s
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Figure 7.10: A reproduction of the “all-or-none” astrocytic response from Parpura
and Haydon (2000, Fig. 5B), and its corresponding fit using f([Ca2+]astro) (Equa-
tion 7.4).

theories are commented on briefly in this section, but more details can be found in
section 4.3.

In one particular experiment, Tian et al. (2005) show that synaptic activity
among neurons is not required for PDSs. Epileptiform bursting activity was evoked
in CA1 neurons by the application of a convulsant known as 4-aminopyridine (4-
AP), a potassium channel blocker. Then a bath of tetrodotoxin (TTX), a sodium
channel blocker, was applied. This caused the suppression of most neuronal activity.
Surprisingly, the PDSs were largely resistant to the TTX. To confirm that neuronal
synaptic activity had been inhibited, a variety of voltage-gated calcium channel
blockers (VGCC blockers) were administered. Although communication among
the neurons was suppressed, subthreshold (< 40mV ) PDSs were still present. Us-
ing our model of a single neuron with INMDA from the synapse (with a pulse of
[Ca2+]astro), we successfully reproduced these experimental findings (Figure 7.11)
by simulating the events and comparing our results with Tian et al. (2005, Fig-
ure 1). To reproduce the channel blockers, the conductances of the individual
channels were reduced. Certain parameters were more sensitive than others, and
the amount of reduction varied to reproduce the empirical data. To simulate
a potassium blocker, the conductances were altered as follows: ḡK−DR was re-
duced from 17 mS/cm2 to 15 mS/cm2, ḡK−C,S was reduced from 15 mS/cm2 to
12 mS/cm2, ḡK−C,D was reduced from 5 mS/cm2 to 4.6 mS/cm2, and ḡK−AHP was
reduced from 0.8 mS/cm2 to 0.6 mS/cm2. For a sodium blocker, ḡNa was reduced
from 30 mS/cm2 to 3 mS/cm2, and for calcium blockers, ḡCa,S was reduced from
6 mS/cm2 to 5.5 mS/cm2 and ḡCa,D was reduced from 5 mS/cm2 to 4.8 mS/cm2.
Unfortunately there is no literature on how to model blocked currents, and too large
of a decrease in the conductances values caused the model to lose its behaviour.
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Thus, in order to simulate the blockers, the conductances were diminished as much
as possible without losing their qualitative relevance.

Although communication between the CA1 neurons has been cut off, through
a series of channel blockers, most of the PDSs still exist. Surprisingly, Tian et al.
(2005) noticed that these depolarizations are in fact synchronized! How do they
synchronize when they are not sending synaptic signals to each other? There must
be a connection between these neurons. The theory is that the neighbouring as-
trocytes serve as such a connection (Tian et al., 2005). In our next simulation,
we consider two CA1 neuron models. These two cells both receive input through
their respective NMDA synapses, representing the input from an astrocyte. One
can easily argue that a pulse of [Ca2+

astro] will produce our desired simulation, yet it
is simply easier to see the synchronization between the neuron models when a wave
is used. We show that these neurons (and their PDSs) synchronize, even when the
direct communication between them is cut off (Figure 7.12). In our model, the
communication between the neurons can be cut off in two ways. First, the AMPA
conductance, ḡAMPA, can be set to zero. Although one cell may produce a signal,
the second can not receive it. Thus the only input to the two cells is through the
NMDA channels, and although the cells are not identical, they will synchronize.
This synchronization may be less obvious because of the differences in the cells
dynamics, but the next method will make it more evident. In this method, the
AMPA conductance may remain the same, but channel blockers are applied to pre-
vent the neurons from sending a signal. The synchronization becomes more obvious
when examining the PDSs. Both of these cases are shown in Figure 7.12. In this
simulation, it is appropriate to model our [Ca2+

astro] as a wave (see section 7.2.2).

92



(a) (b)

(c) (d)

Figure 7.11: Our model reproduces the experimental results of Tian et al. (2005,
Figure 1): synaptic activity among neurons is not required for PDSs. We use
ḡNMDA1

= 0.4 mS/cm2, and an astrocytic calcium pulse of pulse = 1.25. Each inset
shows the behaviour over a smaller time window (550 ms). (a) An application of a
potassium blocker, 4-AP, causes epileptiform bursting activity. A reduction of the
potassium conductances replicates this finding. ḡK−DR = 15 mS/cm2, ḡK−C,S =
12 mS/cm2, ḡK−C,D = 4.6 mS/cm2, and ḡK−AHP,S = ḡK−AHP,d = 0.6 mS/cm2.(b)
TTX, a sodium blocker (ḡNa = 3 mS/cm2), is added to the 4-AP (by reducing the
conductances) and small subthreshold depolarizations (the PDSs) are prevalent. (c)
4-AP and calcium blockers (ḡCa,S = 5.5 mS/cm2 and ḡCa,D = 4.8 mS/cm2), VGCC
blockers, are applied. Bursting activity still exists. (d) 4-AP, VGCC blockers and
TTX are applied, and yet the PDSs are not supressed.
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Figure 7.12: Simulations reproducing results found by Tian et al. (2005). A wave
of intracellular astrocytic calcium, [Ca2+]astro, is used (as in section 7.2.2). (a) No
AMPA input (ḡAMPA = 0.0 mS/cm2). The two cells, with slightly different dynam-
ics, synchronize to the NMDA input. Here, ḡNMDA1

= ḡNMDA2
= 0.3 mS/cm2. (b)

The cells can communicate through the AMPA synapse, as ḡAMPA1
= ḡAMPA2

=
0.2 mS/cm2. Potassium, sodium and calcium blockers are applied as in Figure 7.11,
making the PDSs evident. The synchrony is obvious, as the signals from the two
cells are difficult to distinguish. Since the PDSs are subthreshold (< 40 mV ), the
AMPA synapses are not activated, and the cells do not communicate. Note that
the simulation can be done with ḡAMPA1

= ḡAMPA2
= 0.0 mS/cm2 and the same

results will ensue.
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7.4 Physiological relevance and limitations

What does our NMDA synapse model mean physiologically? We model the correla-
tion between the intracellular astrocytic calcium concentration, and the glutamate
(a neurotransmitter) released from the astrocyte. We do so by directly relating the
[Ca2+]astro to the voltage and inward synaptic currents of the neighbouring neu-
rons, which, according to Parpura and Haydon (2000), is physiologically affected
by the glutamate release from the astrocytes. For this to be a justifiable model, we
imply that this concentration of glutamate activating the neuron’s synaptic current
is related to the concentration of [Ca2+]astro, and this relationship is determined by
fitting the plot of SIC vs. [Ca2+]astro (Figure 7.4). This implies that the “all-or-
none” astrocytes discussed previously (section 7.2.5) release glutamate in a steeply
graded (or step) response. Thus we suggest that the difference between the two
types of astrocytes lies in the amount of glutamate released for low intracellular
calcium levels. If the “all-or-none” astrocytes release high levels of glutamate for
any elevation in the cytosolic calcium concentration (above rest), then these high
levels of glutamate in the extracellular space would result in large neuronal SICs.
It seems that the all-or-none responses are not due to a change in the number of
binding sites for glutamate on the neuronal membrane. If the number of gluta-
mate binding sites were reduced, they would become saturated for low levels of
extracellular glutamate, and the all-or-none threshold behaviour would be exhib-
ited. However, the SICs would result from low levels of glutamate, and therefore
we would expect that the amplitude of these currents would be decreased. This
is not the case, as the amplitude of these SICs is higher than the amplitude of
the SICs due to graded astrocytes. If the number of glutamate binding sites were
increased, we would not expect to see the threshold behaviour of the “all-or-none”
astrocytes, but instead a graded response. Thus, this analysis suggests that the
step response of the “all-or-none” astrocytes is due to a large release of glutamate
for any intracellular astrocytic calcium elevation.

We consider the possible astrocytic pathologies which could trigger epileptiform
bursting activity. For example, an excess of metabotropic glutamate receptors
(mGluRs) found on the extracellular surface of an astrocyte may “interpret” a small
signal from a neighbouring CA1 neuron as a much larger signal. This would create
an abnormal increase in [Ca2+]astro for the size of the neuronal signal, resulting in an
equally abnormally large glutamate release from the astrocyte, and hence excessive
neuronal bursting. Similarily, an excess of binding sites for intracellular calcium
may result an excessive amount of glutamate to be released from the astrocyte.
Again this may result in epileptiform neuronal bursting. Since we do not consider
the astrocytic mGluRs, the IP3 dynamics, nor astrocytic glutamate release in our
model, we can not directly examine these possibilities. A more detailed description
of the astrocytic response would be helpful to distinguish between these pathology
possibilities. However, we can represent these potential pathologies in a qualitative
and general way, by adjusting the function f([Ca2+]astro) such that low levels of
[Ca2+]astro lead to large SICs.
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The limitation of this model lies in its simplicity. The relationship between the
[Ca2+]astro and the glutamate release is unmistakably more complicated than we
have modeled. Improvements can be made by modeling the astrocytic response
to glutamate in more detail. The dynamics of the postysnaptic receptor or the
dynamics of the synapse itself may require more attention for particular problems.
However, for our purpose, the model has accurately produced the desired results.
A benefit of such a simple model is that it can be easily improved: the astrocytic
input to the NMDA synapse may be replaced with a model of an actual astrocyte.
Thus the model is flexible enough such that it can be adjusted to answer a variety
of questions.

7.5 Discussion

The synaptic communication between a CA1 neuron and an astrocyte has been
modeled through an NMDA synapse, following Tian et al. (2005). The voltage- and
magnesium-dependence was modeled, as well as the link between the intracellular
astrocytic calcium concentration ([Ca2+

astro]) and the slow inward synaptic current
(SIC) to neighbouring neurons. The [Ca2+

astro] was examined as a step, a wave, and
an exponentially decaying pulse. Although there is evidence (Tian et al., 2005)
that the [Ca2+

astro] occurs in oscillations, Parpura and Haydon (2000) showed that
when administering a pulse of light to release this astrocytic calcium, the calcium
decayed slowly and exponentially in time. Thus either representation of the [Ca2+

astro]
is reasonable, depending on the question at hand. The physiological relevance of the
model was discussed and predictions about the source of “all-or-none” astrocytes
were made. Some limitations of the model were discussed, and recommendations
were made to improve the model. A number of experiments from Parpura and
Haydon (2000) and Tian et al. (2005) were reproduced, bringing light to the value
of the model in a qualitative sense.
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Chapter 8

Conclusion

Temporal Lobe Epilepsy (TLE) is a disease which affects millions of people world-
wide, and it is characterized by recurrent and unprovoked seizures (World Health
Organization, 2001). The hippocampus is often the focus of mesial temporal lobe
seizures, and damage to this region may result in learning and memory defiencies.
A particular type of neuron, found in the hippocampal CA1 region of the brain,
is known to easily produce excessive and synchronous neuronal discharges (Tian
et al., 2005), and thus is often the focus of epileptiform bursting studies. How-
ever, researchers have recently become more interested in the role of astrocytes, as
they have been found to modulate the behaviour of neighbouring neurons (Tian
et al., 2005). Tian et al. (2005) propose that during epileptiform bursting, cal-
cium signalling from astrocytes leads to paroxysmal depolarization shifts (PDSs)
in nearby neurons. According to them, these depolarizations are actually the root
of the epileptiform bursts, as opposed to the neuronal discharges themselves. Thus
they suggest that pathologies in astrocytes, not neurons, are responsible for seizure
generation. They propose that anti-epileptic drugs should be made to focus on
the astrocytic calcium signalling, which may stop the excessive bursting without
obstructing neuronal transmission (Tian et al., 2005). To better understand this
calcium signalling, we consider research done by Parpura and Haydon (2000), which
suggests that the intracellular astrocytic calcium fluctuations may play a physio-
logical role in neuron modulation.

Traub et al. (1991) produced a 19-compartment model of a pyramidal neuron,
which accurately reproduces characteristic qualities of the neuron’s structure and
function. However, it would be helpful to have a reduced model which maintains
a realistic representation of the cell’s mechanics, while being simple enough to
permit a detailed analysis of the key parameters. The reduced complexity and
computational demand of the model allows us to focus on properly representing
the synaptic currents. In particular, we aim to model the relationship between the
astrocytic intracellular calcium concentration and the PDSs, as described by (Tian
et al., 2005).

Using the conductance densities from Traub et al. (1991) as a starting point, we
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reduced the Traub model and created a two-compartment model of a CA1 neuron.
This mathematical model represents the membrane potential, ionic, applied and
synaptic currents as well as the coupling between compartments. Five active ionic
currents were considered: a sodium current (INa), three types of potassium cur-
rents (IK−DR, IK−C ,and IK−AHP ) and a calcium current (ICa). Since IK−C is both
a voltage and calcium dependent current, and the IK−AHP is a slow calcium depen-
dent current, the intracellular calcium concentration needed to be represented. It
was modeled as a function of the inward calcium current, in accordance with Traub
et al. (1991). Like Pinsky and Rinzel (1994), we identified two types of synaptic
currents, IAMPA and INMDA. The AMPA current was primarily responsible for
the synchronization of the neurons, while the NMDA current (a magnesium and
voltage-dependent current) represented the astrocytic input. We introduced a new
way to model an NMDA current, representing the rate of activation of the NMDA
gating variable, S1, as proportional to a function of the cytosolic astrocytic calcium
levels. This function was fit to experimental data provided by Parpura and Hay-
don (2000), showing the slow inward current (SIC) of the neuron with respect to
the intracellular astrocytic calcium concentration. This calcium concentration was
examined as a step, a wave, and an exponentially decaying pulse.

The model exhibits the characteristic behaviour of a CA1 neuron, as identified
by Traub et al. (1991). That is, when the soma or proximal dendrites are stimulated
with a current less than 1 nA (IS < 1 nA), a train of action potentials is exhibited.
However, if the same current stimulates the distal dendrites (ID < 1 nA), a full
dendritic calcium spike with somatic burst is produced, followed by low frequency
action potentials. The bursting mechanisms were analyzed in detail, and the slow
variables q and [Ca2+] were shown to influence the generation of a burst and the
length of the interspike interval. We found that the coupling parameters (gC and p),
as well as the dynamics between the inward dendritic calcium current and the two
outward dendritic potassium currents, were especially important to the generation
of a burst. We were able to reproduce figures from voltage-clamp experiments done
by Parpura and Haydon (2000) (Figures ??, 7.9). Using our model, we successfully
reproduced the experimental findings of Tian et al. (2005), which show that synaptic
activity among neurons is not required for PDSs (Figure 7.11).

8.1 Physiological relevance and limitations

A basic assumption of compartmentalized models is that each compartment rep-
resents an isopotential section of the neuron. To minimize computational error,
the compartmental dimensions should be a fraction of the characteristic length
(≤ 0.1λ). However, comparing the size of our compartments with Traub et al.
(1991), the “length” of our compartments was greater than 0.5λ. Thus our model
should be considered as phenomenological rather than physiological. Since our
model was able to reproduce a number of experimental results, perhaps the level
of intracellular astrocytic calcium is related to the slow neuronal inward currents
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(SICs). The relationship between the astrocytic calcium elevations and the release
of glutamate has yet to be defined.

When creating such a reduced model, it is important to recognize the level of
detail one wishes to obtain. We have focused our attention on modeling the char-
acteristic behaviour of a CA1 neuron, concentrating on the synaptic influence from
astrocytes. Certain limitations of the model were discussed, including its inabil-
ity to produce small all-or-nothing spikes called d-spikes. Although Traub et al.’s
(1979) model accounts for these small spikes, this level of detail was not required for
our analysis. Since Traub et al. (1991) modeled 19 compartments instead of two,
they are able to describe differences in the properties along the neuron in more
detail. Therefore, if these differences are relevant to the question at hand, a more
detailed model would be useful. In addition, the relationship between the intracel-
lular astrocytic calcium concentration and the glutamate release is not modeled in
detail. To analyse the astrocytic influence on seizure generation, it would be helpful
to have a qualitative model of the astrocytic response to glutamate. That is, an
improvement on our model could include a detailed model of the dynamics between
the astrocytic mGluRs, the IP3 release, the cytosolic calcium fluctuations, and the
release of extracellular glutamate. A detailed model of the synaptic dynamics, or
of glutamate activation of the neuronal NMDA receptor, could prove useful when
considering the astrocytic generation of epileptiform bursting. However, our sim-
plified model has accurately produced the desired results, and thus such detail in
our model was not essential to achieve our goal.

In our analysis in section 7.4, we consider the steeply graded or step response of
all-or-none astrocytes. We suggest that graded astrocytes differ from “all-or-none”
astrocytes by the manner in which intracellular calcium stimulates glutamate re-
lease. We imply that minimal increases in astocytic calcium results in a maximal
release of glutamate. Thus, neurons indirectly respond to small changes in astro-
cytic calcium levels, by obtaining large SICs in a step-like manner.

8.2 Future directions

The benefit of our simplified model is that it can be expanded in a number of ways,
and the method of expansion will depend on the question at hand. For example, a
model of astrocytic calcium signalling may replace the current astrocytic calcium
described by a step, pulse or wave. It would be interesting to see how a network
of astrocytes and neurons interact, and how this affects epileptiform seizure gener-
ation. A detailed description of how the intracellular calcium elevations influence
glutamate, and more information on how the NMDA receptors are activated by
glutamate, would be helpful to expand the model of the synaptic NMDA currents.
There are many possible astrocytic pathologies which may influence the generation
of epileptiform bursting. For example, excess metabotropic glutamate receptors
on the astrocytic membrane may contribute to the generation of seizure activity
by creating strong responses to weak glutamate signals. Similarily, excess release
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of IP3 may create large cytosolic calcium responses, which may also contribute to
seizure generation. Our model does not consider these dynamics in detail, and thus
can not distinguish between these different possible pathologies. Therefore, a more
detailed description of the astrocytic calcium signalling of neighbouring neurons
would be useful to determine how an astrocyte influences epileptiform bursting.
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