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Abstract

Length of stay (LOS) in hospital is a widely used outcome measure in Health Services research,
often acting as a surrogate for resource consumption or as a measure of efficiency. Recent activity
in the field focuses on modeling the dependence of LOS on covariates, using administrative data
collected for the purpose of calculating fees for doctors, or data extracted from medical charts.
This problem is a challenging one, due to the high skewness of the distribution of LOS, the presence
of multiple destinations (healthy discharge, death in hospital, transfer to another institution) and
the unexplained heterogeneity which remains even after all available covariates have been included
in the model.

In this thesis, we develop parametric models for LOS that accommodate the skewness of the
distribution and allow for multiple destinations. The models are based on the time, T, until a
Wiener process with drift (representing a health level process) hits one of two barriers, one repre-
senting healthy discharge, the other representing death in hospital. The model is parameterized in
terms of the barrier levels and drift, which are allowed to depend on covariates. The parameters
of the model are estimated using the method of maximum likelihood. We show how to estimate
expected LOS and probability of discharge, and discuss ways of testing hypotheses of interest.
An interesting feature of the variable T is that the density and distribution functions are infinite
series. We show that the density and its derivatives are absolutely and uniformly convergent, and
that regularity conditions are satisfied in the zero drift case for iid observations,

The models can easily be extended to allow the drift parameter to have a mixing distribution,
thereby partially addressing the issue of unexplained heterogeneity. While mixture models often
require numerical integration in order to estimate parameters, we show that, if the mixing dis-
tribution is normal, numerical integration is unnecessary for these models, Also, an extension to
handle transfers out of hospital is implemented. Since the decision to transfer is at least partially
based on the health level of the patient, transfers cannot be treated as independently censored
observations. We develop a model in which patients are transferred with probability p when their
health level reaches an intermediate decision barrier. We can then model P as a function of co-

variates. As before, the parameters of these models are estimated using maximum likelihood, and

iv



we show how to estimate expected LOS and probability of healthy discharge.

This approach to analyzing LOS has many parallels with competing risks analysis, and can be
seen as a way of formalizing a competing risk situation. Further work will explore incorporation of
time-varying covariates, different distributions for the health level process, and formal measures

of goodness of fit.
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Chapter 1

Introduction

1.1 Length of Stay in Hospital

Length of stay (LOS) in hospital is a widely used outcome measure in Health Services research,
often acting as a surrogate for resource consumption or as a measure of efficiency [4). Research
questions sometimes focus on average length of stay for patients grouped by hospital or physician.
For instance Rosenthal et al [34] in a 1997 JAMA article compare severity-adjusted mortality and
LOS in teaching versus non-teaching hospitals. In order to ensure fair comparisons between groups
of patients, adjustments need to be made for both hospital-level variables such as number of beds
and hospital type (chronic versus acute care), and individual-level variables such as age, sex and
presence of chronic conditions. Other studies try to determine how patient-level characteristics
affect length of stay. Bonuck and Arno (5] found that HIV/AIDS patients with inadequate housing
stayed in hospital five days longer on average than those with stable housing. Morris et al (28]
model durations of stay in nursing homes as a function of patient characteristics such as age,
gender, marital status and general health.

The data used to investigate these questions are often administrative data, whose primary
purpose is in calculating fees for doctors. Even after all available covariates have been included in
the model, large amounts of heterogeneity remain. This situation remains true even when clinical
data are used. For instance, Rosenthal et al (34] studied six diagnoses that represent common
causes of hospitalization, and used patients’ medical records as the data source. They found that
at most 25% of the variation in LOS could be explained by their severity-adjusted models.
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There are several features of LOS which make it challenging to model. It has a highly skewed
distribution and the presence of outliers is common. Figure 1.1 shows a histogram of LOS for
females admitted to hospital with circulatory disorders and myocardial infarction. While ro-
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Figure 1.1: Histogram of LOS, Females, APR-DRG=121, Utah Discharge Database

bust methods would decrease the influence of outliers, interest centers on total consumption as
estimated by total LOS, and outliers are an important component of the total.

Another interesting feature of LOS data is the existence of multiple destinations, as shown in
Figure 1.2. An individual’s stay in hospital can end in healthy discharge, death, or transfer to a
different institution. So far, this aspect has largely been ignored in health services research. Often
only patients who experienced healthy discharge are analyzed, or all hospital stays are analyzed
together, ignoring final outcome.

A further challenge is the residual heterogeneity that remains even after all available covariates
have been included in the model. For normal linear models, any unexplained variation becomes
part of the residual variation and is accounted for in confidence intervals and tests, but does not

affect interpretation of parameters. However heterogeneity does affect the interpretation of pa-
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Figure 1.2: LOS by Discharge Destination, Females, APR-DRG=121, Utah Discharge Database

rameters in non-normal models such as the logistic model, as discussed by Neuhaus, Kalbfleisch
and Hauck [31]. Moreover, when the response is time to some event, a selection effect occurs
because individuals at high risk experience the event of interest sooner (1, 41]. Results must be
interpreted with care. The population hazard function, h(t), represents the conditional rate of
failure given survival to time t, averaged over the whole population. In the presence of hetero-
geneity, it cannot be interpreted as an individual’s conditional failure rate. This will be discussed
in more detail in section 6.1.

In this thesis, we develop models for LOS which deal with multiple destinations, and accommo-
date the highly skewed distribution of LOS. These models are derived from the waiting time until
a Wiener process hits one of two barriers, one barrier representing healthy discharge, the other
death in hospital. Transfers to other institutions may be modelled as breach of an intermediate
barrier. These models are rich in the many ways that they can accommodate covariates, both
individual and hospital-level.

The relationship of these models to competing risks analyses is discussed in Chapter 7. Note
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that while the competing risks problem is usually presented in terms of failure time and causes
of failure, the corresponding ideas for health care data would be time in hospital and discharge
status (ie death, discharge home, transfer to another institution). The approach used here is
distinct from the classical competing risks problem, as expounded by Daniel Bernoulli in 1760,
and as described for instance in the monograph by David and Moeschberger [13], or Chapter 9
of Cox and Oakes (11). In the classical competing risks analysis, one postulates the existence of
several latent failure times, n,1,...,7, corresponding to p different causes of failure. Only
one of these failure times is actually observed, namely the minimum of 1, 13,...,T,. Often, the
purpose of a classical competing risks analysis is to estimate the distribution of time to one type
of failure, T; say, once all other causes of failure have been “eliminated”. To do this, we must be
very precise about what we mean by elimination of a cause of fajlure. Usually this will involve
some very strong assumptions, such as independence of the latent failure times.

In this thesis, we are not concerned with modelling latent times, but consider only the observed
time in hospital T. We model the joint distribution of T and D, where D is a discrete variable
indicating discharge status. This is similar to the approach described in Kalbfleisch and Prentice
((22], p. 163) and in Cox and Oakes ([11], p. 143).

A brief outline of the thesis is now given. Section 1.2 describes a data set which is used
throughout the thesis to demonstrate the various models. In section 1.3 we discuss earlier work
relating health status and length of stay in hospital to a Wiener process with a single barrier. In
Chapter 2, health status is modelled as a zero-drift Wiener process with two barriers, one repre-
senting discharge and the other death. Maximum likelihood is used to estimate the parameters.
In Chapter 3, we extend the model to incorporate a drift parameter, u. Chapters 4 and 5 address
technical considerations associated with the models, including uniform convergence of the density
functions and their derivatives, and regularity conditions. In Chapter 6 we discuss a mixture
model in which the drift parameter 4 i8 itself a random variable from a Normal distribution. This
allows the model to account for some excess heterogeneity. We also discuss a model which allows
for transfers to another institution. Chapter 7 examines the relationship of this approach to the
competing risks analyses expounded by Prentice et al (32]. Finally, Chapter 8 concludes the thesis
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with a discussion of the models developed, and some areas for further research.

1.2 Data

Throughout this thesis, the Utah Hospital Inpatient Discharge Data File (1996) [39] is used for
purposes of illustration. Since January 1992, all licensed hospitals in the State of Utah must, by
law, report information on inpatient discharges. This includes personal information about the
patient, the services received in hospital and associated charges, and medical information. The
Utah Department of Health makes this information available in various formats for public use.
Three fixed subsets of the data base are publicly available to researchers at minimal cost, and
special requests for additional information are considered. Also an inquiry system is accessible on
the internet at http:/ /161.119.100.19/hda/?.

Discharge data is received quarterly from hospitals, and extensive procedures are in place to
ensure that the over 50 Utah hospitals report consistent and valid data. Patient confidentiality
is assured through various means, Several covariates are available in grouped format only, for
instance age and diagnosis codes. Furthermore, where there is a danger that an individual may
be identified from the information in the data file, data values are encrypted. Patients treated
in small hospitals, or residing in zip-code areas with a small population, or those with sensitive
diagnoses (such as HIV ) have encrypted information.

Note that no observations are censored, due to the sampling scheme used to construct the
database. The database consists of all patients discharged in 1996. Patients who are in hospital
on December 31, 1996 and who remain in hospital into 1997 will not be included in this data file,
but instead will go into the 1997 data file. On the other hand, patients who were admitted in
1995, but whose hospital stay continued into 1996 and ended in 1996 will appear in the 1996 file.
All information will be included on these patients, including procedures performed and diagnoses
made in 1995.

In addition to the outcome variables length of stay and discharge status (eg discharged home
or to another institution, or died in hospital), a large amount of covariate information is available.

Patient level characteristics include agegroup, sex, sip-code and county of residence, marital status
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and race. The admitting hospital is identified, and we can determine hospital characteristics such
as number of beds, type of ownership (government, not-for-profit, investor-owned), affiliation
(HMO or free-standing), location, and whether urban or rural, teaching or non-teaching. The
type of admission (emergency, urgent, elective, or newborn), the source of admission (eg physician
referral, transfer from another institution), and where relevant, the speciality of the admitting
physician, are also recorded. Information on the payer (Medicaid, Medicare, HMO, etc.) is also
available. All of these variables are known at the time of admission to hospital, and are fixed (ie
do not change over time).

The file also contains principal procedure and up to five secondary procedures, and principal
diagnosis and up to eight secondary diagnoses. Procedures and diagnoses are recorded in the form
of ICD-9-CM codes. ICD-9-CM stands for International Classification of Diseases (9th Revision)
Clinical Modification. The International Classification of Diseases is the World Health Organi-
zation’s system for coding diseases, originally developed in 1975, and subsequently supplemented
with codes for surgical and other procedures. There are thousands of these codes, and several
systems have been developed for grouping admissions according to ICD-9-CM codes. Three of
these systems are included in the database, namely DRG (diagnosis related group), APR-DRG
(all-patient-refined DRG) and MDC (major diagnosis category). The MDC system classifies ad-
missions into 25 broad categories based on their ICD-9-CM code for principal diagnosis. The
categories relate to the major organ system affected (eg circulatory system), or the type of disor-
der (eg HIV) or condition (eg pregnancy). The DRG system is a system for classifying patients,
(or more precisely admissions), into one of 495 groups, according to information available on the
computerizsed patient chart, namely principal and secondary diagnoses, principal procedure, age,
and sex and (for a few DRG’s) outcome. This system attempts to group together patients with
similar clinical attributes and similar resource consumption, (as measured by LOS and costs).
DRG’s are used to develop indices of hospital case mix (that is, summary measures of the fre-
quency of types of admissions in a hospital), and as a basis for reimbursement. In some cases,
two DRG’s are identical except for the presence or absence of complications and comorbidities.

A complication or comorbidity is a disease or condition other than the principal diagnosis. While
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a comorbidity is present on admission to hospital, complications develop while the patient is in
hospital. The APR-DRG system is another system, similar to DRG, with 791 categories.

Note that the time of the procedures and diagnoses is not recorded, although this information is
presumably available from patient charts. While secondary diagnoses usually represent comorbid
conditions present at admission to hospital, sometimes they represent conditions which arose
during the hospital stay, for instance myocardial infarction. These events, as well as various
procedures, might be important predictors of LOS or costs. If the time of the procedures and
conditions which lead to secondary diagnoses were available, they could be used as time-varying
covariates. While time-varying covariates are not addressed in this thesis, they are an important
area for future research.

The variable “patient severity subclass” (severity), is a measure of the number of comorbidities
and complications. It is constructed by the 3M PC-Grouper software which classifies admissions
into APR-DRG’s, and may, for some DRG’s, contain information that is not known at time of
admission. Because of the necessity of adjusting for comorbidities in investigative studies, many
indices have been developed to quantify severity of disease. Some of these are calculated using
chart review data (8, 7], while others are based on claims data, [27). When data are extracted
from charts, researchers can be careful to use only data available on admission to hospital. When
indices are constructed from claims data, care must be taken not to include conditions which
might have developed during the hoepital stay. For instance in a study of prostatectomy (27],
myocardial infarction and congestive heart failure were excluded from calculation of a claims-
based comorbidity index, since these conditions likely developed after the patient was admitted
to hospital. In this thesis, the variable severity is treated as if it were a fixed covariate whose
value was known at admission to hospital, and so illustrates how a comorbidity index could be
used with these models.

The 1996 data file consists of over 200,000 records. For the figures shown in section 1.1, asmall
subset of the data base, comprising 632 admissions, was extracted. This is the set of all female
patients admitted to a licensed Utah hospital in fiscal year 1996 with an APR-DRG classification
of 121, ie Circulatory Disorders with Acute Myocardial Infarction. This data set or a subeet
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thereof is used throughout the thesis to demonstrate the various models.

1.3 Health Status as a Stochastic Process

The idea of modelling the physiological status of an individual as a one-dimensional stochastic
process, with an absorbing barrier representing death, can be traced back at least to Sacher
and Trucco [35] and probably beyond. If we could quantify health status, it would be a highly
multi-dimensional construct, encompassing for instance organ function, mental health, physical
conditioning, age, and gender. Suppose now that we can construct a one-dimensional summary
of health status, called health level. Let H(t) denote an individual’s health level at time t, and
consider the stochastic process {H(t);t > 0}. Further assume that if the individual’s overall health
improves, the measure of health level increases, whereas if health deteriorates H(t) decreases. If
H(t) reaches a very low level, the individual djes,

Eaton and Whitmore [15] extended this idea to model length of stay in hospital, and specifically
assumed that H(t) follows a Wiener process with drift 4 > 0 and volatility parameter o2. A person
is postulated to enter hospital when his health process H(t) falls below a certain level. The time
an individual enters hospital is taken to be time 0, and health level at this time is arbitrarily set
to 0, ie H(0) = 0. An individual’s length of stay in hospital is then the time when his health
Process first rises above the level u > 0, ie the first time the Process reaches a barrier at u. We
can use this conceptualization to derive a distribution for the length of stay in hospital, T. It is
in fact well known, (see for instance (38] that T has an inverse Gaussian distribution.

Note that Eaton and Whitmore fit this model to some data on psychiatric patients, very few
of whom were transferred or died in hospital, so a single barrier was sufficient for their purposes.
Beginning in Chapter 2, we will extend this model to allow for multiple destinations.

There are many ways to account for Population heterogeneity in this model. The barrier
position may vary for different patients, or for patients grouped by hospital or health-care provider.
We may be able to model some of this heterogeneity by allowing barrier position to depend on
individual level covariates such as marital status, There is some evidence (see (28]) that hospitals

tend to discharge patients relatively early if there is a caretaker at home, and being married can
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be a surrogate for presence of caretaker. Then we might allow the upper barrier to differ for
married and unmarried patients. Alternatively, we may allow the upper barrier to depend on
type of hospital, whether urban/rural, teaching/non-teaching, etc.

We might also allow the drift and volatility parameters of the underlying Wiener process to
vary by individual. For instance we may allow drift to depend on severity of disease, age, sex or
other individual-level covariates.

Whitmore [42] extended the mode] to allow for negative drift, and applied it to data on
employment duration. For a Wiener Process with negative drift, the first passage time to a
barrier above the origin has a defective distribution with a mass of probability at infinity.

In 1983 Whitmore [43] presented a regression model for the inverse gaussian distribution with
positive drift parameter 4 and upper barrier fixed at uy = 1. He allowed the drift to depend on
the covariates through an inverse link function (ie 1/4 = z70), and allowed for censoring. He
used the EM algorithm to find the maximum likelihood estimates of the regression and volatility
parameters. Inference was based on asymptotic distributions. He was not able to extend this
model to the negative drift case however.

Aalen [1] discussed these approaches and extended the model by allowing the drift parameter
to have a mixing distribution. This is discussed further in Chapter 6.



Chapter 2

Double Barrier Model, Zero Drift

In this chapter, we introduce a simple double barrier model for length of stay in hospital. This
extends the work of Eaton and Whitmore [15] to allow the latent health level process to end at
one of two barriers, representing healthy discharge and death. The problem of allowing for other
outcomes will be considered in section 6.2.

A brief outline of the Chapter is now given. In Section 2.1 we examine the distribution of T, the
time the health level process first reaches either a barrier representing healthy discharge or a barrier
representing death in hospital. We discuss derivation of the cumulative distribution function,
density, and subdensities, and examine the form of these functions as well as the hazard and
cumulative hasard. In Section 2.2 we discuss maximum likelihood estimation of the parameters,
and non-linear functions of the parameters. We extend the model to accommodate covariates,
and discuss starting values needed for the iterative estimation procedure. Section 2.3 deals with
informal methods of model assessment, while in Section 2.4 we demonstrate the model using some

real data.

2.1 Distribution of Time until Breach

In addition to an upper barrier representing healthy discharge, we now postulate the existence
of a lower barrier representing death. An individual’s length of stay in hospital is modelled as
the time, T, until his health level Process first reaches one of the two barriers, To simplify the
discussion in this section, assume that the Process has zero drift. We further assume that the

10
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data set represents a fairly homogeneous group of individuals, all of whom have approximately
the same health status on admission to hospital, and all of whom share the same upper and lower
barriers. These restrictions will be relaxed later, by allowing the barrier parameters to depend on
covariates (section 2.2.2), and by introducing a drift parameter (Chapter 3).

To further specify the model, assume that an individual’s health level process, {H(t),t > 0},
is a standard Wiener Process, with drift 0 and volatility 1. (Note that taking volatility equal to
1 entails no loss of generality here, since it is a scaling factor and health status is, in any case,
a latent (unmeasurable) quantity.) The individual is assumed to enter hospital at time 0, with
health level 0, i.e. H(0) = 0. The health level process unfolds in the presence of two barriers, as
shown in figure 2.1. The upper barrier is identified with a health level of u, and the lower barrier
with health level equal to —£, where u > 0 and £ > 0. The random variable T represents the time
the process first reaches one of the two barriers, which we equate with length of stay in hospital.
We will say that the process ends when it hits one of the two barriers. The distribution of T
has no name but is discussed in most intermediate-level textbooks on stochastic processes (eg
(17, 23]). Where necessary, we will refer to it as a first passage two barrier (FP2B) distribution.

Let F(t; u,£) denote the cumulative distribution function (cdf) of T, so that F(t;u,¢) is the
probability that the process hits one of the two barriers at or before time ¢. The process may end
at time ¢ by reaching the upper barrier u, or the lower barrier —¢, Let Fi(t) equal the probability
that the process hits the lower barrier at or before time ¢ without reaching the upper barrier.
Similarly, let F(t) equal the probability that the process hits the upper barrier at or before time
t without having hit the lower barrier. Then clearly F(t;u,4) = Fy(t) + F, (t).

We may also think of this situation as a multivariate distribution, with two random variables,
one continuous and one discrete. This point of view is similar to the mode] for several types of
failure discussed in Cox and Qakes (11, p.143], also discussed by Kalbfleisch and Prentice (22, p.
163] under the name of competing risks model. As before, let the continuous random variable
T represent the time until the Process hits one of the two barriers. Further, define the discrete
random variable D which takes the value u if the process ends at the upper barrier, and which
takes the value | if the process ends at the lower barrier. Then Fy(t) = P(T < t,D =) while
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position

time

Figure 2.1: Wiener Process starting at 0 with barriers at £ and

Fo(t)=P(T<t,D= u). The joint distribution of (T, D) can now be described by

Fyt) if d=nu
Fo(t) if d=1.

Frp(t,d) =

Note that in health services research, we have data on both time in hospital (corresponding to T)
and discharge status (corresponding to D), so that we are able to model this joint distribution.
F(t) and F,(t) are referred to as subdistribution functions, because the limit of each function
as ¢ approaches infinity is less than one, The marginal cdf of T is of course F(t;u,£) and the
probability that the process ultimately ends at the upper barrier is

P(D=u)= ‘l_i:g Fy(t).

Since we are assuming zero drift, these probabilities can be derived via simple reflection argu-

ments. These arguments are heuristic but are quite standard (see for instance [23]). In appendix
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B we show that the upper subdistribution function F, (2) is given by

= o239 -+ (259

where
S =—(2k+1)(u+2

and ¥(z) is the standardized normal cumulative distribution function evaluated at z. Similarly,

we can show that the lower subdistribution function is

Fult) = 2§ {«b ("“}t") -3¢ (”‘\/'t.“)} : (2.2)

Note that to get the lower subdistribution function, we only need to reverse the roles of u and

¢ in the upper subdistribution function, ie if we write Fy(t) = g(¢;¢,u) then Fy(t) = g(t;u,0).
This is discussed further in appendix B. Of course, if 4 = ¢, then F,(t) = Fy(t), and P(D =
u) = Fy(oo) = P(D=1) = Fy(o0) = .5. We will see throughout the thesis that probabilities
associated with the lower subdistribution function have the same functional form as corresponding
probabilities associated with the upper subdistribution function. This fact can be exploited when
writing the computer programs to estimate parameters. For instance a single module in the
computer program can calculate both F¢(t) and F,(t), with only a change of argument. Finally,
since F(t;u,f) = F,(t) + Fy(t), we find

v =3 E {0 (55) -0 (57 o (457) -0 (25

Consider for a moment the series

=5 o %) -+ (379}

Let gax = a4 + £ and 92k+1 = 85 — L. Then the sequence {or}, is a decreasing sequence

S

of negative numbers. Also, for finite ¢, the sequence {$(g;/ \/i}g‘;o is a decreasing sequence of
positive numbers, the limit of which is 0 as k — co. Thus the series F, (t) converges pointwise for
finite ¢, by the alternating series test. Furthermore, as we show in appendix A, this series, grouped
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as shown, is absolutely convergent for finite ¢. Similarly, F(t) is also absolutely convergent.
Absolute convergence of F(t) and F,(t) imply the absolute convergence of F(¢; u, £).

There are many other ways of deriving the cdf F(;u,4) or equivalently the survivor function
F(t;u,8) = 1 — F(t;u,£). For instance, from the joint distribution of (max{H(t) : 0 < ¢t <
T}, min{H(t):0<t < T}, H(T)), which is given in a 1951 paper by Feller [16], we can derive

an alternative form for F(¢;u, ¢), namely

Fltw=1- 3 {Q(M\/#)“’(LH%H)}

+::i-::: {Q(Zk(u+l\)/t_+2u+l)_Q(Zk(u-\f-/t_l)-i-u)}.

The disturbing fact that these expressions involve infinite series does not turn out to be an
insurmountable problem, as in general only a small number of terms are perceptibly different from

zero. This is illustrated in Figure 2.2, where for ¢ = 2, u=1 and ¢ = 64, the sum

RUCIRICT)

is the shaded area under the curve. The value of Fy(t) at t = 64 is computed as 2 times the shaded

area. As k — oo, the terms of the series approach 0 very quickly, and in fact only the first 6
terms are larger than 10e-5 in absolute value, Since the terms of the series are strictly decreasing
in absolute value as k — 0, any computer programs written to evaluate this function can easily
monitor the size of the terms, and cease looping over the summation when some predefined limit
is reached. Also, from well-known results for alternating series, we know that the size of the error
incurred by truncating the series after n terms is less in absolute value than the (n+1)** term.
Again this fact can be used to determine when enough terms of the series, written in alternating
geries form, have been evaluated. A similar check can be made for the first and second derivatives.

As we show in Chapter 4, Fy(t) can be differentiated term-by-term for finite ¢, giving the
corresponding subdensity,

=15 (35 w0 (47 o)

k=0
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Figure 2.2: F,(64) is 2 x shaded area under curve

where ¢(z) is the standard normal density evaluated at z. It turns out that we can write this

more compactly as

— gm - s +4
fult) = —t *.:’::f( = )(a.+t). (2.3)

There are many other ways of deriving f,(t). For instance, in section 3.1, we give the corre-
sponding subdensity, JE(t), for the case where the health level process is a Wiener process with
drift 4 # 0. This subdensity can be derived from difference equation arguments as outlined in
Feller [17] and in appendix C of this thesis. Then letting u ~ 0 in the expression for f¥(t), we
get fu(t).

Similarly we find that the subdensity corresponding to Fy(t) is

fult) = —r*g {s (252) e+ -6 (%7%) - w}, (24)
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Figure 2.3: lower subdensity, f,(t)
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which can also be expressed as

R =-t4 Y 4 ("‘\;g“) (o + ).

k=-o00

Note that once again, we can get f¢(t) by reversing the roles of u and £ in fu(t). The two functions
fu(t) and f,(t) are referred to as subdensities because each integrates to something less than 1.
Figures 2.3 and 2.4 show plots of the subdensities for various values of the parameters.

Figures 2.5 and 2.6 show the upper and lower subdensities for a given set of parameters plotted
on the same plot. Of course when u = ¢, the subdensities are identical. If £ < 4, then the lower
subcdf dominates the upper, since the probability of travelling the shorter distance £ by any given
time ¢ is larger than the probability of travelling a distance u > ¢, This fact is also apparent from
examination of the expressions for the subedf’s in 2.1 and 2.2, since, if u > ¢, Fy(t) < Fy(t) for
all t. This imparts a lack of flexibility to the model, in contrast with the drift model discussed in
Chapter 3. There, as we shall see, the addition of an extra parameter allows a wider variety of
relationships between the two subdensities.

The density of T, the time the Process reaches one of the two barriers, is [(t6,8 = fu(t)+f, (t).
A plot of the density for various values of the parameters u and ¢ is shown in Figure 2.7. Note
that f(t;u,2) = f(t; £, u), s0 in fact we show the density only for u = 1 and several values of £,

If we let the lower barrier approach negative infinity, we return to the situation of a single
barrier. When the underlying process is a Wiener process with zero drift and volatility o2, the
distribution of the first Passage time to a single barrier at u is the stable law with index 1/2. The
density is given by

) = 22 arp (%)
Vonrt3 2t
where A = u?/52. This density, with u = 1 and o2 = 1 is also shown in figure 2.7 as the heavy
line. This is of course the limiting form of f(t;1, ¢) as £ - co. Note that the mean and variance
of this distribution are infinite. The stable law distributions are discussed briefly in appendix B,
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Figure 2.5: subdensities, y = 1,£=2
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Figure 2.7: density function, f(t;4,¢)
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In survival modelling, one often examines the hazard function,

= m PEST<t+A4T>1)  f(r)
o= Jm, af = Fay

where F(2) = 1— F(t) is the survivor function. Figure 2.8 shows the hazard function for £ = 1 and
several values of u. Apparently, the hazard function can be either unimodal or non-decreasing.
It evidently approaches a constant as ¢ — oo, and so for large values of ¢, it behaves like the
exponential distribution.

Finally, we note that this distribution has non-proportional hazards, i.e. there are no two
values of = (u,¢) and no real number @, such that A(t;6,) = a A(t;6,). This is illustrated
graphically in Figure 2.9, where the log cumulative haszard is plotted against log time. The
cumulative hazard #(t) equals

¢
H(t) =-/o h(s) ds = —log F(2).

If two haszard functions hi(t) and hy(t) are Proportional, then so are the cumulative hazards,
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Figure 2.8: hazard function, A(t; u, )
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#1(t) and H,(2) so that
log(#1(t)) = log(a) + log(#(2)).

Thus a plot of the log of the cumulative hazards against time (or some functjon thereof) should
give parallel curves. Figure 2.9 shows two cumulative hazards for different values of plotted
against log time, and clearly the two curves are not paralle],

For convenience we record here the expected value of T, the marginal distribution of D, and
the conditional expectation of T given D, for the simple zero drift model. These quantities will
be derived more generally in section 3.2 when we discuss a process with non-zero drift. It will be

shown that, for zero drift,

ET)= mpr=tu
PD=v)= pp=t/(u+?)

P(D=1)=1-pp =uf(u+¢)

_u(u+2¢)
T3

f2u+t
ETID=1)= my, = —("34

E(T|D =) = my,

Once again, we can get P(D =1) by reversing the roles of u and ¢ in P(D =u). Also, we can get
E(T|D = 1) by reversing the roles of u and £ in E(T|D = u). Finally note that the conditional
density of T, given D = u) is

lim Pt<T<t+At|D=u) _ Jfa(2)
Ato0+ At ~ P(D=n)

2.2 Maximum Likelihood Estimation

When there are no covariates, individuals make different likelihood contributions according to
their ultimate destination, as follows. Individuals who are discharged at time t, ie for whom
[T=tD= u], make a likelihood contribution, f,(2), proportional to the probability that the
Process hits the upper barrier at u for the first time in [¢, ¢ + dt) and does so without first going
through the lower barrier. For individuals who die at time ¢, we have (T =¢,D =1]. These
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individuals make a likelihood contribution, f,(t), proportional to the probability that the process
hits the lower barrier at —¢ for the first time in [t, 2+ dt) and does so without first going through
u.

It is poasible that the data will include individuals whose outcome is not known at the end of
the study period. For these censored observations, we know only that the time of the process hits
either barrier is greater than the time on study, ¢. If the censoring mechanism can be considered
independent of the health leve] process, likelihood construction is relatively straightforward. These
individuals contribute a term proportional to the probability that T is greater than ¢, namely F(t).

Thus for the zero drift model with volatility=1 and no covariates, the log-likelihood is

Lntit)= 3 logfult)+ Y logfults) + > logF(t)
{i:Di=v} {i:Di=t} {i:Di=c})
where t; is the time of death or discharge for individual 4, and D; is the discharge status of
individual i where now D; can take values u, £ or ¢ depending on whether individual i is discharged,
dies or is censored at time ;.

As is well known, for independent and identically distributed (iid) observations from a dis-
tribution belonging to a parametric family of distributions which satisfies appropriate regularity
conditions, the maximum likelihood estimator (mle) is consistent, asymptotically efficient, and
asymptotically normal. We discuss regularity conditions for the LOS model in Chapter 5.

In the multi-parameter case, let § = (51 V0a..., 5,) represent the vector of maximum likelihood
estimates, let £(6) represent the log likelihood function, and let I (6) represent the observed
information, that is the matrix ~32L£(0)/36%, evaluated at 6. If the multi-parameter regularity
conditions are satisfied, then § converges in distribution to a normal distribution with mean vector
6 and covariance matrix which can be estimated by I-1(§). This fact can be used to construct
confidence intervals for components 0; as follows: Let v; be the j* diagonal element of I-1(6) and
Zq be the a quantile of the normal distribution. Then a symmetric two-sided (1-a)% confidence
interval for 4; is §; + Za/2 +/Uj. This will be referred to in the examples as a normal-theory
confidence interval, since it relies on the assumption of asymptotic normality.

Values of u and £ that maximize the likelihood, or equivalently the log likelihood, can be
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found via the Newton Raphson method, or some other optimization routine., Both Splus and
SAS have convenient, built-in optimization routines. These routines can also perform constrained
optimization, which is relevant here since both u and £ must be positive. For the examples tried
so far, it has not been Decessary to use the constrained optimization routine, as the constraints
have been automatically satisfied by the mle’s.

Although the routine can run without derivatives, it works much faster if the user supplies a
routine for calculating the gradient, i.e. the vector of first derivatives of the log likelihood. In
order to get the value of the observed information, which is necessary for inference, the user must
supply a routine for calculating the hessian, the matrix of second derivatives of the log likelihood.
Derivation of firsi and second derivatives is straightforward, and the results are given in appendix
E.

As mentioned at the beginning of this chapter, we set the volatility parameter o2 = 1, since
it is merely a scaling factor. Also as we show in appendix F, it is not possible to simultaneously

estimate u, £ and o2 due to identifiability problems.
2.2.1 Non-linear Functions of the Parameters

Since the health level process is not directly observable, the values of u and ¢ are not readily
interpretable. But expected time in hospital and the probability that the hospital stay ends in
healthy discharge are quantities of direct interest to the researcher. As we saw in section 2.1,
E(T)=mp = tu and P(D = u) = pp = £/(u + £), both of which are non-linear functions of the
parameters. To estimate these quantities, we replace u in the above expressions by its maximum
likelihood estimate #, and ¢ by its maximum likelihood estimate 7. Because of the invariance of
the likelihood under parameter transformation, this gives us respectively the maximum likelihood
estimate riiy of E(T') and the maximum likelihood estimate pp of P(D = u).

The conditional expected length of stay given outcome will be a useful quantity for informal
model assessment, as will be discussed in section 2.3. At first glance, this quantity may not seem
to be of much use to planners, since outcome will be unknown when an individual is admitted to
hospital. However, depending on the medical condition under study, individuals who ultimately
die in hosepital may need more expensive daily care than those who are eventually discharged.
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Thus a researcher may want to predict the proportion of patients in a cohort who are expected to
die, and also predict their length of stay, and multiply this by per diem expenses. As we saw in
section 2.1, B(T|D =u) = Mmp)y = m and E(T|D =1) =mp;, = ﬂ';l‘l By the invariance
property of maximum likelihood, the maximum likelihood estimates of these quantities are found
by replacing u by @ and £ by £.

Of course we would also like confidence intervals for these quantities. For instance, researchers
might want to assess whether expected time in hospital is significantly different for two different
values of a covariate. Variance estimators and confidence intervals for non-linear functions of
the parameters are difficult to derive. For this reason, we will use the bootstrap to construct

confidence intervals, which will be illustrated in section 3.5.

2.2.2 Covariates

As discussed in section 1.3, we may allow the barrier levels to vary for different individuals or
groups of individuals. Let u; and ¢; denote the upper and lower barriers respectively for individual
i. Let

. ] ] - i
z = (2ip, 2}y, ... 1 2p,)

be the ((py +1) x 1) vector of covariates measured on individual i which are thought to affect the

upper barrier, and
£ (L 2 L v
E" = (z'-o, z“, ey z."‘)

be the ((p, +1) x 1) vector of covariates measured on individual i which are thought to affect the
lower barrier. Then we may model each barrier level as a function of the relevant covariates, by

specifying

w = g(8"z!

L& = ’I(Q‘&f
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where 3* and g‘ are vectors of parameters to be estimated. We may want to choose functions
9(-) and h(.) that automatically satisfy the constraints u; > 0 and & > 0; for instance we might
take g(), z) = exp()’ » z), where * denotes matrix multiplication.

For the purposes of these preliminary investigations, we take both g(.) and A(.) to be the
identity function, so that each barrier level depends on the covariates in a linear fashion:

u; =" *z} = Z:"o+ﬂf ht...+ (M z-'"p..

l" =E‘ ‘!f =ﬁ(€ zfo"'ﬂ{ zfl+"‘+ Pe zfpg'

In the examples shown in this thesis, we will use standard unconstrained optimization routines
to find the maximum likelihood estimates of the parameters. Extension of the log-likelihood,

gradient and hessian to accommodate covariates is straightforward and is shown in appendix E.

2.2.3 Starting Values

The routines used to find the maximum likelihood estimates are iterative, and it is imperative
to have good starting values for the parameters. For a model with no covariates, the following
heuristic approach works well in practice. We know that for this model E(T) = tu and P(D =
u) = £4/(u+¢). We can estimate E(T) by ¢, the sample average LOS. We can estimate P(D = u)
by the observed proportion of individuals in the sample who were ultimately discharged, which
we denote as p,. Then, approximately, £ = fu and p, = £/(u + £). Solving these two equations

for £ and u gives

¢ = [ tPs
These rough estimates can be used as starting values for u and ¢,
For starting values of the regression parameters 8 in models with covariates, we use a sort

of mock least squares estimate, which we now describe, A linear least squares model for time in
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hospital would take the form
E(T) = pr = XB,
and the least squares estimate of 8 would be
B=(X'X)"}(x'T).

In the models developed here, we specify that the upper barrier is a linear function of covariates,
ie. u = Xp, sothat 8 = (X'X)~Y(X'u). Of course, u is unobservable. So, to find starting
values, we might replace u in the above expression with a function of T, 9(T) say, which behaves
approximately like u. Since (X’'X )=*(X’ g(T)) has the form of a least squares estimate, we refer
to it as a mock least squares estimate.

In practice, it seems that to estimate 4, we should use only individuals in the data set whose
paths ended at the upper barrier, i.e. who were discharged. So to estimate starting values, we
divide the data set into two groups, according to discharge status. Let T, be the vector of times
in hospital for individuals who were ultimately discharged, and let Xy be the matrix formed by
stacking the row vectors (z?)’ belonging to those individuals who were ultimately discharged.
Then the starting values for the vector of parameters B* =(8s,5¢,..., By.,) could be calculated
a8 (XoXy)"Y(X. g(T.)). To find a suitable function g(T}), recall that E(TID=u) = My =
&;'—’Q and P(D=u)=pp = ¢/ (u+ ¢). So then, approximately,

l-pp
u= \/3‘"&1»/. (1+Pp)'

Thus a reasonable candidate for the function g(Ty) is

- 1-pu
9(Ty) =4 /3T, (m)

Similarly, let T} be the vector of times in hospital for individuals who died in hospital, and
let X¢ be the matrix formed by stacking the row vectors (zf)" for those individuals who died in
hospital. Then starting values for§' = 85, B¢, ... 1B%,) can be calculated as (X Xe)~X(X) h(T2)),
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where

MT) = 3T, (15}.)
2.3 Assessment of Model Fit

Once a model has been chosen and the maximum likelihood estimates calculated, it is important
to assess the fit of the model to the data. We first discuss the scenario where the model involves
a small number of discrete covariates, each with a small number of levels, so that the number of
distinct combinations of covariate levels or “covariate cells” in the data is small. Then an informal
assessment of fit can be made by comparing the average length of stay in each covariate cell to
that predicted by the model. These resulis can be displayed in a table.

The model predictions we use are the maximum likelihood estimates of the expected time in
hospital at the appropriate combination of covariate values. Recall that, for individual i, the
expected time in hospital my, is a simple function of the barrier levels 4; and &;, and in turn u;
is a function of covariates z{ and regression parameters B*, and ¢; is a function of covariates zf

and regression parameters 2‘ Thus
my, =mp (8%, 8%, z¥, z{)
and the mle of my, which we will use for predictions, is
vy, =mp (8%, 8%, 28, ).

We can also examine observed versus predicted LOS in each covariate by discharge cell. In
this case, the necessary predicted values will be

r/e =mp /(% 8% 22, 28)

and

-

ﬁ‘T/l‘ =”‘T/l(é'72¢1§:1_.‘)'
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We can also compare the obeerved and predicted proportions of individuals who are discharged
in each covariate cell. For predicted proportions, we will use

-

ﬁD( Pb(ﬁ' ﬂly_. v_.

These methods are illustrated in detail in section 2.4. If the covariates are continuous, we can
still perform this kind of analysis, after dividing the range of each covariate into a small number
of non-overlapping intervals.

When a moderate to large number of distinct covariate cells is present in the data, it is best to
use graphical means of assessing model fit. We will construct the itA “raw” residual r; by taking
the i** observation in the data set, (t;,z;), and subtracting the length of stay predicted by the
model at these covariate values, from the observed length of stay, giving

- mp(G* ﬂ‘,_.,_.

The raw residuals can then be Plotted against obeervation number and against each covariate
in the data set. These residuals measure the distance between observed and predicted values.
Thus large values indicate observations that might warrant further investigation, and systematic
patterns in the plots can help to point out some inadequacy in the model specification.

To assess whether the FP2B distribution provides an adequate overall fit to the model, we
want to examine residuals with a known distribution, and thus another kind of residual is called
for. A general definition of residuals, useful for models which do not belong to the location-scale
family of distributions, was given by Cox and Snell (12] in 1968. Suppose that we can express
the response for individual %, %, as a function of a vector of unknown parameters §, a vector of
covariates z;, and some quantity ¢; where ¢,, €3, ... , ¢, are independent and identically distributed

(iid) from some well-known distribution. If we can then write ¢; as

& =g(ti, z;, 8)
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for some function g(.), then we can define general residuals R; as

R; =g(t;, z;, )

where é is the mle of 3.

The residuals, R;, will be neither independent, nor identically distributed. However Cox and
Snell argue that when the number of parameters is small in relation to the number of observations,
the distribution of the residual R; should not be too far from the distribution of ¢;, and at any rate,
this approximation will be good enough for graphical assessment. On the other hand, formal tests
of goodness of fit based on residuals will probably require more careful methods. For instance,
Cox and Snell give some first-order corrections which can be made to the residuals to bring their
distribution closer to that of €.

If T is a random variable from a distribution with cdf F(t), then both the transformed random
variables Z = F(T) and U =1 - F(T) = F(T) have a uniform (0,1) distribution. Furthermore,
the transformed random variable, — log (T'), has a unit exponential distribution.

Suppose that we have a parametric family of distributions with survivor functions F(¢, ),
and that we fit a regression model with 6; = h(z;, B) for some function h. Then we can use
F(ti,z;, ) (or some transformation thereof) as the required ¢;, since they are iid with a uniform
(0,1) distribution. This is especially convenient in survival models where the survivor function,
F(t,8), is needed for calculating the contribution of censored individuals to the likelihood, so
algorithms for calculating it will already be available. The Cox-Snell residual R; is defined as
—log ¥ (t.-,g.-,é). If the data do come from the distribution with survivor function F(t;, z;,8),
then the Cox-Snell residuals should have approximately an exponential(1) distribution.

We can use this fact to check graphically that the model developed in this chapter gives a
suitable fit to the data under investigation. A quantile plot, with the ordered Cox-Snell residuals
plotted against the order statistics of a unit exponential distribution, should give approximately
a straight line with unit slope if the fit of the model is adequate. These plots give a graphical
measure of overall goodness of fit,

Unlike residuals from normal linear models, the Cox-Snell residuals used in survival analysis
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do not correspond to a distance. Thus the suggested plots can be hard to interpret. Note that, in
the absence of covariates, large survival times will have small values of F(t,0), and so the corre-
sponding residuals will be large. Of course, when covariates are Present, the relationship is more
complicated. Observations with survival times corresponding to small estimated probabilities of
survival will have large residual values. Thus, observations with large values of Cox-Snell residuals
will correspond to survival times that are unusually long, given the covariates.

Recently, concern has heen expressed in the literature that the Cox-Snell residuals are too
lenient for checking distributional assumptions. Baltazar-Aban and Pena (3] show that when the
data is from an exponential distribution with no censoring, and an exponential model is fit to
the data via maximum likelihood estimation, the ordered Cox-Snell residuals will have a smaller
variance than the order statistics of an exponential distribution. Thus the quantile plot will be
closer to a straight line, on average, than we would expect if in fact the Cox-Snell residuals did
have an exact exponential distribution. They also give some simulation results which indicate that
this phenomenon also occurs when the data come from the bypothesized distribution and that
distribution is Weibull. The more relevant question of the behaviour of the Cox Snell residuals
when the data do not come from the hypothesized distribution is only indirectly addressed in the
article. This is an area which needs further research.

If the data includes censored observations, then the corresponding residuals will also be cen-
sored. Lawless [25] discusses residuals for censored data. Gentleman and Crowley (19] discuss
graphical methods for censored data. They recommend that censored observations be presented
on plots using the same plotting symbol as uncensored observations, but with a lighter color
value. If this is done, censored observations will be perceived as having somewhat less importance
than uncensored obeervations. They also discuss boxplots and smoothing techniques for censored

observations.

2.4 Example

In this section we demonstrate the model on a small subeet of the Utah data. This subset
consists of females over 80 years old with a recorded APR-DRG of 121 (Circulatory Disorders
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with Myocardial Infarction), who either died in hospital (n=32) or were discharged home (n=102).
On average, members of this subeet spent 4.582 days in hoepital (median 4 days). As shown in
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b . o
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@ -

Figure 2.10: LOS by Destination, Females > 80 years, APR-DRG=121

figure 2.10, there is clearly a difference in LOS by discharge status. The mean length of stay in
the discharge group is 5.147 days (median 5 days), while in the group who died in hospital, the
mean is 2.781 days (median 2 days). However, recall that discharge status is part of the response,
and so it would be incorrect to include it as a covariate in the model.

In what follows, we will treat the variable severity as if it represented comorbidities present at
admission to hospital (see the discussion in sectjon 1.2). Because of sparsity in the data, we have
recoded the covariate severity to three levels (from its original 4 levels). Severity=2 represents
no, minor or moderate complication or co-morbidity; Severity=3 represents major complication
or co-morbidity; Severity=4 represents extreme complication or co-morbidity. In figure 2.11 we
show side-by-side boxplots for each severity by outcome group. Note that the width of each box
is an indication of the number of individuals in the data set with the given level of severity and
discharge status. The effect of severity is to increase time to discharge, but to decrease time to

death, although the effect is less pronounced. On the boxplot the circles indicate the mean LOS
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Figure 2.11: LOS by Severity and Qutcome

in each group, while the horizontal lines represent the median.

Recall that in the development of the model, we assumed that all individuals in the data set
had roughly the same health level upon admission to hospital, which we arbitrarily set to 0. In
other words, letting {H;(t),¢ > 0} represent the health level process for individual i, we have
8o far assumed that H;(0) = 0 for all individuals. However, individuals do enter hospital with
differing severity of disease, so that it is more realistic to let H;(0) vary across individuals, and to
model H;(0) as a function of covariates. Thus it would appear that we should develop a new and
more complicated model. However, as we now show, the existing model can be parameterized to
allow for differing health levels at admission to hospital.

Let us make the arbitrary assumption that individuals with low severity enter hoepital with
a health level of 0. Patient i, who is admitted with higher severity of disease, would then enter
hospital with a health level less than 0, say —h; (where h; > 0). In effect, entering hospital
with a high level of severity increases the distance to the upper barrier by h;, and decreases the
distance to the lower barrier by h;, as compared with someone who enters hospital with a low

level of severity. As we show in appendix B, allowing the process to start at —h; with upper
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barrier u; = b and lower barrier ~4 = —a, (where a,b, h; > 0), is equivalent to starting the
process at 0 with barriers at u; = b+ h; and 4=—-a+h = —(a — h;), in the sense that the
time until the process first reaches one of the two barriers has the same distribution function (and
subdistribution functions) in each case. Thus we can use our existing model which assumes that
all individuals enter hospital with health level 0. But for individual i who enters hospital with
increased severity of disease, we allow both the upper and lower barriers to be raised by the same
amount, h;, where h; will be modeled as a function of covariates, and estimated.

More specifically, to model the effect of severity on the health level of individual { at admission

to hospital, we can let

ui =y + h;
& =Bt — b

where h; = fyz;, and z; = 0 if patient i is admitted to hospital with a low level of severity and
Zi = 1 if severity of disease is high at admission.
More generally, the model may be parameterized so that the upper and lower barriers are

functions of distinct parameters.

u =63 + Yz,
& =f5 + Btzi.

This would be appropriate if severity was thought to affect the level of the barriers, as well as the
starting value of the process.

We create two dummy variables to represent severity. Let z;; = 1 if individual § exhibits a
major complication or comorbidity and 0 otherwise. Let zi2 = 1 if individual i has an extreme
complication or comorbidity and 0 otherwise. Individuals classified as having either no, minor, or

moderate complication or comorbidity fall into the baseline category, with both z;; and z;; equal
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to 0. Then the barrier levels for individual i will be modelled as

4 =5 + By ziy + F3 ziz
& = B} + Biziy + fzig

The maximum likelihood estimates and their estimated standard errors are shown in the following
table.
BB/ B B Bt p4
Estimate | 2.010 0.623 1.639 2.705 -0.803 -1.034
Std Err | 0.156 0.324 0.800 0.260 0.342 0.420

The reported standard errors are the square root of the diagonal elements of I "1(5), the inverse
of the observed information matrix, evaluated at the mle. The parameter estimates indicate that
the more severely ill a patient, the greater the distance to the upper barrier (discharge), and the
shorter the distance to the lower barrier (death). This agrees with our intuition.

As figure 2.12 indicates, the overall fit of the model is not good. If the model is correctly
specified, the ordered Cox-Snell residuals plotted against the quantiles of the exponential(l) dis-
tribution should lie on a straight line with slope 1 and intercept 0. This plot indicates that the fit
i8 not very satisfactory, but it’s difficult to look at the plot and say what exactly is going wrong,
Some further exploration is required, which we now carry out.

Figure 2.13 shows the raw residuals plotted against observation number. Here we can see no
systematic pattern. We see that there are four observations that have fairly large residuals, indi-
cating that the model is underestimating length of stay for these individuals., Closer examination
of the data reveals that these individuals were eventually discharged home.

In the following table we show, in each covariate cell, the observed average time in hospital (T'),
the observed average time for those that were discharged (T|D = u), and the observed average
time for those who died in hosepital (T'|D =1). The last two columns show the observed proportion
of patients who were discharged (P(D = u)), and the Proportion who ultimately died in hospital
(P(D =1)). The corresponding expected quantities predicted by the model are shown in brackets.
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Figure 2.12: Quantile Plot of Cox Snell residuals
Severity || n T TID=u T|D=1 P(D=u) PD=1)

low |82 4.49(5.43) 4.61(4.97) 3.60(6.06) 0.88(0.57) 0.12(0.43)
med |39 4.67(5.01) 5.96(5.65) 2.36(4.54) | 0.64(0.42) 0.36(0.58)
high || 13 4.92(6.10) 8.80(8.50) 2.50(5.00) 0.38(0.31)  0.62(0.69)

Note that the observations and predictions agree in rank as severity increases. However we sgee
that the model is systematically overestimating both probability of death and time until death in
each of the three covariate cells. This lack of fit could be due to some unexplained variability in
the data. However the lack of flexibility exhibited by the model with respect to the relationship
between the upper and lower subdensities, is probably also partially to blame. As we shall see
in section 3.5, incorporating a drift parameter allows more flexibility and results in a better fit

overall.
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Figure 2.13: Index plot of raw residuals
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Chapter 3

Double Barrier Model, Non-Zero
Drift

As we saw in Chapter 2, the zero-drift model does not appear to be sufficiently flexible to provide
a good fit to the data. In this chapter, we extend the model to allow for the inclusion of a drift
parameter, u.

A brief outline of the Chapter is now given. In section 3.1 we examine the distribution of
T, the time of breach of one of the two barriers. We discuss derivation of the subdensities and
cdf and examine the form of these functions and the hazard function. In section 3.2 we derive
expressions for certain non-linear functions of the parameters that are of special interest to the
researcher. In section 3.3 we compare this distribution to the inverse Gaussian distribution.
In section 3.4 we discuss maximum likelihood estimation, extend the model to accommodate
covariates, and describe starting values for the iterative estimation procedure. Finally in section

3.5 we demonstrate the model using some real data.

3.1 Distribution of Time until Breach

The health level process, {H* (t),t > 0}, is now a Wiener process with drift u different from zero
and volatility 02 = 1. As in Chapter 2, we argue that the volatility parameter is merely a scaling
factor, and so no loes of generality is entailed by setting it equal to a constant. Furthermore, as

shown in appendix F, we run into identifiability problems if we try to estimate o2 in addition to

37
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the barrier and drift parameters. As before we take H(0) = 0 and postulate the existence of an
upper barrier at u and a lower barrier at —¢. We need to find the distribution of T, the time the
Process first reaches one of the two barriers. We will call this distribution the FP2Byu distribution,
(First Passage time, Two Barrier, drift u).

Because of a lack of symmetry introduced by the drift parameter, reflection arguments can no
longer be used to derive the cdf of T, nor the subdistribution functions, There are various possible
alternatives. One general strategy that we will use to find expressions for the subdensities, expec-
tations, and probabilities, exploits the fact that a Wiener process with drift can be constructed as
the limit (in a certain sense, see section C.2) of an asymmetric random walk on the integers. We
will start with the random walk and set up a difference equation, the solution of which gives the
desired quantity in the discrete framework. We next solve the difference equation, and then take
the limit of the solution in the manner referred to above, to give the corresponding quaatity in
the continuous case. This passage to the limit in distribution is justified by the weak invariance
principle (see eg [36)).

For example, we can set up and solve a difference equation for the probability that the random
walk reaches the lower barrier in exactly n steps, without first reaching the upper barrier. We
then take the limit of this solution in the sense described above. This gives an expression for
f£ (t), the subdensity corresponding to the event that a Wiener process with drift 4 hits the lower
barrier —£ at time ¢ without first hitting the upper barrier u:

) = —t‘fembgm {¢ ("’\;}“) (2 +u)}. (3.1)

This procedure is outlined in detail in appendix C, section C.2, following Feller. Note that the

limit as 4 — 0 of this expression is fe(t) (as in equation 2.4), the corresponding subdensity in the
zero-drift case.

The subdensity corresponding to the event that the process hits the upper barrier u at time ¢
without first hitting the lower barrier is

Fo(t) = —t— B =tts2ue f: {¢ ( ""/*t: ‘) (o +¢)}. (3.2)

k=-o0o
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Again the limit of this expression as # = 01is fy(t) (as given in equation 2.3), the corresponding
subdensity in the no-drift case. Also note that to get f¥(¢), we can replace u with £, £ with u, and
# with —p in f{'(¢). This is explained in more detail in section C.2. Figures 3.1 and 3.2 show
plots of the subdensities for £ = 1,4 = 2 and various values of p. Figures 3.3, 3.4 and 3.5 show
the relationship between the two subdensities for various values of the parameters. We can see
that there is more flexibility in the relationship between the subdensities, than in the zero-drift
case.

The density of T, the time of breach of one of the two barriers is f(t) = f#(t) + f?(t). Figure
3.6 shows the density plotted against time for various values of the parameters. Note that the
density may be bi-modal, if the modes of the two subdensities are well separated.

Of course, other methods of deriving the distribution functions and densities exist. Starting

with the joint distribution of
(max{H(t): 0 <t < T}, min{H(t):0<t < T}, H(T))

where {H(t),¢ > 0} is a zero-drift Wiener process, we can apply a Girsanov factor to obtain the
corresponding joint distribution in the drift case. (see [33]). This method is particularly helpful

in finding the survivor function in the drift case, F*(t), which we now set down.,

e b(B) (o),

where cx = 2k(u+¢) and d; = 2k(u + £) + 2u. Expressions for the subsurvivor functions are now
given. The upper subsurvivor function is

FEO = Y, sigalu) {ea (st (22572)) e (s (_dﬁ#) )}

k=-00

(3.5)
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and the lower subsurvivor function is

) =§m sign(s) { o (sia(a) (W)) - 78 (sign(u (%)) 3

(3.6)

The presence of sign(u) is necessary to ensure that the series converges.

The hazard function for various values of the parameters is shown in figure 3.7. Some interest-
ing shapes are possible for small values of t, while for larger values the hazard appears to approach
a constant value, just as in the sero-drift case. Note that this distribution can have either propor-
tional or non-proportional hazards. Figure 3.8 shows the log cumulative hasard plotted against
log time for various values of the parameters. On this scale, proportional hazards will show up as
parallel curves. In fact h(t; @, a, py) = ah(t; a,q, #2) for all a > 0.
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Figure 3.3: subdensities, u = 2, £ = Lu=-1
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3.2 Non-linear Functions of the Parameters

In this section we discuss several important non-linear functions of the parameters, namely the
expected time until breach, E(T); the probability that the upper barrier is ultimately breached,
P(D = u); and the conditional expection of time until breach given that the upper barrier is
breached, E(T|D = u). For the discrete case, i.e. an asymmetric random walk on the integers
with two absorbing barriers, expressions for these quantities are well known and are easily found
as solutions to difference equations. To find the corresponding quantities in the continuous case,
i.e. a Wiener process with drift and two absorbing barriers, we take the solution to the difference
equation and pass to the limit in the manner described in appendix C, section C.2.

As noted below, an expression for P(D = u) is given in Karlin and Taylor [23]. However I
have not been able to find expressions for E(T) and E(T|D) in the literature. These quantities
have been carefully checked by numerical integration for several values of the parameters, as will
be discussed in section 3.2.3.

3.2.1 Probability that D =1

In this section, we show how to find the probability that the process ultimately ends at the lower
barrier. Following our general strategy, we start with the discrete case, set up a difference equation
for P(D =1), find the solution, and then take the limit as described in appendix C, section C.2.

Consider a random walk on the integers, which takes an upward step with probability p, and a
downward step with probability ¢ = 1 — p, and with abeorbing barriers at 0 and a > 2, Following
Feller [17], let ¢, be the probability that the walk, starting from position z, ultimately ends at

the lower barrier. Then for z = 1,2,...,a—1, we have the difference equation

9 =Pqr1+9q:-1

with boundary conditions 90 = 1 and g, = 0. The general solution of this system of difference
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equations is given by

aProi— P#4q
1-z/a p=q.

6= (3.7)

Taking the limit as described in appendix C.2 and setting 0 = 1 gives
S gy
1-(/a p=0.

To describe the situation where the process starts at 0, and has absorbing barriers at u > 0 and

—{ < 0, we need only change co-ordinate systems and substitute £ for ¢, and u + £ for a. This

gives
e-’u(u-‘-l) _e—zul
= 0
P(D=1l)= € S
1-/(u+8) u=0
or equivalently

Sk u#0
u/(u+4) u=0.

P(D=))=

Note that at u = 0, the first line in the previous expression gives an indeterminate form, 0/0.

—ﬂuu_l

A single application of L'Hopital’s rule shows that the limit as 4 — 0 of o—an 18 u/(u + 0),
the same value found by taking the limit of ¢, in the prescribed manner when p = g. Also note
that this agrees with an expression given in Karlin and Taylor (23] which is derived by martingale
arguments.

Of course for this model, the only two possible outcomes are breach of the upper barrier and

breach of the lower barrier. Thus P(D=uw)=1-P(D= 1) and is given by

ﬁ%ﬂ B#0
t(u+8) pu=o.

P(D=u)=

Note that we can get P(D = u) from P(D =1) by replacing u with £, £ with 4 and p with —pu.
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3.2.2 Expected Value of T

To find the expected value of T', the time the process first reaches one of the two barriers, consider
the same random walk as in the previous subsection, with absorbing barriers at 0 and a > z. Let
D; be the expected time until a walk, starting at position z, is absorbed at one of the barriers.
Then for z = 1,2,...,a -1,

D, P(D:y1+1)+q(Dsoy +1)

= pDyy1+4qD, ;1 +1

with boundary conditions Do = 0 and D, =0.
As shown in Feller [17), the general solution of this difference equation is given by

3 1-:152"
Dz = ﬁ-q_:il'qp' p¢q (3-8)
z(a - z) p=gq.

Now taking the limit of this expression as described in appendix C, section C.2, and setting
= 1, we find that the expected number of steps until the particle is absorbed approaches

P[5+ (3) ssmng] wro

r[S(a~¢)] n=0.
Dividing this by the number of steps per unit time r, gives the expected time until a Wiener
Process with drift, starting from position ¢, reaches one of the two barriers (at 0 or a).
Making a change of coordinate system to describe the situation where the process starts at 0

and has absorbing barriers at u > 0 and —¢ < 0 gives

Y NE'E T P Sl
B(T) = s+t [m] B#0
Ly p=0

Note that at y = 0, the first line in the Previous expression gives an indeterminate form, 0/0.

A single application of L’Hopital’s rule gives

2{(u + )[e= e+ _ g-2m¢)
p-.o 1 - e=2u(s+0[1 - 2p(u + ¢)]

lim B(T) =
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Again this gives 0/0, so another application of L’Hopital’s rule is needed. This gives

. — i —2(u+O)[2(u+ fe=mlu+y) _ e~
W ET) = lim Au+ Qe WO+02 optu v gy - -

This agrees with the value of E(T) found above at = 0.
3.2.3 Conditional Expectation of T, given outcome

In this section we discuss the conditional expectation of time in hospital, T, given outcome, that
is given knowledge of whether the hospital stay ended in discharge or death. This quantity is
useful for purposes of model assessment, and may be of interest to the researchers as discussed in
section 2.2.1.

The conditional density of T, given D=u (ie given that the patient is ultimately discharged) is

PE<T<t+dt,D=u) £,

foe = P(D=u) “PD=u)

Similarly the conditional density of T, given D =1 (ie given that the patient dies in hospital) is

foo= PE<T<t+dt,D=1) _ f)
He = P(D=)) “P(D=1)

Then the conditional expectation of T, given ultimate discharge is

E(TID =u) = zf’(tzf;%(:)g

and similarly, the conditional expectation of T, given death in hoepital is

ETID=1)= %.

Note that
E(T) = E(E(T|D)) =E(T|D =u)P(D = u) + E(T|D = )P(D =1)

= / tfu(t)dt + / tfo(t)dt.

Given estimates of the model parameters, numerical integration will give values for the ex-
pressions [tf,(t)dt and Jtfe(t)dt. This can be done in Maple or some other package. Recall
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that both £, (¢) and £,(t) are infinite series, and so approximations in the form of a finjte number
of terms of the series must be used. Since the integration is over the interval (0,0), a special
technique (such as transformation of the variable of integration) must be used, and this is done
automatically by Maple.

Numerical integration is very computationally expensive and so closed forms for these con-
ditional expectations will now be derived. As before, we start from the discrete case, and pass
to the limit as described in section appendix C, section C.2. The formulae so derived have been
found to agree with results obtained by numerical integration for several values of the parameters.

Consider the (by now familiar) random walk on the integers with absorbing barriers at 0 and
a. Let u, , be the probability the walk, starting from position z, ends at the lower barrier at step
n. and let ¢, be the probability that, starting from z, the lower barrier is ultimately breached. Let
m; be E:":on Uz,n, 80 that the expected time until breach of the lower barrier, given that this

event occurs, is m, /q;. As shown in Chung [10], the quantities m, satisfy the difference equation
My =pMpr+qme,y +4q;

forz=1,2,...,a~ 1, with boundary conditions Mo = mq = 0. The solution to this difference
equation when p # g is given by

2u’aw — w'w - 2w - (we)?
@ Dp(-ltup
W2w + wiwz — wiw - woz — iz — ww®
(w® ~1)p(-1+w)?
2vwaw — ww - 2uwlg — (w3)? ~-w— w?
(w-Dp(-1+w)? - Dpit )

m; = +

(w? - w*) (— ) w*-1)" (3.9)

where w = ¢/p. (Note that Chung gives the difference equation and solution in the more general
case where probability of an upward step can vary at each epoch.)

The quantity corresponding to m, when P # q in the continuous case is Joot f¥(t)dt. Then
the expected time until breach of the lower barrier, given that this barrier is hit before the upper
barrier, is [(°¢ f¥(t)dt/P(D = 1). To find f°¢ £¥(t)dt, we start with m, as given in (3.9), and
Pass to the limit as described in section C.2. We first need to do some algebraic manipulations to
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eliminate the explicit presence of pin (3.9). Note that
P(l-w)=p-g.
Using this fact, we can rewrite (3.9) as
[(p -q)(w*-1)*(-1+ w)] - [2uta+ w4 2yoHi+1g 4 20,
Wiz - wiz+wtls 4wttty yetlin, _2ek1, g sk, g w®tlg]. (3.10)

We now pass to the limit, which reduces here to the simple process of replacing w* with e~2#%,

and (p— q) with 4. Then to translate the axes to the situation where the process starts at 0, and

has absorbing barriers at u and ¢, we replace a with u + £ and z with £ This gives
o0
/ t f(t)dt =
()

-1
[,‘ (720 - 1) (14 e"“)] 26725040 (4 4 4) 4 e 2musesnryy

2e73(NHILIY) (o 4 ) pemtulntt)y _ e"3nl _ gmnlntt)y 4 o-2mitt)y

e-?u(zl-{vl)[ - e—Zu(l+Zt+1)t —e~3s(2 l+2¢+l)l —9%2e~3u(2t+e) (u + l) — 23 (v+t+1) (u + ‘)] .
Then the conditional expectation of T, given that the process ends at the lower barrier,
E(T|D =1),is f;°t f¥(t)dt divided by P(D =1) when 4 # 0. This gives

i.e.

[/4 (e-zu(uu) _ 1)3 (-1 +e"") (e=2m% _ 1)] =t [_ (_e-zp(-+l+l) +e3ml o o=2n(ut) _

e-zla(l-f-l) +e-2u(l+2l+l) + e-ly(2|+2l+1) - e-in(n-H) - e-2n(c+2l)) (e-zu s=2pl _ 1) eml

_ (2 e3P (842) _ 9 -2 (s+21+1) +2e"30(HHY) _ g -2 (-+l)) (e-zp w-2pi _ 1) e (u 4 l)] .

To find E(T|D = 1) in the no-drift case,
This gives

we take the limit of the above expression as g — 0.

(4
§(2u+t).
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Similarly one can show that [ ¢4 (¢)dt in the drift case s

2 -1
[“ (_1 +e-28 (u+t)) (-1 +e? u)] [e-u (8 ++1) (3 4 f) — =20 (8414 _ e~28gy

e~3rly 4 o~ (u+8) —e~2n(ute) (u+2) + e 38(u+t41)y _ g -2u(u+0) +
(u+2)e~28t _ g—2u(s+2241) (B+8) —e 30t (4 4 g) 4

e~2n(ut2¢) (u+8) +e28ut2itl)y _ ~2u(us28), _ u] .
Then E(T|D =u) is f{° tf#(t)dt/P(D = u), which gives
~2p (wHl) 2 -2 2ul -t -24 24 (~1+) ~2uv
p(e -1) (-1+e728) (—1 4 ¢2#1) [(e +e +e"dnvy
e~3n(eH) _ o=2u(utidr) _ g _ e-—zu(-n)) (e~2ne _ezul) e=8i]

+ (_eza(-xu) + eI _mTu ) _ om2u(eH) | p-2uw _ g e-zu(u+l+l))
(e"“" _ezul) e‘z“'(u-f-l) + uen! (e-han _ezul) e-zul] .
For zero drift, E(T|D = u) is given by
g(u +20).

As usual, E(T|D = u) is found from E(T|D = 1) by reversing the roles of u and ¢, and replacing

4 by —p.
3.3 Relation to Inverse Gaussian Distribution

A closely related distribution is the inverse Gaussian. Consider a Wiener process with drift 4 > 0
and volatility o2, and let T be the time the process, starting from 0, first reaches a barrier at

%> 0. Then T has an inverse Gaussian distribution, with density

) n_ U —(“—#t)’)
y(i,“sll’d)—a 2“‘38*1)(_26T

(see for instance [9]). All positive and negative moments of this distribution exist. Note that
the drift parameter for the FP2By distribution discussed in this chapter can be any real number.
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However, if the drift parameter for the inverse Gaussian distribution is less than 0, while u > 0,
we get a defective distribution with a mass of probability at infinity.

Parameterized as above, the inverse Gaussian distribution has identifiability problems, since
two distinct values of the parameter vector can give the same value of the density. There are many
ways of reparameterizing to reduce the parameter space to two dimensions. Moet simply, we can
set o = 1. In this case the inverse Gaussian distribution has mean u/p and variance u/ud.

We can argue probabilistically that F*(t;4,¢, ), the survivor function of the FP2By distribu-
tion, is dominated by the cdf of the inverse Gaussian distribution, which we will denote G(t; u, p).
Of course F#(t;u, ¢, #) gives the probability, p say, that the process hits one of the two barriers
before time t. For the inverse Gaussian distribution with mean p# > 0, the lower barrier has
been removed, and G(t; u, p), the probability of reaching the upper barrier before time ¢, must be
smaller than p (because paths that used to be stopped by the bottom barrier can now continue
on). Thus, when 4 > 0, Fi(t;u,4, ) > G(t; u, ), and s0 1 — Fh(tiu,l,p) < 1-G(t;u, #). Thus,
if Ty ~ FP2B(u,¢, ) and T; ~ IG(u, ),

a"1E(T?) = / 1741~ PR, 4, )) dt < / 1= Gltiw ) dt=a B(TF)  (3.01)

where a is any real number. For a Wiener process with drift —ui < 0, the time until hitting a single
barrier at —u < 0 also has an IG(u, p) distribution. Since all moments of the inverse Gaussian
distribution exist, ie E(T3}) < oo for all @, equation 3.11 ensures that all moments of the FP2Bu

distribution exist, for B#0, u< oo, £<oo.

3.4 Maximum Likelihood Estimation

For the model with non-zero drift and volatility=1, the log-likelihood is given by
Llnbmt)= Y logfo(t) + 3 log st + 3 logFHt,)
{i:Di=u} {:D;=1} {i:Di=c}
where, as before, D; is the discharge status of individual i, which takes values u, ] or ¢ depending
on whether individual i is discharged, dies or is independently censored at time ti.

As before, we use optimization routines to find the values of u, £ and u which maximige the
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log-likelihood. To find the maximum likelihood estimates of mean time in hospital, probability of
ultimate discharge, and conditional expectation of time in hospital given destination, we substitute
the maximum likelihood estimates of the parameters u, £ and 4 into the expressions given in section
3.2. Since P(D = u), E(T) and E(T|D = u) are all non-linear functions of the parameters u, ¢
and p, the bootstrap will be used to construct confidence intervals,

When both destination and time of breach are known, there are no problems with identifiability,
that is distinct values of the parameter vector 8 = (u, £, u) will give rise to distinct distributions of
the observables, However, certain configurations of the data potentially give estimability problems.
If the same number of individuals breach the upper barrier as breach the lower barrier, and u = ¢,
then 6, = (a,a,4) and 6 = (a,a, —p) will give identical values of the distribution. It is unlikely
in any practical situation that 4 will exactly equal ¢. However, in the rare case where this occurs,
it is easily shown analytically that if we restrict the parameter space so that u = ¢, the maximum
likelihood estimate of # is zero. Thus there is still a unique maximum likelihood estimate, namely

6= (a,a,0).
3.4.1 Covariates

We may allow the barrier levels to vary for different individuals or groups of individuals. We can
allow these parameters to depend on covariates exactly as described before.

In the context of health care data, the drift parameter 4 might be interpreted as the propensity
to get well. Some of the heterogeneity in the data may be explained by allowing 4 to depend
on individual-level variables, such as age, gender and severity of disease at admission. This
approach is particularly useful with detailed individual data, for instance on physical conditioning,
or comorbidities. In the example shown in section 3.5, we allow the drift parameter to be a linear

function of some individual covariates,
Wi = fy =ty + B z:-'1+...+ﬂ,‘,‘“ z:-;,”

where (zf, 2/, ..., Zip.)’ 8 a vector of covariates measured on individual 1, thought to affect the
drift parameter, and 85,08, .. -8}, are parameters to be estimated.
We again use maximum likelihood to estimate the parameters. Extension of the log-likelihood,
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gradient and hessian to accommodate covariates in the drift case is straightforward and is shown

in appendix E.
3.4.2 Starting Values

As always, good starting values for the estimation Procedure are important. For a model with no
covariates which includes only the parameters u, £ and #, experience has shown that it is usually
adequate to run the same data through the zero-drift software, and use these estimates as starting
values for the barrier parameters in the drift case. For starting values for the drift parameters, a
value of zero seems to suffice,

For a drift model involving covariates, it seems to be adequate to start with mock least squares
estimates of the barrier parameters as described in section 2.2.3, and use a starting value of zero

for all the drift parameters.

3.5 Example 1

In this section we fit the drift model to the same data set discussed in section 2.4. Here we will
allow the drift governing an individual’s health status process to be a function of the covariate
severity. As before, let z;, = 1 if individual i exhibits a major complication or comorbidity, and
let z;3 = 1 if individual 1 has an extreme complication or comorbidity. Individuals with no, minor,
or moderate complication or comorbidity have both z;, and z;2 equal to 0.

Thus the drift for individual § is
Wi =B + 8% zir + B ziy

The following table shows the maximum likelihood estimates and standard errors for this model.
The last two lines show two 95% confidence intervals. The first is a normal-theory symmetric
confidence interval constructed using the displayed standard error. The second is a bootstrap
confidence interval, which will be discussed below.
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v ¢ gt A g
Estimate 3.573 1.661 0.654 -0.291 -0.582
Std Err 0.234 0.146 0.071 0.091 0.138

Normal | (3.15,3.99) (1.40,1.92) (0.52,0.79) (-0.47, -0.11)  (-0.86, -0.31)

Bootstrap | (3.15, 4.14) (1.50, 1.85)  (0.53, 0.82) -0.49,-0.12)  (-0.97, -0.34)
The fit of the model is illustrated graphically in figure 3.9. The ordered Cox-Snell residuals

3.0

2.0

1.0

Ordered Cox-Snell Residuals

0.0

L4 T Y T T N

0 1 2 3 4 5
Quantiles of Exponential(1)

Figure 3.9: Quantile Plot of Cox Snell residuals, Example 1

plotted against the quantiles of the exponential(1) distribution should lie on a straight line with
slope 1 and intercept 0. and this plot indicates that the fit is better than the zero-drift model,
although there is still room for improvement. Figure 3.10 shows that four observations have large
raw residuals. Later we will refit the model, without these observations.

The next table shows the estimated drift in each severity group. The observed average time
in hospital for those who were discharged is given in the column labelled T|D = u. The observed
average LOS for those who died in hospital is given in column T|D =1. Column T gives the overall
observed average time in hospital. The observed proportion of patients who were discharged is
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Raw Residuals
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Figure 3.10: Index plot of raw residuals

given in column P(D = u), and the observed proportion who died in hospital is given in column
P(D =1). The corresponding values predicted by the model are shown in brackets.

Severity || n i T TID=u T|D=] P(D=u) P(D=)
low 1|82 (0.654) 4.49(4.56) 4.61(4.82) 3.60(2.45) 0.88(0.89) 0.12(0.11)
med || 39 (0.363) 4.67(5.76) 5.96(6.59) 2.36(3.64) 0.64(0.72)  0.36(0.28)
high || 13 (0.072) 4.92(6.14) 8.80(8.12) 2.50(4.81) 0.38(0.40)  0.62(0.60)

Here, the upper barrier is estimated to be 3.573, and the lower barrier to be -1.661. The
model indicates that severity has a significant effect on the drift of the health status process, with
the sicker patients having a less pronounced propensity to get well. The estimated drift is 0.654
for the low severity group, 0.363 for the medium severity group, and 0.072 for the high severity
group. In all severity groups, the drift is estimated to be positive; thus even in the more severely
ill group, the patients tend to drift toward the upper barrier. The model predicts that, as severity
increases, the drift decreases towards zero.

Note that the model predicts that as drift decreases, the expected time to hitting the upper
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barrier increases, which seems reasonable. However, expected time to hitting the lower barrier
also increases with decreasing drift, which may seem somewhat counterintuitive. Examination of
the subdensities may help to explain the situation. The subdensities for the low and high severity
groups are shown in figures 3.11 and 3.12. The upper subdensities are shown as a solid line, and
the lower as a dotted line. The mean LOS, given the upper barrier is reached, is shown as a solid
vertical line, while mean LOS given the lower barrier is reached is shown as a dotted vertical line.
Due to the heavy tails, the means are to the right of the modes.

We see in figure 3.11, that when the drift is high, the probability that the process ends at
the lower barrier is quite small, as indicated by the small area under the dotted curve. However,
given that that the process does end at the lower barrier, it will do so relatively early (2.45 days
on average). This seems strange, but recall that the lower barrier is closer to the origin than
the upper barrier, so (despite the upward drift) some of the paths will breach the lower barrier
early in the observation period. Paths that move upward in the early time intervals, however, are
unlikely to come down as far as the lower barrier later on.

Figure 3.12 shows the situation when the drift is reduced to almost 0. First, it now takes
longer to hit either barrier than it did when the drift was higher, since now the paths tend to
wobble about the horizontal axis. Since the upper barrier is farther away (3.573) than the lower
barrier (1.661), and the drift is almost 0, it is less likely that the process will end at the upper
barrier. Also it takes, on average, longer to hit this barrier (8.12 days) than to hit the lower
barrier (4.82 days)

We can see that the drift model is doing a good job of predicting some features of the data.
The probability of each outcome (discharge or death) is well predicted by this model, in contrast to
the zero-drift model. The predicted time in hospital in the group of patients who were ultimately
discharged (shown in the column labeled T|D = u) is reasonably close to the observed average.
However, for those who ultimately die in hospital predicted time in hospital is quite different from
the observed average (column T|D =1). For this group, the model predicts that time until death
increases with severity of illness, whereas in fact the observed average LOS is highest for the low

severity group, and lowest for the medium severity group.
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Figure 3.11: Sub-Densities, Low Severity Group, ;s = 0.654
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Figure 3.12: Sub-Densities, High Severity Group, u = 0.072
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The overall time in hospital is also not well predicted, due to the lack of fit in the low severity
group.

There seems to be a trade-off here, between providing a good fit to probability of outcome,
time in hospital given discharge, and time in hospital given death. In this case the mode] does a
good job of predicting probability of outcome and time until discharge. Time until death is less
well predicted. Note that the group of patients who died is much smaller (n=32) than the group
who were discharged (n=102). So the model is doing a good job of making predictions for the
larger group.

An assumption implicit in this model is that, within each severity group, all patients share the
same value of the drift parameter and the barrier parameters. It would seem that this assumption
is not supported by the data. Perhaps an important covariate is missing.

The previous table gives normal theory confidence intervals, and bootstrap confidence intervals
constructed from the 2.5% and 9.75% quantiles of a bootstrap distribution of 1000 iterations. The
confidence intervals are compared graphically in figure 3.13. Here we can see that the bootstrap
intervals are nearly symmetric, and close in length to the normal-theory confidence intervals.
This gives some reassurance that the estimates are asymptotically normal, an issue which wil] be
discussed in Chapters 4 and 5.

We rely on the bootstrap to construct confidence intervals for the predicted length of stay and
proportion of patients discharged in each covarijate group, since these are non-linear functions of

the parameters. These are shown in the next table.

Severity " low med high

E(T) 4.560 5.757 6.142
(4.15,5.03)  (5.09,6.57) (4.1, 7.16)
P(D=u) 0.887 0.717 0.401

(0.83,0.93) (0.54, 0.84) (0.08, 0.67)

In particular, we note that the confidence intervals for the high severity group are rather large,
perhaps due to the relatively small number of patients (n=13) in this group.
Recall that figure 3.10 showed four large raw residuals. In fact these correspond to the four
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Figure 3.13: Confidence Intervals

largest values of LOS in the data set. We now refit the model, removing these four observations.
As shown in figure 3.14, excluding these four values does not seem to improve the fit of the
model. Note that the raw residuals are not identically distributed, and a few large values are not

necessarily indicative of a bad fit.
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Figure 3.14: Quantile Plot of Cox Spell residuals, four largest observations removed
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3.6 Example 2

We now investigate another subset of the data consisting of individuals with renal failure (DRG
= 316), 75 years or older, who were either discharged home (n = 78) or died in hospital (n = 22).
Here because of sparsity in the data we have coded severity at two levels. Let z;1 = 1 if individual
i has a high severity score (major or extreme comorbidities and complications), and z;; = 0

otherwise. Side by side boxplots of severity by outcome group are shown in figure 3.15.

:% S - Discharged Died
5 | _
=~ -
S T 1 = T
o =] B o
low high low  high
Severity Code

Figure 3.15: LOS by Severity and Outcome

An earlier investigation showed that severity does not significantly affect the drift parameter.
The model considered here is

u; =Gy + BYziy
4 =65+ Bz,
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The following table shows the maximum likelihood estimates and standard errors for this
model.
B B B B p
Estimate | 2.592 0.623 2.247 .0.554 0.381
Std Err | 0.240 0.327 0.297 0.348 0.059

All individuals in the data set are estimated to have the same positive drift. Severity has a
marginal effect on the upper and lower barriers. High severity increases the apparent distance
to the upper barrier, and decreases the distance to the lower barrier. As discussed earlier, this
situation could reflect differing health levels at admission to hospital.
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Figure 3.16: Quantile Plot of Cox Snell residuals

The fit of the model is illustrated graphically in figure 3.16. The plot indicates a good fit to
the data. The observed and predicted values are shown in the following table. Predicted values

are given in parentheses.
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Severity ” n T TID=u T|D=1 ,P(D:u) P(D=1)
48 485(4.78) 5.08(4.85) 3.75(4.35) | 0.84(0.84) 0.17(0.16)
52 481(5.11) 5.53(5.69) 2.85(3.47) | 0.73(0.74) 0.27(0.26)

low

high

The predictions are quite good as well, although the model is overestimating E(T'|D = 1) some-

what.

3.7 Example 3
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Figure 3.17: LOS by hospital, Males, > 70, DRG=107

Our final example for this section investigates a surgical DRG, coronary bypass with cardiac
catheter (DRG 107). This subset of patients are males, age 70 or over. Here we investigate
whether LOS distribution differs between four large hospitals, adjusting for severity of disease,
and also age of patient.

Severity is coded at two levels, and the variable sev; equals 1 if individual § had major or
extreme complications or comorbidities and 0 otherwise. Age of patient is coded in five year age

groups. There are three indicator variables for the four hospitals. Thus the variable hosp;; equals
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1 if individual i stayed at hospital j, and 0 otherwise. The baseline hospital is a rural hospital,
whereas the other three hospitals are urban. Here we let the drift parameter depend on age and
severity. The upper barrier is allowed to differ for the different hospitals. All patients in the data

set are assumed to share the same lower barrier. The upper barrier and drift are

% = By + B hospy; + B3 hosps; + 2 hosps;

i = By + Y sev; + Bhage;.

The estimated coefficients for this model are now given.

BB/ B B t KB A Y
Bstimate | 10.985 -4.304 -5.855 -4.075 2.175 2.260 .0.145 -0.081
Std Err | 0.716  0.620 0.652 0.739 0.244 0276 0.047 0.016

The fit of the model is illustrated graphically in figure 3.18.
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Figure 3.18: Quaatile Plot of Cox Snell residuals

The baseline hospital is estimated to have a much higher upper barrier than the three urban
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hospitals. Increasing severity lowers the drift parameter, and increasing age likewise decreases drift
toward zero. The Cox-Snell plot shows that the fit of the model is not good for the observations
with large residuals. Further investigation is needed.



Chapter 4

Properties of the Zero Drift FP2B
Distribution

In this chapter we study the properties of the FP2B distribution with drift equal to 0, using
the series representation developed in the previous Chapter. (An alternate representation will be
explored in Chapter 5.) We establish that the density of the FP2B distribution can be obtained by
differentiating the cumulative distribution function (cdf) discussed in the previous Chapter term
by term. Also the various derivatives can be obtained by differentiating an appropriate series
term by term.

We will focus on the upper density and its derivatives, and the corresponding cdf. The results
and proofs for the lower barrier are exactly parallel. Also we discuss here the derivatives with
respect to u of the upper density. The results and proofs for the derivatives with respect to £ and
the mixed derivatives are similar and in most cases slightly simpler. Unless otherwise indicated,
we assume both u and £ to be finite. Where not stated, the limits of summation over & run from
0 to co. We will use ¢(z) to denote the standard normal density evaluated at z, and $(z) to
denote the standard normal cdf,

We will make use of three commonly known theorems, which are stated here without proof.
Conditions for interchanging differentiation and summation, i.e. conditions that allow us to

differentiate a series term by term, are given in the following theorem, from Bressoud [6]:
Theorem Let F(z) = fi(z) + f2(z) + f» (z)+... be an infinite series for which each summand,
fx(z), is differentiable at every point in an open interval I containing a. If 300, fi(z) converges

66
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uniformly over I, then F(z) is differentiable at a and

F'la) =" fi(a)

k=1

Likewise, sufficient conditions for interchanging integration over a finite interval and summa-

tion are given in the following theorem, also from Bressoud [6].
Theorem Let f,(z)+f; (z)+f3(z)+... be uniformly convergent over the interval (a, 8], converging
to F(z). If each fi(z) is integrable over (a, b], then s0 is F(z) and

/:F(z) dz = f:/bfg(z) dz

k=172

We will also use the well-known Weierstrass M-test, which is given here as stated in Apostol

[2].
Theorem (Weierstrass M-test). Let {Ma} be a sequence of nonnegative numbers such that

[fa(2)| < Ma, for n=1, 2,...,and for every z in S.

Then 3 fa(z) converges uniformly on S if 3 M, converges.
Corollary Under the same assumptions given for the Weierstrass M-test, f(z) = 3 falz) is
bounded if 3~ M, converges .

Proof: .

@)= L@ <Y ihE<Y M,

which converges by assumption. Q.E.D.

4.1 The FP2B Density

In this section we will show that

¢ fu(t;u,2) is truly the upper subdensity by showing that it can be obtained by differentiating
the upper cdf term by term,

o for small 2, £, (¢;u, £) behaves like t-3/2¢ ( -‘).
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The probability that the Process hits the upper barrier before time t, and does so without first
hitting the lower barrier is

Fu(t;u,2) =z;{¢ ("‘\/’;‘) -9 (""f; ‘)} 4.1)

where
8k =—(2k +1)(u+9).

Note that u,2 > 0 and s, < 0. In this section, we will write the series in (4.1) a8 F (t;u,8) =
234 Fur(t; u, ) where Foy(tiu,£) = & (-g;gé) -® (-:7;.5) We will define F\(0; u, ¢) = 0, which
makes Fy;(t; u, £) continuous at 0.

Theorem 4.1 For u,£ > 0, Fy(t;u,8) = 3k Fur(t;u,8) can be differentiated term by term with
respect to t, for allt > 0, giving

far(tsu,8) = —2=3/2 {(a:. +4) ¢ ("'\}_:l) — (=10 ¢ ("'7;‘)}

Proof: For 4, > 0, each function Fur(t;u,2) is differentiable for each ¢ in (0,00), and the
derivative with respect to ¢ of 2Fy,(t; 4, ¢) is

furlti, ) = 2Pblln) {4 ("‘\}:‘) (=0 ¢ ("7;‘)}

The function Fyy(t;u, £) has a right hand derivative at ¢ = 0, and this right hand derivative is

easily seen to be 0, the limit as ¢t — 0 of fuk(t;u,2). To show that we can differentiate the series
i Fux(tyu, £) with respect to ¢ term by term, it suffices to show that 3ok far(t; u, ¢) is uniformly
convergent in ¢. We will do this using the Weierstrass M-test.

Let gx equal the first summand of far(t;6,8), ie. g = —t=3/3(4, +4) ¢( £5‘;-‘-) Note that g is
positive, and achieves its maximum over ¢ € (0,00) at ¢ = 1(s+£)2. Let M; denote the maximum
value of this function over ¢ € (0, o0). Clearly, M; is O(k~?) and so 3¢ My converges. By the
Weierstrass M-test, the series —¢-3/2 Ye(an+8) ¢( %) converges uniformly in ¢, for ¢ € (0, 00). A
similar argument applies to —¢~3/2 Se(sn—0) ¢( 5-:7:-‘-), and 0 32, fuk(t; u, £) converges uniformly
in ¢, for ¢ € (0, 00). Note that we have also shown that the series 3, fur(ty u, £) converges
abeolutely. Also, by the corollary to the Weierstrass M-test, the function |f, (t; u, ¢)| is bounded.
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Figure 4.1: The first summand of Juk(t; u, £) plotted against ¢ for u = 1,4=1,k=0

Thus we have shown that the series 2 Sk Fur(t; u, £) can be differentiated term by term, with
respect to ¢ for ¢ € [0, 00). Q.E.D.

Since the function

htmg =~ 3 {0 (%) - -0 4 ("7:‘)} (42)

is obtained by differentiating the upper subcdf, it is a subdensity function. Similarly we can show
that fy(t;u,£) can be obtained by differentiating the lower subcdf. Thus f(tu,8) = fu(t;u, 0 +

fe(t;u, £) is a density.
Although it is the case that for finite T,

T
'/0 Zf-k(t; u,f)dt= ZF..(T; u,¢),
< -

Wwe cannot conclude that the same is true for T replaced by co. In other words, while uniform
convergence is enough to ensure that a series can be integrated term by term over a finite interval,

it is not enough in the case of an unbounded interval. In fact, for the series investigated in this
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chapter we can show that term by term integration with respect to ¢ over [0, 00) is not valid. In

particular, for the upper subdensity,
00 Q0 o0
[ rtuwnas / Shaltngdiz 3 [ tatun (43)
Note that the left hand side of (4.3) equals
Q0
/; fu(tiu,l) dt = 'l_i’xg Fu(t;u,8) = P(D = u)

where P(D = u) is the probability that the process ends at the upper barrier. As discussed
earlier, we know from difference equation arguments that for the no-drift model, P(D=u) = HL.
However the right hand side of (4.3) equals

;/omf-b(t;u,t) dt=zk:‘l_i.lgi'.k(t;u,t) =zk:‘1-i’,g {{, (%_\;-_t_{) -‘p(”\/—zl) }=0.

Thus we have shown that term-by-term integration of the series is not valid.

Theorem 4.2 For u,¢ > 0, the function f,(t;u, {) is positive for t > 0 and integrates to
Fy(o05u, ).

Proof: Since f,(t;u, ¢) is an upper subdensity, it is clear that it is non-negative and integrates
to Fy(oo;u,¢). It is also easily shown that f,(¢;u, ¢) is continuous in ¢, since it is the sum of
a uniformly convergent series of continuous functions. It will be shown in theorems 4.3 and 5.3
that fu(t;u,2) is strictly positive for small ¢t and for large t. To prove that fu(tiu, £) is strictly
positive for intermediate ¢ is more difficult, but an argument using essentially the self-similarity
of the Wiener process can be constructed.

Theorem 4.3 For fized u,l>0 and sufficiently small ¢,

=314 (%) < fult;u,8) < Ct~3/3y (%)

for some c,C > 0. In particular, f,(t; u, ¢) approaches 0 as t — ().
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Proof: The first summand of the first term of f, (t; u, £) is t~%/%u (7-;) This summand domi-
nates f,(¢;u,4) as t — 0, i.e.
~t=3/3(u + 20)¢ (“—‘%é) + 3 ees fuk
= ()

approaches 0 as ¢ — 0. This is true since it can be shown that ¢ (5;) can be factored out of

the numerator, leaving terms which converge to a sum which goes to 0 as ¢t — 0. Thus as ¢ — 0,
fu(t; 1, £) behaves like t-3/2y4 (7":) - In particular f, (¢; u,£) approaches 0 as ¢ ~» 0, and for small
enough ¢, we can find constants ¢ and C such that ct=334 (7";) < fult;u, &) < Ct=3/2% (7';)
Q.E.D.

4.2 First Derivatives

In this section we will show that

o for each fixed ¢ and £ > 0, the series f,(t;u,2) = 3 fuk(t; u, {) can be differentiated term
by term with respect to u, for u > 0, giving 3° 2 fui(tu,8) = = fult;n, 2);

o for each fixed u, £ > 0, the series % fultin,l) = p) % Jur(t;u,2) is uniformly convergent in
t,fort > 0;

o for small t, 2 f,(t;u,£) behaves like =5/ ) ( 7":), and

e for u,£ > 0, j;,°° %f.(t; u,4) dt = % j;)“’ fu(t;u,¢) dt. This will partly satisfy regularity
conditions required for consistency and asymptotic normality of the maximum likelihood
estimate, as will be discussed in Chapter 5.

We will define f,4(0;u,¢) = 0 and 5= fur(0;4,£) = 0 80 that these functions are continuous at 0.

Theorem 4.4 For each fized t > 0 and £ > 0, the series fu(tin,t) = 3k fur(t;u,£) can be
differentiated term by term with respect to 4, for u > 0;

Proof: Assume t and £ are fixed positive real numbers. Then Juk(t;u, £) is differentiable for each

u in [0, 00) and the derivative of far(t;u,0) is

“’fﬂ;ﬁ"' 9 - k4 {¢ %) [t-(2+9%] -4 (”—\,}‘) [t~ (o - ‘)’]} -
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The function Jux(t; u,£) has a right hand derivatjve at ¢t = 0, and this right hand derivative is
easily seen to be 0, the limit as ¢ — 0 of ﬂ%}:"—"l To show that we can differentiate the series
3ok fak(t; u, &) with respect to u term by term, we only need to show that Y2 defek(tiu,f) is
uniformly convergent in u. We will do this using the Weierstrass M-test.

5 J
™
S
0
? T T \j Y T
0.0 0.5 1.0 1.5 20
u

Figure 4.2: The first summand of 2 35 Juk (t; 4, ¢) plotted against ufort =1,4=1k=1

Let gi(t; u, £) represent the first summand of —-f.;(t u,f), i.e.
a(tiu, ) =t~ 2k + 1)¢ ("“‘; t) [t (s +2?]

The limit of gx(t;u,¢) a8 u — 00 is 0. For large enough k, (specifically for (s + £)? > 3t), the
functions gy (; u, £) are negative-valued and monotonically increasing for u in (0, 00).
Let Mi equal the maximum over u € (0, 00) of (g (t; u, £)|. For k large enough, this maximum

occurs at u = ( and

My =502k 4 1)¢ (2"‘) [(2kt)? ~¢].
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fork=0,1,2,.... Using the integral test, we will now show that the series 3° M, converges. M,

is a sequence of positive terms, which is decreasing for large enough k, say k > k*. Let

M(z) =752z + 1)¢ (2\—‘;_5) [(2z1)? —¢].

Then the integral
Q0
/ M(z) dz
k.
converges to

14 (%;4) (26" B2k +1) +1)
2 T :

which is finite for finite ¢. Thus the series Y M converges by the integral test, and the series
3 low(t; u, 2))| converges uniformly in u by the Weierstrass M-test. A similar argument applies to
the second summand in % fuk(t; 6, 2), and so the series p % Juk(t; u, £) converges absolutely, and
uniformly in u for u € (0,00).

Thus, we have shown that conditions for term-wise differentiation with respect to u of the
series Y-, fur(t; 4, £) are satisfied. Q.E.D.

Theorem 4.5 For u,2 > 0, the series ﬁf. (tu,l) = PN 387 Juk(t;u,£) is uniformly convergent
int, fort > 0.

Proof: Again let g, (; u, £) represent the first summand in £ £, (t;4,£). For each k = 0,1,2,...,
the function g, (¢; u, £) approaches 0 both as ¢ — 0 and as ¢ — oco. It has a minimum overt € (0, )
att= 3—‘3’@(& +£)?, where it has a negative value, and a maximum at ¢ = :-’i?@(ag +£)2, where
it is positive-valued.

The function |gx(¢; u, £)| achieves a maximum overt € [0,00) at t = "'—‘3\/—‘-(3;, +2)%. Let M;
denote the maximum value of this function. Clearly, M, is O(k~3), and so the series Sieo Ms
converges. By the Weierstrass M-test, the series Y lgw(t; u, 8)) converges uniformly in ¢. A similar
argument applies to the second summand in ;%f. (t;4,4). Thus Yo %f,g (t; 4, ¢) is absolutely,
and uniformly convergent in t, for ¢t > 0. Also, I%f. (t; u,4)| is bounded. Q.E.D.
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Figure 4.3: The first summand of %f.g (t; u, £) plotted against ¢ for u = L,i=1,k=0

Theorem 4.8 For fized 4,2 > 0 and sufficiently small t,
-2, (8Y 0 . -5/3,( 8
% () < atsmasor +(%)

Jor some ¢,C > 0.

Proof: As in theorem 4.3, we argue that the first summand of the first term of f;f.,,(t; u, {)
dominates as ¢t — 0. Q.E.D.

To show that regularity conditions (for consistency and asymptotic normality of estimates)
are satisfied, we need to prove further properties of the subdensities and their derivatives. For
example, if f(t;0) is a density with parameter 8, we need to find an integrable function g(t) such
that

250 <

However this turns out to be difficult to do in the case of parameters § = (4,4). While we
can find analytically the location and valye of the maximum of each function ,2]_-&(:_,3),, it is not
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possible to determine the location and value of the maximum of the summed function —'ﬂ‘—‘)-
> M Thus we discuss, in this chapter, weaker conditions that can be shown using only
the representations for f, (t;u,€) and fy(t; u, £) analogous to (4.2), leaving the full examination of
regularity conditions to Chapter 5.

An important sufficient condition for consistency of the maximum likelihood estimate of a

parameter 8 is that the expectation of the score is 0, ie

Ey (5% log(L(O;t))) =0

where Ey denotes expectation with respect to 6, and L£(6;t) represents the likelihood. For the
FP2B models considered here, we can write the log likelihood (for a single individual) as

L(w 4;t) = §log fu(t; u, &) + (1 - 8) log fo(t; u, 4]

where § = 1 if the individual was discharged, and § = 0 if the individual died in hospital. Then

the score function (for a single individual) is

S(u,4;t) =4 (8% log fy(2; u, l)) +(1-94) (6% log fi(t; u, l))

where 6 = (u, £). The expected value of the score is then

Ea(tu.0) = [~ { (& og suttin 0) fti )+ e 9) fttiw, 0} a,

because the probability that T' € (tt+dt)and 6 = 1 s fu(t;u, &)dt, while the probability that
Teftt+dt)ands=0is fe(t; 6, £)dt. Then the above equals

Amwﬁamqa+/ safeltin,€) dt,

which equals 0, as long as differentiation and integration can be interchanged. More precisely, the
expected value of the score equals 0 if differentiation with respect to @ and integration over the
interval (0, cc) can be interchanged for both fu(t;u,€) and fi(t;u,2).

We will now show that this interchange is valid for the upper subdensity of the FP2B distri-
bution and the component u of 6. Because f«(t;6) in the FP2B case is an infinite series which
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cannot be integrated term by term over (0, 00), the situation is rather delicate. We will need the
following theorem.

Theorem 4.7 Let y(z) be an integrable function defined on (=00, u], u > 0, whose derivative
¥/(z) ezists on (—co, u) and satisfies ffm [/ (v)ldv < oo; and let ¥(z) = JZ. ¥(v)dv. Then

(- -]
. s+ s —C\) _ /4 )
T'L";m{“’ ) “’(ﬁ)}‘(uu )
where 8, = —(2k + D(u+2) and u, ¢, T> 0.

Proof: Let t; = —2k(u + ¢). Note that h—u=s+¢andty +u= $m — 4, where m =k -1,
Then

¥(0) =/1 $(v)dv =§;{w (“_\;:;‘) —v (":/%‘) ru (":/;“) —v (‘*‘/‘T“)}

- [w iT) -\r(o)J . (4.4)
For each k,

(550 (2%9 (25 2
and

()0 (32

We show below that, as T — 00, we can take the approximation to be exact. Substituting

expression 4.5 into expression 4.4, taking the limit as T — 0o and rearranging gives

() o= (3) -+ (27}
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We now show that the error in the approximation goes to 0 as T — oo. For each k,
) (55 - (%) < dv (%) (&)
¥ -Vl —) - = —
(ﬁ VT )Y T = \m)\ 7
where 6y € (83 — ¢, 5, +¢) and
tr +u th—u u ag+£) (ag-—l)}, 1,((;) 214)2
L § -¥ -=!v - < = —= )=
,(\/T) (ﬁ) e{(ﬁ T )12\ F)I\ 7
By () (2L
+(2t)¢(ﬁ) (%)
where (; € (tx — u, t; + t). Then the error in approximating the sum in 4.4 by

pD {‘I’ (5‘};—‘) -¥ (15'—‘)}[1 + 7] is less than or equal to
K;ZW(&) Et/"((k)s\l/{—%/_:dv'(w)dw,

which approaches 0 as T — oo, a8 long as the integral in the above expression converges. Thus

We can ignore the error in the approximation as long as ff o ¥'(w) dw < 0. Q.E.D.
Note that we have also proved the following corollary:
Corollary:

() 5T (259 - (L) o

As an aside, we can use theorem 4.7 to show that

- ]
, _ ¢
J wt d= i s =

without recourse to difference equation arguments. Recall that, for the upper subdistribution

function F,(t; u, £), we have

Fhulting = 2 o (27) - (*7)}

We apply theorem 4.7, taking the function ¥(z) to be the standard normal cdf $(z). As

t — oo, the sum in the above expression approaches ,nQ(O) where €(0) = 1/2. Therefore,
lime_, o F-(t; u’t) = ﬁ
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Theorem 4.8 For u,2> 0,
i/mf(t-ut)dt—/mif(t- 0 dt (4.6)
au o L ARSI 4] hand o au - 7“9 o
taking each [i° to mean limp_, ., j;,T.

Proof: From difference equation arguments, we know that j;) fe(t;u, ) dt = u 8o
j;_., fult;u, ) dt = ( 3 +t) (.—)-,» The right hand side of equation 4.6 is

/ooo %f,(g;u,z)dmrn_in/ 2 o fub (85, )
= i 3° [ 5okt ,) dt (47)

=-2«~'i'a¥(£}£~—1) (57 -+ (%)}

Note that interchange of integration over the bounded interval (0, T) and summation in equation

(4.7) is valid since > f;f.k(t; 4, £) is uniformly convergent in ¢, as we proved in theorem 4.5. Now
since (2k +1) = —8; /(u + £) the last expression equals

() 2{{(%)¢ (%559 - (2 ¢ (259)]
~ur [t (%) -+ (%)
¢ (%)}

We now apply theorem 4.7 to the first line of the above, taking ¥(z) to be zé(z). Since the value

of this function at 0 is 0, the first line in the above approaches 0 as T — oo. For the second
line, we take ¥(z) to be #(z) whose value at 0 is 1/v/2x. Thus the second line approaches 0 as
well. By the corollary, the last line approaches -;(.‘—“7. Thus the RHS of expression 4.6 equals
-?u_+t¢7’ as desired. Q.E.D.

4.3 Second Derivatives

In this section we will show that
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o for each fixed ¢ > 0 and £ > 0, the series f;f. tu,)=Y f;f.g (t; u, £) can be differentiated
term by term with respect to u, for u > 0, giving - %’, Jur(tiu, l) = 08.—,yf. (tu,8);

o for each fixed u,£ > 0, the series %’, Lhtiu,) =% 0%’, Juk(t; u, £) is uniformly convergent
in ¢, fort > 0;

e for small ¢, a%,!’ Ju(t; u, ) behaves like ¢t=7/3¢ (7"‘-), and

o foru,£> 0, 3’;’, _];,°° fu(t;u,8) dt = fo& 3";’3 fu(t; u, £) dt, thus partially satisfying the regular-
ity conditions required for consistency and asymptotic normality of the maximum likelihood
estimate, as will be discussed in Chapter 5.

We will define a%"f(O; u,£) = 0, making this function continuous at 0. All the proofs are exactly

analogous to those in the previous section.

Theorem 4.9 For each fized t > 0 and £ > 0, the series % fuliu, ) =Y, % Sek(t;u,€) can be
differentiated term by term with respect to u, for u > 0;

Proof: Assume ¢ and £ are fixed. Then # fur(t; u, 2) is differentiable for each u in [0, 00) and its

derivative is

2
:? fu(tiu g) =t~ (2 +1)2 {¢ (”‘\;.: ‘) (86 +0) [3t — (s + 0)%] -

) (”“/"t_‘) (sx — &) [3t — (s -t)’]}.

The function 2&-%(:3_'-5), has a right hand derivative at ¢ = 0, and this right hand derivative is easily

seen to be 0, the limit as ¢ — 0 of 3’;’, Jur(t; u,£). To show that we can differentiate the series
p %f.g(t; u, £) with respect to u term by term, we only need to show that pI o%,! Sex(t;u,8) is
uniformly convergent in u. We will do this using the Weierstrass M-test.

Let gi(t; u, £) represent the first summand of ;—-’;f.. (t;u,0), ie.

B(t;n, &) =t~ 52k + 1)2¢ (Sk‘/-{_—l

; ) (2% + ) [3t — (s +4?
The limit of gi(t;u,¢) as u — oo is 0. For large enough &, (specifically for & > %’@t), the

functions g (¢; u, £) are positive-valued and monotonically decreasing for u in (0, o).
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Let M, equal the maximum over u € (0, 00) of |gx(t; u, £)]. For large enough k, this maximum

occurs at u = 0 and

My =t~ 2k 4 1)%¢ (Lj;) 2kL(4k32 — 3¢)

Using the integral test, we will now show that the series 37 M; converges. The sequence {M,}is
positive for k > /3¢/21. Furthermore, it is decreasing for large enough (say k > k*), because
the term in ¢ will dominate all other terms in the expression for M. The integral

o0
/ M(z) dz
k.
converges to

14 (%‘A) {(16K"* + 16k*3 + 4k*2)% 1 (4tk°2 — 1)22 4 242)
2 £e572

which is finite for finite ¢ and ¢. Thus the series 3 My converges by the integral test, and the series
3 lox(t;u,8))| converges uniformly in u by the Weierstrass M-test. A similar argument applies to
the second summand in gy fuk(t;u,2), and so the series > ai:,- Sur(t; u, 8) converges absolutely,
and uniformly in u for u € (0, 00).

Thus, we have shown that conditions for term-wise differentiation with respect to u of the

Theorem 4.10 For u,2 > 0, the series 3";’, fe(t;u,l) = pN 3";’, Jux(t; u, &) is uniformly conver-
gentint, fort> 0.

Proof: Again let g (t; u, £) represent the first summand in a%:!’ Ju(t; u,2). For each k =0, L2,...,
the function g (¢; u, £) approaches 0 both as ¢ — 0 and as t — oo. It has a minimum over ¢ € [0, o)
at t = §;1@(85 + £)?, where it has a negative value, and a maximum at ¢t = i'ff:,@(m, + ¢)3,
where it is positive-valued.

The function |ga(t; u, )| achieves a maximum overt € [0,00) at t = 5—'35@(31, +£)2. Let M;
denote the maximum value of this function. Clearly, M, is O(k~?), and so the series Sieo Mi
converges. By the Weierstrass M-test, the series 3" loa(t; u, £)| converges uniformly in ¢. A similar
argument applies to the second summand in %’;f. (t;u,£). Thus S %’;f.p, (t; 6, 2) is absolutely,



CHAPTER 4. PROPERTIES OF THE ZERO DRIFT FP2B DISTRIBUTION 81

and uniformly convergent in t, for t > 0. Also,|. 25 £, (t; u, £)| is bounded. Q.E.D.
Theorem 4.11 For fized u,2> 0 and sufficiently small t,
2
-3y (8 O, ~7/24 (B
ct ¢(\/t-) Sauzfl(tsust)SCt ¢(¢t—)

for some ¢,C > 0.
Proof: As in theorem 4.3, we argue that the first summand of the first term of %’,f.,, (tu,2)
dominates as ¢ — 0. Q.E.D.

A further condition for consistency of the maximum likelihood estimate of a parameter @ is
that the variance of the score equal minus the Fisher information, ie

2 o
B (500:4)) = ~5o (gzc@:0)
For the FP2B models, the score for a single individual, when squared, equals
a 2
S(u,4t)? = (a—at(u, l;t)) =
J—a-logf (tu,8) ’ +26(6 - 1) ilogf (tu,2) i',-logfg(t'u t)) + ((1 -6)ilogf¢(t°u 2) ’

ao - 9y ao L] f Mg | ao A Bt ] ao t B |
where 6 = (u,£) and where § = 1 if the individual is discharged and & = 0 if the individual dies
in hospital. Note that the middle term vanishes, since 6(1 - 4) is always 0. Then

© /a 2 ® /9 2
Ey (S(u, l;t)’) :/ (6_0 log fo(t; u, l)) fu(t;u,0) dt+/ (a—ologfg(t; u, l)) fe(t;u,8) dt
o o

_ [ Enfaltiug © Efeltin,Y)
—-/o‘ Ju(t;u,0) dt+-/0 fe(t;u, 8) o

Also, for the FP2B model,

(4.8)

3 3 3
Wﬁ(u, 4t) = JW log fu(t;u,8) + (1 -J)a—m-»logfg(t; u, f).
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It can be shown that

- E, (aao2 a=L(u,t; t))
&afultsu, sfulting) © 2 filtiu,f)

< 23
/ M’f'(t u, ) dt+/ ATV w0 dt -/; a?ft(t;u,l) dt + A \fg(t;u,l) dt.

(4.9)

If we can differentiate twice under the integral, then
i a b
/ a?fl (t; U, t) dt + Wfl(t; u, l) dt = W /(ft (t; u, t) + fl(t; u, l)) dt

equals 0 since f(t;u,8) = fy(t;u,8) + fy(t;u, ¢) is a density and so integrates to 1. In that case,
equation 4.8 will equal equation 4.9. Thuys if we can differentiate each subdensity twice with
respect to 6 under the integral with respect to ¢ on (0, 00), the variance of the score will equal
minus the Fisher information.

We now show that we can differentiate Ju(t; 4, £) twice with respect to component u of 8 under
the integral.
Theorem 4.12 For u,£> 0,

92 a0 © 32
W/o Ju(t;u, &) dt=/o mf.(t;u,l) dt (4.10)

Proof: From theorem 4.8, we have 3% j;;” fu(tiu, @) dt = -m_‘?)-, go 3‘%’, fo°° Ju(t;u, ) dt = T-_-l%)"'
Now

o 92

gattut = im [ % et )

T
=Tl£’ng° ;/o Wf.g(t;u,l) dt (4.11)

= Jim ) ~2T-%/3(2k 4 1)2 {¢ (’:/}l) (e +0)-¢ (":/- ) (o -t)}

Note that interchange of i integration and summation in equation 4.11 is valid since E aaTfur(t; 1, )
is uniformly convergent in ¢, as we proved in theorem 4.10. Noting that (2k + 1) = —g, [(u+0)
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we can write the above as

2¢ 5 —
-2 % (%)
where ¥y(z) = 2%¢(z), ¥2(z) = z24(z), and ¥3(z) = z¢(z). Note that ¥,(0) = ¥,(0) =

¥3(0) = 0, so that, applying theorem 4.7, the first three lines of the above expression approach 0

as T — oo. Let ¥y(z) = f_'m ¥3(s)ds = &(z) — z¢(z). Then by the corollary, the last line of the

above equals —2;4;¥,(0) = ~-%;. So finally the RHS of equation 4.10 equals (-.%F as desired.

+ L’
Q.E.D.

4.4 Third Derivatives

In this section we will show that

e for each fixed ¢ > 0 and £ > 0, the series f;;f.(t; u,l) =Y ﬁ;f.g(t; 4, £) can be differenti-
ated term by term with respect to u, for u > 0, giving 3 aa'l—';f.k(t; u,f) = 3%:. fu(t;u, 8);

o for each fixed u,£ > 0, the series 3%'; fultiu, ) =% a?.—.‘f“(t; 4, £) is uniformly convergent
in ¢, for ¢ > 0; and

o for small ¢, 3%.;]. (t; u, £) behaves like t=9/2¢ (7';)

We will define 3’;‘; f(0;4,4) = 0, making this function continuous at 0. All the proofs are

exactly analogous to those in the previous section.

Theorem 4.13 For each fizedt > 0 and £ > 0, the series B fotin, ) = 5 £y furltsu, ) can
be differentiated term by term with respect to u, for u > 0;
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Proof: Assume t and ¢ are fixed. Then 3‘-’.-’, Juk(t; 6, &) is differentiable for each u in [0, 00) and

its derivative is

g‘i,fu(t; u,8) =t~ ¥(2k + 1) {¢ ( "’\/:Z ‘) (6(sk +0)%t — (a5 + )% - 3¢%] -

é ("—"‘/:—‘) [6(sk + )%t — (2 +£)* - 3t’]} .

The function 21‘%;‘-'*9 has a right hand derivative at ¢ = 0, and this right hand derivative is
easily seen to be 0, the limit as ¢ — 0 of f;‘;f.,,(t; 4,£). To show that we can differentiate the series
pI 38;’, Jur(t; 4, £) with respect to u term by term, we only need to show that pIM 32_:, Juk(t; u, )
is uniformly convergent in u. We will do this using the Weierstrass M-test.

Let gu(t; u,) represent the first summand of 3";., Jur(t;u,£). We now show that for large
enough &, the functions gy (¢; u, ¢) are negative-valued and monotonically increasing for u in (0, 00).
Differentiating g (¢; u, £) with respect to u and setting the result equal to 0 shows that gk(t; 4, 2)

has five critical points. Three of these are always negative. The remaining two are

=2kl + ¢yt —2kl + cav/t
2k+1 2k +1

where ¢; and c; are positive constants. These two critical points will be negative for large enough
k. By differentiating again, we can show that ¢y is a minimum, and that 9k (t; 4, £) is negative
valued at this minimum, and approaches 0 as u — 0. Thus g, (t; u, ¢) is negative and monotonically
increasing on u € (0, 00) for large enough k.

Let My equal the maximum over u € (0, 00) of |gx(t; u, £)|. For large enough k, this maximum
occurs at u = . The sequence M is positive and decreasing for large enough k (say k > &*),

because the term in ¢ will dominate all other terms in the expression for M;. The integral

Q0
/ M(z) dz
b.
converges to

¢ () ek
— v
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where h(t,k*) is a sixth degree polynomial in ¢ and k. This expresgion is finite for finite ¢
and £. Thus the series 3" M, = 3" 19x(t; 0, )| converges by the integral test, and so the series
2 lga(t; u, §)] converges unifonnly in u by the Weierstrass M-test. A similar argument applies to
the second summand in W Ser(t; u,2), and so0 the series p Wf..,(t u,£) converges absolutely,
and uniformly in u for u € (0, o).

Thus, we have shown that conditions for term-wise differentiation with respect to u of the

series 3, &y fur(t; u, £) are satisfied. Q.E.D.

Theorem 4.14 For u, ¢ > 0, the series a%'l' fu(t;u,8) = S 08'—’;f.;(t; u,2) 13 uniformly conver-
gent int, fort > 0.

Proof: Again let gy (2; 4, ) represent the first summand in g;f, (¢;u,4). Foreach k = 0,1,2,.. .
the function g (¢; u, ¢) approaches 0 both as t — 0 and as t = oc.

The function |gs(¢; u, ¢)| achieves a maximum over ¢t € (0,00) at t = c(sy + £)? where ¢
is a positive constant. Let M; denote the maximum value of this function. Clearly, M, is
O(k=2), and so the series k=0 M converges. By the Weierstrass M-test, the series " |gx(2; u, £))|
converges umformly In t. A similar argument applies to the second summand in Wf- (t;u, ).
Thus 3, 2 “—; fux(t; 4, £) is absolutely, and uniformly convergent in ¢, for ¢ 2> 0. Also I—; Sa(t;u, )|
is bounded. Q.E.D.

Theorem 4.15 For fized 4,2 > 0 and sufficiently small t,

8 (75) S gattsmn sorong (2)

for some ¢,C > 0.

Proof: As in theorem 4.3, we argue that the first summand of the first term of 2 fus(t;u, )

dominates as t - 0. Q.E.D.



Chapter 5

Properties of the Zero Drift FP2B
Distribution, Sin Representation

An alternate representation for the densities s available [17, p. 359). This series converges slowly
for small ¢, and so is not as useful for computational purposes as the representation discussed
in Chapter 4, at least not for the distribution of times encountered in hoepital length of stay.
However, it converges quickly for large ¢ and so is more helpful in verifying regularity conditions.
The equivalence of the two series is a consequence of the theory of theta functions (17, p. 370].

In this chapter, using the new representation, we show that all moments of the zero drift
FP2B distribution exist, and examine the behaviour of f,(t; u, ¢) and its first three derivatives
for ¢ large. Finally, we establish that regularity conditions for the FP2B distribution (in the case
of iid observations) are satisfied in the zero drift case. Here we focus attention on the upper
subdensity, as the results and proofs for the complete density can be reduced to proofs for the
upper and lower subdensities. As we point out below, regularity in the drift case will follow as an
easy consequence. Unless otherwise indicated, we assume both and £ to be finite.

In the notation used in the thesis, the alternate representation for the upper subdensity is

it = e (S 20) g"“"’ (savar) = (2)-

This series, known in diffusion theory as Furth’s formula for first Ppassages, is uniformly convergent
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int (17, p. 359]. For the zero drift case, the series reduces to
o0
. =7 k3 :
Rtv 0= TEVE Ekexp( k*tA) sin (kv) (5.1)

where A = x3/(2(u + 4?), and y = mu/(u+¢). Note that, for u, £ > 0, both A and 7 are strictly
positive, and furthermore 0 < 7 < 7. Also, note that because the function g(t) = exp ( ﬂw)
approaches 0 very quickly as ¢t — oo, and its integral f:" g(t) dt likewise converges quickly,
regularity conditions for the drift case will follow easily from the zero drift case. For the remainder
of this chapter, the zero drift subdensity will be denoted as Jo(t;u,£), without the superscript 0.

5.1 Moments of the Zero Drift FP2B distribution

We prove in two steps that moments of all values exist for the upper subdensity.
Theorem 5.1 The integral

00
/ P fu (0, £)dt
to
converges for all p, where tg = 1/ (2)).

Proof:

fult;u, ) = m I:Z-; kexp (—k%t)) sin (k)

L = n
< mgkm(-k’m aioww gy(k)

where g(k) = kexp (—k?\). The function 9(k) achieves a maximum on (0, o) at k = 1/v2tA.
Then for t > 1/(2)), 9(k) is monotonically decreasing on (1,00). We can then apply lemma D.0.1
(see appendix D), which gives

ek < /1 " a(k) dk +9(1)

k=1

= exp(~tA) (1 + ﬁ)
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Thus fy(t;u,4) < exp(-t)) (1+ 737) and P f,(t;u, ) < P exp(—tl) (1+ 5k). The integral of
this last function with respect to ¢ over (to, o) converges for all P. Thus we have shown that

/ " futu, )t

converges for all p, where 2o = 1/ (2X) > 0. Q.E.D.

Theorem 5.2 All positive moments of the zero drift FP2B distribution ezist.

Proof: We showed in theorem 5.1 that j‘m t? fu(t; u, £)dt converges for all P, where to = 1/(2)).
As shown in theorem 4.1, f, (t; 4, ¢) is bounded on (0, o0). Thus the integral of tP Ju(t; 6, €) over
(0, 2o] is finite for all p > 0. Similar statements can be made about fe(t; u,2). Thus all positive
moments of the FP2B distribution exist. Q.E.D.

5.2 Regularity Conditions

The following specification of regularity conditions for consistency and asymptotic normality of
maximum likelihood estimates from iid observations comes from Serfling [37] and is for single-
parameter models. The extension to multiple parameter models is straightforward.

Regularity Conditions. Consider © to be an open interval (not necessarily finite) in R. We
assume:

(R1) For each 8 € ©, the derivatives

dlog f(z;0) &2 logf(z'O) 3 log f(z;0)
a9 ! 062 a8

exist, all z;
(R2) For each 8 € ©, there exist functions g(z), h(z) and H (%) (possibly depending on 6o)
such that for 6 in a neighborhood N (6o) the relations

) #10
250 < g0,

< h(z),

8°lozf(z, 9)’ < H(z)

hold, all z, and

/g(z)dz < 00, /h(z)dz < oo, Eg{H(X)} <00, forf e N(6o);
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(R3) For each 8 € ©,

o< (tengma))

Here Ey denotes expectation taken with respect to 6.
Thus we will prove in the zero drift case that

o the first, second, and third derivatives of log fu(t; u, £) exist;
@ There exists a function g(t) such that

[ttt <ot

for all ¢ € (0, 00) and [;° g(t) dt < oo;
¢ There exists a function h(t) such that

< h(y)

32
wf. (t; u, l)

for all ¢ € (0, o) and Jo” h(t) dt < oo;
¢ There exists a function H(t) such that

<H®)

i
E) log fu(t;u,)

for all ¢ € (0, 00) and E,{H(T)} < ; and

e For each u > 0,

. 2
0<E,{(MM) }w
ou

Here E, can be taken to be expectation with respect to the upper subdensity. It can be shown
that the regularity conditions of Serfling can be reduced to conditions like these.
We first prove several theorems about the behaviour of £, (t; u, £) and its derivatives when ¢ is

large.
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Theorem 5.3 For t large,
fult;u,8) > eexp(~tA)
for some € > 0 and where A = x3/(2(u + 2)3?).

Proof:

fult;u, ) = Ef“ = ﬁ’; kexp (k) sin (k).

We will argue that the first term of this series dominates for large ¢, ie

Q0
L‘ﬂf"‘—»o as t— oo,

fsl
Write m}:’*‘ as ¢} axby where
-k .
o = K=" " sin(ky)
e~ sin(y)
and
—k3rA
b = ¢

e—TA

where 7 =t — 1. Clearly 3" ai converges. We now show that lim, o 37 b = 0. First note that

be = exp(—TA(k? - 1)) is monotonically decreasing for k € (0, 00). Then

f:e-n\(k’-l) < /°° e=mA-1) 1-@ (" 21"\)
= 1 e~TA/2r)\

The limit of this expression as T — oo is 0/0. We now apply L’Hopital’s rule. Differentiating the
numerator and denominator of the last expression with respect to T gives

¢ (\/274\) r-i/3 1

e~mA(r-173 _ 2Ar1/2) = 1-2Ar

which approaches 0 as r — 0o. Thus lim,_,, ez o = lim, o Yieafer/fer =0 . Thus
the first term of the series, f,; = &, exp(—tA) sin(v), dominates for large ¢. Note that, for finite ¢,
Ju1 is strictly positive, because 0 < Y <=. So for ¢ large, f,(t; u, £) > eexp(—t)), for some € > 0.
Q.E.D.
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Theorem 5.4 Fort sufficiently large,

a4
%f- (4,8

< kytexp(—t))
for some k1 > 0 and where A = 73/(2(u + £)3).

Proof:

a
= fulti ) ’ =

ﬁg kexp (—k%tA)
{tx*k? sin (kv) — 2(u + £)? sin (kv)

+xkl(u + ) cos (ky)}|  (5.2)
<—_ f: kexp (—k7A) {tx2k? + 2(u + £) + wke(u + 0}
- (u + [)5 k=1
where v = xu/(u + ¢). For large ¢, it suffices to examine the behaviour of the factor involving ¢.

So consider the sum

- -}
3" Ktexp(~k2ta).
k=1

Note that the function go(k) = k’texp(—k’b\) achieves a maximum on & € (0,0) at &* =
Vv'3/(2t)), and monotonically decreases for k > k°. Then for ¢ > 3/(2X), go(k) is monotonically

decreasing on (1, 00). For functions of this shape we have
o a0
Yo < [ aolk) dik+ o1
1
(see lemma D.0.1, in appendix D). Thus, for ¢t > 3/ (22)

a0 o0
3 Btexp(~k2) < / Kt exp(—k?A) dk + texp(~tA)
k=1 1

1
= oagz XP(—tA)(tA + 1) + texp(—t))

1 1
= exp(—tA) (m + IV +t) .
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For large ¢,this last expression is O(texp(—t))). Therefore, we can show that for large ¢, £, (t; u, £) <
kit exp(—tA), for some k; > 0. Q.E.D.
Theorem 5.5 For large ¢,

az
Eﬁf" (t;u,8)| < kyt? exp(—tA)

Jor some constant ky > 0.

Proof:

2
aa? fu(t;u,8)

1 [~ <]
oryin f\;lexp (=k2e)

{£k°%° sin(ky) + t[~7k3x? sin(ky)(u + 8)* + 2k*x* cos(kv)L(u + 9]

+6kw sin(kv)(u + £)* - 2k%x° sin(kv)[uf® + w202 + 2] - 6k>x2 cos(kv)(u +0'} (5.3)

1+ 2 2,55 3.3 2 4.4
< mgexp(—k tA) {26°7° + t[—Tk>n%(u + £)? + 2ktx (u +¢))
+6kx(u +4)* - 2892°[ul® + 22 4 4] - 6k%x%(u + £)*} (5.4)
For large ¢, it suffices to examine the behaviour of the factor involving 2. So consider the sum
o o0
2 90(k) = 3" k383 exp(~k?eA).
=1 k=1

Each summand go(k) achieves a maximum over k € (0,00) at k* = ‘/%, and monotonically
decreases thereafter. Then for ¢t > 5/(2X), go(k) is monotonically decreasing on (1, 00). By lemma
D.0.1, for t > 5/(2\), the sum above is lesg than or equal to

1 1 t 2
exp(—tA) (ta\—3+/\—3+ﬁ+t ).

For large ¢, the above function is O(t?exp(—tA)). Thus we can find a constant k; such that
]g,f. (t;u, z)| < kat?exp(~tA). Q.E.D.
Theorem 5.8 For large ¢,

'%f- (tiu, 9| < kst® exp(~tA)
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Jor some constant k3 > 0.
Proof: We can show that

<

S At

1 3 252) 43577
AT O &0 (—k3tA) 2k
(u+ ) kg
plus some terms in smaller powers of ¢, which will be inconsequential for large t. Consider the

nseq
sum

f: go(k) = f: k™t exp(—k3t)).

k=1 k=1

Each summand go(k) achieves a maximum over k € (0,00) at k* = ‘/ﬁx, and monotonically
decreases thereafter. Then for ¢ > 7/(2X), go(k) is monotonically decreasing on (1,00). By lemma
D.0.1, for ¢t > 7/(2)), the sum above is less than or equal to

3 3k 2
exp(—b\)(m-i-xsm-f-ﬁ'f-t).

For large ¢, the above function is O(t% exp(—tA)). Thus we can find a constant k3 such that

Axfu(tiv )] < kstPexp(~tA). Q.E.D.
We now show that regularity conditions are satisfied.

Theorem 5.7 The first derivative of log f,(t; u, £) with respect to u ezists for t € (0, 00).

Proof: First, note that

d . _ mfultiu, g
% log £ (t, uf) = m

Also, as we showed in theorem 4.5, ﬁf. (t; u,¢) is bounded for ¢t € (0, 00). We showed in theorem
4.2 f(t;u,4) is greater than 0 for ¢ > 0. Thus, the derivative of log fu(t; u, £) with respect to u
exists for ¢ € (0,00). Q.E.D.

Theorem 5.8 The second derivative of log f,(t; u, &) with respect to u ezists for t € (0, c0).

Proof:

5 cun Bhtnl)  (EfEug)
a?logf.(t,u,l)— fn(t;uvt) -( fl(t;uvt)
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We showed above that %f.(t; 4,4)/fu(t; u, ) exists, so we only need to prove that the first
summand is less than oo. Also, as shown in theorem 4.10, g.—;f, (t;4,2) is bounded on (0, 00).
Since fy(t;u,£) is greater than 0 for ¢ > 0, the second derivative of log fu(t; u, £) with respect to
u exists for ¢ € (0,00). Q.E.D.

Theorem 5.9 The third derivative of log £y (¢; u,£) with respect to u exists Jort € (0, 00).

Proof:
5 g fultin g = BEWY B Bt [ Shng\’
g3 8 futiwm ) = o-f.(t;u, f) -38f-(t;u,l) a}-(t;u, 4 (6}-(*? %) &9

We only need to prove that the first summand is less than oo, since the other summands have been
shown to be less than oo above. First, 38;'; Ju(t;u,2) is bounded on (0, 00), as shown in theorem
4.14. Since f, (¢; u, £) is greater than 0 for ¢ > 0, the third derivative of log fu(t; u, &) with respect
to u exists for ¢ € (0, c0). Q.E.D.

Theorem 5.10 There ezists o Junction g(t) such that

5ol 0] < ()

for all t € (0,00) and fo°° g(t) dt < oo.

Proof: As we showed in theorem 4.5, % Ju(t; 4, ) is bounded for ¢ € (0,00). Thus we only need
to show that %f. (t; 4, £) is dominated in absolute value in the right tail by an integrable function
9(t). We showed in theorem 5.4 that | fu(t; u, 8)| < kitexp(—tA), which is clearly integrable
with respect to ¢ on (2o, o), where ?9 > 0. Q.E.D.

Theorem 5.11 There ezists a function h(t) such that

82
3a7 o] <h(Y)

Jor all t € (0,00) and Jo© h(t) dt < oo

Proof: As we showed in theorem 4.10, %’, Ju(t; 4, ¢) is bounded for t € (0,00). In theorem 5.5 we
showed that, for large ¢, ,ﬁ’;f. (t; u, t)l < kyt? exp(~At) which is clearly integrable with respect
to t on (tg, 00), for to > 0. Thus |g,f.(t; u, e)| is dominated in the right tail by an integrable
function. Q.E.D.
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Theorem 8.12 There ezists a function H (t) such that

‘;%m fultin, 0] < H(t)

for all t € (0,00) and E{H(t)} < 0o

Proof: From equation 5.5 we have
D L N L F Y R T,
fultin, @) LGwl)  fi(tiu,0) fult;u,£)?

As we showed in theorem 4.14, 3’;', Ju(t; u,2) is bounded for ¢ € (0,00). We showed in theorem
4.3 that, for small ¢, f,(t; u, 4) > ct~3/3y ( . ) Also for small ¢, f;f.(t'u,l) < Cit~5/34 ( . )
and mf. (tu, ) < Cyt~7/34 (7-) as was shown in theorems 4.6 and 4.11. Then, for small ¢,
the second summand, when multiplied by f,(2;u,¢), is less than or equal to Ct~9/3¢ ( ‘) and
80 is bounded. This is also true for the third summand. Thus we only need to ensure that each

(5.6)

a;f:s' log f, (t; u, t)

summand in (5.6), when multiplied by fu(t; u,), is dominated in the right tail by an integrable
function.

Using theorem 5.6, we have that the first summand multiplied by f,(t; u, ¢) is

< kxt? exp(~tA)

63
Wf' (t;u, )

for some k; > 0. From theorems 5.3, 5.4 and 5.5, the second summand, when multiplied by
fult;u,8) is

St w8)|| & fult;u,0) < (bt exp(—13) (kstexp(~t1))
Julti u, 4] eexp(—t))

for some k&, k3, kg > 0. Finally, from theorems 5.3 and 5.4, the third summand, when multiplied
by fu(t;u,2) is

= k.‘ta e.xp(—b\)

I;f,(t u, )3| ks (Bexp(-22))°
T hGuep S (eexp(-tA))? p(-t)

for some kg, kg > 0. Since the integral

/ ” t2 exp(—tA) dt
to
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converges for ¢ > 0, we have proved the desired result. Q.E.D.

. 2
o<k { (alosf.(t,u,t)) } <o
ou
Proof: Note that

N {(alogf‘;g u,t)) } /om (af.(‘;';‘u’t))zfu(t;lu,l) @ (5.7)

First, as noted Previously, both f, (¢; u, ¢) and &= """ are bounded. To show that the integral

Theorem 5.13

in 5.7 converges on (0, o), we need to show that (1) the integral converges for large ¢ and (2) the
integrand is bounded as ¢ — 0.

We first show that the integral converges for large t. We saw above that, for large ¢t, <Lu """
ctexp(—At). Also, in theorem 5. 3, we showed that f, (t;u,8) > eexp(~t)), for some € > 0. Thus
( QA%!&Q.) ? m < kt? exp(— —At) for some constant k > 0, and so the integral in 5.7 converges
for large ¢.

Now for ¢ small, we need to show that the integrand in 5.7 is bounded. We showed in theorem
4.3 that, for small ¢, f, (¢; u, &) > 33y (7-) Also for small ¢, 2 £, (t; u, 8) < Cyt-3/3y (7"-)
and 3—;f.(t u,f) < Ct-7/3y (7-) as was shown in theorems 4.6 and 4.11. Then, for small ¢,
the integrand in 5.7 is less than or equal to Ct=7/2¢ (7-) and so is bounded.

Q.E.D.



Chapter 6

Extensions

6.1 Mixture Models

In this section, we discuss the effect of heterogeneity in the population on the interpretation of
the hazard function in survival analysis. We then extend the model developed in Chapter 3 to a
mixture model that recognises this heterogeneity.

An unavoidable characteristic of administrative data in health services research is heterogene-
ity. Often there are very few covariates available that are truly helpful in predicting LOS. Excess
heterogeneity can affect the interpretation of the model, particularly the hazard rate. Recall that
the hazard function at time ¢ gives the instantaneous risk of failure at time ¢ given survival up to
time . When the response is time to death, individualsin a heterogeneous population that are at
high risk will die sooner. Due to this selection effect, we cannot interpret the population hazard
as the risk to any single individual over time.

The simplest example of a heterogeneous population consists of two homogeneous subgroups
of individuals. Suppose both groupe have constant hazards, with the hazard of the “frail” group
being higher than the hazard for the “robust” group. Suppose that both of these subgroups are
initially of the same size, 8o that the frail group makes up half the population. One can show that
the hazard for the whole population decreases monotonically over time, even though the hazard
in each group remains constant. This js because those at high risk (the frail group) are failing
early, resulting in a higher Proportion of the population belonging to the robust group. Thus over
time, the population hasard will approach the hasard of the more robust group, i.e. over time the
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Population hasard will be pulled downwards, However, the population hazard does not represent
the survival experience of any individual member of the population.

As another illustration, consider a population where one group of individuals has an increasing
hazard, but the other group is “immune”, so has a constant hazard rate of 0. In this case, one
can show that the population hazard initially increases to some maximum value, and thereafter
decreases. This shape of population haszard is typical of data on time to breakdown of marriage.
This phenomenon has been interpreted as showing that an individual marriage is at high risk
of breakdown at some time (the “seven year itch™), but if the marriage survives beyond this
time, the chances of breakdown will decrease. In fact, the shape of the hasard could be duye to
heterogeneity in the population. Some individuals could be immune to marriage breakdown due
to religious beliefs, while others could be at ever-increasing risk of divorce. For other examples of
“heterogeneity’s ruses”, see the paper by Vaupel and Yashin (41].

Any real population will be far more complicated than a mixture of just two homogeneous
populations, and it is even possible that no two individuals will share exactly the same hazard
function. To address the problem of heterogeneity, mixed models, or frailty models as they are
sometimes called, have been developed for survival data (24]. The canonical frailty model is the
proportional frailty model. Here the hazard rate for individual 5 in group i is of the form

hij(t) = Z;ho(t) exp(Bz;;)

where ho(t) is a baseline hasard common to all individuals, zi;j is & vector of covariates for
the individual j in group i, and Z;, the “frailty” for group i, is a random variable from some
distribution. The regression parameters 0, and the parameters of the frailty distribution are
estimated by some method. Note that the groups may be of size 1, i.e. that each individual has
their own distinct hasard rate. If the variance of the frailty distribution is found to be significantly
different from 0, this gives evidence that heterogeneity is indeed present in the population and
that a frailty mode! is in fact necessary. Frailty distributions that have been investigated in the
literature include the gamma, positive stable, inverse Gaussian, and log-normal, and extensions

have been developed to allow for the presence of immune individuals in the population.
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The models discussed in this thesis can be extended to give a mixture model for LOS, which
recognizes the presence of heterogeneity in the population. Again assume that health status
follows a Wiener process with drift 4 and volatility 0 = 1, but allow the drift parameter 4 to
be a random variable from some distribution. This approach was investigated by Aalen (1] in the
case of a single barrier, where LOS has an inverse Gaussian distribution.

For the case of two barriers, let 4 be distributed as a Normal random variable with mean 8

and variance v2. Then the density of LOS is given by

N T Fodus [ e e (6.1)

The first of these integrals is

3o e(%)) [om (L f-2mr 520 e

k=00

t—3/2(21ru2)-1/2 (

where c; = 2k(u + £) + u. The integral in 6.2 can be evaluated by completing the square to give

e (g - ) " ()

where z = (uv? + 8) /v + 1, and we have made the change of variable w = svVtvd +1, The
integral in the last expression is the kernel of the normal cdf, which integrates to (2mp?)1/3,

Finally we get

- — (%t — ut? — 249)\ =2 c
e + D)1 (<ot ) 2 =4(%)

which we denote as fX (t). The second integral in 6.1 is handled in exactly the same way to give

—(83s 2 _ k=oo
0y () 55 (e
k=-o0

where e; = 2k(u + £) + £. Then the density for the distribution of LOS is the sum of the two

subdensities
@) =)+ M

Note that, while many mixture models require numerical integration to evaluate the densities,
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numerical integration is not necessary here. The subdensities for £ = 1,4 =2,y =1 and various
values of 6 are shown in figures 6.1 and 6.2.

The above model allows each individual to have their own distinct drift.

This model can be easily extended to accommodate covariates. As an example, let the drift
parameter 4 come from a Normal distribution with mean 8 where now 4 is allowed to depend

linearly on a covariate
0.' = 00 + 91 Zi

Estimation in this case is straightforward.

6.2 Transfers

So far, we have only considered two outcomes, death and discharge. However, any hospital
database will include information on individuals who are transferred to another institution. From
the point of view of the hospital administrator, transfers are an important component of costs
and resource consumption, and so it is imperative to include them in the model.

In general, patients are transferred from one acute care institution to another because the new
institution has specialized facilities and staff that are better suited to the needs of the patient.
Sometimes, patients are transferred to another acute care institution because it is closer to their
family or area of residence. Patients may be transferred to another type of institution (such as a
chronic care or nursing home) because the patient needs an alternate (less intense) level of care. In
the United States, the patient’s insurance policy may also dictate that the patient be transferred
to a cheaper facility at the earliest possible opportunity.

In any case it seems reasonable to assume that decision to transfer depends at least partially
on the health status of the Patient, so it would not be correct to treat transfers as independently
censored obeervations. Thus another approach is developed here.

It seems reasonable to postulate that individuals become eligible for transfer to another acute
care institution once their health status first reaches a moderate level, w, where 0 < w < u.

Once this level is achieved, an individual may be transferred to another acute care institution
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Figure 6.1: fM (1)
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depending on his needs, availability of a bed, availability of transport, etc. Given enough up-
to-date information, it might be possible to determine whether or not an individual would be
transferred. However given the scanty information available to health services researchers, it
seems more useful to model this decision as a random event.

We now develop this approach in terms of the health level process H (t). The situation is
shown in figure 6.3, with discharge barrier u, transfer decision barrier w and lower barrier —¢
corresponding to death in hospital. Let ¢* be the time the health level process H (t) first reaches a

position

—
4

t.
time

Figure 6.3: Decision barrier

barrier at w. With probability p, the process is terminated at t*, corresponding to the event that
the individual is transferred to some other institution. With probability ¢ = 1 - p, the Pprocess
continues until it is either absorbed at the upper barrier u, (the patient is discharged), or it is
absorbed at the lower barrier ~{, (the patient dies in hospital). Note that in this simple model,
only the first visit of the process to w potentially triggers a transfer. It is also possible that the
Process could be censored by some independent mechanism, such as end of study period.

We now derive the distribution of T, the time in hospital, under this new model. The event
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that the hospital stay ends in an interval of time (t,¢ + dt) can be considered as the unjon of the

four disjoint events:
1. The health level process first hits —¢ in (t,t + dt), without going through w.

2. The process firat hits w in (t,t + dt), without going through —¢, and (with probability p) is
terminated.

3. The process hits w in (t1,t1 + dt) where t; < ¢, continues on (with probability q), and hits
the barrier u in (2, ¢ + dt), without hitting —¢ along the way.

4. The process hits w in (¢,,¢, + dt) where ¢; < t, continues on (with probability q), and hits
the barrier —£in (¢,¢ + dt), without hitting u along the way

Since there are now three barriers, we need new notation that makes missing a barrier explicit.
Throughout this section, we will assume the more general drift model is used, so dependence on
# will be suppressed. Write f.fb) (t) for the subdensity corresponding to the event that a Wiener
process with drift and two barriers @ and b, hits a for the first time in an interval around time
t, without first going through 5. Note that one of a,b will be positive, (representing the upper
barrier), and the other negative (representing the lower barrier). Given values for a and b, an
expression for fi* () can be calculated as shown in section 3.1. fa > 0, and b < 0, then calculate
the upper subdensity as in equation 3.2 with a replacing u and 4] replacing £ . Similarly, if
a <0, and b > 0, then calculate the lower subdensity as in equation 3.1 with la| replacing £ and
b replacing u .

Now consider item 1, the event that the Process first hits the lower barrier —¢ in an interval
around time ¢, without hitting the barrier at w. In the new notation, this event has probability
proportional to %) (¢).

The event described in item 2 is only slightly more complicated. This is the event that the
process hits the barrier at w for the first time in an interval of time around t, without hitting the
lower barrier at —£. (Note that we don’t need to worry about the process hitting u, since u > w

and if the process is hitting w for the first time, it will not have encountered 4.) The event in
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question has probability proportional to f(") (t). This must be multiplied by p to take account
of the fact that only a proportion p of these paths actually terminate when they reach w.

We now consider the probability of the event described in jtem 3, i.e. the probability that the
process is terminated at u in an interval of time around ¢. Note that all paths which terminate at
u must have first hit w, but not been terminated at w. Also these paths must have avoided the
lower barrier at ~£. Thus we need to consider all paths that reached u at time ¢ without going
through —¢, and then take only the proportion that made it through the intermediate barrier at
w. The probability corresponding to this event is Proportional to is ¢ f{~% (2).

Item 4 is the event that the process terminates at —£ in (¢,¢ = dt), having previously passed
through the intermediate barrier w. We first confine attention to all paths that do not hit . of
these, we need paths that 80 to w and eventually down to —¢. (Note that the paths may wobble
around w several times, but may not hit u before —¢). But this is the set of all paths that go
to —£ (without hitting u), minus those that go to —£ without hitting w. Again we need to take
only the proportion q of these paths which were not terminated at w, Thus the event described
in Item 4 has probability proportional to a(f % () - ).

Finally the probability that the hospital stay ends in the interval (t,t + dt) is proportional to

£ +p £500) +4 £-9) +alf) - 1)
which can be written as
PRV +p S50 +9 £79() + 2/ ().

This is of course the density of the random variable T, time in hospital when transfers are possible.

The likelihood contributions for the various individuals in the data set are now as follows:
Individuals who are transferred at time t, corresponding to item 2, contribute pf("‘)(t). Indi-
viduals who are discharged at time ¢, corresponding to item 3, contribute af$Y (t). Individuals
who die at time ¢ may or may not have passed through the intermediate barrier. Thus the event
“death at time ¢” is the union of the two events described in items 1 and 4. These individuals thus
contribute £'5(¢) +4[£%)(£) ~ £ (¢)]. This can be more succinctly written as pf%) (¢) + 97 (¢).
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Ultimately, assuming u and ¢ are finite, one of the three mutually exclusive outcomes (death
in hospital, discharge home, or transfer) must occur. We can define the discrete random variable
D which takes values ], u, or w according to whether the individual dies in hospital, is discharged
or transferred. Then the probability of ultimate discharge is

T
=) = It (=) = I (—¢)
PO =v)=lim [*of-90) dt = fim qri-0(T)
The probability of death in hospital is
T
-1 = I (w) (w)
PO==tim ["af0) + pr(e) a
= Jlim gFS)(T) + pFl)(T)
—+00
Finally, the probability of transfer is
T
- - 13 (~¢) 1 (~¢)
PO=w) = lim [ pfi-t(0) at= fim pr&-()

It is also possible to accommodate independently censored individuals, for instance those lost
to follow-up or still in hospital at the end of the study. We can represent the event [censored
at time ¢] as the union of the two events, [censored at time ¢ without passing through w] and
[censored at time ¢ having passed through w at time ¢, < t]. Note that we cannot observe when,
or even if, an individual who is not transferred passes through w.

Here again we will need some new notation. Write Fe)(¢) for the probability that neither
the barrier at b, nor the barrier at ¢ is breached by time ¢, i.e. that the time of breach is greater
than ¢. This can be calculated as in equation 3.3. Then the probability that an individual is
censored at time ¢ without passing through w, is the probability that neither the barrier at w or
~ has been breached by time ¢. In the new notation, this probability is F(~4%)(¢).

Individuals who are censored at time t, having previously passed through w are more compli-
cated. The probability that an individual hits w for the first time at time ¢, and is not transferred
is gf59 (t1)- Given the occurrence of this event, the probability that he has not hit the upper or
lower barrier by time ¢ is then Fl-(tte)e=e)(s _4). Thus the probability that an individual is
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censored at time ¢, having Previously passed through w is
¢
0 [ 1500 Fereae g gy
0

We will denote this integral as I%*=4(t). Thus individuals who are censored at time ¢ contribute
F-4%(t) + I%*~Yt) to the likelihood.

Unfortunately, the integral I**~¢(t) has no closed form in general. Thus calculation of the
likelihood would involve a numerical integration, and this would have to be repeated at each step
of the optimization procedure which finds the maximum likelihood estimates. Since thisis a very
time consuming operation, we would like to find another expression for the probability of being
censored at time ¢.

We do this by noting that someone who is not censored at time ¢ was either discharged,
transferred or died sometime before time t, ie their hospital stay was less than ¢. This event has
probability

¢
PT<t) = [ [aft-06) + 01 (5) 4 o) +2£50(s)] do

=aF70) + pFU) (1) + oF () + pFSO) (6.3)

where F.,(b)(t) is the probability that the barrier at a is hit before time ¢, without first hitting
the barrier at b. Write Fo5(t) for the probability that one of the barriers at a or b was breached
before time ¢, and note that F, () = 1 ~ F@8)(t), s0 an expression is available. Of course
F.(b)(t) + F,,(")(t) = Fq(t). Now the complement of the above event, the probability of being
censored at time ¢, has probability 1 — gFy _o(t) - PFe,_¢(t). Thus the log-likelihood for the
transfer model is

Con-twpu= 3 loglaftl+ Y logpft) +as (1))

{§:Ds=u} {i:D;=1)
+ X loglpfl O] + D logll—gFy_o(t:) - pFu,_4(t:)]
{i:Di=w}) {i:Di=c}

where D; is u, ], w, or ¢ depending on whether individual i is discharged, dies, is transferred or is
censored at time ¢;. The Pparameters to be estimated in this mode] are 4, -4, w,p and pu.
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As before, we can contemplate modelling these parameters as functions of covariates. We
can allow the barrier levels to depend on covariates exactly as before. We can also allow P, the
probability of transfer given that the decision barrier at w is breached, to depend on covariates.
Since p must always be between 0 and 1, a logistic model for p would be appropriate, ie log(p/(1—
P)) = zB. However for the preliminary investigations described in this thesis, we have used a linear
model for p, i.e. p = z8, which, at least so far, has always given an estimate of p in the admissible
range. The extension to covariates is straightforward and is described in appendix E.3.

The Cox-Snell residuals for this model are easily constructed. Recall that T, the time in
hospital in the presence of transfers, has survivor function 1 — qFy,—¢(t) — pFy,_((t). The Cox-

Snell residual for individual 5 is then
R; = —log[l - qFU-'.-li (t!') - me'-li(tl')]

where u; = (é")'g}', 4= (é‘ 'z¢, and w; = (é"’)’ 2. Note that the function F,(t) depends also
on the drift parameter which is estimated as i = (é"‘)’ z¥.

The expectation of time in hospital, and the probability that the patient is discharged, trans-
ferred or died in hospital, are important quantities. Also the expected time in hospital given
outcome is useful for model assessment. These quantities can be found as simple functions of the
corresponding quantities in the model without transfers,

First, consider the model with only two barriers, and no mechanism for transfer. Let T, ; be
the random variable representing time until breach of one of the two barriers £ <0oru>0ina
Wiener process with drift. Also, let D, be a discrete variable which takes the value | if the lower
barrier at —¢ is breached, and which takes the value u if the upper barrier at u is breached. If we
define functions corresponding to E(T..t), P(Dy,¢ = u) and E(T,¢|Dy,¢ = u) then we can specify
all the necessary quantities discussed above for the transfer model in terms of these functions.
Let

£ u+t 1—e~
hi(u, 4, p) = 7 + “ [1 - e-u(--n)]
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1 - et

ha(u, 4, p) = p g 2

and

2 -1
ha(, 4, ) = [“ (_1+e-1u(l+l)) (_1+e-2n)] [_ (_e-zu(-+t+1) $em2m(+)
eT3B(HY) | o-2p _ -2pel _ 24 (ut2t41) + e-z,.(.+zz)) ‘- (e-Zu(l+1) —e-3ut

+ e~ 1n(v+3e41) _ e—3n(v+22) —e— 3 + e~ In(u+e) _ e-zu(u+l+l)) (u + l) - u] .
Then

E(Ta,) = /0 "0+ £90)] dt = hy(u, 4,4

P(Dwc=v)= [ f0() d = ha(un &, )
0
P(Dye=1) = /o.m fl(.)(t) dt = ha(4, u, ~p)
o Jotf0) at _ ha(u, 4, )
E(Ty4|Dye =) = PDei=u) = ha(al)
o JotfV ) at ot u, —p)
D= = o= = haw, )

Now consider the model which allows for transfer to another institution, and let T..¢,0 represent

the time until either discharge, death, or transfer, and let D, , , take the value u, 1, or w depending
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on whether discharge, death, or transfer has occurred. Then

E(Tyse) = /o T (200 + a5 1) + o5 )+ ()] at
=qE(Tue) + pE(Ty,0) =q hy(u, 4, p) + p hy(w, ¢, )
POuse=u)= [~ os0(0)
=qP(Dy, = u) =q ha(u, ¢, u)
P(Duse =0 = [ afit) + p®)t)
=qP(Due =1) + pP(Dy, =1) =q ha(&, u, —p) + p ha (2, w, —p)

0
P(Dyo = w) = / PfO(t) dt
0

= pP(DU.l = W) =p h?(wv L, /‘)
Finally
- o, 2(0)
E(T.J..,ID = u) - P(Tl.l.w € (tyt + dt_)a Dl.l.l! = ll) =f0 tq}l g) dt
P(Dy b0 = u) 9P(Dy s = u)
- q hs(u, ly I‘)
q hﬁ (“1 lv l‘)

E(TuselD=1) = P(Tuiv € (t,t+dt), Dy =1) _ It [qft‘-)(t) +pf,"')] dt
whelZ =0 = P(-Du.l.o = l) —qP(Dl.l = l) +pP(DUyl = l)
= 2ha(t,u,~p) + p ha(t, w, —p)
q h’(‘v u, -l‘) +p hZ(lo w, —“)

E(Tue|D = w) = PTutw € (bt +dt), Duvw =w) _ [ tpf() dt
M= P(Dy e = w) “PP(Dyc=w)

= p h3(w' L, /‘)

P ha(w,4,s)

109
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6.3 Starting Values

For the transfer model, no simple relationship exists between P(D =u) and E(T|D = u) which
can be exploited to get starting values for the regression parameters. For starting values we again
use a mock least aquares estimate, as described in section 2.2.3, but with g(T,) now equal to the
simple function /7. Recall that 9(T,) is chosen to behave approximately like 4. This choice of
9(-) can be rationalized by the self-similarity of the Wiener process, which remains the same in
distribution if we change the time scale by a factor of ¢ and the space scale by a factor of \/c.

Specifically, for individuals who were discharged, we form the vector T, of observed LOS, and
the matrix X, of covariates thought to affect the upper barrier. Then we use (XeXe) "1 (XLVTY)
as the starting values for the vector of regression parameters §* = (43,4, ..., B;.). A similar
strategy is used to find starting values for Q‘ and g%.

Again we can use zero as the starting value for the drift parameters. When there are no covari-
ates on the parameter p, an obvious starting value is to use the proportion of patients in the data
set who were transferred. This will be a very rough estimate of p, which represents the proportion
of individuals who passed through the transfer barrier and were transferred. Nevertheless it seems
to work well in practice. If covariates are present on the parameter p, then it suffices to use the

starting value discussed, and repeat it for each covariate.

6.4 Example

In this section we illustrate the transfer model using a larger subset of the data, comprising females
of all ages admitted with an APR-DRG of 121 (Circulatory Disorders with MI), a total of 445
cases. Here we test whether type of payer affects probability of transfer to another acute care
hospital, adjusting for severity of disease. Type of payer is coded at three levels (government
insurer, private insurer and managed care). Let z;; = 1if individual i has a government insurance
plan (Medicare, Medicaid, or other government) and let z;3 = 1 if individual i has managed care.
Baseline individuals, with z;;, and ziz both equal to 0, have private insurance plans (Blue Cross,
Blue Shield or other private) . As before, let z;, =1 if individual { exhibits a major complication

or comorbidity, and let z;; = 1 if individual { has an extreme complication or comorbidity.
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Individuals with no, minor, or moderate complication or comorbidity have both z;, and Z;2 equal
to 0.
Thus the drift for individual 1 is

Bi =By + B ziy + B4 2,
while the probability of transfer, given the health process reaches the intermediate barrier at w
is given by

Pi =5+ zis + 5 zz

The following table shows the maximum likelihood estimates and standard errors for this

model.

N - A Y
Estimate | 3.743 1.832 0.829 -0.364 -0.687 2.212 0.488 -0.239 .0.159
Std Err | 0.140 0.099 0.043 0.056 0.068 0.115 0.076 0.080 0.102

Increasing severity reduces the upward drift, although drift remains positive for all covariate
groups. The conditional probability of transfer given that the intermediate barrier is reached is
estimated to be highest for individuals with private insurance, somewhat lower for those with
managed care (though not significantly so), and significantly lower for patients with government
insurance.

The observed and predicted values are shown in the following table for the least severely ill
patients. The higher severity groups have less than 10 individuals in some covariate cells and are

not shown here.
Severity  Payer n PD=u) PD=I P(D=w)
low private || 37  0.49(0.48) 0.03(0.05) 0.49(0.47)

low  managed | 39 0.67(0.65) 0.00(0.05) 0.33(0.30)
low gov't | 218 0.69(0.72) 0.05(0.05) 0.26(0.24)
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Severity  Payer n T TID=u T|D=I TID=w
low private (| 37 2.70(3.34) 3.33(4.29) 4.00(2.14) 2.00(2.46)
low  managed || 39 2.77(3.63) 3.35(4.29) . (2.15)  1.62(2.46)
low gov't 218  4.02(3.76) 4.66(4.29) 3.54(2.16) 2.42(2.46)

The model is doing a very good job of predicting probability of each outcome (discharge,
death, transfer). Note that none of the 39 individuals in the managed care group died in the
original admitting hospital. The (unconditional) probability of transfer, P(D = w), is highest
for individuals with private insurance, and lowest for patients with government insurance, with
managed care falling in between. Note that the expected time in hoepital given D =uor D= w
is the same for each payer, since Ppayer is not assumed to affect the drift or barrier levels, only the
probablity of transfer. So given transfer, payer will not affect expected time in hoepital. However
the probability of transfer is used to calculate expected LOS given D =1 s0 it changes slightly.
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Figure 6.4:

The model appears to fit quite well, except for the approximately 10 points that appear in the
top right quadrant of the plot. Some investigation shows that these points belong, for the most
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part, to individuals who were discharged from hospital, and had long stays in hospital (7 days
or more). The model predictions are much lower than the observed LOS for these individuals,

Again, this could be due to a missing covariate. However, the model does a good job of prediction

for the bulk of the data.



Chapter 7

Comparison with Competing
Risks in Survival Analysis

In this chapter, we briefly review some of the common models used in survival analysis where
the response variable is time to a single type of failure. We then discuss competing risks, in
which there are several types of failure, and outline two approaches to the problem. We discuss
the relationship between certain competing risks models and FP2B models. In the final section,
we fit some of the competing risks models to the data on females with circulatory disorders
and myocardial infarction and compare the estimates obtained to those from the FP2B model
discussed in section 3.5.

7.1 Common models used in Survival Analysis

Survival analysis is concerned with modelling T, the time until some event, often a failure. Usually
some of the observations are censored, which means that the actual failure time is unobserved,
but is known to be greater than an observed censoring time. The Presence of censoring greatly
complicates the analysis in many cases, and so special methods of analysis have been developed
for failure time data.

There are many possible censoring schemes. In a random censoring mechanism, for individual
i we observe X; = min(T;, C;) where both T; and C: are random variables, with T; being time
until failure and C; a censoring time. This design includes many clinical trials where the end of

114
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the study is fixed, but patients are accrued randomly over time. It also includes studies in which
the individual censoring times are fixed in advance. In Type II censoring, the study is ended
after a pre-determined number of failures have been observed. All these schemes are examples
of independent censoring mechanisms. Censoring is independent if an individual who is censored
at time ¢t is representative of all other individuals who share the same covariate values, and who
survive to time ¢.

As usual, let f/t) denote the density of T and F(¢) its cumulative distribution function. The
survivor function F(t) = 1 - F(t) = P(T > t) gives the probability of surviving past time ¢. An

important concept in survival analysis is the hazard function, h(t), defined as

i PEST<t+A4T>1)  fp)
At) = Jlim, At = Fa)

where P(A) denotes the probability of event A. The value of the hazard at time ¢ gives the
instantaneous probability of failure at time ¢, given that an individual has survived to time ¢.

Another useful function is the integrated or cumulative hazard
t
H(t) =/ h(s) ds.
o
These definitions lead to the relationships

A(t) = -2 log(F(1)

F(t) = exp (— [ du) = exp(~ (1))
and
A(t) = - log F(t)

In the presence of censoring, the survivor function of T in a homogeneous population can
be estimated by the Kaplan Meier or product-limit estimate, #(t). This is a non-parametric
maximum likelihood estimate. Suppose that the distinct observed failure times in the data set
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aret; <1, <...<t,. Then
o) = [I ( - :—") (7.1)
e,<t k
where dy is the number of failures at time t; and n; is the number of individuals still at risk (ie
those who have not failed and are uncensored) just before time ¢,. Clearly, £ (t) is a step function,
with £(0) = 1 and Jjumps at the observed failure times.
Suppose we have data on time to failure for n independent individuals, and an independent
censoring mechanism. Then the parametric likelihood is
n n
L s e+ = [T hets)Feta),
i=1 i=1
where ¢, is the time of either failure or censoring for individual i, and where §; equals 1 if individual
i i actually observed to fail and 0 if individual i is censored at time ti. Note that, in the last
expression, while only uncensored individuals contribute a factor of h(t:) to the likelihood, all
individuals, both censored and uncensored, contribute a factor of F(ti). The likelihood can be
written
f[h(t.-)“ exp [- / " hw) du} : (7.2)
i=1 0
Parametric families of distributions commonly used to model survival data are the exponential,
gamma, Weibull, log-normal, or log-logistic. We note in passing that for the exponential distribu-
tion, the hazard is constant over time, i.e. A(t) = A, and the survivor function is F(t) = exp(-At).
The Weibull distribution has hazard h(t) = AptP-1 and survivor function ¥, (t) = exp(~(At)?).
There are two broad classes of models in common use to study the effect of covariates on failure
time, proportional hasard models and accelerated failure time models. In accelerated failure time
(AFT) models, the covariates act multiplicatively on T, and so the effect of a covariate is to
accelerate (or decelerate) the time until failure. Letting Y = log(T), an AFT model for Y is

linear in the parameters and has the form

Y=28+Ww
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where W is a random variable from some specified distribution. Usually W is chosen so that
exp(W) has one of the following distributions: exponential, gamma, Weibull, log-normal, or log-
logistic. The hasard for the AFT model has the form

h(t, z, B) = ho(t exp(~2z)) exp(~z0)
and the survivor function is
¢t exp(~z8)
F(t,2,8) = exp [— /o ho(u) duJ

where ho(t) is the baseline hazard function of exp(W), ie ho(t) is the hazard function of T when
z = 0. The likelihood for an AFT model is formed as in equation (7.2) with h(t) parameterized
as shown above. We note that the exponential AFT model has hazard h(t, z, B) = Aexp(~zg),
while the hasard for the Weibull AFT model is h(t, z, beta) = APptr-1 exp(—z0p). Note that if
an intercept is included in the model (ie the first covariate has the value 1 for all individuals in
the data set), then we can, without loss of generality, take A = 1. The parameterization used by
Splus has A = 1 and a scale parameter o = 1/p.

In the proportional hazards model, the covariates act multiplicatively on the hazard, usually

through the relationship
h(t, z, beta) = ho(t) exp(zB),

where z is a vector of covariates, 3 is a vector of regression parameters, and ho(t) is a baseline

hazard function, the hasard for an individual with z = 0. The survivor function is then given by
Ft,2,6) = [Fo(t)]*Pt=?)
where
¢
Fo(t) = exp [—/ ho(u) du] .
0

The most popular proportional hasards model is the Cox model, a semi-parametric model in
which the baseline hasard ho(t) is left unspecified. The P parameters of this model are estimated
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using the method of partial likelihood. There is some overlap of AFT and proportional hasard
models, in that Weibull AFT models (which include exponential models as a special case) can

have proportional hasards.

7.2 Competing Risks Models

Often we know not only the time of failure, but we can also designate the failure as having one
of several possible modes, or attribute the failure to one of several possible causes. For instance
a machine, consisting of several components, may fail when any one of its components fails. A
person’s cause of death might be heart disease or cancer. The multiple modes of failure are termed
competing risks.

There are two distinct approaches to analyzing this kind of data. The classical approach,
going back to Daniel Bernoulli, postulates the existence of m random variables T}, 73,... y Toms
where T; is the time at which failure mode J occurs. We observe only the first of these failure
times, T = min(Ty, Ty, . ... , Tm), and also which failure type has occurred. The remaining failure
times are latent, or unobeerved. With this kind of data, the joint distribution of the T}’s can be
estimated only in very special circumstances, for instance if the T:’s are multivariate normal (30}
or the Ts are independent from a distribution with non-vanishing right tail [29].

Typically the problem posed in the classical approach is to estimate the marginal distribution
of T; if one or more of the other causes of failure could be “eliminated”. Often one assumes
that the T; are independent. In the case of a machine with independent components, it may
make sense to consider elimination of a failure type. However with human subjects and causes
of death, it is unlikely that failure types are independent. As pointed out by Cox and later
studied in detail by Tsiatis, with the type of data available in the competing risks situation, it
is impossible to distinguish between a model with dependent T; and one with independent T;.
Even if independence is assumed, a mechanism for cause-removal would still need to be specified,
likely involving other assumptions (for instance, that individuals who would have died from the
eliminated cause are subject to the same risk of death from the remaining causes as the rest of

the population).
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The other approach to competing risks was expounded by Prentice et al [32]. In this approach,
we model the time to failure 7', and a discrete random variable D which represents cause of failure.
Suppose that there are m causes of failure, so that D takes values in the set {1,2,...,m}. The

cause-specific hasard for cause j is defined as

PE<T<t+A4D=;|T>¢) f(1)
At T F(t)

0= fm,

where

()= i PEST<t+At,D=j)
fit)= 4'2‘.‘.‘0 At )

We can also define cause-specific subsurvivor functions
Fi) =PI 260=5)= [ ft) da
t
Note that these three functions, because they are probabilities, are additive:

)= hj(t).

Jj=1

=Y £
1

J=

F(t) =3 Fi(t).

i=1

The marginal distribution of D is given by
7 = P(D = j) = F;(0) i=L2,....m

Typically the question of interest in this approach to competing risks is the effect of covariates
on the time until failure from causge J. Suppose that on each of n individuals, i = 1,2,..., n, we

observe time of failure or censoring ¢;, the censoring indicator 8, the cause of failure ji and a
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vector of covariates z;. The parametric likelihood is then
"
I (vt 2801 71, 2, 8)
i=1
where 3 is a vector of parameters to be estimated. We now perform some manipulations which
allow us to show that, as long as each of the cause-specific hazards is parameterized individually,
the likelihood factors into m terms, one for each cause of failure,

Define the pseudo-survivor functions

G628 = exp [~ ["hy(a,2,0 s

and note that the survivor function

¢t m m
-F(t’ Z,ﬂ) =exp [--/0. Zhj(as 395) d’] = HGj(tv zvﬂ)'
J=1 j=1
(The peeudo-survivor functions do not have an interpretation as probabilities, in general). Then
the likelihood can be written as
n n m
I thsottir 20, B1% Fts,24,8) = [ th 1, 20, 8% I16itti2:.8)

i=1 i=1 j=1

_ ﬁ[hﬂ(t""’ﬂ)}“gm [_ /o“ hi(s, z;, B) da] .

i=1

This factors into m terms, one for each cause, with the J*® term given by
n t

'_l:{[h,-(t.-. 2i,8)]% exp [— /o h;(s, z;, B) da] (7.3)
where 4;; equals 1 if j; = J and if individual i is uncensored, and 0 otherwise. Note that all
individuals, whether censored, failed from cause j, or failed from other causes, contribute to the
last factor of the likelihood. Thus the j** factor of the likelihood has the same form as the
likelihood for a single cause of fajlure given in equation (7.2). In fact, equation 7.3 gives the
same value as we would get by treating failures due to causes other than cause j as censored, and

constructing the likelihood as in 7.2. Suppose that we parameterize the model so that for each
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Js hj(t, z,B) is a function of a vector of parameters (; and that §; and §; have no elements in
common. Tke likelihood factor for the 7** cause then becomes
T th5 8 20 B exp [- [ nitoz0) s (74)
i=1
and we may estimate the cause-specific parameters (B;j) separately for each cause of failure, by
maximizing equation (7.4).
A useful function for summarizing the survival experience of individuals is the cause-specific

subdistribution function Fj(t), the probability that an individual fails from cause j and does so

before time ¢:
B =PT<tD=j)= [ ' filo) da = / hy(0)F(s) do.
Note that
Fi) =3 B
=
% = P(D = j) = Fy(co)
and

Fi(t) = m; - ;(2)

The function Fj(t) goes by various names in the literature, namely cumulative incidence function
(Kalbfleisch and Prentice), absolute cause-specific risk, crude incidence curve, and cause-specific
failure probability.

A point of much confusion to non-statisticians is how to estimate survival probabilities in
the presence of competing risks. A common practice is, for the j** cause of failure, to form the
Kaplan Meier estimate obtained by treating all failure times from causes other than j as censored.
It can be shown that the Kaplan-Meier estimate obtained in this way in fact estimates the pseudo-
survivor function G;. Plots of G;(t) versus time are useful in that they illustrate the cause-specific
hazard functions on a certain scale. However they should not be interpreted as probabilities. As
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we saw above, Fj(t) does represent a probability, namely the probability that an individual will
fail prior to time ¢ from cause j. Unfortunately, the common statistical packages do not have
routines for estimating F;(t).

Recall the classical competing risks framework where T = min(Ty,..., ;). If the T; are
independent, then G; has an interpretation as the survivor function of the latent variable T;.
Then f(t) is the density of the minimum observed time, T. However, in many cases it is not
reasonable to assume independence, and as mentioned above, this assumption cannot be checked.

Suppose that we want to quantify the survival experience for a homogeneous group of indi-
viduals. Note that this might be a subset of the data consisting of all individuals who share the
same covariate values. To estimate the pseudo-survivor function, Gj, we treat failure times due
to causes other than j as censored and form the Kaplan Meier estimate, which we will denote (jj.
Let tj; < tj2 <... < tjx be the distinct observed failure times for cause j. Then

G0= TT (1-22)
kltjn<t
where dj; is the number of failures due to cauge J at time ;5 and njy is the total number of
individuals in the data set still at risk just before time tjk. It’s easy to see that, as long as there
are no ties among observed failure times from different causes,
m
F) = [T it
i=1
where F(t), given in equation (7.1), is the regular Kaplan Meier estimate formed by ignoring
cauge of failure. Then a non-parametric estimate of Fj(t) is
Fi(t) = > :’%ﬁ(tj.).
Klep<e Ik
Then we can plot both G;(t) and i",-(t) against time t. While I'"}(t) can be used to predict the
probability that individuals will fail from cause j before time t, G;(t) can only be used for model
assessment.

Suppose now that we are modeling the effects of covariates using an accelerated failure time
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model. Maximisation of the j** component of the likelihood given in equation (7.3) will give

estimates ﬁ,— of the parameters. An estimate of the J*® cause-specific hazard function is
hi®) = hj(t 2, ;) = hoj(t exp(-24;)) exp(—zf;)

and of the j*® pseudo-survivor function is
- - texp(-z4;)
Gi(t) =G(t,2,5;) = exp -/o' ho;(s) ds

where ho;(t) is the baseline hazard for an individual who fails from cause J- (A more restrictive

model would have hoj = he for all 7). Then an estimate of the overall survivor function is

Ft) = Ft,z,5) = IIéiw®

=1
and an estimate of the cumulative incidence function is
¢
F;(t) = Fj(t,z,8) = fo hi(s)F(s) ds.

These functions are easily calculated when each cause-specific hazard is constant over time,
i.e. has the form of an exponential hazard. To allow dependence on covariates, we will use an
exponential AFT model. We will take hoj(t) = 1, which involves no loss of generality if an
intercept is included in the model. Then, for an individual with covariate values given by the

vector z,

hj(t) = exp(~z8;)
Gi(t) = exp{~texp(~zf;)}
F(t) = exp(-ct)
Fi(t) = c™' exp(—26;){1 ~ exp(~ct)}

P(D = j) = Fj(00) = ¢! exp(~2f;)
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where ¢ = Sic1exp(—z5;). Note that, T the time to failure (ignoring cause) has survivor
function exp(~—t¢) and so has an exponential distribution with mean ¢~!. Also notjce that the
cumulative incidence functions Fj(t) are proportional, differing by a factor of exp(—~zf;). Then

the conditional distribution function of T given D=jis

Frip(tlj) = % = 1 - exp(—ct)

which is exponential, and furthermore has no dependence on ;. Thus, the conditional distributions
of time to failure given outcome are identical (for a given value of the covariate vector). This
implies that T and D are independent. This is a feature of proportional risks models, which are
models in which the hasard functions for separate competing risks are proportional. Finally,

E(TID = j) = E(T) = [; " F)dt = 1.

To estimate these functions, we just substitute the estimated value 3 for B. The Cox-Snell residual
for individual i is calculated as

ri = —log(F(ti, 2, 0)) = & ¢;

where ¢; = 2;';1 exp(—z.-ﬁj).
Another competing risk model specifies that each cause-specific hazard has the form of a
Weibull AFT hazard. We will allow a different scale parameter p; for each of the j outcomes.

This ensures that the model is not a proportional risks model. Then

hj(t) = p; tPi~! exp(-zf;p;)

Gi(t) = exp(~t?! exp(~zf;p;))

F(t) = exp (Z —tPi exp(—zﬂ,-pj))

Jj=1
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F;(t) = pj exp(~zP;p;) /o' #P~1 exp (Z i exp(—zﬁij)) ds

Jj=1

Again, to estimate these quantities, we just substitute the estimated value 5 for B. Note that
i}(t) involves an integral which must be evaluated numerically. i}(oo), the predicted probability
of failure from cause J» can also be found numerically. The survivor function for the conditional

distribution of T given that D = Jis

F;(t)

Frip(tlj) =1- D=y’

and the expected time until failure, given that failure occurs due to cause j is
Q0
E(T\D = 7 =/o fmlp(alj) ds.

To estimate this last function, note that we must integrate under a curve whose equation has no
closed form. Fortunately most numerical integrators can handle this situation,
The Cox-Snell residual for individual i is

m
ri=)  t% exp(—zf;p;).
=1

7.3 Competing risks and FP2B models

The foregoing approach to competing risks, which models the joint distribution of T' and D, is
clearly similar in many respects to the FP2B models for length of stay outlined in this thesis. In
the context of length of stay, time until exit from hospital corresponds to time until failure. The
two types of exits, healthy discharge and death, correspond to the causes of failure. Recall that the
value of the subdistribution function Fy(t) gives the probability that an individual is discharged
by time ¢, while Fy(t) gives the probability that an individual dies in hospital, and does so before
timet. F,(t) and Fy(t) are, in the terminology of competing risks, cumulative incidence functions,
corresponding to F;(t),5 = 1,2. As we saw in Chapters 2 and 3, these functions arise naturally in
the development of the model. They can easily be estimated and plotted by plugging the values of
the estimated parameters into equations 3.5 and 3.6. Plots of the cause-specific hazard functions
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can also be made.

Note that the subdensities for the different outcomes of the FP2B model cannot be estimated
separately, since all the parameters are involved in both the upper and lower subdensities. While
the covariate z might only affect the upper barrier t, 80 that the associated parameter, 3% say,
is only involved in the upper barrier, u appears in both the upper and lower subdensity. The
FP2B model fully specifies the joint density of T and D, while competing risks models, generally
speaking, only specify the separate subdensities, and not the relationship between them.

The classical competing risks approach does not seem very palatable for modelling LOS in
hospital, as it seems somewhat abeurd to consider the time someone would be released from
hospital, if they didn’t die first. Certainly one could not assume independence of the latent
random variables time to death and time to discharge.

One advantage of the FP2B model, though not particularly applicable to LOS in hospital, is
that we now have a mechanism for removing a cause, in that we can think of letting one of the
barriers approach infinity. If the drift is positive, and the lower barrier is removed, the resulting
distribution is inverse Gaussian. If the drift is negative and the lower barrier is removed, the
resulting distribution is defective (has a mass of probability at infinity), but nevertheless has been
successfully used in modelling (see (43]). Predictions of expected time to breach, and probability
of breach of the remaining barrier, would be possible if one were willing to assume that, after
removal of one barrier, the remaining barrier and the drift parameter remained unchanged.

7.4 Example 1: Exponential competing risks model

We now fit some of the competing risk models to the same data set fitted in sections 2.4 and 3.5.

Here we examine the exponential competing risk model. In the following table we show, in each
covariate cell, the obeerved time in hospital (T'), the obeerved time for those that were discharged
(T|D = u), and the observed time for those who died in hospital (T|D = 1). The last two columns
show the observed proportion of patients who were discharged (P(D = u)), and the proportion
who ultimately died in hoepital (P(D = 1)). The corresponding expected quantities predicted by
the model are shown in brackets.
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Severity | n T TID=u T|D=1 P(D=u) P(D=))
low 82 449 4.61(4.49) 3.60(4.49) | 0.88(0.88) 0.12(0.12)
med |39 4.67 5.96(4.67) 2.36(4.67) | 0.64(0.64) 0.36(0.36)
high 13 4.92 8.80(4.92) 2.50(4.92) | 0.38(0.38) 0.62(0.62)

First we note that the model is fitting the probabilities of each outcome exactly. Note that the
expected time in hospital, for a given level of the covariates, is the same for both outcome groups,
since this is a proportional risks model. The expected times in hospital, given outcome, are not
very close to those observed, but are in fact exactly equal to the average unconditional LOS. A
plot of the Cox Snell residuals for this model further indicates that the fit is not very satisfactory.
In general, low LOS are overpredicted by the model, while high LOS are underpredicted.
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Figure 7.1: Exponential Competing Risks model
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7.5 Example 2: Weibull competing risks model

Here we fit the Weibull competing risks model described above to the same data. The model

predictions are shown in the following table.

Severity [ n T T|D=u TID=1 | P(D =) P(D=1)
low 182 449 4.61(4.59) 3.60(2.89) | 0.88(0.88) 0.12(0.12)
med |39 4.67 5.96(5.96) 2.36(3.63) | 0.64(0.61) 0.36(0.39)
high || 13 492 8.80(6.85) 2.50(3.98) | 0.38(0.37) 0.62(0.63)

Again, the predicted probabilities of each outcome are almost exactly equal to the observed
proportion of patients in each outcome group. Length of stay given each outcome is well predicted
by the model for low and medium severity patients who were discharged. The model is under-
estimating LOS both for high severity patients who are ultimately discharged and low severity
patients who die in hospital by about 20%. On the other hand, it overestimates LOS for those
who die in hospital in both the medium and high severity groupe by more than 50%.

The Cox-Snell residuals are shown in figure 7.2, While observations with large LOS are
underpredicted by this model, the overall fit is much improved over the exponential model. We now
compare the Weibull competing risks model to the FP2B model fit in section 3.5. A comparison of
the quantile plot of the Cox-Snell residuals for the two models indicates that the Weibull competing
risks model gives a somewhat better fit. There is still substantial lack of fit for obeervations with
high residuals, corresponding to those patients who remain in hospital an unusually long length
of time, given the covariates.

We now compare the predicted times and probabilites of each outcome given by the two
models. The Weibull competing risks model does a better job of predicting probability of outcome,
especially in the medium severity group. The Weibull model also does a better job of predicting
LOS, except for patients with high severity who were ultimately discharged. This group of patients
are observed to have long lengths of stay on average, which are underpredicted by the Weibull

model.
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Figure 7.2: Weibull Competing Risks model



Chapter 8

Discussion and Further Work

8.1 Discussion

In this thesis, we have presented statistical models for time to breach of an upper or lower barrier
in a latent Wiener process, which we call FP2B models. The motivating application for this work
is length of stay in hospital, for patients with diseases and procedures and for agegroups in which
a substantial number of deaths occur in hospital. There are many other possible applications, for

instance
e time until graduate students graduate or withdraw,
¢ time until CD4 counts in AIDS patients reach an upper or lower threshold,
e time until cancer patients go into remission or die,

¢ in breast cancer patients: time from beginning of treatment to “progression” (cancer starts
to grow again) or “shrinkage” (cancer shrinks by a specified amount, usually 50%).

Because cancer and AIDS patients are not monitored continuously, the latter three applications
would involve interval censoring, which would be an interesting area for further research.

The parameters of the FP2B models are the barrier levels and drift. Since these are unobserv-
able, we have given expressions for obeervable non-linear quantities that are of direct interest to

the researcher, namely expected time in hospital, and the probability that the hoepital stay ends

130
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in healthy discharge. In health services applications, where LOS is sometimes used as a surro-
gate for resource consumption, it is important to estimate the mean expected time, rather than
the median, since total LOS can be reconstructed from the mean. The parameters of the model
have been estimated using the method of maximum likelihcod. We have shown that regularity
conditions are satisfied, for the zero drift FP2B distribution with iid observations.

The subdensities of this model are infinjte series, which we have shown are absolutely conver-
gent and uniformly convergent with respect to the parameters and to the variable ¢ over (0, 00).
The computed likelihood is necessarily an approximation, in that only a finite number of terms
of the series can be included. It would seem to be a good approximation, since the terms of the
series drop off like exp(—k?) as k — oo. However, small inaccuracies in the likelihood could lead
to large inaccuracies in the estimated parameters, if the likelihood is flat. While more work is
needed to investigate this issue, we have demonstrated that the approach is workable and that
the maximum likelihood estimates obtained seem reasonable.

In administrative data files, LOS in hospital is recorded in days, and for the DRG’s investigated
in this study, LOS typically takes values in the set 1,2,...,35. Thus a discrete time model might
provide a somewhat better fit to these data. But for other applications, in which time to the event
in question is recorded in continuous time, a continuous model such as developed here, would be
necessary.

A simple discrete time model would be easy to construct. For instance, we could model the
health level process as a random walk on the integers, which takes jumps of size one in either the
positive or negative direction at discrete time intervals of one day. Then the distribution of time to
hitting a lower barrier is well known, and in fact is given in equation C.8 of the thesis. Expressions
for the mean, conditional means, and probability of each outcome are given in equations 3.8, 3.10
and 3.7. More realistic but less tractable discrete time models would allow other distributions for
jump size. Further investigation would be needed to determine whether the resulting estimates
for LOS parameters would be very different from their corresponding estimates in the continuous

framework.
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We can think of the continuous FP2B model as an approximation to the discrete time model.
Note that the subdensities for the simple discrete time model involve the binomial coefficients,
which, for large values of LOS, would have to be approximated using for instance Stirling’s ap-
proximation. Thus even this discrete time model would involve an approximation. Also, any
analytical investigations would presumably have to invoke this approximation as well.

As discussed in section 1.2, the data investigated in this thesis do not include any right censored
observations. However right censoring may be present in other applications. In this thesis, we
use maximum likelihood to estimate the parameters of the FP2B models. Independently censored
observations can easily be accommodated; individuals who are censored at time ¢ contribute a
factor of F(t) to the likelihood, where F is the survivor function of the FP2B distribution. All
the software written to support this thesis can accommodate independently censored observations.
Under mild conditions on the (independent) censoring (see (22]), maximum likelihood estimates
will be consistent and asymptotically normal.

However, good estimates of the mean of a distribution in finite samples are notoriously difficult
to obtain when a high proportion of observations are censored (see [21]). The same sorts of
difficulties would apply to the estimate of P(D=u) since this functional also depends heavily on
the tails of the cdf.

We have shown that the FP2B models have many similarities to competing risks models in
which the joint distribution of time to failure and cause of failure is modelled. Indeed, the FP2B
models can be thought of as special parametric models for two competing risks. While the most
common competing risks analysis !eaves the relationship between the two subdensities unspecified,
the FP2B models specify the relationship between the subdensities, due to the fact that the same
parameters appear in both subdensities. This may be a disadvantage in that the usual competing
risks model is more flexible. However the FP2B model will presumably be more efficient, if the
data do indeed arise from the kind of mechanism which motivates the FP2B distribution.

Note though that the usual competing risks analysis parameterizes each of the ‘outcomes sep-
arately. If the data did come from the mechanism described in this thesis, that is with an

underlying process hitting one of two barriers, then it would seem to be inappropriate to allow
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separate parameters for each outcome.

A non-statistical issue is that the idea of an underlying one-dimensional stochastic process
with two barriers may provide a conceptual framework for certain research problems that allows
researchers to think clearly about their hypotheses and how to test them. In the following dis-
cussion, we will use the idea of internal and external covariates as described in [22]. An internal
covariate is defined to be a covariate which can only be measured at time ¢ if the individual
survives to time t. On the other hand, an external covariate is not directly involved with the
underlying health level process.

It seems reasonable that internal variables might affect the health level process through the
drift parameter, (which we might interpret as an individual’s Propensity to get well) while external
variables might only affect the barrier levels, However, it may be difficult to classify a variable as
truly external. For instance it seems that payer (Medicare/ Medicaid/HMO) would be unlikely to
affect an individual’s health level process. However, the group of patients served by a particular
payer are distinct. Since individuals insured by Medicaid tend to be disadvantaged, we may
find that this disadvantage shows up as an effect on the drift parameter. External hospital-
level covariates such as type (rural/urban, teaching/non-teaching), or size of hospital, might
conceivably affect barrier levels, but again the appropriate model depends on the hypothesis
under investigation. To test whether rural hospitals keep patients longer than necessary, it would
be natural to place an indicator variable for location (rural/urban) on the upper barrier. If this
variable were thought actually to affect quality of care, it might be Placed on the drift parameter.

It seems natural that internal attributes of the individual patient, such as sex, age, and presence
of co-morbidities, will directly affect the health status process and an individual’s propensity to get
well, and 80 should be put on the drift parameter. However, some internal attributes are important
indicators of health level status at admission to hospital, for instance co-morbidities present at
admission. As discussed in Chapter 3, differing health status levels at admission to hospital can
be modelled by allowing both barrier levels to be raised (or lowered) by some estimated value.
It is not possible to distinguish whether a change in apparent barrier level is due to a change in
starting value, or an actual change in barrier level.
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It should be noted that patients with like covariates all share the same drift, regardless of
outcome (death or discharge). If we wish to model a differential effect of an internal covariate
on outcome, then it would be neceasary to put the covariate on the barriers as well. However,
this raises the question of why such a differential effect exists, For instance, homelessness is
an internal attribute which would presumably affect propensity to get well, as well as starting
level. In addition, a differential effect on outcome could be present because hospitals were holding
homeless patients longer out of compassion, or because drift varies across individuals in a way not
explained by the model.

We have developed two extensions in Chapter 6. The first extension, a parametric mixture
model, recognizes the presence of heterogeneity in the data that remains even after all relevant
covariates have been included in the model. We have shown that if we allow the drift parameter
to have a normal mixing distribution, the likelihood is quite tractable in that it does not involve
numerical integration.

The second extension, a transfer model, gives a way of dealing with a third outcome, transfer to
another institution. We postulate the existence of an intermediate barrier, and model probability
of transfer given breach of this barrier as a function of covariates. Note that while independently
censored obeervations are easily accommodated by the earlier models, transfers cannot be treated
as independent censoring, since the decision to transfer at least partially depends on the health
level of the individual. In the example given in the thesis, we modelled transfer to another acute
care institution. We assumed that the transfer barrier level was greater than the starting position
of the health level process, but less than the discharge barrier. This was felt to be appropriate
since myocardial infarction is a catastrophic event, and Presumably patients are not transferred
until their condition stabilizes somewhat. In other applications, it may be more appropriate to
have the transfer barrier below the starting position, for instance for individuals transferred to a

nursing home.



CHAPTER 8. DISCUSSION AND FURTHER WORK : 135

8.2 Further Work

A methodology for dealing with time-varying covariates should be developed, so that information
on procedures and diagnoees that develop while the patient is in hospital can be included in
the modelling process. In other applications, we might want to incorporate information from a
covariate or marker process. One approach would be to extend the work of Whitmore, Crowder,
and Lawless [44]. They use a bivariate Wiener process to model the joint distribution of a marker
process and an unobservable degradation Process. In this approach, it is assumed that a unit
fails when the degradation process crosses a single barrier. Then time until failure will have an
inverse Gaussian distribution. They find that information from the marker process can improve
predictions and increase the efficiency of estimation of the degradation process parameters when
censoring is present. This increase can be substantial if the correlation between the two processes
is high.

In this thesis, the underlying health level process is assumed to be a Wiener process, with
independent increments, but it is Possible that another process with dependent increments might
be more realistic, for instance the Ornstein-Uhlenbeck process.

The mixture model developed in Chapter 6 recognizes unstructured heterogeneity in the pop-
ulation, but it is important to develop random effects models which accommodate the known
hierarchical structure of the population, since patients are clustered within hospital. A method-
ology for incorporating sampling weights would be useful for some studies. Formal techniques
of model assessment need to be addressed. Finally, the models could be extended to deal with

recurrent events, which arise in health services research as multiple admissions.



Appendix A

Absolute convergence of F(t)

In this appendix we show that the series F,(t) is absolutely convergent for finite ¢ > 0, where

ro=ig{e(5) -+ (%)

with 54 = ~(2k + 1)(u +1), and £, u > 0.

Let ¢ be non-negative and finite. Consider the series YieoGk with a3 = & (1%5) For
—(sx +£)/VE > 2, ie for k > (\/t-+l/2)/(u+l) — 1/2, we have

If 3 by converges, then 3 ax converges by the comparison test.
We now use the integral test to show that 3 b converges. We can write by as a exp(—k8) for
poeitive constants @ = (2r)~1/2 exp(—u/v?) and 6 = 2(u + 1)/vt. Now aexp(—~z6) is a positive,

continuous function of z, that is non-increasing for z >0and
- -]
/ ae~ %z =%
o (]

which is finite for finite ¢. Therefore 3" ba converges by the integral test. It follows that Ya=
3 &( 5%5) converges by the comparison test.
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[ ] \+\+
® \+
. [ ]

Figure A.1: The sequence a; is represented by dots, the sequence by by plus signs, and the function
ae=*® by a smooth line.

Similarly, one can show that 3"  &( w) o ®( L) and T2, ®(*47%) all converge.
Then

= {o (2 +(279)

)=+ (7))

converges absolutely, as does

Fu(t) =zi{¢ (""\;“

k=0




Appendix B

Derivation of distribution, Zero
Drift

A Wiener process with zero drift is a continuous time, continuous state-space stochastic process
{H(t);t > 0} with continuous sample paths. Here the index ¢ represents time. The increments
H(t) — H(s) exhibit the Properties of stationarity, independence and normality. More specifically,

1. the distribution of H(t) - H (2) depends on ¢ — s, (and not ¢ or a),

2. H(tj) - H(s;) is independent of H (t&) — H(sx) whenever the intervals (8,t;) and (s, tx)

are digjoint, and

3. H(t) - H(s) has a normal distribution with mean 0 and variance o3t - s).
The parameter o2 is referred to as the volatility or variance parameter. Property 1 is sometimes
called the property of “temporal homogeneity”. Additionally, the zero-drift Wiener process is
spatially homogeneous, since the distribution of & (t) — H(s) does not depend on H (8).

In this appendix, we consider a Wiener process {H(t);t > 0} which starts at 0, (ie H(0) = 0),
8o that H(t) ~ N (0, o?t). We will derive an expression for Fy(T), the probability that the process
first hits an upper barrier at u > 0 at some time before time 7', without having hit a lower barrier
at —£ < 0. We will do this by constructing the set of paths of the process that reach u before
time T, without first hitting —£. We will then find the probability associated with all paths in
the set.

Start with the set of all paths that reach level u before time T. Now this will include some
paths that reached —¢ before T and then went on to u. These paths must be removed from the
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set. But in doing so, we will have removed paths that go to u, then —¢ then 4, which should be
part of the set, s0 we must add these paths back in. Then again, paths that go to —¢, u, -4 u

must be removed, etc. Writing P[A] for the probability of event A, we have
Fo(T) = P[all paths that reach u before time T without hitting —¢]

= P[all paths that reach u before time T
—  P[ paths that go to -, then u before T
+ P[ paths that go to u, -£, u before T)

= P[ paths that go to -£, u, -, u before T] + .... (B.1)

To find each of these probabilities, we use a reflection argument. For instance, the first probability
on the right hand side of equation (B.1) is the probability of all paths that hit u at some time
T) where 0 < Ty < T. But the event [H(T)) = u] is the union of the two disjoint events
[H(TY) = u, H(T) > u] and [H(Ty) = u, H(T) < u]. Furthermore there is a 1:1 correspondence
between paths with H (T1) = 4, H(T) > u and those with H (T1) = 4, H(T) < u. This is shown

ho % -

= e,
— : Wl T
I ; W TN

3

Figure B.1: Sample path reflected about H t)=u

in figure B.1 where the path which ends above u at time T (depicted by the solid line) is reflected
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about the line H(t) = u, to give a corresponding path which ends below u at time T (represented
by the dotted line). Because of the properties of the Wiener process and the symmetry of the
normal distribution, these events have equal probability. Therefore,

P(H(Ty) = u] = 2P{H(T}) = u, H(T) > 4]
= 2P[H(T) > u]

-
=2 —
(m/T)
where &(z) is the cdf of the standard normal distribution evaluated at z. The second equality
is true because all paths that reach a position greater than u must have passed through u at a

previous time.

The second term of equation (B.1) is only slightly more complicated. We need the probability

.\-""F.""‘
u
=
I ;
: e §
of Ve i faate
(u+|’ ‘E E \M‘,'o~;’. A
T T2 T

Figure B.2: Sample path reflected about H. (t) =u and H(t) = —¢

of all paths that hit —¢ at some time T}, then u at some time Ty where 0 < Ty < Ty <¢t. As
shown in figure B.2, among paths with H(T}) = —¢ and H (T2) = u there is a 1:1 correspondence
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between those that end below u at time T, and those that end above 4 at time T. Thus
PH(Th) = -, H(T;) = u] = 2P[H(T}) = —¢, H(T3) = u, H(T) > u]

This type of path is difficult to deal with, so we reflect it about the line H = —¢ to give a path
with H(Ty) = —¢, H(T}) = -t - (v+8, HT) < -t - (u+ ¢). The probability associated with
paths of this type is just

PH(T) < £~ (u+0)] = 28 ( w)

ovT
since all paths that reach —¢ — (v + £) must have previously passed through the levels H = ~£
and H = ~£ ~ (u+£). Thus Plpatha that go to £ then u before time T] = 24 (%.t‘l)

The same sorts of arguments show that the probability of all paths that go to u then —£ a total
of  times, and then to u, all before time T, is 26 (=*<440) for  — 0,1,2,3,..... Recall that
these types of paths are added to the set in equation (B.1). Similarly, the probability of all paths
that go to —¢ then u a total of k + 1 times before T is 28 (2‘;%,‘)1;‘1) for k=0,1,2,3,....
Recall that paths like this must get removed from the set, 30 we subtract these probabilities.

In total then, the probability that the process reaches the upper barrier u for the first time
before time T and does so without going through —¢ is

e <o o (2202) _y (o ptesn))

k=0

The lower sub-distribution function, Fy(t), can be derived in an analogous manner. However,
we can also argue that, due to the symmetry of the process, the time to reach a barrier at -£ is
the same as the time to reach a barrier at £, Thus we can get F(t) by reversing the roles of u
and £ in F,(t). More precisely, if we denote F, (t) as the function 9(t,u,2), thenFy(t) = g(t, 4, u).
Thus

=15 s (lert) _y (ze-hs vasn))
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Let F(T) denote the probability that the process breaches one of the two barriers before time
T. Then since F(T) = F, (T) + Fi(T), we get
o0
wr) —*(57) 2 (59) -+ (22))
FT)=2 Pl—F)-¢|—F=)+e(2T2) (2=
@ ,,2{ (a\/f oVT oVT oVT
where ay = —(2k + 1)(u + £). Note that in the body of the thesis, we take o2 = 1.

Theorem B.1 LetT, ;. denote the time that a Wiener process, {H(t),t > 0}, starting at H(0) =
z, first reaches either g barrier at a or b, wherea <z < b. Then Tab.0 has the same distribution

as n+c,b+c.c
Proof: If we retrace our steps through the proceeding derivation of the upper sub-distribution
function of Ty _,, it is clear that the theorem follows from the spatial homogeneity of the Wiener

process. Let H,(t) be a Wiener process that starts at c. Then
He(t) - H.(0) = H.(t) — c ~ N(0,¢).

To find the upper sub-distribution function of Tyic _¢4c. We need the probability of all paths
that reach u + ¢ before time ¢ without first hitting —¢ +¢. As before we can decompose this into

an alternating series of probabilities.
Fu(T) = P[all paths that reach u + ¢ before time T without hitting —£ + ¢]

P[ all paths that reach u + ¢ before time T
P[ paths that go to -£+ c, then u + ¢ before T)

+ P[paths that go to u+¢, -£ +¢, u + ¢ before T+ ...
The firat addend in the series equals

2P(He(t) > u+c) = 2P(H.(t) - ¢ > u) = 28 (‘7:‘)

exactly the value of the first addend in expression B.1. All the other terms in the new series have
the same probability as their corresponding terms in B.1. Thus the upper sub-distribution function
of T, _¢,0 is identical to the upper sub-distribution ﬁgnction of Tyye,~t4ec. Similar arguments
apply to the lower sub-distribution function and the distribution function itself. Q.E.D.
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B.. Stable Laws

As before, consider a sero-drift Wiener process with volatility @ which starts at 0. Now let the
lower barrier at —4 — —oo so that only a single barrier at u remains, and let 7, be the first
passage time to this barrier. Then P(T, <) is given by the first term in expression B.1 so

P(T, <t)=2% (-ﬁ) .

Differentiating gives the density

u

This distribution is a stable law with index 1/2 (see below). Note that if we let u — 0o, leaving

a barrier at —¢ < 0, the first passage time —£ has the same density given above, with u replaced
by £. Thus for the first Passage time to a barrier at a # 0, the density is given by

i) = oy (o) =+l (%)

The stable laws are characterized as follows. X, X1, X;,...X, have a stable distribution if

3i=1 Xi has the same distribution a8 an X + by where ap > 0 and b, are arbitrary constants.
Clearly the normal distribution is stable. The limiting distribution of sums of iid random variables
must be a stable law.

The characteristic function of a random variable X with stable distribution can be written as

([14])

Breir = | P (Sletl®exp(=i § Bogn(t) +idt) a1
exp (—|ct| - i(28/x)ct loglct| +idt) a=1

where —00 <t < 20,0 < a <2 Bl < min(a,2-a), ¢>0, —00 < 4 < 00. .The parameter a
is referred to as the index or characteristic exponent. The parameter 3 is a skewness parameter,
with3=0 corresponding to a symmetric distribution. ¢ and § are respectively scale and location
parameters.

The stable laws include the normal family of distributions (a = 2) and the Cauchy distributions
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(@ =1), as well as the first passage time distributions discussed above (@ = 1/2). These are the
only three cases in which the density has a cloeed form. However, an expression for the density
in terms of an infinite series is known for all stable laws. Assuming the random variable X has
been standardized to have ¢ = 1, § = 0, the density of X is given by ([18], p. 549)

%2;1 EQ,#.""'ﬂ(-ﬂ—'"")‘iﬂin (&8 - a)l z>0,0<a<1

fz;a,8) = . X
1 oo P!H-jl!c !(__z)jsin [%(ﬁ _a)] z>01l<ac2

*r Zoj=1
To find the density for z < 0, note that f(=z;a,8) = f(z;a,-p).

If a stable law has characteristic exponent a, then it has finite absolute moments of order y
where 0 < 4 < a. All absolute moments of order 2 @ are infinite ([20], p. 182). Of the stable
laws, only the normal has finite variance. Both the Cauchy and the stable law with a = 1/2 have
both infinite variance and infinite expectation.



Appendix C

Derivation of Distribution,
Non-Zero Drift

C.1 Solution to Difference Equation

In this appendix we give the derivation of the subdensities for the drift case. Following Feller ([17]),
we start with a random walk, and construct and solve a difference equation for the probability of
breach of one of the barriers at epoch n. As the number of steps per unit time gets large, while
the size of the steps gets small, the random walk becomes, in the limit, a Wiener process. Taking
the limit of the probability of breach at time n in the same way, gives the subdensity we seek.

Consider independent random variables 21,2,,..., where P(Z; = 1) = pand P(Z; = -1) =
1-p. Let Xo =0, and Xp = X,_, + Zn. We can visualize the stochastic process {X,}3, as
the path of a particle which starts at position z > 0 at time 0 and performs a random walk on
the integers. At each unit of time the particle takes either an upward step of unit length with
probability p, or a downward step of unit length with probability g, where p + q¢ = 1. Suppose
that there are abeorbing barriers at positions a > z and 0.

A more colorful representation of this situation is that of a gambler, who starts with an initial
sum of money z dollars, playing against an adversary whoee initial capital i8 a ~ z dollars. The
gambler wins a hand with probability p, in which case he takes a dollar from the adversary. He
loses with probability ¢, in which case he must give a dollar to his adversary. The game continues
until one of the players is ruined, that is until one player’s capital is reduced to 0. In this case
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Xn represents the gambler’s fortune at the nth hand of the game.
Let u, , be the probability that the walk, starting from position z, breaches the lower barrier
at the n*4 gtep, (without first reaching the upper barrier). We can set up a system of difference

equations to describe the situation:

Usntl TP Usirn +q Usoyg z=12,...,a-1 n=012,... (C.1)

with boundary conditions

ugo=1

Ugpn =0 n=0,12,...

> (C.2)
Uon =0 n=1,23,...

u;0=0 z=12...,a.

This system can be solved using the method of generating functions. The generating functions

for u; , is

Us(s) = iu,’,.a"

n=0

Transforming the sequences in equation C.1 to their respective generating functions gives
Us(s) —u
Bl 20y 6) 4 s
and since u;,0 = 0 for z = 1,2,...,a

Us(s) = paUs.41(s) + qaU, 4 (s) (C.3)

This is itself a second-order homogeneous difference equation in the variable U, (s). The initial

conditions are given by

Us(s) = 1 Us(s) =0 (C.4)

Uo(8) = uo,0 + ug 18 + ug28® +...4+ Ugns" +...
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and
U.(a) = uc'o + u.,l’ + uc'zaz + s + ua‘nan + see

and, as specified in C.2, uo,0 = 1, but all other coefficients in the two power series equal zero.
General difference equation theory suggests that we try solutions of the form U, (s) = A*(s), which

upon substitution into C.3 gives
A' = paditl 4 gars-t
Dividing through by A*-! and rearranging, we get
¥-tailog
p

This equation has roots

A(e) 14 4/1-4pgs?
Hs) = ——v—

2ps

and

,\2(3) = l—\ \'I—W

2ps
The general solution will then be of the form

U:(s) = A(s)A}(s) + B(s)\}(s) (C.5)

where A(s) and B(s) are determined by the boundary conditions C.4. We find that

—A3(s)

40 = =20

)
) = e -
so that

_ M) ~ M(a)23 (o)
Ol = =R
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or equivalently, because \;(s)Az(s) = q/p,

_ (1) N0 -7 0)
o0 =(3) =i (¢

A little algebra allows us to rewrite C.6 as a function independent of A,

X=q 2~
v (@) T
a a
- (8)" 1o (o)
Then expanding the denominators as geometric series, ie

ol

U (s) =

allows us to write

(5) e Agka—s (C.7)

Us(s) = f: (qf) " et f:

k=0 k=1

We still need to derive an explicit expression for A;. Consider another random walk, starting

at z > 0 as before, but now with only a single absorbing barrier at 0. It turns out that A3(s) is

the generating function of Wy,n, the probability that the walk ends at the barrier at epoch n, as
we will now show.

The difference equation for the single barrier situation has the same form as before, namely

Win4l =P Witrn +q Wiy z2=1,2,3,... n=012,...

but with different boundary conditions

woo =1
won =0 n=123,...
w;o=0 z2=12,3,...

Transforming the difference equation in terms of generating functions W, (s) = Taro Wins"

gives

W:(s) = psW, 11(s) + qsW, -, (s)
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with boundary condition Wo(s) = 1. The same particular solutjons A1(#) and Az(s) still apply
but the boundary condition now dictates that A(s) = 0 and B(s) = 1 so that the general solution
of equation C.5 is given by
)
Wi(s) =) w, a8 = 2i(s)
n=0

Now in fact, w,,q can be found by simple combinatorial arguments (eg [17]) as

zp n pin=3)/3g(n+5)/3

n | (o)

Wyn =

where the symbol ()* denotes the usual combinatorial symbol if n and z are of the same parity,

and zero otherwise. Substituting the expression for Aj into the generating function C.7 gives

0= £[(0)" Gwear] - £ [0 Somer]

k=0 n=0 k=1 n=0

=50 [5(2) enena- () R—

n=0 =0
The n** coefficient of the series gives the quantity we seek, namely u, ,, the probability that a
walk starting at z reaches the bottom barrier at epoch n:

Upn = f: (qg) " Wokats,n ~ i (qg) - Wika-s,n (C.8)

k=0 k=1
C.2 Limiting Distribution

In fact, w, = £ P(X, = 242) where X, ~ Bin(n,q). Then since X, 3 Y where ¥ ~
N(nq, /nqp), we have that, as n — 00,

z 1 (%42 — ng)?
I, i (‘“’znm )
_ oz 1 (z +n(p—q))?
= H«m“"(‘\m )

We began this section with a random walk that takes a single step of length one at each time
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epoch. Consider what happens as the steps become smaller and smaller in size, and at the same
time the number of steps per unit time interval gets larger and larger. If in the limit we let 4,
the size of the steps go to 3ero, r, the number of steps per time epoch go to infinity, and p, the
probability of an upward step go to 1/2 in such a way that

(p—-q)ér - 4

4pgé?r o o3

where 4 and o2 are constants, we get a Wiener process with drift u and volatility o2.

We want to find the probability that the limiting Process, starting from position ¢ > 0, reaches
the lower barrier at 0, in a small interval around time ¢, without breaching the upper barrier at
a > (. We must adjust the starting position, z, and upper barrier a, and the total number of

steps n in the discrete walk so that
z~(/8 a~alé n~tr

Also, we take the limits so that

[] é

and

¥ 2\ —¥
2 L (1o 2 %
(q) (1 /5 ) e

Taking the limit of expression C.8 in the way described gives

21 temon & - 1 SOV
T é((-f-%a)e g(%a Qe (C.9)

This is the probability that the Process ends at the lower barrier in an interval of length 2/r
around ¢. The corresponding subdensity is

\/2;_2‘3.;-‘“3!““ Y (¢ + 2ka)em S22 (C.10)

k==0o0
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Now we need to change co-ordinate systems in order to deacribe the situation where the process

starts at 0, and the absorbing barriers are at u >0and —¢ < 0. Asshown in figure C.2, a distance

position

time

of ¢ in the old system corresponds to a distance of £ in the new system, while a distance of a in

the old system corresponds to a distance of u + £ in the new system. Making these substitutions

in C.10 gives
1 _(pesae o = (=t=an(upe))?
- T S (= Bh(u g g))e- g (C.11)
V2ra2td ,,g_:m

Setting 2 = 1 and using notation established in the main body of the thesis gives (@)

St Pl i (sx +u) ¢ (ag\;u)

The other subdensity, J& (t), is derived in a similar fashion. Again we start with the discrete
case, and think of a gambler with initial capital z. In this case we want the probability of the

k=-o0c

event that the gambler wins at epoch n. But this is just the event that his adversary, with initial
capital a — z, loses at epoch n. Thus we need to replace z in the above argument with ¢ — z. Also
the adversary wins each hand with probability g, so the roles of p and g in the above argument
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must be reversed. Eventually we get that f¥(¢) is
- -]

—t— Sl Z {(3k +0)¢ (ak‘/-ttl)}

k=—o00




Appendix D

Integral Bounds

We use the following lemma to establish integral bounds on infinite series.

Lemma D.0.1 Let g(z) be a non-negative function that decreases monotonically on [a, 00). Let
{9x} be the sequence formed from g(z) at integer values of z. Then

Y o 5/ 9(z) dz + g(a)
k=a a

Proof:

Z g < / g(z) dz
k=a+1 a

so that
Zg,, S/ 9(z) dz + g(a).
k=a e

Q.E.D.
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Appendix E

Derivatives

This appendix records the derivatives for all the models discussed in the thesis and outlines the
incorporation of covariates. To simplify notation, we write f,; for Ju(t), fui for fi(t;) and F; for

F(t;). Where limits are not indicated, the sums over k extend from —oo to 0o.

E.1 Zero Drift Model

The log likelihood for the zero-drift model without covariates is

C(u,l;tutz,---,tn)=i:£i= Z Lui + Z Ly + E Lei (E.1)

i=1 {i:D;=u} {é:D;=1} {i:D¢=c}
where D; is u, l or ¢ according to whether individual i was discharged, died or was censored. Here

L; is the contribution to the likelihood from individual i, and
Lui =log(fui) if D; =,
Li=1{Lu=log(f) iD=l (E.2)
Lei=log(F;) ifD;=c

where

P
P
3;

fi=t13g
k

fll"t §E¢

»

~
ﬂl“
Ko | Rl
v
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A EC )G ()

k=0

andcy = (s +¢) and e, = —(sx + u). As before, 53 = —(2k + 1)(u + ¢), so0 that
ck=2k(u+8) +u e =2k(u+ g +L (E.4)

For this model, u and ¢ are the parameters to be estimated.
In what follows, we will need the derivatives of the subdensities, so we record them now. Write

0 = (61,0;)" = (u, )’ for the vector of parameters to be estimated. Then, for j = 1,2, we have

e ()

af.'_ —f 863 [/ e’
ot () -4

where
Ocxy  Oci dex ey _
9, ~ou k¥l Gp=gL=2
36; acg Oeg _Oe; _
ao a 7 = 2k E-— 7-2k +1

The gradient, G(u, £), ie the vector of first derivatives of L(u,4ty,2,,...,t,), is a (2x1)
’

vector, (g._‘: %_f) . We can write

G(u,t):iG.-.—. Z Gol’"‘ Z th'

i=1 {i:D¢=u} (i:D¢=1})

where G is the contribution from individual i and

G'.' if D.' =u,
Gi=

Gy ifD;=1

where

ac ac
Gui = e Gu =

ac [- 74
Ehui p-LT18
e aL
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For j =1,2,
&ziaf..-=£.%:¢(5g;)[1-f,§]
00; Jui 09; Ek¢(7"')¢k
oCu _ 1 ofs _ Tu i ¢ () [1- ]
@=Eé‘ . (E-5)

Zid () o

The Hessian, H (u, ¢), ie the matrix of second derivatives of L(u, &1,

tayeee ta), i8 2 (2% 2)
matrix. The element in the j** row and j'** column of H is “‘; oﬁ We can write

H(u.l):i:f[.'= E H,; + Z Hy;

=1 {i:Di=u} {i:D¢=1}

where H; is the contribution from individual 1 and

Hy if D=,
H; =
Hy ifD;=1
where
3 N 2 8" 3

N - R o
= 3 2 ' 2 2, .
ot G ot G

Then for j = 1, 2,

8080,: fui 98;00; ~ f3. 3;

Pl _[L 3’f¢; _L% 3f¢-J
30,'30,' - !

OLui - [ 1 3’f-. 1 0!-- 3f--]

(E.6)

where the second derivatives of the subdensities are
i b da dex. ( Ck ) [_ ]
30,00, = Z 3, 9, 3

3 fi; -3~ 0ex Oy ex
ao: J'-t Z“}E (\/-)t. t. -9
The third derivatives of the subdensities are needed to prove that regularity conditions are
satisfied, so they are recorded here.
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a’f..' =t-§ Z 365 8c,, ac,, Ck ) [ﬁ c: 3]

-—_ = % —_— . -E—

36; 90;, 36;+ °\ 77

83 f(,’ -; ae. aeg aeg ( ek ) [Gez e,‘: ]
=1. _— e —_— —_—x_3
zb: 801' aaj' 60,-.: ¢ Vi t; t?

Extension of this model to allow the barrier levels 4 and £ to depend on covariates is straight-

forward. We may allow each barrier to depend on a different set of covariates. Let
zy; = (zuio, Zuiy, ... , zu;p, )’

be the ((py +1) x 1) vector of covariates measured on individual i which are thought to affect the

upper barrier, and
z_t.‘ = (zll'Oa 3[.'1, seey zlt'pz)'

be the ((p¢ + 1) x 1) vector of covariates measured on individual i which are thought to affect the
lower barrier. Since now the barriers may vary by individual, write u’, I for the barrier levels for
individual 4. The simplest conceivable model allows each barrier level to be a linear function of

the relevant covariates, ie

o =u'szy; = ugzuio + uy Tuis + .. HUp Zujp,

£=ts 2=l zlio+ 4y oty +... +epzliy, (E.7)

where u = (ug, uy,... vUp,) and £ = (Lo, 4y,... +4p,)', are the parameters of the model, and »
denotes matrix multiplication.
Denote the log likelihood for the model with covariates as £"(u,£). This will have the same
form as £(u, £) in equations E.1, E.2, E.3, and E.4, but with u and ¢ expanded as in equation E.7.
The gradient for this model

a-(u,¢)=z";a;= . Gu+ Y ay
i=1

{i:D;=u} {i:D;=1}
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is now a vector of length ¢ = (P« + pe + 2) where G,: and G;; have j** elements

acy acy
a; 2 3,

respectively, where A = (A1s Agy ... 1Ag) = (8] &) = (uo, uy,... 1Upyiloy by, ...\ 8p,).

Note that we can write G, and G7; succinctly as

.
u =

Gii =

where the partials are as specified in equation E.5, and ® denotes Kronecker product.

The Hessian for the model with covariates,

H'(wt):iil,’: Y Hi+ Y H;

i=1 {i:Di=u} {i:D;=1})

is now a q x q matrix with (7,5')*® element ﬁ‘:—;‘i?. This can be written succinctly as

and

where the partials are as written in equation E.6.
E.2 Drift Model
The log likelihood for the drift model without covariates is

n
Cwbptuts,... . t) =Y = 3 4+ X i+ X o
i=1 {i:D;=u} {6:D:=1) {i:Dy=c}

158

(E.8)



APPENDIX E. DERIVATIVES 159

where D; = u if individual i was discharged from hospital, D; = 1 if individual i was observed to
die in hospital. D; = ¢ if individual ¢ was censored. Here
LY =log(f%) if D; =,
Li =1k =log(ft) ifDi=l, (E.9)
£ =log(F¥) ifDi=c

and

-.—.'-g e ;«6(‘;—%)0::

T R z¢ (e\/_,,_) & (E.10)
» =e‘°"“{ (cg+u #t.) o( k—l-#t-)}_ (E.11)
(A ()]

For this model, we have to estimate the parameters u, £, and 4.

Let

y(u, t.') = t:iew

(o, t;) = o B

Then the partial derivatives of the sub-densities can be expressed as

a:-’=y(u,t.-)z ¢(c‘/—k—){ "+?9i:[ -%]}
)Z dcx ( )[ _f—:‘]
3_1‘- = y(u, 1) (u — pt;) Z ¢ (CT:) *

af? =yt :.)Z ¢(7') {-,“,H%.,[ _.:_; }
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5 _ vt (et -ty ¢ () e
=)= 6 () e

The gradient, G*(u, &), ie the vector of first derivatives of C*(u, £, y; 2y, ,,. .. vin),isa (3x1)

’
vector, (%‘i_“ 2652“. %_‘:“1) . We can write

G“(uvtvi‘)=i0:"= Z G£i+ E GZ

=1 {s:Di=u}) {i:D;=1}
where
Gc‘ if Dl' =,
G!'=
Gy ifD;=1
and
(20 o( ) {mere 2 [1- 3]}
N AN A e
) \p o Zao( )
\ w-m)
i , ( b3 e!:u" ¢(7"=) [1".5']_ \
AL Zos()e
Ga=|%| = | % | = [ S o) w5t [i-2]) (E.13)
wu) \p s Zao( )
\ (=L - ut;)

The Hessian, H*(u,¢, ), i8 now a (3 x 3) matrix. Let 4 = (61,8,,83) = (u,¢, #). Then the

. Ty YN o QAck .
element in the j** row and 7 ** column of H* is 39;09; - We can write

H“(u,l,#)=fu_:3."= Y Hi+ Y m

i=1 {i:Di=u} {i:D;=1}



APPENDIX E. DERIVATIVES

where

and

HY. = ¢ ¢k o

ui 7) > _ata"“,.
k. 93¢, 9ick
udu 3‘43! A

where for j = 1,2, 3,

3ck, [1 K

;06 ~ | fi. 96,06,
a’t““ _ _1- i ;:
80j88,~: - f“: 80,-60,-,

The second derivatives of f¥ are

aZI‘

24 (3) v

zf.'.'. _y(u,t.)z:¢ (f) (%cti)z‘:—-

’f.‘.‘.

=y(u,t) [(u - pt:)? ~ 1] Z
[

The second derivatives of f! are

2f tl

)_k{"&ek
'y au at t.

(_) afll afll
%) %, %,

o
—ti
Oudt
8¢

ac*
Oudt

5]

-(L) o ot
f[“ aoj 60,-: )

dci i
a—[l“

[#-9

i e \ dc H
auay, =) g (S) S [1- 4
4

-Mvﬂﬁﬁﬁj

+
(5
;{,"; y(u,t.)zeﬁ( )M{Zﬁz’ [8—3]4‘#[

aua” (u,t.)2¢ ( ) {(u~#te) (ﬂck + Z" [1 - —2]) +c,}

dcs
du

-3}

Ci

ER )

C

HE

ac*
—Li
Oudp
8k
poied 1§
77 m
gk

t

-

<

3
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(E.14)
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j;’ aan =GRt t) o (%) ?9—" [“ o

o o3 (a4 (5)" 221
28 s (3) o3 )
zf“ 52t =yl ) [(2+ pt)? — 4] E"’ (f)

Extending the model to include covariates is again straightforward. As before, let

= (zuio, 2wiy, ... . , zu;p, )’

‘ ( io, zl;y,.. vZIipg)'

be the vector of covariates measured on individual i which are thought to affect the upper and
lower barriers respectively, and now let
2, = (ztios Tptiny - ., Zpip, )’

be the ((p, +1) x 1) vector of covariates measured on individual i which are thought to affect the
drift, 4. The simplest conceivable model allows each of u, £ and # to be a linear function of the

relevant covariates, ie

' =UEY = ozt + U1 2ui +. by, Zugp,
L=l 2=l zlio+ 4y by +... +&,2lp,
uw =u's ZB; = poThio + pr2pis + . Hpip, Zikip, (E.15)

where u = (ug, uy,... vup) L= (Lo, 4y,... &) and 8= (po, piy, ... yHp, )’ are the parameters
of the model.

Denote the log likelihood for the drift model with covariates as £#*(u,£). This will have the
same form as £*(u,4) in equations E.8, E9, and E.11, but with 4, {, and g expanded as in
equation E.15.
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The gradient for the model with covariates

G“'(u,e,u)=§az-“= > e+ Y e

i=1 {i:Di=u} {s:D:=1)

is now a vector of length g = (P« + Pe + pu + 3) where GL: and G%" have j*M elements
aLy;

ace
o 4 5=

a;
respectively, where

A=(And2.0000) = (o [£) = (ug,uy, ... 1Up, Loy by, ..

. vlpnﬂmﬂlv--' 1“’,)'-
Note that we can write G} and G/ succinctly as

2%kt © zu; (%6 @ 24,
Gi=|%rest| Gi=[2%igy,
ac* ack

\ 20" @24, \ 2" @z,

where the partials are as specified in equation E.13.
The Hessian for this model

B (wtw=3 0= 3 w5+ T g
i=1 {i:D;=u} {:Di=l}
is now a q x q matrix with (3,7')** element :\zg:;, . This can be written succinctly as

(58 (e v 2) | S @ (o o 2l T ® (2w v zu)) )
Hi=|5e@trad) | S5igaret) S @ (zu, » 2£)
\ i © (2 +2d) | 55 © (z + 2£) Bt ® (zu, » zu)
and
(o) | L e (zy szt ot ® (z; + z) )
W= | i (ehezy) | Lzt

Sk ® (2, » 2£))

o’cb
Bd' @ (2, » zp))

\ 5ok ® (2, + 2)

ot ® (zu, » 2£))
where the partials are as written in equation E.14.

163
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E.3 Transfer model

Here we record the derivatives for the transfer model. Write f(‘) for f“). As stated in section(?),
the log-likelihood for the transfer model without covariates is

L(u,lyw,p,p)= Z log [q _f“)] Z log [p f(v) +q f(-)]

{i:Di=u} {i:Di=1}

> log[p s+ 3 tog[t - gFu .t — PFe(ti)]

(:Di=w} {i:Di=c}

where D; isu, |, w, or ¢ depending on whether individual § is discharged, dies, is transferred
or is censored at time #;. For this model, we want to estimate the parameter vector § =
(61,02,05,64,65) = (4,4, w,p, u)’, where the parameter u represents the value of the upper bar-
rier, £ represents the lower barrier, w the transition barrier, and 4 is the drift parameter for the
underlying health level process. The parameter p = 1 — q is the probability that an individual
who passes through the transfer barrier at w is actually transferred. Let y(u,t) = ¢~ e =lttyule
and define the function

f( vlv 1t)= (uyt) ¢ 2‘ .
whint)=ulm 3 (ﬁ)""

where cx = 2k(u + £) + u. Here and in the rest of the section, sums over k run from —oo to oo,

Then

£ = flu,d, 1)
fm‘ = f(w’lv Hy tl’)
£ = £, 8, —p, t;)

£ = £, w, ~p, ;)
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Also define

- cly
Flu,l,p,t) =) e~can [@(ﬂ)_@(_)]-
whwt) =3 = %
du dt
(%) (4)
¢ [ (ﬁ "\
where cuy = 2k(u + &) + u — pt, of, = 2k(u+8) — ¢ - pt, duy = —2k(u + &) — u — ut, and
dly = —2k(u+¢) —2u—L—put.
The gradient, G(u,¢, p, w,p) has components
G(u! t?”’ va) = Z G.i + Z G + E Goi + Z Gei.
{i:D;=u} {i:D;=1} {i:D;=w} {s:D;=c}

Here G, is a vector of length 5 with jtA element, a; say, where

3 1 d qfY
o=t ) ()

Recall that g = (1-p) is a parameter, so does not cancel in general in the above expression.
Define the functions

{0)

Gi(u, 4, p,t) =af—" = y(u,t)}: ¢ (67“) {pc,, +(2k+1) [1 - % }

—y(u,t)Z'zk ¢ (“’/".) [1-?z
(©

Galu, &, ) =§—;= (= t) f, 1, i, 2) (E.16)

G2 (uy y My

Then the elements of G,; are given by

291 _ Gi(u b, )

= q f(t) = f(uv ls Hy ti)
Tq f wi Gz(“’ 4 p,t; )
f(t) - f (u9 ta y tl’)

as= 5958 _ Ga(u,t,p, t;)

qf“’ = Flubpt) - bk

q f(l)
f(t)' =0



APPENDIX E. DERIVATIVES 166

®
q [y
= a:f“-’ ="l

Note that y(u,t) appears in both the numerator and denominator of a; and aj, so some further
simplification is possible.
Goi is a vector of length 5 with j*» element, b; say, where

a 1 &
=] = (i) (255).

Then the elements of G can be written as

f(l)
T f“’ =9
w0
_ 288 _ 6w, 1)
f(l) - f(w,l,ll,ti)

3“‘1 f _ Ga(w, 4,4, t,)
- qf(‘) f(wslvl‘vtl')

by = 259 fin = Gi(w 4, t)
f(t) f(wy la By tl')

_q f(l)
f(t-) =1/p
i

= (w - ut;)

by =

bs =

Gi has j** element

24; [Pfy; £ie) +qfM
of +pf(®

Gli can be expressed as Dlu + Dlw where D1u is a vector of length 5 with 7*® element cj say

v ( e ipf"’) ( qu)’

and Dlw is a vector of length 5 with j* element d; say where

o= (i) (#:917).

a (®) | 4w)
70; 18 [pr) + 0t =

where
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The elements of D1u can be written as

() X
o= 2 fi 9 Ga(l,u, —p,t;)
,(-) +p f(-) q f(&u,—p,t;) +p f(lw, —p, t)
oo B0 S a4 Ga(fyu, —ps, ;)
q f('l) +p f(") q f(&u,—pt;)+p F(&,w, —p,t;)
o= f") =q G3(¢, u, —p,¢;)
q f +P f("’) q f(t, u, —p, t.') +p f(‘, w, — 4, tl’)
f(')
f"’ Y
q f(.) —f(tv Uy — by tl')
cs =

q f"’ +pf

and the elements of D1w are

q f(l' U, —p, tl') +p f(lv w, -“1ti)

- P f(lﬂ) -0

e f +p s
dy = 3‘? f(") p Gl(“l w, —u, tl’)

q f"’ +0 1 4 FGs ) +p £l w0 <)
P .Y ~p Ga(t,w, —p, 1;)

q,[.) +p f(.) qf(‘vuv-/‘vti)+pf(£sw9‘#vtl')
d‘ - a—P f(') 14 G?(‘s w, —4, ti)

9f +Pf(‘) qf(ls“a"#vtl')+pf(l’w:-llvtl')
ds = p f(‘) f(4w, =, ti)

g f"’ +o 1

q f(‘v u, —I‘vtt') +p f(ta w, —p, tl')

Note that the minus sign in ¢3 and d3 appear because we have replaced 4 with

G, but still desire the derivative with respect to positive u.

Finally, G.; has j** element

—u in the function

a o.[ 9Fu (i) — pFy o(t:)]
50y 811 = 4Fuelti) ~ pFoe(t)] = e 0Fu(t:) — pFo1(t:)

G.i can be expressed as —~D1Fu — D1Fw where D1Fu is a vector of length 5 with j** element
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e; say where

= (e =) (; ereat).

and D1Fw is a vector of length 5 with j** element f; say where

fi= (1 -qF..t(t.-)l-pFu,t(ti)) ( 8%, pF"l(ti)) .

Define the functions

) "[2’:/21*’(“7.- ~v\ %
oo o(3) ()]
2k

aw [~2k =1 (du,
; [ y w‘.-)

vt vi
e (5)-o(%]
() heo())

Then the elements of D1Fu can be written as

a
e = %aﬂ-.t(‘i) = %GF 14 ts)

d
&= ‘%a-lpﬂyl(tl') = %GFz(ﬂ, L, 1y tl’)
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4
e = L5 Ferlt) = 1GR(u, b, 1)

i}
ey = ;!%F.'t(t.') =0

es =l£qF.'t(ti) = -F(“, L, Hy tl')

adp
where a = 1/(1 — gF, ,(t;) - PFe(ti)). The elements of D1Fw can be written as
4
fi= P Fouty =0

fi= aﬁg—tp,,,(t.-) = GBGF,(w, &, ;)
fa= f-:% wt(ti) = GBGFa(w, 4 ti)
Fo= 2o Fualt) = 2GR, (2,, 1)
fs =5 gpFo.dli) = Flw, ,t)

The Hessian H(u, ¢, u, w, p) has components

H(uslvl‘vva)= Z H,; + Z Hy + Z Hy; + Z H,;.

{i:Di=u} {i:D;=1} {i:Di=w} {i:Di=c}

Here H,; is a 5 x 5 symmetric matrix with the element in row j, column k& given by

(¢) (¢) (z)
aoaao log [a13?] = aT(lhg[fm]) am;::)f ‘( f({) )( LE )

f(‘)
which can be expressed as

Hui = D2u -G, *G.;

where * denotes matrix multiplication, and G,; is given in equation (E.16). Here D2uisa 5x 5

symmetric matrix with elements @, say where

aj = ( fl(,,) ( 03;; fa)).
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Define the functions

(¢

2 £(8)
Hy(u,¢, B t) =a—f.— = y(“1 t) Z¢ (

o
Sl

Hz(ﬂ, ’l"t)_al{?u —y(u,t)Zqﬁ(c—k

o6

Ll

170

{,,1.;,, +2u(2k +1) [1— ct—i] +(2k+1)3‘=?k [%_ ]}

oz ool

Hawbmt)= aeaz = vlwt) Z” (c—b) U [% - ]

(x)

Hafu, 4, ) =‘,+§: = vt ¢ (—") {(u ) (en + @6+ 1) [

S

#)+a}

Hs(u, 4, p,t) -L = y(u, t)(u - pt) Z«» ( "") 2% [1 - _]

2f(¢)
Hg(u, ¢, p, t) -T— =((u- /‘t) -t) f("v vl-‘vt)

Then the unique elements of D24y are

811 = 2 Sutud f & — Hl(uvtvl" tl')
n= f(t) - f(“a tv Hy tI')
a1 = m_.'qu’ —- Hz(u, li By tl')
1 ] - .
q f:.) f(uv ls /“1tl)
a2 fﬁ = H3(uvlal‘v tl')
' q f(l) f(“v l’ By tl')
a 3‘&‘1 f H‘("y l’ Hy tl')
1= q f(t) f(uv lv B tl')
— f - Hs(us ls by tl')
Ga2 = f(l) - f (“s L, Bt )
(¢)
_BHA) _ Hewtmt)
3= q f (l) B f (“’ L, Hy tl’) - (u I‘t') b
a? (¢) (¢)
5etad fui word fui
a1 = BB a= 28 _
f(l) q fi')
() 22 _ ()
Q4,3 = “q“)f =0 G444 = .Lq(l)f" =0
9 fui 9 fui
(4
as1 = % ; q 'f( ) —%fﬁ) = —Gl(ui y Hby tl’)
Y a9 7 af(utpt)
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(3
DZ‘If“ - -Tf(l) _ —Gz(“,l,#,t-’)

a53 = q f(z) = f(l) T qf(u e, By i)
re 2 1% _ -& 19 _ =Gs(u, 4, p, 1)
\ q f(t) p f(t) af(u, ¢, p,t;)

(¢)
as,4 = (t;f =0
q f
f(z) f(l)
as,5 = = =0
f(z) f(l)

The last row of the Hessian can be simplified somewhat. Note that

a (l) i f(l)
3po0, 8 ["f ] ap ( " f‘u)—

equals 0 for 6 € {u, ¢, 4, w}. Thus letting h;,x denote the element in row J, column & of H,; we

have
hsy=hsz=hs3=hse=0
which saves some computation. Also note that

3 f(l)
s o ] = 5 () = -

Persons who are transferred contribute the term Hy;, a 5 x 5 symmetric matrix with elements

h5.5 =

& (0
39, 96, log(pf,;)
which can be expressed as
H."‘ = D2w - G..' » G'i,

where D2w is a 5 x 5 symmetric matrix with elements b; ; say where

(1 ?_
=) (3 2)
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Then the unique elements of D2w are

172

(¢) (¢)
5P I 3t5aP fui
=2 =0 b= m'ﬁ(z) =0
p Tei P fei
by = P fil - H3(wv 4 p, tl’)
! f(t) f(ws L, s tl')
by P Favs
P o LaLI
p f.‘f.’
ba o = Wp f — HS(w, ¢, Hy tl')
auOup fUl Hs(w, 4, p, t.’) _ 12 .
PA= TR T T tt) =0 s) -
by = E%m =0
p Joi
= Bmp fel _ Ha(w, b )
+ p f(l) f(w1 to By tl)
Ban = 3?6‘? fil _ H‘(wv L, Hy tl’)
B N TR
(¢)
E f Hl(wv "I‘vtl')
b"‘ f(l) f(wv lv Hy t")
L) (l)
bs'l = P(‘)f = 0
Pfoi
(4
b BOPI _ 21 Gttt
By CN AP
[4 (4
bsa—ﬁrpf()= f() _Ga(w,l,[l,t.')
' p f9 f“’ pf(w, 4 p,t;)
bs o= Ep fi) = f(l) = Gl(ws l, H,y tl')
) D fi? p f(t) pf(w,¢, By ;)
bss = %3’;? f,(,l.-) = OI(t) =0
Topf)  ps®

Again, the last row of the Hessian can be simplified somewhat. Note that

a:” log [pf“’ ]

o

Fij Par.f @
o9
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equals 0 for 8 € {u, 4, 4, w}. Thus letting h; s denote the element in row J, column & of H,; we

have
hs,y=hsz2=hs3=hs 4 =0

which saves some computation. Also note that

(l)

Persons who die at time t; contribute the term Hy;, a 5 x 5 symmetric matrix with elements

hss =

o (8) 4 o o(w)
50,9, o8 [/ + p1{P)]
which can be expressed as
Hy = (D2 + D2w) -Gy G;,'
where D20u is a 5 x 5 symmetric matrix with elements c; ; say where

: 1 ?_
Cik = (qf(-)+pf(n)) (ao 5, Y )

and where D2%wis a5 x 5 symmetric matrix with elements d;j say where

: 1 2 )
e = (qf"" +pf"”) (‘” P ) '

Then the unique elements of D2¢y are

zesst fY) 9H3(4, u, —p, t;)

o =q £ +pofs U —mt) +0f b v, —mh)
€2,1 ‘—iﬂ(.) = gH3(4 u, —p, t;)
q f"’ +pofu  Ulv —ut) +pf(liw, ~p ;)
Cz,2 =—SE f(-) qHy(L, u, —p, ;)
' q f +P wfti q-f(l o —p, ) +pf (L, w, —pt;)
31 = f(.) ~qHs(4, u, —p, t)

q f(.) +pofii Qf(t u, ‘I"tl) +Pf(l w, I‘vtl)
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e 1Y

174

‘qH‘l (t Uy —, tl)

€32 =
q fl.' +P ofei

320 £

" =) + 0w, <)
QHG(‘ Uy — s, t,)

€33 =
f(.) +P wfii

s = a? P f(')
q f +P ofui
a'a”q f('l)
q f +P wfti

2q

€3 =

Ccs1 =
q fg. +p ofi

55"1 f(')

B q fe.‘ +P o fii

T U Cu ot +pf\t W, — &)

2oz f)
T f"" +pefi
f(")
q fz.' +P wfti

=0

- -GZ(‘f U, — 4, t;)

q fz(..) + D ofii

- "Gl(lv U, — 4, tl')

3 =

q f,. +Pofi
B;D_Q f(l)

q f(') +P oft

q fz(:) + D ofui

c53 =
q f +P uflo

q f(l)
Cs4 =
q fg.’ +P Ufh

s opd fir)

f(.) +p u.fli

Ccs5 =

Then the unique elements of D2/w are

(w)
dy, = I@Lf__
sz.' +P ofei

8 (w)
daz = P fu

05 +pofi afP +pofs

_ Gi(4 u, =4 ;)

q fz(:) +Pofu

2oap 1)
q f' +P ofii

=0

PHy (¢, w, —p, t;)

' f(.) +p vfll
255ep 1)

q f( ) +P o fii
f(l')

d3y =

" 4w t) + 0P, w, g )

—PHy(L, w, —p, t;)

dya =
q f,.- +p oft

3
5P Ji

Qf(lo Uy =44, t.) +Pf(l w, — 4, t.)
PHO(l W, ~u, t.)

dy3 =
a9 +p ot

dex 4 p f(")

YT

Qf(t U, —p, tt) +Pf(l w, — 4, tl)
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d4 f(') PHQ(‘ W, —u, tl)
1= f +Pofu U EU—pt) +pfllw, 5 5)
des= m—P f(.) - —pHs(4, w, —p, t;)
’ q f +P ofii 9f(4 u, —~H, tl') +Pf(l, w, —pu, tl')
d‘ _MJ(') = pH3(t w, —u, tl)
f(') +P ofii qj(l u, —p, tn) +Pf(‘ w, —u, t.)
(v)
dsy = 5 P f ; —R l(:’) =
q.f +P o fii qf("+p.,fu
ds,z = _a, aor 1) - 515 - Gilbw,—p, t;)
‘I.f(')'*'P ofi ¢ f(.)+P ofii ¢ ft(i.)+P ofti
dg3 = P fi _ _ =Gs(t,w,—p, ;)
91 +pofu 9 £ +p ofi 0P +pofu
= Opﬁp f('a) = b_' l(l'w) G!(‘ w, ~f, t;)
ds.4 (v) {x) (v)
Qf +P ofii Qf +Pof£a ‘If +P o fii
d5 5= dpp f(') = 8p l(.')

eI +pefi g £ 4pofs
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Persons who are censored at time t contribute the term H.;, a 5 x 5 symmetric matrix with

elements
?
30,06, °8[~9F (u1,t) + pF(w, 1, 1)]
which can be expressed as
He = (~D2Fu ~ D2Fw) - G,; » G,

where D2Fu is a 5 x 5 symmetric matrix with elements e; ; say where

“is= (1= qF(u,tt)l+pF(w.u))( azﬂ F(wh0).

and where D2Fwisa5x 5 symmetric matrix with elements fi.x say where

e = (1 = aF(u, z,t;+pr<w, L t)) ( aff,-;. P """"’)'
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Define the functions

Clux cly

HF;(u,l,u,t):{«ik’p’e ,.[., ‘/_) q(\/_)]_
oo ()55 ().
- ,.[W-eﬁ(%)( .)+‘f,,,¢(‘/_)(cz,,)]

v

’ Vi
pdos [_¢ ( duk) (2k +2)

i)

dby
Ve
21: 1)3 d4;

HF3(u, 8, 3, t) {4k’p3e'°“‘ [«p (‘“_t") - (%)] -
e 24(3) 250 (2]
w52 (3) 3 ()
e k(i;/j ) [—24‘ %’:—) (cus) +2¢ (f/ti) (cta )(2";,—,,1)"} -

2(2k + 2)pu3kedes [o (d—\;‘;) -® (%)] -
o i () 25 ]
.,.[2/:(-3//: 1)¢(%)(dub)—¢(%)(dl)( ~2k - ;%2/:4-2)}}

S e CCRIEY N
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eeus [:—;‘,’:—3 (S2) conr+ ‘2’:?+”’¢ (%) (czk)] -

wsielo(8)-s ()]

b [;:‘,‘,’;3 (52) )+ 6 (%) an “zt’;,; ”’]}
i o (5 -+ (4]

o () - (2572 -
e (3) () -

&
~—
S

Vi Vi
o [ (3) - 2o ()]
[ () -0 () -
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HPFg(u,, ) = {-21«:“"“ [o (%) - @ %)] +
s (3] ]

178

e [4(5) 0 () -
() 2z ()

L/“" (f) () - 222 (\/-) ("‘"]
: )

e (5) -+ (%)
s () -4 (%)
() s (8))-

oo () -2 &)

e 4 (5) 521, 5]
Bt = {derr fo (52) -0 (%)) -
a6 (%) i s (%) vel +
o[-0 (32) (clVE -+ () (te) VA -

o () ()]
e[ (52) v () ] -

[ 8 e (8] ]
Then the elements of D2Fy are

-HF;(u 4, p,t;)
ez —HFz(u L pu, t)

-m:.,(u ¢ u,t:)
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|

€31 -;HF((H, e, By t.’)
|

€32 —;H Fs(u, 4, p, t;)
-1

€3,3 —;H FG(“v 4 p, tl')

€4,1 T€43 =e€g3=¢€44=0

e51 = —GF;(u, Ly, t;)

a

- ~GF, (u,, )
a

= —GF;(‘U, ‘s 4y tl')
a

€s,2
€s,3

esqa==es5=0
where b=1 — qF, ((t;) — pFw, £(¢;). Then the unique elements of D2Fw are

ha=fha=fa1=fii=fi1=0
S22 =§H F(w, 4, p,t;)
f32 =2HFw, 4,,1:)
f1a =aBHF¢(w. 4 t;)
fa2 =§HF3(w, 4 u,t;)
fas =CHF\(w, 4, 1)

faa =ZHF(w, b 1)

f5 2 =GF3(1.D, lv Hy ti')
a

fs 3 =GF3(‘ID, l’ Hy t!')

a
fo.a =GF1(‘W, ¢ u, tl')
a

fs,5 =0



Appendix F
Identifiability

In this appendix we show that it is not possible to estimate all four parameters 4, ¢, 4 and o3
because of identifiability problems. Let 6 = (u,¢, #,0%). From equation C.11, the sub-density
corresponding to the event that a Wiener process with drift 4 and volatility o2 hits the lower
barrier at —£ < 0 at time ¢ without breaching the upper barrier at 4 > 0 is

ft(t:0)=—\/5;‘~zt3 P Z (s + u) N

where s = —(2k + 1)(u + 2). Similarly, the sub-density corresponding to the event that the

k=—o0

process hits the upper barrier at time ¢ without breaching the lower barrier is

f-(t;9)=-‘/2:a*’ta e~ BT Z (s + ¢ e'gﬁ?i.

If no observations are censored, the joint frequency function of the observations is

k=~00

Loty= [ feso) [ sso).

{i:Di=wn}) {::D:=¢}

Let

6, = (lv u, 4, ¢72)

62 = (m¢ mu,mpy, (mo)?)

180
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where m is any real number. Then it’s easy to see that

fe(t:61) = fu(t;8,)
and

fu(t;61) = fi(t;62)
and so

L(61;t) = L(65;1).

Thus we have shown that distinct values of the parameter vector, 8, # 03, can give rize to exactly
the same frequency function for the data.

Note that this result holds for the zero drift model where 4 is fixed at 0, as well as the more
general drift modei,
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