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Abstract 

In a data centre, server clusters are typically used to provide the required processing 

capacity to provide acceptable response time performance to interactive applications. The 

workload of each application may be time-varying. Static allocation to meet peak demand 

is not an efficient usage of resources. Dynamic resource allocation, on the other hand, can 

result in efficient resource utilization while meeting the performance goals of individual 

applications. 

In this thesis, we develop a new interactive system model where the number of 

logon users changes over time. Our objective is to obtain results that can be used to guide 

dynamic resource allocation decisions. We obtain approximate analytic results for the 

response time distribution at steady state for our model. Using numerical examples, we 

show that these results are acceptable in terms of estimating the steady state probabilities 

of the number of logon users. We also show by comparison with simulation that our 

results are acceptable in estimating the response time distribution under a variety of 

dynamic resource allocation scenarios.  More importantly, we show that our results are 

accurate in terms of predicting the minimum number of processor nodes required to meet 

the performance goal of an interaction application. Such information is valuable to 

resource provisioning and we discuss how our results can be used to guide dynamic 

resource allocation decisions. 
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Chapter 1 

Introduction 

A data center is typically a large distributed computer environment consisting of 

heterogeneous computing resources including individual servers, server clusters, 

databases, etc. It is equipped with communications, power and cooling systems. The data 

center hosts different application services for networked access from diverse client 

devices. It processes jobs submitted by users via the Internet.  

Due to the decreasing cost of commodity hardware and the advancement in 

Internet technologies, data centers are increasingly used to host diverse services by web 

content publishers and application service providers. At the same time, the size of data 

centers has also increased; more server clusters are used to provide more processing 

capacity to execute computationally intensive jobs and shorten the response time of 

interactive requests. Resource management in large data centers is an important issue, 

especially for the next generation of data centers. Traditionally this is done manually, 

which takes a long time and often results in poor resource utilization. The resource 
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management task is also complicated by scenarios where workloads are time-varying. For 

example, the peak-to-average load ratio at an Internet search service is typically 3:1 over 

a one-day period [1]. Static allocation to meet peak demand is not cost-effective because 

of server over-provisioning. Therefore, dynamic resource allocation schemes are needed.  

Autonomic resource provisioning is an attractive approach for resource 

management in data centers. Its objective is to automate the dynamic allocation of 

resources in order to minimize the mean amount of resources used and meet the 

performance goals of individual applications as specified in their service level 

agreements (SLAs).   

Jobs processed in data centers can be broadly categorized into two types: batch 

jobs and interactive jobs.  Batch jobs are usually scheduled to run in batch mode because 

they need to run for a long time. In contrast, interactive jobs are a kind of human-

computer conversation and have smaller processing requirements. The performance goals 

of batch jobs are normally related to maximizing the system throughput or the fraction of 

jobs that are completed on time. On the other hand, the performance goals of interactive 

jobs are usually expressed in terms of mean response time or distribution of response 

time. Because of the above differences, provisioning approaches designed for interactive 

jobs are not directly applicable to provisioning in a batch environment. This thesis is 

concerned with dynamic resource provisioning for interactive jobs only. 

A dynamic resource allocation scheme is usually implemented in a logical loop of 

three phases (see Figure 1.1):  

i) Measure: collect the workload, state, and performance data such as the arrival rate 

of jobs, the number of jobs in the system and the mean response time.                  
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ii) Decide: use the measured data and/or historical data as input to a resource 

allocation algorithm to determine the amount of resources needed. 

iii) Execute: implement changes in the amount of resources allocated, if required. 

As an example, the IBM Tivoli Intelligent Orchestrator (TIO) is a dynamic 

resource allocation engine, which implements the logical loop shown in Figure 1.1. It 

contains four components: data acquisition engine, objective analyzer, resource broker, 

and deployment engine [2], where the Decide phase is included in the objective analyzer 

and resource broker components. Figure 1.2 from [2] shows the general framework of 

TIO.  

 

 

 

 

 

 

 

 

 

 

Measure: the 

state and 

performance 

information 

Execute: 

implement the 

changes 

Decide: the 

changes to 

resource 

allocation 

Figure 1.1: The logical loop of three phases 
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In our investigation, the computing resources under consideration are the servers 

in a server cluster. Our focus is on resource allocation decisions made in the Decide 

phase of the logical loop.  A considerable amount of work has been done in this area. A 

summary will be presented in Chapter 2. Our approach is different in the sense that 

resource allocation decisions are guided by a predictive performance model and the 

model used captures the time-varying resource requirements of interactive applications. 

Briefly, our model is developed for a scenario where (i) logon users submit jobs to a 

system consisting of a pool of m parallel servers,  (ii) the number of logon users changes 

over time as new sessions are established and existing sessions are terminated, (iii) the 

number of logon users at any time instant is restricted to a maximum. To our knowledge, 

analytic results for such a model are not available in the open literature. 

 In our investigation, the performance metric under consideration is response time 

distribution. The relevant SLA is Prob[response time ≤ t] ≥ p. This is different from most 

other studies where only the mean response time is considered.  

 The key contribution of this thesis is the derivation of approximate analytic results 

for the response time distribution for our model. These results are new and are shown to 

be acceptable by comparison with exact results obtained by numerical methods and by 

simulation. Our results can be used to predict the minimum number of processor nodes 

required in order to meet the SLA of an interactive application. 

The remainder of this thesis is organized as follows. Chapter 2 contains a review 

of related work. This includes different approaches for the design of dynamic allocation 

algorithms. In Chapter 3, the system architecture under consideration is described to a 

level of detail that is sufficient for the development of a performance model. A web-
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based system is also described as an example of such an architecture. Our performance 

model is presented in Chapter 4. Chapter 5 presents approximate analytic results for the 

response time distribution for our model. The accuracy of these results is evaluated by 

comparison with exact analytic results obtained by numerical methods. In Chapter 6, the 

merit of our approximate analytic results in estimating the response time distribution and 

predicting the minimum number of processor nodes required in order to achieve a given 

SLA is evaluated by comparison with results obtained by simulation. Finally, Chapter 7 

contains a summary of our findings and a discussion of future work.  
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Chapter 2 

Related work 

Approaches that have been used in the design of dynamic resource allocation algorithms 

can be classified into performance models, control theory, and learning methods. The 

work presented in this thesis uses the performance model approach because this approach 

is of great practical and theoretical importance in solving performance issues by using 

simulation and sophisticated mathematical methods. 

2.1 Performance models 

Large data centers are used to host multiple application services, whose workloads may 

vary widely and may be hard to predict. This creates challenges for dynamic resource 

allocation (e.g., scalability). A solution is presented in [3, 4] where a combination of 

analytic queueing network models and combinatorial search techniques is used to 

determine the best possible configuration for the data center. Multiclass queuing network 

models are used to model interactive and batch jobs [5].  
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Internet applications usually employ a multi-tier architecture.  Each tier provides a 

certain functionality, such as web server, application server, and database storage. 

Common examples are e-commerce websites. Dynamic resource provisioning has been 

used to determine the amount of resources to allocate to each tier of the application. In 

[6], a statistical regression-based analytic model is developed to approximate the CPU 

demands of different transaction types along all the tiers in the system. In another study, 

an analytical model based on queueing theory is presented in [7] to determine the number 

of servers to be allocated to each tier of a multi-tier application. 

Internet applications may also have a single-tier architecture. Examples include 

clustered HTTP servers.  A model-based resource provisioning approach is proposed in 

[8]. This approach focuses on a coordinated provisioning of memory and storage 

resources using cache hit ratio and storage response time as provisioning goals. 

2.2 Control theory 

In control theory, a controller is used to manipulate the inputs to a system to obtain the 

desired effect on the output of the system. In [9], a feedback-driven resource control 

system is designed based on a two-layered controller architecture. The objective is to 

dynamically allocate resources to individual tiers of a multi-tier application to meet 

quality of service goals. A performance-targeted feedback-controlled real-time 

scheduling algorithm is described in [10]. It uses a combination of local periodic real-

time scheduling and a global feedback control system to maintain the execution rates 

specified by users while keeping the system utilization at an acceptable level. 

http://en.wikipedia.org/wiki/Controller_(control_theory)
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In [11], a multiple-input, multiple-output feedback-driven resource control 

mechanism is presented to adjust the CPU and memory usage in each Apache application 

to achieve the desired utilization targets.  

2.3 Learning methods 

In dynamic resource allocation, learning methods are typically used to analyze the 

performance and workload histories to predict future behaviors of applications in order to 

achieve the applications’ requirement. The workload histories usually consist of 

measurement data gathered from previous executions under varying assignments of 

resources. In [12], the Non-invasive Modeling for Optimization prototype is presented for 

batch applications. This prototype is designed to collect a modest amount of training data 

to develop accurate models to optimize resource assignments for complex workflows 

across a networked utility.  

Reinforcement learning has also been used in the investigation of dynamic 

resource provisioning. This method does not require prior training of the application 

systems so that no workload histories are needed. It searches through all possible 

allocations to determine the best allocation for a particular system state in order to meet 

quality of service requirements. In [13], a reinforcement learning-based approach is 

designed to address the problem of dynamic allocation of storage bandwidth to 

applications in the context of enterprise-scale storage systems.  
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Chapter 3 

System description 

This chapter describes the cluster-based interactive system that we will use in our 

investigation. As an example, a web-based system is also described.  

3.1 System architecture 

We consider an interactive computer system consisting of a server cluster. There are a 

number of logon users who interact with this system; the interaction is based on the client 

server model. A session has been created for each logon user. Since new sessions may be 

created and existing sessions may be terminated, the number of logon users may change 

over time. Specifically, the number of logon users is increased by 1 each time a new 

session is created and decreased by 1 each time an existing session is terminated.  

The server cluster can be viewed as a service facility that has a pool of resources. 

In our investigation, the resources under consideration are processor nodes. We will refer 

to these nodes as server nodes. The service facility provides a full server utility 
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model, where a server node is dedicated to run one application for one user at any time 

instant. This is in contrast to a shared server utility model where different applications 

and different users can share the same server node. A software product based on the full 

server utility model can be found in [14]. It exploits the use of virtual LANs and SANs 

for partitioning of resources into secure domains called virtual application environments. 

This system architecture allows resource allocation to be done dynamically, namely, the 

number of server nodes allocated to an application may change over time in response to 

changing workload.  

In general, dynamic resource allocation has two potentially conflicting goals. One 

of them is that the system must satisfy the quality of service requirements of individual 

applications, which are typically defined in service-level agreements (SLAs). For 

interactive applications, a common example of an SLA is one that is based on the 

response time performance. The other goal is to provide efficient operation by using as 

few resources as possible. This corresponds to minimizing the provisioning cost.  

In this thesis, we use the following condition to reflect the SLA: 

                                            Prob [response time ≤ t] ≥ p                                           (3.1) 

where t is a parameter representing the response time objective and the p is a parameter 

specifying a lower bound for the probability of achieving response time t. Both 

parameters are specified based on the application’s performance goal. 

 To avoid degradation in response time performance, the system places, for each 

application, a limit on the number of logon users. Suppose this limit is M. This means 

that at any time instant, the number of logon users cannot exceed M. This also means that 
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a request to establish a new session will be rejected if the number of logon users is 

already at the maximum M.  

3.2 Dynamic resource allocation 

The objective of dynamic resource allocation is to use the minimum number of server 

nodes to achieve the service level agreements of individual applications.  For our system, 

resource allocation decisions are made at decision points. Such decisions may result in a 

change to the number of server nodes allocated to a given application. An example is 

shown in Figure 3.1, where the number of server nodes allocated is increased from 1 to 2 

at decision point 4. The time interval between two successive decision points is referred 

to as an operation interval. The number of server nodes allocated is not changed during 

the operation interval. For example, in Figure 3.1, 2 server nodes are allocated in the 

operation interval between decision points 1 and 2.   

At each decision point, the resource allocation algorithm makes use of data 

collected at the Measure phase as well as historical data to determine the number of 

server nodes that should be allocated for the next operation interval. Examples of 

measurement data are as follows: 

 Workload Data: this includes arrival rate of requests for establishment of new 

sessions and service time of interactive jobs 

 State Information: this includes the number of interactive jobs in queue and in 

service and the number of logon users. 

 Performance Information: for our investigation, the key performance metric is 

the response time distribution. 
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3.3 Example system 

As an example, we describe in this subsection a web-based client-server system. The 

client-server model is a popular model for network computing. This model, as shown in 

Figure 3.2, describes the relationship between two types of hosts, clients and servers. 

Each instance of the client usually runs on a personal computer; it forwards requests to 

one or more connected servers. The servers, upon receiving these requests, process them 

and return the corresponding responses to the client. Most business applications today are 

Figure 3.1 Number of processor nodes allocated in system 
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Figure 3.2: Client-server architecture 
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client and server 
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written using this model. An example of client-server applications is Amazon.com, which 

is an online retailer e-commerce company with products such as books, DVD and music 

CDs.  The company’s computing infrastructure consists of many server clusters that are 

geographically distributed and connected via wired networks. Both buyers and sellers use 

web browsers to access web pages stored in servers or to submit requests (e.g., order 

books) to the servers.  

 

 

 

 

 

 

 

 

 

 

An important requirement of e-commerce systems is to provide users with a real-

time response to access information stored in servers. For example, the online trading 

server has to notify all buyers and sellers immediately if the price of the products has 

been changed. Factors that affect response time performance include the number of 

online users, the number of servers and the internet latency. In our investigation, each 

client can be viewed as a logon user. When a new user logs onto the system, a new 

session is created. A logon user may submit requests to view web pages or 
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update information stored on servers. These requests correspond to jobs to be processed 

by the processor nodes in the server clusters.  When the user decides to log off, the 

corresponding session is terminated. To avoid degradation in response time performance, 

the system typically places a limit on the number of logon users.  
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Chapter 4 

Performance model 

In this section, we develop a performance model for the interactive system described in 

Chapter 3. Results from this model will be used to produce processor node provisioning 

recommendations.  The scope of our investigation is restricted to a cluster that hosts one 

interactive application only.  

 Our performance model is depicted in Figure 4.1. There are k logon users who 

interact with a system that consists of m identical processor nodes.  A session has been 

created for each logon user. Since new sessions may be created and existing sessions may 

be terminated, the number of logon users may change over time. Specifically, the number 

of logon users is increased by 1 when a new session is created and decreased by 1 when 

an existing session is terminated. To avoid degradation in response time performance, the 

system places a limit M on the number of logon users. Arrival of requests for the 

establishment of a new session is modeled by a Poisson process with arrival rate λ. For 
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each arriving request, if the number of logon users is already at the maximum M, the 

arriving request is rejected. 

 

 

 

 

 

 

 

 

 

 

The sub-model inside the box in Figure 4.1 is similar to a finite population model 

(or an M/M/m/∞/k model), where k logon users at their workstations interact with a 

service facility containing m servers. A logon user, after spending a think time at the user 

terminal, submits a job to the system. The think times are assumed to be independent and 

exponentially distributed with a mean of 1/g. Jobs submitted by logon users join a single 

queue; the queuing discipline is First-Come-First-Serve (FCFS). There are m identical 

servers, each of which represents a processor node. The service times of interactive jobs 

are also independent and exponentially distributed with a mean of 1/μ.  
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Figure 4.1: Performance model 
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When a job completes service at a server, it has probability 1-y of returning to the 

user terminal, indicating that the logon user will continue with his session. On the other 

hand, there is a probability y of leaving the sub-model inside the box; this represents the 

termination of a user session. The overall performance model can be viewed as a two-

level model. The lower level is concerned with client-server interactions involving the 

logon users, and the higher level is concerned with the establishment of new sessions and 

the termination of existing sessions.      

The user behavior at the higher level model and lower level model during a 

session is shown in Figure 4.2. This user enters the system at session creation time. He 

then goes through repeated states of think times and waiting for system responses. After 

the last job has been processed, the user leaves the system and the corresponding session 

is terminated.  
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         Figure 4.2: User behavior between higher and lower level models                    
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Chapter 5 

Analytic results 

In this chapter, we derive analytic results for the response time distribution for the 

performance model shown in Figure 4.1. For this model, response time is defined to be 

the elapsed time from when a logon user submits a job to when a response is received by 

this user. Our results will be used as input to the investigation of dynamic resource 

provisioning in Chapter 6.  

Our model, as described in Figure 4.1, is a Markov chain. A state of this model is 

defined as (n1, n2) where n1 presents the number of logon users who are in the thinking 

state and n2 presents the number of jobs in the system. It follows that n1 + n2 is the total 

number of logon users. Since the number of logon users cannot exceed M, a feasible state  

is characterized by n1 + n2  ≤ M.  

Based on the model description in Chapter 4, the state transition diagram for our 

model is shown in Figure 5.1. In this diagram, the state transitions shown in a given row, 

say the role where n1 + n2 = k, correspond to state transitions for the M/M/m/∞/k model. 

The total number of states is NS = (M + 1) (M+2) / 2.  
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Figure 5.1: State transition diagram 
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Let pn1,n2 be the probability that the system is in state (n1, n2) at steady state. From 

the state transition diagram shown in Figure 5.1, one can obtain the balance equations and 

solve for the steady state probabilities. These equations do not have a product form 

solution [15], so an efficient solution method for our model does not appear to be 

available.  Nevertheless, one can obtain a solution to the steady state probabilities by 

solving the balance equations directly. This involves solving a set of NS linear equations. 

However, the number of states (or the number of equations) is O(M
2
) and solution for 

large M may not be easy to obtain. Our approach is to develop an efficient approximation 

method where the number of equations is reduced to O(M). The accuracy of our 

approximation method will be evaluated by comparison with exact numerical results. 

5.1 Approximate analysis 

Our approximation method is based on the use of a two-level hierarchical model. The 

lower level is concerned with the processing of jobs submitted by logon users. The higher 

level, on the other hand, is concerned with the establishment of new sessions and the 

termination of existing sessions. In this section, we first obtain analytic results for the 

steady state probabilities and response time distribution for the lower level model. These 

results will then be used at the higher level model to obtain the response time distribution 

for the overall model.  
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5.1.1 Lower level model 

The lower level model is the M/M/m/∞/k model where k is the number of logon users. 

See Figure 5.2. As mentioned in Chapter 4, the think time follows an exponential 

distribution with mean 1/g and the service time is exponentially distributed with mean 

1/µ.  

 

 

 

Sekino has obtained analytic results for the response time distribution for the 

M/M/m/∞/k model with the first-come first-served (FCFS) discipline [16, 17]. These 

results are summarized below. 

 Let  pn be the steady-state probability that the number of users in the system is n. 

From analytic results for the birth-death model, pn can be written as: 

k 

2 

1 

m 

2 

1 

Figure 5.2: Lower level model 

Processor nodes Logon users 
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  (5.1) 

where , and        

                         (5.2) 

Let An be the steady state probability that a job submitted by a logon user finds n other 

jobs in the system. An is given by: 

                                               (5.3) 

where  is the mean number of jobs in the system.     

We now present the results for the response time distribution under FCFS [16, 17].  

Let f(t) be the probability density function of the response time and P*(s) be its Laplace 

transform. We can write P*(s) as follows: 

                                                              (5.4) 

where P*(s|n) is P*(s) conditioned on a job submitted by a logon user finding n other 

jobs in the system. Since the service time distribution is exponential and the queuing 

discipline is FCFS, we can get the following: 

        (5.5) 
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Removing the condition on n and after simplification, we get [16, 17]:                               

                                        

                                   (5.6) 

This can be inverted to obtain the probability density function of response time f(t). The 

result is as follows: 

                          

                                    

                                                                (5.7) 

The corresponding cumulative distribution function F(t) = P{T ≤ t} can be obtained by 

integrating the f(t) given by Equation 5.7.  F(t) is given by: 

     

     

       (5.8)                                                       

For the special case of a single server (or m = 1), we have the following simplified 

equations for f(t) and F(t): 

                                                                           (5.9) 
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                                            (5.10) 

5.1.2 Higher level model 

The main idea of our approximate analysis is to approximate the model shown in Figure 

4.1 by a birth-death model at the higher level. Our higher level model is shown in Figure 

5.3. As mentioned in Chapter 4, requests for the establishment of a new session are 

modeled by a Poisson process with rate λ. For each arriving request, if the number of 

logon users is already at the maximum M, the arriving request is rejected. 

 

 

 

 

 

 

 

 

  

 

Departures from the higher level model correspond to the termination of user 

sessions. The state of the higher level model is therefore the number of logon users. Let 

k be the service rate when the number of logon users is k. The state transition diagram is 

shown in Figure 5.4. In our analysis, k is estimated as follows. At the lower level model 

Figure 5.3: Higher level model 
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when a job completes service at a server, it has probability y of terminating the 

corresponding user session (see Figure 4.1). This would result in a departure from the 

higher level model. Let Xk be the throughput (or rate of job completion) at the lower level 

model when the number of logon users is k. Xk can be written as: 

                                                              (5.11) 

Since each job completion has probability y of ending a session, k is estimated by: 

                                                                 (5.12)       

 

 

 

 

 
We now derive the response time distribution using our high level model. Let qk 

be the steady-state probability that there are k logon users. From analytic results for the 

birth-death model,  qk can be written as:  

                                                                         (5.13) 

and 

                                                             (5.14) 

Figure 5.4: Birth-death model of higher level model 

  

λ λ λ λ λ 

0 2 1 M M-1 

   



CHAPTER 5. ANALYTIC RESULTS 

26 

 

At the lower level model, let Fk(t) be the CDF of response time when the number of 

logon users is k. Fk(t) can be obtained using Equations (5.8) and (5.10) with k being the 

number of logon users. Also let G(t) be the CDF of the response time at the higher level 

model. G(t) corresponds to the response time distribution of the overall system. Our 

approximation takes into consideration the fraction of time that the number of logon users 

is k and the response time distribution given that there are k users at the lower level 

model. We thus have the following results: 

                                                                 (5.15) 

 

5.2 Accuracy of approximate analysis 

In this section, we evaluate the accuracy of our approximation method using numerical 

examples.  

5.2.1 Numerical method to obtain exact results 

One can certainly obtain exact analytic results by solving the balance equations for the 

model shown in Figure 4.1. These results are for the steady state probabilities. In our 

investigation, we use a different solution approach, namely to compute numerically the 

state probabilities over an extended time period. This would allow us to obtain results 

during the transient phase and at steady state. The steady state results will be used to 

evaluate the accuracy of our approximate analysis while the transient results will be 
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considered in the next chapter when we investigate the performance of dynamic resource 

provisioning based on our results. 

 Our numerical method can be described as follows. Let 

                     (5.16) 

Consider the state changes from time t to t+Δt. The state probability at t+Δt can be 

written as [18]:  
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                                                                                                                  (5.17) 

where o(Δt) has the property that limΔt→0[o(Δt)/Δt] = 0. When Δt is sufficiently small, the 

term o(Δt) in Equation (5.17) can be ignored without introducing inaccuracies in the 

results. Therefore, o(Δt) will not be included in our computation. 

Our computation method is as follows. Starting with a given initial condition, 

namely the state of the system at time 0 (t = 0), we compute pn1,n2 (t + Δt) repeatedly using 

Equation (5.17) for all feasible states (n1,n2). An example of an initial condition is     

p0,0(0) = 1, which corresponds to the case of no logon users at time zero. Our method will 

allow us to compute pn1,n2 (t) for t = Δt, 2Δt, …, LΔt, … . The results would initially show 

state probabilities during the transient phase, and for sufficiently large L, the steady state 

probabilities. 

In our method, we determine the value of Δt using the following steps: 

1. Start with an small value of Δt 

2. Compute pn1,n2 (t)  for all feasible states (n1,n2). for t = Δt, 2Δt, …, LΔt, … 

3. Repeat step 2 using a value of Δt which is half of its previous value. 
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4. Δt is sufficiently small if step 3 yields results for  pn1,n2 (t)  that have less than 

0.1% difference from those obtained previously, otherwise repeat steps 3. 

Once a sufficiently small Δt is found, steady state can be reached at time LΔt if the 

difference for pn1,n2 (t) between t = LΔt and t = (L+1)Δt is less than 0.001% for all feasible 

states (n1,n2). For our model with g = 0.1, μ = 1 and y = 0.05, it is found that Δt = 0.001 is 

sufficiently small. Therefore, Δt = 0.001 will be used in all our numerical examples. 

To illustrate our computational method, consider an example with the following 

parameter values: 

 g = 0.1; μ = 1; y = 0.1; M = 3; m = 1; λ = 0.5 

In Figure 5.5, the state probabilities pn1,n2 (t) for all feasible states (n1,n2) are plotted 

against t when the initial condition is  p0,0(0) = 1. We observe that the values of all state 

probabilities do not change after t = 20. This can also be used as an estimate of the length 

of the transient phase. The steady state probabilities are given in Table 5.1. These results 

show that p3,0 = 0.712, indicating that the system has 71.2% chance to have 3 logon users 

and all of them are in the think state. Also, the results shows that p2,1 = 0.214, which 

means that there is a 21.4% probability that there are 3 logon users and one of them is 

waiting for system response. 
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State （0，0） （0，1） （0，2） （0，3） （1，0） 

Probability 0.000014 0.000052 0.000433 0.00427 0.000523 

State （1，1） （1，2） （2，0） （2，1） （3，0） 

Probability 0.00434 0.0427 0.0217 0.214 0.712 

 

 

 

 

Figure 5.5:  State probabilities diagram 

Table 5.1: Steady state probability 

Transient Phase 

Steady State 
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5.2.2 Accuracy of approximate analysis 

In this subsection, we evaluate the accuracy of our approximate analysis using numerical 

examples. Our approximate analysis yields results for qk, the steady state probability that 

there are k logon users, k = 0, 1, …, M (see Equation (5.13)). From the results in 

subsection 5.2.1, we can determine the exact value for the steady state probability of 

having k logon users. This is given by: 

           for k = 0, 1, …, M.           (5.18) 

The accuracy of our approximate analysis is evaluated by comparing the values of qk  and 

ek, k = 0, 1, …, M. The parameter values used in our evaluation are shown in Table 5.2. 

Sixteen cases are considered, with two values for y, four values for m, and 2 values for . 

M is selected such that the blocking probability at the higher level, as given by qM in 

Equation (5.13) is less than 1%. This means that we are interested in the cases where the 

blocking probability is small, an important consideration when one considers providing 

good service to the users.  

  We show in Table 5.3 the results for qk, ek, and the percentage difference, given 

by |(qk – ek)/ek | * 100% , for the case y = 0.05, m = 3 and  = 0.05. The value of M such 

that qM < 1% is 20. The corresponding results for the mean number of logon users, given 

by  and  are also shown. We observe that the percentage 

difference is small for those states k where ek > 1%; the maximum difference is about 

10.9%. For the other states, the percentage difference could be as high as 16.7%. 

However, the state probabilities for these other states are small (less than 1%). As a result, 
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the inaccuracies in these state probabilities will not have a significant impact on the 

accuracy of the approximation method in terms of performance metrics seen at the higher 

level. For example, the percentage difference for the mean number of logon users at 

steady state is about 1.5% only. This percentage difference is given by: 

                                                (5.19) 

We next present in Table 5.4 the results for the case of y = 0.05, m = 3 and  = 0.1 

(the value of M for this case is 40). Compared to the results in Table 5.3, the percentage 

difference is much higher. In fact, for this case, the approximate analysis is least accurate 

among all the cases considered. Specifically, for those states with ek > 1%, the maximum 

difference is about 34.5%, and for the other states, the difference can be as high as 72%. 

This is due to the larger value of M which requires a larger number of state probabilities 

to be estimated, and some of the state probabilities take on very small values. For these 

state probabilities, even a small difference between qk and ek can produce a large 

percentage difference because of the small value of the state probability in the 

denominator. Nevertheless, the approximation method yields accurate results for the 

mean number of logon users at steady state; the percentage difference, as given by B in 

Equation (5.19) is only 3.35%. 

As our third example, we consider the case of y = 0.1, m =10,  = 0.1 (the value 

of M is 20). This corresponds to a scenario where the number of servers is larger than 

those considered in the first two examples. The results are shown in Table 5.5. We 

observe that the approximation method yields accurate results for all state probabilities. 

The largest difference is when the state k = 1; the difference is about 7.5%. The 
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difference in terms of the mean number of logon users is less than 1%. 

To further evaluate the accuracy of our approximation method, we consider the 16 

combinations of parameter values shown in Table 5.2. A summary of our results is 

present in Table 5.6 where we show the average percentage difference of state 

probabilities that are larger than 1%. Specifically, suppose S is the set of states k with ek > 

1%. The average percentage difference is given by: 

                                      (5.20) 

We also show in Table 5.6 the percentage difference for the mean number of logon users 

at steady state, given by B in Equation (5.19). We observe from the results in Table 5.6 

that in terms of the state probabilities, our approximation method is very accurate for 

most cases (A is less than 10%). For the three cases where A >10%, the largest value for 

A is about 15.9%. For this case, a detailed comparison between ek and qk has been 

presented in Table 5.4. For the other two cases, A is approximately 13% and 12%, and the 

corresponding comparisons between ek and qk are shown in Tables 5.7 and 5.8. The 

reason for the high values of A was explained previously when we discussed the result in 

Table 5.4. As to the mean number of logon users, the approximation is very accurate; the 

largest percentage difference for B is 3.3%. 

 In this Chapter, we have evaluated the accuracy of our approximation method 

based on its ability to estimate the state probabilities at the higher level. In dynamic 

resource provisioning, other performance metrics are of interest, e.g., the response time 

distribution during an operation interval, and the smallest number of processor nodes 
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required to meet a given SLA. The accuracy of our approximation method in the context 

of these other performance metrics will be considered in the next Chapter. 

 

g 0.1 

μ 1 

y 0.05, 0.1 

m 2, 3, 4, 10 

λ 0.05, 0.1 

 

 

k 
Approximate 

qk 
Exact ek % difference 

0 0.000017 0.00002 15.0 

1 0.000183 0.000214 14.5 

2 0.001 0.0012      16.7 

3 0.00368 0.00418 12.0 

4 0.0101 0.0113 10.6 

5 0.0223 0.0245         9.0 

6 0.0408 0.0442 7.7 

7 0.0642 0.0683 6.0 

8 0.0884 0.0925 4.4 

9 0.108 0.111 2.7 

10 0.119 0.121 1.7 

11 0.119 0.119 0.0 

12 0.11 0.108 1.9 

13 0.0933 0.0901 3.6 

14 0.0737 0.0701 5.1 

15 0.0544 0.051 6.7 

16 0.0377 0.0348 8.3 

17 0.0246 0.0224 9.8 

18 0.0152 0.0137  10.9 

19 0.00895 0.00796 12.4 

20 0.00501 0.00443 13.1 

Mean no. of 

logon users 
10.988 10.822 1.5 

 

 

Table 5.2: Input parameter values 

Table 5.3: Approximate vs Exact Results for y = 0.05, m = 3, 

 = 0.05, and M = 20 
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k 
Approximate 

qk 
Exact ek % difference 

0 to 3 0 0 0.0 

4 0.000006 0.00001 40.0 

5 0.00001 0.000016 37.5 

6 0.000036 0.000056 35.7 

7 0.000114 0.000172 33.7 

8 0.000313 0.000461 32.1 

9 0.000765 0.0011 30.5 

10 0.00169 0.00237 28.7 

11 0.00338 0.00462 26.8 

12 0.00622 0.00829 25.0 

13 0.0106 0.0137 22.6 

14 0.0167 0.0211 20.9 

15 0.0246 0.0304     19.1 

16 0.0342 0.041 16.6 

17 0.0446 0.0522 14.6 

18 0.0552 0.0629 12.2 

19 0.0649 0.0719 9.7 

20 0.0726 0.0783 7.3 

21 0.0776 0.0814 4.7 

22 0.0794 0.081 2.0 

23 0.0781 0.0774 0.9 

24 0.0739 0.0711 3.9 

25 0.0675 0.063 7.1 

26 0.0596 0.054 10.4 

27 0.0509 0.0448 13.6 

28 0.0423 0.036 17.5 

29 0.0342 0.0282 21.3 

30 0.0269 0.0215 25.1 

31 0.0207 0.016 29.4 

32 0.0156 0.0116 34.5 

33 0.0115 0.00828 38.9 

34 0.00837 0.0058 44.3 

35 0.00599 0.00401 49.4 

36 0.00422 0.00273 54.6 

37 0.00295 0.00184 60.3 

38 0.00204 0.00123 65.9 

39 0.00139 0.000824 68.7 

40 0.000949 0.000552 71.9 

Mean no. of 

logon users 
22.85 22.11 3.3 

 

Table 5.4: Approximate vs Exact Results for y = 0.05, m = 3, 

 = 0.1, and M = 40 
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k 
Approximate 

qk 
Exact ek % difference 

0 0.000017 0.000018 5.6 

1 0.000185 0.0002 7.5 

2 0.00102 0.00109 6.4 

3 0.00372 0.00397 6.3 

4 0.0102 0.0108 5.6 

5 0.0225 0.0236 4.7 

6 0.0413 0.0429 3.7 

7 0.0649 0.0669 3.0 

8 0.0892 0.0913 2.3 

9 0.109 0.111 1.8 

10 0.12 0.121 0.8 

11 0.12 0.12 0.0 

12 0.119 0.118 0.8 

13 0.093 0.0915 1.6 

14 0.0731 0.0713 2.5 

15 0.0536 0.0519 3.3 

16 0.0369 0.0354 4.2 

17 0.0239 0.0228 4.8 

18 0.0146 0.0138 5.8 

19 0.00844 0.00797 5.9 

20 0.00464 0.00437 6.2 

Mean no. of 

logon users 
10.949 10.868 0.9 

 

 

 

 

 

 

Table 5.5: Approximate vs Exact Results for y = 0.1, m = 10, 

 = 0.1, and M = 20 
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λ m y A B 

0.05 2 0.05 6.5 1.7 

0.1 2 0.05 3.5 0.4 

0.05 3 0.05 5.9 1.5 

0.1 3 0.05 15.9 3.3 

0.05 4 0.05 5.9 1.5 

0.1 4 0.05 13.0 2.6 

0.05 10 0.05 5.8 1.5 

0.1 10 0.05 11.8 2.5 

0.05 2 0.1 1.4 0.5 

0.1 2 0.1 3.2 0.9 

0.05 3 0.1 1.4 0.5 

0.1 3 0.1 2.9 0.8 

0.05 4 0.1 1.4 0.5 

0.1 4 0.1 2.9 0.8 

0.05 10 0.1 1.4 0.5 

0.1 10 0.1 2.9 0.7 

 

 

 

 

 

 

 

Table 5.6: Percentage difference A and B 

: 
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k 
Approximate 

qk 
Exact ek % difference 

0 to 3 0 0 0.0 

4 0.000003 0.000004 25.0 

5 0.000012 0.000018 33.3 

6 0.000042 0.000063 33.3 

7 0.000133 0.000193 31.1 

8 0.000366 0.000518 29.3 

9 0.000895 0.00124 27.5 

10 0.00197 0.00265 25.7 

11 0.00394 0.00517 23.9 

12 0.00722 0.00926 21.9 

13 0.0122 0.0153 20.0 

14 0.0192 0.0235 18.3 

15 0.0282 0.0335 15.8 

16 0.0389 0.0451 13.7 

17 0.0504 0.0571 11.7 

18 0.0618 0.0682 9.4 

19 0.0717 0.0772 7.1 

20 0.0791 0.0831 4.8 

21 0.0833 0.0852 2.2 

22 0.0837 0.0835 0.3 

23 0.0805 0.0783 2.8 

24 0.0743 0.0705 5.4 

25 0.0659 0.061 8.0 

26 0.0564 0.0508 11.0 

27 0.0465 0.0408 13.9 

28 0.0369 0.0316 16.8 

29 0.0285 0.0237 20.3 

30 0.0213 0.0173 23.1 

31 0.0154 0.0122 26.2 

32 0.0108 0.00833 29.7 

33 0.00739 0.00555 33.2 

34 0.00493 0.0036 36.9 

35 0.0032 0.00228 40.4 

36 0.00203 0.00141 44.0 

37 0.00126 0.000852 47.9 

38 0.000763 0.000505 51.1 

39 0.000453 0.000295 53.6 

40 0.000264 0.00017 55.3 

Mean no. of 

logon users 
22.167 21.598 2.635 

 
Table 5.7: Approximate vs Exact Results for y = 0.05, m = 4, 

 = 0.1, and M = 40 
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k 
Approximate 

qk 
Exact ek % difference 

0 to 3 0 0 0.0 

4 0.000003 0.000004 25.0 

5 0.000012 0.000018 33.3 

6 0.000044 0.000065 32.3 

7 0.000138 0.000198 30.3 

8 0.000380 0.000532 28.6 

9 0.000928 0.00127 26.9 

10 0.00204 0.00272 25.0 

11 0.00408 0.00532 23.3 

12 0.00749 0.00951 21.2 

13 0.0127 0.0157 19.1 

14 0.0199 0.0241 17.4 

15 0.0292 0.0345 15.3 

16 0.0402 0.0462 13.0 

17 0.052 0.0584 10.9 

18 0.0635 0.0696 8.8 

19 0.0735 0.0786 6.5 

20 0.0809 0.0844 4.1 

21 0.0847 0.0863 1.8 

22 0.0847 0.0842 0.5 

23 0.0811 0.0786 3.2 

24 0.0743 0.0703 5.7 

25 0.0654 0.0603 8.4 

26 0.0553 0.0498 11.0 

27 0.0451 0.0396 13.9 

28 0.0354 0.0304 16.4 

29 0.0269 0.0225 19.6 

30 0.0197 0.0162 21.6 

31 0.0139 0.0111 25.2 

32 0.00962 0.00748 28.6 

33 0.00641 0.00486 31.9 

34 0.00415 0.00307 35.2 

35 0.00261 0.00189 38.1 

36 0.00159 0.00113 40.1 

37 0.000947 0.000656 44.4 

38 0.000548 0.000372 47.3 

39 0.000309 0.000206 50.0 

40 0.000170 0.000112 51.7 

Mean no. of 

logon users 
21.996 21.464 2.479 

 
Table 5.8: Approximate vs Exact Results for y = 0.05, m = 10, 

 = 0.1, and M = 40 
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Chapter 6 

Dynamic resource provisioning 

As mentioned in Section 3.2, the objective of dynamic resource allocation is to use the 

minimum number of server nodes to achieve the service level agreements of individual 

applications.  Resource allocation decisions are made at decision points and the number 

of server nodes allocated is not changed during the operation interval (or the time interval 

between consecutive decision points). In this chapter, we evaluate the merit of our 

approximate analysis in terms of its adequacy in providing results that can be used in 

resource allocation decisions. 

 Our evaluation is based on dynamic resource allocation with the following 

features. Workload data and state information are used as input to resource allocation 

decisions. For our model, the workload parameters are:  

 1/g, the mean think time; 

 1/, the mean service time:  

 y, the probability of ending a session; and 
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 λ, the arrival rate of requests for the creation of new sessions. 

The system state is given by (n1,n2) where n1 is the number of logon user in the thinking 

state and n2 is the number of the jobs in system. The algorithm produces as output the 

number of server nodes required in order to meet the SLA of the application given by 

Prob [response time ≤ t] ≥ p (denoted by mnew,). 

In general, analytic results for mnew are difficult to obtain. The reason is follows. 

At a decision point, if there is a change in the number of server nodes allocated, the 

system will go through a transient phase before it exhibits the steady state behavior 

during the next operation interval. The length of the transient phase is affected by the 

system state at the decision point. To illustrate this point, consider our model with 

following parameters: g = 0.1; μ = 1; y = 0.1; M = 3; m = 1; λ = 0.5. The transient 

behavior for initial condition p0,0(0) = 1 (or state at a decision point t = 0 is (0,0)) has 

been shown in Figure 5.5. In Figure 6.1 and 6.2, we show further the values of p3,0(t) and 

p2,1(t) as a function of t for three different initial conditions, namely p0,0(0) = 1, p2,0(0) = 1 

and p1,2(0) = 1. We observe that the lengths of the transient phase for p3,0(t) and p2,1(t) are 

approximately 20 and 15 time units, respectively. We further observe that the length of 

the transient phase is affected by the initial conditions. Taking into consideration the 

transient behavior when determining mnew will lead to complexity in mathematical 

analysis because the impact of the transient behavior on Prob [response time ≤ t] ≥ y is 

very difficult to characterize. 
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Steady State 

Steady State 

Figure 6.1: State probability diagram for p3,0(t) 

Figure 6.2: State probability diagram for p2,1(t) 

Transient Phase 

Transient Phase 
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In dynamic resource allocation, there may be a change in the number of processor 

nodes at a decision point. If a change is made, the system will go through a transient 

phase before reaching steady state again. The transient behavior is affected by the initial 

condition,  corresponding to the state of the system at the decision point. 

Our approach to determining mnew is to use the steady state results for the 

response time distribution obtained in Chapter 5 as an approximation. This would 

exclude the transient behavior from the analysis and thus avoid the mathematical 

complexity mentioned above. It also follows that the state information at a decision point 

(or the initial condition) will not be necessary in our estimation of mnew. In this chapter, 

we will perform simulation experiments to determine whether our steady state results are 

adequate in estimating mnew, and discuss how these results may be used in dynamic 

resource allocation.  

6.1 Accuracy of steady state results 

The steady state result in Chapter 5 is for the response time distribution, as given by G(t) 

in Equation (5.15). G(t) represents the percentage of jobs that meet a response time goal t. 

In this section, we evaluate the accuracy of G(t) when it is used as an approximation for 

the response time distribution between decision points where steady state may not exist at 

all times. Our evaluation is based on comparison with GE(t), the CDF of response time 

obtained by discrete event simulation. 

The simulation is based on our model described in Chapter 4 with the additional 

assumption that first-come first-served (FCFS) scheduling is used at the server at the 

lower level model. The length of simulation is D, which is the length of the operation
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interval (or the time between successive decision points). In dynamic resource allocation,

the number of processor nodes allocated during D remains unchanged.  

Consider the SLA defined in Equation (3.1), i.e., Prob [response time ≤ t] ≥ p. 

The parameter p is usually at least 80%. In our simulation experiments, 100 cases with 

p > 80% will be considered. These cases are selected such that p is evenly distributed 

between 80% and 99.8%. For each case, the follow steps are used: 

1. Set input parameters g, µ and M to 0.1, 1.0 and 60, respectively. 

2. Select input parameters λ, y, and m, and the response time goal t such that G(t), as 

given by Equation (5.15) is larger than 0.8 and qM < 1%. The range values of λ, y, 

m, and t are {0.05, 0.1}, {0.05, 0.1}, {1, 10}, and {3.0, 6.0}, respectively.  

3. Use the numerical method in Section 5.2.1 to determine T, the length of the 

transient phase for initial condition p0,0(0) = 1. This initial condition normally 

results in the longest transient phase compared to other initial conditions. 

4. Perform separate simulation experiments for three different values of D, namely 

D = 0.5T, D = T, and D = 5T. For each experiment, run the same simulation 50 

times, each with a randomly selected initial condition. Compute GE(t) which is 

given by the average results of the 50 runs. 

Note that in step 4, different initial conditions are considered in order to capture the effect 

of transient behavior on the response time distribution. 

 For each of the 100 cases that we have evaluated, we compute the difference 

between G(t), as given by Equation (5.15) and GE(t), as obtained from the simulation 

experiments. The accuracy of G(t) is measured by its difference from GE(t). This 

difference is defined as follows: 
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                             (6.1) 

We show in Figures 6.3, 6.4, and 6.5, the values of C for the 100 cases for D = 0.5T, T 

and 5T, respectively. Note that the y-axis scales of these three figures are not the same. 

We observe that the steady state results are more accurate when D is larger. This is 

consistent with the observation that a larger D means that the system is in steady state for 

a longer time period and as a result, the steady state results should be more accurate. We 

also observe that, with the exception of a few outliers (less than 10% of the cases), G(t) is 

quite accurate in estimating the response time distribution; the percentage difference C is 

less than 20% for most cases, even when D = 0.5T. These outliers are likely due to using 

a short sequence of random numbers when the simulation has duration of 5T or less.  

 

 

Figure 6.3: Response time distribution percentage difference when D = 0.5T 
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Figure 6.4: Response time distribution percentage difference when D = T 

Figure 6.5: Response time distribution percentage difference when D = 5T 
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6.2 Input to dynamic resource provisioning 

Using our steady state results in Chapter 5, dynamic resource allocation can determine 

the number of processor nodes required mnew for given values of λ, y, g and μ such that 

the SLA is met. We use m(t,p) to denote the required number of nodes that would meet 

the SLA given by Prob [response time ≤ t] ≥ p. 

6.2.1 Number of processor nodes required 

We first evaluate the accuracy of G(t) in estimating m(t,p). As in our previous examples, 

g, y, and μ are set to 0.1, 0.05, and 1.0, respectively. The other parameters, namely λ, t, 

and p are shown in Table 6.1. There are 27 combinations and for each combination, we 

obtain m(t,p) using Equation (5.15) and by simulation. In both cases, m(t,p) is obtained 

by increasing m from 1 until the conditions Prob [response time ≤ t] ≥ p and qM < 1% are 

met. For simulation of each combination, three values of D, namely, D = 0.5T, T, and 5T 

are considered. 

  

 

g 0.1 

μ 1 

y 0.05 

λ 0.05, 0.075, 0.1 

t 3.0, 4.0, 5.0 

p 85%, 90%, 95% 

 

 Table 6.1: Input parameter values 



CHAPTER 6. DYNAMIC RESOURCE PROVISIONING 

48 

 

We show in Tables 6.2 to 6.4 the results for the different combinations of λ, t, and 

p. We observe that with exception of the case λ = 0.05, t = 3.0 and D = 0.5T in Table 6.4, 

Equation (5.15) is accurate in predicting the number of processor nodes required. The 

same number of nodes is obtained by simulation for about 75% of the cases, and for the 

remaining cases, the maximum difference is one node. We further observe that the 

accuracy of Equation (5.15) improves when D becomes larger. This is expected because a 

larger D means that the system is in steady state for a longer period of time and Equation 

(5.15) is for the response time distribution at steady state. 

 

 

λ t 

m(t,p) 

estimated 

using 

Equation 

(5.15) 

m(t,p) 

obtained 

using 

simulation 

D = 0.5T 

m(t,p) 

obtained 

using 

simulation 

D = T 

m(t,p) 

obtained 

using 

simulation 

D = 5T 

0.05 3.0 2 2 2 2 

0.05 4.0 2 2 2 2 

0.05 5.0 2 2 2 2 

0.75 3.0 3 2 2 3 

0.75 4.0 2 2 2 2 

0.75 5.0 2 2 2 2 

0.1 3.0 3 3 3 3 

0.1 4.0 3 2 2 3 

0.1 5.0 3 2 3 3 

 

 

 

Table 6.2: m(t,p) when p = 85% 
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λ t 

m(t,p) 

estimated 

using 

Equation 

(5.15) 

m(t,p) 

obtained 

using 

simulation 

D = 0.5T 

m(t,p) 

obtained 

using 

simulation 

D = T 

m(t,p) 

obtained 

using 

simulation 

D = 5T 

0.05 3.0 2 2 2 2 

0.05 4.0 2 2 2 2 

0.05 5.0 2 2 2 2 

0.75 3.0 3 3 3 3 

0.75 4.0 3 2 2 3 

0.75 5.0 2 1 2 2 

0.1 3.0 4 2 4 4 

0.1 4.0 3 2 3 3 

0.1 5.0 3 2 2 3 

 

 

λ t 

m(t,p) 

estimated 

using 

Equation 

(5.15) 

m(t,p) 

obtained 

using 

simulation 

D = 0.5T 

m(t,p) 

obtained 

using 

simulation 

D = T 

m(t,p) 

obtained 

using 

simulation 

D = 5T 

0.05 3.0 5 7 5 5 

0.05 4.0 2 2 2 2 

0.05 5.0 2 2 2 2 

0.75 3.0 6 6 5 5 

0.75 4.0 3 2 3 3 

0.75 5.0 3 2 2 3 

0.1 3.0 7 7 6 6 

0.1 4.0 3 3 3 3 

0.1 5.0 3 3 3 3 

 

 

Table 6.3: m(t,p) when p = 90% 

Table 6.4: m(t,p) when p = 95% 
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6.2.2 Dynamic resource allocation decision 

In this subsection, we discuss how our steady state results in Equation (5.15) can be used 

to guide dynamic resource allocation decisions. Ideally, we would like to come up with 

simple rules that relate m(t,p) mathematically to the input parameters M, λ, y, g and μ. In 

an attempt to determine whether such rules are possible or not, we use numerical 

examples to gain a good understanding of the impact of input parameters on m(t,p).  In 

our examples, we use µ = 1 because mean service time is used as our time unit and g = 

0.1 in order to reduce the number of cases considered. m(t,p) is obtained by increasing m 

from 1 until the condition Prob [response time ≤ t] ≥ p is met. 

 We first consider the case where y = 0.05, and λ takes on values 0.05, 0.075 and 

0.1. In Figures 6.6 and 6.7, m(t,p) is plotted against the response time goal t for p = 90% 

and 95%, respectively. As expected, m(t,p) tends to increase with λ because more 

processor nodes will likely be needed to support a higher rate of requests for establishing 

new sessions. m(t,p) also tends to decrease with the response time goal t because a larger 

t means a less demanding response time constraint from the users and fewer nodes can be 

used to meet the response time requirements. However, we are not able to come up with a 

simple rule that relates m(t,p) mathematically to the input parameters. 
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Figure 6.6: m(t,p) when p = 90% 

Figure 6.7: m(t,p) when p = 95% 
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 At a minimum, the dynamic resource allocation algorithm can use a table lookup 

method to determine m(t,p). We illustrate this method by the following example. Suppose 

it has been determined that µ = 1, g = 0.1, and y = 0.05. The workload, as characterized 

by λ may be time-varying, but its value is always within the range of (0.04, 0.1). As to the 

SLA, the response time goal t considered is in the range (3, 6) and the target probability p 

is larger than 85%. We pre-compute m(t,p) for different combinations of λ, t, and p, 

organized by sub-intervals within their respective ranges. The resulting table is shown in 

Table 6.5. We have also included in this table the recommended minimum value of M 

such that the blocking probability at the higher level is less than 1% and the SLA is met. 

With this table, the dynamic resource allocation algorithm can determine m(t,p) by table 

lookup.  

It is important to note that the results in Table 6.5 are for illustration purposes 

only. In general, more sub-intervals should be defined for each parameter and the size of 

the table should be much larger. 
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λ t p m(t,p) Minimum M  

0.04 - 0.06 3 - 4 85% - 90% 2 23 

0.04 - 0.06 3 - 4 90% - 95% 3 22 

0.04 - 0.06 3 - 4 95% - 100% 5 22 

0.04 - 0.06 4 - 5 85% - 90% 2 23 

0.04 - 0.06 4 - 5 90% - 95% 2 23 

0.04 - 0.06 4 - 5 95% - 100% 3 22 

0.04 - 0.06 5 - 6 85% - 90% 2 23 

0.04 - 0.06 5 - 6 90% - 95% 2 23 

0.04 - 0.06 5 - 6 95% - 100% 2 23 

0.06 - 0.08 3 - 4 85% - 90% 3 28 

0.06 - 0.08 3 - 4 90% - 95% 3 28 

0.06 - 0.08 3 - 4 95% - 100% 6 27 

0.06 - 0.08 4 - 5 85% - 90% 3 28 

0.06 - 0.08 4 - 5 90% - 95% 3 28 

0.06 - 0.08 4 - 5 95% - 100% 3 28 

0.06 - 0.08 5 - 6 85% - 90% 2 32 

0.06 - 0.08 5 - 6 90% - 95% 3 28 

0.06 - 0.08 5 - 6 95% - 100% 3 28 

0.08 - 0.1 3 - 4 85% - 90% 3 34 

0.08 - 0.1 3 - 4 90% - 95% 4 33 

0.08 - 0.1 3 - 4 95% - 100% 7 32 

0.08 - 0.1 4 - 5 85% - 90% 3 34 

0.08 - 0.1 4 - 5 90% - 95% 3 34 

0.08 - 0.1 4 - 5 95% - 100% 3 34 

0.08 - 0.1 5 - 6 85% - 90% 3 34 

0.08 - 0.1 5 - 6 90% - 95% 3 34 

0.08 - 0.1 5 - 6 95% - 100% 3 34 

 

 

 

 

 

Table 6.5: Resource allocation table 
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Chapter 7 

Conclusion and future work 

7.1 Conclusion 

In this thesis, we have developed a new interactive system model where the number of 

logon users may change over time and have obtained approximate analytic results on 

response time distribution for this model. We have also discussed how these results may 

be used in dynamic resource provisioning. Our contributions are summarized below. 

1. We have obtained approximate analytic results for the response time distribution 

at steady state for a new interactive system model. Our results are shown to be 

acceptable when compared with exact results obtained by a numerical method. 

2. We have evaluated the accuracy of using our steady state results as an 

approximation to the response time distribution over an operation interval 

between successive decision points in dynamic resource provisioning.   
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3. We have used a numerical method to obtain transient results for our model. These 

results provide valuable insights into the transient behavior of the system for 

different initial conditions. 

4. We have discussed how our steady state results can be used by a dynamic 

resource allocation algorithm to determine the minimum number of processor 

nodes required to meet a given service level agreement and an application.  

7.2 Future work 

Possible future work is discussed below. 

1. For our model, the blocking probability at the higher level is given by qM in 

Equation (5.13). The trade-off between blocking probability and the number of 

processor nodes allocated is a topic for future investigation.  

2. Our work only considers one class of jobs. Extension of our investigation to 

multiple job classes will provide results for more complex application scenarios.  

3. Our investigation did not reveal any heuristic that mathematically relates the m(t,p) 

to the input parameters. More work on identifying such a heuristic will be 

valuable to dynamic resource provisioning. 

4. Extension of our work to virtualization of resources is worthy of investigation. 

With virtualization, the system can allocate a fraction of the server capacity to a 

job class. This would provide more flexibility in resource allocation than 

allocating an integer number of processor nodes. 
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