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Abstract

Gauge-string duality has provided a powerful framework for the study of strongly

coupled gauge theories and non-perturbative string models. This thesis analyzes the holo-

graphic description of non-local gauge theory operators and some aspects of the Bagger-

Lambert theory. The latter, as a proposal for a multiple M2-branes effective theory, is

conjectured to be the holographic dual of a compactification of M-theory.

We show that all half-BPS Wilson loop operators in N = 4 SYM – which are labeled

by Young tableaus – have a gravitational dual description in terms of D5-branes or alterna-

tively in terms of D3-branes in AdS5×S5. We prove that the insertion of a half-BPS Wilson

loop operator in the N = 4 SYM path integral is achieved by integrating out the degrees

of freedom on a configuration of bulk D5-branes or alternatively on a configuration of bulk

D3-branes. We construct a new class of supersymmetric surface operators in N = 4 SYM

and find the corresponding dual supergravity solutions. Consistency requires constructing

N =4 SYM in the D7 supergravity background and not in flat space. This enlarges the

class of holographic gauge theories dual to string theory backgrounds to gauge theories in

non-trivial supergravity backgrounds. We write down a maximally supersymmetric one

parameter deformation of the field theory action of Bagger and Lambert and we show that

this theory on R×T 2 is invariant under the superalgebra of the maximally supersymmetric

Type IIB plane wave. It is argued that this theory holographically describes the Type IIB

plane wave in the discrete light-cone quantization (DLCQ). Finally, we show by explicit

computation that the Bagger-Lambert Lagrangian realizes the M2-brane superalgebra, in-

cluding also two p-form central charges that encode the M-theory intersections involving

M2-branes.
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1. Introduction

Technological development during the past century has led to a radical improvement

of our understanding of nature. Many disciplines have been completely renewed and refor-

mulated in terms of new paradigms and principles. Fundamental physics, like many other

areas of science, has gone through revolutionary and surprising breakthroughs.

At the beginning of the twentieth century, Einstein realized that in order to explain

the independence of the speed of light from the reference frame, the separate concepts

of space and time had to be unified in the new concept of continuum spacetime. When

the velocities involved are comparable to the speed of light, the continuum spacetime is

the arena where physical phenomena take place. The unification of space and time is the

main point of the Einstein improvement of the principle of relativity, formulated by Galilei

in the seventeenth century. From a mathematical point of view, the Einstein relativity

principle implies that the kinematical group of invariance of the theory is the Poincaré

group, differently from Galilean relativity that implies that the group of invariance is the

Galilei group. The modern terminology refers to Poincaré invariant theories as relativistic

theories. Indeed, the Poincaré kinematical group is thought to be at a more fundamental

level respect to the Galilei group. This last one is seen as an approximate symmetry when

the velocities of the physical system are much smaller than the speed of light.

Newtonian gravity is not a relativistic theory, it is not invariant under the Poincare

group. In order to reconcile gravity with the new principle of relativity, Einstein was led

to the theory of general relativity where the gravitational field is described by a metric

tensor defined on the spacetime continuum. In this way, gravity is encoded as a geometrical

property of the spacetime manifold.

Approximately at the same time of Einstein’s work, quantum mechanics was intro-

duced as the theory describing the microscopic world. The theory correctly reproduces

features that are not described by classical physics, like for instance the discretization of

energy levels and the uncertainty principle.

Given the successful results of Einstein relativity and quantum mechanics, it became

clear that a good theory for the fundamental constituents of matter has to be formulated

in a relativistic quantum framework. Furthermore, the combination of relativity with

quantum mechanics gives rise to new features, like for example the concept of antiparticles.

The standard approach to describe quantum relativistic systems is given by quantum
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field theory. Among other things, this theory describes particle-antiparticle creation and

annihilation and thus can deal with processes with a variable number of particles. In

quantum field theory, the objects that are quantized are fields. The particles are described

as quanta of excitation of the relevant field.

Our current description of the fundamental constituents of matter is based on four

fundamental interactions: the electromagnetic force, the weak force, the strong force and

the gravitational force. The first three can be correctly described in the framework of quan-

tum field theory and the guiding principle to construct the theory is the gauge principle.

With this approach, a global symmetry of the theory is promoted to be a local symmetry,

i.e. it is “gauged”. This procedure leads to the introduction of vector fields that are as-

sociated to bosons that mediate the relevant interaction. The standard model of particle

physics is a quantum field theory based on the gauge group SU(3)C × SU(2)L × U(1)Y .

The strong interaction is associated to SU(3)C and sometimes this is stated by saying

that the strongly interacting particles have three colors. For this reason the theory is

called Quantum Chromodynamics (QCD). The electro-weak interaction is associated to

SU(2)L×U(1)Y . The matter fields are quarks and leptons, spinor fields that transform in

the fundamental representation of the gauge group. The vector bosons that mediate the

interactions transform in the adjoint of the gauge group. The masses of massive particles

in the standard model can be generated through what is known as the Higgs mechanism.

This implies the existence of a scalar particle, the Higgs boson, that to date hasn’t been

detected yet.

The standard model represents the highest achievement of fundamental theoretical

physics and its predictions have been tested with great precision. However, it also shows

several problems. First of all, it does not describe gravity and thus it cannot be considered

as a complete theory for fundamental physics. As we have already mentioned, the stan-

dard model is constructed in the framework of quantum field theory and gravity cannot be

quantized with this approach; indeed it is a non-renormalizable theory. Furthermore, the

latest experimental data seems to suggest that neutrinos are particles with a small mass,

instead of strictly massless as implied by the standard model. Another problem has to

do with our poor understanding of strongly coupled quantum field theory. The coupling

constants of the field theories in the standard model assume different values according to

the level of energies. In particular, the strength of the coupling constants for the elec-

tromagnetic and weak interactions decrease when the energies decrease. In contrast, the
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strength of the coupling constant for QCD increases when the energy decreases. This fea-

ture is called asymptotic freedom and it makes it possible to study the strong interactions

at high energies using perturbative techniques. Qualitatively the asymptotic freedom is

the explanation of the quark confinement, the property of quarks to appear always in

bounded states called hadrons. However, an analytical proof of the quark confinement is

currently missing and this is a serious incompleteness of the theory since the matter of the

real world appears to be in the confined phase. The standard model is a theory with many

free parameters whose values have to be fixed by hand using experimental data. Also the

construction of the model, like the choice of the matter fields or the choice of the gauge

groups, needs to be guided by observational facts. All of this makes it plausible to look

for a more complete theory of fundamental interactions.

Quantum field theory and thus also the standard model deal with pointlike particles,

that is 0-dimensional objects. It seems natural to try to construct quantum theories for

higher dimensional objects that propagate in the spacetime. String theory [1][2][3][4][5]

arises from the study of 1-dimensional objects, strings. The theory was introduced at the

end of the 1960s as a theory for strong interactions. At that time the experiments were

showing an increasing number of different hadrons and particle physicists started to suspect

that not all of them were fundamental constituents of matter. It was thus proposed that all

the different hadrons were different excited states of 1-dimensional strings. The spectrum

of string theory include open strings and closed strings. The open strings were associated

to mesons. This simple model succeeded in explaining some of the phenomenology of

hadrons, like the observed Regge trajectories. These are plots of the maximum spin of

a hadron as a function of its mass. However, the improvement of the experimental data

showed that the hadrons are made up by pointlike constituents and that led to the success

of the parton model first and then to the asymptotically free QCD.

String theory was later reinterpreted as a theory of fundamental constituents of matter.

According to the theory, all the fundamental particles of nature are different excitation

states of a string. The closed string Hilbert space includes a spin-2 massless particle that

can be interpreted as a graviton [6][7], the particle that mediates gravity. Therefore, the

presence of this higher spin massless state that was a problem for the study of the strong

interactions, now becomes one of the interesting features of the theory because also gravity

is described in the same manner as the other interactions. For this reason string theory

is considered as one of the best candidates for a theory that unifies all the fundamental

forces of nature in a consistent way. Indeed, it is possible to study the interaction between

3



the different string states building a perturbative expansion in terms of a string coupling

gs and there is evidence to conclude that the amplitudes are UV-finite at every order of

perturbation.

The action for a 1-dimensional string propagating in spacetime was introduced by

Nambu and Goto and it is a straightforward generalization of the action for the relativis-

tic particle. It is proportional to the worldsheet area spanned by the string during the

propagation

S = −T
∫

d2σ
√

−det[(∂αxµ)(∂βxµ)] (1.1)

where T = 1
2πα′ is the string tension and α′ = ℓ2s where ℓs is the string length. Worldsheet

coordinates are denoted as σα with α = 0, 1 and xµ are spacetime coordinates with µ =

0, . . . d − 1. It is possible to introduce a worldsheet metric hαβ and to rewrite the action

(1.1) as

S = −T
2

∫

d2σ
√
−hhαβ(∂αx

µ)(∂βxµ). (1.2)

The expression (1.2) is the Polyakov formulation of the string action and it is the action

suitable for quantization. It results that the spectrum contains only spacetime bosons

and there is a tachyonic state. Furthermore, working in a generic spacetime dimension d,

the theory presents a Weyl anomaly that makes the quantum analysis inconsistent. The

anomaly disappears when the spacetime dimension assumes the critical value d = 26 that is

not the dimension of the spacetime we live in. In order to try to solve all of these problems

one can consider a generalization of the actions (1.1) or (1.2). In particular, it turns out

to be useful to add fermionic degrees of freedom to the theory and require the action

to be invariant under supersymmetry. This can be done following the Ramond-Neveu-

Schwarz (RNS)[8][9] or the Green-Schwarz (GS)[10] prescriptions. In the RNS formulation,

worldsheet fermions are added to the action (1.2) so that each worldsheet scalar xµ is

associated with a superpartner ψµ that is a 2-dimensional worldsheet fermion. In the GS

prescription the string is embedded in the superspace, an extension of the spacetime that

includes also Grassmann-odd coordinates. However, once all the gauge freedom is fixed,

the two theories reduce to the same action, the action of the superstring.

With this enhancement the theory acquires spacetime fermions and the tachyon dis-

appears1. For the supersymmetric strings, the critical dimension is reduced to d = 10.

1 The theory is tachion free thanks to the truncation of the spectrum proposed by Gliozzi,

Scherk and Olive (GSO). The GSO projection is fundamental also to get a spacetime supersym-

metric spectrum.
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This value again does not match the observed physical dimension of the spacetime and

to make contact with phenomenology, it is necessary to invoke other mechanisms such

as spacetime compactification. The absence of gravitational and gauge anomalies in the

spacetime theory imposes other constraints to the theory. It is possible to construct five

different kinds of anomaly free string theories: the Type IIA and Type IIB that have

N = 2 supersymmetry in the spacetime and differ from each other because of the different

chirality of the supercharges; the Type I with N = 1 supersymmetry and gauge group

SO(32); the heterotic string with gauge group SO(32) and the heterotic with gauge group

E8×E8. In the limit where the massive states of the strings can be neglected, the dynamics

of the massless modes of the strings can be described by the supergravity effective field

theories. Indeed, in 10-dimensional spacetime there are exactly five types of supergravities

that correspond to the low energy dynamics approximation of the five superstring theories.

It is possible to construct a supergravity theory also in 11-dimensions. This is the

maximum dimension of the spacetime where we can have a supergravity theory, considering

higher dimensions the theory would include fields with a spin higher than two that do

not have a physical interpretation. Furthermore, there is a unique supergravity in 11-

dimensions. In the same way like 10-dimensional supergravities are effective theories for

string theories, the 11-dimensional supergravity is interpreted as the low energy description

of a quantum theory called M-theory. The full formulation of M-theory is not known yet

and it is not clear what the fundamental degrees of freedom are.

Performing a Kaluza-Klein reduction of the 11-dimensional supergravity, the theory

becomes Type IIA supergravity. To get the precise 10-dimensional action, one has to

consider a reduction over a circle of radius R given by

R = gs
2
3 ℓP11 (1.3)

where ℓP11 is the 11-dimensional Planck length and gs is the string coupling. We see that

in the regime where perturbative string theory is applicable, that is when gs < 1, the

eleventh dimension is very small and is negligible. This relation is believed to survive at

any scale of energies and thus the M-theory is associated to the strong coupling regime of

Type IIA strings.

All the five string theories are actually related to each other thanks to three different

duality relations: the S,T and U duality. The different string theories and also the M-

theory can be thought as different vacua of a unique theory [11][12][13]. However, these
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are not the complete set of vacua that the theory possesses. Indeed, it is possible to

consider non-trivial backgrounds with the presence of fluxes and curved spacetime metric.

It is also possible to consider string models in the presence of non-perturbative objects. To

date, a dynamical mechanism able to select among all the possible vacua is still missing.

That means that there are many possible string models and that string theory cannot be

seen as a unique theory of the universe. In this picture, string theory can be thought as a

completion of quantum field theory and thus, as quantum field theory, it is not a unique

theory but rather a mathematical framework that could be used to describe many physical

phenomena.

Even though string theory originates from the study of 1-dimensional strings, it in-

cludes also higher dimensional objects. Of particular relevance are the so called Dp-branes

[14][15][16] (for a review see for instance [17]). These are p-dimensional, non-perturbative

objects that are charged under the RR-modes, i.e. differential form massless modes of

the perturbative strings. The presence of D-branes can be seen also in the framework of

the effective supergravity approximation. In particular, the D-branes are solutions of the

supergravity equations of motion where the spacetime metric is the metric of an extended

black hole and the RR-flux assumes a source configuration. These solutions preserve one

half of the supersymmetries of the background, they are half-BPS states. In this way, it is

possible to describe stacks of multiple D-branes where the number of D-branes is encoded

in the amount of RR-charge. The dynamics of this system can be studied considering

string theory embedded in this supergravity background. This is one of the possible ways

to describe the physics of D-branes and this picture is valid when the radius of curvature

of the solution is small compared to the string length and the string loops are negligible.

These conditions are satisfied when

1≪ gsN < N (1.4)

where gs is the string coupling and N is the number of D-branes.

Considering the full string theory formulation, the Dp-branes can be described as p-

dimensional hyperplanes where the open strings can end. Indeed, it was shown by Polchin-

ski [17] that a stack of N of these objects carry exactlyN units of RR-charge. Furthermore,

the supersymmetries preserved are the same as the corresponding supergravity solutions.

When there are N D-branes, the open string endpoints are associated with a Chan-Paton

factor that indicates which brane of the stack the string is ending on. It results that the
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effective loop expansion parameter is gsN instead of gs. This implies that this picture is

a good description for D-branes when

1≫ gsN. (1.5)

D-branes have played a fundamental role in most of the latest achievements of string

theory. Their applications range from the dualities between the different kinds of string

theories to the physics of the black holes [18]. Furthermore, the two different descriptions

of the D-branes that we have introduced above have led to the discoveries of the celebrated

duality between string theories and gauge theories [19] (for a review see for instance [20]).

The key idea is to study the physics of the brane in a particular low energy limit that is

called the decoupling limit. In the gravity picture, this limit implies that only the degrees

of freedom near the branes survive, that means that we have to consider string theory

defined on the near horizon metric, i.e. the region of the background close to the brane.

In the flat space picture, the decoupling limit implies that only the massless modes on

the worldvolume of the brane are relevant. These degrees of freedom are described in an

effective way by a gauge theory. If we believe that the two theories are actually describing

the same physical object, it follows that a string theory defined on a particular background

is equivalent to a corresponding gauge theory. These relations are strong-weak dualities,

in the sense that in the regime where one of the two theories is weakly coupled, the other

one is strongly coupled and vice versa. This makes the string-gauge duality a powerful

tool to study a theory in a regime where it is difficult to analyze with a direct approach,

but on the other hand it makes the checks of the duality a challenging task.

The first example of string-gauge duality was proposed by Maldacena [19] studying

the decoupling limit of a stack of D3-branes. This analysis leads to conjecture that Type

IIB string theory defined on AdS5 × S5 in the presence of N units of 5-form RR-flux is

equivalent to N = 4 Supersymmetric Yang Mills theory (SYM) with U(N) gauge group.

The gauge theory is defined on a (3 + 1)-dimensional space that can be interpreted as the

boundary of the AdS5 space. The lagrangian preserves four spinorial charges (N = 4),

that gives the maximum amount of supercharges for a gauge theory. The N = 4 SYM is

a conformal field theory (CFT) and for this reason this duality is often called AdS/CFT.

The number N of units of RR-charge corresponds to the rank of the gauge group on the

field theory side. The other parameters in the theory are the radius L of the AdS5 and S5

spaces, the string coupling gs and the SYM coupling gY M . They are related by

g2
Y M = 2πgs L4 = 4πgsNℓ

4
s. (1.6)
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In its strongest formulation, the conjecture is assumed to be valid for each value of the

parameters N and gs. However, to make the theories more tractable it is useful to set the

parameters to particular values. The ’t Hooft limit considers N → ∞ keeping fixed the

’t Hooft coupling λ = g2
Y MN . The ’t Hooft coupling is the effective coupling constant for

the gauge field theory. Under these conditions, gs is very small and thus the string theory

is not interacting. Furthermore, considering λ very large, the curvature radius becomes

very large respect to the string length ℓs and thus it is possible to approximate the string

theory with a supergravity theory defined on AdS5 × S5. Thus, in the large N limit it is

possible to describe a strongly coupled gauge theory using a supergravity model!

An immediate check of the AdS/CFT duality is given by the symmetries of the two

theories. The bosonic group of invariance of N = 4 SYM in (3 + 1)-dimensions is given

by the conformal group SO(4, 2) and the R-symmetry group SO(6). These groups are the

isometry groups of respectively AdS5 and S5. Considering also the spinors it is possible

to show that both the theories are invariant under the supergroup PSU(2, 2|4).

To use the duality, it is fundamental to understand the dictionary that is relating the

two theories. Once the mapping between field theory operators and string theory fields is

known, for instance it is possible to compute quantum field theory correlation functions

at strong coupling using the gravitational dual [21][22]. This is based on the prescribed

equivalence between the partition functions of the two theories

ZCFT (φ0) =

〈

exp

(∫

φ0O
)〉

= Zstring(φ|∂AdS = φ0) (1.7)

where O is a CFT operator and φ is the associated string theory field. The string theory

partition function is evaluated constraining the fields at the boundary and the asymptotic

value of a string field works as a source for the corresponding gauge theory operator.

In the large N , large λ limit, the string theory can be approximated by supergravity

and Zstring ∼ exp (iSsugra|φ0
) where Ssugra|φ0

is the supergravity action evaluated on a

classical solution with fixed boundary conditions.

The decoupling limit has been applied to many other D-brane systems and this has

revealed dual systems where the gauge theory shares some features with theories that are

relevant for phenomenology. In this way, it is possible to use string theory or supergravity

to study strongly coupled QCD-like theories, the Quark Gluon Plasma and Condensed

Matter systems.

On the other hand, the gauge string duality can be used to study the strong coupling

regime of string theory using a gauge theory defined on the boundary of the spacetime
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where the string theory lives. Since string models are believed to be theories of quan-

tum gravity, the duality provides an explicit realization of the holographic principle, that

states that the quantum-gravity physics of a region of spacetime is encoded on the lower

dimensional boundary of the region.

In a gauge theory it is possible to define various non-local operators. The Wilson loop

[23] and ’t Hooft loop [24] operators are defined on a curve embedded in the spacetime

and describe the interaction between an external particle and the gauge field theory. A

Wilson loop WR(C) is the trace in an arbitrary representation R of the gauge group G of

the holonomy matrix associated with parallel transport along a closed curve C, that is

WR(C) = TrR P exp

(

i

∫

C

dsAµẋ
µ

)

, (1.8)

where xµ(s) is the parametric description of C, P denotes path-ordering and Aµ is the

gauge vector potential. It corresponds to inserting in the theory an external particle that

has R charge with respect to the gauge group G. The Wilson loops can be used as a basis

of operators and the dynamics can be described by the loop equation. This picture is called

the loop-space formulation of gauge theory. When the expectation value of a Wilson loop

is proportional to the exponent of the area of the minimal surface enclosed by the loop, it

is said to satisfy the area law. This is a characteristic feature of confinement and for this

reason the Wilson loops can work as order parameter for the confining-deconfining phase

transition. The form of these operators for N = 4 SYM is discussed in chapter 2.

It was shown in [25][26] that when the trace is evaluated in the fundamental represen-

tation of the gauge group U(N), the Wilson loops are associated to fundamental classical

strings in the string theory dual. In detail, given an operator W (C) defined on a loop C, it

is associated to a string embedded in the AdS5×S5 that ends on the boundary of AdS5 on

the path C. Indeed the boundary of AdS5 is a (3 + 1)-dimensional space where the gauge

theory is thought to live. Using the duality, it is possible to compute the expectation value

of the Wilson loop when the theory is strongly coupled. It gives

〈W (C)〉 = exp (iSNG(C)) (1.9)

where SNG(C) is the classical action for strings embedded in AdS5 × S5 evaluated for

a solution that ends on C at the boundary of the spacetime. When this prescription is

applied to confining gauge theories with a gravity dual, the Wilson loops show the expected

area law [27].
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The ’t Hooft operators are defined requiring that near the loop where the operator

lives, the gauge field has a singularity of the Dirac monopole kind. The ’t Hooft loop

describes the coupling to the theory of an external magnetic monopole. Operators that

cannot be expressed in terms of an operator insertion made out by the fields in the theory

are usually called disorder operators. They are defined requiring some singular behavior

for the fields in the spacetime region near the operator. This is the common way to define

surface-operators, i.e. operators that live on a 2-dimensional surface [28][29]. The insertion

of a surface operator corresponds to probing the gauge theory with a 1-dimensional string

and it might be useful to detect new phase transitions that cannot be seen probing the

theory with a point particle. It is not possible to construct surface operators using a trivial

generalization of the definition of Wilson loop (1.8). Indeed, it is not possible to define an

ordering for the operators that would be invariant under the surface reparameterization

[30].

Part of this thesis will be focused on the study of non-local operators in the context

of the gauge gravity duality, including Wilson loops in higher representations of the gauge

group and a special class of surface operators that do admit a description in terms of an

operator insertion made out of the fields appearing in the Lagrangian.

We have seen how the string-gauge correspondences arise from the study of the low

energy dynamics of stacks of multiple D-branes and in principle one could apply the same

procedure also in the context of M-theory, looking at the low energy physics of a stack

of M-branes, higher dimensional objects that share some similarities with the D-branes of

string theory (see for instance [31]). There exists only 2-dimensional and 5-dimensional

M-branes, they are called respectively M2 and M5-branes. Like the D-branes in string

theory, they can be described as classical solutions of the low energy theory, that is the

11-dimensional supergravity. However, there are not open strings ending on the M-branes

and thus their worldvolume low energy description is not a SYM theory. Indeed, the

thermodynamics of the supergravity solutions seem to suggest that the degrees of freedom

of a stack of N M2-branes scale as N3/2 and for N M5-branes as N3. These numbers are

not reproduced by a U(N) gauge theory that has N2 degrees of freedom.

The search for an effective theory of multiple M2-branes has gone through a remarkable

development during the past year and a half, thanks to the papers by Bagger and Lambert

[32][33][34][35] and ABJM [36] (Aharony, Bergman, Jafferis and Maldacena). Bagger and

Lambert have constructed a (2+1)-dimensional field theory that is invariant under N = 8

supersymmetries and SO(8) R-symmetry. The theory is a gauge theory based on novel
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algebraic structures called 3-algebras. These are generalizations of Lie algebras and the

main difference is that the Lie commutator is replaced by a three entries operator called

3-product (3-algebras are reviewed in Chapter 4 and 5). Given the amount of symmetry,

the theory was interpreted as the worldvolume effective theory of a stack of M2-branes,

where the SO(8) R-symmetry is interpreted as the rotational invariance of the spacetime

transverse to the stack. However, once the 3-algebras were classified [37][38][39], it was

shown that there is only one 3-algebra with Euclidean metric. This is interpreted as the

gauge group associated to two M2-branes embedded in a particular orbifold called M-fold2

[40][41]. It is possible to consider 3-algebras with a Lorentzian metric [42][43][44] but their

M-theory interpretation is not clear yet [45][46][47][48]. Another proposal was put forward

by ABJM in [36] where anN = 6 Chern-Simons theory with gauge group U(N)×U(N) was

proposed as the world volume theory for a stack ofN M2-branes embedded in R1,2×C4/Zk.

This proposal has passed several checks, for instance the moduli space of the Chern-Simons

is the same as the moduli space of N M2-branes probing a C4/Zk singularity in M-theory.

It was later shown by Bagger and Lambert that also this theory can be rewritten in terms

of a 3-algebra structure [35]. The 3-algebras defined to construct N = 6 theories [35] are

different from the 3-algebras originally defined in [33] to construct N = 8 theories.

The study of multiple M2-branes theories is an important task that might lead to

a better understanding of the M-theory and to new gauge-gravity dualities suitable for

phenomenological applications. Indeed, the effective field theories of multiple M2-branes

include gauge fields described by a Chern-Simons Lagrangian and this represents a novelty

for the gauge-gravity duality. This might end up being useful for the study of certain

condensed matter systems whose physics is well described by 3-dimensional Chern-Simons

theories. The last part of this thesis analyzes few aspects of the Bagger Lambert theory

in the N = 8 formulation.

Outline of the thesis

In chapter 2 we show that the Wilson loops in a higher representation of the gauge

group correspond to D-branes on the string theory side. In particular, operators in the

symmetric representation of the gauge group are associated to D3-branes and operators in

the antisymmetric representations are associated to D5-branes. A Wilson loop in a generic

representation corresponds to a particularly chosen stack of D3-branes or equivalently to

2 This orbifold combine a geometrical action with an action on the branes.
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a stack of D5-branes. The way to prove this correspondence is to look at a D-brane

system that in addition to the stack of N D3-branes giving rise to the standard AdS/CFT,

includes also some extra D3-branes or D5-branes. In the decoupling limit the extra D-

branes become probes in AdS5×S5, when the backreaction can be neglected. On the field

theory side, the extra D-branes introduce degrees of freedom localized on a one dimensional

subspace of the spacetime. Integrating out the physics on this subspace introduces in the

theory Wilson loops in a representation that is encoded in the physical properties of the

branes.

In chapter 3 we study a particular D3-D7 intersection, where the D7-branes intersect

the stack of D3-branes along two spacetime coordinates. In the gauge theory description

of the system, the D7-branes manifest themselves as a surface operator, i.e. a non-local

operator defined on a 2-dimensional subspace of the spacetime. The novelty is that this

operator is of order-type, in the sense that it is expressed in terms of the fields in the

gauge theory. Previously studied surface operators are of disorder-type, i.e. they cannot

be expressed by the fields in the theory but they are defined by imposing a singular

behavior to the fields on the surface where the operator lives. Another interesting result of

this analysis is that also in the low energy field theory description, the backreaction of the

D7-branes cannot be neglected so that in the end, we find a gauge-string duality where the

gauge theory is defined in a curved spacetime. This result is important because it enlarges

the holographic duality to gauge theories defined in a non-trivial background.

We then study the multiple membranes theory in the last part of the thesis. In chapter

4 we construct a one parameter mass deformation of the Bagger-Lambert Lagrangian that

preserves all the supersymmetries. This theory represents a novel example of a maximally

supersymmetric 3-dimensional gauge theory. Furthermore, when it is compactified on

R × T 2 it possesses the same superisometries of the Type IIB pp-wave background and

due to the M2-branes interpretation of the Bagger-Lambert theory, it is interpreted as

the Matrix theory for strings on Type IIB pp-wave. In chapter 5 we show by explicit

computation that the Bagger-Lambert Lagrangian realizes the full M2-brane superalgebra,

including also two central charges related to higher dimensional objects. These charges

are associated to the intersections between the M2-branes and other M-branes and they

should be realized by a Lagrangian describing the low energy physics of M2-branes. It

follows that solitons of the Bagger-Lambert theory that are interpreted as worldvolume

realizations of intersecting branes correctly saturate a BPS-bound given in terms of the

corresponding charge. In chapter 6 we conclude with a summary of our results and discuss

possible future directions.
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2. Holographic Wilson Loops

We have already mentioned in the introduction that a necessary step in describing

string theory in terms of a holographic dual gauge theory, is to be able to map all gauge

invariant operators of the field theory in string theory. Indeed, all physical information is

captured by gauge invariant observables.

Gauge theories can be formulated in terms of a non-Abelian vector potential or al-

ternatively in terms of gauge invariant Wilson loop variables. The formulation in terms

of non-abelian connections makes locality manifest while it has the disadvantage that the

vector potential transforms inhomogeneously under gauge transformation and is therefore

not a physical observable. The formulation in terms of Wilson loop variables makes gauge

invariance manifest at the expense of a lack of locality. The Wilson loop variables, being

non-local, appear to be the natural set of variables in which the bulk string theory formu-

lation should be written down to make holography manifest. It is therefore interesting to

consider the string theory realization of Wilson loop operators3.

Significant progress has been made in mapping local gauge invariant operators in gauge

theory in the string theory dual. Local operators in the boundary theory correspond to

bulk string fields [19][21][22][20]. Furthermore, the correlation function of local gauge

invariant operators is obtained by evaluating the string field theory action in the bulk with

prescribed sources at the boundary.

Wilson loop operators are an interesting set of non-local gauge invariant operators in

gauge theory in which the theory can be formulated. Mathematically, a Wilson loop is

the trace in an arbitrary representation R of the gauge group G of the holonomy matrix

associated with parallel transport along a closed curve C in spacetime. Physically, the

expectation value of a Wilson loop operator in some particular representation of the gauge

group measures the phase associated with moving an external charged particle with charge

R around a closed curve C in spacetime.

In this chapter we show that all half-BPS operators in four dimensional N = 4 SYM

with gauge group U(N) – which are labeled by an irreducible representation of U(N) – can

be realized in the dual gravitational description in terms of D5-branes or alternatively in

3 As described in the introduction, this has been done for Wilson loops in the fundamental

representation by [25][26].
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terms of D3-branes in AdS5×S5. We show this by explicitly integrating out the physics on

the D5-branes or alternatively on the D3-branes and proving that this inserts a half-BPS

Wilson loop operator in the desired representation in the N = 4 SYM path integral.

The choice of representation of U(N) can be conveniently summarized in a Young

tableau. We find that the data of the tableau can be precisely encoded in the AdS bulk

description. Consider a Young tableau for a representation of U(N) with ni boxes in the

i-th row and mj boxes in the j-th column:

Fig. 1: A Young tableau. For U(N), i ≤ N and mj ≤ N while M and ni are

arbitrary.

We show that the Wilson operator labeled by this tableau is generated by integrating

out the degrees of freedom on M coincident D5-branes in AdS5×S5 where the j-th D5-

brane has mj units of fundamental string charge dissolved in it. If we label the j-th

D5-brane carrying mj units of charge by D5mj
, the Young tableau in Fig. 1. has a bulk

description in terms of a configuration of D5-branes given by (D5m1
, D5m2

, . . . , D5mM
).

We show that the same Wilson loop operator can also be represented in the bulk

description in terms of coincident D3-branes in AdS5×S5 where the i-th D3-brane has ni

units of fundamental string charge dissolved in it4. If we label the i-th D3-brane carrying

ni units of charge by D3ni
, the Young tableau in Fig. 1. has a bulk description in terms

of a configuration of D3-branes5 given by (D3n1
, D3n2

, . . . , D3nN
).

4 This D-brane has been previously considered in the study of Wilson loops by Drukker and

Fiol [49]. In this chapter we show that these D-branes describe Wilson loops in a representation

of the gauge group which we determine.
5 The number of D3-branes depends on the length of the first column, which can be at most

N . A D3-brane with AdS2×S2 worldvolume is a domain wall in AdS5 and crossing it reduces

the amount of five-form flux by one unit. Having such a D3-brane solution requires the presence
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The way we show that the bulk description of half-BPS Wilson loops is given by D-

branes is by studying the effective field theory dynamics on the N D3-branes that generate

the AdS5×S5 background in the presence of bulk D5 and D3-branes. This effective field

theory describing the coupling of the degrees of freedom on the bulk D-branes to the N = 4

SYM fields is a defect conformal field theory (see e.g [50][51][52]). It is by integrating out

the degrees of freedom associated with the bulk D-branes in the defect conformal field

theory that we show the correspondence between bulk branes and Wilson loop operators.

We can carry out this procedure exactly and show that this results in the insertion of a half-

BPS Wilson loop operator in the N = 4 SYM theory and that the mapping between the

Young tableau data and the bulk D5 and D3 brane configuration is the one we described

above.

First, we study the defect field theory associated to the bulk D5-branes. It results

that these branes introduce in the theory fermionic degrees of freedom localized on the

codimension three defect which corresponds to the location of the Wilson line. The D3-

brane description of the Wilson loop is related to the D5-brane description by bosonizing

the localized degrees of freedom of the defect conformal field theory. Indeed, we find

that if we quantize these degrees of freedom as bosons instead, which is allowed in 0 + 1

dimensions, that the defect conformal field theory captures correctly the physics of the

bulk D3-branes.

We then consider the flat space brane configuration which yields in the near horizon

limit the D3-branes Wilson loop in AdS5×S5. It corresponds to separating P D-branes by

a distance L from a stack of N + P coincident D3-branes and introducing k fundamental

strings stretched between the two stacks of branes, in the limit L → ∞. We can exactly

integrate out the degrees of freedom introduced by the extra P D-branes from the low

energy effective field theory describing this configuration and show that the net effect

is to insert into the U(N) N = 4 SYM path integral a Wilson loop operator with the

expected representation. This explicitly confirms that the defect field theories associated

to D5-branes and D3-branes are related by bosonization.

The outline of the chapter is as follows. In section 1 we identify the Wilson loop

operators in N = 4 SYM that preserve half of the supersymmetries and study the N = 4

of five-form flux in the background to stabilize it. Therefore, we cannot put more that N such

D3-branes as inside the last one there is no more five-form flux left and the N + 1-th D3-brane

cannot be stabilized.
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subalgebra preserved by the half-BPS Wilson loops. Section 2 contains the embeddings of

the D5k and D3k brane in AdS5×S5 and we show that they preserve the same symmetries

as the half-BPS Wilson loop operators. In section 3 we derive the defect conformal field

theory produced by the interaction of the bulk D5k/D3k branes with the D3 branes that

generate the AdS5×S5 background. We also show that a singleD5k-brane corresponds to a

half-BPS Wilson loop in the k-th antisymmetric product representation of U(N) while the

D3k-brane corresponds to the k-th symmetric product representation. In this section, the

D3k-brane defect field theory is introduced bosonising theD5k-brane defect field theory. In

section 4 we show that a half-BPS Wilson loop in any representation of U(N) is described

in terms of the collection of D5 or D3 branes explained in the introduction. In section 5

we show by first principles that a single D3-brane in AdS5×S5 with k units of fundamental

string charge correponds to a half-BPS Wilson loop in the k-th symmetric representation

of U(N). This is shown by studying in a certain infinite mass limit the Coulomb branch

of N = 4 SYM in the presence of k W-bosons. In section 6 this result is generalized to

arbitrary representations and confirms the proposal in section 4 that D5-branes and D3-

branes Wilson loops are related by bosonization. Some computations have been relegated

to section 7.

2.1. Wilson Loops in N = 4 SYM

A Wilson loop operator in N = 4 SYM is labeled by a curve C in superspace and

by a representation R of the gauge group G. The data that characterizes a Wilson loop,

the curve C and the representation R, label the properties of the external particle that is

used to probe the theory. The curve C is identified with the worldline of the superparticle

propagating in N = 4 superspace while the representation R corresponds to the charge

carried by the superparticle.

The curve C is parameterized by (xµ(s), yI(s), θα
A(s)) and it encodes the coupling of

the charged external superparticle to the N = 4 SYM multiplet (Aµ, φ
I , λA

α ), where µ (α)

is a vector(spinor) index of SO(1, 3) while I (A) is a vector (spinor) index of the SO(6)

R-symmetry group of N = 4 SYM. Gauge invariance of the Wilson loop constraints the

curve xµ(s) to be closed while (yI(s), θα
A(s)) are arbitrary curves.

The other piece of data entering into the definition of a Wilson loop operator is the

choice of representation R of the gauge group G. For gauge group U(N), the irreducible
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representations are conveniently summarized by a Young tableau R = (n1, n2, . . . , nN ),

where ni is the number of boxes in the i-th row of the tableau and n1 ≥ n2 ≥ . . . ≥ nN ≥ 0.

The corresponding Young diagram is given by:

1 2 · · · · n1

1 2 · · · n2

1 2 · · · n3

· · · ·
1 2 · n

N

The main goal of this chapter is to identify all half-BPS Wilson loop operators of N = 4

SYM in the dual asymptotically AdS gravitational description.

In this thesis we consider bosonic Wilson loop operators for which θα
A(s) = 0. Wilson

loop operators coupling to fermions can be obtained by the action of supersymmetry and

are descendant operators. The operators under study are given by

WR(C) = TrR P exp

(

i

∫

C

ds(Aµẋ
µ + φI ẏ

I)

)

, (2.1)

where C labels the curve (xµ(s), yI(s)) and P denotes path-ordering along the curve C.

We now consider the Wilson loop operators in N = 4 SYM which are invariant

under one-half of the N = 4 Poincare supersymmetries and also invariant under one-half

of the N = 4 superconformal supersymmetries. The sixteen Poincare supersymmetries

are generated by a ten dimensional Majorana-Weyl spinor ǫ1 of negative chirality while

the superconformal supersymmetries are generated by a ten dimensional Majorana-Weyl

spinor ǫ2 of positive chirality. The analysis in section 7 shows that supersymmetry restricts

the curve C to be a straight time-like line spanned by x0 = t and ẏI = nI , where nI is a

unit vector in R6. The unbroken supersymmetries are generated by ǫ1,2 satisfying

γ0γIn
Iǫ1 = ǫ1 γ0γIn

Iǫ2 = −ǫ2. (2.2)

Therefore, the half-BPS Wilson loop operators in N = 4 SYM are given by

WR = W(n1,n2,...,nN ) = TrR P exp

(

i

∫

dt (A0 + φ)

)

, (2.3)

where φ = φIn
I . It follows that the half-BPS Wilson loop operators carry only one label:

the choice of representation R.

We conclude this section by exhibiting the supersymmetry algebra preserved by the

insertion of (2.3) to the N = 4 path integral. This becomes useful when identifying the
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gravitational dual description of Wilson loops in later sections. In the absence of any

operator insertions, N = 4 SYM is invariant under the PSU(2, 2|4) symmetry group.

It is well known [53] that a straight line breaks the four dimensional conformal group

SU(2, 2) ≃ SO(2, 4) down to SO(4∗) ≃ SU(1, 1)× SU(2) ≃ SL(2, R)× SU(2). Moreover,

the choice of a unit vector nI in (2.3) breaks the SU(4) ≃ SO(6) R-symmetry of N = 4

SYM down to Sp(4) ≃ SO(5). The projections (2.2) impose a reality condition on the four

dimensional supersymmetry generators, which now transform in the (4, 4) representation

of SO(4∗) × Sp(4). Therefore, the supersymmetry algebra preserved6 by the half-BPS

Wilson loops is Osp(4∗|4).

2.2. Giant and Dual Giant Wilson loops

The goal of this section is to put forward plausible candidate D-branes for the bulk

description of the half-BPS Wilson loop operators (2.3). In the following sections we show

that integrating out the physics on these D-branes results in the insertion of a half-BPS

Wilson loop operator to N = 4 SYM. This provides the string theory realization of all

half-BPS Wilson loops in N = 4 SYM.

Given the extended nature of Wilson loop operators in the gauge theory living at the

boundary of AdS, it is natural to search for extended objects in AdS5×S5 preserving the

same symmetries as those preserved by the half-BPS operators (2.3) as candidates for the

dual description of Wilson loops. The extended objects that couple to the Wilson loop

must be such that they span a time-like line in the boundary of AdS, where the Wilson

loop operator (2.3) is defined.

Since we want to identify extended objects with Wilson loops in N = 4 SYM on R1,3,

it is convenient to write the AdS5 metric in Poincare coordinates

ds2AdS = L2

(

u2ηµνdx
µdxν +

du2

u2

)

, (2.4)

where L = (4πgsN)1/4ls is the radius of AdS5 and S5. Furthermore, since the Wilson loop

operator (2.3) preserves an SO(5) symmetry, we make this symmetry manifest by foliating

the metric on S5 by a family of S4’s

ds2sphere = L2
(
dθ2 + sin2 θ dΩ2

4

)
, (2.5)

6 This supergroup has appeared in the past in relation to the baryon vertex [54][55].
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where θ measures the latitude angle of the S4 from the north pole and dΩ2
4 is the metric

on the unit S4.

In [25][26] the bulk description of a Wilson loop in the fundamental representation of

the gauge group associated with a curve C in R1,3 was given in terms of a fundamental

string propagating in the bulk and ending at the boundary of AdS along the curve C. This

case corresponds to the simplest Young tableau R = (1, 0, . . . , 0), with Young diagram .

The expectation value of the corresponding Wilson loop operator is identified with

the action of the string ending at the boundary along C. This identification was motivated

by considering a stack of D3-branes and moving one of them to infinity, leaving behind a

massive external particle carrying charge in the fundamental representation of the gauge

group.

The embedding corresponding to the half-BPS Wilson loop (2.3) for R = (1, 0, . . . , 0)

is given by7

σ0 = x0 σ1 = u xi = 0 xI = nI , (2.6)

so that the fundamental string spans an AdS2 geometry sitting at xi = 0 in AdS5 and

sits at a point on the S5 labeled by a unit vector nI , satisfying n2 = 1. Therefore, the

fundamental string preserves exactly the same SU(1, 1)× SU(2) × SO(5) symmetries as

the one-half BPS Wilson loop operator (2.3). Moreover the string ends on the time-like

line parameretrized by x0 = t, which is the curve corresponding to the half-BPS Wilson

loop (2.3).

In section 7 we compute the supersymmetries left unbroken by the fundamental string

(2.6). We find that they are generated by two ten dimensional Majorana-Weyl spinors ǫ1,2

of opposite chirality satisfying

γ0γIn
Iǫ1 = ǫ1 γ0γIn

Iǫ2 = −ǫ2, (2.7)

which coincides with the unbroken supersymmetries (2.2) of the half-BPS Wilson loop.

Therefore, the fundamental string preserves the same Osp(4∗|4) symmetry as the half-

BPS Wilson loop (2.3).

The main question in this chapter is, what is the holographic description of half-BPS

Wilson loop operators in higher representations of the gauge group?

7 The coordinates σ0, . . . σp refer to the worldvolume coordinates on a string/brane.

19



Intuitively, higher representations correspond to having multiple coincident funda-

mental strings8 ending at the boundary of AdS. This description is, however, not very

useful as the Nambu-Goto action only describes a single string. A better description of

the system is achieved by realizing that coincident fundamental strings in the AdS5×S5

background can polarize [57] into a single D-brane with fundamental strings dissolved in

it, thus providing a concrete description of the coincident fundamental strings.

We now describe the way in which a collection of k fundamental strings puff up into

a D-brane with k units of fundamental string charge on the D-brane worldvolume.

The guide we use to determine which D-branes are the puffed up description of k-

fundamental strings is to consider D-branes in AdS5×S5 which are invariant under the

same symmetries as the half-BPS Wilson loops9, namely we demand invariance under

Osp(4∗|4). The branes preserving the SU(1, 1)×SU(2)×SO(5) symmetries of the Wilson

loop are given by:

1) D5k-brane with AdS2×S4 worldvolume.

2) D3k-brane with AdS2×S2 worldvolume.

We now describe the basic properties of these branes that we need for the analysis in

upcoming sections.

D5k-brane as a Giant Wilson loop

The classical equations of motion for a D5-brane with an AdS2×S4 geometry and with

k fundamental strings dissolved in it (which we label by D5k) has been studied in the past

in [58][59]. Here we summarize the necessary elements that will allow us to prove in the

following section that this D-brane corresponds to a half-BPS Wilson loop operator.

The D5k-brane is described by the following embedding

σ0 = x0 σ1 = u σa = ϕa xi = 0 θ = θk = constant, (2.8)

together with a nontrivial electric field F along the AdS2 spanned by (x0, u). Therefore,

a D5k-brane spans an AdS2×S4 geometry10 and sits at a latitude angle θ = θk on the S5,

which depends on k, the fundamental string charge carried by the D5k-brane:

8 Such a proposal was put forward in [56] by drawing lessons from the description of Wilson

loops in two dimensonal QCD.
9 We have already established that the fundamental strings (2.6) have the same symmetries as

the half-BPS Wilson loops.
10 ϕa are the coordinates on the S4 in (2.5).
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Fig. 2: A D5k-brane sits at a latitude angle θk determined by the amount of

fundamental string charge it carries.

This brane describes the puffing up of k fundamental strings into a D-brane inside S5,

so in analogy with a similar phenomenon for point-like gravitons [60], such a brane can be

called a giant Wilson loop.

It can be shown [59] that θk is a monotonically increasing function of k in the domain of

θ, that is [0, π] and that θ0 = 0 and θN = π, where N is the amount of flux in the AdS5×S5

background or equivalently the rank of the gauge group in N = 4 SYM. Therefore, we can

dissolve at most N fundamental strings on the D5-brane.

The D5k-brane has the same bosonic symmetries as the half-BPS Wilson loop op-

erator and it ends on the boundary of AdS5 along the time-like line where the half-BPS

Wilson loop operator (2.3) is defined. In section 7 we show that it also preserves the same

supersymmetries (2.2) as the half-BPS Wilson loop operator (2.3) when nI = (1, 0, . . . , 0)

and is therefore invariant under the Osp(4∗|4) symmetry group.

D3k-brane as a Dual Giant Wilson loop

The classical equations of motion of a D3-brane with an AdS2×S2 geometry and with

k fundamental strings dissolved in it (which we label by D3k) has been studied by Drukker

and Fiol [49]. We refer the reader to this reference for the details of the solution.

For our purposes we note that unlike for the case of the D5k-brane, an arbitrary

amount of fundamental string charge can be dissolved on the D3k-brane. As we shall see

in the next section, this has a pleasing interpretation in N = 4.
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The geometry spanned by a D3k-brane gives an AdS2×S2 foliation11 of AdS5, the

location of the slice being determined by k, the amount of fundamental string charge:

Fig. 3: A D3k-brane gives an AdS2×S2 slicing of AdS5.

This brane describes the puffing up of k fundamental strings into a D-brane inside

AdS5, so in analogy with a similar phenomenon for point-like gravitons [64][65], such a

brane can be called a dual giant Wilson loop.

By generalizing the supersymmetry analysis in [49] one can show that the D3k-brane

preserves precisely the same supersymmetries as the fundamental string (2.7) and therefore

the same as the ones preserved by the half-BPS Wilson loop operator.

To summarize, we have seen that k fundamental strings can be described either by a

single D5k-brane or by a single D3k-brane. The three objects preserve the same Osp(4∗|4)

symmetry if the fundamental string and the D3k-brane sit at the north pole of the S5,

i.e. at θ = 0 corresponding to the unit vector nI = (1, 0, . . . , 0). Furthermore, these three

objects are invariant under the same Osp(4∗|4) symmetry as the half-BPS Wilson loop

operator (2.3).

2.3. Dirichlet Branes as Wilson loops

We show that the half-BPS Wilson loop operators in N = 4 SYM are realized by

the D-branes in the previous section. We study the modification on the low energy effec-

tive field theory on the N D3-branes that generate the AdS5×S5 background due to the

11 This foliation structure and the relation with N = 4 SYM defined on the AdS2×S2 boundary

– which makes manifest the symmetries left unbroken by the insertion of a straight line Wilson

loop – has been considered in [61][62][63].
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presence of D5-brane giants and D3-brane dual giants. We can integrate out exactly the

degrees of freedom introduced by the Wilson loop D-branes and show that the net effect

of these D-branes is to insert into the N = 4 U(N) SYM path integral a Wilson loop

operator in the desired representation of the U(N) gauge group.

In order to develop some intuition for how this procedure works, we start by analyzing

the case of a single D5k-brane and a single D3k-brane. We now show that a D5k-brane de-

scribes a half-BPS Wilson loop operator in the k-th antisymmetric product representation

of U(N) while a D3k-brane describes one in the k-th symmetric product representation.

In section 4 we proceed to show that a Wilson loop described by an arbitrary Young

tableau corresponds to considering multiple D-branes. We also show that a given Young

tableau can be either derived from a collection of D5k-branes or from a collection of D3k-

branes and that the two descriptions are related by bosonization.

D5k-brane as a Wilson Loop

We propose to analyze the physical interpretation of a single D5k-brane in the gauge

theory by studying the effect it has on four dimensional N = 4 SYM. A D5k-brane with

an AdS2×S4 worldvolume in AdS5×S5 arises in the near horizon limit of a single D5-brane

probing the N D3-branes that generate the AdS5×S5 background. The flat space brane

configuration is given by:

0 1 2 3 4 5 6 7 8 9
D3 X X X X
D5 X X X X X X

(2.9)

We can now study the effect of the D5k-brane by analyzing the low energy effective field

theory on a single D5-brane probing N D3-branes in flat space.

We note first that the D5-brane produces a codimension three defect on the D3-

branes, since they overlap only in the time direction. In order to derive the decoupled field

theory we must analyze the various open string sectors. The 3-3 strings give rise to the

familiar four dimensional N = 4 U(N) SYM theory. The sector of 3-5 and 5-3 strings give

rise to degrees of freedom that are localized in the defect. There are also the 5-5 strings.

The degrees of freedom associated with these strings – a six dimensional vector multiplet

on the D5-brane – are not dynamical. Nevertheless, as we will see, they play a crucial role

in encoding the choice of Young tableau R = (n1, . . . , nN ).
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This brane configuration gives rise to a defect conformal field theory (see e.g. [50][51]),

which describes the coupling of the N = 4 SYM to the localized degrees of freedom. The

localized degrees of freedom arise from the 3-5 and 5-3 strings and they give rise to fermionic

fields χ transforming in the fundamental representation of U(N). We can write the action

of this defect conformal field theory by realizing that we can obtain it by performing T-

duality on the well studied D0-D8 matrix quantum mechanics (see e.g. [66][67]). Ignoring

for the moment the coupling of χ to the non-dynamical 5-5 strings, we obtain that the

action of our defect conformal field theory is given by12

S = SN=4 +

∫

dt iχ†∂tχ+ χ†(A0 + φ)χ, (2.10)

where A0 is the temporal component of the gauge field in N = 4 SYM and φ is one of the

scalars of N = 4 SYM describing the position of the D3-branes in the direction transverse

to both the D3 and D5 branes; it corresponds to the unit vector nI = (1, 0, . . . , 0).

What are the PSU(2, 2|4) symmetries that are left unbroken by adding to the N = 4

action the localized fields? The supersymmetries of N = 4 SYM act trivially on χ. This

implies that the computation determining the unbroken supersymmetries is exactly the

same as the one we did for the Wilson loop operator (2.3). Likewise for the bosonic

symmetries, where we just need to note that the defect fields live on a time-like straight

line. Therefore, we conclude that our defect conformal field theory has an Osp(4∗|4)

symmetry, just like the half-BPS Wilson loop operator (2.3).

Even though the fields arising from the 5-5 strings are nondynamical, they play a cru-

cial role in the identification of the D5k-brane with a Wilson loop operator in a particular

representation of the gauge group. As we discussed in the previous section, a D5k-brane

has k fundamental strings ending on it and we must find a way to encode the choice of k

in the low energy effective field theory on the D-branes in flat space. This can be accom-

plished by recalling that a fundamental string ending on a D-brane behaves as an electric

charge for the gauge field living on the D-brane. Therefore we must add to (2.10) a term

that captures the fact that there are k units of background electric charge localized on

the defect. This is accomplished by inserting into our defect conformal field theory path

integral the operator:

exp

(

−ik
∫

dt Ã0

)

. (2.11)

12 We do not write the U(N) indices explicitly. They are contracted in a straighforward manner

between the χi fields and the A0 ij gauge field, where i, j = 1, . . . , N .
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Equivalently, we must add to the action (2.10) the Chern-Simons term:

−
∫

dt kÃ0. (2.12)

The effect of (2.12) on the Ã0 equation of motion is to insert k units of electric charge at

the location of the defect, just as desired.

We must also consider the coupling of the χ fields to the nondynamical gauge field

Ã on the D5-brane, as they transform in the fundamental representation of the D5-brane

gauge field. Summarizing, we must add to (2.10) :

Sextra =

∫

dt χ†Ã0χ− kÃ0. (2.13)

The addition of these extra couplings preserves the Osp(4∗|4) symmetry of our defect

conformal field theory.

We want to prove that a D5k-brane corresponds to a half-BPS Wilson loop operator

in N = 4 SYM in a very specific representation of U(N). The way we show this is by

integrating out explicitly the degrees of freedom associated with the D5k-brane. We must

calculate the following path integral

Z =

∫

[Dχ][Dχ†][DÃ0] e
i(S+Sextra), (2.14)

where S is given in (2.10) and Sextra in (2.13).

Let’s us ignore the effect of Sextra for the time being; we will take it into account later.

We first integrate out the χ fields. This can be accomplished the easiest by perfoming a

choice of gauge such that the matrix A0 + φ has constant eigenvalues13:

A0 + φ = diag(w1, . . . , wN ). (2.15)

The equations of motion for the χ fields are then given by:

(i∂t + wi)χi = 0 for i = 1, . . . , N. (2.16)

13 Here there is a subtlety. This gauge choice introduces a Fadeev-Popov determinant which

changes the measure of the path-integral over the N = 4 SYM fields. Nevertheless, after we

integrate out the degrees of freedom associated with the D5-brane, we can write the result in a

gauge invariant form, so that the Fadeev-Popov determinant can be reabsorbed to yield the usual

measure over the N = 4 SYM fields in the path integral.
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Therefore, in this gauge, one has a system of N fermions χi with energy wi.

The path integral can now be conveniently evaluated by going to the Hamiltonian

formulation, where integrating out the χ fermions corresponds to evaluating the partition

function of the fermions14. Therefore, we are left with

Z∗ = eiSN=4 ·
N∏

i=1

(1 + xi), (2.17)

where xi = eiβwi and the ∗ in (2.17) is to remind us that we have not yet taken into account

the effect of Sextra in (2.14). A first glimpse of the connection between a D5k-brane and

a half-BPS Wilson loop operator is to recognize that the quantity xi = eiβwi appearing in

(2.17) with wi given in (2.15), is an eigenvalue of the holonomy matrix appearing in the

Wilson loop operator (2.3), that is exp iβ (A0 + φ).

Since our original path integral (2.14) is invariant under U(N) conjugations, it means

that Z∗ should have an expansion in terms of characters or invariant traces of U(N),

which are labeled by a Young tableau R = (n1, n2, . . . , nN ). In order to exhibit which

representations R appear in the partition function, we split the computation of the partition

function into sectors with a fixed number of fermions in a state. This decomposition allows

us to write
N∏

i=1

(1 + xi) =

N∑

l=0

El(x1, . . . , xl), (2.18)

where El(x1, . . . , xl) is the symmetric polynomial:

El(x1, . . . , xl) =
∑

i1<i2...<il

xi1 . . . xil
. (2.19)

Physically, El(x1, . . . , xl) is the partition function over the Fock space of N fermions, each

with energy wi, that have l fermions in a state.

We now recognize that the polynomial El is the formula (see e.g [68]) for the trace of

the half-BPS Wilson loop holonomy matrix in the l-th antisymmetric representation

El = Tr(1, . . . , 1
︸ ︷︷ ︸

, 0, . . . , 0)

l

P exp

(

i

∫

dt (A0 + φ)

)

= W (1, . . . , 1
︸ ︷︷ ︸

, 0, . . . , 0)

l

, (2.20)

14 Here we introduce, for convenience an infrared regulator, so that t is compact 0 ≤ t ≤ β.
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where W (1, . . . , 1
︸ ︷︷ ︸

, 0, . . . , 0)

l

is the half-BPS Wilson loop operator (2.3) corresponding to

the following Young diagram:
1
2
·
·
·
l

Therefore, integrating out the χ fields has the effect of inserting into the N = 4 path

integral a sum over all half-BPS Wilson loops in the l-th antisymmetric representation:

Z∗ = eiSN=4 ·
N∑

l=0

W (1, . . . , 1
︸ ︷︷ ︸

, 0, . . . , 0)

l

. (2.21)

It is now easy to go back and consider the effect of Sextra (2.13) on the path integral

(2.14). Integrating over Ã0 in (2.14) imposes the following constraint:

N∑

i=1

χ†
iχi = k. (2.22)

This constraint restrict the sum over states in the partition function to states with precisely

k fermionic excitations. These states are of the form:

χ†
i1
. . . χ†

ik
|0〉. (2.23)

This picks out the term with l = k in (2.21).

Therefore, we have shown that a single D5k-brane inserts a half-BPS operator in the

k-th antisymmetric representation in the N = 4 path integral

D5k ←→ Z = eiSN=4 ·W (1, . . . , 1
︸ ︷︷ ︸

, 0, . . . , 0)

k

, (2.24)

where SN=4 is the action of N = 4 SYM. The expectation value of this operator can be

computed by evaluating the classical action of the D5k-brane.
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D3k-brane as a Wilson Loop

We now consider what a D3k dual giant brane corresponds to in four dimensional

N = 4 SYM. For the time being, we make a very simple proposal for how to study the

effect produced by a D3k-brane on N = 4 SYM and show that it leads to a consistent

physical picture. In particular, we associate to the D3k-brane a defect field theory that

is obtained bosonizing the defect field theory associated to the D5k-brane. In section

5 and section 6 we will give a first principle proof of this proposal, analyzing the flat

space brane configuration that reproduces the D3k-brane solution in the near horizon

limit. In this section and in the next, the basic observation is that if we quantize the χ

fields appearing in (2.10)(2.13) not as fermions but as bosons, which is something that

is consistent when quantizing degrees of freedom in 0 + 1 dimensions, we can show that

the effect of the D3k-brane is to insert a half-BPS Wilson loop operator (2.3) in the k-th

symmetric representation of U(N).

This result is in concordance with the basic physics of the probe branes. In the

previous section we found that the amount of fundamental string charge k on a D5k-brane

can be at most N . On the other hand, we have shown that a D5k-brane corresponds to

a Wilson loop in the k-th antisymmetric representation of U(N) so that indeed k ≤ N ,

otherwise the operator vanishes. For the D3k-brane, however, the string charge k can

be made arbitrarily large. The proposal that the D3k-brane can be studied in the gauge

theory by quantizing χ as bosons leads, as we will show, to a Wilson loop in the k-th

symmetric representation, for which there is a non-trivial representation of U(N) for all k

and fits nicely with the D3k-brane probe expectations.

Formally, going from the D5k giant to the D3k dual giant Wilson line picture amounts

to performing a bosonization of the defect field χ . It would be very interesting to under-

stand from a more microscopic perspective the origin of this bosonization15.

Having motivated treating χ as a boson we can now go ahead and integrate out the χ

fields in (2.14). As before, we ignore for the time being the effect of Sextra in (2.14). We

also diagonalize the matrix A0 + φ as in (2.15).

The equations of motion are now those for N chiral bosons χi with energy wi

(i∂t + wi)χi = 0 for i = 1, . . . , N, (2.25)

15 A similar type of bosonization seems to be at play in the description of half-BPS local

operators in N = 4 SYM in terms of giants and dual giant gravitons [69].
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where wi are the eigenvalues of the matrix A0 + φ.

The path integral over χ in (2.14) is computed by evaluating the partition function of

the chiral bosons, which yield

Z∗ = eiSN=4 ·
N∏

i=1

1

1− xi
, (2.26)

where xi = eiβwi and the ∗ in (2.17) is to remind us that we have not yet taken into account

the effect of Sextra in (2.14). xi are the eigenvalues of the holonomy matrix appearing in

the Wilson loop operator (2.3).

In order to connect this computation with Wilson loops inN = 4 SYM it is convenient

to decompose the Fock space of the chiral bosons in terms of subspaces with a fixed number

of bosons in a state. This decomposition yields

N∏

i=1

1

1− xi
=

∞∑

l=0

Hl(x1, . . . , xl), (2.27)

where Hl(x1, . . . , xl) is the symmetric polynomial:

Hl(x1, . . . , xl) =
∑

i1≤i2...≤il

xi1 . . . xil
. (2.28)

Physically, Hl(x1, . . . , xl) is the partition function over the Fock space of N chiral bosons

with energy wi that have l bosons in a state.

We now recognize that the polynomial Hl is the formula (see e.g [68]) for the trace of

the half-BPS Wilson loop holonomy matrix in the l-th symmetric representation

Hl = Tr(l,0,...,0) P exp

(

i

∫

dt (A0 + φ)

)

= W(l,0,...,0), (2.29)

where W(l,0,...,0) is the half-BPS Wilson loop operator (2.3) corresponding to the following

Young diagram:

1 2 · · · · l

Therefore, integrating out the χ fields has the effect of inserting into the N = 4 path

integral a sum over all half-BPS Wilson loops in the l-th symmetric representation:

Z∗ = eiSN=4 ·
N∑

l=0

W(l,0,...,0). (2.30)
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It is now straightforward to take into account the effect of Sextra (2.13) in (2.14).

Integrating over Ã0 imposes the constraint (2.22). This constraint picks out states with

precisely k bosons (2.23) and therefore selects the term with l = k in (2.27).

Therefore, we have shown that a single D3k-brane inserts a half-BPS operator in the

k-th symmetric representation in the N = 4 path integral

D3k ←→ Z = eiSN=4 ·W(k,0,...,0), (2.31)

where SN=4 is the action of N = 4 SYM. The expectation value of this operator can be

computed by evaluating the classical action of the D3k-brane.

2.4. D-brane description of an Arbitrary Wilson loop

In the previous section we have shown that Wilson loops labeled by Young tableaus

with a single column are described by a D5-brane while a D3-brane gives rise to tableaus

with a single row. What is the gravitational description of Wilson loops in an arbitrary

representation?

We now show that given a Wilson loop operator described by an arbitrary Young

tableau, that it can be described either in terms of a collection of giants or alternatively

in terms of a collection of dual giants.

Wilson loops as D5-branes

In the previous section, we showed that the information about the number of boxes

in the Young tableau with one column is determined by the amount of fundamental string

charge ending on the D5-brane. For the case of a single D5k-brane, this background

electric charge is captured by inserting (2.11)

exp

(

−ik
∫

dt Ã0

)

(2.32)

in the path integral of the defect conformal field theory. Equivalently, we can add the

Chern-Simons term:

−
∫

dt kÃ0. (2.33)

to the action (2.10). This injects into the theory a localized external particle of charge k

with respect to the U(1) gauge field Ã0 on the D5-brane.
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We now show that describing half-BPS Wilson loop operators (2.3) labeled by tableaus

with more than one column corresponds to considering the brane configuration in (2.9)

with multiple D5-branes.

In order to show this, we must consider the low energy effective field theory on M

D5-branes probing N D3-branes. In this case, the U(1) symmetry associated with the

D5-brane gets now promoted to a U(M) symmetry, where M is the number of D5-branes.

Therefore, the defect conformal field theory living on this brane configuration is given by16

S = SN=4 +

∫

dt iχI†
i ∂tχ

I
i + χI†

i (A0 ij + φij)χ
I
j , (2.34)

where i, j is a fundamental index of U(N) while I, J is a fundamental index of U(M).

We need to understand how to realize in our defect conformal field theory that we

have M D5-branes in AdS5×S5 with a configuration of fundamental strings dissolved in

them. Physically, the string endpoints introduce into the system a background charge

for the U(M) gauge field which depends on the distribution of string charge among the

M D5-branes. The charge is labeled by a representation ρ = (k1, . . . , kM ) of U(M),

where now ρ = (k1, . . . , kM ) is a Young tableau of U(M). A charge in the representation

ρ = (k1, . . . , kM) is produced when ki fundamental strings end on the i-th D5-brane. This

D5-brane configuration can be labeled by the array (D5k1
, . . . , D5kM

):

Fig. 4: Array of strings producing a background charge given by the representation

ρ = (k1, . . . , kM ) of U(M). The D5-branes are drawn separated for illustration

purposes only, as they sit on top of each other.

16 For clarity, we write explicitly the indices associated with U(N) and U(M).
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We must now add to the defect conformal field theory a term that captures that there

is a static background charge ρ = (k1, . . . , kM ) induced in the system by the fundamental

strings. This is accomplished by inserting into the path integral a Wilson loop operator

for the gauge field Ã0. The operator insertion is given by

Tr(k1,k2,...,kM ) P exp

(

−i
∫

dt Ã0

)

, (2.35)

which generalizes (2.32) when there are multiple D5-branes. We must also take into

account the coupling of the localized fermions χI
i to Ã0:

Sextra =

∫

dt χI†
i Ã0IJχ

J
i . (2.36)

In order to study what the (D5k1
, . . . , D5kM

) array in AdS5×S5 corresponds to in

N = 4 SYM, we need to calculate the following path integral

Z =

∫

[Dχ][Dχ†][DÃ0] e
i(S+Sextra) · Tr(k1,k2,...,kM ) P exp

(

−i
∫

dt Ã0

)

, (2.37)

where S is given in (2.34) and Sextra in (2.36).

We proceed by gauge fixing the U(N)×U(M) symmetry of the theory by diagonalizing

A0 + φ and Ã0 to have constant eigenvalues respectively. The eigenvalues are given by:

A0 + φ = diag(w1, . . . , wN )

Ã0 = diag(Ω1, . . . ,ΩM).
(2.38)

Since the path integral in (2.37) involves integration over Ã0 care must be taken in

doing the gauge fixing procedure17. As shown in section 7, the measure over the Hermitean

matrix Ã0 combines with the Fadeev-Popov determinant ∆FP associated with the gauge

choice

Ã0 = diag(Ω1, . . . ,ΩM ) (2.39)

to yield the measure over a unitary matrix U . That is

[DÃ0] ·∆FP = [DU ], (2.40)

17 As discussed in footnote 11, the gauge fixing associated with the U(N) symmetry can be

undone once one is done integrating out over χ and Ã0.
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with U = eiβÃ0 and

[DU ] =
M∏

I=1

dΩI ∆(Ω)∆̄(Ω), (2.41)

where ∆(Ω) is the Vandermonde determinant18:

∆(Ω) =
∏

I<J

(eiβΩI − eiβΩJ ). (2.42)

In this gauge, another simplification occurs. The part of the action in (2.37) depending

on the χ fields is given by: ∫

dt χI†
i (∂t + wi + ΩI)χ

I
i . (2.43)

Correspondingly, the equations of motion are:

(i∂t + wi + ΩI)χ
I
i = 0 for i = 1, . . . , N I = 1, . . . ,M. (2.44)

Therefore, we have a system of N ·M fermions χI
i with energy wi + ΩI .

We can explicitly integrate out the χ fields in Z (2.37) by going to the Hamiltonian

formulation, just as before. The fermion partition function is:

N∏

i=1

M∏

J=1

(1 + xie
iβΩJ ), (2.45)

where as before xi = eiβwi is an eigenvalue of the holonomy matrix appearing in the Wilson

loop operator (2.3) and eiβΩJ is an eigenvalue of the unitary matrix U .

Combining this with the computation of the measure, the path integral (2.37) can be

written as

Z = eiSN=4 ·
∫

[DU ] χ(k1,...,kM )(U
∗)

N∏

i=1

M∏

J=1

(1 + xie
iβΩJ ), (2.46)

where we have identified the operator insertion (2.35) with a character in the ρ =

(k1, . . . , kM ) representation of U(M):

χ(k1,...,kM )(U
∗) ≡ Tr(k1,...,kM )e

−iβÃ0 . (2.47)

18 There is a residual U(1)N gauge symmetry left over after the gauge fixing (2.39) which turns

ΩI into angular coordinates. We are then left with the proper integration domain over the angles

of a unitary matrix.
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The partition function of the fermions (2.45) can be expanded either in terms of

characters of U(N) or U(M) by using a generalization of the formula we used in (2.18).

We find it convenient to write it in terms of characters of U(M)

M∏

J=1

(1 + xie
iΩJ ) =

M∑

l=0

xl
i χ (1, . . . , 1

︸ ︷︷ ︸
, 0, . . . , 0)

l

(U) =

M∑

l=0

xl
iEl(U1, . . . , UM ), (2.48)

where

El(U) = Tr(1, . . . , 1
︸ ︷︷ ︸

, 0, . . . , 0)

l

eiβÃ0 (2.49)

is the character of U(M) in the l-th antisymmetric product representation. We recall that

U = eiβÃ0 and that UI = eiβΩI for I = 1, . . . ,M are its eigenvalues.

We now use the following mathematical identity [70]

N∏

i=1

M∑

l=0

xl
iEl(U) =

∑

M≥n1≥n2≥...≥nN

det(Enj+i−j(U)) χ(n1,...,nN )(x), (2.50)

where

χ(n1,...,nN )(x) = W(n1,...,nN ) (2.51)

is precisely the half-BPS Wilson loop operator (2.3) in the R = (n1, . . . , nN) representation

of U(N). Therefore, the fermion partition function (2.45) can be written in terms of U(N)

and U(M) characters as follows

N∏

i=1

M∏

J=1

(1 + xie
iβΩJ ) =

∑

M≥n1≥n2≥...≥nN

det(Enj+i−j(U))W(n1,...,nN ). (2.52)

The determinant det(Enj+i−j(U)) can be explicitly evaluated by using Giambelli’s

formula (see e.g [68])

det(Enj+i−j(U)) = χ(m1,m2,...,mM )(U), (2.53)

where χ(m1,m2,...,mM )(U) is the character of U(M) associated with the Young tableau

(m1, m2, . . . , mM ). This tableau is obtained from (n1, n2, . . . , nN ) by conjugation, which

corresponds to transposing the tableau (n1, n2, . . . , nN ):
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Fig. 5: A Young tableau and its conjugate. In the conjugate tableau the number

of boxes in the i-th row is the number of boxes in the i-th column of the original

one.

The number of rows in the conjugated tableau (m1, m2, . . . , mM ) is constrained to be

at most M due to the M ≥ n1 ≥ n2 ≥ . . . ≥ nN constraint in the sum (2.52).

These computations allow us to write (2.46) in the following way:

Z = eiSN=4 ·
∑

M≥n1≥n2≥...≥nN

W(n1,...,nN ) ·
∫

[DU ] χ(m1,m2,...,mM )(U)χ(k1,...,kM )(U
∗).

(2.54)

Now using orthogonality of U(M) characters:

∫

[DU ] χ(m1,m2,...,mM )(U)χ(k1,...,kM )(U
∗) =

M∏

I=1

δmI ,kI
, (2.55)

we arrive at the final result

Z = eiSN=4 ·W(l1,...,lN ), (2.56)

where (l1, . . . , lN ) is the tableau conjugate to (k1, . . . , kM ).

To summarize, we have shown that a collection of D5-branes described by the array

(D5k1
, . . . , D5kM

) in AdS5×S5 corresponds to the half-BPS Wilson loop operator (2.3) in

N = 4 SYM in the representation R = (l1, . . . , lN) of U(N)

(D5k1
, . . . , D5kM

)←→ Z = eiSN=4 ·W(l1,...,lN ), (2.57)

where (l1, . . . , lN) is the tableau conjugate to (k1, . . . , kM ). Thererefore, any half-BPS

Wilson loop operator in N = 4 has a bulk realization. We now move on to show that there

is an alternative bulk formulation of Wilson loop operators in N = 4, now in terms of an

array of D3-branes.
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Wilson loops as D3-branes

Let’s now consider the N = 4 gauge theory description of a configuration of multiple

D3-branes in AdS5×S5. As we have argued in section 3, the only modification in the defect

conformal field theory compared to the case with the D5-branes is to quantize the χI
i fields

as chiral bosons as opposed to fermions. Therefore, we consider the defect conformal field

theory action (2.34) treating χI
i now as bosons.

Similarly to the case with multiple D5-branes, we realize the charge induced by the

fundamental strings ending on the D3-branes by the Wilson loop operator (2.35) in the

representation ρ = (k1, . . . , kM) of U(M), where ρ = (k1, . . . , kM) is a Young tableau of

U(M). A charge in the representation ρ = (k1, . . . , kM ) is produced when ki fundamental

strings end on the i-th D3-brane. This D3-brane configuration can be labeled by the array

(D3k1
, . . . , D3kM

):

Fig. 6: Array of strings producing a background charge given by the representation

ρ = (k1, . . . , kM ) of U(M). The D3-branes are drawn separated for illustration

purposes only, as they sit on top of each other.

Therefore, in order to integrate out the degrees of freedom on the probe D3-branes we

must calculate the path integral (2.37) treating χI
i as bosons.

We gauge fix the U(N) × U(M) as before. This gives us that χI
i are chiral bosons

with energy wi + ΩI . Their partition function is then given by

N∏

i=1

M∏

J=1

(
1

1− xieiβΩJ

)

, (2.58)

where as before xi = eiβwi is an eigenvalue of the holonomy matrix appearing in the Wilson

loop operator.
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Taking into account the measure change computed earlier, we have that

Z = eiSN=4 ·
∫

[DU ] χ(k1,...,kM )(U
∗)

N∏

i=1

M∏

J=1

(
1

1− xieiβΩJ

)

, (2.59)

where we have identified the operator insertion (2.35) with a character in the ρ =

(k1, . . . , kM ) representation of U(M):

χ(k1,...,kM )(U
∗) ≡ Tr(k1,...,kM )e

−iβÃ0 . (2.60)

Now we use that the partition function of the bosons can be expanded in terms of

characters of U(M) by generalizing formula (2.27)

M∏

J=1

(
1

1− xieiβΩJ

)

=

∞∑

l=0

xl
i χ (l, 0 . . . , 0) (U) =

∞∑

l=0

xl
iHl(U1, . . . , UM ), (2.61)

where

Hl(U) = Tr(l, 0 . . . , 0) e
iβÃ0 (2.62)

is the character of U(M) in the l-th symmetric product representation.

Using an identity from [70]

N∏

i=1

∞∑

l=0

xl
iHl(U) =

∑

n1≥n2≥...≥nN

det(Hnj+i−j(U)) χ(n1,...,nN )(x), (2.63)

where

χ(n1,...,nN )(x) = W(n1,...,nN ) (2.64)

is the half-BPS Wilson loop operator corresponding to the Young tableau R = (n1, . . . , nN)

of U(N).

The Jacobi-Trudy identity (see e.g [68]) implies that

det(Hnj+i−j(U)) = χ(n1,n2,...,nN )(U), (2.65)

where χ(n1,n2,...,nN )(U) is the character of U(M) associated with the Young tableau

(n1, n2, . . . , nN ). Considering the antisymmetry of the elements in the same column, we

get the constraint that nM+1 = . . . = nN = 0, otherwise the character vanishes.
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These computations allow us to write (2.59) as:

Z = eiSN=4 ·
∑

n1≥n2≥...≥nN

W(n1,...,nN ) ·
∫

[DU ] χ(n1,...,nN )(U) χ(k1,...,kM )(U
∗). (2.66)

Using
∫

[DU ] χ(n1,...,nN )(U) χ(k1,...,kM )(U
∗) =

M∏

I=1

δnI ,kI

N∏

i=M+1

δni,0, (2.67)

we get that:

Z = eiSN=4 ·W(k1,...,kM ,...,0). (2.68)

We have shown that a collection ofD3-branes described by the array (D3k1
, . . . , D3kM

)

in AdS5×S5 corresponds to the half-BPS Wilson loop operator (2.3) in N = 4 SYM in the

representation R = (k1, . . . , kN ) of U(N)

(D3k1
, . . . , D3kM

)←→ Z = eiSN=4 ·W(k1,...,kM ,0,...,0). (2.69)

Therefore, any half-BPS Wilson loop operator in N = 4 has a bulk realization in terms of

D3-branes.

To summarize, we have shown that a half-BPS Wilson loop described by an arbitrary

Young tableau can be described in terms of a collection of D5-branes or D3-branes. We

have shown that indeed the relation between a Wilson loop in an arbitrary representation

and a D-brane configuration is precisely the one described at the beginning of this chapter.

2.5. A D3k-brane as a Wilson loop in the k-th symmetric representation

We have argued that the D3k-brane solution in AdS5×S5 of [25][71] corresponds to a

half-BPS Wilson loop operator labeled by the following Young tableau:

1 2 · · · · k .

This solution [25][71] has an AdS2×S2 worldvolume geometry and carries k units of

fundamental string charge. The fact that k is arbitrary, that there can be at most N

such D3-branes in AdS5×S5, and its proposed relation through bosonization to the defect

conformal field theory derived for the D5k-brane19 led us to the abovementioned proposal.

19 This D5-brane, which has an AdS2×S4 worldvolume geometry and k ≤ N units of fun-

damental string charge, was shown to correspond to a Wilson loop in the k-th antisymmetric

representation – a Young tableau with k boxes in one column – by integrating out the degrees of

freedom on the D5-brane.
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In this section we show that this proposal is indeed correct by studying a brane

configuration in flat space. We integrate out the physics on the brane and show that

the D-brane inserts the desired Wilson loop into the N = 4 SYM path integral. This

brane configuration can also be studied in the near horizon limit and indeed reproduces

the D3k-brane solution of [25][71].

A half-BPS Wilson loop of N = 4 SYM in a representation20 R

WR = TrRP exp

(

i

∫

dt (A0 + φ)

)

, (2.70)

is obtained by adding a static, infinitely massive charged probe to N = 4 SYM. As already

shown in [25][26](see also [72]), one way of introducing external charges in U(N) N = 4

SYM is to consider a stack of N + 1 D3-branes and going along the Coulomb brach of the

gauge theory.

Let’s consider the gauge theory on N + 1 D3-branes and break the gauge symmetry

down to U(N) × U(1) by separating one of the branes. In the gauge theory description

this corresponds to turning on the following expectation value

〈φ〉 =

(
0 0
0 L

)

, (2.71)

where φ is one of the scalar fields of N = 4 SYM, thus breaking the SO(6) R-symmetry

of N = 4 SYM down to SO(5).

We are interested in studying the low energy physics of this D-brane configuration in

a background where k static fundamental strings are stretched between the two stacks of

D3-branes:

L
Fig. 7: Two separated stacks of D3-branes with k fundamental strings stretched

between them.

20 R = (R1, R2, . . . , RN ), with Ri ≥ Ri+1 labels a representation of U(N) given by a Young

tableau with Ri boxes in the i-th row.
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In the gauge theory description, we must study the low energy effective field theory

of U(N + 1) N = 4 SYM when spontaneously broken to U(N) × U(1). The presence of

k stretched static fundamental strings corresponds to inserting at t → −∞ k W-boson

creation operators w† and k W-boson annihilation operators w at t → ∞. Since we are

interested in the limit when the charges are infinitely massive probes, we must study this

field theory vacuum in the limit L→∞. In this limit the U(1) theory completely decouples

from the U(N) theory.

Physically, the L → ∞ limit can be thought of as a non-relativistic limit. The dy-

namics can be conveniently extracted by defining

w =
1√
L
e−itLχ, (2.72)

making the kinetic term for the W-bosons non-relativistic. As shown in section 7, the

terms in the effective action surviving the limit are given by

S = SN=4 + Sχ, (2.73)

where:

Sχ =

∫

dt iχ†∂tχ+ χ†(A0 + φ)χ. (2.74)

Therefore, the path integral describing k fundamental strings stretching between the

two stacks of D-branes in the L→∞ limit is given by21

Z ≡ eiSN=4

∫

[Dχ][Dχ†] eiSχ
1

k!

∑

i1,...ik

χi1(∞)χi2(∞). . .χik
(∞)χ†

i1
(−∞)χ†

i2
(−∞). . .χ†

ik
(−∞),

(2.75)

where il = 1, . . .N is a fundamental index of U(N).

From the formula for the W-boson propagator that follows from (2.74)22

〈χi(t1)χ
†
j(t2)〉 = θ(t1 − t2)δij , (2.76)

one can derive the following “effective” propagator

〈χi(∞)χ†
j(−∞)〉eff ≡ 〈exp

(

i

∫

dt iχ†∂tχ+ χ†(A0 + φ)χ

)

χi(∞)χ†
j(−∞)〉 = Uij ,

(2.77)

21 The path integral over the U(N) N = 4 SYM is to be performed at the end.
22 θ(t) is the Heaviside step function.
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where U is the holonomy matrix appearing in the half-BPS Wilson loop operator (2.70):

U = P exp

(

i

∫

dt (A0 + φ)

)

∈ U(N). (2.78)

Using this “effective” propagator we can now evaluate (2.75). We must sum over all

Wick contractions between the W -bosons. Contractions are labeled by a permutation ω

of the symmetric group Sk. The path integral (2.75) is then given by:

Z = eiSN=4 · 1

k!

∑

ω∈Sk

U i1
iω(1)

. . . U ik

iω(k)
. (2.79)

Permutations having the same cycle structure upon decomposing a permutation into the

product of disjoint cycles give identical contributions in (2.79). Since all elements in a

given conjugacy class of Sk have the same cycle structure, we can replace the sum over

permutations ω in (2.79) by a sum over conjugacy classes C(~k) of Sk. Conjugacy classes

of Sk are labeled by partitions of k, denoted by ~k, so that

k =
k∑

l=1

lkl, (2.80)

and each permutation in the conjugacy class has kl cycles of length l.

Therefore, (2.79) can be written as

Z = eiSN=4 · 1

k!

∑

C(~k)

NC(~k)γ~k(U), (2.81)

where

γ~k(U) =

k∏

l=1

(TrU l)kl , (2.82)

and NC(~k) is the number of permutations in the conjugacy class C(~k), which is given by

NC(~k) =
k!

z~k
, (2.83)

with:

z~k =
k∏

l=1

kl!l
kl . (2.84)

Therefore, we are led to

Z = eiSN=4 ·
∑

C(~k)

1

z~k
γ~k(U), (2.85)
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which can also be written (see e.g. [73]) as

Z = eiSN=4 · Tr(k,0,...,0)U, (2.86)

as we wanted to show.

To summarize, we have shown that integrating out the degrees of freedom associated

to the single separated D3-brane – when k fundamental strings are stretching between the

D3-brane and a stack of N D3-branes – inserts a half-BPS Wilson loop operator into the

N = 4 SYM path integral in the k-th symmetric representation of U(N).

We can now make contact with the D3k-brane solution [25][71] in AdS5×S5. The

solution of the Born-Infeld equations of motion for a single D3 brane with k fundamental

strings stretched between that brane and a stack of N D3-branes was already found in [25].

In this solution, the N D3-branes are replaced by their supergravity background and the

other D3-brane with the attached strings as a BION solution [74][75]. In the near horizon

limit, the D3-brane solution in [25] indeed becomes the D3k-brane solution in AdS5×S5.

Therefore, we have given a microscopic explanation of the identification

D3k ←→ Z = eiSN=4 ·W(k,0,...,0), (2.87)

proposed in the previous sections [76].

2.6. Multiple D3k-branes as Wilson loop in arbitrary representation

In the previous section, we have shown that a single D3k-brane corresponds to a

Wilson loop in the k-th symmetric representation. We now show that an arbitrary repre-

sentation R with P rows in a Young tableau can be realized by considering P D3-branes.

We consider a stack of N + P D3-branes and break the gauge symmetry down to

U(N)×U(P ) by separating P of the branes a distance L. In the gauge theory description

this corresponds to turning on a scalar expectation value as in (2.71). We also consider a

background of k fundamental strings stretched between the two stacks of branes.

Therefore, we must study the low energy effective field theory of U(N+P ) N = 4 SYM

when spontaneously broken to U(N)× U(P ) and in the limit L → ∞, where the charges

become infinitely massive probes23. The presence of k fundamental strings is realized in

23 Just as before, the U(P ) gauge dynamics completely decouples from the U(N) gauge theory

in the L → ∞ limit.
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the gauge theory by inserting the creation operator of a k W-boson state at t→ −∞ and

the annihilation operator of a k W-boson state at t → ∞. The k W-boson annihilation

operator is given by

Ψ(t) = χI1
i1

(t)χI2
i2

(t) . . . χIk

ik
(t) (2.88)

and the k W-boson creation operator by Ψ†(t), where24 il = 1, . . . , N and Il = 1, . . . , P .

Such a k W-boson state transforms under U(N) and U(P ) as a sum over represen-

tations with k boxes in a Young tableau. In order to project to a specific representation

R we can apply to the k W-boson annihilation operator (2.88) the following projection

operator

PR
α =

dR

k!

∑

σ∈Sk

DR
αα(σ)σ (2.89)

where R = (n1, n2, . . . , nP ), with k =
∑

i ni, labels an irreducible representation of both25

Sk, U(N) and U(P ). DR
αβ(σ) is the representation matrix for the permutation σ in the

representation R, dR is the dimension of the representation R of Sk and α, β = 1, . . . , dR.

Therefore, the operator

ΨR
α (t) = PR

α Ψ =
dR

k!

∑

σ∈Sk

DR
αα(σ)χ

Iσ(1)

i1
(t)χ

Iσ(2)

i2
(t) . . .χ

Iσ(k)

ik
(t) (2.90)

describes a k W-boson state transforming in the irreducible representation R of Sk, U(N)

and U(P ).

The path integral to perform, representing our brane configuration with k fundamental

strings stretching between the two stacks of D-branes, in the L→∞ limit is given by26

Z = eiSN=4

∫

[Dχ][Dχ†] eiSχ

dR∑

α=1

ΨR
α (∞)Ψ†R

α (−∞), (2.91)

where Sχ is the straightforward generalization of (2.74) when the gauge group is U(N)×
U(P ).

24 The W-bosons transform in the (N, P̄ ) representation of the U(N)×U(P ) gauge group, see

the last section for details.
25 There is a natural action of Sk, U(N) and U(P ) on Ψ(t). The projected operator in fact

transforms in the same representation R for both Sk, U(N) and U(P ) groups (see e.g. [77]). The

representations of the unitary and symmetric groups are both labeled by the same Young tableau

R = (n1, n2, . . . , nP ).
26 To avoid cluttering the formulas, the sum over U(N) and U(P ) indices is not explicitly

written throughout the rest of this chapter.
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The “effective” propagator for the W-bosons is now

〈χI
i (∞)χJ†

j (−∞)〉eff ≡ 〈exp

(

i

∫

dt iχ†∂tχ+ χ†(A0 + φ)χ

)

χI
i (∞)χJ†

j (−∞)〉 = Uijδ
IJ ,

(2.92)

with U given in (2.78). The sum over all Wick contractions in (2.91) gives:

Z = eiSN=4

(
dR

k!

)2 dR∑

α=1

∑

σ,τ,ω∈Sk

DR
αα(σ)DR

αα(τ)U i1
iω(1)

. . . U ik

iω(k)
δ

Iσ(1)

Iωτ(1)
. . . δ

Iσ(k)

Iωτ(k)
. (2.93)

By appropriate change of variables, this can be simplified to

Z = eiSN=4

(
dR

k!

)2 dR∑

α=1

∑

σ,τ,ω∈Sk

DR
αα(σ)DR

αα(τ)U i1
iω(1)

. . . U ik

iω(k)
PC(σ−1ωτ), (2.94)

where C(σ) is the number of disjoint cycles in the permutation σ and:

PC(σ−1ωτ) =
∑

I1,...,Ik

δI1
I

σ−1ωτ(1)
. . . δIk

I
σ−1ωτ(k)

. (2.95)

We proceed27 by introducing δ(ρ), an element in the group algebra, which takes the

value 1 when the argument is the identity permutation and 0 when the argument is any

other permutation. This allows (2.94) to be written as:

eiSN=4

(
dR

k!

)2 dR∑

α=1

∑

σ,τ,ω,ρ∈Sk

DR
αα(σ)DR

αα(τ)U i1
iω(1)

. . . U ik

iω(k)
PC(ρ)δ(ρ−1σ−1ωτ). (2.96)

Summing over τ yields

eiSN=4

(
dR

k!

)2 dR∑

α=1

∑

σ,ω∈Sk

DR
αα(σ)DR

αα(ω−1σ
∑

ρ∈Sk

ρPC(ρ))U i1
iω(1)

. . . U ik

iω(k)
. (2.97)

Since C =
∑

ρ∈Sk
ρPC(ρ) commutes with all elements in the group algebra, we can use the

identity DR
αα(Cσ) = 1

dR
DR

αα(σ)χR(C), where χR(C) =
∑dR

α=1D
R
αα(C) is the character of Sk

in the representation R for C. Therefore, (2.97) reduces to

eiSN=4
dR

k!
DimP (R)

dR∑

α=1

∑

σ,ω∈Sk

DR
αα(σ)DR

αα(ω−1σ)U i1
iω(1)

. . . U ik

iω(k)
, (2.98)

27 The paper [78] has a useful compilation of useful formulas relevant for this paper.
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where

DimP (R) =
1

k!

∑

σ∈Sk

χR(σ)PC(σ) (2.99)

is the dimension of the irreducible representation R of U(P ). By using the relation satisfied

by the fusion of representation matrices

∑

σ∈Sk

DR
αα(σ)DR

αα(ω−1σ) =
k!

dR
DR

αα(ω−1) (2.100)

we are arrive at:

Z = eiSN=4DimP (R)
∑

ω∈Sk

χR(ω)U i1
iω(1)

. . . U ik

iω(k)
. (2.101)

Finally, we use the Frobenius character formula (see e.g. [73]), which relates the trace

of a matrix U in an arbitrary representation R = (n1, n2, . . . , nP ) of U(N) to the trace in

the fundamental representation

TrR(U) =
1

k!

∑

ω∈Sk

∑

i1,...ik

χR(ω)U i1
iω(1)

. . . U ik

iω(k)
(2.102)

to show that the final result of the path integral is

Z = eiSN=4 · k! DimR(M)TrR(U), (2.103)

the insertion of a half-BPS Wilson loop in the representation R.

In the near horizon limit, when the N D3-branes are replaced by their near horizon

geometry, the P D3-branes with the array of stretched fundamental strings labeled by

R = (n1, n2, . . . , nP ) become the brane configuration (D3n1
, D3n2

, . . . , D3nP
) in AdS5×S5,

thus arriving at the identification28

(D3n1
, . . . , D3nP

)←→ Z = eiSN=4 ·W(n1,...,nP ,0,...,0) (2.104)

in section 4.

28 We can trivially reabsorb the overall constant in (2.103) in the normalization of Ψ.
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2.7. Supplementary material for chapter 2

Supersymmetry of Wilson loops in N = 4 SYM

In this Appendix we study the constraints imposed by unbroken supersymmetry on

the Wilson loop operators (2.1) of N = 4 SYM. Previous studies of supersymmetry of

Wilson loops in N = 4 SYM include [79][80][81].

We want to impose that the Wilson loop operator (2.1) is invariant under one-half of

the N = 4 Poincare supersymmetries and also invariant under one-half of the conformal

supersymmetries. The Poincare supersymmetry transformations are given by

δǫ1Aµ = iǭ1γµλ

δǫ1φI = iǭ1γIλ,
(2.105)

while the superconformal supersymmetry transformations are given

δǫ2Aµ = iǭ2x
νγνγµλ

δǫ2φI = iǭ2x
νγνγIλ,

(2.106)

where ǫ1,2 are ten dimensional Majorana-Weyl spinors of opposite chirality. The use of ten

dimensional spinors is useful when comparing with string theory computations.

Preservation of one-half of the Poincare supersymmetries locally at each point in the

loop where the operator is defined yields:

Pǫ1 = (γµẋ
µ + γI ẏ

I)ǫ1 = 0. (2.107)

Therefore, there are invariant spinors at each point in the loop if and only if ẋ2 + ẏ2 = 0.

This requires that xµ(s) is a time-like curve and that ẏI = nI(s)
√
−ẋ2, where nI(s) is a

unit vector in R6, satisfying n2(s) = 1. Without loss of generality we can perform a boost

and put the external particle labeling the loop at rest so that the curve along R1,3 is given

by (x0(s), xi(s) = 0) and we can also choose an affine parameter s on the curve such that√
−ẋ2 = 1.

In order for the Wilson loop to be supersymmetric, each point in the loop must

preserve the same spinor. Therefore, we must impose that

dP (s)

ds
= 0, (2.108)
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which implies that ẍ0 = 0 and that nI(s) = nI . Therefore, supersymmetry selects a

preferred curve in superspace, the straight line Wilson loop operator, given by

WR(C) = TrR P exp

(

i

∫

dt (A0 + φ)

)

, (2.109)

where φ = nIφI . The operators are now just labelled by a choice of Young tableau R. For

future reference, we write explicitly the 8 unbroken Poincare supersymmetries. They must

satisfy

iǭ1γ0λ+ inI ǭ1γIλ = 0. (2.110)

Using relations for conjugation of spinor with the conventions used here

χ̄ζ = ζ̄χ, χ = γIζ → χ̄ = −ζ̄γI (2.111)

we arrive at

γ0γIn
Iǫ1 = ǫ1. (2.112)

In a similar manner it is possible to prove that the straight line Wilson loop operator

(2.109) also preserves one-half of the superconformal supersymmetries. The 8 unbroken

superconformal supersymmetries are given by:

γ0γIn
Iǫ2 = −ǫ2. (2.113)

Supersymmetry of Fundamental String and of D5k-brane

In this Appendix we show that the particular embeddings considered for the funda-

mental string and the D5k-brane in section 2 preserve half of the supersymmetries of the

background. We will use conventions similar to those in [82].

For convinience we write again the metric we are interested in (we set L = 1)

ds2AdS×S = u2ηµνdx
µdxν +

du2

u2
+ dθ2 + sin2 θ dΩ2

4, (2.114)

where the metric on S4 is given by:

dΩ4 = dϕ2
1 + sinϕ2

1dϕ
2
2 + sinϕ2

1 sinϕ2
2dϕ

2
3 + sinϕ2

1 sinϕ2
2 sinϕ2

3dϕ
2
4. (2.115)
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It is useful to introduce tangent space gamma matrices, i.e. γm = em
mΓm (m,m =

0, . . . , 9) where em
m is the inverse vielbein and Γm are the target space matrices:

γµ =
1

u
Γµ (µ = 0, 1, 2, 3), γ4 = uΓu, γ5 = Γθ,

γa+5 =
1

sin θ





a−1∏

j=1

1

sinϕj



Γϕa
(a = 1, 2, 3, 4)

(2.116)

The Killing spinor of AdS5×S5 in the coordinates (2.114) is given by [82]

ǫ =
[

−u− 1
2 γ4h(θ, ϕa) + u

1
2h(θ, ϕa)(ηµνx

µγν)
]

η2 + u
1
2h(θ, ϕa)η1 (2.117)

where

h(θ, ϕa) = e
1
2 θγ45e

1
2ϕ1γ56e

1
2 ϕ2γ67e

1
2 ϕ3γ78e

1
2 ϕ4γ89 (2.118)

η1 and η2 are constant ten dimensional complex spinors with negative and positive ten

dimensional chirality, i.e.

γ11η1 = −η1 γ11η2 = η2. (2.119)

They also satisfy:

P−η1 = η1 P+η2 = η2 (2.120)

where P± = 1
2 (1 ± iγ0123). Thus, each spinor η1,2 has 16 independent real components.

These can be written in terms of ten dimensional Majorana-Weyl spinors ǫ1 and ǫ2 of

negative and positive chirality respectively:

η1 = ǫ1 − iγ0123ǫ1

η2 = ǫ2 + iγ0123ǫ2.
(2.121)

By going to the boundary of AdS at u→∞, we can identify from (2.117) ǫ1 as the Poincare

supersymmetry parameter while ǫ2 is the superconformal supersymmetry parameter of

N = 4 SYM.

The supersymmetries preserved by the embedding of a probe, are those that satisfy

Γκǫ = ǫ (2.122)

where Γκ is the κ symmetry transformation matrix in the probe worldvolume theory and

ǫ is the Killing spinor of the AdS5 × S5 background (2.117). Both Γκ and ǫ have to be

evaluated at the location of the probe.
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Let’s now consider a fundamental string with an AdS2 worldvolume geometry with

embedding:

σ0 = x0 σ1 = u xi = 0 xI = nI . (2.123)

The position of the string on the S5 is parametrized by the five constant angles

(θ, ϕ1, ϕ2, ϕ3, ϕ4) or alternatively by a unit vector nI in R6. The matrix Γκ for a fun-

damental string with this embedding reduces to

ΓF1 = γ04K (2.124)

where K acts on a spinor ψ by Kψ = ψ∗. For later convenience we define also the operator

I such that Iψ = −iψ.

The equation (2.122) has to be satisfied at every point on the string. Thus, the term

proportional to u
1
2 gives:

ΓF1h(θ, ϕa)η1 = h(θ, ϕa)η1. (2.125)

The terms proportional to u−
1
2 and u−

1
2x0 both give:

ΓF1h(θ, ϕa)η2 = −h(θ, ϕa)η2. (2.126)

These can be rewritten as

nIγ0Iη1 = η∗1 nIγ0Iη2 = −η∗2 I = 4, 5, 6, 7, 8, 9 (2.127)

where

nI(θ, ϕ1, ϕ2, ϕ3, ϕ4) =

















cos θ

sin θ cosϕ1

sin θ sinϕ1 cosϕ2

sin θ sinϕ1 sinϕ2 cosϕ3

sin θ sinϕ1 sinϕ2 sinϕ3 cosϕ4

sin θ sinϕ1 sinϕ2 sinϕ3 sinϕ4

















=

(
cos θ

sin θlα

)

, (2.128)

where α = (5, 6, 7, 8, 9) and these vectors satisfy n2 = 1 and l2 = 1. Considering the

parametrization (2.121), the projection (2.127) becomes:

γ0In
Iǫ1 = ǫ1 γ0In

Iǫ2 = −ǫ2. (2.129)
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We note that nI define the position of the string in the S5, so it characterizes the unbroken

rotational symmetry of the system. Therefore, the fundamental string preserves exactly

the same supersymmetries as the Wilson loop operator (2.109).

We now study the D5k-brane embedding considered first by [58][59]:

σ0 = x0 σ1 = u σa = ϕa xi = 0 θ = θk = constant. (2.130)

There is an electric flux on the brane given by

F04 = F = cos θk, (2.131)

where k is the amount of fundamental string charge on the D5k-brane.

For this configuration, Γκ is

ΓD5 =
1√

1− F 2
γ046789KI +

F√
1− F 2

γ6789I

=
1

sin θk
γ046789KI +

cos θk

sin θk
γ6789I

(2.132)

Following similar steps as for the fundamental string, we arrive at

ΓD5h(θk, ϕa)ǫ1 = h(θk, ϕa)ǫ1 Γ̄D5h(θk, ϕa)ǫ2 = h(θk, ϕa)ǫ2, (2.133)

where

Γ̄D5 = − 1

sin θk
γ046789KI +

cos θk

sin θk
γ6789I. (2.134)

Using that h−1γ04h = nIγ0I and that h−1γ6789h = lαγα56789 we have that the super-

symmetry left unbroken by a D5k-brane is given by:

γ04ǫ1 = ǫ1 γ04ǫ2 = −ǫ2. (2.135)

Therefore it preserves the same supersymmetries as a fundamental string sitting at the

north pole (i.e θ = 0), labeled by the vector nI = (1, 0, 0, 0, 0, 0). This vector selects the

unbroken rotational symmetry.

Gauge Fixing and the Unitary Matrix Measure

In section 4 we have gauge fixed the U(M) symmetry by imposing the diagonal,

constant gauge:

Ã0 = diag(Ω1, . . . ,ΩM ). (2.136)
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There is an associated Fadeev-Popov determinant ∆FP corresponding to this gauge choice.

This modifies the measure to

[DÃ0] ·∆FP , (2.137)

where now [DÃ0] involves integration only over the constant mode of the hermitean matrix

Ã0. Under an infinitessimal gauge transformation labelled by α, Ã0 transforms by

δÃ0 = ∂tα+ i[Ã0, α], (2.138)

so that:

∆FP = det
(

∂t + i[Ã0, ]
)

. (2.139)

An elementary computation yields

∆FP =

∞∏

l6=0

2πil

β

∏

I<J

∞∏

k=1

(

1− β2(ΩI −ΩJ )2

4π2k2

)

, (2.140)

where we have introduced β as an infrared regulator. Now, using the product representa-

tion of the sin function we have that up to an irrelevant constant:

∆FP =
∏

I<J

4
sin2

(
β
(

ΩI−ΩJ

2

))

(ΩI −ΩJ )2
. (2.141)

This together with the formula for the measure of the Hermitean matrix Ã0

[DÃ0] =
∏

I<J

dΩI(ΩI − ΩJ)2 (2.142)

proves our claim that the gauge fixing effectively replaces the measure over the Hermitean

matrix Ã0 by the measure over the unitary U = eiβÃ0

[DÃ0] ·∆FP = [DU ] =
∏

I<J

dΩI∆(Ω)∆̄(Ω), (2.143)

where

∆(Ω) =
∏

I<J

(eiβΩI − eiβΩJ ). (2.144)

Gauge Theory Along Coulomb Branch

The low energy dynamics of a stack of N + P coincident D3-branes is described by

four dimensional N = 4 SYM with U(N + P ) gauge group. The spectrum of the theory
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includes a vector field Âµ, six scalar fields Φ̂i and a ten dimensional Majorana-Weyl spinor

Ψ̂. The action is given by

ŜN=4 =
1

2g2
Y M

∫

Tr

(

−1

2
F̂ 2

µν − (D̂µΦ̂i)
2 +

1

2
[Φ̂i, Φ̂j]

2 − i ˆ̄ΨΓµD̂µΨ̂− ˆ̄ΨΓi[Φ̂i, Ψ̂]

)

,

(2.145)

where each field is in the adjoint of the gauge group U(N+P ). We use real ten dimensional

gamma matrices Γi and Γµ and we choose Γ0 as charge conjugation matrix. Thus, the

Majorana-Weyl spinor λ has 16 real components and λ̄ = λT Γ0.

Now we separate a stack of P branes from the remaining stack of N branes, i.e. we

give a non trivial vacuum expectation value to the scalar fields. Without lost of generality,

we take

< Φ̂9 >=

(
0 0
0 LIP

)

, (2.146)

where IP is the P × P unit matrix and L is a constant with the dimensions of mass. To

expand the action around this vacuum, we first define the fields as

Âµ =

(
Aµ ωµ

ω†
µ Ãµ

)

Φ̂i =

(
Φi ωi

ω†
i δi9LIP + Φ̃i

)

Ψ̂ =

(
Ψ θ
θ† Ψ̃

)

, (2.147)

where Aµ, Φi and Ψ transform in the adjoint representation of U(N) and Ãµ, Φ̃i and Ψ̃

transform in the adjoint representation of U(P ). ωµ, ωi and θ are W-bosons fields and

transform in the (N, P̄ ) representation of the gauge group U(N)× U(P ).

The action becomes:

ŜL
N=4 = SN=4 + S̃N=4 + SW + Sinteractions. (2.148)

SN=4 and S̃N=4 are the actions for the effective field theories living on the two stacks of

branes, i.e. four dimensional N = 4 SYM with gauge group respectively U(N) and U(P ).

SW is the action for the W-bosons and their superpartners

SW =

∫

Tr

(

−1

2
f †

µνf
µν−L2ω†

µω
µ−

9∑

i=4

∂µω†
i ∂µωi−L2

8∑

k=4

ω†
kωk−iθ̄†Γµ∂µθ+Lθ̄

†Γ9θ+. . .

)

,

(2.149)

where fµν = ∂µων − ∂νωµ and . . . denote terms fourth order in the W-boson fields.

Sinteractions is the action describing the interactions between the W-bosons and the fields

living on the two stacks of branes. It includes terms of the third and fourth order in the

fields.
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We are interested in the limit where the two stacks of branes are infinitely separated,

i.e. in the limit where L→∞. From the quadratic action (2.149) we see that the W-bosons

ωm with m = 1, . . .8 and the fermions become infinitely massive. Taking the infinite mass

limit of a relativistic massive field, corresponds to considering the non-relativistic limit.

The surviving dynamics in the limit can be explicitly extracted by making the following

redefinition:

ωm =
1√
L
e−itLχm where m = 1, . . . , 8. (2.150)

For the W-bosons superpartners, which also become infinitely massive, we first define

Γ09θ± = ±θ±, (2.151)

where this projection must be understood in the spinors space. To extract the physics in

the limit we make the following rescaling:

θ = θ+ + θ− = e−iLtξ+ + e−iLtξ−. (2.152)

Considering (2.150) and (2.152) and then taking the infinite mass limit L → ∞ the W-

boson action (2.149) reduces to

SNR
W =

∫

Tr

(

i
8∑

m=1

χ†
m∂tχm + i(ξT

+)†∂tξ+

)

(2.153)

where the transposition is in the space of fermions and the hermitian conjugation is in the

matrix space. The ξ− fermions become infinitely massive and decouple from the theory,

as expected, since there are no antiparticles in the non-relativistic limit.

The interaction action Sinteraction in (2.148) is now given by

SNR
interactions =

∫ 8∑

m=1

Tr

(

χ†
m(A0 + Φ9)χm − χ†

mχm(Ã0 + Φ̃9)+

+ξ†m(A0 + Φ9)ξm − ξ†mξm(Ã0 + Φ̃9)

) (2.154)

where ξm (m = 1, . . .8) are the spinor components of ξ+. All higher order terms in (2.148)

vanish in the L→∞ limit. Note that, in this limit the dynamics of the U(P ) gauge theory

effectively decouples from the U(N) gauge theory.
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Therefore, we can then write the action describing the coupling of the W-bosons to

U(N) N = 4 SYM as29

S = SN=4 +
8∑

m=1

Sm, (2.155)

where SN=4 is the action ofN = 4 SYM with gauge group U(N) while Sm withm = 1, . . .8

is the action for one of the eight non-relativistic supersymmetric W-bosons

Sm =

∫

[(χ†
m)I

i ∆
IJ
ij (χm)J

j + (ξ†m)I
i ∆

IJ
ij (ξm)J

j ] , (2.156)

where

∆IJ
ij = iδijδ

IJ∂t + (A0 + Φ9)ijδ
IJ , (2.157)

which is what we have used in the main text.

We note that integrating out the degrees of freedom associated to the W-bosons,

without any insertions, we get

Z =

∫ 8∏

i=1

([Dχm][Dχ†
m][Dξm][Dξ†m])eiS

=eiSN=4
(det∆)nF

(det∆)nB

=eiSN=4 ,

(2.158)

where in the last step we used that nF = nB. Note that we recover the expected result

that the metric in the Coulomb branch of N = 4 gets no corrections upon integrating out

the massive modes.

29 There is decoupled contribution for the U(P ) gauge theory which does not talk to U(N)

SYM.
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3. Holographic Gauge Theories in Background Fields and Surface Operators

The phase structure of a gauge theory can be probed by studying the behaviour of the

order parameters of the theory as we change external parameters, such as the temperature.

In order to characterize the possible phases, one may insert an infinitely heavy probe

charged particle, and study its response, as it will depend on the phase the gauge theory is

in. Known examples of operators inserting such probes are Wilson, Polyakov and ’t Hooft

operators, which distinguish between the confined, deconfined and the Higgs phase.

It is a natural question to ask whether one can construct an operator which inserts a

probe string instead of a probe particle. If so, we can then study the response of the string

and analyze whether new phases of gauge theory can be found that are not discriminated

by particle probes. Candidate probe strings range from cosmic strings to the wrapped

D-branes of string theory.

Geometrically, an operator inserting a probe string is characterized by a surface Σ in

space-time, which corresponds to the worldsheet spanned by the string. One may refer

to such operators as surface operators and will label them by OΣ. Such operators are

nonlocal in nature and the challenge is to construct them and to understand their physical

meaning. For early studies of these operators see for instance [28].

Recently, a class of supersymmetric surface operators in N = 4 SYM have been

constructed by Gukov and Witten [29]30, while the corresponding gravitational description

in terms of smooth solutions of Type IIB supergravity which are asymptotically AdS5 ×
S5 has been identified in [84]. These operators are defined by a path integral with a

codimension two singularity near Σ for the N = 4 SYM fields. Therefore, these operators

are of disorder type as they do not admit a description in terms of an operator insertion

which can be written in terms of the classical fields appearing in the Lagrangian.

In this chapter we construct a family of surface operators in four dimensional N = 4

SYM that do admit a description in terms of an operator insertion made out of the N = 4

SYM fields. In the standard nomenclature, they are order operators. The surface operator

is obtained by inserting into the N = 4 SYM path integral the WZW action supported on

the surface Σ

exp
[
iMΓWZW (A)

]
, (3.1)

30 These operators play an important role in enriching the gauge theory approach [83] to the

geometric Langlands program to the case with ramification.
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where:31

ΓWZW (A) = − 1

8π

∫

Σ

dx+dx−Tr
[(
U−1∂+U

) (
U−1∂−U

)
−
(
U−1∂+U

) (
V −1∂−V

)]

− 1

24π

∫

d3xǫijkTr
[(
U−1∂iU

) (
U−1∂jU

) (
U−1∂kU

)]
.

(3.2)

The U(N) group elements U and V are nonlocally related to the N = 4 SYM gauge field

Aµ along Σ by:

A+ = U−1∂+U A− = V −1∂−V. (3.3)

M is an arbitrary positive integer which labels the level of the WZW model32.

We construct these operators by considering the field theory limit of a supersymmetric

D3/D7 brane intersection along a two dimensional surface Σ. We find that a consistent

description of the low energy dynamics of this brane intersection requires that the gauge

theory on theD3-branes is written down not in flat space but in the non-trivial supergravity

background created by the D7-branes.

In this chapter we construct this supersymmetric field theory in the D7-brane super-

gravity background and show that if we integrate out the degrees of freedom introduced

by the D7-branes that the net effect is to insert the operator (3.2) into the gauge theory

action. The same strategy of integrating out the new degrees of freedom introduced on

a brane intersection was used in chapter 2 [76] to construct the Wilson loop operators

in N = 4 SYM and to find the bulk AdS description of a Wilson loop in an arbitrary

representation of the gauge group.

The physics responsible for having to consider the gauge theory on the non-trivial su-

pergravity background is that there are chiral fermions localized on Σ arising from the open

strings stretching between the D3 and D7 branes. It is well known that the gauge anom-

alies introduced by these chiral degrees of freedom are cancelled only after the appropriate

Chern-Simons terms on the D-brane worldvolume are included [85]. The Chern-Simons

terms needed to cancel the anomalies become non-trivial due to the presence of the RR

one-form flux produced by the D7-branes. We show, however, that it is inconsistent to

31 We note that ΓW ZW (A) differs from the conventional WZW model action by the addition

of a local counterterm which is needed to guarantee that the operator has all the appropriate

symmetries.
32 In the string construction of this operator N denotes the number of D3-branes while M is

the number of D7-branes.
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consider only the RR background produced by the D7-branes. One must also take into ac-

count the non-trivial background geometry and dilaton produced by the D7-branes as they

are of the same order as the effect produced by the RR flux. This can be seen by showing

that the gauge theory in flat space in the presence of the Chern-Simon terms does not

capture the supersymmetries of the brane intersection. Therefore, we are led to consider

the low energy action of N D3-branes in the supergravity background produced by the

intersecting D7-branes. The gauge theory describing the low energy dynamics preserves

eight supersymmetries and is ISO(1, 1)× SU(4) invariant.

Given the construction of the surface operator in term of D-branes we proceed to

study the bulk Type IIB supergravity description of these surface operators. We start by

showing that there is a regime in the bulk description where the D7-branes can be treated

as probe branes in AdS5 × S5. We show that this corresponds to the regime where the

gauge anomaly is suppressed, the Chern-Simons term can be ignored and the gauge theory

lives in flat space. This corresponds to considering the limit where g2M << 1, where g is

the gauge theory coupling constant. In this limit the symmetries of the gauge theory are

enhanced to the SU(1, 1|4) supergroup.

We go beyond the probe approximation and construct the exact Type IIB supergravity

solutions that are dual to the surface operators we have constructed33. These solutions

can be found by taking the near horizon limit of the supergravity solution describing the

localized D3/D7 brane intersection from which the surface operator is constructed. The

dual supergravity solutions take the form of a warped AdS3×S5×M metric, whereM is a

two dimensional complex manifold. These solutions also shed light on the geometry where

the holographic field theory lives. One can infer that the gauge theory lives on the curved

background produced by the D7-branes by analyzing the dual supergravity geometry near

the conformal boundary, thus showing that holography requires putting the gauge theory

in a curved space-time. The explicit construction of the supergravity solutions also gives

us information about the quantum properties of our surface operators. To leading order

in the g2M expansion, the surface operator preserves an SO(2, 2) ⊂ SU(1, 1|4) symmetry,

which is associated with conformal transformations on the surface Σ = R1,1. In the

probe brane description – where g2M effects are suppressed – we also have the SO(2, 2)

symmetry, while the explicit supergravity solution shows that the SO(2, 2) symmetry is

33 The supergravity solution dual to other (defect) operators in N = 4 have appeared in

[86],[87],[88],[89],[90],[84],[91],[92],[93].
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broken by g2M corrections. This shows that g2M corrections in the field theory break

conformal invariance, which can be seen explicitly by analyzing the gauge theory on the

D7-brane background. This field theory statement is reminiscent34 to the breaking of

conformal invariance by g2M effects that occurs when considering N = 4 SYM coupled to

M hypermultiplets, whose β-function is proportional to g2M .

The plan of the chapter is as follows. In section 1 we introduce the D3/D7 brane inter-

section, the corresponding low energy spectrum and discuss the cancellation of the gauge

anomalies via anomaly inflow. We show that the gauge theory on the D3-branes has to be

placed in the supergravity background produced by the D7-branes and construct explicitly

the relevant gauge theory action, derive the appropriate supersymmetry transformations

and show that the action has all the required symmetries. We integrate out all the degrees

of freedom introduced by the D7-branes and show that the net effect is to insert the WZW

action (3.1) into the N = 4 SYM path integral. In section 2 we give the bulk description

of the surface operators. We show that there is a regime where the D7-branes can be

treated as probe branes in AdS5 × S5 and identify this with the regime in the field theory

where the anomaly is suppressed, the Chern-Simons term can be ignored and the gauge

theory lives in flat space. We find the explicit exact supergravity solution describing the

supergravity background produced by the localized D3/D7 brane intersection and show

that in the near horizon limit it is described by an AdS3 × S5 warped metric over a two

dimensional manifold. We show that the metric on the boundary, where the gauge theory

lives, is precisely the D7-brane metric on which we constructed the field theory in section

1. Some of technical details and computations are relegated in section 3.

3.1. Gauge Theory and Surface Operators

Brane Intersection and Anomalies

The surface operators in this chapter are constructed from the low energy field theory

on a D3/D7 brane configuration that intersects along a surface Σ = R1,1. More precisely,

we consider the effective description on N D3-branes with worldvolume coordinates xµ =

34 Such models have been realized in string theory using brane intersections in e.g. [94], [95].

For attempts at computing the supergravity description of this system see e.g [96], [97], [98].
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(x0, x1, x2, x3) and M D7-branes whose worldvolume is parameterized by (x0, x1) and

xI = (x4, x5, x6, x7, x8, x9). The coordinates that parametrize the surface Σ are x0 and x1:

0 1 2 3 4 5 6 7 8 9
N D3 X X X X
M D7 X X X X X X X X

(3.4)

The supersymmetries preserved by the D3-branes are the following35

iγ0123ǫ = ǫ, (3.5)

where ǫ is a ten dimensional complex Weyl spinor satisfying γ01...89ǫ = ǫ, which labels the

thirty-two supersymmetries of Type IIB supergravity. The supersymmetries preserved by

the D7-branes are given by:

iγ01456789ǫ = ǫ. (3.6)

Therefore, in total there are eight supersymmetries preserved by the brane intersection,

which can be shown to be chiral in the two dimensional intersection. If we introduce

coordinates

x± = x0 ± x1 z = x2 + ix3, (3.7)

then the unbroken supersymmetries satisfy

γ+ǫ = 0, (3.8)

or can alternatively be written as

γz̄ǫ = 0, (3.9)

where:

γ+ =
1

2
(γ0 + γ1), γz̄ =

1

2
(γ2 + iγ3). (3.10)

In constructing the supersymmetry transformations of the gauge theory living on the

brane intersection we will use four dimensional Weyl spinors. In the four dimensional

notation, the sixteen supersymmetries preserved by the D3-branes (3.5) are generated by

(ǫα
i, ǭα̇i), where ǫα

i is a four dimensional Weyl spinor of positive chirality transforming in

the (2, 4) representation of SL(2,C) × SU(4) and ǭα̇i = (ǫα
i)∗. These spinors generate

35 In this chapter we denote the γ-matrices in flat space by γ. The curved space γ-matrices are

denoted by Γ. They satisfy {ΓM , ΓN} = 2gMN , where gMN is the space-time metric.
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the usual Poincare supersymmetry transformations of N = 4 Yang-Mills theory. In this

notation, the projectors (3.8) and (3.9) can be written as:36

σ̃+
α̇αǫα

i = 0, σ̃z̄
α̇αǫα

i = 0. (3.11)

Therefore, the projections (3.11) imply that ǫ1
i = ǫ2

i, which parametrize the eight real

supersymmetries preserved by the brane intersection.

In the low energy limit – where α′ → 0 – massive open strings and closed string

excitations decouple and only the massless open strings are relevant. The 3-3 strings yield

the spectrum of four dimensional N = 4 SYM while the quantization of the 3-7 open strings

results in two dimensional chiral fermions χ localized on the intersection, and transform

in the (N, M̄) representation of U(N) × U(M). The massless 7-7 strings give rise to a

SYM multiplet in eight dimensions, but these degrees of freedom are non-dynamical in the

decoupling limit and appear in the effective action only as Lagrange multipliers.

The action for the localized chiral fermions is given by

Sdefect =

∫

dx+dx− χ̄(∂+ +A+ + Ã+)χ, (3.12)

where A and Ã denote the D3 and D7-brane gauge fields respectively and we have used

the coordinates introduced in (3.7). Of the usual Poincare supersymmetries of N = 4

SYM, whose relevant transformations are given by

δAµ = −iλ̄α̇iσ̃µ
α̇αǫα

i + c.c., δχ = 0, δÃµ = 0, (3.13)

the defect term (3.12) is invariant under those supersymmetries for which δA+ = 0, which

are precisely the ones that satisfy the projections in (3.11) arising from the D3/D7 brane

intersection.

Quantum mechanically, the path integral over the localized chiral fermions χ is not

well defined due to the presence of gauge anomalies in the intersection. In order to see how

to cure this problem, it is convenient to split the U(N) and U(M) gauge fields into SU(N)×
U(1) and SU(M)×U(1) gauge fields . With some abuse of notation, we denote the SU(N)

and SU(M) parts of the gauge field by A and Ã respectively, while the corresponding U(1)

36 Our conventions on σ-matrices are summarized in section 3. They are essentially the same

as those in the book [99].
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parts of the gauge field are denoted by a and ã. Then, the variation of the quantum effective

action under an SU(N)× SU(M) gauge transformation

δAµ = ∂µL+ [Aµ, L], δÃµ = ∂µL̃+ [Ãµ, L̃] (3.14)

is given by

δL,L̃S =
1

8π

∫

dx+dx−
[

MTrSU(N)(LdA) +NTrSU(M)(L̃dÃ)
]

, (3.15)

so that the theory is anomalous under SU(N)×SU(M) gauge transformations. Likewise,

U(1)× U(1) gauge transformations

δAµ = ∂µl, δÃµ = ∂µ l̃, (3.16)

on the quantum effective action yield

δl,l̃S =
1

8π

∫

dx+dx−NM(l − l̃)(f+− − f̃+−), (3.17)

so that the theory is anomalous under the U(1) gauge transformations generated by l− l̃,
and where:

f = da, f̃ = dã. (3.18)

Anomalies supported on D-brane intersections are cancelled by the anomaly inflow

mechanism [85], which relies on the presence of Chern-Simons couplings in the D-brane

worldvolume. The Chern-Simons terms that couple to the SU(N) and SU(M) gauge fields

are given by

SCS(A) = −(2πα′)2τ3
2

∫

G1 ∧ Tr

(

A ∧ dA+
2

3
A ∧A ∧ A

)

(3.19)

and

SCS(Ã) = −(2πα′)2τ7
2

∫

G5 ∧ Tr

(

Ã ∧ dÃ+
2

3
Ã ∧ Ã ∧ Ã

)

, (3.20)

where gs is the string coupling constant and τ3 and τ7 is the D3 and D7-brane tension

respectively:

τ3 =
1

gs(2π)3α′2
, τ7 =

1

gs(2π)7α′4
. (3.21)

G1 is the RR one-form flux produced by the stack of D7-branes and G5 is the self-dual

RR five-form flux produced by the stack of D3-branes.

61



In the presence of localized D-brane sources, the Bianchi identities for the RR fields

are modified in a way that the Chern-Simons terms become non-trivial. In our case, the

modified Bianchi identities are given by

dG1 = MG10τ7δ
2(zz̄) = gsMδ2(zz̄) (3.22)

and

dG5 = NG10τ3δ(x
4)δ(x5) . . . δ(x9), (3.23)

where G10 is the ten-dimensional Newton’s constant which is given by:

G10 = g2
s(2π)7α′4. (3.24)

Therefore, under an SU(N) × SU(M) gauge transformation (3.14), the Chern-Simons

terms (3.19)and (3.20) are not invariant, and reproduce the two-dimensional anomaly

δSCS(A) + δSCS(Ã) = − 1

8π

∫

dx+dx−
[

MTrSU(N)(LdA) +NTrSU(M)(L̃dÃ)
]

, (3.25)

where L and L̃ are taken to vanish at infinity. This mechanism provides a cancellation of

the SU(N) and SU(M) gauge anomalies [85].

The Chern-Simons terms containing the U(1) gauge fields a and ã are more involved.

They have been studied in [100], where the anomalies of a closely related D5/D5 brane

intersection along a two dimensional defect were studied37. The analogous terms for the

D3/D7 system are given by:

SCS(a, ã) =− (2πα′)2τ3
2

N

∫

G1 ∧ a ∧ f −
(2πα′)2τ7

2
M

∫

G5 ∧ ã ∧ f̃

+
(2πα′)2τ3

2
N

∫

G1 ∧ a ∧ f̃ +
(2πα′)2τ7

2
M

∫

G5 ∧ ã ∧ f.
(3.26)

37 The physics of that system is quite different from the D3/D7 system studied in this chapter.

In [100] it was argued that the dynamics of the gauge fields pushes the fermions away from the

intersection by a distance determined by the (dimensionful) gauge theory coupling constant. In our

system the fermions are stuck at the intersection since the U(N) coupling constant is dimensionless

unlike the one on the D5-branes which is dimensionful while the U(M) gauge coupling constant

vanishes in the decoupling limit, pinning down the fermions at the intersection. Moreover, in

[100] the symmetry is enhanced from ISO(1, 1) to ISO(1, 2) while in our system the symmetry is

enhanced from ISO(1, 1) to SO(2, 2), but only to leading order in the g2M expansion. Here we

also resolve a puzzle left over in their paper, which is to construct the gauge theory action with

all the expected supersymmetries.
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The first two terms are the usual Chern-Simons couplings analogous to (3.19) and (3.20).

The third term arises from the familiar coupling on the D3-brane worldvolume of the form

∫

a ∧ F3, (3.27)

where F3 is the RR three-form flux, which as argued in [100] is given by F3 = G1∧ f̃ in the

presence of G1 and f̃ background fields. Note that f̃ in the third term is to be evaluated

at xI = 0. Similarly, the last term arises from the Chern-Simons coupling on the D7-brane

∫

ã ∧ F7, (3.28)

where the RR seven-form flux is now given by G5 ∧ f , where f is to be evaluated at z = 0.

If we now perform a U(1)×U(1) gauge transformation, the variation of (3.26) is given by

δSCS(a, ā) = − 1

8π

∫

dx+dx−NM(l − l̃)(f+− − f̃+−), (3.29)

where we have used the modified Bianchi identities (3.22) and (3.23). Therefore, by in-

cluding all the Chern-Simons couplings all anomalies cancel.

Field Theory Construction of Gauge Theories with Anomaly Inflow

Turning on the RR fluxes (3.22) and (3.23) produced by the D3 and D7 branes is

crucial in obtaining an effective theory which is anomaly free. Usually, in analyzing the

low energy gauge theory on a D-brane intersection in flat space we can ignore the RR flux

produced by the branes. However, whenever there are localized gauge anomalies the RR

flux cannot be neglected as it generates the required Chern-Simons needed to cancel the

anomaly. But D-branes also source other supergravity fields, such as the metric and the

dilaton. It is therefore inconsistent to study the low energy gauge theory in flat space with

only the addition of the RR-induced Chern-Simons terms. Physically, one must consider

the gauge theory in the full supergravity background produced by the other D-brane, as

the effect of the metric and dilaton is of the same order as the effect of the RR flux.

One way to see that it is inconsistent to consider the gauge theory on the D3-branes

in flat space and in the presence of only the RR-flux produced by the D7-branes is to note

that the naive action of the system

S = SN=4 + Sdefect + SCS(A) + SCS(Ã) + SCS(a, ã), (3.30)
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is not supersymmetric, where SN=4 is the usual flat space action of N = 4 SYM and

the other terms appear in (3.12), (3.19), (3.20) and (3.26) respectively. In particular, this

low-energy gauge theory does not capture the supersymmetries of the brane intersection

(3.11), and therefore is not a faithful description of the low energy dynamics.

In the rest of this section we construct the low energy gauge theory living on the

D3-branes when embedded in the full supergravity background of the D7-branes – which

includes the appropriate Chern-Simons terms – and show that the field theory has all the

required symmetries.

The D7-Brane Background

As just argued, we must construct the low energy gauge theory on the D3-branes

when placed in the full supergravity background of the D7-branes. We will devote this

subsection to reviewing the salient features of the D7-brane background.

The metric produced by the D7-branes in the brane array (3.4) is given by

ds2 = gMNdx
MdxN = H

−1/2
7 (−(dx0)2 + (dx1)2 + dxIdxI) +H

1/2
7 dzdz̄, (3.31)

where the coordinates are defined in (3.4). The RR axion C and the dilaton Φ can be

combined into a complex field τ with is holomorphic in z, so that the axion and the

dilaton produced by the D7-branes is given by:

∂z̄τ = 0 where τ = C + ie−Φ

e−Φ = H7.
(3.32)

This background solves the Killing spinor equations of Type IIB supergravity

δΨM = ∂M ǫ+
1

4
ωAB

M ΓABǫ−
i

8
eΦ∂NCΓNΓM ǫ = 0,

δψ = (ΓM∂MΦ)ǫ+ ieΦ∂MCΓM ǫ = 0,
(3.33)

and preserves the sixteen supersymmetries satisfying

ǫ = H
−1/8
7 ǫ0, γz̄ǫ0 = 0, (3.34)

where ΨM and ψ are the ten-dimensional gravitino and dilatino respectively.
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The simplest solution describes the local fields around a coincident stack ofD7-branes.

This local solution has a U(1) symmetry, which acts by rotations in the space transverse

to the D7-branes, which is parametrized by the coordinate z. It is given by

τ = iτ0 +
gsM

2πi
ln z, (3.35)

so that

e−Φ = H7 = τ0 −
gsM

2π
ln r, C =

gsM

2π
θ, (3.36)

where z = reiθ and τ0 is an arbitrary real constant. This solution, however, is only valid

very near the branes – for small r – as e−Φ becomes negative at a finite distance and we

encounter a singularity. The local solution for separated branes corresponds to

τ = iτ0 +
gs

2πi

M∑

l=1

ln(z − zl), (3.37)

where zl is location of the l-th D7-brane.

As shown in [101] (see [102], [103] for more recent discussions), the local solution can

be patched into global solutions that avoid the pathologies of the local one. The global

solutions break the U(1) symmetry present in the local solution of coincident D7-branes.

In order to describe them it is convenient to switch to the Einstein frame, where the

SL(2,Z) invariance of Type IIB string theory is manifest. In this frame, the local metric

is given by

ds2 = −(dx0)2 + (dx1)2 + dxIdxI +H7dzdz̄. (3.38)

Since τ is defined up to the action of SL(2,Z) and Im τ > 0, it follows that τ takes values

in the fundamental domain F = H+/SL(2,Z), where H+ is the upper half plane. In order

to find a global solution for τ one has to consider the one-to-one map j : F → C from the

fundamental domain F to the complex plane C. This map j is well-known and given by

j(τ) =
(θ2(τ)

8 + θ3(τ)
8 + θ4(τ)

8)3

η(τ)24
, (3.39)

where the θ’s are the usual theta-functions while η is the Dedekind η-function

η(τ) = q1/24
∏

n

(1− qn), (3.40)

where q = e2πiτ . Then the various solutions for τ are given by

j(τ(z)) = g(z), (3.41)
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where g(z) is an arbitrary meromorphic function in the complex plane. For a stack of M

coincident D7-branes we have

g(z) = a+
b

zgsM
, (3.42)

where a sets the value of the dilaton at infinity and b is related to τ0 in (3.36). Indeed, for

Im τ >> 1, j(τ) ≃ e−2πiτ which implies the local behavior (3.35) near z = 0.

In general, different choices of g(z) correspond to different types ofD7-brane solutions.

The metric can be written in the following form

ds2 = −(dx0)2 + (dx1)2 + dxIdxI +H7f f̄dzdz̄, (3.43)

where as in the local case H7 = e−Φ and where f is a holomorphic function of z. Locally,

one can always choose a coordinate system where f f̄dzz̄ = dz′dz̄′ for some local coordinates

z′ and z̄′. This brings the metric (3.43) to the usual local form (3.38). However, globally

this cannot be done as discussed above. For the metric to be globally defined, H7f f̄ has

to be SL(2,Z) invariant. The solution studied in [101] is given by

H7f f̄ = e−Φη2η̄2|
M∏

i=1

(z − zi)
−1/12|2, (3.44)

where zi’s are the location of the poles of g(z), which correspond to the position of the

various D7-branes in the z-plane38.

The metric (3.43) is smooth everywhere except 1) at z = zi where it behaves as

ln |z − zi| due to the presence of a D7-brane source there and 2) at infinity, where it has

a conical singularity with deficit angle δ = πM
6 . In this thesis, we will mostly be using

the D7-brane background in the local form (3.31), (3.32). However, as we explained the

generalization to the global case is straightforward.

We finish this subsection by constructing the Killing spinors of the gauge theory

on the D3-branes when placed in the background of the D7-branes. If we consider the

D3/D7 intersection in (3.4), we need the restriction of the D7-brane background to the

worldvolume of the D3-branes. Then the induced metric on the D3-branes is given by:

ds2 = gµνdx
µdxν = −H−1/2

7 dx+dx− +H
1/2
7 dzdz̄. (3.45)

38 There are restrictions on the range of M coming from the fact that for M large enough the

space becomes compact. This was studied in detail in [101]. We will not discuss this point in this

chapter.
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The Killing spinor equation satisfied by the four dimensional spinors ǫα
i that generate the

worldvolume supersymmetry transformations on the D3-branes is given by39

Dµǫα
i = − i

8
eΦ∂νCσ

ν
αα̇σ̃

α̇β
µ ǫβ

i , (3.47)

where Dµ is the covariant derivative in the background metric (3.45). Therefore

ǫα
i = H

−1/8
7 ǫ0α

i, (3.48)

where

σ̃ α̇α
z̄ ǫα

i = 0, σ̃ α̇α
+ ǫα

i = 0, (3.49)

thus reproducing the supersymmetry conditions derived for the brane intersection (3.11).

In the next subsection we write down the action and supersymmetry transformations of

the D3/D7 low energy gauge theory and show that the preserved Killing spinors satisfy

(3.47) subject to the constraints (3.49).

Holographic Gauge Theory in Background Fields

In this subsection we construct the low energy gauge theory on the D3-branes when

placed in the full supergravity background of theD7-branes. This is the appropriate decou-

pled field theory that holographically describes the physics of the dual closed string back-

ground, which we obtain in section 2 by finding the supergravity solution of the D3/D7

intersection. We also construct the corresponding supersymmetry transformations and

show that the action is invariant under the subset of N = 4 supersymmetry transforma-

tions satisfying the restrictions (3.47) and (3.49), which are precisely the supersymmetries

preserved by the D-brane intersection in flat space (3.4).

There is a systematic way of constructing the action and supersymmetry transforma-

tions on a single D-brane in an arbitrary supergravity background. The starting point is to

consider the covariant D-brane action in an arbitrary curved superspace background [104],

39 To go to the four dimensional notation we have used:

Γµ = i

(

0 σ
µ

σ̃
µ 0

)

. (3.46)
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[105] (which generalizes the flat space construction in [106].) These actions can in principle

be expanded to all orders in the fermions around a given background, even though explicit

formulas are not easy to obtain. The covariant action has κ-symmetry and diffeomorphism

invariance. By fixing κ-symmetry we can gauge away sixteen of the thirty two fermions of

Type IIB supergravity superspace. The remaining sixteen fermions are then identified with

the gauginos filling up the SYM multiplet living on the D-brane. Likewise, worldvolume

diffeomorphisms can be fixed by specifying how the brane is embedded in the background,

which allows for the identification of the scalars of the SYM multiplet parametrizing the

position of the D-brane.

In order to construct the explicit supersymmetry transformations of the gauge fixed

action one must combine the superspace supersymmetry transformations on the physical

fields together with a compensating κ and diffeomorphism transformation to preserve the

gauge fixing condition.

Since we are interested in considering a decoupling limit, where α′ → 0, this procedure

simplifies considerably. In this limit the only terms in the action that survive are quadratic

in the fields. Fortunately, the explicit expression for the D-brane action to quadratic

order in the fermions in an arbitrary supergravity background can be found in [107]40 (see

also [108],[109],[110]). This approach gives the brane action quadratic in fermions with

fixed κ-supersymmetry and diffeomorphisms in an arbitrary supersymmetric background.

Therefore, we start by finding the action for a single D3-brane in the D7-brane background

following [107]. Later we will show how to extend this analysis to the case when the gauge

group is non-Abelian.

Let us start with the bosonic action in the D7-brane background. The action for the

gauge field Aµ is straightforward to write down. It is given by

SV = −T3

4

∫

d4x
√−ge−ΦFµνF

µν − T3

4

∫

d4x
√−g∂µCǫ

µνρσAνFρσ, (3.50)

where

T3 = (2πα′)2τ3 =
1

2πgs
=

1

g2
, (3.51)

40 In that paper the action is written to quadratic order in the fermionic fields and to all order

in the bosonic fields. In the decoupling limit, we will only need to extract the action to quadratic

order in the bosonic fields.
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where g is the SYM coupling constant. The coordinates xµ = (x+, x−, z, z̄) describe the

coordinates along the D3-brane worldvolume as defined in (3.4). The metric used on the

D3-brane worldvolume is the induced metric (3.45) from the D7-brane background.

In order to obtain the action for the scalar fields on the D3-brane it is important to

properly identify which are the fields describing the D-brane fluctuations. We introduce

vielbeins which are adapted to the symmetries preserved by the D3-brane (eµ̂, eÎ), where µ̂

and Î denote the flat indices along and transverse to the D3-brane respectively. The static

gauge is fixed by the requirement that the pullback of the vielbein eÎ
I on the D3-brane

vanishes and the pullback of the vielbein eµ̂
µ forms a D3-brane worldvolume vielbein. The

physical scalar fields are parametrized by

ϕÎ = eÎ
Iδx

I (3.52)

rather than by the fluctuations in the transverse coordinates δxI . The scalar fields ϕÎ

transform under the local tangent space SU(4) ≃ SO(6) symmetries while the fluctuations

δxI transform under diffeomorphisms in the transverse space. This choice of the static

gauge manifestly has the SO(6) R-symmetry since the index Î is flat.

The low energy action for the scalar fields ϕÎ can be obtained by expanding the bosonic

part of the DBI action:

SDBI = −τ3
∫

d4xe−Φ
√
−G. (3.53)

G is the determinant of the metric

Gµν = gµν +GIJ∂µδx
I∂νδx

J , (3.54)

where gµν is the induced metric (3.45) and GIJ is the metric in the transverse space (3.38)

GIJ = H−1/2δIJ = eΦ/2δIJ , (3.55)

where the last equality is a property of the D7-brane background.

Therefore, we find that the quadratic action for the scalar fields in the SYM multiplet

is given by

SSc = −T3

2

∫

d4x
√−ge−ΦGIJ∂µδx

I∂µδxJ = −T3

2

∫

d4x
√−ge−ΦGIJ∂µ(eI

Î
ϕÎ)∂µ(eJ

Ĵ
ϕĴ),

(3.56)

where the worldvolume indices µ are contracted with the induced metric (3.45) and we

have used (3.52) to eliminate δxI in terms of ϕÎ . We note that ∂µ in (3.56) acts not only
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on ϕÎ but also on the vielbein’s eI
Î
. This fact is responsible for giving a mass to the scalar

fields ϕÎ . More precisely, evaluating (3.56) gives

SSc = −T3

2

∫

d4x
√−ge−Φ(∂µϕ

Î∂µϕÎ +
1

2
(R+ ∂µ∂µΦ)ϕÎϕÎ), (3.57)

where R is the scalar curvature of the induced metric (3.45), which in terms of the dilaton

field Φ is given by:

R = −3

8
∂µΦ∂µΦ− 1

2
∂µ∂µΦ. (3.58)

A similar mass term proportional to the curvature appears in the action of N = 4 Yang-

Mills theory in R× S3 [111] (for a recent discussion see [112]).

For later convenience, we parametrize the six scalars ϕÎ by a two-index antisymmetric

tensor ϕij of SU(4) via

ϕÎ =
1

2
γ Î

ijϕ
ij , ϕij =

1

2
γ̃ ÎijϕÎ , ϕij =

1

2
ǫijklϕ

kl, (3.59)

where γ Î
ij are the Clebsch-Gordan coefficients that couple the 6 representation of SO(6)

to the 4’s of SU(4) labeled by the i, j indices. The Clebsch-Gordan coefficients satisfy a

Clifford algebra:

{γ Î , γ̃Ĵ} = 2δÎĴ . (3.60)

In this parametrization the action of the scalar fields in the SYM multiplet is given by:

SSc = −T3

2

∫

d4x
√−ge−Φ(∂µϕ

ij∂µϕij +
1

2
(R+ ∂µ∂µΦ)ϕijϕij). (3.61)

Now we move on to the action for the fermions in the SYM multiplet. As indicated

earlier, the κ-supersymmetric DBI action depends on thirty two spinors, which can be

parametrized by two ten dimensional Majorana spinors of positive chirality, denoted by θ1

and θ2. Fixing κ-supersymmetry is equivalent to setting one of them, say θ2 to zero. Hence,

the fermionic action can be written in terms of θ1, which is identified with the gaugino

in the SYM multiplet. The quadratic fermionic action with fixed κ-supersymmetry was

found in [107]. Adopting their answer to our present case we obtain:

SF =
T3

2

∫

d4x
√−ge−Φ(θ̄1Γ

µDµθ1 − θ̄1Γ̂−1
D3

(ΓµWµ −∆)θ1). (3.62)
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In this expression we have used:

θ̄1 = iθT
1 γ

0,

Γ̂D3
= γ0γ1γ2γ3,

Wµ =
1

8
e−Φ∂νCΓνΓµ,

∆ = −1

2
e−Φ∂µCΓµ.

(3.63)

In order to write the action in terms of four dimensional spinors we use the basis of Γ

matrices in (3.46) and decompose

θ1 =

(
λα

i

λ̄α̇i

)

, (3.64)

where λα
i is the four dimensional gaugino. We then obtain the action for the fermionic

components of the SYM multiplet:

SF = T3

∫

d4x
√−ge−Φ(

i

2
λ̄iσ̃

µDµλ
i − i

2
Dµλ̄iσ̃

µλi)− T3

4

∫

d4x
√−g∂µCλ̄iσ̃

µλi. (3.65)

In summary, the total action for the SYM multiplet in the Abelian case is then given

by:

Sabel = SV + SSc + SF , (3.66)

where SV , SSc and SF are given by (3.50), (3.61) and (3.65) respectively.

The supersymmetry transformations can be obtained from the superspace supersym-

metry transformations on the physical fields with a compensating κ and diffeomorphism

transformation to preserve the gauge fixing condition [107]. For the case under considera-

tion we find that the action (3.66) is supersymmetric under the following transformations

δAµ = −iλ̄iσ̃µǫ
i + c.c.

δϕij = (λαiǫα
j − λαjǫα

i) + ǫijklǭα̇kλ̄
α̇

l

δλα
i = −1

2
Fµν(σµσ̃ν) β

α ǫβ
i − 2iσµ

αα̇(∂µϕ
ij)ǭα̇j +

i

2
σµ

αα̇(∂µΦ)ϕij ǭα̇j ,

(3.67)

where ǫα
i is a Killing spinor satisfying (3.47) and subject to the constraints

σ̃ α̇α
z̄ ǫα

i = 0, σ̃ α̇α
+ ǫα

i = 0, (3.68)

so that the action is invariant under eight real supersymmetries.
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We note that the variation of the gaugino contains a term proportional to the deriva-

tive of the dilaton which is absent in the usual N = 4 SYM theory in flat space. The

appearance of this term is consistent with the presence of a scalar “mass term” in the

action (3.61). The existence of the mass term in the action indicates that a non-vanishing

constant values of ϕij does not solve equations of motion. On the other hand, the set of

supersymmetric solutions can be obtained by setting the variations of the fermions to zero.

Therefore, the absence of the last term in δλα
i would indicate that any constant ϕij was

a supersymmetric solution, in direct contradiction with the equations of motion41.

The formalism using the covariant D-brane action allowed us to write a supersym-

metric gauge theory action when the gauge group is Abelian. We now extend the analysis

of the action and the supersymmetry transformations to the case when the gauge group is

non-Abelian. The extension is relatively straightforward. In the action (3.66) we replace

all derivatives Dµ by the gauge covariant derivatives Dµ, where

Dµ· = Dµ ·+[Aµ, ·], (3.70)

replace the Chern-Simons term in (3.50) by its non-Abelian analog

−T3

4

∫

d4x
√−g∂µCǫ

µνρσTr(AνFρσ −
2

3
AνAρAσ), (3.71)

and add the familiar non-Abelian couplings of N = 4 SYM in flat space:

Snabe = T3

∫

d4x
√−ge−ΦTr(λ̄α̇i[λ̄

α̇
j , ϕ

ij ] + λαi[λα
j , ϕij ]−

1

2
[ϕij , ϕkl][ϕij , ϕkl]). (3.72)

In the supersymmetry transformations (3.67) we replace also all covariant deriva-

tives Dµ with Dµ, and add to δλα
i the usual flat space N = 4SYM commutator term

−2[ϕjk, ϕ
ki]ǫα

j .

41 One can perform a field redefinition and get rid of the “mass term” for the scalar fields in

(3.60). To do this, one simply goes from ϕÎ to δxI

δx
I = e

I

Îϕ
Î = e

−

Φ
4 ϕ

Î
δ

I

Î
. (3.69)

This transformation eliminates the “mass term” for the scalar fields as well as the term
i
2
σ

µ
αα̇(∂µΦ)ϕij ǭα̇

j in the supersymmetry transformations for the gauginos.
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We have found the complete non-Abelian action on N D3-branes when embedded in

the D7-brane background. The full action is given by:

S =− T3

4

∫

d4x
√−ge−ΦTrFµνF

µν − T3

4

∫

d4x
√−g∂µCǫ

µνρσTr

(

AνFρσ −
2

3
AνAρAσ

)

+ T3

∫

d4x
√−ge−ΦTr

(
i

2
λ̄iσ̃

µDµλ
i − i

2
Dµλ̄iσ̃

µλi

)

− T3

4

∫

d4x
√−g∂µCTr(λ̄iσ̃

µλi)

− T3

2

∫

d4x
√−ge−ΦTr

(

DµϕijDµϕij +
1

2
(R+ ∂µ∂µΦ)ϕijϕij

)

+ T3

∫

d4x
√−ge−ΦTr

(

λ̄α̇i[λ̄
α̇

j , ϕ
ij] + λαi[λα

j , ϕij ]−
1

2
[ϕij , ϕkl][ϕij , ϕkl]

)

.

(3.73)

The action on the D3-branes (3.73) is invariant under the following explicit super-

symmetry transformations

δAµ =− iλ̄iσ̃µǫ
i + c.c.

δϕij =(λαiǫα
j − λαjǫα

i) + ǫijklǭα̇kλ̄
α̇

l

δλi
α =− 1

2
Fµν(σµσ̃ν) β

α ǫβ
i − 2iσµ

αα̇(∂µϕ
ij)ǭα̇j +

i

2
σµ

αα̇(∂µΦ)ϕij ǭα̇j

− 2[ϕjk, ϕ
ki]ǫα

j ,

(3.74)

where ǫα
i is a Killing spinor satisfying (3.47) and subject to the constraints (3.68). It,

thus, preserves the same eight supersymmetries preserved by the D-brane intersection.

The detailed check of the invariance of the action (3.73) under the supersymmetry

transformations (3.74) is summarized in section 3.

We finish this subsection by stating the symmetries of this field theory. The bosonic

symmetry is ISO(1, 1) × SO(6). Furthermore, the field theory is invariant under eight

real supercharges. Note that the theory is not conformally invariant. The dilatations

and special conformal transformations are broken by z-dependent warp-factors H7(z, z̄)

in (3.45).

The WZW Surface Operator

In this final subsection we show that the field theory on the D3/D7 intersection

describes a surface operator of N = 4 SYM in the D7-brane background. This surface

operator, unlike the one in [29], has a classical expression that can be written down in

terms of the classical fields that appear in the Lagrangian of N = 4 SYM.
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The strategy that we follow for determining the expression for the surface operator is

to integrate out explicitly the fermions χ, χ̄ that are localized on the surface. The effect

of the non-dynamical D7-brane gauge field is trivial and we suppress it in this section. In

section 3 we show that integrating over this gauge field reproduces the same answer as

when we suppress it. This same strategy was used in chapter 2 [76] to derive the Wilson

loop operators in N = 4, which were obtained by integrating out the localized degrees of

freedom living on the loop arising from a brane intersection.

We want to perform the following path integral42

Z = eiS ·
∫

[Dχ][Dχ̄] exp (iSdefect) , (3.75)

where:

Sdefect =

∫

dx+dx−χ̄ (∂+ + A+)χ. (3.76)

S is the N = 4 SYM action in the D7-brane background (3.73).

We proceed to integrating out the chiral fermions localized on the surface. This is

well known to produce a WZW model, which precisely captures the anomaly of the chiral

fermions via the identity

Det(∂+ + A+) = exp (icRΓWZW (A)), (3.77)

where cR is the index of the representation R under which the fermions transform. The

explicit expression for the WZW action one gets is

ΓWZW (A) = − 1

8π

∫

dx+dx−Tr
[(
U−1∂+U

) (
U−1∂−U

)
−
(
U−1∂+U

) (
V −1∂−V

)]

− 1

24π

∫

d3xǫijkTr
[(
U−1∂iU

) (
U−1∂jU

) (
U−1∂kU

)]
,

(3.78)

where U and V are U(N) group elements nonlocally related to the gauge field of N = 4

SYM:

A+ = U−1∂+U A− = V −1∂−V. (3.79)

We note that ΓWZW (A) differs from the conventional WZW model action by the addition

of a local counterterm:

1

8π

∫

dx+dx−Tr
[(
U−1∂+U

) (
V −1∂−V

)]
=

1

8

∫

dx+dx−TrA+A−. (3.80)

42 After this integral is performed, we must still integrate over the N = 4 SYM fields.
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The addition of this term is needed to guarantee that (3.78) reproduces the correct chiral

anomaly. Indeed, it is straightforward to show that under a U(N) gauge transformation

δAµ = ∂µ + [Aµ, L] we have that the WZW action (3.78) is not invariant:

δΓWZW (A) =
1

8π

∫

dx+dx−Tr [L (∂+A− − ∂−A+)] . (3.81)

This gives the same anomalous variation as the usual anomaly in two dimensions (3.15).

We recall that our complete action, which combines the N = 4 SYM action on the D7-

brane background (3.73) with the defect term in (3.76) is not anomalous. The anomaly

produced by the WZW action is precisely cancelled by a Chern-Simons term.

We also note that ΓWZW (A) is not invariant under the supersymmetry transforma-

tions (3.74), unlike the original action Sdefect. But we recall that the Chern-Simons terms

always has a boundary term under any variation of the gauge field and that this boundary

contribution cancels the variation of ΓWZW (A) proportional to δA−. For this cancellation

to occur, it is also crucial to add the local counterterm (3.80).

Therefore, integrating out the localized fields has the effect of inserting the following

surface operator into the gauge theory action (3.73):

OΣ = exp (iMΓWZW (A)) . (3.82)

The surface operator is described by a U(N) WZW model at level M . The explicit form of

the action is (3.78), where U and V are U(N) valued group elements that are nonlocally

related to the N = 4 SYM gauge fields via:

A+ = U−1∂+U A− = V −1∂−V. (3.83)

The surface operator (3.82) is supersymmetric under the transformations (3.74) and U(N)

invariant when combined with the gauge theory action in the D7-brane background (3.73).

Using the explicit expression for the surface operator one can study its properties in

perturbation theory. For the case when Σ = R1,1 we expect that supersymmetry requires

〈OΣ〉 = 1, just like in the case of the Wilson line. Another interesting case to consider –

which is related by a conformal transformation to the Euclidean version of the previous

case – is when Σ = S2. In this case Σ is curved and we expect that there is a conformal

anomaly associated with the surface which would be interesting to compute explicitly. The

bulk description discussed in the next section supports these expectations, as we find that
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at least in the probe approximation that 〈OΣ〉 = 1 and that there is a conformal anomaly

for the cases Σ = R1,1 and S2 respectively.

Given that these operators are supersymmetric one may expect that the computation

of their expectation value is captured by a simpler model, similar to what happens for

circular Wilson loops [113], [114]. One may be able to derive the reduced model by topo-

logically twisting the gauge theory by the supercharges preserved by the surface operator.

3.2. The Bulk Description

In this section we study the physics of the surface operator from a dual gravitational

point of view. We find that there is a regime in which the D7-branes can be treated as a

probe brane in AdS5 × S5 and identify the corresponding regime in the gauge theory. We

also find the exact solutions of the Type IIB supergravity equations of motion – which take

the backreaction of the D7-branes into account – which are dual to the surface operators

in the gauge theory we have constructed in this chapter.

The Probe Approximation and Anomaly Suppression

In the previous section we have constructed the decoupled low energy effective field

theory living on the D3/D7 intersection (3.4). Following [19] our aim in this section is

to provide the bulk gravitational description of this field theory. This requires finding the

supergravity solution describing the brane intersection (3.4) [19].

In the absence of the D7-branes, the gauge theory on N D3-branes is dual to string

theory in AdS5×S5 [19]. We are interested in understanding what the effect of introducing

the D7-branes is in the bulk description.

One may try to first consider the D7-branes as a small perturbation around the

AdS5 × S5 background. The parameter that controls the gravitational backreaction due

to the M D7-branes can be extracted from the supergravity equations of motion. It is

governed by

ǫ = M ·G10τ7 = gsM =
g2

2π
M. (3.84)

In the last step we have written the parameter using gauge theory variables, where g is

the gauge theory coupling constant. Therefore, we can treat the D7-branes as probes in

AdS5 × S5 as long as g2M is small.
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In the regime where g2M is small we can consistently treat the D7-branes in the

probe approximation. It is straightforward to show that the D7-brane equations of motion

are solved by the embedding (3.4) even when we place the D7-branes in the non-trivial

supergravity background produced by the D3-branes. Upon taking the D3-brane near

horizon limit, the brane embedding geometry is that of AdS3 × S5 [115].

We are now in a position to determine what is the field theory counterpart of the

bulk probe approximation. We recall that the gauge theory we constructed in the previous

section is defined on the D7-brane background. In the probe regime, where g2M << 1,

the background produced by the D7-branes becomes trivial, as the metric becomes flat,

the dilaton goes to a constant and the RR flux vanishes. Hence, in this limit we get the

following gauge theory

S = SN=4 +

∫

dx+dx− χ̄(∂+ +A+)χ, (3.85)

where SN=4 is the standard action of N = 4 SYM in flat space.

However, we have argued that it was crucial to consider the gauge theory on the

full D7-brane geometry, so as to get an anomaly free and supersymmetric theory. The

resolution lies in the observation that the gauge anomaly is suppressed in this limit. In

order to better understand the parameter controlling the anomaly, it is convenient to

rescale the gauge fields in the action as follows Aµ → gAµ. In this presentation it becomes

clear what the effect of the coupling constant is on physical quantities. The quantum

effective action obtained by integrating the fermions is anomalous, the obstruction to

gauge invariance being measured by43

δLS =
g2M

8π

∫

dx+dx−TrU(N)(LdA), (3.86)

so that the anomaly is controlled by the same parameter that controls the backreaction of

the D7-branes in the bulk (3.84), and is therefore suppressed in the probe limit g2M → 0.

Note that to leading order in the g2M expansion the two dimensional Poincare sym-

metry of the gauge theory is enlarged to SO(2, 2) ≃ SL(2,R)× SL(2,R), as long as the

D7-branes are coincident. This can be understood from the point of view of the sym-

metries of N = 4 SYM in flat space. A surface Σ = R1,1 ⊂ R1,3 is invariant under an

43 In the frame where the coupling constant controls the interaction vertices in gauge theory,

the gauge parameter must also be rescaled L → gL.

77



SO(2, 2) subgroup of the SO(2, 4) four dimensional conformal group. The symmetries are

generated by Pµ,Mµν , Kµ and D, with µ = 0, 1, where Kµ and D generate the special

conformal and dilatation transformations respectively. In this case – where the D7-branes

are coincident – the theory acquires eight extra supersymmetries, which correspond to

conformal supersymmetries. Indeed, theSN=4 term in (3.85) is invariant under sixteen

superconformal supersymmetries generated by ε i
α . The second term in (3.85), given by

Sdefect, is invariant under the conformal supersymmetries generated by:

σ̃ α̇α
− ε i

α = 0. (3.87)

To see this consider the relevant superconformal transformations

δAµ = −ixνλβiσµβα̇σ̃
α̇α

ν ε i
α + c.c., δχ = 0. (3.88)

It is straightforward to show that δA+ = 0 if (3.87) is fulfilled and the defect action is

localized at z = 0. All these symmetries combine into the SU(1, 1|4)×SL(2,R) supergroup

[116].

Once g2M corrections are taken into account, so that the anomaly, the Chern-Simons

terms and the D7-brane background cannot be neglected, the symmetries are broken

down44 to ISO(1, 1) × SO(6) and the theory is invariant under eight supersymmetries.

Even if we start with coincident D7-branes, once one takes into account the proper global

solution (3.44), the U(1) symmetry is broken.

Let’s now consider the symmetries of the bulk theory in the probe approximation.

When the M D7-branes are coincident the D7-branes are invariant under SO(2, 2) ×
SO(2)× SO(6). The SO(2, 2) and SO(6) symmetries act by isometries on the AdS3 and

S5 worldvolume geometry respectively. The U(1) symmetry rotates the z-plane in (3.4).

We show (see section 3) that the coincident D7-branes also preserve half of the Type

IIB supersymmetries, which coincide precisely with the Poincare and special conformal

supersymmetries preserved in the gauge theory, which are given by

σ̃+
α̇αǫα

i = 0 (3.89)

44 This is similar to the breaking of conformal invariance by g2M effects that occurs when

considering N = 4 SYM coupled to M hypermultiplets, where the β-function is proportional to

g2M , so that g2M effects break conformal symmetry.
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and

σ̃−
α̇αεα

i = 0 (3.90)

respectively. The unbroken symmetries combine to form a chiral superconformal group,

which is an SU(1, 1|4) × SL(2,R) supergroup, as thus coincides with the gauge theory

symmetries discussed above. If the D7-branes are not coincident, in both field and gravity

theory the symmetry is broken down to ISO(1, 1)×SO(6) and only eight supersymmetries

survive.

The AdS3 × S5 D7-brane ends on the surface Σ on the boundary of AdS5 × S5, thus

providing boundary conditions for the surface operator. One can use the probe D7-brane

to calculate the expectation value of the surface operator in the probe regime. In the

semiclassical approximation it is given by [117][118]

〈OΣ〉 = exp(−Son−shell
D7 ). (3.91)

For the brane embedding at hand the D7-brane on-shell action is given by

Son−shell
D7 = τ7L

8vol(S5)volren(AdS3), (3.92)

where L is the AdS5/S
5 radius, vol(S5) is the volume of the S5 and volren(AdS3) is the

renormalized volume of AdS3. As usual the bulk action is infrared divergent and requires

renormalization. This is accomplished by adding covariant counterterms. It is easy to

show that the renormalized volume of AdS3 vanishes so we find that 〈OΣ〉 = 1 in the

probe approximation. The same answer is obtained for the gauge theory in the probe

approximation (3.85), as one just gets the partition function over free fermions.

One may consider surface operators defined on surfaces Σ other than R1,1 in the probe

approximation. In the bulk, this corresponds to considering D7-brane solutions of the DBI

equations of motion that end on the boundary of AdS5×S5 on Σ. The case when Σ = S2

can be obtained easily from the euclidean solution with Σ = R2 by acting with a broken

special conformal transformation. In this case the bulk D7 brane is still AdS3 × S5, but

now AdS3 is in global coordinates and the brane ends on the boundary of AdS5 on an S2.

In this case, the calculation of D-brane action is non-trivial as the renormalized volume

of global AdS3 is non-trivial. In this case, one finds that the D7-brane has a conformal

anomaly, similar to the one discussed in [119], [120] in the context of M2-branes ending

on an S2 in AdS7 × S4. This is encoded in the coefficient of the logarithmic divergence

of the on-shell action, which for M D7-branes is controlled by τ7L
8 = g2MN2. It would
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be interesting to calculate the corresponding conformal anomaly in the gauge theory in

perturbation theory.

The Supergravity Solution

In this final subsection we find the bulk description of a surface operator in terms

of solution of the Type IIB supergravity. According to AdS/CFT duality, this solution

is obtained by taking the near-horizon limit of the supergravity solution of the brane

intersection (3.4). The explicit form of the solution corresponding to (3.4) is given by:

ds2 = −H−1/2
3 H

−1/2
7 dx+dx− +H

−1/2
3 H

1/2
7 dzdz̄ +H

1/2
3 H

−1/2
7 dxIdxI

e−Φ = H7

F0123I = H7∂IH
−1
3

∂z̄τ = 0 where τ = C + ie−Φ.

(3.93)

H3 = H3(x
I) is an arbitrary harmonic function in the space transverse to the D3-branes

while H7 = H7(z, z̄) determines the D7-brane contribution and it is of the same form as

in section 1. It is straightforward to show that this supergravity background solves the

Type IIB supergravity Killing spinor equations and that moreover the space of solutions

is eight real dimensional and can be parametrized by four dimensional spinors satisfying

the constraints (3.8) and (3.9).

Here we are interested in the supergravity solution describing the decoupled gauge

theory constructed earlier and that lives on the D3/D7 intersection. This corresponds to

taking the near horizon limit of the supergravity solution corresponding to the case when

the N D3-branes are coincident – so that H = 1 + L4/ρ4 – where dxIdxI = dρ2 + ρ2dΩ5.

In this limit the metric can be written in terms of an AdS3 × S5 factor. The geometry

describing the surface operator is given by

ds2 = H
−1/2
7

(
ds2AdS3

+ L2dΩ5

)
+
ρ2

L2
H

1/2
7 dzdz̄, (3.94)

where:

ds2AdS3
= − ρ

2

L2
dx+dx− + L2 dρ

2

ρ2
. (3.95)

This metric reveals several interesting features of the holographic correspondence. We

have argued that it is inconsistent to describe a low energy field theory with anomaly inflow

by treating the gauge theory in flat space. We have argued that the proper description of
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the system is in terms of the gauge theory in the supergravity background produced by

the other brane. In particular, for our intersection, we have constructed the gauge theory

on the D3-branes in the background of the D7-branes and found that this field theory

has all the expected properties. We can now use the dual supergravity solution (3.95) to

indeed infer that the holographic dual gauge theory lives in the background geometry of the

D7-branes and not in flat space. Indeed if we analyze the metric living on the conformal

boundary – where ρ → ∞ – we precisely get the metric on which the gauge theory lives

(3.45).

The solution also gives information about the non-perturbative behavior of the sym-

metries of the gauge theory. As we discussed earlier in this section, the gauge theory has

SO(2, 2) symmetry to leading order in a g2M expansion. This symmetry is intimately

related to the geometrical surface on which the fermions live. However, once the g2M

corrections are turned on and the D7-brane backreaction cannot neglected, the conformal

symmetry is broken. The dual geometry (3.94) has the same symmetries. In particular,

the SO(2, 2) symmetry is broken down to ISO(1, 1). First, the warp-factor H7 is not

invariant under dilatations and special conformal transformations just like in field theory.

Second, we see that the AdS3 radial coordinate ρ does not decouple from the transverse

space and appears explicitly in the transverse metric. As usual, the SO(2, 2) conformal

transformations correspond to AdS3 isometries. However, since AdS3 isometries act non-

trivially on ρ and z we find that the SO(2, 2) conformal symmetry of the surface operator

is broken down to ISO(1, 1). The supersymmetries are also reduced with respect to the

probe approximation. This can be shown (see next section) by explicitly solving the Type

IIB Killing spinor equations in the background (3.94). The explicit Killing spinor is given

by

ǫ = h(θ, ϕa))H
−1/2
7 ρ1/2ǫ0, (3.96)

where h(θ, ϕa) is the standard contribution from S5 [121], [122] (see last section for the ex-

plicit expression). In addition, ǫ (as well as ǫ0) is subject to the constraints (3.8) and (3.9),

which give rise to eight real supersymmetries. Thus, we obtain the same symmetries as

those preserved by the gauge theory.

3.3. Supplementary material for chapter 3

The σ-Matrix Conventions
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The σ-matrices σ αα̇
µ are defined in the usual way:45

σ0 =

(
1 0

0 1

)

, σ1 =

(
0 1

1 0

)

, σ2 =

(
0 − i
i 0

)

, σ3 =

(
1 0

0 − 1

)

. (3.97)

In addition, we define:

σ̃ α̇α
µ = ǫα̇β̇ǫαβσµββ̇ ,

σ̃µ = (σ0,−σ1,−σ2,−σ3).
(3.98)

These matrices satisfy the following properties:

(σµσ̃ν + σν σ̃µ) β
α = −2ηµνδ

β
α ,

(σ̃µσν + σ̃νσµ)α̇
β̇

= −2ηµνδ
α̇
β̇
,

tr(σµσ̃ν) = −2ηµν ,

σµ
αα̇σ̃

β̇β
µ = −2δβ

αδ
β̇
α̇,

σµσ̃νσρ = (ηµρσν − ηνρσµ − ηµνσρ) + iǫµνρσσ
σ,

σ̃µσν σ̃ρ = (ηµρσ̃ν − ηνρσ̃µ − ηµν σ̃ρ)− iǫµνρσσ̃
σ.

(3.99)

In the chapter we go from coordinates xµ to:

x± = x0 ± x1, z = x2 + ix3. (3.100)

In this basis, we obtain:

σ− = σ0 − σ1 = −σ0 − σ1 = −





1 1

1 1



 ,

σ̃− = σ̃0 − σ̃1 = −σ̃0 − σ̃1 = −σ0 + σ1 =





− 1 1

1 − 1



 ,

etc.

(3.101)

In particular, we have

σ̃+ = η+−σ̃
− = −1

2
σ̃− =

1

2
(σ̃0 + σ̃1) =

1

2

(
1 − 1

− 1 1

)

(3.102)

45 In this Appendix the index µ is assumed to be flat. In curved space-time we will have to

replace in all expressions ηµν by the space-time metric.
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and:

σ̃z̄ = ηz̄zσ̃
z =

1

2
(σ̃2 + iσ̃3) =

1

2

( − i i

− i i

)

. (3.103)

The restriction on the supersymmetry parameter (3.11) found in the chapter can be written

as:

σ̃ α̇α
+ ǫ i

α = 0 or σ̃ α̇α
z̄ ǫ i

α = 0. (3.104)

Both equations in (3.104) imply that ǫ i
1 = ǫ i

2 .

Explicit Check of the Supersymmetry of the Action

In this Appendix, we explicitly show that the non-Abelian D3-brane action in the D7-

brane background given in (3.73) is invariant under the supersymmetry transformations

in (3.74). The action has the following structure

S = SV + SSc + SF + Snab, (3.105)

where:

SV =−T3

4

∫

d4x
√−ge−ΦTrFµνF

µν − T3

4

∫

d4x
√−g∂µCǫ

µνρσTr

(

AνFρσ −
2

3
AνAρAσ

)

,

SSc = −T3

2

∫

d4√−ge−ΦTr

(

Dµϕ
ijDµϕij +

1

2
(R+ ∂µ∂µΦ)ϕijϕij

)

,

SF = T3

∫

d4x
√−ge−ΦTr

(
i

2
λ̄iσ̃

µDµλ
i − i

2
Dµλ̄iσ̃

µλi

)

− T3

4

∫

d4x
√−g∂µCλ̄iσ̃

µλi,

Snab = T3

∫

d4x
√−ge−ΦTr

(

λ̄α̇i[λ̄
α̇
j , ϕ

ij ] + λαi[λ j
α , ϕij ]−

1

2
[ϕij , ϕkl][ϕij , ϕkl]

)

.

(3.106)

In looking at the supersymmetry variation of the action we do not write the terms that

cancel exactly in the same way as they cancel in N = 4 SYM theory in flat space. That

is, we only keep the terms which contain derivatives of the background supergravity fields

and ǫi and discuss how they cancel. Let us first look at the variation of the terms in the

action involving the gauge fields SV . We obtain:

δSV =− T3

2

∫

d4x
√−g ∂µτTr

(

Fµν − i

2
ǫµνρσFρσ

)

(λ̄iσ̃νǫ
i)

+
T3

2

∫

d4x
√−g ∂µτ̄Tr

(

Fµν +
i

2
ǫµνρσFρσ

)

(λ̄iσ̃νǫ
i) + c.c.

(3.107)
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Using the fact that τ is holomorphic and that ǫi satisfies equations (3.104), it is easy to see

that the first term in the above expression vanishes and only the second term containing

∂µτ̄ survives. Now we vary the fermionic terms in the action in SF under:

δλ i
α = −1

2
Fµν(σµσ̃ν) β

α ǫ
i

β . (3.108)

By using the background Killing spinor equation (3.47), we find that the terms in δSF

with ∂µτ cancel and terms with ∂µτ̄ produce exactly the same expression as in (3.107) but

with the opposite sign. This provides the cancellation of terms involving the vectors fields

and the fermions.

Now we consider the variation in the action SSc involving the scalars. It is straight-

forward to obtain that:

δSSc =2T3

∫

d4x
√−g (∂µe−Φ)Tr (Dµϕij) (λiǫj)

− T3

∫

d4x
√−g e−Φ (R+ ∂µ∂µΦ) Tr

(
ϕij(λ

iǫj)
)

+ c.c.

(3.109)

These terms cancel against the variation of SF under:

δλ̄α̇i = 2iǫαjσµ
αα̇Dµϕij −

i

2
ǫαjσµ

αα̇(∂µΦ)ϕij . (3.110)

Let us make some remarks on how the terms containing derivatives of C cancel when we

vary SF (such terms are not present in the variation of SSc in (3.109)). Consider the

variation of the second term in SF under (3.110). We get:

− i

2

∫

d4x
√−g ∂µC Tr

(
Dνϕij(λ

iσµσ̃νǫj)
)

+
i

8

∫

d4x
√−g ∂µC ∂νΦ Tr

(
ϕij(λ

iσµσ̃νǫj)
)

+ c.c.

(3.111)

In both terms we anticommute σµ and σ̃ν using (3.99). Then each term in (3.111) will

split into two terms. The first two terms yield:

i

∫

d4x
√−g ∂µC Tr

(
Dµϕij(λ

iǫj)
)
− i

4

∫

d4x
√−g ∂µC ∂

µΦTr
(
ϕij(λ

iǫj)
)

+ c.c. (3.112)

They cancel against the variation of the fermion kinetic term when we rewrite Dǫ in terms

of the derivative of the axion by using (3.47). The remaining two terms are:

i

2

∫

d4x
√−g ∂µC Tr

(
Dνϕij(λ

iσν σ̃µǫj)
)

− i
8

∫

d4x
√−g ∂µC ∂νΦTr

(
ϕij(λ

iσν σ̃µǫj)
)

+ c.c.

(3.113)
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We now use the condition that τ is a holomorphic function together with the projection

satisfied by the Killing spinor σ̃z̄ǫ
i = 0. This can be summarized by:

∂µτ σ̃
µǫi = 0. (3.114)

Using this equation, we can get rid of the terms with derivatives of C in (3.113) and write

them using derivatives of e−Φ. The cancellation of such terms arising in δSF and δSSc is

already straightforward.

In the last step, we vary SF under the remaining term in the variation of λ:

δλ i
α = −2 [ϕjk, ϕki]ǫ

j
α . (3.115)

The terms containing ∂C cancel (after we use the Killing spinor equation Dǫ ∼ ∂C as

in (3.47)) and we obtain:

−i
∫

d4x
√−g (∂µe

−Φ)Tr
(
[ϕjk, ϕ

ki](λ̄iσ̃
µǫj)

)
+ c.c. (3.116)

This term cancels against the variation of Snab. In varying Snab we only have to consider:

δλ̄α̇i = − i
2
ǫαjσµ

αα̇(∂µΦ)ϕkj . (3.117)

Anything else gives terms which cancel just like in flat background. It is straightforward

to see that the variation of Snab under (3.117) indeed cancels (3.116). This finishes our

proof of the supersymmetry of the action.

Integrating Out the Defect Fields

In this Appendix, we perform the explicit integration over the defect fields. We split

the U(N) gauge field into an SU(N) gauge field which we denote by A and a U(1) gauge

field which we denote by a. Similarly the U(M) gauge field is decomposed into an SU(M)

gauge field Ã and a U(1) gauge field ã. Therefore, we want to perform the following path

integral

Z =

∫

[Dχ][Dχ̄][DÃ][Dã] exp
[(

(Sdefect + SCS(Ã) + SCS(ã) + SCS(a, ã)
)]

, (3.118)

where:

Sdefect =

∫

dx+dx−χ̄
(

∂+ + A+ + Ã+ + a+ − ã+

)

χ. (3.119)
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Here we took into account that χ carries the opposite U(1) charges under U(N) and U(M)

action. The non-Abelian Chern-Simons term SCS(Ã) is given by

SCS(Ã) = −(2πα′)2τ7
2

∫

G5 ∧ Tr

(

Ã ∧ dÃ+
2

3
Ã ∧ Ã ∧ Ã

)

. (3.120)

Similarly:

SCS(ã) = −(2πα′)2τ7
2

∫

G5 ∧ ã ∧ dã. (3.121)

Finally, the mixed Chern-Simons terms are given by

SCS(a, ã) = −(2πα′)2τ3
2

N

∫

G1 ∧ a ∧ f̃ +
(2πα′)2

2
M

∫

G5 ∧ ã ∧ f, (3.122)

where f = da and f̃ = dã.

Integrating the fermions in (3.118) yields

∫

[Dχ][Dχ̄] exp (iSdefect) = exp
[

i
(

MΓWZW (A) +NΓWZW (Ã) +NMΓWZW (a, ã)
)]

.

(3.123)

We must now integrate the D7-brane gauge fields Ã and ã in (3.118). The gauge field Ã is

completely decoupled from the N = 4 SYM gauge fields A and a. Therefore the integral

over Ã, which appears in the action through the terms NΓWZW (Ã) +SCS(Ã) just gives a

constant.

Now we have to perform the integral over ã. In order to simplify the formulas, we

consider the case of M coincident D7-branes with the local U(1) symmetry. In this case

the RR one-form flux is given by:

G1 =
gsM

2π
dθ. (3.124)

A similar analysis can be easily generalized for the global solutions, as all we require is

that G1 satisfies the Bianchi identities. The path integral we have to study is
∫

[Dã] exp (iΓ(a, ã)) , (3.125)

where

Γ(a, ã) = NMΓWZW (a− ã) + SCS(ã) + SCS(a, ã). (3.126)

The explicit expressions are given by

ΓWZW (a− ã) = − 1

8π

∫

dx+dx− [∂+ (u− ũ) ∂− (u− ũ)− ∂+ (u− ũ) ∂− (v − ṽ)] , (3.127)
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where:

a+ = ∂+u, a− = ∂+v, ã+ = ∂+ũ, ã− = ∂+ṽ. (3.128)

The Chern-Simons action SCS(ã) can be simplified to

SCS(ã) = − 1

8π
NM

∫

dx+dx−dρ
(

ã+f̃−ρ + ã−f̃ρ+ + ãρf̃+−

)

, (3.129)

where ρ is the radial direction away from the N D3-branes and we have restricted the RR

flux to s-waves on the S5. Likewise

SCS(a, ã) =
1

8π
NM

∫

dx+dx−
(

f̃+−(0)

∫

dr ar + f+−(0)

∫

dρ ãρ

)

, (3.130)

where f+−(0) and f̃+−(0) are the boundary values of f+− and f̃+− respectively and r is

the radial coordinate away from the D7-branes. Note that the path integral is Gaussian

and it is enough to evaluate the action on the equations of motion. Since we have both

bulk and boundary contributions to the action we need to solve the equations of motion

separately on the bulk and on the boundary.

The the bulk equations of motion yield:

f̃−ρ = 0, f̃+ρ = 0, 2f̃+− = f̃+−(0). (3.131)

Furthermore, the boundary equations of motion give:
∫

dr ar = −u, 2f̃+−(0) = f+−(0). (3.132)

Evaluating the action on this solution gives:

Γ(a, ã)|solution = ΓWZW (a). (3.133)

Therefore, the final result of performing the path integral (3.118) is:

Z = exp [i(MΓWZW (A) +MNΓWZW (a))] . (3.134)

We can now combine the SU(N) connection A with the U(1) connection a into a U(N)

gauge field, which with some abuse of notation we will also denote by A.

Therefore, integrating out the localized fields together with the non-dynamical gauge

fields on the D7-branes has the effect of inserting the following surface operator into the

N = 4 SYM path integral in the D7-brane background:

Z = exp (iMΓWZW (A)) . (3.135)
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A Probe D7-Brane in AdS5 × S5

In this Appendix we study the sypersymmetries preserved by the D7-brane in AdS5×
S5 which represents a surface operator in the probe approximation.

We consider the following parametrization for AdS5 × S5 (we fix the radius L = 1)

ds2AdS×S = ρ2ηµνdx
µdxν +

dρ2

ρ2
+ dθ2 + sin2 θ dΩ2

4, (3.136)

where the metric on S4 is given by:

dΩ2
4 = dϕ2

1 + sinϕ2
1dϕ

2
2 + sinϕ2

1 sinϕ2
2dϕ

2
3 + sinϕ2

1 sinϕ2
2 sinϕ2

3dϕ
2
4. (3.137)

It is useful to introduce tangent space gamma matrices, i.e. γm = em
mΓm (m,m = 0, . . . , 9)

where em
m is the inverse vielbein and Γm are the target space matrices:

γµ =
1

ρ
Γµ (µ = 0, 1, 2, 3), γ4 = ρΓρ, γ5 = Γθ,

γa+5 =
1

sin θ





a−1∏

j=1

1

sinϕj



Γϕa
(a = 1, 2, 3, 4)

(3.138)

The Killing spinor of AdS5 × S5 in the coordinates (3.136) is given by [115]

ǫ =
[

−ρ− 1
2 γ4h(θ, ϕa) + ρ

1
2h(θ, ϕa)(ηµνx

µγν)
]

η2 + ρ
1
2h(θ, ϕa)η1 (3.139)

where:

h(θ, ϕa) = e
1
2 θγ45e

1
2 ϕ1γ56e

1
2 ϕ2γ67e

1
2 ϕ3γ78e

1
2 ϕ4γ89 . (3.140)

η1 and η2 are constant ten dimensional complex spinors satisfying

γ11η1 = −η1 γ11η2 = η2 (3.141)

with γ11 = γ0γ1 . . . γ9. They also satisfy

γ̃ η1 = η1 γ̃ η2 = −η2, (3.142)

where γ̃ = iγ0123 is the four dimensional chirality matrix. Thus, each spinor η1,2 has 16

independent real components.
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The supersymmetries preserved by the embedding of a D-brane probe, are those that

satisfy

Γκǫ = ǫ, (3.143)

where Γκ is the κ-symmetry transformation matrix of the probe worldvolume theory and

ǫ is the Killing spinor of the AdS5 × S5 background (3.139). Both Γκ and ǫ have to be

evaluated at the location of the probe.

Let’s now consider a D7-brane embedding with an AdS3×S5 worldvolume geometry,

with embedding:

σ0 = x0 σ1 = x1 σ2 = ρ σ3 = θ σ3+a = ϕa (a = 1, 2, 3, 4)

x2 = 0 x3 = 0
(3.144)

and with the worldvolume gauge field set to zero. The matrix Γκ for a D7-brane in a

background with zero B-field and dilaton is given by

d8σ ΓD7 =
1

√

−det(gij)
Γ(8)I (3.145)

where Γ(8) = 1
8!Γi1...i8dσ

i1 ∧ . . .∧ dσi8 and I acts on a spinor ψ by Iψ = −iψ. Considering

the embedding in (3.144), the matrix in (3.145) reduces to:

ΓD7 = γ01456789I. (3.146)

The equation (3.143) has to be satisfied at every point on the worldvolume. Thus, the

term proportional to ρ
1
2 gives:

ΓD7h(θ, ϕa)η1 = h(θ, ϕa)η1. (3.147)

The terms proportional to ρ−
1
2 , ρ

1
2x0 and ρ

1
2x1 give:

ΓD7h(θ, ϕa)η2 = −h(θ, ϕa)η2. (3.148)

Using

h−1γ014h = nIγ01I h−1γ56789h = nIγI456789 I = 4, 5, 6, 7, 8, 9 (3.149)
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where

nI(θ, ϕ1, ϕ2, ϕ3, ϕ4) =

















cos θ

sin θ cosϕ1

sin θ sinϕ1 cosϕ2

sin θ sinϕ1 sinϕ2 cosϕ3

sin θ sinϕ1 sinϕ2 sinϕ3 cosϕ4

sin θ sinϕ1 sinϕ2 sinϕ3 sinϕ4

















(3.150)

is a unit vector in R6 (that is nInI = 1) we get:

h−1ΓD7h = nInJγ01IγJ456789I

= −iγ01456789

= γ01 γ̃ γ11.

(3.151)

Thus, the equations (3.147) (3.148) reduce to

γ01η1 = −η1
γ01η2 = η2

(3.152)

Since η1 and η2 satisfy (3.141) and (3.142), they can be written in terms of ten

dimensional Majorana-Weyl spinors ǫ and ε of negative and positive chirality respectively:

η1 = ǫ+ iγ0123ǫ

η2 = ε− iγ0123ε.
(3.153)

By evaluating the Killing spinor (3.139) near the boundary, ǫ can be identified with the

generator of Poincare supersymmetry while ε can be identified with the generator of con-

formal supersymmetry of N = 4 SYM. Thus the equations (3.152) become:

γ01ǫ = −ǫ,
γ01ε = ε.

(3.154)

These conditions are equivalent to (3.89) and (3.90), which describe the unbroken Poincare

and conformal supersymmetries respectively in the field theory. Therefore, for coincident

D7 branes we have shown that they preserve the same half of the Poincare and conformal

supersymmetries as the field theory does in the probe approximation.
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D7 probe without conformal supersymmetries

The D7-brane embedding we have just discussed can be generalized to the case when

x2 = x̄2 and x3 = x̄3 where x̄2 and x̄3 are arbitrary constants. The bosonic symmetry of

this embedding is ISO(1, 1)× SO(6). We note that the conformal and U(1) symmetries

are broken in the case of separated D7-branes just like in the field theory.

In this case, the matrix (3.145) is still given by (3.146). The supersymmetry conditions

are

ΓD7h(θ, ϕa)η1 = h(θ, ϕa)η1 (3.155)

ΓD7h(θ, ϕa)η2 = −h(θ, ϕa)η2 (3.156)

ΓD7h(θ, ϕa)η2 = h(θ, ϕa)η2. (3.157)

The equations (3.156) and (3.157) imply that the conformal supersymmetries are com-

pletely broken. The equation (3.155) implies that the preserved Poincare supersymmetries

satisfy:

γ01ǫ = −ǫ. (3.158)

When x̄2 = x̄3 = 0 the equation (3.157) does not have to be satisfied and half of the

conformal supersymmetries are preserved. We thus recover the symmetries preserved by

the field theory in the probe approximation.

The Killing Spinor

The goal of this Appendix is to construct the Killing spinor of the geometry dual to

the surface operator. The geometry can be written as follows

ds2 = −H−1/2
7 H

−1/2
3 dx+dx− +H

−1/2
7 H

1/2
3 dρ2 +H

−1/2
7 dΩ5 +H

1/2
7 H

−1/2
3 dzdz̄,

F0123ρ = H7∂ρH
−1
3 ,

(3.159)

where

H3 =
L4

ρ4
(3.160)

and H7 is the harmonic function of the D7-brane solution. To find the Killing spinor

we substitute the above solution into the gravitino and dilatino variations, which in the

presence of one-and five-form fluxes take the form:

δΨM = ∂M ǫ+
1

4
ωAB

M ΓABǫ−
i

8
eΦ∂NCΓNΓM ǫ− i

8 · 5!
eΦFM1...M5

ΓM1...M5ΓM ǫ = 0,

δψ = (ΓM∂MΦ)ǫ+ ieΦ∂MCΓM ǫ = 0.

(3.161)
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The dilatino variation is independent of the five-form flux and gives

τ = τ(z), γz̄ = 0, (3.162)

as in the case of D7-brane solutions. When we substitute (3.159) into the gravitino vari-

ation, there will be terms proportional to ∂H7 and terms proportional ∂H3 which will

essentially separate. The term with ∂H7 cancel if ǫ ∼ H
−1/8
7 and (3.162) is satisfied ex-

actly like in the case of D7-brane solutions. Let us concentrate on the terms proportional

to ∂H3. Let us first consider the variation δΨz. We obtain:

H
1/2
7

8H
3/2
3

∂ρH3γ4γz(ǫ+ iγ0γ1γ2γ3ǫ) = 0. (3.163)

Note that ∂zǫ cancels against the terms proportional to ∂zH7 and, hence, eq. (3.163) is

not a differential equation on ǫ. To satisfy (3.163) we have to require:

iγ0123ǫ = ǫ. (3.164)

Eqs. (3.162) and (3.164) are equivalent to (3.8) and (3.9) and, hence, ǫ has eight inde-

pendent components corresponding to eight preserved supercharges. This is in agreement

with our field theory discussions. Now we consider the equation δΨ± = 0. Due to the

restriction (3.164), it follows that

δΨ± = ∂±ǫ = 0. (3.165)

This means that ǫ is independent of x±. Similarly, from the equation δΨρ = 0 we obtain

∂ρǫ−
1

2ρ
ǫ = 0, (3.166)

which implies ǫ ∼ ρ1/2. The last equations to consider is δΨa = 0, where Ψa are the

components of the gravitino along S5. These equations are

Daǫ−
1

2
γ4Γaǫ = 0. (3.167)

These are the standard equations for the Killing spinor on S5 [121], [122]. The solution is

given in terms of the operator h(θ, ϕa) defined in (3.140). Combining the above conclusions

we find that the Killing spinor is given by

ǫ = h(θ, ϕa)H
−1/2
7 ρ1/2ǫ0, (3.168)

where both ǫ and ǫ0 satisfy conditions (3.8) and (3.9) (note thate γ+ and γz̄ commute with

h(θ, ϕa)).
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4. Supersymmetric Mass Deformation of the Bagger-Lambert Theory

The supersymmetric worldvolume theory of a single M2-brane in an arbitrary eleven

dimensional supergravity background was found twenty years ago [123]. The realization

that branes in eleven dimensional supergravity are related by string dualities to D-branes

[16] and that the low energy effective field theory of coincident D-branes is described by

non-abelian super Yang-Mills theory [124], naturally prompts the search for the worldvol-

ume theory of coincident M2-branes.

In a recent paper [125], Bagger and Lambert have proposed a Lagrangian to describe

the low energy dynamics of a stack of coincident M2-branes (see also the work by Gus-

tavsson [126]). Their model, that incorporates insights from previous papers [127][128],

includes half-BPS fuzzy 3-sphere solitons. This solutions were argued by Basu and Har-

vey [129] to provide the M2-branes worldvolume description of the multiple M2-branes

ending on an M5-brane, generalizing a similar mechanism studied for the D1-D3 system

[130]. The Bagger-Lambert theory is a 3-dimensional N = 8 supersymmetric field theory,

based on a novel algebraic structure, dubbed 3-algebra. Explicit examples of 3-algebras

has been recently constructed in [131][43][44] starting from ordinary Lie algebras and con-

sidering a Lorentzian scalar product (see also [132][133]). The fact that the scalar product

is not positive-definite permit to avoid a no-go theorem discussed in [37][38]. Other al-

gebraic structures have been considered in [134][135][136][137][138]. The Bagger-Lambert

theory was shown to be conformal invariant in [139] and the moduli space was discussed

in [140][40][141][41][142]. In [143][144] the reduction to the theory of multiple D2-branes

is discussed.

In this chapter we construct a one parameter deformation of the Bagger-Lambert

theory [125] which is maximally supersymmetric [145](see also [146]). We add to their

Lagrangian a mass term for all the eight scalars and fermions46

Lmass = −1

2
µ2Tr

(
XI , XI

)
+
i

2
µTr

(
Ψ̄Γ3456,Ψ

)
, (4.1)

and a Myers-like [148] flux-inducing SO(4)× SO(4) invariant potential47 for the scalars

Lflux = −1

6
µεABCDTr([XA, XB, XC], XD)− 1

6
µεA′B′C′D′

Tr([XA′

, XB′

, XC′

], XD′

)

(4.2)

46 The deformation of the theory on multiple M2-branes was first considered by Bena [147].
47 See also [149][150].

93



and show that the theory is supersymmetric. The possibility of adding the scalar mass

term and the potential term for four of the scalars was considered in [140]. Here we show

that if we give a mass to all the scalars and fermions and turn on the potential (4.2) for all

the scalars that we can find a deformation of the supersymmetry transformations of the

Bagger-Lambert theory [125] in such a way that the deformed field theory remains fully

supersymmetric. This construction yields a novel maximally supersymmetric, Poincare

invariant three dimensional field theory.

We further argue that the deformed field theory compactified on R × T 2 provides

the Matrix theory [151] description48 of Type IIB string theory on the maximally super-

symmetric plane wave49 [155]. We show that the deformed field theory on R × T 2 has

as its algebra of symmetries the superisometry algebra of the Type IIB plane wave, as

expected from a holographic dual theory. The deformed field theory on R×T 2 is proposed

as the nonperturbative formulation of the Type IIB string theory in the discrete lightcone

quantization (DLCQ).

We show that the supersymmetric ground states of the deformed theory are given by

a discrete set of states that have an interpretation50 as a collection of fuzzy S3’s [140],

where

[XA, XB, XC] = −µǫABCDXD, XA′

= 0 (4.3)

or alternatively:

[XA′

, XB′

, XC′

] = −µǫA′B′C′D′

XD′

, XA = 0. (4.4)

We identify these states of the deformed theory with the states in the Hilbert space of the

Type IIB plane wave with zero light-cone energy, which correspond to configurations of D3-

brane giant gravitons in the Type IIB plane wave background [152] with fixed longitudinal

momentum.

48 In [152](see also [153]), an analogous deformation of the D0 brane Lagrangian was proposed as

the Matrix theory description of the maximally supersymmetry plane wave of eleven dimensional

supergravity.
49 Given the interpretation in [154][41] for the 3-algebra A4, the lagrangian described in this

chapter can be also thought as the Matrix theory for an orientifold projection of the maximally

supersymmetric plane wave background.
50 These states have yet another space-time interpretation as M2-branes polarizing in the pres-

ence of flux into M5-branes with S3 topology. The supergravity description of these ground states

of the deformed theory were found in [156] (see also [157]).

94



The Lagrangian of the deformed theory is based on the same 3-algebra structure of

[125] (we review it in section 1). Even though the construction of Bagger-Lambert and

in this chapter certainly provide new constructions of supersymmetric field theories, the

precise connection with the worldvolume physics of coincident M2-branes still remains to

be understood. Establishing in more detail the M2 brane interpretation of our deformed

theory is important in understanding the deformed field theory described in this chapter

as the Matrix theory description of the Type IIB plane wave.

The plan of the rest of the chapter is as follows. In section 1 we quickly review the

Bagger-Lambert theory and introduce the deformation of the Lagrangian and the super-

symmetry transformations that gives rise to a new maximally supersymmetric Lagrangian

in three dimensions. In section 2 we argue that the deformed theory on R × T 2 provides

the Matrix theory description of the maximally supersymmetric Type IIB plane wave. We

show that the theory on R×T 2 has precisely the same symmetry algebra as the Type IIB

plane wave and identify the supersymmetric grounds states of the deformed theory with

the states in the Type IIB plane wave with zero light-cone energy, which correspond to

configurations of D3-brane giant gravitons. In section 3 we present some details of the cal-

culation of the deformed supersymmetry transformations and we write down the Noether

charges of the deformed field theory on R × T 2 showing that they satisfy the Type IIB

plane wave superalgebra.

4.1. The Bagger-Lambert Theory and its Supersymmetric Deformation

The Bagger-Lambert Lagrangian

We start this section recalling basic properties of the Bagger-Lambert theory [125]

that we will use in the following. The authors have proposed that this theory describes the

low energy dynamics51 of a stack of M2-branes. In this model, the transverse fluctuations

of the membranes are described by eight scalar fields XI , where I = 3, . . .11 and the eight

Spin(1, 2) worldvolume fermions are collected together in the spinor field Ψ. The Ψ is

an 11-dimensional Majorana spinor satisfying the condition Γ012Ψ = −Ψ and thus it has

sixteen independent real components.

51 In this lp → 0 limit, higher derivative corrections can be ignored.
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These fields are valued in a 3-algebra A [125](see also [126]), i.e. XI = XI
aT

a and

Ψ = ΨaT
a where T a, a = 1, . . . , dimA are the generators of A. The 3-algebra is endowed

with a 3-product

[T a, T b, T c] = fabc
dT

d (4.5)

where the structure constants satisfy the fundamental identity

fefg
df

abc
g = fefa

gf
bcg

d + fefb
gf

cag
d + fefc

gf
abg

d. (4.6)

The 3-algebra construction includes also a bilinear and non-degenerate scalar product

Tr(·, ·) that defines a non-degenarate metric hab

hab ≡ Tr(T a, T b) (4.7)

used to manipulate the algebra indices. The structure constants fabcd are assumed to be

totally antisymmetric in the indices. The only examples of Euclidean 3-algebras found are

of the type A4 ⊕A4 ⊕ . . .⊕A4 ⊕C1 ⊕ . . . Cl, where A4 is defined by fabcd = ǫabcd and Ci

denote central elements in the algebra. The supersymmetric deformation we describe in

this chapter applies to any 3-algebra with totally antisymmetric structure constants which

satisfies the fundamental identity (4.6).

The Bagger-Lambert theory includes also a non-propagating gauge vector field Aµab

where µ = 0, 1, 2 denotes the worldvolume coordinates. The dynamics is controlled by the

Lagrangian

L =− 1

2
(DµX

aI)(DµXI
a) +

i

2
Ψ̄aΓµDµΨa +

i

4
Ψ̄bΓIJX

I
cX

J
d Ψaf

abcd

− V +
1

2
εµνλ(fabcdAµab∂νAλcd +

2

3
f cda

gf
efgbAµabAνcdAλef )

(4.8)

where V is the potential

V =
1

12
fabcdfefg

dX
I
aX

J
b X

K
c X

I
eX

J
f X

K
g =

1

2 · 3!
Tr([XI , XJ , XK], [XI , XJ , XK]) (4.9)

and the covariant derivative of a field Φ is defined by

(DµΦ)a = ∂µΦa − Ãµ
b
aΦb (4.10)

where Ãµ
b
a ≡ f cdb

aAµcd. The (4.8) is invariant under the gauge transformations

δXI
a =Λ̃b

aX
I
b

δΨa =Λ̃b
aΨb

δÃµ
b
a =∂µΛ̃b

a − Λ̃b
cÃµ

c
a + Ãµ

b
cΛ̃

c
a

(4.11)
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where Λ̃b
a ≡ f cdb

aΛcd and Λcd is the gauge parameter. The Lagrangian (4.8) is also

invariant under the following supersymmetry variations

δǫX
I
a =iǭΓIΨa

δǫΨa =DµX
I
aΓµΓIǫ− 1

6
XI

bX
J
c X

K
d f

bcd
aΓIJKǫ

δǫÃµ
b
a =iǭΓµΓIX

I
c Ψdf

cdb
a

(4.12)

where the supersymmetry parameter ǫ satisfies Γ012ǫ = ǫ. The equations of motion are

ΓµDµΨa +
1

2
ΓIJX

I
cX

J
d Ψbf

cdb
a =0

D2XI
a −

i

2
Ψ̄cΓ

I
JX

J
d Ψbf

cdb
a −

∂V

∂XIa
=0

F̃µν
b
a + εµνλ(XJ

c D
λXJ

d +
i

2
Ψ̄cΓ

λΨd)f
cdb

a =0

(4.13)

where

F̃µν
b
a = ∂νÃµ

b
a − ∂µÃν

b
a − Ãµ

b
cÃν

c
a + Ãν

b
cÃµ

c
a. (4.14)

The stress-energy tensor Tµν can be computed in the usual way coupling the Bagger-

Lambert theory to an external worldvolume metric and looking at the variation of the

action for an infinitesimal change of the metric. In the case where the fermions are set to

zero, it results

Tµν = DµX
I
aDνX

aI − ηµν

(
1

2
DρX

aIDρXI
a + V

)

. (4.15)

We note that the Chern-Simons like term in (4.8) does not contribute to the stress-energy

tensor. This is because this term is topological and does not depend on the worldvolume

metric.

Mass deformation

We now find a deformation of the action and supersymmetry transformations of the ac-

tion of Bagger and Lambert [125] that is maximally supersymmetric. The new Lagrangian

is given by

L̃ = L+ Lmass + Lflux, (4.16)

where L is the Bagger-Lambert theory in (4.8) and:

Lmass = −1

2
µ2 Tr(XI , XI) +

i

2
µTr(Ψ̄Γ3456,Ψ)

Lflux = −1

6
µεABCDTr([XA, XB, XC ], XD)− 1

6
µεA′B′C′D′

Tr([XA′

, XB′

, XC′

], XD′

).

(4.17)
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The transverse index has been decomposed as I = (A,A′) where A = 3, 4, 5, 6 and

A′ = 7, 8, 9, 10 and Ψ is an eleven dimension Majorana spinor satisfying the constraint

Γ012Ψ = −Ψ, where the Γ-matrices satisfy the Clifford algebra in eleven dimensions. This

deformation of the Lagrangian is analogous to the deformation of the Lagrangian of D0-

branes considered in [152]. This deformation when restricted to only four of the scalars

has been considered in [140].

The deformed Lagrangian now depends on the paramater µ. The mass term Lmass

gives mass to all the scalars and fermions in the theory, while Lflux has the interpretation

of the scalar potential52 generated by a background four-form flux of eleven dimensional

supergravity, of the type found by Myers [148] (see also [149][150]) in the context of D-

branes in the presence of background fluxes.

The deformed theory (4.16) breaks the SO(8) R-symmetry of the undeformed theory

(4.8) down to SO(4)×SO(4). The deformed theory is nevertheless invariant under sixteen

linearly realized supersymmetries. The supersymmetry transformations of the deformed

theory are given by

δ̃XI = iǭΓIΨ

δ̃Ψ =DµX
IΓµΓIǫ− 1

6
[XI , XJ , XK ]ΓIJKǫ− µΓ3456Γ

IXIǫ

δ̃Ãµ
b
a = iǭΓµΓIX

I
c Ψdf

cdb
a,

(4.18)

where ǫ is a constant eleven dimensional Majorana spinor satisfying the constraint Γ012ǫ =

ǫ. By setting µ → 0 we recover the supersymmetry transformations of the undeformed

theory (4.8) found by Bagger-Lambert [125]. The proof that the action (4.16) is invariant

under the supersymmetry transformations is summarized in section 3.

The deformed action (4.16) is also invariant under sixteen non-linearly realized super-

symmetries if the 3-algebra An has a central element C = T 0, so that fabc0 = 0. Then the

action (4.16) is invariant under the following non-linear supersymmetry transformations53

δnX
I
a =0

δnΨ = exp
(

−µ
3

Γ3456Γµσ
µ
)

T 0η

δnÃµ
b
a =0

(4.19)

52 We note that if we use the proposal made by Mukhi and Papageorgakis [143] to obtain by

compactification the theory on D2 branes, that Lflux does indeed reduce to the known Myers

term.
53 The Bagger-Lambert theory (4.8) is also invariant under the sixteen nonlinearly realized

supersymmetries obtained by setting µ → 0.
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where now η is an eleven dimensional Majorana spinor satisfying the constraint Γ012η = −η
and σµ are the three dimensional field theory coordinates.

The field theory with Lagrangian (4.16)(4.17) and with supersymmetry transforma-

tions (4.18)(4.19) defines a novel maximally supersymmetric Poincare invariant three di-

mensional field theory with SO(4)× SO(4) R-symmetry.

4.2. Deformed Theory as DLCQ of Type IIB Plane Wave

In [158][159], the theory of coincident M2-branes on R × T 2 was argued54 to provide

the Matrix theory [151] description of Type IIB string theory in flat space, extending the

Matrix string theory description in [160][161] to Type IIB string theory.

In this section we argue that the three dimensional deformed field theory (4.16) on

R × T 2 provides the Matrix theory55 description of the maximally supersymmetric Type

IIB plane wave background [155]:

ds2 = 2dx+dx− − µ2xIxIdx+dx+ + dxIdxI

F+1234 = F+5678 = 2µ.
(4.20)

As in the case of flat space, the modular parameter τ of the torus on which the deformed

field theory is defined determines the complexified coupling constant of Type IIB string

theory τ = C0 + i/gs [167].

In this chapter we have constructed a one parameter deformation of the Bagger-

Lambert field theory that preserves all the thirty-two supersymmetries. It is therefore

natural to propose that the deformed theory (4.16) presented in this chapter is the Matrix

theory description of the Type IIB plane wave. Also as µ→ 0 the plane wave background

(4.20) reduces to flat space just as the deformed field theory (4.16) goes over to the Bagger-

Lambert theory (4.8), which as the candidate theory for multiple M2-branes is the Matrix

theory for flat space56.

54 At that time there was no Lagrangian description of the coincident M2-brane theory.
55 For a different proposal for the Matrix theory of the Type IIB plane wave see [162]. For the

DLCQ description of the plane wave in terms of a sector of a quiver gauge theory see [163]. See

also [164][165][166].
56 See [154][41] for subtleties with this interpretation.
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Matrix theory describes nonperturbatively a string/M-theory background in the dis-

crete light cone quantization (DLCQ) [168]. In this quantization we consider a string/M-

theory background with a compactified lightlike coordinate x− ≃ x− + 2πR in a sec-

tor with quantized longitudinal momentum P+ = N/R. The Matrix theory descrip-

tion of a string/M-theory background with some prescribed asymptopia must realize the

same symmetries as those of the asymptotic background with the lightlike identification

x− ≃ x− + 2πR.

If we consider the DLCQ of Type IIB string theory in R1,9, then the ISO(1, 9) symme-

try algebra of Minkowski space is broken by the x− identification to the centrally extended

Super-Galileo algebra SGal(1, 8) [168], where the central extension corresponds to P+.

The Type IIB plane wave background (4.20) is invariant under thirty-two supersym-

metries and under a thirty-dimensional bosonic symmetry algebra [155]. Unlike in flat

space, the x− ≃ x− + 2πR does not break any of these symmetries. It is useful to gain

intuition on the action of these symmetries to notice that the bosonic symmetries of the

Type IIB plane wave background (4.20) can be identified with the centrally extended

Newton-Hooke algebra57 NH(1, 8). This algebra of symmetries is the non-relativistic con-

traction58 of the isometry algebra of AdS9, just like the Gal(1, 8) symmetry algebra of

Matrix string theory in flat space arises in the non-relativistic contraction of the isometry

algebra of R1,8. As in the case of flat space, the central extension corresponds to P+.

Therefore the non-central generators of NH(1, 8) are given by H,P I , KI , JAB and JA′B′

,

which generate time translations, spatial translations, boosts and rotations respectively,

and where the transverse index has been decomposed as I = (A,A′).

The deformed field theory (4.16) is manifestly invariant under the action of H, JAB

and JA′B′

, which correspond in the deformed field theory (4.16) to the Hamiltonian and

the SO(4)× SO(4) R-symmetry charges of the three dimensional field theory. The non-

manifest symmetries that remain to be realized are the translations P I and boosts KI .

We now consider the following non-linear action of these generators on the fields of the

deformed field theory (4.16)

δXI = aJδIJ cos(µσ0)T 0

P J : δΨ = 0

δÃµ
b
a = 0

(4.21)

57 This algebra has appeared previously in the context of non-relativistic symmetries of string

theory in e.g. [169][170][171][172].
58 The flux in (4.20) actually breaks the SO(8) rotation symmetry of the contracted algebra

down to SO(4) × SO(4).
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and

δXI = vJδIJ sin(µσ0)

µ
T 0

KJ : δΨ = 0

δÃµ
b
a = 0,

(4.22)

where σ0 is the field theory time coordinate and T 0 is a central element in the 3-algebra

A. Note that in the flat space limit µ→ 0 we recover the usual Galilean transformations.

Under the action of the transformations (4.21) and (4.22) the deformed Lagrangian (4.16)

changes by a total derivative. This provides the field theory explanation for the existence

of the central extension P+ in NH(1, 8), as central extensions of symmetry algebras are al-

ways associated with symmetry transformations that result in quasi-invariant Lagrangians.

The central extension appears in the commutator of translations and boosts:

[P I , KJ ] = iδIJP+. (4.23)

The original three dimensional Poincare symmetry of the field theory is broken by

compactification to R×T 2 to just the translation algebra. The time translation generator

H is identified with the Type IIB Hamiltonian. The translation generators along the T 2

can be identified with central charges of the superalgebra [173][159]. These central charges

are associated with fundamental strings and D1 strings wrapping the longitudinal direction

of the Type IIB plane wave (4.20). The geometrical action of SL(2, Z) on the T 2 on which

the theory is defined exchanges the fundamental and D1 strings in the way expected from

duality [167].

The supercharge generating the supersymmetry transformations (4.18) correspond to

the dynamical supersymmetries of the Type IIB plane wave (4.20) while the supercharges

generating the supersymmetry transformations (4.19) correspond to the kinematical su-

persymmetries of the plane wave. Thus combining the bosonic symmetries with the su-

persymmetry transformations found in the section 1 we conclude that the deformed field

theory (4.16) is invariant under SNH(1, 8), or equivalenty under the superisometry alge-

bra of the Type IIB plane background (4.20) in the DLCQ. In the last section we write the

Noether charges of the deformed field theory on R × T 2 and show that the commutation

relations are those of the Type IIB plane wave (4.20).

Therefore the deformed field theory (4.16) has the necessary ingredients to be the

Matrix theory description of the Type IIB plane wave (4.20).
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Deformed Field Theory Vacua and Type IIB Plane Wave Giant Gravitons

Type IIB string theory on the plane wave background (4.20) contains in its Hilbert

space states with zero light-cone energy – where H = 0 – that preserve half of the super-

symmetry [152]. They correspond to configurations of giant gravitons. A giant graviton

in (4.20) is a D3 brane which wraps S3 or S̃3 at x− = 0, where S3 (S̃3) is the sphere of

the first (second) R4 in the plane wave geometry (4.20). The radius of the giant graviton

is determined by the longitudinal momentum P+ carried by the D3-brane [152]:

L2

α′
= 2πgsµP

+α′. (4.24)

When considering the DLCQ of the Type IIB plane wave, the total longitudinal mo-

mentum is quantized P+ = N/R. Therefore, the H = 0 states of the DLCQ of the plane

wave are labeled by partitions of N , and each state describes a configuration of D3-branes

whose total longitudinal momentum is P+ = N/R. These D3-brane configurations pre-

serve half of the supersymmetries. More precisely, they preserve all the sixteen linearly

realized supersymmetries while they break all of the non-linearly supersymmetries of the

plane wave background.

The deformed field theory (4.16) also contains in its Hilbert space zero energy states

that preserve half of the supersymmetries of the theory. These ground states are described

by constant scalar fields satisfying

[XA, XB, XC] = −µǫABCDXD, XA′

= 0 (4.25)

or alternatively:

[XA′

, XB′

, XC′

] = −µǫA′B′C′D′

XD′

, XA = 0, (4.26)

where we have split the transverse index I = (A,A′), with A = 3, 4, 5, 6 and A′ = 7, 8, 9, 10.

These solutions automatically satisfy the supersymmetry condition59 δ̃Ψ = 0 in (4.18)

and preserve all the linearly realized supersymmetries while they break the non-linearly

realized supersymmetries, just like the giant gravitons in the Type IIB plane wave (4.20).

It is straightforward to show that these states also have H = 0.

59 The supersymmetry conditions of [162] were analyzed in [174].
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We identify these states of the deformed field theory with the giant graviton configu-

rations of the Type IIB plane wave. Further work on 3-algebras and their representation

theory is important to further understand the Matrix theory proposal of this chapter.

4.3. Supplementary material for chapter 4

Supersymmetry of Deformed Field Theory

We first note that the susy variation (4.18) can be decomposed as

δ̃ = δǫ + δµ, (4.27)

where δǫ are given in

δǫX
I
a = iǭΓIΨa

δǫΨa =DµX
I
aΓµΓIǫ− 1

6
XI

bX
J
c X

K
d f

bcd
aΓIJKǫ

δǫÃµ
b
a = iǭΓµΓIX

I
c Ψdf

cdb
a.

(4.28)

and
δµX

I
a =0

δµΨ = − µΓ3456Γ
IXIǫ

δµÃµ
b
a =0

, (4.29)

where ǫ is an eleven dimensional Majorana spinor subject to the constraint Γ012ǫ = ǫ.

Since L̃ = L+ Lmass + Lflux, we have that:

δ̃L̃ = δǫL+ δǫLmass + δǫLflux + δµL+ δµLmass + δµLflux. (4.30)

In [125] it has already been shown that δǫL = 0 up to total derivatives. It is trivial to see

that δµLflux = 0. The other terms are:

δǫLmass =− µ2Tr(XI , iǭΓIΨ) + iµTr(DµX
I , Ψ̄Γ3456Γ

µΓIǫ)

− i1
6
µTr([XI , XJ , XK], Ψ̄Γ3456Γ

IJKǫ)
(4.31)

103



δǫLflux =i
2

3
µεABCDTr([XA, XB, XC], Ψ̄ΓDǫ)

+ i
2

3
µεA′B′C′D′

Tr([XA′

, XB′

, XC′

], Ψ̄ΓD′

ǫ)

=− i2
3
µTr([XA, XB, XC ], Ψ̄ΓABCΓ3456ǫ)

+ i
2

3
µTr([XA′

, XB′

, XC′

], Ψ̄ΓA′B′C′

Γ3456ǫ)

(4.32)

In the last step of (4.32) we have used

εABCDΓD = −ΓABCΓ3456, εA′B′C′D′

ΓD′

= −ΓA′B′C′

Γ789(10), (4.33)

and

Γ789(10)ǫ = −Γ3456ǫ, (4.34)

which is implied by Γ012ǫ = ǫ and Γ0123456789(10) = −1. We also have that

δµL =− i

2
∂µTr(Ψ̄Γµ, δµΨ)− iµTr(DµX

I , Ψ̄Γ3456Γ
µΓIǫ)

− i1
2
µTr([XI , XJ , XK], Ψ̄ΓIJΓ3456Γ

Kǫ)

(4.35)

and that

δµLmass = µ2Tr(iǭΓIΨ, XI). (4.36)

Combining all the pieces together we get

δ̃L̃ =− i1
6
µTr([XI , XJ , XK ], Ψ̄Γ3456Γ

IJKǫ)

− i1
2
µTr([XI , XJ , XK ], Ψ̄ΓIJΓ3456Γ

Kǫ)

− i2
3
µTr([XA, XB, XC ], Ψ̄ΓABCΓ3456ǫ)

+ i
2

3
µTr([XA′

, XB′

, XC′

], Ψ̄ΓA′B′C′

Γ3456ǫ),

(4.37)

where we have omitted the surface term in (4.35). Using the identities

[XI , XJ , XK]Γ3456Γ
IJK =− [XA, XB, XC]ΓABCΓ3456 + 3[XA, XB, XA′

]ΓABA′

Γ3456

−3[XA′

, XB′

, XA]ΓA′B′AΓ3456 + [XA′

, XB′

, XC′

]ΓA′B′C′

Γ3456

(4.38)

[XI , XJ , XK ]ΓIJΓ3456Γ
K =− [XA, XB, XC ]ΓABCΓ3456 − [XA, XB, XA′

]ΓABA′

Γ3456

+[XA′

, XB′

, XA]ΓA′B′AΓ3456 + [XA′

, XB′

, XC′

]ΓA′B′C′

Γ3456,

(4.39)
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one can show that the right hand side of (4.37) vanishes. This implies that the the deformed

field theory is invariant under sixteen linearly realized supersymmetries.

The proposed non-linearly realized supersymmetry transformations are given by

δnX
I
a =0

δnΨ = exp

(

−1

3
µΓ3456Γµσ

µ

)

T 0η

δnÃµ
b
a =0

, (4.40)

where now η is an eleven dimensional Majorana spinor subject to the constraint Γ012η = −η
and T 0 is a central generator of the 3-algebra. The variation of the Lagrangian (4.16) gives

δnL̃ =iΨ̄aΓµ(DµδnΨ)a +
i

2
Ψ̄bΓIJX

I
cX

J
d δnΨaf

abcd + iµΨ̄aΓ3456δnΨa

− i

2
∂µ(Ψ̄aΓµδnΨa)

=iΨ̄0Γµ∂µ(e−
1
3 µΓ3456Γµσµ

)η + iµΨ̄0Γ3456e
− 1

3 µΓ3456Γµσµ

η

=0,

(4.41)

where in the second step we used that f cd0
b = 0 – T 0 being central – and have ignored a

total derivative. Therefore the deformed field theory (4.16) is also invariant under sixteen

non-linearly realized supersymmetries.

When the deformed field theory is placed on R × T 2 the three dimensional Poincare

symmetry is broken. In this case the theory is invariant under the following transforma-

tions:

δnX
I
a =0

δnΨ = exp
(
−µΓ3456Γ0σ

0
)
T 0η

δnÃµ
b
a =0

. (4.42)

Noether Charges and Supersymmetry Algebra

The charges that generate the symmetry transformations of the deformed field theory
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on R × T 2 are given by

P+ =

∫

d2σ

P I =

∫

d2σ
(
ΠI

0 cos(µσ0) + µXI
0 sin(µσ0)

)

KI =

∫

d2σ

(

ΠI
0

sin(µσ0)

µ
−XI

0 cos(µσ0)

)

JAB = − i
∫

d2σ

(

Tr(XA,ΠB)− Tr(XB,ΠA) +
i

4
Tr(Ψ̄,ΓABΓ0Ψ)

)

JA′B′

= − i
∫

d2σ

(

Tr(XA′

,ΠB′

)− Tr(XB′

,ΠA′

) +
i

4
Tr(Ψ̄,ΓA′B′

Γ0Ψ)

)

Q =

∫

d2σ
(

−Tr(DµX
I ,ΓµΓIΓ0Ψ)− 1

6
Tr([XI , XJ , XK],ΓIJKΓ0Ψ)

+ µΓIΓ3456Γ
0Tr(XI ,Ψ)

)

q = − i
∫

d2σΓ0 exp
(
−µΓ3456Γ0σ

0
)
Ψ0,

(4.43)

where
∫
d2σ is the integral over the T 2. The Hamiltonian of the theory is given by:

H = ΠI
af

cdbaA0cdX
I
b +

1

2
ΠI

aΠaI +
1

2
DiX

I
aDiX

aI

+
i

2
Ψ̄aΓ0Ψ̇a −

i

2
Ψ̄aΓ0D0Ψa −

i

2
Ψ̄aΓiDiΨa

+
i

4
Tr([Ψ̄ΓIJ ,Ψ, X

I ], XJ) + V +
1

2
µ2Tr(XI , XI)− i

2
µTr(Ψ̄,Γ3456Ψ)

+
1

6
µεABCDTr([XA, XB, XC ], XD) +

1

6
µεA′B′C′D′

Tr([XA′

, XB′

, XC′

], XD′

)

+ ΛcdλȦcdλ −
1

2
εµνλ(fabcdAµab∂νAλcd +

2

3
f cda

gf
efgbAµabAνcdAλef ).

(4.44)

Alternatively, one can write:

H = ΠI
af

cdbaA0cdX
I
b +

1

2
ΠI

aΠaI +
1

2
DiX

I
aDiX

aI

+
i

2
Ψ̄aΓ0f cdbaA0cdΨb −

i

2
Ψ̄aΓiDiΨa

+
i

4
Tr([Ψ̄ΓIJ ,Ψ, X

I ], XJ) + V +
1

2
µ2Tr(XI , XI)− i

2
µTr(Ψ̄,Γ3456Ψ)

+
1

6
µεABCDTr([XA, XB, XC ], XD) +

1

6
µεA′B′C′D′

Tr([XA′

, XB′

, XC′

], XD′

)

− 1

2
εµiλ(fabcdAµab∂iAλcd)−

1

3
ǫµνλf cda

gf
efgbAµabAνcdAλef .

(4.45)
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where i = 1, 2.

In order to calculate the algebra generated by these charges we need the canonical

momenta. ΠI is the momentum density conjugate to XI and satisfies

[XI
a(σi),ΠJ

b (σ′i)] = iδ2(σi − σ′i)δabδ
IJ , (4.46)

where i = 1, 2 are the spatial coordinates on the membrane and ΠI
a = D0X

I
a . For the

canonical commutation relation for the spinors, one must use Dirac brackets, which for the

case of Majorana spinors results in the following commutation relation:

{Ψα
a (σi),Ψβ

b (σ′i)} = −δ2(σi − σ′i)δabδ
αβ (4.47)

where α, β are eleven dimensional spinor indices.

To compute the action of the symmetries on the fields, we compute the commutator

of the charges with the fields. We get

[P I , XJ ] = − iδIJ cos(µσ0)T 0

[KI , XJ ] = − iδIJ sin(µσ0)

µ
T 0

[JAB, XC ] = −XAδBC +XBδAC

[JAB,Ψ] = − 1

2
ΓABΨ

[JA′B′

, XC′

] = −XA′

δB′C′

+XB′

δA′C′

[JA′B′

,Ψ] = − 1

2
ΓA′B′

Ψ

[ǭQ,XJ ] = iǭΓIΨ

[ǭQ,Ψ] =DµX
IΓµΓIǫ− 1

6
[XI , XJ , XK ]ΓIJKǫ− µΓ3456Γ

IXIǫ

[ǭQ, Aabi] = iǭΓiΓ
IXI

[aΨb]

[η̄q,Ψ] = exp
(
−µΓ3456Γ0σ

0
)
T 0η.

(4.48)

We now show that the Noether charges (4.43) of the deformed field theory (4.16)

satisfy the Type IIB plane wave superalgebra. For the even generators we get:

[P I , H] = iµ2KI [KI , H] = −iP I [P I , KJ ] = iδIJP+

[PA, JBC ] = −δABPC + δACPB [PA′

, JB′C′

] = −δA′B′

PC′

+ δA′C′

PB′

[KA, JBC ] = −δABKC + δACKB [KA′

, JB′C′

] = −δA′B′

KC′

+ δA′C′

KB′

[JAB, JCD] = −δBCJAD + δACJBD + δBDJAC − δADJBC

[JA′B′

, JC′D′

] = −δB′C′

JA′D′

+ δA′C′

JB′D′

+ δB′D′

JA′C′ − δA′D′

JB′C′

.

(4.49)
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The commutation relations between odd and even generators are:

[P I , Q] = −iµΓIΓ3456q [KI , Q] = −iΓIΓ0q

[H,Q] = 0 [H, q] = −iΓ3456Γ
0q

[JAB, Q] = −1

2
ΓABQ [JAB, q] = −1

2
ΓABq

[JA′B′

, Q] = −1

2
ΓA′B′

Q [JA′B′

, q] = −1

2
ΓA′B′

q.

(4.50)

The anticommutators of the supercharges are:

{qα, qβ} = iδαβP+ {qα, Qβ} = − i
2
(ΓIΓ0)αβP I − µ i

2
(Γ3456Γ

I)αβKI

{Qα, Qβ} = 2Hδαβ + iµ(ΓABΓ3456Γ
0)αβJAB + iµ(ΓA′B′

Γ789(10)Γ
0)αβJA′B′

.
(4.51)

This is the superalgebra of the Type IIB plane wave [155](see also [175] for a useful sum-

mary of the superalgebra).
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5. M2-Brane Superalgebra from Bagger-Lambert Theory

Brane intersections can be described as solitons of the worldvolume theory of one of the

constituents of the intersecting system [176][177]. In particular, quarter-BPS intersections

appear on the worldvolume as half-BPS solitons and the spacetime interpretation relies on

the fact that the worldvolume scalars encode the brane embedding.

Many M-branes systems in M-theory have been studied using this approach. For

instance, a stack of M2-branes ending on an M5-brane is associated to a self-dual string

soliton on the M5-brane worldvolume [178] and the M5-M5 intersection can be described

as a 3-brane vortex on the worldvolume of one of the M5-branes [179]. In a similar way,

the M2-M2 intersection can be described as a 0-brane vortex on the worldvolume of one of

the M2-branes [176][180]. All these examples mentioned are the worldvolume realization

of previously studied quarter-BPS intersecting systems [181][182][183][184].

It was shown in [185] that the spacetime interpretation of the worldvolume solitons

can be deduced also from the worldvolume supersymmetry algebra. For the case of the M2-

brane the worldvolume supersymmetry algebra is given by the maximal central extension

of the 3-dimensional N = 8 super-Poincare algebra [185]. The anticommutator is given by

{Qp
α̂, Q

q

β̂
} = −2Pµ(γ̂µγ̂0)α̂β̂δ

pq + Z [pq]εα̂β̂ + Z(pq)
µ (γ̂µγ̂0)α̂β̂ (5.1)

where Qp
α̂ are the eight 3-dimensional Majorana spinor supercharges and Z [pq],Z

(pq)
µ are

the 0-form and the 1-form worldvolume central charges. p, q = 1, . . .8 are the indices of

the SO(8) automorphism group and the supercharges transform as chiral spinors of SO(8).

Due to the triality relation of SO(8), we can consider the supercharges to transform in the

vector representation of SO(8) and thus we can interpret the automorphism group SO(8)

as the rotation group in the eight directions transverse to the M2-branes. The 0-form Z [pq]

is in the 28 representation of SO(8) and it can be thought as a 2-form in the transverse

space. This central charge is associated with M2-branes that are intersecting the original

M2-branes along the time direction, a quarter-BPS system studied in [181]. The 1-form

Z
(pq)
µ is in the 35+ of SO(8) and it is a self-dual 4-form in the transverse space. This

implies that the 1-form charge is associated to the quarter-BPS M2-M5 system [184][182].

We have seen that the M2-brane superalgebra, correctely incorporates all the possible

quarter-BPS intersections between the M2-branes and the other M-branes of M-theory.60

60 In the worldvolume description, these intersections are half-BPS solitons.

109



This implies that a complete M2-branes worldvolume theory should realize the M2-brane

superalgebra (5.1), including also the central charges.

In this chapter, we verify by explicit computation that the Bagger-Lambert theory

does realize the M2-brane superalgebra (5.1). The central charges that we obtain are given

by

Z [pq] = −
∫

d2σ∂iTr(XI , DjX
J)εij(γIJ)pq

Z(pq)
µ = − 1

12

∫

d2σ∂iTr(XI , [XJ , XK, XM ])ε0i
µ(γIJKM )pq.

(5.2)

We note that the 0-form charge Z [pq] is the natural generalization of the charge computed

in [180] using the BPS-bound for the vortex solution in the single M2-brane theory. The

1-form instead relies on the non-abelian nature of the scalar fields in the Bagger-Lambert

theory and it vanishes in the limit where the stack of multiple M2-branes reduces to a single

M2-brane. This is consistent with the fact that the M2-M5 intersection cannot be seen on

the worldvolume of a single M2-brane. Indeed, given an intersection between branes with

different dimensions, the worldvolume description of the system using the worldvolume of

the lower dimensional brane is usually based on non-abelianity [130][148].

We show that a vortex solution excites the 0-form central charge and the Basu-Harvey

solution [129] excites the 1-form central charge, in agreement with the interpretation of this

solitons as the quarter-BPS M2-M2 intersection and the quarter-BPS M2-M5 intersection.

The energy of this configurations is bounded below by the value of the corresponding central

charge and the bound is saturated when the solitons are half-BPS. This is in agreement

with the structure of the M2-brane superalgebra (5.2).

The rest of the chapter is organized as follows. In section 1 we write down the

supercurrent associated to the supersymmetry of the Lagrangian. This enables us to

express the supercharges in terms of the fields of the theory. In section 2 we use the field

theory realization of the supercharges to compute the central charges. In section 3 we

analyze the vortex and the Basu-Harvey solitons and show that they are associated to

central charges, in agreement with the interpretation of this solutions as the worldvolume

realization of intersecting systems. Section 4 summarizes our notation and includes the

proof of the conservation of the supercurrent. The same section contains technical details

of the computation for the central charges.
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5.1. Supercharges

Given the invariance of the Lagrangian (4.8) under the supersymmetry variations

(4.12), the Noether theorem implies the existence of a conserved supercurrent Jµ given by

Jµ = −DνX
I
aΓνΓIΓµΨa − 1

6
XI

aX
J
b X

K
c f

abcdΓIJKΓµΨd. (5.3)

In section 4 we show that ∂µJ
µ = 0. The supercharge is thus the integral over the spatial

worldvolume coordinates of the timelike component of the supercurrent, i.e.

Q =

∫

d2σJ0

=−
∫

d2σ(DνX
I
aΓνΓIΓ0Ψa +

1

6
XI

aX
J
b X

K
c f

abcdΓIJKΓ0Ψd).

(5.4)

Given that the mass dimensions of the fields in the Bagger-Lambert theory are [X ] = 1
2

and [A] = [Ψ] = 1, it follows that J0 has mass dimension [J0] = 5
2
. This gives [Q] = 1

2
,

that is the right mass dimension for the supercharge. It is easy to check that the two terms

on the right hand side of (5.3) are the only gauge invariant combinations of fields with the

right mass dimension and with an uncontracted spinorial index.

The supercharge Q is the generator of the supersymmetry transformation, that means

that the supersymmetry variation of a field Φ is given by δǫΦ = [ǭQ,Φ]. More in details,

for Grassman-even and Grassman-odd fields ΦE and ΦO we have

δǫΦE = ǭα[Qα,ΦE] δǫΦ
β
O = ǭα{Qα,Φβ

O} (5.5)

where we have explicitly shown the 11-dimension spinorial indices α and β. Using the

canonical commutation relations, one can show that the (5.5) reproduce the supersymmetry

variations of the Bagger-Lambert theory (4.12).

5.2. Central Charges

In this section, we show that the supersymmetry algebra of the Bagger-Lambert theory

includes two central charge forms, as expected for a theory describing M2-branes. These
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central extensions are computed here explicitly using the field realization of the supercharge

Q given in (5.4)[186].61 In details, we consider the relation

ǭα{Qα, Qβ} =

∫

d2σǭα{Qα, J0β(σ)} =

∫

d2σδǫJ
0β(σ) (5.6)

where in the last step we used the second of the equations (5.5). The supersymmetry

variation of the zeroth component of the supercurrent δǫJ
0 is computed in section 4. For

the case where the spinors Ψ are set to zero, it is given by

δǫJ
0 = −2T 0

µΓµǫ− ∂i(X
I
aDjX

aJεijΓIJ ǫ)− 1

12
∂i(X

I
aX

J
b X

K
c X

M
d f bcdaε0i

µΓIJKMΓµǫ)

(5.7)

where i = 1, 2 labels the spatial worldvolume coordinates. From the expression (5.7) and

the relation (5.6) we get

{Qα, Qβ} =− 2Pµ(ΓµΓ0)αβ −
∫

d2σ∂i(X
I
aDjX

aJεij)(ΓIJΓ0)αβ

− 1

12

∫

d2σ∂i(X
I
aX

J
b X

K
c X

M
d f bcdaε0i

µ)(ΓIJKMΓµΓ0)αβ

(5.8)

where Pµ is the energy momentum vector defined as Pµ =
∫
d2σT 0µ.

Spinors Decomposition

In order to better analyze the structure of the N = 8 superalgebra, we need to write

the anticommutator (5.8) in terms of 3-dimensional spinors. To this end, we decompose

the Spin(1, 10) Dirac matrices in terms of Spin(1, 2)⊗Spin(8) Dirac matrices. In details,

we take

Γµ = γ̂µ ⊗ γ̄9 and ΓI = 1⊗ γ̄I (5.9)

where

{γ̂µ, γ̂ν} = 2ηµν , {γ̄I , γ̄J} = 2δIJ , γ̄9 = γ̄3 . . . γ̄10 (5.10)

and it is easy to check that the matrices (5.9) satisfies the 11-dimensinal Clifford algebra.

The γ̂µ are 2× 2 real matrices. Explicitly

γ̂0 = iσ2
α̂β̂

= εα̂β̂ γ̂1 = σ1
α̂β̂

γ̂2 = σ3
α̂β̂

(5.11)

61 For a review, see for instance [187].

112



where the σ’s are Pauli matrices and α̂, β̂ = 1, 2 are 3-dimensional spinorial indices. The

γ̄I are 16× 16 real matrices given by

γ̄I =

(
0 γI

ṗp

γI
qq̇ 0

)

(5.12)

where (γI
pṗ)

T = γI
ṗp are 8× 8 real gamma matrices satisfying

γI
pṗγ

J
ṗq + γJ

pṗγ
I
ṗq = 2δIJδpq γI

ṗpγ
J
pq̇ + γJ

ṗpγ
I
pq̇ = 2δIJδṗq̇. (5.13)

Given that Γ012 = −γ̂012⊗ γ̄9 = −1⊗ γ̄9, spinors with definite Γ012 chirality, have a definite

γ̄9 chirality.62

Using the matrices decomposition just described and the fact that Γ012Q = Q, the

equation (5.8) can be written as

{Qp
α̂, Q

q

β̂
} =− 2Pµ(γ̂µγ̂0)α̂β̂δ

pq −
∫

d2σ∂i(X
I
aDjX

aJεij)(γIJ)pqεα̂β̂

− 1

12

∫

d2σ∂i(X
I
aX

J
b X

K
c X

M
d f bcdaε0i

µ)(γIJKM)pq(γ̂µγ̂0)α̂β̂

(5.14)

where (γIJ)pq = γ
[I
pṙγ

J ]
ṙq and (γIJKM)pq = γ

[I
pṙγ

J
ṙrγ

K
rṫ
γ

M ]

ṫq
.

Thus, we conclude that the Bagger-Lambert Lagrangian realizes the centrally extended

3-dimensional N = 8 superalgebra

{Qp
α̂, Q

q

β̂
} = −2Pµ(γ̂µγ̂0)α̂β̂δ

pq + Z [pq]εα̂β̂ + Z(pq)
µ (γ̂µγ̂0)α̂β̂ (5.15)

where the central charges are given by

Z [pq] = −
∫

d2σ∂iTr(XI , DjX
J)εij(γIJ)pq

Z(pq)
µ = − 1

12

∫

d2σ∂iTr(XI , [XJ , XK, XM ])ε0i
µ(γIJKM )pq.

(5.16)

Using the property (γIJ)qp = −(γIJ )pq, (γIJKM )qp = (γIJKM )pq it follows that the

0-form central charge is antisymmetric in p, q indices and the 1-form central charge is

symmetric in p, q. Given that εα̂β̂ = −εβ̂α̂ and (γ̂µγ̂0)α̂β̂ = (γ̂µγ̂0)β̂α̂ the right hand side

of the (5.16) is correctly symmetric under the exchange (p, α̂)↔ (q, β̂).

62 In this representation γ̄9 =

(

1 0

0 − 1

)

.
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The equations (5.16) give the field realization of the central charges of the extended 3-

dimensional N = 8 superalgebra. They are boundary terms and they are equal to zero for

field configurations that are non-singular and topologically trivial. In the next section we

will discuss half-BPS configurations that excite the central charges of the Bagger-Lambert

theory.

5.3. Solitons of the Bagger-Lambert Theory

Vortices

We consider vortex configurations [176][180] where only the scalars X3, X4 and the

gauge vector Ãν
b
a are excited. Given the interpretation of the Bagger-Lambert theory as

a theory of coincident M2-branes, these configurations describe two stacks of membranes

intersecting along the time direction63

0 1 2 3 4 5 6 7 8 9 10
M2 X X X
M2 X X X

(5.17)

It is convenient to introduce the complex worldvolume coordinates z and z̄

z = σ1 + iσ2 z̄ = σ1 − iσ2 (5.18)

and the complex scalars Φ and Φ̄

Φ =
1

2
(X3 − iX4) Φ̄ =

1

2
(X3 + iX4). (5.19)

Thus, considering a configuration where only Φ, Φ̄ and Ãµ
b
a are switched on, and such

that D0Φ = D0Φ̄ = 0, the BPS conditions that follow from the supersymmetry variations

(4.12) reduce to

DzΦΓzΓΦǫ+Dz̄ΦΓz̄ΓΦǫ+DzΦ̄ΓzΓΦ̄ǫ+Dz̄Φ̄Γz̄ΓΦ̄ǫ = 0 (5.20)

63 This is the analog of the vortex like solution for N = 4 SYM describing a surface operator

interpreted as the intersection D3∩D3= R2 [188][189].
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where

ΓΦ = Γ3 + iΓ4 ΓΦ̄ = Γ3 − iΓ4 Γz = Γ1 + iΓ2 Γz̄ = Γ1 − iΓ2. (5.21)

For this configuration, the energy density is given by

H = 4Tr(DzΦ, Dz̄Φ̄) + 4Tr(Dz̄Φ, DzΦ̄) =
Z0

2
+ 8Tr(Dz̄Φ, DzΦ̄) (5.22)

where Z0 is the density of the 0-form central charge Z [pq] evaluated for this field configu-

ration. Thus, considering a positive definite scalar product Tr(·, ·), it results H ≥ Z0

2 and

the bound is saturated when

Dz̄Φ = DzΦ̄ = 0. (5.23)

When this last condition is satisfied, it follows from the BPS equation (5.20) that the solu-

tion preserve the supersymmetries satisfying ΓzΓΦǫ = 0 or equivalently Γ1234ǫ = ǫ. Thus,

for the case where the gauge field is equal to zero, i.e. Ãµ
b
a = 0 the vortex configuration

given by

Φ =
caT

a

z
(5.24)

where ca are arbitrary constants is a half-BPS state.64 The singularity in z = 0 excite

the 0-form central charge Z [pq] (5.16), in agreement with the interpretation of the vortex

solution as the brane intersection (5.17).

We now discuss the case where also the gauge vector is excited and to analyze this

configuration we use the Lorenzean 3-algebra constructed in [131]. In this model, the

3-algebra indices a are split into a = (0, ã, ϕ) and the structure constants are given by

f0ãb̃c̃ = fϕãb̃c̃ = C ãb̃c̃ , f0ϕãb̃ = f ãb̃c̃d̃ = 0 (5.25)

where C ãb̃c̃ are the structure constants of a compact semi-simple Lie algebra satisfying the

usual Jacobi identity. The structure constants (5.25) solve the fundamental identity (4.6)

and they are totally antisymmetric. Following [131], we introduce null generators on the

3-algebra

T± = ±T 0 + Tφ (5.26)

and in this basis the structure constants become

f+ãb̃c̃ = 2C ãb̃c̃ , f−ãb̃c̃ = Cãb̃c̃ , f−ãb̃c̃ = f+ãb̃c̃ = 0. (5.27)

64 In the sense that it preserves half of the supersymmetries (4.12).
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The gauge vector Aab
µ is decomposed as

Aã
µ ≡ A−ã

µ , Bã
µ ≡

1

2
C ãb̃c̃Aµb̃c̃. (5.28)

We consider a configuration where only the ã components of the scalar field are excited,

we call this field Φ̃. Thus

Φ̃ =
cãT

ã

z
. (5.29)

Taking Bµ = 0, the equation (5.20) reduce to

D̃zΦ̃ΓzΓΦǫ+ D̃z̄Φ̃Γz̄ΓΦǫ+ D̃z
¯̃ΦΓzΓΦ̄ǫ+ D̃z̄

¯̃ΦΓz̄ΓΦ̄ǫ = 0 (5.30)

where

D̃µΦ̃ã ≡ ∂µΦ̃ã + 2C ã
b̃c̃
Ac̃

µΦ̃b̃ (5.31)

is the covariant derivative for a field in the adjoint representation of the Lie algebra with

structure constants C ãb̃c̃. The energy density now is

H = 4Tr(D̃zΦ̃, D̃z̄
¯̃Φ) + 4Tr(D̃z̄Φ̃, D̃z

¯̃Φ) =
Z0

2
+ 8Tr(D̃z̄Φ̃, D̃z

¯̃Φ) (5.32)

and given that [131] Tr(T ã, T b̃) = δãb̃, it results H ≥ Z0

2
. The Z0 is the 0-form central

charge evaluated for this solution and the BPS-bound is saturated when D̃z̄Φ̃ = D̃z
¯̃Φ = 0.

Thus, it follows that the configuration where only Φ̃ and Aµ = AãµT
ã are excited, is

half-BPS if

[Φ̃,Az̄] = [ ¯̃Φ,Az] = 0 (5.33)

where [·, ·] is the usual Lie commutator. Also in this case, the preserved supersymmetries

satisfy ΓzΓΦǫ = 0 and this configuration excites the the 0-form central charge. This implies

that with respect to the single M2-brane theory, the vortex solutions of the Bagger-Lambert

theory includes extra degrees of freedom, given by the the components of the gauge vector

that commute with the scalar fields.

Basu-Harvey Solitons

To describe a stack of M2-branes ending on an M5-brane

0 1 2 3 4 5 6 7 8 9 10
M2 X X X
M5 X X X X X X

(5.34)
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it is necessary to switch on the X3,X4,X5,X6 scalar fields [129]. Given that these fields

depend only on the worldvolume coordinate σ2, the BPS condition is [127]

dXA

dσ2
ΓAΓ2ǫ− 1

6
εBCDAΓA[XB, XC, XD]Γ3456ǫ = 0 (5.35)

where A,B,C,D = 3, 4, 5, 6 and we used εABCDΓD = −ΓABCΓ3456. For this field config-

uration the energy density is given by

H =
1

2
Tr(∂2X

A, ∂2X
A) +

1

12
Tr([XA, XB, XC], [XA, XB, XC ]). (5.36)

Following [140], we write the potential as

V (X) =
1

2
Tr

(
∂W

∂XA
,
∂W

∂XA

)

(5.37)

where

W =
1

24
εABCDTr(XA, [XB, XC, XD]). (5.38)

Thus

H =
1

2
Tr

(

∂2X
A +

∂W

∂XA
, ∂2X

A +
∂W

∂XA

)

− Tr

(

∂2X
A,

∂W

∂XA

)

=
1

2
Tr

(

∂2X
A +

∂W

∂XA
, ∂2X

A +
∂W

∂XA

)

+
Z1

2

(5.39)

where Z1 is the density of Z
(pq)
µ , the 1-form central charge. Thus, for this field configuration

H ≥ Z1

2
and the bound is saturated when

dXA

dσ2
− 1

6
εBCDA[XB, XC , XD] = 0. (5.40)

When the (5.40) is satisfied, it follows from (5.35) that the field configuration is half-BPS

and the preserved supersymmetries satisfy Γ2ǫ = Γ3456ǫ. This is the configuration proposed

by Basu and Harvey as the M2-brane worldvolume soliton describing the branes system

(5.34). In this section we have verified that the central charge associated to this state is

the 1-form central charge, i.e. the central charge associated to the M2-M5 intersection.

5.4. Supplementary material for chapter 5

Notation
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We summarize here our notation. The indices are

worldvolume coordinates : µ, ν = 0, 1, 2

spatial worldvolume coordinates : i, j = 1, 2

transverse space coordinates : I, J = 3, . . .10

Spin(1, 10) spinorial indices : α, β = 1, . . .32

Spin(1, 2) spinorial indices : α̂, β̂ = 1, 2

Spin(8) chiral spinorial indices : p, q, ṗ, q̇ = 1, . . .8

A algebra indices : a, b = 1, . . . , dimA

(5.41)

The Dirac matrices Γ are a representation of the 11-dimensional Clifford algebra, i.e. given

m,n = 0, . . . , 10 it results

{Γm,Γn} = 2ηmn (5.42)

and

CT = −C ΓT
m = −CΓmC

−1. (5.43)

We take Γm to be real matrices and C = Γ0. The 11-dimensional spinors are Majorana

(real) spinors with definite chirality respect to Γ012. Thus, they have 16 independent real

components.

Supercurrent Conservation

We now show that the supercurrent (5.3) is conserved. An easy computation gives

∂µJ
µ =− ∂µ(DνX

I
a)ΓνΓIΓµΨa −DνX

I
aΓνΓIΓµ∂µΨa

− 1

2
∂µX

I
aX

J
b X

K
c f

abcdΓIJKΓµΨd

− 1

6
XI

aX
J
b X

K
c f

abcdΓIJKΓµ∂µΨd.

(5.44)

Using the fundamental identity (4.6) the previous equation can be rewritten as

∂µJ
µ =− (DµDνX

I
a)ΓνΓIΓµΨa −DνX

I
aΓνΓIΓµDµΨa

− 1

2
DµX

I
aX

J
b X

K
c f

abcdΓIJKΓµΨd

− 1

6
XI

aX
J
b X

K
c f

abcdΓIJKΓµDµΨd.

(5.45)
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Inserting the equations of motion (4.13) and using the identity

Ψ̄cΓ
IJΨbΓ

IΨaX
J
d f

cdba = −Ψ̄cΓµΨbΓ
µΓJΨaX

J
d f

cdba, (5.46)

the right hand side of the (5.45) results to be equal to zero.

Supersymmetry Variation of J0

In this appendix we compute the supersymmetry variation of J0, the zeroth component

of the supercurrent (5.3). Considering the ansatz Ψ = 0 we get

δǫJ
0 =−DµX

I
aDνX

aJΓµΓIΓ0ΓνΓJǫ+
1

6
DµX

I
aX

J
b X

K
c X

M
d f bcdaΓµΓIΓ0ΓJKMǫ

− 1

6
DµX

I
aX

J
b X

K
c X

M
d f bcdaΓJKMΓ0ΓµΓIǫ

+
1

36
XI

aX
J
b X

K
c X

L
e X

M
f XN

g f
abcdfefg

dΓ
IJKΓ0ΓLMN ǫ.

(5.47)

We note that the right hand side of (5.47) contains one term with two covariant derivatives,

two terms with one covariant derivative and one term without covariant derivatives. Let’s

look first at the term with two covariant derivatives. Using the identity

−ΓµΓIΓ0ΓνΓJ =Γ0ΓµνΓIJ + Γ0ΓµνδIJ + Γ0ηµνΓIJ

+ Γ0ηµνδIJ − 2ηµ0ΓνδIJ − 2ηµ0ΓνΓIJ
(5.48)

we have

−DµX
I
aDνX

aJΓµΓIΓ0ΓνΓJǫ =(D0X
I
aD0X

aI +DiX
I
aDiX

aI)Γ0ǫ+ 2D0X
I
aDiX

aIΓiǫ

+DiX
I
aDjX

aJΓ0ΓijΓIJǫ.

(5.49)

The two terms with one covariant derivative can be rearranged using the identity

−ΓµΓ0ΓIΓJKM − Γ0ΓµΓJKMΓI = 2ηµiΓ0ΓiΓIJKM − 6ηµ0δI[JΓKM ] (5.50)

and the last of the equations of motion (4.13). Thus we get

+
1
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J
b X

K
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M
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J
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M
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1

2
εij F̃

ijcdXI
cX

J
d ΓIJ ǫ.

(5.51)
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Using the fundamental identity (4.6) one can show that

Ãi
g

aX
I
gX

J
b X

K
c X

M
d f bcdaΓIJKM = 0 (5.52)

thus the (5.51) can be rewritten as
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(5.53)

The term without covariant derivatives can be simplified using the expression

ΓIJKΓLMN = ΓIJKLMN + 9Γ[IJ
[MNδ

K]
L] + 18Γ[I

[Nδ
K
L δ

J ]
M ] + 6δ

[I
[Nδ

J
Mδ

K]
L] (5.54)

and the property of the fabcd structure constants. We get

1
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(5.55)

where V is the potential defined in (4.9).

Collecting all the pieces together we have

δǫJ
0 = (D0X

I
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aI +DiX
I
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J
b X

K
c X

M
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(5.56)

Considering the ansatz Ψ = 0, the components of the stress-energy tensor (4.15) are

T00 =
1

2
D0X

I
aD0X

aI +
1

2
DiX

I
aDiX

aI + V

T0i =D0X
I
aDiX

aI
(5.57)

Using the (5.57) and the identity Γ0Γi = −ǫijΓjΓ012 the (5.56) can be rewritten as

δǫJ
0 = −2T 0

µΓµǫ− ∂i(X
I
aDjX

aJεijΓIJ ǫ)− 1

12
∂i(X

I
aX

J
b X

K
c X

M
d f bcdaε0i

µΓIJKMΓµǫ).

(5.58)

120



6. Conclusions

During the past ten years, advances in string theory have revealed interesting inter-

connections between string models and ordinary gauge theories. The paradigm of these

dualities is that some closed string theory on a certain background is associated to a partic-

ular gauge theory, defined on the boundary of the spacetime where the string theory lives.

Since these relations are strong-weak dualities, they provide significant theoretical insights

in the study of string theory, gauge theory and gravity and represents a promising new

technique to analyze many aspects of phenomenological physics that cannot be described

with a more traditional approach.

This thesis presents studies on different aspects of the duality. In the first chapters, we

have analyzed the holographic description of non-local operators defined in supersymmetric

gauge theories. In the last two chapters, we have considered few aspects of the Bagger-

Lambert multiple M2-branes theory. This theory provides the holographic dual of M-theory

on a certain background.

In chapter 2 we have focused our attention on half-BPS Wilson loops in N = 4 SYM.

We have shown that the Wilson loops in a higher representation of the gauge group cor-

respond to D-branes on the string theory side [76][190]. This analysis, generalizes the

proposal in [25][26] where Wilson loops in the fundamental representation are associated

to fundamental strings on the string theory side. It follows that operators in the sym-

metric representation of the gauge group are associated to D3-branes and operators in the

antisymmetric representations are associated to D5-branes. A Wilson loop in a generic

representation can be realized either as a stack of D3-branes, or equivalently as a stack of

D5-branes. We have proved this correspondence considering flat space D-brane systems

that besides the stack of N D3-branes giving rise to the standard AdS/CFT, includes also

some extra D3-branes or D5-branes. In the near horizon, when the backreaction can be

neglected, the extra D-branes become probes in AdS5×S5. On the gauge theory side, the

extra D-branes introduce degrees of freedom localized on a one dimensional subspace of

the spacetime. The SYM theory thus is deformed with a defect field theory leaving on

the spacetime curve where the non-local operator is defined. Integrating out the physics

associated to this extra D-branes, introduces in the theory Wilson loops in a representation

that is encoded by the characteristic of the branes.
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This procedure can be extended to other D-brane systems to obtain a correspondence

between non-perturbative objects in string theory and operators in the gauge theory side.

For instance, it would be very interesting to prove that the giant gravitons [191] in string

theory correspond to determinant operators in the gauge theory side as proposed few years

ago [192][78].

The intersecting systems we have analyzed to study the Wilson loops in higher order

representations present an interesting feature. The defect field theories associated to the

extra D3-branes and D5-branes are exactly the same, except that the fields on the defect

have different statistic (bosonic for the D3 case, fermionic for the D5 case). Thus, we can

switch to an intersecting D-brane model to the other just switching the statistics of the

defect fields. It would be interesting to see if there is any first principles explanation of

this fact.

One of outstanding issues in the gauge-gravity duality is to exhibit the origin of the

loop equation of gauge theory in the gravitational description. This important problem has

thus far remained elusive. Having shown that Wilson loops are more naturally described in

the bulk by D-branes instead of by fundamental strings, it is natural to search for the origin

of the loop equation of gauge theory in the D-brane picture instead of the fundamental

string picture.

The description of Wilson loops as defect field theories studied in chapter 2, has been

extended to a particular class of surface operators in chapter 3 [193]. In particular we have

studied a supersymmetric D3-D7 intersection, where the D7-branes intersect the stack of

D3-branes along two spacetime coordinates. An interesting result of this analysis is that in

the low energy field theory description, the gauge theory is defined in a curved spacetime.

This means that the backreaction of the D7-branes cannot be neglected, not even in the

decoupling limit. In this way we have enlarged the holographic duality to gauge theories

defined in a non-trivial background. It would be interesting to explore in more detail the

dictionary relating bulk and gauge theory computations for this new class of dualities.

Integrating out the physics on the defect field theory associated to the D7-branes, we

find the explicit form of this class of surface operators, which is given by a WZW model

supported on the surface. Thus, differently from the previously studied surface operators,

the operators described in chapter 3 are expressed in terms of the fields in the gauge theory,

i.e. they are order-type operators.

An important problem for the future is to understand the physics encoded in the ex-

pectation value of surface operators and to determine whether they can be useful probes of
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new phases of gauge theory. For the surface operators in this thesis it would be interesting

to compute their expectation value in perturbation theory. Given that these operators

are supersymmetric it is conceivable that the computation of their expectation value can

be performed in a reduced model, just like the expectation value of supersymetric circular

Wilson loops can be computed by a matrix integral [113][114]. Also, it would be interesting

to compute the expectation value of the surface operator by calculating the on-shell action

of the corresponding supergravity solutions.

In the rest of the thesis we have studied multiple M2-branes low energy theories.

In Chapter 4 [145] we have constructed a one parameter mass deformation of the Bagger-

Lambert Lagrangian that preserves all the supersymmetries. This model represents a novel

example of a maximally supersymmetric 3-dimensional gauge theory. We have shown

that when it is compactified on R × T 2, the theory presents the superisometries of the

Type IIB pp-wave. Given the M2-branes interpretation of the Bagger-Lambert theory, the

compactified theory can be thought as the Matrix theory for strings on Type IIB pp-wave.

It would be interesting to study a similar deformation for the N = 6 Bagger-Lambert

theories introduced in [35]. It would be nice to discuss their possible connection to the

Matrix theories.

The Bagger-Lambert Lagrangian possesses another nice feature. It realizes the full

M2-brane superalgebra, including also two central charges related to higher dimensional

objects (chapter 5 [194]). These charges are associated to the intersections between the M2-

branes and other M-branes and they should be realized by a Lagrangian describing the low

energy physics of M2-branes. We have performed this analysis considering the formulation

of the Bagger-Lambert theory that is maximally supersymmetric (N = 8), i.e. considering

fields valued in a 3-algebra with an antisymmetric 3-product. In the future, it would be

interesting to extend this analysis to the N = 6 formulation of the Bagger-Lambert theory

[35]. This is based on a 3-algebra with a 3-product that is not antisymmetric and for a

particular 3-algebra it reduces to the ABJM theory [36]. The analysis of the superalgebra

can be useful to consolidate the M-theory interpretation of the ABJM theory and can shed

light on the physical meaning of the other N = 6 theories.

Given a theory of multiple M2-branes, it is possible to perform a dimensional reduc-

tion along one of the direction parallel to the M2-branes to get an action for multiple

fundamental strings. In the future it would be interesting to apply this procedure to the

candidate multiple M2-branes theories. It would be very interesting to understand how the

multiple strings couple with the RR-fields in a non-trivial background. The expectation
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is that there will be Myers-like terms, because as we have seen in chapter 2, there is some

evidence that coincident fundamental strings in the presence of an RR-field, polarize into

higher dimensional D-branes.
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Appendix A. Copyright agreements

In this appendix we add the copyright permission from the Journal of High Energy

Physics (JHEP).

Fig. 8: Copyright permission from JHEP.
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