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Abstract

We consider a communication method, where the sender encodes n classical
bits into 1 qubit and sends it to the receiver who performs a certain measurement
depending on which of the initial bits must be recovered. This procedure is called
n

p7→ 1 quantum random access code (QRAC) where p > 1/2 is its success probabil-

ity. It is known that 2
0.857−→ 1 and 3

0.797−→ 1 QRACs (with no classical counterparts)

exist and that 4
p7→ 1 QRAC with p > 1/2 is not possible.

We extend this model with shared randomness (SR) that is accessible to both

parties. Then n
p7→ 1 QRAC with SR and p > 1/2 exists for any n ≥ 1. We give

an upper bound on its success probability (the known 2
0.857−→ 1 and 3

0.797−→ 1 QRACs
match this upper bound). We discuss some particular constructions for several
small values of n.

We also study the classical counterpart of this model where n bits are encoded
into 1 bit instead of 1 qubit and SR is used. We give an optimal construction for
such codes and find their success probability exactly—it is less than in the quantum
case.

Interactive 3D quantum random access codes are available on-line at
http://home.lanet.lv/∼sd20008/racs
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Chapter 1

Introduction

1.1 Random access codes

In general random access code (or simply RAC) stands for “encoding a long message
into fewer bits with the ability to recover (decode) any one of the initial bits (with
some probability of success)”. A random access code can be characterized by the

symbol “n
p7→ m” meaning that n bits are encoded into m and any one of the initial

bits can be recovered with probability at least p. We require that p > 1/2 since
p = 1/2 can be achieved by guessing. In this paper we consider only the case when
m = 1. So we have the following problem:

Problem (Classical). There are two parties—Alice and Bob. Alice is asked to
encode some classical n-bit string into 1 bit and send this bit to Bob. We want Bob
to be able to recover any one of the n initial bits with high success probability.

Note that Alice does not know in advance which bit Bob will need to recover,
so she cannot send only that bit. If they share a quantum channel then we have
the quantum version of the previous problem:

Problem (Quantum). Alice must encode her classical n-bit message into 1 qubit
(quantum bit) and send it to Bob. He performs some measurement on the received
qubit to extract the required bit (the measurement that is used depends on which bit
is needed).

Both problems look similar, however the quantum version has an important
feature. In the classical case the fact that Bob can recover any one of the initial
bits implies that he can actually recover all of them—each with high probability
of success. Surprisingly in the quantum case this is not true, because after the
first measurement the state of the qubit will be disturbed and further attempts to
extract more information can fail.

1.2 History and applications

As noted in [6, 8], the idea behind quantum random access codes or QRACs is very
old (relative to quantum information standards). It first appeared in a paper by
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Stephen Wiesner [1] published in 1983 and was called conjugate coding. Later these
codes were re-discovered by Ambainis et al. in [2, 3]. They show that there exists

2
0.857−→ 1 QRAC and mention its immediate generalization to 3

0.797−→ 1 QRAC due
to Chuang (see also [5] and [8] for more details). However, Hayashi et al. [5] show

that it is impossible to construct a 4
p7→ 1 QRAC with p > 1/2. We will discuss

these results more in Sect. 3.3.
There has also been work on n

p7→ m codes with m > 1, see [2, 3, 4]. Ambainis

et al. [2] show that if a n
p7→ m QRAC with p > 1/2 exists, then m = Ω(n/ log n),

which was later improved by Nayak [4, 3] to m ≥ (1 − H(p))n, where H(p) =
−p log p − (1 − p) log(1 − p) is the binary entropy function. Other generalizations
include: considering d-valued bits instead of qubits [6, 8] and recovering several
rather than a single bit [16].

Originally quantum random access codes were studied in the context of quan-
tum finite automata [2, 3, 4]. However, they also have applications in quantum
communication complexity [6, 9, 10, 11], in particular for network coding [5, 12]
and locally decodable codes [13, 14, 15, 16]. Recently results on quantum random
access codes have been applied for quantum state learning [17].

Experimental feasibility of QRACs and their relation to contextuality and non-
locality has been discussed in [6, Chapter 7]. Recently a similar protocol called
parity-oblivious multiplexing has been considered in [7]. It has an additional cryp-
tographic constraint that Alice is not allowed to transmit any information about
the parity of the input string. In addition [7] also discuss the first experimental
demonstration of 2 7→ 1 and 3 7→ 1 QRACs.

We want to emphasize the setting in which the impossibility of 4
p7→ 1 QRAC

with p > 1/2 was proved in [5]: Alice is allowed to perform a locally randomized
encoding of the given string into a one-qubit state and Bob is allowed to perform
different positive operator-valued measure (POVM) measurements to recover dif-
ferent bits. This is the most general setting when information is encoded into
a one-qubit state and both parties are allowed to use randomized strategies, but
only have access to local coins. However, we can consider an even more general
setting—when both parties share a common coin. This means that Alice and Bob
are allowed to cooperate by using some shared source of randomness to agree on
which strategy to use. We will refer to this source as a shared random string or
shared randomness (SR). Note that shared randomness is a more powerful resource
than local randomness, since parts of the shared random string can be exclusively
used only by Alice or Bob to simulate local coins. It turns out that in this new
setting 4

p7→ 1 QRAC is possible with p > 1/2. In fact, n
p7→ 1 QRACs with p > 1/2

can be constructed for all n ≥ 1 (see Sect. 3.8).

1.3 Outline of results

In Sect. 2 we study classical n 7→ 1 random access codes with shared randomness.
In Sect. 2.2 we introduce Yao’s principle that is useful for understanding both
classical and quantum codes. A classical code that is optimal for all n is presented
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in Sect. 2.3.1 and the asymptotic behavior of its success probability is considered
in Sect. 2.3.2.

In Sect. 3 we study quantum random access codes with shared randomness.
In Sect. 3.3 we discuss what is known in the case when shared randomness is not
allowed, i.e., 2 7→ 1 and 3 7→ 1 QRACs and the impossibility of 4 7→ 1 QRAC.
In Sect. 3.6 we give an upper bound of success probability of QRACs with SR
and generalize it in Sect. 3.7 for POVM measurements. In Sect. 3.8 we give two
constructions of n

p7→ 1 QRAC with SR and p > 1/2 for all n ≥ 2 that provide a
lower bound for success probability.

In Sect. 4 we try to find optimal QRACs with SR for several small values of n.
In particular, in Sect. 4.1 we discuss QRACs obtained by numerical optimization,
and in Sect. 4.2 we consider symmetric constructions.

Finally, we conclude in Sect. 5 with a summary of the obtained results (Sect.
5.1), a list of open problems (Sect. 5.2) and possible generalizations (Sect. 5.3).

3



Chapter 2

Classical random access codes

2.1 Types of classical encoding-decoding strate-

gies

As a synonym for random access code we will use the term strategy to refer to
the joint encoding-decoding scheme used by Alice and Bob. Two measures of how
good the strategy is will be used: the worst case success probability and the average
success probability. Both probabilities must be calculated over all possible pairs
(x, i) where x ∈ {0, 1}n is the input and i ∈ {1, . . . , n} indicates which bit must be
recovered. We are interested in the worst case success probability, but in our case
according to Yao’s principle (introduced in Sect. 2.2) the average success probability
can be used to estimate it.

Depending on the computational model considered, different types of strategies
are allowed. The simplest type corresponds to Alice and Bob acting deterministi-
cally and independently.

Definition. A pure classical n 7→ 1 encoding-decoding strategy is an ordered tuple
(E,D1, . . . , Dn) that consists of an encoding function E : {0, 1}n 7→ {0, 1} and n
decoding functions Di : {0, 1} 7→ {0, 1}.

These limited strategies yield RACs with poor performance. This is because
Bob can recover all bits correctly for no more than two input strings, since he
receives either 0 or 1 and acts deterministically in each case. For all other strings
at least one bit will definitely be recovered incorrectly, therefore the worst case
success probability is 0. If we allow Alice and Bob to act probabilistically but
without cooperation, then we get mixed strategies.

Definition. A mixed classical n 7→ 1 encoding-decoding strategy is an ordered tuple
(PE, PD1 , . . . , PDn) of probability distributions. PE is a distribution over encoding
functions and PDi

over decoding functions.

It is obvious that in this setting the worst case probability is at least 1/2. This
is obtained by guessing—we output either 0 or 1 with probability 1/2 regardless of
the input. Formally this means that for each i, PDi

is a uniform distribution over
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two constant decoding functions 0 and 1. It has been shown that in this setting for
2 7→ 1 case one cannot do better than guessing, i.e., there is no 2

p7→ 1 RAC with
worst case success probability p > 1/2 [2, 3].

However, we can allow cooperation between Alice and Bob—they can use a
shared random string to agree on some joint strategy.

Definition. A classical n 7→ 1 encoding-decoding strategy with shared randomness
is a probability distribution over pure classical strategies.

Note that this is the most general randomized setting, since both randomized
cooperation and local randomization are possible. This is demonstrated in the
following example.

Example. Consider the following strategy: randomly agree on i ∈ {1, . . . , n} and
send the ith bit; if the ith bit is requested, output the received bit, otherwise guess.
This strategy can formally be specified as follows: uniformly choose a pure strategy
from the set⋃

i∈{1,...,n}

{
(ei, c1, . . . , ci−1, d, g1, . . . , gn−i) | c ∈ {d0, d1}i−1 , g ∈ {d0, d1}n−i

}
, (2.1)

where the encoding function ei is given by ei(x) = xi and decoding functions d0,
d1, and d are given by d0(b) = 0, d1(b) = 1, and d(b) = b, where b is the received
bit. The total amount of required randomness is n − 1 + log n bits, because one
out of n · 2n−1 pure strategies must be selected. Note that only log n of these bits
must be shared among Alice and Bob, so that they can agree on the value of i. The
remaining n−1 random bits are needed only by Bob for choosing random decoding
functions c ∈ {d0, d1}i−1 and g ∈ {d0, d1}n−i.

Note that the amount of randomness used in the above example can be reduced.
Since only one bit must be recovered, there is no need to choose each of the decoding
functions independently. Thus Bob needs only one random bit that he will output
whenever some bit other than the ith bit is requested. This is illustrated in the
next example.

Example. Alice and Bob uniformly sample a pure strategy from the following set:{
(ei, c, . . . , c︸ ︷︷ ︸

i−1

, d, c, . . . , c︸ ︷︷ ︸
n−i

) | 1 ≤ i ≤ n, c ∈ {d0, d1}
}
. (2.2)

This requires log n random bits to be shared among Alice and Bob and 1 private
random bit for Bob, i.e., 1 + log n random bits in total.

We are interested in classical strategies with SR, because they provide a classical
analogue of QRACs with SR. However, in this setting finding the optimal strategy
seems to be hard, therefore we will turn to Yao’s principle for help.
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2.2 Yao’s principle

When dealing with randomized algorithms, it is hard to draw general conclusions
(like proving optimality of a certain randomized algorithm) because the possible
algorithms may form a continuum. In such situations it is very helpful to apply
Yao’s principle [18]. This allows us to shift the randomness in the algorithm to the
input and consider only deterministic algorithms.

Let S be a classical strategy with SR. One can think of it as a stochastic process
consisting of applying the encoding map E to the input x, followed by applying the
decoding map Di to the ith bit. Both of these maps depend on the value of the
shared random string. The result of S is S(x, i) = Di(E(x)), which is a stochastic
variable over the set {0, 1}. Let Pr[S(x, i) = xi] denote the probability that the
stochastic variable S(x, i) takes value xi. Then the worst case success probability
of the optimal classical strategy with SR is given by

max
S

min
x,i

Pr[S(x, i) = xi]. (2.3)

Let µ be some distribution over the input set {0, 1}n × {1, . . . , n} and let
Prµ[P(x, i) = xi] denote the expected success probability of a pure (deterministic)
strategy P . If the “hardest” input distribution is chosen as µ, then the expected
success probability of the best pure strategy for this distribution is

min
µ

max
P

Prµ[P(x, i) = xi]. (2.4)

Yao’s principle states that the quantities given in (2.3) and (2.4) are equal [18]:

max
S

min
x,i

Pr[S(x, i) = xi] = min
µ

max
P

Prµ[P(x, i) = xi]. (2.5)

Thus Yao’s principle provides us with an upper bound for the worst case probability
(2.3). All we have to do is to choose an arbitrary input distribution µ0 and find
the best pure strategy P0 for it. Then according to Yao’s principle we have

Prµ0 [P0(x, i) = xi] ≥ max
S

min
x,i

Pr[S(x, i) = xi], (2.6)

with equality if and only if µ0 is the “hardest” distribution. It turns out that for
random access codes the uniform distribution η is the “hardest”. To prove it, we
must first consider the randomization lemma.

Lemma 1. ∀P∃S : minx,i Pr[S(x, i) = xi] = Prη[P(x, i) = xi], where η is the
uniform distribution. In other words: the worst case success probability of S is the
same as the average case success probability of P with uniformly distributed input.

Proof. This can be achieved by randomizing the input with the help of the shared
random string. Alice’s input can be randomized by XOR-ing it with an n-bit
random string r. But Bob’s input can be randomized by adding (modulo n) a
random number d ∈ {0, . . . , n− 1} to it (assume for now that bits are numbered

6



from 0 to n− 1). To obtain a consistent strategy, these actions must be identically
performed on both sides, thus a shared random string of n+ log n bits1 is required.
Assume that E and Di are the encoding and decoding functions of the pure strategy
P ; then the new strategy S is

E ′(x) = E(Shiftd(x⊕ r)), (2.7)

D′i(b) = Di+d mod n(b)⊕ ri, (2.8)

where Shiftd(s) substitutes si+d mod n by si in string s. Due to input randomization,
this strategy has the same success probability for all inputs (x, i), namely

Pr[S(x, i) = xi] =
∑

y∈{0,1}n

n−1∑
j=0

1

2n · n
Pr[P(y, j) = yj] = Prη[P(y, j) = yj], (2.9)

coinciding with the average success probability of the pure strategy P .

Now we will show that inequality (2.6) becomes an equality when µ0 = η,
meaning that the uniform distribution η is the “hardest”.

Lemma 2. The minimum of (2.4) is reached at the uniform distribution η, i.e.,

min
µ

max
P

Prµ[P(x, i) = xi] = max
P

Prη[P(x, i) = xi]. (2.10)

Proof. From the previous Lemma we know that there exists a strategy with SR S0

such that
min
x,i

Pr[S0(x, i) = xi] = max
P

Prη[P(x, i) = xi] (2.11)

(S0 is obtained from the best pure strategy by prepending it with input random-
ization). However, among all strategies with SR there might be one that is better
than S0, thus

max
S

min
x,i

Pr[S(x, i) = xi] ≥ max
P

Prη[P(x, i) = xi]. (2.12)

But if we put µ0 = η into inequality (2.6), we obtain

max
P

Prη[P(x, i) = xi] ≥ max
S

min
x,i

Pr[S(x, i) = xi], (2.13)

which is the same as (2.12), but with reversed sign. This means that both sides are
actually equal:

max
P

Prη[P(x, i) = xi] = max
S

min
x,i

Pr[S(x, i) = xi]. (2.14)

Applying Yao’s principle to the right hand side of (2.14) we obtain the desired
equation (2.10).

1We will not worry about how Bob obtains a uniformly distributed d from a string of random
bits when n 6= 2k.
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Theorem 1. For any pure strategy P

Prη[P(x, i) = xi] ≤ max
S

min
x,i

Pr[S(x, i) = xi], (2.15)

with equality if and only if P is optimal for the uniform distribution η.

Proof. To obtain the required inequality, do not maximize the left hand side of
equation (2.14), but put an arbitrary P . It is obvious that we will obtain equality
if and only if P is optimal.

This theorem has important consequences—it allows us to consider pure strate-
gies with uniformly distributed input rather than strategies with SR. If we manage
to find the optimal pure strategy, then we can also construct an optimal strategy
with SR using input randomization2. If the pure strategy is not optimal, then we
get a lower bound for the strategy with SR.

2.3 Classical n 7→ 1 RAC

Before considering n 7→ 1 QRACs with shared randomness, we will find an optimal
classical n 7→ 1 RAC with shared randomness and derive bounds for it.

2.3.1 Optimal strategy

According to Theorem 1 we can consider only pure strategies. As a pure strategy
is deterministic, for each input it gives either a correct or a wrong answer. To
maximize the average success probability we must find a pure strategy that gives
the correct answer for as many of the n · 2n inputs as possible—such a strategy we
will call an optimal pure strategy.

Let us first consider the problem of finding an optimal decoding strategy, when
the encoding strategy is fixed. An encoding function E : {0, 1}n 7→ {0, 1} divides
the set of all strings into two parts:

X0 = {x ∈ {0, 1}n | E(x) = 0} ,
X1 = {x ∈ {0, 1}n | E(x) = 1} .

(2.16)

If Bob receives bit b, he knows that the initial string was definitely from the set Xb,
but there is no way for him to tell exactly which string it was. However, if he must
recover only the ith bit, he can check whether there are more zeros or ones among
the ith bits of strings from set Xb. More formally, we can introduce the symbol
N b
i (k) that denotes the number of strings from set Xb that have the bit k in ith

position:
N b
i (k) = |{x ∈ Xb | xi = k}| , (2.17)

2If the encoding function depends only on the Hamming weight of the input string x (e.g.,
majority function) and the decoding function does not depend on i, there is no need to randomize
over i, so n instead of n + log n shared random bits are enough.
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Therefore the optimal decoding strategy Di : {0, 1} 7→ {0, 1} for the ith bit is

Di(b) =

{
0 if N b

i (0) ≥ N b
i (1),

1 otherwise.
(2.18)

Of course, if N b
i (0) = N b

i (1), Bob can output 1 as well. For pure strategies there
are only 4 possible decoding functions for each bit: 0, 1, b, or NOT b. But this is
still quite a lot so we will consider the two following lemmas. The first lemma will
rule out the constant decoding functions 0 and 1.

Lemma 3. For any n there exists an optimal pure classical n 7→ 1 RAC that does
not use constant decoding functions 0 and 1 for any bits.

Proof. We will show that if there exists an optimal strategy that contains constant
decoding functions for some bits, then there also exists an optimal strategy that
does not. Let us assume that there is an optimal strategy with constant decoding
function 0 for the ith bit (the same argument goes through for 1 as well). Then
according to equation (2.18) we have N0

i (0) ≥ N0
i (1) and N1

i (0) ≥ N1
i (1). Note

that N0
i (0) + N1

i (0) = N0
i (1) + N1

i (1) = 2n−1, because xi = 0 in exactly half of all
2n strings. This means that actually N0

i (0) = N0
i (1) and N1

i (0) = N1
i (1). If we

take a look at (2.18) again, we see that in such situation any decoding strategy is
optimal and we can use any non-constant strategy instead.

Lemma 4. For any n there exists an optimal pure classical n 7→ 1 RAC that does
not use decoding function NOT b for any bits.

Proof. We will show that for each pure strategy P that uses negation as the decod-
ing function for the ith bit, there exists a pure strategy P ′ with the same average
case success probability that does not. If P consists of encoding function E and
decoding functions Dj, then P ′ can be obtained from P by inverting the ith bit
before encoding and after decoding:

E ′(x) = E(NOTi x), (2.19)

D′j(b) =

{
NOTDj(b) if j = i,

Dj(b) otherwise,
(2.20)

where NOTi inverts the ith bit of string. It is obvious that P and P ′ have the same
average success probabilities, because if P gives the correct answer for input (x, i)
then P ′ gives the correct answer for input (NOTi x, i). The same holds for wrong
answers.

Theorem 2. The pure classical n 7→ 1 RAC with identity decoding functions and
majority encoding function is optimal.

Proof. According to Lemma 3 and Lemma 4, there exists an optimal pure classical
n 7→ 1 RAC with identity decoding function for all bits. Now we must consider
the other part—finding an optimal encoding given a particular (identity) decoding
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function. It is obvious that in our case optimal encoding must return the majority
of bits:

E ′(x) =

{
0 if |x| < n/2,

1 otherwise,
(2.21)

where |x| is the Hamming weight of string x (the number of ones in it).

2.3.2 Asymptotic bounds

Let us find the exact value of the average success probability for the optimal pure
RAC suggested in Theorem 2. We will separately consider the even and odd cases.

In the odd case (n = 2m+ 1) the average success probability is given by

p(2m+ 1) =
1

(2m+ 1) · 22m+1

(
2

2m+1∑
i=m+1

i

(
2m+ 1

i

))
, (2.22)

where the factor 2 stands for either zeros or ones being the majority, and
(
2m+1
i

)
stands for the number of strings where the given symbol dominates and appears
exactly i times.

In the even case (n = 2m) there are a lot of strings with the same number of
zeros and ones. These strings are bad, because with majority encoding and identity
decoding it is not possible to give the correct answer for more than half of all bits.
The corresponding average success probability is given by

p(2m) =
1

2m · 22m

(
2

2m∑
i=m+1

i

(
2m

i

)
+m

(
2m

m

))
, (2.23)

where the last term stands for the bad strings.
In Appendix A we give a combinatorial interpretation of the sums in (2.22) and

(2.23). Equations (A.1) and (A.2) derived in Appendix A can be used to simplify
p(2m+ 1) and p(2m), respectively. It turns out that both probabilities are equal:

p(2m) = p(2m+ 1) =
1

2
+

1

22m+1

(
2m

m

)
. (2.24)

These two expressions can be combined as follows:

p(n) =
1

2
+

1

2n

(
n− 1⌊
n−1

2

⌋). (2.25)

We can apply Stirling’s approximation [20] m! ≈
(
m
e

)m√
2πm to (2.24) and obtain

p(2m) = p(2m+ 1) ≈ 1

2
+

1

2
√
πm

. (2.26)

If we put m ≈ n
2
, then (2.26) turns to

p(n) ≈ 1

2
+

1√
2πn

. (2.27)
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Figure 2.1: Exact probability of success p(n) for optimal pure classical n 7→ 1 RAC
(black dots) according to (2.24) and its approximate value (dashed line) according
to (2.27). Dotted lines show upper and lower bounds of p(n) for odd and even n
according to inequalities (2.29) and (2.30).

We see that the value of (2.27) approaches 1/2 as n increases. Thus the obtained
codes are not very good for large n, since p = 1/2 can be obtained by guessing. We
will observe a similar (but slightly better) behavior also in the quantum case. The
exact probability (2.24) and its approximation (2.27) are shown in Fig. 2.1.

For odd and even cases asymptotic upper and lower bounds on p(n) can be
obtained using the following inequality [20]:

√
2πn

(n
e

)n
e

1
12n+1 < n! <

√
2πn

(n
e

)n
e

1
12n . (2.28)

For the odd case we have

exp
(

1
12n−11

− 2
6n−6

)√
2π(n− 1)

< p(n)− 1

2
<

exp
(

1
12n−12

− 2
6n−5

)√
2π(n− 1)

, (2.29)

but for the even case

exp
(

1
12n
− 2

6n+1

)
√

2πn
< p(n)− 1

2
<

exp
(

1
12n+1

− 2
6n

)
√

2πn
. (2.30)

All four bounds are shown in Fig. 2.1.
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Chapter 3

Quantum random access codes

3.1 Visualizing a qubit

When dealing with quantum random access codes (at least in the qubit case), it is
a good idea to try to visualize them. We provide two ways.

3.1.1 Bloch sphere representation

A pure qubit state is a column vector |ψ〉 ∈ C2. It can be expressed as a linear
combination |ψ〉 = α |0〉 + β |1〉, where |0〉 =

(
1
0

)
and |1〉 =

(
0
1

)
. The coefficients

α, β ∈ C must satisfy |α|2 + |β|2 = 1. Since the physical state is not affected by the
phase factor (i.e., |ψ〉 and eiφ |ψ〉 are the same states for any φ ∈ R), without the
loss of generality one can write

|ψ〉 =

(
cos θ

2

eiϕ sin θ
2

)
, (3.1)

where 0 ≤ θ ≤ π and 0 ≤ ϕ < 2π (the factor 1/2 for θ in (3.1) is chosen so that
these ranges resemble the ones for spherical coordinates in R3).

For almost all states |ψ〉 there is a unique way to assign the parameters θ and
ϕ. The only exceptions are states |0〉 and |1〉, that correspond to θ = 0 and
θ = π, respectively. In both cases ϕ does not affect the physical state. Note that
the spherical coordinates with latitude θ and longitude ϕ have the same property,
namely—the longitude is not defined at poles. This suggests that the state space
of a single qubit is topologically a sphere.

Indeed, there is a one-to-one correspondence between pure qubit states and the
points on a unit sphere in R3. This is called the Bloch sphere representation of a
qubit state. The Bloch vector for state (3.1) is r = (x, y, z), where the coordinates
(see Fig. 3.1) are given by 

x = sin θ cosϕ,

y = sin θ sinϕ,

z = cos θ.

(3.2)
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Figure 3.1: Angles θ and ϕ of the Bloch
vector corresponding to state |ψ〉.
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Figure 3.2: Geometric interpretation of
orthogonal measurement.

Given the Bloch vector r = (x, y, z), the coefficients of the corresponding state
|ψ〉 = α |0〉+ β |1〉 can be found as follows [19, pp. 102]:

α =

√
z + 1

2
, β =

x+ iy√
2(z + 1)

(3.3)

with the convention that (0, 0,−1) corresponds to α = 0 and β = 1.
The density matrix of a pure state |ψ〉 is defined as ρ = |ψ〉〈ψ|. For the state

|ψ〉 in (3.1) we have

ρ =
1

2

(
1 + cos θ e−iϕ sin θ
eiϕ sin θ 1− cos θ

)
=

1

2
(I + xσx + yσy + zσz) , (3.4)

where (x, y, z) are the coordinates of the Bloch vector r given in (3.2) and

I =

(
1 0
0 1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(3.5)

are called Pauli matrices. We can write (3.4) more concisely as

ρ =
1

2
(I + r · σ) (3.6)

where r = (x, y, z) and σ = (σx, σy, σz).
If r1 and r2 are the Bloch vectors of two pure states |ψ1〉 and |ψ2〉, then

|〈ψ1|ψ2〉|2 = Tr(ρ1ρ2) =
1

2
(1 + r1 · r2). (3.7)

This relates the inner product in C2 to the one in R3. Since r1 and r2 are unit
vectors, r1 · r2 = cosα, where α is the angle between r1 and r2.
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An orthogonal measurement M on a qubit can be specified by a set of two
orthonormal states: M = {|ψ0〉 , |ψ1〉}. Orthonormality means that 〈ψi|ψj〉 = δij.
If we measure a qubit that is in state |ψ〉 with measurement M then the outcome
will be either 0 or 1 and the state will “collapse” to |ψ0〉 or |ψ1〉 with probabilities
|〈ψ0|ψ〉|2 and |〈ψ1|ψ〉|2, respectively. Observe that for orthogonal states equation
(3.7) implies r1 · r2 = −1, therefore they correspond to antipodal points on the
Bloch sphere. If we denote the angle between the Bloch vectors of |ψ〉 and |ψ0〉 by
α, then according to (3.7) the probabilities of the outcomes are

p0 =
1

2
(1 + cosα),

p1 =
1

2
(1− cosα).

(3.8)

There is a nice geometrical interpretation of these probabilities. If we project the
Bloch vector corresponding to |ψ〉 on the axes spanned by the Bloch vectors of |ψ0〉
and |ψ1〉 (see Fig. 3.2), then p0 = d1/2 and p1 = d0/2 (note the different indices),
where d0 is the distance between the projection and |ψ0〉, but d1 is the distance
between the projection and |ψ1〉. Observe that vectors on the upper hemisphere
have greater probability to collapse to |ψ0〉, but on lower hemisphere, to |ψ1〉. On
the equator both probabilities are equal to 1

2
.

3.1.2 Unit disk representation

There is another way of visualizing a qubit. Unlike the Bloch sphere representation,
this way of representing a qubit is not known to have appeared elsewhere. The idea
is to use only one complex number to specify a pure qubit state |ψ〉 =

(
α
β

)
∈ C2.

This is possible since |ψ〉 can be written in the form (3.1), which is completely
determined by its second component

β = eiϕ sin
θ

2
. (3.9)

The first component is just
√

1− |β|2 = α. As |β| ≤ 1, the set of all possible qubit

states can be identified with a unit disk in the complex plane (the polar coordinates
assigned to |ψ〉 are (r, ϕ), where r = sin θ

2
). The origin β = 0 corresponds to

|ψ〉 = |0〉, and all points on the unit circle |β| = 1 are identified with |ψ〉 = |1〉,
since eiϕ |1〉 corresponds to the same quantum state for all ϕ ∈ R.

The relation between the unit disk representation and the Bloch sphere repre-
sentation can be visualized as follows:

• the unit disk is obtained by puncturing the Bloch sphere at its South pole
and flattening it,

• the Bloch sphere is obtained by gluing together the boundary of the unit disk.

It is much harder to visualize how a unitary transformation acts in the unit disk
representation. Let us consider a simple example.
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Figure 3.3: Curves of constant θ and ϕ before (on the left) and after the Hadamard
transformation (on the right). Initially the curves of constant θ are concentric
circles, but after the transformation they appear as deformed circles around both
poles. The curves of constant ϕ transform form radial rays to “field lines” con-
necting both poles. The image on the left appears to have only the North pole |0〉,
since the Bloch sphere is punctured at the South pole |1〉 which must be identified
with the boundary of the unit disk. The “left pole” and “right pole” in the image
on the right correspond to the states |1〉 and |0〉, respectively.
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Example. Let us consider the action of the Hadamard gate H = 1√
2

(
1 1
1 −1

)
in the

unit disk representation. Note that H2 = I thus H is an involution (self-inverse).
It acts on the standard basis states as follows:

H |0〉 = 1√
2
|0〉+ 1√

2
|1〉 = |+〉 , (3.10)

H |1〉 = 1√
2
|0〉 − 1√

2
|1〉 = |−〉 . (3.11)

The way H transforms the curves of constant θ and ϕ is shown in Fig. 3.3. From
equation (3.10) we see that the origin β = 0 corresponding to |0〉 is mapped to the
“right pole” β = 1√

2
corresponding to |+〉 (and vice versa). Recall that all points

on the boundary of the unit disk in Fig. 3.3 (on the left) are identified with |1〉.
Thus equation (3.11) tells us that the unit circle |β| = 1 is mapped to the “left
pole” β = − 1√

2
in Fig. 3.3 (on the right) corresponding to |−〉 (and vice versa).

This means that |−〉 is mapped to the boundary of the unit disk in Fig. 3.3 (on the
right).

Since we use only one complex number β to represent a quantum state, a finite
set of quantum states {β1, β2, . . . , βn} can be represented by a polynomial

c (β − β1)(β − β2) · · · (β − βn) (3.12)

whose roots are βi (here c 6= 0 is arbitrary). We will use this representation in
Sects. 3.3 and 4.1 to describe the qubit states whose Bloch vectors are the vertices
of certain polyhedra. It is surprising that for those states the values of c can be
chosen so that the resulting polynomials have integer coefficients.

3.2 Types of quantum encoding-decoding strate-

gies

Let us now consider the quantum analogue of a pure strategy.

Definition. A pure quantum n 7→ 1 encoding-decoding strategy is an ordered tu-
ple (E,M1, . . . ,Mn) that consists of encoding function E : {0, 1}n 7→ C2 and n
orthogonal measurements: Mi = {|ψi0〉 , |ψi1〉}.

If Alice encodes the string x with function E, she obtains a pure qubit state
|ψ〉 = E(x). When Bob receives |ψ〉 and is asked to recover the ith bit of x, he
performs the measurement Mi. The probability that Bob recovers xi correctly is
equal to

p(x, i) =
∣∣〈ψixi

∣∣ψ〉∣∣2 . (3.13)

As in the classical setting, we can allow Alice and Bob to have probabilistic
quantum strategies without cooperation. Though we will not need it, mixed quan-
tum strategies can be defined in complete analogy with mixed classical strategies.
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Definition. A mixed quantum n 7→ 1 encoding-decoding strategy is an ordered tuple
(PE, PM1 , . . . , PMn) of probability distributions. PE is a distribution over encoding
functions E and PMi

are probability distributions over orthogonal measurements of
qubit.

The main objects of our research are quantum strategies with cooperation, i.e.,
with shared randomness. They are defined in complete analogy with the classical
ones.

Definition. A quantum n 7→ 1 encoding-decoding strategy with shared randomness
is a probability distribution over pure quantum strategies.

We would like to point out two very important things about quantum strategies
with shared randomness. The first thing is that all statements about classical
strategies with SR in Sect. 2.2 are valid for quantum strategies as well (the only
difference is that “pure strategy” now means “pure quantum strategy” instead of
“pure classical strategy” and “strategy with SR” means “quantum strategy with
SR” instead of “classical strategy with SR”). The most important consequence of
this observation is that Theorem 1 is valid also for quantum strategies with SR.
This means that the same technique of obtaining the upper bound can be used in
the quantum case, i.e., we can consider the average success probability of a pure
quantum strategy instead of the worst case success probability of the quantum
strategy with SR.

The second thing is that the quantum strategy with SR is the most powerful
quantum encoding-decoding strategy when both kinds of classical randomness (local
and shared) is allowed. However, it is not the most general strategy, since it cannot
be used to simulate certain classical strategies, e.g., the ones with fixed output.
However, it turns out that the ability to simulate such strategies does not give any
advantage (see Sect. 3.7 and Appendix B).

3.3 Known quantum RACs

In [2, 3] it has been shown that for 2 7→ 1 classical RACs in the mixed setting
the decoding party cannot do better than guessing, i.e., the worst case success
probability cannot exceed 1/2. However, if quantum states can be transmitted,
there are pure quantum 2 7→ 1 and 3 7→ 1 schemes [2, 3]. This clearly indicates
the advantages of quantum RACs. On the other hand, a quantum 4 7→ 1 scheme
cannot exist [5]. We will review these results in the next three sections.

3.3.1 The 2 7→ 1 QRAC

The 2 7→ 1 QRAC is described in [2, 3, 5]. The main idea is to use two mutually
orthogonal pairs of antipodal Bloch vectors for measurement bases. For example,
let M1 and M2 be the measurements along the x and y axes, respectively. The cor-
responding Bloch vectors are v1 = (±1, 0, 0) and v2 = (0,±1, 0). The measurement
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Figure 3.5: Bloch sphere representation
of encoding for 3 7→ 1 quantum random
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bases are

M1 =

{
1√
2

(
1
1

)
,

1√
2

(
1
−1

)}
, (3.14)

M2 =

{
1√
2

(
1
i

)
,

1√
2

(
1
−i

)}
. (3.15)

The planes orthogonal to the x and y axes cut the Bloch sphere into four parts.
Note that in each part only one definite string can be encoded (otherwise the
worst case success probability will be less than 1

2
). According to (3.8), all encoding

points must be as far from both planes as possible in order to maximize the worst
case success probability (recall the geometrical interpretation of the measurement
shown in Fig. 3.2). In our case the best encoding states are the vertices of a square
1√
2
(±1,±1, 0) inscribed in the unit circle on the xy plane (see Fig. 3.4). Given a

string x = x1x2, the Bloch vector of the encoding state can be found as follows:

r(x) =
1√
2

(−1)x1

(−1)x2

0

 . (3.16)

The corresponding encoding function is

E(x1, x2) =
1√
2
|0〉+

(−1)x1 + i(−1)x2

2
|1〉 . (3.17)

The success probability is the same for all input strings and all bits to be recovered:

p =
1

2

(
1 + cos

π

4

)
=

1

2
+

1

2
√

2
≈ 0.853553. (3.18)
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3.3.2 The 3 7→ 1 QRAC

It is not hard to generalize the 2 7→ 1 QRAC to a 3 7→ 1 code—just take three
mutually orthogonal pairs of antipodal Bloch vectors, i.e., the vertices of an octa-
hedron [5, 8]. The third pair is v3 = (0, 0,±1) and the corresponding measurement
basis is

M3 =

{(
1
0

)
,

(
0
1

)}
. (3.19)

In this case we have three orthogonal planes that cut the sphere into eight parts and
only one string can be encoded into each part. In this case the optimal encoding
states correspond to the vertices of a cube 1√

3
(±1,±1,±1) inscribed in the Bloch

sphere (see Fig. 3.5). The Bloch vector of the encoding state of string x = x1x2x3

is

r(x) =
1√
3

(−1)x1

(−1)x2

(−1)x3

 . (3.20)

The corresponding encoding function is E(x1, x2, x3) = α |0〉+β |1〉 with coefficients
α and β explicitly given by 

α =

√
1

2
+

(−1)x3

2
√

3
,

β =
(−1)x1 + i(−1)x2√

6 + 2
√

3(−1)x3

.

(3.21)

In fact, the coefficients β are exactly the eight roots of the polynomial1

36β8 + 24β4 + 1 (3.22)

This code also has the same success probability in all cases:

p =
1

2
+

1

2
√

3
≈ 0.788675. (3.23)

3.3.3 Impossibility of the 4 7→ 1 QRAC

Hayashi et al. [5] have shown that 2 7→ 1 and 3 7→ 1 codes discussed above cannot
be generalized for 4 (and hence more) encoded bits. The reason is simple—it is not
possible to cut the Bloch sphere into 16 parts with 4 great circles (see the proof
below). Thus the number of strings will exceed the number of parts, hence at least
two strings must be encoded in the same part. This makes the worst case success
probability drop below 1

2
.

Let us consider how many parts can be obtained by cutting a sphere with 4
great circles. Without loss of generality we can assume that the first great circle

1The unit disk representation of a quantum state and the representation of a finite set of
quantum states using a polynomial was discussed in Sect. 3.1.2.
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Figure 3.6: Gnomonic projection transforms great circles to lines and vice versa.

Figure 3.7: Cutting the plane with 3
lines into 7 parts.

Figure 3.8: Cutting the sphere with 4
great circles into 14 parts (seven diamet-
rically opposite parts are equal).

coincides with the equator. We use the gnomonic projection (from the center of
the sphere) to project the remaining three circles to a plane tangent to the South
pole. Note that great circles are transformed into lines and vice versa (see Fig. 3.6),
thus we will obtain three lines. Also note that each region in the plane corresponds
to two (diametrically opposite) regions on the sphere. It is simple to verify that
three lines cannot cut the plane into more than 7 parts (see Fig. 3.7). Thus the
sphere cannot be cut into more than 14 parts with four great circles.2 An example
achieving the upper bound is shown in see Fig. 3.8 (see also Figs. 4.15 and 4.16).
Using essentially the same argument for generalized Bloch vectors Hayashi et al.
[5] show that 22m p7→ m QRACs with p > 1/2 do not exist for all m ≥ 1. The
generalized Bloch vector will be briefly introduced in Sect. 5.3.

2In general, if we have n great circles on the sphere, the maximal number of parts we can
obtain is twice what we can obtain by cutting the plane with n − 1 lines. If each line we draw
intersects all previous lines and no three lines intersect at the same point, the sphere is cut into
n(n− 1) + 2 parts after the inverse gnomonic projection.
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3.4 Optimal encoding for given decoding strat-

egy

We just reviewed the known results on pure n 7→ 1 quantum random access codes.
From now on we will consider QRACs with shared randomness. In this section we
will show how to find the optimal encoding strategy for a given decoding strategy.
More precisely, we will show that the measurement directions of a QRAC with SR
determine the corresponding optimal encoding states in a simple way.

An orthogonal measurement for the ith bit is specified by antipodal points on
the Bloch sphere: Mi = {vi,−vi}. Let rx be the Bloch vector that corresponds to
the quantum state in which string x ∈ {0, 1}n is encoded. According to equations
in (3.8) the success probability for input (x, i) is

p(x, i) =
1

2

(
1 + (−1)xivi · rx

)
(3.24)

and the average success probability is given by

p =
1

2n · n
∑

x∈{0,1}n

n∑
i=1

1

2

(
1 + (−1)xivi · rx

)
=

1

2

(
1 +

1

2n · n
∑

x∈{0,1}n
rx ·

n∑
i=1

(−1)xivi︸ ︷︷ ︸
Sv,r

)
.

(3.25)

In order to maximize the probability p, we only need to maximize Sv,r in equation
(3.25) over all possible measurements vi and encodings rx (in total n + 2n unit
vectors in R3). We will denote the maximum of Sv,r by S(n):

S(n) = max
{vi},{rx}

Sv,r = max
{vi}

∑
x∈{0,1}n

max
rx

rx ·
n∑
i=1

(−1)xivi. (3.26)

If we define

vx =
n∑
i=1

(−1)xivi, (3.27)

then it is obvious that the scalar product rx · vx in (3.26) will be maximized when
rx is chosen along the same direction as vx, i.e. rx = vx/ ‖vx‖ when ‖vx‖ 6= 0. In
this case we have rx · vx = ‖vx‖ and

S(n) = max
{vi}

∑
x∈{0,1}n

∥∥∥∥∥
n∑
i=1

(−1)xivi

∥∥∥∥∥ . (3.28)

Therefore we only need to maximize over all possible measurements succinctly rep-
resented by n unit vectors vi ∈ R3, because the optimal encoding is already deter-
mined by measurements (see Sect. 4.1 for some numerical results obtained in this
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way). When the value of S(n) is found, then according to (3.25) the corresponding
probability is

p(n) =
1

2

(
1 +

S(n)

2n · n

)
. (3.29)

We can observe a connection between quantum and classical RACs with SR.
Assume that Marge and Homer3 have to implement n 7→ 1 QRAC with SR and
are deciding what strategies to use—Homer is responsible for choosing the mea-
surements, but Marge has to choose how to encode the input string. Once they
have decided, they have to follow the agreement and cannot cheat. Unfortunately,
Homer is foolish and he proposes to measure all bits in the same basis. Luckily
Marge is clever enough to choose the optimal encoding for Homer’s measurements.
According to the discussion above, she has to use the majority encoding function.
Thus the obtained QRAC is as good as an optimal classical RAC discussed in
Sect. 2.3.1, Theorem 2.

It looks plausible that using the same measurement for all bits is the worst
decoding strategy. However, we have not proved this, so we leave it as a conjecture:

Conjecture. For any choice of measurements there is an encoding such that the
resulting n 7→ 1 quantum RAC with SR is at least as good as the optimal n 7→ 1
classical one.

3.5 Relation to a random walk in R3

QRACs with shared randomness are related to random walks in R3. This relation
can be seen by suitably interpreting equations (3.28) and (3.29). Let us consider
an n 7→ 1 QRAC with SR whose measurement directions are given by unit vectors
{vi} and let us assume that the corresponding optimal encoding for these measure-
ments is used as described in the previous section. Then we can write the success
probability p(v1, . . . ,vn) of this QRAC in the following suggestive form:

p(v1, . . . ,vn) =
1

2

(
1 +

1

n
d(v1, . . . ,vn)

)
, (3.30)

where

d(v1, . . . ,vn) =
1

2n

∑
a∈{1,−1}n

∥∥∥∥∥
n∑
i=1

aivi

∥∥∥∥∥ (3.31)

is the average distance traveled by a random walk whose ith step is vi or −vi, each
with probability 1/2. For example, v1 = v2 = · · · = vn corresponds to a random
walk on a line and d(v1, . . . ,vn) is the average distance traveled after n steps of
this walk. Recall from the previous section that this choice of {vi} corresponds to
the optimal classical RAC and we conjecture that this is the worst possible choice.
Similarly, if we choose roughly one third of vectors {vi} along each coordinate

3In this scenario it is more convenient to replace Alice and Bob with Marge and Homer from
The Simpsons.
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axis, we obtain a random walk in a cubic lattice and d(v1, . . . ,vn) is the average
distance traveled when roughly n/3 steps are performed along each coordinate axis
(see Sect. 3.8.2).

In Sects. 3.8 we will use this relation between random access codes and random
walks to prove a lower bound for the success probability of n 7→ 1 QRACs with SR.

3.6 Upper bound

In this section we will derive an upper bound for S(n). For this purpose we rewrite
the equation (3.28) in the following form:

S(n) = max
{vi}

Sv (3.32)

where

Sv =
∑

a∈{1,−1}n

∥∥∥∥∥
n∑
i=1

aivi

∥∥∥∥∥ (3.33)

(for convenience we take the sum over the set {1,−1}n instead of {0, 1}n).

Lemma 5. For any unit vectors v1, . . . ,vn we have∑
a1,...,an∈{1,−1}

‖a1v1 + · · ·+ anvn‖2 = n · 2n. (3.34)

Proof. For n = 1 we have∑
a1∈{1,−1}

‖a1v1‖2 = ‖v1‖2 + ‖−v1‖2 = 2. (3.35)

Let us assume that equation (3.34) holds for n = k. Then for n = k + 1 we have∑
a1,...,ak,ak+1∈{1,−1}

‖a1v1 + · · ·+ akvk + ak+1vk+1‖2 . (3.36)

If we write out the sum over ak+1 explicitly, we obtain∑
a1,...,ak∈{1,−1}

(
‖a1v1 + · · ·+ akvk + vk+1‖2 + ‖a1v1 + · · ·+ akvk − vk+1‖2

)
.

(3.37)
We can use the parallelogram identity

‖u1 + u2‖2 + ‖u1 − u2‖2 = 2
(
‖u1‖2 + ‖u2‖2

)
, (3.38)

which holds for any two vectors u1 and u2, to simplify the sum as follows:∑
a1,...,ak∈{1,−1}

2
(
‖a1v1 + · · ·+ akvk‖2 + ‖vk+1‖2

)
. (3.39)

We know that vk+1 is a unit vector and we have assumed that (3.34) holds for
n = k; therefore (3.39) simplifies to 2

(
k · 2k + 2k

)
= (k + 1) · 2k+1.
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We will use the previous lemma to obtain an upper bound for S2
v defined in

(3.33). According to (3.32) this will give us an upper bound for S(n) as well.

Lemma 6. For any set of unit vectors {vi}ni=1, the inequality Sv ≤
√
n · 2n holds.

Proof. We can interpret the first sum in equation (3.33) as an inner product with
(1, . . . , 1) ∈ R2n

. Then the Cauchy-Schwarz inequality x · y ≤ ‖x‖ ‖y‖ says that

Sv ≤
√

2n

√√√√ ∑
a∈{1,−1}n

∥∥∥∥∥
n∑
i=1

aivi

∥∥∥∥∥
2

=
√

2n
√
n · 2n =

√
n · 2n, (3.40)

where Lemma 5 was used to obtain the first equality.

Theorem 3. For any n
p7→ 1 QRAC with shared randomness, p ≤ 1

2
+ 1

2
√
n

.

Proof. From Lemma 6 we have Sv ≤
√
n · 2n. From equation (3.32) we see that the

same upper bound applies to S(n). Putting this into (3.29) we get

p ≤ 1

2
+

1

2
√
n
.

In particular, this means that the known 2 7→ 1 and 3 7→ 1 QRACs discussed
in Sect. 3.3 cannot be improved even if shared randomness is allowed.

The intuition behind this upper bound is as follows. If instead of R3 the Bloch
vector of a qubit state would be in Rn, we could choose all n measurements to
be mutually orthogonal. For example, we could choose the vectors forming mea-
surement bases to be the vertices of the cross polytope, i.e., all permutations of
(±1, 0, . . . , 0). The optimal encoding corresponding to this choice are the vertices
of the hypercube, i.e., points (±1,±1, . . . ,±1), thus all terms in equation (3.33) are

equal to
√
n and sum to 2n

√
n, so the probability (3.29) is 1

2
(1 + 2n√n

2nn
) = 1

2
+ 1

2
√
n
.

Since we have only three dimensions, the actual probability should not be larger.

3.7 General upper bound

Let us prove an analogue of Theorem 3 for a more general model, because quantum
mechanics allows us to consider more general quantum states and measurements.
Namely, Alice can encode her message into a mixed state instead of a pure state
and Bob can use a POVM measurement instead of an orthogonal measurement
to recover information. A mixed state is just a probability distribution over pure
states, so it does not provide a more general encoding model. In contrast, a POVM
measurement provides a more general decoding model. In fact, there is another
reason to extend the model.

Example. It is not possible to construct a pure QRAC (as defined in Sect. 3.2)
that simulates the following pure classical 2 7→ 1 RAC:

• encoding: encode the first bit,
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• decoding: if the first bit is requested, output the received bit; if the second
one is requested—output 0 no matter what is received.

To recover the first bit with certainty, Alice and Bob have to agree on two antipo-
dal points on the Bloch sphere, where the information is encoded. Unfortunately
the second bit will cause a problem—it is not possible to choose an orthogonal
measurement of a qubit in an unknown state, so that the result is always the same.

This example suggests that the model of pure quantum encoding-decoding
strategies introduced in Sect. 3.2 should be extended in one way or the other.
It is obvious that a constant decoding function (0 or 1) can be implemented using a
single-outcome POVM measurement. However, it turns out that in the qubit case
a two-outcome POVM measurement can be replaced by a probability distribution
over orthogonal measurements and constant decoding functions (see appendix B).
This means that both extensions are equivalent. For simplicity we choose to extend
the model by allowing constant decoding functions, thus Bob can either perform
an orthogonal measurement or use a constant decoding function. The goal of this
section is to show that constant decoding functions do not give any advantage.

Definition. An enhanced orthogonal measurement is either an orthogonal mea-
surement or one that always gives the same answer.

Definition. An enhanced pure quantum n 7→ 1 encoding-decoding strategy is an
ordered tuple (E,M1, . . . ,Mn) consisting of encoding function E : {0, 1}n 7→ C2

and n decoding functions Mi that are enhanced orthogonal measurements.

Definition. An enhanced quantum encoding-decoding strategy with SR is a proba-
bility distribution over enhanced pure quantum strategies.

Now it is straightforward to construct a pure quantum RAC for the previous
example. In fact, now any classical RAC (either pure, mixed or with SR) can be
simulated by the corresponding type of a quantum RAC.

There is no need to further extend the model of enhanced QRACs with SR by
adding other types of classical randomness. For example, a probabilistic combina-
tion of POVMs does not provide a more general measurement, because it can be
simulated by a probabilistic combination of enhanced orthogonal measurements.
The same holds for probabilistic post-processing of the measurement results (which
can be simulated by a probabilistic combination of enhanced orthogonal measure-
ments as shown in Appendix B). Therefore enhanced QRACs with SR constitute
the most general model when any kind of classical randomness is allowed.

One might suspect that the upper bound obtained in Theorem 3 does not hold
for this model, but this is not the case.

Theorem 4. For any n
p7→ 1 enhanced QRAC with SR, p ≤ 1

2
+ 1

2
√
n

.

Proof. According to Yao’s principle and Theorem 1, we can consider the average
success probability of pure enhanced QRACs instead. It suffices to rule out the
constant decoding functions. More precisely, we have to show that QRACs having
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a constant decoding function for some bit give a smaller upper bound than those
without it. In fact, we are proving a quantum analogue of Lemma 3 from Sect. 2.3.1.

We will use induction on n. The case n = 1 is trivial—a pure enhanced QRAC
with a constant decoding function has average success probability 1

2
< 1. Let us

assume that for some n = k − 1 ≥ 1 the constant decoding functions do not give
any benefit. We now prove that the same holds for n = k. Let us assume that
the constant decoding function 0 is used for the kth bit. The average case success
probability is

p(k) =
1

2k · k
∑

x∈{0,1}k

(
k−1∑
i=1

p(x, i) + δ0,xk

)
, (3.41)

where p(x, i) is the success probability (3.13) for the input (x, i) where i ≤ k − 1
and δ0,xk

is the probability that the decoding function 0 gives a correct answer for
the kth bit. The last bit can be ignored during the encoding and decoding of other
bits:

p(k) =

 1

2k · k
∑

x∈{0,1}k−1

2
k−1∑
i=1

p(x, i)

+
1

2k
(3.42)

=
k − 1

k

 1

2k−1 · (k − 1)

∑
x∈{0,1}k−1

k−1∑
i=1

p(x, i)

+
1

2k
. (3.43)

Note that the bracketed expression in (3.43) is the success probability p(k − 1) of
a shorter QRAC. Therefore

p(k) =
k − 1

k
· p(k − 1) +

1

2k
. (3.44)

Now we can apply the inductive hypothesis:

p(k) ≤ k − 1

k

(
1

2
+

1

2
√
k − 1

)
+

1

2k
=

1

2
+

√
k − 1

2k
<

1

2
+

1

2
√
k
, (3.45)

completing the proof. Thus the upper bound obtained in Theorem 3 holds for the
general model as well.

Observe again that for n = 2 and n = 3 this upper bound matches equations
(3.18) and (3.23), respectively. This means that the known 2 7→ 1 and 3 7→ 1 quan-
tum random access codes with pure encoding-decoding strategies (see Sects. 3.3.1
and 3.3.2, respectively) are optimal even among enhanced strategies with SR. For
n = 4 we get p ≤ 3

4
.

A similar upper bound was recently obtained by Ben-Aroya et al. [16] for n
p7→ m

QRACs, where k bits must be recovered. They allow randomized strategies without
shared randomness. In particular, they show that for any η > 2 ln 2 there exists a
constant Cη such that for n� k

p ≤ Cη

(
1

2
+

1

2

√
ηm

n

)k
. (3.46)
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It might be possible to generalize our upper bound (3.45) to obtain something
similar to (3.46).

3.8 Lower bounds

In the next two sections we will describe two constructions of n 7→ 1 QRAC with SR
for all n ≥ 1. These constructions provide a lower bound on the success probability.
They use random and orthogonal measurements, respectively. In the first case it
is hard to compute the exact success probability even for small values of n, but
we will obtain an asymptotic expression. However, in the second case we do not
know the asymptotic success probability, but can easily compute the exact success
probability for small n.

3.8.1 Lower bound by random measurements

We now turn to lower bound for p. A lower bound for QRACs with shared ran-
domness can be obtained by randomized encoding. Alice and Bob can use the
shared random string to agree on some random orthogonal measurement for each
bit. Each of these measurement bases can be specified by antipodal points on the
Bloch sphere (see Sect. 3.1.1). These points can be sampled by using some sphere
point picking method [21], near uniformly given enough shared randomness. The
chosen measurements determine the optimal encoding scheme (see Sect. 3.4) which
is known to both sides.

The expected success probability of randomized n 7→ 1 QRAC similarly to (3.30)
is given by

E(p) =
1

2

(
1 +

1

n
E
{vi}

d(v1, · · · ,vn)

)
(3.47)

where according to equation (3.31)

E
{vi}

d(v1, · · · ,vn) = E
{vi}

 1

2n

∑
a∈{1,−1}n

∥∥∥∥∥
n∑
i=1

aivi

∥∥∥∥∥
 (3.48)

=
1

2n

∑
a∈{1,−1}n

E
{vi}

∥∥∥∥∥
n∑
i=1

aivi

∥∥∥∥∥ . (3.49)

Each a ∈ {1,−1}n influences the direction of some vectors vi, but the resulting
set {aivi} is still uniformly distributed. Therefore the expected value in equation
(3.49) does not depend on a and we have

E
{vi}

d(v1, · · · ,vn) = E
{vi}

∥∥∥∥∥
n∑
i=1

vi

∥∥∥∥∥ . (3.50)

This expression has a very nice geometrical interpretation—it is the average dis-
tance traveled by a particle that performs n steps of unit length each in a random
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direction. This distance can be found by evaluating the following integral:

1

(4π)n

∫ π

θ1=0

∫ 2π

ϕ1=0

· · ·
∫ π

θn=0

∫ 2π

ϕn=0

∥∥∥∥∥∥
n∑
i=1

sin θi cosϕi
sin θi sinϕi

cos θi

∥∥∥∥∥∥
n∏
i=1

sin θi dθi dϕi. (3.51)

Unfortunately it is very hard to evaluate it even numerically, since the integrand is
highly oscillatory. An alternative approach is to directly simulate a random walk
by sampling points uniformly from the sphere [21]. For small values of n the success
probability (3.47) averaged over 106 simulations is given in Table 3.1. Luckily, we
have the following asymptotic result:

Theorem 5 (Chandrasekhar [22, pp. 14], Hughes [23, pp. 91]). The probability
density to arrive at point R after performing n� 1 steps of random walk is

W (R) ≈
(

3

2πn

)3/2

exp

(
−3 ‖R‖2

2n

)
. (3.52)

Theorem 6. For every n� 1 there exists an n
p7→ 1 QRAC with expected success

probability p ≈ 1
2

+
√

2
3πn

.

Proof. Because of the spherical symmetry of the probability density in formula
(3.52), the average distance traveled after n� 1 steps of random walk is given by

E
{vi}

∥∥∥∥∥
n∑
i=1

vi

∥∥∥∥∥ ≈
∫ ∞

0

R ·W (R) · 4πR2 dR = 2

√
2n

3π
. (3.53)

From (3.50) and (3.47) we obtain

E(p) ≈ 1

2
+

√
2

3πn
, (3.54)

which gives the desired lower bound.

Formally this lower bound holds only for large n. However, if one estimates
the actual value of (3.53) by random sampling one can see that the asymptotic
expression (3.54) is indeed smaller than the actual value (see Table. 3.1).

3.8.2 Lower bound by orthogonal measurements

According to the upper bound obtained in Sect. 3.6 the known 2 7→ 1 and 3 7→ 1
QRACs (see Sect. 3.3) are optimal. This suggests that orthogonal measurements
can be used to construct good codes. Unfortunately this idea cannot be directly
applied when n > 3, since in R3 there are only three mutually orthogonal directions.
However, if we choose roughly one third of all measurements along each coordinate
axis, we will get quite a lot of mutually orthogonal measurement pairs.

28



Let v1 = (1, 0, 0), v2 = (0, 1, 0), v3 = (0, 0, 1), and ∀i : vi+3 ≡ vi. According to
equation (3.30) in Sect. 3.5 the success probability of this n 7→ 1 QRAC with SR
is related to the average distance (3.31) traveled by a random walk. For our choice
of measurement directions vi the random walk takes place in a cubic lattice and
consists of roughly n/3 steps along each coordinate axis. Thus we can simplify the
equation (3.31) for the average distance traveled to avoid having an exponential
number of terms in it:

d(v1, . . . ,vn) =

1

2n

x∑
i=0

y∑
j=0

z∑
k=0

(
x

i

)(
y

j

)(
z

k

)√
(x− 2i)2 + (y − 2j)2 + (z − 2k)2, (3.55)

where x+ y + z = n and each of x, y, z is roughly n/3. The corresponding success
probability can be obtained by plugging this expression in equation (3.30).

This lower bound is better than the one obtained in the previous section using
random measurements and it also requires less shared randomness. The difference
of both lower bounds is shown in Fig. 3.9. The periodic pattern of length 6 in this
picture can be explained as follows. When n is a multiple of 3, the same number of
steps of a random walk is performed along each coordinate axis (this explains the
factor 3). To explain the factor 2, let us consider a random walk on a line, i.e., one
of the three coordinate axis. The distinction between odd an even number of steps
of such a walk is that the probability distribution after an even number of steps is
peaked at the origin, but this peak has no contribution whatsoever to the average
distance traveled. This intuition suggests that it should be especially hard to beat
this lower bound when n is of the form 6k + 3.

Random measurements Orthogonal measurements
n Asymptotic Sampling Numerical Exact
2 0.825735 0.8333 0.853553 1

2
+ 1

2
√

2

3 0.765962 0.7708 0.788675 1
2

+ 1
2
√

3

4 0.730329 0.7333 0.741481 1
2

+ 1+
√

3
8
√

2

5 0.706013 0.7082 0.711803 1
2

+ 2+
√

5
20

6 0.688063 0.6897 0.686973 1
2

+ 1+
√

3+
√

6
16
√

3

7 0.674113 0.6754 0.677458 1
2

+ 15+6
√

5+2
√

13+
√

17
224

8 0.662868 0.6638 0.666270 1
2

+ 12+9
√

3+6
√

5+6
√

7+
√

11
256
√

2

9 0.653553 0.6544 0.656893 1
2

+ 10
√

3+9
√

11+3
√

19
384

Table 3.1: Comparison of n 7→ 1 QRACs with SR that use random and orthogonal
measurements, respectively. For the first code we give the success probability ac-
cording to the asymptotic expression (3.54) and a numerical value obtained by 106

random samples. For the second code we give both the numerical and the exact
value of the success probability according to equation (3.55).

29



à

à

à

à

à

à

à à à

à

à

à

à à à
à à

à
à à à à à

à à à à à à à

3 6 9 12 15 18 21 24 27 30
n

0.00

0.01

0.02

0.03

0.04

Figure 3.9: The difference of both lower bounds for QRACs with SR. Black squares
correspond to the bound obtained using measurements along coordinate axes and
the horizontal line corresponds to the asymptotic bound (3.54) using random mea-
surements (see Sects. 3.8.1 and 3.8.2, respectively). The first bound is better, except
for n = 6 (notice a periodic pattern of length 6).
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Chapter 4

Constructions of QRACs with SR

It is plausible that one can do better than the lower bound obtained above, which
used random measurements. In this section we will consider several constructions
of quantum random access codes with shared randomness for some particular values
of n. First, in Sect. 4.1 we will describe numerically obtained QRACs. Then, in
Sect. 4.2 we will construct new QRACs with high degree of symmetry. In Sect. 4.3
we will compare both kinds of codes and draw some conclusions.

4.1 Numerical results

n Section Probability
2 4.1.1 0.853553
3 4.1.1 0.788675
4 4.1.2 0.741481
5 4.1.3 0.713578
6 4.1.4 0.694046
7 0.678638
8 0.666633
9 4.1.5 0.656893

10 0.648200
11 0.641051
12 0.634871

Table 4.1: The success probabilities of numerical n 7→ 1 QRACs.

In this section we will discuss some particular n 7→ 1 QRACs with shared ran-
domness for several small values of n. These codes were obtained using numerical
optimization. The optimization must be performed only over all possible measure-
ments, because in Sect. 3.4 we showed that the choice of measurements determines
the optimal encoding in a simple way. Each measurement is specified by a unit vec-
tor vi ∈ R3. For n 7→ 1 QRAC there are n such vectors and one needs two angles to
specify each of them. Without loss of generality we can assume that v1 = (0, 0, 1)
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due to the rotational symmetry of the Bloch sphere. Thus only 2(n − 1) real pa-
rameters are required to specify all vi and therefore an n 7→ 1 QRAC. To find the
best configuration of measurements vi, one needs to maximize Sv given by (3.33).
According to (3.29) the success probability of the corresponding QRAC is given by

pv =
1

2

(
1 +

Sv

2n · n

)
. (4.1)

This is not a convex optimization problem, since the feasible set (given by ‖vi‖ = 1
for all 1 ≤ i ≤ n) is not convex. Note that it is not convex even if we relax
equalities ‖vi‖ = 1 to inequalities ‖vi‖ ≤ 1. We used the Mathematica’s general-
purpose built-in function NMaximize to solve this problem.

Once the measurements vi are found, one can easily obtain the Bloch vector rx
of the qubit state that must be used to optimally encode the string x. We showed
(see Sect. 3.4) that rx is a unit vector in direction vx, where vx is given by (3.27).
For almost all QRACs that we have found using numerical optimization, the points
rx form a symmetric pattern on the surface of the Bloch ball. Thus we were able
to guess the exact values of rx and vi. However, as in any numerical optimization,
optimality of the resulting codes is not guaranteed.

In order to make the resulting codes more understandable, we depict them in
three dimensions using the following conventions:

• each red point encodes the string indicated,

• each blue point defines the axis of the measurement when the indicated bit is
to be output, and

• for each measurement there is a corresponding (unlabeled) blue great circle
containing states yielding 0 and 1 equiprobably.

More precisely, the blue point with label i defines the basis vector |ψi0〉 corresponding
to the outcome 0 of the ith measurement (see Sect. 3.2). Note that the blue
circles and blue points come in pairs—the vector |ψi0〉 defined by the blue point is
orthogonal to the corresponding circle. As a cautionary note, occasionally, the blue
point for one measurement falls on the great circle of a different measurement (for
example, blue points 1 and 2 in Fig. 4.2 lie on one another’s corresponding circles).
If there are too many red points, we omit the string labels for clarity.

Usually the codes have some symmetry; for example, the encoding points may be
the vertices of a polyhedron. In such cases we show the corresponding polyhedron
instead of the Bloch sphere. We do not discuss 7 7→ 1 and 8 7→ 1 QRACs since
the best numerical results have almost no discernible symmetry. We also do not
discuss the numerical results for n ≥ 10 (see Table 4.1 for success probabilities).
The numerically obtained 10 7→ 1 code is symmetric and resembles 6 7→ 1 code
discussed in Sect. 4.1.4, but the 11 7→ 1 and 12 7→ 1 codes again have almost no
discernible symmetry. Success probabilities of all numerical n 7→ 1 QRACs with
SR are summarized in Table 4.1 and Fig. 4.1.
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Figure 4.1: Success probabilities p(n) of numerical n 7→ 1 QRACs with SR from

Table 4.1. The upper bound 1
2

+ 1
2
√
n

and the lower bound 1
2

+
√

2
3πn

are indicated

by dashed lines (see Sects. 3.7 and 3.8.1, respectively).
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Figure 4.2: The 2 7→ 1 QRAC with SR.a

aFor those who are using a black-and-white
printout: this is how red and blue looks like.

Figure 4.3: The 3 7→ 1 QRAC with SR.

4.1.1 The 2 7→ 1 and 3 7→ 1 QRACs with SR

We used numerical optimization as described above to find 2 7→ 1 and 3 7→ 1 QRACs
with shared randomness and obtained the optimal codes discussed in Sects. 3.3.1
and 3.3.2.

The codes are shown in Fig. 4.2 and 4.3, respectively. In the first case the
encoding points are the vertices of a square and the success probability is

p =
1

2
+

1

2
√

2
≈ 0.853553. (4.2)

In the second case they are the vertices of a cube. The success probability is

p =
1

2
+

1

2
√

3
≈ 0.788675. (4.3)

4.1.2 The 4 7→ 1 QRAC with SR

In Sect. 3.3.3 we discussed the impossibility of a 4 7→ 1 QRAC when Alice and Bob
are not allowed to cooperate. However, a 4 7→ 1 QRAC can be obtained if they
have shared randomness. The particular 4 7→ 1 QRAC with SR discussed here was
found by a numerical optimization. It is a hybrid of the 2 7→ 1 and 3 7→ 1 codes
discussed in Sects. 3.3.1 and 3.3.2, respectively.

The measurements are performed in the bases (M1,M2,M3,M3), where M1,
M2, and M3 are the same as in the 3 7→ 1 case (note that the last two bits are
measured in the same basis, namely M3). These bases are given by (3.14), (3.15),
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Figure 4.4: The 4 7→ 1 QRAC with SR.

and (3.19), respectively. The points that correspond to an optimal encoding for
these bases are the vertices of a regular square 1√

2
(±1,±1, 0) in the xy plane and

a cube 1√
6
(±1,±1,±2) that is stretched in the z direction (see the Bloch sphere in

Fig. 4.4). The Bloch vector for the string x = x1x2x3x4 is explicitly given by

r(x) =
1√
6

(−1)x1
(
1− (1−

√
3) |x3 − x4|

)
(−1)x2

(
1− (1−

√
3) |x3 − x4|

)
(−1)x3 + (−1)x4

 . (4.4)

The encoding function can be described as follows:

• if x3 = x4, use the usual 3 7→ 1 QRAC with an emphasis on x3 to encode the
string x1x2x3,

• if x3 6= x4—encode only x1x2 using the usual 2 7→ 1 QRAC.

In the 3 7→ 1 scheme the probability to recover x3 must be increased by stretching
the cube along the z axis, because x3 equals x4 and therefore it is of greater value
than x1 or x2.

This 4 7→ 1 QRAC can also be seen as a combination of two 3 7→ 1 QRACs: the
string x1x2x3 is encoded into the vertices of a smaller cube inscribed in a half of
the Bloch ball (the vertices that lie within the sphere are projected to its surface).
The last bit x4 indicates in which half the smaller cube lies (the upper and lower
hemispheres correspond to x4 = 0 and 1, respectively).

35



Figure 4.5: The 5 7→ 1 QRAC with SR.

The qubit state is explicitly given by E(x1, x2, x3, x4) = α |0〉+ β |1〉, where
α =

√
1

2
+

(−1)x3 + (−1)x4

2
√

6
,

β =
(−1)x1 + i(−1)x2√

4
(
3− 2 |x3 − x4|

)
+ 2
√

6
(
(−1)x3 + (−1)x4

) . (4.5)

The 16 values for β are exactly the sixteen roots of the polynomial (recall Sect. 3.1.2)

2304β16 + 3072β12 + 1120β8 + 128β4 + 1. (4.6)

If a shared random string is not available, the worst case success probability of
this QRAC is 1

2
. However, if shared randomness is available, input randomization

(as in Lemma 1) can be used and we will get the same success probability for all
inputs, namely

p =
1

2
+

1 +
√

3

8
√

2
≈ 0.741481. (4.7)

We do not know if this 4 7→ 1 QRAC with SR is optimal.

4.1.3 The 5 7→ 1 QRAC with SR

To obtain a 5 7→ 1 QRAC, we take the bases M1, M2, and M3, given by (3.14),
(3.15), and (3.19), respectively, and also

M4 =

{
1

2

( √
2

i+ 1

)
,
1

2

(
−
√

2
i+ 1

)}
, (4.8)

M5 =

{
1

2

( √
2

i− 1

)
,
1

2

(
−
√

2
i− 1

)}
. (4.9)
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The Bloch vectors v3 = (0, 0,±1) for the basis M3 are along the z axis, but the
Bloch vectors of the other four bases form a regular octagon in the xy plane (shown
in Fig. 4.5): v1 = (±1, 0, 0), v2 = (0,±1, 0), v4 = ± 1√

2
(1, 1, 0), v5 = ± 1√

2
(−1, 1, 0).

The Bloch vector encoding the string x = x1x2x3x4x5 is

r(x) =
1√

10 + s(x)4
√

2

√2(−1)x1 + (−1)x4 − (−1)x5

√
2(−1)x2 + (−1)x4 + (−1)x5

√
2(−1)x3

 , (4.10)

where s(x) ∈ {−1, 1} and is given by

s(x) =
(−1)x1 + (−1)x2

2
(−1)x4 − (−1)x1 − (−1)x2

2
(−1)x5 . (4.11)

The great circles with equiprobable outcomes of the measurements partition the
Bloch sphere into 16 equal spherical triangles. There are two strings encoded into
each triangle. The idea for how to locate the correct point for the given string x
is as follows. Observe that the strings with x3 = 0 and x3 = 1 are encoded into
the upper and lower hemisphere, respectively (this means that for all strings the
probability that the measurement M3 gives the correct value of x3 is greater than
1
2
). Next observe that half of all strings have s(x) = 1, but the other half have
s(x) = −1 (in fact, the two strings in the same triangle have distinct values of s).

Let us first consider the case s(x) = 1. We call such string compatible with the
measurements, because it can be encoded in such a way that every measurement
gives the correct value of the corresponding bit with probability greater than 1

2
. For

the ith bit of x we can define the “preferable region” on the Bloch sphere as the
hemisphere where Mi recovers xi with probability greater than 1

2
. The intersection

of these five regions is one sixteenth of the Bloch sphere—the triangle where x must
be encoded. The point with the smallest absolute value of the z coordinate in this
triangle must be chosen (it has smaller probability than other points in the triangle
to recover x3 correctly, but the probabilities for the other four bits are larger).

If s(x) = −1, the string x is incompatible with the measurements, because
the intersection of the “preferable regions” is empty. Thus, no matter where the
string is encoded, at least one bit will differ from the most probable outcome of
the corresponding measurement. We can take this into account and modify the
definition of the “preferable region” for the ith bit (i 6= 3). It is a union of eight
triangles: four triangles where the most probable outcome of Mi equals xi, and
four triangles where it does not equal xi (in either case the triangles with maximal
probability of correct outcome of Mi must be taken). For example, the “preferable
regions” for x2 are shown in Fig. 4.6. The regions for x3 remain the same as in
the previous case. The intersection of all five regions for the given string x is the
triangle where the string must be encoded. The point in the triangle with the
largest absolute value of the z coordinate must be chosen. As a result, three of the
measurements will give the correct value of the corresponding bit of the string x
with probability greater than 1

2
.
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1

4
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5

Figure 4.6: The “preferable regions” of the measurement M2 (only the upper hemi-
sphere is shown, the other half is symmetric). For each of the measurements the
direction of the Bloch vector |ψ0〉 is indicated by the corresponding number. The
white triangles correspond to x2 = 0, but the gray ones to x2 = 1.

The corresponding qubit state is given by E(x1, x2, x3, x4, x5) = α |0〉 + β |1〉
with coefficients α and β defined as follows:

α =

√√√√1

2
+

(−1)x3

2
√

5 + s(x)2
√

2
,

β =
(−1)x1 + i(−1)x2 + i+1√

2
(−1)x4 + i−1√

2
(−1)x5√

10 + s(x)4
√

2 + 2(−1)x3

√
5 + s(x)2

√
2

.

(4.12)

The coefficients β are the roots of the polynomial

1336336β32 + 961792β24 + 151432β16 + 1600β8 + 1. (4.13)

Again, using input randomization we obtain the same success probability for
any input, namely

p =
1

2
+

1

20

√
2(5 +

√
17) ≈ 0.713578. (4.14)
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6

Figure 4.7: The measurements for the
6 7→ 1 QRAC shown on the right.

Figure 4.8: The 6 7→ 1 QRAC with SR.

4.1.4 The 6 7→ 1 QRAC with SR

The Bloch vectors corresponding to the 6 measurements are as follows:

v1 = ±(0,+1,+1)/
√

2,

v2 = ±(0,−1,+1)/
√

2,

v3 = ±(+1, 0,+1)/
√

2,

v4 = ±(+1, 0,−1)/
√

2,

v5 = ±(+1,+1, 0)/
√

2,

v6 = ±(−1,+1, 0)/
√

2.

(4.15)

They correspond to the 12 vertices of the cuboctahedron (or the midpoints of the
12 edges of the cube) and are shown in Fig. 4.7. The great circles orthogonal to
these vectors form the projection of the edges of a normalized1 tetrakis hexahedron
and partition the Bloch sphere into 24 parts (see Fig. 4.8). Each of these parts
contains one vertex of a truncated octahedron—the dual of tetrakis hexahedron. It
is inscribed in the Bloch sphere shown in Fig. 4.8.

1The vertices of the tetrakis hexahedron are not all at the same distance from the origin (the
ones forming an octahedron are 2/

√
3 times closer than those forming a cube). So the polyhedron

has to be normalized to fit inside the Bloch sphere (the vectors pointing to the vertices have to
be rescaled to have a unit norm).

39



The measurement bases corresponding to vi can be found using (3.3):

M1 =

{
1

2

(√
2 +
√

2

i
√

2−
√

2

)
,
1

2

( √
2−
√

2

−i
√

2 +
√

2

)}
,

M2 =

{
1

2

( √
2 +
√

2

−i
√

2−
√

2

)
,
1

2

(√
2−
√

2

i
√

2 +
√

2

)}
,

M3 =

{
1

2

(√
2 +
√

2√
2−
√

2

)
,
1

2

( √
2−
√

2

−
√

2 +
√

2

)}
,

M4 =

{
1

2

(√
2−
√

2√
2 +
√

2

)
,
1

2

( √
2 +
√

2

−
√

2−
√

2

)}
,

M5 =

{
1

2

( √
2

i+ 1

)
,
1

2

( √
2

−i− 1

)}
,

M6 =

{
1

2

( √
2

i− 1

)
,
1

2

( √
2

−i+ 1

)}
.

(4.16)

Note that M5 and M6 are the same as (4.8) and (4.9) for the 5 7→ 1 QRAC described
in the previous section. Another way to describe these 6 bases is to consider the β
coefficients for the 12 vectors that form them. It turns out that these coefficients
are exactly the roots of the polynomial

256β12 − 128β8 − 44β4 + 1. (4.17)

Let us consider how to determine the point where a given string should be
encoded. According to (3.27) we have to find the sum of the vectors vi defined in
(4.15), each taken with either a plus or a minus sign. These vectors correspond to
six pairs of opposite edges of a cube and the signs determine which edge from each
pair we are taking (see Fig. 4.7). There are only three distinct ways of doing this
(see Fig. 4.9). Regardless of which way it is, for each of the chosen edges there is
exactly one other that shares a common face and is parallel to it. Thus we can
partition the chosen edges into three pairs (in Fig. 4.9 such pairs are joined with a
thick blue line). The sum of the vectors vi for edges in a pair is always parallel to
one of the axes and its direction is indicated with an arrow in Fig. 4.9. From these
arrows one can see where the encoding point should lie.

Now let us classify all 26 = 64 strings of length 6 into 3 types according to the
location of the encoding point on the Bloch sphere. Each type of string is encoded
into a vertex of a specific polyhedron (see Fig. 4.10). These polyhedra are the cube,
the truncated octahedron, and the octahedron and the number of strings of each
type are 16, 24, and 24, respectively. Let us consider them case by case:

• The cube has 8 vertices:
1√
3

(±1,±1,±1) (4.18)
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Figure 4.9: Three distinct ways of choosing one edge from each pair of opposite
edges of a cube. The chosen edges are marked with blue points. Points lying
on opposite edges of the same face are connected and the direction of the sum of
the corresponding vectors is indicated with an arrow. The corresponding encoding
point is shown in red. The red points obtained from all possible choices of the
same kind are the vertices of a cube, a truncated octahedron, and an octahedron,
respectively (see Fig. 4.10).

and there are 2 strings encoded into each vertex. These 16 strings are exactly
those x1x2 . . . x6 ∈ {0, 1}6 that satisfy

|x1 − x2|+ |x3 − x4|+ |x5 − x6| ∈ {0, 3} . (4.19)

This condition ensures that the three arrows in Fig. 4.9 are orthogonal.

• The truncated octahedron has 24 vertices. Their coordinates are obtained by
all permutations of the components of

1√
5

(0,±1,±2). (4.20)

Truncated
Octahedron

octahedron
∗ ∗ 1110 ∗ ∗ 1101
∗ ∗ 0001 ∗ ∗ 0010
10 ∗ ∗11 01 ∗ ∗11
01 ∗ ∗00 10 ∗ ∗00
1110 ∗ ∗ 1101 ∗ ∗
0001 ∗ ∗ 0010 ∗ ∗

Table 4.2: Patterns of strings corresponding to the vertices of truncated octahedron
and octahedron (“∗” stands for any value).
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Figure 4.10: Three polyhedra (cube, truncated octahedron, and octahedron) cor-
responding to three different types of strings for 6 7→ 1 QRAC with SR. The red
points in Fig. 4.8 are obtained by superimposing these three polyhedra.

There is just 1 string encoded into each vertex. In this case there will be two
pairs of chosen edges that belong to the same face (note the “cross” in the
Fig. 4.9 formed by pairs whose arrows are pointing outwards of the page).
The third pair (with the arrow pointing up) can be rotated around this face
to any of the four possible positions. This corresponds to fixing four bits of
the string and choosing the remaining two bits in an arbitrary way. Since the
“cross” can be on any of the six faces of the cube, one can easily describe all
24 strings of this type (they are listed in the first column of Table 4.2).

• The octahedron has 6 vertices:

(±1, 0, 0) ∪ (0,±1, 0) ∪ (0, 0,±1) (4.21)

and there are 4 strings encoded into each vertex. In this case two arrows in
Fig. 4.9 are pointing to opposite directions (up and down). If we fix these
arrows, we can rotate the third one (pointing outwards) in any of four direc-
tions. Hence we can describe all 24 strings of this type in a similar way (see
the second column of Table 4.2).

The coefficients β of the encoding states are the 64 roots of the polynomial

β4(β − 1)4(4β4 − 1)4(36β8 + 24β4 + 1)2

(25β8 − 15β4 + 1)(400β8 − 360β4 + 1)(400β8 + 56β4 + 25). (4.22)

The obtained success probability using input randomization is

p =
1

2
+

2 +
√

3 +
√

15

16
√

6
≈ 0.694046. (4.23)
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Figure 4.11: The 9 7→ 1 QRAC with SR.

4.1.5 The 9 7→ 1 QRAC with SR

This QRAC is a combination of three 3 7→ 1 QRACs described in Sect. 3.3.2. It
has three measurements along each axis:

v1 = v4 = v7 = ±(1, 0, 0),

v2 = v5 = v8 = ±(0, 1, 0),

v3 = v6 = v9 = ±(0, 0, 1).

(4.24)

The measurement bases M1, M2, and M3 corresponding to the Bloch vectors v1,
v2, and v3 are given by (3.14), (3.15), and (3.19), respectively.

The encoding points can be characterized as a 4 × 4 × 4 cubic lattice formed
by vectors (3.27) projected on the surface of the Bloch ball. Note that this lattice
consists of vertices of 8 equal cubes each lying in a different octant. Then the 7
points inside of each spherical triangle in Fig. 4.11 are the projection of the vertices
of the corresponding cube.2

All 29 = 512 strings can be classified into 3 types. First consider a string
a1a2a3 ∈ {0, 1}3 and define

s(a1, a2, a3) =
|a1 − a2|+ |a2 − a3|+ |a3 − a1|

2
. (4.25)

Notice that s(a1, a2, a3) ∈ {0, 1}. Now for x = x1x2 . . . x9 ∈ {0, 1}9 define

t(x) = s(x1, x4, x7) + s(x2, x5, x8) + s(x3, x6, x9). (4.26)

2We get 7 points instead of 8 since the projections of two diagonally opposite vertices coincide.
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Then the type of the string x can be determined as follows:

t(x) =


0, 3 cube,

1 truncated cube,

2 small rhombicuboctahedron.

(4.27)

These types are named after polyhedra, since each type of string is encoded into
the vertices of the corresponding polyhedron (see Fig. 4.12):

• The cube has 8 vertices and there are 28 strings encoded into each vertex.
These vertices are:

1√
3

(±1,±1,±1). (4.28)

• The deformed3 truncated cube has 24 vertices and there are 3 strings encoded
into each vertex. These vertices are:

1√
19

(±1,±3,±3) ∪ 1√
19

(±3,±1,±3) ∪ 1√
19

(±3,±3,±1). (4.29)

• The deformed4 small rhombicuboctahedron also has 24 vertices and there are
9 strings encoded into each vertex. These vertices are:

1√
11

(±3,±1,±1) ∪ 1√
11

(±1,±3,±1) ∪ 1√
11

(±1,±1,±3). (4.30)

The coefficients β for the corresponding qubit states α |0〉 + β |1〉 are the roots
of the following polynomial:

(36β8 + 24β4 + 1)28(1444β8 + 760β4 + 81)3(484β8 + 440β4 + 1)9

(52128400β16 − 21509824β12 + 26780424β8 − 372400β4 + 15625)3

(5856400β16 − 1788864β12 + 1232264β8 − 92400β4 + 15625)9. (4.31)

Using input randomization we get success probability

p =
1

2
+

192 + 10
√

3 + 9
√

11 + 3
√

19

384
≈ 0.656893. (4.32)

4.2 Symmetric constructions

In Sect. 4.1 we have discussed in great detail n 7→ 1 quantum random access codes
with shared randomness for some particular values of n. Since these codes were
obtained using numerical optimization, there are still some questions left open.

3The edges of the truncated cube are of the same length. In our case the eges forming triangles
are
√

2 times longer than the other edges.
4The edges of the small rhombicuboctahedron are also of the same length, but in our case the

edges forming triangles again are
√

2 times longer.
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Figure 4.12: Three polyhedra (cube, small rhombicuboctahedron, and truncated
cube) corresponding to three different types of strings for 9 7→ 1 QRAC with SR.
The red points in Fig. 4.11 are obtained by superimposing these three polyhedra.

Most importantly, are the codes for n ≥ 4 discussed in Sect. 4.1 optimal? If this is
the case, do these codes (see Figs. 4.2, 4.3, 4.4, 4.5, 4.8, and 4.11) have anything in
common that makes them so good?

The purpose of this section is to shed some light on these two questions. We will
explore the possibility that symmetry is the property that makes QRACs with SR
good. In Sect. 4.2.1 we will explore what symmetries the codes found by numerical
optimization have and what other symmetries are possible. In several subsequent
sections we will use these symmetries to construct new codes and compare them
with the numerical ones (the success probabilities of the obtained codes are sum-
marized in Table 4.3). In Sect. 4.3 we will conclude that symmetric codes are
not necessarily optimal and speculate about what else could potentially be used to
construct good QRACs.

n Section Probability
4 4.2.2 0.733253
6 4.2.3 0.694042
9 4.2.4 0.656393

15 4.2.5 0.620183

Table 4.3: The success probabilities of symmetric n 7→ 1 QRACs with SR. See
Table 4.6 for the comparison with numerically obtained codes.

4.2.1 Symmetric great circle arrangements

If we want to construct a QRAC with SR that has some sort of symmetry, we have to
choose the directions of measurements in a symmetric way. In other words, we have
to symmetrically arrange the great circles that are orthogonal to the measurement
directions.
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Figure 4.13: Quasiregular polyhedra: cuboctahedron and icosidodecahedron.

In this section we will discuss two ways that great circles can be arranged on a
sphere in a symmetric way. These arrangements come from quasiregular polyhedra
and triangular symmetry groups, respectively. The first kind of arrangement is
not directly observed in numerically obtained examples, despite its high symmetry.
However, the second one is observed in almost all numerically obtained codes. Since
our approach is empirical, we will not justify when an arrangement is “symmetric
enough”5 to be of interest. We will use the term symmetric codes to refer to
the codes constructed below. This is just to distinguish them from numerically
obtained codes in Sect. 4.1, not because they satisfy some formal criterion of “being
symmetric”.

Quasiregular polyhedra
A (convex) quasiregular polyhedron is the intersection of a Platonic solid with

its dual. There are only three possibilities:

octahedron = tetrahedron ∩ tetrahedron, (4.33)

cuboctahedron = cube ∩ octahedron, (4.34)

icosidodecahedron = icosahedron ∩ dodecahedron. (4.35)

The tetrahedron is self-dual thus the octahedron, which is the intersection of two
tetrahedrons, has slightly different properties than the other two polyhedra (e.g.,
its all faces are equal). For this reason octahedron may be considered as a degen-
erate quasiregular polyhedron or not be considered quasiregular at all since it is
Platonic. Thus there are only two (non-degenerate) convex quasiregular polyhedra
(see Fig. 4.13).

These polyhedra have several nice properties. For example, all their edges are
equivalent and there are exactly two types of faces (both regular polygons), each
completely surrounded by the faces of the other type. The most relevant property

5Several possible criteria are: (a) any great circle can be mapped to any other by a rotation
from the symmetry group of the arrangement, (b) the sphere is cut into pieces that are regular
polygons, (c) the sphere is cut into pieces of the same form. However, not all examples we will give
satisfy these three conditions. In fact, each condition is violated by at least one of the examples
we will consider.
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Figure 4.14: Triangular symmetry groups. First row: (2, 2, 2), (2, 2, 3), (2, 2, 4).
Second row: (2, 3, 3), (2, 3, 4), (2, 3, 5).

for us is that their edges form great circles. Since the arrangements of great circles
formed by the edges of cuboctahedron and icosidodecahedron do not appear in
the numerical codes, we will use them in Sects. 4.2.2 and 4.2.3 to construct new
(symmetric) 4 7→ 1 and 6 7→ 1 QRACs with SR, respectively.

Triangular symmetry groups
Consider a spherical triangle—it is enclosed by three planes that pass through

its edges and the center of the sphere. Let us imagine that these planes are mirrors
that reflect our triangle. These three reflections generate a reflection group [24, 25].
For some specific choices of the triangle this group is finite and the images of the
triangle under different group operations do not overlap. Hence they form a tiling
of the sphere. This tiling can also be seen as several (most likely more than three)
great circles cutting the sphere into equal triangles.

We can choose any of the triangles in the tiling and repeatedly reflect it along
its edges so that it moves around one of its vertices. This means that the angles of
the corners that meet at any vertex of the tiling must be equal. Moreover, we do
not want the triangle to intersect with any of the mirrors, so only an even number
of triangles can meet at a vertex.6

Hence the angles of the spherical triangle must be (π
p
, π
q
, π
r
) for some integers

p, q, r ≥ 2. The sum of the angles of a spherical triangle is at least π, so the numbers

6Fore example, if we project the edges of an icosahedron on the sphere, we obtain arcs that
form a tiling with five triangles meeting at each vertex. We cannot use these arcs as mirrors,
since they do not form great circles (we cannot extend any of them to a great circle, without
intersecting other triangles).
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p, q, r must satisfy
1

p
+

1

q
+

1

r
> 1. (4.36)

If p ≤ q ≤ r, the only solutions are: (2, 2, k) for any k ≥ 2, (2, 3, 3), (2, 3, 4), and
(2, 3, 5). The tilings corresponding to these solutions are shown in Fig. 4.14. The
symmetry group of such tiling is called triangular symmetry group [25, pp. 158] and
is denoted by (p, q, r).

We can observe these tilings in almost all numerically obtained QRACs discussed
in Sect. 4.1. They are formed when the great circles corresponding to measurements
partition the Bloch sphere into equal triangles. All such cases are summarized in
Table 4.4. Tilings appearing in 2 7→ 1 and 4 7→ 1 QRACs that are not mentioned
in the table can be seen as degenerate cases.

n (p, q, r) Polyhedron Section and figure
3 (2, 2, 2) octahedron Sect. 4.1.1, Fig. 4.3
5 (2, 2, 4) normalized octagonal dipyramid Sect. 4.1.3, Fig. 4.5
6 (2, 3, 3) normalized tetrakis hexahedron Sect. 4.1.4, Fig. 4.8
9 (2, 2, 2) octahedron Sect. 4.1.5, Fig. 4.11

Table 4.4: Triangular symmetry groups of numerical n 7→ 1 QRACs.

The tilings corresponding to triangular symmetry groups (2, 3, 4) and (2, 3, 5)
do not appear in numerically obtained codes. Thus we will use them to construct
new (symmetric) 9 7→ 1 and 15 7→ 1 QRACs with SR in Sects. 4.2.4 and 4.2.5,
respectively. To each tiling one can associate a corresponding polyhedron with
equal triangular faces. The polyhedra corresponding to tilings (2, 3, 4) and (2, 3, 5)
are called the normalized7 disdyakis dodecahedron and the normalized disdyakis
triacontahedron, respectively.

Polyhedra arising from both types of symmetric great circle arrangements (qua-
siregular polyhedra and triangular symmetry groups) are summarized in Table 4.5.
The great circle arrangements corresponding to the four marked polyhedra do not
appear in numerically obtained codes, so we will use them to construct new (sym-
metric) QRACs with SR.

4.2.2 Symmetric 4 7→ 1 QRAC with SR

Recall that in Sect. 3.3.3 we proved that four planes passing through the center of
the Bloch sphere partition its surface into at most 14 parts. The most symmetric
way to obtain 14 parts is to use the four planes parallel to the four faces of a regular
tetrahedron. The measurements are along the four directions given by the vertices
(see Fig. 4.16).

The simplest way to construct a regular tetrahedron is to choose four specific
vertices of the cube, i.e., from the set 1√

3
(±1,±1,±1). For example, we could choose

7Normalized means that all vectors pointing from the origin to the vertices of the polyhedron
are rescaled to have unit norm.
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Figure 4.15: Symmetric 4 7→ 1 QRAC with SR.

Figure 4.16: A regular tetrahedron and four great circles parallel to its faces. The
circles are determined by the measurements in the direction of the vertices of the
tetrahedron. The numbers at the vertices indicate the Bloch vectors of basis states
|ψ0〉 of the measurements for the 4 7→ 1 QRAC shown in Fig. 4.15.
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n Faces (p, q, r) Polyhedron
3 8 8 (2, 2, 2) octahedron
4 14 14 QR cuboctahedron X
6 32 32 QR icosidodecahedron X
6 24 32 (2, 3, 3) normalized tetrakis hexahedron
9 48 74 (2, 3, 4) normalized disdyakis dodecahedron X

15 120 212 (2, 3, 5) normalized disdyakis triacontahedron X

Table 4.5: Polyhedra whose edges form great circles. The first column indicates the
number of great circles. The next two indicate, respectively, the number of faces of
the polyhedron and the maximal number of pieces achievable by cutting the sphere
with n great circles (see Sect. 3.3.3). The fourth column indicates the triangular
symmetry group (QR means quasiregular). The name of the polyhedron is given
in the last column. Four marked polyhedra will be used in subsequent sections to
construct symmetric QRACs with SR.

the ones with an odd number of positive coordinates. They provide us with the
following pairs of antipodal Bloch vectors as the measurement bases:

v1 = ±(+1,−1,−1)/
√

3,

v2 = ±(−1,+1,−1)/
√

3,

v3 = ±(−1,−1,+1)/
√

3,

v4 = ±(+1,+1,+1)/
√

3.

(4.37)

The qubit states corresponding to these Bloch vectors are as follows:

M1 = M(+1,+1),

M2 = M(+1,−1),

M3 = M(−1,+1),

M4 = M(−1,−1),

(4.38)

where

M(s1, s2) =

{
1

2

√
1 +

s1√
3

( √
3− s1

s2(s1 − i)

)
,
1

2

√
1− s1√

3

( √
3 + s1

s2(i− s1)

)}
. (4.39)

The great circles determined by these measurements partition the Bloch ball
into 14 parts. In fact, the grid formed by these circles is a projection of the edges
of a cuboctahedron (see the part on quasireglar polyhedra in Sect. 4.2.1) on the
surface of the Bloch ball (see Figs. 4.15 and 4.16).

In each of the 14 parts of the Bloch sphere a definite string can be encoded so
that each bit can be recovered with a probability greater than 1

2
. Strange as it may

seem, the remaining 2 strings (x = 0000 and x = 1111) can be encoded anywhere
without affecting the success probability of this QRAC. This is not a surprise if we
recall from Sect. 3.4 that the optimal encoding rx of the string x is a unit vector in
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1010

1110 1000

0010 1011

Figure 4.17: The relationship between the strings encoded into the spherical square
and the adjacent spherical triangles according to the 4 7→ 1 QRAC shown in
Fig. 4.15.

the direction of vx given by equation (3.27). In our case the Bloch vectors of the
measurement bases point to the vertices of a regular tetrahedron centered at the
origin. They clearly sum to zero, so v0000 = v1111 = 0. Thus the scalar product
rx · vx in (3.26) is also zero and the success probability does not depend on the
vectors r0000 and r1111. Therefore, we will ignore these two strings in the following
discussion.

The other 14 strings are encoded into the vertices of a normalized tetrakis hex-
ahedron (the convex hull of the cube and octahedron). The string x = x1x2x3x4 is
encoded into the Bloch vector r(x) = rw(x), where

w = x1 ⊕ x2 ⊕ x3 ⊕ x4 ∈ {0, 1} (4.40)

is the parity of the input. In the case w = 0 the encoding points are the vertices
(±1, 0, 0) ∪ (0,±1, 0) ∪ (0, 0,±1) of an octahedron:

r0(x) = (−1)x4

1− |x1 − x4|
1− |x2 − x4|
1− |x3 − x4|

 . (4.41)

But for w = 1 we get the vertices (±1,±1,±1)/
√

3 of a cube:

r1(x) =
(−1)x1x2+x3x4

√
3

(−1)x1+x4

(−1)x2+x4

(−1)x3+x4

 . (4.42)

Note that the Bloch vectors r1(x) are the vertices of the same cube as the Bloch
vectors of the 3 7→ 1 QRAC discussed in Sect. 3.3.2.

One can observe the following properties of this encoding. The surface of the
Bloch ball is partitioned into 6 spherical squares and 8 spherical triangles. Strings
with w = 0 and w = 1 are encoded into squares and triangles, respectively. If
w = 1 (x = 1000 or x = 0111 and their permutations), the string has one bit
that differs from the other three. Such a string is encoded into the basis state of
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the corresponding measurement so that this bit can be recovered with certainty. If
w = 0, the string is encoded into a square and has the following property: each
of its bits takes the value that occurs more frequently at the same position in the
strings of the four neighboring triangles (see Fig. 4.17 as an example).

The corresponding encoding function is E(x) = αw |0〉+ βw |1〉 with coefficients
α0, β0 and α1, β1 explicitly given by

α0 =

√
1

2
+ (−1)x4

1− |x3 − x4|
2

,

β0 = x3x4 + (−1)x4
1− |x1 − x4|+ i

(
1− |x2 − x4|

)
√

2
,

(4.43)

and 
α1 =

√
1

2
+
s(x)

2
√

3
,

β1 = (−1)x3s(x)
(−1)x1 + i(−1)x2√

6 + s(x)2
√

3
,

(4.44)

where s(x) ∈ {−1, 1} is given by

s(x) = (−1)x1x2+x3x4+x3+x4 . (4.45)

The 14 coefficients β0 and β1 are the roots of the polynomial

β(β − 1)(4β4 − 1)(36β8 + 24β4 + 1). (4.46)

Using input randomization we get the same success probability for any input:

p =
1

2
+

2 +
√

3

16
≈ 0.733253. (4.47)

It is surprising that despite higher symmetry (compare Figs. 4.4 and 4.15) this
QRAC has a lower success probability than the 4 7→ 1 QRAC discussed in Sect. 4.1.2.

4.2.3 Symmetric 6 7→ 1 QRAC with SR

According to the discussion in Sect. 3.3.3, six great circles can cut the sphere
into at most 32 parts. It turns out that there is a very symmetric arrangement
that achieves this maximum. Observe that the dodecahedron has 12 faces and
diametrically opposite ones are parallel. For each pair of parallel faces we can draw
a plane through the origin parallel to both faces. These six planes intersect the
sphere in six great circles that define our measurements. They are the projections
of the edges of the icosidodecahedron (see Fig. 4.13), which is one of the quasiregular
polyhedra discussed in Sect 4.2.1.

There is another way to describe these measurements. Notice that the icosahe-
dron (the dual of the dodecahedron) has 12 vertices that consist of six antipodal
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Figure 4.18: Symmetric 6 7→ 1 QRAC with SR.

pairs. Our measurements are along the six directions defined by these pairs. The
coordinates of the vertices of the icosahedron are as follows:

1√
1 + τ 2

(0,±τ,±1) ∪ 1√
1 + τ 2

(±1, 0,±τ) ∪ 1√
1 + τ 2

(±τ,±1, 0), (4.48)

where τ = 1+
√

5
2

is the golden ratio (the positive root of x2 = x+ 1).
Each of the 64 strings is encoded either in a vertex of an icosahedron or do-

decahedron. They have 12 and 20 vertices, respectively, so there are two strings
encoded in each vertex. The union of the icosahedron and the dodecahedron is
called the pentakis dodecahedron (see the polyhedron in Fig. 4.18).

The success probability of this code is

p =
1

2
+

√
5

32
+

1

96

√
75 + 30

√
5 ≈ 0.694042. (4.49)

4.2.4 Symmetric 9 7→ 1 QRAC with SR

This code is based on the triangular tiling of the sphere whose symmetry group
is (2, 3, 4). The great circles corresponding to measurements coincide with the
projection of the edges of the normalized disdyakis dodecahedron. We can think of
this QRAC as the union of 3 7→ 1 and 6 7→ 1 codes. The first three measurements
are along the coordinate axis as in the 3 7→ 1 QRAC discussed in Sect. 3.3.2. The
remaining six measurements are exactly the same as for the 6 7→ 1 code discussed
in Sect. 4.1.4 (see Figs. 4.7 and 4.8), i.e., they are along the six antipodal pairs
of 12 vertices of the cuboctahedron shown in Fig. 4.13. Note that a great circle
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Figure 4.19: Symmetric 9 7→ 1 QRAC
with SR.

Figure 4.20: Symmetric 15 7→ 1 QRAC
with SR.

of the first kind cannot be transformed to a great circle of the second kind via an
operation from the symmetry group of the code.8

The resulting QRAC is shown in Fig. 4.19 and its success probability is

p ≈ 0.656393. (4.50)

4.2.5 Symmetric 15 7→ 1 QRAC with SR

The triangular symmetry group of this code is (2, 3, 5) and the great circles coincide
with the projection of the edges of the normalized disdyakis triacontahedron. To
understand what the measurements are in this case, note that the icosidodecahedron
(see Fig. 4.13) has 30 vertices. Their coordinates are:

(±1, 0, 0) ∪ (0,±1, 0) ∪ (0, 0,±1), (4.51)

1

2τ
(±1,±τ,±τ 2) ∪ 1

2τ
(±τ 2,±1,±τ) ∪ 1

2τ
(±τ,±τ 2,±1). (4.52)

The measurement directions are given by 15 antipodal pairs of these vertices.
The obtained QRAC is shown in Fig. 4.20. Its success probability is

p ≈ 0.620183. (4.53)

4.3 Discussion

In this section we will compare and analyze the numerical and symmetric QRACs
with SR described in Sects. 4.1 and 4.2, respectively. Hopefully these observations

8For the other three symmetric codes we can transform any circle to any other in this way,
i.e., the symmetry group acts transitively on the circles.
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can be used to find new n 7→ 1 QRACs with SR or to generalize the existing ones
(see Sect. 5.3 for possible generalizations).

The success probabilities of numerical and symmetric QRACs with SR are given
in Tables 4.1 and 4.3, respectively (see Table 4.6 for the comparison). We see that
none of the symmetric codes discussed in Sect. 4.2 is optimal. However, the success
probabilities of numerical and symmetric codes do not differ much. Moreover, recall
that there are two more symmetric codes (3 7→ 1 and 6 7→ 1) that coincide with
the numerically obtained ones (see Table 4.5). Concerning these two codes we can
reach more optimistic conclusions: the 3 7→ 1 QRAC is optimal (see Sect. 3.6) and
possibly the 6 7→ 1 QRAC (see Sect. 4.1.4) is as well, since we did not manage to
improve it in Sect. 4.2.3.

n Section Probability

4
4.1.2 0.741481
4.2.2 > 0.733253

6
4.1.4 0.694046
4.2.3 > 0.694042

9
4.1.5 0.656893
4.2.4 > 0.656393

15
0.620355

4.2.5 > 0.620183

Table 4.6: Comparison of the success probabilities of n 7→ 1 QRACs with SR. For
each n the first probability corresponds to a numerical code, but the second one
to a symmetric code. For n = 15 we do not have numerical results, so we just use
five measurements along each coordinate. In fact, the numerical 4 7→ 1 and 9 7→ 1
QRACs also use measurements only along coordinate axis. The 6 7→ 1 QRAC with
two measurements along each coordinate axis has success probability 0.686973.

We just saw that symmetric QRACs are not necessarily optimal. One could
ask if there are other heuristic methods that potentially could be used to construct
good QRACs with SR. We will give a few speculations in the remainder of this
section. In particular, we will discuss some special kinds of measurements that
could be useful. To make the discussion more general, we will not restrict ourselves
to the case of a single qubit.

Definition. Two orthonormal bases B1 and B2 of Cd are called mutually unbiased
bases (MUBs) if |〈ψ1|ψ2〉|2 = 1

d
for all |ψ1〉 ∈ B1 and |ψ2〉 ∈ B2. The maximal

number of pairwise mutually unbiased bases in Cd is d+ 1. [26]

When d = 2, equation (3.7) implies that Bloch vectors corresponding to basis
vectors of different mutually unbiased bases are orthogonal9. There are three such

9The notion of the Bloch vector can be generalized for d ≥ 2 (see [28]). Then a similar duality
holds as well (see equation (5.4) in Sect. 5.3): mutually unbiased quantum states correspond
to orthogonal Bloch vectors, but orthogonal quantum states correspond to “mutually unbiased”
Bloch vectors, i.e., equiangular vectors pointing to the vertices of a regular simplex.
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bases in C2 and their Bloch vectors correspond to the vertices of an octahedron.
For example, the bases M1, M2, and M3 defined in Sects. 3.3.1 and 3.3.2 are MUBs
(they correspond to measuring along x, y, and z axis).

Note that the measurements for numerical 2 7→ 1, 3 7→ 1, 4 7→ 1, and 9 7→ 1
QRACs are performed entirely using MUBs and three out of five measurement
bases for numerical 5 7→ 1 QRAC are also MUBs.

There is another very special measurement that appears in our QRACs.

Definition. A set of d2 unit vectors |ψi〉 ∈ Cd is called symmetric, informationally
complete POVM (SIC-POVM) if |〈ψi|ψj〉|2 = 1

d+1
for any i, j. [27]

For d = 2 there are four such quantum states. Again, from equation (3.7) we see
that the inner product between any two Bloch vectors corresponding to these states
is −1

3
. Such equiangular Bloch vectors are exactly the vertices of a tetrahedron,

e.g., v1, v2, v3, v4 defined in (4.37). They were used in Sect. 4.2.2 to construct a
symmetric 4 7→ 1 QRAC.

Let us compare numerical and symmetric 4 7→ 1 QRACs from Sects. 4.1.2 and
4.2.2, respectively. The first one is based on MUBs and is not very symmetric.
Moreover, it looks like we are wasting one out of four bits, since two measurements
are along the same direction. However, all measurement directions in the Bloch
sphere are mutually orthogonal, except the ones that coincide. The second 4 7→ 1
code is based on a SIC-POVM and is very symmetric. However, it appears that in
this case we are wasting two out of 16 strings, since the way we encode them does
not influence the success probability.

Now, if we compare the success probabilities of both 4 7→ 1 codes (see Table 4.6),
we see that the first one is clearly better. Hence we conclude that

orthogonality of the measurement Bloch vectors
seems to be more important than symmetry.

One can come to a similar conclusion when comparing 9 7→ 1 and 15 7→ 1 codes.
Thus it looks like using roughly n/3 measurements along each coordinate axis is
quite a good heuristic for constructing n 7→ 1 QRAC with SR (see Sect. 3.8.2).
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Chapter 5

Conclusion

5.1 Summary

We study the worst case success probability of random access codes with shared
randomness. Yao’s principle (see equation (2.5) in Sect. 2.2) and input random-
ization (see Theorem 1) is applied to consider the average case success probability
instead (this works in both classical and quantum cases).

In Sect. 2.3.2 we construct an optimal classical n 7→ 1 RAC with SR as follows
(see Theorem 2): Alice XORs the input string with n random bits she shares with
Bob, computes the majority and sends it to Bob; if the ith bit is requested, Bob
outputs the ith bit of the shared random string XORed with the received bit. The
asymptotic success probability of this code is given by equation (2.27) in Sect. 2.3.2:

p(n) ≈ 1

2
+

1√
2πn

. (5.1)

The worst case success probability of an optimal quantum RAC with SR satisfies
the following inequalities:

1

2
+

√
2

3πn
≤ p(n) ≤ 1

2
+

1

2
√
n
. (5.2)

These upper and lower bounds are obtained in Sects. 3.6 and 3.8.1, respectively.
The success probabilities of classical and quantum RACs with SR are compared

in Fig. 5.1.

5.2 Open problems for n 7→ 1 QRACs

Lower bound by orthogonal measurements. The known 2 7→ 1 and 3 7→ 1 QRACs
(see Sect. 3.3) and our numerical 4 7→ 1 and 9 7→ 1 QRACs with SR (see Sects. 4.1.2
and 4.1.5) suggest that MUBs can be used to obtain good QRACs (see Sect. 4.3).
Indeed, n 7→ 1 QRAC with orthogonal measurements (see Sect. 3.8.2) is better than
the one with random measurements (see Sect. 3.8.1). However, we were not able
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pHnL

Figure 5.1: Comparison of success probabilities of classical and quantum RACs.
Black dots correspond to optimal classical RACs and the dotted line shows the
asymptotic behavior. Circles correspond to numerical QRACs and dashed lines to
quantum upper and lower bounds, respectively.
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Figure 5.2: Close-up of the narrow region in Fig. 5.1 between the quantum upper
and lower bound (everything is shown relative to the upper bound that corresponds
to the horizontal axis). Circles indicate the gap between the upper bound and
numerical QRACs with SR. Black squares show the gap between the upper bound
and the lower bound by measurements along coordinate axes (see Fig. 3.9). Dashed
line corresponds to the gap between the quantum upper bound and the lower bound
by random measurements.

to obtain an asymptotic expression for its success probability. This is equivalent
to obtaining an asymptotic expression for (3.55), i.e., the average distance traveled
by a random walk with roughly n/3 steps along each coordinate axis.

In Fig. 5.2 we show how close both lower bounds and the success probabilities
of numerical QRACs are relative to the upper bound from Sect. 3.6. Assume that
Alice and Bob are given a point in the light gray region in Fig. 5.2 and asked to
construct a QRAC with SR whose success probability is at least as good. Then
they can use measurements along coordinate axis as in Sect. 3.8.2. If the point is
in the dark gray region, they can use one of the numerical codes from Sect. 4.1.
However, if it is in the white region, they have to solve the next open problem.

Optimality of numerical codes. Prove the optimality of any of the numerically
obtained n 7→ 1 QRACs with SR for n ≥ 4 discussed in Sect. 4.1. Are the optimal
constructions unique (up to isomorphism)?

Prove the “Homer conjecture” that quantum RACs with SR are at least as good
as their classical counterparts in the sense discussed at the end of Sect. 3.4.
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5.3 Possible generalizations

There are several ways that random access codes with SR can be generalized, both
classically and quantumly. In particular, one can consider

• n p7→ 1 codes in base d, d > 2 (called qudits in the quantum case),

• n p7→ m codes with m > 1,

• n p7→ m codes where any k > 1 bits (qubits) must be recovered.

Of course, one can consider several of these generalizations simultaneously. In the
setting without shared randomness such generalizations have already appeared in
the literature (see Sect. 1.2). We will briefly introduce the notion of the generalized
Bloch vector which we believe can be useful to study such generalizations (it has

been explicitly used in [5] to prove the impossibility of 2m
p7→ mQRAC with p > 1/2,

when SR is not allowed).
The notion of the Bloch vector introduced in Sect. 3.1.1 can be generalized for

d > 2. For example, to write down the density matrix for d = 3 one uses eight
Gell-Mann matrices denoted by λi instead of three Pauli matrices σi defined in
equation (3.5). In general one needs d2 − 1 matrices λi that span the set of all
traceless d × d Hermitian matrices. A convenient choice of λi are the so called
generalized Gell-Mann matrices, also known as the generators of the Lie algebra of
SU(d), given in [31]. We can use them to generalize equation (3.6):

ρ =
1

d

(
I +

√
d(d− 1)

2
r · λ

)
, (5.3)

where λ = (λ1, . . . , λd2−1) and r ∈ Rd2−1 is the generalized Bloch vector 1 or coher-
ence vector [28, 30]. Since the λi are chosen so that Trλi = 0 and Tr(λiλj) = 2δij,
equation (3.7) generalizes to

|〈ψ1|ψ2〉|2 = Tr(ρ1ρ2) =
1

d

(
1 + (d− 1) r1 · r2

)
. (5.4)

If we want to recover a base d digit, we perform a measurement in an orthonor-
mal basis {|ψ1〉 , . . . , |ψd〉} of Cd. Since |〈ψi|ψj〉|2 = 0 for any pair i 6= j, the
corresponding Bloch vectors must satisfy ri · rj = − 1

d−1
. This means that they

are the vertices of a regular simplex that belongs to a (d− 1)-dimensional subspace
and is centered at the origin (for d = 2 this is just a line segment).

On the other hand, in Sect. 4.3 we observed that it might be advantageous to
perform measurements along orthogonal directions in the Bloch sphere to recover
different bits. Let ri ⊥ sj be two orthogonal Bloch vectors. Then the correspond-
ing quantum states |ψi〉 and |ϕj〉 must satisfy |〈ψi|ϕj〉|2 = 1

d
. This is exactly the

1Our normalization follows [30], where the generalized Bloch sphere has radius 1. Another
widely used convention is to assume radius

√
2(d− 1)/d, e.g., see [28, 29].
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case when |ψi〉 and |ϕj〉 belong to different mutually unbiased bases (see Sect. 4.3).
This suggests that distinct bits should be recovered using mutually unbiased mea-
surements. Note that the Bloch vectors of the states from two MUBs correspond to
the vertices of two regular simplices in mutually orthogonal subspaces. In general,
the Bloch vectors of the states from all d+ 1 MUBs are the vectices of the so called
complementarity polytope [32], which is just the octahedron when d = 2.

The conclusion of Sect. 4.3 and our discussion above suggests the use of MUBs
to construct QRACs also for d > 2. Such attempts have already been made [6, 8].

Galvão [6] gives an example of 2
0.797−→ 1 QRAC for qutrits (d = 3) and Casaccino

et al. [8] numerically investigate (d + 1) 7→ 1 QRACs based on MUBs for d-level
quantum systems. However, there is a significant difference between the qubit and
qudit case. Recall that for d = 2 the optimal way to encode the message x is to
use a unit vector in the direction of vx (see equation (3.27) in Sect. 3.4). A similar
expression for vx can be obtained when d > 2, but then the matrix ρ assigned to
r = vx/ ‖vx‖ according to equation (5.3) is not necessarily positive semidefinite
and hence may not be a valid density matrix. However, it is known that for small
enough values of ‖r‖ (in our case1 ‖r‖ ≤ 1

d−1
), all Bloch vectors correspond to

valid density matrices [29]. Hence, if we cannot use the pure state corresponding to
vx/ ‖vx‖, we can always use the mixed state corresponding to 1

d−1
vx/ ‖vx‖. If one

knows more about the shape of the region corresponding to valid quantum states,
one can make a better choice and use a longer vector, possibly in a slightly different
direction. Unfortunately, apart from convexity, not much is known about this shape.
Already for d = 3 it is rather involved [28, 29]. In general the conditions (in terms
of the coordinates of the generalized Bloch vector r) for ρ to have non-negative
eigenvalues are given in [30, 28].

However, for proving only an upper bound, one can ignore all such details. Thus
we believe it might be possible to generalize our upper bound (see Sect. 3.6 and
3.7) using generalized Bloch vectors. It would be interesting to compare such a
result with the upper bound (3.46) that was obtained by Ben-Aroya et al. in [16].

Finally, another way of generalizing QRACs with SR is to add other resources.
A good candidate is shared entanglement.
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Appendix A

Combinatorial interpretation of
sums

In this appendix we give a combinatorial interpretation of the sums in equations
(2.22) and (2.23) from Sect. 2.3.2. This interpretation is formalized in the form of
equations (A.1) and (A.2). We referred to these equations in Sect. 2.3.2 to obtain
an exact formula (2.26) for the average success probability of an optimal classical
RAC.

Let us consider a set of n distinct elements and count the number of ways to
choose more than half of n elements and mark one of them as special. There are
two approaches: first choose the elements and then mark the special one or first
choose the special one and then choose the others.

In the first scenario there are i
(
n
i

)
ways to choose exactly i elements and mark

one of them as special. If we have to choose more than half, we obtain the sum∑n
i=m+1 i

(
n
i

)
where m =

⌊
n
2

⌋
.

In the second scenario there are n ways to choose the special element. Then
there are l = n − 1 elements left and at least m of them must be taken to have
more than half of n elements in total. The number of ways to do this corresponds
to the number of subsets of size at least m of a set of l distinct elements. Let us
consider the cases when l is odd and even separately.

If n = 2m then l = 2m− 1 is odd. To each “large” subset of size i (m ≤ i ≤ l)
we can assign a unique “small” subset (the complement set) of size l− i (0 ≤ l− i ≤
m− 1), and vice versa. Each subset is either “large” or “small”, so the number of
“large” and “small” subsets is the same—it is half of the number of all subsets, i.e.,
2l/2 = 22m−2.

If n = 2m + 1 then l = 2m is even. The “large” subsets have m + 1 ≤ i ≤ l
elements, but the “small” ones: 0 ≤ l − i ≤ m− 1. Let us call the remaining

(
2m
m

)
subsets of size m “balanced”. In this case the bijection between the “large” and
“small” subsets holds as well, but it maps the “balanced” subsets to themselves.
Thus the total number of all subsets is “large” + “small” +

(
2m
m

)
= 2l. The number

of “large” subsets is
(
2l +

(
2m
m

))
/2 = 22m−1 + 1

2

(
2m
m

)
.

Both counting methods must give the same results, so for odd and even n we
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obtain, respectively:

2m+1∑
i=m+1

i

(
2m+ 1

i

)
= (2m+ 1) ·

(
22m−1 +

1

2

(
2m

m

))
, (A.1)

2m∑
i=m+1

i

(
2m

i

)
= 2m · 22m−2. (A.2)

We would like to acknowledge Juris Smotrovs for providing this interpretation.
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Appendix B

POVMs versus orthogonal
measurements

An orthogonal (or von Neumann) measurement is not the most general type of
measurement of a quantum system. In general a POVM measurement [33, 34]
may extract more information. In this appendix we show that in the qubit case
POVMs can be simulated using a probabilistic combination of enhanced orthogonal
measurements, as defined in Sect. 3.7 (such a measurement is either an orthogonal
measurement or a constant function). To define a POVM we have to introduce the
notion of a positive semidefinite matrix [35].

Definition. A complex square matrix E is called positive semidefinite if 〈ψ|E |ψ〉 ≥
0 for all |ψ〉.

An equivalent definition is that E is diagonalizable and all eigenvalues of E are
real and non-negative. Thus E is Hermitian.

Definition. A positive operator-valued measure (POVM) is a set {E1, . . . , Em} of
positive semidefinite matrices such that

∑m
i=1Ei = I. [33, 34]

POVM measurements can have an arbitrary number of outcomes, but in the
case of n 7→ 1 QRACs we have to consider only two-outcome single-qubit POVMs.
Such a POVM can be specified by {E0, E1}, where E0 is positive semidefinite and
E1 = I − E0. Since E0 is also Hermitian, we can find a basis B = {|ψ0〉 , |ψ1〉} in
which E0 is diagonal, i.e., E0 =

(
a 0
0 b

)
. In this basis E1 =

(
1−a 0
0 1−b

)
. Since both

E0 and E1 are positive semidefinite, 0 ≤ a ≤ 1 and 0 ≤ b ≤ 1. An arbitrary pure
qubit state |ψ〉 in the basis B can be specified by (3.1). When |ψ〉 is measured, the
probabilities of the outcomes are

P0 = 〈ψ|E0 |ψ〉 = a cos2 θ

2
+ b sin2 θ

2
,

P1 = 〈ψ|E1 |ψ〉 = (1− a) cos2 θ

2
+ (1− b) sin2 θ

2
.

(B.1)

Let us consider the following process (see Fig. B.1) that simulates the POVM
measurement {E0, E1}:
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Orthogonal
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p0

p1

0

1

a

1 - a

1 - b

b

0 P0

1 P1

Figure B.1: A simulation of the POVM measurement {E0, E1} on a qubit using an
orthogonal measurement and a post-processing of the measurement result.

1. perform an orthogonal measurement in the basis B = {|ψ0〉 , |ψ1〉},

2. perform the following post-processing of the outcome of the measurement:

• if the outcome was 0: output 0 with probability a and output 1 with
probability 1− a,

• if the outcome was 1: output 0 with probability b and output 1 with
probability 1− b.

To see why this process is equivalent to the POVM measurement {E0, E1}, consider
a pure qubit state |ψ〉 given by (3.1) in the basis B. When |ψ〉 is measured in the
basis B = {|ψ0〉 , |ψ1〉}, the probabilities of the outcomes 0 and 1 are as follows (see
also equation (3.8) in Sect. 3.1.1):

p0 = |〈ψ0|ψ〉|2 = cos2 θ

2
,

p1 = |〈ψ1|ψ〉|2 = sin2 θ

2
.

(B.2)

Now it is simple to verify that the process shown in Fig. B.1 has the same outcome
probabilities (B.1) as the POVM measurement. However, this process is not a
probabilistic combination of enhanced orthogonal measurements, since it involves
a probabilistic post-processing of the measurement result. To obtain the desired
result, we have to modify it. The key idea is that with a certain probability the
output can be produced without performing an actual measurement.

Let µ = min {a, b}. Whatever state is input to the process shown in Fig. B.1,
the probability P0 to output 0 is at least µ, because

P0 = p0a+ p1b ≥ (p0 + p1)µ = µ. (B.3)

Note that µ does not depend on the state being measured. This means that one
can output 0 with probability µ without performing an actual measurement. A
similar lower bound holds for P1 as well:

P1 = p0(1− a) + p1(1− b) ≥ (p0 + p1)(1−M) = 1−M, (B.4)
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where M = max {a, b} = a + b − µ. Let us consider the following probabilistic
combination of four decoding strategies:

• with probability c0: output 0 without performing a measurement,

• with probability c1: output 1 without performing a measurement,

• with probability c01: measure in the basis {|ψ0〉 , |ψ1〉},

• with probability c10: measure in the opposite basis {|ψ1〉 , |ψ0〉}.

The resulting probabilities of outcomes for this process are{
P0 = c0 + c01p0 + c10p1,

P1 = c1 + c01p1 + c10p0.
(B.5)

We can use the lower bounds (B.3) and (B.4) for P0 and P1, respectively, to assign
the probabilities c0, c1, c01, and c10 in the following way:

c0 = µ,

c1 = 1− (a+ b) + µ,

c01 = a− µ,
c10 = b− µ

(B.6)

(note that at least one of the probabilities c01 or c10 will be zero). It is not hard
to verify that after the assignment (B.6) the probabilities P0 and P1 in (B.5) will
match the probabilities of outcomes (B.1) of the POVM measurement.

Thus for each qubit POVM given by a and b one can find a probabilistic com-
bination of enhanced orthogonal measurements given by c0, c1, c01, and c10, such
that in both cases the probabilities of outcomes are the same.

Example. For a = b = 1/2 we have c0 = c1 = 1/2 and c01 = c10 = 0, corresponding
to random guessing (observe that E0 = E1 in this case).

Example. However, a = 1 and b = 0 corresponds to a projective measurement in
basis {|ψ0〉 , |ψ1〉}, because c01 = 1 and c10 = c0 = c1 = 0.

Example. Finally, a = 1 and b = 1 corresponds to a constant function 0, because
c0 = 1 and c01 = c10 = c1 = 0.
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