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Abstract

As a means to produce high pressure hydrogen in order to reduce compression penalty, we
propose to reform liquid fuel (e.g., bio-ethanol) in supercritical water (pressure above 221 bar and

temperature greater than 374°C).

Catalytic ethanol reforming in supercritical water for hydrogen production has been carried
out in a high pressure packed bed reactor made of Inconel-625. Since Inconel-625 contains mainly
nickel, it is expected that the reactor itself can be active toward ethanol reforming. Therefore, a series
of tests were first performed in the empty reactor, whose results are a benchmark when studying
reforming in the presence of a catalyst. Ethanol reforming in the empty reactor was studied in the
temperature range of 450 to 600°C and showed coking/plugging problem at 575°C and above. The
ethanol conversion with the empty reactor could be as high as 25% at 550°C and residence time of

about one minute. The main reaction products with the empty reactor were H,, CO and CH,.

A catalyst screening study was performed to investigate the performance of nickel and cobalt
as active metals, supported on y-AlLOs, a-AlLO3, ZrO, and YSZ for temperatures between 475°C and
550°C. The presence of the catalyst did increase the activity of ethanol reforming, especially at higher
temperatures. All experiments in the catalyst screening study were carried out with non-reduced
catalysts. Nickel catalysts were found more active than cobalt, likely because of higher reducibility.
Indeed, the higher amount of oxygen in Co;O, compared to NiO requires more hydrogen to fully
reduce the metal oxides. Both Ni/y-AlLO; and Co/y-AlO; showed little activity below 500°C, and led
to failed experiments due to coking/plugging at temperatures of 525°C and above. The strong acid
sites on y-AlLO; are responsible for high selectivity toward ethylene, a known coke precursor. The
support a-AlLOj; in combination with Ni was active, but yielded lower H, selectivity and higher CH,
selectivity than the zirconia-based catalysts. The Co/a-AlLO; shows low activity. The ZrO,-based
catalysts were active and yielded high H, selectivity, but were found very fragile. Finally, the YSZ
support was strong and yielded good conversion. Below 550°C the activity of Ni/YSZ is higher than
that of Co/YSZ, but at 550°C both catalysts yield nearly complete conversion. The advantage of
Co/YSZ is then higher H, selectivity and lower CH, selectivity compared to Ni/YSZ.

Therefore, Co/YSZ was selected for a more detailed study. The effect of temperature,
flowrate, residence time, catalyst weight, Co loading, concentration, and pretreatment with H, were

considered. Two methods for catalyst reduction were applied: ex-situ reduction where the catalyst is



reduced in a different reactor and in-situ reduction where the catalyst is reduced in the SCW reactor
prior to ethanol reforming. At 550°C, Co/YSZ converts all ethanol for residence times as low as 2 s,
even with non-reduced catalyst. At 500°C the activity of the in-situ and ex-situ reduced catalysts were
similar and greater than for the non-reduced catalyst. At 475°C the ex-situ reduced catalyst showed
low activity, comparable to that of the non-reduced catalyst, but the in-situ reduced catalyst yielded
much higher conversion. The better performance of the in-situ reduced catalyst was attributed to
active metal sites on the reactor’s wall after pre-treatment in H,. The low activity of the ex-situ
reduced catalyst is due to the fact that, when exposed to supercritical water for less than 30 minutes, it
re-oxidized to CoO. The temperature of 475°C is then too low to generate sufficient hydrogen that

will start reducing the catalyst.

Finally, analysis of reaction pathways for ethanol reforming over Co/YSZ showed that the
reaction proceeds mostly via ethanol dehydrogenation to form acetaldehyde, the latter species
reacting with lattice oxygen on the catalyst to produce acetone and CO,. Acetone is then reformed by
water into CO and H,. Finally, H, and CO react via the methanation reaction to form CH,. Over
Co/YSZ it was found that the water-gas shift reaction is fast (CO selectivity most of the time is less
than 0.5%), but the methanation reaction is Kinetically controlled. Stopping the methanation reaction
before equilibrium allowed for H, selectivity higher than what is expected at equilibrium (likewise,

CH, selectivity is smaller than equilibrium value).

For well-controlled reaction Co/YSZ is a promising catalyst that can be highly selective

toward hydrogen during ethanol reforming in supercritical water.
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Chapter 1

Introduction and Motivation

Hydrogen is an important chemical in many industries such as the chemical industry
(production of ammonia, methanol, hydrogenation, etc.), petrochemical industry (hydrotreatment),
food processing, semiconductor industry, and in the metallurgical industry. The growth in hydrogen
demand is already increasing significantly, especially in Western Canada for oil sand upgrading.
Moreover, with hydrogen fuel cells now near commercialization, hydrogen is expected to become one
of the major fuels for energy generation in the future (Armor, 1999). Unfortunately, hydrogen does
not exist in nature in its elemental form and, therefore, has to be produced from hydrocarbon, water or
any other hydrogen-containing compounds, such as alcohol. There are currently four routes for
hydrogen production: steam reforming, cracking, gasification and water electrolysis (Jen and Thomas,
2001).

Hydrogen production from ethanol is attracting much attention in various laboratories around
the world since it has been identified as a promising source of hydrogen among liquid fuels. The main
advantage of ethanol is that it can be produced from renewable sources such as corn, wheat or
agricultural wastes. Carbon dioxide produced from ethanol will complete a closed carbon cycle
naturally and ethanol can thus be considered as almost carbon neutral. In addition, it is biodegradable,
relatively inexpensive, easy to transport, has low toxicity (Freni et al., 2001) and is free from catalyst

poisons such as sulphur, chlorine etc.

Hydrogen storage is one of the most important issues and potentially biggest roadblock for
the implementation of a hydrogen economy (Ritter et al., 2003). A major loss of hydrogen energy
happens during the process of compression from low to storage pressure. For energy analysis, Bossel
et al. (2003) emphasize that the heat of formation or higher heating value (HHV) is best to evaluate
the true energy content of the fuel, based on energy conservation principles (i.e., the 1* Law of
Thermodynamics). Hydrogen possesses a very high mass energy density (142 MJ/kg (HHV)), but its
volumetric energy density, 12.7 MJ/m® (HHV at STP) is the lowest among other gas fuels, the closest
being methane (40.0 MJ/m® (HHV at STP). Current hydrogen storage technologies for many fuel cell
applications such as Proton Exchange Membrane Fuel Cells (PEM-FC) for automotive application



require high pressure (30-35 MPa), with proposals to operate up to 70 MPa. Obviously, pressurizing
hydrogen to such high pressures consumes a significant amount of energy. Since compression of a
liquid requires considerably less energy, production of hydrogen from liquid fuels at elevated
pressure would give a clear advantage in terms of energy savings. For example, calculation using
AspenPlus, shows that compressing 6 mol/s of hydrogen from 0.1 MPa to 25 MPa requires a net work
of 278 kW. In comparison 7.4 mol/s of an ethanol-water mixture (which can produce 6 mol/s of
hydrogen) from 0.1 MPa to 25 MPa (assuming that ethanol water reforming in SCW with ethanol
water molar ratio feed of 1:3, with 90% ethanol conversion) just requires a net work of 21.5 kW,
which is 13 times smaller than using a compressor to compress hydrogen from atmospheric pressure
to 25 MPa. This is the rationale of the present work: generating hydrogen from renewable liquid fuel
(bio-ethanol in the present case) at high pressure (25 MPa) by catalytic steam reforming in

supercritical water.

Reactions in supercritical water (SCW) — pressures above 22.1 MPa and temperatures above
374°C - have received a lot of attention, most of the work focusing on supercritical water oxidation
(SCWO) for decomposition of waste chemical. Instead of waste destruction, chemical synthesis and
the production of chemical in supercritical or sub-critical have also attracted significant interests. The
prospect of hydrogen production from organic compounds in SCW has been shown in several
laboratories. Hydrogen production under SCW conditions has several advantages due to the
properties of SCW as described in Chapter 2.

From the literature, the effect of temperature on ethanol water reforming or ethanol
hydrolysis in SCW has been studied from (Schanzenbacher et al., 2002), 450 to 500°C (Arita et al.,
2003), 550 to 700°C (Taylor et al., 2003), and 400 to 500°C (Hsiao 2003), 600 to 800°C (Byrd et al.,
2007b). Only Byrd et al. (2007b) studied catalytic ethanol reforming specifically, using a commercial
5wt.% Ru/Al,O; catalyst in a packed bed reactor, but at very extreme conditions of 600°C and 800°C.



1.1 Research Objectives

The overall objective of this project is to show the practicability of producing high pressure
hydrogen from ethanol via ethanol water reforming (EWR) in supercritical water (SCW) conditions in
the presence of a catalyst. Therefore, the goal of this research is to develop an active, selective and
stable catalyst for ethanol reforming in SCW and to optimize the reaction conditions of this reaction.

In order to achieve this objective, this study was divided into the following tasks;

1. A preliminary study with thermodynamics and experiments with the empty reactor to see
the effect of the reactor wall.

2. Catalyst screening to identify promising catalysts that are active, se lective toward H, and
CO,, and stable for ethanol reforming in SCW. The results of this screening study
resulted in the selection of cobalt supported on Yttria Stabilized Zirconia (Co/YSZ).

3. Complete characterization of the Co/YSZ in term of performance and catalyst
morphology.



1.2 Thesis description

This manuscript describes the research findings for catalytic ethanol reforming in
supercritical water. Chapter 1 highlights the introduction and motivation this work. Chapter 2 presents
a literature review on supercritical water systems (with emphasis on the properties of SCW as a
reaction medium), as well as on hydrogen production in both supercritical water and in atmospheric
reforming systems. More conventional atmospheric processes are of interest because they were the
starting point in term of catalyst selection for the screening stage. In that regard, the literature review
presents several catalysts used for ethanol steam reforming and reports possible reaction mechanisms
at atmospheric conditions and in SCW. Chapter 3 describes the experimental apparatus, the catalyst
preparation and characterization techniques and the analytical method used for evaluating catalyst
performance. Chapter 4 presents the thermodynamics study for ethanol reforming in supercritical
water. The free energy Gibbs model was used with the commercial software, Aspen Plus®. In
addition, the separation of gas and liquid at high pressure was also briefly investigated. Chapter 5
provides results obtained for ethanol hydrolysis in the empty reactor (no catalyst). This was necessary
to evaluate the effect of the reactor itself on the extent and the limitations of the reaction in the
temperature range of 450 to 600°C. Indeed because of the extreme SCW conditions, the reactor is
made of alloys known to be catalytically active for reforming reactions. Chapter 6 provides the result
of the catalyst screening at four different temperatures (475, 500, 525 and 550°C), 250 bar, 5 wt.%
ethanol, 1.88 g/min feed flowrate. Two active metals, nickel and cobalt, supported on four types
support (y-ALO3, a-ALO3, ZrO,, Yittra Stabilized Zirconia (YSZ)) were selected for the screening
study. The chemical and physical properties of each catalyst was also characterized and correlated to
the catalyst performance. Chapter 7 presents an in-depth study of Co/YSZ (our most promising
catalyst) in terms of chemical/physical characterization and performance. Several effects such as
temperature, pressure, concentration, and in-situ/ex-situ reduction were studied. Finally, Chapter 8
summarizes the main conclusions of this work and gives recommendations for additional research

activities on high pressure hydrogen production in supercritical water.



Chapter 2

Background and Literature Review

In this chapter, a general overview of supercritical water (SCW) properties, hydrogen
production in supercritical water (SCW) and ethanol steam reforming (ESR) is presented. The first
section presents a review of supercritical water properties followed by a discussion on the potential
problem of corrosion in supercritical water. Next, hydrogen production methods in SCW, such as
gasification, reforming and partial oxidation, are presented. Catalyst morphology and characterization
studies for reaction in supercritical water are reviewed as well. Finally, a subsequent section reviews
the literature findings on catalytic reactions for ethanol reforming at ambient to moderate pressures.
As part of this chapter, the type of catalysts (active metals and supports) and the effect of operating
parameters such as temperature, pressure, reactant concentration and residence time for hydrogen
production are also discussed.

2.1 Supercritical Water (SCW)

2.1.1 Properties of SCW as Reaction Medium

There are three common phases for water: ice (solid), liquid and gas/vapour.
However, when pressure and temperature exceed the water critical point of 374°C (647 K)
and 221 MPa, water possesses properties that are in between those of liquid and gaseous
phases. This phenomenon is not only true for water but also for all substances in their
supercritical state, in which case they are referred to as supercritical fluids. To understand
what is happening at or near the critical point, we should consider the process of phase
transition between liquid and gas. As the pressure increases, a gas becomes denser, while as
the temperature increases a liquid becomes less dense. Consequently, as the temperature and
pressure increases, the density difference between the gas and liquid decreases and finally

reaches zero at the critical point. Beyond the critical point, the supercritical fluid density



varies continuously from liquid-like at high densities to gas-like at low density. In the liquid
phase, below the critical temperature, the fluid is referred as sub-critical fluid. All these states

are shown in Figure 2-1.
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Figure 2-1: Phase diagram of water

The ability to tune its density gives supercritical water (SCW) several advantages, because its
properties can be positioned between those of water vapour and those of liquid water. Figure 2-2
shows how several properties of water (density, ionic product and pK,,) change as water undergoes a
transition from sub- to supercritical states. This figure it is seen that the water density (p) drops
swiftly as the temperature goes through the critical temperature, especially when the pressure is near
the critical pressure. This observation is valid for the ionic product and the dielectric constant as well.
From Figure 2-2, it is clear that several properties of water can change significantly in the vicinity of
the critical point. Comparison of several water properties between ambient water, SCW and
superheated steam is presented in Table 2-1.
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Figure 2-2: Selected properties of water at high temperature (Adapted from Dinjus and Kruse, 2004).

Table 2-1: Summary of physicochemical properties of water (Broll et al., 1999).

“Normal” Subcritical Supercritical Water Superheated
Water Water Steam
T[°C] 25 250 400 400 400
P [MPa] 0.1 5 25 50 0.1
density [g cm™] 0.997 0.8 0.17 0.58 0.0003
relative dielectric 78.5 27.1 5.9 10.5 1
const.
pKy 14.0 11.2 19.4 11.9 -
heat capacity 4.22 4.86 13 6.8 2.1
[ki kg™ K1
dynamic viscosity 0.89 0.11 0.03 0.07 0.02

[mPas]




The dielectric constant is one characteristic of the polarity of a solvent and is a function of the fluid
density. At ambient conditions (T=25°C, P=1 atm) water is a good solvent for electrolytes, such as
KCI, NaOH, Na,SO,, because of its high relative dielectric constant of ca. 80, but is poorly miscible
with hydrocarbon and gases. Near the critical point, the relative dielectric constant decreases by one
order of magnitude and water becomes completely miscible with many organic compounds and gases.
In contrast, electrolytes are not miscible at low relative dielectrics constant; thus, SCW can be used to
precipitate particles of electrolytes.

The dynamic viscosity () in SCW at gas-like is almost similar to superheated steam
condition, e.g 0.03 mPa.s at 400°C and 25 MPa. Low value of n presents some advantages for
heterogeneous catalytic reactions by improving selectivity and space yield for an overall reaction that
is typically limited by mass transfer (Broll et al., 1999). Another important feature when using
supercritical condition as a catalytic reaction medium is that all reactants and product can exist in a
single homogeneous phase, which eliminates mass-transfer resistances that exist in multiphase
systems (Baiker, 1999; Savage, 1995, 1999).

The specific heat capacity (C, ) in SCW is very high, (e.g., 29.2 kJ kg* K™ at 400°C and 29
MPa), compared to liquid and gases for which C, only depends on temperature, whereas it is also
highly dependent on pressure in SCW. This phenomenon leads to reduce hot spot problems in
exothermic reactions such as water gas shift reaction and methanation in SCW. Thermodynamic
properties of pure water for a wide range of temperatures and pressures can be easily obtained from
steam tables. However, there is still lack of data for binary or multicomponent mixtures. However, at
SCW conditions, ethanol (T.=240.7°C, P.=6.137 MPa, and p.=276 kg/m’) is already in its

supercritical condition.



2.1.2 Corrosion in sub- and supercritical water

Strongly ionized water with formation of H3O" and OH" ions in sub- and supercritical
regions creates a corrosive environment. Therefore, a good understanding of corrosion
mechanisms in sub- and supercritical water is a prerequisite for studying reaction in SCW.
Material selection is critical and often, if not always, specialty alloys are necessary (e.g.,
Hastelloy, Inconel). Corrosion at high pressure and temperature of water has been reported
by a few researchers. There is an excellent review paper describing the corrosion phenomena
in sub-critical and supercritical water and aqueous solution written by Kritzer (2004). Kritzer
reported that the causes for corrosion are solution-dependent (e.g., density, temperature, pH,
electrochemical potential and the aggressiveness of the attacking anions) and material-

dependent (e.g., alloy composition, surface condition, material purity and treatment).

As seen in the previous section, properties of SCW, such as density, ionic product and
dielectric constant, can be tuned by varying the temperature and pressure of the system. High density
and high value of dielectric constant favours the solubility and/or the dissociation of ionic species
such as salts, acids, and bases and thus favour ionic reactions, in particular those leading to corrosion.
In contrast, low-density water suppresses ionic reactions and favour radical reaction pathways,
especially at high temperatures (Kritzer, 2004). In addition, at high temperature and lower density, the
dissociation of acids and the solubility of salts drop. For example, in supercritical water oxidation
(SCWO) process, acid minerals are formed by heteroatoms Cl, P and S, which are frequently
components of the organic contaminants (Kritzer and Dinjus, 2001). Formation of acid minerals
increases the already corrosive environment of SCW, subsequently stimulating corrosion attack of the
SCW construction material. The effect of temperature and pressure on corrosion potential is shown in
Figure 2-3. The basis for understanding Figure 2-3 is that generally corrosion is low at densities
below about 200-300 kg/m®. At 300°C, a sub-critical pressure of 10 MPa leads to high corrosion
rates, while at 500°C, pressures above ca. 50 MPa are necessary for high corrosion. As seen in Figure
2-3, increasing the pressure at constant temperature increases the rate of electrochemical corrosion.
Note that the shift from no corrosion towards strong corrosion is only sharp at temperatures near the

critical temperature, while there is no clear dividing line at higher temperatures.
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Figure 2-3: Density range of high corrosion at different temperatures. (Adapted from Kitzer, 2004)

Most researchers agree that the presence of inorganic ions plays an important role in
corrosion (Kritzer,2004; Kritzer and Dinjus, 2001; Boukis et al., 2003b; Lee et al., 2005). Alumina

ceramic dissolved in the presence of high concentration of a base (e.g., NaOH) in low-density SCW

leads to the formation of a liquid NaOH phase. Table 2-2 shows the influence of inorganic ions on

nicke I-base alloys and stainless steels in high temperature water. Some inorganic compounds have a

detrimental effect on corrosion resistance, for example chlorine CI" and bromide Br™ are highly

destructive of the oxide film of nickel-based metals.

Table 2-2: Influence of inorganic ions on the corrosion of nickel-base alloys and stainless steels in
high-temperature water (Adapted from Kitzer, 2004)

lon

Modke of action

Result

=
Cl'; Br

SO% ;S0O% ; S,0%
s

NO;

COZ;POY co¥ POY

OH"
H+

Weak complex former
Penetrate into & destroy protecting oxide-film

Oxidate in high-temperature water by forming
S and &°
Reductive in high-temperature waterb

Strongly oxiding; main corrosion products well
soluble

Low-soluble salts

Low-soluble salts
Enhanced olubility of protecting oxides

Homogeneous corrosion possiblea; passivating influence?
Strong localized corrosion: pitting and SCC?
Stronghomogeneous degradation possible

Release of H, possible; SCC possible
Strong general corrosion possible
Corrosion-inhibition possible

Strong passivating; corrosion-inhibition possible
Strong general corrosion possible?

#Inthe presence of oxidizing compounds.
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2.1.3 Hydrogen Production in Sub- and Supercritical Water

Table 2-3 summarizes some of the most notable studies on hydrogen production in
SCW. Most catalytic reactions were carried out in batch reactors. The formation of methane
iIs favoured at temperatures below <600°C due to methanation and acetaldehyde
decomposition, which dominate in liquid-like (high-density) water. The presence of catalysts
such as alkali salt (e.g. KOH, NaOH), metal oxide (e.g ZrO,, NiO), active metal (e.g. reduced
nickel) and carbon-derived materials (e.g. charcoal, activated carbon) were able to enhance
the production of hydrogen through the water gas shift reaction even at temperatures lower
than 600°C. In contrast, hydrogen formation is favoured at higher temperature (>600°C) even
without catalyst, because the gas-like (low density) properties of water seem to promote the
water-gas-shift reaction and thus produce more hydrogen. The following discussion focuses

on a few selected studies on hydrogen production in SCW.
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Table 2-3: Hydrogen production at near and supercritical water

Group Reference Feedstock Reactor Catalyst Reaction Conv. Main Gas
condition (%)
Antal’s Group Yu etal., 1993 glucose, wet Plug flow (Inconel- | None 600°C, Variable | H;
(Hawaii Natural biomas (water 625 and Hastelloy 34.5 MPa
Energy Institute, hyacinth, alga) C276)
USA .
) Xu et al., 1996 Glycerol, Plug flow (Inconel- | Charcoal, activate carbon 600°C 100 H, and CO
glucose, 625) 34.5 MPa
cellobiose
Xu et al., 1998 Corn starch, Packed bed Carbon 650°C 100 H, and CO,
Wood sawdust, (Hastelloy C276) 22 MPa
sewage sludge
Arai’s group Watanabe et al., Formaldehyde Batch Ce0O,, M0O3, TiO; 400°C variable | CH4and
(Supercritical Fluid ‘23?2(1)05802 2003a Acetic Acid (316 Stainless and ZrO, 25-40 M Pa o
Research Centrer, Steel)
Japan) 2-propanol H,S0O4, KOH& NaOH
glucose and
cellulose
Sato et al., 2004 Lignin, Batch Ni/MgO, Ru on y-Al,03, C 400°C CHg4, CO,
. and H,
Alkylphenol (Stainless Steel) Pt on y-Al,03, C 24 MPa (depend on
the catalyst)
Osada et al., 2004 Lignin & Batch Ru/Al,O3 400°C 10-74 CH,
Cellulose Stainless steel Ru/TiO, 30 MPa
Osada et al., 2006 Lignin, Batch Ru/ TiO,, Ru/Al,0O3, Ru/C, 400°C Not CHg, CO,
4-propylphenol (316 SS) PUC, PUALOs, 37.1 Mpa reported | H;

Rh/C, Pd/C, Ni/Al,O3
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Fraunhofer Institut Schmieder et al., Glucose, Plug flow KOH, 600°C 100 H, and CO,
fir Chemische 2000 vanillin, . .
Technologie, L (Nimonic 110 & K,CO3 25 MPa
Germay g Inconel-625)
Boukis et al., 2003, | Methanol Plug flow None 400-600°C ~100% H,
2006 (Inconel-625) 25-45 MPa
Pinkwart et al., Diesel Packed bed Commercial catalyst 550°C 18—-80 | H,
2004 ( material not NiO/ALO3/SiO,/MgO 25 MPa
mention) NiO/Al,04/Si0,/MgO/Ca0/
K,0
Sinag et al., 2004 glucose Batch K,COs3, 500°C Not H, and CO,
(Inconel-625) Ni, Ni-Raney 30 Mpa | reported
Gumpta’s Group Byrd etal.,, 2007a, | Glucose, Packed bed Commercial catalyst (5% wt. 600-800°C ~100% | H,, CO,
Department of 2007, 2008 Glycerol, Inconel 600 RN/ALOs) 22.1-27.5 CHa, CHa
Chemical Eng. ethanol MPa
Auburn University,
USA
Various universities | Yoshida and Glucose Packed bad Ni-5256E ® 400°C ~96% H,
Oshima, 2004 Glucose/lignin (316 SS) 25.7 MPa
Hirth and Franck, Methane, Plug flow None 600°C 2.54 - H, and CO,
1993 Ethane, (Nickel Alloy) 60 MPa 306
Methanol, CO,
Formic Acid
Elliotet al., 1993 p-cresol Stirred Batch Ni, NiO, Co, Cr, W, Mo, Cu. (subcritical) 0.02- H,, CH,
0,
(Inconel) Ni on C, Z10,, Y/ZrO,, Si0p, | 350°C 93% | and CO,
ALOs, 0-ALOs, 1-ALO (depending
VAR s, AR M-ALYS, 20 MPa on the type

Ru on Y-A'gOg, 6-A|203, -
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Al,O3, C, Zr0O,, of catalyst)
Rhon C, OC-A|203, ’Y-A|203.
Pt on ’Y-Aleg, OL-A|203
lzumizaki et al., Cellulose, Pulp, Batch RuO, 450°C ~62% CHy (low
2005 Mixture (Inconel-625) 440 MPa n
H, (high T)
Tayloretal., 2003 | Methanol, Plug flow None 700°C ~99.5% | H,
Ethanol, Ethy (Inconel-625) 27.6 MPa
Glycol
Avrita et al., 2003 Ethanol Batch Stainless steel (316 SS) 400-500°C Not H,
Quartz Cu 23 MPa reported
Furusawa et al., Lignin Batch Ni(0)/MgO 400°C Not Hy, CHy,
2007 Stainless steel 30-37 MPa reported | €O CzHe
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Yu et al. (1993) conducted gasification of glucose in SCW in a tubular reactors made of
Inconel-625 and Hastelloy-C276. The formation of H,, CO,, CO, and CH, at 600°C, 34.5 MPa
and 30 s residence time, with nearly no tar or char product, were detected in the product stream
using an Inconel reactor. They found that the conversion and yield were highly dependent on the
material used for the reactor and on the initial concentration of glucose. Complete gasification was
achieved with low glucose concentration. Also the Inconel reactor yielded higher selectivity
toward hydrogen due to the enhancement of the water gas shift reaction, producing a gas rich in
hydrogen and carbon dioxide, whereas the Hastelloy reactor produced more carbon monoxide. Xu
et al. (1996) reported that the use of activated carbon as catalyst did increase the gasification
efficiency of several organic compounds such as glucose, glycerol, methanol, etc. They showed
that biomass could be completely gasified at temperatures above 600°C in the presence of
activated carbon. They found that simple compounds of biomass, such as glycerol, completely
gasified in SCW at 600°C and 34.5 MPa even without a catalyst to a hydrogen rich gas with almost
no CO formation. Later, Xu et al. (1998) demonstrated that other heavy biomass compounds such
as wood sawdust, corn starch gel or digested sewage sludge also could be gasified into a hydrogen
rich gas with the presence of activated carbon catalysts, yet the operating temperature was
increased to 650°C and the pressure decreased to 28 MPa compared to previous reports. These
conditions resulted in no tar detected in the reactor and in improving hydrogen production with

only small traces of carbon monoxide in the gas effluent.

The presence of alkali solution such as KOH (Kruse, 2000; Schmieder et al., 2000), K,CO;
(Sinag et al., 2004; Schmieder et al., 2000), CaOH (Wang, 2001), NH;OH, and NaOH (Kruse,
2003) enhances the hydrogen yield and selectivity. For example, Kruse et al. (2003) have shown
that adding KOH to the solution in the gasification of pyrocatechol (biomass in a group of lignin)
led to nearly complete conversion (~99% conversion). Also, the yield of hydrogen was almost
three times greater in the presence of alkali (5 wt.%). They considered that the enhancement of

hydrogen yield by adding alkali was due to the enhancement of the water gas shift reaction.

Boukis et al. (2003a) demonstrated methanol steam reforming in SCW for hydrogen
production using a reactor made of Inconel-625 in the range 400 — 600°C, at a pressure of 25 MPa,
and initial concentrations ranging from 5 to 64 wt%. Methanol conversions up to 99.9 % without
adding catalyst resulted in a hydrogen rich gas with small amounts of CO, CO, and methane.
Depending on the operating conditions gas product containing up to 75 vol% hydrogen (theoretical

equilibrium limit) was achieved for residence times of less than a minute. Even though no catalysts

15



were used, they recognized the significant impact of the catalytic activity of the reactor wall made
of Inconel-625 on the conversion. Pre-treatment of the inner reactor with hydrogen peroxide

(strong oxidation agent) enhanced the reaction activity toward hydrogen production.

Ethanol water reforming in SCW has been studied as well in a limited way with and
without catalyst. Taylor et al. (2003) studied the reforming of several organic compounds such as
methanol, ethyl glycol, and ethanol in supercritical water at 550 — 700°C and 27.6 MPa in a tubular
Inconel-625 reactor. They mentioned that the conversion of ethanol was close to 100%, and that
the main dry product composition is: H, (~50%), CH, (25%), CO, (20%) and a balance of CO and
C,H, at 700°C and residence time of 3 to 6 s. For the catalytic ethanol water reforming in SCW,
only two papers have been reported. Arita et al. (2003) studied ethanol reforming using a flame -
sealed small quartz reactor in order to avoid the catalytic activity of the wall. At temperatures
between 400 and 500°C and a density of 0.2 g/cm®, they showed that hydrogen and acetaldehyde
were the major products in SCW without any oxidizing reagent or catalysts. They also observed
that the addition of a copper wire resulted in an increase in hydrogen composition in the gas
mixture by a factor of two. A recent contribution on catalytic ethanol reforming in SCW was done
in a continuous packed bed reactor by Byrd, et al. (2007b). They used a 0.5m x 3mm ID tubing,
made of Inconel-600 and loaded with 2 g of 5wt.% Ru/AlLO;. They then tested the catalyst in a
temperature range from 600°C to 800°C and pressures from 22.1 to 27.5 MPa. They demonstrated
that ethanol conversion was complete with and without catalyst at 800°C. The only difference was
the product composition. There were no data shown for empty reactor runs at 600°C and 750°C;
therefore, it is difficult to compare the significance of the presence of the catalyst at high
temperature, since the reactor itself was made of Inconel-600 (Allow Wire International®, 72%
min. Ni, 14-17% Cr., and 6-10% Fe).

Other researchers found that adding some oxygen resulted in complete gasification of
organic compounds and generated higher hydrogen yields (Holgate, 1995; Lee, 1996; Hirth and
Franck 1993; 2002, Hsiao, 2003; Yoshida and Oshima, 2004). For example, Lee (1996) showed
that the partial oxidation of methanol is almost complete (~99 % conversion) by adding pure
oxygen at temperatures between 400 and 500°C and at a pressure of 25 MPa. Their result showed
hydrogen selectivity between 4 and 11. In our laboratory, Hsiao (2003) investigated ethanol partial
oxidation in SCW by adding hydrogen peroxide to supply oxygen at 500°C, 25 MPa and 8-50 s
residence times. He found that the H,O,/ethanol ratio affected the ethanol conversion and hydrogen
yield.
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2.1.4 The effects of reaction parameters on hydrogen production in SCW

The following section presents the effect of reaction parameters such as temperature,

pressure, ethanol-water ratio, and residence time in supercritical water.

Effect of temperature

The effect of temperature on the hydrogen production of organics solution in SCW has
been studied with and without catalyst. The reaction temperature has been found to highly affect
conversion, yield and by-products formation. Holgate et al. (1995) studied the effect of
temperature on the hydrolysis of glucose in a plug flow reactor made of Inconel-625. Figure 2.4
shows the product yield for glucose hydrolysis for temperatures between 400°C and 650°C.
Hydrogen and carbon dioxide were the main gaseous species detected, indicating the presence of
the water gas shift reaction. Interestingly, acetaldehyde and CO disappeared for temperatures
above 575°C, and formation of simple hydrocarbons (such as methane and ethane) and hydrogen
were favoured at higher temperatures. These observations are generally consistent with the results
reported by Yu et al. (1993) and Lee et al. (2002). The results of Lee et al. (2002) are shown in
Figure 2.5, where it is seen that without catalyst, hydrogen yield and yield of other by-products are
strongly dependent on temperature. The gasification conversion reached 100% at 700°C and 28
MPa. As the temperature increases, the yield of hydrogen increases sharply, whereas the yield of
carbon monoxide decreases above 650°C. For ethanol reforming in SCW, Byrd et al. (2007b)
reported that ethanol conversion over commercial Ru/Al,O; was not complete and C, species were
detected at temperature below 600°C. However, in the temperature range of 700-800°C, the

product compositions were mainly H,, CO, CO,, and CH,.
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Figure 2-4: Variation of product yields with temperature for glucose hydrolysis at 24.6 MPa.
Experimental conditions: 1.02+0.02x10® mol/L glucose, 6.1%0.3 s reactor residence time. No
catalyst. (Holgate et al., 1995).
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Figure 2-5: Gas product yields as a function of reactor temperature on 0.6 M glucose
gasification in SCW at 28 MPa and a 30 s reactor residence time. No catalyst. (Lee et al., 2002).
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Effect of pressure

There are only few studies looking at the effect of pressure on hydrogen production in sub-
and supercritical water. Gadhe and Gupta (2005) investigated methanol reforming for pressures
between 3.4 and 27.6 MPa and at a constant temperature of 700°C. They found that H,, CO, and
CO decrease with increasing the pressure in the subcritical region, whereas methane increases
significantly until the critical temperature is reached. Sato et al. (2004) observed similar trends.
Kruse and co-workers (2000) reported that the hydrogen production from the gasification of
pyrocatechol (C¢HsO,) at 700°C slightly decreases as the pressure increases from 20 MPa to 40
MPa. Their results matched calculated equilibrium data. However, in a small pressure range
slightly above the critical point of water, Byrd et al. (2007b) found that there is not much
difference in ethanol conversion and product composition in the pressure range from 22.1 to 27.5

MPa, as shown in Figure 2-6.
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Figure 2-6: Effect of pressure over 5wt. % Ru/Al,O; catalyst with 10 wt % Ethanol, 700°C (Byrd
et al., 2007Db).

Effect of residence time

Thus far, because most of the studies on ethanol (or other organic materials) reforming in
SCW involved non catalytic reactions, the influence of residence time on hydrogen production was
reported (Yu et al, 1993; Lee et al, 2002; Hao et al., 2003; Kruse and Dinjus, 2003; Gudhe and
Gupta, 2005). They observed that the formation of hydrogen, carbon dioxide and methane
increases with longer residence times, while carbon monoxide decreases. For catalytic reactions,
Osada et al. (2004) reported their results in terms of reaction time, with methane increasing by
increasing the reaction time over all catalytic reactions conducted in a batch reactor. Interestingly,
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Arita et al. (2003) showed that the hydrolysis of ethanol in a batch reactor led to higher conversion

to hydrogen as the residence time increased, as seen in Figure 2-7.
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Figure 2-7: Time dependence of the yields of all products for ethanol reaction at a density of 0.20
glcm® at 500°C. Batch reactor (Arita et al., 2003)

Effect of the water to carbon ratio

“The steam to carbon ratio is an important parameter as far as the economics of the process
is concerned” (Gudhe and Gupta, 2004). Generally, it was observed that increasing the water to
carbon ratios increases the production of hydrogen (Yu et al., 1993; Boukis et al., 2003, Taylor et
al., 2003; Lu et al., 2006; Matsumura et al., 2005; and Byrd et al. 2007a, 2007b). For example,
Boukis et al. (2003) observed that hydrogen increases rapidly and methane decreases significantly
by increasing the water to methanol ratio from 1 to 4 at 600°C, 25 MPa and a residence time of 15
s as shown in Figure 2-8. A similar pattern was observed for ethanol reforming in SCW. Byrd et al.
(2007b) reported that increasing the ethanol concentration from 5 to 20 wt.% decreased the
production of H, and CO, but increased the CH, yield as shown in the Figure 2-9.
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Figure 2-8: Gas composition as a function of the water-to-methanol ratio: P = 25 MPa,
T = 600°C, residence time = 15 s. (Boukis et al., 2003a)
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Figure 2-9: Effect of feed concentration of product gas yields at 800°C; 22.1 MPa over 1.9 g of
5% wt. Ru/ALO; catalyst (Byrd et al., 2007b)
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2.1.5 Catalyst Stability in SCW

In SCW environment, an important cause of catalyst deactivation is the transformation of
the solid state of the catalyst. Ding et al. (1996) categorized the transformation of solid-state into
phase transition (e.g., y-ALO; to a-ALO;), solid solution formation (e.g., spinel from
Cr,03/Al,0,), sintering of metal coated on a support, and migration of active components. These
transformations can occur because of the capability of SCW to hydrolyze metal oxide, to promote
crystal growth and phase transformations, to reduce solid defects, and to accelerate solid
uniformity (Ding et al., 1996). High loss of surface area of catalyst is commonly encountered in
SCW reaction. Armbruster et al. (2001a) reported that the Carulite 150® (MnO,-CuO/AlLO3)
catalyst tested for hydrolysis and oxidation of ethyl acetate in sub- and supercritical water shows
no loss of activity in SCW for at least 2