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ABSTRACT 
 

 

Membrane filtration of protein solutions is influenced by a wide range of processing 

and physicochemical conditions. Monitoring and optimizing membrane filtration may 

have advantages for achieving, in a cost effective manner, improved bioproduct 

purification and membrane performance which is relevant to pharmaceutical and 

biochemical applications. The motivation of this work was to examine the feasibility of 

applying two-dimensional fluorescence spectroscopy in conjunction with chemometric 

techniques for monitoring and possibly optimizing the performance of membrane 

processes.  

 

Preliminary work focused on assessing the use of multivariate calibration tools in 

conjunction with the sensitivity of intrinsic protein fluorescence towards changes in 

environmental conditions was to predict protein concentration and aggregation 

behavior.  A model protein, β-lactoglobulin (β-LG), was used as a first simple case 

scenario.  Results showed very good agreement between the fluorescence based 

predictions and measurements obtained by HPLC and gravimetric analysis regardless 

of the conditions. PLS analysis of excitation-emission matrices revealed unique 

spectral fingerprints that are most likely associated with the heat-induced denaturation 

and aggregation. Standard Normal Variate, a signal preprocessing and filtering tool, 

was shown to have a significant effect on enhancing the predictive accuracy and 

robustness of the PLS model as it reduced the effect of instrumental noise. The 

methodology was then extended to a two-component protein system consisting of α-

lactlalbumin (α-LA) and β-lactoglobulin (β-LG). The process of thermal induced 

aggregation of β-LG and α-LA protein in mixtures, which involves the disappearance 

of native-like proteins, was studied under various treatment conditions including 

different temperatures, pH, total initial protein concentration and proportions of α-LA 

and β-LG.  A Partial Least Squares (PLS) regression algorithm was used to correlate 

the concentrations of α-LA and β-LG to the fluorescence spectra obtained for mixtures.  
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The results illustrated that multivariate models could effectively deconvolute multi-

wavelength fluorescence spectra collected for the protein mixtures and thereby provide 

a fairly accurate quantification of respective native-like α-LA and β-LG despite the 

significant overlap between their emission profiles. It was also demonstrated that a PLS 

model could be used as a black-box prediction tool for estimating protein aggregation 

when combined with simple mass balances.  

 

Ultrafiltration experiments of the whey protein isolate solutions were carried out in 

dead-end filtration mode and fluorescence measurements of permeate and retentate 

solutions were acquired in synchronous scanning mode using a fiber optic probe. By 

implementing a dilution strategy for the retentate side, the fluorescence based PLS 

model encompassed a low protein concentration range where fluorescence was not 

expected to be significantly influenced by concentration-dependent interferences. It 

was also demonstrated that synchronous spectra can provide good predictions and 

consequently the use of the full spectrum may not be necessary for monitoring with 

corresponding savings in acquisition time. Membrane performance variables that are 

difficult to measure, such as individual protein transmission and membrane selectivity 

could be estimated directly from fluorescence-based predictions of protein 

concentrations in the retentate and permeate streams.  

 

Multiwavelength light scattering spectra, acquired using the fiber optic probe, were 

shown to be a useful indicator for protein self-association behavior, which is known to 

influence the membrane filtration. High fouling potential were observed for protein 

solutions that exhibited significant Rayleigh scattering. A predictive PLS model for 

estimating protein aggregation from Rayleigh scattering measurements was developed 

and it was tested by using molecular weight experimental values obtained from the 

literature. Although this comparison was only partial due to the limited amount of 

molecular weight data available, the findings verified the possibility of estimating the 

aggregate size from multiwavelength Rayleigh scattering spectra acquired using a 

conventional spectrofluorometer. Thus, the results implied that both intrinsic 
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fluorescence and light scattering multiwavelength measurements could provide 

complementary information about the filtration process.  
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CHAPTER 1 

Research Aim and Outline  

 

 

The ability to purify proteins in a cost-effective manner on a commercial scale and to 

meet the required high purity for pharmaceutical and food products is an important 

technical goal that industry is striving to achieve.  A large number of protein products 

are used as foods, food additives, therapeutic proteins that are recovered from various 

plant, microbial and animal sources; however, most protein-based products need to be 

purified before they can be used (Ghosh, 2003). As a result, protein separation 

technologies play a vital role as unit operations in the development and 

commercialization of high-value protein-based products. Membrane filtration is a 

technique that is commonly used in the biotech, food and beverage industries and it 

relies on the use of a synthetic membrane acting as a physical barrier to separate the 

target protein from other substances. Membrane pore size and membrane chemistry 

determine the type of molecules that can be processed (Zeman and Zydney, 1996).  

During filtration, target proteins in the soluble phase are removed via the membrane to 

the permeate phase while macromolecules and particles larger than the membrane 

pores are retained by the membrane (i.e. in the retentate stream) as seen in Figure 1.1. 

High performance filtration is usually characterized by high protein product  
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transmission, high separation quality and high product quality (Zeman and Zydney, 

1996). 

Permeate

Feed

N2, air
TMP

Membrane

Permeate

Feed

N2, air
TMP

Membrane

 

Figure 1.1 Schematic diagram for membrane-based protein separation module (as 
depicted in Skořepová, 2007).    

 

1.1. Research Motivation   

The most critical problem encountered in membrane filtration processes is membrane 

fouling which has an adverse effect on the performance of the separation. Membrane 

fouling is referred to as the accumulation of proteins and/or other particles in the feed 

stream inside the pores and on the external membrane surface, which will alter the 

sieving characteristics of the membrane, and add more resistance to the flow (Figure 

1.2).  Membrane fouling in protein separation processes is a very complicated 

phenomenon compared to fouling caused by dissolved solids in water treatment 

systems (Güell et al., 1998). This is due to the complexity of protein mixtures. The 
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complexity of protein mixtures arises from the presence of surface interactions between 

species in the bulk solution as well as interactions between the membrane and these 

species (Palacio et al., 2003). The extent of membrane fouling by proteins involves the 

interplay of a large number of physicochemical conditions (i.e. solution pH and salt 

concentration) and hydrodynamic conditions (i.e. wall shear rate and permeate flux) 

(Tracey and Davis, 1994; Ghosh, 2003). Just a small variation in the above-mentioned 

conditions induces important changes in the way the process has to be operated (Arora 

and Davis, 1994). Membrane fouling involves three different patterns of matter-

accumulation phenomena on its surface: (1) concentration polarization, (2) (followed 

by) cake/gel layer formation, (3) and aggregate cake formation (i.e., cake of retained 

aggregates) (Redkar and Davis, 1993).  

 

Figure 1.2 Fouling caused by the accumulation of proteins and aggregates on the 
membrane surface  
(http://www.dunwellgroup.com/ProductsServices/DNL/VSEP/Images/Figure1.gif). 
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Clearly, membrane fouling has a significant effect on product yield and productivity. 

The deposition of proteins inside pores and the tendency of these proteins to aggregate 

may cause yield losses of the target protein. In addition to product yield considerations 

associated with fouling, there are economical considerations.  Protein fouling decreases 

the permeate flow and thereby drives up the cost of operation and maintenance (Davis, 

1992).  

Selectivity, Yield, Protein 
Aggregation

Translate the spectra into 
valuable process information

Multi-wavelength spectra

Large amount of 
data

Chemometrics

Y=f(X)

Membrane Filtration

Retentate

Permeate

Selectivity, Yield, Protein 
Aggregation

Selectivity, Yield, Protein 
Aggregation

Translate the spectra into 
valuable process information

Multi-wavelength spectra

Large amount of 
data

Chemometrics

Y=f(X)

Membrane Filtration

Retentate

Permeate

Translate the spectra into 
valuable process information

Multi-wavelength spectraMulti-wavelength spectra

Large amount of 
data

Chemometrics

Y=f(X)
Large amount of 
data

Chemometrics

Large amount of 
data

Chemometrics

Y=f(X)

Membrane Filtration

Retentate

Permeate
Membrane Filtration

Retentate

Permeate

 

Figure 1.3 Feasibility of applying fluorescence spectroscopy in conjunction with 
chemometric techniques for monitoring the filtration process. 
 

It would be highly beneficial to industry if an appropriate monitoring system could be 

implemented to determine the extent of protein fouling, feed composition, product 

purity, separation efficiency and yield in a minimum period of time. The traditional 

approach for determining product purity is based on off-line analysis techniques such 
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as analytical chromatography (e.g. HPLC and size exclusion measurements), which 

results in a time delay of several hours or days between sampling and obtaining the 

results. The traditional approach does not offer an option in terms of process control. 

There is a need for fast and reliable methods of monitoring protein membrane 

separation for process control and optimization.  

1.2. Research Objectives 

The first objective of this thesis was to examine the feasibility of applying multi-

wavelength fluorescence spectroscopy in conjunction with chemometric techniques for 

monitoring and optimizing filtration processes as illustrated in Figure 1.3. A major 

advantage of fluorescence spectroscopy over other analytical techniques is that it is 

rapid, noninvasive and very sensitive. Chemometric techniques rely upon multivariate 

statistical and mathematical tools for decomposing a measurement into valuable 

process information.  

The second objective was to use this information to identify the range of operating 

conditions (i.e. the transmembrane pressure and the pH value of the feed solution) that 

will lead to optimal membrane performance. Achieving this objective would most 

likely improve the quality of bioproducts, lower the cost of membrane replacement, 

control membrane fouling and thus prolong membrane stability and integrity. In 

addition, it could allow manufacturers to determine the necessary operating conditions 

for minimization of potential fouling phenomena and to address concurrent product and 

process engineering issues.  
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The third objective was to study the feasibility of utilizing multi-wavelength 

fluorescence data for predicting the level of protein aggregation that is considered to be 

a major factor that influences membrane fouling.     

1.3. Thesis Structure  

Chapter 2 explains many of the practical and theoretical fundamentals of membrane 

filtration, fluorescence spectroscopy and multivariate calibration methods. The first 

section of Chapter 2 begins by providing a theoretical and practical basis of membrane 

filtration and factors that influence the performance of membrane-based protein 

separation processes. Chapter 3 examines heat-induced aggregation behavior of a 

model protein β-LG under different conditions. A predictive model based on 

fluorescence measurements is developed for predicting protein solubility and its 

aggregation behavior and progress with time at different temperatures and pHs. 

Chapter 4 extends the studies conducted in Chapter 3 by considering a two-component 

system consisting of α-LA and β-LG as a model system. A predictive model based on 

fluorescence measurements is developed for predicting the solubility of individual 

components and their aggregation behavior after heat treatment. Chapter 5 presents a 

novel methodology for monitoring filtration process performance by using 

fluorescence measurements acquired using a fiber optic probe.  Important parameters 

for evaluating membrane filtration performance (i.e. membrane selectivity, protein 

transmission behavior) were shown to be estimated using fluorescence-based 

measurements of the permeate, retentate and feed streams.  Chapter 6 demonstrates 

how Rayleigh scattering signals of the feed stream can be used to gain more insight 
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into the potential of these mixtures for fouling and to provide quantitative information 

on average aggregate size of the protein in solution.  Chapter 7 highlights conclusions 

from the thesis and suggestions for future work. Chapters 3, 4, 5 and 6 are arranged in 

publication format, each with its individual abstract, introduction, materials and 

methods, results and discussion as well as conclusion.  
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CHAPTER 2 

 

Theoretical Background 
 
 
 
2.1   Membrane Based Separation Processes  

Membrane-based separation processes are those processes whose key component is a 

synthetic membrane, a thin barrier through which solutes and solvents are selectively 

transported (Ghosh, 2003). Such membranes are manufactured from organic polymers 

or inorganic materials resulting in membranes with different structural morphologies 

and chemical properties.  

 

Figure 2.1 Classification of membrane processes for separating milk components 
based on membrane pore size and/or the type of material being processed (as 
depicted in http://www.idfa.org/meetings/presentations/milktechconf_cold.pdf)  
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Membrane characteristics such as membrane porosity, selectivity and hydraulic 

permeability are all dictated by its structural morphology and chemical characteristics 

(Ghosh, 2003). Membrane-based separation processes are generally classified based on 

the membrane pore size or on the type of material being processed. Figure 2.1 shows 

the classification of membrane processes for separating milk components based on 

membrane pore size and/or the type of material being processed.  

 

The overlap between different types of membrane-based separation processes is so 

significant that, in some cases, classification becomes difficult. For instance, in spite of 

the fact that ultrafiltration is generally applied to filtration of macromolecules such as 

proteins, smaller molecules or even particulate material can also be processed by 

ultrafiltration (Ghosh, 2003). 

 
 
2.2 Major Concerns Associated with Ultrafiltration-Based Protein 

Fractionation  

 

2.2.1. Membrane Fouling  

Fouling is defined in general as adsorption and deposition of material present in the 

feed which results in reduction in the permeate flux due to an increase in the membrane 

resistance and decrease in hydraulic permeability. There are three types of protein 

fouling classified according to where it occurs: internal, pore blockage and external 

(Figure 2.2). Internal fouling (pore narrowing/constriction) is defined as the deposition 

and adsorption of feed particles inside the membrane surface (Güell et al., 1998). This 
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leads to pore narrowing and constriction of the flow and eventually reduction of the 

permeate flux through the membrane.  

 

The extent of internal fouling is dependent on the membrane characteristics such as 

morphology, pore size distribution and average pore size. For example, very porous 

membrane surfaces are highly susceptible to internal fouling because proteins can 

easily penetrate and accumulate on the interior surface of the membrane pores (Davis, 

1992). Pore plugging refers to the accumulation of the larger protein aggregates or 

particles on the pore entrance thereby increasing the resistance of the membrane. Pore 

plugging, however, does not appear to contribute significantly to the decline in flux 

that occurs during microfiltration of protein solutions, as the average protein particle 

size is much smaller than the average membrane pore size (Belfort et al., 1994; Zeman 

and Zydney, 1996). Protein fouling can also be classified as reversible or irreversible  

(Palacio et al., 2003).   

 

Figure 2.2: Mechanisms of membrane fouling (as depicted in Guettler, 2006)  
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2.2.2 Concentration Polarization  

Concentration polarization is referred to as the accumulation of retained solute at the 

upstream surface of the membrane (Zeman and Zydney, 1996). Concentration 

polarization can affect the process through the following mechanisms (Zeman and 

Zydney, 1996):  

� A localized high protein concentration can result in protein/protein interactions 

leading to concentration polarization and a high osmotic pressure.  

� When the concentration polarization is severe, the wall protein concentration can 

reach a value called gelation-concentration at which a protein gel layer can form on 

the membrane surface as shown in Figure 2.3. That gel layer provides an additional 

hydraulic resistance to the solvent flow in series with that provided by the 

membrane (Ghosh, 2003).   

� The accumulation of solutes in the immediate vicinity of the membrane surface 

increases the amount of protein adsorption, which may result in irreversible fouling 

of the membrane, altering its sieving characteristics (Babu and Gaikar, 2001; 

Zeman and Zydney, 1996).   

 

All of these mechanisms can change the apparent sieving coefficient of proteins and 

therefore the selectivity of the membrane towards permeable protein species could 

decrease with filtration time. Permeate flux decreases with time also as the extent of 

concentration polarization increases resulting in decreasing process productivity.  

Techniques useful in minimizing concentration polarization would also be useful in 

minimizing fouling (Ghosh, 2003). 
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Figure 2.3: A schematic diagram showing the accumulation of retained solute at the 
upstream surface of the membrane (i.e. the concentration polarization) where Cb, Cp 
and Cg denote the bulk, permeate and gel concentrations respectively (as depicted in 
http//:te-webserver.cce.iastate.edu/courses/ce525/Membrane) 
 

2.2.3. Protein denaturation and Aggregation Behavior 

Achieving optimal performance of protein separation by membrane filtration is a 

challenging task due to the complexity of protein behavior in solution.  This behavior 

can be explained by the occurrence of several events such as protein-protein 

interactions, denaturation and aggregation over the course of the filtration process. The 

likelihood of occurrence of any of these events is determined by the surrounding 

conditions, as previously described.  Monitoring protein stability and aggregation 

behavior in the feed solution and in the feed line is essential to ensure cost efficient and 

reliable operation over the course of filtration. Protein denaturation generally involves 

conformational and structural changes related to partial unfolding of the native protein 
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that leads to the exposure of some hydrophobic amino acid residues. The degree of 

denaturation is very complicated as it depends on a number of physical and chemical 

parameters such as temperature, protein concentration, protein-protein interactions, 

ionic strength, pH and shear (Vetri and Militello, 2005). In their study of 

microfiltration fouling behaviour of a β-lactoglobulin solution, Marshall et al. (1997) 

observed an increase in fouling resistance with increasing flux, which was 

accompanied by a decrease in protein transmission across the membrane due to protein 

aggregates blocking a majority of membrane pores.  According to Marshall et al. 

(1997), higher mechanical shear will favor protein denaturation and aggregation as 

more protein molecules might undergo conformational changes in their structure. 

Protein denaturation is usually followed by aggregation of the partially unfolded 

protein molecules via the formation of new intermolecular bonds between the exposed 

amino acid residues (Mulvihill and Donovan, 1987). Aggregation can occur due to 

non-covalent bonding (electrostatic and dipolar Van der Waals attractive forces).  

 

2.3 Performance of the Protein-protein Fractionation   

The performance of membrane filtration process can be assessed in terms of the 

selectivity of the membrane, product recovery (yield) and the protein transmissions. 

Filtration performance is affected over time as a result of protein fouling and 

concentration polarization across the membrane. In Chapter 5 the use of fluorescence 

spectroscopy for monitoring these parameters during the filtration process will be 

illustrated.  A detailed description of all of these filtration performance parameters is 

provided here for information.   
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2.3.1 Product Yield  

Product yield (also called recovery) of the targeted protein (i.e. the component that 

needs to be purified) is defined as the ratio of the total mass of the recovered protein in 

the product stream to its initial total mass in the feed solution (Cheang and Zydney, 

2004). The definition of the product stream can be either the permeate or retentate 

depending on the objective of the separation (Mulder, 1996). If the objective is to 

concentrate the targeted component in the feed by removing smaller solutes through the 

membrane, then the retentate is considered to be the product stream. However, when 

membrane filtration is used for purifying the target component by removing larger 

solutes, then the permeate stream is considered to be the product stream since it 

contains the target components that selectively pass through the membrane (Mulder, 

1996). The overall protein yield for a given protein i is usually estimated using 

Equation 2-1 (Cheang and Zydney., 2004):  

%100×













=

iff

pp
i CV

CV
Y                                                    (2-1) 

where Vp and Vf are the volume of the product (either permeate or retentate) and the 

initial feed solutions, respectively. 

 

Product losses can be attributed to numerous sources such as membrane fouling, 

protein solubility reduction, protein denaturation and aggregation. Such sources of 

product loss are influenced by the operating conditions and the feed solution properties. 

Therefore, product yield can be sensitive to changes in these conditions. A thorough 

evaluation of each of these areas should result in a process with stable and continuous 



 

 15 

high yields. It is also possible that over time mechanical and or chemical degradation 

of the membrane can occur and retention could change over time 

(http://www.millipore.com/techpublications/tech1/an1026en00). Trends in process 

yields which change over time are indicative of this type of behavior. Achieving 

optimal product yield for membrane separation processes is one of the challenges 

encountered in the food and pharmaceutical industries (Tutunjian., 2006). It is 

important to take samples and measure increased product losses in order to confirm 

what is happening (http://www.millipore.com/techpublications/tech1/an1026en00). For 

industrial processes where the primary purpose of filtration is the concentration of 

product present in feed solution from a previous purification or separation step, real 

time measurement can allow accurate determination of concentration end point and 

hence maximize yield. 

 

2.3.2 Protein Sieving Coefficient 

The transmission coefficient (also called the protein sieving coefficient), which is equal 

to the ratio of the concentration of a component in the permeate (Cpi) to the bulk (Cbi), 

is an important quantity for monitoring membrane performance (Ghosh, 2003).  It is 

given by the following:  

bi

pi
ob C

C
=τ            (2-2)  

where piC  and biC are the permeate and the bulk concentrations respectively of a 

given protein i.   



 

 16 

2.3.3 Membrane Selectivity 

The efficiency of the binary protein fractionation is commonly expressed in terms of 

the selectivity which is defined as (Ghosh, 2002): 

j

i
i τ

τψ =              (2-3) 

Where iτ stands for the sieving coefficient of the preferentially transmitted protein 

while jτ  stands for the sieving coefficient of the preferentially retained protein. The 

selectivity in ultrafiltration is mainly determined by the molecular size of the proteins 

to be separated if there is a significant difference in their size. In the case of proteins 

having comparable sizes, other factors such as physicochemical conditions can be 

manipulated to play significant roles in determining selectivity. Eq (2-3) is valid only 

for binary protein mixture and it can not be used for assessing the efficiency of protein 

fractionation of complex protein mixtures that consist of more than two proteins 

(Ghosh, 2002). Instead, a new parameter termed effective selectivity can be introduced 

for accurate description of selectivity in ultra filtration of complex protein mixtures 

(Ghosh, 2000). Such parameter is given as (Ghosh, 2003): 

∑ ≠

=
ij

i
i τ

τψ                                                                      (2-4) 

It is obvious that the selectivity value is dependent upon the sieving coefficients of 

individual proteins, which in turn, would depend on parameters such as pH, ionic 

strength, permeate flux and the degree of concentration polarization as will be 

described in section 2.4.  The selectivity of separations generally changes with process 
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time as a consequence of membrane fouling, concentration polarization and protein-

protein interactions. The selectivity of separation can be enhanced by the optimization 

of pH, feed concentration, salt concentration or permeate flux (Ghosh, 2002). The 

effect of permeate flux on the selectivity coefficient for ultrafiltration of BSA and IgG 

is illustrated by Figure 2.4(Ghosh, 2002). Rapid monitoring of the selectivity value 

during operation as a result of changing these variables could help the operator to find 

the optimal conditions either in pilot-lab scale or at industrial scale to achieve highest 

selectivity.  

 
Figure 2.4: The effect of permeate flux on the selectivity coefficient for ultrafiltration of 
BSA and IgG is illustrated by Figure (Ghosh, 2002). 
 
 
2.4 Factors Affecting the Separation Performance  

The efficiency and cost of membrane processing is dependent on flux and transmission, 

which is a function of different factors. The membrane type, processing parameters and 
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the feed solution properties will determine flux and concentration of components in the 

permeate and retentate. Protein fractionation can be affected by numerous factors that 

are relevant to the process. These factors can be divided into two categories: operating 

factors and properties of the feed solution (Balakrishnan and Agarwal., 1996; Chan, 

2002). Operating parameters refer to the pressure drop across the membrane and the 

stirring speed, while the properties of the feed solution involve physiochemical 

properties of the feed (i.e. pH and ionic strength), total protein concentration and feed 

composition. Those variables have to be manipulated in order to achieve optimal 

performance of the protein separation process (Chan, 2002).     

 

2.4.1. Processing Parameters (Operating Conditions)  

2.4.1.1 Transmembrane Pressure TMP. 

Transmembrane pressure is defined as the difference in pressure between the permeate 

side and the feed side of the membrane. The transmembrane pressure provides the 

driving force for the separation. In general, the initial permeate flux increases linearly 

with an increase in the transmembrane pressure. Increasing the transmembrane 

pressure can increase the driving force acting on the permeable molecules, and 

eventually permeate flux also increases (Sulaiman and Aroua, 2002). However, the 

occurrence of such increase in the permeate flux as a result of increasing the TMP is 

only temporary and it is usually followed by a rapid flux decline soon after (Chan, 

2002). At the same time, the increase in the permeate flux may be accompanied by an 

associated momentary increase in the solute permeability through the membrane before 

a sharp decline (Chan, 2002). Such a time dependent decrease in flux and solute 
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permeability are induced by the accumulation of solutes on the membrane leading to 

the deposition and adsorption of solutes on the membrane surface as well as within the 

pores (Güell et al., 1998, Chan, 2002).   

 

2.4.1.2. Stirring Speed   

It is known that stirring reduces the concentration polarization of solutes at the 

membrane surface since it increases the rate of back-diffusion of solutes from the 

membrane surface towards the bulk. The consequence of such an effect is greater 

protein rejection and at the same time an enhancement in the permeate flux (Chan, 

2002).  Some researchers have observations shown that higher stirring speeds may not 

necessarily improve the separation process. For instance, Franken et al. (1989) showed 

that higher stirring speeds caused the transmission of BSA to decrease with respect to 

time. According to the authors, such a decrease in BSA transmission can be attributable 

to the shear induced aggregation of BSA caused by the stirring action, resulting in 

plugging of the pores and hence increased rejection (Chan, 2002). Mukai et al., (1998) 

performed a stirred-cell ultrafiltration study to investigate the effect of stirring on the 

separation of BSA and egg white lysozyme. Although the filtration rate was improved 

by increasing the stirring speed, lysozyme transmission across the membrane was 

reduced (Chan, 2002, Mukai et al., 1998). A possible explanation of this is that stirring 

reduced the concentration polarization of lysozyme and therefore, the concentration of 

lysozyme at the membrane surface decreased. Since the protein transport through 

membrane pores is influenced by the concentration gradient between the retentate and 
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the permeate sides, decreasing the concentration at the membrane wall would result in 

reducing the transmission of the protein (Chan, 2002, Mukai et al., 1998). 

 

2.4.2. Feed-Stock Conditions:  

2.4.2.1. Physicochemical Conditions: pH and ionic strength 

Physiochemical conditions (pH and ionic strength) have a profound influence on 

membrane fouling as they affect both intermolecular protein-protein interactions as 

well as electrostatic protein-membrane interactions (Redkar and Davis, 1993). These 

interactions can be manipulated for the purpose of reducing membrane fouling by 

adjusting the feed solution pH and ionic strength (Chan, 2002).  Each protein has a 

certain isoelectric point. The isoelectric point (IEP) is defined as the neutral pH value 

at which the protein molecule acquires zero net charge and as a result, electrostatic 

attractive forces prevail in the protein solution. At pH values below the isoelectric 

point, protein molecules acquire net positive charges while above the isoelectric point 

they acquire net negative charges. These charges increase in magnitude with increasing 

distance away from the isoelectric point (Chan, 2002; Zeman and Zydney, 1996; 

Ghosh, 2003).  Physiochemical conditions (pH and ionic strength) have a profound 

influence on membrane fouling as they affect both protein-protein interactions as well 

as protein-membrane interactions (Redkar and Davis, 1993). These interactions can be 

manipulated for the purpose of reducing membrane fouling by adjusting the feed 

solution pH and ionic strength (Chan, 2002; Heath and Belfort, 2006).  Each protein 

has a certain isoelectric point. The isoelectric point (IEP) is defined as the neutral pH 

value at which the protein molecule acquires zero net charge and as a result, 
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electrostatic attractive forces prevail in the protein solution. Away from the IEP, 

intermolecular electrostatic repulsive forces dominate protein-protein interactions as 

protein molecules in solution acquire similar charges. Below the isoelectric point, a net 

positive charge prevails while a net negative charge is present above the isoelectric 

point (Chan, 2002; Zeman and Zydney, 1996; Ghosh, 2003). Generally speaking, 

membrane fouling becomes significant at the protein’s isoelectric point due to the 

electrostatic attractive forces developing between protein molecules.  Palecek and 

Zydney (1994) studied the fouling behavior of five protein solutions: hemoglobin, 

lysozyme, ribonuclease A, immunoglobulin G and BSA in a stirred cell filtration 

device at pH 7. Flux decline data were obtained as a function of time. The 

immunoglobulin G, hemoglobin, and ribonulease A solutions appeared to have 

approximately identical membrane fouling behavior while less significant flux 

reduction was observed during the filtration of the other two protein solutions. The 

reason for this difference in membrane fouling behavior is due to their different 

isoelectric points. A protein in solution that has an isoelectric point close to the feed 

solution pH would have a greater tendency to aggregate, leading to a significant decline 

in flux as in the case of immunoglobulin G, hemoglobin, and ribonuclease A. The 

magnitude of the electrostatic interactions between charged protein molecules and the 

membrane is also influenced by the total salt concentration (also called ionic strength) 

of the solution (Zeman and Zydney, 1996). Salt ions bind to ionized groups on charged 

protein molecules and produce a charge screening effect on the electrical interactions 

between these molecules, significantly reducing any electrostatic attractive or repulsive 

forces (Chan, 2002; Zeman and Zydney, 1996; Ghosh, 2003). Electrostatic repulsion 
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between the membrane surface and the protein molecules in solution occurs as they 

acquire similar charge sign and thus the likelihood of protein fouling and protein 

adsorption on the membrane surface is reduced. On the other hand, the tendency of 

protein deposition and adsorption on the membrane surface is increased due to 

attractive electrostatic interactions if both the proteins and the membrane are oppositely 

charged (Chan, 2002; Zeman and Zydney, 1996; Ghosh, 2003).      

 

2.4.2.2. Feed  Concentration  

In all studies undertaken so far, it has been found that, the flux decline is higher when 

increasing the feed concentration (Chan 2002). By increasing the feed concentration, a 

greater amount of solute will be transported towards the membrane surface and hence 

greater accumulation of solutes in the membrane boundary layer will occur. This 

results in greater concentration polarization and increased likelihood of membrane 

fouling (Chan, 2002).      

 

2.5. Process Analysis and Monitoring  

A commonly used phrase “if you do not measure it, you cannot control it” applies as 

much to membrane filtration processes as to any other part of pharmaceutical and food 

products manufacturing (Harrington, 1987). The previous section demonstrated that the 

performance of membrane separation processes is influenced by many factors. 

Accordingly, in order to develop and optimize membrane processes and in order to 

operate them efficiently, it is critical that the overall state of the process be monitored 

and controlled in an appropriate manner and that the response of the process towards 
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changes in the processing conditions be determined. Achieving these goals requires 

three different functions: measurement, analysis of measurements and control. This 

section reviews currently available instrumentations and monitoring methodologies 

implemented in membrane separation processes.  

 
 
Figure 2.5: A schematic summary of membrane filtration instrumentation (Kelly and 
Peterson, 2001). The system consists of a feed tank, membrane module, recirculation 
pump, pressure sensors (PT) and flowmeters (Fl) on the feed, retentate and permeate 
lines. 
 

Figure 2.5 shows a schematic summary of membrane filtration instrumentation. 

Pressure sensors denoted by (PT) are placed in the feed, retentate and permeate lines to 

monitor the transmembrane pressure and retentate pressure drop of the membrane 

operation. Flowmeters (Fl) are installed in both retentate and permeate streams to 

monitor the stream flow rates (Kelly and Peterson, 2001).  
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One of the major goals, if not requirements, of obtaining data from membrane filtration 

is estimation of product recovery and membrane selectivity based on the available 

measurements of permeate, retentate and feed streams. Process analysis and monitoring 

systems are classified into two categories based on the location and the speed of 

analysis as described in the following subsections.  

 
 
2.5.1 Off-line Analytical Techniques 

Analysis that is done on samples removed from the process and sent to analytical 

device for testing is called off-line. The objective of sampling in bioprocesses is to 

acquire representative samples that correspond to the overall state of the process at a 

certain time (Vojinovic et al., 2006). Traditional laboratory techniques are 

implemented for the analysis of samples withdrawn from the process such as size-

exclusion chromatography. HPLC has been extensively used for analyzing individual 

proteins in permeate and retentate and for ascertaining the consistency and quality of 

the desired product stream (Folta-Stogniew & Williams, 1999; Chirino & Mire-Sluis, 

2004). Another advantage of size-exclusion HPLC is that it gives a reliable, 

quantitative determination of the level of aggregation in retentate, feed and permeate, 

and may also distinguish multimers form the product of interest (Kelly and Peterson, 

2001; Wang et al., 2003). Due to these advantages, HPLC is an established analytical 

tool for decades and available in any laboratory dealing with process development and 

quality control (Folta-Stogniew & Williams, 1999). However, HPLC has proven to be 

excessively time consuming and labor-intensive and hence it cannot be used for 

continuous monitoring of the filtration process progress.  
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2.5.2 On-line Optical Sensors  

The second type of process analysis is known as on-line analysis since the analytical 

instrument is positioned directly in close proximity to the process line (Vojinovic et al., 

2006). Optical methods based upon light absorbance (spectrophotometry), scattering 

(turbiditimeters) or fluorescence measurements (spectrofluorometry) have started to 

find more application for continuous monitoring of bioprocesses. They provide 

increased efficiency and productivity through effective process automation without 

violating integrity of the system and without wasting valuable products through 

sampling.  This section provides a discussion of application, advantages and limitations 

of these methods in relation to membrane separation processes.    

 

2.5.2.1. UV photometers  

Ingham et al. (1979) was one of the earliest works that investigated the feasibility of 

UV photometers for continuous monitoring of a filtration process in-line. In a closed 

loop filtration unit where the retentate and permeate lines were combined together and 

returned to the stirred cell containing the feed solution, a small part of the returning 

fluid was diverted to a UV detector, which allowed the UV absorbance of the returning 

solution to be continuously monitored.  Ingham et al, found that a stepwise increase in 

trans-membrane pressure was accompanied by a progressive decrease in the UV 

absorbance reading, reflecting the lower concentration of the protein in the fluid 

returning to the stirred cell. They found that such a decrease in protein concentration is 

due to protein adsorption and deposition on the membrane. However, they confined 

their emphasis to the steady state portions of the UV time-curves while ignoring the 
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real-time transient changes of UV readings which accompanied the step changes in the 

transmembrane pressure.  

 

 

Figure 2.6: Continuous monitoring of the permeate using UV detectors at different 
permeate fluxes for an ultrafiltration system (Ghosh et al., 2000). 
 

In another study (Ghosh et al., 2000b), an on-line flow-through UV detector was 

implemented for continuous monitoring of the permeate line under constant-flux 

ultrafiltration conditions. It was found that the UV time-curve is sensitive to step 

changes in the permeate flux as seen in Figure 2.6. They observed a faster decrease in 

the UV value (reflecting protein concentration) at higher permeate flux, which can be 

attributed to the rapid accumulation of proteins on the membrane surface and thereby 

hindered protein transport across the membrane. Ingham et al. (1974) pointed out that a 
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more elaborate system containing monitors installed in both lines would allow 

necessary parameters related to membrane separation performance to be monitored in 

real time.  

 

Figure 2.7: Schematic diagram of a typical membrane filtration system showing the 
positions of in-line photometers installed for monitoring the process streams (as 
depicted in http://www.optek.com/images/app_Tangential_Filtration.gif) 

 

Figure 2.7 is a schematic diagram of the membrane unit identifying the three process 

flows that should be monitored: product feed to the recirculation tank, retentate return 

to the recirculation tank and permeate flow. In systems with an overall control scheme, 

UV absorption sensors installed at the feed line to the second stage can control the feed 

concentration by adjusting the operating conditions such as flow rates and pressures to 

achieve optimal performance of the process.  



 

 28 

UV sensors installed at the retentate line can be used for signaling or indicating the 

desired end point at which acceptable product yield is achieved during the production 

run (Meltzer and Jornitz, 2003). Although UV monitoring is rapid and non-invasive, it 

cannot give reliable and quantitative determination of individual protein concentrations 

in permeate and retentate during ultrafiltration of complex protein mixtures since all 

proteins absorb UV light in the same wavelength range. In addition, there may be cases 

where the UV monitor cannot provide useful information, for example, at extremely 

low or high concentrations of protein, or in the presence of interfering compounds 

(Kelly and Peterson, 2001). 

 
2.5.2.2 Turbidimeters  

The presence of protein aggregates with relatively high concentrations in the influent 

stream to the filtration unit can contribute to high rates of membrane fouling and thus 

reduced membrane life. Achieving consistent, efficient and reliable performance for 

membrane filtration systems is dependent upon maintaining the membrane at the best 

possible conditions, which can be done by controlling membrane fouling. In order to 

control membrane fouling, the level of aggregates and colloidal particles incoming to 

the membrane unit has to be monitored continuously (Orchard, 2006). Turbidity 

measurements provide a reading for the amount of light scattered by colloidal particles 

and protein aggregates dispersed in the solution.  Turbiditimeters are basically consist 

of a light source, producing a light beam of known intensity at a single wavelength that 

is directed into a vial or flow cell containing the turbid medium to be analyzed. Part of 

this light is either scattered or absorbed by the suspended particles and aggregates. The 
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amount of scattered light is then recorded and is proportional to the quantity of 

aggregates suspended in the medium. A turbidity meter that measures scattered light at 

an angle of 90° is known as a nephelometer (Orchard, 2006). Other types of turbidity 

monitors employ a "forward scatter" technique. It is also known as a “small-angle 

scattering” technique since the scattered light detector is placed at a position where the 

angle between the path of the incident light and the point of detection is smaller than 

90-degree angle. The forward scatter measurement is intended to be more sensitive to 

larger sized colloidal particles, while it has reduced sensitivity for smaller 

macromolecules (Cowie, 1991; Hiemenz, 1984).  

Not only does the size of the particle affect the scattering pattern but also the particle’s 

shape; non-spherical particles will scatter light differently than spherical particles 

(Cowie, 1991; Hiemenz, 1984; Nakagaki, 1980). Turbidity and light scattering 

monitoring are employed in the influent (feed) line as well as in the effluent line in 

order to evaluate the performance of the membrane modules. Also for large-scale 

purification and separation processes, where multiple membrane filtration units are 

used for product recovery, it is recommended that each membrane unit has a separate 

individual turbidity monitoring system.  

By installing turbidity photometric sensors at the influent stream of the filtration 

process and between each filtering step, flow can be stopped, recirculated or switched 

to an alternate membrane filtration unit if turbidity reaches an unacceptable level 

(http://www.optek.com). In-line turbidity measurements permit optimal control of the 

recirculation loop during the cake layer buildup.  
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2.5.2.3. In-situ Fluorometry    

Fluorescence is a type of optical phenomena that involves absorption of 

electromagnetic (ultraviolet, visible, or near infrared) radiation by a certain type of 

molecules (called fluorophores) which results in exciting the molecule to a higher 

electronic energy level. This is followed by returning of the excited molecule to the 

ground state, or to lower electronic energy level by losing energy through emission of 

light (Shea, 1997). One of the advantages of fluorescence spectrometry is its high 

sensitivity that offers detection limits lower than those achievable using current 

techniques such as UV spectroscopy (Shea, 1997; Deshpande, 2001). Because of the 

low detection limits, fluorescence spectroscopy is widely employed for the analysis of 

biological and environmental samples where trace constituents in these samples can be 

quantified (Shea, 1997). The importance of this technique is also reflected in its higher 

selectivity compared to other techniques. Fluorescence spectroscopy can provide more 

information than UV/Vis absorption spectrometry since the fluorescence signal is 

expressed as a function of two wavelengths (excitation and emission), while only one 

wavelength is available in UV-absorbance measurements (Shea, 1997; Deshpande, 

2001). If two compounds in a sample with similar absorption spectra emit light at 

different wavelengths, they may be distinguished from one another by appropriate 

choice of emission wavelength. Similarly, two compounds that have similar 

fluorescence spectra but absorb strongly at different wavelengths may be distinguished 

by proper choice of excitation wavelength (selective excitation) (Shea, 1997). As such, 

fluorescence spectroscopy has potentially higher information content for resolving 

mixtures than UV-VIS absorbance spectroscopy (Baker, 1991). Fluorometry is being 
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increasingly used in bioprocess and wastewater monitoring applications such as 

fermentation processes and bioreactors (Hilmer and Scheper., 1996; Tartakovsky et al., 

1996; Hagedorn et al., 2004). However, the use of fluorometry in monitoring 

membrane separation processes is rarely found in literature. The earliest work that 

utilized fluorescence spectroscopy for continuous monitoring of protein fractionation is 

that of Crespo et al. (1999).  Crespo et al. (1999) developed an on-line fluorescence 

detection technique for monitoring the transmission of β-LG and γ-globulin by using 

protein labeling with fluorescent markers. The two proteins were labeled with two 

different fluorescent markers which strongly absorb and emit light at different 

wavelength ranges. Thus on-line detection of protein-fluorescent labelled conjugates 

was performed with a fluorescence detector that was programmed at appropriate 

excitation and emission wavelengths. The transient transmission behaviors of β-LG and 

γ-globulin through the membrane were identified by the transmission of the 

corresponding protein-fluorescent label conjugate. The drawback of protein labeling is 

that it may introduce changes to the protein surface chemistry and to the overall protein 

charge which may alter protein folding properties and ultimately its aggregation 

behavior during separation (Crespo et al., 1999). In addition, the technique has some 

practical limitations since it requires removal of the fluorescent label downstream.  

Hence, there is a strong motivation to avoid the use of fluorescent labeling in order to 

preserve the native state of the protein product.  What is proposed here in this thesis is 

to use intrinsic protein fluorescence. The challenge in using intrinsic fluorescence is 

that the spectra can significantly overlap. To handle the complex fluorescence signals 

obtained when analyzing multicomponent protein solutions and to resolve the issue of 
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overlapping information, multi-wavelength fluorometry in conjunction with 

chemometrics is applied and developed in this thesis.   

 

2.6. Multiwavelength Fluorometry for Process Monitoring  

Simultaneous measurements of various fluorophores are possible thanks to the 

development of fluorometers capable of rapidly recording two-dimensional excitation-

emission spectra. Previous studies have shown that multiwavelength fluorometry can 

be used for on-line monitoring of recombinant protein production from mammalian 

cells in upstream processes where the presence of intrinsic biogenic fluorophores such 

as vitamins, NADH, NADPH, FAD and fluorescent amino-acids give important 

information about the process (physiological state of cells) (Boehl et al., 2003;  Hisiger 

& Jolicoeur, 2005). In this work the feasibility of utilizing multiwavelength 

fluorescence spectroscopy as a tool for monitoring the protein filtration utilizing their 

natural (intrinsic) fluorescence was investigated.  The following sections provide 

information on the basic principles of fluorescence spectroscopy including the nature 

of the fluorescence, how it is influenced by environmental conditions and how it is 

measured.  

2.6.1. The Nature of Fluorescence 

The optical phenomenon, known as fluorescence is a three-stage process that occurs for 

certain types of molecules that are called fluorophores (Christensen et al., 2006). This 

process is represented by a Jablonski Diagram as given in Figure 2.8.  First, the 

fluorophore is excited from a ground energy state (singlet state, S0) to either first 
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excited state (singlet state S1) or second excited state (S2) by the absorption of an 

external photon (i.e. light) with a frequency of ν and an energy of hνA, which takes 

about 10-15 seconds.  Second, some internal conversion of that absorbed energy occurs 

by a number of different ways including vibrational relaxation, quenching and energy 

transfer (Mycek and Pogue, 2003; Christensen et al., 2006) which results in relaxation 

of the fluorophore into the lowest excited energy state (singlet state S1).  Third, the 

fluorophore then relaxes from the singlet-excited state S1 to the ground state S0 by 

emission of a photon with energy hνF at a longer wavelength relative to the absorbed 

photon. The energy of the emitted photon varies, depending on the S0 ground state 

level it returns to.  

 

 

Figure 2.8: Jablonski diagram showing the energy levels and various processes in an 
electronically excited molecule (http://teaching.shu.ac.uk/hwb/chemistry/tutorials/)                
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If a fluorophore does not fluoresce upon absorption of the UV radiation it means that it 

must have lost its energy some other way. These processes are called radiationless 

transfer of energy. The difference in energy or wavelength between the absorbed and 

emitted photon is called the Stoke’s shift (Mycek and Pogue, 2003; Christensen et al., 

2006). 

 
Figure 2.9: Excitation and emission spectra showing the energy levels and various 
processes in an electronically excited molecule 
 (http://teaching.shu.ac.uk/hwb/chemistry/tutorials/)  
 

Each electronic state has several associated vibrational levels (Figure 2.9), which 

implies that fluorophores does not absorb excitation radiation at one wavelength but 

over a distribution of wavelengths corresponding to different vibrational transitions 

(Christensen et al., 2006). Emission also occurs at several wavelengths as it may reach 

different vibrational levels in the electronic ground state. The result is that all 

fluorophores have specific and independent spectral excitation and emission profiles 
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characterizing their unique fluorescent properties. The distribution of wavelength-

dependent intensity that causes fluorescence is known as the fluorescence excitation 

spectrum, and the distribution of wavelength-dependent intensity of emitted energy is 

known as the fluorescence emission spectrum (Christensen et al., 2006).  

 

2.6.2. Fluorescence Scanning Modes  

In practice, fluorescence spectra can be recorded using a spectrofluorometer by 

irradiating a sample in three different scan modes (excitation, emission and 

synchronous scan). The three resulting types of spectra are normally presented on a 

wavelength scale calibrated in nanometers (nm). In excitation scan, the excitation 

wavelength is changed through the desired range of wavelengths while fixing the 

emission wavelength, which results in an excitation spectrum. An emission scan is 

made by fixing the excitation wavelength and changing the emission wavelength 

through the desired range of wavelengths, thereby recording an emission spectrum. A 

synchronous scan can be recorded by changing both the excitation and emission 

wavelengths in a stepwise manner with a constant offset between them. Such an offset 

or interval between the excitation and emission wavelengths is designated by the 

symbol ∆λ.  In a single synchronous spectrum, the intensity profile of the fluorescence 

is dependent on both the excitation and the emission wavelengths (Sharma and 

Schulman, 1999). Synchronous scanning mode yields fluorescence spectra with 

narrower and sharper peaks than emission or excitation spectra (Sharma and Schulman, 

1999).  
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2.6.3. Extrinsic and Intrinsic Fluorophores  

Not all molecules in nature display fluorescence properties upon excitation because the 

molecular structure and the environment dictate whether the compound is fluorescent 

or not.  In other words, fluorescence is often exhibited by organic polyaromatic and 

heterocyclic compounds with rigid molecular skeletons that contains large conjugated 

π-electron systems (Shea, 1997; Christensen et al., 2006). Fluorophores are divided 

into two classes: intrinsic and extrinsic fluorophores. Extrinsic fluorophores, also 

known as exogenous fluorophores, are dyes or fluorescent labels that are attached to 

the biological analyte of interest. Most commercially available fluorophores come with 

chemical groups that make labeling of biological species quite easy. Application of 

extrinsic fluorophores in monitoring ultrafiltration of protein mixtures was first 

demonstrated by Crespo et al. (1999), where β-LG and γ-globulin proteins were 

labeled with extrinsic fluorophores to make them easily spectrally resolvable and thus 

distinguishable.  Intrinsic fluorophores are those substances that occur naturally in a 

variety of biological systems such as vitamins, NADH, NADPH, FAD and fluorescent 

amino acids (Vojinovic et al., 2006). The use of such intrinsic fluorophores for 

monitoring recombinant protein production from mammalian cells upstream has been 

addressed in many studies (Hisiger & Jolicoeur, 2005). In contrast, using intrinsic 

fluorophores for monitoring membrane-based protein separation has not been reported 

before, which is the focus of this thesis. 

The most common example of intrinsic fluorophores are the three aromatic amino 

acids, tryptophan, tyrosine and phenylalanine, that are primarily responsible for the 
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inherent fluorescence of proteins (Lakowicz, 1999). The aromatic amino acids are 

present in almost all proteins, enzymes and antibodies. These amino acid residues have 

distinct absorption and emission wavelengths and differ in the quantum yields as given 

in Table 2.1 and Figure 2.10.  

Table 2.1. Fluorescent Characteristics of the Aromatic Amino Acids (Lakowicz, 1999).  

Amino Acid  Excitation 
Wavelength (nm)  

Absorptivity  Emission 
Wavelength (nm)  

Fluorescence 
Quantum Yield 

Tryptophan  280  5,600  348  0.20  

Tyrosine  274  1,400  303  0.14  

Phenylalanine  257  200  282  0.04  

 

 

Figure 2.10: Absorption (top) and emission spectral profiles (bottom) for Tryptophane 
(Trp), Tyrosine (Tyr) and Phenylalanine (Phe) (taken from http://www.embl-
hamburg.de/~tucker/JGS/fluorescence1.pdf) 



 

 38 

As seen in Figure 2.10, tryptophan is much more fluorescent than either tyrosine or 

phenylalanine, accounting for more than 90% of the total fluorescence from proteins 

(Lakowicz, 1999). While tyrosine is less fluorescent than tryptophan, its contribution 

cannot be neglected as it is often present in large amounts in many proteins.  

 

2.6.4. Multidimensional Fluorescence Spectra 

Fluorescence is multi-dimensional containing a wealth of independent information 

related to the fluorophore type, its amount and its molecular environment. 

Multidimensional fluorescence signals recorded from a given multi-fluorophoric 

solution can be presented as Excitation Emission Matrix (EEM) or Total Synchronous 

Fluorescence Spectra (TSFS).    

 

2.6.4.1 Excitation Emission Matrix  

One approach to presenting three-dimensional fluorescence data is in the form of an 

Excitation Emission Matrix (EEM), which is a matrix of fluorescence intensities 

expressed as a function of excitation and emission wavelengths. Such a matrix can be 

collected by recoding a series of fluorescence emission scans at different excitation 

wavelengths.  Spectrofluorometer software normally allows the user to select the range 

of excitation and emission wavelengths and the excitation wavelength increment 

between scans: the emission wavelength range measured will be the same for all scans, 

but the excitation wavelength is increased at a constant increment along the range of 

excitation wavelengths selected. Once defined, all scans can be recorded automatically 
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and without user intervention.  Figure 2.11 shows a two-dimensional fluorescence scan 

visualized using a contour plot, where lines represent equal emission intensities.  

 

Figure 2.11 An excitation-emission matrix contour plot for a typical water sample 
containing low protein concentration generated using multiple emission scans, at 
excitation increments of 5 nm from 220 to 400 nm (as depicted in Hunt et  al.,2007). 
 

The complete excitation-emission matrix EEM is also known as a fluorescence 

landscape.  A complete excitation-emission matrix EEM is a very sensitive and fast 

tool for the quantitative analysis of a biological solution consisting of multi-

fluorophores such as a protein solution, where each fluorophore can be distinguished 

by its own spectral features.  An EEM can be divided into three different zones (Figure 

2.11) in terms of the hypothesized relevance to the protein-fractionation processes as 

described below: 
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i) Fluorescence Spectral Zone (λem >λex): The region of interest containing the 

intrinsic fluorescence spectral fingerprints of the proteins is located in the window 

between excitation range (220-320 nm) and the emission wavelength (250-450 nm) 

(Figure 2.11). The protein intrinsic fluorescence is identified by two distinct peaks 

located at approximately 220/330 nm and 275/330nm (excitation/emission) that are 

attributed mostly to both tyrosine and tryptophan fluorescence.  These two 

fluorophores each have two excitation wavelengths with tryptophan at 215-220 nm 

and 275-280 nm and tyrosine at 220-225 nm and 275-280 nm as seen for pure 

proteins, alone or in combination, and for real protein mixtures (Mayer et al., 

1999). The relevance of this to protein-fractionation is addressed in Chapter 5.  

 
ii)  Light Scattering Spectral Zones (λem =λex ),(λem =2λex):  While scanning and 

recording an EEM, signal components may arise from optical phenomena other 

than fluorescence such as light scattering. Scattered light appears both in clear and 

in turbid solutions and it has a substantial effect on fluorescence measurements.  In 

clear solutions, there is Rayleigh scatter, second-order Rayleigh scatter and the 

Raman scatter. In opaque solutions there is, in addition, the Tydnal scatter or 

scattering by large particles.  In the case of 3D-fluorescence (Figure 2.11), an EEM 

will typically have areas that are dominated by each type of scatter. These areas are 

represented by diagonal lines in the landscapes as seen in Figure 2.11. Raman 

scattering (also called inelastic) arises from the interaction of the exciting incident 

light with the solvent molecules producing an inelastic scattering of photons with 

lower energy (i.e. longer wavelength) relative to the exciting ones 
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(Deshpande.,2001). Such scattering is seen at low concentrations of fluorophores 

when the instrument is set at its greatest sensitivity. Rayleigh scattering usually 

occur at the emission wavelength equal to the excitation wavelength (λem =λex) 

while second order Rayleigh scattering appears at the emission wavelength twice as 

long as the excitation wavelength (λem =2λex) as seen in Figure 2.11. Chapter 6 will 

describe how the scattering component in an EEM can be utilized to provide 

quantitative information about protein aggregation and its affect on membrane 

separation performance (Deshpande., 2001).  
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Figure 2.12: Subtraction of the triangular-shaped region where the emission 
wavelength is less than the excitation wavelength (upper left-hand side)(as depicted in 
Bro et al., 2002)  
 

iii)  Triangular-shaped region (λem<λex): The triangular-shaped region is where the 

emission wavelength is less than the excitation wavelength (upper left-hand side) 

and is considered to be non-informative since it contains physically impossible data 

points.  It is usually removed by subtracting the background or by setting the 
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intensity values to zero as represented by Fig 2.12.  The non-informative part of the 

EEM can be selectively avoided during data acquisition by using a synchronous 

scanning mode with (∆λ > 0) instead of the conventional excitation-emission 

scanning mode which will be demonstrated in Chapter 5.      

 
 

2.6.4.2. Total Synchronous Fluorescence Spectra (TSFS)  

Total Synchronous Fluorescence Spectra (TSFS) is another form of multidimensional 

fluorescence data where fluorescence intensities are expressed as a function of 

excitation wavelength and the interval between the excitation and emission 

wavelengths (∆λ). Such a matrix can be collected by recording a series of synchronous 

scans at different wavelength intervals. The contour profiles generated for EEM and 

TSFS are different (Patra and Mishra, 2002) due to the difference in the way of 

arranging the data structure; however, both EEM and TSFS should contain the same 

information content as long as the scanning mode covers the full spectral range of 

interest (Patra and Mishra, 2002). 

 

2.6.5. Quantitative Analysis of the Fluorescence Spectra  

The fluorescence intensity (Fl) emitted by a given fluorophore i at a particular 

excitation( )exciλ  and emission wavelength ( )emλ  is expressed as a function of the 

absorption coefficient and the quantum yield of the fluorophore as given by Equation 

(2-5): 

( ) ( ) ( )emiexiaexoemexi IkFl λφλµλλλ ).(., =      (2-5) 
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where k is a proportionality constant that is related to instrumental parameters (the 

detector collection efficiency, the path length, the sample geometry) and ( )emλφ is the 

quantum yield of the fluorophore at the emission wavelength( )emλ . Io  is the intensity 

of the incident light (Ramanujam, 2000).  

The absorption coefficient ( )exia λµ  is a linear function of the extinction coefficient, 

denoted by ( )exλε and the concentration of the fluorophore, denoted by Ci as given by 

Equation 2-6:  

 ( ) ( ) iexiexa C⋅= λελµ 303.2                    (2-6) 

By combining Equations (2-5) and (2-6), the fluorescence intensity (Fl) at a particular 

excitation( )excλ  and emission wavelength ( )emλ  for a dilute solution containing a 

fluorophore can be described by the following equation (Ramanujam, 2000; 

Christensen et al., 2006): 

( ) ( ) ( ) iemiexiexoemexi CIkFl λφλελλλ ).(.303.2, =                                                (2-7) 

Equation (2-7) implies that the relationship between the fluorescence signal and the 

concentration of the fluorophore is approximately linear for dilute solutions.  

According to Equation (2-7), the intensity of the fluorescence depends on the 

concentration, the molar absorptivity, and the quantum yield of the fluorophore 

(Christensen et al., 2006). Deviation from linearity occurs in concentrated solutions 

due to self-quenching and inner-filter effects that are explained in section (2.6.6). The 

fluorescence spectra are additive in mixtures for extremely dilute solutions, i.e. the 

overall fluorescence spectra acquired for a given mixture can be expressed as a linear 
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contribution of all individual spectra from inherent fluorophores in the appropriate 

proportions as given in Equation (2-8) (Ramanujam,2000;. Christensen et al., 2006). 

( ) ( )emex

n

i
iemex FlFl λλλλ ,,

1
∑

=
=                                                                  `           (2-8) 

From Eq (2-8) and Eq (2-7),  

( ) ∑
=

=
n

i
iexiexiexoemex CIkFl

1

).().()(.303.2, λφλελλλ                                        (2-9) 

where Fl i  denotes the fluorescence signal emitted by a fluorophore i. In complex 

mixtures, such as biological samples, the fluorescence may not be additive due to 

quenching phenomena and interactions with the molecular environment of the 

fluorophore (Christensen et al., 2006).    

 

2.6.6. Factors Affecting Fluorescence Measurements 

This section is an overview of several factors that can influence fluorescence 

measurements for biological samples. These factors are related to the composition of 

the biological sample as well as the concentration and the molecular environment that 

contribute to the complexity and variability of fluorescence measurements (Christensen 

et al., 2006).  According to Equation (2-9), the intensity of the fluorescence depends on 

the concentration, the molar absorptivity, and the quantum yield of the fluorophore 

(Christensen et al., 2006). The effect of quenching, inner-filter effects, the molecular 

environment of fluorophores and the light scattering phenomena will be addressed in 

the following subsections.  
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2.6.6.1. Quenching   

Spectrofluorometer readings do not necessarily change in step with the known 

concentration change of the fluorophore.  The factor that may be responsible for this is 

called "concentration quenching", or sometimes just "quenching".  Fluorescence 

quenching can be referred to any process that reduces the fluorescence intensity of a 

sample.  Such a phenomenon occurs when the excited fluorophore returns to the 

ground state without emitting a photon (Christensen et al., 2006). A variety of 

processes can result in quenching, such as energy transfer, complex-formation and 

collisional quenching where the excited state of the fluorophore can be deactivated by 

contact with other molecules or by either intra- or intermolecular interactions.   
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Figure 2.13 Concentration quenching effect on emission intensity at 330 nm observed 
for the whey protein isolate solution. 
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An example of quenching due to intermolecular interactions is called "concentration 

quenching" or “self-quenching”. At low sample concentrations, the fluorescence 

intensity is directly proportional to the sample concentration; however, as the 

concentration increases beyond the linear range for fluorescence, the fluorescence 

intensity decreases with concentration (Figure 2.13).  

With increasing protein concentration, the proximity of the protein macromolecules 

allows the light emitted by the tryptophan residues of the protein to be re-absorbed by 

the same fluorophore (i.e. tryptophan) in the adjacent protein macromolecule and each 

time the light is re-absorbed, there is a chance for the energy to be dissipated non-

radiatively.  

Concentration quenching does not only affect the magnitude of fluorescence intensity 

but also the overall shape of the fluorescence spectra as seen in Figure 2.14. In Chapter 

5, spectral differences between the retentate with high protein concentrations and the 

permeate with low protein concentrations can most likely attributed to self-quenching 

that is related to the intermolecular interactions (Christensen et al., 2006).  

In addition to quenching by intermolecular interactions, quenching can occur through 

intramolecular interactions. Interaction of adjacent fluorophores occur within the 

protein macromolecule itself where the fluorescence from tyrosine can be easily 

quenched by the presence of nearby tryptophan moieties via resonance energy transfer, 

as well as by ionization of its aromatic hydroxyl group (Christensen et al., 2006). 
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Figure 2.14 Synchronous spectra at ∆λ =60 nm collected for whey protein 
isolate at different concentrations from 0.125 g/l to 2 g/l (a) and from 2 g/l to 10 
g/l (b). 
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2.6.6.2. Molecular Environment.  

Native protein fluorescence is the result of intrinsic fluorophores in proteins that 

consist of hydrophobic amino acid side chains as illustrated in Figure 2.15. Most of the 

native protein fluorescence is generally due to the amino acids tryptophan and tyrosine. 

 

 

Figure 2.15  Fluorescence spectroscopy as a tool for tracking protein 
conformational changes (www.soc.nii.ac.jp/jbiochem).  
 
 

These hydrophobic amino acid residues are so sensitive to the local environment that it 

is possible to see changes in emission spectra when they are exposed to the solvent or 

bulk phase and therefore information about protein conformation, subunit association 

and denaturation can be obtained (Lakowicz, 1999). In this respect, intrinsic 

fluorescence measurements of proteins have been used to study the effects of the 

protein microenvironment, pH, ionic strength, and temperature on their association 

properties, degree of unfolding and aggregation behavior (Lakowicz, 1999). Multi-

wavelength fluorescence spectroscopy was employed in this study in Chapter 3 and 
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Chapter 4 for simultaneous determination of whey proteins solubility as well as their 

aggregation behavior induced by heat treatment at different conditions including pH, 

ionic strength and temperature.   

2.6.6.3 Light Scattering  

Rayleigh scattering can constitute a significant interference to fluorescence emission 

from fluorophores with a small Stoke’s shift (Christensen et al., 2006). Since 

interference from Rayleigh scattering cannot be avoided or eliminated, mathematical 

corrections of the fluorescence signal can be performed instead by addressing the 

scatter in the modeling and analysis of the 2-D fluorescence data (Christensen et al., 

2006).   

2.6.7. Why Chemometrics? 

The intrinsic fluorescence of proteins can be easily distinguished using fingerprints of 

the fluorescent amino acid residues.  Although EEM allows detection of the presence 

or the absence of protein in a biological mixture, discriminating between different 

proteins or identification of the type of protein in a biological mixture is challenging 

because of the subtle differences in their fluorescence spectra. Fluorescence signals are 

complex as the spectra are the result of interferences, scatter and overlapping signals.  

Furthermore, the fluorescence intensity of a given compound is influenced by 

environmental variables like pH, ionic strength, total concentration and physical factors 

like the inner filter effects and the energy transfer processes.  Therefore, before the 

measured intrinsic fluorescence can be related to a filtration process an awareness of 

the factors that could affect the measured fluorescence signal is necessary.  To tackle 
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the complex nature of the contributions to the of fluorescence signal, chemometrics is 

proposed in this thesis.     

 

2.7. Chemometrics 

Monitoring, controlling and optimizing membrane-based filtration processes of 

complex biological solutions is difficult to achieve practically because all of the 

components of a complex biological solution interfere with the performance of the 

membrane filtration process (Darnon et al., 2002). During filtration of a complex 

biological solution, tracking transient changes in product yield and the selectivity of 

separation cannot be performed without information about the transport of the various 

feed components through the membrane.  It will be demonstrated in Chapter 5 that 

such information can be extracted from multi-wavelength fluorescence spectra 

collected for the feed, permeate and retentate. Extraction of information from spectra 

can be achieved using mathematical analysis tools known as chemometric tools.  Since 

not all fluorescence data collected is meaningful, consisting mainly of both unwanted 

variations (i.e. noise) and information relevant to the process (Eriksson et al., 2002), 

chemometric tools can be used to reveal the information in these large data sets. The 

field of chemometrics was found by Bruce Kowlaski and Svante Wold in the early 

1970s (Eriksson et al., 2001). Chemometrics has been defined as “the chemical 

discipline that uses mathematics, statistics and formal logic (a) to design or select 

optimal experimental procedures; (b) to provide maximum chemical information by 

analyzing chemical data; and (c) to obtain knowledge about chemical systems”. The 

name chemometrics is a combination of the two suffixes: chemo (i.e. chemical) and 
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metric (i.e. measurements) because it deals with extracting information from chemical 

data by means of multivariate data analysis (Eriksson et al., 2002; Wiberg, 2004). In 

chemometrics, turning these large data sets into knowledge about the process is 

performed by the use of a mathematical model.  Various examples of the application of 

chemometrics for extracting relevant information from fluorescence spectra can be 

found in literature.  Hagedorn et al. (2003) evaluated spectrofluorometry as a tool for 

monitoring a fermentation process, including substrate, biomass and product 

predictions by making use of multivariate calibration models for extracting the 

underlying variations in the multi-wavelength fluorescence spectra that were most 

correlated with the important process variables in the process. The next section gives a 

brief description of the multivariate techniques that are most widely used to regress 

spectral data.  

2.7.1. Multivariate Nature of Fluorescence Data  

Multivariate data analysis methods are part of the chemometric techniques that are used 

to analyze data sets consisting of multiple variables measured from many samples. 

Chemical data can often be arranged as a table, a data matrix as given by Equation 2-10 

that contains measurements of m variables on n objects. Typical chemical objects are 

analytical samples.  X is usually used to denote the data, i denotes the index for objects 

or samples and j denotes the index for variables. 
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In the context of fluorescence, xij  represents the intensity value of the jth spectral 

variable (excitation-emission wavelength pair) for the i th case (i.e. sample).  

For example,X1=[ x11 x12 x13….x1m]  is the row vector containing the fluorescence 

intensities measured at m excitation/emission wavelength pairs for the first sample.  

X2=[ x21 x22 x23….x2m]  is the row vector containing the fluorescence intensities 

measured at m excitation/emission wavelength pairs for the second sample and so on.  

Multivariate methods can be classified into two categories: (i) Multivariate methods 

that find the relationship between x and y variables are generally called regression 

methods such as Partial Least Squares (PLS). (ii) Multivariate methods that are used 

for explanatory analysis and survey of the X data, finding trends, groups and outliers.  

The next section gives a brief review of the PLS regression method. Multivariate data 

analysis tools, such as principal component analysis and Partial least squares (PLS), are 

considered to be powerful for extracting high quality information from the less 

resolved high-dimensional spectroscopic data.  It will be shown in Chapter 5 that even 

extremely subtle spectral differences between three different whey proteins can be 

distinguished using chemometrics.  Multivariate methods are intrinsically more robust 

and accurate with respect to peak shifts and instrumental noise than univariate 
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methods, because such multivariate methods use area under the whole curves (called 

scores in chemometrics) rather than just single wavelength intensity for an 

excitation/emission pair (Christensen et al., 2006). Such areas are much less influenced 

by moderate peak shifts and instrumental noise than single intensity values. 

Additionally, robustness is also obtained from the general noise reduction obtained 

from using the above mentioned areas. The method for multivariate data calibration 

employed in Chapters 3, 4, 5, and 6 was PLS.  

2.7.2. Calibration and Regression Analysis in Fluorescence Spectroscopy. 

Calibration is one of the most important tasks in quantitative spectrochemical analysis  

The term calibration model can be generally defined as the process of deriving a 

mathematical relationship between available process measurements X and quantitative 

information Y that allows predicting to the best possible degree unknown quantitative 

information about the process from future X measurements.  The underlying model for 

the relationship between the measured variable x and a dependent variable y is 

generally presented by the mathematical function in Eq (2-11):  

)(XfY =                                                                                                            (2-11) 

The application of different classes of regression methods in spectroscopy can be found 

in the literature. Regression models implemented in spectroscopy range from simple 

linear univariate regression (with one x predictor variable related to one y response 

variable) to complex multivariate regression (with so many x predictor variables 

related simultaneously to one or more y response variables) that require the use of a 

software package. The purpose of this section is to compare different classes of 
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regression models and to explore their scope of applicability to quantitative spectral 

analysis of multi-component systems. The emphasis here is confined to cases in which 

the relationship between the response y variable and a set of x-variables (i.e. 

spectroscopic measurements) is linear or close to linear. Herein, the existing regression 

methods have been arranged according to their level of complexity (i.e. the number of 

variables involved) as well as their scope of applicability to meet the stated objectives 

of this thesis. Mathematical formulations, advantages and limitations of these models 

have been discussed in order to understand the connection between them  

2.7.2.1 Univariate Calibtation 

Assume that we want to build a calibration model to determine the concentration of a 

specific protein, β-LG in the permeate, retentate and feed lines during ultrafiltration of 

a whey protein isolate solution. Figure 2.16 shows two-dimensional fluorescence 

spectra acquired in synchronous scanning mode for whey protein isolate solution. This 

fluorescence landscape consists of 1660 distinct fluorescence measurements at 

different combinations of excitation/emission wavelengths. More generally, each 

fluorescence landscape could be thought of as a set of 1660 different univariate 

measurements (Bro, 2003). The simplest form of calibration is a univariate calibration 

model, which can be built by choosing one out of these 1660 distinct measurements. A 

typical choice could be to select a wavelength corresponding to a peak maximum 

related to the specific protein of interest.  In this example, the signal at an excitation of 

295 nm and an emission at 330 nm is chosen which corresponds to the maximum 

emission peak of tryptophan and so a linear univariate regression model can be 
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established between one x-variable (i.e. intensity measurement at 295nm/330nm) and 

one- y-variable (i.e., the concentration of β-LG in the solution) as given by Equation 2-

12.       

01 ββ += xy                                                                                                        (2-12) 

Where 1β  is the regression coefficient and oβ  is the intercept of the linear 

correlation. The univariate approach is valid provided that the following conditions are 

satisfied (Torgrip., 2003):  

� The linearity condition: The instrument’s response must be linearly correlated with 

the measured feature. Deviations in the absorption coefficient can occur at high 

concentrations due to electrostatic interactions between molecules in close 

proximity, as referred to as analyte association.  

� The interferent condition. The instrument response must not exhibit any 

wavelength shift for the measured constituent. Fluorescence red-shift can occur as a 

result of increasing concentration.  

� The selectivity condition: The spectral peak of interest must be fully separated from 

spectral peaks belonging to other components in the mixture..  

� The noise: The measurement process will always yield noise in the measured data. 

The structure of the noise varies, depending on the analytical system involved.  

� The scatter condition: There must be no scattering of light due to particulates in the 

sample. 

Univariate calibration suffers from some major disadvantages that make it unsuitable 

for application to real processes (Bro, 2003).  Accuracy of the univariate calibration 
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model is only possible if the analyte of interest (e.g. β-LG) contributes to the measured 

signal  
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Figure 2.16: Fluorescence spectra acquired in synchronous scanning mode for whey 
protein isolate solution at room temperature and pH of 4.5.  
 

In this work, although β-LG constitutes 75% of the whey protein isolate, other proteins 

that exist in smaller amounts (e.g. α-LA, BSA and IgG) may have significant 
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contributions to the measured fluorescence signal due to their tryptophan content. If 

other proteins in the solution contribute to the measured signal, the results will be 

biased (Bro, 2003).  Therefore, instead of using one out of the 1660 measurements, it 

will be more reliable to use all the available data in the fluorescence landscape for 

calibration (Bro, 2003), which is known as multivariate calibration. In multivariate 

calibration, use of many x-variables automatically corrects for each other’s selectivity 

and thus the x-variables used do not need to be totally selective. High precision of 

multivariate calibration can be generally achieved as long as the relationship between x 

and y variables is linear. Multivariate calibration is also generally more robust and less 

sensitive to small changes in the experimental or instrumental parameters such as pH, 

temperature or lamp intensity (Wiberg, 2004). 

2.7.2.2 Multivariate Calibration 

As discussed in the previous section, it would be necessary to extend the regression to 

include cases in which several variables contribute to the measured response y. In the 

simplest example, the dependent response is expressed as a function of two such 

independent variables x1 and x2.     

2211 xxy o βββ ++=                                                                                       (2-13) 

Again oβ is the intercept on the y-axis, 1β and 2β are the partial regression 

coefficients.  

The following example illustrates the usefulness of multivariate calibration for 

quantitative analysis of fluorescence spectra. Figure 2.17 presents synchronous 
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fluorescence spectra acquired for β-LG, α-LA and BSA protein solutions by irradiating 

the samples at ∆λ=100 nm. For quantitative analysis of β-LG, measurements at a single 

wavelength would be adequate if no interfering species are present. In the presence of 

other absorbing species such as BSA and α-LA., however, more measurements would 

be required in order to account for such interferences in the regression model. For 

example, by looking at Figure 2.17, it can be seen that the fluorescence signal 

attributed by BSA is more than two folds greater than that produced from β-LG at (λex= 

270 nm, λem =350 nm). 

 
Figure 2.17 Synchronous fluorescence excitation spectra of β-LG, α-LA and BSA 
protein solutions acquired at ∆λ=100 nm 
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Meanwhile, fluorescence signals produced from BSA and β-LG are relatively 

comparable at (λex=220 nm, λem =350 nm). This implies that including measurements at 

(λex= 270 nm, λem =350 nm) in the calibration model for predicting β-LG concentration 

could serve to compensate for the fluorescence due to BSA since this excitation-

emission pair is in the spectral region of BSA with little interference from β-LG.  In 

order to develop a reliable and robust calibration model, other information from the 

whole spectral data could be included. Formally, the model for multivariate regression , 

given n observations, is:  

iij

m

j
joi xy εββ ++= ∑

=1
                     for i = 1,2, ... n.                                     (2-14) 

Where y is the concentration of some analyte (in our case α-LA, β-LG or BSA), x1 is 

the measured fluorescence intensity at j specific combination of excitation and 

emission wavelengths, jβ  is the regression coefficient or weight associated with 

measurement at a given combination of excitation-emission pair. For a complete 

spectrum, m may take on values of several hundreds depending on the resolution of the 

fluorescence scan. Multivariate calibration can be expressed in matrix notation as given 

in Eq 2-15:  

EBXY += .                                                                                                      (2-15) 

In which E is the matrix containing the residuals (variations not described by the 

model). Mathematical methods for achieving multivariate calibration between an X and 
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a Y matrix are generally classified into two categories: Least squares modeling methods 

and factor based methods. 

 

1. Least Squares Modeling: 

Least squares methods attempt to model the relationship between X and Y matrices by 

finding the regression coefficients that minimize the sum of the squares error SSE as 

given by Equation (2-16)  

[ ]( )2min βXYSSE −=                                                                                   (2-16) 

The least squares estimates of the regression coefficients are given by 

YXXX ′′= −1)(β                                                                                               (2-17) 

The desired property y for a given sample can be predicted when multiplying the 

regression coefficients by the spectrum acquired for that sample. The major limitation 

of ordinary least squares regression is related to the nature of finding the inverse for 

)( XX ′ in the solution of Equation (2-17). When the number of x-variables exceeds the 

number of samples or/and when there is a high degree of collinearity among the 

variables, the estimated regression coefficients may be unreliable. This mathematically 

implies that high collinearity between the data at different wavelengths in the X matrix 

comprising the spectroscopic measurements could result in an )( XX ′ matrix that is 

singular or close to singular. Consequently, the regression coefficients become large 

and this makes the model more sensitive to instrumental noise in X. This, in turn, 

causes degradation of the model performance (Torgrip, 2003).  
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2. Factor-based regression methods-Chemometrics 

Factor based regression methods such as Principal components regression PCR and 

Partial Least Squares Regression PLSR handle the problem of collinearity by 

compressing the X matrix containing p spectral variables for n samples into a small 

representative set of new variables which summarizes most of the spectral information 

in the original X matrix. Such set of variables are linear combination of the original 

variables in the data set and orthogonal (completely uncorrelated) to one another. 

These new variables are called Principal Components, Latent variables or eigenvectors. 

The use and applications of principal components in regression analysis has been 

extensively reported in the literature (Torgrip, 2003).. Mathematically, the matrix X is 

approximated in terms of the product of two smaller matrices; T and P’. These two 

matrices capture the essential data patterns in X as given in Equation (2-18). 

EPTX +′=                                                                                               (2-18) 

 

, where T and P are referred to as the score and the loading matrices respectively and E 

is the modeling error matrix or the matrix of residuals. The principal component scores 

of the first, second, third components (t1, t2, t3, …) are columns of the score matrix T. 

As mentioned before, these scores may be considered as new variables, which 

summarize the original ones. In their derivation, the scores are sorted in descending 

importance (t1 explains more variation than t2, t2 explains more variation than t3, and 

so on). In general, 2 to 5 principal components are usually sufficient to approximate a 

large data set of spectrochemical measurements.  
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Figure 2-18 The matrix relationship in PLS regression. The score, weight and loading 
matrices are derived during the development of the PLS regression model. Source: 
Eriksson et al. (2001). 
 

The meaning of the scores is given by the loadings. The loading vectors of the first, 

second, third, components (p1, p2, p3,..) build up the loading matrix P. P is the matrix 

of loadings that express the relationship between T and X. The original spectra are 

reconstructed when the scores are multiplied by the loading vectors, and the results 

summed, as described by Equation (2-19).  

aj

A

a
iaij ptx ′=∑

=1                                                                                                      (2-19) 

where p1j is the loading of the variable xj in the loading vector pl of the first latent 

variable. Using the matrix T of this smaller number of principal components, rather 

than the entire X matrix in Eq (2-17), is known as principal components regression 
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(PCR). Partial Least Squares Regression PLSR is more superior than PCR. The method 

uses two outer relations and one inner relation. The outer relation describes the 

decomposition of X and Y matrices.  

EptEPTX a

A

a
a +′=+′= ∑

=1
                                                                        (2-20) 

FcuFCUY
A

a
aa +′=+′= ∑

=1
                                                                         (2-21) 

The inner relation is written as  

TWU =                                                                                                                (2-22) 

In essence the inner relation is a least squares fit between the X block scores and the Y 

block scores.  This implies that:  

(i) PLS regression consists of simultaneous orthogonal decomposition of both 

X and Y matrices so that the X and Y matrices can be well-approximated 

using Equation (2-20) and Equation (2-21) respectively.  

(ii)  The PLS algorithm also derives a W weight matrix that maximizes the 

correlation between X and Y .as given by Equation (2-22). The inner 

relationship is improved by exchanging the scores T and U in an iterative 

calculation (Figure 2-18). This allows information from one block to be 

used to adjust the orientation of the latent vectors in the other block, and 

vice versa.  

A detailed explanation of the iterative method is available in the literature (Torgrip, 

2003). When all scores and loadings are calculated, the ultimate PLSR model becomes: 
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BXY ˆˆ =                                                                                                                  (2-23) 

TT WCPPPB 1)(ˆ −=                                                                                         (2-24) 

Where B is the matrix of regression vectors.  

 

The number of latent variables in the model A is of crucial importance and its optimum 

value is derived by cross-validation. The W weight matrix represents how the X-

variables are linearly combined to form any score vector ti. Hence, by examining the W 

matrix, one could understand which original variable in X space would dominate the 

latent variables ti (Eriksson et al., 2001). The variation in the data that was left 

unexplained by the PLS modeling is given by the E and F residual matrices. 
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CHAPTER 3  

Fluorescence Spectroscopy as a Tool for Monitoring 

Solubility and Aggregation Behavior of β-Lactoglobulin after 

Heat Treatment* 

 

Denaturation and aggregation of whey proteins is of interest to the food and 

pharmaceutical industry due to the importance of final structure in functionality, impact 

on food texture, and the chemical stability of the final product.  In this study, we 

demonstrate the potential of fluorescence spectrometry combined with multivariate 

chemometric methods for quantifying solubility and aggregation behavior of β-

lactoglobulin; a major whey protein and a frequent food ingredient. Heat induced 

aggregation of β-lactoglobulin was studied under different conditions including pH, 

temperature and heating durations. Results showed very good agreement between the 

fluorescence-based predictions and measurements obtained by HPLC and gravimetric 

analysis regardless of the conditions. Standard Normal Variate (SNV), a signal 

preprocessing and filtering tool, was found to enhance the predictive accuracy and 

robustness of the fluorescence-based model.  

 

 

 

 

 

* Elshereef R, Budman H, Moresoli C, Legge R. (2006). Fluorescence spectroscopy as a tool 
for monitoring solubility and aggregation behavior of β-lactoglobulin after heat treatment. 
Biotech Bioeng 95:863-874. 
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3.1 INTRODUCTION 

Denaturation and aggregation behavior of β-lactoglobulin, one of the major 

whey proteins and a frequent food ingredient, is of interest to the food industry.  This is 

related in part to its effect on the final structure and texture of food as well as the 

chemical stability of the final product (Euston et al., 2001).  The protein aggregation 

process involves generally two steps: first, conformational and structural changes 

related to partial unfolding of the native protein that leads to the exposure of some 

hydrophobic amino acid residues and second, the subsequent aggregation of the 

unfolded molecules via the formation of new intermolecular bonds between the 

exposed amino acid residues in different peptides (Mulvihill and Donovan, 1987). The 

degree of aggregation is very complicated as it depends on a number of 

physicochemical parameters such as temperature, protein concentration, protein-protein 

interactions, ionic strength and pH (Vetri and Militello, 2005).  

It is apparent therefore that monitoring of whey protein aggregate formation 

during processing is critical to the development of highly functional products. In recent 

years, fluorescence spectroscopy has been a useful tool for chemical analysis of diverse 

pharmaceutical, food and biotechnological products. A major advantage of 

fluorescence spectroscopy over other analytical techniques is that it is rapid, 

noninvasive and very sensitive to biological components and is amenable to 

development as an on-line sensor.   

Protein fluorescence is related to intrinsic fluorophores in the protein largely 

due to the tryptophan and tyrosine amino acid residues.  These hydrophobic amino acid 

residues and their fluorescence are sensitive to the local environment so changes in the 
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fluorescence emission spectra can provide information about protein conformation, 

subunit association and denaturation (Lakowicz, 1999).  As a result, intrinsic 

fluorescence measurements of proteins have been used to study the effects of the 

protein microenvironment, pH, ionic strength, and temperature on protein association 

properties, degree of unfolding and aggregation behavior (Lakowicz, 1999).  

Fluorescence spectroscopy, like all types of spectrometric methods (UV/VIS, 

IR and NMR), have become a common tool for exploratory analysis in most science 

and engineering fields such as medicine, biotechnology, food, toxicology and applied 

pharmacology.  However, not all the data collected from scanning spectrofluorometry 

is relevant for every measurement.  Hence, there is a significant body of literature on 

the use of chemometric methods to extract meaningful and relevant information for the 

purpose of quantifying and predicting a set of desired quality variables.   

For example, Herbert et al. (2000) were able to discriminate eight different soft 

cheeses using their fluorescence spectra by applying the multivariate chemometric 

methods such as principal component analysis and factorial discriminant analysis. They 

found that the spectral patterns associated with principal components provide 

characteristic wavelengths, which are suitable for classifying the eight different soft 

cheeses Becker et al. (2003) demonstrated the use multi-wavelength fluorescence 

spectroscopy and chemometrics for predicting riboflavin content in plain yogurt during 

storage. Hagedorn et al., (2004) evaluated spectrofluorometry as a tool for monitoring 

bioreactor fermentations, including substrate, biomass and product predictions by 

making use of multivariate calibration models in extracting the underlying variations in 
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the multi-wavelength fluorescence spectra that are mostly correlated with the important 

process variables in bioreactor fermentations.  

In this study multivariate chemometric tools were applied to the analysis of 

intrinsic protein fluorescence measurements to investigate and monitor solubility of β-

lactoglobulin (β-LG) and its aggregation behavior caused by changes in pH, 

temperature and heating duration. β-LG was used as a model protein because it is the 

most abundant protein component in bovine whey (consisting up to 50% of the total 

whey protein) and it is largely responsible for whey protein functionality (Schokker et 

al., 1999).  This approach included the development of a fluorescence-based 

chemometric model for monitoring the solubility of β–LG and its aggregation 

behavior, validated by two independent methods for the estimation of protein 

concentration: HPLC and dry weight (gravimetric) analysis.  

 

3.2 MATERIALS AND METHODS  

3.2.1 Materials and Sample Preparation 

β-Lactoglobulin (β-LG), in powder form (lot JE 007-3-921 and JE 003-3-922) of 

95% purity was donated by Davisco Foods International (LeSueur, MN) and was used 

without further purification. All other chemicals were of analytical grade.  Solutions of 

9.3 g/l β-LG were prepared in two different media: 0.1 M acetate buffer (pH 3.5-7.0) 

and 0.1 M citrate buffer adjusted with HCl (pH 3.4-4.5). 
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3.2.2 Heat Treatment and Gravimetric Analysis 

A 25 ml volume of the desired protein solution was placed in a temperature 

controlled water bath at the desired temperature and treatment duration. A summary of 

all the experimental conditions is presented in Table 3-1.  After heat treatment at the 

desired temperature, 25 ml samples were cooled to room temperature then centrifuged 

at 22000×g in a Beckman L7 Ultracentrifuge for thirty minutes. The supernatant was 

decanted and analyzed for the final protein (Cf) content by HPLC and the protein 

aggregate (pellet) used for dry weight determinations. Pre-tared centrifuge tubes 

containing the pellet were oven dried at 90°C for approximately 20 hours until constant 

weight and the dry weight of the pellet determined.  

 

3.2.3. HPLC Analysis of Soluble ββββ-LG  

The initial (Ci) and final protein (Cf) content for all samples was done using High 

Pressure Liquid Chromatography (HPLC).  The chromatography system consisted of a 

Waters 600 E systems controller, Waters 700 Satellite WISP, and a Waters 486 

Tunable Absorbance Detector set a 280 nm.  10 µL of supernatant was injected onto a 

Zorbax GF-250 (9.4×250 mm) analytical column and eluted with 200 mM phosphate 

buffer at pH of 7.  A calibration curve was prepared using different concentrations of 

pure untreated β-LG. The protein concentrations were estimated from the peak height. 

Percentage of protein aggregation was calculated as:  








 −
=

i

fi

C

CC
Aggregate *100%                                                                         (3-1) 
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Table 3-1: Summary of the heat treatment experiments of β-LG protein-solutions 
performed at different conditions (temperatures, durations and mediums).  

Experiment # Samples T[°C] Medium pH Heat Treatment 
Period (minutes) 

1 16 85 0.1 M Sodium 
Acetate 

 

4.5 5 -110  

2 
 

16 85 0.1 M Sodium 
Acetate 

 

4.5 5 -110  

3 24 82 0.1 M Sodium 
Acetate 

 

4.5 0-60  

4 12 80 0.1 M Sodium 
Acetate 

 

4.5 0-120  

5 13 75 0.1 M Sodium 
Acetate 

 

4.5 0-90  

6 15 65 0.1 M Sodium 
Citrate adjusted 

with HCl 
 

4.5 0-100  
 

7 13 45 0.1 M Sodium 
Citrate adjusted 

with  HCl 
 

3.5 0-180  
 

8 
 

9 85 Sodium Acetate Different 
pH (3.5-7.0) 

90  
 
 

 

3.2.4 Fluorescence Analysis 

Fluorescence measurements were conducted in a 1.0-cm cuvette using a Varian Cary 

Eclipse Fluorescence Spectrophotometer (Palo Alto, CA).  Excitation and emission slit 

widths were set to 5 nm and 10 nm, respectively. Excitation was conducted over a 

wavelength range from 280 to 320 nm at a scan interval of 2 nm; the emission spectra 

were recorded in the region 300-420 nm with a resolution of 1 nm producing a 20×120 

excitation-emission wavelength pairs matrix consisting of 2400 intensity data points 
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for a given sample measurement. A typical plot of fluorescence intensity data versus 

emission and excitation wavelengths as a landscape layout is presented in Figure 3-1.  

The maximum peak was located at an excitation wavelength of 300 nm and emission 

of 330 nm, which corresponds to tryptophan (Lakowicz, 1999; Renard et al. 1998). 

 
Figure 3.1: Fluorescence intensity data shown in landscape layout for a solution of 
9.3 g/L β-LG at room temperature and pH of 4.5.  
 

 

3.3 MATHEMATICAL METHODS 

The experimental data in this study were divided into two categories: input data, 

the fluorescence spectrometric measurements and output data, protein concentration 

obtained by dry weight and HPLC analysis. This section provides a brief description of 

the mathematical tools and data analysis techniques that were implemented in this 
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study.  All computations were carried out using MATLAB 5.3 (MathWorks, Natick, 

MA) along with the PLS Toolbox 3.5 (Eigenvector Research Inc., Manson, WA).     

 

3.3.1 Preparation of Fluorescence Data for Analysis 

The input data obtained in this study can be described by a three-way data 

structure as illustrated in Figure 3-2. 118 samples were measured using fluorescence 

spectroscopy with a 20 by 120 excitation/emission wavelength pairs matrix producing 

a three-way data array (118×120×20). Raw spectral data were collected and 

transformed into a form suitable for the PLS analysis where each 120×20 excitation-

emission wavelength pairs matrix was unfolded to a 1×2400 matrix.  

 

Figure 3.2: A three-way data structure consisting of 118 excitation-emission matrices 
with 20 excitation wavelengths and 120 emission wavelengths (120x20).  

 

These unfolded excitation-emission matrices of dimension 1×2400 can subsequently be 

arranged into one single two-way matrix of dimension 118×2400 as given below: 
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                                                                 (3-2)  

where xij represents the intensity value of the j th spectral variable (excitation-emission 

wavelength pair) for the i th case (i.e. sample). X1=[x11 x12 x13….x1m] is the row 

vector containing the fluorescence intensities measured at m excitation/emission 

wavelength pairs for the first sample. X2=[x21 x22 x23….x2m] is the row vector 

containing the fluorescence intensities measured at m excitation/emission wavelength 

pairs for the second sample and so on where m and n are equal to 2400 and 118, 

respectively.   

3.3.2 PLS Regression 

Like other spectrometric methods (NMR, UV/VIS and IR), fluorescence is 

characterized with data sets having a high degree of interaction, redundancy and 

collinearity (i.e. correlation) between the columns (variables). Collinearity, a situation 

where measurements at different wavelengths are strongly correlated, is considered to 

be a problem because it diminishes the information content of the data.  Collinearity 

results in the spectral data being poorly handled by the traditional calibration methods 

such as Multiple Linear Regression (MLR), which assumes that the X-variables are 

independent and not correlated. Furthermore, MLR tends to deteriorate drastically if 

there are only a limited number of observations compared to the dimension of the 
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variable space n (in our case the number of samples is 118, the number of variables are 

2400). One possible approach to overcome such problems is the use of Partial Least 

Squares (PLS).  PLS regression is a well-known multivariate data analysis method that 

is capable of handling collinearity among the input variables in the X-matrix and 

projecting the spectral data into a reduced dimensional space.  Hence, the original 

variables x are replaced by a smaller set of underlying new variables that are 

uncorrelated, mutually independent (orthogonal) and linear combinations of original 

descriptors.   

These new variables, known as latent variables or principal components, are 

calculated to both provide good representation of the X-matrix and maximize the 

relationship between the input and the output (Qin and McAvoy, 1992). This can be 

expressed mathematically as T=XW, where T is the matrix containing scores that are 

the linear combinations of the original X values. PLS calculates the weight matrix W 

that maximizes the covariance between Y and T (Qin and McAvoy, 1992). The weight 

matrix shows the important excitation-emission pairs for each PLS component. 

3.3.3 Cross-Validation 

To avoid over-fitting in PLS calibration, cross-validation is performed with the 

aim to determine the optimal model complexity and the minimum number of 

components that describes the underlying relationship between the input and the 

output. The optimal model complexity has been determined from a leave-one-out cross 

validation approach (Geladi and Kowalski, 1986).   
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3.3.4 External Validation 

The evaluation of the predictive capability of a multivariate calibration model can 

be made by comparing the concentrations and protein aggregation calculated by the 

calibration models with those obtained experimentally by dry weight analysis and 

HPLC measurements. The actual validation is done by comparing the model 

predictions to dry weight and HPLC data points that have not been used for calibration 

of the model. The two measures of model predictive capability that were used in this 

study are the root mean square error of prediction (RMSEP) and the squared predictive 

correlation coefficient (Q2).    
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predy  can be either the predicted β-LG concentration (i.e. solubility) in the sample or 

the predicted protein aggregation (%), obsy is the observed or reference value of the 

concentration (i.e. solubility) in that sample or the observed protein aggregation (%) 

and p is the number of samples in the test set.  RMSEP gives an estimate of the 

prediction error in the same unit as the initial data. On the other hand, the squared 

predictive correlation coefficient (Q2) measures the strength of the correlation between 

the values obtained by the model and the reference values obtained experimentally.    
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3.3.5 Pretreatment Methods of Spectroscopic Data   

The X-matrix (Equation 3-2) that contains spectral data was pretreated by four 

different techniques (mean centering, scaling, standard normal variate and 

normalization). These pretreatment methods were performed prior to PLS regression in 

an effort to improve the correlation between the input and response.  Then, the 

regression models obtained by using these different pretreatment techniques were 

compared on the basis of prediction accuracy. 

Columns Mean Centering (MC) 

Mean centering is useful in that it can be applied to remove a common 

background variation or an offset in the data (Bro and Smilde, 2003) that is irrelevant 

to the predicted response. The X data matrix given by Equation 2 is mean centered by 

calculating the average value for data in a column and subsequently subtracting that 

average value from every element in that column. This results in a mean-centered data 

matrix that has new columns with zero means. Such transformation can be expressed 

mathematically as follows: 

jij
MC

ij xxx −=                                                                                                  (3-5) 

where jx  is the average value in a column; j is the variable index and i is the row 

index.      

Variable (Column-wise) Scaling (VS)   

Variable or column-wise scaling is usually performed by dividing every 

measurement in a column (i.e. excitation-emission pair) by the standard deviation of 
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that column (Bro and Smilde, 2003) as given by Equation 3-6a. Thereby, all columns 

will have the same variance and every variable will have the same chance of 

influencing the regression model.  

j
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=                                                                                                              (3-6a) 

where σj is the standard deviation of data in the jth column as given below:                                                                
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jx  is the average value of data  in the jth column. j is the variable index and i is the 

row index. n is the number of observations.  

 

Standard Normal Variate (SNV)  

The standard normal variate approach has been used for near-infrared spectra to 

reduce the multiplicative interferences of scatter and particle size (Geladi et al., 1985). 

No literature was found regarding its application to correcting fluorescence data.  SNV 

corrects the spectra by centering each row and then scaling it by its own standard 

deviation as given by Equation 3-7a. In our case, each row corresponds to the 

fluorescence spectrum of a given sample. 

i
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−

=                                                                                                  (3-7a) 

, where  σi is the standard deviation of data in the ith row as given below:                   



 78

                            

                                                                                           (3-7b) 

ix  is the average value of data in the ith row,  j is the variable index. m is the number 

of columns (i.e. excitation emission pairs).     

Normalization (NM) 

Normalization of the spectra prior to multivariate calibration has been used for 

path length correction (Geladi et al., 1985). Each element in the row (Equation 3-2) is 

divided by the square root of the sums of squares for that row and consequently, each 

normalized spectrum will be represented by a unit vector as given by Equation (3-8). 
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where m is the number of columns, j is the variable index and i is the row index.   

    

3.4. RESULTS AND DISCUSSION  

3.4.1 Effect of Heat Treatment Duration and Temperature on ββββ-LG Aggregation 

The time course of β-LG aggregation as measured by precipitation at 85°C based 

on dry weight and HPLC analysis is presented in Figure 3-3.   The two methods were 

assumed reliable as for two replicates the experimental error was estimated to be 

5.93%.     
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Figure 3-3.  Percentage of β-LG protein aggregation based on dry weight and HPLC 
analysis for two replicates (experiment 1 and 2) with heat treatment at 85°C, pH 4.5.     
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Figure 3.4:  Percentage of β-LG aggregation based on dry weight analysis plotted 
versus heating time at four different temperatures 75, 80, 82.5 and 85°C, sodium 
acetate buffer, pH 4.5. 
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At 85°C the maximum amount of protein precipitation that could be achieved 

was in the order of 80%.  The time course of precipitation following thermal treatment 

of β-LG in solution at various temperatures is given in Figure 3-4. The extent of 

protein precipitation increased over time and with increasing temperature.  At 85°C, a 

plateau was observed at around 80% after one hour, whereas at 82.5°C a plateau 

appeared at a similar time but at 35% β-LG precipitation.  At 80°C and lower 

temperatures, the amount of β-LG precipitation was less than 15%.  It was observed 

that the rate of protein aggregation was strongly temperature dependent over a 

temperature range of 80-85 °C where two-degree rise in temperature resulted in a two-

fold increase in the rate of β-LG precipitation.  

 

3.4.2. Effect of pH on ββββ-LG Aggregation 

Along with temperature and heating time, pH is considered to be one of the key 

factors that influence the heat-induced aggregation behaviour of whey proteins and 

their functional properties (Fang and Dalgleish, 1998; Hoffmann and van Mil, 1999; 

Hunt and Dalgleish, 1994). The vast majority of formulated and processed dairy 

products, including whey protein end products, are manufactured under acidic 

conditions (Xiong et al., 1993). Eight β-LG solutions of identical protein concentration 

(9.3 g/L) and the same buffer (sodium acetate buffer), but different pH values in the 

acidic range, were prepared and then subjected to heat treatment at 85°C for 90 

minutes.  Based on both HPLC analysis and dry weight, pH was found to have a 

significant effect on the amount of β-LG aggregation (Fig. 3-5).  
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Figure 3.5 Effect of pH on the β-LG aggregation after a 90-minute heat treatment at 
85°C in acetate buffer (Experiment 8, Table I):  Percentage of β-LG aggregation is 
based on dry weight and HPLC analysis.  

 

At pH values below 4.0, precipitation is very low, in agreement with previous 

observations of Renard et al. (1998).  Renard et al. (1998) attributed the very low β-LG 

protein aggregation observed at pH 2.0 to the inhibitory effect of that pH on the 

formation of disulphide bonds.  The electrostatic repulsion between positively charged 

protein molecules at low pH values are strong enough that thiol/disulphide interchange 

reactions between monomers are inhibited resulting in a small degree of aggregation 

(De la Fuente et al., 2002). These results show that protein aggregation reaches a 

maximum value at a pH of approximately 5.0, which is very close to the theoretical β-

LG isoelectric point (pI 5.3) (Kelly and Zydney, 1997). Similar results have been 

reported by others (De Rham and Chanton, 1984; Renard et al., 1998; Xiong et al., 

1993). There is very good agreement between HPLC and dry weight measurements at 
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pH values lower than 5.0; however, the two methods give different levels of 

aggregation at pH values greater than 5.0.  The HPLC chromatograms for β-LG 

solutions at pH values greater than 5.5 show a peak that is probably due to the presence 

of larger molecular weight aggregates that were in suspension.   It was not possible to 

take these peaks into account in the calculation of the amount of aggregation since it is 

not clear at this point how these peaks are related to the aggregates in solution. 

However, these additional peaks could explain why the predicted amount of 

aggregation is higher based on dry weight determinations versus the HPLC method.    

 

3.4.3 Fluorescence Analysis 

Visual inspection of the fluorescence excitation-emission matrices collected 

during experiment 1 (85 °C), where a new sample was used for each time point, reveals 

that the fluorescence landscape of β-LG solution changes over the time course of heat 

treatment. Figure 3-6 shows fluorescence measurements collected during experiment 1 

for three samples (with different heat treatment times of 5, 40 and 110 minutes) with an 

initial β-LG concentration of 9.3 g/L.  The change in the fluorescence landscape of β-

LG solution over the time course of heat treatment involves, first, a progressive decline 

in the intrinsic fluorescence intensity of tryptophan  (Figure 3-6) and second, a shift of 

the emission peak of tryptophan from 328 nm towards longer wavelengths (340-350 

nm).   
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Figure 3.6: Fluorescence profile for a 9.5 g/L β-LG solution (Experiment 1) after 
thermal treatment at 85 °C at different time intervals (5, 40 and 110 minutes):  β-LG 
concentrations were determined by HPLC and dry weight. 
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3.4.4 PLS Regression 

Partial Least Squares regression was employed to determine the underlying 

components (also called latent variables) in the fluorescence spectra that are relevant to 

the measured solubility of β-LG and its aggregation percentage calculated from 

Equation (3-1). The experimental data for 118 different β-LG samples with different 

thermal treatments (one fluorescence spectrum per case) has been divided into a 

calibration set and a validation set. The first experiment (Table 3-1) consisting of 16 

samples was used for calibration.  The X matrix for the calibration has dimensions of 

16×2400 and contains in its rows the individual spectral samples. The X and Y 

matrices were both mean-centered prior to PLS regression. PLS regression applied to 

the calibration set (i.e. the data set with known concentrations) provided four latent 

variables or PLS components that are statistically significant, with a goodness of 

prediction by cross validation (Q2) of about 92%. These PLS components capture 91% 

of the variance in the X matrix (fluorescence intensity). The first PLS component is the 

most significant since it accounts for 58% of the variance in the X-matrix and it has 

strong linear correlation with the observed extent of aggregation (Figure 3-3). The 

second PLS component accounts for 23.8% of the variance in the X-matrix. The 3rd 

and 4th components are less important but they were retained for PLS modeling since 

they were determined necessary based on cross-validation. The four PLS components 

contain the projections (scores) of the fluorescence landscapes that belong to 16 

thermally treated protein solutions onto the low dimensional space determined by PLS. 

PLS scores for the first two significant components are plotted versus heating time 
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(Figure 3-7). Important spectral regions were identified by plotting the PLS weights of 

component 1 and 2 versus excitation-emission wavelength (Figure 3-8a and 3-8b). 
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Figure 3-7. Plot of PLS scores for the first two significant latent variables versus 
heating time (Experiment 1: 85 °C, 0.1 M acetate buffer pH 4.5). 

 

A plot of PLS scores for the first component versus heating time (Figure 3-7) 

shows an increasing trend that is strongly correlated with the observed extent of 

aggregation. According to Figure 3-8a, the first PLS component captures the 

fluorescence change in the spectral region at around 328-330 nm emission and 300 nm 

excitation.  
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Figure 

3-8.a 

 

 

Figure 

3-8.b 

 

Figure 3-8.  (a) PLS weights of component 1 versus excitation-emission wavelengths.  
(b)  PLS weights of component 2 versus excitation-emission wavelengths for 
Experiment 1 (85 °C, 0.1 M sodium acetate buffer pH 4.5).  
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Comparing the spectral region seen in Figure 3-8a with the emission 

wavelength corresponding to the maximum intensity of 328 nm for β-LG reported at 

room temperature by Renard et al. 1998, this spectral region can be most likely 

attributed to tryptophan buried in hydrophobic cores of the native protein (Reshetnyak 

and Burstein, 2001). 

Intuitively, the observed formation of insoluble aggregates over the course of 

heat treatment is accompanied by the decrease in the soluble amount of native β-LG. 

On the other hand, a plot of PLS scores for the second component (Figure 3-7) versus 

heating time shows an increase up to 20 min heating time that is followed by a slow 

decline with further increase in heating time. PLS weight plot for the second PLS 

component provides a spectral signature (Figure 3-8.b) that is different from that of the 

native β-LG (Figure 3-8a). As seen in Figure 3-8.b, that spectral signature at around 

emission 340-350 nm is possibly of tryptophan residue in the non-native state of the 

protein (Reshetnyak and Burstein, 2001).  

Recent studies using CD spectroscopy (Prabakaran and Damodaran, 1997) 

support the hypothesis of (Qi et al., 1995) that the primary cause of the initiation 

reaction in heat induced aggregation of β-LG involves critical conformational changes 

in β-LG to form reactive monomers which then react with each other via sulphhydryl-

disulphide exchange reactions to form dimers and other aggregates (i.e. trimers and 

tetramers). Mandenson et al. (1998) noted that these dimers and aggregates could be 

important intermediates in the further aggregation of β-LG. The native protein and its 

aggregates are believed to involve a very large, heterogeneous population of partially 

unfolded molecules that interact differently with the solvent and with the neighboring 
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molecules (Vetri and Militello, 2005). The plot of PLS scores for the second 

component may reflect the formation and depletion of some non-native intermediates 

over the course of heating.  

Formation of non-native β-LG intermediates after short heating times has been 

observed by Iametti et al. (1996) and Schokker et al. (1999) and it is considered to be 

the first step in the heat-induced aggregation of β-LG.  Schokker et al. (1999) 

monitored the formation of irreversibly altered monomers and non-native dimers 

throughout the aggregation of β-LG. Their study showed that the increase in the 

amount of aggregates is accompanied by a progressive loss of native-like β-LG 

throughout the heating process.  At the same time, Schokker et al. (1999) observed that 

the amount of non-native monomers, dimers and trimers increased during the early 

stages of heat treatment after which a slow decrease with time was observed. Similar 

results were obtained by other researchers (McSwiney et al., 1994; Prabakaran and 

Damodaran, 1997). This analysis suggests that several simultaneous kinetic events 

associated with the protein structural change, such as partial unfolding and aggregation, 

can be captured using the PLS components that were extracted from the 

multiwavelength spectra.  

In addition to the PLS weight plots, the sensitivity spectrum (Boehl et al., 2003) 

is another method which allows extraction of qualitative information in the model by 

analysis of the wavelength pairs that are relevant to the predicted variable (i.e. β-LG 

aggregation). The sensitivity spectrum consisting of the scaled regression coefficients 

for every wavelength combination in the model are shown in Figure 3-9.  From Figure 

3-9, two major areas can be identified that are relevant to predicting the extent of β-LG 
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aggregation for a given heat treatment condition. The significant peak at around 303 

nm excitation and 330 nm emission, which is due to tryptophan buried in hydrophobic 

cores of the native β-LG, has a negative correlation with the predicted variable (i.e. β-

LG aggregation). Hence, the higher the amount of aggregates, the lower the amount of 

native β-LG residing in the solution. The area of large peaks at around excitation 297 

nm and emission 340-350 nm corresponding to tryptophan residues at different 

exposure levels to the surrounding solvent (Reshetnyak and Burstein, 2001) contribute 

positively to the predicted β-LG aggregation. In other words, this positive correlation 

implies that the exposure of the protein hydrophobic residues to the surrounding 

solvent upon unfolding gives rise to β-LG aggregation, which is in agreement with the 

literature (De la Fuente et al., 2002; McSwiney et al. 1994; Prabakaran and 

Damodaran, 1997; Schokker et al. 1999).  
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Figure 3-9:  Sensitivity spectra (regression coefficients plot) used for modeling β-LG 
aggregation shown as a contour map (a) or landscape layout (b). 
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3.4.5 PLS Model Testing 

The PLS calibration model was tested against three independent data sets that 

were not used in the calibration. The fluorescence spectra for experiments 2, 3 and 4 

(Table 3-1) were fed into the PLS model to calculate the β-LG concentration that 

corresponds to each sample. The model gives a RMSEP of 0.912 g/L, which 

corresponds to 10.1 % prediction error in terms of aggregation percentage. While this 

prediction error is larger than the overall experimental error of HPLC measurements 

(5.93 %), the current model may not be suitable for reliable quantitative determination 

of the protein content in real-life application such as quality control and on-line 

monitoring of food processes. As this prediction error is relatively large, attempts to 

improve the calibration model have been made and will be discussed in the next 

section.  

 

3.4.6 Spectra Preprocessing Prior to PLS Regression  

Understanding the origins and characteristics of measurement error may 

suggest approaches of improving the quality of input data that is fed into the PLS 

model. Therefore, the fluorescence measurements for four replicates of identical 

protein content were collected at an excitation wavelength of 300 nm as seen in Figure 

3-10a.  A close examination of the fluorescence spectra of the four replicates reveals 

that the variance of measurements is proportional to the measurement itself (Figure 3-

10b). Such an error pattern is often referred to in literature as heteroscedastic noise or 

error that possibly arises from counting statistics (i.e. shot noise) or fluctuations in 

source intensity with wavelength channel (Schreyer et al., 2002).  
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Figure 3-10. (a) Fluorescence measurements for four replicates (β-LG concentrations 
(pH, temperature) collected at an excitation wavelength of 285 nm. (b) The mean 
intensity for the four replicates (primary axis) and the variance of measurements 
(secondary axis) around that mean calculated at each wavelength.   
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Due to the heteroscedastic component of the fluorescence signal, the spectra 

acquired for samples with different but relatively close protein concentrations could 

exhibit many overlapping spectral peaks that would affect the ability to accurately 

determine a measurable property of the target analyte (i.e. β-LG content) in each 

sample.  

Error measurements in the fluorescence can play a significant role in degrading 

the quality of results obtained from the regression model. To further reduce the 

prediction error, the preprocessing of the spectra prior to PLS regression was evaluated. 

The application of four preprocessing techniques (mean centering, columns scaling, 

standard normal variate and normalization) to the spectrometric data was investigated 

in order to improve the calibration model.  A new PLS model with data from 

Experiment 1 was calculated and validated for each preprocessing method by testing 

the model on the spectra of Experiments 2 to 7 (Table 3-1). The effect of the 

pretreatment method on the predictive accuracy described by the Root Mean Squared 

Error of Prediction (RMSEP) and the Predictive Correlation Coefficient (Q2) are 

presented in Table 3-2 and Table 3-3. 

 
Table 3-2: Effect of the pretreatment method for X (spectra) and Y (β-LG 
concentration) on the overall predictive ability of the model as described by RMSEP 
and Q2 

 

 X: None X: MC X: VS X: SNV X: NM 

RMSEP  (g/L) 0.855 0.912 0.805 0.465 0.413 

Q2 0.60 0.51 0.65 0.87 0.88 
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Table 3-3: Effect of the pretreatment method for X (spectra) and Y (β-LG 
aggregation) on the overall predictive ability of the model as described by RMSEP and 
Q2. 
 

 X: None X: MC X: VS X: SNV X: NM 

RMSEP  

(% aggregation) 
9.34 10.11 8.54 5.02 4.93 

Q2. 0.53 0.41 0.66 0.85 0.86 

 

 
Table 3-4: Effect of the pretreatment method for X (spectra) and Y (β-LG aggregation) 
on the model accuracy (RMSEP) for each validation set (all tabulated values are 
RMSEP expressed as β-LG aggregation (%)).      
 

Experiment Aggregation% X: None X: MC X: VS X: SNV X: NM 

2 0-75 10.80 11.80 7.70 4.95 4.40 

3 0-30 11.23 11.93 9.55 6.34 5.09 

4 0-15 6.58 7.32 6.72 3.75 4.06 

5 0-12 6.19 5.44 3.32 2.93 4.42 

6 0-11 6.33 6.47 7.95 3.60 3.69 

7 0-11 7.69 8.87 8.00 4.93 5.00 

 
 

Although mean-centering (MC) is considered to be a standard approach in PLS 

regression, the data preprocessing obtained from mean centering seem to be worse than 

when no preprocessing was used in all validation sets as seen in Table 3-4. Our results 

agree with those of Seasholtz et al. (1992), where they demonstrated that the RMSEP 
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will be smaller for a multivariate model made with raw input data than for a model 

made with mean centered data if the data, as in this case, varies with concentration.  

 The best results based on RMSEP and Q2 were obtained with the use of the 

Standard Normal Variate (SNV) and normalization (NM) for all validation sets. It is 

also noticed that the performance of SNV and NM is nearly equivalent where both 

methods seem to improve the accuracy of prediction by about 40%. The reason for the 

superior performance of SNV and NM is that both were able to handle the type of 

measurement error occurring in the fluorescence data.  Assuming that хij is the raw 

fluorescence signal corrupted by heteroscedastic noise it can be expressed 

mathematically as (Schulze, 1997): 

o
ijij xx .ε=                                                                                                          (3-9) 

хij˚ is the noise-free fluorescence signal for a given sample that is a function of only 

the physical properties of the target analyte (i.e. protein content) and ε is the 

heteroscedastic noise. Substituting Equation 3-9 into the SNV transformation given by 

Equation 3-7a yields:  
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Note that Equation 3-10 can be simplified further by canceling out ε so the SNV-

corrected signal becomes only a function of the noise-free component хij˚: 
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Similar to SNV, Normalization (Equation 3-8) corrects the fluorescence signals by 

removing the heteroscedastic noise while preserving the pure noise-free component 

хij˚ that is a characteristic of the target analyte as described by Equations 3-12 and 3-

13.  
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The ability of SNV to distinguish between variations that are due to physical properties 

of the analyte from those that are non-relevant was demonstrated before by Geladi et 

al. (1985) in the pretreatment of near infrared spectra.  

Model predictions of PLS made with SNV corrected spectra were compared against 

HPLC and dry weight measurements for three different data sets presented in Figure 

(3-11).  It is clear from this figure that the model predicts the protein aggregation % 

very well over wide range of conditions (different temperatures and treatment 

durations).  
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Figure 3-11: PLS model prediction for β-LG protein aggregation compared to HPLC 
and dry weight measurements at three different temperatures 85, 82 and 80 °C 
(Experiments 2, 3 and 4, respectively). 
 

 

3.5 CONCLUSION 

A novel fluorescence-based regression model is proposed for the prediction and 

quantification for a model system consisting of the protein β-LG.  Results show very 

good agreement between the fluorescence-based predictions and measurements 

obtained by two analytical techniques. The usefulness of multivariate calibration tools, 

also known as chemometric methods, in extracting the features that are correlated to 

the physical properties of the target protein such as its concentration and extent of 

aggregation were illustrated. Standard Normal Variate, a signal preprocessing and 

80 °C 

82 °C 

85 °C 
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filtering tool, was demonstrated to play a significant role in enhancing the predictive 

accuracy and robustness of the sensor. Although the SNV approach is widely 

implemented in signal processing, its specific applicability in filtering fluorescence 

signals has not been studied previously.  
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CHAPTER 4 

Fluorescence-based Soft-sensor for Monitoring β-Lactoglobulin and α-

Lactalbumin Solubility during Thermal Aggregation*  

 

A soft-sensor for monitoring solubility of native-like α-lactalbumin (α-LA) and β-

lactoglobulin (β-LG) and their aggregation behavior following heat treatment of 

mixtures under different treatment conditions was developed using fluorescence 

spectroscopy data regressed with a multivariate Partial Least Squares (PLS) regression 

algorithm. PLS regression was used to correlate the concentrations of α-LA and β-LG 

to the fluorescence spectra obtained for their mixtures.  Data for the calibration and 

validation of the soft sensor was derived from fluorescence spectra.  The process of 

thermal induced aggregation of β-LG and α-LA protein in mixtures, which involves the 

disappearance of native-like proteins, was studied under various treatment conditions 

including different temperatures, pH, total initial protein concentration and proportions 

of α-LA and β-LG.  It was demonstrated that the multivariate regression models used 

could effectively deconvolute multi-wavelength fluorescence spectra collected under a 

variety of process conditions and provide a fairly accurate quantification of respective 

native-like proteins despite the significant overlapping between their emission profiles. 

It was also demonstrated that a PLS model can be used as a black-box prediction tool 

for estimating protein aggregation when combined with simple mass balances.       

* Elshereef R, Budman H, Moresoli C, Legge RL. (2008). Fluorescence-based soft-sensor for 
monitoring β-lactoglobulin and α-lactalbumin solubility during thermal aggregation. Biotech 
Bioeng 99:567-577. 
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4.1 INTRODUCTION 

Whey, a by-product of cheese manufacturing, is a milk fraction composed of 

lactose, proteins, vitamins, minerals, and fats. Whey proteins include a number of 

different proteins such as β-lactoglobulin (β-LG), α-lactalbumin (α-LA), bovine serum 

albumin, and immunoglobulin.  These whey proteins have high nutritional value and 

can be used to manufacture different types of food products.  Large amounts of whey 

protein are used for infant formula, yogurt, ice cream, and beverages.  In the past, 

attempting to maximize the extraction of these proteins from whey and separating them 

has, and continues to be a challenging task.  The impurities in whey make the 

extraction process relatively difficult.  In addition, the similarities between α-LA and 

β-LG make it even more difficult to separate these proteins.  

Amundson et al. (1982) developed a method to produce enriched fractions of β-

LG and α-LA from cheese whey by concentrating the whey protein using ultrafiltration 

followed by pH adjustment of the concentrate. However, Muller et al. (2003) have 

shown that separation of proteins using selective thermal precipitation is more 

promising than using the ultrafiltration route, provided that proper conditions including 

initial protein concentration, pH, and length of precipitation time are maintained 

(Bramaud et al., 1997; Tolkach et al., 2005).  Pearce (1987) has shown that the 

tendency of α-LA to aggregate is higher under specific conditions including at a pH 

values near the isoelectric point (pH 4.2-4.6) and in a temperature range of 50°C -65°C. 

They also observed that the tendency to aggregate increased with protein concentration.  

Bramaud et al. (1997) studied the effect of citrate on the precipitation of whey proteins 
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and they observed that the addition of citrate leads to α-LA rich fractions at 

temperatures around 35°C.    

Research has shown that the two major whey proteins, α-LA and β-LG, become 

unstable at temperatures above 65°C (Zhu & Damodaran, 1994).  When heated above 

this temperature, protein denaturation occurs resulting in protein aggregation and 

precipitation.  The response to thermal treatment varies with different types of proteins, 

which results in different proteins precipitating out of the solution in different 

proportions making separation possible (Bramaud et al. 1997; Tolkach et al., 2005). 

Therefore, heat-induced aggregation and precipitation is an important treatment process 

in the manufacture of many dairy products, and is used to modify functional properties 

with the goal of ensuring food safety of the product. Functional, physical and chemical 

properties of milk such as texture, heat stability, foaming properties and rheological 

behavior are all affected by the heat treatment (Newstead et al. 1975; Morr, 1985; 

Kessler and Beyer, 1991; Zhu and Damodaran , 1994; Luecy et al. 1998, Elshereef et 

al., 2006).   

There were several objectives in this study.  First, there was an interest in 

investigating the effect of different conditions on the heat treatment-based separation 

process of milk proteins. The rate at which whey proteins aggregate is controlled by 

process conditions such as protein concentration, pH and temperature and the presence 

of other components (Bertrand-Harb et al., 2002).  Our objective was to use data 

acquired from this approach to calibrate and validate a soft- sensor developed to 

monitor the separation process. Using the measurements collected under varied process 

conditions, it would be possible to then demonstrate the sensitivity and robustness of 
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this soft sensor. Soft-sensors are inferential mathematical models that use readily 

available process measurements or/and physical equations to estimate difficult-to-

measure variables (James et al., 2002; Hagedorn et al., 2004). 

As a preliminary step, the current study focused on different solutions of β-LG 

and α-LA.  These proteins are the predominant proteins that make up of about 70% of 

all the proteins in whey and are key to the functional properties and characteristics of 

whey.  The experimental approach involved the analysis of the thermal aggregation of 

these two proteins at different pH values, temperatures, and protein concentrations.  

The soft-sensor proposed was designed by combining fluorescence spectroscopic data 

acquired for β-LG/α-LA solutions subjected to different heat conditions and Partial 

Least Squares (PLS) modelling for monitoring solubility of α-LA and β-LG in their 

mixtures and their aggregation behavior during heat treatment under different treatment 

conditions.  Partial Least Squares regression is a well-known chemometric tool for 

developing a calibration model which correlates the set of known measurements 

represented by multi-wavelength fluorescence data to the desired property to be 

predicted (Herbert et al., 2000; Becker et al., 2003; Hagedorn et al., 2004; Elshereef et 

al., 2006). This is because the PLS method is capable of handling data sets with large 

numbers of highly-correlated variables such as the fluorescence spectral measurements 

and with few observations (Elshereef et al., 2006). 
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4.2. MATERIALS AND METHODS 

4.2.1 Materials and Sample Preparation 

β-LG and α-LA in their powder form (lot JE 007-3-921 and JE 003-3-922) were 

of 95% purity and donated by Davisco Foods International (LeSueur, MN).  All other 

chemicals were of analytical grade.  Solutions of β-LG and α-LA were prepared in two 

different buffers: 0.1 M acetate buffer (pH 4.5) and 0.1 M citrate buffer (pH 3.5-6.0) as 

described below.  

 

4.2.2. Thermal Treatment 

Protein solutions were dispensed into 20 mL open plastic test tubes and placed 

in a pre-equilibrated temperature controlled water bath (GCA Precision Water Bath, 

Model 183) at the desired temperature and duration for the heat treatment process.    

 

4.2.3 Centrifugation and Gravimetric Analysis of the Precipitate 

After heat treatment the samples were quickly placed into an ice bath for 15 to 

20 min. Samples were then centrifuged at 22000 ×g in a Beckman L7 Ultracentrifuge 

for thirty min. The supernatant was decanted and analyzed for the final protein (Cf) 

content by HPLC and the protein precipitate (pellet) was recovered for dry weight 

estimation.  Fluorescence measurements were performed on the supernatant prior to 

HPLC analysis.  Protein aggregates were dried in an oven at 90oC for approximately 17 

h until they reached constant weight and the dry weight determined.  Percentage of 

total protein aggregation was calculated using Equation 4-1 where WS is the amount of 
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protein in a given sample prior to heat treatment and WP is the dry weight of protein 

aggregate formed after heat treatment.   









=

S

P

W
W

aggregate *100%                                                                                         (4-1) 

 

4.2.4 HPLC Analysis of Soluble ββββ-LG and αααα-LA in the Supernatant 

The initial (Ci) and final protein (Cf) content for α-LA and β-LG in all samples 

were determined using High Pressure Liquid Chromatography (HPLC).  The 

chromatography system consisted of a Waters 600 E systems controller, Waters 700 

Satellite WISP, and a Waters 486 Tunable Absorbance Detector set a 280 nm.  

 

 
Figure 4-1.  Sample HPLC chromatogram of a thermally treated β-LG/α-LA mixture.                            
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Ten µL of supernatant was injected onto a Zorbax GF-250 (9.4×250 mm) 

analytical column and eluted with 200 mM phosphate buffer at pH of 7; separation the 

mixture was on the basis of size exclusion.  An example chromatogram is given in 

Figure 4-1.   

Calibration curves were prepared using different concentrations of pure untreated 

β-LG and α-LA and the initial protein concentration based on HPLC analysis. The 

protein concentrations were estimated from the peak height. Percentage of protein 

aggregation for each protein was calculated as:  








 −
=

i

fi

C

CC
Aggregate *100%                                                                                 (4-2) 

 

4.2.5 Fluorescence Analysis 

Fluorescence measurements were conducted in a 1.0-cm cuvette using a Varian Cary 

Eclipse Fluorescence Spectrofluorometer (Palo Alto, CA).  Excitation and emission slit 

widths were both set to 10 nm. Excitation was conducted over a wavelength range from 

260 to 350 nm at a scan interval of 10 nm; the emission spectra were recorded in the 

region 280-450 nm with a resolution of 1 nm producing a 10×170 excitation-emission 

wavelength pairs generating a matrix of data consisting of 1700 fluorescence intensity 

data points for any given sample.  

 

4.3 CHEMOMETRIC MODELLING 

The experimental data in this study were divided into two categories: input data, 

the fluorescence spectrometric measurements, and output data consisting of β-LG and 
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α-LA concentration values obtained by HPLC analysis. The matrix that contains the 

outputs to be predicted, i.e. HPLC measurements of β-LG and α-LA concentrations, 

were arranged in an output matrix to be referred to heretofore as matrix Y whereas the 

fluorescence measurements were arranged into an input data (X-matrix).  The rows in 

the X matrix correspond to different samples while the columns correspond to 

fluorescence intensities at different excitation-emission wavelength pairs (Elshereef et 

al., 2006). The input data is considered to be multivariate in nature since it consists of 

many measurements (1700 fluorescence intensity data points) for many samples. 

Partial Least Squares regression (PLS) is a well-known chemometric tool for 

developing a calibration model which can be used to correlate the set of known 

measurements represented by the fluorescence data to the desired property to be 

predicted represented by the β-LG and α-LA concentrations. PLS is able to handle 

problems associated with noise and collinearity in multivariate data sets with large 

numbers of highly correlated variables (Geladi and Kowalski, 1986, Qin and McAvoy, 

1992). Collinearity is very high among the different fluorescence readings obtained at 

different combinations of emission and excitation wavelengths (Elshereef et al., 2006).  

Hence, the original input variables x in the matrix X are replaced by a smaller set of 

underlying new variables that are uncorrelated, mutually independent (orthogonal) and 

are mathematically represented by linear combinations of the original descriptors.  

These calculated linear combinations, referred to as latent variables (LVs) or principal 

components, are calculated to both provide good representation of the X-matrix and 

maximize the relationship between the input and the output (Qin and McAvoy, 1992). 

The optimum number of latent variables (LVs) and the goodness of prediction (Q2) are 
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determined by cross-validation algorithm (Geladi and Kowalski, 1986; Qin and 

McAvoy, 1992; Elshereef et al., 2006). The data obtained from heat treatment 

experiments were used for calibrating and testing the PLS soft-sensor as will be shown 

in the following sections. All computations were carried out using MATLAB 5.3 

(MathWorks, Natick, MA) along with the PLS Toolbox 3.5 (Eigenvector Research 

Inc., Manson, WA).     

 

4.4 RESULTS AND DISCUSSION  

The first objective of this work involved a comprehensive study of the effects of 

different experimental parameters on the solubility, aggregation and precipitation 

behavior of proteins during heat treatment.  The parameters that were studied were: 

total protein concentration, α-LA to β-LG ratio, pH, heat treatment duration and 

temperature. The results are presented separately in the following subsections. Some of 

these effects have been partially studied and reported in the literature (Newstead et al., 

1975; Kessler and Beyer, 1991; Luecy et al., 1998). The current work expands on 

previous findings by investigating the effects over a wider range of operating 

conditions and also adds new results on the effects of pH, total protein concentration 

and α-LA to β-LG ratio. This comprehensive study was necessary in order to calibrate 

the soft sensor and to validate over a wide range of process operating conditions. 

 

4.4.1 Effect of Total Protein Concentration on Aggregation 

In the majority of industrial processes involving the production of whey, thermal 

treatment is preceded by a preliminary concentration step to minimize energy 
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requirements. Hence, understanding and modeling the effect of total protein 

concentration prior to heat treatment on the solubility of major whey proteins as well as 

their aggregation behavior is of industrial interest (De la Fuente et al., 2002; Law & 

Leaver, 1997). Previous experimental studies carried out using calorimetry (Qi et al., 

1995) or Fourier transform infrared spectroscopy (Lefevre & Subirade, 1999) and light 

scattering (Le Bon et al., 1999) showed that the initial protein concentration has a 

marked effect on the thermal denaturation and aggregation of β-LG. However, such 

experimental studies were done with pure β-LG solutions. As far as we are aware, no 

investigators have reported the effect of total protein concentration on the thermal 

denaturation and aggregation of β-LG in the presence of α-LA only.   

 

Table 4-1: Summary of the heat treatment experiments for β-LG and α-LA protein 
mixtures performed under different conditions.  
 

Exp# 
Number 

of 
Samples 

pH T[°C] ββββ-LG to α-LA 
ratio 

Total Protein 

1 8 3.9 75 Constant 3:1 Variable 3 -16 g/L 

2 16 3.9 85 Constant 3:1 Variable 1.5 -18 g/L 

3 10 3.9 75 Variable Constant 12 g/L 

4 8 3.5 85 Constant 3:1 Variable 1.5 -14 g/L 

5 10 3.7 85 Constant 3:1 Variable 1.5 -16 g/L 

6 9 3.9 85 Constant 3:1 Variable 1.5 -16 g/L 

7 9 4.5 85 Constant 3:1 Variable 1.5 -16 g/L 

8 10 5.0 85 Constant 3:1 Variable 1.5 -16 g/L 

9 8 6.0 85 Constant 3:1 Variable 1.5 -14 g/L 
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In the first experiment summarized in Table 4-1, different amounts of α-LA and β-LG 

in their powdered form were mixed with 0.1 M citrate buffer at pH 3.9 resulting in 8 

different protein mixtures of different total protein concentration (ranging from 3 g/L to 

16 g/L) but with a constant α-LA to β-LG ratio of 1:3. The mixtures were then 

subjected to heat treatment at 75°C for 90 minutes.   

 

 
 
Figure 4-2. α-Lactalbumin and β-lactoglobulin aggregation at pH 3.9 for different total 
protein concentrations determined by HPLC (Experiment 1 in Table 4.1: heat 
treatment duration is 90 min; temperature 75ºC). 
 

Figure 4-2 is a plot of the percentage of total protein precipitated based on dry weight 

and HPLC measurements against the initial total protein concentration.  In general the 

amount of protein which precipitates (i.e. aggregates) increases with an increase in the 

initial protein concentration.  To test the accuracy of the HPLC and dry weight 
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measurements, these were compared for different total concentrations. Figure 4-2 

shows very good agreement between the total protein aggregated as measured by 

HPLC and dry weight with a maximum error of approximately 5% between the two 

measurements.   

 
 
In general, the discrepancy between the two determinations becomes greater for 

samples with low protein precipitation that corresponds to a lower signal to noise ratio. 

One of the major advantages of HPLC analysis over gravimetric analysis (dry weight) 

is that the former method allows estimating the percentage of aggregation of α-LA and 

β-LG separately from the amounts of respective proteins before and after heat 

treatment according to Equation 4-2.  As seen from Figure 4-2, the percent aggregation 

of α-LA and β-LG increases with increased total protein concentration.  Results show 

that there is a marked difference in the aggregation behavior of the two proteins where 

the degree of aggregation observed for α-LA is significantly higher than that observed 

for β-LG at all protein concentrations.  

 

4.4.2 Effect of α-LA to β-LG Ratio on Protein Denaturation and Aggregation 

Appropriate amounts of α-LA and β-LG were mixed with 0.1 M citrate buffer solution 

at pH 3.9 resulting in 10 protein mixtures of different α-LA to β-LG ratios but with 

constant total protein concentration (12 g/l) (Experiment 3, Table 4-1). The mixtures 

were then subjected to heat treatment at 75°C for 90 minutes. Figure 4-3 shows the 

percentage of α-LA aggregation against the initial fraction of α-LA in the mixture 

before heat treatment was started.  A five-fold increase in the percentage of α-LA 
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aggregation occurs with increasing proportion of α-LA in the initial fraction over the 

range of 0.1 to 0.2.  A smaller percentage increase is seen for initial α-LA fractions 

beyond 0.2.   

 

 
Figure 4-3.  α-Lactalbumin and β-lactoglobulin aggregation at pH 3.9 for different α-
LA mass fractions in the protein mixture determined by HPLC (Experiment 3 in Table 
4-1: heat treatment duration is 90 min; temperature 75ºC).   
 
 

Figure 4-3 also illustrates that the amount of β-LG that aggregates decreases with 

increasing initial α-LA fraction, implying that β-LG aggregation decreases with 

decreasing proportions of native β-LG present in the solution prior to heat treatment. 

These results agree well with those observed in Figure 4-2. The percentage of 

aggregation of each protein is proportional to the initial concentration of that protein in 
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the mixture before undergoing heat treatment with α-LA being more sensitive to heat 

treatment than β-LG.    

 

4.4.3 Effect of pH During Heat Treatment  

The kinetics of protein denaturation, the aggregation mechanism and the nature of the 

stabilizing forces involved in the formation of aggregates are affected by the solution 

pH during heat treatment (Xiong et al., 1993; Hunt and Dalgleish, 1994; Hoffmann and 

van Mil, 1999; Bertrand-Harb et al., 2002). Therefore, in order to demonstrate the 

robustness of a PLS based soft-sensor for monitoring aggregation behavior of these 

proteins under different conditions, mixtures of α-LA and β-LG were heat-treated at 

different pH values and the fluorescence spectra acquired from the supernatant and 

used to test the PLS soft sensor.   

The pH over which this study was conducted (pH 3.5 to 6.0) represents the range over 

which β-LG exhibits different self-association behavior.  At room temperature and at 

pH values below 4 and above 5.2, β-LG exists predominantly as monomers and dimers 

(Sawyer et al., 1999) and at pH values around 4.7, larger oligomeric structures are 

formed (Verheul et al., 1999).  In the case of α-LA, there is a conformational change in 

the range of pH selected for this study (Muller et al. 2003). Results in Figure 4-4 shows 

that aggregation of both proteins is more rapid near their isoelectric points (4.2 for α-

LA and 5.2 for β-LG).  It is also clear that the two proteins have different aggregation 

behaviors at all pH values and at all initial protein concentrations.  Furthermore, the 

propensity of α-LA to aggregate is greater than that of β-LG at pH values below 4.5 as 
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seen in Fig. 4-4. This difference in the aggregation behavior can be partially attributed 

to the higher thermal stability of β-LG over this pH range.   

 
Figure 4-4.  α-Lactalbumin and β-lactoglobulin aggregation at different pH values 
(3.7, 3.9, 4.5 and 5) for different total protein concentrations determined by HPLC 
(Experiments 5, 6, 7 and 8 in Table I; heat treatment duration is 90 min, temperatures 
85ºC at pH 3.7, 3.9, 4.5 and 5 respectively).   ♦ = α-LA; ▲ = β-LG; □ = total protein 
determined by dry weight; ■ = total protein determined by HPLC.      
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Previous studies of thermal stability of β-LG in the presence of α-LA using differential 

scanning calorimetry (Boye and Alli, 1999) found that β-LG retains its increased 

thermal stability at low pH in spite of the presence of α-LA. At higher pH values, β-LG 

is known to be thermally unstable (Boye and Alli, 1999). Given the residual amounts 

of respective proteins in the supernatant that were determined by HPLC analysis, the 

weight ratio of native β-LG to native α-LA under different conditions was calculated 

using Equation 4-3.  









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βαβ /                                                                                  (4-3) 

The weight ratio of β-LG/α-LA was plotted as a function of the initial total protein 

concentration in the original protein mixture before heat treatment at four different pH 

values (Fig. 4-5).  

 
Figure 4-5.  Effect of pH and initial total protein concentration on the weight ratio of β-
LG to α-LA in the supernatant (heat treatment duration 90 min; temperature 85°C). 
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It can be seen from Fig. 4-5 that β–LG enrichment by thermal treatment is favored at 

lower pH values. At higher pH values, the recovery of α-LA by thermal precipitation 

(i.e. aggregation) is reduced because more β-LG precipitation is favored under these 

conditions (Figure 4-4), leading to a decrease of soluble β-LG to α-LA weight ratio in 

the supernatant as shown in Figure 4-5. Similar results have been previously reported 

by Muller et al. (2003) who found that pH 3.9 is the optimal pH value for recovery of 

α-LA. Recovery of α-LA by thermal precipitation was lower at pH values higher than 

3.9.  

 

4.4.4 Effect of Temperature on Protein Aggregation 

Experiments were carried out at 75 and 85°C for 90 min (data not shown). The 

total protein concentration was varied between 1.5 g/l to 12 g/l at a constant α-LA:β-

LG ratio of 1:3 in 0.1 M acetate buffer at pH 3.9.  As expected, more protein 

aggregated at higher temperatures (Figure 4-6a). It is also observed that the aggregation 

behaviors of α-LA and β-LG are different at 75 and 85°C as seen in Figures 4-6b and 

4-6c. Results of the effect of temperature on the aggregation behavior of β-LG and α-

LA are consistent with those reported by Zhu & Damodaran (1994). HPLC analysis 

likely over-estimates protein aggregation because additional protein aggregation can 

occur prior to the analysis. Although HPLC analysis gives higher aggregation levels, 

the largest recorded difference between HPLC and DW values is about 10%.  
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Figure 4-6.  HPLC, dry weight measurements and model predictions of (a) total 
protein aggregation (b) β-LG aggregation and (c) α-LA aggregation at 75 & 85°C 
(Experiments 1 and 6 in Table 4.1).   
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4.4.5 PLS Soft Sensor  

In practice it would be useful to be able to monitor β-LG and α-LA 

concentrations and ratios on line as this would permit real-time manipulation of 

operating conditions to modify and optimize the production process.  The soft sensor 

proposed here is based on the use of fluorescence excitation-emission data acquired 

from the supernatant following centrifugation. These data were used to calibrate a 

model by using a Partial Least Squares (PLS) algorithm to predict the residual amount 

of α-LA and β-LG in solution after thermal treatment.  The PLS regression model was 

calibrated by regressing the concentration of α-LA and β-LG in a sample where 

concentrations were determined by HPLC analysis against the fluorescence spectra of 

that sample. As explained in the Materials and Methods, the experimental data 

collected for 88 different β-LG/α-LA samples corresponding to different thermal 

treatments processes (one fluorescence spectrum per case) was divided into two sets, 

one was used for determining the PLS model (calibration set) and the other for testing 

the model (testing set). The first dataset (Table 4-1, Experiment 2) consisting of spectra 

acquired for 16 supernatant solutions of protein mixtures heat-treated at 85 ºC and 

covering a wide range of β-LG and α-LA concentrations was used to develop and 

calibrate the PLS soft-sensor model. The X matrix for the calibration set can be 

expressed mathematically as 16x1700 where each row is an individual spectrum and 

the 1700 columns represent fluorescence intensity measurements for different 

combinations of excitation wavelengths between 260-350 nm and emission 

wavelengths between 280-450 nm. The 16 rows are individual fluorescence spectra 

acquired for different supernatant solutions. The output Y matrix for the calibration 



 118

contains two response variables, i.e. the concentration of β-LG and the concentration of 

α-LA determined by HPLC. The PLS regression was implemented to correlate the 

concentrations of α-LA and β-LG to the fluorescence spectra.  When applied to the 

calibration set, the PLS algorithm yielded three latent variables or PLS components 

that are statistically significant, with a goodness of prediction by cross validation (Q2) 

of about 94%. These PLS components capture 94% of the variance in the X matrix 

(fluorescence intensity) with the rest of the variability assumed to be due mostly to 

experimental error and instrumental noise. The first PLS component is the most 

significant and it accounts for 80% of the variance in the X-matrix and it shows a 

strong linear correlation with the individual protein concentrations determined by 

HPLC determinations. The second PLS component accounts for 15% of the variance in 

the X-matrix.  

 

The physical relevance of the current PLS model can be interpreted by examining the 

weight vectors (i.e. the weight vector of the first latent variable and the weight vector 

for the second latent variable). Plotting each individual weight vector against 

wavelength provides the so-called weight spectra (Figs. 4-7 and 4-8) which help in 

identifying important spectral regions with significant contribution to the prediction 

ability of the PLS model (Elshereef et al., 2006). The loading weight spectrum of the 

first PLS latent variable (Fig. 4-7) reveals one peak with an emission maximum around 

330-335 nm. Such a peak can be ascribed to the tryptophan residue in a relatively 

hydrophobic environment (Reshetnyak & Burstein, 2001).  
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Figure 4-7.  Weight spectrum of the first PLS component.  
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Figure 4-8.  Weight spectrum of the second PLS component. 
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Fluorescence spectra of pure solutions of β-LG and α-LA at room temperature and pH 

3.9 (data not shown) show emission intensity maxima at 330 nm and 335 nm, 

respectively which is consistent with published literature for these proteins under 

native conditions (Renard et al., 1998; Svensson et al., 1999).  In this context it can be 

argued that the first PLS component that is strongly correlated with the soluble amount 

of β-LG and α-LA in the supernatant (Fig. 4-9) captures the fluorescence spectral 

region that is most likely due to the native tryptophan content of the proteins. The two 

different relationships observed between the protein concentration and the first PLS 

component for β-LG and α-LA (Fig. 4-9) may be explained by the differences in their 

tryptophan content.   
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Figure 4-9.  Measured protein concentrations of α-LA and β-LG versus scores of the 
first PLS component.   
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The PLS weight spectrum for the second PLS component provides two different 

spectral signatures possibly of proteins with a structural conformation (Fig. 4-8) that is 

different from that of the native form. The second PLS component may reflect the 

presence of non-native forms of β-LG and α-LA and their aggregates that were still 

soluble in the supernatant solution.  The calibration model was then tested for accuracy 

using the remaining data sets (Table 4-1) consisting of fluorescence spectra acquired 

for 72 supernatant solutions. These fluorescence data were fed to the PLS model and 

the corresponding amounts of protein in the supernatant after aggregation were 

predicted.  Model predictions for both β-LG and α-LA protein concentrations were 

compared with HPLC measurements. All results show very good agreement between 

PLS model predictions and HPLC measurements as seen in Fig. 4-10 indicating the 

robustness of the model at least for the range of conditions in this study. The strength 

of the model is especially evident in that only 16 samples were used for calibration 

resulting in a model that provides very good prediction for 72 other samples that were 

not used during the model calibration step. As expected, Fig. 4-10(b) shows that the 

error increases as the concentration of β-LG increases. The maximum errors are of the 

order of 0.1 g/L for α-LA and 0.9 g/L for β-LG, which correspond to approximately 

5% and 10% of the total variation in concentration values of the two species. 

 
Generally the fluorescence spectra of different species may overlap making it more 

difficult to predict their individual contribution to the spectra when these species are 

present in a mixture. For example, the typical emission profiles of α-LA and β-LG are 

presented in Figure 4-11. However, the results in the current study illustrate that 
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multivariate models can efficiently deconvolute multi-wavelength fluorescence spectra 

collected for a protein mixture and thereby provide a fairly accurate quantification of 

respective proteins despite the significant overlap of their emission profiles.  

R2 = 0.9163

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

Measured (g/L) 

P
re
d
ic
te
d
 (
g
/L
)

R2 = 0.9773

0.00

2.00

4.00

6.00

8.00

10.00

0.00 2.00 4.00 6.00 8.00 10.00

Measured (g/L) 

P
re
d
ic
te
d
 (
g
/L
)

 
Figure 4-10. A comparison between PLS model predictions (line) and HPLC 
measurements for (a) α-LA and (b) β-LG (b) for 72 protein mixtures.  
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Figure 4-11.  Emission spectra for β-LG (─)(3 g/L) and α-LA (-----) (7 g/L) at pH = 5.0 in 
citrate buffer with an excitation wavelength of 295 nm.     

 

4.4.6 PLS/mass Balance Algorithm for Prediction of α-LA and ββββ-LG Aggregation 
Behavior 
   
The amount of aggregated protein can also be predicted by using the PLS-soft sensor 

predictions of the soluble amounts of protein before and after heat treatment. This can 

be done by calculating the difference between the inferred concentration before and 

after treatment and then, the amount of each aggregated protein can be inferred from a 

simple mass balance equation given by Equation 4-2.  The result of the calculation of 

the aggregates by using this combination of the soft sensor predictions and the mass 

balance is illustrated by Figs. 4-6 & 4-12.  As can be seen, model predictions for 
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protein aggregation show very good agreement with HPLC and dry weight 

measurements.  

 

In summary, protein solubility and aggregation were monitored for a wide range of 

process conditions defined by different protein ratios, total protein amounts, different 

pH and different heat treatment temperatures.  Given that inline centrifugation is likely 

untenable for most practical production applications, fluorescence spectroscopy was 

shown to be a suitable approach for the development of a chemometric-based in-

process assay of protein concentrations that would have to be run off-line for the range 

of conditions considered in this work. Also, it was determined that the individual 

protein aggregation behavior during thermal treatment under different conditions can 

be effectively estimated by combining fluorescence data collected from supernatant 

with a simple mass balance approach. 
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Figure 4-12.  HPLC, dry weight measurements and model predictions of (a) total 
protein aggregation (b) β-LG aggregation and (c) α-LA aggregation at different pHs 
(Experiments 5, 6 & 8 in Table 4.1).   
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CHAPTER 5 

 

Monitoring the Fractionation of a Whey Protein Isolate during Dead-

end Membrane Filtration using Fluorescence and Chemometric 

Methods* 

 

 

Protein fractionation using membrane-based ultrafiltration (UF) is a separation process 

commonly used in a broad spectrum of industries.  During membrane-based separation 

of proteins, changes in protein concentration of the permeate and retentate streams 

occurs over time. The current work proposes a new approach for monitoring the 

changes in concentrations of proteins in both permeate and retentate by making use of 

data collected using fluorescence spectroscopy and intrinsic protein fluorescence 

analyzed by multivariate statistical techniques. Whey protein isolate consists mainly of 

α-lactalbumin (α-LA), β-lactoglobulin (β-LG) and small proportion of bovine serum 

albumin (BSA) and was used as a model system in this study.  A fiber optic probe 

(FOP) was used to acquire multi-wavelength fluorescence spectra for permeate and 

retentate streams at different times during UF-based separation of the components from 

a multi-component solution.  Multivariate regression models were developed for 

predicting the concentrations of α-LA, β-LG and BSA by establishing a calibration 

model between data acquired using the FOP and the corresponding protein 

concentration levels measured by size-exclusion chromatography.  

 

* Elshereef R, Budman H, Moresoli C, Legge R. Submitted to Biotechnology Progress 
Journal. 
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The model was validated using FOP data that were not previously used for calibration 

of the regression models.  This comparison showed that concentrations of α-LA, β-LG 

and BSA could be predicted directly from FOP data within reasonable accuracy by 

making use of multivariate calibration tools. This approach has several attractive 

features including that it is non-destructive, fast and relatively simple to perform. This 

technique has potential practical applications as it could offer the opportunity for in situ 

monitoring of membrane filtration processes by tracking individual protein 

transmission, selectivity of fractionation, protein accumulation on the membrane 

surface and the product yield and could be used for product quality control by 

monitoring product purity for different batches to ensure minimal batch to batch 

variation. 
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5.1 INTRODUCTION 

Fractions enriched in α-LA and β-LG can be produced from whey using membrane-

based protein ultrafiltration (UF).  Protein fractionation using ultrafiltration has many 

uses in a broad spectrum of industries. During the UF of protein mixtures, changes in 

permeate and the retentate composition and protein transmission behavior (ratio of 

permeate to retentate concentrations) occur with time and may change with different 

pH, ionic strength and transmembrane pressures conditions (Huisman et al., 2000). 

Such changes are influenced by several effects that simultaneously occur on the 

membrane surface and inside the pores. Amongst these effects are size of the protein 

molecules and their aggregation behavior, protein-membrane interactions and the 

properties of the fouling layer (Huisman et al., 2000). The relative importance of these 

phenomena is determined by the transmembrane pressure and the physicochemical 

conditions related to pH and ionic strength.  Key filtration performance indicators such 

as protein transmission, product recovery and separation efficiency can be expressed 

mathematically as a function of the concentration of proteins in the permeate and 

retentate (Ghosh, 2003). Therefore, fast and accurate quantification of the individual 

proteins in the retentate and permeate streams is essential for continuous monitoring of 

an ultrafiltration process. In earlier studies, classic qualitative and quantitative 

analytical techniques including  UV/Vis spectrophotometery and size exclusion 

chromatography were used for the identification and quantification of different proteins 

in permeate and retentate, and based on these measurements, membrane separation 

performance was evaluated in terms of protein transmission, product yield and 

selectivity (Ghosh, 2003). However, these techniques suffer from some practical 
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limitations that make them difficult to apply on-line.  Size exclusion chromatography, 

which has the advantage of providing detailed analysis of the composition of the 

retentate and the permeate streams, is considered to be time-consuming, labor intensive 

and requires preparation of chemical reagents. In addition, UV-absorbance based 

detection may not be sensitive enough to monitor dilute protein components.  Such 

limitations for UV detection were implicitly reported by Wan et al. (2006). To 

overcome this limitation Wan et al. (2006) analyzed feed, retentate and permeate 

compositions using FPLC by concentrating the permeate samples prior to analysis with 

centrifugal filter devices.  Fluorescence spectroscopy is considered to be far more 

sensitive than UV-Vis spectroscopy and can easily detect concentrations of the species 

of interest as low as 10-10 to 10-12 M while UV-Vis spectroscopy requires at least 10-8 

M (Deshpande, 2001).  Another advantage of fluorescence spectroscopy is that data is 

multidimensional consisting of two spectra, that is excitation and emission spectra 

(Deshpande, 2001) so fluorescence has higher potential information content for 

resolving mixtures than UV-VIS absorbance (Baker, 1991).  Despite the fact that 

fluorescence spectroscopy provides some of the most sensitive and selective methods 

of analysis of many compounds, it has not been widely employed for monitoring 

protein transmission for membrane-based separation processes or for identifying the 

compositional changes of retentate and permeate during ultrafiltration. The earliest 

work that utilized fluorescence spectroscopy for continuous monitoring of protein 

fractionation is that of Crespo et al. (1999).  Crespo et al. (1999) developed an on-line 

fluorescence detection technique for monitoring the transmission of β-LG and γ-

globulin using fluorescent probes. The two proteins were labeled with different 
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fluorescent probes which had unique absorption and emission spectral profiles that did 

not overlap.  Thus on-line detection of protein-fluorescent labeled conjugates was 

performed with a fluorescence detector that was programmed at appropriate excitation 

and emission wavelengths. The transient transmission behaviors of β-LG and γ-

globulin through the membrane were identified by the transmission of the 

corresponding protein-fluorescent label conjugate. Crespo et al. (1999) indicated that 

this technique would allow off-line and continuous on-line monitoring of protein 

transmission. Crespo et al. (1999) realized that the intrinsic fluorescence of different 

proteins is similar resulting in significant overlap in absorption and emission spectra 

and consequently, to resolve this information overlap, they labeled their proteins with 

different fluorescent probes.  The drawback of any sort of protein labeling is that it may 

introduce changes to the protein surface chemistry and to the overall protein charge 

which may alter protein folding properties and its aggregation behavior (Crespo et al., 

1999). In addition, the technique has some practical limitations since it requires 

removal of the fluorescent label downstream.  Hence, there is a strong motivation to 

avoid the use of fluorescent labeling in order to preserve the native state of the protein 

product.  What is proposed here is to use intrinsic protein fluorescence. Intrinsic 

protein fluorescence originates from the presence of three amino acid residues: 

tryptophan, tyrosine, phenylalanine in the protein polypeptide chain (Guilbault, 1973). 

The intrinsic fluorescence originating from tryptophan residues accounts for more than 

80% of the total intrinsic fluorescence emissions of a native protein (Lacowicz, 1999). 

The number of these amino acids can vary greatly from one protein to another.  It is 

not only the number of amino acids in the protein polypeptide chain that determines the 
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intrinsic protein fluorescence characteristics but it is also the microenvironment 

surrounding these amino acids that does play an important role (Guilbault, 1973; 

Lacowicz, 1999). Despite the significant spectral overlap, contribution of individual 

fluorophores to the overall fluorescence can be deciphered by using fluorescence 

measurements at multiple excitation and emission wavelengths. For instance, upon 

excitation above 295 nm, the intrinsic fluorescence emission of a native protein is only 

due to tryptophan residues. Meanwhile, both tyrosine and tryptophan contribute to 

fluorescence emission spectra upon excitation in the range (280- 295 nm) (Mycek and 

Pogue, 2003). Low-wavelength excitation (220–230 nm) was also found to provide 

useful spectral information that is not of less importance than the high-wavelength 

excitation (280-295 nm) usually reported in the literature (Mayer et al., 1999). 

Therefore, quantitatively detecting constituents of the protein mixture would require 

collecting an EEM fluorescence landscape that covers the spectral signatures of the 

three intrinsic fluorophores. To handle the complex fluorescence signals obtained when 

analyzing multicomponent protein solutions and to resolve the issue of overlapping 

information, multivariate regression was successfully applied to excitation-emission 

matrix (EEM) fluorescence landscape. Elshereef et al. (2007) demonstrated that 

intrinsic fluorescence spectra of α-LA and β-LG can be effectively de-convoluted by 

utilizing multivariate regression modeling and that the respective protein 

concentrations can be successfully estimated from two-dimensional fluorescence 

spectra of protein mixtures with reasonable accuracy. The current work is distinct from 

earlier work (Elshereef et al., 2007) in three key aspects.  First, the fluorescence data of 

the whey protein isolate consisting of α-LA, β-LG and BSA were acquired in the 
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synchronous scan mode which is much faster to obtain than the full two dimensional 

spectra used in previous studies and it is consequently more amenable for potential on-

line applications. Secondly, the current study used a fiber optic probe (FOP) instead of 

cuvettes to evaluate the potential application of this technique for possible on-line 

monitoring of protein compositions in mixtures.  Finally, the focus of the current 

application was to evaluate the feasibility of tracking performance of an UF separation 

process using fluorescence-based estimates of protein composition.   

 

5.2. MATERIALS AND METHODS 
 

5.2.1 Materials and Preparation of Protein Stock Solutions 

β-Lactoglobulin (β-LG) and α-lactalbumin (α-LA) were in their powdered form (lot JE 

007-3-921 and JE 003-3-922), were of 95% purity, and were donated by Davisco 

Foods International (LeSueur, USA).  Bovine serum albumin (95% purity) was from 

Sigma Aldrich International.  BiPRO is a whey protein isolate (WPI) consisting mainly 

of β-lactoglobulin and α-lactalbumin and was donated by Davisco Foods International 

(Le Sueur, USA). The composition of Bipro as provided by the manufacturer was 

(w/w) 88.1% protein (N x 6.38), 9.89% moisture, 0.3% fat and 1.84% ash (0.66% Na+, 

0.075% K+, 0.0086% Mg2+, and 0.094 % Ca2+). The protein content of Bipro was: 

14.9% α-LA, 74.9%, β-LG, 3.2% immunoglobulin and 1.5% bovine serum albumin 

(BSA) (Weinbreck et al., 2004). All other chemicals were of analytical grade and from 

Sigma Chemical Corp. (St. Louis, MO). Ultrapure water was used for the preparation 

of all samples and had a resistivity greater than 17.6 MΩ. Buffers were prepared using 
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ultrapure water and were micro filtered and degassed under vacuum using a 47 mm 

0.45-µm Nylon membrane (PALL Corporation, Michigan, USA).  Stock solutions of α-

LA, β-LG and BSA containing 10 g/L total solids were prepared by dissolving the 

protein powder in 50 mM sodium phosphate buffer at the desired pH.  A stock solution 

of 10 g/l of WPI was prepared by dissolving the appropriate amount of WPI in 50 mM 

sodium phosphate buffer at the desired pH.  

 
5.2.2. Preparation of Calibration Samples  

The purpose of this work was to quantify the concentrations of α-LA, β-LG and BSA 

in the permeate and retentate streams during ultrafiltration by making use of the 

intrinsic protein fluorescence. The first step for achieving this objective was to 

calibrate a fluorescence-based predictive model against a set of reference samples with 

known protein composition (calibration set). Sixty-four mixtures of β-LG, BSA and α-

LA whose composition was randomly defined according to a 43 full factorial design 

were prepared and the fluorescence spectra for those samples acquired using a FOP.    

 

5.2.3 Preparation of Filtration Feed Solution 

The feed solution for all filtration experiments was prepared by adding appropriate 

volumes of α-LA and BSA stock solutions into a WPI stock solution at the desired pH 

to obtain final concentrations of 75 % w/w β-LG, 20 % w/w α-LA and 5 % w/w BSA.  

  

5.2.4. Experimental Setup of the Ultrafiltration Apparatus 

All filtration experiments were carried out as batch filtrations using a 75 mm diameter 
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Amicon ultrafiltration stir cell (Model 8010, Amicon Corp., Beverly, MA).  The 

apparatus consisted of a cylindrical chamber with a capacity of 400 ml and a membrane 

area of 41.8 cm2.    The stirred cell was sandwiched between two identical flat 

Plexiglas plates, constructed in-house, and clamped via four steel bars (3/4"). The top 

plate housed:  

(i) A sampling port fitted with a septum cap connected to a 3/6" stainless steel 

fitting with a 1/8" stainless steel tube that was positioned just above the 

membrane. The stainless steel tube allowed sampling from the retentate 

solution using a 5 ml gas-tight syringe  

(ii)  A stainless steel pressure release valve 

(iii)  A gas inlet port that was used to pressurize the cell from a high pressure 

nitrogen cylinder  

The entire assembly was placed on a magnetic stir plate.  The cell was pressurized 

with compressed nitrogen up to 200 kPa. The permeate (filtrate) was collected from 

the permeate port on a mass basis of 10 g fractions  in test tubes supported in a custom 

test-tube rack on a digital mass balance (Scout Pro Balance, Ohaus Corp., Pine Brook, 

NJ) that was interfaced with a computer for on-line data collection using Labview 

(Labview 7.0, National Instruments, Mississauga, ON).  The balance had an accuracy 

of 1 mg.     

 

5.2.5. Filtration Experiments 

All filtration experiments were carried out batch-wise starting with an initial feed 

volume of 350 mL.  Filtration experiments were conducted using a 30 kDa molecular 
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weight cut-off composite regenerated cellulose membrane (Millipore Corp., Bedford, 

MA). The membranes were flushed with deionized distilled water prior to use to 

remove any residual chemical agents.  The stir cell was filled with protein solution of 

known protein concentration, pH, and ionic strength. The contents of the stir cell were 

kept well stirred using a magnetic stir bar.  Once 10 g of permeate had been collected, 

the permeate port was transferred to the next collection tube and the FOP was inserted 

into the permeate solution for data collection. After acquiring the spectra the probe was 

removed and inserted into the next sample and so on.   At various time intervals, 

samples of 4-10 ml of retentate solution were withdrawn from the stir cell through the 

sampling port using a gas-tight syringe. Retentate samples were labeled and then stored 

at 4°C until the experiment was completed (about 3 h).  Filtration experiments were 

stopped when 50-ml of unfiltered solution remained on the retentate side. After 

completing the filtration experiment, retentate samples were then removed from 

storage for FOP and HPLC analysis.  Retentate samples were diluted 10-fold for FOP 

analysis to minimize spectral shifts.  Fluorescence data were also collected for the 

retentate samples using the FOP. To assess reproducibility a few ultrafiltration 

experiments with different combinations of experimental conditions (pH, 

transmembrane pressure) were repeated three times. The reproducibility for permeate 

mass and concentrations of permeate and retentate was reasonably good with a 

standard deviation of 10%.  

 

5.2.6 HPLC Analysis  

The composition of α-LA, β-LG and BSA in feed, permeate, and retentate streams 
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were analyzed using an HPLC system equipped with the size exclusion column 

TSKgel G2000SWXL (7.8 x 30mm) (TOSOH Bioscience, Montgomeryville, PA). The 

mobile phase was 20 mM sodium phosphate buffer containing 100 mM NaCl (pH 6.8). 

The flow rate was fixed at 1.0 mL/min and good separation between α-LA, β-LG and 

BSA peaks was observed. Total elution time in all cases was 15 min. No peak 

broadening was observed in the chromatograms indicating that the proteins were stable 

within the pH range of 5.0-7.0.  Some peak broadening was observed for α-LA in the 

retentate samples at pH 2.8 which may indicate some degradation of α-LA.  A 

calibration curve based on peak height measurements was generated for each 

individual protein by injecting standards at several known protein concentrations.  The 

concentrations of different proteins in the initial feed, permeate, and retentate solutions 

were determined using the calibration curves.  Prior to each HPLC analysis a new 

calibration curve was generated using new standards.     

 

5.2.7. Fluorescence Measurements  

The fluorescence spectra were acquired using a Varian fiber optic probe (FOP) 

assembly that was connected to a Varian Cary Eclipse Spectrofluorometer equipped 

with a Xenon flash lamp as the light source. The spectra were acquired using a 

synchronous scan mode at a scan speed of 600 nm/min, excitation and emission slit 

widths both set to 5 nm and PMT voltage of 800 V.  Synchronous fluorescence spectra 

were recorded in the excitation range from 200 to 350 nm, wherein the wavelength 

interval between the emission and excitation wavelength was varied in the range 0 nm - 

100 nm. Multi-wavelength fluorescence scans produced a 10×150 excitation-emission 
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wavelength pairs generating a matrix of data consisting of 1500 fluorescence intensity 

data points for any given sample.  A higher PMT voltage than in previous work 

(Elshereef et al., 2006; 2007) was used to compensate for the attenuation of the signal 

by the fiber optic bundle. Preliminary fluorescence measurements revealed that the 

fluorescence signal acquired with the probe is about 10-fold lower than the signals 

acquired using cuvettes. The time required to collect a full excitation-emission matrix 

scan was 3 min and 20 sec. The data were recovered in a manner which allowed direct 

computer processing.  All spectra were corrected for background contribution by 

subtracting appropriate blanks containing only buffer. The FOP spectral measurements 

for standard ternary protein mixtures of α-LA, β-LG and BSA were calibrated against 

their respective concentration data from HPLC analysis for modeling a fluorescence-

based PLS model. FOP spectral measurements of permeate and retentate samples with 

unknown protein composition were introduced directly as input to the fluorescence 

based PLS model and thus the concentrations of these proteins were estimated.   

 
 
5.2.7 Evaluation of the Membrane Resistance  

A resistance-in-series model was used to estimate fouling for this ultrafiltration 

approach to whey protein separation. The total membrane resistance Rtot (m-1) was 

estimated using the following equation:   

vv
fmtot J

P
RRR

µ
∆=+=                                                                                 (5-1) 

where Rm (m-1) is the specific membrane resistance of the clean membrane, Rf (m
-1) is 
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the added resistance due to fouling, Jv (m
3·m-2·s-1) is the flux of the protein solution 

with time, µ (Pa·sec) is the permeate viscosity  and ∆P (Pa) is the transmembrane 

pressure. The permeate viscosity was assumed to be equal to that of pure water at room 

temperature (1x10-3 Pa·s).  The flux of the protein solution Jv in the time interval t∆  is 

given by Equation 5-2.   

t
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J
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v ∆

∆
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


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


= 1

                                                                                                         (5-2) 

Where Am is the effective membrane area (41.3 cm2) and ∆V is the volume of the 

filtrate solution that was collected during the time interval t∆ . Total resistance values 

were normalized by the specific membrane resistance Rm (m-1) of the clean membrane 

and then the normalized resistance for different experiments was plotted versus 

filtration time. Rm (m-1) was evaluated from clean water flux measurements at different 

transmembrane pressures.  

 

5.3. CHEMOMETRIC MODELLING 

Partial Least Squares Regression   

For the purpose of calibration of a regression model, the experimental data in this study 

was divided into two categories: input data corresponding to the fluorescence 

spectrometric measurements, and output data consisting of β-LG, α-LA and BSA 

concentration values obtained by HPLC analysis.  The matrix that contains the outputs 

to be predicted, i.e. HPLC measurements of β-LG, α-LA and BSA, were arranged in an 

output matrix to be referred to heretofore as matrix Y whereas the fluorescence 
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measurements were arranged into an input data matrix to be referred to as matrix X.  

The rows in matrix X correspond to different samples while the columns correspond to 

fluorescence intensities measured at different excitation-emission wavelength pairs 

(Elshereef et al., 2006; 2007) for each one of the samples. The input data is considered 

to be multivariate in nature since it consists, as mentioned above, of 1500 fluorescence 

intensity data points for each sample. Partial Least Squares regression (PLS) is a well-

known chemometric tool for designing a calibration model which can be used to 

correlate the set of known measurements represented by the fluorescence data to the 

property to be predicted, i.e. the β-LG, α-LA and BSA concentrations. The PLS 

regression method has been chosen in this work to design a fluorescence-based 

predictive model  since it provides lower sensitivity to noise for multivariate data sets 

with large numbers of highly correlated variables (Geladi and Kowalski, 1986; Qin and 

McAvoy, 1992).  Collinearity is very high among the different fluorescence readings 

obtained at different combinations of emission and excitation wavelengths (Lemberge 

and Van Espen., 1999; Elshereef et al., 2006).  Hence, the original input variables x in 

matrix X are replaced by a smaller set of underlying new variables that are 

uncorrelated, mutually independent (orthogonal) and are mathematically represented 

by linear combinations of the original descriptors.  These calculated linear 

combinations, referred to as latent variables (LVs) or principal components, are 

calculated to both provide good representation of the X-matrix and maximize the 

correlation between the input and the output (Qin and McAvoy, 1992). The optimum 

number of latent variables (LVs) and the goodness of prediction (Q2) are determined by 

a cross-validation algorithm (Geladi and Kowalski, 1986; Qin and McAvoy, 1992; 
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Elshereef et al., 2006). The data obtained from different samples were used for 

calibrating and testing the PLS predictive model as will be shown in the following 

sections. All computations were carried out using MATLAB 7.0 (MathWorks, Natick, 

MA) along with the PLS Toolbox 3.5 (Eigenvector Research Inc., Manson, WA). To 

develop the fluorescence based PLS model the samples were divided into two different 

sets, a calibration set consisting of the samples used for calibrating the PLS model and 

a validation set consisting of samples that were used to independently test the 

predictive accuracy of the calibrated model.  

 
 
5.4. RESULTS AND DISCUSSION  
 
5.4.1. Development of Fluorescence-based Model for Simultaneous Determination of 
αααα-LA, ββββ-LG and BSA in a WPI mixture      

The challenge in using intrinsic protein fluorescence is that the intrinsic fluorescence 

spectra for proteins can significantly overlap. Thus, detailed spectral analysis, 

combined with chemometric methods to isolate spectral features, can certainly improve 

the success of distinguishing between different proteins. This would potentially require 

collecting EEM landscapes with high spectral resolution in both dimensions (excitation 

and emission wavelength).  Preliminary fluorescence measurements were performed 

using the FOP to determine the ranges of excitation and emission wavelength of 

interest.  It was found that all spectral information are contained in the excitation range 

of 200–350 nm and emission range of 250–450 nm (Figure 2-10). Scanning in such a 

broad spectrum range using 1-nm increment for both excitation and emission ranges 

will generate an EEM that contains 30,000 intensity measurements. However, not all of 
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excitation-emission pairs are relevant to the intrinsic fluorescence of the sample. The 

intrinsic fluorescence of the sample is located in the region where the emission 

wavelength is longer than the excitation wavelength.  Meanwhile, other areas in the 

EEM landscape (i.e. the triangular-shaped region  in the EEM where the emission 

wavelength is less than the excitation wavelength as well as the Rayleigh scatter lines) 

are not correlated to the intrinsic fluorescence of the sample (Ohno and Bro, 2006). 

Therefore, with the goal of reducing the time for data acquisition and filtering out the 

non-relevant data, multiple synchronous fluorescence scans were collected instead of 

multiple emission scans. Synchronous fluorescence scanning mode involves the 

simultaneous scanning of the excitation and emission monochromators at a constant 

wavelength difference ∆λ = λ emission − λ excitation and thus both excitation and emission 

wavelengths are varied according to the formula: λem = λex + ∆λ. Multiple synchronous 

spectra were collected by varying ∆λ.  Multiple synchronous spectra in the excitation 

range 200-350 nm were recorded at the following wavelength intervals (∆λ): 10, 20, 

30, 40, 50, 60, 70, 80, 90 and 100 nm.  

The advantage of such an approach is that it selects a subset of the EEM landscape with 

less data as compared to the full excitation-emission spectra while retaining relevant 

fluorescence spectral information; sections of the spectra that are not sensitive enough 

to the concentration changes to be monitored are excluded.   
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Figure 5-1.  Synchronous fluorescence spectra at ∆λ=100 nm (A), ∆λ=60 nm (B) and 
∆λ=10 nm (C) for the individual whey proteins (α-LA, β-LG and BSA).  
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The use of the synchronous mode resulted in a reduction of the size of the fluorescence 

data set to be used for prediction by approximately 20-fold as compared to the case 

where the full spectrum is used. Figure 5-1 shows synchronous spectra acquired for 

protein solutions (α-LA, β-LG and BSA) at ∆λ=10, 60 and 100 nm. When ∆λ=10 nm, 

a spectrum characteristic of the fluorescence of the protein’s tyrosine residues is 

observed whereas for ∆λ=60 nm, a spectrum characteristic of the fluorescence of the 

protein’s tryptophan residues is observed (Ma et al., 1999; Tan et al., 2005). Upon 

comparison of synchronous spectra at ∆λ=100 nm acquired for protein solutions α-LA, 

β-LG and BSA, two characteristic peak maxima are observed at wavelengths 225 and 

275 nm. The peak to peak ratio at excitation wavelengths 225 and 275 nm is of great 

interest for discriminating between different proteins.  From the foregoing it can be 

seen that during the scan, depending on the scanning interval ∆λ and the Stoke’s shift, 

every fluorophore in a given sample will presumably contribute to fluorescence at 

different positions, leading to improved resolution and to a specific signature even for 

cases where the fluorophores overlap and/or interact significantly (Rao, 1991).  

Accurate quantification of α-LA, β-LG and BSA in the permeate and retentate relies 

on a robust partial least squares (PLS) based regression between fluorescence spectra 

of the samples and their corresponding concentrations measured by HPLC.  The first 

step in the simultaneous determination of different proteins in a mixture by PLS 

methodology involved constructing the calibration matrix for the ternary protein 

mixture. Sixty four synthetic ternary mixtures containing the individual whey proteins 

in different proportions were randomly designed and used to develop the calibration 

models. A cross-validation method that consisted of leaving out one sample at a time, 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1473993#B12#B12
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was employed in order to select the number of factors in the PLS algorithm. For the 64 

calibration spectra, PLS calibration was performed on 63 calibration spectra, and the 

calibration model was then used to evaluate the concentration of the sample left out 

during the calibration process.  This process was repeated 64 times until each 

calibration sample had been left out once. The concentration of each sample was then 

predicted and compared with the known concentration of this reference sample, and the 

prediction residual sum of squares (PRESS) was calculated. From a plot of the PRESS 

against the number of factors for each individual component, it was concluded that 

good PLS-based regression models for each of the proteins considered in this study 

could be obtained with three principal components.  Three principal components is the 

optimal number of principal components at which the smallest error (PRESS) occurs. 

The PLS model was tested using two different types of validation data consisting of 

samples that were not included in the calibration as follows: (i) 12 synthetic ternary 

protein mixtures of β-LG, BSA and α-LA; (ii) 10 real samples of the whey WPI 

solution in phosphate buffer spiked with different amounts of β-LG, BSA and α-LA  

 

5.4.2. Validation of the PLS Model on Retentate and Permeate Samples  

As a first step, the synchronous fluorescence spectra for the retentate and the permeate 

samples were acquired using the FOP and examined.  From a qualitative perspective 

the scans of the retentate and the permeate reveal that the retentate spectra have certain 

distinct visual characteristics that makes them different from permeate spectra (Figure 

5-2).  
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Figure 5-2: Spectra for retentate (top) and permeate (bottom) for 
ultrafiltration of a WPI solution. 
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Excitation spectra of the final permeate showed that the maximum excitation peak 

appeared at 285 nm, whereas the maximum excitation for retentate were red-shifted by 

15 nm.  Such spectral differences between the retentate with high protein content and 

the permeate with low protein content is most likely due to the differences in the 

molecular environment of the fluorophore (tryptophan) is experiencing.  Fluorescence 

spectra are influenced by several phenomena (resonance energy transfer and 

quenching) that are related to the concentration, intra- and intermolecular interactions 

and the local environment of the inherent fluorophores (Christensen et al., 2006). 

Spectral differences were observed between permeate and retentate streams, where the 

latter was characterized by significant fluorescence quenching and excitation red-shift 

(Figure 5-2). Although these two phenomena may impart a distinctive uniqueness to 

the fluorescence spectrum of the retentate stream due to the high protein content, they 

were found to induce nonlinear dependencies between the fluorescence data and the 

corresponding protein concentration levels which are poorly handled by the linear PLS 

model. For instance, using the retentate spectra as input to the current PLS model for 

prediction of the individual protein concentrations resulted in poor predictions (data not 

shown for brevity). This is likely because PLS is well calibrated over the concentration 

range where the relationship is predominantly linear between the fluorescence signal 

and the concentration of each protein but the retentate protein concentrations lie mostly 

within the range of values where the relation between fluorescence to protein 

concentration is nonlinear. To handle the non-linearity in the fluorescence data matrix 

would require combining PLS with non-linear tools such as Artificial Neural 

Networks.  For the sake of simplicity, the objective of this study was to resolve the 
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spectra using a linear PLS methodology. This required collection of fluorescence 

spectra that were devoid of significant red-shifts and fluorescence quenching effects in 

the high concentration ranges. Therefore, prior to fluorescence measurements, samples 

collected from the retentate stream were diluted 10-fold using phosphate buffer 

solution at the same pH value of the initial protein solution prior to FOP analysis. The 

permeate was not diluted because the protein concentration in these samples was 

relatively low and the fluorescence spectra did not display significant excitation red-

shifts. Concentrations of α-LA, β-LG and BSA predicted from the diluted retentate 

samples were multiplied by the dilution factor and then compared to values determined 

by HPLC analysis.  Very good agreement between predictions and measured values 

indicated the applicability of the proposed method for simultaneous determination of 

α-LA, β-LG and BSA.   The correlation coefficients for α-LA, β-LG and BSA were 

0.99, 0.98 and 0.88, respectively.   

 

5.4.3. Protein Concentration Profiles 

The feed concentration used in this set of experiments was 4.0 kgm3 WPI in the 

appropriate buffer.  Figure 5-3 is a typical HPLC chromatograms for retentate and 

permeate samples obtained at pH 5.6 after a total of 300 ml of permeate had been 

collected.  A comparison of the chromatograms for retentate and permeate reveal that 

both β-LG and α-LA are transmitted through the membrane, whereas the amount of 

BSA transmitted is negligible.  



 
 

 149 

 

Figure 5-3.  HPLC chromatograms for final retentate and permeate samples obtained 
at pH 5.6. In both chromatograms peaks at retention times of 7.1, 10.2, and 11.7 min 
correspond to BSA, β-LG and α-LA, respectively.  

 

The concentration of β-LG and α-LA in the permeate were determined by accounting 

for the total protein collected and the total volume of permeate. Protein concentration 

profiles for the permeate stream were presented by plotting the concentration of β-LG 

and α-LA in the permeate streams as a function of filtration time for two ultrafiltration 

experiments performed at two different pHs: pH 5.6 and pH 2.8 (Fig 5-4). Figure 5-4 

shows that there is a decrease in the concentration of transmitted protein, both the β-LG 

and α-LA, over the course of the filtration and that the rate of change is affected by the 

pH of the feed solution.  
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Figure 5-4. Protein concentration profiles for α-LA (A) and β-LG (B) in the permeate 
stream at two different pHs.  
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The rapid initial decrease in β-LG protein concentration seen at pH 5.6 may be 

attributed to the higher tendency of the protein to aggregate at pH values close to the 

isoelectric point thus limiting the transmission of β-LG as well as resulting in a decline 

in flux during the initial stage of the UF process. The amount of protein that permeated 

through the membrane continued to decrease with time until it reached steady state 

levels after approximately 10 min of operation.  While the protein concentration in the 

permeate decreased gradually with time, the protein concentration in the retentate 

stream remained essentially constant during the first 15 min (Fig. 5-5).   

As the filtration proceeded, the retentate gradually became more concentrated due to 

continuous removal of permeate.  It was also observed that changing the pH of the feed 

solution from 2.8 to 5.6 affected the protein composition in the permeate. 

Ultrafiltration at pH 5.6 yielded a permeate with a β-LG content that ranged between 

50%-55%, whereas ultrafiltration at pH 2.8 yielded a permeate with a β-LG content of 

68-72%.    

Bhattacharjee et al. (2006) studied protein fractionation from casein whey using 30 a 

kDa polyethersulfone membrane in a stir cell module comparable to the one employed 

in this study.  Despite differences in the experimental conditions (membrane material, 

transmembrane pressure and the whey protein source) a similar effect of pH on β-LG 

purity in the permeate was observed.  Figure 5-5 and 5-6 present comparisons between 

the FOP predictions against HPLC-based determinations for different pH values.  

Excellent agreement was obtained over the course of the filtration.   
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Figure 5-5.  Concentrations of α-LA and β-LG in the retentate stream (A) and 
permeate stream (B) as estimated from HPLC and fiber optic probe (FOP) data.  
Ultrafiltration at pH 5.6.     
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Figure 5-6.  Concentrations of α-LA and β-LG in the retentate stream (A) and 
permeate stream (B) as estimated from HPLC and the fiber optic probe (FOP) data.   
Ultrafiltration at pH 2.8.  
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5.4.4. Incorporation of FOP-based Predictions into Membrane Process Monitoring  

Monitoring the decline in membrane flux can serve as one method for on-line tracking 

of ultrafiltration process performance; however, the decline in flux does not give an 

indication of the process separation performance.  Here we evaluate an approach that 

combines the FOP-based predictions with membrane separation theory to predict the 

operational membrane performance under different operating conditions.  Protein 

transmission coefficients and effective membrane selectivity were selected as 

indicators of filtration process performance.  

 

5.4.4.1. Transmission Coefficient and Membrane Selectivity 

The transmission coefficient, which is equal to the ratio of the concentration of a 

component in the permeate (Cpi) to the retentate (Cri), is an important quantity for 

monitoring membrane performance (Ghosh, 2003).  It is described by the following:  

ri

pi
ob C

C
=τ                                                                                                                 (5-3)  

 

where piC  and riC are the permeate and the bulk concentrations, respectively of a 

given protein i.  

 

Figure 5-7 presents protein transmission values for β-LG and α-LA that were 

determined from FOP-based estimates. Three ultrafiltration experiments were 

performed for WPI solutions at different pH values and transmembrane pressures.  The 

transmission of α-LA and β-LG was observed to decrease significantly with increasing 
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transmembrane pressure since increasing the transmembrane pressure likely induces 

more fouling and more protein deposition on the membranes.  The effect of pH and 

transmembrane pressure on the time profile of β-LG transmission appears to follow the 

fouling resistance (Fig. 5-8) calculated using Equation (5-1)  

 
Figure 5-7.  Time profiles of β-LG transmission (top) and α-LA transmission (bottom) 
determined from FOP-based estimates at two different transmembrane pressures 
(172 and 200 kPa) and two different pHs (2.8 and 5.6).    
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Figure 5-8.  Time profile of membrane fouling resistance of the 30-kDa RC membrane   
evaluated at two different transmembrane pressures (172 and 200 kPa) and two 
different pHs (2.8 and 5.6).       
 

 

These results also show that apart from the preferential permeation of α-LA,  β-LG and 

BSA were also transmitted to different extents in the permeate.  A binary selectivity 

value based solely on transmission of α-LA and β-LG would not be sufficiently 

informative for monitoring the efficiency of protein fractionation during process 

monitoring. Therefore, an additional parameter referred to as effective selectivity, has 
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been used to characterize the efficiency of protein fractionation involving complex 

protein mixtures and is defined as follows (Ghosh, 2003): 

 

∑ ≠

=
ij

i
i τ

τψ                                                                                                      (5-4) 

The numerator is the apparent transmission coefficient of a given protein i and the 

denominator consists of the summation of apparent transmission coefficients of all 

other proteins. For example, according to equation (5-4), the selectivity of α-LA in 

comparison to β-LG and BSA is:  

LGBSA

LA
LA

−

−
− +

=
β

α
α ττ

τψ                                                                                             (5-5) 

 

The FOP-based estimates were combined with Equation 5-4 to estimate the time 

profile of the effective selectivity coefficient.  Figure 5-9 shows that the selectivity 

coefficient for α-LA with respect to β-LG and BSA varies with time.  Solution pH and 

transmembrane pressure are shown to have an effect on the selectivity coefficient as 

shown in Figure 5-9.  A higher selectivity was obtained with a feed pH of 5.6 

compared to that at pH of 2.8 at a fixed transmembrane pressure of 172 kPa (Fig. 5-9), 

which can be explained in terms of the effect of pH on the monomer–dimer 

equilibrium of β-LG (Bhattacharjee et al.,2006). The lower transmission of  β-LG 

observed at pH 5.6 compared to that at pH 2.8 is most likely due to the tendency of β-

LG to form dimers at that pH (Bhattacharjee et al.,2006). Results here demonstrate that 

quantifying time-dependent protein transmission by a combination of EEM 
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fluorescence and PLS data analysis may be of great value for monitoring and 

potentially optimizing protein fractionation by membrane ultrafiltration.  

 

 

Figure 5-9.  Effect of transmembrane pressure on the effective selectivity coefficient 
profile for α-LA as estimated from HPLC and fiber optic probe (FOP) data.  
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5.5. Conclusion 

Performance of protein fractionation using ultrafiltration is strongly influenced by the 

physiochemical characteristics of the protein solution and the operating conditions.  

Precise tuning of these processes is necessary to achieve desired levels of protein 

fractionation (Ghosh and Cui, 1998; 2000a; b). The intrinsic fluorescence of the 

proteins has been effectively used to construct a predictive model for estimating protein 

concentrations during a filtration process. This novel methodology makes use of a 

partial least squares-based regression model (PLS) for estimating protein 

concentrations based on synchronous fluorescence spectra acquired using a FOP.  The 

advantage of this approach is that with development it may allow in industrial 

applications inference of relative accurate estimates of protein concentration within a 

shorter time period than would be possible with various analytical techniques, for 

example chromatography-based approaches.  It is also clear that synchronous spectra 

can provide good predictions and consequently the use of the full spectrum may not be 

necessary for monitoring with corresponding savings in acquisition time. Separation 

performance variables that are difficult to measure, such as individual protein 

transmission, membrane selectivity and product yield can be estimated directly from 

fluorescence-based predictions of protein concentrations in the retentate and permeate 

streams. The proposed approach showed good predictions for different pH values and 

transmembrane pressure values. The only practical obstacle that may hamper the 

current approach from becoming a workable soft-sensor for in situ and real-time 

monitoring of UF processes lies in the need to dilute the retentate samples during the 

UF. This is because FOP estimates were not as accurate as the absolute protein 
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concentration increased.  However, this drawback can be overcome if an automatic 

dilution strategy is implemented inline or alternate approach using a path length 

correction in a microplate system was implemented. The major highlight of the current 

work is that it demonstrates the potential applicability of fluorescence-based sensors 

for on-line monitoring with possible use in industrial UF processes.  
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CHAPTER 6 

 

Use of Multiwavelength Rayleigh Scattering Data for the 

Characterization of Protein Aggregation and Membrane Fouling 

Phenomena  

 

One of the primary problems in membrane-based protein separation is membrane 

fouling.  A variety of phenomena contribute to fouling and aside from changes in flux 

and transmembrane pressure, there are few tools to add to the arsenal for controlling 

membrane fouling and its consequences.  In this study we explored the feasibility of 

employing Rayleigh light scattering data from fluorescence studies combined with 

chemometric techniques to determine if a correlation could be established with 

membrane fouling phenomena.  Membrane flux was measured in a laboratory scale 

dead-end UF filtration system and the effect of protein solution properties on the 

overall membrane resistance was systematically investigated by regulating ionic 

strength and pH. A variety of milk proteins were used as a test case in this study.  In 

parallel, the colloidal (aggregation) behavior of the protein solutions was assessed by 

employing multi-wavelength Rayleigh scattering measurements.  Aggregation behavior 

was inferred based on published data for these same proteins and under identical 

solution conditions where techniques other than Rayleigh scattering had been used. 

Using this approach good agreement was observed between scattering data and 

aggregation behavior.  To test the hypothesis that a high degree of aggregation will 

lead to increased membrane fouling, filtration data was used to find whether the 
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Rayleigh scattering intensity correlated with permeate flux and membrane resistance 

changes. It was found that for protein solutions which were stable and did not 

aggregate, fouling was reduced and these solutions exhibited reduced Rayleigh 

scattering. When the aggregation behavior of the solution was enhanced, significant 

flux declines occurred and were correlated with increased Rayleigh scattering.  It is 

proposed that this methodology may be suitable for tracking physico-chemical changes 

in protein solutions and that this may have applications in areas such as membrane-

based protein separation.   
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6.1. Introduction 

The fouling behavior of proteins in membrane-based separation processes is strongly 

influenced by their stability in solution (Malmsten, 1998). Protein stability is a 

consequence of a delicate balance of forces, including electrostatic, hydrogen bonding, 

Van der Waals forces and hydrophobic interactions. Changes in the environment 

surrounding the protein including pH, ionic strength, temperature and shear will affect 

their stability (Malmsten, 1998). The consequence of these changes can be 

aggregation/association of protein which has an important influence on a variety of 

phenomena including the performance of membrane-based separation processes such 

as microfiltration and ultrafiltration. The formation of protein aggregates can easily 

plug membrane pores or/and serve as nucleation sites for the propagation of 

aggregation on existing deposits. These aggregates can result from non-covalent 

bonding between native proteins such as Van der Waals or hydrophobic interactions, or 

covalent bonding (Malmsten, 1998).   

 

Microfiltration (MF) is widely used for the separation of proteins and MF membranes 

are specifically designed for this purpose (Kuberkar and Davis, 1999). In MF it is 

important that the protein be in solution so that it is free to permeate the membrane to 

minimized product losses (Bowen et al., 1998). Efficient recovery of proteins requires 

that the protein be small relative to the membrane pore size so that the protein can pass 

through the membrane and that the processing conditions are such that protein 

aggregation is minimized, as protein aggregates may be retained by the membrane. 

Thus, the size of the protein in solution as well as its tendency to aggregate near the 
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membrane surface play a critical role in determining the degree of product recovery 

and the extent of membrane fouling (Bowen et al. 1998).  In an ultrafiltration study of 

soy protein extracts Mondor et al. (2004) found that the average molecular size and the 

molecular size distribution vary with pH and salt content and that this could be 

attributed to aggregation–disaggregation behavior of different protein fractions. The 

effect of pH and salt content can affect protein transport into the concentration region. 

This information is fundamental to understanding what contributes to membrane 

fouling resistance when it can be primarily attributed to the concentrated and cake layer 

together (Mondor et al., 2004).    

 

There is a need for a rapid measurement technique to characterize protein-protein 

interactions and to identify solution conditions that will lead to membrane fouling. 

Light scattering represents a powerful technique for characterizing protein-protein 

interactions and the presence and formation of aggregates. Aggregation phenomena in 

protein solutions have so far been characterized primarily by methods based on 

radiation scattering or transport properties.  Photon correlation spectroscopy, also 

known as dynamic light scattering, is a good method for determining the degree of 

protein aggregation in solutions of different ionic strengths and pHs. One of its 

advantages over size exclusion chromatography is that it allows measurements to be 

made directly from the solutions used for filtration; however, photon correlation 

spectroscopy has several severe practical limitations. First, it is not possible to make 

direct measurements of the concentration of discrete aggregate species present in a 

polydisperse solution. Also, photon correlation spectroscopy experiments are costly 
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both in terms of equipment and time that is required to clean and dilute protein 

solutions to obtain accurate results.  The other challenge for ultrafiltration is that highly 

concentrated protein solutions are often involved which by their nature are very 

unstable and subject to particulate contamination.  This is an impediment for rapid 

monitoring of protein aggregation and assessing its fouling potential.  

 

There is a need for an independent non-invasive and rapid method for assessment of 

aggregation behavior in a way that is useful for process operation and prediction.  Such 

a method would also provide some qualitative information about the fouling potential 

of protein solutions.  A novel element of the present work is that the proposed 

measurement is based on the entire scattering spectrum to be used to retrieve 

information about protein aggregation behavior. The approach proposed is to use 

Rayleigh scattering collected spectrophotmetrically to characterize protein-protein 

interactions. By coupling and scanning simultaneously the excitation and the emission 

monochromators of a common spectrofluorometer, light scattering signals were 

detected at an angle of 1800 in the wavelength range (200-700 nm) by using a fiber 

optic probe.  Santos et al. (1999) reported that spectrofluorometry offers some potential 

advantages that are not available with classical laser light scattering spectroscopy, 

namely, the availability of broader wavelength ranges. Changing the wavelength 

changes the magnitude of the scattering vector which has the same effect as a change in 

the measurement angle in classical laser light scattering spectroscopy. Thus, it is 

possible to overcome angle dependency by accounting for wavelength dependency.  
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This Chapter is organized into three main parts:  

i. An analysis of the general features of Rayleigh scattering spectra collected at an 

angle of 1800 for different protein solutions (β-lactoglobulin, α-lactalbumin, 

Bovine Serum Albumin and Lysozyme) is presented. In this analysis, the 

effects of the average molecular weight, protein concentration, pH and ionic 

strength were considered. 

ii.  The potential for use of multiwavelength light scattering to determine the 

propensity of protein solutions to foul membranes is presented.   

iii.  The value of multiwavelength light scattering to provide quantitative 

measurements of the average molecular weights of proteins in solution is 

presented.  

 

6.2. Materials and Methods 

6.2.1. Protein Solution Preparation 

β-Lactoglobulin (β-LG), α-lactalbumin (α-LA) and Bipro were used in their powdered 

form and were donated by Davisco Foods International (LeSueur, USA).  The β-LG 

and α-LG were of 95% purity.  Bovine serum albumin (BSA - 95% purity) and 

Lysozyme were purchased from Sigma Aldrich International.  Bipro is a whey protein 

isolate (WPI) consisting mainly of β-lactoglobulin and α-lactalbumin with a content of 

74.9% β-LG, 14.9% α-LA, 3.2% immunoglobulin and 1.5%  BSA, (Weinbreck et al., 

2004). All other chemicals used were of analytical grade and obtained from Sigma 

Chemical Corp. (St. Louis, MO). A Millipore (Canada) water purification unit was to 

produce ultrapure water with a resistivity greater than 17.6 MΩ.  Buffers were prepared 
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using ultrapure water and then micro filtered through a 0.45-µm Nylon membrane 

(PALL Corporation, Michigan, USA). Stock solutions (10 g/L) of the proteins were 

prepared by dissolving their powdered forms in 20 mM sodium phosphate buffer at the 

desired pH and at the desired salt concentration (e.g. NaCl). Different protein solutions 

were then prepared by diluting aliquots of stock solutions to the desired concentrations. 

Once prepared, protein solutions were allowed to stand for 5 minutes at room 

temperature before acquiring light scattering measurements. In order to achieve 

consistency and minimize the experimental error, the time interval between sample 

preparation and light scattering measurement was always fixed to 5 minutes. Twenty 

five β-LG protein solutions were prepared at different conditions (pHs, salt 

concentrations) identical to those used by Verheul et al. (1999) as shown in Table 6.1.  

The average molecular weights corresponding to these samples (Table 6.1) were 

obtained from the same source (Verheul et al., 1999). Light scattering spectra were 

acquired for these samples as explained in the next subsection. 
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Table 6.1: Twenty five β-LG protein solutions prepared at different conditions (pHs, 
salt concentrations) identical to those used by Verheul et al. (1999)  
 

Sample 
ID 

pH NaCl(M) C(g/l) MW(Da) 

1 2 0 2 16.84 
2 2 0 5 16.66 
3 2 0 10 17.02 
4 2 0.1 2 28.00 
5 2 0.1 5 28.37 
6 2 0.1 10 28.55 
7 6.9 0 2 29.47 
8 6.9 0 5 32.58 
9 6.9 0 10 34.04 
10 6.9 0.1 2 31.12 
11 6.9 0.1 5 33.49 
12 6.9 0.1 10 32.95 
13 8 0 2 23.43 
14 8 0 5 24.53 
15 8 0 10 25.44 
16 8 0.1 2 26.91 
17 8 0.1 5 28.55 
18 8 0.1 10 31.48 
19 5.4 0 10 41.18 
20 4.7 0 1 32.76 
21 4.7 0 5 45.94 
22 4.7 0 10 61.86 
23 4.7 0.1 2 36.61 
24 4.7 0.1 5 37.89 
25 4.7 0.1 10 43.93 

 

 

 

6.2.2. Multiwavelength Light Scattering Measurements 

Multiwavelength light scattering measurements on protein solutions were performed 

using a fiber optic probe (FOP) connected to a steady state fluorescence system with a 

pulsed xenon flash lamp as the light source (Varian Cary Eclipse, Mississauga, ON, 

Canada).  Scattered light intensity (Rayleigh) was recorded at wavelengths ranging 
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from 200 to 700 nm by setting the excitation wavelength equal to the emission 

wavelength. Measurements were taken with a scan speed of 120 nm/min, a slit width of 

5 nm for both excitation and emission and 2 nm smoothing. The scattering spectral 

profile of the buffer solution alone, i.e. in the absence of protein, was measured and 

subtracted from the collected spectra. All samples were initially examined in 4-7 min 

intervals to ensure that the light scattering profile did not change with respect to time. 

The effect of pH, salt concentration and protein concentration on the light scattering 

profile was investigated. The ability of these multiwavelength measurements to provide 

insight into the protein aggregation behavior and the propensity of protein solutions to 

foul membranes is presented.  

 

6.2.3. Ultra filtration Experiments  

All filtration experiments were carried out in batch mode using a 75-mm diameter 

Amicon stirred ultrafiltration cell (Model 8010, Amicon Corp., Beverly, MA) in dead-

end flow configuration, starting each time with an initial feed volume of 350 mL.  

Filtration experiments were conducted using 30 kDa molecular weight cut-off 

composite regenerated cellulose membranes, obtained from Millipore Corp. (Bedford, 

MA). The membranes were flushed with deionized distilled water prior to use to 

remove any possible residual storage agents.  The filtration cell was then filled with 

protein solution of known concentration, pH, and salt concentration. The contents of 

the filtration cell were kept well-stirred using a magnetic stir bar. Permeate was 

collected in 10-ml tubes and the time was recorded for every 10 ml. of additional 

volume of permeate collected. 
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6.2.4 Evaluation of the Overall Membrane Resistance  

A resistance-in-series model was used to estimate membrane fouling for ultrafiltration 

experiments.  The total membrane resistance Rtot (m-1) was estimated using the 

following equation:   

vv
fmtot J

P
RRR

µ
∆=+=                                                                                  (6-1) 

where Rm (m-1) is the specific membrane resistance of the clean membrane, Rf (m
-1) is 

the added resistance due to fouling, Jv (m
3·m-2·s-1) is the flux of the protein solution 

with time, µ (Pa·sec) is the permeate viscosity  and ∆P (Pa) is the transmembrane 

pressure. The permeate viscosity was assumed to be equal to that of pure water at room 

temperature (1x10-3 Pa·s).  The flux of the protein solution Jv in the time interval t∆  is 

given by Equation 6-2.   
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                                                                                                          (6-2) 

Where Am is the effective membrane area (41.3 cm2) and ∆V is the volume of the 

filtrate solution that was collected during the time interval t∆ . Total resistance values 

were normalized by the specific membrane resistance Rm (m-1) of the clean membrane 

and then the normalized resistance for different experiments was plotted versus 

filtration time. Rm (m-1) was evaluated from clean water flux measurements at different 

transmembrane pressures. The normalized overall resistance was analyzed to determine 

the effect of protein solutions characteristics (i.e. salt concentration, pH, protein 

concentration) on membrane fouling.  
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6.3. Chemometric Modeling  

6.3.1. Partial Least Squares Regression  

For the purpose of inferring quantitative information about protein aggregation 

behavior from light scattering spectra, the data used in this study were divided into two 

categories: input data corresponding to the light scattering intensities detected in the 

wavelength range (200 to 700 nm), and output data consisting of the average molecular 

weight of β-LG protein solutions.  The matrix that contains the outputs to be predicted, 

i.e. the average molecular weight, were arranged in an output matrix to be referred to 

heretofore as matrix Y whereas the light scattering measurements were arranged into 

an input data matrix to be referred to as matrix X.  The rows in matrix X correspond to 

different samples while the columns correspond to scattering intensities detected at 

different excitation wavelengths for each one of the samples. The input data is 

considered to be multivariate in nature since it consists of 800 scattering intensity data 

points for each sample. Partial least squares regression (PLS) is a well-known chemo-

metric tool for designing a calibration model which can be used to correlate the set of 

known measurements represented by the scattering data to the property to be predicted, 

i.e. the average molecular weight. Regression models with the ability to predict certain 

properties that are difficult-to-measure such as the average molecular weight from 

easy-to-measure data such as light scattering are referred to as soft sensors (James et 

al., 2002). The PLS regression was chosen here since it is able to handle problems 

associated with high sensitivity noise for multivariate data sets with large numbers of 

highly correlated variables (Geladi and Kowalski, 1986; Qin and McAvoy, 1992). 

Collinearity is very high among the different light scattering readings obtained at 
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different excitation wavelengths. Hence, the original input variables x in matrix X are 

replaced by a smaller set of underlying new variables that are uncorrelated, mutually 

independent (orthogonal) and are mathematically represented by linear combinations of 

the original descriptors. These calculated linear combinations, referred to as latent 

variables (LVs) or principal components, are calculated to both provide good 

representation of matrix X and maximize the correlation between the input and the 

output (Qin and McAvoy, 1992). The optimum number of LVs and the goodness of 

prediction (Q2) are determined using a cross-validation algorithm (Geladi and 

Kowalski, 1986; Qin and McAvoy, 1992; Elshereef et al., 2006). The data obtained 

from different samples were used for calibrating and testing the PLS model as will be 

shown in the following sections. All computations were carried out using MATLAB 

7.0 (MathWorks, Natick, MA) along with the PLS Toolbox 3.5 (Eigenvector Research 

Inc., Manson, WA).  

 

To develop the PLS model, the samples were divided into two different sets, a 

calibration set consisting of the samples used for calibrating the PLS model and a 

validation set consisting of samples that were used to independently test the predictive 

ability of the calibrated model. The calibration and validation sets consisted of β-LG 

solutions prepared at different protein concentrations, pHs, and ionic strengths (see 

Table 6.1). The PLS model was tested using light scattering data acquired for β-LG 

protein solutions that were not included in the calibration set.  
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6.4. Results and Discussion 

6.4.1. Qualitative Analysis of Multi-wavelength Rayleigh Light Scattering Spectra 
for Bulk Solutions  

6.4.1.1. General Features of Multi-wavelength Scattering Spectra   

Preliminary experiments for collecting Rayleigh scattering data were performed 

on very dilute protein solutions.  Rayleigh scattering spectra in the excitation range 

200-700 nm were compared for different dilute protein solutions of 1.0 µM (α-LA, 

lysozyme, and BSA) as seen in Figure 6.1. It is clear that light scattering intensity is 

wavelength–dependent with the maximum scattering intensity located around 310-330 

nm. The scattering intensity acquired in the long-wavelength range, i.e. red-edge, 

decreases with increasing wavelength following the Rayleigh scattering regime where 

the intensity of the scattered light varies inversely with the fourth power of the 

wavelength. The Rayleigh scattering regime corresponds to particle radii that are much 

smaller than the incident wavelength. The inverse wavelength dependence makes short 

wavelength light scatter greater than long wavelength light, and the strong power 

dependence explains why the scattered energy increases rapidly as the wavelength 

decreases. From Figure 6.1, BSA (MW 67 kDa) solutions yielded the highest scattering 

spectra, followed by α-LA (MW 15 kDa) and lysozyme (14.3 kDa) which were 

comparable.  This may indicate that the scattering signal response basically depends on 

the molecular weight of the various proteins. The analyses in this work were made on 

the entire multiwavelength scattering spectra since it was found to provide more 

information with respect to the protein solution properties. For example, although the 

scattering intensities at an excitation of 350 nm for lysozyme and α-LA are very close 
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in magnitude due to their similar molecular weight values, there were subtle 

differences between their spectra.  
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Figure 6.1: Multiwavelngth Scattering spectra for three different proteins acquired 
using FOP.    

 

 It will be noticed in Figure 6.1 that the spectra are not smooth and they are 

punctuated by distinct peaks at particular wavelengths. For example, the peak at about 

360 nm is visible in all spectra but it is strongest in the spectra acquired for BSA. Such 

subtle differences can be deciphered further by applying the first derivative of the light 
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scattering spectra λd
dFl as shown in Figure 6.2. Figure 6.2 reveals wavelength-

dependent fluctuations in the intensity of the scattered light which could provide a 

signature for each protein. These results imply that the utilization of the entire multi-

wavelength scattering spectrum is more useful than light scattering measurements at a 

single wavelength since it may provide more complete information about the protein’s 

properties in solution.  
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Figure 6-2: First derivative multiwavelngth scattering spectra λd

dFl  in the 

wavelength range (280-350 nm) for three different proteins acquired using FOP.    
   
 

6.4.1.2 Effect of pH and Ionic Strength  

pH and ionic strength have a major effect on protein-protein interactions for 

proteins in solution.  The maximal RLS scattering intensity was found to occur at an 

Lysozyme 
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excitation wavelength of 350 nm and so the intensity at this wavelength for different 

protein solutions (β-lactoglobulin, α-lactalbumin, lysozyme and hemoglobin) was 

plotted versus pH. For all the proteins studied, except for β-lactoglobulin, the 

maximum intensity as a function of pH was found to occur near the isoelectric point for 

each protein (Figure 6.3).  This would seem reasonable as this is where attractive 

electrostatic interactions exist contributing to the lowest solubility and thereby to the 

highest turbidity and highest scattering.  
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Figure 6-3:  Effect of pH on the Maximum Backscattering Intensity at 350 nm for α-LA, 
β-LG, Lysozyme (Lyz) and Hemoglobin (Hem).      

 

At pH values outside the range of the isoelectric point it was observed that the 

RLS scattering intensity decreased for all proteins except for β-lactoglobulin which can 

be interpreted as an indication that increased electrostatic repulsive interactions 
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resulted in enhanced protein solubility. In contrast, β-LG showed a more distinct pH 

dependent behavior (Fig. 6.4) where the highest RLS profile occurred at a pH of 4.6 

which is below the isoelectric point of 5.2 for β-LG. This behavior is most likely due to 

the pH dependent non-covalent self-association of β-LG (Malmsten, 1998). Malmsten 

showed that the formation of higher form oligomers, such as octamers, occurred in the 

pH range of 3.7 to 5.2 with maximal association at pH 4.6.   
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Figure 6.4: Effect of pH on FOP Backscattering Profile for 10 g/L β-LG solution.       

 

 

 

 



 178 

0

50

100

150

200

250

300

300 325 350 375 400 425 450

Wavelength (nm)

S
ca

tt
er

in
g
 In

te
n
si

ty
 

pH 3, 50 mM 

pH 3, 100 mM 

pH 3, 150 mM

0

200

400

600

800

1000

300 325 350 375 400 425 450
Wavelength (nm)

S
ca

tt
er

in
g 

In
te

n
si

ty

pH 5.2, 50 mM

pH 5.2, 150 mM

pH 5.2, 300 mM

 
Figure 6.5:  Effect of NaCl concentration in the FOP backscattering for 3 g/l β-LG 
solutions at pH 3 (a) and pH 5.2 (b)   

(a) 
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The RLS profile for β-LG at pH 3 was found to increase with NaCl addition as 

seen in Figure 6.5a. A possible explanation of this behavior is that salt can have a 

shielding effect on the repulsive electrostatic interactions resulting in increased 

attractive interactions and dimerization. This observation agrees well with previous 

observations made using small-angle neutron scattering (Verheul et al., 1999) and X-

ray scattering (Baldini et al., 1999) that indicated that β-LG at pH 3 exists as monomer 

but it forms dimers with increasing salt concentration.  Salt addition does not always 

enhance the RLS and its effect seems to depend on other physico-chemical conditions 

of the protein solution.  For instance, the pH effect on the RLS profile of β-LG 

solutions was maximal for β-LG solutions without salt at pH values closer to the 

isoelectric point as compared to the pH conditions of the maxima for solutions 

containing salt. It can be seen in Fig. 5b that the addition of salt results in suppression 

of the backscattering intensities for β-LG solutions at pH a close to the isoelectric point 

likely resulting in a decrease in attractive electrostatic interactions.   

The sensitivity of backscattering measurements arising due to subtle changes in 

solution conditions and protein aggregation behaviour was demonstrated for lysozyme.  

Lysozyme is a highly basic protein of low molecular weight, with an isoelectric point 

located between pH 10.5 to 11.5 (Abdellatif et al., 2004).  Backscattering spectra were 

collected for lysozyme solutions at pH 4.0 at different salt concentrations.  As seen in 

Figure 6.6 the backscattering profile intensity for solutions of lysozyme at pH 4 

increased significantly when the NaCl concentration was increased which could be an 

indication of salt-induced aggregation.  Salt-induced aggregation of lysozyme at 

around pH 4.0 has been well studied by using numerous experimental techniques 
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including X-ray diffraction (Narayanan & Liu, 2003), covalent cross-linking followed 

by SDS-PAGE (Wang et al., 1996), NMR (Poznański et al., 2005a), and calorimetry 

(Georgalis et al., 1997; Poznański et al., 2004; 2005b).   
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Figure 6.6:  Effect of NaCl salt concentration on the FOP backscattering for 10 g/l 
Lyzosyme solution at pH 4.6.  

 

The results of all these studies support that lysozyme exists as monomer in 

aqueous solution at pH 4.0 without salt.  There is an observed salt-induced aggregation 

of protein which results from the screening of electrostatic interactions by nonspecific 
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binding of electrolyte counter ions to the charged solvent-exposed protein functional 

groups, which in turn reduces intermolecular repulsion forces (Ries-Kautt & Ducruix, 

1989; Retailleau et al., 2002). In addition to the salt effects, pH effects on 

backscattering were also studied.  Figure 6.7 shows that the backscattering profile 

intensities also increased by increasing the pH (pH 4-10) which could be related to the 

monomer-to-dimer transition reported to occur in this pH range (Georgalis et al., 

1999).  
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Figure 6.7:  Effect of pH on the FOP backscattering for 10 g/l  lysozyme solution.  

 

6.4.1.3 Effect of Protein Concentration  

In addition to being dependent on molecular weight, light scattering also has 

dependent on protein concentration.  The concentration dependence of light scattering 
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was studied at different pHs using β-LG as a model protein system.  As seen in Figure 

6.8, increasing protein concentration results in an increase in the light scattering 

intensity. Light scattering was found to linearly increase with respect to β-LG 

concentration in the low concentration range (0-4 g/l). In the high protein concentration 

range (5-10 g/l), the deviations from linearity were significant, especially for β-LG 

solutions at pHs near the protein’s isoelectric point (pH 4.5-5.0). The pattern of 

increase for light scattering is most likely the result of protein surface electrostatic 

properties and β-LG’s self-association behavior.  
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Figure 6-8:  Effect of protein concentration on the FOP backscattering for β-LG 
solutions 

The increase in slope with pH values close to the isoelectric point reflects a 

decrease in charge on the protein surface and the resulting increase in electrostatic 

attraction. The same conclusion can be made when the concentration-dependent curves 
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for lyzosyme are analyzed at different pHs (data not shown). It was found that the 

steepest curve was the one that corresponded to pH 11.0, which is close to lysozyme’s 

isoelectric point. In general, for macromolecular solutes in an ideal solution, the 

magnitude of light scattering intensity (I) at a given wavelength (λ) is proportional to 

the product of the solute concentration (c) and its average molecular weight (Mw) as 

described by the following equation: 

cKMI ws =                                                                                                             (6-1)  

K is an optical constant that depends only on the solvent properties, excitation 

wavelength and the angle between the incident light and the scattered light. K is 

therefore a system constant that is independent of the concentration of the solution and 

the average molecular weight of the macromolecule. It is also observed that the protein 

concentration does not only affect the magnitude of the scattering intensity, but it also 

influences the overall shape of the scattering spectrum. While light scattering intensity 

in the 300-360 nm range increased with increasing protein concentration, light 

scattering near the UV-visible wavelength range (230-280 nm) was reduced. Such 

attenuation of light scattering in the UV-visible range might be related to re-absorption 

effects that arise in systems with absorbing particles (Quinten et al., 1995).  Quinten et 

al. examined the scattering of colloidal systems containing strongly absorbing spherical 

silver nanoparticles nanometers in the wavelength range from the near UV to the near 

IR. They concluded that re-absorption of the scattered light by absorbing neighboring 

spheres or aggregates alter the measured light scattering spectra of these systems. 

According to observations reported in the literature, it is possible to propose a physical 

explanation of the results.  Since UV light (200-300 nm) is strongly absorbed by 
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proteins, it might be possible that the scattered light in the UV range was partially 

reabsorbed by proteins in the solution, leading to the observed attenuation of the 

scattered light in the UV range upon increasing protein concentration. The contribution 

of re-absorption effects becomes more significant at higher protein concentrations. 

Interference of light re-absorption has been encountered with other optical 

spectroscopic techniques such as Raman resonance spectroscopy (Biswas and 

Umapathy, 1998) and fluorescence spectroscopy (Lacowics, 1999).  In summary, it can 

be concluded that the backscattering pattern for protein solutions could be influenced 

by many factors such as electrostatic protein-protein interactions, protein concentration 

and average molecular weight, non-covalent self-association behavior and the presence 

of covalently formed aggregates.   

 

6.4.2. Scattering of Bulk Solutions in Relation to Protein Membrane Fouling   

As fouling is primarily driven by protein-protein interactions as well as interactions 

between depositing protein and the membrane surface (Malmsten., 1998), it is of 

interest to find a relationship between membrane fouling and the protein aggregation 

behavior in the feed solution. Such a relationship may be obtained from FOP 

measurements as previously described. FOP scattering measurements were made to 

determine the degree of aggregation for different protein solutions as a function of pH 

and ionic strength. Ultrafiltration experiments were then conducted using these protein 

solutions and the flux behavior estimated.   
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6.4.2.1. Scattering Behavior of Bipro Whey Protein Isolate  

Scattering measurements were made to determine the degree of aggregation of Bipro 

whey protein isolate as a function of pH and concentration. According to FOP 

measurements, the degree of aggregation in the whey protein isolate was the highest at 

pH 4.5, which is close to the isoelectric point of the major whey protein constituents 

(β-LG, α-LA and BSA).  Lower backscattering was observed for solutions at pH 

values higher or lower than pH 4.5 (data not shown). Backscattering data would predict 

that the worst solution conditions for the ultrafiltration of the protein isolate would 

correspond to a buffer concentration of 0.02 M at pH 4.5.  Figures 6.9a and 6.9b show 

the time course of membrane resistance for different whey conditions and the 

corresponding scattering measurements. The data suggest that the higher light 

scattering intensity occurred at pH 4.5 for which membrane fouling would be 

considered more significant.  This graph clearly suggests that the protein solution 

properties, as probed by FOP scattering, are most likely correlated with membrane 

fouling.  The propensity of proteins to aggregate over the membrane surface is the 

highest at pH 4.5.   
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Figure 6.9:  The time course of membrane total resistance for different whey protein 
isolate solutions (top) and its relevance to FOP scattering measurement (bottom) 
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6.4.3 Prediction of the Average Molecular Weight of Protein in Solution using 
Multiwavelength Light Scattering Spectral Data. 

In the previous section, a qualitative study was performed where backscattering data 

was used as a probe of protein-protein interactions and aggregation behavior for 

lysozyme and β-lactoglobulin. It was also shown that backscattering data for whey 

protein isolate correlated well with their membrane fouling potential under different 

conditions.  Analysis of the light scattering data in the previous sections did not include 

quantitative predictions on average molecular weight or particle size. In general it is 

expected that the light scattering will depend on several colloidal properties that will 

affect protein aggregation behavior including the molecular size, protein concentration 

and electrostatic charge as modulated by physicochemical conditions (pH and ionic 

strength). If quantitative predictions are desired it is necessary to assess whether the 

increase in light scattering is mainly due to protein concentration effects or increase in 

aggregate size. In this section, the possibility of inferring quantitative information 

about the protein aggregation behavior in the bulk solution from light scattering data 

was addressed by using multivariate regression modeling. It was hypothesized that a 

PLS prediction model based on multi-wavelength scattering measurements could be 

more useful than conventional models based on single scattering measurements. This is 

justified by the following: 

 

I. Multiwavelength scattering measurements will contain more information. As 

stated above, light scattering intensity is a function of many parameters 

including molecular weight, concentration, size and shape of the aggregates 
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(Santos et al., 1999).  Information related to the effects of all of these 

parameters is expected to be imbedded in the entire multiwavelength scattering 

spectra.  

II. The scattering spectra can be affected other optical phenomena that are not 

relevant to the property of interest. In section 3.1.3, the interference of bulk re-

absorption effects of the scattered light was discussed. Upon increasing the 

protein concentration above 2 g/L, it was observed that the enhancement of 

light scattering intensity in the range 300-360 nm range was accompanied by 

attenuation of light scattering near the UV-visible wavelength range (230-280 

nm). It was hypothesized that the scattered light in the UV range was partially 

reabsorbed by the protein in the solution, leading to the observed attenuation of 

the scattered light in the UV range.  It is expected that by using the scattering 

data in the 200–800 nm range as input to the PLS model will result in a more 

robust predictive model with less sensitivity to bulk re-absorption effects at 

higher protein concentrations.   

 

As protein aggregation behavior is usually quantified in terms of the average molecular 

weight, this property was chosen as the one to be predicted. The calibration of the PLS 

model was done based on average molecular weight data measured for β-LG by 

Verheul et al. (1999) who used small angle neutron scattering . The first step in the 

determination of the protein aggregation behavior by PLS methodology involved 

constructing the calibration matrix containing β-LG protein solutions prepared at 

different conditions (Table 6.1) identical to those used by Verheul et al. Under these 
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conditions, the calibration models were obtained. PLS calibration model was 

performed using Rayleigh scattering data acquired for samples (1-12) in Table 6.1 To 

select the number of factors in the PLS algorithm, a cross-validation method, leaving 

out one sample at a time, was employed. From a plot of the PRESS against the number 

of factors for each individual component, it was concluded that the optimal number of 

principal components yielding the smallest error (PRESS) was 3. Such PLS model was 

then tested on Rayleigh scattering spectra obtained for the remaining samples in Table 

6.1 (samples 13-25) that were not used in the calibration. The PLS methodology was 

repeated using samples (13-25) as the calibration set and samples (1-12) as the testing 

set.  The average molecular weight predicted from Rayleigh scattering data were then 

compared to values measured by Verheul et al. (1999) as given in Figures 6.10, 6.11 

and 6.12.  
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Figure 6-10: The average molecular weight predicted from Rayleigh scattering data 
compared to values measured by Verheul et al. (1999) for protein solutions at different 
pHs 



 190 

0.0

5.0

10.0

15.0

20.0

25.0

30.0

Molecular 
Weight (kDa)

FOP Predicted 14.9 16.4 17.7 23.5 26.3 28.8

Measured 16.8 16.7 17.0 28.0 28.4 28.6

L L L H H H

2 g/L 5 g/L 10 g/L 2 g/L 5 g/L 10 g/L

 
Figure 6-11: The average molecular weight predicted from Rayleigh scattering data 
compared to values measured by Verheul et al. (1999) for protein solutions at different 
protein concentrations, pH 2 and at low salt concentration (L), high salt concentration 
(H).     
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Figure 6-12: The average molecular weight predicted from Rayleigh scattering data 
compared to values measured by Verheul et al. (1999) for protein solutions at different 
pHs, low salt concentration (L) and high salt concentration (H).     
 



 191 

Very good agreement between these results and those obtained by Verheul et al. (1999) 

support the applicability of the proposed method for detecting the changes in the 

protein aggregation behavior. With PLS modeling of the backscattering data, the 

average molecular weight of protein solutions under different conditions can be easily 

determined. The time required for obtaining one scattering spectral scan in the range 

200–800 nm with the necessary scan quality was in the range of 20 sec but this time 

can be significantly shortened down to 10 seconds when using faster scanning speed. 

Thus, it is believed that this multiwavelength scattering measurements combined with 

PLS modeling may permit fast independent information on the aggregates size and the 

average molecular weight for more complex protein solutions.  

 

6.5. Conclusions 

The use of backscattering measurements for inference of fouling potential was 

examined in this study.  It was hypothesized that by using this methodology, one could 

track changes in the aggregation behavior of proteins in solution as salt solution 

conditions were modified, affecting protein aggregation and ultimately their fouling 

behavior.  It was found that protein aggregation behavior is strongly dependent on the 

conditions of the media and this behavior can be inferred from FOP backscattering 

measurements. Since the occurrence of aggregation has a major effect on membrane 

fouling, the prediction of these aggregation-phenomena by backscattering 

measurements could be effectively used to infer the membrane fouling potential of 

protein in solution.   
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CHAPTER 7 
 
 

Conclusions and Recommendations 
 
 

The focus of the research described in this thesis is the use of fluorescence 

spectroscopy data in combination with multivariate calibration tools for assessing the 

performance of membrane filtration processes. The discussion that follows will present 

the main conclusions of this work emphasizing the new techniques developed as 

compared to what had been previously reported in the literature. Advantages and 

drawbacks of the methods and sources of error will be summarized.  

 

7.1 Practical Issues Related to Multiwavelength Fluorescence  

Building a predictive model using intrinsic fluorescence spectra is not a 

straightforward process. Many factors affecting the fluorescence such as concentration 

quenching, protein-protein interactions, spectral overlapping and instrumental noise 

considerably complicate the model building process and the prediction accuracy of the 

obtained models. Chapter 3 and 4 presented a preliminary study on the capability of 

PLS-based regression models to handle the sensitivity of fluorescence measurements 

in the face of possible changes in the surrounding conditions. In Chapter 3, a model 

protein, β-lactoglobulin was used as a first simple case scenario consisting of 

predicting the residual concentration of β-LG after heat-treatment by using 

fluorescence spectroscopy data regressed with multivariate statistical techniques. 
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Assessment of aggregation and residual concentration following heat treatment was 

possible for a large range of protein concentration up to 12 mg/ml even though the 

intrinsic fluorescence of such relatively high concentration protein solutions is 

expected to be influenced by concentration quenching, light scattering, protein-protein 

interactions, heat treatment effects and instrumental noise. A signal preprocessing and 

filtering tool referred to as Standard Normal Variate (SNV) method was found to 

enhance the predictive accuracy and robustness of the sensor. Although the SNV 

approach is widely implemented in signal processing, the applicability of this method 

for filtering fluorescence signals has not been studied previously and is novel for this 

particular application.  In Chapter 4, a two-component system consisting of the 

proteins α-LA and β-LG was used as a model system. The effect of factors including 

pH, temperature, total protein concentration, protein-protein interactions, and heat 

treatment time on the amount of aggregation was studied. The fluorescence spectra 

collected for a two-protein solution of α-lactalbumin and β-lactoglobulin served as 

inputs to the chemometric predictive model and the residual amounts of respective 

proteins after aggregation were estimated. The results of Chapter 4 demonstrate that 

multivariate models could be used to efficiently deconvolute the multi-wavelength 

fluorescence spectra collected for a high protein concentration solution and provide a 

fairly accurate quantification of respective proteins despite the significant overlapping 

between their emission profiles.  Prediction was reasonably good in the high 

concentration range (2-10 g/l) because the fluorescence intensity is approximately 

linear with concentration. However, the prediction was found to be in error of more 

than 15% for samples whose actual residual protein concentration of α-LA and β-LG 
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was below 2 g/l.  Such poor prediction in the low concentration range could be due to 

non-linearity in the fluorescence data that is not accounted for by the linear PLS 

regression. In fact, it was found that fluorescence intensity is locally linear with 

protein concentration in two regions: in the low concentration range (0-0.5 g/l), where 

fluorescence intensity increased approximately linearly with increasing protein 

concentration whereas fluorescence intensity decreased linearly with concentration in 

the high concentration range (2-10 g/l). Such concentration-dependence in the 

fluorescence signal will make building a single linear PLS model impossible due to the 

observed non-linearity over the entire concentration range. One of the possible causes 

of the non-linearity in the fluorescence measurements is the interference caused by 

phenomena such as concentration quenching, protein-protein interactions and light 

scattering. For instance, the first principal component of the PLS regression model was 

linear with respect to concentrations of α-LA and β-LG. However, the second principal 

component was found to be nonlinear with respect to concentration of α-LA and β-LG. 

Interferences due to fluorescence quenching were also observed in the spectra 

collected for the retentate side where a fiber optic probe (FOP) was used to acquire 

multi-wavelength fluorescence spectra of permeate and retentate at different times 

during the ultrafiltration of α-LA and β-LG protein solutions. The intrinsic 

fluorescence spectra of the protein solution in the retentate were observed to have 

unique spectral features that are different from that on the permeate side. Reliable and 

accurate estimation of the individual protein concentrations in the permeate and 

retentate directly from fluorescence spectra using a single PLS regression model is 

feasible provided that the following three conditions are satisfied: 
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1) The concentration range of individual proteins must be at the appropriate level 

where the relationship between a given protein concentration and fluorescence 

intensity is linear or approximately linear and this must apply to all proteins in the 

mixture. 

2) The fluorescence signals from each of the given proteins in the mixture must be 

independent of each other.   

3) The interferences from quenching phenomena and re-absorption effects are small 

compared to the fluorescence signal such that the spectral fingerprints for the 

inherent fluorophores are preserved.       

 

Generally, such conditions are difficult to fulfill in a real protein ultrafiltration system 

where protein concentration in the retentate side increases progressively with filtration 

resulting in the occurrence of concentration-dependent phenomena that interfere with 

the fluorescence measurements. In addition to concentration quenching of the 

fluorescence signals, another important phenomenon that becomes more significant 

with increasing concentration in the retentate is energy transfer arising from protein-

protein interactions. This phenomenon is possibly responsible for the concentration-

dependent red shift of the fluorescence excitation and emission maxima and for the 

distortion of the spectral fingerprints for the mixture components. Under these 

conditions, fluorescence signals from individual proteins at high concentration levels 

may not be independent from each other and therefore the fluorescence signal for a 

protein mixture is not the sum of the individual contributions from the mixture 

components. By implementing a dilution strategy for the retentate side, concentrations 
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of α-LA and β-LG in permeate and retentate could be directly predicted from FOP 

fluorescence data within a reasonable accuracy using a single PLS model that 

encompassed a low concentration range where fluorescence was not expected to be 

significantly influenced by concentration-dependent interferences. However, there 

might be some practical limitations associated with dilution, e.g. imprecision 

introduced by dilution can be significant if excessive dilution is employed. PLS 

models are expected to be accurate if they are based on calibration samples that have 

acceptable upper and lower concentration limits within which the concentration of 

each protein is linearly related to the fluorescence intensity and the concentration-

dependent interferences are insignificant compared to the fluorescence signal. 

However, a situation may occur where the concentration of a given protein in the 

diluted samples could lie within the suitable range of calibration while the 

concentration of other proteins could be outside the calibration range, i.e. the 

concentration may be either below or above the lower and the upper concentration 

limits respectively. To avoid this situation an optimal dilution ratio should be sought 

for which the concentration of all individual protein in the diluted samples lies within 

the suitable calibration range of the PLS model. Such a condition must apply to all 

proteins in the mixture. Establishing the optimal dilution ratio requires a preliminary 

knowledge of the individual protein concentrations in the retentate in order to decide 

how much dilution is required. One possible solution to this problem is to use two 

local PLS models in sequence for predicting the retentate concentration: one local PLS 

regression is constructed for the high concentration range where the protein 

concentration is negatively linear with the fluorescence signal while the other is 
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applicable for the low concentration range where the protein concentration is 

positively linear with the fluorescence signal. In Chapter 4 it was demonstrated that α-

LA and β-LG protein concentrations could be predicted well from the excitation 

emission spectra in the concentration 2-10 g/l range.  

 In Chapter 5 a local PLS model in the low concentration range was used to predict 

concentrations of α-LA, β-LG and BSA in the retentate samples after dilution. Results 

in Chapter 4 and 5 showed that the PLS model constructed for the high concentration 

range (Chapter 4) is less accurate as compared to the PLS model constructed in the 

low concentration range (Chapter 5). The PLS model in the high concentration range 

could be used to provide preliminary estimates of individual protein concentrations in 

the retentate-undiluted samples. Preliminary estimates provide some orders of 

magnitude rather than precise and accurate prediction as a worst-case scenario. In 

summary, the need to use an optimal dilution ratio requires that a priori knowledge be 

incorporated into the modeling methodology for more accurate estimation of the 

proteins concentration time-profiles. 

 

 

7.2 Multiwavelength fluorometry for monitoring membrane filtration 

processes  

Monitoring, controlling and optimizing membrane-based filtration of complex 

biological fluids is difficult to achieve in practice because all the components of a 

complex biological fluid interfere with the performance of the filtration process 

(Darnon et al., 2002). During filtration of a complex biological fluid, tracking transient 
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changes in the separation efficiency requires information about the transport of the 

various feed components through the membrane. It was demonstrated that such 

information can be extracted from multi-wavelength fluorescence spectra collected for 

the feed, permeate and retentate. Multiwavelength fluorometry in combination with 

chemometric techniques has several attractive features: it is non-destructive, fast and 

relatively simple to perform. Chemometric tools have been found to be essential for 

extracting information from fluorescence spectra.  It was demonstrated that two 

informative spectral zones in the two-dimensional fluorescence excitation-emission 

maps could be used for monitoring protein solutions during membrane-based filtration.  

These spectral zones are: (i) the intrinsic protein fluorescence zone and (ii) the 

Rayleigh scattering zone. The use of the information of these two spectral zones 

provided valuable insight into the performance of ultrafiltration as shown in Chapter 5 

and 6.  In Chapter 5, it was demonstrated that the analysis of the spectral zone 

corresponding to the intrinsic protein fluorescence can yield information about the 

concentrations of individual proteins in both permeate and retentate streams and thus 

transient changes in protein transmission and membrane selectivity in response to 

changes in pH and the transmembrane pressure could be estimated. In Chapter 6 it was 

shown that the Rayleigh scattering region of the excitation-emission matrix measures 

optical scattering, induced by protein aggregates and multimers, could be correlated 

with the fouling potential of protein solutions. Results show that light scattering 

profiles vary significantly with respect to pH and ionic strength.  Feed solutions with 

higher light scattering properties also exhibited higher fouling potential.  Thus, 

multiwavelength light scattering spectra, acquired using the fiber optic probe, was 
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shown to be a useful indicator for the protein self-association behavior. Since the 

protein aggregation behavior is concentration dependent, it is expected that an increase 

in protein concentration in the retentate side during ultrafiltration will be accompanied 

by a greater tendency for proteins to form aggregates. Having a rapid and sensitive 

method for monitoring protein aggregation during processing is important because the 

protein aggregation behavior is expected to change with respect to time. A predictive 

PLS model for estimating protein aggregation from Rayleigh scattering measurements 

was developed.  At this point such a model can not be fully validated on samples 

collected from the retentate side due to the unavailability of a reliable independent 

measurement method for protein aggregation. Instead, such a predictive model was 

partially tested by using molecular weight experimental values obtained from 

literature.  Although this comparison was only partial due to the limited amount of 

molecular weight data available, the findings verified the possibility of estimating the 

aggregate size from multiwavelength Rayleigh scattering spectra acquired using a 

conventional spectrofluorometer. In classical light scattering the characterization of 

protein solutions is inferred from scattering measurements that are performed at a 

number of different angles to the incident light. This allows the root-mean-square 

(rms) of the molecular radius to be calculated in addition to the molecular weight of 

the macromolecular solution. A conventional spectrofluorometer, such as the one used 

in this work, does not have the capability for detecting light scattering at different 

angles. In this thesis this limitation was overcome by determining light scattering 

measurements over a broader range of excitation wavelengths than those available 

with other classical light scattering techniques.  Scattering measurements obtained by 
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varying wavelengths at a fixed scattering angle to the incident light have been reported 

to be equivalent to those obtained at different angles to the incident light for a fixed 

wavelength (Santos et al., 1999).  

 

Thus, the results in Chapters 5 and 6 imply that both intrinsic fluorescence and light 

scattering multiwavelength measurements provide complementary information about 

the process.   

 

7.3 Future Work 

7.3.1. Non-linear multivariate methods:  

To correctly model non-linear dependence relationships between fluorescence and 

protein concentrations, some nonlinear PLS extensions would be useful. One of the 

approaches for developing non-linear PLS model would be to pretreat the input matrix 

(X) containing fluorescence measurements by including non-linear combinations of the 

original input measurements (i.e. logarithms, squared terms and cross terms) before 

performing linear PLS. A more structured approach to the development of a non-linear 

PLS model is to introduce a non-linear functional relationship that would relate the 

output latent variable scores u to the input latent variable scores t, without modifying 

the input and output variables.   

 

7.3.2. Characterizing protein aggregates using multiwavelength Rayleigh scattering:  

Protein-protein interactions and the protein aggregation state are influenced by pH and 

ionic strength and affect the transport behavior of most soluble components across the 
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filtration membrane (Sirkar and Prasad, 1987). This might provide more insight into 

the different types of aggregates. The PLS model based on Rayleigh scattering 

measurements needs to be validated using an independent method of aggregate 

determination such as small angle X-ray scattering. A method for estimating molecular 

weight distribution or particle size distribution from the multiwavelegth Rayleigh 

scattering spectra should be investigated further.  One possibility is to infer the 

distribution shape parameters (aggregate mean size and standard deviation) from the 

spectra. This can be done by regressing the spectra (i.e. input data) against the 

distribution shape parameters (response data).  Another possibility is to discretize the 

size distribution into different portions that can be used as multiple y responses and 

then perform PLS regression with the spectral data.  

 

7.3.3. Monitoring product quality using fluorescence spectroscopy  

This thesis focused on the use of fluorescence spectroscopy for monitoring the 

quantitative aspects of ultrafiltration protein fractionation. Meanwhile, Lilly (1992) 

emphasized the importance of product quality and not just the amount of product 

produced during ultrafiltration process. Product functionality and quality could be 

adversely affected during processing in ultrafiltration systems because the protein 

product can undergo conformational changes and subsequent denaturation during its 

passage through membrane pores possibly resulting in loss of its biological value 

(Sadana, 1998). More studies are required that clearly examine the use of fluorescence 

spectroscopy for monitoring the structure, functionality and biological activity of 

different proteins during the process. This could be beneficial for industry (Geisow, 
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1992; Sadana, 1998) because it would allow manipulating the processing conditions 

such that undesirable losses of the valuable biological product can be either prevented 

or at least minimized (Dunnill, 1983; Sadana, 1998). The multidimensional analysis for 

permeate and retentate can be extended further to include fluorescence anisotropy, life-

time measurements and time-resolved fluorescence.  All of these methods are well-

known for providing a more detailed knowledge of conformational changes.  
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APPENDICES 
 

 

APPENDIX A: Fluorescence Spectral Differences between Food 
Proteins 

Identification of proteins in a multi-flourophore mixture can be easily done using 

multiple excitation emission landscapes. Proteins can be easily distinguished from 

other fluorophores by looking at the Excitation and emission maxima of fluorescence 

spectra, in solution rather than for the identification of specific proteins, as can be seen 

in Figure A-1.    
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Figure A-1: Excitation-emission matrix for 6 g/l whey protein concentrate solution.   
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For instance, it is easy to discriminate between proteins and other components by 

looking at the fluorescence landscape acquired for milk where there is a significant 

difference in the peak positions of Tryptophan (the main fluorophore in proteins) and 

other biological components such as Vitamin B12 (Figure A-1).  

 

Although EEM allows detecting the presence or the absence of proteins in a biological 

mixture, discriminating between different proteins or identification of the type of 

protein in a biological mixture is hard since there are quite subtle differences between 

their fluorescence spectra. The first objective of this work is to demonstrate spectral 

features at multiple combinations of excitation-emission wavelengths and to illustrate 

the usefulness of EEM for discriminating between proteins in biological mixtures when 

combined with chemometric methods.  
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APPENDIX B:  Single Protein PLS Model 
 
Appendix A presents the raw data for the validation of the Single Protein Model on b-

LG solutions that were subjected to heat treatment at different conditions. Fluorescence 

spectra of these solutions are affected by fluorescence quenching, light scattering and 

instrumental noise. Four preprocessing methods, mean centering (MC), variable 

scaling (VS), standard normal variate (SNV) and normalization (NM), have been 

compared in terms of squared prediction error. The total sum of squared error (TSE) 

and the mean sum of squared error (MSE) were calculated for each set of samples.          

 
 
Table B-1: Effect of data preprocessing methods on model prediction of beta-
lactoglobulin concentrations after heat treatment of beta-lactoglobulin solutions 
at 85 C, Ph 4.5, 0.10 M sodium citrate acetate buffer. 
 

 

 
 
 
 
 
 

Heating 

time (min)  

Measured  

(g/l) 

Predicted 

(g/l) 

  None MC VS SNV NM 

0.00 9.32 6.95 6.83 6.85 8.20 8.51 

0.00 9.43 8.49 8.47 8.01 9.04 9.08 

5.00 9.25 9.25 9.34 9.09 8.73 8.64 

10.00 8.88 8.89 9.05 8.78 8.07 7.89 

15.00 7.59 7.97 8.06 7.34 7.54 7.55 

15.00 7.28 8.22 8.40 7.71 7.27 7.10 

20.00 5.39 6.21 6.31 5.67 5.83 5.76 

25.00 5.09 5.42 5.58 5.06 4.88 4.76 

30.00 4.30 5.10 5.24 4.75 4.39 4.22 

30.00 4.09 4.53 4.64 4.14 4.07 4.01 
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Table B-2: Effect of data preprocessing methods on model prediction of beta-
lactoglobulin concentrations after heat treatment of beta-lactoglobulin solutions at 85 
C, Ph 4.5, 0.10 M sodium citrate acetate buffer. 
  

Heating 

time (min)  

Measured  

(g/l) 

Squared Prediction Error 

 

  None MC VS SNV NM 

0.00 9.32 6.70 7.34 7.23 1.79 1.50 

0.00 9.43 0.22 0.25 0.91 0.01 0.00 

5.00 9.25 0.47 0.59 0.27 0.03 0.01 

10.00 8.88 0.44 0.67 0.31 0.02 0.22 

15.00 7.59 0.55 0.70 0.01 0.09 0.06 

15.00 7.28 0.52 0.82 0.04 0.05 0.25 

20.00 5.39 0.90 1.11 0.17 0.32 0.31 

25.00 5.09 0.70 1.00 0.23 0.09 0.02 

30.00 4.30 1.11 1.43 0.50 0.12 0.02 

30.00 4.09 0.34 0.48 0.04 0.02 0.00 

 TTSE 5.26 7.04 2.48 0.75 0.90 

 MSE 0.76 0.88 0.52 0.29 0.32 

 

TTSE: Total sum of squared error 
MSE: Mean Squared Error  
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Table B-3: Effect of data preprocessing methods on model prediction of beta-
lactoglobulin concentrations after heat treatment of beta-lactoglobulin solutions at 82 
C, Ph 4.5, 0.10 M sodium citrate acetate buffer. 
 
Heating time 

(min) 

Measured  

(g/l) 

Predicted 

(g/l) 

  None MC VS SNV NM 

15.00 9.39 5.90 5.73 6.26 7.82 8.52 

15.0b 9.21 6.87 6.77 7.26 7.92 8.23 

15.10 8.36 9.14 9.16 8.99 9.47 9.37 

15.20 8.58 8.77 8.77 8.45 9.11 9.13 

15.30 8.79 9.41 9.53 9.35 9.01 8.62 

15.40 8.92 9.22 9.35 9.14 8.69 8.20 

15.4b 8.95 7.92 7.92 7.93 8.66 8.38 

15.50 8.53 8.22 8.24 8.17 8.62 8.41 

15.60 8.45 8.05 8.07 7.90 8.51 8.14 

15.70 8.54 8.42 8.50 8.29 8.31 8.02 

15.80 8.34 7.94 7.95 7.91 8.38 8.40 

15.8b 8.39 8.12 8.16 8.01 8.34 8.28 

15.90 8.45 8.10 8.13 7.88 8.28 8.15 

15.10 7.83 8.10 8.20 8.06 7.84 7.59 

15.11 7.41 7.14 7.14 6.99 7.49 7.83 

15.12 7.62 6.72 6.66 6.49 7.47 7.87 

15.12b 7.63 7.89 7.96 7.60 7.60 7.75 

15.13 7.64 7.63 7.68 7.34 7.54 7.54 

15.14 7.31 7.15 7.18 6.83 7.38 7.28 

15.15 6.95 7.71 7.83 7.29 7.22 6.91 

15.16 6.89 7.75 7.87 7.37 7.21 6.79 

15.17 6.80 7.43 7.58 7.18 6.82 6.45 

15.18 6.59 7.63 7.69 7.40 7.52 7.29 

15.18b 6.41 7.62 7.71 7.33 7.19 6.91 
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Table B-4: Effect of data preprocessing methods on model prediction of beta-
lactoglobulin concentrations after heat treatment of beta-lactoglobulin solutions at 82 
C, Ph 4.5, 0.10 M sodium citrate acetate buffer. 
 

Heating 
time (min) 

Measured  
(g/l) 

Squared Prediction Error 

 

  None MC VS SNV NM 

15.00 9.39 9.775 10.874 7.636 1.458 0.258 
15.0b 9.21 4.631 5.064 3.112 1.215 0.625 
15.10 8.36 0.034 0.039 0.001 0.261 0.171 
15.20 8.58 0.002 0.002 0.135 0.085 0.100 
15.30 8.79 0.698 0.907 0.605 0.193 0.002 
15.40 8.92 0.527 0.739 0.417 0.040 0.083 
15.4b 8.95 0.405 0.403 0.393 0.011 0.029 
15.50 8.53 0.022 0.015 0.037 0.065 0.002 
15.60 8.45 0.093 0.078 0.205 0.026 0.045 
15.70 8.54 0.053 0.099 0.010 0.015 0.030 
15.80 8.34 0.080 0.087 0.064 0.525 0.558 
15.8b 8.39 0.142 0.173 0.073 0.355 0.291 
15.90 8.45 0.128 0.152 0.021 0.292 0.165 
15.10 7.83 0.237 0.342 0.203 0.052 0.001 
15.11 7.41 0.014 0.014 0.001 0.215 0.647 
15.12 7.62 0.074 0.108 0.251 0.234 0.768 

15.12b 7.63 1.102 1.254 0.582 0.584 0.834 
15.13 7.64 0.714 0.808 0.310 0.569 0.566 
15.14 7.31 0.388 0.429 0.090 0.728 0.572 
15.15 6.95 1.848 2.177 0.885 0.761 0.309 
15.16 6.89 2.728 3.139 1.626 1.234 0.487 
15.17 6.80 1.959 2.396 1.302 0.613 0.171 
15.18 6.59 2.276 2.443 1.637 1.958 1.366 

15.18b 6.41 2.179 2.455 1.406 1.083 0.581 
 TTSE 20.335 23.326 13.365 11.114 8.404 
 MSE 0.940 1.007 0.762 0.695 0.604 
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Table B-5: Effect of data preprocessing methods on model prediction of beta-
lactoglobulin concentrations after heat treatment of beta-lactoglobulin solutions at 80 
C, Ph 4.5, 0.10 M sodium citrate acetate buffer. 
 

Heating 

time (min) 

Measured  

(g/l) 

Predicted 

(g/l) 

  None MC VS SNV NM 

0 8.95 7.43 7.38 7.42 8.19 8.33 

0 8.95 8.79 8.87 8.72 8.51 8.39 

10 8.34 9.02 9.12 8.87 8.45 8.35 

20 8.12 8.72 8.84 8.46 8.14 8.07 

30 8.29 8.33 8.41 8.00 7.90 7.93 

40 8.13 8.60 8.77 8.48 7.81 7.68 

40 8.18 8.83 8.94 8.92 8.35 8.26 

50 8.05 8.41 8.49 8.39 8.14 8.11 

60 7.92 8.43 8.55 8.45 7.92 7.84 

60 7.94 7.36 7.32 7.33 7.31 7.40 

70 7.84 7.03 6.93 6.87 8.22 8.50 

80 7.82 8.48 8.57 8.25 8.02 8.03 

90 7.88 8.29 8.37 8.04 7.97 8.00 

90 7.77 7.48 7.46 7.17 7.88 8.06 

100 7.95 7.80 7.80 7.57 8.20 8.29 

110 7.85 7.74 7.71 7.31 8.25 8.30 
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Table B-6: Effect of data preprocessing methods on model prediction of beta-
lactoglobulin concentrations after heat treatment of beta-lactoglobulin solutions at 80 
C, Ph 4.5, 0.10 M sodium citrate acetate buffer. 
 

Heating 

time (min) 

Measured  

(g/l) 

Squared Prediction Error 

 

  None MC VS SNV NM 

0 8.95 
2.314 2.469 2.344 0.588 0.388 

0 8.95 
0.025 0.006 0.054 0.190 0.313 

10 8.34 
0.502 0.651 0.307 0.018 0.001 

20 8.12 
0.405 0.568 0.141 0.003 0.000 

30 8.29 
0.004 0.022 0.069 0.136 0.112 

40 8.13 
0.255 0.446 0.148 0.085 0.173 

40 8.18 
0.466 0.621 0.590 0.039 0.013 

50 8.05 
0.149 0.220 0.134 0.014 0.008 

60 7.92 
0.303 0.450 0.336 0.002 0.001 

60 7.94 
0.293 0.339 0.333 0.356 0.259 

70 7.84 
0.589 0.741 0.860 0.183 0.497 

80 7.82 
0.492 0.635 0.225 0.060 0.063 

90 7.88 
0.211 0.289 0.041 0.019 0.026 

90 7.77 
0.060 0.066 0.306 0.025 0.113 

100 7.95 
0.013 0.013 0.119 0.080 0.142 

110 7.85 
0.005 0.009 0.246 0.192 0.237 

 TSSE 3.770 5.074 3.908 1.403 1.958 
 MSE 0.501 0.687 0.625 0.306 0.361 
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Table B-7: Effect of data preprocessing methods on model prediction of beta-
lactoglobulin concentrations after heat treatment of beta-lactoglobulin solutions at 75 
C, Ph 4.5, 0.10 M sodium citrate acetate buffer. 
 

Heating 

time (min) 

Measured  

(g/l) 

Predicted 

(g/l) 

  None MC VS SNV NM 

0.00 8.62 7.89 7.85 7.87 8.69 8.76 

0.00 8.76 7.80 7.74 7.81 8.82 8.89 

10.00 8.35 9.00 9.07 8.88 8.69 8.67 

20.00 8.34 8.10 8.13 7.67 8.20 8.24 

30.00 8.30 8.71 8.79 8.37 8.38 8.37 

30.00 8.25 8.31 8.38 7.93 8.09 8.07 

40.00 8.56 8.14 8.18 8.02 8.29 8.28 

50.00 8.18 8.71 8.80 8.43 8.30 8.26 

60.00 8.18 8.45 8.52 8.19 8.30 8.27 

60.00 8.09 7.91 7.90 7.55 8.31 8.40 

70.00 7.94 8.04 8.04 7.80 8.43 8.44 

80.00 8.27 7.88 7.90 7.63 8.18 8.22 

90.00 8.06 7.73 7.73 7.41 8.10 8.20 

90.00 7.93 8.63 8.78 8.61 7.96 7.78 

100.00 8.23 7.84 7.83 7.92 8.35 8.36 
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Table B-8: Effect of data preprocessing methods on model prediction of beta-
lactoglobulin concentrations after heat treatment of beta-lactoglobulin solutions at 75 
C, Ph 4.5, 0.10 M sodium citrate acetate buffer. 
 

Heating 

time (min) 

Measured  

(g/l) 

Squared Prediction Error 

  None MC VS SNV NM 

0.00 8.62 1.178 1.278 1.228 0.085 0.048 

0.00 8.76 1.687 1.847 1.643 0.078 0.043 

10.00 8.35 0.011 0.001 0.051 0.169 0.185 

20.00 8.34 0.875 0.834 1.868 0.710 0.640 

30.00 8.30 0.041 0.017 0.296 0.292 0.300 

30.00 8.25 0.356 0.273 0.959 0.660 0.705 

40.00 8.56 0.377 0.327 0.539 0.215 0.220 

50.00 8.18 0.149 0.086 0.439 0.636 0.703 

60.00 8.18 0.322 0.247 0.686 0.514 0.556 

60.00 8.09 1.102 1.112 1.971 0.427 0.317 

70.00 7.94 0.602 0.598 1.025 0.148 0.139 

80.00 8.27 0.836 0.792 1.352 0.380 0.327 

90.00 8.06 1.755 1.739 2.685 0.911 0.727 

90.00 7.93 0.195 0.086 0.213 1.231 1.658 

100.00 8.23 1.592 1.610 1.387 0.572 0.555 

 TSSE 11.079 10.847 16.342 7.029 7.122 

 RMSE 0.859 0.850 1.044 0.685 0.689 
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Table B-9: Effect of data preprocessing methods on model prediction of beta-
lactoglobulin concentrations after heat treatment of beta-lactoglobulin solutions at 65 
C, Ph 4.5, 0.10 M sodium citrate acetate buffer. 
 

Heating 

time (min) 

Measured  

(g/l) 

Predicted 

(g/l) 

  None MC VS SNV NM 

0.00 9.38 7.80 10.04 9.97 9.38 9.35 

20.00 9.38 9.00 9.53 9.44 9.16 9.17 

20.00 9.14 8.10 9.70 9.55 9.47 9.46 

40.00 8.76 8.71 9.30 8.96 9.41 9.45 

60.00 8.52 8.31 9.10 8.65 9.19 9.28 

60.00 8.36 8.14 9.53 9.12 9.04 9.06 

80.00 8.41 8.71 9.64 9.63 9.12 9.04 

100.00 8.52 8.45 9.72 9.70 8.75 8.63 

120.00 8.48 7.91 9.83 9.88 8.77 8.63 

120.00 8.55 8.04 9.71 9.57 8.79 8.72 

140.00 8.41 7.88 8.53 8.51 9.26 9.33 

160.00 8.62 7.73 9.38 9.35 8.71 8.56 

180.00 9.13 8.63 8.94 8.70 8.96 8.94 

180.00 8.99 7.84 9.14 8.94 8.97 8.94 
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Table B-10: Effect of data preprocessing methods on model prediction of beta-
lactoglobulin concentrations after heat treatment of beta-lactoglobulin solutions at 65 
C, Ph 4.5, 0.10 M sodium citrate acetate buffer. 
 

Heating 

time (min) 

Measured  

(g/l) 

Squared Prediction Error 

  None MC VS SNV NM 

0.00 9.38 2.515 0.429 0.344 0.000 0.001 

20.00 9.38 0.149 0.021 0.004 0.051 0.048 

20.00 9.14 1.080 0.314 0.161 0.109 0.098 

40.00 8.76 0.002 0.287 0.038 0.422 0.472 

60.00 8.52 0.046 0.334 0.016 0.442 0.566 

60.00 8.36 0.048 1.371 0.586 0.468 0.496 

80.00 8.41 0.086 1.504 1.467 0.496 0.394 

100.00 8.52 0.005 1.451 1.394 0.053 0.012 

120.00 8.48 0.324 1.821 1.959 0.084 0.024 

120.00 8.55 0.264 1.345 1.041 0.058 0.029 

140.00 8.41 0.279 0.014 0.010 0.725 0.853 

160.00 8.62 0.790 0.585 0.535 0.008 0.003 

180.00 9.13 0.245 0.033 0.185 0.029 0.034 

180.00 8.99 1.330 0.021 0.003 0.000 0.002 

 TSS 7.161 9.530 7.743 2.945 3.032 

 RMSE 0.715 0.825 0.744 0.459 0.465 
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Table B-11: Effect of data preprocessing methods on model prediction of beta-
lactoglobulin concentrations after heat treatment of beta-lactoglobulin solutions at 45 
C, Ph 4.5, 0.10 M sodium citrate acetate buffer. 
 

Heating 

time (min) 

Measured  

(g/l) 

Predicted 

(g/l) 

  None MC VS SNV NM 

0.00 8.82 9.18 9.26 9.10 8.72 8.61 

20.00 8.39 9.13 9.26 8.95 8.35 8.22 

20.00 8.21 8.74 8.87 8.42 7.93 7.79 

40.00 8.38 8.51 8.62 8.18 7.88 7.76 

60.00 8.24 8.71 8.87 8.52 7.87 7.70 

60.00 8.21 7.95 7.96 7.66 8.25 8.24 

80.00 8.26 8.63 8.76 8.36 7.92 7.79 

100.00 7.92 8.61 8.75 8.50 7.90 7.73 

120.00 8.01 8.34 8.43 7.97 7.99 7.91 

120.00 8.22 8.64 8.72 8.29 8.24 8.15 

140.00 8.13 8.38 8.50 8.21 7.87 7.70 

160.00 8.15 8.62 8.74 8.28 7.98 7.84 
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Table B-12: Effect of data preprocessing methods on model prediction of beta-
lactoglobulin concentrations after heat treatment of beta-lactoglobulin solutions at 45 
C, Ph 4.5, 0.10 M sodium citrate acetate buffer. 
 

Heating 

time (min) 

Measured  

(g/l) 

Predicted 

(g/l) 

  None MC VS SNV NM 

0.00 8.82 0.000 0.000 0.000 0.000 0.000 

20.00 8.39 0.128 0.198 0.080 0.010 0.043 

20.00 8.21 0.547 0.747 0.303 0.002 0.030 

40.00 8.38 0.278 0.435 0.043 0.081 0.176 

60.00 8.24 0.017 0.059 0.040 0.246 0.385 

60.00 8.21 0.225 0.400 0.076 0.133 0.289 

80.00 8.26 0.063 0.060 0.300 0.002 0.001 

100.00 7.92 0.140 0.254 0.011 0.115 0.214 

120.00 8.01 0.475 0.684 0.326 0.001 0.038 

120.00 8.22 0.106 0.173 0.001 0.000 0.011 

140.00 8.13 0.174 0.249 0.005 0.000 0.005 

160.00 8.15 0.063 0.137 0.008 0.066 0.181 

 TSS 0.220 0.347 0.018 0.028 0.096 

 RME 2.436 3.744 1.210 0.684 1.469 
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Figure B-1: Comparison between PLS model Predictions and HPLC measurements 
of β-LG concentrations for 110 samples that were subjected to heat treatment at 
different conditions 
 

 

Figure B-1 suggests that the model prediction error increases for highly concentrated 

protein solutions which is most likely due to non-linearity in the fluorescence spectra 

that increases with increasing protein concentration (fluorescence quenching). Non-

linearity is not totally accounted for in the PLS model development.      
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Figure B-2: Schematic diagram for the experimental procedure of thermal treatment 

of protein solutions at different conditions.  
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APPENDIX C:  Binary Protein (α-LA/β-LG) PLS Model 
 
Appendix C presents the raw data for the validation of the Binary Protein (α-LA/β-LG) 

PLS Model on (α-LA/β-LG) protein solutions that were subjected to heat treatment at 

different conditions. Fluorescence spectra of these solutions are affected by 

fluorescence quenching, light scattering and instrumental noise.  

 

Table C-1: Model prediction of α-LA concentrations in the supernatant for samples of 
α-LA/β-LG solutions that were subjected to heat treatment at different conditions (pH 
3.5, pH 3.7, pH 3.9).    
 

Initial Conditions 
Heat 

treatment 
Conditions 

α-LA concentration in the 
supernatant (g/l) 

Sample Proportion 
of α-LA 

Tot Con 
(g/l) pH T(C) Measured Predicted 

1.0 0.25 1.50 3.5 85.0 0.51 0.41 
2.0 0.25 3.50 3.5 85.0 0.61 0.50 
3.0 0.25 4.50 3.5 85.0 0.68 0.59 
4.0 0.25 6.50 3.5 85.0 1.10 1.12 
5.0 0.25 8.50 3.5 85.0 1.06 1.13 
6.0 0.25 9.50 3.5 85.0 1.13 1.07 
7.0 0.25 10.50 3.5 85.0 1.29 1.20 
8.0 0.25 12.00 3.5 85.0 1.25 1.38 

       
9.0 0.25 1.50 3.7 85.0 0.31 0.41 

10.0 0.25 3.50 3.7 85.0 0.76 0.86 
11.0 0.25 4.50 3.7 85.0 0.76 0.83 
12.0 0.25 6.50 3.7 85.0 0.82 0.89 
13.0 0.25 8.50 3.7 85.0 0.96 0.95 
14.0 0.25 9.50 3.7 85.0 0.94 0.80 
15.0 0.25 10.50 3.7 85.0 0.83 0.88 
16.0 0.25 12.00 3.7 85.0 0.78 0.74 
17.0 0.25 14.00 3.7 85.0 0.84 0.79 
18.0 0.25 16.00 3.7 85.0 0.73 0.85 

       
19.0 0.25 1.50 3.9 85.0 0.55 0.55 
20.0 0.25 3.50 3.9 85.0 0.76 0.84 
21.0 0.25 4.50 3.9 85.0 0.57 0.65 
22.0 0.25 6.50 3.9 85.0 0.66 0.76 
23.0 0.25 8.50 3.9 85.0 0.58 0.67 
24.0 0.25 9.50 3.9 85.0 0.58 0.67 
25.0 0.25 14.00 3.9 85.0 0.58 0.70 
26.0 0.25 16.00 3.9 85.0 0.56 0.64 
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Table C-2: Model prediction of α-LA concentrations in the supernatant for samples of 
α-LA/β-LG solutions that were subjected to heat treatment at different conditions (pH 
4.5, pH 5, pH 6).   
 

 
Initial Conditions 

 
Heat 

treatment 
Conditions 

 
α-LA concentration in the 

supernatant (g/l) 

Sample Proportion 
of α-LA 

Tot Con 
(g/l) pH T© Measured Predicted 

27.0 0.25 1.50 4.5 85.0 0.43 0.33 
28.0 0.25 3.50 4.5 85.0 0.66 0.55 
29.0 0.25 4.50 4.5 85.0 0.65 0.63 
30.0 0.25 6.50 4.5 85.0 0.61 0.72 
31.0 0.25 8.50 4.5 85.0 0.65 0.58 
32.0 0.25 9.50 4.5 85.0 0.61 0.61 
33.0 0.25 10.50 4.5 85.0 0.65 0.59 
34.0 0.25 12.00 4.5 85.0 0.63 0.57 
35.0 0.25 14.00 4.5 85.0 0.67 0.60 
36.0 0.25 16.00 4.5 85.0 0.56 0.49 

         
37.0 0.25 1.50 5.0 85.0 0.39 0.24 
38.0 0.25 3.50 5.0 85.0 0.39 0.31 
39.0 0.25 4.50 5.0 85.0 0.32 0.23 
40.0 0.25 6.50 5.0 85.0 0.44 0.32 
41.0 0.25 8.50 5.0 85.0 0.35 0.34 
42.0 0.25 9.50 5.0 85.0 0.25 0.15 
43.0 0.25 10.50 5.0 85.0 0.36 0.23 
44.0 0.25 12.00 5.0 85.0 0.42 0.31 
45.0 0.25 14.00 5.0 85.0 0.42 0.27 
46.0 0.25 16.00 5.0 85.0 0.37 0.26 

         
47.0 0.25 1.50 6.0 85.0 0.33 0.34 
48.0 0.25 3.00 6.0 85.0 0.44 0.44 
49.0 0.25 4.00 6.0 85.0 0.37 0.41 
50.0 0.25 6.00 6.0 85.0 0.45 0.45 
51.0 0.25 9.00 6.0 85.0 0.50 0.62 
52.0 0.25 10.00 6.0 85.0 0.45 0.58 
53.0 0.25 12.00 6.0 85.0 0.52 0.63 
54.0 0.25 14.00 6.0 85.0 0.72 0.77 
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Table C-3: Model prediction of α-LA concentrations in the supernatant for samples of 
α-LA/β-LG solutions that were subjected to heat treatment at different conditions 
(proportion of α-LA in the original protein solution). 
 

Initial Conditions 
Heat 

treatment 
Conditions 

α-LA concentration in the 
supernatant (g/l) 

Sample Proportion 
of α-LA 

Tot Con 
(g/l) pH T(C) Measured Predicted 

55.0 0.25 3.00 3.9 75.0 0.68 0.61 
56.0 0.25 4.00 3.9 75.0 0.85 0.80 
57.0 0.25 6.00 3.9 75.0 0.82 0.95 
58.0 0.25 8.00 3.9 75.0 0.91 0.85 
59.0 0.25 10.00 3.9 75.0 0.99 0.93 
60.0 0.25 12.00 3.9 75.0 0.98 1.01 
61.0 0.25 14.00 3.9 75.0 1.01 1.00 
62.0 0.25 16.00 3.9 75.0 0.99 0.88 

              
63.0 0.10 12.00 3.9 75.0 1.07 1.07 
64.0 0.18 12.00 3.9 75.0 0.97 1.06 
65.0 0.25 12.00 3.9 75.0 1.02 1.05 
66.0 0.31 12.00 3.9 75.0 1.05 1.04 
67.0 0.36 12.00 3.9 75.0 1.01 1.04 
68.0 0.40 12.00 3.9 75.0 0.97 1.01 
69.0 0.44 12.00 3.9 75.0 0.95 0.99 
70.0 0.47 12.00 3.9 75.0 0.96 1.01 
71.0 0.50 12.00 3.9 75.0 0.95 1.00 
72.0 0.55 12.00 3.9 75.0 0.93 0.98 
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Table C-4: Model prediction of β-LG concentrations in the supernatant for samples of 
α-LA/β-LG solutions that were subjected to heat treatment at different conditions (pH 
3.5, pH 3.7, pH 3.9).    
 

Initial Conditions 
Heat 

treatment 
Conditions 

β-LG concentration in the 
supernatant (g/l) 

Sample Proportion 
of α-LA 

Tot Con 
(g/l) pH T(C) Measured Predicted 

1.0 0.25 1.50 3.5 85.0 1.18 0.84 
2.0 0.25 3.50 3.5 85.0 2.67 1.75 
3.0 0.25 4.50 3.5 85.0 2.67 2.67 
4.0 0.25 6.50 3.5 85.0 4.44 4.32 
5.0 0.25 8.50 3.5 85.0 6.62 6.03 
6.0 0.25 9.50 3.5 85.0 7.83 6.76 
7.0 0.25 10.50 3.5 85.0 8.70 7.29 
8.0 0.25 12.00 3.5 85.0 8.20 8.63 

         
9.0 0.25 1.50 3.7 85.0 1.10 0.92 

10.0 0.25 3.50 3.7 85.0 1.93 1.66 
11.0 0.25 4.50 3.7 85.0 3.03 2.64 
12.0 0.25 6.50 3.7 85.0 4.45 4.12 
13.0 0.25 8.50 3.7 85.0 4.29 3.69 
14.0 0.25 9.50 3.7 85.0 3.98 4.60 
15.0 0.25 10.50 3.7 85.0 5.10 4.78 
16.0 0.25 12.00 3.7 85.0 4.26 4.00 
17.0 0.25 14.00 3.7 85.0 4.46 3.59 
18.0 0.25 16.00 3.7 85.0 4.39 4.27 

         
19.0 0.25 1.50 3.9 85.0 1.31 1.27 
20.0 0.25 3.50 3.9 85.0 2.25 2.02 
21.0 0.25 4.50 3.9 85.0 2.48 2.23 
22.0 0.25 6.50 3.9 85.0 3.14 2.88 
23.0 0.25 8.50 3.9 85.0 2.90 2.64 
24.0 0.25 9.50 3.9 85.0 2.85 2.60 
25.0 0.25 14.00 3.9 85.0 2.65 2.50 
26.0 0.25 16.00 3.9 85.0 2.26 2.16 
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Table C-5: Model prediction of β-LG concentrations in the supernatant for samples of 
α-LA/β-LG solutions that were subjected to heat treatment at different conditions (pH 
4.5, pH 5, pH 6).   
 

 
Initial Conditions 

Heat 
treatment 

Conditions 

β-LG concentration in the 
supernatant (g/l) 

Sample Proportion 
of α-LA 

Tot Con 
(g/l) pH T© Measured Predicted 

27.0 0.25 1.50 4.5 85.0 0.95 0.99 
28.0 0.25 3.50 4.5 85.0 1.31 1.38 
29.0 0.25 4.50 4.5 85.0 1.32 0.96 
30.0 0.25 6.50 4.5 85.0 1.08 1.06 
31.0 0.25 8.50 4.5 85.0 1.04 0.82 
32.0 0.25 9.50 4.5 85.0 1.08 0.81 
33.0 0.25 10.50 4.5 85.0 1.14 1.39 
34.0 0.25 12.00 4.5 85.0 1.26 0.84 
35.0 0.25 14.00 4.5 85.0 1.18 0.78 
36.0 0.25 16.00 4.5 85.0 1.24 1.05 

         
37.0 0.25 1.50 5.0 85.0 0.28 0.39 
38.0 0.25 3.50 5.0 85.0 0.52 0.49 
39.0 0.25 4.50 5.0 85.0 0.63 0.30 
40.0 0.25 6.50 5.0 85.0 0.57 0.35 
41.0 0.25 8.50 5.0 85.0 0.71 0.45 
42.0 0.25 9.50 5.0 85.0 0.67 0.48 
43.0 0.25 10.50 5.0 85.0 0.65 0.31 
44.0 0.25 12.00 5.0 85.0 0.52 0.29 
45.0 0.25 14.00 5.0 85.0 0.54 0.15 
46.0 0.25 16.00 5.0 85.0 0.74 0.28 

         
47.0 0.25 1.50 6.0 85.0 0.72 0.86 
48.0 0.25 3.00 6.0 85.0 0.75 0.90 
49.0 0.25 4.00 6.0 85.0 0.73 0.80 
50.0 0.25 6.00 6.0 85.0 0.79 0.91 
51.0 0.25 9.00 6.0 85.0 0.86 0.93 
52.0 0.25 10.00 6.0 85.0 0.86 0.90 
53.0 0.25 12.00 6.0 85.0 1.02 1.09 
54.0 0.25 14.00 6.0 85.0 1.07 1.26 
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Table C-6: Model prediction of β-LG concentrations in the supernatant for samples of 
α-LA/β-LG solutions that were subjected to heat treatment at different conditions 
(proportion of α-LA in the original protein solution). 
 

Initial Conditions 
Heat 

treatment 
Conditions 

β-LG concentration in the 
supernatant (g/l) 

Sample Proportion 
of α-LA 

Tot Con 
(g/l) pH T(C) Measured Predicted 

55.0 0.25 3.00 3.9 75.0 1.27 1.89 
56.0 0.25 4.00 3.9 75.0 2.78 2.58 
57.0 0.25 6.00 3.9 75.0 4.37 3.85 
58.0 0.25 8.00 3.9 75.0 5.71 5.20 
59.0 0.25 10.00 3.9 75.0 6.47 6.25 
60.0 0.25 12.00 3.9 75.0 7.02 7.29 
61.0 0.25 14.00 3.9 75.0 7.90 8.48 
62.0 0.25 16.00 3.9 75.0 8.20 8.11 

              
63.0 0.10 12.00 3.9 75.0 6.88 7.54 
64.0 0.18 12.00 3.9 75.0 7.05 6.99 
65.0 0.25 12.00 3.9 75.0 6.21 6.60 
66.0 0.31 12.00 3.9 75.0 6.44 6.25 
67.0 0.36 12.00 3.9 75.0 6.03 5.79 
68.0 0.40 12.00 3.9 75.0 5.62 5.47 
69.0 0.44 12.00 3.9 75.0 4.81 5.23 
70.0 0.47 12.00 3.9 75.0 5.11 5.05 
71.0 0.50 12.00 3.9 75.0 4.61 4.68 
72.0 0.55 12.00 3.9 75.0 3.87 4.34 
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Table C-7: PLS Model predictions for α-LA and β-LG aggregation behavior compared 
to the reference values estimated by HPLC.  

Initial Conditions Heat treatment 
conditions 

Model Predictions 
(Aggregation %) 

Reference Values 
(Aggregation % ) 

 
αααα-LA 

Fraction 
Total 
Conc 
(g/L) 

T(ºC) 
 

pH αααα-LA ββββ-LG αααα-LA ββββ-LG 
 

0.25 6.50 85 3.5 32.39 5.92 30.89 11.48 
0.25 8.50 85 3.5 29.54 8.29 46.77 5.43 
0.25 9.50 85 3.5 40.93 5.01 55.12 5.08 
0.25 10.50 85 3.5 44.78 11.81 54.13 7.40 
0.25 12.00 85 3.5 58.46 22.61 53.86 14.16 
0.25 14.00 85 3.5 67.75 38.11 52.57 28.88 
0.25 1.50 85 3.7 18.20 2.55 7.30 2.00 
0.25 3.50 85 3.7 40.49 26.31 13.30 3.60 
0.25 4.50 85 3.7 32.66 10.28 26.52 4.80 
0.25 6.50 85 3.7 49.68 8.73 45.30 15.55 
0.25 8.50 85 3.7 54.94 32.76 55.25 33.30 
0.25 9.50 85 3.7 60.46 44.15 66.53 35.44 
0.25 10.50 85 3.7 68.27 35.23 66.59 39.34 
0.25 12.00 85 3.7 73.97 52.65 75.43 52.00 
0.25 14.00 85 3.7 75.91 57.49 77.33 58.30 
0.25 16.00 85 3.7 81.76 63.41 78.75 64.45 
0.25 3.00 75 3.9 9.27 17.00 18.23 15.94 

0.25 4.00 75 3.9 15.46 10.00 20.04 13.85 

0.25 6.00 75 3.9 45.00 7.00 36.79 14.41 

0.25 8.00 75 3.9 54.67 10.00 57.49 13.33 

0.25 10.00 75 3.9 60.45 13.78 62.88 16.72 

0.25 12.00 75 3.9 67.18 22.03 66.47 18.98 

0.25 14.00 75 3.9 71.15 24.79 71.31 19.28 

0.25 16.00 75 3.9 75.19 31.64 78.09 32.39 
0.10 12.00 75 3.9 10.91 36.28 10.68 30.15 
0.18 12.00 75 3.9 55.57 28.18 51.29 28.76 
0.25 12.00 75 3.9 65.86 31.04 64.97 26.71 
0.31 12.00 75 3.9 71.47 22.47 71.81 24.82 
0.35 12.00 75 3.9 76.37 21.78 75.79 24.83 
0.40 12.00 75 3.9 79.71 21.95 79.00 24.03 
0.44 12.00 75 3.9 83.92 28.76 81.14 22.47 
0.47 12.00 75 3.9 83.81 19.56 82.20 20.48 
0.50 12.00 75 3.9 87.31 23.23 83.35 22.04 
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Figure C-1: Comparison between two fluorescence-based PLS models: (i) Single 
protein PLS model calibrated using β-LG protein solutions. (ii) Binary protein PLS 
model calibrated using protein mixture samples of α-LA and β-LG. 
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APPENDIX D: Analysis of Whey Protein Solutions Using HPLC and 
Fluorescence  
 
Appendix D presents the raw data for the validation of the Binary Protein (α-LA/β-LG) 
PLS Model on whey protein isolate solutions. The PLS model was tested on validation 
set that contains whey protein concentrate solutions spiked with different amounts of α-
LA and β-LG in their purified form.  
 
 
Table D-1: Model prediction of β-LG and α-LA concentrations in the whey protein 
isolate solutions spiked with different amounts of α-LA and β-LG in their purified form.  
 

 Predicted  
α-LA 
(g/l) 

Predicted  
β-LG 
(g/l) 

Actual  
α-LA 
(g/l) 

Actual 
 β-LG 
(g/l) 

 
1 1.69788 6.0028 1.092 6.604 

2 3.02519 5.5 2.11 6.604 

3 3.58144 5.99584 3.32 6.604 

4 6.20019 5.57 5.437 6.604 

5 8.76169 6.14 8.502 6.604 

6 6.60606 3.57 5.668 4.402 

6 6.73272 6.18766 5.668 6.174 

8 6.29626 7.62394 5.668 7.03 

9 3.48377 9.06292 5.668 8.724 

10 4.61995 7.52759 4.251 6.543 

11 4.71095 8.03035 4.251 7.756 

12 3.19899 5.44226 3.13 6.028 
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Figure D-1: Comparison between model prediction of β-LG and HPLC measurements 

for 12 different whey protein isolate solutions    
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Figure D-2: Comparison between model prediction of α-LA and HPLC measurements 

for 12 different whey protein isolate solutions    
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Figure D-3: Excitation-emission matrix for 6 g/l whey protein concentrate solution.   
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Figure D-4: HPLC Chromatogram for 2 g/l whey protein isolate solution.   
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Figure D-5: HPLC Chromatogram for 2 g/l whey protein isolate solution spiked with 
0.50 g/l α-LA.    
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Figure D-6: HPLC Chromatogram for 2 g/l whey protein isolate solution spiked 
with 1 g/l α-LA.    
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Figure D-7: HPLC Chromatogram for 2 g/l whey protein isolate solution spiked with 3 
g/l BSA.    
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Figure D-8: Alpha-Lactalbumin’s HPLC Peak Area Standards 
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Figure D-9: Beta-Lactoglobulin’s HPLC Peak Area Standards 



 252

APPENDIX E: Fluorescence measurements obtained from fiber optic 
probe  

Protein fractionation using ultrafiltration is a membrane based separation process 

commonly used in the biotech, food and beverage industries. Protein mixtures can be 

fractionated based on their size where protein species larger than the membrane pores 

are retained by the membrane (i.e. in the retentate stream) while protein species smaller 

than the membrane pores passes through the membrane (permeate stream). During 

ultrafiltration of protein mixtures, changes in protein concentrations in the permeate 

and the retentate have been observed with time. Appendix E shows the development of 

a fluorescence based sensor for monitoring the changes in concentration of proteins in 

both the permeate and the retentate by making use of fluorescence spectroscopy and 

multivariate methods. A preliminary three-protein component system consisting of α-

lactalbumin (α-LA), β-lactoglobulin (β-LG) and Bovine Serum Albumin (BSA) was 

used as a model system in this study. A fiber optic probe was used to acquire multi-

wavelength fluorescence spectra of the permeate and the retentate at different times 

during ultrafiltration of α-LA and β-LG protein solutions. Multivariate models were 

developed for predicting the concentrations of α-LA and β-LG in both the permeate 

and the retentate by establishing a calibration model between fluorescence data 

acquired by the fiber optic probe and α-LA and β-LG concentrations measured by size-

exclusion chromatography. Figure E-1 shows the difference between the spectra 

collected using the fiber optic probe and cuvette-based method. Such difference is most 

likely due to the fact that collection of the spectra using the fiber optic probe is based 

on front-face geometry, while collection of the spectra using cuvettes is based on right-

angle geometry.  Figures E-2, E-3, E-4, E-5 and E-6 show the plot of regression 

coefficients of α-LA and β-LG versus excitation wavelengths at different ∆λ values. 

The model was validated on fiber optic fluorescence data that were not used for the 

calibration. Results in Table E-1 show that concentrations of α-LA and β-LG can be 

predicted directly from fluorescence data acquired by the fiber optic probe within a 

reasonable accuracy by making use of multivariate calibration tools.  
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Figures E-1: Synchronous fluorescence spectra at ∆λ=100 nm for BSA, α-LA and β-
LG (a) plastic cuvettes and (b) fiber optic probe  
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Figure E-2: PLS regression coefficients for α-LA (heavy line) and β-LG (light line) 
versus excitation wavelength at ∆λ=10 nm. 
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Figure E-3: PLS regression coefficients for α-LA (heavy line) and β-LG (light line) 
versus excitation wavelength at ∆λ=20 nm. 
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Figure E-4: PLS regression coefficients for α-LA (heavy line) and β-LG (light line) 
versus excitation wavelength at ∆λ=30 nm. 
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Figure E-5: PLS regression coefficients for α-LA (heavy line) and β-LG (light line) 
versus excitation wavelength at ∆λ=40 nm. 
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Figure E-6: PLS regression coefficients for α-LA (heavy line) and β-LG (light line) 
versus excitation wavelength at ∆λ=50 nm. 
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Table E-1: PLS model validation on 17 protein mixtures of β-LG, α-LA and BSA that 

were not used for the calibration     

 Measured (g/L) Predicted (g/L) 

  β-LG α-LA BSA β-LG α-LA BSA 
pH 7 0.5 0 0 0.417 -0.007 0.001 
pH 7 0.5 0 0 0.437 -0.024 0.003 
pH 7 0 0.5 0 0.003 0.554 -0.004 
pH 7 0 0.2 0 0.007 0.172 0.01 
pH 7 0.1 0 0 0.107 -0.006 0.005 

pH 5.6 0.013 0 0.013 0.014 -0.001 0.016 
pH 5.6 0.025 0 0.025 0.025 0 0.027 
pH 5.6 0.05 0 0.05 0.047 0.002 0.043 
pH 5.6 0.075 0 0.075 0.068 0.004 0.058 
pH 5.6 0.1 0 0.1 0.088 0.007 0.071 
pH 5.6 0.125 0 0.125 0.109 0.008 0.08 
pH 5.6 0 0.01 0.01 -0.001 0.012 0.014 
pH 5.6 0 0.025 0.025 -0.002 0.028 0.025 
pH 5.6 0 0.05 0.05 -0.001 0.054 0.043 
pH 5.6 0 0.075 0.075 0.001 0.078 0.052 
pH 5.6 0 0.1 0.1 -0.002 0.101 0.068 
pH 5.6 0 0.125 0.125 -0.03 0.148 0.095 
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APPENDIX F: Membrane Filtration Setup 
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Figure F-1: Schematic diagram for the experimental membrane filtration setup and the 

fiber optic probe assembly.  
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Figure F-2: Picture of the fiber-optic probe (FOP) connected to Varian Cary Eclipse 

spectrofuorometer and inserted into the a flask containing the protein solution. 
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Figure F-3: Picture of the Amicon filtration stirred cell (Model 8010, Amicon Corp, 

Beverly, MA).  
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APPENDIX G: The protein Association Behavior  

 

Table G-1: Tabulated data for the average molecular weight and radius of gyration 

reported in Verhuel et al., 2003 and FOP light scattering measurements for protein 

solutions prepared at different conditions  

pH NaCl 
(mM) 

β-LG 
(g/L) 

FOP 
Light scattering 

Mw 
(kDa) 

Rg 
(A) 

2.0 100 2 6.37 28.00 19.9 

2.0 100 5 12.06 28.37 20.3 

2.0 100 10 21.96 28.55 20.1 

4.7 0 2 40.64 32.76 22.6 

4.7 0 5 109.88 45.94 27.9 

4.7 0 10 146.25 61.86 34.5 

4.7 100 2 43.32 36.61 24.8 

4.7 100 5 83.49 37.89 24.8 

4.7 100 10 100.68 43.93 29.3 

6.9 0 2 8.04 29.47 22.1 

6.9 0 5 14.40 32.58 23.2 

6.9 0 10 25.74 34.04 23.6 

6.9 100 2 9.38 31.12 22.6 

6.9 100 5 19.74 33.49 23.2 

6.9 100 10 26.02 32.95 22.6 

8.0 0 2 6.48 23.43 19 

8.0 0 5 13.54 24.53 20.5 

8.0 0 10 23.45 25.44 22.1 

8.0 100 2 7.82 26.91 21.4 

8.0 100 5 14.17 28.55 22 

8.0 100 10 24.89 31.48 22.3 

5.4  5 44.93 41.18 30.2 
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Table G-2: Tabulated data for the degree of Lysozyme self-association reported in 

(Seth and Aswal, 2002) and FOP light scattering measurements for protein solutions 

prepared at different conditions pHs and NaCl concentrations  

 

pH NaCl 
(mM) 

β-LG 
(g/L) 

FOP 
Light scattering 

Percentage 
of Dimers 

 
4.6 0 2 51 0 

6.2 0 5  19 

7.5 0 10 132 50 

8.5 0 2  55 

10.5 0 5 162 65 

4.6 0.5 10  11 

4.6 1 2 61 20 

4.6 1.5 5  27 

4.6 2 10 81 31 
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Figure G-1: The correlation between light scattering measurements at λ= 600 nm 
acquired using the fiber optic probe for β-LG protein solutions prepared at different 
conditions (pHs, protein concentrations and salt concentrations) and the average 
molecular weight for those solutions reported in Verheul et al.,2003.   
 
 
 
 
 



 264

y = 0.0841x + 20.24
R2 = 0.8629

0

5

10

15

20

25

30

35

40

0 25 50 75 100 125 150

Light Scattering Intensity at 600nm

R
ad

iu
s 

o
f G

yr
at

io
n

 (A
)

 
Figure G-2: The correlation between light scattering measurement at λ= 600 nm 
acquired using the fiber optic probe for β-LG protein solutions prepared at different 
conditions (pHs, protein concentrations and salt concentrations) and the average 
radius of gyration for those solutions reported in Verheul et al.,2003   
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Figure G-3: The effect of pH on Rayleigh scattering intensity measured at excitation 

wavelength of 400 nm for whey protein isolate solution.  
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Figure G-4: Rayleigh scattering of Bipro’s whey protein isolate solution at three 
different pHs (short wavelength range). 
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Figure G-5: Rayleigh scattering of protein mixture of 50% BSA and 50% β-LG at two 
different pHs. 
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Figure G-6: Rayleigh scattering of protein mixture of 50% BSA and 50% LYS at three 
different pHs (short wavelnrth range). 
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Figure G-7: Rayleigh scattering profiles for three samples of BSA in culture medium 
that were subjected to heat treatment at 20, 40 and 60 C. 
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Figure G-8: Effect of salt concentration on electrostatic interactions of β-LG at 
pH=3.0: (top) 4 g/L β-LG, 0 mM salt, pH 3.01 (bottom) 4 g/L β-LG, 216 mM salt, pH 
3.01. 
 



 270

 

-20

180

380

580

780

980

280 300 320 340 360 380 400
Wavelength (nm)

In
te

n
si

ty
 (
A

.U
)

Delta=5 nm

Delta=50 nm

 

 

-20

180

380

580

780

980

280 300 320 340 360 380 400
Wavelength (nm)

In
te

n
si

ty
 (
A

.U
)

Delta=5 nm

Delta=50 nm

 

Figure G-9: Effect of salt concentration on electrostatic interactions of β-LG at 
pH=5.2: (top) 4 g/L β-LG, 0 mM salt, pH 5.2 (bottom) 4 g/L β-LG, 300 mM salt, pH 5.2. 
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Figure G-10: Effect of salt concentration on Rayleigh scattering intensity at excitation 
370 nm for 4 g/l β-LG protein solution at pH 3.0 (top) and pH 5.2 (bottom).  
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Figure G-11: HPLC Chromatogram for three beta-lactoglobulin protein solutions at 
different concentrations: higher dimmer fraction ocuurs at higher protein concentration. 
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Figure G-12: HPLC Chromatogram for three alpha-lactalbumin protein solutions at 
different concentrations.  
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Figure G-13: HPLC Chromatogram for 1 g/l beta-lactoglobulin protein solution where 
the peak at retention time 12.75 min represents the monomer and the peak at 
retention time of 12.0 min represents the dimmer.  
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Figure G-14: HPLC Chromatogram for 0.5 g/l beta-lactoglobulin (top) and 0.25 g/l 
beta-lactoglobulin protein solution: the peak at retention time 12.75 min represents the 
monomer and the peak at retention time of 12.0 min represents the dimmer.  
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Figure G-15: HPLC Chromatograms for different β-lactoglobulin /α-lactalbumin protein 
solutions. 
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APPENDIX H: Unfolding of the Excitation-Emission Matrices for 
PLS Analysis  

 
Let us take the case where 40 samples have been measured using fluorescence 

spectroscopy with 20 excitation wavelengths and 20 emission wavelengths making a 
three-way data array (40x20x20). Spectral raw data have to be transformed into a form 
suitable for the PLS analysis where each (20x20) excitation-emission matrix has been 
unfolded to (1x400) matrix as seen in figure. The unfolded excitation-emission 
matrices of dimension (1x400) can be subsequently arranged in one single two-way 
matrix of dimension (20x400). Such two-way matrix then has 20 rows (observations) 
and 400 columns (fluorescence intensity at excitation-emission pairs) as given below:  
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APPENDIX I: Factors Affecting the Fluorescence Signals of Proteins  
 
Fluorescence spectroscopy is a rapidly growing science that can be used to derive 

significant information about biological solutions with little or no sample preparation. 

It may be used in applications when other methods would be too time consuming or 

require destruction of precious samples. It is possible to set up real-time monitoring of 

processes using spectroscopy, such as monitoring the ultrafiltration of protein-

containing solutions. Monitoring the ultrafiltration of protein-containing solutions 

requires a fluorescence based assay for quantifying the foulants in the permeate and 

retentate during ultra filtration.  However, we still need to better understand the subtle 

changes in fluorescence features as a result of changes commonly encountered during 

processing of protein-containing solutions. Good spectral databases documenting all 

the fluorescence features in response to changes in the processing conditions are also 

needed before fluorescence spectroscopy can be as widely used a tool as HPLC. 

Utilizing fluorescence spectroscopy in the design of a reliable monitoring system for 

bioprocesses that is accurate, fast, sensitive and that can be potentially implemented 

on-line is an extremely complex process requiring awareness of the major factors 

affecting the fluorescence signal. The material in the following sections outlines the 

sensitivity of protein fluorescence towards pH, ionic strength and other physical 

phenomena such as concentration quenching.    
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Table I-1: Effect of concentration-dependent interferences on the shape of 
synchronous spectra of whey protein isolate solutions acquired at ∆λ=50 nm.  
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Figure I-1: Effect of pH on the emission intensity collected for 2 g/l β-LG solutions 
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Figure I-2: Effect of pH on the emission spectra of 2 g/l β-LG solutions acquired at 

270 nm excitation.  
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Figure I-3: Synchronous fluorescence spectra for four β-LG solutions (1 g/L) at 
different pHs.   
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Figure I-4: Synchronous fluorescence spectra for three b-LG  solutions (1 g/L) at 
three different ionic strengths (0, 100mM,200Mm).  
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APPENDIX J: Preliminary filtration experiments for single protein 
solutions of β-LG and two-protein solutions of α-LA and β-LG    
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Figure J-1: The effect of stirring on the permeate flow (top) and β-LG protein 
concentration in the permeate and the bulk with respect to filtration time.    
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Figure J-2: Permeate mass collected for two different ultra filtration experiments (Exp 
11 and Exp 12) performed at two different pHs (pressure difference 30 psi) for protein 
solution of α-LA and β-LG.     
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Figure J-3: Permeate mass collected for two different ultra filtration experiments (Exp 
8 and Exp 10) performed at two different pHs (pressure difference 25 psi) for protein 
solution of α-LA and β-LG.     
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Figure J-4: Flux decline for two filtration experiments at two different pHs: pH 2.8 and 
pH 5.6, 25 psi (top) and flux decline data for UF pH 5.6 at two different 
transmembrane pressures 25 psi and 30 psi (bottom). 
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