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ABSTRACT

Membrane filtration of protein solutions is influenced by a wide range of processing
and physicochemical conditions. Monitoring and optimizing membrane filtration may
have advantages for achieving, in a cost effective manner, improved bioproduct
purification and membrane performance which is relevant to pharmaceutical and
biochemical applications. The motivation of this work was to examine the feasibility of
applying two-dimensional fluorescence spectroscopy in conjunction with chemometric
techniques for monitoring and possibly optimizing the performance of membrane

processes.

Preliminary work focused on assessing the use of multivariate calibration tools in
conjunction with the sensitivity of intrinsic protein fluorescence towards changes in
environmental conditions was to predict protein concentration and aggregation
behavior. A model protein, B-lactoglobulin (B-LG), was used as a first simple case
scenario. Results showed very good agreement between the fluorescence based
predictions and measurements obtained by HPLC and gravimetric analysis regardless
of the conditions. PLS analysis of excitation-emission matrices revealed unique
spectral fingerprints that are most likely associated with the heat-induced denaturation
and aggregation. Standard Normal Variate, a signal preprocessing and filtering tool,
was shown to have a significant effect on enhancing the predictive accuracy and
robustness of the PLS model as it reduced the effect of instrumental noise. The
methodology was then extended to a two-component protein system consisting of a-
lactlalbumin (0-LA) and B-lactoglobulin (B-LG). The process of thermal induced
aggregation of B-LG and a-LA protein in mixtures, which involves the disappearance
of native-like proteins, was studied under various treatment conditions including
different temperatures, pH, total initial protein concentration and proportions of a-LA
and B-LG. A Partial Least Squares (PLS) regression algorithm was used to correlate

the concentrations of a-LA and B-LG to the fluorescence spectra obtained for mixtures.
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The results illustrated that multivariate models could effectively deconvolute multi-
wavelength fluorescence spectra collected for the protein mixtures and thereby provide
a fairly accurate quantification of respective native-like a-LA and B-LG despite the
significant overlap between their emission profiles. It was also demonstrated that a PLS
model could be used as a black-box prediction tool for estimating protein aggregation

when combined with simple mass balances.

Ultrafiltration experiments of the whey protein isolate solutions were carried out in
dead-end filtration mode and fluorescence measurements of permeate and retentate
solutions were acquired in synchronous scanning mode using a fiber optic probe. By
implementing a dilution strategy for the retentate side, the fluorescence based PLS
model encompassed a low protein concentration range where fluorescence was not
expected to be significantly influenced by concentration-dependent interferences. It
was also demonstrated that synchronous spectra can provide good predictions and
consequently the use of the full spectrum may not be necessary for monitoring with
corresponding savings in acquisition time. Membrane performance variables that are
difficult to measure, such as individual protein transmission and membrane selectivity
could be estimated directly from fluorescence-based predictions of protein

concentrations in the retentate and permeate streams.

Multiwavelength light scattering spectra, acquired using the fiber optic probe, were
shown to be a useful indicator for protein self-association behavior, which is known to
influence the membrane filtration. High fouling potential were observed for protein
solutions that exhibited significant Rayleigh scattering. A predictive PLS model for
estimating protein aggregation from Rayleigh scattering measurements was developed
and it was tested by using molecular weight experimental values obtained from the
literature. Although this comparison was only partial due to the limited amount of
molecular weight data available, the findings verified the possibility of estimating the
aggregate size from multiwavelength Rayleigh scattering spectra acquired using a

conventional spectrofluorometer. Thus, the results implied that both intrinsic
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fluorescence and light scattering multiwavelength measurements could provide

complementary information about the filtration process.
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CHAPTER 1

Research Aim and Outline

The ability to purify proteins in a cost-effective mannaraocommercial scale and to
meet the required high purity for pharmaceutical and foodymts is an important
technical goal that industry is striving to achieve. Aydanumber of protein products
are used as foods, food additives, therapeutic proteingrhaecovered from various
plant, microbial and animal sources; however, most prdiased products need to be
purified before they can be used (Ghosh, 2003). As a resudtein separation
technologies play a vital role as unit operations Ime tdevelopment and
commercialization of high-value protein-based productsmbtane filtration is a
technique that is commonly used in the biotech, food and &g&andustries and it
relies on the use of a synthetic membrane acting @sysical barrier to separate the
target protein from other substances. Membrane poreasidemembrane chemistry

determine the type of molecules that can be processedaiZ and Zydney, 1996).

During filtration, target proteins in the soluble phaseramoved via the membrane to
the permeate phase while macromolecules and partmtgerlthan the membrane
pores are retained by the membrane (i.e. in the retesttaam) as seen in Figure 1.1.

High performance filtration is usually characterized bygh protein product



transmission, high separation quality and high product gu@é&man and Zydney,

1996).

N.,, air—
2 —() TMP
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’ \Membrane
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Figure 1.1 Schematic diagram for membrane-based protein separation module (as
depicted in Skofepova, 2007).

1.1. Research Motivation

The most critical problem encountered in membrane tidtnaprocesses is membrane
fouling which has an adverse effect on the performaridbe separation. Membrane
fouling is referred to as the accumulation of proteird/@mnother particles in the feed
stream inside the pores and on the external membrafecesuwhich will alter the
sieving characteristics of the membrane, and add nesistance to the flow (Figure
1.2). Membrane fouling in protein separation processea igery complicated
phenomenon compared to fouling caused by dissolved salidsater treatment

systems (Guelet al, 1998). This is due to the complexity of protein mixturEse



complexity of protein mixtures arises from the presericirface interactions between
species in the bulk solution as well as interactiorisvden the membrane and these
species (Palaciet al, 2003). The extent of membrane fouling by proteins invokes t
interplay of a large number of physicochemical coadti (i.e. solution pH and salt
concentration) and hydrodynamic conditions (i.e. vsakar rate and permeate flux)
(Tracey and Davis, 1994; Ghosh, 2003). Just a small varigtitre above-mentioned
conditions induces important changes in the way theegsohas to be operated (Arora
and Davis, 1994). Membrane fouling involves three differentepat of matter-
accumulation phenomena on its surface: (1) concemratdarization, (2) (followed
by) cake/gel layer formation, (3) and aggregate cake faométie., cake of retained

aggregates) (Redkar and Davi993).

Plugged Pores

Figure 1.2 Fouling caused by the accumulation of proteins and aggregates on the
membrane surface
(http://www.dunwellgroup.com/ProductsServices/DNL/VSEP/Images/Figurel.gif).



Clearly, membrane fouling has a significant effect aodpct yield and productivity.
The deposition of proteins inside pores and the tendendyesé tproteins to aggregate
may cause Yield losses of the target protein. In aaditigoroduct yield considerations
associated with fouling, there are economical considesat Protein fouling decreases
the permeate flovand thereby drives up the cost of operation and mainteiBasts,
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Figure 1.3 Feasibility of applying fluorescence spectroscopy in conjunction with
chemometric techniques for monitoring the filtration process.

It would be highly beneficial to industry if an appropeiahonitoring system could be
implemented to determine the extent of protein foulingd feemposition, product
purity, separation efficiency and yield in a minimum peéraf time. The traditional

approach for determining product purity is based on off-lir@yars techniques such



as analytical chromatography (e.g. HPLC and size exclusieasurements), which
results in a time delay of several hours or days Etvwsampling and obtaining the
results. The traditional approach does not offer amoph terms of process control.
There is a need for fast and reliable methods of momgoprotein membrane

separation for process control and optimization.

1.2. Resear ch Objectives

The first objective of this thesis was to examine f@sibility of applying multi-
wavelength fluorescence spectroscopy in conjunction vigmometric techniques for
monitoring and optimizing filtration processes as illugdatn Figure 1.3. A major
advantage of fluorescence spectroscopsr other analytical techniques is that it is
rapid, noninvasive and very sensitive. Chemometric technighgsipon multivariate
statistical and mathematical tools for decomposing asumeaent into valuable

process information.

The second objective was to use this information to ifyetite range of operating
conditions (i.e. the transmembrane pressure and theajoid of the feed solution) that
will lead to optimal membrane performance. Achieving tHigective would most
likely improve the quality of bioproducts, lower the costneembrane replacement,
control membrane fouling and thus prolong membrane gtalaind integrity. In
addition, it could allow manufacturers to determine ribeessary operating conditions
for minimization of potential fouling phenomena and dolr@ss concurrent product and

process engineering issues.



The third objective was to study the feasibility of atilig multi-wavelength
fluorescence data for predicting the level of protein agggren that is considered to be

a major factor that influences membrane fouling.

1.3. Thesis Structure

Chapter 2 explains many of the practical and theoreticalamentals of membrane
filtration, fluorescence spectroscopy and multivariaaéibcation methods. The first
section of Chapter 2 begins by providing a theoreticalpgadtical basis of membrane
filtration and factors that influence the performande ntembrane-based protein
separation processes. Chapter 3 examines heat-induced aggrdgsitavior of a
model protein B-LG under different conditions. A predictive model lhsen
fluorescence measurements is developed for predicting prstdubility and its
aggregation behavior and progress with time at differenfpeestures and pHs.
Chapter 4 extends the studies conducted in Chapter 3 by aamgidé¢wo-component
system consisting af-LA and B-LG as a model system. A predictive model based on
fluorescence measurements is developed for predictingdhsbility of individual
components and their aggregation behavior after hedatmieaea Chapter 5 presents a
novel methodology for monitoring filtration process pemfance by using
fluorescence measurements acquired using a fiber optic.profy@ortant parameters
for evaluating membrane filtration performance (i.e.mbeane selectivity, protein
transmission behavior) were shown to be estimated udlimgrescence-based
measurements of the permeate, retentate and feed stre@hapter 6 demonstrates

how Rayleighscattering signals of the feed stream can be used tongam insight



into the potential of these mixtures for fouling and to ptewgquantitative information
on average aggregate size of the protein in solution. @h@gtighlights conclusions
from the thesis and suggestions for future work. Cha@eds 5 and 6 are arranged in
publication format, each with its individual abstract,radiuction, materials and

methods, results and discussion as well as conclusion.



CHAPTER 2

Theor etical Background

2.1 Membrane Based Separ ation Pr ocesses

Membrane-based separation processes are those prosbsseskey component is a
synthetic membrane, a thin barrier through which solutéssalvents are selectively
transported (Ghosh, 2003). Such membranes are manufactunedrganic polymers
or inorganic materials resulting in membranes with dferstructural morphologies

and chemical properties.
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Figure 2.1 Classification of membrane processes for separating milk components
based on membrane pore size and/or the type of material being processed (as
depicted in http://www.idfa.org/meetings/presentations/milktechconf_cold.pdf)



Membrane characteristics such as membrane porosityctisitye and hydraulic
permeability are all dictated by its structural morphglagd chemical characteristics
(Ghosh, 2003). Membrane-based separation processes arallgartassified based on
the membrane pore size or on the type of materialgbgiocessed. Figure 2.1 shows
the classification of membrane processes for separatitbhgcomponents based on

membrane pore size and/or the type of material beingepsed.

The overlap between different types of membrane-baspdration processes is so
significant that, in some cases, classification bexodifficult. For instance, in spite of
the fact that ultrafiltration is generally applied tirdtion of macromolecules such as
proteins, smaller molecules or even particulate nat@an also be processed by

ultrafiltration (Ghosh, 2003).

2.2 Major Concerns Associated with Ultrafiltration-Based Protein

Fractionation

2.2.1. Membrane Fouling

Fouling is defined in general as adsorption and depositionatérial present in the

feed which results in reduction in the permeate flux duntmcrease in the membrane
resistance and decrease in hydraulic permeability. Taerethree types of protein
fouling classified according to where it occurs: ingdrrpore blockage and external
(Figure 2.2)Internal fouling (pore narrowing/constriction) is definedthe deposition

and adsorption of feed particles inside the membranacgi(Guellet al., 1998). This



leads to pore narrowing and constriction of the flavd @ventually reduction of the

permeate flux through the membrane.

The extent of internal fouling is dependent on the nramd characteristics such as
morphology, pore size distribution and average pore Biae.example, very porous
membrane surfaces are highly susceptible to internal foldegause proteins can
easily penetrate and accumulate on the interior seiiddé the membrane pores (Davis,
1992). Pore plugging refers to the accumulation of the lgvgatein aggregates or
particles on the pore entrance thereby increasing Higtarce of the membrane. Pore
plugging, however, does not appear to contribute significaatifhe decline in flux
that occurs during microfiltration of protein solutions,ths average protein particle
size is much smaller than the average membrane mer¢Belfortet al, 1994; Zeman
and Zydney, 1996). Protein fouling can also be classifie@\arsible or irreversible

(Palacioet al.,2003).

Pore blockage

External fouling =
(reversible)

Intermnal fouling
(irreversible)

Figure 2.2: Mechanisms of membrane fouling (as depicted in Guettler, 2006)
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2.2.2 Concentration Polarization

Concentration polarization is referred to as the acdation of retained solute at the

upstream surface of the membrane (Zeman and Zydney, 19@@iced@ration

polarization can affect the process through the follgwmechanisms (Zeman and

Zydney, 1996):

o A localized high protein concentration can result in prgpeotein interactions
leading to concentration polarization and a high osnprgssure.

o When the concentration polarization is severe, the pratein concentration can
reach a value called gelation-concentration at whigtotein gel layer can form on
the membrane surface as shown in Figure 2.3. That geldayédes an additional
hydraulic resistance to the solvent flow in serieshwihat provided by the
membrane (Ghosh, 2003).

o The accumulation of solutes in the immediate vicirafythe membrane surface
increases the amount of protein adsorption, which maptnesirreversible fouling
of the membrane, altering its sieving characteristicab(Band Gaikar, 2001;

Zeman and Zydney, 1996).

All of these mechanisms can change the apparent sievitificere of proteins and
therefore the selectivity of the membrane towards pabteeprotein species could
decrease with filtration time. Permeate flux decreasith time also as the extent of
concentration polarization increases resulting in desing process productivity.
Techniques useful in minimizing concentration polarizatieould also be useful in

minimizing fouling (Ghosh, 2003).
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Figure 2.3: A schematic diagram showing the accumulation of retained solute at the
upstream surface of the membrane (i.e. the concentration polarization) where C,, C,
and C, denote the bulk, permeate and gel concentrations respectively (as depicted in

http//:te-webserver.cce.iastate.edu/courses/ce525/Membrane)

2.2.3. Protein denaturation and Aggregation Behavior

Achieving optimal performance of protein separation by menebrdtration is a

challenging task due to the complexity of protein behawiagrolution. This behavior
can be explained by the occurrence of several events asgc protein-protein
interactions, denaturation and aggregation over the cofitke filtration process. The
likelihood of occurrence of any of these events is datexd by the surrounding
conditions, as previously described.
behavior in the feed solution and in the feed line is ¢sdea ensure cost efficient and
reliable operation over the course of filtration. Pirotéenaturation generally involves

conformational and structural changes related to pami@ilding of the native protein

12
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that leads to the exposure of some hydrophobic amino asidues. The degree of
denaturation is very complicated as it depends on a nuaoflgrysical and chemical
parameters such as temperature, protein concentratiominppobtein interactions,
ionic strength, pH and shear (Vetri and Militello, 2005). fimeir study of
microfiltration fouling behaviour of §-lactoglobulin solution, Marsha#ét al. (1997)
observed an increase in fouling resistance with inargadiux, which was
accompanied by a decrease in protein transmission dbesgembrane due to protein
aggregates blocking a majority of membrane pores. AcapridinMarshallet al.
(1997), higher mechanical shear will favor protein denaturadind aggregation as
more protein molecules might undergo conformational géanin their structure.
Protein denaturation is usually followed by aggregation h&f partially unfolded
protein molecules via the formation of new intermolactonds between the exposed
amino acid residues (Mulvihill and Donovan, 1987). Aggregatian occur due to

non-covalent bonding (electrostatic and dipolar Vanwieals attractive forces).

2.3 Performance of the Protein-protein Fractionation

The performance of membrane filtration process caradsessed in terms of the
selectivity of the membrane, product recovery (yield) #rel protein transmissions.
Filtration performance is affected over time as aultesf protein fouling and
concentration polarization across the membrane. Ip€h& the use of fluorescence
spectroscopy for monitoring these parameters during thatifh process will be
illustrated. A detailed description of all of theskrdtion performance parameters is

provided here for information.
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2.3.1 Product Yield

Product yield (also called recovery) of the targeted protee. the component that
needs to be purified) is defined as the ratio of the totas of the recovered protein in
the product stream to its initial total mass in the feellition (Cheang and Zydney,
2004). The definition of the product stream can be eitherpgrmeate or retentate
depending on the objective of the separation (Mulder, 199@hel objective is to
concentrate the targeted component in the feed by remswiatier solutes through the
membrane, then the retentate is considered to be tdegbretream. However, when
membrane filtration is used for purifying the target compori®y removing larger
solutes,then the permeate stream is considered to be the pretheetm since it
contains the target components that selectively gassigh the membrane (Mulder,
1996). The overall protein yield for a given proteins usually estimated using

Equation 2-1 (Cheang and Zydney., 2004):

= M x 100 % (2-1)
ViC

i
whereV, andV; are the volume of the product (either permeate or taenand the

initial feed solutions, respectively.

Product losses can be attributed to numerous sourcesasuchembrane fouling,
protein solubility reduction, protein denaturation and aggregaGmech sources of
product loss are influenced by the operating conditionstanéeed solution properties.
Therefore, product yield can be sensitive to changes getbenditions. A thorough

evaluation of each of these areas should result im@ps with stable and continuous

14



high yields. It is also possible that over time mectenand or chemical degradation
of the membrane can occur and retention could changer otime

(http://www.millipore.com/techpublications/techl/an1026en0Qyends in process
yields which change over time are indicative of this tgbebehavior. Achieving

optimal product yield for membrane separation processesmasof the challenges
encountered in the food and pharmaceutical industries (Tanunj2006). It is

important to take samples and measure increased prodsesslin order to confirm
what is happening (http://www.millipore.com/techpublicaticewitl/an1026en00). For
industrial processes where the primary purpose of filmaisothe concentration of
product present in feed solution from a previous purificatioseparation step, real
time measurement can allow accurate determination ndéectration end point and

hence maximize yield.

2.3.2 Protein Sieving Coefficient

The transmission coefficient (also called the prosewing coefficient), which is equal
to the ratio of the concentration of a component englrmeate (§) to the bulk (Gi),

is an important quantity for monitoring membrane perforeafGhosh, 2003). It is

given by the following:

— Cpi
Top =" (2-2)
G

where C; and C ; are the permeate and the bulk concentrations resplgctife

given protein.
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2.3.3 Membrane Selectivity
The efficiency of the binary protein fractionation @snamonly expressed in terms of

the selectivity which is defined as (Ghosh, 2002):
T

W, =— (2-3)
y

Wherel ; stands for the sieving coefficient of the preferentiatignsmitted protein

while T'; stands for the sieving coefficient of the preferehtiedtained protein. The

selectivity in ultrafiltration is mainly determined byetimolecular size of the proteins
to be separated if there is a significant differemcéheir size. In the case of proteins
having comparable sizes, other factors such as physicomdleaunditions can be
manipulated to play significant roles in determining deléyg. Eq (2-3) is valid only
for binary protein mixture and it can not be used forsmssg the efficiency of protein
fractionation of complex protein mixtures that consistnwmre than two proteins
(Ghosh, 2002). Instead, a new parameter termed effectectigity can be introduced
for accurate description of selectivity in ultra filicat of complex protein mixtures

(Ghosh, 2000). Such parameter is given as (Ghosh, 2003):
T
v, =<_— 2-4
2 Tis =9

It is obvious that the selectivity value is dependent uppensieving coefficients of
individual proteins, which in turn, would depend on parameterh sgcpH, ionic
strength, permeate flux and the degree of concentrgi@arization as will be

described in section 2.4. The selectivity of separationsrgély changes with process
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time as a consequence of membrane fouling, concentratianzation and protein-
protein interactions. The selectivity of separation carethanced by the optimization
of pH, feed concentration, salt concentration or patendlux (Ghosh, 2002). The
effect of permeate flux on the selectivity coeffidiéor ultrafiltration of BSA and 1gG
is illustrated by Figure 2.4(Ghosh, 2002). Rapid monitoringhef selectivity value
during operation as a result of changing these variablald telp the operator to find

the optimal conditions either in pilot-lab scaleatrindustrial scale to achieve highest

selectivity.
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Figure 2.4: The effect of permeate flux on the selectivity coefficient for ultrafiltration of
BSA and IgG is illustrated by Figure (Ghosh, 2002).

2.4 Factors Affecting the Separ ation Perfor mance

The efficiency and cost of membrane processing is depeoddiux and transmission,

which is a function of different factors. The memleaype, processing parameters and
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the feed solution properties will determine flux and cotregion of components in the
permeate and retentate. Protein fractionation canfbetad by numerous factors that
are relevant to the process. These factors can medinto two categories: operating
factors and properties of the feed solution (Balakrisharash Agarwal., 1996; Chan,
2002). Operating parameters refer to the pressure drop abeossembrane and the
stirring speed, while the properties of the feed solutiovolve physiochemical
properties of the feed (i.e. pH and ionic strength), {mtadein concentration and feed
composition. Those variables have to be manipulatedrder to achieve optimal

performance of the protein separation process (Chan, 2002).

2.4.1. Processing Parameters (Operating Conditions)

2.4.1.1 Transmembrane Pressure TMP.

Transmembrane pressure is defined as the difference supedsetween the permeate
side and the feed side of the membrane. The transmemprassure provides the
driving force for the separation. In general, the inppaimeate flux increases linearly
with an increase in the transmembrane pressure. Incredssngransmembrane
pressure can increase the driving force acting on the pélenenolecules, and
eventually permeate flux also increases (Sulaiman/Axoda, 2002). However, the
occurrence of such increase in the permeate flux asudt & increasing th& MP is
only temporary and it is usually followed by a rapid fldecline soon after (Chan,
2002). At the same time, the increase in the permeatenifyyxbe accompanied by an
associated momentary increase in the solute permedbrlitygh the membrane before

a sharp decline (Chan, 2002). Such a time dependent decreflsx and solute
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permeability are induced by the accumulation of solutethermembrane leading to
the deposition and adsorption of solutes on the membrafaeswas well as within the

pores (Guelet al., 1998, Chan, 2002).

2.4.1.2. Stirring Speed

It is known that stirring reduces the concentration nmdéion of solutes at the
membrane surface since it increases the rate of badsidifi of solutes from the
membrane surface towards the bulk. The consequence ofasuelffect is greater
protein rejection and at the same time an enhancemehk ipermeate flux (Chan,
2002). Some researchers have observations shown that Bigrring speeds may not
necessarily improve the separation process. For gest&mankeret al. (1989) showed
that higher stirring speeds caused the transmissiorsaftB decrease with respect to
time. According to the authors, such a decrease in B8&mission can be attributable
to the shear induced aggregation of BSA caused by thengtiagtion, resulting in
plugging of the pores and hence increased rejection (Chan,. 2M004i et al., (1998)
performed a stirred-cell ultrafiltration study to inugate the effect of stirring on the
separation of BSA and egg white lysozyme. Although thafitin rate was improved
by increasing the stirring speed, lysozyme transmissionsadite membrane was
reduced (Chan, 2002, Mukei al.,1998). A possible explanation of this is that stirring
reduced the concentration polarization of lysozyme aecefbre, the concentration of
lysozyme at the membrane surface decreased. Since tte@npbm@nsport through

membrane pores is influenced by the concentration gradeéween the retentate and
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the permeate sides, decreasing the concentration atettmbrane wall would result in

reducing the transmission of the protein (Chan, 2002, Matkali, 1998).

2.4.2. Feed-Stock Conditions:

2.4.2.1. Physicochemical Conditions: pH and ionic strength

Physiochemical conditions (pH and ionic strength) have dupnd influence on
membrane fouling as they affect both intermolecular prgisotein interactions as
well as electrostatic protein-membrane interactid®sdikar and Davis, 1993). These
interactions can be manipulated for the purpose of reducingbra@e fouling by
adjusting the feed solution pH and ionic strength (Chan, 20&3ch protein has a
certain isoelectric point. The isoelectric point (J&® defined as the neutral pH value
at which the protein molecule acquires zero net chardeaama result, electrostatic
attractive forces prevail in the protein solution. At pilues below the isoelectric
point, protein molecules acquire net positive charges velfiitese the isoelectric point
they acquire net negative charges. These chargessedreamagnitude with increasing
distance away from the isoelectric point (Chan, 2002; &emnd Zydney, 1996;
Ghosh, 2003). Physiochemical conditions (pH and ionic gtingrhave a profound
influence on membrane fouling as they affect both prgisitein interactions as well
as protein-membrane interactions (Redkar and Davis, 1993e Titeractions can be
manipulated for the purpose of reducing membrane fouling bystejuthe feed
solution pH and ionic strength (Chan, 2002; Heatd Belfort, 2006 Each protein
has a certain isoelectric point. The isoelectric pQiaP) is defined as the neutral pH

value at which the protein molecule acquires zero neirgeh and as a result,
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electrostatic attractive forces prevail in the proteaiution. Away from the IEP,
intermolecular electrostatic repulsive forces dominatatein-protein interactions as
protein molecules in solution acquire similar char@edow the isoelectric point, a net
positive charge prevails while a net negative charge ieprezbove the isoelectric
point (Chan, 2002; Zeman and Zydney, 1996; Ghosh, 2003). Ggnspaaking,
membrane fouling becomes significant at the protein’s estét point due to the
electrostatic attractive forces developing between pratelecules. Palecek and
Zydney (1994) studied the fouling behavior of five protein soh#i hemoglobin,
lysozyme, ribonuclease A, immunoglobulin G and BSA irstared cell filtration
device at pH 7. Flux decline data were obtained as a ifumatif time. The
immunoglobulin G, hemoglobin, and ribonulease A sohgicappeared to have
approximately identical membrane fouling behavior whiles lesgnificant flux
reduction was observed during the filtration of the otle protein solutions. The
reason for this difference in membrane fouling behavsodue to their different
isoelectric points. A protein in solution that hasismelectric point close to the feed
solution pH would have a greater tendency to aggregaténdeta significant decline
in flux as in the case of immunoglobulin G, hemoglokand ribonuclease A. The
magnitude of the electrostatic interactions betweengelaprotein molecules and the
membrane is also influenced by the total salt concenitrééilso called ionic strength)
of the solution (Zeman and Zydney, 1996). Salt ions bindrtized groups on charged
protein molecules and produce a charge screening effetteosldctrical interactions
between these molecules, significantly reducing anyrelgettic attractive or repulsive

forces (Chan, 2002; Zeman and Zydney, 1996; Ghosh, 2003).dskatic repulsion
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between the membrane surface and the protein molecuksslution occurs as they
acquire similar charge sign and thus the likelihood of proteuling and protein
adsorption on the membrane surface is reduced. On the lwhd, the tendency of
protein deposition and adsorption on the membrane suiftadecreased due to
attractive electrostatic interactions if both the pitd and the membrane are oppositely

charged (Chan, 2002; Zeman and Zydney, 1996; Ghosh, 2003).

2.4.2.2. Feed Concentration

In all studies undertaken so far, it has been found timratflux decline is higher when
increasing the feed concentration (Chan 2002). By inergdbe feed concentration, a
greater amount of solute will be transported towards thelmnane surface and hence
greater accumulation of solutes in the membrane boundger Wwill occur. This
results in greater concentration polarization and as#d likelihood of membrane

fouling (Chan, 2002).

2.5. Process Analysis and M onitoring

A commonly used phrase “if you do not measure it, you daomatrol it” applies as
much to membrane filtration processes as to any otlmeoppharmaceutical and food
products manufacturing (Harrington, 1987). The previous seddéornstrated that the
performance of membrane separation processes is iofldeby many factors.
Accordingly, in order to develop and optimize membranegsses and in order to
operate them efficiently, it is critical that theevall state of the process be monitored

and controlled in an appropriate manner and that the resmdribe process towards
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changes in the processing conditions be determined. Achi¢ivasg goals requires
three different functions: measurement, analysisnedsurements and control. This
section reviews currently available instrumentationd amnitoring methodologies

implemented in membrane separation processes.

]
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Figure 2.5: A schematic summary of membrane filtration instrumentation (Kelly and
Peterson, 2001). The system consists of a feed tank, membrane module, recirculation
pump, pressure sensors (PT) and flowmeters (Fl) on the feed, retentate and permeate
lines.

Figure 2.5 shows a schematic summary of membranetiéltranstrumentation.

Pressure sensors denoted by (PT) are placed in the fesdate and permeate lines to
monitor the transmembrane pressure and retentate mredsys of the membrane
operation. Flowmeters (Fl) are installed in both retentand permeate streams to

monitor the stream flow rates (Kelly and Peterson, 2001).
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One of the major goals, if not requirements, of obtgrata from membrane filtration
is estimation of product recovery and membrane selectbased on the available
measurements of permeate, retentate and feed streamoss$analysis and monitoring
systems are classified into two categories basedhenlocation and the speed of

analysis as described in the following subsections.

2.5.1 Off-line Analytical Techniques

Analysis that is done on samples removed from theegss@nd sent to analytical
device for testing is calledff-line. The objective of sampling in bioprocesses is to
acquire representative samples that correspond to thmellostate of the process at a
certain time (Vojinovic et al., 2006). Traditional laboratory techniques are
implemented for the analysis of samples withdrawmfritne process such as size-
exclusion chromatography. HPLC has been extensively foseahalyzing individual
proteins in permeate and retentate and for ascertainengathisistency and quality of
the desired product stream (Folta-Stogniew & Williams, 1€989rino & Mire-Sluis,
2004). Another advantage of size-exclusion HPLC is thagives a reliable,
guantitative determination of the level of aggregationetemtate, feed and permeate,
and may also distinguish multimers form the productntdrest (Kelly and Peterson,
2001; Wanget al, 2003). Due to these advantages, HPLC is an establisiaddical
tool for decades and available in any laboratory dealiny pribcess development and
quality control (Folta-Stogniew & Williams, 1999). HoweyétPLC has proven to be
excessively time consuming and labor-intensive and hencanihot be used for

continuous monitoring of the filtration process progress.
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2.5.2 On-line Optical Sensors

The second type of process analysis is knowarabne analysis since the analytical
instrument is positioned directly in close proximity te grocess line (Vojinoviet al,
2006). Optical methods based upon light absorbance (spectrogtotpnscattering
(turbiditimeters) or fluorescence measurements (sp&sbroimetry) have started to
find more application for continuous monitoring of biopr@ess They provide
increased efficiency and productivity through effective precastomation without
violating integrity of the system and without wasting wdile products through
sampling. This section provides a discussion of appmicaadvantages and limitations

of these methods in relation to membrane separatiarepses.

2.5.2.1. UV photometers

Inghamet al. (1979) was one of the earliest works that investigatedetsbility of
UV photometers for continuous monitoring of a filtratiprocessn-line. In a closed
loop filtration unit where the retentate and permeaesliwere combined together and
returned to the stirred cell containing the feed solutéosmall part of the returning
fluid was diverted to a UV detector, which allowed thé &bsorbance of the returning
solution to be continuously monitored. Inghatral, found that a stepwise increase in
trans-membrane pressure was accompanied by a progressigasgedn the UV
absorbance reading, reflecting the lower concentratioth® protein in the fluid
returning to the stirred cell. They found that such aedese in protein concentration is
due to protein adsorption and deposition on the membraneewdowthey confined

their emphasis to the steady state portions of tWetikde-curves while ignoring the
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real-time transient changes of UV readings which aceoregl the step changes in the

transmembrane pressure.
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Figure 2.6: Continuous monitoring of the permeate using UV detectors at different
permeate fluxes for an ultrafiltration system (Ghosh et al., 2000).

In another study (Ghoshkt al, 2000b), an on-line flow-through UV detector was
implemented for continuous monitoring of the permeate lineéer constant-flux

ultrafiltration conditions. It was found that the UlNMme-curve is sensitive to step
changes in the permeate flux as seen in Figure 2.6. Tiseywalol a faster decrease in
the UV value (reflecting protein concentration) at leighermeate flux, which can be
attributed to the rapid accumulation of proteins on tleenbrane surface and thereby

hindered protein transport across the membrane. Ingham(1974) pointed out that a

26



more elaborate system containing monitors installed ith dmes would allow
necessary parameters related to membrane separatiom@erée to be monitored in

real time.
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Figure 2.7: Schematic diagram of a typical membrane filtration system showing the
positions of in-line photometers installed for monitoring the process streams (as
depicted in http://www.optek.com/images/app_Tangential_Filtration.gif)

Figure 2.7 is a schematic diagram of the membrane umitifgieg the three process
flows that should be monitored: product feed to the reldtion tank, retentate return
to the recirculation tank and permeate flow. In systernth an overall control scheme,
UV absorption sensors installed at the feed line teélsend stage can control the feed
concentration by adjusting the operating conditions siscfiow rates and pressures to

achieve optimal performance of the process.
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UV sensors installed at the retentate line can be wsesdignaling or indicating the
desired end point at which acceptable product yield is achehweag the production
run (Meltzer and Jornitz, 2003). Although UV monitoring isidagnd non-invasive, it
cannot give reliable and quantitative determination of iddi&l protein concentrations
in permeate and retentate during ultrafiltration of caxgrotein mixtures since all
proteins absorb UV light in the same wavelength rangaddtiition, there may be cases
where the UV monitor cannot provide useful informatifor, example, at extremely
low or high concentrations of protein, or in the present interfering compounds

(Kelly and Peterson, 2001).

2.5.2.2 Turbidimeters

The presence of protein aggregates with relatively higleesarations in the influent
stream to the filtration unit can contribute to higkesaof membrane fouling and thus
reduced membrane life. Achieving consistent, efficient alidhle performance for
membrane filtration systems is dependent upon maintainmgrnembrane at the best
possible conditions, which can be done by controlling menebfamling. In order to
control membrane fouling, the level of aggregates anaidall particles incoming to
the membrane unit has to be monitored continuously @d¢ch2006). Turbidity
measurements provide a reading for the amount of lightesed by colloidal particles
and protein aggregates dispersed in the solution. Turbidéimare basically consist
of a light source, producing a light beam of known intgresi a single wavelength that
is directed into a vial or flow cell containing the turlbrdium to be analyzed. Part of

this light is either scattered or absorbed by the suspegmalticles and aggregates. The
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amount of scattered light is then recorded and is propattito the quantity of
aggregates suspended in the mediurturAidity meter that measures scattered light at
an angle of 90° is known as a nephelometer (Or¢l20@6). Other types of turbidity
monitors employ a "forward scatter" technique. It is é#tsown as a “small-angle
scattering” technique since the scattered light detestolaced at a position where the
angle between the path of the incident light and thatpuidetection is smaller than
90-degree angle. The forward scatter measurement is idteéod® more sensitive to
larger sized colloidal particles, while it has reduced igeig for smaller

macromolecules (Cowie, 1991; Hiemenz, 1984).

Not only does the size of the particle affect the scat) pattern but also the particle’s
shape; non-spherical particles will scatter light défely than spherical particles
(Cowie, 1991; Hiemenz, 1984; Nakagali9o80). Turbidity and light scattering
monitoring are employed in the influent (feed) line adl as in the effluent line in
order to evaluate the performance of the membrane meddlso for largescale
purification and separation processes, where multiplenbmene filtration units are
used for product recovery, it is recommended that eachbmaae unit has a separate

individual turbidity monitoring system.

By installing turbidity photometric sensors at the influestream of the filtration
process and between each filtering step, flow candmpet, recirculated or switched
to an alternate membrane filtration unit if turbiditgaches an unacceptable level
(http://www.optek.com). In-line turbidity measurementsnpie optimal control of the

recirculation loop during the cake layer buildup.
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2.5.2.3. In-stu Fluorometry

Fluorescence is a type of optical phenomena that iegohabsorption of
electromagnetic (ultraviolet, visible, or near infraredyliation by a certain type of
molecules (called fluorophores) which results in excitihg molecule to a higher
electronic energy level. This is followed by returning of éxeited molecule to the
ground state, or to lower electronic energy level by losmgrgy through emission of
light (Shea 1997). One of the advantages of fluorescence spectronseity high
sensitivity that offers detection limits lower thahose achievable using current
techniques such as UV spectroscopy (Sh€87; Deshpande, 2001Because of the
low detection limits, fluorescence spectroscopy is wigghployed for the analysis of
biological and environmental samples where trace casesti in these samples can be
quantified (Sheal997). The importance of this technique is also reflectets inigher
selectivity compared to other techniques. Fluorescencergpeapy can provide more
information than UV/Vis absorption spectrometry since fluorescence signal is
expressed as a function of two wavelengths (excitarm@hemission), while only one
wavelength is available in UV-absorbance measuremenisg($997; Deshpande,
2001). If two compounds in a sample with similar absorptioncgeemit light at
different wavelengths, they may be distinguished frome @another by appropriate
choice of emission wavelength. Similarly, two compountist have similar
fluorescence spectra but absorb strongly at diffesavelengths may be distinguished
by proper choice of excitation wavelength (selectivatation) (Sheal997). As such,
fluorescence spectroscopy has potentially higher infoomatontent for resolving

mixtures than UV-VIS absorbance spectroscopy (Baker, 19919rdthetry is being
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increasingly used in bioprocess and wastewater monitorindgjcapgns such as
fermentation processes and bioreactors (Hilmer and Sch&pe6; Tartakovskegt al,
1996; Hagedornet al, 2004). However, the use of fluorometry in monitoring
membrane separation processes is rarely found intliteraThe earliest work that
utilized fluorescence spectroscopy for continuous mongasirprotein fractionation is
that of Crespeet al. (1999). Crespet al. (1999)developed an on-line fluorescence
detection technique for monitoring the transmissiofi-of> andy-globulin by using
protein labeling with fluorescent markers. The two proteiese labeled with two
different fluorescent markers which strongly absorld amit light at different
wavelength ranges. Thus on-line detection of protein-fluerdgstabelled conjugates
was performed with a fluorescence detector that was progea at appropriate
excitation and emission wavelengths. The transienstnéssion behaviors g¢ftLG and
v-globulin through the membrane were identified by the strassion of the
corresponding protein-fluorescent label conjugate. The drekvbf protein labeling is
that it may introduce changes to the protein surface ishgnand to the overall protein
charge which may alter protein folding properties and utelgaits aggregation
behavior during separation (Crespbal., 1999). In addition, the technique has some
practical limitations since it requires removal of th&orescent label downstream.
Hence, there is a strong motivation to avoid theafd&iorescent labeling in order to
preserve the native state of the protein product. Whaboped here in this thesis is
to use intrinsic protein fluorescence. The challenge in usimmsic fluorescence is
that the spectra can significantly overlap. To hanlddedomplex fluorescence signals

obtained when analyzing multicomponent protein solutiomistanresolve the issue of
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overlapping information, multi-wavelength fluorometry inongunction with

chemometrics is applied and developed in this thesis.

2.6. M ultiwavelength Fluorometry for Process M onitoring

Simultaneous measurements of various fluorophores arebleodbanks to the
development of fluorometers capable of rapidly recortivmrdimensional excitation-
emission spectréPrevious studies have shown that multiwavelength fluongnezatn
be used foron-line monitoring of recombinant protein production from maatian
cells in upstream processes where the presence of imtioiogenic fluorophores such
as vitamins, NADH, NADPH, FAD and fluorescent aminodacgive important
information about the process (physiological stateetl§) (Boehlet al, 2003; Hisiger
& Jolicoeur, 2005). In this work the feasibility of utilig multiwavelength
fluorescence spectroscopy as a tool for monitoring theiproblieation utilizing their
natural (intrinsic) fluorescence was investigated. Théoviahg sections provide
information on the basic principles of fluorescence gpscbpy including the nature
of the fluorescence, how it is influenced by environmeotaditions and how it is

measured.

2.6.1. The Nature of Fluorescence

The optical phenomenon, knownfasorescences a three-stage process that occurs for
certain types of molecules that are cafledrophores(Christenseret al, 2006). This
process is represented byJablonskiDiagram as given in Figure 2.8First, the

fluorophoreis excited from a ground energy state (singlet stagetdSeither first
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excited state (singlet statg)Sr second excited state, Sy the absorption of an
external photon (i.e. lightyvith a frequency o¥ and an energy dfiva, which takes
about 10° seconds.Secondsome internal conversion of that absorbed energy occurs
by a number of different ways including vibrational rel@@t quenching and energy
transfer (Mycek and Pogue, 2003; Christensieal., 2006) which results in relaxation

of the fluorophore into the lowest excited energyesi@inglet state 53 Third, the
fluorophore then relaxes from the singlet-excitedestatto the ground state SO by
emission of a photon with enerdiyr at a longer wavelength relative to the absorbed
photon. The energy of the emitted photon varies, depgnain theS, ground state

level it returns to.
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electronic state F———
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b. Internal conversion
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~ Radiationless transtions

Figure 2.8: Jablonski diagram showing the energy levels and various processes in an
electronically excited molecule (http://teaching.shu.ac.uk/hwb/chemistry/tutorials/)
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If a fluorophore does not fluoresce upon absorption obUtMieadiation it means that it
must have lost its energy some other way. These mesewme calledadiationless
transfer of energyThe difference in energy or wavelength between bserded and
emitted photon is called the Stoke’s shift (Mycek and Ppg0@3; Christenseet al,

2006).
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Figure 2.9: Excitation and emission spectra showing the energy levels and various

processes in an electronically excited molecule
(http://teaching.shu.ac.uk/hwb/chemistry/tutorials/)

Each electronic state has several associated vibaatlemels (Figure 2.9), which
implies that fluorophores does not absorb excitatiahateon at one wavelength but
over a distribution of wavelengths corresponding to dffiervibrational transitions
(Christenseret al, 2006). Emission also occurs at several wavelengthsaeyitreach

different vibrational levels in the electronic groundtetaThe result is that all

fluorophores have specific and independent spectral egaitand emission profiles
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characterizing their unique fluorescent properties. Therilglision of wavelength-
dependent intensity that causes fluorescence is knowineauorescence excitation
spectrum, and the distribution of wavelength-dependentsityeof emitted energy is

known as the fluorescence emission spectrum (Christenstn2006).

2.6.2. Fluorescence Scanning Modes

In practice, fluorescence spectra can be recorded usisgeetrofluorometer by
irradiating a sample in three different scan modescit@ion, emission and
synchronous scan). The three resulting types of spaotraormally presented on a
wavelength scale calibrated in nanometers (nm). In dxgitascan, the excitation
wavelength is changed through the desired range of wavesnrgtile fixing the
emission wavelength, which results in an excitatiorcspen. An emission scan is
made by fixing the excitation wavelength and changing thessom wavelength
through the desired range of wavelengths, thereby recoasirgmission spectrum. A
synchronous scan can be recorded by changing both theatexciand emission
wavelengths in a stepwise manner with a constant dfeteteen them. Such an offset
or interval between the excitation and emission wengths is designated by the
symbolAX. In a single synchronous spectrum, the intensity profildae fluorescence
is dependent on both the excitation and the emissiamelngths (Sharmand
Schulman, 1999). Synchronous scanning mode vyields fluorescapesra with
narrower and sharper peaks than emission or excitspiectra (Sharmand Schulman,

1999).
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2.6.3. Extrinsic and Intrinsic Fluorophores

Not all molecules in nature display fluorescence pimg®seupon excitation because the
molecular structure and the environment dictate whetreecompound is fluorescent
or not. In other words, fluorescence is often exhibited fig@mc polyaromatic and
heterocyclic compounds with rigid molecular skeletorsd ttontains large conjugated
n-electron systems (She&997; Christenseet al, 2006). Fluorophores are divided
into two classes: intrinsic and extrinsic fluorophoréstrinsic fluorophores, also
known as exogenous fluorophores, are dyes or fluoretalasis that are attached to
the biological analyte of interest. Most commergialailable fluorophores come with
chemical groups that make labeling of biological speciete gasy. Application of
extrinsic fluorophores in monitoring ultrafiltration of giein mixtures was first
demonstrated by Crespet al. (1999), whereB-LG and y-globulin proteins were
labeled with extrinsic fluorophores to make them easpgctrally resolvable and thus
distinguishable. Intrinsic fluorophores are those substathat occur naturally in a
variety of biological systems such as vitamins, NADHAINPH, FAD and fluorescent
amino acids (Vojinovicet al, 2006). The use of such intrinsic fluorophores for
monitoring recombinant protein production from mammaliafs agbstream has been
addressed in many studies (Hisiger & Jolicoeur, 2005). In &®intwaing intrinsic
fluorophores for monitoring membrane-based protein separhtie not been reported

before, which is the focus of this thesis.

The most common example of intrinsic fluorophores e three aromatic amino

acids, tryptophan, tyrosine and phenylalanine, that areapity responsible for the
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inherent fluorescence of proteins (Lakowicz, 1999). The aionzmino acids are
present in almost all proteins, enzymes and antibodlfesse amino acid residues have
distinct absorption and emission wavelengths and difféne quantum yields as given

in Table 2.1 and Figure 2.10.

Table 2.1. Fluorescent Characteristics of the Aromatic Amino Acids (Lakowicz, 1999).

Amino Acid Excitation Absorptivity Emission Fluorescence
Wavelength (nm) Wavelength (nm) Quantum Yield
Tryptophan 280 5,600 348 0.20
Tyrosine 274 1,400 303 0.14
Phenylalanine 257 200 282 0.04
8
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Figure 2.10: Absorption (top) and emission spectral profiles (bottom) for Tryptophane
(Trp), Tyrosine (Tyr) and Phenylalanine (Phe) (taken from http://www.embl-
hamburg.de/~tucker/JGS/fluorescencel.pdf)
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As seen in Figure 2.10, tryptophan is much more fluorestamnt ¢ither tyrosine or
phenylalanine, accounting for more than 90% of the total des®@nce from proteins
(Lakowicz, 1999). While tyrosine is less fluorescent ttrgptophan, its contribution

cannot be neglected as it is often present in largeiat®on many proteins.

2.6.4. Multidimensional Fluorescence Spectra

Fluorescence is multi-dimensional containing a wealthndependent information
related to the fluorophore type, its amount and its emdar environment.
Multidimensional fluorescence signals recorded from wemimulti-fluorophoric
solutioncan be presented &xcitation Emission Matrix (EEM)r Total Synchronous

Fluorescence Spectra (TSFS).

2.6.4.1 Excitation Emission M atrix

One approach to presenting three-dimensional fluoresaateeis in the form of an

Excitation Emission Matrix (EEM), which is a matri¥ @luorescence intensities

expressed as a function of excitation and emission lesaghs. Such a matrix can be
collected by recoding a series of fluorescence emisssans at different excitation

wavelengths. Spectrofluorometer software normallyadithe user to select the range
of excitation and emission wavelengths and the exattaw@velength increment

between scans: the emission wavelength range measilirbé the same for all scans,

but the excitatiorwavelength is increased at a constant increment alengatige of

excitationwavelengths selected. Once defined, all scans can beleelcautomatically
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and withoutuser intervention Figure 2.11 shows a two-dimensional fluorescence scan

visualized using a contour plot, where lines represent eguiakion intensities.
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Figure 2.11 An excitation-emission matrix contour plot for a typical water sample
containing low protein concentration generated using multiple emission scans, at
excitation increments of 5 nm from 220 to 400 nm (as depicted in Hunt et al.,2007).

The complete excitation-emission matrix EEM is alsaown as a fluorescence
landscape. A complete excitation-emission matriMMEE a very sensitive and fast
tool for the quantitative analysis of a biological swiot consisting of multi-
fluorophores such as a protein solution, where eachoijinmre can be distinguished
by its own spectral features. An EEM can be divided tintee different zones (Figure

2.11) in terms of the hypothesized relevance to the préttionation processes as

described below:
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i) Fluorescence Spectral Zone (Aem >Aey): The region of interest containing the
intrinsic fluorescence spectral fingerprints of the pratas located in the window
between excitation range (220-320 nm) and the emission wgtelét50-450 nm)
(Figure 2.11). The protein intrinsic fluorescence is ideadifoy two distinct peaks
located at approximately 220/330 nm and 275/330nm (excitation/en)iskat are
attributed mostly to both tyrosine and tryptophan fluoresee These two
fluorophores each have two excitation wavelengths wyhtophan at 215-220 nm
and 275-280 nm and tyrosine at 220-225 nm and 275-280 nm as seen for pure
proteins, alone or in combination, and for real proteintumeés (Mayeret al,

1999). The relevance of this to protein-fractionation is eskkd in Chapter 5.

i) Light Scattering Spectral Zones (Aem =Aex ),(Aem =2\ey): While scanning and
recording an EEM, signal components may arise frontca@pphenomena other
than fluorescence such as light scattering. Scatteyetddppears both in clear and
in turbid solutions and it has a substantial effect on 8scgnce measurements. In
clear solutions, there is Rayleigh scatter, second-drégteigh scatter and the
Raman scatter. In opaque solutions there is, in additimn, Tydnal scatter or
scattering by large particles. In the case of 3D-flscgace (Figure 2.11), an EEM
will typically have areas that are dominated by each tffseatter. These areas are
represented by diagonal lines in the landscapes as se€igure 2.11. Raman
scattering (also called inelastic) arises from therautén of the exciting incident
light with the solvent molecules producing an inelastattering of photons with

lower energy (i.e. longer wavelength) relative to thexciting ones
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(Deshpande.,2001). Such scattering is seen at low coatensr of fluorophores
when the instrument is set at its greatest sensitiRyleigh scattering usually
occur at the emission wavelength equal to the exaitatiavelength Xem =Aex)
while second order Rayleigh scattering appears at thesemiwavelength twice as
long as the excitation wavelength =2\ey) as seen in Figure 2.11. Chapter 6 will
describe how the scattering component in an EEM can ibeedtto provide
guantitative information about protein aggregation and fiksctaon membrane

separation performance (Deshpande., 2001).

Typical Sample Spectra After removingA(em) < A(exc)
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Figure 2.12: Subtraction of the triangular-shaped region where the emission

wavelength is less than the excitation wavelength (upper left-hand side)(as depicted in
Bro et al., 2002)

i) Triangular-shaped region (Aen<Aex): The triangulasshapedregion iswhere the
emission wavelength is less than the excitation Veagth (upper left-hand side)
and is considered to be non-informative since it conamysically impossible data

points. It is usually removed by subtracting the backgromndy setting the
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intensity values to zero as represented by Fig 2.12.n@henformative part of the
EEM can be selectively avoided during data acquisitiorusigg a synchronous
scanning mode withAj. > 0) instead of the conventional excitation-emission

scanning mode which will be demonstrated in Chapter 5.

2.6.4.2. Total Synchronous Fluorescence Spectra (TSFS)

Total Synchronous Fluorescence Spectra (TSFS) is anotimerof multidimensional
fluorescence data where fluorescence intensities speessed as a function of
excitation wavelength and the interval between theitai@an and emission
wavelengthsAA). Such a matrix can be collected by recording a sefisgnchronous
scans at different wavelength intervaltie contour profiles generated fREM and
TSFS are different(Patra and Mishra, 2002) due to the difference in the @fay
arranging the data structure; however, both EEM and T$S8Id contain the same
information content as long as the scanning mode coterdutl spectral range of

interest (Patra and Mishra, 2002).

2.6.5. Quantitative Analysis of the Fluorescence Spectra

The fluorescence intensityFl) emitted by a given fluorophore at a particular
excitation(/lexci) and emission wavelengt(vlem) is expressed as a function of the

absorption coefficient and the quantum yield of the thphore as given by Equation

(2-5):

|:|i (Aex’Aem) =kl o (Aex) 'Iuai (Aex)% (Aem) (2'5)
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wherek is a proportionality constant that is related to inskeatal parameters (the
detector collection efficiency, the path length, the [gangeometrypand ¢(ﬂem) is the

guantum yield of the fluorophore at the emission wavele(ﬂg_,m). lo is the intensity

of the incident light (Ramanujam, 2000).

The absorption coefficientl; (ﬂex) is a linear function of the extinction coefficient,

denoted by& (ﬂex) and the concentration of the fluorophore, denotedilgs@iven by
Equation 2-6:

lua (Aex) = 2303‘| (Aex) [C’| (2-6)
By combining Equations (2-5) and (2-6), the fluorescence iiyeffd) at a particular

excitation(/lexc) and emission wavelengt(vlem) for a dilute solution containing a

fluorophore can be described by the following equation (Rajaan, 2000;
Christenseret al, 2006):

FI, (Aex’Aem) =230 (Ae0)-& (Aex)% (Aem)Ci (2-7)
Equation (2-7) implies that the relationship between therélscence signal and the
concentration of the fluorophore is approximately lindar dilute solutions.
According to Equation (2-7), the intensity of the fluoremee depends on the
concentration, the molar absorptivity, and the quantietd of the fluorophore
(Christenseret al, 2006). Deviation from linearity occurs in concentratetlit&ms
due to self-quenching and inner-filter effects that are egxdain section (2.6.6). The
fluorescence spectra are additive in mixtures for exherdilute solutions, i.e. the

overall fluorescence spectra acquired for a given nmaxtamn be expressed as a linear
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contribution of all individual spectra from inherent flaphores in the appropriate

proportions as given in Equation (2-8) (Ramanujam,2000;s@mseret al, 2006).

Fl (Aex’Aem) = Z Fll (Aex’Aem) ) (2-8)
i=1

From Eq (2-8) and Eq (2-7),

Fl (o Aer) = 230%1 . (A) Y 6 (1) 4(A.) C. 29)
i=1

where Fl; denotes the fluorescence signal emitted by a fluorophohe complex
mixtures, such as biological samples, the fluorescemag not be additive due to
guenching phenomena and interactions with the molecular oemvent of the

fluorophore (Christensest al, 2006).

2.6.6. Factors Affecting Fluorescence Measurements

This section is an overview of several factors thah oafluence fluorescence
measurements for biological samples. These factersedated to the composition of
the biological sample as well as the concentrati@hthe molecular environment that
contribute to the complexity and variability of fluoresce measurements (Christensen
et al, 2006). According to Equation (2-9), the intensity of therescence depends on
the concentration, the molar absorptivity, and the quantietd of the fluorophore
(Christenseret al, 2006). The effect of quenching, inner-filter effects, tin@ecular
environment of fluorophores and the light scattering phenaméll be addressed in

the following subsections.
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2.6.6.1. Quenching

Spectrofluorometer readings do not necessarily changetem with the known
concentration change of the fluorophore. The fatttat may be responsible for this is
called "concentration quenching”, or sometimes just "quegthi Fluorescence
guenching can be referred to any process that reduces thesflance intensity of a
sample. Such a phenomenon occurs when the excitedofihore returns to the
ground state without emitting a photon (Christenstnal, 2006). A variety of
processes can result in quenching, such as energy traosfeplex-formation and
collisional quenching where the excited state of the dipbore can be deactivated by

contact with other molecules or by either intra-rntefmolecular interactions.
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Figure 2.13 Concentration quenching effect on emission intensity at 330 nm observed
for the whey protein isolate solution.
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An example of quenching due to intermolecular interastisncalled "concentration
guenching" or “self-quenching”. At low sample concentratiotiee fluorescence
intensity is directly proportional to the sample cemtration; however, as the
concentration increases beyond the linear range forefwence, the fluorescence

intensity decreases with concentration (Figure 2.13).

With increasing protein concentration, the proximity loé fprotein macromolecules
allows thelight emitted by the tryptophan residues of the proteinetoebabsorbed by
the same fluorophore (i.e. tryptopham)the adjacent protein macromolecule and each
time the light is re-absorbed, there is a chancetferenergy to be dissipated non-

radiatively.

Concentration quenching does not only affect the magnittilacyescence intensity
but also the overall shape of the fluorescence spexaem in Figure 2.14. In Chapter
5, spectral differences between the retentate with pigtein concentrations and the
permeate with low protein concentrations can most likgdgibuted to self-quenching

that is related to the intermolecular interactionisr{§€lenseret al,, 2006).

In addition to quenching by intermolecular interactions,ngbég can occur through
intramolecular interactions. Interaction of adjdcdluorophores occur within the
protein macromolecule itself where the fluorescencenfityrosine can be easily
guenched by the presence of nearby tryptophan moieties uizare energy transfer,

as well as by ionization of its aromatic hydroxyl groupr{§€bnseret al, 2006).
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2.6.6.2. Molecular Environment.
Native protein fluorescence is the result of intinduorophores in proteins that
consist of hydrophobic amino acid side chains as illiestrat Figure 2.15. Most of the

native protein fluorescence is generally due to the aasids tryptophan and tyrosine.

1 Intermediat
- 0.8
<
@
O 06
c
@
%
0.4
@
o
: L
L 02
U [ [ 1 n 3 | §
300 320 340 380 380 400

wavelength (nm)

Figure 2.15 Fluorescence spectroscopy as a tool for tracking protein
conformational changes (www.soc.nii.ac.jp/jbiochem).

These hydrophobic amino acid residues are so sensitine todal environment that it
is possible to see changes in emission spectra whenridexposed to the solvent or
bulk phase and therefore information about protein cordtiom, subunit association
and denaturation can be obtained (Lakowicz, 1999). In thipecgs intrinsic

fluorescence measurements of proteins have been ussuidy the effects of the
protein microenvironment, pH, ionic strength, and temperabaréheir association
properties, degree of unfolding and aggregation behavior (LakpwWi99). Multi-

wavelength fluorescence spectroscopy was employed inttldy ;.1 Chapter 3 and
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Chapter 4 for simultaneous determination of whey proteihgosity as well as their
aggregation behavior induced by heat treatment at diffesenditcons including pH,

ionic strength and temperature.

2.6.6.3 Light Scattering

Rayleigh scattering can constitute a significant ieterice to fluorescence emission
from fluorophores with a small Stoke’s shift (Christemset al, 2006). Since
interference from Rayleigh scattering cannot be avoatedliminated, mathematical
corrections of the fluorescence signal can be peddrinstead by addressing the
scatter in the modeling and analysis of the 2-D fluoreselata (Christensest al,

2006).

2.6.7. Why Chemometrics?

The intrinsic fluorescence of proteins can be easigtinguished using fingerprints of
the fluorescent amino acid residues. Although EEM alldetection of the presence
or the absence of protein in a biological mixture, disitrating between different
proteins or identification of the type of protein in albgical mixture is challenging
because of the subtle differences in their fluoreseepectra. Fluorescence signals are
complex as the spectra are the result of interfe@gnscatter and overlapping signals.
Furthermore, the fluorescence intensity of a givemmound is influenced by
environmental variables like pH, ionic strength, total catregion and physical factors
like the inner filter effects and the energy transfedcpsses. Therefore, before the
measured intrinsic fluorescence can be related toratifiih process an awareness of

the factors that could affect the measured fluorescegoalss necessary. To tackle
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the complex nature of the contributions to the of #isocence signal, chemometrics is

proposed in this thesis.

2.7. Chemometrics

Monitoring, controlling and optimizing membrane-based filra processes of
complex biological solutions is difficult to achieve gtieally because all of the
components of a complex biological solution interferéh the performance of the
membrane filtration process (Darn@t al, 2002). During filtration of a complex
biological solution, tracking transient changes in produeld and the selectivity of
separation cannot be performed without information atimutransport of the various
feed components through the membrane. It will be denaiedtin Chapter 5 that
such information can be extracted from multi-wavelendittorescence spectra
collected for the feed, permeate and retentate. Extraof information from spectra
can be achieved using mathematical analysis tools knowinesmsometric tools. Since
not all fluorescence data collected is meaningful, ebingi mainly of both unwanted
variations (i.e. noise) and information relevant te gnocess (Erikssoet al., 2002),
chemometric tools can be used to reveal the informatidhese large data sets. The
field of chemometrics was found by Bruce Kowlaski and Syafibld in the early
1970s (Erikssoret al., 2001). Chemometrics has been defined as “the chemical
discipline that uses mathematics, statistics and fotagt (a) to design or select
optimal experimental procedures; (b) to provide maximdmnucal information by
analyzing chemical data; and (c) to obtain knowledge abbemical systems”. The

name chemometrics is a combination of the two sufficbemo (i.e. chemical) and
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metric (i.e. measurements) because it deals witlaetg information from chemical
data by means of multivariate data analysis (Eriketoal., 2002; Wiberg, 2004). In
chemometrics, turning these large data sets into knowladigeit the process is
performed by the use of a mathematical mod&rious examples of the application of
chemometrics for extracting relevant information frdloorescence spectra can be
found in literature. Hagedoret al. (2003) evaluated spectrofluorometry as a tool for
monitoring a fermentation process, including substrateméss and product
predictions by making use of multivariate calibration med&dr extracting the
underlying variations in the multi-wavelength fluorescenpectra that were most
correlated with the important process variables in tbegss. The next section gives a
brief description of the multivariate techniques that st widely used to regress

spectral data.

2.7.1. Multivariate Nature of Fluorescence Data

Multivariate data analysis methods are part of thencmeetric techniques that are used
to analyze data sets consisting of multiple varialesisured from many samples.
Chemical data can often be arranged as a table, a daba asagiven by Equation 2-10
that contains measurementsnofvariables om objects. Typical chemical objects are
analytical samplesX is usually used to denote the datdenotes the index for objects

or samples angddenotes the index for variables.

51



X1 X o Xy
X = X1 22 2m
: (2-10)
_an Xn2 Tt Xnm_

In the context of fluorescenc;; represents the intensity value of tjte spectral

variable (excitation-emission wavelength pair) foritte case (i.e. sample).

For example{:=[ X11 X12 X13....X%ml is the row vector containing the fluorescence

intensities measured at m excitation/emission wavedtepgirs for the first sample.

Xo=[ X21 Xo2 Xo3....%m IS the row vector containing the fluorescence interssitie

measured ain excitation/emission wavelength pairs for the secamdpde and so on.

Multivariate methods can be classified into two categ: (i) Multivariate methods
that find the relationship between x and y variablesgammerally called regression
methods such as Partial Least Squares (PLS). (ii) Wwite methods that are used
for explanatory analysis and survey of Xealata, finding trends, groups and outliers.
The next section gives a brief review of the PLS resypesmethod. Multivariate data
analysis tools, such as principal component analysis amidIP@ast squares (PLS), are
considered to be powerful for extracting high quality infation from the less
resolved high-dimensional spectroscopic ddtavill be shown in Chapter 5 that even
extremely subtle spectral differences between tliiferent whey proteins can be
distinguished using chemometricMultivariate methods are intrinsically more robust

and accurate with respect to peak shifts and instrumentiake rnthan univariate
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methods, because such multivariate methods use area bhadehdle curves (called
scores in chemometrics) rather than just single eleagth intensity for an
excitation/emission pair (Christensethal, 2006). Such areas are much less influenced
by moderate peak shifts and instrumental noise than singknsity values.
Additionally, robustness is also obtained from the gdnaoése reduction obtained
from using the above mentioned areas. The method fanvamete data calibration

employed in Chapters 3, 4, 5, and 6 was PLS.

2.7.2. Calibration and Regression Analysis in Fluorescence Spectroscopy
Calibration is one of the most important tasks in quatnigé spectrochemical analysis
The term calibration model can be generally defined asptiocess of deriving a
mathematical relationship between available process nemasuotsX and quantitative
informationY that allows predicting to the best possible degree umkrguantitative
information about the process from futi¢emeasurements. The underlying model for
the relationship betweethe measured variable x and a dependent variable y is
generally presented by the mathematical function in2Etyly:

Y = f(X) (2-11)
The application of different classes of regressiothows in spectroscopy can be found
in the literature. Regression models implemented in spsaipy range from simple
linear univariate regression (with one x predictor vdeiaklated to one y response
variable) to complex multivariate regression (with ®sany x predictor variables
related simultaneously to one or more y response vasiatilat require the use of a

software package. The purpose of this section is to conghiffiexent classes of
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regression models and to explore their scope of apdiigatn quantitative spectral

analysis of multi-component systems. The emphases iseconfined to cases in which
the relationship between the response y variable and afsatvariables (i.e.

spectroscopic measurements) is linear or close to likEaein, the existing regression
methods have been arranged according to their levedraplexity (i.e. the number of
variables involved) as well as their scope of applicgbiot meet the stated objectives
of this thesis. Mathematical formulations, advantages limitations of these models

have been discussed in order to understand the comméetiveen them

2.7.2.1 Univariate Calibtation

Assume that we want to build a calibration model techeine the concentration of a
specific proteinf-LG in the permeate, retentate and feed lines duringdfilitaion of

a whey protein isolate solution. Figure 2.16 shows two-déomal fluorescence
spectra acquired in synchronous scanning mode for whey pretdatei solution. This
fluorescence landscape consists of 1660 distinct fluenesc measurements at
different combinations of excitation/emission wavelesgtMore generally, each
fluorescence landscape could be thought of as a set of difé@ent univariate
measurements (Bro, 2003). The simplest form of calibrasi@univariate calibration
model, which can be built by choosing one out of tH&80 distinct measurements. A
typical choice could be to select a wavelength epoading to a peak maximum
related to the specific protein of interest. In thiaragle, the signal at an excitation of
295 nm and an emission at 330 nm is chosen which correspontde taaximum

emission peak of tryptophan and so a linear univariate segresnodel can be
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established between one x-variable (i.e. intensity measamt at 295nm/330nm) and
one- y-variable (i.e., the concentrationfelf G in the solution) as given by Equation 2-

12.

y=pBx+ [, (2-12)
Where [, is the regression coefficient ang, is the intercept of the linear

correlation. The univariate approach is valid provided ttatfollowing conditions are
satisfied (Torgrip., 2003):

o The linearity conditionThe instrument’s response must be linearly correlaidd w

the measured feature. Deviations in the absorption c@eftican occur at high
concentrations due to electrostatic interactions betwewlecules in close
proximity, as referred to as analyte association.

o The interferent conditian The instrument response must not exhibit any

wavelength shift for the measured constituent. Fluorescetshift can occur as a

result of increasing concentration.

o The selectivity conditionThe spectral peak of interest must be fully separfabed
spectral peaks belonging to other components in the mixture..

o The noiseThe measurement process will always yield noise in thasored data.
The structure of the noise varies, depending on the aralglystem involved.

o The scatter conditianThere must be no scattering of light due to partieslat the

sample.
Univariate calibration suffers from some major disadages that make it unsuitable

for application to real processes (Bro, 2003). Accuacihe univariate calibration
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model is only possible if the analyte of interest (B-4G) contributes to the measured

signal
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Figure 2.16: Fluorescence spectra acquired in synchronous scanning mode for whey
protein isolate solution at room temperature and pH of 4.5.

In this work, althougt-LG constitutes 75% of the whey protein isolate, other prete

that exist in smaller amounts (e.g-LA, BSA and IgG) may have significant
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contributions to the measured fluorescence signal dukeio tryptophan content. If
other proteins in the solution contribute to the measurgeiakithe results will be
biased (Bro, 2003). Therefore, instead of using one outeo1®0 measurements, it
will be more reliable to use all the available datahe fluorescence landscape for
calibration (Bro, 2003), which is known as multivariateibmation. In multivariate
calibration, use of many x-variables automatically cdsréar each other’s selectivity
and thus the x-variables used do not need to be totallgtiseleHigh precision of
multivariate calibration can be generally achievedasg bs the relationship between x
and y variables is linear. Multivariate calibration Isoagenerally more robust and less
sensitive to small changes in the experimental or ingntiah parameters such as pH,

temperature or lamp intensity (Wiberg, 2004).

2.7.2.2 Multivariate Calibration

As discussed in the previous section, it would be necessaxtend the regression to
include cases in which several variables contribute tortéasured response y. In the
simplest example, the dependent response is expresseduastian of two such

independent variableg andx..
Y =5+ Bx + 5% (2-13)

Again B, is the intercept on the y-axig?, and3, are the partial regression

coefficients.

The following example illustrates the usefulness ofltnariate calibration for

guantitative analysis of fluorescence spectra. Figure 2.Egepts synchronous
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fluorescence spectra acquired ok G, a-LA and BSA protein solutions by irradiating
the samples atA=100 nm. For quantitative analysis®LG, measurements at a single
wavelength would be adequate if no interfering species arentrds the presence of
other absorbing species such as BSA ahd\., however, more measurements would
be required in order to account for such interferencethenregression model. For
example, by looking at Figure 2.17, it can be seen thatfltiseescence signal
attributed by BSA is more than two folds greater theat produced fromi-LG at (.=

270 nmem =350 nm).
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Figure 2.17 Synchronous fluorescence excitation spectra of B-LG, a-LA and BSA
protein solutions acquired at AA=100 nm
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Meanwhile, fluorescence signals produced from BSA $ADG are relatively
comparable at\{,=220 nm\eyn =350 nm). This implies that including measurements at
(Aex= 270 nmAem =350 Nm) in the calibration model for predictifd.G concentration
could serve to compensate for the fluorescence due to $%% this excitation-
emission pair is in the spectral region of BSA wlittee interference frong-LG. In
order to develop a reliable and robust calibration model, otiiermation from the
whole spectral data could be included. Formally, the madehtiltivariate regression ,

givenn observations, is:

Y =5+ Z:Bj Xj & fori=1,2,..n. (2-14)
j=1

Where vy is the concentration of some analyte (inaasea-LA, B-LG or BSA), X3 is

the measured fluorescence intensity jaspecific combination of excitation and

emission wavelengthsﬁj is the regression coefficient or weight associateth wi

measurement at a given combination of excitation-eamsgair. For a complete
spectrumm may take on values of several hundreds depending on theti@s of the
fluorescence scan. Multivariate calibration can beesged in matrix notation as given

in Eq 2-15:

Y=XB+E (2-15)
In which E is the matrix containing the residuals (variations notrlesd by the

model). Mathematical methods for achieving multivariatibcation between aK and
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aY matrix are generally classified into two categorie=adt squares modeling methods

and factor based methods.

1. Least Squares M oddling:
Least squares methods attempt to model the relationstvjgdr@X andY matrices by
finding the regression coefficients that minimize #wn of the squares error SSE as

given by Equation (2-16)

sse=min(fy - xJ?) (2-16

The least squares estimates of the regression ceetBcare given by

B=(XX)*XY (2-17)
The desired property y for a given sample can be predisteen multiplying the
regression coefficients by the spectrum acquired forghatple. The major limitation
of ordinary least squares regression is related to dh&en of finding the inverse for
(X X ) in the solution of Equation (2-17). When the number oéxables exceeds the
number of samples or/and when there is a high degremlliiearity among the
variables, the estimated regression coefficients neayribeliable. This mathematically
implies that high collinearity between the data ded#nt wavelengths in thé matrix
comprising the spectroscopic measurements could resuft ixax ) matrix that is
singular or close to singular. Consequently, the regnessoefficients become large
and this makes the model more sensitive to instrumewtae inX. This, in turn,

causes degradation of the model performance (Torgrip, 2003).
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2. Factor-based regression methods-Chemometrics

Factor based regression methods such as Principal compaegression PCR and
Partial Least Squares Regression PLSR handle the probferollinearity by
compressing th& matrix containingp spectral variables fon samples into a small
representative set of new variables which summarizes oholse spectral information
in the originalX matrix. Such set of variables are linear combinatiotheforiginal
variables in the data set and orthogonal (completalyowelated) to one another.
These new variables are called Principal Componentsentaériables or eigenvectors.
The use and applications of principal components in regressialysis has been
extensively reported in the literature (Torgrip, 2003).. Matétically, the matrixX is
approximated in terms of the product of two smaller madri€ and P’. These two

matrices capture the essential data patterisas given in Equation (2-18).

X =TP'+ E (2-18)

, whereT andP are referred to as the score and the loading matespgctively and

is the modeling error matrix or the matrix of residudlse principal component scores
of the first, second, third components, €, t3, ...) are columns of the score matfix
As mentioned before, these scores may be consideredewasvariables, which
summarize the original ones. In their derivation, tberss are sorted in descending
importance {3 explains more variation thas, t, explains more variation thas, and
so on). In general, 2 to 5 principal components are ussafficient to approximate a

large data set of spectrochemical measurements.
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Figure 2-18 The matrix relationship in PLS regression. The score, weight and loading
matrices are derived during the development of the PLS regression model. Source:
Eriksson et al. (2001).

The meaning of the scores is given by the loadings. d&eirlg vectors of the first,
second, third, componentgi( p2, ps,..) build up the loading matriR. P is the matrix
of loadings that express the relationship betw&eand X. The original spectra are
reconstructed when the scores are multiplied by thdihg vectors, and the results
summed, as described by Equation (2-19).
A
X = Ztia p:aj
a=l (2-19)
wherepgy is the loading of the variabbg in the loading vectop, of the first latent
variable. Using the matriX of this smaller number of principal components, rather

than the entireX matrix in Eq (2-17), is known as principal components regrassi
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(PCR). Partial Least Squares Regression PLSR is mapegisr than PCR. The method
uses two outer relations and one inner relation. Therorglation describes the

decomposition oK andY matrices.

A
X=TP+E=>t,p,+E

(2-20)
a=1
A
Y=UC'+F =) uc, +F (2-21)
a=1
The inner relation is written as
U=TW (2-22)

In essence the inner relation is a least squares Viteleat theX block scores and thé
block scores. This implies that:

0] PLS regression consists of simultaneous orthogonandeasition of both
X andY matrices so that th¥ andY matrices can be well-approximated
using Equation (2-20) and Equation (2-21) respectively.

(i) The PLS algorithm also derives\& weight matrix that maximizes the
correlation betweerX and Y .as given by Equation (2-22). The inner
relationship is improved by exchanging the scareendU in an iterative
calculation (Figure 2-18). This allows information fromeohlock to be
used to adjust the orientation of the latent vectorhénother block, and
vice versa.

A detailed explanation of the iterative method is kaNde in the literature (Torgrip,

2003). When all scores and loadings are calculated, theatdt PLSR model becomes:
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Y = XB (2-23)
B=P(P"P)*wWC’ (2-24)

WhereB is the matrix of regression vectors.

The number of latent variables in the model A is of iumportance and its optimum
value is derived by cross-validation. Th& weight matrix represents how the
variables are linearly combined to form any score vegtétence, by examining th&/
matrix, one could understand which original variableXispace would dominate the
latent variablest; (Erikssonet al., 2001). The variation in the data that was left

unexplained by the PLS modeling is given byEhendF residual matrices.

64



CHAPTER 3

Fluorescence Spectroscopy as a Tool for Monitoring
Solubility and Aggregation Behavior of B-Lactoglobulin after

Heat Treatment*

Denaturation and aggregation of whey proteins is of interest to the food and
pharmaceutical industry due to the importance of final structure in functionality, impact
on food texture, and the chemical stability of the final product. In this study, we
demonstrate the potential of fluorescence spectrometry combined with multivariate
chemometric methods for quantifying solubility and aggregation behavior of -
lactoglobulin; a major whey protein and a frequent food ingredient. Heat induced
aggregation of B-lactoglobulin was studied under different conditions including pH,
temperature and heating durations. Results showed very good agreement between the
fluorescence-based predictions and measurements obtained by HPLC and gravimetric
analysis regardless of the conditions. Standard Normal Variate (SNV), a signal
preprocessing and filtering tool, was found to enhance the predictive accuracy and

robustness of the fluorescence-based model.

* Elshereef R, Budman H, Moresoli C, Legge R. (2006). Fluorescence spectroscopy as a tool
for monitoring solubility and aggregation behavior of B-lactoglobulin after heat treatment.
Biotech Bioeng 95:863-874.
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3.1 INTRODUCTION

Denaturation and aggregation behavior of B-lactoglobulin, one of the major
whey proteins and a frequent food ingredient, is of interest to the food industry. This is
related in part to its effect on the final structure and texture of food as well as the
chemical stability of the final product (Euston et al., 2001). The protein aggregation
process involves generally two steps: first, conformational and structural changes
related to partial unfolding of the native protein that leads to the exposure of some
hydrophobic amino acid residues and second, the subsequent aggregation of the
unfolded molecules via the formation of new intermolecular bonds between the
exposed amino acid residues in different peptides (Mulvihill and Donovan, 1987). The
degree of aggregation is very complicated as it depends on a number of
physicochemical parameters such as temperature, protein concentration, protein-protein
interactions, ionic strength and pH (Vetri and Militello, 2005).

It is apparent therefore that monitoring of whey protein aggregate formation
during processing is critical to the development of highly functional products. In recent
years, fluorescence spectroscopy has been a useful tool for chemical analysis of diverse
pharmaceutical, food and biotechnological products. A major advantage of
fluorescence spectroscopy over other analytical techniques is that it is rapid,
noninvasive and very sensitive to biological components and is amenable to
development as an on-line sensor.

Protein fluorescence is related to intrinsic fluorophores in the protein largely
due to the tryptophan and tyrosine amino acid residues. These hydrophobic amino acid

residues and their fluorescence are sensitive to the local environment so changes in the

66



fluorescence emission spectra can provide information about protein conformation,
subunit association and denaturation (Lakowicz, 1999). As a result, intrinsic
fluorescence measurements of proteins have been used to study the effects of the
protein microenvironment, pH, ionic strength, and temperature on protein association
properties, degree of unfolding and aggregation behavior (Lakowicz, 1999).

Fluorescence spectroscopy, like all types of spectrometric methods (UV/VIS,
IR and NMR), have become a common tool for exploratory analysis in most science
and engineering fields such as medicine, biotechnology, food, toxicology and applied
pharmacology. However, not all the data collected from scanning spectrofluorometry
is relevant for every measurement. Hence, there is a significant body of literature on
the use of chemometric methods to extract meaningful and relevant information for the
purpose of quantifying and predicting a set of desired quality variables.

For example, Herbert et al. (2000) were able to discriminate eight different soft
cheeses using their fluorescence spectra by applying the multivariate chemometric
methods such as principal component analysis and factorial discriminant analysis. They
found that the spectral patterns associated with principal components provide
characteristic wavelengths, which are suitable for classifying the eight different soft
cheeses Becker et al. (2003) demonstrated the use multi-wavelength fluorescence
spectroscopy and chemometrics for predicting riboflavin content in plain yogurt during
storage. Hagedorn et al., (2004) evaluated spectrofluorometry as a tool for monitoring
bioreactor fermentations, including substrate, biomass and product predictions by

making use of multivariate calibration models in extracting the underlying variations in
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the multi-wavelength fluorescence spectra that are mostly correlated with the important
process variables in bioreactor fermentations.

In this study multivariate chemometric tools were applied to the analysis of
intrinsic protein fluorescence measurements to investigate and monitor solubility of [3-
lactoglobulin (B-LG) and its aggregation behavior caused by changes in pH,
temperature and heating duration. 3-LG was used as a model protein because it is the
most abundant protein component in bovine whey (consisting up to 50% of the total
whey protein) and it is largely responsible for whey protein functionality (Schokker et
al., 1999). This approach included the development of a fluorescence-based
chemometric model for monitoring the solubility of P-LG and its aggregation
behavior, validated by two independent methods for the estimation of protein

concentration: HPLC and dry weight (gravimetric) analysis.

3.2 MATERIALS AND METHODS
3.2.1 Materials and Sample Preparation

B-Lactoglobulin (B-LG), in powder form (lot JE 007-3-921 and JE 003-3-922) of
95% purity was donated by Davisco Foods International (LeSueur, MN) and was used
without further purification. All other chemicals were of analytical grade. Solutions of
9.3 g/l B-LG were prepared in two different media: 0.1 M acetate buffer (pH 3.5-7.0)

and 0.1 M citrate buffer adjusted with HCI (pH 3.4-4.5).
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3.2.2 Heat Treatment and Gravimetric Analysis

A 25 ml volume of the desired protein solution was placed in a temperature
controlled water bath at the desired temperature and treatment duration. A summary of
all the experimental conditions is presented in Table 3-1. After heat treatment at the
desired temperature, 25 ml samples were cooled to room temperature then centrifuged
at 22000xg in a Beckman L7 Ultracentrifuge for thirty minutes. The supernatant was
decanted and analyzed for the final protein (Cf) content by HPLC and the protein
aggregate (pellet) used for dry weight determinations. Pre-tared centrifuge tubes
containing the pellet were oven dried at 90°C for approximately 20 hours until constant

weight and the dry weight of the pellet determined.

3.2.3. HPLC Analysis of Soluble -LG

The initial (C;) and final protein (Cy) content for all samples was done using High
Pressure Liquid Chromatography (HPLC). The chromatography system consisted of a
Waters 600 E systems controller, Waters 700 Satellite WISP, and a Waters 486
Tunable Absorbance Detector set a 280 nm. 10 pL of supernatant was injected onto a
Zorbax GF-250 (9.4x250 mm) analytical column and eluted with 200 mM phosphate
buffer at pH of 7. A calibration curve was prepared using different concentrations of
pure untreated B-LG. The protein concentrations were estimated from the peak height.

Percentage of protein aggregation was calculated as:

C
Aggregate % =100 * (lc—f} 3-1)
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Table 3-1: Summary of the heat treatment experiments of B-LG protein-solutions
performed at different conditions (temperatures, durations and mediums).

Experiment # Samples T[°C] Medium pH Heat Treatment
Period (minutes)

1 16 85 0.1 M Sodium 4.5 5-110
Acetate

2 16 85 0.1 M Sodium 4.5 5-110
Acetate

3 24 82 0.1 M Sodium 4.5 0-60
Acetate

4 12 80 0.1 M Sodium 4.5 0-120
Acetate

5 13 75 0.1 M Sodium 4.5 0-90
Acetate

6 15 65 0.1 M Sodium 4.5 0-100

Citrate adjusted

with HCI

7 13 45 0.1 M Sodium 3.5 0-180

Citrate adjusted
with HCI
8 9 85 Sodium Acetate Different 90
pH (3.5-7.0)

3.2.4 Fluorescence Analysis

Fluorescence measurements were conducted in a 1.0-cm cuvette using a Varian Cary
Eclipse Fluorescence Spectrophotometer (Palo Alto, CA). Excitation and emission slit
widths were set to 5 nm and 10 nm, respectively. Excitation was conducted over a
wavelength range from 280 to 320 nm at a scan interval of 2 nm; the emission spectra
were recorded in the region 300-420 nm with a resolution of 1 nm producing a 20x120

excitation-emission wavelength pairs matrix consisting of 2400 intensity data points
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for a given sample measurement. A typical plot of fluorescence intensity data versus
emission and excitation wavelengths as a landscape layout is presented in Figure 3-1.
The maximum peak was located at an excitation wavelength of 300 nm and emission

of 330 nm, which corresponds to tryptophan (Lakowicz, 1999; Renard ef al. 1998).
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Figure 3.1: Fluorescence intensity data shown in landscape layout for a solution of
9.3 g/L B-LG at room temperature and pH of 4.5.

3.3 MATHEMATICAL METHODS

The experimental data in this study were divided into two categories: input data,
the fluorescence spectrometric measurements and output data, protein concentration
obtained by dry weight and HPLC analysis. This section provides a brief description of

the mathematical tools and data analysis techniques that were implemented in this
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study. All computations were carried out using MATLAB 5.3 (MathWorks, Natick,

MA) along with the PLS Toolbox 3.5 (Eigenvector Research Inc., Manson, WA).

3.3.1 Preparation of Fluorescence Data for Analysis

The input data obtained in this study can be described by a three-way data
structure as illustrated in Figure 3-2. 118 samples were measured using fluorescence
spectroscopy with a 20 by 120 excitation/emission wavelength pairs matrix producing
a three-way data array (118x120x20). Raw spectral data were collected and
transformed into a form suitable for the PLS analysis where each 120%20 excitation-

emission wavelength pairs matrix was unfolded to a 1x2400 matrix.

120 Emis=zion Wavelength

one 2-0
zpectrum

118
Samples

20 E xcitation Wavelength

Figure 3.2: A three-way data structure consisting of 118 excitation-emission matrices
with 20 excitation wavelengths and 120 emission wavelengths (120x20).

These unfolded excitation-emission matrices of dimension 1x2400 can subsequently be

arranged into one single two-way matrix of dimension 118%2400 as given below:
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X1 X Xim
Y= Xo1 x.zz xZ.m
(3-2)
_xnl an Tt xnm B

where X;; represents the intensity value of the j th spectral variable (excitation-emission

wavelength pair) for the 7 th case (i.e. sample). X;=/X;; X;2 X}3....X]5,/ is the row
vector containing the fluorescence intensities measured at m excitation/emission

wavelength pairs for the first sample. X>=/X>; X>» X33....X2,,/ is the row vector

containing the fluorescence intensities measured at m excitation/emission wavelength
pairs for the second sample and so on where m and n are equal to 2400 and 118,

respectively.

3.3.2 PLS Regression

Like other spectrometric methods (NMR, UV/VIS and IR), fluorescence is
characterized with data sets having a high degree of interaction, redundancy and
collinearity (i.e. correlation) between the columns (variables). Collinearity, a situation
where measurements at different wavelengths are strongly correlated, is considered to
be a problem because it diminishes the information content of the data. Collinearity
results in the spectral data being poorly handled by the traditional calibration methods
such as Multiple Linear Regression (MLR), which assumes that the X-variables are
independent and not correlated. Furthermore, MLR tends to deteriorate drastically if

there are only a limited number of observations compared to the dimension of the
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variable space n (in our case the number of samples is 118, the number of variables are
2400). One possible approach to overcome such problems is the use of Partial Least
Squares (PLS). PLS regression is a well-known multivariate data analysis method that
is capable of handling collinearity among the input variables in the X-matrix and
projecting the spectral data into a reduced dimensional space. Hence, the original
variables x are replaced by a smaller set of underlying new variables that are
uncorrelated, mutually independent (orthogonal) and linear combinations of original

descriptors.

These new variables, known as latent variables or principal components, are
calculated to both provide good representation of the X-matrix and maximize the
relationship between the input and the output (Qin and McAvoy, 1992). This can be
expressed mathematically as 7=XW, where T is the matrix containing scores that are
the linear combinations of the original X values. PLS calculates the weight matrix W
that maximizes the covariance between Y and 7' (Qin and McAvoy, 1992). The weight

matrix shows the important excitation-emission pairs for each PLS component.

3.3.3 Cross-Validation

To avoid over-fitting in PLS calibration, cross-validation is performed with the
aim to determine the optimal model complexity and the minimum number of
components that describes the underlying relationship between the input and the
output. The optimal model complexity has been determined from a leave-one-out cross

validation approach (Geladi and Kowalski, 1986).
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3.3.4 External Validation

The evaluation of the predictive capability of a multivariate calibration model can
be made by comparing the concentrations and protein aggregation calculated by the
calibration models with those obtained experimentally by dry weight analysis and
HPLC measurements. The actual validation is done by comparing the model
predictions to dry weight and HPLC data points that have not been used for calibration
of the model. The two measures of model predictive capability that were used in this
study are the root mean square error of prediction (RMSEP) and the squared predictive

correlation coefficient (Q2).

- 2
Z(ypred - yobs)
RMSEP =12 5 (3-3)

-, i
Z(ypred _yobs)
i=1

0" =1- (3-4)

S - 2
Z(yobs _yobs)
L =l

Y pred can be either the predicted B-LG concentration (i.e. solubility) in the sample or

the predicted protein aggregation (%), Yops is the observed or reference value of the

concentration (i.e. solubility) in that sample or the observed protein aggregation (%)
and p is the number of samples in the test set. RMSEP gives an estimate of the
prediction error in the same unit as the initial data. On the other hand, the squared
predictive correlation coefficient (Q%) measures the strength of the correlation between

the values obtained by the model and the reference values obtained experimentally.
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3.3.5 Pretreatment Methods of Spectroscopic Data

The X-matrix (Equation 3-2) that contains spectral data was pretreated by four
different techniques (mean centering, scaling, standard normal variate and
normalization). These pretreatment methods were performed prior to PLS regression in
an effort to improve the correlation between the input and response. Then, the
regression models obtained by using these different pretreatment techniques were

compared on the basis of prediction accuracy.

Columns Mean Centering (MC)

Mean centering is useful in that it can be applied to remove a common
background variation or an offset in the data (Bro and Smilde, 2003) that is irrelevant
to the predicted response. The X data matrix given by Equation 2 is mean centered by
calculating the average value for data in a column and subsequently subtracting that
average value from every element in that column. This results in a mean-centered data
matrix that has new columns with zero means. Such transformation can be expressed

mathematically as follows:
X.. = X.—X. (3_5)

where X j 1s the average value in a column; j is the variable index and i is the row

index.
Variable (Column-wise) Scaling (VS)

Variable or column-wise scaling is usually performed by dividing every

measurement in a column (i.e. excitation-emission pair) by the standard deviation of
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that column (Bro and Smilde, 2003) as given by Equation 3-6a. Thereby, all columns
will have the same variance and every variable will have the same chance of

influencing the regression model.

Xy = (3-6a)

o, = Z( %) (3-6b)

X . is the average value of data in the jth column. j is the variable index and i is the

row index. n 1s the number of observations.

Standard Normal Variate (SNV)

The standard normal variate approach has been used for near-infrared spectra to
reduce the multiplicative interferences of scatter and particle size (Geladi et al., 1985).
No literature was found regarding its application to correcting fluorescence data. SNV
corrects the spectra by centering each row and then scaling it by its own standard
deviation as given by Equation 3-7a. In our case, each row corresponds to the
fluorescence spectrum of a given sample.

svy Xy T X

X, B & =—
i o (3-7a)

1

, where 0;1s the standard deviation of data in the ith row as given below:
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m (x__ _)_Ci )2

0, = Z —— (3-7b)

A m

X; is the average value of data in the ith row, j is the variable index. m is the number

of columns (i.e. excitation emission pairs).

Normalization (NM)

Normalization of the spectra prior to multivariate calibration has been used for
path length correction (Geladi et al., 1985). Each element in the row (Equation 3-2) is
divided by the square root of the sums of squares for that row and consequently, each

normalized spectrum will be represented by a unit vector as given by Equation (3-8).

(3-8)

where m is the number of columns, ; is the variable index and i is the row index.

3.4. RESULTS AND DISCUSSION

3.4.1 Effect of Heat Treatment Duration and Temperature on -LG Aggregation

The time course of B-LG aggregation as measured by precipitation at 85°C based
on dry weight and HPLC analysis is presented in Figure 3-3. The two methods were
assumed reliable as for two replicates the experimental error was estimated to be

5.93%.
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Figure 3-3. Percentage of B-LG protein aggregation based on dry weight and HPLC
analysis for two replicates (experiment 1 and 2) with heat treatment at 85°C, pH 4.5.
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Figure 3.4: Percentage of B-LG aggregation based on dry weight analysis plotted
versus heating time at four different temperatures 75, 80, 82.5 and 85°C, sodium
acetate buffer, pH 4.5.
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At 85°C the maximum amount of protein precipitation that could be achieved
was in the order of 80%. The time course of precipitation following thermal treatment
of B-LG in solution at various temperatures is given in Figure 3-4. The extent of
protein precipitation increased over time and with increasing temperature. At 85°C, a
plateau was observed at around 80% after one hour, whereas at 82.5°C a plateau
appeared at a similar time but at 35% B-LG precipitation. At 80°C and lower
temperatures, the amount of B-LG precipitation was less than 15%. It was observed
that the rate of protein aggregation was strongly temperature dependent over a
temperature range of 80-85 °C where two-degree rise in temperature resulted in a two-

fold increase in the rate of B-LG precipitation.

3.4.2. Effect of pH on [-LG Aggregation

Along with temperature and heating time, pH is considered to be one of the key
factors that influence the heat-induced aggregation behaviour of whey proteins and
their functional properties (Fang and Dalgleish, 1998; Hoffmann and van Mil, 1999;
Hunt and Dalgleish, 1994). The vast majority of formulated and processed dairy
products, including whey protein end products, are manufactured under acidic
conditions (Xiong ef al., 1993). Eight B-LG solutions of identical protein concentration
(9.3 g/L) and the same buffer (sodium acetate buffer), but different pH values in the
acidic range, were prepared and then subjected to heat treatment at 85°C for 90
minutes. Based on both HPLC analysis and dry weight, pH was found to have a

significant effect on the amount of B-LG aggregation (Fig. 3-5).
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Figure 3.5 Effect of pH on the B-LG aggregation after a 90-minute heat treatment at
85°C in acetate buffer (Experiment 8, Table I): Percentage of B-LG aggregation is
based on dry weight and HPLC analysis.

At pH values below 4.0, precipitation is very low, in agreement with previous
observations of Renard ef al. (1998). Renard et al. (1998) attributed the very low B-LG
protein aggregation observed at pH 2.0 to the inhibitory effect of that pH on the
formation of disulphide bonds. The electrostatic repulsion between positively charged
protein molecules at low pH values are strong enough that thiol/disulphide interchange
reactions between monomers are inhibited resulting in a small degree of aggregation
(De la Fuente et al, 2002). These results show that protein aggregation reaches a
maximum value at a pH of approximately 5.0, which is very close to the theoretical -
LG isoelectric point (pI 5.3) (Kelly and Zydney, 1997). Similar results have been
reported by others (De Rham and Chanton, 1984; Renard et al.,, 1998; Xiong et al.,

1993). There is very good agreement between HPLC and dry weight measurements at
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pH values lower than 5.0; however, the two methods give different levels of
aggregation at pH values greater than 5.0. The HPLC chromatograms for B-LG
solutions at pH values greater than 5.5 show a peak that is probably due to the presence
of larger molecular weight aggregates that were in suspension. It was not possible to
take these peaks into account in the calculation of the amount of aggregation since it is
not clear at this point how these peaks are related to the aggregates in solution.
However, these additional peaks could explain why the predicted amount of

aggregation is higher based on dry weight determinations versus the HPLC method.

3.4.3 Fluorescence Analysis

Visual inspection of the fluorescence excitation-emission matrices collected
during experiment 1 (85 °C), where a new sample was used for each time point, reveals
that the fluorescence landscape of B-LG solution changes over the time course of heat
treatment. Figure 3-6 shows fluorescence measurements collected during experiment 1
for three samples (with different heat treatment times of 5, 40 and 110 minutes) with an
initial B-LG concentration of 9.3 g/L.. The change in the fluorescence landscape of -
LG solution over the time course of heat treatment involves, first, a progressive decline
in the intrinsic fluorescence intensity of tryptophan (Figure 3-6) and second, a shift of
the emission peak of tryptophan from 328 nm towards longer wavelengths (340-350

nm).
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Figure 3.6: Fluorescence profile for a 9.5 g/L B-LG solution (Experiment 1) after
thermal treatment at 85 °C at different time intervals (5, 40 and 110 minutes): B-LG
concentrations were determined by HPLC and dry weight.
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3.4.4 PLS Regression

Partial Least Squares regression was employed to determine the underlying
components (also called latent variables) in the fluorescence spectra that are relevant to
the measured solubility of B-LG and its aggregation percentage calculated from
Equation (3-1). The experimental data for 118 different B-LG samples with different
thermal treatments (one fluorescence spectrum per case) has been divided into a
calibration set and a validation set. The first experiment (Table 3-1) consisting of 16
samples was used for calibration. The X matrix for the calibration has dimensions of
16x2400 and contains in its rows the individual spectral samples. The X and Y
matrices were both mean-centered prior to PLS regression. PLS regression applied to
the calibration set (i.e. the data set with known concentrations) provided four latent
variables or PLS components that are statistically significant, with a goodness of
prediction by cross validation (Q?) of about 92%. These PLS components capture 91%
of the variance in the X matrix (fluorescence intensity). The first PLS component is the
most significant since it accounts for 58% of the variance in the X-matrix and it has
strong linear correlation with the observed extent of aggregation (Figure 3-3). The
second PLS component accounts for 23.8% of the variance in the X-matrix. The 31
and 4™ components are less important but they were retained for PLS modeling since
they were determined necessary based on cross-validation. The four PLS components
contain the projections (scores) of the fluorescence landscapes that belong to 16
thermally treated protein solutions onto the low dimensional space determined by PLS.

PLS scores for the first two significant components are plotted versus heating time
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(Figure 3-7). Important spectral regions were identified by plotting the PLS weights of

component 1 and 2 versus excitation-emission wavelength (Figure 3-8a and 3-8b).
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Figure 3-7. Plot of PLS scores for the first two significant latent variables versus
heating time (Experiment 1: 85 °C, 0.1 M acetate buffer pH 4.5).

A plot of PLS scores for the first component versus heating time (Figure 3-7)
shows an increasing trend that is strongly correlated with the observed extent of
aggregation. According to Figure 3-8a, the first PLS component captures the
fluorescence change in the spectral region at around 328-330 nm emission and 300 nm

excitation.
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Experiment 1 (85 °C, 0.1 M sodium acetate buffer pH 4.5).
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Comparing the spectral region seen in Figure 3-8a with the emission
wavelength corresponding to the maximum intensity of 328 nm for B-LG reported at
room temperature by Renard et al. 1998, this spectral region can be most likely
attributed to tryptophan buried in hydrophobic cores of the native protein (Reshetnyak
and Burstein, 2001).

Intuitively, the observed formation of insoluble aggregates over the course of
heat treatment is accompanied by the decrease in the soluble amount of native B-LG.
On the other hand, a plot of PLS scores for the second component (Figure 3-7) versus
heating time shows an increase up to 20 min heating time that is followed by a slow
decline with further increase in heating time. PLS weight plot for the second PLS
component provides a spectral signature (Figure 3-8.b) that is different from that of the
native B-LG (Figure 3-8a). As seen in Figure 3-8.b, that spectral signature at around
emission 340-350 nm is possibly of tryptophan residue in the non-native state of the
protein (Reshetnyak and Burstein, 2001).

Recent studies using CD spectroscopy (Prabakaran and Damodaran, 1997)
support the hypothesis of (Qi et al., 1995) that the primary cause of the initiation
reaction in heat induced aggregation of 3-LG involves critical conformational changes
in B-LG to form reactive monomers which then react with each other via sulphhydryl-
disulphide exchange reactions to form dimers and other aggregates (i.e. trimers and
tetramers). Mandenson et al. (1998) noted that these dimers and aggregates could be
important intermediates in the further aggregation of 3-LG. The native protein and its
aggregates are believed to involve a very large, heterogeneous population of partially

unfolded molecules that interact differently with the solvent and with the neighboring
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molecules (Vetri and Militello, 2005). The plot of PLS scores for the second
component may reflect the formation and depletion of some non-native intermediates
over the course of heating.

Formation of non-native B-LG intermediates after short heating times has been
observed by lametti et al. (1996) and Schokker ef al. (1999) and it is considered to be
the first step in the heat-induced aggregation of B-LG. Schokker et al. (1999)
monitored the formation of irreversibly altered monomers and non-native dimers
throughout the aggregation of B-LG. Their study showed that the increase in the
amount of aggregates is accompanied by a progressive loss of native-like B-LG
throughout the heating process. At the same time, Schokker ez al. (1999) observed that
the amount of non-native monomers, dimers and trimers increased during the early
stages of heat treatment after which a slow decrease with time was observed. Similar
results were obtained by other researchers (McSwiney et al., 1994; Prabakaran and
Damodaran, 1997). This analysis suggests that several simultaneous kinetic events
associated with the protein structural change, such as partial unfolding and aggregation,
can be captured using the PLS components that were extracted from the
multiwavelength spectra.

In addition to the PLS weight plots, the sensitivity spectrum (Boehl et al., 2003)
is another method which allows extraction of qualitative information in the model by
analysis of the wavelength pairs that are relevant to the predicted variable (i.e. B-LG
aggregation). The sensitivity spectrum consisting of the scaled regression coefficients
for every wavelength combination in the model are shown in Figure 3-9. From Figure

3-9, two major areas can be identified that are relevant to predicting the extent of B-LG
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aggregation for a given heat treatment condition. The significant peak at around 303
nm excitation and 330 nm emission, which is due to tryptophan buried in hydrophobic
cores of the native B-LG, has a negative correlation with the predicted variable (i.e. B-
LG aggregation). Hence, the higher the amount of aggregates, the lower the amount of
native B-LG residing in the solution. The area of large peaks at around excitation 297
nm and emission 340-350 nm corresponding to tryptophan residues at different
exposure levels to the surrounding solvent (Reshetnyak and Burstein, 2001) contribute
positively to the predicted B-LG aggregation. In other words, this positive correlation
implies that the exposure of the protein hydrophobic residues to the surrounding
solvent upon unfolding gives rise to B-LG aggregation, which is in agreement with the
literature (De la Fuente et al, 2002; McSwiney et al. 1994; Prabakaran and

Damodaran, 1997; Schokker et al. 1999).
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3.4.5 PLS Model Testing

The PLS calibration model was tested against three independent data sets that
were not used in the calibration. The fluorescence spectra for experiments 2, 3 and 4
(Table 3-1) were fed into the PLS model to calculate the B-LG concentration that
corresponds to each sample. The model gives a RMSEP of 0912 g/L, which
corresponds to 10.1 % prediction error in terms of aggregation percentage. While this
prediction error is larger than the overall experimental error of HPLC measurements
(5.93 %), the current model may not be suitable for reliable quantitative determination
of the protein content in real-life application such as quality control and on-line
monitoring of food processes. As this prediction error is relatively large, attempts to
improve the calibration model have been made and will be discussed in the next

section.

3.4.6 Spectra Preprocessing Prior to PLS Regression

Understanding the origins and characteristics of measurement error may
suggest approaches of improving the quality of input data that is fed into the PLS
model. Therefore, the fluorescence measurements for four replicates of identical
protein content were collected at an excitation wavelength of 300 nm as seen in Figure
3-10a. A close examination of the fluorescence spectra of the four replicates reveals
that the variance of measurements is proportional to the measurement itself (Figure 3-
10b). Such an error pattern is often referred to in literature as heteroscedastic noise or
error that possibly arises from counting statistics (i.e. shot noise) or fluctuations in

source intensity with wavelength channel (Schreyer et al., 2002).
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intensity for the four replicates (primary axis) and the variance of measurements
(secondary axis) around that mean calculated at each wavelength.
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Due to the heteroscedastic component of the fluorescence signal, the spectra
acquired for samples with different but relatively close protein concentrations could
exhibit many overlapping spectral peaks that would affect the ability to accurately
determine a measurable property of the target analyte (i.e. B-LG content) in each
sample.

Error measurements in the fluorescence can play a significant role in degrading
the quality of results obtained from the regression model. To further reduce the
prediction error, the preprocessing of the spectra prior to PLS regression was evaluated.
The application of four preprocessing techniques (mean centering, columns scaling,
standard normal variate and normalization) to the spectrometric data was investigated
in order to improve the calibration model. A new PLS model with data from
Experiment 1 was calculated and validated for each preprocessing method by testing
the model on the spectra of Experiments 2 to 7 (Table 3-1). The effect of the
pretreatment method on the predictive accuracy described by the Root Mean Squared
Error of Prediction (RMSEP) and the Predictive Correlation Coefficient (Q?) are

presented in Table 3-2 and Table 3-3.

Table 3-2: Effect of the pretreatment method for X (spectra) and Y (B-LG
concerzwtration) on the overall predictive ability of the model as described by RMSEP
and Q

X: None X: MC X: VS X: SNV X: NM
RMSEP (g/L) 0.855 0.912 0.805 0.465 0.413
Q’ 0.60 0.51 0.65 0.87 0.88
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Table 3-3: Effect of the pretreatment method for X (spectra) and Y (B-LG

aggregation) on the overall predictive ability of the model as described by RMSEP and
Q.

X: None X: MC X VS X: SNV X: NM
RMSEP
. 9.34 10.11 8.54 5.02 4.93
(% aggregation)
Q% 0.53 0.41 0.66 0.85 0.86

Table 3-4: Effect of the pretreatment method for X (spectra) and Y (3-LG aggregation)
on the model accuracy (RMSEP) for each validation set (all tabulated values are
RMSEP expressed as 3-LG aggregation (%)).

Experiment Aggregation% X:None X:MC X:VS X:SNV X:NM

2 0-75 10.80 11.80 7.70 4.95 4.40
3 0-30 11.23 11.93 9.55 6.34 5.09
4 0-15 6.58 7.32 6.72 3.75 4.06
5 0-12 6.19 5.44 3.32 2.93 4.42
6 0-11 6.33 6.47 7.95 3.60 3.69
7 0-11 7.69 8.87 8.00 4.93 5.00

Although mean-centering (MC) is considered to be a standard approach in PLS
regression, the data preprocessing obtained from mean centering seem to be worse than
when no preprocessing was used in all validation sets as seen in Table 3-4. Our results

agree with those of Seasholtz ef al. (1992), where they demonstrated that the RMSEP
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will be smaller for a multivariate model made with raw input data than for a model
made with mean centered data if the data, as in this case, varies with concentration.

The best results based on RMSEP and Q? were obtained with the use of the
Standard Normal Variate (SNV) and normalization (NM) for all validation sets. It is
also noticed that the performance of SNV and NM is nearly equivalent where both
methods seem to improve the accuracy of prediction by about 40%. The reason for the

superior performance of SNV and NM is that both were able to handle the type of

measurement error occurring in the fluorescence data. Assuming that Xjj is the raw

fluorescence signal corrupted by heteroscedastic noise it can be expressed

mathematically as (Schulze, 1997):

X; = &.X; (3-9)

xij" is the noise-free fluorescence signal for a given sample that is a function of only

the physical properties of the target analyte (i.e. protein content) and € is the

heteroscedastic noise. Substituting Equation 3-9 into the SNV transformation given by

Equation 3-7a yields:

- o -0
i > e i (3-10)
—_ 0 — 0
Z(xl.j —X;) Z(g.xl.j —EX.)
=1 j=l

Note that Equation 3-10 can be simplified further by canceling out € so the SNV-

corrected signal becomes only a function of the noise-free component xij°:
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(3-11)

Similar to SNV, Normalization (Equation 3-8) corrects the fluorescence signals by

removing the heteroscedastic noise while preserving the pure noise-free component

xijo that is a characteristic of the target analyte as described by Equations 3-12 and 3-

13.

o

NM xl.j g.xij

Yo T =T (3-12)
\/injxij \/Z(g‘xljo)'(g'xljo)

J=1

which implies that

o
NM Xjj

R — (3-13)
x5 x
j=1
The ability of SNV to distinguish between variations that are due to physical properties
of the analyte from those that are non-relevant was demonstrated before by Geladi et
al. (1985) in the pretreatment of near infrared spectra.
Model predictions of PLS made with SNV corrected spectra were compared against
HPLC and dry weight measurements for three different data sets presented in Figure
(3-11). Tt is clear from this figure that the model predicts the protein aggregation %

very well over wide range of conditions (different temperatures and treatment

durations).
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Figure 3-11: PLS model prediction for B-LG protein aggregation compared to HPLC
and dry weight measurements at three different temperatures 85, 82 and 80 °C
(Experiments 2, 3 and 4, respectively).

3.5 CONCLUSION

A novel fluorescence-based regression model is proposed for the prediction and
quantification for a model system consisting of the protein B-LG. Results show very
good agreement between the fluorescence-based predictions and measurements
obtained by two analytical techniques. The usefulness of multivariate calibration tools,
also known as chemometric methods, in extracting the features that are correlated to
the physical properties of the target protein such as its concentration and extent of

aggregation were illustrated. Standard Normal Variate, a signal preprocessing and
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filtering tool, was demonstrated to play a significant role in enhancing the predictive
accuracy and robustness of the sensor. Although the SNV approach is widely
implemented in signal processing, its specific applicability in filtering fluorescence

signals has not been studied previously.
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CHAPTER 4

Fluorescence-based Soft-sensor for Monitoring 3-Lactoglobulin and o-

Lactalbumin Solubility during Thermal Aggregation*

A soft-sensor for monitoring solubility of native-like a-lactalbumin (a-LA) and B-
lactoglobulin (B-LG) and their aggregation behavior following heat treatment of
mixtures under different treatment conditions was developed using fluorescence
spectroscopy data regressed with a multivariate Partial Least Squares (PLS) regression
algorithm. PLS regression was used to correlate the concentrations of a-LA and B-LG
to the fluorescence spectra obtained for their mixtures. Data for the calibration and
validation of the soft sensor was derived from fluorescence spectra. The process of
thermal induced aggregation of B-LG and a-LA protein in mixtures, which involves the
disappearance of native-like proteins, was studied under various treatment conditions
including different temperatures, pH, total initial protein concentration and proportions
of a-LA and B-LG. It was demonstrated that the multivariate regression models used
could effectively deconvolute multi-wavelength fluorescence spectra collected under a
variety of process conditions and provide a fairly accurate quantification of respective
native-like proteins despite the significant overlapping between their emission profiles.
It was also demonstrated that a PLS model can be used as a black-box prediction tool

for estimating protein aggregation when combined with simple mass balances.

* Elshereef R, Budman H, Moresoli C, Legge RL. (2008). Fluorescence-based soft-sensor for
monitoring B-lactoglobulin and a-lactalbumin solubility during thermal aggregation. Biofech
Bioeng 99:567-577.
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4.1 INTRODUCTION

Whey, a by-product of cheese manufacturing, is a milk fraction composed of
lactose, proteins, vitamins, minerals, and fats. Whey proteins include a number of
different proteins such as p-lactoglobulin (B-LG), a-lactalbumin (a-LA), bovine serum
albumin, and immunoglobulin. These whey proteins have high nutritional value and
can be used to manufacture different types of food products. Large amounts of whey
protein are used for infant formula, yogurt, ice cream, and beverages. In the past,
attempting to maximize the extraction of these proteins from whey and separating them
has, and continues to be a challenging task. The impurities in whey make the
extraction process relatively difficult. In addition, the similarities between a-LA and
B-LG make it even more difficult to separate these proteins.

Amundson et al. (1982) developed a method to produce enriched fractions of -
LG and a-LA from cheese whey by concentrating the whey protein using ultrafiltration
followed by pH adjustment of the concentrate. However, Muller et al. (2003) have
shown that separation of proteins using selective thermal precipitation is more
promising than using the ultrafiltration route, provided that proper conditions including
initial protein concentration, pH, and length of precipitation time are maintained
(Bramaud et al, 1997; Tolkach et al, 2005). Pearce (1987) has shown that the
tendency of a-LA to aggregate is higher under specific conditions including at a pH
values near the isoelectric point (pH 4.2-4.6) and in a temperature range of 50°C -65°C.
They also observed that the tendency to aggregate increased with protein concentration.

Bramaud ef al. (1997) studied the effect of citrate on the precipitation of whey proteins
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and they observed that the addition of citrate leads to o-LA rich fractions at
temperatures around 35°C.

Research has shown that the two major whey proteins, a-LA and B-LG, become
unstable at temperatures above 65°C (Zhu & Damodaran, 1994). When heated above
this temperature, protein denaturation occurs resulting in protein aggregation and
precipitation. The response to thermal treatment varies with different types of proteins,
which results in different proteins precipitating out of the solution in different
proportions making separation possible (Bramaud et al. 1997; Tolkach et al., 2005).
Therefore, heat-induced aggregation and precipitation is an important treatment process
in the manufacture of many dairy products, and is used to modify functional properties
with the goal of ensuring food safety of the product. Functional, physical and chemical
properties of milk such as texture, heat stability, foaming properties and rheological
behavior are all affected by the heat treatment (Newstead et al. 1975; Morr, 1985;
Kessler and Beyer, 1991; Zhu and Damodaran , 1994; Luecy et al. 1998, Elshereef et
al., 2006).

There were several objectives in this study. First, there was an interest in
investigating the effect of different conditions on the heat treatment-based separation
process of milk proteins. The rate at which whey proteins aggregate is controlled by
process conditions such as protein concentration, pH and temperature and the presence
of other components (Bertrand-Harb et al, 2002). Our objective was to use data
acquired from this approach to calibrate and validate a soft- sensor developed to
monitor the separation process. Using the measurements collected under varied process

conditions, it would be possible to then demonstrate the sensitivity and robustness of
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this soft sensor. Soft-sensors are inferential mathematical models that use readily
available process measurements or/and physical equations to estimate difficult-to-
measure variables (James et al., 2002; Hagedorn et al., 2004).

As a preliminary step, the current study focused on different solutions of B-LG
and a-LA. These proteins are the predominant proteins that make up of about 70% of
all the proteins in whey and are key to the functional properties and characteristics of
whey. The experimental approach involved the analysis of the thermal aggregation of
these two proteins at different pH values, temperatures, and protein concentrations.
The soft-sensor proposed was designed by combining fluorescence spectroscopic data
acquired for B-LG/a-LA solutions subjected to different heat conditions and Partial
Least Squares (PLS) modelling for monitoring solubility of a-LA and B-LG in their
mixtures and their aggregation behavior during heat treatment under different treatment
conditions. Partial Least Squares regression is a well-known chemometric tool for
developing a calibration model which correlates the set of known measurements
represented by multi-wavelength fluorescence data to the desired property to be
predicted (Herbert et al., 2000; Becker et al., 2003; Hagedorn et al., 2004; Elshereef et
al., 20006). This is because the PLS method is capable of handling data sets with large
numbers of highly-correlated variables such as the fluorescence spectral measurements

and with few observations (Elshereef et al., 2006).
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4.2. MATERIALS AND METHODS

4.2.1 Materials and Sample Preparation

B-LG and a-LA in their powder form (lot JE 007-3-921 and JE 003-3-922) were
of 95% purity and donated by Davisco Foods International (LeSueur, MN). All other
chemicals were of analytical grade. Solutions of B-LG and a-LA were prepared in two
different buffers: 0.1 M acetate buffer (pH 4.5) and 0.1 M citrate buffer (pH 3.5-6.0) as

described below.

4.2.2. Thermal Treatment
Protein solutions were dispensed into 20 mL open plastic test tubes and placed
in a pre-equilibrated temperature controlled water bath (GCA Precision Water Bath,

Model 183) at the desired temperature and duration for the heat treatment process.

4.2.3 Centrifugation and Gravimetric Analysis of the Precipitate

After heat treatment the samples were quickly placed into an ice bath for 15 to
20 min. Samples were then centrifuged at 22000 xg in a Beckman L7 Ultracentrifuge
for thirty min. The supernatant was decanted and analyzed for the final protein (Cf)
content by HPLC and the protein precipitate (pellet) was recovered for dry weight
estimation. Fluorescence measurements were performed on the supernatant prior to
HPLC analysis, Protein aggregates were dried in an oven at 90°C for approximately 17
h until they reached constant weight and the dry weight determined. Percentage of

total protein aggregation was calculated using Equation 4-1 where Wy is the amount of

103



protein in a given sample prior to heat treatment and Wp is the dry weight of protein

aggregate formed after heat treatment.

/4
aggregate¥% =100 * {W_PJ (4-1)

N

4.2.4 HPLC Analysis of Soluble LG and o-LA in the Supernatant

The initial (C;) and final protein (Cy) content for a-LA and B-LG in all samples

were determined using High Pressure Liquid Chromatography (HPLC). The

chromatography system consisted of a Waters 600 E systems controller, Waters 700

Satellite WISP, and a Waters 486 Tunable Absorbance Detector set a 280 nm.
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Figure 4-1. Sample HPLC chromatogram of a thermally treated 3-LG/a-LA mixture.
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Ten pL of supernatant was injected onto a Zorbax GF-250 (9.4x250 mm)
analytical column and eluted with 200 mM phosphate buffer at pH of 7; separation the
mixture was on the basis of size exclusion. An example chromatogram is given in
Figure 4-1.

Calibration curves were prepared using different concentrations of pure untreated
B-LG and o-LA and the initial protein concentration based on HPLC analysis. The
protein concentrations were estimated from the peak height. Percentage of protein

aggregation for each protein was calculated as:

C,
Aggregate%:100*£ lc ! j 4-2)

i

4.2.5 Fluorescence Analysis

Fluorescence measurements were conducted in a 1.0-cm cuvette using a Varian Cary
Eclipse Fluorescence Spectrofluorometer (Palo Alto, CA). Excitation and emission slit
widths were both set to 10 nm. Excitation was conducted over a wavelength range from
260 to 350 nm at a scan interval of 10 nm; the emission spectra were recorded in the
region 280-450 nm with a resolution of 1 nm producing a 10x170 excitation-emission
wavelength pairs generating a matrix of data consisting of 1700 fluorescence intensity

data points for any given sample.

4.3 CHEMOMETRIC MODELLING

The experimental data in this study were divided into two categories: input data,

the fluorescence spectrometric measurements, and output data consisting of B-LG and
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ao-LA concentration values obtained by HPLC analysis. The matrix that contains the
outputs to be predicted, i.e. HPLC measurements of -LG and a-LA concentrations,
were arranged in an output matrix to be referred to heretofore as matrix Y whereas the
fluorescence measurements were arranged into an input data (X-matrix). The rows in
the X matrix correspond to different samples while the columns correspond to
fluorescence intensities at different excitation-emission wavelength pairs (Elshereef et
al., 2006). The input data is considered to be multivariate in nature since it consists of
many measurements (1700 fluorescence intensity data points) for many samples.
Partial Least Squares regression (PLS) is a well-known chemometric tool for
developing a calibration model which can be used to correlate the set of known
measurements represented by the fluorescence data to the desired property to be
predicted represented by the B-LG and a-LA concentrations. PLS is able to handle
problems associated with noise and collinearity in multivariate data sets with large
numbers of highly correlated variables (Geladi and Kowalski, 1986, Qin and McAvoy,
1992). Collinearity is very high among the different fluorescence readings obtained at
different combinations of emission and excitation wavelengths (Elshereef et al., 2006).
Hence, the original input variables x in the matrix X are replaced by a smaller set of
underlying new variables that are uncorrelated, mutually independent (orthogonal) and
are mathematically represented by linear combinations of the original descriptors.
These calculated linear combinations, referred to as latent variables (LVs) or principal
components, are calculated to both provide good representation of the X-matrix and
maximize the relationship between the input and the output (Qin and McAvoy, 1992).

The optimum number of latent variables (LVs) and the goodness of prediction (Q?) are
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determined by cross-validation algorithm (Geladi and Kowalski, 1986; Qin and
McAvoy, 1992; Elshereef et al., 2006). The data obtained from heat treatment
experiments were used for calibrating and testing the PLS soft-sensor as will be shown
in the following sections. All computations were carried out using MATLAB 5.3
(MathWorks, Natick, MA) along with the PLS Toolbox 3.5 (Eigenvector Research

Inc., Manson, WA).

4.4 RESULTS AND DISCUSSION

The first objective of this work involved a comprehensive study of the effects of
different experimental parameters on the solubility, aggregation and precipitation
behavior of proteins during heat treatment. The parameters that were studied were:
total protein concentration, a-LA to B-LG ratio, pH, heat treatment duration and
temperature. The results are presented separately in the following subsections. Some of
these effects have been partially studied and reported in the literature (Newstead et al.,
1975; Kessler and Beyer, 1991; Luecy et al., 1998). The current work expands on
previous findings by investigating the effects over a wider range of operating
conditions and also adds new results on the effects of pH, total protein concentration
and a-LA to B-LG ratio. This comprehensive study was necessary in order to calibrate

the soft sensor and to validate over a wide range of process operating conditions.

4.4.1 Effect of Total Protein Concentration on Aggregation
In the majority of industrial processes involving the production of whey, thermal

treatment is preceded by a preliminary concentration step to minimize energy
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requirements. Hence, understanding and modeling the effect of total protein
concentration prior to heat treatment on the solubility of major whey proteins as well as
their aggregation behavior is of industrial interest (De la Fuente et al., 2002; Law &
Leaver, 1997). Previous experimental studies carried out using calorimetry (Qi ef al.,
1995) or Fourier transform infrared spectroscopy (Lefevre & Subirade, 1999) and light
scattering (Le Bon et al., 1999) showed that the initial protein concentration has a
marked effect on the thermal denaturation and aggregation of B-LG. However, such
experimental studies were done with pure B-LG solutions. As far as we are aware, no
investigators have reported the effect of total protein concentration on the thermal

denaturation and aggregation of B-LG in the presence of a-LA only.

Table 4-1: Summary of the heat treatment experiments for B-LG and o-LA protein
mixtures performed under different conditions.

Number
Exp# of pH Tpc) PLGtoeLA Total Protein
ratio

Samples
1 8 3.9 75 Constant 3:1 Variable 3 -16 g/L
2 16 3.9 85 Constant 3:1 Variable 1.5 -18 g/L
3 10 3.9 75 Variable Constant 12 g/L
4 8 3.5 85 Constant 3:1 Variable 1.5 -14 g/L
5 10 3.7 85 Constant 3:1 Variable 1.5 -16 g/L
6 9 3.9 85 Constant 3:1 Variable 1.5 -16 g/L
7 9 4.5 85 Constant 3:1 Variable 1.5 -16 g/L
8 10 5.0 85 Constant 3:1 Variable 1.5 -16 g/L
9 8 6.0 85 Constant 3:1 Variable 1.5 -14 g/L
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In the first experiment summarized in Table 4-1, different amounts of a-LA and B-LG
in their powdered form were mixed with 0.1 M citrate buffer at pH 3.9 resulting in 8
different protein mixtures of different total protein concentration (ranging from 3 g/L to
16 g/L) but with a constant a-LA to B-LG ratio of 1:3. The mixtures were then

subjected to heat treatment at 75°C for 90 minutes.
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Figure 4-2. a-Lactalbumin and B-lactoglobulin aggregation at pH 3.9 for different total
protein concentrations determined by HPLC (Experiment 1 in Table 4.1: heat
treatment duration is 90 min; temperature 75°C).

Figure 4-2 is a plot of the percentage of total protein precipitated based on dry weight
and HPLC measurements against the initial total protein concentration. In general the
amount of protein which precipitates (i.e. aggregates) increases with an increase in the

initial protein concentration. To test the accuracy of the HPLC and dry weight

109



measurements, these were compared for different total concentrations. Figure 4-2
shows very good agreement between the total protein aggregated as measured by
HPLC and dry weight with a maximum error of approximately 5% between the two

measurements.

In general, the discrepancy between the two determinations becomes greater for
samples with low protein precipitation that corresponds to a lower signal to noise ratio.
One of the major advantages of HPLC analysis over gravimetric analysis (dry weight)
is that the former method allows estimating the percentage of aggregation of a-LA and
B-LG separately from the amounts of respective proteins before and after heat
treatment according to Equation 4-2. As seen from Figure 4-2, the percent aggregation
of a-LA and B-LG increases with increased total protein concentration. Results show
that there is a marked difference in the aggregation behavior of the two proteins where
the degree of aggregation observed for a-LA is significantly higher than that observed

for B-LG at all protein concentrations.

4.4.2 Effect of a-LA to f-LG Ratio on Protein Denaturation and Aggregation

Appropriate amounts of a-LA and B-LG were mixed with 0.1 M citrate buffer solution
at pH 3.9 resulting in 10 protein mixtures of different a-LA to B-LG ratios but with
constant total protein concentration (12 g/l) (Experiment 3, Table 4-1). The mixtures
were then subjected to heat treatment at 75°C for 90 minutes. Figure 4-3 shows the
percentage of a-LA aggregation against the initial fraction of o-LA in the mixture

before heat treatment was started. A five-fold increase in the percentage of o-LA
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aggregation occurs with increasing proportion of a-LA in the initial fraction over the

range of 0.1 to 0.2. A smaller percentage increase is seen for initial a-LA fractions

beyond 0.2.
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Figure 4-3. a-Lactalbumin and -lactoglobulin aggregation at pH 3.9 for different o-
LA mass fractions in the protein mixture determined by HPLC (Experiment 3 in Table
4-1: heat treatment duration is 90 min; temperature 75°C).

Figure 4-3 also illustrates that the amount of B-LG that aggregates decreases with

increasing initial o-LA fraction, implying that B-LG aggregation decreases with

decreasing proportions of native B-LG present in the solution prior to heat treatment.

These results agree well with those observed in Figure 4-2. The percentage of

aggregation of each protein is proportional to the initial concentration of that protein in
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the mixture before undergoing heat treatment with a-LA being more sensitive to heat

treatment than B-LG.

4.4.3 Effect of pH During Heat Treatment

The kinetics of protein denaturation, the aggregation mechanism and the nature of the
stabilizing forces involved in the formation of aggregates are affected by the solution
pH during heat treatment (Xiong et al., 1993; Hunt and Dalgleish, 1994; Hoffmann and
van Mil, 1999; Bertrand-Harb et al., 2002). Therefore, in order to demonstrate the
robustness of a PLS based soft-sensor for monitoring aggregation behavior of these
proteins under different conditions, mixtures of a-LA and B-LG were heat-treated at
different pH values and the fluorescence spectra acquired from the supernatant and

used to test the PLS soft sensor.

The pH over which this study was conducted (pH 3.5 to 6.0) represents the range over
which B-LG exhibits different self-association behavior. At room temperature and at
pH values below 4 and above 5.2, B-LG exists predominantly as monomers and dimers
(Sawyer et al., 1999) and at pH values around 4.7, larger oligomeric structures are
formed (Verheul ef al., 1999). In the case of a-LA, there is a conformational change in
the range of pH selected for this study (Muller et al. 2003). Results in Figure 4-4 shows
that aggregation of both proteins is more rapid near their isoelectric points (4.2 for a-
LA and 5.2 for B-LG). It is also clear that the two proteins have different aggregation
behaviors at all pH values and at all initial protein concentrations. Furthermore, the

propensity of a-LA to aggregate is greater than that of B-LG at pH values below 4.5 as
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seen in Fig. 4-4. This difference in the aggregation behavior can be partially attributed

to the higher thermal stability of B-LG over this pH range.
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Figure 4-4. o-Lactalbumin and [(-lactoglobulin aggregation at different pH values
(3.7, 3.9, 4.5 and 5) for different total protein concentrations determined by HPLC
(Experiments 5, 6, 7 and 8 in Table I; heat treatment duration is 90 min, temperatures
85°C at pH 3.7, 3.9, 4.5 and 5 respectively). ¢ = a-LA; A = B-LG; o = total protein
determined by dry weight; m = total protein determined by HPLC.
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Previous studies of thermal stability of B-LG in the presence of a-LA using differential
scanning calorimetry (Boye and Alli, 1999) found that B-LG retains its increased
thermal stability at low pH in spite of the presence of a-LA. At higher pH values, 3-LG
is known to be thermally unstable (Boye and Alli, 1999). Given the residual amounts
of respective proteins in the supernatant that were determined by HPLC analysis, the
weight ratio of native B-LG to native a-LA under different conditions was calculated

using Equation 4-3.

C
_ i . P-LG
a—LA
The weight ratio of B-LG/a-LA was plotted as a function of the initial total protein
concentration in the original protein mixture before heat treatment at four different pH

values (Fig. 4-5).
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Figure 4-5. Effect of pH and initial total protein concentration on the weight ratio of -
LG to a-LA in the supernatant (heat treatment duration 90 min; temperature 85°C).
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It can be seen from Fig. 4-5 that B—LG enrichment by thermal treatment is favored at
lower pH values. At higher pH values, the recovery of a-LA by thermal precipitation
(i.e. aggregation) is reduced because more B-LG precipitation is favored under these
conditions (Figure 4-4), leading to a decrease of soluble B-LG to a-LA weight ratio in
the supernatant as shown in Figure 4-5. Similar results have been previously reported
by Muller et al. (2003) who found that pH 3.9 is the optimal pH value for recovery of
o-LA. Recovery of a-LA by thermal precipitation was lower at pH values higher than

3.9.

4.4.4 Effect of Temperature on Protein Aggregation

Experiments were carried out at 75 and 85 C for 90 min (data not shown). The
total protein concentration was varied between 1.5 g/l to 12 g/l at a constant a-LA:[3-
LG ratio of 1:3 in 0.1 M acetate buffer at pH 3.9. As expected, more protein
aggregated at higher temperatures (Figure 4-6a). It is also observed that the aggregation
behaviors of a-LA and B-LG are different at 75 and 85°C as seen in Figures 4-6b and
4-6¢. Results of the effect of temperature on the aggregation behavior of -LG and a-
LA are consistent with those reported by Zhu & Damodaran (1994). HPLC analysis
likely over-estimates protein aggregation because additional protein aggregation can
occur prior to the analysis. Although HPLC analysis gives higher aggregation levels,

the largest recorded difference between HPLC and DW values is about 10%.
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Figure 4-6. HPLC, dry weight measurements and model predictions of (a) total
protein aggregation (b) B-LG aggregation and (c¢) a-LA aggregation at 75 & 85°C
(Experiments 1 and 6 in Table 4.1).
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4.4.5 PLS Soft Sensor

In practice it would be useful to be able to monitor B-LG and o-LA
concentrations and ratios on line as this would permit real-time manipulation of
operating conditions to modify and optimize the production process. The soft sensor
proposed here is based on the use of fluorescence excitation-emission data acquired
from the supernatant following centrifugation. These data were used to calibrate a
model by using a Partial Least Squares (PLS) algorithm to predict the residual amount
of a-LA and B-LG in solution after thermal treatment. The PLS regression model was
calibrated by regressing the concentration of o-LA and B-LG in a sample where
concentrations were determined by HPLC analysis against the fluorescence spectra of
that sample. As explained in the Materials and Methods, the experimental data
collected for 88 different B-LG/a-LA samples corresponding to different thermal
treatments processes (one fluorescence spectrum per case) was divided into two sets,
one was used for determining the PLS model (calibration set) and the other for testing
the model (testing set). The first dataset (Table 4-1, Experiment 2) consisting of spectra
acquired for 16 supernatant solutions of protein mixtures heat-treated at 85 °C and
covering a wide range of B-LG and a-LA concentrations was used to develop and
calibrate the PLS soft-sensor model. The X matrix for the calibration set can be
expressed mathematically as 16x1700 where each row is an individual spectrum and
the 1700 columns represent fluorescence intensity measurements for different
combinations of excitation wavelengths between 260-350 nm and emission
wavelengths between 280-450 nm. The 16 rows are individual fluorescence spectra

acquired for different supernatant solutions. The output Y matrix for the calibration
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contains two response variables, i.e. the concentration of B-LG and the concentration of
a-LA determined by HPLC. The PLS regression was implemented to correlate the
concentrations of a-LA and B-LG to the fluorescence spectra. When applied to the
calibration set, the PLS algorithm yielded three latent variables or PLS components
that are statistically significant, with a goodness of prediction by cross validation (Q?)
of about 94%. These PLS components capture 94% of the variance in the X matrix
(fluorescence intensity) with the rest of the variability assumed to be due mostly to
experimental error and instrumental noise. The first PLS component is the most
significant and it accounts for 80% of the variance in the X-matrix and it shows a
strong linear correlation with the individual protein concentrations determined by
HPLC determinations. The second PLS component accounts for 15% of the variance in

the X-matrix.

The physical relevance of the current PLS model can be interpreted by examining the
weight vectors (i.e. the weight vector of the first latent variable and the weight vector
for the second latent variable). Plotting each individual weight vector against
wavelength provides the so-called weight spectra (Figs. 4-7 and 4-8) which help in
identifying important spectral regions with significant contribution to the prediction
ability of the PLS model (Elshereef et al., 2006). The loading weight spectrum of the
first PLS latent variable (Fig. 4-7) reveals one peak with an emission maximum around
330-335 nm. Such a peak can be ascribed to the tryptophan residue in a relatively

hydrophobic environment (Reshetnyak & Burstein, 2001).
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Figure 4-7. Weight spectrum of the first PLS component.
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Figure 4-8. Weight spectrum of the second PLS component.
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Fluorescence spectra of pure solutions of B-LG and a-LA at room temperature and pH
3.9 (data not shown) show emission intensity maxima at 330 nm and 335 nm,
respectively which is consistent with published literature for these proteins under
native conditions (Renard et al., 1998; Svensson et al., 1999). In this context it can be
argued that the first PLS component that is strongly correlated with the soluble amount
of B-LG and a-LA in the supernatant (Fig. 4-9) captures the fluorescence spectral
region that is most likely due to the native tryptophan content of the proteins. The two
different relationships observed between the protein concentration and the first PLS
component for B-LG and a-LA (Fig. 4-9) may be explained by the differences in their

tryptophan content.
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Figure 4-9. Measured protein concentrations of a-LA and B-LG versus scores of the
first PLS component.
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The PLS weight spectrum for the second PLS component provides two different
spectral signatures possibly of proteins with a structural conformation (Fig. 4-8) that is
different from that of the native form. The second PLS component may reflect the
presence of non-native forms of B-LG and a-LA and their aggregates that were still
soluble in the supernatant solution. The calibration model was then tested for accuracy
using the remaining data sets (Table 4-1) consisting of fluorescence spectra acquired
for 72 supernatant solutions. These fluorescence data were fed to the PLS model and
the corresponding amounts of protein in the supernatant after aggregation were
predicted. Model predictions for both B-LG and a-LA protein concentrations were
compared with HPLC measurements. All results show very good agreement between
PLS model predictions and HPLC measurements as seen in Fig. 4-10 indicating the
robustness of the model at least for the range of conditions in this study. The strength
of the model is especially evident in that only 16 samples were used for calibration
resulting in a model that provides very good prediction for 72 other samples that were
not used during the model calibration step. As expected, Fig. 4-10(b) shows that the
error increases as the concentration of B-LG increases. The maximum errors are of the
order of 0.1 g/L for a-LA and 0.9 g/L for B-LG, which correspond to approximately

5% and 10% of the total variation in concentration values of the two species.

Generally the fluorescence spectra of different species may overlap making it more
difficult to predict their individual contribution to the spectra when these species are
present in a mixture. For example, the typical emission profiles of a-LA and B-LG are

presented in Figure 4-11. However, the results in the current study illustrate that
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multivariate models can efficiently deconvolute multi-wavelength fluorescence spectra

collected for a protein mixture and thereby provide a fairly accurate quantification of

respective proteins despite the significant overlap of their emission profiles.
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Figure 4-10. A comparison between PLS model predictions (line) and HPLC

measurements for (a) a-LA and (b) B-LG (b) for 72 protein mixtures.
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Figure 4-11. Emission spectra for B-LG (—)(3 g/L) and a-LA (-----) (7 g/L) at pH = 5.0 in
citrate buffer with an excitation wavelength of 295 nm.

4.4.6 PLS/mass Balance Algorithm for Prediction of a-LA and LG Aggregation
Behavior

The amount of aggregated protein can also be predicted by using the PLS-soft sensor
predictions of the soluble amounts of protein before and after heat treatment. This can
be done by calculating the difference between the inferred concentration before and
after treatment and then, the amount of each aggregated protein can be inferred from a
simple mass balance equation given by Equation 4-2. The result of the calculation of
the aggregates by using this combination of the soft sensor predictions and the mass

balance is illustrated by Figs. 4-6 & 4-12. As can be seen, model predictions for
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protein aggregation show very good agreement with HPLC and dry weight

measurements.

In summary, protein solubility and aggregation were monitored for a wide range of
process conditions defined by different protein ratios, total protein amounts, different
pH and different heat treatment temperatures. Given that inline centrifugation is likely
untenable for most practical production applications, fluorescence spectroscopy was
shown to be a suitable approach for the development of a chemometric-based in-
process assay of protein concentrations that would have to be run off-line for the range
of conditions considered in this work. Also, it was determined that the individual
protein aggregation behavior during thermal treatment under different conditions can
be effectively estimated by combining fluorescence data collected from supernatant

with a simple mass balance approach.
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CHAPTER 5

Monitoring the Fractionation of a Whey Protein | solate during Dead-
end M embrane Filtration using Fluor escence and Chemometric
M ethods*

Protein fractionation using membrane-based ultrafiltratidif) is a separation process
commonly used in a broad spectrum of industries. During neerakdiased separation
of proteins, changes in protein concentration of the peamaad retentate streams
occurs over time. The current work proposes a new apprfmacimonitoring the
changes in concentrations of proteins in both permeateetgwtate by making use of
data collected using fluorescence spectroscopy and intrprsiein fluorescence
analyzed by multivariate statistical techniques. Wheyagmasolate consists mainly of
a-lactalbumin ¢-LA), B-lactoglobulin B-LG) and small proportion of bovine serum
albumin (BSA) and was used as a model system in this sté@dfiber optic probe
(FOP) was used to acquire multi-wavelength fluoressespectra for permeate and
retentate streams at different times during UF-basedatepaof the components from
a multi-component solution. Multivariate regressiondels were developed for
predicting the concentrations afLA, B-LG and BSA by establishing a calibration
model between data acquired using the FOP and the corr@spopdotein

concentration levels measured by size-exclusion chiagrephy.

* Elshereef R, Budman H, Moresoli C, Lel R. Submitter to Biotechnology Progres
Journal.
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The model was validated using FOP data that were not prévigsed for calibration
of the regression models. This comparison showedctmatentrations ofi-LA, B-LG
and BSA could be predicted directly from FOP data witleiasonable accuracy by
making use of multivariate calibration tools. This appro&els several attractive
features including that it is non-destructive, fast atatikely simple to perform. This
technique has potential practical applications as it cotddat tife opportunity forn situ
monitoring of membrane filtration processes by trackinglividual protein
transmission, selectivity of fractionation, proteincamulation on the membrane
surface and the product yield and could be used for producttyquealntrol by
monitoring product purity for different batches to ensurmimmal batch to batch

variation.
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5.1 INTRODUCTION

Fractions enriched in-LA and B-LG can be produced from whey using membrane-
based protein ultrafiltration (UF). Protein fractiopatiusing ultrafiltration has many
uses in a broad spectrum of industries. During the UF of pratedtures, changes in
permeate and the retentate composition and protein ti8iesm behavior (ratio of
permeate to retentate concentrations) occur with & may change with different
pH, ionic strength and transmembrane pressures condituismanet al., 2000).
Such changes are influenced by several effects thatltaneously occur on the
membrane surface and inside the pores. Amongst thes¢sedie size of the protein
molecules and their aggregation behavior, protein-membnateeactions and the
properties of the fouling layer (Huismahal., 2000). The relative importance of these
phenomena is determined by the transmembrane pressure aptydieochemical
conditions related to pH and ionic strength. Key filmatperformance indicators such
as protein transmission, product recovery and separdficrerecy can be expressed
mathematically as a function of the concentrationpadteins in the permeate and
retentate (Ghosh, 2003). Therefore, fast and accuratdifgqpadion of the individual
proteins in the retentate and permeate streams is ias$entontinuous monitoring of
an ultrafiltration process. In earlier studies, clasgualitative and quantitative
analytical techniques including UV/Vis spectrophotometerg aize exclusion
chromatography were used for the identification and queettidn of different proteins
in permeate and retentate, and based on these measurememisrane separation
performance was evaluated in terms of protein transmisgroduct yield and

selectivity (Ghosh, 2003). However, these techniques stiffan some practical
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limitations that make them difficult to apply on-lin&ize exclusion chromatography,
which has the advantage of providing detailed analysish@fcomposition of the
retentate and the permeate streams, is considereditod>consuming, labor intensive
and requires preparation of chemical reagents. In additil/-absorbance based
detection may not be sensitive enough to monitor dilute ipra@mponents. Such
limitations for UV detection were implicitly reported bywan et al. (2006). To
overcome this limitation Warmt al. (2006) analyzed feed, retentate and permeate
compositions using FPLC by concentrating the permeatelsampor to analysis with
centrifugal filter devices. Fluorescence spectroscgpygoinsidered to be far more
sensitive than UV-Vis spectroscopy and can easily detaatentrations of the species
of interest as low as 8 to 10" M while UV-Vis spectroscopy requires at least10
M (Deshpande, 2001). Another advantage of fluorescenceepampy is that data is
multidimensional consisting of two spectra, that xsi@ation and emission spectra
(Deshpande, 2001) so fluorescence has higher potential informeontent for
resolving mixtures than UV-VIS absorbance (Baker, 1991).spbe the fact that
fluorescence spectroscopy provides some of the mostigeresitd selective methods
of analysis of many compounds, it has not been widetpl@yed for monitoring
protein transmission for membrane-based separation ggeser for identifying the
compositional changes of retentate and permeate durirgfiltriation. The earliest
work that utilized fluorescence spectroscopy for caus monitoring of protein
fractionation is that of Crespa al. (1999). Crespet al. (1999) developed an on-line
fluorescence detection technique for monitoring the tressom of B-LG and y-

globulin using fluorescent probes. The two proteins wateeled with different
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fluorescent probes which had unique absorption and emissetraigprofiles that did
not overlap. Thus on-line detection of protein-fluoresdabeled conjugates was
performed with a fluorescence detector that was prograhanappropriate excitation
and emission wavelengths. The transient transmisseaviors of-LG and y-
globulin through the membrane were identified by thendmassion of the
corresponding protein-fluorescent label conjugate. Crespb (1999) indicated that
this technique would allow off-line and continuous on-linenitaring of protein
transmission. Crespet al. (1999) realized that the intrinsic fluorescence of dzffie
proteins is similar resulting in significant overlap absorption and emission spectra
and consequently, to resolve this information overlapy tabeled their proteins with
different fluorescent probes. The drawback of anyagstotein labeling is that it may
introduce changes to the protein surface chemistry anbet@verall protein charge
which may alter protein folding properties and its aggregaterawor (Crespet al.,
1999). In addition, the techniqgue has some practical kimita since it requires
removal of the fluorescent label downstream. Hetlo&re is a strong motivation to
avoid the use of fluorescent labeling in order to presdmwenative state of the protein
product. What is proposed here is to use intrinsic prdtaorescence. Intrinsic
protein fluorescence originates from the presence ddettamino acid residues:
tryptophan, tyrosine, phenylalanine in the protein polypeptidendi@uilbault, 1973).
The intrinsic fluorescence originating from tryptophandess accounts for more than
80% of the total intrinsic fluorescence emissions oftav@grotein (Lacowicz, 1999).
The number of these amino acids can vary greatly fsamprotein to anotherlt is

not only the number of amino acids in the protein pgiye chain that determines the
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intrinsic protein fluorescence characteristics butsitalso the microenvironment
surrounding these amino acids that does play an importdat(Guilbault, 1973;
Lacowicz, 1999). Despite the significant spectral overtagtribution of individual
fluorophores to the overall fluorescence can be deahdéry using fluorescence
measurements at multiple excitation and emission \eagéhs. For instance, upon
excitation above 295 nm, the intrinsic fluorescence eomssf a native protein is only
due to tryptophan residues. Meanwhile, both tyrosine arnmtofpiran contribute to
fluorescence emission spectra upon excitation in thger§280- 295 nm) (Mycek and
Pogue, 2003). Low-wavelength excitation (220-230 nm) was alsal faumprovide
useful spectral information that is not of less impoce than the high-wavelength
excitation (280-295 nm) usually reported in the literature yviaet al., 1999).
Therefore, quantitatively detecting constituents of thegmomixture would require
collecting an EEM fluorescence landscape that coversspectral signatures of the
three intrinsic fluorophored.o handle the complex fluorescence signals obtainezhwh
analyzing multicomponent protein solutions and to resdieeissue of overlapping
information, multivariate regression was successfafplied to excitation-emission
matrix (EEM) fluorescence landscape. Elshereefal. (2007) demonstrated that
intrinsic fluorescence spectra @fLA and B-LG can be effectively de-convoluted by
utilizing multivariate regression modeling and that the respe protein
concentrations can be successfully estimated from twessional fluorescence
spectra of protein mixtures with reasonable accuracycililrent work is distinct from
earlier work (Elshereedt al., 2007) in three key aspects. First, the fluorescenceoflata

the whey protein isolate consisting @fLA, B-LG and BSA were acquired in the
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synchronous scan mode which is much faster to obtam titee full two dimensional
spectra used in previous studies and it is consequentlyanmeable for potential on-
line applications. Secondly, the current study used a @iptc probe (FOP) instead of
cuvettes to evaluate the potential application of thihirigjue for possible on-line
monitoring of protein compositions in mixtures. Finalliie tfocus of the current
application was to evaluate the feasibility of tragkrerformance of an UF separation

process using fluorescence-based estimates of protein coiomosi

5.2. MATERIALSAND METHODS

5.2.1 Materials and Preparation of Protein Stock Solutions

B-Lactoglobulin $-LG) anda-lactalbumin ¢-LA) were in their powdered form (lot JE
007-3-921 and JE 003-3-922), were of 95% purity, and were donated bgc®avi
Foods International (LeSueur, USA). Bovine serum albui®&%o purity) was from
Sigma Aldrich International. BiPRO is a whey protewmlase (WPI) consisting mainly
of pB-lactoglobulin andx-lactalbumin and was donated by Davisco Foods Interration
(Le Sueur, USA). The composition of Bipro as provided by rifenufacturer was
(w/w) 88.1% protein (N x 6.38), 9.89% moisture, 0.3% fat and 1.8&R{G166% N§
0.075% K, 0.0086% Mg*, and 0.094 % C&). The protein content of Bipro was:
14.9% a-LA, 74.9%, B-LG, 3.2% immunoglobulin and 1.5% bovine serum albumin
(BSA) (Weinbreck et al., 2004All other chemicals were of analytical grade and from
Sigma Chemical Corp. (St. Louis, MO). Ultrapure wataswsed for the preparation

of all samples and had a resistivity greater than 1A% Buffers were prepared using
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ultrapure water and were micro filtered and degassed wabelum using a 47 mm
0.454um Nylon membrane (PALL Corporation, Michigan, USA).o& solutions ofi-
LA, B-LG and BSA containing 10 g/L total solids were prepared byobisg the
protein powder in 50 mM sodium phosphate buffer at theetepH. A stock solution
of 10 g/l of WPI was prepared by dissolving the appropriateuatmaf WPI in 50 mM

sodium phosphate buffer at the desired pH.

5.2.2. Preparation of Calibration Samples

The purpose of this work was to quantify the concentratdnsLA, B-LG and BSA
in the permeate and retentate streams during ultrabltraty making use of the
intrinsic protein fluorescence. The first step for acimg this objective was to
calibrate a fluorescence-based predictive model agasedt @ reference samples with
known protein composition (calibration set). Sixty-fouxtures of3-LG, BSA anda-
LA whose composition was randomly defined according t& fullt factorial design

were prepared and the fluorescence spectra for those saawpléred using a FOP.

5.2.3 Preparation of Filtration Feed Solution
The feed solution for all filtration experiments waggared by adding appropriate
volumes ofa-LA and BSA stock solutions into a WPI stock solutioriret desired pH

to obtain final concentrations of 75 % wWpALG, 20 % w/wa-LA and 5 % w/w BSA.

5.2.4. Experimental Setup of the Ultrafiltration Apparatus

All filtration experiments were carried out as batiffnations using a 75 mm diameter
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Amicon ultrafiltration stir cell (Model 8010, Amicon Qumr Beverly, MA). The
apparatus consisted of a cylindrical chamber with a cgpaic#00 ml and a membrane
area of 41.8 cf The stirred cell was sandwiched between two idainfiat
Plexiglas plates, constructed in-house, and clamped urasfeel bars (3/4"). The top
plate housed:

(1) A sampling port fitted with a septum cap connected to a Sihless steel
fitting with a 1/8" stainless steel tube that was posd just above the
membrane. The stainless steel tube allowed sampling fremretentate
solution using a 5 ml gas-tight syringe

(i) A stainless steel pressure release valve

(i) A gas inlet port that was used to pressurize the cell feofmgh pressure
nitrogen cylinder

The entire assembly was placed on a magnetic stie.pldahe cell was pressurized

with compressed nitrogen up to 200 kPa. The permeate é)ltveds collected from

the permeate port on a mass basis of 10 g fractiobsstinubes supported in a custom
test-tube rack on a digital mass balance (Scout Pran&al@®©haus Corp., Pine Brook,

NJ) that was interfaced with a computer for on-line datdectibn using Labview

(Labview 7.0, National Instruments, Mississauga, ON). @dlance had an accuracy

of 1 mg.
5.2.5. Filtration Experiments
All filtration experiments were carried out batch-gvistarting with an initial feed

volume of 350 mL. Filtration experiments were conductedgua 30 kDa molecular
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weight cut-off composite regenerated cellulose memb(&hkipore Corp., Bedford,
MA). The membranes were flushed with deionized distilleater prior to use to
remove any residual chemical agents. The stir cellfiled with protein solution of
known protein concentration, pH, and ionic strength. Tdments of the stir cell were
kept well stirred using a magnetic stir bar. Once 10 geomeate had been collected,
the permeate port was transferred to the next collettibe and the FOP was inserted
into the permeate solution for data collection. Afiequiring the spectra the probe was
removed and inserted into the next sample and so @. various time intervals,
samples of 4-10 ml of retentate solution were withdr&em the stir cell through the
sampling port using a gas-tight syringe. Retentate samy®ee labeled and then stored
at 4°C until the experiment was completed (about 3 Fijtration experiments were
stopped when 50-ml of unfiltered solution remained on thentaee side. After
completing the filtration experiment, retentate skmpwere then removed from
storage for FOP and HPLC analysis. Retentate samm@es diluted 10-fold for FOP
analysis to minimize spectral shifts. Fluorescence desiee also collected for the
retentate samples using the FOP. To assess reproduciiligw ultrafiltration
experiments with different combinations of experimentabnditions (pH,
transmembrane pressure) were repeated three timesepitwalucibility for permeate
mass and concentrations of permeate and retentateramasnably good with a

standard deviation of 10%.

5.2.6 HPLC Analysis

The composition ofi-LA, B-LG and BSA in feed, permeate, and retentate streams
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were analyzed using an HPLC system equipped with the sizieis®n column
TSKgel G2000SWXL (7.8 x 30mm) (TOSOH Bioscience, MontgomdéeyWwA). The
mobile phase was 20 mM sodium phosphate buffer contalifdignM NacCl (pH 6.8).
The flow rate was fixed at 1.0 mL/min and good separatiowd®ta-LA, B-LG and
BSA peaks was observed. Total elution time in all casas 15 min. No peak
broadening was observed in the chromatograms indicatibgheng@roteins were stable
within the pH range of 5.0-7.0. Some peak broadening was obsienve-LA in the
retentate samples at pH 2.8 which may indicate some de¢igradaf o-LA. A
calibration curve based on peak height measurements wasatgehdor each
individual protein by injecting standards at several knovatgim concentrations. The
concentrations of different proteins in the initial fepdrmeate, and retentate solutions
were determined using the calibration curves. Prior to eHhC analysis a new

calibration curve was generated using new standards.

5.2.7. Fluorescence Measurements

The fluorescence spectra were acquired using a Varian fipic probe (FOP)
assembly that was connected to a Varian Cary Eclipset®fluorometer equipped
with a Xenon flash lamp as the light source. The speatere acquired using a
synchronous scan mode at a scan speed of 600 nm/min, excéatl emission slit
widths both set to 5 nm and PMT voltage of 800 V. Synubws fluorescence spectra
were recorded in the excitation range from 200 to 350 nmrewvhé¢he wavelength
interval between the emission and excitation wavelengts varied in the range 0 nm -

100 nm. Multi-wavelength fluorescence scans produced a 10x15atexciemission
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wavelength pairs generating a matrix of data congisiinl500 fluorescence intensity
data points for any given sample. A higher PMT voltagentin previous work
(Elshereett al., 2006; 2007) was used to compensate for the attenuation sifytied
by the fiber optic bundle. Preliminary fluorescence meawents revealed that the
fluorescence signal acquired with the probe is about @Oldaver than the signals
acquired using cuvettes. The time required to colldall @xcitation-emission matrix
scan was 3 min and 20 sec. The data were recovered am@emwhich allowedirect
computer processing.All spectra were corrected for background contribution by
subtracting appropriate blanks containing only buffer. The Bdetral measurements
for standard ternary protein mixturest A, B-LG and BSA were calibrated against
their respective concentration data from HPLC ansl§ai modeling a fluorescence-
based PLS model. FOP spectral measurements of permeatetentate samples with
unknown protein composition were introduced directly rigaui to the fluorescence

based PLS model and thus the concentrations of theséenpratre estimated.

5.2.7 Evaluation of the Membrane Resistance

A resistance-in-series model was used to estimaténdpdor this ultrafiltration
approach to whey protein separation. The total membrasistalce R: (m™) was

estimated using the following equation:

AP
ot — Rm + Rf - (5'1)

Hydy

R

where R, (m™) is the specific membrane resistance of the cleanbrane, R(m™) is
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the added resistance due to fouling(rd*-m?-s%) is the flux of the protein solution

with time, p (Pa-sec) is the permeate viscosity ARd(Pa) is the transmembrane
pressure. The permeate viscosity was assumed to be edoal of pure water at room

temperature (1xI®Pa-s). The flux of the protein solutionid the time intervalt is

given by Equation 5-2.

(R
Where A, is the effective membrane area (41.3)cand AV is the volume of the
filtrate solution that was collected during the einmtervalAt . Total resistance values
were normalized by the specific membrane resist&cén™) of the clean membrane
and then the normalized resistance for differenpeerents was plotted versus
filtration time. R, (M) was evaluated from clean water flux measurementiifferent

transmembrane pressures.

5.3. CHEMOMETRIC MODELLING

Partial Least Squares Regression

For the purpose of calibration of a regression mdte experimental data in this study
was divided into two categories: input data coroesiing to the fluorescence
spectrometric measurements, and output data cmgsiet B-LG, a-LA and BSA
concentration values obtained by HPLC analysise matrix that contains the outputs
to be predicted, i.e. HPLC measurementB-bf5, a-LA and BSA, were arranged in an

output matrix to be referred to heretofore as mati whereas the fluorescence
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measurements were arranged into an input data matrix teféxeed to as matrix X.
The rows in matrix X correspond to different samplédlevthe columns correspond to
fluorescence intensities measured at different exatamission wavelength pairs
(Elshereett al., 2006; 2007) for each one of the samples. The input detassdered
to be multivariate in nature since it consists, astmnaed above, of 1500 fluorescence
intensity data points for each sample. Partial L&agtares regression (PLS) is a well-
known chemometric tool for designing a calibration modelcWwhtan be used to
correlate the set of known measurements representeaebjubrescence data to the
property to be predicted, i.e. tieLG, a-LA and BSA concentrations. The PLS
regression method has been chosen in this work to desidmoescence-based
predictive modelsince it provides lower sensitivity to noise for multiage data sets
with large numbers of highly correlated variables (Gedamti Kowalski, 1986; Qin and
McAvoy, 1992). Collinearity is very high among the diffarédnorescence readings
obtained at different combinations of emission and et@itavavelengths (Lemberge
and Van Espen., 1999; Elshereefl., 2006). Hence, the original input variablem
matrix X are replaced by a smaller set of underlying nemiables that are
uncorrelated, mutually independent (orthogonal) and are emetiically represented
by linear combinations of the original descriptors. Thesdculated linear
combinations, referred to as latent variables (LVs)pancipal components, are
calculated to both provide good representation of the Xbkmanhd maximize the
correlation between the input and the output (Qin and MgA%¥892). The optimum
number of latent variables (LVs) and the goodness ofgiied () are determined by

a cross-validation algorithm (Geladi and Kowalski, 1986y @nd McAvoy, 1992;
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Elshereefet al., 2006). The data obtained from different samples were tsed
calibrating and testing the PLS predictive model as bellshown in the following
sections. All computations were carried out using MATLAB (MathWorks, Natick,
MA) along with the PLS Toolbox 3.5 (Eigenvector Resedrth, Manson, WA). To
develop the fluorescence based PLS model the samplesdweated into two different
sets, a calibration set consisting of the sampled @ calibrating the PLS model and
a validation set consisting of samples that were usedndependently test the

predictive accuracy of the calibrated model.

5.4. RESULTSAND DISCUSSION

5.4.1. Development of Fluorescence-based Model for Simultaneous Determination of
a-LA, fLGand BSA in a WPI mixture

The challenge in using intrinsic protein fluorescenctha the intrinsic fluorescence
spectra for proteins can significantly overlap. Thus, idetaspectral analysis,
combined with chemometric methods to isolate spectaalifes, can certainly improve

the success of distinguishing between different prot&ins. would potentially require
collecting EEM landscapes with high spectral resolutiobath dimensions (excitation

and emission wavelength)Preliminary fluorescence measurements were performed
using the FOP to determine the ranges of excitation eangsion wavelength of
interest. It was found that all spectral information are contaiimethe excitation range

of 200-350 nm and emission range of 250-450 nm (Figure 2-10). Scanning in such a
broad spectrum rangesing 1-nm increment for both excitation and emission ranges

will generate an EEM that contains 30,000 intensity measmts. However, not all of
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excitation-emission pairs are relevant to the iniciflsiorescence of the sample. The
intrinsic fluorescence of the sample is located in tbgion where the emission
wavelength is longer than the excitation wavelength.amdile, other areas in the
EEM landscape (i.e. the triangular-shaped regionthe EEM where the emission
wavelength is less than the excitation waveleagtivell as the Rayleigh scatter lines)
are not correlated to the intrinsic fluorescence ofgémmple (Ohno and Bro, 2006).
Therefore, with the goal of reducing the time for datguéstion and filtering out the
non-relevant data, multiple synchronous fluorescenaesswere collected instead of
multiple emission scans. Synchronous fluorescence scammodge involves the
simultaneous scanning of the excitation and emission nmoowators at a constant
wavelength differencAA = A emission— A excitation @Nd thus both excitation and emission
wavelengths are varied according to the formida= Aex+ AL. Multiple synchronous
spectra were collected by varyiag.. Multiple synchronous spectra in the excitation
range 200-350 nm were recorded at the following wavelengthvaise(\1): 10, 20,

30, 40, 50, 60, 70, 80, 90 and 100 nm.

The advantage of such an approach is that it selects et siiltse EEM landscape with
less data as compared to the full excitation-emissiectsp while retaining relevant
fluorescence spectral information; sections of thetspehat are not sensitive enough

to the concentration changes to be monitored are excluded.
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Figure 5-1. Synchronous fluorescence spectra at AA=100 nm (A), AA=60 nm (B) and
AA=10 nm (C) for the individual whey proteins (a-LA, B-LG and BSA).
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The use of the synchronous mode resulted in a redudtitwe size of the fluorescence
data set to be used for prediction by approximately 20-foldoagpared to the case
where the full spectrum is used. Figure 5-1 shows syncheospectra acquired for
protein solutionsq-LA, B-LG and BSA) atAA=10, 60 and 100 nm. Whexh=10 nm,

a spectrum characteristic of the fluorescence of difwein’s tyrosine residues is
observed whereas fa'A=60 nm, a spectrum characteristic of the fluorescencbeof
protein’s tryptophan residues is observed (#lal., 1999; Tanet al., 2005).Upon
comparison of synchronous spectraa&t100 nm acquired for protein solutioasLA,
B-LG and BSA, two characteristic peak maxima are obsgeatevavelengths 225 and
275 nm. The peak to peak ratio at excitation wavelengths 225 anth276 of great
interest for discriminating between different proteirnstom the foregoing it can be
seen that during the scan, depending on the scanning in@reald the Stoke’s shift,
every fluorophore in a given sample will presumably dbate to fluorescence at
different positions, leading to improved resolution and &pecific signature even for

cases where the fluorophores overlap and/or interguifisantly (Rao, 1991).

Accurate quantification ofi-LA, B-LG and BSA in the permeate and retentate relies
on a robust partial least squares (PLS) based regrdssiaeen fluorescence spectra
of the samples and their corresponding concentratisessured by HPLC. The first
step in the simultaneous determination of different pmeten a mixture by PLS
methodology involved constructing the calibration matx the ternary protein
mixture. Sixty four synthetic ternary mixtures containthg individual whey proteins
in different proportions were randomly designed and usedetelop the calibration

models. A cross-validation method that consisted ofifgaout one sample at a time,
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was employed in order to select the number of fadtotise PLS algorithm. For the 64
calibration spectra, PLS calibration was performed8rcalibration spectra, and the
calibration model was then used to evaluate the coratemt of the sample left out
during the calibration process. This process was repeetimes until each
calibration sample had been left out once. The coratn of each sample was then
predicted and compared with the known concentration gfréierence sample, and the
prediction residual sum of squares (PRESS) was calduletem a plot of the PRESS
against the number of factors for each individual componentas concluded that
good PLS-based regression models for each of the pratensdered in this study
could be obtained with three principal components. & lpréncipal components is the
optimal number of principal components at which the Estkrror (PRESS) occurs.
The PLS model was tested using two different types of atédid data consisting of
samples that were not included in the calibration asvi@l (i) 12 synthetic ternary

protein mixtures of3-LG, BSA anda-LA; (ii) 10 real samples of the whey WPI

solution in phosphate buffer spiked with different amewi3-LG, BSA anda-LA

5.4.2. Validation of the PLS Model on Retentate and Permeate Samples

As a first step, the synchronous fluorescence speattadaetentate and the permeate
samples were acquired using the FOP and examined. &munalitative perspective

the scans of the retentate and the permeate re@tdhthretentate spectra have certain
distinct visual characteristics that makes them diffefrom permeate spectra (Figure

5-2).
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Figure 5-2: Spectra for retentate (top) and permeate (bottom) for
ultrafiltration of a WPI solution.
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Excitation spectra of the final permeate showed thatrnfaximum excitation peak
appeared at 285 nm, whereas the maximum excitation fortattevere ed-shifted by
15 nm. Such spectral differences between the retentdtehigh protein content and
the permeate with low protein content is most likely doehe differences in the
molecular environment of the fluorophore (tryptophan) iseeiencing. Fluorescence
spectra are influenced by several phenomena (resonaremgyetransfer and
guenching) that are related to the concentration, iamd-intermolecular interactions
and the local environment of the inherent fluorophores i¢@msenet al., 2006).
Spectral differences were observed between permedteetantate streams, where the
latter was characterized by significant fluorescence duegand excitation red-shift
(Figure 5-2). Although these two phenomena may impart anclist&2 unigueness to
the fluorescence spectrum of the retentate streamodilne thigh protein content, they
were found to induce nonlinear dependencies between thedtence data and the
corresponding protein concentration levels which arelpd@andled by the linear PLS
model. For instance, using the retentate spectra astmphé current PLS model for
prediction of the individual protein concentrations teslin poor predictions (data not
shown for brevity). This is likely because PLS is veagllibrated over the concentration
range where the relationship is predominantly linear éetwthe fluorescence signal
and the concentration of each protein but the retentateiprconcentrations lie mostly
within the range of values where the relation betweerrdéiscence to protein
concentration is nonlinear. To handle the non-lineanitthe fluorescence data matrix
would require combining PLS with non-linear tools such agifi&ial Neural

Networks. For the sake of simplicity, the objectivetln§ study was to resolve the
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spectra using a linear PLS methodology. This required atmlfe of fluorescence
spectra that were devoid of significant red-shifts andréiscence quenching effects in
the high concentration ranges. Therefore, prior to @scence measurements, samples
collected from the retentate stream were diluted 10-fadothgu phosphate buffer
solution at the same pH value of the initial protein sotuprior to FOP analysis. The
permeate was not diluted because the protein concentrati these samples was
relatively low and the fluorescence spectra did not dyspignificant excitation red-
shifts. Concentrations ai-LA, B-LG and BSA predicted from the diluted retentate
samples were multiplied by the dilution factor and themgared to values determined
by HPLC analysis. Very good agreement between predgtmd measured values
indicated the applicability of the proposed method forutmmeous determination of
o-LA, B-LG and BSA. The correlation coefficients i@LA, B-LG and BSA were

0.99, 0.98 and 0.88, respectively.

5.4.3. Protein Concentration Profiles

The feed concentration used in this set of experimemis 40 kg WPI in the
appropriate buffer. Figure 5-3 is a typical HPLC chrageams for retentate and
permeate samples obtained at pH 5.6 after a total of 306f pérmeate had been
collected. A comparison of the chromatograms fomtete and permeate reveal that
both B-LG anda-LA are transmitted through the membrane, whereas the ranodu

BSA transmitted is negligible.
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Figure 5-3. HPLC chromatograms for final retentate and permeate samples obtained
at pH 5.6. In both chromatograms peaks at retention times of 7.1, 10.2, and 11.7 min
correspond to BSA, B-LG and a-LA, respectively.

The concentration d#-LG anda-LA in the permeate were determined by accounting
for the total protein collected and the total volume afhymate. Protein concentration
profiles for the permeate stream were presented byingdtie concentration @-LG
anda-LA in the permeate streams as a function of filtratimne for two ultrafiltration
experiments performed at two different pHs: pH 5.6 and pHRI$BS-4). Figure 5-4
shows that there is a decrease in the concentmatimansmitted protein, both tifieLG
anda-LA, over the course of the filtration and that thée of change is affected by the

pH of the feed solution.

149



0.9
(A) LA O pH 2.8

0.7 . O pHS5.6

o

Conc (g/L)
=
h

L o
O .

5 -
IS o W =
0.3 —: Gg@mm-moe{E}::c

0.1 +—— . ey
0 5 10 15 20 25 30 35
Filtration Time (min)
0.9
(B) B-LG O pH2.8
0.7 + O pHS.6
o
_ AE)
= . Vg
Y1 N
= 0.5 | ‘G‘(}
- ‘O*{},O__O_
S 3 ©-8-00Co--C
O
0.3 1 D
CJ-
-
)
oo gag o
0.1 L } t —— t t
0 5 10 15 20 25 30 35

Filtration Time (min)

Figure 5-4. Protein concentration profiles for a-LA (A) and B-LG (B) in the permeate
stream at two different pHs.
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The rapid initial decrease if-LG protein concentration seen at pH 5.6 may be
attributed to the higher tendency of the protein to aggrejgbél values close to the
isoelectric point thus limiting the transmissionEG as well as resulting in a decline
in flux during the initial stage of the UF process. The amaf protein that permeated
through the membrane continued to decrease with timié iuneached steady state
levels after approximately 10 min of operation. While phetein concentration in the
permeate decreased gradually with time, the protein caonatent in the retentate

stream remained essentially constant during the firstibtgFig. 5-5).

As the filtration proceeded, the retentate gradually beacaore concentrated due to
continuous removal of permeate. It was also obsehaidchanging the pH of the feed
solution from 2.8 to 5.6 affected the protein composition the permeate.
Ultrafiltration at pH 5.6 yielded a permeate witl-£G content that ranged between
50%-55%, whereas ultrafiltration at pH 2.8 yielded a permedtea -LG content of

68-72%.

Bhattacharjeet al. (2006) studied protein fractionation from casein whey using 30
kDa polyethersulfone membrane in a stir cell modulagarable to the one employed
in this study. Despite differences in the experimeraatlidcions (membrane material,
transmembrane pressure and the whey protein source)lar sffect of pH on-LG
purity in the permeate was observed. Figure 5-5 and 5-6 p@s@pharisons between
the FOP predictions against HPLC-based determinationdiftarent pH values.

Excellent agreement was obtained over the courseadiltifation.
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Figure 5-5. Concentrations of a-LA and B-LG in the retentate stream (A) and
permeate stream (B) as estimated from HPLC and fiber optic probe (FOP) data.
Ultrafiltration at pH 5.6.
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permeate stream (B) as estimated from HPLC and the fiber optic probe (FOP) data.
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5.4.4. Incorporation of FOP-based Predictions into Membrane Process Monitoring
Monitoring the decline in membrane flux can serve asmoeihod for on-line tracking
of ultrafiltration process performance; however, teeline in flux does not give an
indication of the process separation performance. kerevaluate an approach that
combines the FOP-based predictions with membrane sepathgory to predict the
operational membrane performance under different dapgratonditions. Protein
transmission coefficients and effective membraneecswity were selected as

indicators of filtration process performance.

5.4.4.1. Transmission Coefficient and M embrane Selectivity
The transmission coefficient, which is equal to thé&or of the concentration of a
component in the permeate (Cto the retentate ({, is an important quantity for

monitoring membrane performance (Ghosh, 2003). It is deddojpéhe following:

C

Lon = C—p' (5-3)

where C; and C, are the permeate and the bulk concentrations, resplcoy a

given protein i.

Figure 5-7 presents protein transmission values G and o-LA that were
determined from FOP-based estimates. Three ultrafitratexperiments were
performed for WPI solutions at different pH values andgm@embrane pressures. The

transmission ofi-LA and B-LG was observed to decrease significantly with ingirea
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transmembrane pressure since increasing the transmenpres®ire likely induces
more fouling and more protein deposition on the membraide effect of pH and
transmembrane pressure on the time profilg-b& transmission appears to follow the

fouling resistance (Fig. 5-8) calculated using Equation (5-1)
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Figure 5-7. Time profiles of B-LG transmission (top) and a-LA transmission (bottom)
determined from FOP-based estimates at two different transmembrane pressures
(172 and 200 kPa) and two different pHs (2.8 and 5.6).
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Figure 5-8. Time profile of membrane fouling resistance of the 30-kDa RC membrane
evaluated at two different transmembrane pressures (172 and 200 kPa) and two
different pHs (2.8 and 5.6).

These results also show that apart from the prefatgr@rmeation oé-LA, B-LG and

BSA were also transmitted to different extents in pbemeate. A binary selectivity
value based solely on transmission ot A and p-LG would not be sufficiently
informative for monitoring the efficiency of proteina@tionation during process

monitoring. Therefore, an additional parameter refetoeds effective selectivity, has
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been used to characterize the efficiency of protein itna@tion involving complex

protein mixtures and is defined as follows (Ghosh, 2003):

_ I
¥, = ﬁ (5-4)

The numerator is the apparent transmission coeffic¢ra given protein and the
denominator consists of the summation of apparent rtriga®n coefficients of all
other proteins. For example, according to equation (5-4)s#étectivity ofa-LA in
comparison t@-LG and BSA is:

7
Yyorn=——"2— (5-5)
TosntTp 6

The FOP-based estimates were combined with Equation 5-4titoate the time
profile of the effective selectivity coefficient. dtre 5-9 shows that the selectivity
coefficient fora-LA with respect tg3-LG and BSA varies with time. Solution pH and
transmembrane pressure are shown to have an effdbeaselectivity coefficient as
shown in Figure 5-9. A higher selectivity was obtained with a feed pH of 5.6
compared to that at pH of 2.8 at a fixed transmembransyeesf 172 kPa (Fig. 5-9),
which can be explained in terms of the effect of pH on mhenomer—dimer
equilibrium of B-LG (Bhattacharjeest al.,2006). The lower transmission of-LG

observed at pH 5.6 compared to that at pH 2.8 is most likedyto the tendency @f

LG to form dimers at that pH (Bhattachargel.,2006). Results here demonstrate that

guantifying time-dependent protein transmission by a combmatd EEM
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fluorescence and PLS data analysis may be of great \faluenonitoring and

potentially optimizing protein fractionation by membraneatfiltration.
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Figure 5-9. Effect of transmembrane pressure on the effective selectivity coefficient
profile for a-LA as estimated from HPLC and fiber optic probe (FOP) data.
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5.5. Conclusion

Performance of protein fractionation using ultrafilivatiis strongly influenced by the
physiochemical characteristics of the protein soluama the operating conditions.
Precise tuning of these processes is necessary to aaesired levels of protein
fractionation (Ghosh and Cui, 1998; 2000a; b). The intrirfilsiorescence of the
proteins has been effectively used to construct a preeliotodel for estimating protein
concentrations during a filtration proced3sis novel methodology makes use of a
partial least squares-based regression model (PLS) foimateg protein
concentrations based on synchronous fluorescence spegtrieed using a FOP. The
advantage of this approach is that with development it adéoyw in industrial
applications inference of relative accurate estimatggaiein concentration within a
shorter time period than would be possible with varionalysical techniques, for
example chromatography-based approaches. It is alsothéasynchronous spectra
can provide good predictions and consequently the use ofltlspdéatrum may not be
necessary for monitoring with corresponding savings in ateun time. Separation
performance variables that are difficult to measure,hsas individual protein
transmission, membrane selectivity and product yield caesbmated directly from
fluorescence-based predictions of protein concentratotise retentate and permeate
streams. The proposed approach showed good predictiodgférent pH values and
transmembrane pressure values. The only practical obsthat may hamper the
current approach from becoming a workable soft-sensorninfaitu and real-time
monitoring of UF processes lies in the need to diluteréhentate samples during the

UF. This is because FOP estimates were not as accasatbe absolute protein
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concentration increased. However, this drawback canvieecome if an automatic
dilution strategy is implemented inline or alternate apph using a path length
correction in a microplate system was implementee. hjor highlight of the current
work is that it demonstrates the potential applicabfyfluorescence-based sensors

for on-line monitoring with possible use in industrial UBgesses.
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CHAPTER 6

Use of Multiwavelength Rayleigh Scattering Data for the
Characterization of Protein Aggregation and Membrane Fouling

Phenomena

One of the primary problems in membrane-based protein sepaiat membrane
fouling. A variety of phenomena contribute to foulinglaside from changes in flux
and transmembrane pressure, there are few tools to atd sysenal for controlling
membrane fouling and its consequences. In this study weregpilhe feasibility of
employing Rayleigh light scattering data from fluoreseestudies combined with
chemometric techniques to determine if a correlationldcdae established with
membrane fouling phenomena. Membrane flux was measnradlaboratory scale
dead-end UF filtration system and the effect of prossfution properties on the
overall membrane resistance was systematically igagstl by regulating ionic
strength and pH. A variety of milk proteins were used asstadase in this study. In
parallel, the colloidal (aggregation) behavior of the @rosolutions was assessed by
employing multi-wavelength Rayleigh scattering measuresnefjgregation behavior
was inferred based on published data for these same protelnander identical
solution conditions where techniques other than Rayleagitering had been used.
Using this approach good agreement was observed betwetnrisgadata and
aggregation behavior. To test the hypothesis that a degihee of aggregation will

lead to increased membrane fouling, filtration data wasl usefind whether the
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Rayleigh scattering intensity correlated with permdhte and membrane resistance
changes. It was found that for protein solutions whichrewstable and did not
aggregate, fouling was reduced and these solutions exhibited dedRepgeigh
scattering. When the aggregation behavior of the solutionembanced, significant
flux declines occurred and were correlated with increassdei®yh scattering. It is
proposed that this methodology may be suitable for trggkinysico-chemical changes
in protein solutions and that this may have applicationareas such as membrane-

based protein separation.
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6.1. Introduction

The fouling behavior of proteins in membrane-based separpt@cesses is strongly
influenced by their stability in solution (Malmsten, 1998yotBin stability is a
consequence of a delicate balance of forces, includieagrestatic, hydrogen bonding,
Van der Waals forces and hydrophobic interactions. Chamgdke environment
surrounding the protein including pH, ionic strength, tentpeeaand shear will affect
their stability (Malmsten, 1998). The consequence of ehebanges can be
aggregation/association of protein which has an impoitdlotience on a variety of
phenomena including the performance of membrane-based tsmpamacesses such
as microfiltration and ultrafiltration. The formaticof protein aggregates can easily
plug membrane pores or/and serve as nucleation siteshérpropagation of
aggregation on existing deposits. These aggregates can fiesultnon-covalent
bonding between native proteins such as Van der Waalgdoophobic interactions, or

covalent bonding (Malmsten, 1998).

Microfiltration (MF) is widely used for the separatiohproteins and MF membranes
are specifically designed for this purpose (Kuberkar andisDd999). In MF it is
important that the protein be in solution so that freg to permeate the membrane to
minimized product losses (Bowehal., 1998). Efficient recovery of proteins requires
that the protein be small relative to the membrane piaeeso that the protein can pass
through the membrane and that the processing conditianssweh that protein
aggregation is minimized, as protein aggregates may benedtdy the membrane.

Thus, the size of the protein in solution as well agandency to aggregate near the
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membrane surface play a critical role in determining thgree of product recovery
and the extent of membrane fouling (Bowetral. 1998). In an ultrafiltration study of
soy protein extracts Mondet al. (2004) found that the average molecular size and the
molecular size distribution vary with pH and salt @nttand that this could be
attributed to aggregation—disaggregation behavior of diffepeotein fractionsThe
effect of pH and salt content can affect protein trarispto the concentration region.
This information is fundamental to understanding what rdmutes to membrane
fouling resistance when it can be primarily attributethe concentrated and cake layer

together (Mondoet al., 2004).

There is a need for a rapid measurement technique t@ctbaze protein-protein
interactions and to identify solution conditions thetl lead to membrane fouling.
Light scattering represents a powerful technique for chamaing protein-protein
interactions and the presence and formation of aggregatgregation phenomena in
protein solutions have so far been characterized priynésgil methods based on
radiation scattering or transport properties. Photoneladion spectroscopy, also
known as dynamic light scattering, is a good method foerdening the degree of
protein aggregation in solutions of different ionic strengtinsl pHs. One of its
advantages over size exclusion chromatography is tldiows measurements to be
made directly from the solutions used for filtration;wewer, photon correlation
spectroscopy has several severe practical limitatiinst, it is not possible to make
direct measurements of the concentration of discaggregate species present in a

polydisperse solution. Also, photon correlation specbopg experiments are costly
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both in terms of equipment and time that is requirectlean and dilute protein
solutions to obtain accurate results. The other algdldor ultrafiltration is that highly
concentrated protein solutions are often involved which by thature are very
unstable and subject to particulate contamination. Ehigni impediment for rapid

monitoring of protein aggregation and assessing its fouling faiten

There is a need for an independent non-invasive and ragtidooh for assessment of
aggregation behavior in a way that is useful for procpssabion and prediction. Such
a method would also provide some qualitative information atheufouling potential
of protein solutions. A novel element of the presewtrrkwis that the proposed
measurement is based on the entire scattering spectiube tused to retrieve
information about protein aggregation behavior. The apprgaoposed is to use
Rayleigh scattering collected spectrophotmetrically bharacterize protein-protein
interactions. By coupling and scanning simultaneouslyeiatation and the emission
monochromators of a common spectrofluorometer, ligtdattering signals were
detected at an angle of £8® the wavelength range (200-700 nm) by using a fiber
optic probe. Santoat al. (1999) reported that spectrofluorometry offers some piatent
advantages that are not available with classical lagbt scattering spectroscopy,
namely, the availability of broader wavelength rangebar@ing the wavelength
changes the magnitude of the scattering vector whickhkasame effect as a change in
the measurement angle in classical laser light scajtespectroscopy. Thus, it is

possible to overcome angle dependency by accounting faleveyth dependency.
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This Chapter is organized into three main parts:

I.  Ananalysis of the general features of Rayleigh sdati spectra collected at an
angle of 18 for different protein solutionsp{lactoglobulin, a-lactalbumin,
Bovine Serum Albumin and Lysozyme) is presented. In #malysis, the
effects of the average molecular weight, protein camnagon, pH and ionic
strength were considered.

ii.  The potential for use of multivavelength light scatig to determine the
propensity of protein solutions to foul membranes is ptesen

iii. The value of multiwavelength light scattering to providgiantitative
measurements of the average molecular weights of psotei solution is

presented.

6.2. Materials and M ethods

6.2.1. Protein Solution Preparation

B-Lactoglobulin $-LG), a-lactalbumin ¢-LA) and Bipro were used in their powdered
form and were donated by Davisco Foods Internationalyée$S USA). The3-LG
and a-LG were of 95% purity. Bovine serum albumin (BSA - 95% purénd
Lysozyme were purchased from Sigma Aldrich Internatiof&pro is a whey protein
isolate (WPI) consisting mainly @flactoglobulin andi-lactalbumin with a content of
74.9%B-LG, 14.9%0-LA, 3.2% immunoglobulin and 1.5% BSA, (Weinbresgtkal.,
2004). All other chemicals used were of analytical grade abiined from Sigma
Chemical Corp. (St. Louis, MO). A Millipore (Canada) espurification unit was to

produce ultrapure water with a resistivity greater than 1A% Muffers were prepared
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using ultrapure water and then micro filtered through a Qm5Nylon membrane
(PALL Corporation, Michigan, USA). Stock solutions (10 ykf the proteins were
prepared by dissolving their powdered forms in 20 mM sodiuvosiate buffer at the
desired pH and at the desired salt concentration (e.g).Nai@erent protein solutions
were then prepared by diluting aliquatfisstock solutiongo thedesired concentrations.
Once prepared, protein solutions were allowed to stand5foninutes at room
temperature before acquiring light scattering measureméntrder to achieve
consistency and minimize the experimental error,time interval between sample
preparation and light scattering measurement was alfirg@ to 5 minutes. Twenty
five B-LG protein solutions were prepared at different condgio(pHs, salt
concentrations) identical to those used by Verleeal. (1999) as shown in Table 6.1.
The average molecular weights corresponding to thasgples (Table 6.1) were
obtained from the same source (Verheuél., 1999). Light scattering spectra were

acquired for these samples as explained in the nextcids.
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Table 6.1: Twenty five B-LG protein solutions prepared at different conditions (pHs,
salt concentrations) identical to those used by Verheul et al. (1999)

Sample pH  NaCI(M) C(gl) MW(Da)
ID
1 2 0 2 16.84
2 2 0 5 16.66
3 2 0 10 17.02
4 2 0.1 2 28.00
5 2 0.1 5 28.37
6 2 0.1 10 28.55
7 6.9 0 2 29.47
8 6.9 0 5 32.58
9 6.9 0 10 34.04
10 6.9 0.1 2 31.12
11 6.9 0.1 5 33.49
12 6.9 0.1 10 32.95
13 8 0 2 23.43
14 8 0 5 2453
15 8 0 10 25.44
16 8 0.1 2 26.91
17 8 0.1 5 28.55
18 8 0.1 10 31.48
19 5.4 0 10 41.18
20 4.7 0 1 32.76
21 4.7 0 5 45.94
22 4.7 0 10 61.86
23 4.7 0.1 2 36.61
24 4.7 0.1 5 37.89
25 4.7 0.1 10 43.93

6.2.2. Multiwavelength Light Scattering Measurements

Multiwavelength light scattering measurements on proseintions were performed
using a fiber optic probe (FOP) connected to a steatly #ti@rescence system with a
pulsed xenon flash lamp as the light source (Variary Eatipse, Mississauga, ON,

Canada). Scattered light intensity (Rayleigh) wa®need at wavelengths ranging
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from 200 to 700 nm by setting the excitation wavelength equahd¢oemission
wavelength. Measurements were taken with a scan speed ofrl20n, a slit width of

5 nm for both excitation and emission and 2 nm smoothihg. Scattering spectral
profile of the buffer solution alone, i.e. in the abgeon¢ protein, was measured and
subtracted from the collected spectra. All samples wetially examined in 4-7 min
intervals to ensure that the light scattering profite bt change with respect to time.
The effect of pH, salt concentration and protein cotredion on the light scattering
profile was investigated. The ability of these multinlamgth measurements to provide
insight into the protein aggregation behavior and the prdgesisprotein solutions to

foul membranes is presented.

6.2.3. Ultrafiltration Experiments

All filtration experiments were carried out in batclode using a 75-mm diameter
Amicon stirred ultrafiltration cell (Model 8010, Amicoro€p., Beverly, MA) in dead-
end flow configuration, starting each time with an initieéd volume of 350 mL.
Filtration experiments were conducted using 30 kDa maecweight cut-off
composite regenerated cellulose membranes, obtainedMibdipore Corp. (Bedford,
MA). The membranes were flushed with deionized distilleater prior to use to
remove any possible residual storage agents. Theidiltraell was then filled with
protein solution of known concentration, pH, and saficemtration. The contents of
the filtration cell were kept well-stirred using a magmedtir bar. Permeate was
collected in 10-ml tubes and the time was recorded foryel@rml. of additional

volume of permeate collected.
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6.2.4 Evaluation of the Overall Membrane Resistance

A resistance-in-series model was used to estimate na@elbouling for ultrafiltration
experiments. The total membrane resistange (R1) was estimated using the

following equation:

AP
Ra = R, + Ry = H (6-1)

where R, (m?) is the specific membrane resistance of the cleanbrane, R(m) is
the added resistance due to fouling(rd*-m?-s%) is the flux of the protein solution
with time, p (Pa-sec) is the permeate viscosity ARd(Pa) is the transmembrane
pressure. The permeate viscosity was assumed to be edoal of pure water at room
temperature (1xI®Pa-s). The flux of the protein solutionid the time intervalt is

given by Equation 6-2.

J, = [ijﬂ (6-2)

A ) At
Where A, is the effective membrane area (41.3)cand AV is the volume of the
filtrate solution that was collected during the einmtervalAt . Total resistance values
were normalized by the specific membrane resist&cén™) of the clean membrane
and then the normalized resistance for differenpeerents was plotted versus
filtration time. R, (M) was evaluated from clean water flux measurementiifferent
transmembrane pressures. The normalized overatarse was analyzed to determine

the effect of protein solutions characteristice.(isalt concentration, pH, protein

concentration) on membrane fouling.
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6.3. Chemometric M odeling

6.3.1. Partial Least Squares Regression

For the purpose of inferring quantitative information aboudtgin aggregation
behavior from light scattering spectra, the data uselisrstudy were divided into two
categories: input data corresponding to the light stagtentensities detected in the
wavelength range (200 to 700 nm), and output data consistihg akerage molecular
weight of 3-LG protein solutions. The matrix that contains thepatg to be predicted,
i.e. the average molecular weight, were arranged ioufjput matrix to be referred to
heretofore as matrix Y whereas the light scatteringsmements were arranged into
an input data matrix to be referred to as matrix X. fves in matrix X correspond to
different samples while the columns correspond totexwad) intensities detected at
different excitation wavelengths for each one of tlaenges. The input data is
considered to be multivariate in nature since it cossi§ 800 scattering intensity data
points for each sample. Partial least squares regre@2ics) is a well-known chemo-
metric tool for designing a calibration model which carubed to correlate the set of
known measurements represented by the scattering datagootberty to be predicted,
i.e. the average molecular weight. Regression modéstire ability to predict certain
properties that are difficult-to-measure such as theageemolecular weight from
easy-to-measure data such as light scattering areeefir assoft sensors (Jameset
al., 2002). The PLS regression was chosen here since itastaiandle problems
associated with high sensitivity noise for multivagialata sets with large numbers of
highly correlated variables (Geladi and Kowalski, 1986; Qud &cAvoy, 1992).

Collinearity is very high among the different light #eang readings obtained at
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different excitation wavelengths. Hence, the origingut variables in matrix X are

replaced by a smaller set of underlying new variables tleatiiacorrelated, mutually
independent (orthogonal) and are mathematically represbgtinear combinations of
the original descriptors. These calculated linear combimgt referred to as latent
variables (LVs) or principal components, are calcualate both provide good
representation of matrix X and maximize the corretati@etween the input and the
output (Qin and McAvoy, 1992). The optimum number of L\Wsl ahe goodness of
prediction (@) are determined using a cross-validation algorithm (Getaut

Kowalski, 1986; Qin and McAvoy, 1992; Elsheresfal., 2006). The data obtained
from different samples were used for calibrating amstirtg the PLS model as will be
shown in the following sections. All computations wesgried out using MATLAB

7.0 (MathWorks, Natick, MA) along with the PLS Toolbox 8Egenvector Research

Inc., Manson, WA).

To develop the PLS model, the samples were divided wio different sets, a
calibration set consisting of the samples used fdibreéing the PLS model and a
validation set consisting of samples that were useddependently test the predictive
ability of the calibrated model. The calibration andidation sets consisted @fLG
solutions prepared at different protein concentrations, piAd, ionic strengths (see
Table 6.1). The PLS model was tested using light scajtel&ia acquired fo-LG

protein solutions that were not included in the calibrasemn
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6.4. Results and Discussion
6.4.1. Qualitative Analysis of Multi-wavelength Rayleigh Light Scattering Spectra
for Bulk Solutions
6.4.1.1. General Featuresof M ulti-wavelength Scattering Spectra

Preliminary experiments for collecting Rayleigh scattgeidata were performed
on very dilute protein solutions. Rayleigh scattering speict the excitation range
200-700 nm were compared for different dilute protein solution$.@fuM @-LA,
lysozyme, and BSA) as seen in Figure 6.1. It is cledrlidjat scattering intensity is
wavelength—dependent with the maximum scattering intelosigted around 310-330
nm. The scattering intensity acquired in the long-wangile range, i.e. red-edge,
decreases with increasing wavelength following the Raylsigiitering regime where
the intensity of the scattered light varies inverseiyh the fourth power of the
wavelength. The Rayleigh scattering regime correspongartle radii that are much
smaller than the incident wavelength. The inverse veaggh dependence makes short
wavelength light scatter greater than long wavelengght,liand the strong power
dependence explains why the scattered energy increagedyras the wavelength
decreases. From Figure 6.1, BSA (MW 67 kDa) solutions yield=8ighest scattering
spectra, followed byu-LA (MW 15 kDa) and lysozyme (14.3 kDa) which were
comparable. This may indicate that the scattering kigsponse basically depends on
the molecular weight of the various proteins. The yam®&d in this work were made on
the entire multivavelength scattering spectra sincevas found to provide more
information with respect to the protein solution progettiFor example, although the

scattering intensities at an excitation of 350 nm feoiyme andi-LA are very close
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in magnitude due to their similar molecular weight valudsre were subtle

differences between their spectra.
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Figure 6.1: Multiwavelngth Scattering spectra for three different proteins acquired
using FOP.

It will be noticed in Figure 6.1 that the spectra are smboth and they are
punctuated by distinct peaks at particular wavelengths. Fonpa&athe peak at about
360 nm is visible in all spectra but it is strongest ingectra acquired for BSA. Such

subtle differences can be deciphered further by applymdjirdt derivative of the light
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scattering spectraﬂl':%I 88 shown in Figure 6.2. Figure 6.2 reveals wavelength-

dependent fluctuations in the intensity of the scatteiggdt Which could provide a
signature for each protein. These results imply thautiieation of the entire multi-
wavelength scattering spectrum is more useful than $igattering measurements at a
single wavelength since it may provide more completarmétion about the protein’s

properties in solution.
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Figure 6-2: First derivative multiwavelngth scattering spectra dF%M in the

wavelength range (280-350 nm) for three different proteins acquired using FOP.

6.4.1.2 Effect of pH and lonic Strength
pH and ionic strength have a major effect on protein-proigieractions for

proteins in solution. The maximal RLS scattering intensiyg found to occur at an
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excitation wavelength of 350 nm and so the intensityhiat wavelength for different
protein solutions [{-lactoglobulin, a-lactalbumin, lysozyme and hemoglobin) was
plotted versus pH. For all the proteins studied, except pitactoglobulin, the
maximum intensity as a function of pH was found to ocear rthe isoelectric point for
each protein (Figure 6.3). This would seem reasonable sgsthwhere attractive
electrostatic interactions exist contributing to thevdst solubility and thereby to the

highest turbidity and highest scattering.
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Figure 6-3: Effect of pH on the Maximum Backscattering Intensity at 350 nm for a-LA,
B-LG, Lysozyme (Lyz) and Hemoglobin (Hem).

At pH values outside the range of the isoelectric pbintas observed that the
RLS scattering intensity decreased for all proteingpixtor p-lactoglobulin which can

be interpreted as an indication that increased el¢atiosrepulsive interactions
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resulted in enhanced protein solubility. In contrstG showed a more distinct pH
dependent behavior (Fig. 6.4) where the highest RLS pradideirred at a pH of 4.6
which is below the isoelectric point of 5.2 f+L.G. This behavior is most likely due to
the pH dependent non-covalent self-associatioprlo® (Malmsten, 1998). Malmsten
showed that the formation of higher form oligomershsas octamers, occurred in the

pH range of 3.7 to 5.2 with maximal association at pH 4.6.
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Figure 6.4: Effect of pH on FOP Backscattering Profile for 10 g/L B-LG solution.
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Figure 6.5: Effect of NaCl concentration in the FOP backscattering for 3 g/l B-LG
solutions at pH 3 (a) and pH 5.2 (b)
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The RLS profile forB-LG at pH 3 was found to increase with NaCl addition as
seen in Figure 6.5a. A possible explanation of this behavithat salt can have a
shielding effect on the repulsive electrostatic inteéoast resulting in increased
attractive interactions and dimerization. This obsérmatgrees well with previous
observations made using small-angle neutron scatterindpé\iet al., 1999) and X-
ray scattering (Baldiret al., 1999) that indicated th@itLG at pH 3 exists as monomer
but it forms dimers with increasing salt concentrati@®alt addition does not always
enhance the RLS and its effect seems to depend on othecgbieimical conditions
of the protein solution. For instance, the pH effenttbe RLS profile offf-LG
solutions was maximal fop-LG solutions without salt at pH values closer to the
isoelectric point as compared to the pH conditions hef maxima for solutions
containing salt. It can be seen in Fig. 5b that the maddf salt results in suppression
of the backscattering intensities .G solutions at pH a close to the isoelectric point
likely resulting in a decrease in attractive elecabstinteractions.

The sensitivity of backscattering measurements arguegto subtle changes in
solution conditions and protein aggregation behaviour was mistnaded for lysozyme.
Lysozyme is a highly basic protein of low molecular virtigvith an isoelectric point
located between pH 10.5 to 11.5 (Abdellatifl., 2004). Backscattering spectra were
collected for lysozyme solutions at pH 4.0 at differaait soncentrations. As seen in
Figure 6.6 the backscattering profile intensity for solgiaf lysozyme at pH 4
increased significantly when the NaCl concentratios wmareased which could be an
indication of salt-induced aggregation. Salt-induced aggregatifolysozyme at

around pH 4.0 has been well studied by using numerous expealnteaohniques
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including X-ray diffraction (Narayanan & Liu, 2003), covalenbss-linking followed
by SDS-PAGE (Wangt al., 1996), NMR (Pozn@ski et al., 2005a), and calorimetry

(Georgaliset al., 1997; Poznaski et al., 2004; 2005b).
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Figure 6.6: Effect of NaCl salt concentration on the FOP backscattering for 10 g/l
Lyzosyme solution at pH 4.6.

The results of all these studies support that lysozyrigtseas monomer in
agueous solution at pH 4.0 without salt. There is anreédesalt-induced aggregation

of protein which results from the screening of electt@stateractions by nonspecific
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binding of electrolyte counter ions to the charged sotegpbsed protein functional

groups, which in turn reduces intermolecular repulsion foRRess{Kautt & Ducruix,

1989; Retailleauet al., 2002). In addition to the salt effects, pH effects on

backscattering were also studied. Figure 6.7 shows tkabdhkscattering profile

intensities also increased by increasing the pH (pH 4-1@hadould be related to the

monomer-to-dimer transition reported to occur in this @ge (Georgalist al.,

1999).
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Figure 6.7: Effect of pH on the FOP backscattering for 10 g/l lysozyme solution.

6.4.1.3 Effect of Protein Concentration

In addition to being dependent on molecular weight, lggdttering also has

dependent on protein concentration. The concentratipandience of light scattering

181



was studied at different pHs usifg-G as a model protein systemAs seen in Figure
6.8, increasing protein concentration results in an inereasthe light scattering
intensity. Light scattering was found to linearly in@eawith respect tg3-LG

concentration in the low concentration range (0-4 fljhe high protein concentration
range (5-10 g/l), the deviations from linearity were sigaffit, especially fop-LG

solutions at pHs near the protein’s isoelectric point (p5+540). The pattern of
increase for light scattering is most likely the resfl protein surface electrostatic

properties an@-LG’s self-association behavior.
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Figure 6-8: Effect of protein concentration on the FOP backscattering for B-LG
solutions
The increase in slope with pH values close to the istr@epoint reflects a

decrease in charge on the protein surface and the ngsulgrease in electrostatic

attraction. The same conclusion can be made whecotieentration-dependent curves
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for lyzosyme are analyzed at different pHs (data nowsl. It was found that the
steepest curve was the one that corresponded to pH 1iidb i close to lysozyme’s
isoelectric point. In general, for macromolecularused in an ideal solution, the
magnitude of light scattering intensil) at a given wavelength.) is proportional to
the product of the solute concentration (c) and itsaaee molecular weight () as
described by the following equation:

|, =KM,C (6-1)

K is an optical constant that depends only on the solpenperties, excitation
wavelength and the angle between the incident light Aedstattered lightK is
therefore a system constant that is independent afoitheentration of the solution and
the average molecular weight of the macromolectiis.dlso observed that the protein
concentration does not only affect the magnitude ottagtering intensity, but it also
influences the overall shape of the scattering spectihile light scattering intensity
in the 300-360 nm range increased with increasing protein coatienir light
scattering near the UV-visible wavelength range (230-280 wayg reduced. Such
attenuation of light scattering in the UV-visible ramgight be related to re-absorption
effects that arise in systems with absorbing particiesntenet al., 1995). Quintergt
al. examined the scattering of colloidal systems contairtimggly absorbing spherical
silver nanoparticles nanometers in the wavelength raoge the near UV to the near
IR. They concluded that re-absorption of the scattégédl by absorbing neighboring
spheres or aggregates alter the measured light scatt@eaatyes of these systems.
According to observations reported in the literatures fiossible to propose a physical

explanation of the results. Since UV light (200-300 nsnstrongly absorbed by
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proteins, it might be possible that the scattered lighthe UV range was partially
reabsorbed by proteins in the solution, leading to theemvbd attenuation of the
scattered light in the UV range upon increasing protemtentration. The contribution
of re-absorption effects becomes more significanhigher protein concentrations.
Interference of light re-absorption has been encounteréth wther optical
spectroscopic techniques such as Raman resonance spgntrq®iewas and
Umapathy, 1998) and fluorescence spectroscopy (Lacowics, 1B98ymmary, it can
be concluded that the backscattering pattern for proteinicos could be influenced
by many factors such as electrostatic protein-proteinaatiens, protein concentration
and average molecular weight, non-covalent self-gsgoc behavior and the presence

of covalently formed aggregates.

6.4.2. Scattering of Bulk Solutionsin Relation to Protein Membrane Fouling

As fouling is primarily driven by protein-protein interaxis as well as interactions
between depositing protein and the membrane surface (kMgmsl998), it is of
interest to find a relationship between membrane foulirgtha protein aggregation
behavior in the feed solution. Such a relationship mayobtained from FOP
measurements as previously described. FOP scattering ewmasiis were made to
determine the degree of aggregation for different proteutisak as a function of pH
and ionic strength. Ultrafiltration experiments werertltonducted using these protein

solutions and the flux behavior estimated.
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6.4.2.1. Scattering Behavior of Bipro Whey Protein I solate

Scattering measurements were made to determine the dégrggregation of Bipro
whey protein isolate as a function of pH and concéotra According to FOP
measurements, the degree of aggregation in the whey pisuikte was the highest at
pH 4.5, which is close to the isoelectric point of thgomahey protein constituents
(B-LG, a-LA and BSA). Lower backscattering was observed fdutems at pH
values higher or lower than pH 4.5 (data not shown). Battkstey data would predict
that the worst solution conditions for the ultrafition of the protein isolate would
correspond to a buffer concentration of 0.02 M at pH 4.9urEs 6.9a and 6.9b show
the time course of membrane resistance for differehey conditions and the
corresponding scattering measurements. The data suggsstthéh higher light
scattering intensity occurred at pH 4.5 for which membréngding would be
considered more significant. This graph clearly suggdwts the protein solution
properties, as probed by FOP scattering, are most likahelated with membrane
fouling. The propensity of proteins to aggregate over teenlnane surface is the

highest at pH 4.5.
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Figure 6.9: The time course of membrane total resistance for different whey protein
isolate solutions (top) and its relevance to FOP scattering measurement (bottom)
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6.4.3 Prediction of the Average Molecular Weight of Protein in Solution using
Multiwavelength Light Scattering Spectral Data.

In the previous section, a qualitative study was perfdrimbere backscattering data
was used as a probe of protein-protein interactions ancegajgn behavior for
lysozyme andB-lactoglobulin. It was also shown that backscatterinta dar whey
protein isolate correlated well with their membranelif@u potential under different
conditions. Analysis of the light scattering datahe previous sections did not include
guantitative predictions on average molecular weighpaoticle size. In general it is
expected that the light scattering will depend on séitidal properties that will
affect protein aggregation behavior including the molecuta, protein concentration
and electrostatic charge as modulated by physicochecuealitions (pH and ionic
strength). If quantitative predictions are desired it isessary to assess whether the
increase in light scattering is mainly due to proteincemtration effects or increase in
aggregate size. In this section, the possibility ofrnrig quantitative information
about the protein aggregation behavior in the bulk soldtmm light scattering data
was addressed by using multivariate regression modeling.slthy@othesized that a
PLS prediction model based on multi-wavelength scagjemeasurements could be
more useful than conventional models based on singtéesing measurements. This is

justified by the following:

l. Multiwavelength scattering measurements will contairrenoformation. As

stated above, light scattering intensity is a fumctof many parameters

including molecular weight, concentration, size and shapthe aggregates
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(Santoset al.,, 1999). Information related to the effects of all ofsthe
parameters is expected to be imbedded in the entire rauétlength scattering
spectra.

The scattering spectra can be affected other optivahgmena that are not
relevant to the property of interest. In section 3.h8,interference of bulk re-
absorption effects of the scattered light was discusepon increasing the
protein concentration above 2 g/L, it was observed tttenhancement of
light scattering intensity in the range 300-360 nm range agasmpanied by
attenuation of light scattering near the UV-visiblevelangth range (230-280
nm). It was hypothesized that the scattered light inulerange was partially
reabsorbed by the protein in the solution, leading tmbserved attenuation of
the scattered light in the UV rangdt is expected that by using the scattering
data in the 200—800 nm range as input to the PLS model wilt iesa more
robust preictive model with less sensitivity to bulk re-absorptieffiects at

higher protein concentrations.

As protein aggregation behavior is usually quantified in texhtke average molecular
weight, this property was chosen as the one to be peddithe calibration of the PLS
model was done based on average molecular weight dataured forp-LG by
Verheulet al. (1999) who used small angle neutron scattering . Thestegt in the
determination of the protein aggregation behavior by PLS rdetbgy involved
constructing the calibration matrix containifigLG protein solutions prepared at

different conditions (Table 6.1) identical to those used/byheulet al. Under these
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conditions, the calibration models were obtained. Ptaibration model was
performed using Rayleigh scattering data acquired for sanipié2) in Table 6.1 To
select the number of factors in the PLS algorithm,cgsswvalidation method, leaving
out one sample at a time, was employed. From a plbiedPRESS against the number
of factors for each individual component, it was concluthed the optimal number of
principal components yielding the smallest error (PRE&S) 3. Such PLS model was
then tested on Rayleigh scattering spectra obtainetthdoremaining samples in Table
6.1 (samples 13-25) that were not used in the calibratio®@.PLS methodology was
repeated using samples (13-25) as the calibration set ampdesaii+12) as the testing
set. The average molecular weight predicted from Rylscattering data were then
compared to values measured by Verhetwd. (1999) as given in Figures 6.10, 6.11

and 6.12.

Molecular
Weight (kDa)

B FOP Predicted
B Measured

Figure 6-10: The average molecular weight predicted from Rayleigh scattering data
compared to values measured by Verheul et al. (1999) for protein solutions at different
pHs
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Figure 6-11: The average molecular weight predicted from Rayleigh scattering data
compared to values measured by Verheul et al. (1999) for protein solutions at different
protein concentrations, pH 2 and at low salt concentration (L), high salt concentration

(H).
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Figure 6-12: The average molecular weight predicted from Rayleigh scattering data
compared to values measured by Verheul et al. (1999) for protein solutions at different
pHs, low salt concentration (L) and high salt concentration (H).



Very good agreement between these results and thcaaeibby Verheuét al. (1999)
support the applicability of the proposed method for detgctive changes in the
protein aggregation behavior. With PLS modeling of the &eattering data, the
average molecular weight of protein solutions under diffeconditions can be easily
determined.The time required for obtaining one scattering spectiah s the range
200-800 nm with the necessary scan quality was in the range sac20ut this time
can be significantly shortened down to 10 seconds when tastgy scanning speed.
Thus, it is believed that this multivavelength scattermgasurements combined with
PLS modeling may permit fast independent information enatigregates size and the

average molecular weight for more complex protein gt

6.5. Conclusions

The use of backscattering measurements for inferenceouwding potential was
examined in this study. It was hypothesized that by usingrteibodology, one could
track changes in the aggregation behavior of proteins mti®olas salt solution
conditions were modified, affecting protein aggregatiod altimately their fouling
behavior. It was found that protein aggregation behavistrasgly dependent on the
conditions of the media and this behavior can be irdefrem FOP backscattering
measurements. Since the occurrence of aggregation imagoa effect on membrane
fouling, the prediction of these aggregation-phenomena Iacksgattering
measurements could be effectively used to infer the membi@uling potential of

protein in solution.

191



CHAPTER 7

Conclusions and Recommendations

The focus of the research described in this thesis is the use of fluorescence
spectroscopy data in combination with multivariate calibration tools for assessing the
performance of membrane filtration processes. The discussion that follows will present
the main conclusions of this work emphasizing the new techniques developed as
compared to what had been previously reported in the literature. Advantages and

drawbacks of the methods and sources of error will be summarized.

7.1 Practical 1ssues Related to M ultiwavelength Fluor escence

Building a predictive model using intrinsic fluorescence spectra is not a
straightforward process. Many factors affecting the fluorescence such as concentration
guenching, protein-protein interactions, spectral overlapping and instrumental noise
considerably complicate the model building process and the prediction accuracy of the
obtained models. Chapter 3 and 4 presented a preliminary study on the capability of
PL S-based regression models to handle the sensitivity of fluorescence measurements
in the face of possible changes in the surrounding conditions. In Chapter 3, a model
protein, B-lactoglobulin was used as a first simple case scenario consisting of
predicting the residual concentration of B-LG after heat-treatment by using

fluorescence spectroscopy data regressed with multivariate statistical techniques.
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Assessment of aggregation and residual concentration following heat treatment was
possible for a large range of protein concentration up to 12 mg/ml even though the
intrinsic fluorescence of such relatively high concentration protein solutions is
expected to be influenced by concentration quenching, light scattering, protein-protein
interactions, heat treatment effects and instrumental noise. A signal preprocessing and
filtering tool referred to as Standard Normal Variate (SNV) method was found to
enhance the predictive accuracy and robustness of the sensor. Although the SNV
approach is widely implemented in signal processing, the applicability of this method
for filtering fluorescence signals has not been studied previously and is novel for this
particular application. In Chapter 4, a two-component system consisting of the
proteins a-LA and B-LG was used as a model system. The effect of factors including
pH, temperature, total protein concentration, protein-protein interactions, and heat
treatment time on the amount of aggregation was studied. The fluorescence spectra
collected for a two-protein solution of a-lactalbumin and B-lactoglobulin served as
inputs to the chemometric predictive model and the residual amounts of respective
proteins after aggregation were estimated. The results of Chapter 4 demonstrate that
multivariate models could be used to efficiently deconvolute the multi-wavelength
fluorescence spectra collected for a high protein concentration solution and provide a
fairly accurate quantification of respective proteins despite the significant overlapping
between their emission profiles. Prediction was reasonably good in the high
concentration range (2-10 g/l) because the fluorescence intensity is approximately
linear with concentration. However, the prediction was found to be in error of more

than 15% for samples whose actual residual protein concentration of a-LA and B-LG
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was below 2 g/l. Such poor prediction in the low concentration range could be due to
non-linearity in the fluorescence data that is not accounted for by the linear PLS
regression. In fact, it was found that fluorescence intensity is locally linear with
protein concentration in two regions: in the low concentration range (0-0.5 g/l), where
fluorescence intensity increased approximately linearly with increasing protein
concentration whereas fluorescence intensity decreased linearly with concentration in
the high concentration range (2-10 g¢/l). Such concentration-dependence in the
fluorescence signal will make building a single linear PLS model impossible due to the
observed non-linearity over the entire concentration range. One of the possible causes
of the non-linearity in the fluorescence measurements is the interference caused by
phenomena such as concentration quenching, protein-protein interactions and light
scattering. For instance, the first principal component of the PL S regression model was
linear with respect to concentrations of a-LA and B-LG. However, the second principal
component was found to be nonlinear with respect to concentration of a-LA and -LG.
Interferences due to fluorescence quenching were also observed in the spectra
collected for the retentate side where a fiber optic probe (FOP) was used to acquire
multi-wavelength fluorescence spectra of permeate and retentate at different times
during the ultrefiltration of a-LA and B-LG protein solutions. The intrinsic
fluorescence spectra of the protein solution in the retentate were observed to have
unique spectral features that are different from that on the permeate side. Reliable and
accurate estimation of the individual protein concentrations in the permeate and
retentate directly from fluorescence spectra using a single PLS regression model is

feasible provided that the following three conditions are satisfied:
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1) The concentration range of individual proteins must be at the appropriate level
where the relationship between a given protein concentration and fluorescence
intensity is linear or approximately linear and this must apply to al proteinsin the
mixture.

2) The fluorescence signals from each of the given proteins in the mixture must be
independent of each other.

3) The interferences from quenching phenomena and re-absorption effects are small
compared to the fluorescence signal such that the spectral fingerprints for the

inherent fluorophores are preserved.

Generally, such conditions are difficult to fulfill in areal protein ultrafiltration system
where protein concentration in the retentate side increases progressively with filtration
resulting in the occurrence of concentration-dependent phenomena that interfere with
the fluorescence measurements. In addition to concentration quenching of the
fluorescence signals, another important phenomenon that becomes more significant
with increasing concentration in the retentate is energy transfer arising from protein-
protein interactions. This phenomenon is possibly responsible for the concentration-
dependent red shift of the fluorescence excitation and emission maxima and for the
distortion of the spectral fingerprints for the mixture components. Under these
conditions, fluorescence signals from individual proteins at high concentration levels
may not be independent from each other and therefore the fluorescence signal for a
protein mixture is not the sum of the individual contributions from the mixture

components. By implementing a dilution strategy for the retentate side, concentrations
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of a-LA and B-LG in permeate and retentate could be directly predicted from FOP
fluorescence data within a reasonable accuracy using a single PLS model that
encompassed a low concentration range where fluorescence was not expected to be
significantly influenced by concentration-dependent interferences. However, there
might be some practical limitations associated with dilution, e.g. imprecision
introduced by dilution can be significant if excessive dilution is employed. PLS
models are expected to be accurate if they are based on calibration samples that have
acceptable upper and lower concentration limits within which the concentration of
each protein is linearly related to the fluorescence intensity and the concentration-
dependent interferences are insignificant compared to the fluorescence signal.
However, a situation may occur where the concentration of a given protein in the
diluted samples could lie within the suitable range of calibration while the
concentration of other proteins could be outside the calibration range, i.e. the
concentration may be either below or above the lower and the upper concentration
limits respectively. To avoid this situation an optimal dilution ratio should be sought
for which the concentration of all individual protein in the diluted samples lies within
the suitable calibration range of the PLS model. Such a condition must apply to al
proteins in the mixture. Establishing the optimal dilution ratio requires a preliminary
knowledge of the individual protein concentrations in the retentate in order to decide
how much dilution is required. One possible solution to this problem is to use two
local PLS models in sequence for predicting the retentate concentration: one local PLS
regression is constructed for the high concentration range where the protein

concentration is negatively linear with the fluorescence signal while the other is
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applicable for the low concentration range where the protein concentration is

positively linear with the fluorescence signal. In Chapter 4 it was demonstrated that o-
LA and B-LG protein concentrations could be predicted well from the excitation
emission spectrain the concentration 2-10 g/l range.

In Chapter 5 alocal PLS model in the low concentration range was used to predict
concentrations of a-LA, B-LG and BSA in the retentate samples after dilution. Results
in Chapter 4 and 5 showed that the PLS model constructed for the high concentration
range (Chapter 4) is less accurate as compared to the PLS model constructed in the
low concentration range (Chapter 5). The PLS model in the high concentration range
could be used to provide preliminary estimates of individual protein concentrations in
the retentate-undiluted samples. Preliminary estimates provide some orders of
magnitude rather than precise and accurate prediction as a worst-case scenario. In
summary, the need to use an optimal dilution ratio requires that a priori knowledge be
incorporated into the modeling methodology for more accurate estimation of the

proteins concentration time-profiles.

7.2 M ultiwavelength fluorometry for monitoring membrane filtration

processes

Monitoring, controlling and optimizing membrane-based filtration of complex
biological fluids is difficult to achieve in practice because all the components of a
complex biological fluid interfere with the performance of the filtration process

(Darnon et al., 2002). During filtration of a complex biological fluid, tracking transient
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changes in the separation efficiency requires information about the transport of the
various feed components through the membrane. It was demonstrated that such
information can be extracted from multi-wavelength fluorescence spectra collected for
the feed, permeate and retentate. Multiwavelength fluorometry in combination with
chemometric techniques has several attractive features: it is non-destructive, fast and
relatively simple to perform. Chemometric tools have been found to be essential for
extracting information from fluorescence spectra. It was demonstrated that two
informative spectral zones in the two-dimensional fluorescence excitation-emission
maps could be used for monitoring protein solutions during membrane-based filtration.
These spectral zones are: (i) the intrinsic protein fluorescence zone and (ii) the
Rayleigh scattering zone. The use of the information of these two spectral zones
provided valuable insight into the performance of ultrafiltration as shown in Chapter 5
and 6. In Chapter 5, it was demonstrated that the analysis of the spectral zone
corresponding to the intrinsic protein fluorescence can yield information about the
concentrations of individual proteins in both permeate and retentate streams and thus
transient changes in protein transmission and membrane selectivity in response to
changes in pH and the transmembrane pressure could be estimated. In Chapter 6 it was
shown that the Rayleigh scattering region of the excitation-emission matrix measures
optical scattering, induced by protein aggregates and multimers, could be correlated
with the fouling potential of protein solutions. Results show that light scattering
profiles vary significantly with respect to pH and ionic strength. Feed solutions with
higher light scattering properties also exhibited higher fouling potential. Thus,

multiwavelength light scattering spectra, acquired using the fiber optic probe, was
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shown to be a useful indicator for the protein self-association behavior. Since the
protein aggregation behavior is concentration dependent, it is expected that an increase
in protein concentration in the retentate side during ultrafiltration will be accompanied
by a greater tendency for proteins to form aggregates. Having a rapid and sensitive
method for monitoring protein aggregation during processing is important because the
protein aggregation behavior is expected to change with respect to time. A predictive
PLS model for estimating protein aggregation from Rayleigh scattering measurements
was developed. At this point such a model can not be fully validated on samples
collected from the retentate side due to the unavailability of a reliable independent
measurement method for protein aggregation. Instead, such a predictive model was
partially tested by using molecular weight experimental values obtained from
literature. Although this comparison was only partial due to the limited amount of
molecular weight data available, the findings verified the possibility of estimating the
aggregate size from multiwavelength Rayleigh scattering spectra acquired using a
conventional spectrofluorometer. In classical light scattering the characterization of
protein solutions is inferred from scattering measurements that are performed at a
number of different angles to the incident light. This allows the root-mean-square
(rms) of the molecular radius to be calculated in addition to the molecular weight of
the macromolecular solution. A conventional spectrofluorometer, such as the one used
in this work, does not have the capability for detecting light scattering at different
angles. In this thesis this limitation was overcome by determining light scattering
measurements over a broader range of excitation wavelengths than those available

with other classical light scattering techniques. Scattering measurements obtained by
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varying wavelengths at a fixed scattering angle to the incident light have been reported
to be equivalent to those obtained at different angles to the incident light for a fixed

wavelength (Santos et al., 1999).

Thus, the results in Chapters 5 and 6 imply that both intrinsic fluorescence and light
scattering multiwavelength measurements provide complementary information about

the process.

7.3 FutureWork

7.3.1. Non-linear multivariate methods:

To correctly model non-linear dependence relationships between fluorescence and
protein concentrations, some nonlinear PLS extensions would be useful. One of the
approaches for developing non-linear PLS model would be to pretreat the input matrix
(X) containing fluorescence measurements by including non-linear combinations of the
original input measurements (i.e. logarithms, squared terms and cross terms) before
performing linear PLS. A more structured approach to the development of a non-linear
PLS model is to introduce a non-linear functional relationship that would relate the
output latent variable scores u to the input latent variable scores t, without modifying

the input and output variables.

7.3.2. Characterizing protein aggregates using multiwavelength Rayleigh scattering:
Protein-protein interactions and the protein aggregation state are influenced by pH and

ionic strength and affect the transport behavior of most soluble components across the
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filtration membrane (Sirkar and Prasad, 1987). This might provide more insight into
the different types of aggregates. The PLS model based on Rayleigh scattering
measurements needs to be validated using an independent method of aggregate
determination such as small angle X-ray scattering. A method for estimating molecular
weight distribution or particle size distribution from the multiwavelegth Rayleigh
scattering spectra should be investigated further. One possibility is to infer the
distribution shape parameters (aggregate mean size and standard deviation) from the
spectra. This can be done by regressing the spectra (i.e. input data) against the
distribution shape parameters (response data). Another possibility is to discretize the
size distribution into different portions that can be used as multiple y responses and

then perform PLS regression with the spectral data.

7.3.3. Monitoring product quality using fluorescence spectroscopy

This thesis focused on the use of fluorescence spectroscopy for monitoring the
guantitative aspects of ultrafiltration protein fractionation. Meanwhile, Lilly (1992)
emphasized the importance of product quality and not just the amount of product
produced during ultrafiltration process. Product functionality and quality could be
adversely affected during processing in ultrafiltration systems because the protein
product can undergo conformational changes and subsequent denaturation during its
passage through membrane pores possibly resulting in loss of its biological value
(Sadana, 1998). More studies are required that clearly examine the use of fluorescence
spectroscopy for monitoring the structure, functionality and biological activity of

different proteins during the process. This could be beneficial for industry (Geisow,
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1992; Sadana, 1998) because it would allow manipulating the processing conditions
such that undesirable losses of the valuable biological product can be either prevented
or a least minimized (Dunnill, 1983; Sadana, 1998). The multidimensional analysis for
permeate and retentate can be extended further to include fluorescence anisotropy, life-
time measurements and time-resolved fluorescence. All of these methods are well-

known for providing a more detailed knowledge of conformational changes.
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APPENDICES

APPENDIX A: Fluorescence Spectral Differences between Food
Proteins

Identification of proteins in a multi-flourophore mixture can be easily done using
multiple excitation emission landscapes. Proteins can be easily distinguished from
other fluorophores by looking at the Excitation and emission maxima of fluorescence
spectra, in solution rather than for the identification of specific proteins, as can be seen

in Figure A-1.
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Figure A-1: Excitation-emission matrix for 6 g/l whey protein concentrate solution.
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For instance, it is easy to discriminate between proteins and other components by
looking at the fluorescence landscape acquired for milk where there is a significant
difference in the peak positions of Tryptophan (the main fluorophore in proteins) and

other biological components such as Vitamin B12 (Figure A-1).

Although EEM allows detecting the presence or the absence of proteins in a biological
mixture, discriminating between different proteins or identification of the type of
protein in a biological mixture is hard since there are quite subtle differences between
their fluorescence spectra. The first objective of this work is to demonstrate spectral
features at multiple combinations of excitation-emission wavelengths and to illustrate
the usefulness of EEM for discriminating between proteins in biological mixtures when

combined with chemometric methods.
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APPENDIX B: Single Protein PLS Model

Appendix A presents the raw data for the validation of the Single Protein Model on b-

LG solutions that were subjected to heat treatment at different conditions. Fluorescence

spectra of these solutions are affected by fluorescence quenching, light scattering and

instrumental noise. Four preprocessing methods, mean centering (MC), variable

scaling (VS), standard normal variate (SNV) and normalization (NM), have been

compared in terms of squared prediction error. The total sum of squared error (TSE)

and the mean sum of squared error (MSE) were calculated for each set of samples.

Table B-1: Effect of data preprocessing methods on model prediction of beta-
lactoglobulin concentrations after heat treatment of beta-lactoglobulin solutions

at 85 C, Ph 4.5, 0.10 M sodium citrate acetate buffer.

Heating Measured Predicted
time (min) (g/l) (g/l)

None MC VS SNV NM
0.00 9.32 6.95 6.83 6.85 8.20  8.51
0.00 9.43 8.49 8.47  8.01 9.04 9.08
5.00 9.25 9.25 9.34 9.09 8.73 8.64
10.00 8.88 8.89 9.05 8.78 8.07 7.89
15.00 7.59 7.97 8.06 7.34 754 7.55
15.00 7.28 8.22 8.40 7.71 727 710
20.00 5.39 6.21 6.31 5.67 583 5.76
25.00 5.09 5.42 558 5.06 488 4.76
30.00 4.30 5.10 524 475 439 422
30.00 4.09 4.53 464 414 407 4.01
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Table B-2: Effect of data preprocessing methods on model prediction of beta-
lactoglobulin concentrations after heat treatment of beta-lactoglobulin solutions at 85
C, Ph 4.5, 0.10 M sodium citrate acetate buffer.

Heating Measured Squared Prediction Error
time (min) (g/l)

None MC VS SNV NM

0.00 9.32 6.70 734 7.23 1.79 1.50
0.00 9.43 0.22 0.25 0.91 0.01 0.00
5.00 9.25 0.47 0.59 0.27 0.03 0.01
10.00 8.88 0.44 0.67 0.31 0.02 0.22
15.00 7.59 0.55 0.70  0.01 0.09 0.06
15.00 7.28 0.52 0.82 0.04 0.05 0.25
20.00 5.39 0.90 1.11 0.17 0.32 0.31
25.00 5.09 0.70 1.00 0.23 0.09 0.02
30.00 4.30 1.11 143 0.50 0.12 0.02
30.00 4.09 0.34 0.48 0.04 0.02  0.00
TTSE 5.26 7.04 248 0.75 0.90

MSE 0.76 0.88 0.52 0.29 0.32

TTSE: Total sum of squared error
MSE: Mean Squared Error
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Table B-3: Effect of data preprocessing methods on model prediction of beta-
lactoglobulin concentrations after heat treatment of beta-lactoglobulin solutions at 82
C, Ph 4.5, 0.10 M sodium citrate acetate buffer.

Heating time  Measured Predicted

(min) (o) (ah)

None MC VS SNV NM
15.00 9.39 590 573 6.26 7.82 8.52
15.0b 9.21 6.87 6.77 7.26 792 823
15.10 8.36 9.14 916 8.99 947 937
15.20 8.58 8.77 877 845 9.11 9.13
15.30 8.79 941 953 935 9.01 8.62
15.40 8.92 922 935 9.14 8.69 8.20
15.4b 8.95 792 792 793 8.66  8.38
15.50 8.53 822 824 817 8.62  8.41
15.60 8.45 8.05 8.07 7.90 8.51 8.14
15.70 8.54 842 850 829 8.31 8.02
15.80 8.34 794 795 7.9 8.38 8.40
15.8b 8.39 8.12 8.16 8.01 8.34 8.28
15.90 8.45 8.10 813 7.88 8.28 8.15
15.10 7.83 8.10 820 8.06 7.84 759
15.11 7.41 714 714  6.99 749 7.83
15.12 7.62 6.72 6.66 6.49 747  7.87
15.12b 7.63 789 796 7.60 760 7.75
15.13 7.64 763 768 7.34 754 754
15.14 7.31 715 718 6.83 7.38 7.28
15.15 6.95 771 783 7.29 722  6.91
15.16 6.89 775 787 7.37 7.21 6.79
15.17 6.80 743 758 7.18 6.82 6.45
15.18 6.59 763 769 740 752 7.29
15.18b 6.41 762 771 7.33 719  6.91
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Table B-4: Effect of data preprocessing methods on model prediction of beta-
lactoglobulin concentrations after heat treatment of beta-lactoglobulin solutions at 82
C, Ph 4.5, 0.10 M sodium citrate acetate buffer.

Heating Measured Squared Prediction Error
time (min) (g/)

None MC VS SNV NM

15.00 9.39 9775  10.874 7.636 1458  0.258
15.0b 9.21 4631 5064 3112 1215 0.625
15.10 8.36 0.034  0.039 0.001 0261  0.171
15.20 8.8 0002 0002 0135 0085  0.100
15.30 8.79 0.698 0907 0.605  0.193  0.002
15.40 8.92 0527 0739 0417 0040  0.083
15.4b 8.95 0405 0403 0393 0011  0.029
1550 8.53 0022 0015 0.037 0065  0.002
15.60 845 0093 0078 0205 0026  0.045
15.70 8.54 0.053 0099 0010 0015  0.030
15.80 8.34 0080 0087 0064 0525 0558
15.8b 8.39 0142 0173 0073 0355 0291
15.90 8.45 0.128 0152 0021 0292  0.165
15.10 7.83 0237 0342 0203 0052  0.001
15.11 741 0.014 0014 0001 0215  0.647
15.12 7:62 0074 0108 0251 0234 0768
15.12b 7.63 1102 1254 0582 0584  0.834
15.13 7.64 0714 0808 0310 0569  0.566
15.14 7.31 0388 0429 0.9 0728  0.572
15.15 6.95 1.848 2177 0885 0761 0309
15.16 6.89 2728 3139 1626 1234 0487
15.17 6.80 1950 2396 1302 0613  0.171
15.18 6.59 2276 2443 1637 1958 1366
15.18b 6.41 2179 2455 1406  1.083  0.581

TTSE 20335 23326 13365 11.114  8.404

MSE

0.940 1.007 0.762 0.695 0.604
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Table B-5: Effect of data preprocessing methods on model prediction of beta-
lactoglobulin concentrations after heat treatment of beta-lactoglobulin solutions at 80
C, Ph 4.5, 0.10 M sodium citrate acetate buffer.

Heating Measured Predicted
time (min) (a/l) (g/l)

None MC VS SNV NM
0 8.95 7.43 7.38 7.42 8.19 8.33
0 8.95 8.79 8.87 8.72 8.51 8.39
10 8.34 9.02 9.12 8.87 8.45 8.35
20 8.12 8.72 8.84 8.46 8.14 8.07
30 8.29 8.33 8.41 8.00 7.90 7.93
40 8.13 8.60 8.77 8.48 7.81 7.68
40 8.18 8.83 8.94 8.92 8.35 8.26
50 8.05 8.41 8.49 8.39 8.14 8.11
60 7.92 8.43 8.55 8.45 7.92 7.84
60 7.94 7.36 7.32 7.33 7.31 7.40
70 7.84 7.03 6.93 6.87 8.22 8.50
80 7.82 8.48 8.57 8.25 8.02 8.03
90 7.88 8.29 8.37 8.04 7.97 8.00
90 7.77 7.48 7.46 717 7.88 8.06
100 7.95 7.80 7.80 7.57 8.20 8.29
110 7.85 7.74 7.71 7.31 8.25 8.30
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Table B-6: Effect of data preprocessing methods on model prediction of beta-
lactoglobulin concentrations after heat treatment of beta-lactoglobulin solutions at 80
C, Ph 4.5, 0.10 M sodium citrate acetate buffer.

Heating Measured Squared Prediction Error
time (min) (g/l)

None MC VS SNV NM

0 8.95 2.314 2.469 2.344 0.588 0.388

0 8.95 0.025 0.006 0.054 0.190 0.313
10 8.34 0.502 0.651 0.307 0.018 0.001
20 8.12 0.405 0.568 0.141 0.003 0.000
30 8.29 0.004 0.022 0.069 0.136 0.112
40 8.13 0.255 0.446 0.148 0.085 0.173
40 8.18 0.466 0.621 0.590 0.039 0.013
50 8.05 0.149 0.220 0.134 0.014 0.008
60 7.92 0.303 0.450 0.336 0.002 0.001
60 7.94 0.293 0.339 0.333 0.356 0.259
70 7.84 0.589 0.741 0.860 0.183 0.497
80 7.82 0.492 0.635 0.225 0.060 0.063
90 7.88 0.211 0.289 0.041 0.019 0.026
90 (a4 0.060 0.066 0.306 0.025 0.113
100 7.95 0.013 0.013 0.119 0.080 0.142
110 7.85

0.005 0.009 0.246 0.192 0.237
TSSE 3.770 5.074 3.908 1.403 1.958

MSE 0.501 0.687 0.625 0.306 0.361
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Table B-7: Effect of data preprocessing methods on model prediction of beta-
lactoglobulin concentrations after heat treatment of beta-lactoglobulin solutions at 75
C, Ph 4.5, 0.10 M sodium citrate acetate buffer.

Heating Measured Predicted
time (min) (a/l) (g/l)

None MC VS SNV NM
0.00 8.62 7.89 7.85 7.87 8.69 8.76
0.00 8.76 7.80 7.74 7.81 8.82 8.89
10.00 8.35 9.00 9.07 8.88 8.69 8.67
20.00 8.34 8.10 8.13 7.67 8.20 8.24
30.00 8.30 8.71 8.79 8.37 8.38 8.37
30.00 8.25 8.31 8.38 7.93 8.09 8.07
40.00 8.56 8.14 8.18 8.02 8.29 8.28
50.00 8.18 8.71 8.80 8.43 8.30 8.26
60.00 8.18 8.45 8.52 8.19 8.30 8.27
60.00 8.09 7.91 7.90 7.55 8.31 8.40
70.00 7.94 8.04 8.04 7.80 8.43 8.44
80.00 8.27 7.88 7.90 7.63 8.18 8.22
90.00 8.06 7.73 7.73 7.41 8.10 8.20
90.00 7.93 8.63 8.78 8.61 7.96 7.78
100.00 8.23 7.84 7.83 7.92 8.35 8.36
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Table B-8: Effect of data preprocessing methods on model prediction of beta-
lactoglobulin concentrations after heat treatment of beta-lactoglobulin solutions at 75
C, Ph 4.5, 0.10 M sodium citrate acetate buffer.

Heating Measured Squared Prediction Error
time (min) (a/l)
None MC VS SNV NM

0.00 8.62 1.178 1.278 1.228 0.085 0.048
0.00 8.76 1.687 1.847 1.643 0.078 0.043
10.00 8.35 0.011 0.001 0.051 0.169 0.185
20.00 8.34 0.875 0.834 1.868 0.710 0.640
30.00 8.30 0.041 0.017 0.296 0.292 0.300
30.00 8.25 0.356 0.273 0959 0.660 0.705
40.00 8.56 0.377 0.327 0539 0.215 0.220
50.00 8.18 0.149 0.086 0439 0.636 0.703
60.00 8.18 0.322 0.247 0.686 0.514 0.556
60.00 8.09 1.102 1112  1.971 0427 0.317
70.00 7.94 0.602 0.598 1.025 0.148 0.139
80.00 8.27 0.836 0.792 1.352 0.380 0.327
90.00 8.06 1.755 1.739 2.685 0911 0.727
90.00 7.93 0.195 0.086 0.213 1.231 1.658
100.00 8.23 1.592 1.610 1.387 0.572 0.555

TSSE 11.079 10.847 16.342 7.029 7.122

RMSE 0.859 0.850 1.044 0.685 0.689
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Table B-9: Effect of data preprocessing methods on model prediction of beta-
lactoglobulin concentrations after heat treatment of beta-lactoglobulin solutions at 65
C, Ph 4.5, 0.10 M sodium citrate acetate buffer.

Heating Measured Predicted
time (min) (a/l) (g/)

None MC VS SNV NM

0.00 9.38 7.80 10.04 9.97 9.38 9.35
20.00 9.38 9.00 9.53 9.44 9.16 9.17
20.00 9.14 8.10 9.70 9.55 9.47 9.46
40.00 8.76 8.71 9.30 8.96 9.41 9.45
60.00 8.52 8.31 9.10 8.65 9.19 9.28
60.00 8.36 8.14 9.53 9.12 9.04 9.06
80.00 8.41 8.71 9.64 9.63 9.12 9.04
100.00 8.52 8.45 9.72 9.70 8.75 8.63
120.00 8.48 7.91 9.83 9.88 8.77 8.63
120.00 8.55 8.04 9.71 9.57 8.79 8.72
140.00 8.41 7.88 8.53 8.51 9.26 9.33
160.00 8.62 7.73 9.38 9.35 8.71 8.56
180.00 9.13 8.63 8.94 8.70 8.96 8.94
180.00 8.99 7.84 9.14 8.94 8.97 8.94
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Table B-10: Effect of data preprocessing methods on model prediction of beta-
lactoglobulin concentrations after heat treatment of beta-lactoglobulin solutions at 65
C, Ph 4.5, 0.10 M sodium citrate acetate buffer.

Heating Measured Squared Prediction Error
time (min) (a/l)

None MC VS SNV NM
0.00 9.38 2.515 0.429 0.344 0.000 0.001
20.00 9.38 0.149 0.021  0.004 0.051  0.048
20.00 9.14 1.080 0.314 0.161 0.109  0.098
40.00 8.76 0.002 0.287 0.038 0422 0472
60.00 8.52 0.046 0.334 0.016 0442 0.566
60.00 8.36 0.048 1.371  0.586 0.468  0.496
80.00 8.41 0.086 1.504 1.467 0.496  0.394
100.00 8.52 0.005 1.451 1.394 0.053 0.012
120.00 8.48 0.324 1.821  1.959 0.084  0.024
120.00 8.55 0.264 1.345 1.041 0.058  0.029
140.00 8.41 0.279 0.014 0.010 0.725  0.853
160.00 8.62 0.790 0.585 0.535 0.008 0.003
180.00 9.13 0.245 0.033 0.185 0.029  0.034
180.00 8.99 1.330 0.021  0.003 0.000  0.002
TSS 7.161 9.530 7.743 2,945 3.032
RMSE 0.715 0.825 0.744  0.459 0.465
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Table B-11: Effect of data preprocessing methods on model prediction of beta-
lactoglobulin concentrations after heat treatment of beta-lactoglobulin solutions at 45
C, Ph 4.5, 0.10 M sodium citrate acetate buffer.

Heating Measured Predicted
time (min) (a/l) (g/)

None MC VS SNV NM

0.00 8.82 9.18 9.26 9.10 8.72 8.61
20.00 8.39 9.13 9.26 8.95 8.35 8.22
20.00 8.21 8.74 8.87 8.42 7.93 7.79
40.00 8.38 8.51 8.62 8.18 7.88 7.76
60.00 8.24 8.71 8.87 8.52 7.87 7.70
60.00 8.21 7.95 7.96 7.66 8.25 8.24
80.00 8.26 8.63 8.76 8.36 7.92 7.79
100.00 7.92 8.61 8.75 8.50 7.90 7.73
120.00 8.01 8.34 8.43 7.97 7.99 7.91
120.00 8.22 8.64 8.72 8.29 8.24 8.15
140.00 8.13 8.38 8.50 8.21 7.87 7.70
160.00 8.15 8.62 8.74 8.28 7.98 7.84

231



Table B-12: Effect of data preprocessing methods on model prediction of beta-
lactoglobulin concentrations after heat treatment of beta-lactoglobulin solutions at 45
C, Ph 4.5, 0.10 M sodium citrate acetate buffer.

Heating Measured Predicted
time (min) (a/l) (g/)

None MC VS SNV NM
0.00 8.82 0.000 0.000  0.000 0.000  0.000
20.00 8.39 0.128 0.198  0.080 0.010  0.043
20.00 8.21 0.547 0.747  0.303 0.002  0.030
40.00 8.38 0.278 0.435  0.043 0.081  0.176
60.00 8.24 0.017 0.059  0.040 0.246  0.385
60.00 8.21 0.225 0.400  0.076 0.133  0.289
80.00 8.26 0.063 0.060  0.300 0.002  0.001
100.00 7.92 0.140 0.254  0.011 0.115  0.214
120.00 8.01 0.475 0.684  0.326 0.001  0.038
120.00 8.22 0.106 0.173 0.001 0.000 0.011
140.00 8.13 0.174 0.249  0.005 0.000  0.005
160.00 8.15 0.063 0.137  0.008 0.066  0.181
TSS 0.220 0.347  0.018 0.028  0.096
RME 2.436 3.744  1.210 0.684  1.469
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Figure B-1: Comparison between PLS model Predictions and HPLC measurements
of B-LG concentrations for 110 samples that were subjected to heat treatment at
different conditions

Figure B-1 suggests that the model prediction error increases for highly concentrated
protein solutions which is most likely due to non-linearity in the fluorescence spectra
that increases with increasing protein concentration (fluorescence quenching). Non-

linearity is not totally accounted for in the PLS model development.
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Figure B-2: Schematic diagram for the experimental procedure of thermal treatment

of protein solutions at different conditions.
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APPENDIX C: Binary Protein (a-LA/B-LG) PLS Model

Appendix C presents the raw data for the validation of the Binary Protein (a-LA/B-LG)

PLS Model on (a-LA/B-LG) protein solutions that were subjected to heat treatment at

different conditions. Fluorescence spectra of these solutions are affected by

fluorescence quenching, light scattering and instrumental noise.

Table C-1: Model prediction of a-LA concentrations in the supernatant for samples of
o-LA/B-LG solutions that were subjected to heat treatment at different conditions (pH

3.5, pH 3.7, pH 3.9).

Heat .
Initial Conditions treatment a-LA concentration in the
Conditions supernatant (g/1)
Sample Pl(;(;l;o_lﬁzm To(tg/Cl)on pH T(C) Measured Predicted
1.0 0.25 1.50 3.5 85.0 0.51 0.41
2.0 0.25 3.50 3.5 85.0 0.61 0.50
3.0 0.25 4.50 3.5 85.0 0.68 0.59
4.0 0.25 6.50 3.5 85.0 1.10 1.12
5.0 0.25 8.50 3.5 85.0 1.06 1.13
6.0 0.25 9.50 3.5 85.0 1.13 1.07
7.0 0.25 10.50 3.5 85.0 1.29 1.20
8.0 0.25 12.00 3.5 85.0 1.25 1.38
9.0 0.25 1.50 3.7 85.0 0.31 0.41
10.0 0.25 3.50 3.7 85.0 0.76 0.86
11.0 0.25 4.50 3.7 85.0 0.76 0.83
12.0 0.25 6.50 3.7 85.0 0.82 0.89
13.0 0.25 8.50 3.7 85.0 0.96 0.95
14.0 0.25 9.50 3.7 85.0 0.94 0.80
15.0 0.25 10.50 3.7 85.0 0.83 0.88
16.0 0.25 12.00 3.7 85.0 0.78 0.74
17.0 0.25 14.00 3.7 85.0 0.84 0.79
18.0 0.25 16.00 3.7 85.0 0.73 0.85
19.0 0.25 1.50 3.9 85.0 0.55 0.55
20.0 0.25 3.50 3.9 85.0 0.76 0.84
21.0 0.25 4.50 3.9 85.0 0.57 0.65
22.0 0.25 6.50 3.9 85.0 0.66 0.76
23.0 0.25 8.50 3.9 85.0 0.58 0.67
24.0 0.25 9.50 3.9 85.0 0.58 0.67
25.0 0.25 14.00 3.9 85.0 0.58 0.70
26.0 0.25 16.00 3.9 85.0 0.56 0.64
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Table C-2: Model prediction of a-LA concentrations in the supernatant for samples of
a-LA/B-LG solutions that were subjected to heat treatment at different conditions (pH

4.5, pH 5, pH 6).
Heat .,
Initial Conditions treatment a-LA concentration in the
Conditions supernatant (g/1)
Sample PI(;(;.I;O_EX)“ To(tg/(lj)on pH TO Measured Predicted
27.0 0.25 1.50 4.5 85.0 0.43 0.33
28.0 0.25 3.50 4.5 85.0 0.66 0.55
29.0 0.25 4.50 4.5 85.0 0.65 0.63
30.0 0.25 6.50 4.5 85.0 0.61 0.72
31.0 0.25 8.50 4.5 85.0 0.65 0.58
32.0 0.25 9.50 4.5 85.0 0.61 0.61
33.0 0.25 10.50 4.5 85.0 0.65 0.59
34.0 0.25 12.00 4.5 85.0 0.63 0.57
35.0 0.25 14.00 4.5 85.0 0.67 0.60
36.0 0.25 16.00 4.5 85.0 0.56 0.49
37.0 0.25 1.50 5.0 85.0 0.39 0.24
38.0 0.25 3.50 5.0 85.0 0.39 0.31
39.0 0.25 4.50 5.0 85.0 0.32 0.23
40.0 0.25 6.50 5.0 85.0 0.44 0.32
41.0 0.25 8.50 5.0 85.0 0.35 0.34
42.0 0.25 9.50 5.0 85.0 0.25 0.15
43.0 0.25 10.50 5.0 85.0 0.36 0.23
44.0 0.25 12.00 5.0 85.0 0.42 0.31
45.0 0.25 14.00 5.0 85.0 0.42 0.27
46.0 0.25 16.00 5.0 85.0 0.37 0.26
47.0 0.25 1.50 6.0 85.0 0.33 0.34
48.0 0.25 3.00 6.0 85.0 0.44 0.44
49.0 0.25 4.00 6.0 85.0 0.37 0.41
50.0 0.25 6.00 6.0 85.0 0.45 0.45
51.0 0.25 9.00 6.0 85.0 0.50 0.62
52.0 0.25 10.00 6.0 85.0 0.45 0.58
53.0 0.25 12.00 6.0 85.0 0.52 0.63
54.0 0.25 14.00 6.0 85.0 0.72 0.77
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Table C-3: Model prediction of a-LA concentrations in the supernatant for samples of
a-LA/B-LG solutions that were subjected to heat treatment at different conditions
(proportion of a-LA in the original protein solution).

Heat .
Initial Conditions treatment a-LA concentration in the
Conditions supernatant (g/1)
Sample Pl(')(;[;()_ll'fz)n To(tg/(ll)on H T(C) Measured Predicted
55.0 0.25 3.00 3.9 75.0 0.68 0.61
56.0 0.25 4.00 3.9 75.0 0.85 0.80
57.0 0.25 6.00 3.9 75.0 0.82 0.95
58.0 0.25 8.00 3.9 75.0 0.91 0.85
59.0 0.25 10.00 3.9 75.0 0.99 0.93
60.0 0.25 12.00 3.9 75.0 0.98 1.01
61.0 0.25 14.00 3.9 75.0 1.01 1.00
62.0 0.25 16.00 3.9 75.0 0.99 0.88
63.0 0.10 12.00 3.9 75.0 1.07 1.07
64.0 0.18 12.00 3.9 75.0 0.97 1.06
65.0 0.25 12.00 3.9 75.0 1.02 1.05
66.0 0.31 12.00 3.9 75.0 1.05 1.04
67.0 0.36 12.00 3.9 75.0 1.01 1.04
68.0 0.40 12.00 3.9 75.0 0.97 1.01
69.0 0.44 12.00 3.9 75.0 0.95 0.99
70.0 0.47 12.00 3.9 75.0 0.96 1.01
71.0 0.50 12.00 3.9 75.0 0.95 1.00
72.0 0.55 12.00 3.9 75.0 0.93 0.98
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Table C-4: Model prediction of B-LG concentrations in the supernatant for samples of
a-LA/B-LG solutions that were subjected to heat treatment at different conditions (pH

3.5, pH 3.7, pH 3.9).

Heat ..
Initial Conditions treatment B-LG concentratwn/ll n the
Conditions supernatant (g/1)
Sample PZ(;ILO_EX)H To(tg/(lj)on pH T(C) Measured Predicted
1.0 0.25 1.50 3.5 85.0 1.18 0.84
2.0 0.25 3.50 3.5 85.0 2.67 1.75
3.0 0.25 4.50 3.5 85.0 2.67 2.67
4.0 0.25 6.50 3.5 85.0 4.44 4.32
5.0 0.25 8.50 3.5 85.0 6.62 6.03
6.0 0.25 9.50 3.5 85.0 7.83 6.76
7.0 0.25 10.50 3.5 85.0 8.70 7.29
8.0 0.25 12.00 3.5 85.0 8.20 8.63
9.0 0.25 1.50 3.7 85.0 1.10 0.92
10.0 0.25 3.50 3.7 85.0 1.93 1.66
11.0 0.25 4.50 3.7 85.0 3.03 2.64
12.0 0.25 6.50 3.7 85.0 4.45 412
13.0 0.25 8.50 3.7 85.0 4.29 3.69
14.0 0.25 9.50 3.7 85.0 3.98 4.60
15.0 0.25 10.50 3.7 85.0 5.10 4.78
16.0 0.25 12.00 3.7 85.0 4.26 4.00
17.0 0.25 14.00 3.7 85.0 4.46 3.59
18.0 0.25 16.00 3.7 85.0 4.39 4.27
19.0 0.25 1.50 3.9 85.0 1.31 1.27
20.0 0.25 3.50 3.9 85.0 2.25 2.02
21.0 0.25 4.50 3.9 85.0 2.48 2.23
22.0 0.25 6.50 3.9 85.0 3.14 2.88
23.0 0.25 8.50 3.9 85.0 2.90 2.64
24.0 0.25 9.50 3.9 85.0 2.85 2.60
25.0 0.25 14.00 3.9 85.0 2.65 2.50
26.0 0.25 16.00 3.9 85.0 2.26 2.16
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Table C-5: Model prediction of B-LG concentrations in the supernatant for samples of
a-LA/B-LG solutions that were subjected to heat treatment at different conditions (pH

4.5, pH 5, pH 6).
treltﬁ:::zn ) P-LG concentration in the
Initial Conditions Conditions supernatant (g/1)
Sample PZ(;ILO_EX)H To(tg/(lj)on pH TO Measured Predicted
27.0 0.25 1.50 4.5 85.0 0.95 0.99
28.0 0.25 3.50 4.5 85.0 1.31 1.38
29.0 0.25 4.50 4.5 85.0 1.32 0.96
30.0 0.25 6.50 4.5 85.0 1.08 1.06
31.0 0.25 8.50 4.5 85.0 1.04 0.82
32.0 0.25 9.50 4.5 85.0 1.08 0.81
33.0 0.25 10.50 4.5 85.0 1.14 1.39
34.0 0.25 12.00 4.5 85.0 1.26 0.84
35.0 0.25 14.00 4.5 85.0 1.18 0.78
36.0 0.25 16.00 4.5 85.0 1.24 1.05
37.0 0.25 1.50 5.0 85.0 0.28 0.39
38.0 0.25 3.50 5.0 85.0 0.52 0.49
39.0 0.25 4.50 5.0 85.0 0.63 0.30
40.0 0.25 6.50 5.0 85.0 0.57 0.35
41.0 0.25 8.50 5.0 85.0 0.71 0.45
42.0 0.25 9.50 5.0 85.0 0.67 0.48
43.0 0.25 10.50 5.0 85.0 0.65 0.31
44.0 0.25 12.00 5.0 85.0 0.52 0.29
45.0 0.25 14.00 5.0 85.0 0.54 0.15
46.0 0.25 16.00 5.0 85.0 0.74 0.28
47.0 0.25 1.50 6.0 85.0 0.72 0.86
48.0 0.25 3.00 6.0 85.0 0.75 0.90
49.0 0.25 4.00 6.0 85.0 0.73 0.80
50.0 0.25 6.00 6.0 85.0 0.79 0.91
51.0 0.25 9.00 6.0 85.0 0.86 0.93
52.0 0.25 10.00 6.0 85.0 0.86 0.90
53.0 0.25 12.00 6.0 85.0 1.02 1.09
54.0 0.25 14.00 6.0 85.0 1.07 1.26
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Table C-6: Model prediction of B-LG concentrations in the supernatant for samples of
a-LA/B-LG solutions that were subjected to heat treatment at different conditions
(proportion of a-LA in the original protein solution).

Heat .o
Initial Conditions treatment P-LG concentration in the
Conditions supernatant (g/1)
Sample PZ(;ILO_EX)H To(tg/(lj)on H T(C) Measured  Predicted
55.0 0.25 3.00 3.9 75.0 1.27 1.89
56.0 0.25 4.00 3.9 75.0 2.78 2.58
57.0 0.25 6.00 3.9 75.0 4.37 3.85
58.0 0.25 8.00 3.9 75.0 5.71 5.20
59.0 0.25 10.00 3.9 75.0 6.47 6.25
60.0 0.25 12.00 3.9 75.0 7.02 7.29
61.0 0.25 14.00 3.9 75.0 7.90 8.48
62.0 0.25 16.00 3.9 75.0 8.20 8.11
63.0 0.10 12.00 3.9 75.0 6.88 7.54
64.0 0.18 12.00 3.9 75.0 7.05 6.99
65.0 0.25 12.00 3.9 75.0 6.21 6.60
66.0 0.31 12.00 3.9 75.0 6.44 6.25
67.0 0.36 12.00 3.9 75.0 6.03 5.79
68.0 0.40 12.00 3.9 75.0 5.62 5.47
69.0 0.44 12.00 3.9 75.0 4.81 5.23
70.0 0.47 12.00 3.9 75.0 5.11 5.05
71.0 0.50 12.00 3.9 75.0 4.61 4.68
72.0 0.55 12.00 3.9 75.0 3.87 4.34
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Table C-7: PLS Model predictions for a-LA and B-LG aggregation behavior compared
to the reference values estimated by HPLC.

Initial Conditions | Heat treatment | Model Predictions | Reference Values
conditions (Aggregation %) (Aggregation % )
a-LA Total T(°C) pH o-LA B-LG o-LA B-LG
Fraction Conc
(g/L)
0.25 6.50 85 3.5 32.39 5.92 30.89 11.48
0.25 8.50 85 3.5 29.54 8.29 46.77 5.43
0.25 9.50 85 3.5 40.93 5.01 55.12 5.08
0.25 10.50 85 3.5 44.78 11.81 54.13 7.40
0.25 12.00 85 3.5 58.46 22.61 53.86 14.16
0.25 14.00 85 3.5 67.75 38.11 52.57 28.88
0.25 1.50 85 3.7 18.20 2.55 7.30 2.00
0.25 3.50 85 3.7 40.49 26.31 13.30 3.60
0.25 4.50 85 3.7 32.66 10.28 26.52 4.80
0.25 6.50 85 3.7 49.68 8.73 45.30 15.55
0.25 8.50 85 3.7 54.94 32.76 55.25 33.30
0.25 9.50 85 3.7 60.46 44.15 66.53 35.44
0.25 10.50 85 3.7 68.27 35.23 66.59 39.34
0.25 12.00 85 3.7 73.97 52.65 75.43 52.00
0.25 14.00 85 3.7 75.91 57.49 77.33 58.30
0.25 16.00 85 3.7 81.76 63.41 78.75 64.45
0.25 3.00 75 3.9 9.27 17.00 18.23 15.94
0.25 4.00 75 3.9 15.46 10.00 20.04 13.85
0.25 6.00 75 3.9 45.00 7.00 36.79 14.41
0.25 8.00 75 3.9 54.67 10.00 57.49 13.33
0.25 10.00 75 3.9 60.45 13.78 62.88 16.72
0.25 12.00 75 3.9 67.18 22.03 66.47 18.98
0.25 14.00 75 3.9 71.15 24.79 71.31 19.28
0.25 16.00 75 3.9 75.19 31.64 78.09 32.39
0.10 12.00 75 3.9 10.91 36.28 10.68 30.15
0.18 12.00 75 3.9 55.57 28.18 51.29 28.76
0.25 12.00 75 3.9 65.86 31.04 64.97 26.71
0.31 12.00 75 3.9 71.47 22.47 71.81 24.82
0.35 12.00 75 3.9 76.37 21.78 75.79 24.83
0.40 12.00 75 39 79.71 21.95 79.00 24.03
0.44 12.00 75 3.9 83.92 28.76 81.14 22.47
0.47 12.00 75 39 83.81 19.56 82.20 20.48
0.50 12.00 75 3.9 87.31 23.23 83.35 22.04
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Figure C-1: Comparison between two fluorescence-based PLS models: (i) Single
protein PLS model calibrated using B-LG protein solutions. (ii) Binary protein PLS
model calibrated using protein mixture samples of a-LA and B-LG.
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APPENDIX D: Analysis of Whey Protein Solutions Using HPLC and
Fluorescence

Appendix D presents the raw data for the validation of the Binary Protein (a-LA/B-LG)
PLS Model on whey protein isolate solutions. The PLS model was tested on validation

set that contains whey protein concentrate solutions spiked with different amounts of a-
LA and B-LG in their purified form.

Table D-1: Model prediction of B-LG and a-LA concentrations in the whey protein
isolate solutions spiked with different amounts of a-LA and B-LG in their purified form.

Predicted Predicted Actual Actual
a-LA B-LG a-LA B-LG
(gM (g (g (gM
1 1.69788 6.0028 1.092 6.604
2 3.02519 5.5 2.11 6.604
3 3.58144 5.99584 3.32 6.604
4 6.20019 5.57 5.437 6.604
5 8.76169 6.14 8.502 6.604
6 6.60606 3.57 5.668 4.402
6 6.73272 6.18766 5.668 6.174
8 6.29626 7.62394 5.668 7.03
9 3.48377 9.06292 5.668 8.724
10 4.61995 7.52759 4.251 6.543
11 4.71095 8.03035 4.251 7.756
12 3.19899 5.44226 3.13 6.028
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Figure D-1: Comparison between model prediction of B-LG and HPLC measurements

for 12 different whey protein isolate solutions
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Figure D-2: Comparison between model prediction of a-LA and HPLC measurements

for 12 different whey protein isolate solutions
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Figure D-3: Excitation-emission matrix for 6 g/l whey protein concentrate solution.
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Figure D-4: HPLC Chromatogram for 2 g/l whey protein isolate solution.
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Figure D-5: HPLC Chromatogram for 2 g/l whey protein isolate solution spiked with
0.50 g/l a-LA.
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Figure D-6: HPLC Chromatogram for 2 g/l whey protein isolate solution spiked
with 1 g/l a-LA.
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Figure D-7: HPLC Chromatogram for 2 g/l whey protein isolate solution spiked with 3
g/l BSA.
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Figure D-9: Beta-Lactoglobulin’s HPLC Peak Area Standards
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APPENDIX E: Fluorescence measurements obtained from fiber optic
probe

Protein fractionation using ultrafiltration is a membrane based separation process
commonly used in the biotech, food and beverage industries. Protein mixtures can be
fractionated based on their size where protein species larger than the membrane pores
are retained by the membrane (i.e. in the retentate stream) while protein species smaller
than the membrane pores passes through the membrane (permeate stream). During
ultrafiltration of protein mixtures, changes in protein concentrations in the permeate
and the retentate have been observed with time. Appendix E shows the development of
a fluorescence based sensor for monitoring the changes in concentration of proteins in
both the permeate and the retentate by making use of fluorescence spectroscopy and
multivariate methods. A preliminary three-protein component system consisting of a-
lactalbumin (a-LA), B-lactoglobulin (B-LG) and Bovine Serum Albumin (BSA) was
used as a model system in this study. A fiber optic probe was used to acquire multi-
wavelength fluorescence spectra of the permeate and the retentate at different times
during ultrafiltration of a-LA and B-LG protein solutions. Multivariate models were
developed for predicting the concentrations of a-LA and B-LG in both the permeate
and the retentate by establishing a calibration model between fluorescence data
acquired by the fiber optic probe and a-LA and B-LG concentrations measured by size-
exclusion chromatography. Figure E-1 shows the difference between the spectra
collected using the fiber optic probe and cuvette-based method. Such difference is most
likely due to the fact that collection of the spectra using the fiber optic probe is based
on front-face geometry, while collection of the spectra using cuvettes is based on right-
angle geometry. Figures E-2, E-3, E-4, E-5 and E-6 show the plot of regression
coefficients of a-LA and B-LG versus excitation wavelengths at different AL values.
The model was validated on fiber optic fluorescence data that were not used for the
calibration. Results in Table E-1 show that concentrations of a-LA and B-LG can be
predicted directly from fluorescence data acquired by the fiber optic probe within a

reasonable accuracy by making use of multivariate calibration tools.
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Figures E-1: Synchronous fluorescence spectra at AA=100 nm for BSA, a-LA and f3-
LG (a) plastic cuvettes and (b) fiber optic probe
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Figure E-2: PLS regression coefficients for a-LA (heavy line) and B-LG (light line)
versus excitation wavelength at AA=10 nm.
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Figure E-3: PLS regression coefficients for a-LA (heavy line) and B-LG (light line)
versus excitation wavelength at AA=20 nm.
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Figure E-4: PLS regression coefficients for a-LA (heavy line) and B-LG (light line)
versus excitation wavelength at AA=30 nm.
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Figure E-5: PLS regression coefficients for a-LA (heavy line) and B-LG (light line)
versus excitation wavelength at AA=40 nm.
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Figure E-6: PLS regression coefficients for a-LA (heavy line) and B-LG (light line)
versus excitation wavelength at AA=50 nm.
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Table E-1:_PLS model validation on 17 protein mixtures of 3-LG, a-LA and BSA that

were not used for the calibration

Measured (g/L) Predicted (g/L)
B-LG a-LA BSA B-LG a-LA BSA

pH7 0.5 0 0 0.417 -0.007 0.001
pH7 0.5 0 0 0.437 -0.024 0.003
pH7 0 0.5 0 0.003 0.554 -0.004
pH7 0 0.2 0 0.007 0.172 0.01

pH7 0.1 0 0 0.107 -0.006 0.005
pH 5.6 0.013 0 0.013 0.014 -0.001 0.016
pH 5.6 0.025 0 0.025 0.025 0 0.027
pH 5.6 0.05 0 0.05 0.047 0.002 0.043
pH 5.6 0.075 0 0.075 0.068 0.004 0.058
pH 5.6 0.1 0 0.1 0.088 0.007 0.071
pH 5.6 0.125 0 0.125 0.109 0.008 0.08

pH 5.6 0 0.01 0.01 -0.001 0.012 0.014
pH 5.6 0 0.025 0.025 -0.002 0.028 0.025
pH 5.6 0 0.05 0.05 -0.001 0.054 0.043
pH 5.6 0 0.075 0.075 0.001 0.078 0.052
pH 5.6 0 0.1 0.1 -0.002 0.101 0.068
pH 5.6 0 0.125 0.125 -0.03 0.148 0.095
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APPENDIX F: Membrane Filtration Setup
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High Pressure
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Figure F-1: Schematic diagram for the experimental membrane filtration setup and the

fiber optic probe assembly.
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Figure F-2: Picture of the fiber-optic probe (FOP) connected to Varian Cary Eclipse

spectrofuorometer and inserted into the a flask containing the protein solution.
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Figure F-3: Picture of the Amicon filtration stirred cell (Model 8010, Amicon Corp,
Beverly, MA).
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APPENDIX G: The protein Association Behavior

Table G-1: Tabulated data for the average molecular weight and radius of gyration
reported in Verhuel et al., 2003 and FOP light scattering measurements for protein

solutions prepared at different conditions

pH NaCl B-LG FOP Mw Rg

(mM) (g/L) Light scattering (kDa) (A)
2.0 100 2 6.37 28.00 19.9
2.0 100 5 12.06 28.37 20.3
2.0 100 10 21.96 28.55 20.1
4.7 0 2 40.64 32.76 22.6
4.7 0 5 109.88 45.94 27.9
4.7 0 10 146.25 61.86 34.5
4.7 100 2 43.32 36.61 24.8
4.7 100 5 83.49 37.89 24.8
4.7 100 10 100.68 43.93 29.3
6.9 0 2 8.04 29.47 22.1
6.9 0 5 14.40 32.58 23.2
6.9 0 10 25.74 34.04 23.6
6.9 100 2 9.38 31.12 22.6
6.9 100 5 19.74 33.49 23.2
6.9 100 10 26.02 32.95 22.6
8.0 0 2 6.48 23.43 19
8.0 0 5 13.54 24.53 20.5
8.0 0 10 23.45 25.44 22.1
8.0 100 2 7.82 26.91 21.4
8.0 100 5 14.17 28.55 22
8.0 100 10 24.89 31.48 223
54 5 44.93 41.18 30.2




Table G-2: Tabulated data for the degree of Lysozyme self-association reported in
(Seth and Aswal, 2002) and FOP light scattering measurements for protein solutions

prepared at different conditions pHs and NaCl concentrations

pH NaCl B-LG FOP Percentage
(mM) (g/L) Light scattering of Dimers
4.6 0 2 51 0
6.2 0 5 19
7.5 0 10 132 50
8.5 0 2 55
10.5 0 5 162 65
4.6 0.5 10 11
4.6 1 2 61 20
4.6 1.5 5 27
4.6 2 10 81 31
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Figure G-1: The correlation between light scattering measurements at A= 600 nm
acquired using the fiber optic probe for B-LG protein solutions prepared at different

conditions (pHs, protein concentrations and salt concentrations) and the average
molecular weight for those solutions reported in Verheul et al.,2003.
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Figure G-2: The correlation between light scattering measurement at A= 600 nm
acquired using the fiber optic probe for B-LG protein solutions prepared at different
conditions (pHs, protein concentrations and salt concentrations) and the average
radius of gyration for those solutions reported in Verheul et al.,2003
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Figure G-3: The effect of pH on Rayleigh scattering intensity measured at excitation

wavelength of 400 nm for whey protein isolate solution.
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Figure G-4: Rayleigh scattering of Bipro’s whey protein isolate solution at three
different pHs (short wavelength range).
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Figure G-5: Rayleigh scattering of protein mixture of 50% BSA and 50% B-LG at two
different pHs.
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Figure G-6: Rayleigh scattering of protein mixture of 50% BSA and 50% LYS at three
different pHs (short wavelnrth range).
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Figure G-7: Rayleigh scattering profiles for three samples of BSA in culture medium
that were subjected to heat treatment at 20, 40 and 60 C.
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Figure G-8: Effect of salt concentration on electrostatic interactions of B-LG at
pH=3.0: (top) 4 g/L B-LG, 0 mM salt, pH 3.01 (bottom) 4 g/L B-LG, 216 mM salt, pH

3.01.
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Figure G-9: Effect of salt concentration on electrostatic interactions of B-LG at
pH=5.2: (top) 4 g/L B-LG, 0 mM salt, pH 5.2 (bottom) 4 g/L B-LG, 300 mM salt, pH 5.2.
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Figure G-10: Effect of salt concentration on Rayleigh scattering intensity at excitation

370 nm for 4 g/l B-LG protein solution at pH 3.0 (top) and pH 5.2 (bottom).
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Figure G-11: HPLC Chromatogram for three beta-lactoglobulin protein solutions at
different concentrations: higher dimmer fraction ocuurs at higher protein concentration.
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Figure G-12: HPLC Chromatogram for three alpha-lactalbumin protein solutions at
different concentrations.
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APPENDIX H: Unfolding of the Excitation-Emission Matrices for
PLS Analysis

Let us take the case where 40 samples have been measured using fluorescence
spectroscopy with 20 excitation wavelengths and 20 emission wavelengths making a
three-way data array (40x20x20). Spectral raw data have to be transformed into a form
suitable for the PLS analysis where each (20x20) excitation-emission matrix has been
unfolded to (1x400) matrix as seen in figure. The unfolded excitation-emission
matrices of dimension (1x400) can be subsequently arranged in one single two-way
matrix of dimension (20x400). Such two-way matrix then has 20 rows (observations)
and 400 columns (fluorescence intensity at excitation-emission pairs) as given below:

Emission

[re— One 2-D
spectrum
20 Samples
Intensity value at a given
Excitation-Emission Pair
Excitation
xemi 1600 Excitation-Emission Pair
Unfolding ERRERRRRRRERNRRRRRRRNRRRRERNNREED

}\'emi 1600 Excitation-Emission Pair

v

Spectrum > First order structure data
(One-Way Excitation-Emission Matrix)

One 2-D
Spectrum |::> First order structure data
(One-Way Excitation-Emission Matrix)

Second order structure data
(Two-Way Excitation-Emission Matrix)

[ [ | Unfolding ~ LLLILTTLT NPT IR IR PL T IPT LTl ]

Obs. X1 Xo X3 X400
1
20 fluorescence spectra are arranged in 2
rows of a matrix of spectral data x. Xi is 3
the fluorescence intensity value at a given
Excitation/Emission pair.
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APPENDIX I: Factors Affecting the Fluorescence Signals of Proteins

Fluorescence spectroscopy is a rapidly growing science that can be used to derive
significant information about biological solutions with little or no sample preparation.
It may be used in applications when other methods would be too time consuming or
require destruction of precious samples. It is possible to set up real-time monitoring of
processes using spectroscopy, such as monitoring the ultrafiltration of protein-
containing solutions. Monitoring the ultrafiltration of protein-containing solutions
requires a fluorescence based assay for quantifying the foulants in the permeate and
retentate during ultra filtration. However, we still need to better understand the subtle
changes in fluorescence features as a result of changes commonly encountered during
processing of protein-containing solutions. Good spectral databases documenting all
the fluorescence features in response to changes in the processing conditions are also
needed before fluorescence spectroscopy can be as widely used a tool as HPLC.
Utilizing fluorescence spectroscopy in the design of a reliable monitoring system for
bioprocesses that is accurate, fast, sensitive and that can be potentially implemented
on-line is an extremely complex process requiring awareness of the major factors
affecting the fluorescence signal. The material in the following sections outlines the
sensitivity of protein fluorescence towards pH, ionic strength and other physical

phenomena such as concentration quenching.
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Table I-1: Effect of concentration-dependent interferences on the shape
synchronous spectra of whey protein isolate solutions acquired at AA=50 nm.

of

Concentration Synchronous spectra at AA=50 nm
(g/L)

0.125 g/L 14

pH 6.3 27

10 -

Intensity
®
|

280 300 320 340 360 380
Emission (nm)

0.25 g/L

25 -

pH 6.3 20

15 -

Intensity

10 -

280 300 320 340 360 380
Emission (nm)

0.5 g/L

pH 6.3

Intensity
=

0 T T T T T
280 300 320 340 360 380
Emission (nm)
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Concentration
(g/L)

Synchronous spectra at AA=50 nm

1g/L
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2 g/LL

Ph 6.3
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Concentration
(g/L)

Synchronous spectra at AA=50 nm
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320 340
Emission (nm)

380
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300
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Figure I-1: Effect of pH on the emission intensity collected for 2 g/l B-LG solutions
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Figure 1-2: Effect of pH on the emission spectra of 2 g/l B-LG solutions acquired at
270 nm excitation.
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Figure 1-3: Synchronous fluorescence spectra for four B-LG solutions (1 g/L) at
different pHs.
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Figure 1-4: Synchronous fluorescence spectra for three b-LG solutions (1 g/L) at
three different ionic strengths (0, 100mM,200Mm).
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APPENDIX J: Preliminary filtration experiments for single protein
solutions of B-LG and two-protein solutions of a-LA and B-LG
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Figure J-1: The effect of stirring on the permeate flow (top) and B-LG protein
concentration in the permeate and the bulk with respect to filtration time.
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Figure J-2: Permeate mass collected for two different ultra filtration experiments (Exp
11 and Exp 12) performed at two different pHs (pressure difference 30 psi) for protein
solution of a-LA and B-LG.
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Figure J-3: Permeate mass collected for two different ultra filtration experiments (Exp
8 and Exp 10) performed at two different pHs (pressure difference 25 psi) for protein
solution of a-LA and B-LG.
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