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Abstract

The growing importance of tower cranes is apparent with their more widespread use
on construction projects. The automation of tower crane operations is motivated
by several factors. such as economic priorities. safety. reliability and speed. The
research in this thesis investigates the application of optimal trajectories for tower

cranes to improve the performance of their operations.

A dynamic study of a fixed-boom tower crane is initiated. Employing the La-
grangian method, a simplified mathematical description governing crane motion in
state-space form is developed. To achieve fast operation with small load swing.
the crane optimization problem is formulated as a special case of Lagrange optimal
problem with inequality constraints on controls and terminal states. This is further

extended to allow free end time and path (trajectory) constraints.

Due to computational difficultlies risen in finding optimal load trajectories for
general motions using conventional optimization methods. an iterative algorithm is
proposed in order to speed up the computation of optimal solutions. The algorithm
is based on known second-order methods. which have been adapted and customized

here for application to the required crane optimizations.

Finally, the proposed algorithm is successfully tested on the crane optimization
problem to find optimal load transfers in two different cases. Comparing with
typical load transfers of a conventional tower crane. the optimal load transfers offer

significant time saving with limited swing and smooth motions.

iv
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Chapter 1

Introduction

Tower cranes are widely used for erection and material handling in dam. power
plant and tall building construction projects. They are also very suitable for work
in crowded work sites where access by mobile cranes is restricted. Among the
different types. the fixed-boom tower crane (Figure 1.1), with an arm extended

horizontally when it moves objects, is the subject of this work.

A tower crane is initially assembled in a construction site and anchored in the
ground by a concrete foundation. As the building rises beneath it. the crane must
nise in parallel. and will eventually get most of its support from several floors of
the building instead of the concrete foundation in the ground. More on the tower

crane structure is given in the next section.

Since mid 80’s there has been a tendency toward automation and robotization in
the domain of heavy construction and lifting equipment. Despite much work done
on the automation of other kinds of cranes, little work has been recorded on the
automation of tower cranes (see section 1.5 for detailed literature review). Economic

priorities along with safety, reliability, precision and speed are among many reasons
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why the automation of tower crane operation is needed. These factors are explained

in section 1.4.

An automatic control study of tower cranes starts from modeling. It is therefore
one of the objectives of this thesis to establish a simplified mathematical represen-
tation of the crane motion. Then, the main goal of this work is to investigate
the optimal trajectories of the crane for fast operation within operational limits.
Since the crane model is nonlinear and coupled. finding optimal load trajectories
for general motions by conventional optimization methods appeared to be com-
putationally difficult [1]. [2]. Therefore. an optimization algorithm is developed
to compute optimal solutions of desired load displacements. Because of lack of
a crane prototype, a simulation/animation program. linked with SIMULINK. has
been coded in MATLAB to demonstrate the three dimensional operations of tower

cranes.

Although today automated tower cranes (or robot tower cranes) are not in use.
it is more than probable that they will be a practical operating reality in the
near future. A robot crane is different from a remotely controlled crane as it is
known today. Al movements of an automated tower crane can be programmed in

a computer device, and it only requires a supervisor rather than an operator.

In the context of this thesis, the word “crane” refers to tower crane.

1.1 Crane structure

The tower crane shown in Figure 1.1 comprises a vertical standing lattice-frame
mast which projects a horizontal lattice-frame member in two parts. The longer

section, called the boom, carries a trolley traveling along its length. On the opposite
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side of the mast, a shorter part called the jib supports heavy slabs of concrete as
counterweights to keep the crane in equilibrium. For example, on a tower crane
of 70t weight and 40 m tall, there are six blocks of concrete, each weighting 2.5¢,
at the counterweight platform. However where space between buildings does not
allow the jib movements. the forward boom can be stabilized by counterweights at
the base or operating platform of the crane. Without a counterweight the crane

will tip over if it picks up heavy loads.

The jib area also houses the hoist motor (winch) which is used to lift loads by
a hook and a hoist cable passed through the trolley. The hoist cable begins in the
motor area and passes along the boom to the trolley. At its end is the hook holding

a load (See Figure 1.2).

The mast and the boom meet each other at the top of a control cabin located
at heights from about 15m to more than 80m. This is the room where the crane
operator sits and controls all of the crane movements. In modern tower cranes the
control cabin is equipped with two main levers. called joysticks. and an easy-to-read
display that updates the crane driver continuously on all relevant data such as load
weight. trolley distance. slew angle and height under hook [3].[4]. The joysticks are
moved to make the crane’s boom rotate. to move the trolley along the boom. and
to raise or lower the hook. Whenever the working site is not clear or the weather
reduces visibility, the crane operation may be controlled by a remote control device

on the ground.

There is a turntable on the main mast that allows a 360 degree rotation of all of
the horizontal moving parts and the lifting parts of the tower crane including the

control cabin. The slewing mechanism is mounted on the turntable.

Both sides of the boom are supported by cables from the top of the tower as
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Boom

Figure 1.2: Tower crane: trolley-hook mechanism

shown in Figure 1.1. The horizontal-boom length may be longer than the mast
height. The jib is typically 30-40% as long as the forward boom. All forces, includ-
ing the weight of the crane and load. are transferred through the mast to a heavy

foundation base [5].

1.2 Crane operation and limitations

The maximum lift capacity depends on how far the load is from the center of
the mast. Information concerning this relationship between the maximum lifting
capacity and the load radius distance is given by the crane manufacturers. For
example, a tower crane that carries up to 8 tonnes at a maximum hook reach of 20
meters can reach out no further than 40 meters while carrying a load of 4 tonnes.
Recent tower cranes are equipped with computerized systems that shut them off

automatically if they lift loads heavier than their limit values.
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There are speed limits on a tower crane operations. A tower crane having a
higher motor horsepower can achieve higher operating speeds. The maximum hoist
speed depends on the load. Hoist-cable configuration is another factor affecting
lifting speed. Tower cranes are usually rigged with a two-part cable (as shown
in Figure 1.2) or a four-part cable. Four-part hoist cable configuration provides

greater lifting capacity with less hoist speed [6].

The speed of the trolley traveling along the boom can be varied up to 2m/s.
Also the boom can slew at a speed less than 0.15rad/s [7]. This information is

plotted on a chart that is unique for each crane style and model.

A tower crane operation is restricted within its workspace whose boundaries are
defined by the following operational limits. The limits are automatically enforced

by built-in devices in all tower cranes to provide safety during an operating cycle

[6].

o Trolley travel limit The trolley travel is limited to predefined maximum in
and maximum out positions. These limits prevent trolley from striking the

mast and the boom head.

o Hook height limit There is a maximum height position for the load hook.
implying a minimum length for the hoist cable. This limit provides sufficient

striking distance between the hook and the trolley.

The maximum possible workspace for a tower crane is a cylinder with a radius
almost equal to the length of the forward boom and the maximum height under
the hook (Figure 1.3). The available workspace (operating area), however, excludes
the “no-go” areas occupied by obstacles or buildings. Examples of no-go areas are

shown in black in Figure 1.3. Today’s modern tower cranes use this information to
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(a) (b)
Figure 1.3: Tower crane workspace: (a) top-view (b) side-view

automatically shut down the operation if they are in danger of violating a no-go

area [3].[8].

The tower crane workspace is accessible by:

1. moving the trolley back and forth along the forward boom (traversing motion),

=~

lifting the hook, which is suspended from trolley, up and down (lifting motion)

and

3. rotating the boom (slewing motion).

These functions, referred to as the rigid-body motions throughout this thesis, are
controlled from the control cabin and may be supervised by persons on the ground

communicating with the operator.

Finally, to ensure a safe load transfer, the following operating requirements are

given by the crane manufacturers and handbooks. These requirements along with
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other operational limits stated above will be considered in the derivation of an

optimal trajectory in Chapter 4.

o Excessive load swing can cause the crane to collapse.

¢ Sudden speed change in the crane movements can produce forces well in excess
of the weight being handled. These forces greatly increase the structural

stress, and ultimately may lead to a structural failure.

1.3 Crane motors and power

Electric power in tower cranes is used for three functions. The first is for hoist-
ing power. The second requirement for electric power is to operate the trolley or
travel motor. The third power requirement is for the slewing motor. These power
requirements for a large tower crane can all be provided, for example. by a 460 V.

three-phase. 60 Hz source typically drawing current of 125 A up to 800 A.

Conventional tower cranes are equipped with motors that work at only two or
three speeds. Change from one speed to another speed is usually provided by gear
change which is not smooth. However. modern tower cranes use electronic con-
trols to regulate motor voltages (for DC motors) or frequencies (for AC motors).
providing infinitely variable speed without an electric or hydraulic retarder or cou-
pling. This new generation of tower crane motors provides stepless speed and fine
positioning, with even the smallest movements [8],[3]. This capability is crucial for

automating tower cranes.

The regulator of a velocity controlled DC motor pulls in data from sensors that
detect the speed requested by the operator and the actual motor speed. It uses this
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information to precisely limit the output voltage and current to the motor so that
the requested speed is achieved under any circumstances. But now, modern stepless
frequency control drives are becoming more important to both crane manufacturers
and customers. AC motors with frequency-variation control devices can provide
continuous speed variation and progressive acceleration ramp. Stepless frequency
control drives ensure rapid speed tracking performance and have become almost

standard equipment on many tower crane models [9].

1.4 Crane automation

There are many answers to the obvious question of why the automation of tower

crane operation is needed. They are as follows:

Safety. The automated tower crane will never over-torque its mast, exceed
the safe-load limit, or slew faster than it should. Neither will it travel beyond its
operating range. The prevention of over-stressing is the best possible guarantee

against fatigue failure.

Reliability. Significant benefits from the elimination of over-stressing, and easy
diagnosis and repair of electronic faults are expected. The repair job will be simple
and fast, as circuit boards can be used in different cranes simply by reprogramming

their microprocessors.

Efficiency. With the automation of tower crane operation the crane operation
responsibility will be transferred to a person designated as supervisor of materials
handling. The operator will program the crane’s computer at the start of an op-
eration, after planning which material would be needed where, and supervise its

operation to make sure that orders are executed as planned. Manual assistance
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Figure 1.4: Two different load transfers between points A and D

may also be required for fine loading and unloading adjustments.

Speed. Even today’s modern tower cranes are operated by a person who con-
trols every function of the crane. A crane operator who wants more reliable con-
trol of the load sway motion uses only one of the crane functions (lifting, slewing
and traversing) at a time, which is obviously inefficient and time consuming (e.g.
dashed-line trajectory in Figure 1.4 typical of a load displacement from point A to
point D). Experienced crane operators may use the crane functions simultaneously
(usually load lifting while slewing or traversing). In the latter case, however, load

movement has to be slow to avoid any undesired swing.

Another problem arises when the load arrives at its destination where it still
swings. Thus the operator has to let all swings completely die out before unloading.
The automated crane will take an optimal trajectory (not necessarily a straight

path) between the initial point and the final point which requires the minimum
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possible transfer time while satisfying all the operational constraints (e.g. solid line

trajectory shown in Figure 1.4).

Precision. Exact load handling is very important in many projects that involve
tower cranes. Current tower cranes are not built for precise load handling. There-
fore, it takes a considerable time and effort to precisely transfer a load between two
points. An automated crane can be programmed to perform such tasks quicker and

with smoother motion.

Convenience. Even working with a sophisticated tower crane in a construction
site. control of crane movement is difficult. Orders may come fast, either by radio
or by hand signals from workers on the ground. A relatively simple operation may
become complicated when two or more cranes work together in a construction site.

It is expected that use of automated tower cranes will ease many of these difficulties.

Although the above reasons provide enough motivation toward crane automa-
tion. economic priority will perhaps be the biggest advantage. There will be
plenty of room for cost cutting when an automated crane replaces an ordinary
crane. The expected economic benefits resulting from the enhancement of crane
performance will far exceed the cost of installing various control devices on a tower

crane which may be worth more than half a million dollars.

Existing tower cranes can be furnished with extra devices for motion control.
This may well be an economic advantage for existing modern tower cranes al-
ready computerized for monitoring purposes. A recent published paper by Yehiel
Rosenfeld and Aviad Shapira explores the economic and technological feasibility of

automation of existing tower cranes [10].
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Figure 1.5: A feedback tracking control system for automated tower cranes
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1.4.1 Control strategy

A feedback tracking control system such as one shown in Figure 1.5 which satisfies
certain design specifications can be used in crane automation. The “Plant” in this
system represents the crane dynamics and the driving mechanisms. As part of the
driving mechanisms, the crane motors are coupled through gearing and cables to
the moving parts. As mentioned in Section 1.3. regulated crane motors provide
fast tracking performance of the requested speeds (V). V is defined by the crane
operator in conventional cranes, or by the computer in an automated crane as
shown in Figure 1.5. The digital controller D(z) ensures that the system follows

the desired (reference) trajectory (z,.z).

The first step towards crane automation is to find the plant equations. Despite
complexity of the crane dynamics due to nonlinearities. a simplified model of the
plant may well work in the study of crane automation. Development of such a

model is one of this work’s objectives.

It is important to emphasize that, in Figure 1.5, the plant assumes the rigid-
body velocities as the inputs. The output contains the rigid-body positions and
the load swings with their corresponding speeds, labeled as X. The dynamics of
the crane regulated motors can be ignored compared to that of the overall system.
This is reasonable for a crane whose speed is determined by pendular motion of the

suspended load. For a 20m hoist cable, for example, the period of natural frequency
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is

T, = 2_1r. = 21r\/z= 9.0 sec.
Wn g

It is obvious that crane motor time constants are considerably smaller than 9.0
seconds. This along with the good tracking performance requirement for the crane

motors justify ignoring the motor dynamics, as reflected in Figure 1.5.

An automated tower crane follows a given reference trajectory (path) X,.;.
Perhaps the best reference trajectory is the optimal trajectory that provides fast
operation with suppressed load swing between the initial (loading) point and the
target (unloading) point, while satisfying all safety and operational limits. Working
with an automated tower crane, both initial and target positions must be specified
for the crane computer prior to an operation. This information along with oper-
ational and safety constraints are used to compute the optimal trajectory before
the operation starts. This trajectory then becomes the reference path X,.; for the
crane to follow. Specifically, the main goal of this work is to study this optimal

trajectory.

The digital controller D(z) uses the difference between the actual and reference
trajectories to preserve satisfactory tracking performance. A robust closed-loop
control system can overcome the effects of disturbances, such as wind, and model

imperfection. This part is not covered in this work and is left for the future.

1.5 Literature review

With no previous academic work on the motion control of a fixed-boom tower crane,

the related works include feasibility studies of crane automation and control of other
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types of cranes such as overhead cranes, rotary cranes and Jib cranes. Although
there are some similarities among different types of cranes, there also exist many

differences in their structures and behaviors that must be investigated individually.

Y. Rosenfeld and A. Shapira in {10] show that equipping existing tower cranes
with electromechanical devices for motion control is technologically and economi-
cally feasible. While these improvements could in principle be applied to all types of
cranes, they appear to be particularly suitable for tower cranes. As one application,
Rosenfeld in a separate paper [11] describes the conversion of an existing full-scale
5-ton payload crane into a semi-automatic “handling robot™. To do so. the crane
was fitted with a programmable controller, speed regulators, encoders, several limit
switches, a wireless remote control set. and a user-friendly MMI (man-machine-
interface). He could demonstrate a 15-50% shortening of typical work cycles. high
accuracy and repeatability. and a generally safer operation due to pre-tested paths

and smoother movements with less sway and swing of the load [11].

The unloading of bulk materials from one point (e.g. ship) to another point
(e.g. quayside) is usually done by an (overhead) gantry crane. Typically the crane

(Figure 1.6) consists of a grab suspended from a moving trolley.

While the trolley moves along the rail. the suspended load can be lowered or
raised by a hoist motor. Thus one can expect that the whole operation is done by
a planar motion of the load hanging from the moving trolley. In the past 15 years,
modeling and control study of an overhead crane has been the subject of many

papers, including the following articles.

An adaptive controller for a simplified scale model of a gantry crane with a
constant cable length is formulated in [12]. Then a new method of “reference model

decomposition” as an extension of model reference adaptive control is presented.
P
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Figure 1.6: (Overhead) Gantry Crane

The proposed controller has not been applied to a real problem.

In [13] a more realistic model of a gantry crane is developed. The time-optimal
control problem is analytically solved assuming both initial and terminal points to
be at rest. The work is. however. limited to special cases where analytical solutions

are available.

There exists another type of overhead crane, called a roof crane, studied in [14].
(15] and [16]. The crane is widely used to transfer objects in factories and work
places. Unlike the fixed rail of the gantry crane shown in Figure 1.6, the rail in a
roof crane can move perpendicular to the page. As a result, the suspended load
swings like a spherical pendulum which implies three-dimensional motion. Once
nonlinear models are developed, different control strategies are applied to attenuate
load swings. In [14] and [15] a feedback control based on a linearized model of the
crane is developed and simulated on a digital computer. In [16] an optimal control

strategy based on the derived nonlinear model of the crane is developed and tested.
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A rotary crane is perhaps most similar to the tower crane among different types
of construction cranes. A rotary crane makes three motions: rotation, load lifting
and boom hoisting. In contrast to a tower crane with fixed boom, the boom of a
rotary crane is not fixed due to lack of a trolley. In [17] and [18], Y. Sakawa and
his students studied modeling and control of a rotary crane. After linearizing the
nonlinear dynamical equations of the crane, the control scheme is set in two steps.
First, an open-loop control is applied to transfer the system to a neighborhood of
its equilibrium state. Then a feedback control moves the state of the system to the

equilibrium state as quickly as possible.

Finally there is another type of crane similar to the tower crane except in the
extending-boom section. The control study of this kind of crane was investigated in
a paper published in 1989 [19]. Once the linearized model of the system is found, the
control problem is solved by minimizing a cost function of second order. The goal
is to suppress the load swing during the transfer process by extending or shrinking
the length of the boom. Because of the difficulty caused by the required control
constraints. a semi-optimal control strategy was proposed to make the control signal
stay inside the given boundary condition. This work only deals with the especial

case where the cable length and the boom angle are kept constant.

1.6 Industrial developments

With little academic work published on tower crane automation, there nevertheless
have been signs of significant technological advances in the tower crane industry.
In 1986, the technical director of Potain, the largest European tower crane manu-
facturer, claimed that a robot tower crane would be a practical operating reality in

the near future [20]. This promises a future full of optimism in the field of crane



CHAPTER 1. INTRODUCTION 17

automation. Potain sees the automated crane as the logical extension of its several
years of experience with the application of electronics to tower cranes. That is why
it started making electronic control drives for all of the crane functions as the basic

tools of any crane automation.

Liebherr’s engineers are now developing an electronic module for automatic
crane movements (AKB) to complete their modular crane control [21]. Computers
are already used in modern tower cranes to monitor the exact position and speed of
each moving part. Other crane manufacturers, such as Kroll, Comansa and MAN,
are also gearing up in the same direction by offering fully progressive control drives
on their entire range of tower cranes. Frequency-variation hoisting, trolley and
slewing mechanisms have been added to the new models. Even existing models can

be upgraded with new features due to customer demand and economic priority [9].

Almost every year new technological advances are introduced by the tower crane
manufacturers in international exhibitions and trade fairs. One of the latest exhi-
bitions was Bauma 98 in Germany [22]. In the evolution of tower crane technology.

no one now believes that a tower crane is as primitive as 15 years ago.

1.7 Thesis outline

This thesis is organized into four chapters. The first chapter explains preliminaries
which include an introduction to tower cranes, a comprehensive survey on previous
work done on crane automation and their relation to the work of this thesis. It also
establishes the needs for the proposed motion control and describes the technolog-
ical developments occurring in the tower crane field. In particular, this chapter

intends to portray a big picture of tower crane automation for its readers.
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Chapter 2 introduces several assumptions in order to establish a simplified model
of tower cranes. This model is then used to derive nonlinear differential equations
of motion via the Lagrangian method. Using the rigid-body accelerations as the
control inputs, a state-space representation of these equations is given. In addition,
the driving forces and torque are found in order to compute the forces on the crane

structure during a motion.

In Chapter 3 first the optimization criteria for a tower crane are proposed, and
a cost function is defined to be minimized within the crane operational limits.
Once the crane optimization is formulated. an optimization algorithm is developed
to solve the constrained optimal problem. The optimization algorithm adopts an
approach similar to the Han-Powell method in finite dimensional space, where the

Hessian is replaced by a positive definite matrix updated by a certain rule.

Finally in Chapter 4 the optimal trajectories for two typical crane motions are
illustrated. Then, the performance of these results will be measured as compared
with some non-optimal trajectories. representative of a conventional manually con-

trolled tower crane.

Chapter 5 summarizes the results and identifies some future research in this

area.

1.8 Contributions

With the exception of this work, no previous academic work on motion control
of tower cranes has been recorded. In the meantime, crane manufacturers have
doubled their R&D efforts, upgrading existing crane models and introducing new

models equipped with advanced technological innovations [9]. Due to high customer
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demand it is now imperative for the crane manufacturers to keep up with new

technologies. That is what makes this work new, significant and state of the art.

The contributions of this research can be summerized as follows:

Modeling

o The derivation of a simplified speed-controlled model for tower cranes. This
mathematical model is given by a set of ordinary differential equations gov-

erning tower crane motions.

o The introduction of a state-space representation of the tower crane model.
This contribution allows the application of state-space techniques for control

design to this nonlinear multi-input system.

o The development of a crane simulator on MATLAB/SIMULINK to resem-
ble the control cabin of a conventional tower crane. This application allows
the simulation of 3D operations of a manually controlled tower crane in the

absence of a crane prototype.

Optimization

o The formulation of a constrained crane optimization problem with a cost

functional that preserves fast operation with small load swing.

o A modification to the second order method, with an approach similar to the
Hann-Powell method in finite optimization, to solve continuous-time Lagrange

optimal control problems.
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e The implementation of the developed optimization algorithm for the crane
optimization. This leads to computation of optimal trajectories for desired

load displacements.



Chapter 2

System dynamics

The contral study of any mechanical system starts from modeling. The mechanical
model of a tower crane can be quite complex. However. a few assumptions are given

to arrive at a simplified model of the crane in this Chapter.

In Section 2.1. the coordinate frames and variables are defined. Once the energy
expressions have been formulated in Section 2.2. Hamilton's principle [23] is used

to determine the Lagrange equations of crane motions.

The dynamics of the motor drives and industrial controllers can be very complex.
As explained in Section 1.4. the motor dynamics is ignored in the equations of

motion given in Section 2.3.

2.1 Definitions and assumptions

As shown in Figure 2.1 the crane model can be divided into two parts. The first
part includes the slewing boom with the moving trolley. Shown in the “top” view of

the boom (Figure 2.1(a)), the axis of rotation of the mast (tower) is perpendicular
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>~

(b)

Figure 2.1: Crane model; (a) boom-trolley (b) trolley-load
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to the page. The second part of the model involves a suspended load hanging from

the trolley.

There are two coordinate frames used to represent the dynamics of the tower
crane in Figure 2.1. The inertial frame of reference indicated by the XY Z coordi-
nate frames is fixed to the ground. The zyz coordinate frame is a frame of reference
that rotates with the boom and with origin coincident with the trolley. The z-axis
of this moving frame is always collinear with the boom and the y-axis is normal to
it.

A simplified model of the crane motions based on the following assumptions is

developed in this work.

1. The crane members are rigid. The crane body consists of metal parts stiffly
joined together which allows slight flexibility under normal working condi-

tions.

(3]

Both the hook and the load together as well as the trolley are considered as

point masses.

3. No friction is modeled. Friction, as an important characteristic of every
highly-geared mechanism. must be considered in an enhanced model cf the
actual plant. Static and viscous frictions in the rigid-body mechanisms are

present in a torque-controlled model of the crane studied in [2].

4. The hoist cable does not flex or stretch under load, but is assumed to be a
rigid, twist-free massless rod. This is not an unusual assumption especially

when heavy loads are moved.

5. The crane is driven by the motors that use external speed references as inputs,

as shown in Figure 1.5.
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There are five generalized coordinates (variables) used to describe the crane

model in Figure 2.1. They are defined as follows:

R : distance between the trolley and the mast.

1 : slewing angle of the boom measured from the X axis.

7 : length of the cable connecting trolley to the load.

§ : angle between the suspended cable and its projection on the z — z plane.

¢ : angle between the z-axis and the projected line.

The first three variables are regarded as rigid body coordinates while the last two
are seen as spherical coordinates. Note that the above variables are all functions of

time. In future. the time argument. (¢). will continue to be dropped for simplicity.

2.2 Energy expressions

The load position vector using the moving frame coordinates at o is
d., = (rcosfsing) i+ (rsinf) j — (rcosfcos ) k . (2.1)
The moving frame is rotating around the origin of the fixed frame with an
angular velocity of w = k. Therefore the velocity vector of the load is given by
vm=vo+¢im+w X dpm (2.2)

where v, = R 2+ Ry ] is the trolley velocity vector and dn represents the relative
velocity of the load (i.e. with respect to the moving frame). Employing the moving-

frame unit vectors for simplicity, (2.2) can be expressed as

om = (vz) $ 4+ (v,) 5 + (v:) k (2.3)
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where

v = R+1"c0s85in¢—résinOsin¢+rd3cos¢9cos¢-mj»sin@
vy = Rep + 7 sin 6 + 76 cos 8 + ) cos fsin ¢

v, = —1‘cos€cos¢+résin0cos¢+rq3cos0 sing .

The total kinetic energy of the system (K) is equal to the sum of the kinetic
energy of the load, the kinetic energy of the trolley and the kinetic energy of the
boom. If M and m are the trolley and load masses, and I represents the moment of
inertia of the boom about the center of mast (Z-axis). then the total kinetic energy
is

1 1 2, p2i2)y 1.
K=§m(vm.vm)+§M(R + R*y?) + 514 (2.4)

The potential energy of the system is due to the contribution of the suspended

load which is

P = —-mgrcosfcos¢ . (2.9)

where g is the acceleration of gravity. The negative potential energy results from

the choice of origin of the moving frame.

2.3 Lagrange equations

Using the Lagrangian approach, the equations of motions for the simplified model
of the tower crane are derived from the kinetic and potential energy expressions

(2.4) and (2.5). The Lagrangian function is defined to be

e

L=K-P= %m (O, Om) + éM (R2 + Rzlﬁz) + %11[:2 + mgrcosfcos@. (2.6)
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Lagrange equations are of the general form

4oy _on_,
dt \8¢;) Oq¢
where g; are the generalized coordinates and Q; are the generalized forces or torques

(23].

With no actuating force on the load, the Lagrange equations for the load swing

motion are then given as

d (0L oL
d (0L oL
% (_c’){b) =93 =0 (2.7Db)

which follow
Rsinfsing — P(Rcosf + rsing) —r6 = a

. . . (2.8)
(rsinf — R) cos ¢ —rpcos§ = 3
where
@ = 2Ry cos b + 27 sin ¢ + 276 + 7¢% sin 8 cos § — 72 sin 6 cos 6 cos® ¢
+2r¢ cos? f cos ¢ + Ryj? sinfsin @ + gsinfcos ¢ , (2.9)

B =2%dcosd — 2rfdsinf — 271) sin 8 cos ¢ — 26y cos 8 cos ¢
—r9? cos§'sin ¢ cos ¢ — Ryp>cos ¢ + gsin ¢ .

2.4 Choice of control inputs

The state-space model is widely used for analysis and design of a multi-input multi-
output system (MIMO). A tower crane with three actuators is a MIMO system.
The states of any lumped-parameter continuous-time dynamical system can be

represented in state-space form by a set of first-order differential equations as

z(t) = f(=(t),u(t),?) (2.10)
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X : :
--Cef.(‘}--. D'(z) F--= D/A - I/S = Plant —~——=

--------- DA} Smor -

Figure 2.2: Feedback tracking control system of tower cranes

where & and u are the state and (control) input vectors respectively [24].

As shown in Figure 1.5, the plant inputs are velocities. They are R, v and 7,
the speeds of the rigid-body motions. These input variables and their derivatives
R. ¢ and 7. the rigid-body accelerations. appear in the load swing equations (2.8).
Because the derivatives of the inputs are not allowed in the state-space equations

(2.10) the rigid-body accelerations are defined as the control inputs. that is

uy(t) = R(t)
ua(t) = ¥(t) (2.11)
uz(t) = 7(¢)

With this choice of input variables, the load swing equations (2.8) can now be

represented in general state-space form of (2.10).

Above definition of the control inputs requires an adjustment to the closed-loop
system shown in Figure 1.5, in which velocities are the plant inputs. Figure 2.2

offers an equivalent representation of the closed-loop system shown in Figure 1.5.

The new controller is

D'(z) = Z[s] D(z)

where
Ez—l
Tz+1

Z2{s] =
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using bilinear transformation. T is the sampling period and z is the z-transform
operator. Once a digital controller D’(z) is designed, the original controller of the

system shown in Figure 1.5 is found by

_Z’_z+1
T 22z-1

D(z) D'(z).

Here it is assumed that the digital controller is linear, otherwise the notation

D(z) would be meaningless.

2.5 Equations of motion

To derive the equations of motion, the following two assumptions are necessary.

¥

The first condition is immediately known from the hook height limit given in Section

0
90°

RN (N

1.2. The second condition is justified under normal operation where the load swing

is not large, i.e. § <« 90°.

Using the above assumptions, solutions of the equations (2.8) for § and ¢ are

§ = %sinGsinq{) - ug(gcoséi +sin @) — z (2.12a)
T

<Z> = (ugsinO—ﬂ)cosqb— A

T 'cosf rcosé

(2.12b)

where a and f are given in (2.9). The required Maple codes to obtain these equa-
tions are given in Appendix A. Equations (2.11) in conjunction with (2.12) form the

following set of second-order differential equations describing the crane motions:

R=u1
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Vo= us
; = 1Uusg (2.13)
i Uy .o, R . a
6 = —sinfsing — uy(—cosf +sing) — —
T r r

. . u;, cos @ Jé]
¢ = (usind r)cos0 rcos 8

2.6 Driving forces and torque

Because tower cranes are used to hoist and move loads from one location to another,

it is necessary to know the required forces and torques of the crane motors at any

time during a motion. These are

F(t): force generated by a travel motor with the direction shown in Figure 2.1(a),
T(t): torque generated by a rotational motor as directed in Figure 2.1(a),

f(t): force generated by a hoisting motor directed from trolley to load as shown in

Figure 2.1(b).

Equations (2.7) are the Lagrange equations for the spherical coordinates # and
¢. Similarly, with F', T and f as the generalized forces, the Lagrange equations for
the rigid body coordinates R, v and r are

d(c’)L) oL _F

dt \or) ~ 3R

d (8L\ 0L

d‘i(ﬁ)"zﬁ =T (2.14)
d (oL oL _ _,

dt \ 87 or
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where L is defined by (2.6). Using equations of (2.12) to eliminate 8 and ¢ in (2.14)

results in

F = Muy + mu,cos®@sin® ¢ + mRu, cos §sin 8 sin ¢ + muz cos § sin ¢
—mr6? cos fsin ¢ + 2m Ry sin 6 cos 6 sin é + mrip? cos® 8 cos® ¢ sin ]
—mrd? cos® fsin ¢ — mg cos® §sin pcos ¢ + 2mr1[v¢§ sin 6 cos® §sin ¢ cos ¢
—mr1[)2 cos fsin ¢ — 77211".1['!2 cos® fsin® ¢ — MR:[:"’ - 2m1'1[:é cosfsin’ ¢ .

T = mRu;sinfcosfsin ¢ + (I + MR?* + mR®*sin? 9) 9 + mRuzsin b
+2mR11[uf> cos #sin® 4 cos ¢ — mg R sin 6 cos 6 cos ¢ - merj:z sin 0
+2MRRy + 2mRRy sin® 6 — 2mr Re6 sin @ sin ¢ — mr R$? sin 8 cos?
—mrR6° sin 6 — m R%)? sin 6 cos 6 sin & + mr Ryp* sin 6 cos® 8 cos? 6 .

f =m (u1 cos §sin ¢ + Ruasin§ + ug — r6? — 2ryf sin ¢ + 2Ry sin §
—7r¢? cos? § — g cos 8 cos ¢ + 2rjih sin 8 cos 8 cos é + r* cos? 6 cos® ¢

—rp? — Ry? cos §sin q‘))

where u;. u3 and u3 are the control inputs defined by (2.11).

A major application of the above results is to evaluate the applied forces to the
crane structure during a motion. In an automated control this information can be

used in the crane computer to prevent over-stressing and fatigue failure.

In addition, equations (2.14) joined with equations (2.7) describe the equations
of motion for a tower crane with torque-controlled drives. In this case, the tower
crane is driven by force and torque reference inputs generated by the crane motors.

These inputs are F, T and f for travel. slew and hoist drives respectively.
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2.7 Model simplification

Whereas the rigid-body positions may change drastically, the load swings remain
small under normal working conditions. As stated in Section 1.2, large load swings
must be avoided to ensure a safe load transfer. It is also assumed that the load
swing is slow, especially for a long hoist cable. Therefore. the following nonlinear
terms due to the swing angles (6, ¢) and their derivatives (4, ¢) are neglected from
the system equations of (2.13).

2 . }2 12 . . . . -+ 81 9
—¢~sin 8 cos @, - 1°sinfsin ¢, 2L Sindsin o, 20¢Sm
T

cos f

Using

sinfd =0, sinpx¢. cos§dx~1. cosp=1,

the resulting equations of motion are

R = u

Tl; = 1

T = u3 (2.15)
§ = -% (Ruz + rusg + 209 + 24 + 276 — 1906 + 2rph + 96)

b = % (rugﬁ —uy — 2 + 278 + 289 + r2e + Ry? — g(ﬁ)

Note that the above equations are still nonlinear, despite removing nonlinearities

due to the load swing angles and their derivatives.

2.8 State-space model

The system of equations (2.15) is MIMO. Therefore, a state-space representation
of the general form (2.10) is preferred in a control study of the system.
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Introducing the state vector
z(t) = (R(e),%(t),r(t).6(t), 8(2), Bit), $(2),7(t), 6(2). () (2.16)
and the control vector
u(t) = (wi(t),ua(t).ua(t))” (2.17)
the equations of motion (2.15) written in state-space form are
&(t) = f(2(t). u(t)) (2.18)

where
2:i+5 for l: = 1. 2. 3. 4.5
. {

Uig for 1=6.7.8

fo= :1:4:1:3 — 229210 — (5 + 2, /23)us
—(2zgz7 + 2252708 + 22829 + gT4) /23
fio = 2z7x9 + 2523 — uy /23 + THUs

+(2z4z728 — 228210 + 2133 - 915)/-’”3 d

In the above. £ € R! and u € R®. The domains of feasible states and controls
are however tighter than R'® and R?® respectively, due to operational and safety
limits. These domains will be defined in Section 3.2. In addition. f: R!° x R® -
R together with its partial derivatives with respect to each of the components of

¢ and u are continuous.



Chapter 3

Optimal control problem

To achieve fast load handling, high-speed crane motions are required. The speeds
are limited by manufacturers. High-speed motion can cause large load swings both
during and after transfer, which are undesirable. Therefore, an optimal trajectory
for the load motion that produces short travel time with suppressed load swing but
that also satisfies operational constraints is needed. This optimal trajectory is the

open-loop solution of the optimal control problem studied in this chapter.

Once the optimization criteria are specified, a certain (performance) cost func-
tional can be defined. The crane optimization then is to minimize the selected
cost functional subject to the dynamics of the crane and the constraints imposed
by the operational and safety limits. This turns out to be a free-end-time optimal
control problem with hard control constraints, end-point equality constraints and

path (trajectory) constraints.

Because the system equations are nonlinear and coupled, analytical solutions to
the optimal control problem only exist in special cases. Numerical methods must

be used to find the optimal solution in general. However, finding optimal load

33
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trajectories for general motions by conventional optimization methods appeared
to be computationally difficult [1], [2]. Therefore, in Section 3.4.3, an iterative
algorithm is proposed to solve a continuous-time optimal control problem where
the control inputs and the terminal states are constrained. The algorithm is based
on known second-order methods. which have been adapted and customized here for

application to the required crane optimizations.

This chapter makes use of extensive notation. A list of symbols is included at

the beginning of this thesis for reference.

3.1 Cost functional

Selection of a (performance) cost functional. J. is of prime importance in finding
a meaningful solution of the optimal control problem. After optimization criteria
(objectives) are identified a suitable cost function can be chosen in the formulation
of the corresponding optimal control problem. In the following derivation. opti-
mization is taken to mean minimization of the selected cost functional, subject to

various constraints.

For the crane whose equations of motion are given in (2.18). the optimization

criteria are considered to be

(a) short transfer time, and

(b) suppressed load swing during and after the transfer process.

Because there is always a trade-off between the duration of a transfer process
and the amount of load swing during that process, the following cost functional is

defined:
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ne

T & alty—to)+b [ ()00, 6(0),7(0).66).60) & (31

Constants a and b are the weighting factors, and ® represents a function of the
load swing in the transfer process. Here the final time ; is unspecified (free). It is
noted that b = 0 in (3.1) corresponds to a pure time optimal problem. Intuitively,
a bigger a (relative to b) results in a faster motion, whereas a smaller a leads to a

longer motion but more damped load swing during the motion.

Among many possible choices for ®. consider
B(t) = r(t) (67(t) + 47(2) + 6°(8) + (1)) . (3.2)

The above function grows rapidly as r(t) increases. Note that the load distance from
the z-axis of the moving frame in Figure 2.1(b) is proportional to r(¢). Intuitively.
excessive load swing angles with long hoist cable are more undesirable than when
the hoist cable is short. A load swing of 10° translates to more than 17m of
displacement when the hoist cable length is 50 m. This, however. compares with a

load sway of less than two meters when the hoist cable is 5 m long.

In terms of the state variable definition (2.16), function (3.2) can be expressed

as
B (2(t) = z3(t) (23(t) + z2(t) + z3(t) + 23(t)) - (3.3)
Substituting (3.3) for ® in (3.1) yields

J = /, ! [a+bad(e) (3(8) + 2(8) + 23(8) + o7(8)) ] (3.4)

It is then expected that minimizing the cost functional (3.4) along with a certain

end-point constraint satisfies the given optimization criteria.
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3.2 Operational and safety constraints

The following constraints are to be met. During a load transfer, the trolley travel

and the hook height are limited by

Rmin S zl(t) Rma::

Tmin $ zS(t) S Tmaz

IN

Vt € [to. ty]. (3.5)

In addition, there are limits on the speeds of the rigid-body motions that yield

|26(t)l < Rma::
l127(t)l < 1j’ma:l: Vte[t0~tf]- (3.6)

Izs(t) | S 7:maa:

Finally, as stated in Section 1.2. sudden speed change in the crane movements
as well as large load swings must be avoided to preserve a safe load transfer. This

requires limitations on the rigid-body accelerations (control variables) and the load

swings, as
[u(t)] < Remae
[ua(t)] < Ymaz  VEE [to.tg] (3.7)
[us(t)] < Fmaz

and

|z4(t)]
IZs(t)I S ¢ma:z:

IN

mazx

Vt € [to,ty]. (3.8)

The state variables of the dynamical system (2.18) belong to the set of admissible
states defined by

S & {z | : [to,tf] = Q is continuous}, (3.9)
!

Q = {uestm[g,-gu.»gf,-,i=1,...,1o} (3.10)
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with constant vectors £ and T known by the limit values in the state-variable
inequality constraints (3.5), (3.6) and (3.8). These constraints are usually called

path (trajectory) constraints in the formulation of an optimal control problem.

Similarly, the control variables of the dynamical system (2.18) belong to the set
of admissible controls defined by

u 2 {u|w: [to,ts] — I is piecewise continuous}, (3.11)

o= {ueiﬁsly,-s;zgsm,i=l,2.3} (3.12)

where constant vectors u and T are identified by the limit values in the control

inequality constraints (3.7).

3.3 Crane optimization

Consider the dynamical system (2.18), on a free end-time interval [to, ¢;] which is

subject to the initial and final state conditions

z(ty) = TeeN (3.13a)
z(ty) = 240 (3.13b)

In a typical load displacement, while the initial point may not be in equilibrium,
the final (target) point must be in equilibrium to ensure a safe unloading condition.
In an equilibrium point the load is at rest (i.e. all of the velocities, accelerations

and swing angles are zero). Specifically. assume that

o = (Ro,’lllo,fo, 003 ¢09 07 0& 0’ OaO)T (3143)
z! = (R!7¢f7rf’ 07 0’ O’ 07 0’ 07 O)T, (3»14b)
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where Rg and 4y are the initial positions of the trolley and the boom respectively,
and rg is the initial length of the hoist cable. Similarly, R; and 4; are the final
positions of the trolley and the boom respectively, and r; is the desired length of
the hoist cable at the target point. Nonzero swing angles 6, and ¢, indicate that
the load is not initially located straight under the trolley, as may be the case in

practice.

The crane optimization problem can now be formulated as follows:

o Subject to the dynamical system (2.18) and the initial and final conditions
(3.13). find a control u(t) € U such that the cost functional

J(u.ty) = /t" [a +b<I>2(:n(t))] dt (3.15)

is minimized over S with ®*(z(t)) as defined in (3.3).

Because. for a fixed t;. the state ¢ is uniquely determined by (2.18) when the
initial condition z, and the control u are given [25]. the cost functional J depends

only on u.

The control strategy proposed in Section 1.4.1 requires pre-computation of a
reference trajectory (Z..s) as a benchmark path for the crane to follow. This

reference trajectory is indeed the solution to the above optimal problem.

3.4 Constrained Lagrange problem

The optimization problem described in the previous section is a special case of the

following general optimal control problem.
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Consider the dynamical system, on a free end-time interval T = [to. tg]:

&(t) = fl2(t), ult),t) (3.16a)
Z(to) = & (3.16b)

which is subject to the terminal state constraints
gi(z(ty)) < 0 i=1,...,r, (3.17)
the state path constraints
pi(z(t).t) < 0 j=1,....1 ¥YteT. (3.18)
and the control constraints
v € I={peR™ |y, <p<u. i=1,....m} (3.19)

with @ and u two constant vectors in R™, representing upper and lower limits on
the control inputs. In the above. &(t) € R is the state vector of the system at

time t € 7 which corresponds to the control vector u(t) € R™.

Let the set of admissible controls be
U = {u|u:T — Ilis piecewise continuous}, (3.20)
and let the set of feasible controls be

F = {ulucl, g(z(ty)) <0, pj(z(t),t) <0, i=1....r, j = L,..,1}(3.21)

One of the standard forms of a constrained optimal control problem, known as

the constrained Lagrange problem [26], is formulated as follows.
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o Subject to the dynamical system (3.16), find a control u(t) € U such that the

cost functional
t
J(u,ty) = / "L(z(t), u(t),t)dt (3.22)
to
is minimized over F.
Throughout, it is understood that the norm of any vector w € RP for some

dimension p is

|w|| = fggg;lwil,

and the norm of any w : T — RP is

lwl = max |w(t)]-

The following conditions are assumed to be satisfied.

LR XxR*"xT SR, L:R"xR*xT - R.

2. The functions f and L together with their partial derivatives up to the second
order with respect to each of the components of z and u are piecewise con-
tinuous and uniformly bounded for all (z.u,t) € R® x R™ x T (smoothness

requirement).
3. There exists a non-negative piecewise continuous function k(.) on T such that
”f(zl’uet) - f(.’!:z,‘u,t)” < k(t)”tz - 1!1”

for all (zy,u,t),(®s,u,t) € R* x II x T (Lipshitz condition).

From the theory of differential equations [27],(28], the system (3.16) has a unique

continuous solution #(t) on the interval 7" corresponding to each u € Y.
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In what follows in the rest of this chapter, an effective algorithm will be de-
veloped to solve the above Lagrange problem. But, first a brief survey on the

techniques and algorithms for solving optimal control problems is given.

3.4.1 Computational challenges

Clearly. except for some special cases 2], finding closed-form optimal control solu-
tions is almost impossible. A numerical approach then has to be adopted in most
cases. Computational techniques for solving optimal control problems, like opti-
mization in finite-dimensional space, are iterative in nature. Expectations of a good

numerical optimal control algorithm can be summarized as follows.

1. It should be convergent, at least locally and preferably globally.
2. It is “efficient”. which means that it has a fast (local) convergence rate.

3. It must handle terminal and path constraints.

Because a general optimal control problem can be viewed as an optimization of
a functional in a general control space subject to system dynamics and some func-
tional equality/inequality constraints, there is a great deal of similarity in compu-
tational techniques between optimization in finite dimensional space and optimal
control problems. Although there is a wide variety of methods for the computation
of optimal controls, they can be classified into different types according to their up-
dating schemes for the controls. Most well known methods update only the control

variables, and the update scheme is such that, when at the k-th iteration,

ul) = P (4 4 o0y
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where P is the transformation mapping within the admissible control space U, v
a search direction, and af*) a suitably chosen stepsize. Different constructions of
the mapping P, search direction v*) and stepsize a(*) result in many different meth-
ods (algorithms): the gradient method. the projection method [29], the conjugate
gradient method [30], the quasi-Newton methods [31}, etc.

Some methods approximate the control trajectories by orthogonal functions of

polynomials. That is

N
u(t) = ) pidi(t)
i=1

where {¢;(¢)} is a family of N orthogonal functions or polynomials. Sometimes.
both the control and the state variables are approximated in this way. Conse-
quently. the original optimal control problem is converted into an optimization
problem. where the updatings are on the parameters {u;}. Different selections
of the {#:i(t)} yield many different methods. such as the Chebyshev method [32].
[33], the Fourier method [34]. [35]. and the Taylor method [36]. In practice. the
most common parameterization methods approximate the orthogonal functions by
piecewise polynomials, in particular spline functions [37] and piecewise constant

functions [38], [39].

Computational methods for optimal control problems can also be classified into
two classes: first-order methods and second-order methods. Despite the emergence
of many successful first-order methods, the development of second-order methods
has been relatively slow. This is perhaps because of two major reasons. One reason
is that second-order methods require not only the evaluation of the second deriva-
tives of the Hamiltonian function at every sampling time, but also their storage.

Another reason is that the minimization of the summation of the first and second
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variations is itself a complex problem. However, because second-order methods
generally enjoy rapid, usually quadratic, convergence around the solution, many
attempts have been made to solve optimal control problems using second-order

methods.

Motivated by the success of the trust region approach in finite dimensional
optimization, Fukushima and Yamamoto [40] proposed an algorithm to minimize
the summation of the first and second variations. The algorithm is shown to be

globally convergent. but the control variable is assumed to be unconstrainted.

In late 70’s, a promising algorithm, developed by Han [41], [42] and Powell [43],
emerged as a general purpose algorithm for solving optimization problems in finite
dimensional space. The method replaces the original problem by a sequence of
quadratic programming problems. where the original cost function is approximated
by a quadratic function, with the Hessian being replaced by a positive definite

matrix. and the inequality constraints approximated by a linear function.

In the following, an algorithm, with an approach similar to the Han-Powell
method in finite dimensional optimization, will be developed to solve fixed end-
time optimal control problems where the control variables and the terminal states
are constrained. The first step is to establish the optimality conditions according
to the first variation téchnique of the calculus of variations [44]. The next step
is to produce an upper bound on a second-order convex functional approximation
due to a change in the control. Consequently, the original optimal problem is
replaced by a series of simpler subproblems. It is then shown that the solution of
this simplified problem generates a descent direction of the original cost functional.
Finally, the original problem will be extended to allow free end time and to include

path constraints.
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3.4.2 Optimality conditions

To arrive at the necessary conditions for optimality of the Lagrange problem defined
in Section 3.4, consider the case where the final time t; is known and also no
path constraints are involved. In Sections 3.4.7 and 3.4.8 these restrictions will be
removed. What follows in this section is a specialized derivation of the optimality
conditions according to the first variation technique of the calculus of variations
[44).

Introducing n continuous costates (Lagrange multipliers) p;(t)..... Pn(t), the
Hamiltonian function H is defined by

H(z.u.p.t) £ L(z,u.t)+p (t)f(z.u.t) (3.23)

where

with L and f as given in (3.22) and (3.16(a)) respectively.

Introduction of the undetermined costates p;(t) enables us to treat z;(t) as
though they were independent whereas they are indeed related by the system equa-

tions (3.16(a)). The augmented cost functional is then
- ty T . .
)= [ [H@(t), u(t).p(t).t) - P (e (8)] dt. (3:24)
Since the system equations (3.16(a)) must be satisfied, minimizing the cost func-
tional J is equivalent to minimizing the augmented functional J.
Let u* and &~ be the optimal pair that minimizes (3.24) and satisfies the system
(3.16). Introducing a small parameter ¢, then
u(t,e) = u™(t)+ du(t) (3.25a)
z(t,e) = x°(t) + d=(¢t) (3.25b)
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with
du
du(t) = B i €
Oz
) = —
z(t) ae e=0 i

as the first-order approximations of the functions u(t,¢) and z(t,¢) about their

optimums, for which € = 0. Similarly,

z(t,e) = a°(t) +dz(t) (3.26)
with
.. oz
dx(t) = e . €.

It is assumed above that u(t,€), (t.€) and £(t.¢) lie in a small neighborhood of

their optimums u*. ¢* and z".

Because %1—;1 is only a function of time. differentiating equation (3.25) with
¢e=0
respect to time and then comparing the result with equation (3.26) yields

5:B,'(t) _ d.d.'l:i(t)

4 dt dt

i=12....n. (3.27)

This result shows that the  operation and the derivative operation are interchange-

able.

For the variational functional

Je) = /: [H(z(t, ). u(t.e), p(t).t) — pT(t)&(t, )] dt (3.28)

the Taylor expansion about € =0 is

€2

e d&*J
ﬁ-*-

—_— + o
e=o I de?

J(e) =J(0) + ‘fi—‘z (3.29)

e=0
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where J(0) is an extremum value of J. For J(0) to be a minimum, the necessary

condition is that the first variation in (3.29) vanishes, i.e.

8] = =0.

e=0

& &,

Then. using a result from the calculus of variations [45], one finds
t
53:/’5(H—p75:)dt+ (H —pT&)dt]’ = 0. (3.30)
tg 0

Since x, x and u in the integrand (3.28) depend on ¢, the first variation of §( H —

pTz) is given by

§(H —pTz) = Hpéz — p' Tz + Hydu (3.31)
where
g o OH| _[oH o
v du =0 T Hou T Oun, .o
we o 0H| _[oH oH
- am e=0— 81:1 o ax" e=0 ’

Substituting (3.31) in (3.30) yields

t
5= [" (H;,Jm -p

o

t
) dt+ [ Hyudt =0 (3.32)
dt to

where the last two terms in (3.30) are removed due to fixed initial and final times,
and also the & and the derivative operations have been interchanged using (3.27).
Finally, integrating the second term of the first integrand in (3.32) once by parts
yields

t t
8T = - p'Ter’ +[7 d + Hyp ) dzdt + ! Hydudt =0. (3.33)
to to \dt to

The last two terms in (3.33) indicate the changes in the [J caused by varying z;

and u; during the process time. Therefore the coeflicients of 4z and du in (3.33)
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must each be zero, resulting in the well-known Euler equations

d
Ep'r-i-H;, =0 (3.34a)

Hy = 0. (3.34b)
Using the definition (3.23) in (3.34) gives

-p ()T = Hg(z'(t),w(t),p"(t).t) (3.35a)
0 = Hy(z"(t),u(t).p"(t).t) . (3.35b)

These are n +m ordinary differential equations. Equation (3.35(a)) is called the
costate equation. while (3.35(b)) is usually referred to the control equation since it
normally results in determination of the optimal controls u; provided that they do
not appear linearly in the augmented integrand £. Otherwise the control variables

are bang-bang, determined by their extrema.

A necessary condition for optimality of *(¢) and u"(t) requires existence of
a non-zero continuous costate p*(t), such that the costate and control equations

(3.35) are satisfied for t € T subject to the system (3.16).

For the problem with terminal state constraints (3.17) not only must equations

(3.35) be satisfied, but in addition the remaining term in (3.33).

- pTéx

1

¢
to
must also be equal to zero to ensure the vanishing of the first variation. This

condition can be reduced to
-p(t))Toz(ty) = 0 (3.36)

because of fixed initial value (3.16(b)). This condition, along with the r terminal
state constraints (3.17), provides the additional relations, termed as the transver-

sality condition, required for the optimality conditions.
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Through the use of an underdetermined constant 7;, the differential of each of
the r constraints g;(z(ts)) evaluated at the optimal state z*(t;) can be introduced
into (3.36) to form

—p(ts)T82(ts) + 3 nigig (2°(ts))oz(ts) = 0
i=1
where
(% Os
Iz = 0z, Oz.|
Then, the following transversality condition holds
P (ts) =D nigip (= (ts))T .

i=1
with
n; 20 and 7igi(z"(t)) =0

foralli=1.....r.

3.4.3 Description of the optimization process

In this section. an iterative algorithm, with an approach similar to the Han-Powell
method in finite dimensional optimization. is developed to solve fixed end-time op-
timal control problems with constraints on the control and terminal state variables.
At every iteration, the algorithm minimizes a cost functional which is an upper
bound on the summation of the first and second variations of the original cost

functional, defined in (3.24), due to a change in the control.
Let v(t) be the variation of control u'(¢) —u(t), and let y(t) satisfy the following

linearized system equations

Fo(t)y(t) + fu(t)o(t) (3.37)
0 (3.38)

y(t)
Y(o)
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where the gradients fg(t) and f,(t) are evaluated at (z(t), u(t)).

The first and second variations of the augmented cost functional are defined [46]

as
AJv) & /:!Hu(t)v(t)dt (3.39)
and
A%j(v) & % /" [5(t)7. v(t)7] Hzz(t) Heu() || y(®) | (3.40)
< Jto Hum(t) Huu(t) v(t)
where

T T
me(t)=-a—(?—i{) . Hmu(t) 9 (3H) , etc.

T ou\dz
In the above. ®(t) and p(t) are the state and costate corresponding to the control
u(t).

Typically, for most computational techniques seeking the optimal control. an ini-
tial control u!® is selected and a sequence of new controls u(*), w®, .. .. w® . |
is generated. each improving upon its predecessor. A natural and convenient way
to find an improving control u!**!) at the k-th iteration is to minimize AJ*)(v(¥)
(first-order method) or AJ®)(v¥) 4+ A2J*)(v(¥) (second-order method) subject

to the linearized system

8@ = FE)yM () + £ (o™ () (3.41a)
y¥(t) = 0, (3.41b)

and the linearized terminal constraints
g(@M(ts)) + i (P () y O t)) <0 i=1,...r (3.42)

with v(*) = u — u¥). All the components of the gradient and Hessian terms in

AJ® and A?J®) are evaluated at £*) and p*) corresponding to u(¥). In what
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follows, only the second-order method is considered. However, the second-order

problem is difficult to solve, and further simplification is needed.

Proposition

o Let M(t) be the Hessian matrix in (3.40),

M(t) 2 (3.43)

Hea(t) Hzult)
Hyz(t) Hyu(t)

Then there exists a positive time-varying scalar A(¢) such that. for anyteT.

y(t)

(&) v(t)T] M(t) {
v(t)

] < At) (w(0)Ty(t) + v(t)To(t) . (3.44)

Proof: Because M (t) is real and symmetric. its spectral decomposition (Section
2.2.5.4 of [47]) is
M(t) = UBTARU(Y),
where U is an orthonormal matrix satisfying UTU = I, and A is a diagonal matrix

containing the eigenvalues of the matrix M (¢). Then,

y(t)

[5(t).v(t)T] M(2) [
v(t)

] = z(t)TA(t)z(t).

where

2(t) = U(t)[y(t)J .

v(t)

Assuming that Apq(t) is the largest eigenvalue of the matrix M (t),

Alt) < Amaz(t). (3.45)



CHAPTER 3. OPTIMAL CONTROL PROBLEM 51

Note that, based on assumption 2 on page 40 and the Hamiltonian definition by
(3.23). all the elements of the matrix M(t) are uniformly bounded. Therefore,
Amaz(t) in (3.45) is always well defined, for any t € T.

From (3.45),
2(H)TA1)2(t) < Amaa(t)2(t)T2(t) < Amaz(t) (y(t)Ty(t) +v(t) v (t))

since

[ t
&)™ o) U@)TU (1) ”Et;} = (y(®)Ty(t) + v(t)To(t)) .
v

Thus the following inequality holds:

[w(®).v()7] M(2) [ < Amaz(t) (9(0)Ty(t) + v(t)To(t)) -

Because the Hessian matrix M (t) is not necessarily positive definite, implying

that Anqaz(t) is not necessarily strictly positive, consider
At) £ max{l. Amsa(t)}. (3.46)
which is always positive and satisfies
Amaz(t) < A(t)

for any t € T. Hence,

< At) (w()Ty(t) + o(t)To(t)) . o
v(t)

The above proposition provides an upper bound on the integrand function in

[¥(t)7, v(t)"] M(2) [ vt J

(3.40). While the Hessian matrix may be difficult to compute at each iteration, the

right hand side in (3.44) can be computationally simple.
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Consider now the following terminal condition

p(ty) = 0, (3.47)
and the new cost functional
Jw) & /t" L (y(t), v(t), t) dt (3.48)
where
i & 1s T T
L & Hult)o(t) + 53(6) (y(t)7y(t) + v(t)7w(t)) . (3.49)

The above functional is indeed an upper bound of a second-order approximation
to the change of the original cost functional J due to a change in the control. With
the fact that the integrand term in (3.48) is a convex function. .J is easier to compute

than the second-order approximation AJ(v) + A2J(v).

The above results are similar to the case of finite-dimensional optimization han-
dled by the Han-Powell method where the Hessian is iteratively replaced by an
updated positive definite matrix to facilitate both the computational and conver-
gence analysis [41], [42], [43]. Hence, instead of solving the original problem. the

following subproblem is solved repeatedly.

Direction finding subproblem (DFS):
e Given u'¥), find an optimal control @*) € U, such that
gk — in J®) (g — ®)
2" = arg&mng (uw — u'™) (3.50)

subject to the linearized equations (3.41) and the linearized terminal inequal-

ity constraints (3.42).
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This is usually referred to as “direction finding” in the literature (see [47] for
example), because its optimal solution at each iteration, #(*}, helps an optimization
algorithm to make progress towards its solution. The following algorithm is then
adapted from [48] to find the optimal input u"(t).

Optimization algorithm:

1. Select an initial control u(® € . Set k = 0.

o

Compute the state ¥ by integrating (3.16) forward.

3. Compute the costate p*) by integrating (3.35(a)) backward from the terminal
condition (3.47).

4. Solve the above direction-finding subproblem (DFS) to find @'*).

. If @™ ~ u® within a certain accuracy range, then set u* = @*) and stop.

(4]

Otherwise, go to Step 6.
6. Compute a suitable stepsize a!¥), according to a stepsize rule.
7. Set ulk+1) = g(k) 4 o(¥) (ﬁ.(") - u(""). Set k = k + 1 and return to Step 2.
Clearly the set IT of the constrained inputs, defined in (3.19), is convex. Because
a®, u® €T and

u(k“)(t) = u(k)(t) + a® (,-‘(k) _ u,(k)(t))
= (1 - a“") u®(t) + a®a®
is a convex combination of %(*) and u*), u(*+1) ¢ II for any ¢ € T and for any a!¥) €

[0,1]. Therefore the above algorithm always generates a sequence of admissible

controls, as long as the initial control u(®) is admissible.
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An advantage of the above algorithm is that the original constrainted nonlinear
problem is solved by solving a sequence of constrained linear quadratic optimal
control subproblems, which are much simpler than the original one. Moreover, at
the kth iteration, the existence and uniqueness of the solution of the constrained
linear quadratic problem is always guaranteed [49]. Also, as will be seen in the next

section, the algorithm generates a descent direction of the cost functional J(u).

Another advantage of the above algorithm is that, for each subproblem at the
k-th iteration, its Hamiltonian function. which is quadratic in both the state 2(t)
and the control u(t) for any t € T. is a strictly convex function in control w(t).

Therefore the optimal control of every subproblem can never be singular.

However, one disadvantage of the above algorithm is that after the Hessian
matrix M (t) is replaced by the diagonal matrix A()I. the second-order convergence

rate may not hold any longer.

3.4.4 Descent property

In this section it will be shown that at each iteration, the algorithm given in the
previous section generates a descent direction of the cost function J(u). Such
a descent direction helps the optimization algorithm to improve the next control
update by reducing the cost functional at each iteration. Before showing the descent
property, the optimality conditions of the direction-finding subproblem (DFS) are
given. But, first the following property is required.

Property

o For any u(t), u'(t) € U, there exists a positive constant c such that

J(u') = J(u)+ AJ(v) + E(v) , (3.51a)
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where the remainder E(v) is upper bounded by
E(v) < cloll%, (3.51b)

with AJ(v) defined as (3.39) and v(t) = w'(t) — u(t).

Proof: Equation (3.51(a)) is a multivariable case of the Taylor polynomial of
degree 1 with the reminder E at u(t). From the Proposition of page 50, the second
variation A%J(v) defined in (3.40) is upper bounded. Hence, according to the
Calculus of Taylor polynomials [50], there exists a positive constant c to satisfy
(3.51(b)). =

Now the optimality conditions of DFS are given. Let #!)(¢) be the solution
of DFS at the k-th iteration and 8¥(¢t) = @®)(¢) — u®(t). Also, let §¥)(t) be
the solution of the linearized system (3.41) with input #*)(¢). Then. similar to the
optimality conditions derived in Section 3.4.2, there exists a costate function g{*(t)

of the direction-finding subproblem satisfying
-3%) = Hy@“e).8%(t).g"0).0) (3.52)
where H(y®)(t), v (t),q*)(t).t) is the Hamiltonian function of the direction-
finding subproblem, defined as
B £ LM, o™0).0) +qMe)T (F8 0y (0) + £ 1)e™(1))
= Hu(@®(t), uM(t). pP(2). )M (2) + .;.a(k,(t)y“"(t)Ty“"(t)
+§a“’>(t)v"°’(t)fv"°’(t) +q¥(t)T (£8 ()™ (t) + £ ()M (2))
(3.53)

with L substituted by (3.49). The costate equation (3.52) then becomes

-gMt) = £50)%a ) + B ()™ (). (3.54)
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Moreover, there exist undetermined constants ﬁ‘( ) such that the following transver-

sality condition holds,
alC Zn 'g:g (2 (27))T (3.55)
where
A0 >0 and 7" (gi(2¥(tg)) + gig (2t))y™(E)) =0 (3.56)

for all  =1,...,r. The function g,-z(z‘k’(t!)) is the gradient of the terminal state
constraint g;, defined in (3.17), evaluated at @*(t;).

In addition. similar to (3.35(b)), 8F)(¢) is the solution of the control equation
Ho(3M(t).84(t).qM(1).) = 0.
which results in
Hu(2®(t). w(t). pM(1).6)7 + ¥ (£)8M(t) + ' (1)7q¥ () = 0 (3.57)

using (3.53). By the Kuhn-Tucker Theorem [51]. there exist nonnegative vector

functions B (t) and 4*)(t), such that, for any t € T,

Hu(2®(6). u® (), p(2). )7 + a¥(8)59 ()

+£5 (8)7g®(t) + Bt - vH(t) = 0 (3.58)
where

YT (aW(t) -7) = 0 (3.59)

¥¥()T (w~a®()) = 0. (3.59b)

The functions % and u are the upper and lower limits on the control inputs, specified

in (3.19).
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Next, it will be shown that #*)(¢), the result of the direction-finding subproblem,
turns out to be a descent direction of the cost functional J(w). That is, if 5*)(t) # 0
and a® € (0, 1], then

J(u® +ap®) - Ju®) < 0
forall 0 < a < al®).
From (3.51) and (3.39).

J(u® +at™) - Ju®) < AJ(ad™) + cf|as™ |

t
< o[ HP@)sW(1)dt + a5V (3.60)

to

where, for simplicity.
HY(t) = Hu(z®(t). u¥ (), p*)(t).t) .
Substituting Hi;'(t) from (3.58) in (3.60) yields

J(u® +ap®) - Ju®) <

—a ./:' (a(k)(t)ﬁ(k)(i)Tﬁ(k)(t) + q(k)(t)TfSllz)(t)ﬁ(k)(t)) dt

ty . _(k . _(k 2=k
-a /c (,B(”(t)Tv‘”(t)—7‘”(t)Tv(”(t)) dt + ca®||8™|*. (3.61)
0

Note that

AU M) = BME)T (aM() - uM(t))
= BT (a%() -7) + B (1) (- u®(t)) 2 0
because
YT (a®(t) -7) = 0
Y > 0

(ﬁ - u(")(t)) > 0.
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Similarly,

Y68 ") = ¥O)T (a%(t) - u(r))

= yR()T (ﬁ("”(t) - g) + 40 ()T (y._ _ u(k)(t)) <0
because

BT (aM(t) —u) = 0
y8(E) > 0

(-u®) < 0.
Therefore, the inequality (3.61) can be reduced to

~ - t 9 3 el
T +ao®) ~ Ju®) < —a [ (a®(0)5"(1)759(0) de + ca®l5 (1))

to

—a /t’ (@) T £ (tyot(2)) dt. (3.62)

To further simplify (3.62). consider

.Ei_(q(k)(t)Tg(k)(t)) = a(k)(t)T,y(k)(t)+q(k)(t)Ti}(k)(t)

dt
= %) fo (©)8M(t) — MM ()TN () . (3.63)

where ﬁ(k)(t) and é(k)(t) are replaced by (3.41(a)) and (3.54). So,

& )/ ox (ke —(k TG b ke — (ke (&
[TaeT R wsRme = a¥erg¥ef! + [ ahegtie T e
> §%(t)Tg" (ty) (3.64)

given the fact that §*)(£g) = 0, and a®)(2)g™* (£)Tg* (t) is always positive. Using
(3.55) to replace §\¥)(t;) in (3.64) reads

tr _ T L . e
/m g &) @R )t > T 7% g (20 (t)g® (),

i=1
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following

[1aPeT £ weB e > -Y i) 20 (36)

to i=1
from (3.56) and (3.17). This result can now be used to simplify the inequality (3.62)

as

- - t
J® +as®) - J@®) < —a [ a®(t)59($)T5" (e)dt + ca?[[5H2)]1.

to

Hence. by choosing a small enough stepsize a*), such that

1 ty
*) <« aF e () To* (6)d .

the following relation always holds
Ju® + ap®) — ju®) < 0

for all 0 < a < a*) and ©*) # 0. This inequality shows that whenever @(*) # u(*),
5% = @ — u® js a descent direction of the cost functional J(u) at the k-th

\ . a
iteration.

The following important concluding remarks are in order:

e Because A(t) is positive and &) # 0, the upper bound in (3.66) is always
well defined and positive. This ensures existence of a positive stepsize a!*) at

each iteration.

e The descent property shown in this section will always hold as long as the func-
tion A(t) is positive, regardless of whether the inequality relationship (3.44) is
satisfied. However, this inequality is important for the rate of the convergence
of the algorithm. Intuitively, as an analog to the Han-Powell method in finite-
dimensional optimization [41],[43], tighter approximation by (3.44) makes the
rate of convergence closer to second-order, while looser approximations would

make the algorithm behave more like a first-order algorithm.
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3.4.5 Computation of descent directions

According to the descent property, the solution of the direction-finding subproblem
(DFS), which is a linearly constrained quadratic optimal control, is always a descent
direction at each iteration. If there were neither control nor state constraints, DFS
would be just a classical time-varying LQR which could be solved by integrating two
Riccati equations [52],[24]. A convenient way to solve DFS, with both control and
terminal state constraints, is to convert it into a standard quadratic programming

form in finite dimension by discretizing the control variables.
Let the time interval (o, ;) be divided into N equal subintervals [t;_y,¢;), with
ti=to+jT and T = (t; —to)/N (j =0..... N). During each subinterval, control

variables are approximated by constant vectors
u(t) = u(tj-;). tE€[tjm1.t;) (3.67)

for y =1.....N. Note that each control parameter u(t;) € II, according to (3.19).

The above approximation leads to a spline representation of the controls [53] as
N-1
u(t) = ) uid(t)
j=0
with u; = u(t;) and the pulse functions ¢;(t) defined by
1. whent € [t;.¢;
qu(t) é { [Jr J+1) .

0, otherwise

Assuming that the Jacobians fz and f, are approximately constant over each
subinterval (t;,¢;41), from the theory of linear systems [24], the continuous state

equations (3.41) can be converted into the discrete state equations

v = AP + BP (u; — o) (3.68a)
v =0 (3.68b)
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where

(k) L; (k)
Ag'k) =erfzw Bg'k) = fu(tj)/ " efz gy ;

/]
and ul" = u®™(t;). y'* = y®(t;) are all evaluated at t = ¢; for j =0,..., N — 1.

Consequently, the solution of the above difference equation for y}k) can be expressed

as
J
(k) (k) (K (k
v = 2 ¥ Bi—)l (ui—l"‘ui-)l) (3.69)
t=1
with the trensition matriz
j-1
& (k) k (k)
¢ =J[4) . & =1 (3.70)
p=i

Introducing the control parameter vector

¢ 2 [ul...uf] ermy. (3.71)
the solution (3.69) can be written in vector form of
v = DY (¢-¢W) (3.72)
where £¥ consists of uf-k) (¢=0,...,N —1), and the matrix D'(ik) is defined by

k k k k k n m
DY = [8{)B{".....8¥)BY 0,....0) e x®™¥ (313

for j =1,...,N. Thus, by applying the rectangular integration rule to (3.48), the

cost functional J(*) becomes the following quadratic function
= 1 T
ke _glkly — Z (g _ gk (k) (¢ _ g(k) (k) (g _ g(k)
JOE-€M) = S(6-&Y) Q¥ (6-¢") +q¥ (6-¢¥) (1)
where
q® = T[HP(t),..., HE (ty-1)]

N-1
QY = T a¥,) (1+ 0P DY) . (3.75)

=1
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In the above, the time-varying scalar A(t) and gradient Hy(t) are parameterized
over the time interval [to,t;). By removing the constant terms in (3.74), the

quadratic cost function can be simplified as
Fk 1 . ! . .
JOE) = 67QWe+ (¢ - ¢ QW) ¢ (3.76)

Similarly, the terminal constraints (3.42) turn into the following linear inequality

constraint

9(2M(ts)) + g (¥(t;)) DY (6 -€*) < o (3.77)
with g £ [g1..... a7,

The original direction finding subproblem (DFS) can now be formulated in

finite optimization as follows:

Linear quadratic programming (LQP):

e Given £*). find a control parameter vector & such that the quadratic cost

function (3.76) is minimized subject to the linear constraint (3.77).

Notice that the matrix Q%) is always symmetric and positive definite at each
iteration due to (3.75). Therefore, LQP is a standard quadratic programming prob-
lem with linear constraints, which can be solved by many well-known techniques in
finite optimization [47},[51]. Another advantage of the above parameterization tech-
nique is that there are many good codes available to solve a quadratic programming
problem such as LQP. Some of them are available free of charge, for example, the
Fortran code “E04NAF”, a NAG library routines {54], and the MATLAB function
“QP” [55]. In this research, the latter, which uses an active set method [47], has

been employed to solve the above optimization problem. It apeared to converge
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satisfactorily in the three cases studied in Chapter 4. However, comparison with

other routines, such as “E04NAF” and “LOQO" [56], could be useful.

Once the optimal solution E(k) of LQP is found, its elements can be used to
construct the optimal control @*), similarly to (3.67). This optimal control is in

fact an approximate solution for DFS at the k-th iteration.

3.4.6 Stepsize rule

Ideally, the best stepsize at each iteration is the one which minimizes the cost

functional J(u(® + a&®). That is. at the k-th iteration.
a® = arg min J(u® + ap®)). (3.78)
a—

Cousequently, according to Step 7 of the algorithm given in Section 3.4.3. the next

control update will be
u(k“)(t) = u(k)(t) + a(k)ﬁ(k)(t)
where 88 (¢) = al¥)(t) — u®)(2).
From the descent property. whenever %) # 0, the stepsize defined in (3.78) is
a positive number. Moreover. as mentioned in Section 3.4.3. a®) < 1, so that the
algorithm generates a sequence of admissible controls. However, the calculation of

the above exact stepsize is very expensive. In practice, an inaccurate line search is

used.

Consider now the stepsize

1 ty
k) R SR RS PRGNS pRY 7Y
a max{l S -/t.o a™(t)o\"'(t) o (t)dt} (3.79)

where c is the constant of the remainder term defined in (3.51(b)). The above

rule generates a stepsize equal to half of the upper bound limit in (3.66), unless it
returns 1. Therefore, al*! € (0,1] while always satisfying condition (3.66).
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3.4.7 Free final time

The optimization algorithm given in Section 3.4.3 assumes a fixed final time ¢;.
However, the free end-time optimal control problem of Section 3.4 can be easily
converted to a fixed end-time optimal control problem with an additional state.
The idea is to specify a nominal time interval, [0,1], for the problem and to use
a scale parameter, adjustable by the optimization algorithm, to scale the system
dynamics and, in effect, scale the duration of the time interval. The scale parameter
is represented by the extra state. To perform this, a transformation by G. Leitmann

is adopted below.

Let the time variable ¢ be a linear transformation of the new time variable T as
t(r) = wr+ty. (3.80)

with

dt(t) = wdr
where w is the duration scale parameter. Then. the time interval [to.¢;] transforms
to the new time interval [0.1] with ¢; = w + ¢;. Usually in real applications of free
end-time optimal control. such as the crane problem. a good engineering estimate

for the range of ¢4 is available. that is
T, <t < T

or

Tl—to < w S Tg—to (3.81)

for some given T> > T} > t,.
Consider the augmented dynamical system
Znt1 F(2(7), 8(T), TEns1 + to) To

&(r) = f(&,6,7) £ , &(0) = (3.82)

0 w
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with &(7) = (:c(w‘r +to)T,w)T, a(r) = u(wr +to). and f and zq given in (3.16).
Because the scale factor w is an unknown constant, unlike zg, the initial value
Zn+1(0) = w is not fixed. The inequality constraint (3.81) in conjunction with

(3.17) form a new set of terminal state constraints as

Gi(w,2(ty)) < 0 i=1....,r+1. (3.83)

The free end-time optimal control problem of Section 3.4 can now be converted

into the following equivalent fixed end-time optimal control problem.

¢ Find a control @(r) : {0.1] — II and a scale parameter w such that the cost

functional

1
/ L(&.@.7)dr = /0 it L(& @t TEopy +t)dr  (3.84)

is minimized subject to the equations (3.82) and the constraints (3.83) and

(3.18).

According to the optimality conditions derived in Section 3.4.2. with the costate

vector p. the associated costate equation is

p(r) = —Hg(&(r).a(r).p(r),7)T (3.85)

where

Similar to the case of finding the optimal control %", the optimal duration w*
may be found through the iterative process of an optimization procedure. The
algorithm of Section 3.4.3 has been modified to accommodate updating the scale

parameter w at every iteration, as follows.
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Modified optimization algorithm:

1. Select an initial control @® € IT and an initial scale parameter w® € [T} —

to,T; — to. Set k = 0.
2. Compute state '*) by integrating (3.82) forward.
3. Compute costate p*) by integrating (3.85) backward.
4. Solve a corresponding direction-'ﬁnding subproblem to find @® and @(*),

5. If a®) ~ a® and @* =~ w® within a certain accuracy range, then set

" = @®, w = ©* and stop. Otherwise. go to Step 6.

6. Compute a suitable stepsize a'¥, according to a stepsize rule.

-~

. Set @**tH = glF) 4 ok (ﬁ(k) - ﬂ(k)) and wiktt = k) 4 k) (lﬁ(k) - w(k)).

Then set k = k + 1 and return to Step 2.

Once the optimal solutions @". £° and w" are found. the original controls and

states u] and z} will be available by reverse scaling as

-

w(t) = i (t“t°) fori=1.....m (3.86)

w-

t—t
1:'f(t)=:i:'»( 0) forj=1,...,n.

w*
with the final time ¢t; = w* + ¢,.
The main disadvantage of this method, in general, is that it converts linear

systems into nonlinear systems. However, this may not be a concern because the

crane dynamics presented in Chapter 2 is already nonlinear.
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3.4.8 Path constraints

The definition of the general optimal control problem of Section 3.4 allows path
constraints of the form (3.18) to be handled directly. However, constraints of this
form are quite burdensome computationally. This is mainly due to the fact that
a separate gradient calculation must be performed for each point at which the
path constraint is evaluated. In what follows, path constraints are converted into

end-point constraints which are computationally much easier to handle.

Let the system equations be angmented with an extra state variable z’ satisfying
!
. 2 -
#(t) = Y wimax{0. gi(z(t), 1)} (3.87)
i=]
where the positive scalar y; serves as a weighting factor for every constraint ;.
The right-hand side is squared so that it is differentiable with respect to #. Then

it is clear that the end-point condition
Z'(ty) <0 (3.88)

holds if and only if all of the path constraints w;(z(t).t) < 0 (¢ = 1.....1) are
satisfied. The end-point condition (3.88) is in the form of (3.17).

In the implementation of the above technique to replace the crane trajectory
constraints, the weighting factors y; (i = 1,...,l) in (3.87) have been considered

equal to 1, assuming the same weights for all of the constraints.

3.5 Summary

This chapter started with the definition of a cost function for the crane optimization

problem based on specific criteria to achieve fast load transfer with suppressed load
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swing. Combined with a set of operational and safety constraints given in Section

3.2, the crane optimization problem was then described in Section 3.3.

The crane optimization problem was considered as a special case of a constrained
Lagrange problem introduced in Section 3.4. Because of the complex nature of the
crane problem due to its nonlinear dynamics, a fast and efficient algorithm was
needed to find the solution of the optimization problem. This task was accomplished
through the rest of this chapter, beginning with the derivation of the optimality
conditions in Section 3.4.2. The developed iterative algorithm updates the control
variables by solving a simple linear quadratic problem at each iteration. This is
due to an upper limit approximation on the second variation of the original cost
functional. which was adapted from the Han-Powell method in finite-dimensional
optimization. It was then shown. in Section 3.4.4. that the proposed algorithm
generates a descent direction at each iteration. To compute such a descent direction.
a standard quadratic programming problem in finite optimization has to be solved

at each iteration.

This chapter is concluded by inclusion of the cases of free final time and path

constraints in Sections 3.4.7 and 3.4.8.



Chapter 4

Crane optimal trajectories

In Chapter 2 the state-space equations of a simplified model for the tower crane
dynamics were derived. In Chapter 3 an optimization algorithm for solving a partic-
ular class of constrained optimal control problems was developed. In this Chapter,
the developed algorithm will be used to find the optimal trajectories for two differ-

ent types of crane motions.

While the optimal solutions provide fast motions with small load swings. it is
desired to compare quantitatively their performance with some non-optimal tra-
jectories representative of a conventional manually controlled tower crane. The
comparisons are expected to show whether, in terms of the transport time and load
swing, the optimal load transfers can offer significant improvement in the operations

of a tower crane.

First a minimum-time load transfer between two given points is studied in Sec-
tion 4.2. No boom slew or change in the hoist cable length is considered in this
basic motion. The numerical result reasonably matches the analytical result given

in [2] [57], showing how well the optimization algorithm works. Despite small load

69
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swing of the time-optimal solution, by adding a function of load swing into the cost
function, the swing is further reduced to meet the safety requirement of a manually
controlled tower crane. Finally, the resulting optimal solution is compared with a
typical motion of a conventional crane to illustrate the performance of the optimal

load displacement.

The next simulation, in Section 4.4, involves all of the three crane motions:
the trolley movement, the boom rotation and the load lift. While no analytical
solution is available for this complex motion, the optimization algorithm is applied
to compute the optimal trajectory. This result will then be compared with a non-
optimal trajectory, typical of a manually controlled tower crane. showing significant

reduction in both transfer time and load swing.

In this Chapter. all system responses are simulated and generated in the MAT-
LAB environment. Also, all codes for the optimization algorithm were written in
MATLAB. A simulation/animation program, linked with SIMULINK. was coded
in MATLAB to facilitate the simulation of a conventional tower crane operations,
mainly due to lack of a crane prototype. The next page picture shows the ani-
mated tower crane simulating the control joysticks and data monitoring system of

a manually controlled tower crane.

4.1 Computational characteristics of the optimiza-

tion program

There are three simulation results in this Chapter that have been obtained using
the optimization algorithm of Section 3.4.7. The characteristics of the optimization

program that implements the proposed algorithm include the following:
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Figure 4.1: Tower crane simulator
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o For simplicity, the classical fourth-order Runge-Kutta formula, with fixed
time stepsizes, is used for integrating both state and costate differential equa-

tions [58].

¢ For simplicity, the time sequence used to integrate the state and costate equa-
tions is the same as the one used to solve the direction-finding subproblem

(DFS).

¢ During simulations of the optimization algorithm. it was found that solving
a constrained optimal control problem with the end-point condition (3.14(b))
would require a considerable increase in the number of iterations to obtain
optimal solutions. Therefore, at the expense of slight constraint violation and

reduced accuracy. the end-point condition (3.14) was replaced by
(2(ty) —2s)" (2(t) —zg) < ¢ (4.)

where ( is a small positive number.

4.2 Time-optimal planar motion

To illustrate the crane optimization formulated in Section 3.3. a simple case. for
which an analytical (exact) solution exists [2] [57], is studied in this section. The
analytical solution will be used to verify computation of the optimal trajectory. The
author believes that this special case can provide a clear and quick understanding

of some of the advantages of an optimal trajectory over a non-optimal trajectory.

For the crane represented by the state equations (2.18), suppose that a load

hanging from the trolley at a constant length (7o) is initially at a motionless position,
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ie.

2o = (Ro,v0.70,0,0,0,0,0,0,0)7 att=0 (4.2)

for 0<t<ty. (4.3)

The task is to move the trolley along the boom toward a target point z,(t;) = Ry

where the system comes to rest again as quickly as possible. that is
e; = (Rf,10.70,0.0,0.0,0.0.0)T at t=t,. (4.4)
The final time is to be minimized. expressed in integral form as
¢y
t! = dr . (45)
0
The end-point condition (4.4) is required for a motionless unloading configuration

at the target point.

No slewing motion is allowed. so that
for 0<t<ty. (4.6)

The load therefore acts as a simple pendulum while the trolley is traveling along the
boom. This minimum-time optimization is a special case of the crane optimization

described in Section 3.3, with b=0and a = 1.

Using (4.3) and (4.6), the state equations (2.18) are reduced to

z,(t) = ze(t)
z5(t) = z10(t)
zg(t) = uy(t)
z10(t) = — (9 z5(t) + ua(t)) /7o

for 0<t<¢y (4.7)
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where g is the gravity acceleration. With the help of four costate variables p;, ps.

ps and pyq, the corresponding costate equations are

pi(t) =0
ps(t) = g puo(t)/ro for 0<t<t,. (4.8)
ps(t) = —pi(t)

Pio(t) = —ps(t)
The following limits on trolley speed and control (acceleration) are assumed:

Rmaz (49&)
Rraz (4.9b)

Rpin < z4(t)
Roin < wy(t)

IN

IN

with
Rmm_. = —Rpin=15 m/s . Rﬂmz = —Rin = 1.5m/s*.

These numbers were chosen to be identical to the time-optimal trolley movement
problem studied in [2] [57]. for which the analytical (exact) solution will be used

for comparison in the following section.

4.2.1 Analytical solution

Because of the simple structure of the above minimum time optimization. it is
possible to find its analytical (continuous) solution. State equations (4.7) and
costate equations (4.8) along with the boundary conditions (4.2) and (4.4) form a
two-point boundary-value problem subject to the constraints (4.9) and the following

transversality condition

u1(ty) (Ps(t!) - ;;Plo(tf)) =1.
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The detailed derivation of the two-point boundary-value problem and its exact
solution for two different cases, unconstrained trolley speed and constrained trolley

speed, are given in [2].
For the constrained motion with
o =39.24m, Ry =10m, Ry =40m, (4.10)

the minimum elapsed time is found to be equal to ¢; = 23.50s. Figure 4.2 shows
the optimal trajectories of the trolley and its speed and control variations. The

load swing angle during the motion is also shown in the same figure.
From Figure 4.2. the following observations can be made.

o Either the control variable or the speed variable is saturated during the mo-

tion, providing fast trolley movement.

® The load swing angle during the motion is bounded within +4.3°. This cor-
responds to a maximum of 3m load oscillation. which is reasonable for the

size of crane considered.

o At the target position. the trolley stops with no load swing. satisfying the

end-point condition (4.4).

o The optimal solution is symmetric about ¢t = ¢;/2 (the optimal control and
speed are symmetric while the load swing is skew-symmetric). Intuitively,

this makes sense where the states of the system are the same at its two ends.

4.2.2 Numerical solution

In the previous section, the exact analytical solution of the minimum time optimiza-

tion was given. In this section, the optimization algorithm developed in Chapter 3 is
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Figure 4.2: Minimum-time (analytical) solution for the planar motion
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applied to solve the same time-optimal problem. Its numerical solution is expected

to be an approximation of the analytical solution.

In order to use the optimization algorithm of Section 3.4.7, the following steps

were taken.

According to Section 3.4.7, the new state variable z1:(t) = ty is defined to
convert the free end-time optimal trolley motion into a fixed end-time optimal

control problem. This uew state satisfies
i’u(t) =0 with T[ S 211(0) S Tg . (411)

Because the minimum travel time (t;) is greater than (R; — Rg)/Rmaz = 20s. T}

is set to 20. Also. T, is arbitrarily chosen large enough (T, = 50).

As suggested in Section 3.4.8. another extra state variable is needed to include

the path constraint (4.9a) into the optimization process. The new state Z, satisfies
£12(t) = max{0.z6(t) — Rmac}® + max{0. —z4(t) + Rmin}? .  (4.12)
and the end-point condition is

Zlg(tf) = 0. (413)

The cost functional (4.5) can now be converted into

1
tr= [ euy,

which has a fixed time interval. Similar to (3.82), the state equations (4.7), (4.11)
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and (4.12) are scaled as

2;31(t) = Z1,(t) Ze(t)
.1;:5(t) = Z11(t) Z10(t)
Te(t) = Z11(t) @y (2) for 0<t<1
T1o(t) = —Z11(t) (9 £5(t) + 41 (t))/mo
(t

.'ilg(t = i’u(t) (ma.x{O.:i:e(t) - ].5}2 -+ max{O. —.'iie(t) - 15}2)
with 2(t) = 2(tt) and @,(t) = ui(tst).

Similar to (4.1), the terminal state equality constraints (4.4) and (4.13) are

approximated by
(£1(1) — 40)* + £2(1) + 23(1) + 23,(1) + #3,(1) < 0.005

where the original state variables z; are replaced by the new scaled state variables
&;.

Using 100 equal time subintervals. the optimization algorithm is applied to
calculate the approximate time-optimal solution of the planar motion. The results

(after reverse scaling) are given in Figure 4.3.

The computed travel time is 23.7s which is slightly bigger than 23.5s. the
minimum travel time obtained from the exact solution. Although the numerical
solution resembles the analytical solution, there are a few discrepancies, especially
when the speed variable is saturated. Figures 4.3(a),(b) show that the control
variable oscillates about zero whenever the trolley travels at its maximum speed
(1.5m/s). This jittery phenomenon may be reduced by a nonuniform redistribution

of the time subintervals.

Unlike the optimal control in Figure 4.2(a), the control sequence in Figure 4.3(a)



CHAPTER 4. CRANE OPTIMAL TRAJECTORIES 79

(a) Control variable u1
2 r i Ll T T . L4

A 1 1. J

10 15 20 t, 25
Time (s) t
(b) Troliey speed x6
2 T LS T T ¥ B L]
1.5
(7] 1 s
€
0.5
0
_0'5 i b "y L L L
0] 5 10 15 20 t 25
Time (s)
(c) Trolley trajectory x1
40f :
351
30r
Easr
20
151
10
0 5 10 15 20 ty 25
Time (s)
(d) Load swing angle x5
5 T T I T T N 11
Q
14
on
[+%]
=)
_5 I 1 L ) 1 - 3
0 5 10 15 20 ty 25
Time (s)

Figure 4.3: Time-optimal (numerical) solution for the planar motion



CHAPTER 4. CRANE OPTIMAL TRAJECTORIES 80

is not quite symmetric. This is perhaps due to the parameterization scheme in the

optimization algorithm.

Despite these differences, the optimal trajectory obtained by applying the op-
timization algorithm closely follows the exact optimal trajectory. Nevertheless, it
is expected that the numerical results will improve as the number of discretization
levels increases. This would, however, come at the expense of an increase in the

optimization process time.

Finally, it is important to note that except in special cases. like the one studied
here. an exact (analytical) optimal solution may not be always available. Therefore,

numerical methods, such as the one presented in this research. are the only resort.

4.3 Optimal planar motion

Exact and approximate time-optimal planar motions were given in the previous
section. It is obvious by definition that the time-optimal transport. regardless of
its 6 m load swing, is faster than any other transports. Working with a real tower
crane, however, a load swing of this magnitude appeared to be very difficult to
control. A crane operator always keeps the load swing very small during motion to

avoid undesired swings at the destination.

To reduce the load swing of the time-optimal solution, a function of the load

swing similar to (3.2) is added to the cost functional (4.5) as

/;' [1 + irz (=2(t) + zfo(t))] dt

where 7 is the hoist cable length. The constant factor 1/4 is chosen by trial and

error to reduce the maximum load swing to less than 2m (or about 3°), typical
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in practice. For the system of (4.7), an optimal load displacement between the
two given positions (4.2) and (4.4) is then required to minimize the above cost

functional subject to the constraints (4.9).

Except the cost functional, the formulation of the time-optimal problem given
in Section 4.2.2 still holds here. Similarly, 100 equal time subintervals were used to
compute the optimal solution of the desired displacement. The results are shown

in Figure 4.4.

From Figure 4.4(d), the load swing is bounded within +2.3° or +1.6 m, which
is smaller than the maximum load swing of the time-optimal motion. However. the
computed travel time is 31.4s, almost 35% more than the minimum travel time of
the time-optimal solution. This was anticipated as the new cost function weighs on

the load swing as well as the travel time.

From the practical design point of view, the optimal motion of Figure 4.4 is to be
preferred to the time-optimal motion. As shown in Figures 4.2(a.b). the speed and
control variables of the time-optimal motion are pushed towards their limits with
fast transitions throughout the motion. However. the speed and control variables
of the optimal motion in Figures 4.6(a,b) appear to be much smoother, as a result
of adding a function of load swing into the cost function. It can be easily verified
from the dynamical equations (4.7) that the control input u,(t) is proportional to
the load swing and the speed of trolley [2] [57].

4.4 Non-optimal planar motion

It is obvious by definition that the optimal solution offers faster load displacement

than any other non-optimal load transfer with the same load swing, including those
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Figure 4.4: Optimal planar motion
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given by a crane operator. However, it is not clear if the time saving is significant for
small load swings. Therefore, the performance of the optimal motion is compared
with the performance of a non-optimal motion typical of a manually controlled

tower crane.

In this section a typical load transfer of a conventional tower crane for the
planar motion described in Section 4.2 is simulated. This result is obtained after
some informal communication with an experienced crane operator and several hours
of examining crane operations in a construction site [59]. But first. the following
hypothetical case is studied to show that excessive load swing at the end of desired

displacement is unavoidable if the crane operator moves the trolley very fast.

Suppose that the trolley travels as quickly as possible towards its final position at
R;. Because of speed and acceleration limits. it takes at least 21s for the trolley to
complete this task. The trolley trajectory as well as its speed and control variations
are shown in Figure 4.5. Note that. because no friction has been considered in our
simplified crane model, the load swing in Figure 4.5(d) does not decay after the

trolley movement is completed.

While the trolley rests at the target point, the load swing continues with a
magnitude of more than 8° (see Figure 4.5(d)). With a 40m long hoist cable.
the load swings as much as 11m (peak-to-peak). which is clearly unacceptable in

practice.

To have a safe unloading condition, the load swing has to be considerably re-
duced before reaching the target position. Practically speaking, this ultimately
requires gradual speed changes both at the beginning and at the end of the trolley
motion. This is illustrated in Figure 4.6 which is representative of a manually con-

trolled tower crane. The trolley speeds up in three steps within the first 10 seconds
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of the motion (Figure 4.6(b)). The trolley then moves at a constant high speed for

about 13 seconds before it gradually slows down close to the target position.

As shown in Figure 4.6(d), the load swing is limited to 2.5° or 1.7m during
the motion, but it will be as small as 0.5° or 40cm at the end of motion which is
fairly reasonable for a safe unloading condition. This is compared with a similar
load swing of the optimal trajectory during the motion, but a motionless target

condition for the load (Figure 4.4(d)).

The final transport time is measured at about 42s when the trolley rests at
the target point. This is 33% more than the final time of the optimal motion.
The optimal solution may even be further shortened if, similar to the non-optimal

motion, the exact zero load swing requirement (4.4) is relaxed.

It is always possible to shorten the optimal solution by allowing larger load
swings. While a human operator loses control of load swing if it is not very small.
an automated tower crane equipped with robust control system may well handle
larger load swings within the crane safety requirements. The minimum transport
time of the given planar motion is 23.5s belonging to the time-optimal solution. If
maximum load swing of 5° is allowed. the time-optimal trajectory can offer signifi-

cant time saving.

By comparing Figures 4.4(d) and 4.6(d), it is clear that the optimal load tra-
Jectory is much smoother than the non-optimal load trajectory. Working with a
conventional tower crane, the crane operator carefully controls the trolley move-

ments to avoid undesirable load swings.
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Figure 4.6: Typical planar motion of a conventional tower crane
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4.5 A three dimensional motion

In the previous sections, a simple case of the optimal crane motion was studied. It
was shown that the optimal trajectory could provide fast and smooth load transfer
with small swing during the motion and zero swing at the end. In this section, a
complex and more realistic case that involves all of the crane rigid-body motions is
considered. These motions are the trolley travel, the boom slew and the load lift.

Unlike the planar motion, the load in this case travels in a three dimensional space.

For the crane described by (2.18), consider a load hanging from the trolley at

the following initial position:
zo = (10.0,30,0,0.0.0,0.0.0)7 at¢t=0. (4.14)

This is a motionless position because the load swing angles and all of the speed
components in (4.14) are set to zero. The load is subject to transfer from the above

initial position to the stationary target position

z; = (40,1,20,0,0.0.0,0,0,0)7 att=t,. (4.15)

The speed and control limits on the rigid-body motions are considered to be

4

|ze(t)] < 1.5m/s
q |z7(t)] < 0.15rad/s for 0 <t <ty (4.16)
& |zs(t)] < 1.5m/s
[ (@) < 15m/s?
q Ju2(t)] < 0.15rad/s®? for 0<t<ty. (4.17)
‘ lus(t)] < 1.5m/s?
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In what follows. first a non-optimal solution to the above displacement, represen-
tative of a conventional tower crane, is presented. This is followed by computation
of an optimal solution of the desired displacement. Then. the performance of the
optimal motion is measured as compared with the manually controlled motion. It
will be shown that. with smaller swing, the optimal load trajectory is much faster
and smoother. This well illustrates why study of optimal crane motions is worth

consideration.

4.5.1 Non-optimal Solution

The load transfer just defined is a typical task of a tower crane working in a con-

struction site. It requires

e 30m of trolley travel,
e lrad (=~ 57°) of boom slew. and

e 10m of load Lft.

With a conventional tower crane, which is manually operated, the above task
may be done in segments to have a safe and more reliable load transfer [59]. By

doing so, the crane operator has better control on the load swings.

Among many different possibilities, consider the following sequence of crane

motions to complete the prescribed three dimensional task.

First the boom rotates 1rad (57°) while the load is being raised 10 m, from ry =
30m to ry = 20 m (Figures 4.9(a,b)). Their speeds gradually increase and decrease
in several steps to avoid large load swings. Once these motions are completed, both

trolley and boom are locked for the rest of operation.
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Next, the trolley travels 30 m forward, from Ry = 10m to Ry = 40m (Fig-
ure 4.9(c)). The trolley accelerates in the first few seconds of its motion. It
then travels at a constant rate before it gradually stops at the target point (Fig-
ure 4.8(c)). The speed variation of the trolley is similar to the basic motion given

in Figure 4.5(b).

While these three motions can be performed in different orders. there are two
main reasons for the above choice. One is to bring the load close to the crane at
the beginning of load transfer. A close load is more easily controlled by the crane
operator. Secondly. slewing the boom while the load is close to the mast is to be
preferred. to minimize load swing and energy. Therefore the boom is rotated before

moving the trolley 30 m away outward.

From Figure 4.10. the maximum load swing during the load transfer is 3° or
1.2m. Once the crane motions are completed (after ¢ = 54s). the load swings as
much as £2° or =50 cm which is small enough for a safe unloading condition. Note
that the load swings in Figure 4.10 do not decay over time. since no friction is

considered in the simplified model of crane.

Finally, Figure 4.11 shows the projection of the load sway on the z — y plane
of the moving frame in Figure 2.1. It shows the horizontal load movement relative
to the trolley. The trajectory leaves the origin as the boom starts slewing. It ends
up in a periodic motion as the load transfer is completed. The maximum load
distance from the origin is 1.3 m. The periodic solution is a result of our frictionless
model. In reality, however, this trajectory moves toward the origin as the load

swings gradually die out.
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(a) Control variable u3
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Figure 4.7: Control variations of the non-optimal 3D motion
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Figure 4.9: Rigid-body positions of the non-optimal 3D motion
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(a) Swing angle x4
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Figure 4.10: Load swings of the non-optimal 3D motion
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4.5.2 Optimal Solution

In the previous section a manually controlled (non-optimal) load displacement for
the three dimensional task was given. In this section, the optimization algorithm
of Chapter 3 is employed to find an optimal load transfer that minimizes a cost
function of the form (3.4). The result will then be compared with the non-optimal

motion of Section 4.5.1.

An optimal load displacement between the two given positions (4.14) and (4.15)

is considered to minimize the cost functional
¢ 2 2 2 2 2

/0 [1+23() (23(8) + 23(8) + 23(2) + 23y(t)) ] (4.18)
subject to the constraints (4.16) and (4.17). The cost functional (4.18) is a special
case of the general form (3.4) with @ = b = 1. The relative values of a and b were
chosen by try and error such that the maximum load swing of the resulting optimal
solution would not exceed that of the non-optimal trajectory. One would expect
a faster load transfer by increasing a. In contrast, increasing b would result in a
slower motion with more damped load swings.

To convert the above optimization into a fixed end-time optimization, let the

new state z,; = t; satisfy
.’i.'n(t) =0 with T1 < .’1511(0) < Tz . (4.19)

Because the final time (t;) must be at least 21s, the minimum required time to
transfer the trolley, the parameter T; is set to 21. Also, T» = 100 is arbitrarily

chosen large enough.

Another extra state, z,,, is needed to include the path constraints (4.16) into

the optimization process. The new state satisfies

212(t) = max{0,ze(t) — 1.5} + max{0, —zq(t) — 1.5} +
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max{0, z7(t) — 0.15}* + max{0, —z,(¢) — 0.15}% +
max{0, zs(t) — 1.5}* + max{0, —zg(t) — 1.5}*, (4.20)

and the end-point conditions
.’Bl-_)(t!) = 0. (421)

To form a fixed end-time optimization, the state equations (2.18) with (4.19)
and (4.20) are scaled as

nf(z.u)

fiz = @u (max{0. Ze(t) — 1.5}* + max{0, —Ze(t) — 1.5} +

max{0. £7(t) — 0.15}* + max{0. —&(t) — 0.15}* +

max{0. £(t) — 1.5}* + max{0. —is(t) — 1.5}?)
with @(t) = z(tst), w(t) = u(tst), and f defined in (2.18).

The minimization (4.18) is now converted into the minimization
1
[ aue) [1+330) (830) + 83) + 83 + ()] de (4.22)

over the fixed time interval [0, 1].

In calculating the optimal solution. the terminal state equality constraints (4.15)
and (4.21) are approximated by

(®1:10(1) — '-"f)T (21:10(1) — =4) + 23,(1) < 0.01

where 2y is given in (4.15), and the original state @ is replaced by the new scaled

state 2.
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Once the three dimensional optimization is formulated, the optimization algo-
rithm of Chapter 3 is employed to calculate the approximate optimal state and
control variables. The results, using 100 equal time subintervals, are given in Fig-

ures 4.12 to 4.16.

Figures 4.12, 4.13 and 4.14 show the rigid-body controls, speeds and positions
respectively. Figure 4.15 shows the swing angles of the optimal motion. Finally,
Figure 4.16 displays the horizontal load trajectory relative to the trolley during the

load displacement. From these Figures, the following observations are provided.

o The computed load transfer time is 27s which is half of 54 s suggested by the
manually controlled motion. The time saving is clearly a big advantage for

the optimal load displacement.

o As shown in Figure 4.15. the optimal solution can offer exact zero load swing
at the end of transfer process. This is, however, almost impossible in a man-
ually controlled tower crane. Precise load handling is another advantage of

the optimal load displacement.

¢ Comparing Figures 4.15 and 4.16. the optimal load motion is much smoother

than the non-optimal load motion.

o As shown in Figure 4.14(c), the hoist cable is initially shortened to less than
7m before it returns to 20m at the end of motion. This helps to reduce the
horizontal load distance (relative to the trolley) during the transfer process.
Note that the integrand function in (4.18) is quadratic in the hoist cable
length.

o The computed results may not be “globally” optimum. A different set of
initial values in the optimization algorithm may result in a different “locally”
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Figure 4.12: Control variations of the optimal 3D motion
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Figure 4.13: Rigid-body speeds of the optimal 3D motion
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Figure 4.15: Load swings of the optimal 3D motion



CHAPTER 4. CRANE OPTIMAL TRAJECTORIES 102

Load swing

¥ 1 ¥ i ¥ T T ¥ ¥ T

0.6

0.4+

0.2

|
o
[

T

Figure 4.16: Horizontal load displacement relative to the trolley during the optimal

3D motion



CHAPTER 4. CRANE OPTIMAL TRAJECTORIES 103

optimal solution. The computed optimal solution, nevertheless, reasonably

meets the optimization criteria defined in Section 3.1.

4.6 Summary

Two different cases of crane motion were studied in this Chapter. First a minimum-
time load transfer was considered. The load was subject to 30m displacement
between two given motionless positions. The case was made simple by keeping the
hoist cable constant with no slewing motion. The numerical solution obtained by
applying the optimization algorithm of Chapter 3 closely approximates an available
analytical solution. Then. a fast optimal trajectory with small load swing for the
same crane motion was computed. The travel time was considerably reduced as
compared with a non-optimal transport. representative of a manually controlled
tower crane. In addition, the optimal load trajectory appeared to be much smoother

than the non-optimal load trajectory.

The most general case of crane motions, i.e. simultaneous trolley travel, boom
slew and load hoist was studied next. Analytical solution was unavailable, but the
optimization algorithm was used to compute a solution that minimizes a functional
of load swing and travel time. The result was compared with a typical load trans-
port of a conventional tower crane. Similar to the basic motion, the simulation
results of the optimal solution offered significant time saving with much smoother

load trajectory.



Chapter 5

Conclusions

The research in this thesis investigated the application of optimal trajectories for
tower cranes. The main goal is to improve the performance of the existing manually
controlled tower cranes. This work started with the development of a simplified
dynamical model for tower crane motions. Assuming direct control on the speeds
of crane motors. a set of five second order nonlinear differential equations was
derived. Using the motor accelerations as inputs, these equations were converted
into a state-space form with 10 states and 3 controls. Considering normal operation,

the state-space model was then linearized in load swing angles.

A cost functional was defined to ensure fast load handling with small load swing
during a desired load displacement. The crane optimization required minimization
of the given cost functional subject to a set of certain operational and safety con-
straints. Once the crane optimization was formulated as a special case of the

Lagrange optimization. the necessary optimality conditions were derived.

Motivated by the Han-Powell method in finite optimization, an upper bound

approximation to the second order method was then proposed to solve a continuous-

104
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time Lagrange optimization with fixed end time and inequality constraints on con-
trols and terminal states. This was further extended to allow free end time and
path (trajectory) conmstraints. The resulting iterative algorithm solves a direction
finding subproblem (DFS) at each iteration to make progress towards an optimal
solution. This was done by coverting DFS into a standard linear quadratic pro-
gramming using parameterized controls and states. It was shown that the solution

of DF'S is descent under certain conditions.

The developed optimization algorithm was applied to compute optimal load
transports for two different cases. For the basic motion, the numerical optimal
solution closely matched the available analytical solution. For the general motion.
however. no analytical solution was available. Both optimal motions were also
compared with non-optimal load displacements representatives of a manually con-
trolled tower crane. The comparisons illustrated significant improvement. in terms

of transport time and load swing. in the performance of optimal motions.

5.1 Future research

This research has opened more doors than it has closed. Recommendations for

some future work are outlined below.

Modeling

o The existing crane model can be improved by removing the assumptions made
in page 23 especially . Friction, as an important part of every highly-geared
mechanisms, must be considered in an enhanced model of the actual crane.

In addition, the hoist cable may flex under certain conditions, especially when
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it is long and light loads are moved.

e Wind, as an important source of external interference in the crane opera-
tions, should be considered in an improved crane model. This may lead to a

stochastic model of the crane rather than the existing deterministic model.

e Having a crane prototype is a real advantage. The simulation results can be

verified on a small-scaled prototype before implementing on an actual crane.

Control

e The optimization algorithm used in this research may converge to a poor local
optimum solution because of an inadequate initial value. A more efficient

algorithm that is globally convergent is then required.

o The robustness analysis of the open-loop solutions obtained by the optimiza-
tion algorithm remains to be done. In particular, changes in the optimal

solutions due to parameter variations in the cost function can be studied.

e Crane automation cannot be accomplished without a closed-loop control de-
sign. Once the open-loop optimal solution of a desired load displacement is
computed, a feedback controller must be employed to preserve near-optimal
performance. Such a controller must be robust to disturbances and model

imperfection.



Appendix A

Maple code for the load swing

equations

The following shows how Maple was used to derive equations (2.12).

107
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; > with(linalg);

| Warning, new definition for norm

|

warning, new definition for trace

[ BlockDiagonal, GramSchmidt, JordanBlock, LUdecomp, QRdecomp, Wronskian, addcol,
addrow, adj, adjoint, angle, augment, backsub, band, basis, bezout, blockmatrix, charmat,
charpoly, cholesky, col, coldim, colspace, colspan, companion, concat, cond, copyinto, crossprod,
curl, definite, delcols, delrows, det, diag, diverge, dotprod, eigenvals, eigenvalues, eigenvectors,
eigenvects, entermatrix, equal, exponential, extend, ffgausselim, fibonacci. forwardsub, frobenius,
gausselim, gaussjord, geneqns, genmatrix, grad, hadamard, hermite, hessian, hilbert, htranspose,
ihermite, indexfunc, innerprod, intbasis, inverse, ismith, issimilar, iszero, jacobian, jordan, kernel,
laplacian, leastsqrs, linsolve, matadd, matrix, minor, minpoly, mulcol, mulrow, multiply, norm,
normalize, nullspace, orthog, permanent, pivot, potential, randmatrix, randvector, rank, ratform,
row, rowdim, rowspace, rowspan, rref, scalarmul, singularvals, smith, stackmatrix, submatrix,
subvector, sumbasis, swapcol, swaprow, sylvester, toeplitz, trace, transpose, vandermonde,

vecpotent, vectdim, vector, wronskian |

. > d:=vector([r(t)*cos(theta(t))*sin(phi(t)),r(t)*sin(theta(t)),-r(t)

*cos(theta(t)) *cos(phi(t))]};

d:=[r(r)cos(8(r))sin(0(r)), r(r) sin(0(r)), =r(r) cos(8(r)) cos(d(1))]
> omega:=vector([(0,0,diff(psi(t),t)]);

ooz
W= 0, vat‘U(f)

7> Vo:=vector([diff(R(t).t),R(t)*diff(psi(t),t),0]);

: L] )|

© > V:=evalm(Vo+vector ([diff(d(1l],t),diff(d(2],t),diff(d([3}],t)])+cross

prod(omega,d)) ;
(d

' d d
? V:=[(-R(t)]+(—r(l))cos(6(r)) sin(p(r)) —r(r) sin(0(r)) “9(!)Jsin(¢(1))

dt or ot

d 0 d
+r(r)cos(8(r)) cos(o(r)) —¢(1)J-(—w(r) r(¢) sin(0(z)), R(e) | — w(r)
ot ot or

9 d d
+[gr(1)] sin(8(r)) +r(t) cos(0(t)) (59(1)J +[5 \y(t)] r(t) cos(0(r)) sin(d(r)),

d d
{g r(t)]cos(e(t)) cos(d(t)) +r(e) sin(8(¢)) (5;9(1)) cos(o(t))

d
+r(¢) cos(0(r)) sin(¢(1)) (g@(ﬂ)]
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[ > kinetic:=(1/2)* (m*innerprod(V,V)+M*innerprod(Vo,Vo)+Ib*diff (psi(t)
EY"2);

i
i
i
|
!

l i ki a 2 ) bl bl 9 a 2
kinetic :=;m(r(t)' sin(e(t))’[a—,é)(z))‘ sin(®(2))" +r(2)” cos(6(2))” cos(¢(t))’(g ¢(1))

0 d 0 d
+2| —R() (-r(t) cos(8(¢)) sin(d(¢)) =2 —R(r) "w(t)Jr(I)Sin(G(l))
ot d ot or

+°R(z)( w(r))[-r(r)Jsm(B(t)H( w(:)} r(r)* cos(6(r))* sin(4(r))*
2 p) 2
+r(t) sin(0(r))" ( 6(:)) cos(o(r))'+r(t) cos(B(:))’sm(Q)(t)) ( q;(t))

a a : h a : b hd
+R(z) w(r)\ —r(r) | sin(8(¢)) +| —r(r) | cos(O(¢)) sin(o(r))”
a ' ar

a : 3 by by b a : a : ) h]
+(5;\y(1)J r(r)'sin(e(t))'+r(r)‘cos(6(1))'($e(t)J +[a—r(r)) cos(8(r))" cos(o(r))”
(a ]3 , e a
+ —R() | +2r(e) sin(0(r))” t (1) |sin(0(s))| —w(r)
ot ot or
8 d
+2R(0)| — a w(r) (r(r)cos(8(r)) 9(:)

d . 9
-Z[g r(r))cos(e(t)) sin(Q(¢))" r(r) sin(G(!))(a‘re(l)J

W(r)}sin(e(r))
ot

d ad

21(¢)* cos(8(1)) cos(9(r)) o(t) =
3 ) 'a ) d d

=21 —R(r) {r(e)sin(B(r))| = 6Cr) |sin(d(e)) +2| —R(2) {r(r) cos(O(r)) cos(d(r))| —o(t)
ot ot or ot

d 2 d 9
+2 R(z)(-w(r)) 1(2) cos(8(z)) sin(d(r)) + 2[5 r(r)]sin(e(t)) r(t) cos(e(r)){a e(:)]

ar

) .9 d
+2r(t) cos(G(x))'[ge(t))(— \V(t))sin(w(l))

ot
? 2 9
- 2(5 r(r)} cos(8(r)) cos(o(t))" r(r) sin(8(r)) (ge(f)n

Lul[2r R(ry'| 2 Lio[Zyin]
+I M| 5RO +(:) w(:) +3 1| 2w

> potential:=-m*g*r(t) *cos (theta(t))*cos(phi(t));
potential :=-m g r(t) cos(8(t)) cos(¢(z))

Yoo
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' > L:=simplify(kinetic-potential);
Lo YCIRPR N NCIUR 1 (3}
P Li=—m ROy —y(r) +-MR(:)' —y(?) +-mr(t)' 6(:) += m —wy(r) | r(2)y
' 2 dar at 2 or

4

1 , s ] 0
+=m r(z)'cos(e(t)) ¢(1) +m| —R(1) |} —r(t) |cos(B(r)) sin(d(r))
2 or ot

d P 3 2
+m(a—t R(:))r(t) cos(0(r)) cos(¢(t))[g ¢(t)]+m R(t)(é;\y(t)) r(t) cos(8(r))sin(o(¢r))

d d d d
=m| —R(t) || —w(e) {r(1)sin(0(r)) + mR(z)| —w(1) ir(r) cos(O(r)) 6(:)

or or or

, d d

—mr(l)"cos(e(r))cos(¢(1))[Eo(l)](;w(t)]sin(e(l))

) ) d \( 9
=m| =R(t) |r(t)sin(B(z))| —06(r) |sin(0(r)) + m R(z)| — w(z) || = r(¢) |sin(6(r))

[a ) [ar J (ar J(az J

1 (d PLo (o : . ) )
: +=m|—R) L ==m| —wy(r) | r(r) cos(6(z)) cos(d(r))
! 2 (3 J 2 (af )

’(ae ‘ ad llb d T lM aR 2
+ T 3, 5915, 3"
mr(t) Lar () |sin(o(r)) aI\Il(t) *3 a’\l!(t) SM 5 (1)

1 (9 2
+mgr(r)cos(0(r)) cos(d()) +;m('a-’r(t)]

RS Ll:=simplify(simplify(diff (subs(x=diff(theta(t),t),diff(subs(diff(
theta(t),t)=x,L),x}),t))-simplify(subs({x=diff (theta(t),t),y=theta
(c)},diff (subs(theta(t)=y,subs(diff(theta(t),t)=x,L)),y))});

I NS d d 9*
CLI=mr(e)T) —6(r) +2mr(!)(—G(I)J[—r(l))-{—mr(l)'sm(tb(t)) w(t)
‘ o dar d
) ) (&
+2m| —Rt) I —w(1) | () cos(B(r)) + m R(t)| —5w(r) |r(t) cos(8(t))
dr ot ar
o _ , ) )
-m ;R(l) r(£) sin(0(¢)) sin(o(2)) + 2 m (1) sin(o(¢)) \y(:) r(t)
2

” d d 2
+mr(t)'cos(9(t))( ¢(1)] sin(8(t)) +m R(r)(at\y(r)) () sin(0(1)) sin(d(r))

) . d 9
+2mr(r) cos(8(zr)) cos(d(2))| —o(r) || —w(r)
ot ot

d o .
-m[g; w(r)] t(£)" cos(0(r)) cos(9(2))” sin(O(z)) +m g r(r) sin(6(2)) cos((?))
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i' > L2:=simplify(simplify(diff (subs (x=diff (phi(t),t) ,diff (subs(diff (ph
i(t),t)=x,L),x)),t))-simplify(subs({x=diff (phi(t),t) Y=phi(t})},dif

!

£ (subs (phi (t) =y, subs (diff(phi(t),t)=x,L)),y))));:

d d
L2:=2mr(t)cos(9(r))[ ¢(1)}(—r(t))—7mr(t)'cos(e(t))( ¢(z))sm(6(t))( 6(1)]

hi

2 b} a
+mr(t) cos(8(r))” (—,
ar

\

a.’.
cb(t))ﬂn (8—’ R(I)Jr(t) cos(8(r)) cos(d(t))
2
d d )
=2me(r) cos(e(t))cos(o(r))(é-l \u(:)]sin(O(t))(ar(t)J

2 2 a a
—-2mr(r) cos(6(r))” cos(c»(:))(g w(r)][a—;e(t))

. 9° d 2
-mr(r) cos(8(z)) cos(q)(t))(g-; \u(t))sin(e(t)) -m R(r)(a—t w(r)] r(#) cos(6(t)) cos(o(r))
K

a ; ) i
-m(a w(r)) r(2)” cos(8(r))" cos(9(r)) sin(o(r)) + m g r(t) cos(8(r)) sin(0(z))

> simplify(solve({Ll,L2}, {(diff(ctheta(t),t,t),diff(phi(t),t,t)}));

0 d d d 2
1 {;¢(r)=(-2cos(6(t))( ¢(1)](—r(1)] (aIW(t)J r(¢) cos(8(r)) cos(®(r)) sin(o(f))
2

d d
+2r(r) Cos(e('))Cosw('))[a_zw))(a—xe('))-g sin(9(1))

9 ) 9
+2r(1) —o(r)]sin(e(t)) —08(t) =] —R(1) |cos(o(r))
or ot ar

bl

d d d
+ 2 cos(0(r)) —w(r)\sin(e(t))(—r(r)]-rr(t)cos(Q(r)) S y(t) |sin(8(r))
ar ) ar ar

dr

2 ?* d )
y(r) | cos((r)) {/(cos(O(r))r(t)), —50(1)=—| 2 —9(1)) -r(t)j
or ar or

(a
+R()| —

4

9° d d d
+r(1)sm(¢(t))[ w(t)]+"(—R(t))(a w(t)]cos(f)(t))i»R(t)[a (I)JCOS(G(r))

a

9° ) )
{-mﬂmMMmmmwmmm[wﬂbmJ

d 2 d
+r(t)cos(9(t))[5¢(r)) sm(e(r))+R(t)( w(t)) sin(6(¢)) sin(6(z))
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, d d
+2r(t) cos(8(r))” cos(o(r)) (5' ¢(:))(— w(r)J
t or

d 2 ,
-(EWO)) r(r) cos(8(z)) cos(9(r)) sin(B(z)) + g sin(e(t))cosw(t))]/r(t)}
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