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Abstract 

Lead screw drives are used in various motion delivery systems ranging from manufacturing to high 

precision medical devices. Lead screws come in many different shapes and sizes; they may be big 

enough to move a 140 tons theatre stage or small enough to be used in a 10ml liquid dispensing 

micro-pump. Disproportionate to the popularity of lead screws and their wide range of applications, 

very little attention has been paid to their dynamical behavior. Only a few works can be found in the 

literature that touch on the subject of lead screw dynamics and the instabilities caused by friction. The 

current work aims to fill this gap by presenting a comprehensive study of lead screw dynamics 

focusing on the friction-induced instability in such systems. 

In this thesis, a number of mathematical models are developed for lead screw drive systems. 

Starting from the basic kinematic model of lead screw and nut, dynamic models are developed with 

varying number of degrees of freedom to reflect different components of a real lead screw drive from 

the rotary driver (motor) to the translating payload. In these models, velocity-dependent friction 

between meshing lead screw and nut threads constitute the main source nonlinearity.  

A practical case study is presented where friction-induced vibration in a lead screw drive is the 

cause of excessive audible noise. Using a complete dynamical model of this drive, a two-stage system 

parameter identification and fine-tuning method is developed to estimate parameters of the velocity-

dependent coefficient of friction. In this approach the coupling stiffness and damping in the lead 

screw supports are also estimated. The numerical simulation results using the identified parameters 

show the applicability of the developed method in reproducing the actual systems behavior when 

compared with the measurements. The verified mathematical model is then used to study the role of 

various system parameters on the stability of the system and the amplitude of vibrations. These 

studies lead to possible design modifications that solve the system’s excessive noise problem. 

Friction can cause instability in a dynamical system through different mechanisms. In this work, 

the three mechanisms relevant to the lead screw systems are considered. These mechanisms are: 1. 

negative damping; 2. kinematic constraint, and; 3. mode coupling.  

The negative damping instability, which is caused by the negative gradient of friction with respect 

to sliding velocity, is studied thorough linear eigenvalue analysis of a 1-DOF lead screw drive model. 

The first order averaging method is applied to this model to gain deeper insight into the role of 

velocity-dependent coefficient of friction and to analyze the stability of possible periodic solutions. 

This analysis also is extended to a 2-DOF model. It is also shown that higher order averaging 



 iv 

methods can be used to predict the amplitude of vibrations with improved accuracy. 

Unlike the negative damping instability mechanism, kinematic constraint and mode coupling 

instability mechanisms can affect a system even when the coefficient of friction is constant. 

Parametric conditions for these instability mechanisms are found through linear eigenvalue analysis. 

It is shown that kinematic constraint and mode coupling instability mechanisms can only occur in 

self-locking lead screws. 

The experimental case study presented in this work demonstrates the need for active vibration 

control when eliminating vibration by design fails or when it is not feasible. Using the sliding mode 

control method, two speed regulators are developed for 1-DOF and 2-DOF lead screw drive system 

models where torque generated by the motor is the controlled input. In these robust controllers, no 

knowledge of the actual value of any of the system parameters is required and only the upper and 

lower bounds of parameters are assumed to be available. Simulation results show the applicability and 

performance of these controllers. 

The current work provides a detailed treatment of the dynamics of lead screw drives and the topic 

of friction-induced vibration in such systems. The reported findings regarding the three instability 

mechanisms and the friction parameters identification approach can improve the design process of 

lead screw drives. Furthermore, the developed robust vibration controllers can be used to extend the 

applicability of lead screws to cases where persistent vibrations caused by negative damping cannot 

be eliminated by design modifications due to constraints. 
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Chapter 1 

Introduction 

Lead screws are used in various motion delivery systems where power is transmitted by converting 

rotary to linear motion. Packaging industries, industrial automation, manufacturing, medical devices, 

and automotive applications are some of the areas where lead screws can be found. Lead screws come 

in many different shapes and sizes; they may be large enough to support and move a 140-ton theatre 

stage [1], lightweight enough to be considered for wearable robotic applications [2], or even small 

enough to derive micro-pumps used in medical applications for dispensing fluid volumes of less the 

1ml with great precision [3]. 

The sliding nature of contact in lead screws puts great importance on the role of friction on the 

performance of these systems. In addition to efficiency concerns, driving torque requirements, or 

wear, friction can be the cause of dynamic instabilities in the lead screw drives, resulting in self-

excited vibrations which deteriorates the performance of the system and may cause unacceptable 

levels of audible noise. 

In Section 1.1, an overview of the lead screw features and design aspects is presented. Application 

areas, benefits, and drawbacks of lead screws are discussed in this section. Two real-world examples, 

where the lead screw drive generates unacceptable levels of audible noise due to friction-induced 

vibrations, are presented in Section 1.2. The present research is motivated by these two examples. 

1.1 Lead Screws 

A very interesting historical account of the development of screws from Archimedes’ water snail to 

the works of Leonardo da Vinci and up to the twentieth century is given in [4]. In this reference, 

geometrical specifications of “translating screws” – as opposed to fastening screws – are presented. In 

applications where transmitting power (rather than positioning) is of primary importance, translating 

lead screws are also known as “power screws” [5,6]. When used in vertical applications, these 
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systems are sometimes called “screw jacks” [1]. 

Set forth by the general conditions under which lead screws are traditionally used, the mechanics of 

the lead screws is limited to the factors affecting their static or quasi-static performance, such as 

efficiency, driving torque requirements, and load capacity [4-6]. There are, however, numerous other 

important aspects involved in the successful design of a lead screw drive system. Some of these issues 

are summarized in Figure 1-1. It is important to mention that, to some degree, almost all of these 

issues influence the other aspects of the lead screw design.  

 

 

 

Figure 1-1: Lead screw design factors 
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Starting from the applications of the lead screws, there are two general areas: applications where 

transmission of power is of primary importance, and applications where accurate positioning of the 

translating part is the prime objective. The former is the focus of this research. In either application 

area, the conversion of rotary to linear motion can be achieved by either rotating the lead screw or 

rotating the nut. The two examples presented in the next section demonstrate each of these two 

configurations. 

There are a number of thread geometries available for lead screws that are designed to address 

various requirements such as ease of manufacturing, load carrying capacity, and the quality of fit [4]. 

The most popular of these geometries are the Acme and stub-Acme types1. See Figure 1-2 for the 

schematic view of a meshing stub-Acme lead screw and nut. 

 

 
Figure 1-2: Meshing “Stub Acme” lead screw and nut (cut view). Detail: radial and axial clearances 

 

Manufacturers offer a wide range of products in response to diverse applications where lead screws 

are utilized. For positioning stages, high precision ground lead screws with or without anti-backlash 

nuts are offered as an alternative to the more costly but much more efficient ballscrew driven stages 

[7,8]. There are various designs developed by the manufacturers for the anti-backlash nut. These nuts 

essentially have two halves connected with preloaded springs that move with respect to one another to 

compensate for backlash and wear [7,9-11,16]. The drawback of using these nuts is in the increased 

friction force, which lowers the efficiency and increases the required driving torque. 

In addition to their lower cost compared to ballscrews, there are a number of distinct features that 

make a lead screw drive the favorable choice in many applications. These features include [13-15]:  

• Quieter operation due to the absence of re-circulating balls used in ballscrews, 

                                                      
1 The features of this design are further discussed in Section 3.1 

Radial clearance 

Axial clearance – 
Backlash 

14.5
o
 



 

4 

• Smaller moving mass and smaller packaging, 

• Availability of high helix angles resulting in very fast leads, 

• Availability of very fine threads for high resolution applications, 

• Possibility of self-locking to prevent the drive from being backdrivable thus eliminating 

the need for a separate brake system, 

• Lower average particulate generation over the life of the system, 

• Elimination of the need for periodic lubrication with the use of self-lubricating polymer 

nuts, and 

• Possibility to work in washed-down environments. 

 

Design factors given in Figure 1-1 are discussed by the manufacturers as part of their public 

technical information or product selection guidelines (see for example [9-12,16,17]). There is, 

however, a major exception: friction-induced vibration. This important factor – the subject of this 

research – has been barely touched by the scientific community, as will be discussed in Chapter 2. 

1.2 The Audible Noise Problem 

This research was motivated by two real-world examples where lead screws are used to convert rotary 

motion into translation. In both of these examples, the system produces unacceptable levels of audible 

noise under normal operating conditions.  

The first example involves the horizontal motion drive of an automotive powered seat adjuster. The 

complete automotive powered seat adjuster is shown in Figure 1-3. The horizontal drive is 

constructed of two parallel lead screw slider systems. Torque is transmitted from a DC motor to the 

lead screws through two worm gearboxes. Two flexible couplings connect the gearboxes to the motor 

and to the two lead screws. The nuts are stationary and are connected to the seat frame. The lead 

screw sliders together with the motor and gearboxes move with the seat as lead screws advance in the 

nuts. In many cases, an extra force applied (by the passenger) in the direction of motion causes the 

system to generate audible noise, which is unacceptable to the car manufacturer. 

In laboratory tests, under certain load and travel speed conditions, the seat adjuster produced a 

significant audible noise with the dominant frequency of around 150Hz. A sample of these test results 

is shown in Figure 1-4. This system is studied in detail in Chapter 4. 
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Figure 1-3: A powered seat adjuster 

 

 
Figure 1-4: Time-frequency signature of the sound recorded from the powered seat adjuster 

 

The second example is a micro-pump for medical applications. The lead screw drive components 

are shown in Figure 1-5. A stepper motor rotates the nut, which is integrated into the rotor. The rotary 

motion is converted by the lead screw to translation, which drives the piston. By moving the piston 

back and fort, the pump aspirates and then dispenses predetermined volumes of fluid. Figure 1-6 

shows results of a test performed on the pump when the fluid lines were not connected. It is 

interesting to see that the pump generated noise with different frequency contents in aspirate and 

dispense phases. Similar to the case of the powered seat adjuster, preliminary observations suggest 
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that the source of vibration is the friction-induced vibration of the lead screw drive. Further 

experimental and theoretical study of this system, however, is not undertaken in this research. 

 

 
Figure 1-5: Components of the lead screw drive mechanism  

found in a type of variable volume pump 

 

 
Figure 1-6: Time-frequency signature of the sound recorded from the pump 

 

1.3 Thesis Overview 

This thesis consists of eight chapters and nine appendices. After the present introductory chapter, a 

review of the relevant previous work is presented, in Chapter 2. This review is divided into two parts. 

In the first part, Section 2.1, the general subject of friction-induced vibration in dynamical systems is 
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reviewed and the three major instability mechanisms relevant to the lead screw systems are studied. 

In the second part, Section 2.2, publications on the lead screw dynamics are reviewed.  

The mathematical models of lead screw systems used in this study are developed in Chapter 3. 

These models cover a wide range of configurations. In Chapter 4, an experimental case study is 

presented. In this study, a horizontal drive of an automotive powered seat adjuster is considered. A 

two-step system and friction parameters identification approach is developed and applied to the 

experimental data. The identified parameters are used in a mathematical model of the system to 

perform parameter studies through numerical simulations. 

The friction-induced instability caused by the negative slope in the friction-velocity curve is the 

subject of Chapter 5. In Section 5.1, eigenvalue analysis is performed on a one degree-of-freedom 

(DOF) lead screw model to establish conditions for the negative damping instability mechanism to 

occur. The method of averaging is used in Section 5.2 to further study the system’s behavior. In this 

analysis, a more complete picture of the system stability properties is obtained. 

The kinematic constraint and mode coupling instability mechanisms are studied in detail in Chapter 

6. In Section 6.1, the parametric conditions for instability due to kinematic constraint mechanism for 

a 1-DOF model are derived. Using the eigenvalue analysis of the linearized systems, stability 

conditions for the steady-sliding fixed point are derived for two different 2-DOF models in Section 

6.1 and 6.2. These sections cover both kinematic constraint and mode coupling instability 

mechanisms. Mode coupling instability in a 3-DOF system model is briefly discussed in Section 6.3.  

Chapter 7 discusses ways to actively attenuate vibration in lead screw drives caused by the negative 

damping instability mechanism. In Section 7.1, a robust sliding mode controller is developed for a 1-

DOF simplified system model that assumes all of the rotating parts (from driver, i.e. motor, to lead 

screw) are all rigidly connected. This assumption is relaxed in Section 7.2 and another sliding mode 

controller is developed to regulate lead screw angular velocity in the face of uncertainty in friction 

and other system parameters. In the proof of stability of this novel controller, the first order averaging 

method is used extensively. 

 Conclusions drawn in this thesis are summarized in Chapter 8. Also in that chapter, areas for 

future research are identified and presented. 

For the sake of the continuity of the main results, some additional materials and contributions are 

relegated to the appendices. In Appendix A, details of the test setups used in the study of the powered 

seat adjuster (discussed in this chapter and Chapter 4) are presented. A modified first order averaging 

theorem which is used in Chapters 5 and 7 is stated and proven in Appendix B. In Appendix C, steps 
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taken to evaluate a definite integral encountered in the first order averaged equations are presented. 

The existence and the stability of the steady-state solutions of the first order averaged equation of 1-

DOF lead screw drive (Chapter 5), are discussed in Appendix D.  

Two extensions of the first order averaging results of Chapter 5 are given in Appendices E and F. 

In Appendix E, general expressions for the second and third order averaging methods are presented. 

Also in this appendix, a numerical example is presented to demonstrate the improved accuracy of the 

higher order averaged equations compared to the first order averaged equation in the prediction of the 

amplitude of steady-state vibrations. In appendix F, the first order averaging method is applied to the 

equations of motion of a 2-DOF lead screw system to study the effects of the negative damping 

instability mechanism. 

The kinematic constraint and mode coupling instability mechanisms are explored further in 

Appendices G and H. In Appendix G, the conditions for the local stability of the steady-sliding fixed 

points of two different 2-DOF lead screw models are compared and important similarities and 

differences are pointed out. In Appendix H, several numerical simulation results of a 2-DOF lead 

screw model are presented and the effects of various system parameters on the nonlinear behavior of 

the system and the mode coupling instability mechanism are discussed. 

Finally, in Appendix I, theorems cited in the proof of stability of the second sliding mode controller 

developed in Chapter 7 (Section 7.4) are included for reference. 

1.4 Contributions 

The current research was motivated by real-world problems and was aimed to present a 

comprehensive study covering the field of friction-induced vibration in lead screw drives. The 

significance of this work is further emphasized by the noticeable lack of previous studies on the 

dynamic behavior of lead screw drives that adequately account for the friction-induced instability 

mechanisms. The major contributions of this work can be summarized as follows: 

• Mathematical models: The mathematical models developed in Chapter 3 present a unified 

framework for the study of lead screw dynamics taking into account rotation/translation 

and loading directions as well as important system elements. 

• Friction parameter identification: A novel two-step identification approach is developed 

that is capable of identifying friction as well as damping and stiffness parameters. The 

presented experimental results confirm the applicability of the developed method as well as 

the utility of the mathematical models in accurately predicting the vibratory behavior of the 
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lead screw drive systems. 

• Friction-induced instability mechanisms: Parametric conditions for the three types of 

friction-induced instability mechanisms (i.e. negative damping, mode coupling, and 

kinematic constraint) are established in a unified framework. 

• Comprehensive study of the negative damping friction-induced instability mechanism 

utilizing the averaging method: In addition to presenting a complete picture of the stability 

properties of the nonlinear system, the obtained results highlight the possibility of using the 

perturbation technique (specially, higher order averaging) as an accurate and efficient 

method to predict the steady-state amplitude of vibration in parameter studies. 

• Comprehensive treatment of the kinematic constraint instability mechanism in lead screw 

drives: The possibility of friction-induced instability due to kinematic constraint is studied 

in detail for 1-DOF and 2-DOF models. Exclusive to Multi-DOF models, a secondary 

kinematic constraint mechanism is identified and its role on the expansion of the unstable 

domain in the space of system parameters is explored.  

• Comprehensive treatment of the mode coupling instability mechanism in lead screw drives: 

The mode coupling instability, as one of the major mechanisms of friction-induced 

vibration in lead screw systems, is studied and parametric stability conditions are derived. 

• Active vibration control: Two robust sliding mode controllers that effectively regulate the 

lead screw drive velocity in the face of parameters uncertainty, are developed. 
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Chapter 2 

Literature Review 

In this chapter, the major previous works published on the friction-induced vibration of the dynamical 

systems including lead screws are reviewed. The friction-induced instability mechanisms are 

reviewed in Section 2.1. Literature on the effects of friction on lead screw systems are reviewed in 

Section 2.2. 

2.1 Friction-induced Vibration 

A historical review of structural and mechanical systems with friction is given by Feeny et al. [18]. 

Their paper starts from the first human experiences in fire-making and early inventions of the ancient 

cultures to the early works of Leonardo da Vinci, and expands to the modern-day scientific advances 

in friction utilization and prevention.  

An essential part of any study on the behavior of a dynamical system with friction is to 

appropriately account for the friction effect using a sufficiently accurate friction model. There are 

numerous works found in the literature on the various friction models for simulation and analysis of 

dynamical systems. In one of the first survey papers on friction modeling by Armstrong-Helouvry et 

al. [19], various friction models are studied. These models can be divided into the following two 

categories: 

• Models that are based on the micro-mechanical interaction between rough surfaces and aim 

to explain the friction force. 

• Models that incorporate various time or system dependent parameters to reproduce the 

effect of friction in a dynamical system. 

The latter category is the subject of numerous works as can be seen in review papers by Ibrahim 

[20], Awrejcewicz and Olejnik [21], and Berger [22]. As reported in these works, friction can be 

considered dependent on any of the following factors: relative sliding velocity, acceleration, friction 
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memory, pre-slip displacement, normal load, dwell time, temperature, etc.  

The friction models used in the dynamic modeling of systems can be further divided into static 

models and dynamic models. In the dynamic friction models such as the so-called LuGre model [23], 

the friction force is dependent on additional state variables that are governed by nonlinear differential 

equations stemming from the model for the average deflection of the contacting surfaces. At the price 

of increased complexity of the system dynamics, these models are capable of reproducing various 

features of friction such as velocity and acceleration dependence, pre-slip displacement, and 

hysteresis effect.  

Depending on the specific problem being investigated, appropriate friction model should be chosen 

to reflect the relevant features of the physical system. The simplest approximate friction model may 

be given by (see for example [19,22]) 

 ( ) ( )vNvFf sgnµ=  (2.1) 

where fF  is the friction force, v  is the relative sliding velocity, ( )vµ  is the velocity-dependent 

coefficient of friction, and N  is the normal force pressing the two sliding surfaces together. This 

model is extensively used in the study of friction-induced vibration.  

When some form of lubrication is present between the sliding bodies, the variations of friction with 

velocity is typically explained by the Stribeck curve [24]. As shown in Figure 2-1, four different 

regimes are identified in this model [25].  

 

 
Figure 2-1: Stribeck curve [25]. 

 

The first regime is the static friction where lubricant does not prevent the contact of the asperities 
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of the two surfaces and friction acts similar to the no lubricant situation. In the second regime, the 

sliding velocity is not enough to build a fluid film between the surfaces and lubrication has 

insignificant effect. In the third regime with the increase of velocity, lubricant enters the load-bearing 

region, which results in partial lubrication. In this regime, increasing the sliding velocity decreases 

friction. Finally in the fourth regime, the solid-to-solid contact is eliminated and the load is fully 

supported by the fluid. In this regime, the friction force is the result of the shear resistance in the fluid 

and increases linearly with velocity. 

Different models have been proposed to reproduce this type of velocity-dependent friction (see for 

example [26,27]). The important feature of these models is the existence of a region of negative slope 

in the friction-velocity curve, which may lead to self-excited vibrations. This type of instability is 

discussed in Section 2.1.1 below. 

Wherever sliding motion exists in machines and mechanisms, friction-induced vibration may 

occur, and when it does, it can have severe effects on the function of the system. Excessive noise, 

diminished accuracy, and reduced life are some of the adverse consequences of friction-induced 

vibration. To this end, lead screw systems are no exception, since the lead screw threads slide against 

meshing nut threads as the system operates. 

Numerous researchers have studied self-excited vibration phenomena in variety of frictional 

mechanisms [20-21,28]. Possibly the closest mechanism to a lead screw drive in terms of dynamics 

and friction-induced instabilities, is a disk brake. Fortunately, there are innumerable publications 

found in the literature that are dedicated to various aspects of disk brake noise and vibrations. Major 

experimental and theoretical works on the automotive disk brake squeal problem are reviewed in a 

paper by Kinkaid et al. [29]. Major self-excited vibration mechanisms in the systems with friction 

relevant to the lead screw drives can be categorized into three types [28-31]: 

1. Decreasing friction force with relative velocity or negative damping, 

2. Kinematic constraint instability, 

3. Mode coupling. 

2.1.1 Negative Damping 

The negative slope in the friction/sliding velocity curve or the difference between static and kinematic 

coefficients of friction can lead to the so-called stick-slip vibrations (see for example [24,32]). In 

most instances, researchers adopted the well-known mass-on-a-conveyer model to study the stick-slip 

vibration (See for example [33,34,27]). This simple model is shown in Figure 2-2. Here, for 
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simplicity, the coefficient of friction is considered to decrease linearly with relative velocity. 

 

 

Figure 2-2: 1-DOF mass-on-a-conveyer model 

 

The equation of motion for this model can be written as 

 ( ) ( )xvxvNkxxcxm bb
&&&&& −−µ=++ sgn  (2.2) 

where 0>N  is the normal force between the mass and the conveyer and 0>bv  is the conveyer’s 

constant velocity. Transferring the steady-sliding state to the origin gives 

 ( ) ( ) ( )[ ]bbb vyvyvNkyycym µ−−−µ=++ &&&&& sgn  (2.3) 

where 0xxy −=  and ( )bv
k

N
x 310 µ−µ= . 

Considering small perturbations around the steady-sliding fixed point where 0>− yvb
& , linearized 

equation of motion is found from (2.3) as 

 ( ) 03 =+µ−+ kyyNcym &&&  (2.4) 

It is obvious that when 3µ< Nc , the system (2.4) is unstable. In this situation, the vibration 

amplitude grows until it reaches the stick-slip boundary, i.e. 0=− yvb
& .  

Using an exponentially decreasing model for the coefficient of friction, Hetzler et al. [34] used the 

method of averaging ([35]) to study the steady-state solutions of a system similar to the one shown in 

Figure 2-2. They showed that as damping is increased, the unstable steady-sliding fixed point goes 

through a subcritical Hopf-bifurcation ([36]), resulting in an unstable limit cycle that defines the 

region of attraction of the stable fixed point. Thomsen and Fidlin [37] also used averaging techniques 

to derive approximate expressions for the amplitude of stick-slip and pure-slip (when no sticking 

occurs) vibrations in a model similar to Figure 2-2. They used a third-order polynomial to describe 
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the velocity-dependent coefficient of friction. 

In cases where the coefficient of friction is a nonlinear function of sliding velocity (e.g. humped 

friction model), the presence of one or more sections of negative slope in the friction-sliding velocity 

curve can lead to negative damping and self-excited vibration. In this type of friction instability, no 

sticking occurs between the two rubbing surfaces (see for example [20,38,39]). 

2.1.2 Kinematic constraint instability 

When friction is present, the constraint equation used to model kinematic pairs in dynamical systems 

can lead to instabilities even when the coefficient of friction is assumed to be constant (see for 

example [28] and references therein). In the context of constrained multi-body system dynamics with 

friction, the same mechanism is the cause of “jamming” or “wedging” [40]. In the study of disc brake 

systems, this type of instability is sometimes referred to as “sprag-slip” vibration (see for example 

[29] and references therein). This type of instability is usually characterized by violation of the 

solution existence or uniqueness conditions of the system’s equations of motion [41]. 

The simplest example to demonstrate the kinematic instability is shown in Figure 2-3 [29]. In the 

model shown, a massless rigid rod pivoted at point O is contacting a rigid moving plane. A force L is 

pressing the free end of the rod against the moving plane. The normal and friction force applied to the 

rod are given by N and NF kf µ=  where kµ  is the constant kinetic coefficient of friction. It can be 

shown that at equilibrium 

 
θµ−

=
tan1 k

L
N  (2.5) 

 

 
Figure 2-3: Simple model to demonstrate kinematic constraint instability [29]. 
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From (2.5) it is evident that if ( )kµ→θ − 1tan 1 , then ∞→N  and further motion becomes 

impossible. In a more realistic setting where some flexibility is assumed, the motion continues by 

deflection of the parts (see for example Hoffmann and Gaul [42]). After sufficient deformation of the 

contacting bodies, slippage occurs which allows the bodies to assume their original configuration and 

the cycle continues. This situation is known as the sprag-slip limit cycle. 

2.1.3 Mode Coupling 

In the context of the linear dynamical systems, the effects of non-conservative forces on stability are 

well understood (see for example [43]). Consider the equations of motion of a second order 

undamped multi-DOF linear autonomous system as1 

 ( )( ) 0qSKqM =η++&&  (2.6) 

where q  is the vector of generalized coordinates, M  is a positive-definite symmetric inertia matrix,  

K  if the symmetric stiffness matrix, and ( )ηS  is an asymmetric matrix originating from the non-

conservative forces, and η  is a parameter of interest. The natural frequencies of this system are found 

from the solutions of the characteristic equation given by 

 ( ) ( )( )MSK 22 det, ω−η+=ηω∆  (2.7) 

 Assuming the initial system ( 0η=η ) is stable, the stability may be lost by divergence or flutter as 

the parameter η  is varied. The divergence instability boundary ( dη=η ) is found from ([43]) 

 ( )( ) 0det =η+ SK  (2.8) 

At this critical value, one of the roots of (2.7) vanishes. The flutter instability boundary can be 

found by setting 

 
( )

0
,

2

2

=
ω∂

ηω∆∂
 (2.9) 

where ∆  is given by (2.7). The flutter boundary ( fη=η ) is characterized by the coalescence of two 

of the system natural frequencies. By further variation of the parameter beyond its critical value, two 

                                                      
1 These systems are also known as circulatory systems. 
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roots become complex conjugate. In cases where ( )ηS  is skew-symmetric, system (2.6) can only 

become unstable through flutter instability as divergence is not possible [43]. The addition of 

velocity-dependent forces to this system yields 

 ( ) ( ) 0qSKqGCqM =++++ &&&  (2.10) 

where C  is positive semi-definite matrix and TGG −=  defines the gyroscopic forces . It has been 

shown that the addition of damping can have a complex effect on the stability of the system and it 

may even destabilize the otherwise stable system [43]. For further details on this subject, see also 

[44]. 

The role of friction as a follower force in destroying the symmetry of the stiffness matrix resulting 

in flutter instability was first used to explain brake squeal [29]. Ono et al. [45] and Mottershead and 

Chan [46] studied hard disk drive instability using a similar concept.  

Consider the 2-DOF system shown in Figure 2-4 studied by Hoffman and Gaul [47]. This model 

consists of a point mass sliding on a conveyer. The mass is suspended using vertical and horizontal 

linear spring and dampers. An additional spring placed at 45o angle is also considered which acts as 

the coupling between vertical and horizontal motions. The friction force is modeled using Coulomb 

friction law; nt FF µ=  where µ  is the constant coefficient of friction. Also the conveyer belt is 

moving with constant velocity of 0>bv . The downward force R is assumed large enough to ensure 

contact between mass and conveyer belt is not lost. 

 

 

Figure 2-4: A simple 2-DOF model capable of exhibiting mode coupling instability [47]. 
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The equation of motion for this system can be written in matrix form as 
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Shifting the equilibrium point (steady sliding state) to the origin by setting 0
~ xxx −=  and 

0
~ zzz −= , where 
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The symmetry-breaking role of friction is clearly shown in (2.13). Note that the right-hand-side of 

this equation non-zero only when bvx −≤&~ . In a small neighborhood of the origin, (2.13) simplifies to 

a linear homogeneous differential equation  
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Comparing (2.14) with (2.10), it can be concluded that  
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Neglecting damping1, from (2.9) the flutter instability threshold is calculated as 
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If fµ=µ  the two natural frequency become identical, given by 

                                                      
1 For further discussions including the effects of damping and numerical examples refer to the original paper 

[47] and also [48]. 
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kkk zx ++
=ω=ω  (2.16) 

Note that (2.16) can be obtained from (2.9). Increasing the coefficient of friction beyond its flutter 

critical value, fµ>µ , results in the a pair of complex conjugate squared natural frequencies, which 

indicates instability of the steady sliding fixed point. 

Recently, a great number of papers were published on the systems exhibiting mode coupling 

instability due to friction and the complex effect damping on such systems. See papers by Hoffmann 

and his coworkers [49-51] and Jézéquel and his coworkers [52-59]. Other recent works on this subject 

include [60-64]. 

2.2 Lead Screw Drives 

As mentioned earlier, when it comes to translation lead screws, very few published works are found 

that discuss the dynamics of these systems and the effect of friction on their vibratory behavior. 

Olofsson and Ekerfors [65] investigated the friction-induced noise of screw-nut mechanisms. They 

discussed the tribological aspects of lubricated interaction between lead screw and nut threads, which 

accounts for the Stribeck friction. Based on experimental results, they have concluded that: a) the 

squeaking noise is the result of self-excited vibration between lead screw and nut threads; b) in the 

system studied (consisting of a long and slender screw), these vibrations excite bending mode shapes 

of the lead screw, and; c) the squeak noise is generated only when the nut is in the vicinity of one of 

the nodes of the bending mode shape of the lead screw.  

In a study of the effect of friction on the existence and uniqueness of the solutions of the equation 

of motion of dynamical systems, Dupont [41] considered a 1-DOF model of a lead screw system. He 

investigated the situations under which no solution existed and clearly identified one of the sources of 

instability in the lead screw systems; i.e. the kinematic constraint instability mechanism. For the self-

locking screws, he found that there is a certain limiting ratio between the lead screw inertia (rotating 

part) and the mass of the translating part, beyond which no solution exists.  

Based on a case study, Gallina and Giovagnoni [1] discussed the design of screw jack mechanisms 

to avoid self-excited vibration. They developed a 2-DOF model of a lead screw system which 

included lead screw rotation (coupled with the nut translation) and lead screw axial displacement. 

Using eigenvalue analysis of the linearized equations, they found relationships that define the stability 

domain in terms of the parameters of the system. They concluded that to avoid vibration in self-
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locking derives, lead screw should have low axial and high torsional stiffness. Gallina [66] further 

expanded this study and, using both eigenvalue analysis and experiments, showed that by increasing 

lead screw inertia it is possible to avoid instability under certain conditions. 

 Oledzki [67] studied self-locking mechanisms. He classified all types of mechanical drives, 

including worm gears and lead screws, with the emphasis on the possibility of self-locking. A unified 

notation was used to present geometrical features of the drives and to derive the equations of motion 

of a general kinematic pair. He also modeled the kinematic pair using elastic contacts instead of rigid 

contacts. The simulation results presented showed the possibility of “stick-slip” vibrations. 

Generally, in high-accuracy linear positioning applications, “ball-screws” are used because of their 

low friction, high lead accuracy, and backlash-free operation [68]. Consequently, the majority of 

works in the literature regarding position control and dynamics of screw drives focus on ball-screws 

[69-76]. Lead screws are also used for similar positioning applications. For example, Otsuka [69] 

compared a high-precision lead screw drive equipped with an anti-backlash nut with two types of 

ball-screw drives for nanometer positioning applications. The experimental results obtained showed 

the possibility of achieving nanometer accuracy with all three systems. Particular to the lead screw, 

the nonlinear behavior of the drive due to the stick-slip phenomenon was studied. The anti-backlash 

nuts were found to have an adverse effect due to preloading of the threads and increased friction. 

Sato, et al. [77] considered the dynamics of a lead screw positioning system with backlash. They 

set up an experiment using a sliding table, a lead screw, and a DC motor. In their experiments the 

table position, screw rotation angle, and DC motor current were measured. Although they did not 

undertake detailed modeling of lead screw and nut interaction, they were able to estimate lead 

screw/nut friction using a disturbance observer under the action of a linear proportional plus 

derivative feedback controller.  

It is worth mentioning that lead screw drives were also used in redundant positioning systems for 

only coarse table motion [70,71]. In these systems, a high-precision parallel positioning system such 

as a piezo actuator is used for fine-tuning. Another example is the work by Sato, et al. [78], where 

they introduced an active lead screw mechanism. By using two nuts connected together by a 

piezoelectric actuator, they were able to actively control backlash to achieve position accuracy of 

better than 10 nm. 

 



 

20 

Chapter 3 

Mathematical Modeling of Lead Screw Drives 

In this chapter, a collection of mathematical models are developed which are used throughout this 

thesis to study the dynamic behavior of lead screw systems. Depending on the system elements 

considered and the type of analysis undertaken, different models are developed with varying number 

of degrees of freedom. 

Figure 3-1 shows a typical lead screw drive system. A motor – possibly through a gearbox – rotates 

the lead screw via a coupling. The rotational motion is converted to translation at the lead screw-nut 

interface and transferred to the moving mass. The weight of the moving mass is supported by 

bearings. The lead screw is held in place by support bearings at its either end. 

 

 
Figure 3-1: Lead screw drive system 

 

In Section 3.1, a set of meshing lead screw and nut is considered as a kinematic pair and related 

kinematic and kinetic relationships are presented. The velocity-dependent friction model used in this 

thesis is discussed in Section 3.2. The basic 1-DOF lead screw drive model is developed in Section 

3.3. This model will be used in Chapters 5 and 6 to study negative friction gradient and kinematic 

constraint instability mechanisms, respectively. A model of lead screw with anti-backlash nut is 

Moving mass 

DC Motor - Gearbox 

Lead screw 

support 

Lead screw 

support 
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presented in Section 3.4 and the role of preloaded nut on the increased friction is highlighted. 

Additional DOFs are introduced to the model in Sections 3.5, 3.6, and 3.7 to account for the 

flexibility of threads and the axial flexibility of lead screw supports. These models are used in 

Chapter 6 to investigate the mode coupling and kinematic constraint instability mechanisms. The 2-

DOF model of Section 3.5 is also used in Chapter 4 to obtain simulation results based on the 

identified system parameters. By combining the DOFs of the models of Sections 3.5 and 3.6, a 3-

DOF model of lead screw drives is developed in Section 3.7. This model is used in Chapter 6 to study 

the mode coupling instability mechanism. In Section 3.8, a complete system model is presented that 

includes all of the elements of a typical linear drive system. This model is used in Chapter 4 as the 

basis of the developed friction parameters identification method. Robust controllers are developed for 

simplified versions of this model in Chapter 7. 

3.1 Lead Screw and Nut – A Kinematic Pair 

The rotary motion is converted to linear translation at the interface of lead screw and nut threads. The 

kinematic relationship defining a lead screw is simply1 

 θ⋅λ= tanmrx  (3.1) 

where θ  is the lead screw rotation, x  is the nut translation, λ  is the pitch angle, and mr  is the pitch 

circle radius. 

The interaction between contacting lead screw and nut threads can be easily visualized by 

considering unrolled lead screw and nut threads [5]. This way, the rotation of lead screw is replaced 

by an equivalent translation. Assuming one thread pair to be in contact at any given instant, Figure 

3-2 shows the interaction of the lead screw and nut threads for both left-handed and right-handed 

screws. The sign conventions used for the contact force, N, is shown in this figure. In the 

configurations shown, when the right-handed lead screw is rotated clockwise/moved up (rotated 

counterclockwise/moved down) the nut moves backward/right (forward/left). For the left-handed 

screw, the direction of motion of the nut is reversed. Also, when the nut threads are in contact with 

the leading (trailing) lead screw threads, the normal component of contact force, N, is considered to 

be positive (negative). 

The friction force is given by 

                                                      
1 By properly orienting the x-axis, this relationship applies to both left-hand and right-hand threads. 
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 ( )sf vNF sgnµ=  (3.2) 

where µ  is the coefficient of friction1 and sv  is the relative sliding velocity. The friction force acts 

tangent to the contacting thread surfaces and always opposes the direction of motion but does not 

change direction when normal force, N, changes direction.  

 

 
Figure 3-2: Sign convention for contact forces between nut and lead screw 

 

Before moving on to the dynamic models of lead screw systems, the effects of thread geometry on 

                                                      
1 See Section 3.2. 
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the contact forces are considered here. The force interaction shown in Figure 3-2 is essentially correct 

for the square threads where the normal force is parallel to the lead screw axis. For Acme or other 

types of threads, a slight modification is needed to take into account the thread angle.  

Figure 3-3 shows the thread semi-angles as measured on a section through the axis of a screw, aψ  

and as measured on a section perpendicular to the helix, nψ . Using the geometric relationship in 

Figure 3-4, one can write [79] 

 
y

x

y

x a
a

n
n =ψ=ψ tan,tan  (3.3) 

 λ= cosan xx  (3.4) 

 

 
Figure 3-3: Effect of lead angle on the measurement of thread angle 

 

 
Figure 3-4: Geometry of the threads on two different section planes 
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Combining (3.3) and (3.4) gives 

 λψ=ψ costantan an  (3.5) 

Figure 3-5 shows a portion of the lead screw with localized contact force N̂ (perpendicular to the 

thread surface) and friction force Ff. The X-axis of XYZ coordinate system is parallel to the lead 

screw axis. The x-Z plane is perpendicular to the helix. The projection of contact force on the x-y (or 

X-Y) plane is calculated as, 

 nNN ψ= cosˆ  (3.6) 

 

 
Figure 3-5: Forces acting on a thread 

 

Since N̂  is the normal force, using (3.2) the friction force for trapezoid threads is calculated by 

( )θµ= &sgnˆˆ NFf , where µ̂  is the true coefficient of friction. One can define the apparent coefficient 

of friction as 

 ( ) 2

1
22 1costancosˆ

−

+λψµ=ψµ=µ an  (3.7) 

Using (3.6) and (3.7), the friction force is written conveniently as ( )θµ= &sgnNFf , which is the 

same as (3.2) and will be used throughout this work. 
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3.2 Velocity-dependent Coefficient of Friction 

The rubbing action of contacting lead screw threads against nut threads is assumed to be the main 

source of friction in the systems considered in this thesis. As mentioned in Chapter 2, numerous 

velocity-dependent coefficient of friction models can be found in the literature [19,21,22]. These 

models generally include the following three parts: 

1. Coulomb or constant friction 

2. Stribeck friction 

3. Viscous or linear friction 

In this work, the following model for the friction coefficient is considered1 

 s

v

v

ve

s

321
~)1(~~ 0 µ+−µ+µ=µ

−

 (3.8) 

where 1
~µ , 2

~µ , and 3
~µ  represent Coulomb, Stribeck, and viscous friction coefficients, respectively. 

sv  is the relative sliding velocity between contacting nut threads and lead screw threads. Also, 0v  

controls the velocity range of the Stribeck effect. See Figure 3-6 for a schematic view of the velocity 

dependent coefficient of friction given by (3.8). 

 

 
Figure 3-6: Velocity dependent coefficient of friction 

 

The reasons for choosing this friction model are twofold. The model structure allows for the three 

above-mentioned components of friction to be easily separated for the purpose of focused analysis. In 

                                                      
1 This model is sometimes known as the Tustin model [26]. 
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addition, it was found that this particular formula lends itself very well to the experimental 

observations reported in Chapter 4. 

Based on Figure 3-3, the sliding velocity can be written as 

 

 θ
λ

= &

cos
m

s

r
v  (3.9) 

Substituting (3.9) into (3.8) and rearranging, 

 θµ+µ+µ=µ
θ− &
&

321
0r

e  (3.10) 

where 
0

0 cos v

r
r m

λ
= , 211
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λ
µ=µ
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mr . In the remainder of this thesis 

(3.10) is used as the basic model for the velocity dependent coefficient of friction. 

3.3 Basic 1-DOF Model 

Figure 3-7 shows 1-DOF lead screw drive models with both right-handed (RH) and left-handed (LH) 

lead screws. Note that, with the chosen x-axis direction, the kinematic relationship (3.1) holds for 

both LH and RH lead screws. In these models, iθ  is the input rotational displacement applied to the 

lead screw through a flexible coupling (torsional spring k). R is the axial force applied to the nut and c 

is the linear damping coefficient of the lead screw supports. I and m designate inertia of the lead 

screw and mass of the translating part, respectively. 

Based on the force diagrams shown in Figure 3-2, and irrespective of the hand of the lead screw, it 

can be written1 

 ( ) ( ) ( )θ−λ−λ+θ−θ−θ=θ &&&& sgncossin 0TFNrckI fmi  (3.11) 

and 

 ( )xFRFNxm f
&&& sgnsincos 0−+λ−λ−=  (3.12) 

                                                      
1 Based on the selected conventions for the axes and forces in Figure 3-7, the equations of motion for the drives 

with left-handed screws are identical to those with right-handed screws. As a result, from this point on, the 

handedness of the lead screw is assumed to be known but is not included in the discussions. 
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where the terms ( )θ&sgn0T  and ( )xF &sgn0  represent the friction in lead screw supports and the 

bearings of the translating mass, respectively. 

 

 
Figure 3-7: 1-DOF model of a lead screw system 

 

Eliminating N between (3.11) and (3.12), yields 

 ( ) ( )( ) ( )θ−θ−ξ−θ=θ+θ+θλξ− &&&&& sgnsgntan 00 TFRkckmrI im  (3.13) 

where (3.1) and (3.2) were used and 

 

 
λµ+

λ−µ
=ξ

tan1

tan

s

s

mr  (3.14) 

where 

 ( )Ns θµ=µ &sgn  (3.15) 

was used for abbreviation. The normal contact force is calculated as 
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( )( ) ( ) ( )[ ]
( )( )mrI

TckmrIFR
N

ms

im

λξ−λµ+λ

θ+θ+θ−θλ+θ−
=

tansincos

sgntansgn 00
&&&

 (3.16) 

Note that due to the appearance of ( )Nsgn , through sµ , in the denominator of (3.16), this 

equation can only be solved iteratively for N. 

The equation of motion derived in this section can also describe other variations to the basic model. 

These models reflect other possible configurations that may be found in various applications. In 

Section 3.3.1, the inverted basic model is introduced where unlike the model of this section, nut is 

rotated causing the lead screw translate. A configuration with fixed nut and another with fixed lead 

screw are presented in Sections 3.3.2 and 3.3.3, respectively. In these two models, the rotating part 

also translates. 

3.3.1 Inverted Basic Model 

In some applications, the nut is rotated which causes the lead screw to translate1. Figure 3-8 shows 

this configuration for a simple 1-DOF model. It can be shown that for this configuration, the equation 

of motion is identical to (3.13).  

 

 
Figure 3-8: Inverted basic 1-DOF model 

 

                                                      
1 See, for example, the micro-pump shown in Figure 1-5. 
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3.3.2 Basic Model with Fixed Nut 

In another possible configuration, the nut may be fixed1 and the lead screw rotation is converted to its 

translation together with other connected parts (i.e. motor, frame, payload, etc.). This configuration is 

shown in Figure 3-9. As mentioned before, the equation of motion of this system is also given by 

(3.13). 

 

 
Figure 3-9: Basic 1-DOF model with fixed nut 

 

3.3.3 Basic Model with Fixed Lead Screw 

The last variation of the basic lead screw drive model considered here is shown in Figure 3-10. In this 

configuration, the lead screw is fixed in place and the nut rotates, causing it to translate along the lead 

screw together with other moving parts (i.e. motor, gearbox, payload, etc.). The equation of motion of 

this system is also given by (3.13). 

                                                      
1 See, for example, the powered seat adjuster in Figure 1-3. 
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Figure 3-10: Basic 1-DOF model with fixed lead screw 

3.4 Anti-backlash Nut 

As mentioned in Chapter 1, anti-backlash nuts are commonly used to counter the effects of backlash 

and wear in a lead screw drive. An anti-backlash nut is usually made of two parts that are connected 

together through a preloaded spring. Figure 3-11 shows a schematic model of a lead screw drive with 

a two-part nut. The spring nk  is preloaded such that a force nnkP δ=  acts between the two halves of 

the nut and where nδ  is the initial compression of the spring. Neglecting the mass of the nut, the 

Newton’s second law gives 

 
( ) ( )( )

( )( ) ( )θ−λθµ−λ−+

λθµ−λ+θ−θ−θ=θ

&&

&&&&

sgncossgnsin

cossgnsin

022

11

TNNr

NNrckI

m

mi  (3.17) 

 ( ) ( ) PxFRNNxm +−+λθµ−λ−= &&&& sgnsinsgncos 011  (3.18) 

where 

 ( ) λθµ−λ= sinsgncos 22 NNP &  (3.19) 

where 01 >N  and 02 >N  are the thread contact forces corresponding to left and right parts of the 

nut, respectively. Combining (3.17), (3.18), and (3.19) and using (3.1), gives 
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 ( ) ( )( ) ( ) ( )PTFRkckmrI im 210011 sgnsgntan ξ+ξ−θ−θ−ξ−θ=θ+θ+θλξ− &&&&&  (3.20) 

where 

 

( )
( )

( )
( ) λθµ−

λ+θµ
=ξ

λθµ+

λ−θµ
=ξ

tansgn1
tansgn

tansgn1
tansgn

2

1

&

&

&

&

m

m

r

r

 (3.21) 

 

 

Figure 3-11: Lead screw model with anti-backlash nut 

 

Compared with (3.13), ( )P21 ξ+ξ−  term is the additional resistive torque caused by the preloaded 

nut. The contact force 1N  (for left threads in Figure 3-11) is found as 

 
( )( ) ( ) ( )[ ] ( )

( )( )( )mrI

PmrITckmrIFR
N

m

mim

1

100
1 tansinsgncos

tansgntansgn

λξ−λθµ+λ

λξ++θ+θ+θ−θλ+θ−
=

&

&&&
 (3.22) 

where, again, compared with (3.16), the contact force is increased due to the preload P.  

Note that the above simplified formulation is valid as long as 01 >N . If this condition is violated, 

(i.e. the left contact is broken) for the duration of such motion, the number of DOFs is increased to 
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two. In such cases, which may be caused by large 0>− R , the dynamics of the system is more 

complicated since the impact of the threads and repeated loss of contact should be considered. 

3.5 Compliance in Lead Screw and Nut Threads 

In Section 3.3, the lead screw and nut were modeled as a kinematic pair leading to an iterative 

equation for determining the sign of the contact force. The analysis may be greatly simplified by 

assuming some degree of compliance in the lead screw and/or nut threads1. Figure 3-12 shows the 

same system as in Figure 3-7(b) except for the contact between threads which is now modeled by 

springs and dampers. With this change, the number of DOFs is increased to two. 

 

 
Figure 3-12: 2-DOF lead screw drive model including thread compliance 

 

Conforming to the sign convention defined in Figure 3-2, the deflection (or interference) of threads 

can be calculated as 

 λθ−λ=δ sincos mrx  (3.23) 

The simplest way to approximate the contact force is by modeling the force/deflection relationship 

                                                      
1 Refer to Section 6.1.1. 
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of the threads as that of linear springs and dampers. Thus 

 δ+δ= &
cc ckN  (3.24) 

Substituting (3.24) into (3.11) and (3.12) and using (3.23) yields1 

 
( ) ( )( )

( )( ) ( )θ−λµ−λλθ−λ+

λµ−λλθ−λ+θ−θ−θ=θ

&&&

&&&

sgncossinsincos

cossinsincos

0Trxcr

rxkrckI

smcm

smcmi  (3.25) 

 
( )( )

( )( ) ( )xFRrxc

rxkxm

smc

smc

&&&

&&

sgnsincossincos

sincossincos

0−+λµ+λλθ−λ−

λµ+λλθ−λ−=
 (3.26) 

where sµ  is defined by (3.15). 

3.6 Axial Compliance in Lead Screw Supports 

Another important source of flexibility in the system may be the compliance in the lead screw 

supports. To model this feature, as shown in Figure 3-13, spring 1k  and damping 1c  are added to the 

basic model of Section 3.3, which allows the lead screw to move axially. 

Similar to Section 3.3, (3.11) and (3.12) give force/acceleration relationships for lead screw 

rotation and nut translation, respectively. Moreover, the lead screw translation DOF is governed by 

 λ+λ+−−= sincos111111 fFNxcxkxm &&&  (3.27) 

The kinematic relationship between θ , x , and 1x  is given as 

 λθ=− tan1 mrxx  (3.28) 

Eliminating N  between (3.11) and (3.12) and also between (3.12) and (3.27) and using (3.28) and 

(3.2) yields 

 ( ) ( ) ( )( ) ( )θ−−ξ−θ−θ−θ=ξ−θλξ− &&&&&&& sgnsgntan 001 TxFRckxmmrI im  (3.29) 

                                                      
1 For the model of this section, the relative velocity given by (3.9) should be changed to                               . 

However, in practical situations where the lead angle ( λ ) is small and threads are almost rigid the term            is 

negligible and it is omitted. 
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 ( ) ( )xFRxcxkmrxmm m
&&&&&& sgntan 0111111 −+−−=θλ++  (3.30) 

where ξ  is given by (3.14).  

 
Figure 3-13: 2-DOF lead screw drive model including compliance in the supports 

 

The normal contact force is calculated as 
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 (3.31) 

3.7 Compliance in Threads and Lead Screw Supports 

By combining the two models presented in Sections 3.5 and 3.6, a 3-DOF model of the lead screw 

drive results, which is shown in Figure 3-14. The equations of motion of this system are defined by 

(3.11), (3.12), and (3.27). The only change is in the calculation of contact force N given by (3.24); the 

threads deflection, instead of (3.23), is calculated by 

 ( ) λθ−λ−=δ sincos1 mrxx  (3.32) 
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Figure 3-14: 3-DOF lead screw drive model including compliance in the supports and compliance in the 

lead screw and nut threads 

 

3.8 A Complete System Model 

In this section, another model is developed which includes other elements in the power transmission 

chain, namely a DC motor and a worm gearbox. Figure 3-15 shows the 4-DOF configuration 

considered.  

For the motor, Newton’s second law gives 

 ( ) MMMWMfMMMM ckTTI θ−θ−θ+θ−=θ &&&&
1sgn  (3.33) 

where Mθ  is the rotor’s angular displacement,  MI is the inertia of the rotor, MT  is generated (input) 

torque, fMT  and Mc  are the internal friction and damping of the motor, respectively. Also, 1k  is the 

torsional stiffness of the coupling connecting the motor to the gearbox, and Wθ  designates the 

angular displacement of the worm.  
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Figure 3-15: A 4-DOF lead screw drive system model 

 

For lead screw and nut, similar to (3.11) and (3.12), one can write 

 ( ) ( ) ( )θ−λ−λ+θ−θ−θ=θ &&&& sgncossin 0TFNrckI fmG  (3.34) 

 ( )xFRFNxm f
&&& sgnsincos 0−+λ−λ−=  (3.35) 

where N is given by (3.24). For the worm and worm gear, Newton’s second law gives  

 ( ) ( ) WfWWWWGW
W

WWWMWW TWW
d

ckI θ−λθµ+λ−θ−θ−θ=θ &&&&& sgncossgnsin21 (3.36) 

 ( ) ( ) GfGWGWGW
G

GGGGG TWW
d

ckI θ−λθµ−λ+θ−θ−θ=θ &&&&& sgnsinsgncos2  (3.37) 

where WI  and GI  are the inertia of the worm and worm-gear, respectively. Gθ  is the angular 

displacement of the gear. Wd  and Gd  are the pitch diameters of worm and worm gear, respectively. 
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W is the normal component of the contact force between meshing worm threads and gear teeth. fWT  

and fGT  are the internal friction torque of the worm and the worm gear, respectively. Wλ  is the pitch 

angle of the worm and WGµ  is the coefficient of friction of the meshing worm and worm gear. 

Eliminating W between (3.36) and (3.37) gives 

 
( ) ( ) ( )

( ) 0sgn1

1

=θξα+α+θξα−θα−

θξα++θξα++θξα+

GfGWWfWWWWMW

GWWGGWWWGGWWW

TTkk

kkccII

&

&&&

 (3.38) 

where 

 W

G

W
W

d

d
λ=α tan  (3.39) 

is the gearbox ratio1 (i.e. WWG θα=θ ) and 

 
( )( )

( )( )WGWGG

WWGWW
W

Wd

Wd

λθµ−

θµ+λ
=ξ

tansgn1

sgntan
&

&
 (3.40) 

The equations of motion for the 4-DOF model in Figure 3-15 are given by (3.33), (3.34), (3.35), 

and (3.38). 

3.9 Some Remarks Regarding the System Models 

Depending on the configuration of an actual lead screw drive, one or more of models presented in this 

chapter may be suitable to accurately capture the most prominent and/or relevant features of the 

system’s dynamical behavior. This is certainly the case in the subsequent chapters of this thesis. 

However, many other features are not included in this work. The features include: 

 
• Dependence of friction on position: As the lead screw turns, the nut progresses along the 

lead screw threads creating the possibility of a position-dependent coefficient of friction. In 

this work, the mathematical friction model is assumed to be independent of position for 

simplicity of mathematical modeling. From an experimental point view, as the case of 

                                                      
1 For the worm gearbox considered here, αW = nW / nG where nG is the number of gear teeth and nW is the number 

of worm starts. 
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Chapter 4, the identified friction (and other possible position-dependent parameters) may be 

considered as an averaged value for the working portion of the lead screw. 

 
• Nonlinearity: The only nonlinear effect considered in this work comes from friction. 

However, many other sources of nonlinearity are possible in a lead screw drive, which are 

excluded here to simplify the study of the friction-induced vibrations. Most notable factors 

are: presence of nonlinearity in the contact forces of threads caused by deflection, nonlinear 

torsional stiffness of the couplings, and discontinuity due to backlash. 

 
• Torsional deflection of lead screw: For a long and/or slender lead screw, the frequency of 

the first few torsional modes of vibration may be low enough to influence the system 

dynamics. Moreover, the winding/unwinding action of torsional deflections may affect the 

threads clearance and the overall load distribution causing further deviation from the models 

considered here. In this work, the lead screws are considered sufficiently stiff and modeled 

as rigid bodies. 

 
• Axial deflection of lead screw: Similar to the previous point, this effect may influence the 

lead screw-nut interaction in two ways: by introducing new modes of vibration and by 

affecting the threads clearance and load distribution. 

 
• Lateral deflection of lead screw: Three situations may lead to this type of vibration: lateral 

loading, excessive axial loading leading to buckling (a factor for long slender lead screws), 

and finally whirling (for very high rotation speeds). All these situations are considered to be 

outside the scope of this work. 

 
• Misalignment: Design and/or assembly problems may lead to axial offset of the centerlines 

of lead screw and nut. The misalignment may also occur in the form of a skewed nut. In 

both of these cases (which are excluded from the current research), thread contact and load 

distribution may be effected severely. 

 
• Manufacturing issues: Depending on the manufacturing method and quality of the product, 

lead screws can suffer from lead error (particularly in longer designs). There may be 

external contaminants or surface defects on lead screw or nut. Although these and other 

similar issues may have significant impact on the function of a lead screw drive, they are 
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excluded from this fundamental study of the friction-induced vibration. 

 
• Additional elements: The study of lead screw drives, or any other mechanical system, can be 

augmented by other mechanical elements (e.g. a vibrating component on the moving part, 

additional DOF due to the flexibility of the moving part, external time-dependent forcing, 

etc.). These cases are outside the scope of this work and depending on the problem they 

represent, may warrant a separate study. 

 
• Backlash: Lead screw drives generally suffer from backlash. Here, backlash is not 

considered since the focus is on the effects of friction on power screws where the resisting 

load is considered to be constant and the system is considered to be moving with a constant 

input velocity. Backlash certainly will play a major role in “positioning” applications of lead 

screws, a subject that is outside the scope of this work. 

 
• Wear: Throughout the operating life of lead screw drives, wear causes changes to the 

contacting surfaces, thereby affecting the load distribution across the threads. This effect is 

considered to be outside of the current study. 
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Chapter 4 

An Experimental Case Study 

As mentioned in the Section 1.2, one of the motivations behind this research was the excessive 

audible noise generated from the horizontal drive of an automotive seat adjuster. In this chapter, the 

experimental work, theoretical modeling, and system parameter identification of the horizontal drive 

mechanism of this seat adjuster are presented. 

In Section 4.1 some preliminary observations are made regarding the audible noise generated by 

the system. These observations are followed by a focused study on the role of friction as the source of 

vibrations and the generation of audible noise. The details of the parameter identification approach, 

which consists of two steps, are presented in Sections 4.2 and 4.4. In the first step, parameter 

identification formulations are formed based on the steady-state pure-slip behavior of the system. In 

this step, external settings (i.e. applied axial force and preset motor angular velocity) are related to the 

friction and damping elements of the system, making it possible to identify various parameters from 

experimental results using the least squares technique. Identified results for the lead screw drive of 

the seat adjuster are presented in Section 4.3. In the second step, Section 4.4, identified parameters are 

fine-tuned based on the open-loop vibrating behavior of the system. In this step, an optimization 

technique is utilized to match the model response to the measurements when the system trajectory 

follows a limit cycle. Parameter studies based on the fine-tuned model are given in Section 4.5. 

Conclusions are summarized in Section 4.6.  

4.1 Preliminary Observations 

The first step in finding the causes of excessive audible noise in an operating mechanical system may 

be to analyze the noise signal and the external conditions under which such a noise is generated. In 

this section, some of the preliminary observations made on the powered seat adjuster investigated 
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here are presented1.  

In the first step, a series of tests were performed on the complete seat adjuster. Figure 4-1 shows 

the test setup and instrumentation used to study the complete seat adjuster2. A pneumatic cylinder 

mounted on the wall was used to apply axial force.  

 

 
Figure 4-1: Test setup for complete seat adjuster 

 

A sample these measurements are presented in Figure 4-2. As shown in Figure 4-2(c), the applied 

force of approximately 180N caused the seat adjuster to generated audible noise. Figure 4-2(d) shows 

that seat was traveling at a velocity of approximately 7mm/s. The sound level meter measurements in 

Figure 4-2(b) shows an approximately 10dB jump occurred in the noise level (from the background 

noise level) during a portion of the seat travel. During the same interval, the audible noise time-

frequency plot in Figure 4-2(a) clearly shows the sustained presence of noise with a dominant 

frequency of approximately 160Hz. The frequency content of the noise signal is also shown in Figure 

4-3 at st 8= . 

 

                                                      
1 See Section 1.2 for the details of the seat adjuster mechanism. 
2 For the instrumentation details see Appendix A 
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Figure 4-2: Sample test results from complete seat adjuster tests. 

 

 
Figure 4-3: Audible noise frequency content for the test results shown in Figure 4-2 (at 8s). Peak 

amplitude at 162Hz 

 

The investigation was then continued by a second series of tests focusing only on the sliders 

comprising the horizontal motion system of the seat adjuster. As mentioned earlier, the two sliders are 

equipped with lead screw systems driven by a single DC motor. The test setup for this series of test is 

shown in Figure 4-4, which is similar to the setup used for the complete seat adjuster tests. 
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Figure 4-4: Single-track test setup 

 

Sample measurement results from one of the single slider tests are presented in Figure 4-5. In this 

test, a horizontal force of about 200N (Figure 4-5(c)) was needed to induce the noise at a traveling 

velocity of approximately 20mm/s (Figure 4-5(d)). The audible noise continued for about 4s with a 

dominant frequency of about 150Hz (Figure 4-5(a)) accompanied by an almost 20dB increase in the 

noise level (Figure 4-5(b)).  

 

 
Figure 4-5: Sample test results from single-track tests.  
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The frequency spectrum of the recorded noise at st 3=  is plotted in Figure 4-6. This plot clearly 

shows the dominant signal frequency of 150Hz. 

 

 
Figure 4-6: Audible noise frequency content for the test results shown in Figure 4-5 (at 3s). Peak 

amplitude at 150Hz 

 

These tests and many similar others under different force and velocity settings revealed a strong 

correlation between the two test setups, confirming the initial guess as to the source of audible noise: 

friction-induced vibration in the lead screw drive. 

4.2 Step 1: Friction and System Parameter Identification 

The first step in the friction identification process is formulated based on the system response under 

steady-state pure-slip conditions (i.e. no rotational vibrations and constant lead screw angular 

velocity). The aim of this formulation is to relate the measurable system inputs and states to the 

internal friction and damping parameters through the mathematical model described in Section 3.8. 

This model corresponds to the third test setup1 developed for these studies, which is shown in Figure 

4-7. 

 

                                                      
1 For the instrumentation details see Appendix A 
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Figure 4-7: Schematic view of the test setup 

 

Similar to the test setup shown in Figure 4-4, only one of the two sliders was included in the setup. 

The working parts of the test setup were taken from an actual seat adjuster. Two encoders were used 

to measure the angular displacement of the lead screw and the motor. A load cell was used to measure 

the force exerted by the pneumatic cylinder. The input voltage and current to the DC motor were also 

measured. With the help of a controller regulating the current input to the DC motor [80,81], the 

slider was set to move at constant preset velocities in the applicable range. At each test, the following 

quantities become available as averaged values over the considered travel stroke of the nut: 

• Motor angular velocity, Mω  

• Motor torque, MT  

• Axial Force, R 

The angular velocity of the motor is calculated by numerical differentiation of its measured angular 

displacement. The motor torque is calculated from the measured input current and the known motor’s 

torque constant. 

The steady state relationships are derived from (3.33), (3.34), (3.35), and (3.38) by setting all 

accelerations to zero and assuming positive angular velocities. The steady-state equations are found 

as 

 ( ) 01
1 =ω−θ−θα+−

−

MMMGWfMM ckTT  (4.1) 

 ( ) ( ) 0cossin0 =λ−λ+−ω−θ−θ fmG FNrTck  (4.2) 
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 0sincos 0 =+−λ−λ− RFFN f  (4.3) 

 
( ) ( )

( ) 000

1010

=ξα+α+θξα−

θα−θξα++ωξα+

fGWWfWWWW

MWGWWGGWWW

TTk

kkkcc
 (4.4) 

where MWG ωα=ω=ω  are the constant angular velocities and 

 
( )

( )WWGG

WGWW
W

d

d

λµ−

µ+λ
=ξ

tan1
tan

0  (4.5) 

Eliminating N between (4.2) and (4.3) gives 

 ( ) ( ) 0000 =−ξ−−ω−θ−θ FRTck G  (4.6) 

where 

 
( )

( ) λµ+

λ−µ
=ξ

tansgn1
tansgn

0
N

N
rm  (4.7) 

Since the aim of this study is to investigate cases where the axial load is applied in the direction of 

motion, N  is assumed to be positive. Consequently, at steady-state for 0FR > , (4.7) is simplified to 

 ( )λ−µ≈
λµ+

λ−µ
=ξ tan

tan1
tan

0 mm rr  (4.8) 

where the approximation is obtained by assuming 1tan <<λµ . Combining (4.1), (4.4), and (4.6) 

yields 

 ( )000 FRTCT WfMM −ξξ++ω=  (4.9) 

where 

 cCC WW 00 ξα+=  (4.10) 

 000 TTT Wff ξ+=  (4.11) 

and 

 MGWWW cccC +ξα+= 00  (4.12) 
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 fGWfWfMf TTTT 00 ξ++=  (4.13) 

To separate force effects from the velocity effects, (4.9) is rearranged as 

 ( ) ( ) ( )MMM FRT ωβ−+ωβ= 100  (4.14) 

where 

 ( ) MfM CT ω+=ωβ0  (4.15) 

 ( ) ( )MWM ωξ⋅ξ=ωβ 001  (4.16) 

For each motor speed setting, ( )i

Mω , the straight line described by (4.14) can be fitted to the 

experimental data points ( ) ( )ji

M

j TR ,,  to obtain ( )i

0β  and ( )i

1β  as functions of motor angular velocity. 

Based on (4.15), another straight line can be fitted to ( ) ( )ii

M 0,βω  data points to obtain fT  and C . 

Expanding the second velocity dependent coefficient, ( )Mωβ1 , using (4.8), gives 

 ( ) ( )( )λ−ωµξ=ωβ tan
201
m

W

d
 (4.17) 

At steady-state velocity of MW ωα=ω , the coefficient of friction defined by (3.10) becomes 

 MW

r MWe ωαµ+µ+µ=µ ωα−
321

0  (4.18) 

Substituting (4.18) into (4.17) and rearranging gives 

 ( ) [ ]
















γ

γ

γ

ω=ωβ ωα−

2

1

0

1
01 M

r

M
MWe  (4.19) 

where 

 ( )λ−µξ=γ tan100 Wmr  (4.20) 

 201 µξ=γ Wmr  (4.21) 

 302 µαξ=γ WWmr  (4.22) 
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Now the curve described by (4.19) can be fitted to the previously obtained data points (i.e. 

( ) ( )ii

M 1,βω ) to estimate the three new parameters; 0γ̂ , 1γ̂ , and 2γ̂ . Using the least squares technique, 

one finds 

 ( ) BAAAΓ TT 1ˆ −
=  (4.23) 

where 

 [ ]T210 ˆˆˆˆ γγγ=Γ  (4.24) 

and 

 

( ) ( )

( ) ( )

( ) ( )
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n
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1

M
B  (4.26) 

where n is the total number of data points available. Note that A  given by (4.25) is dependent on 0r , 

which is one of the unknown parameters describing the Stribeck effect in the assumed model of the 

velocity dependent coefficient of friction. To rectify this problem, a simple optimization routine is 

used to find the best value for 0r  such that the curve fitting error of (4.23) is minimized. Define 
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where dependence on 0r  is made explicit. The optimized value of 0r  given by 0̂r  is now found 

simply as 
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 ( )( )∑
=≤≤

=
n

i

i
rrr

rer
1

0
2

0
max00min0

minargˆ  (4.28) 

This task may be performed using a number of numerical optimization techniques. In the next 

section, ( )( )∑
=

n

i

i re
1

0
2  is simply computed and plotted over a range of appropriate values, 00 >r , and 

the minimum is found graphically. 

4.3 Experiment Results 

In this section, the parameter identification approach described in Section 4.2 is applied to the 

measurements performed using the test setup shown in Figure 4-7. 

Before exploring the friction torque produced at the contact between lead screw and nut threads, a 

preliminary step is required to estimate and isolate internal damping (4.12) and friction (4.13) of the 

DC motor and the gearbox. This step is present first in Section 4.3.1 and then the lead screw friction 

and damping identification results are presented in Section 4.3.2. 

4.3.1 DC Motor and Gearbox 

In a series of preliminary tests, DC motor and gearbox were disconnected from the lead screw, and 

the input current of the DC motor was measured at different levels of preset constant angular 

velocities. Figure 4-8 shows the results of these tests. By fitting a straight line to these data points 

using the least squares technique, the overall damping, 0C , and residual friction torque, 0fT , were 

estimated. These results together with other known system parameters are given in Table 4-1. 
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Figure 4-8: Resistive torque of the motor and the gearbox. 

Dots: measurements, dashed line: fitted line to the data points 

 

Table 4-1: Known or assumed system parameter values 

Parameter Value 

Lead screw pitch diameter, 
md  10.366 mm 

Lead screw lead angle, λ  5.57° 
Mass of translating parts, m  3.8 kg 

Average resistance of the slider, 
0F  <2 N 

Assumed contact stiffness – lead screw and nut, 
ck  810  N/m 

Assumed contact damping – lead screw and nut, 
cc  610  kg/s 

Lead screw inertia, I  61012.3 −× kg.m
2
 

Worm pitch diameter, 
Wd  9.442 mm 

Worm gear pitch diameter, 
Gd  20.04 mm 

Worm lead angle, 
Wλ  18.53° 

Gearbox ratio, 
Wα  193  

Nominal torsional stiffness of the coupling, k  1.12 N.m/rad 

Assumed coefficient of friction of gearbox mesh, 
WGµ  0.2 

Overall DC motor and the gearbox internal damping, 
0C  0121.0  N.m 

Overall DC motor and the gearbox internal friction, 
0fT  -5105.61×  N.m.rad/s 

 

4.3.2 Identification Results 

 Figure 4-9 shows data points collected from all of the measurements performed. In this figure, motor 



 

51 

torque (measured from motor input current) is plotted against measured force and measured speed. 

Fluctuation in the supply air pressure to the cylinder, together with the speed-dependent internal 

friction of the piston rod, caused variations in the applied force from one experiment to the next. 

 

 
Figure 4-9: Collection of data points showing Torque/Speed/Force 

 

As described in the previous section, a straight line is fitted to the data points at each velocity 

setting, which gives variation of motor torque versus applied axial force according to (4.14) for each 

of the available velocity set points. Figure 4-10 shows a few samples of these curve fittings1. The 

curve fitting results according to (4.15) and (4.19) are shown in Figure 4-11 and Figure 4-12, 

respectively. The estimated parameters are listed in Table 4-2. 

 

Table 4-2: Identified parameters 

Parameter Value Unit 

fT  0.0146 N.m 

C  7.34e-005 N.m.s/rad 

0r  0.38 s/rad 

0γ  1.54e-003 m 

1γ  2.59e-005 m 

2γ  -8.99e-008 m 

                                                      
1 In these calculations, the effect of F0 was neglected since preliminary observations showed that the slider 

friction force is consistently less than 2N, which is less than 2% of the applied force, R. 



 

52 

 
Figure 4-10: Sample measurement results. Variation of motor torque with applied axial load at constant 

speeds. Dots: measurements, solid line: fitted line to the data points 

 

 
Figure 4-11: Variation of β0 with motor angular velocity 

 

Based on (4.11) and using values of 0fT  from Table 4-1 and fT  from Table 4-2, the residual 

friction of the lead screw supports, 0T  is found to be 

 mNT .01.00 ≈  

where based on the parameter values in Table 4-2 and (4.5), 0.270 ≈ξW  was used. 
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Figure 4-12: Variation of β1 with motor angular velocity 

 

Also using (4.10) and 0C  from Table 4-1 and C  from Table 4-2, the damping coefficient of the 

end support is found to be 

 radsmNc ..104 4−×≈   

This value is adjusted in Section 4.4, since the system’s stability (in simulations) depends heavily 

on the damping of the lead screw, and in the experimental results, there was quite a bit of variability. 

Using (4.20), (4.21), and (4.22) and their identified values in Table 4-2, the three friction 

parameters defined by (4.18) can be calculated. These values are listed in Table 4-3 and the resulting 

velocity-dependent coefficient of friction is plotted in Figure 4-13. 

 

Table 4-3: Numerical values of the identified parameters 

Parameter Value Unit 

1µ  2.18e-1 - 

2µ  2.03e-2 - 

3µ  -4.47e-4 s/rad 
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Figure 4-13: Identified velocity dependent coefficient of friction 

 

4.4 Step 2: Fine-tuning  

The identification formulation in the Section 4.2 depends on the knowledge of the sliding coefficient 

of friction of the gearbox ( WGµ  is given in Table 4-1) through the appearance of 0Wξ  in (4.10), 

(4.11), (4.20), (4.21), and (4.22). Uncertainty in the value of this parameter, together with the 

unknown nonlinearity of the coupling stiffness, necessitates a further step of parameter identification 

and fine-tuning. 

The approach in Section 4.2 was based on steady state (no vibration) conditions. Accordingly, in 

Section 4.3, tests were performed while keeping the angular velocity of the lead screw nearly constant 

under the action of a speed controller. In this section, results from a series of tests on the system 

without the controller (normal operating conditions) are used to fine-tune the model through 

identifying variations in damping, stiffness, and friction. 

Figure 4-14 shows the changes in the vibration amplitude as the applied axial force and the input 

angular velocity of lead screw is changed. Each point in Figure 4-14 represents the averaged 

experimental values of amplitude of vibration over a 2 ms interval, where a limit cycle was detected. 

These results show that the amplitude of vibration increases with gearbox output angular velocity. 

Figure 4-15(a) shows a sample of the test results. In the close-up view in Figure 4-15 (b), the stick-

slip rotational vibration of lead screw can be seen clearly. 

Note that in the actual lead screw system, various parameters (e.g. lubrication, surface conditions, 
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and load distribution on lead screw and nut threads) change as the nut translates along the lead screw. 

This means that the estimated parameters obtained from the measurements are effectively the 

averaged values over the distance that the nut was set to translate along the lead screw in the tests. 

 

 

Figure 4-14: Experimentally obtained variation of limit cycle vibration amplitude with input angular 
velocity (gearbox output) and axial force 

 

 
Figure 4-15: a) A sample of test results showing stick-slip in open-loop tests, b) zoomed view. Black: 

lead screw angular velocity; grey: DC motor angular velocity 

 

Consider the following cost function 

(a) (b) 

Sticking 

Gω
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which calculates the weighted sum of squared differences between measured (superscript M) and 

simulated (superscript S) angular displacement ( Mθ
~

, Sθ
~

) and angular velocity ( Mθ& , Sθ& ). The “~” 

signifies that the mean value is removed. Also, n is the number of data points included in the time 

window during which the measured system trajectory follows a limit-cycle. 

Additional parameters in the cost function Ψ  in (4.29) are defined by the following modifications 

to the velocity-dependent coefficient of friction defined by (3.10) 

 




 −




 θµ+µ+µ=µ

θ−θ−

µ

&&
& 10 1~

321

rr
ees  (4.30) 

where 1.19.0 << µs  is a scaling added to the identified friction to account for any variations in WGµ  

from one experiment to the next. In addition, the friction coefficient is smoothed over near zero 

relative velocities to facilitate numerical integration and improve conformity of the simulation results 

to the test data as the trajectories approach the zero sliding velocity boundary. 

Because of the high gear ratio of the worm gear, friction-induced vibrations of the lead screw do 

not cause considerable fluctuations in the angular velocity of the DC motor (See Figure 4-15, for 

example). Hence, from this point on, in the numerical simulations, it is assumed that the angular 

velocity output of gearbox, Gθ& , is constant. The resulting simplified model is given in Section 3.5. 

The parameters minimizing Eq. (4.30) are found for every incidence where a limit cycle is found in 

the measured response (Figure 4-14) over a wide range of gearbox output angular velocities and 

applied axial forces. In Figures 4-16 to 4-21, sample results are shown that compare measurements 

with the simulation results obtained from the 2-DOF model of Section 3.5 with the fine-tuned 

parameters. 
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Figure 4-16: Measurement vs. simulation example. 

Inputs: )/(6.35),(9.152 sradNR G =ω=  - Parameters: )/(1086.1),/(18.1 4
radNmscradNmk

−×==  

a) phase plot, b) frequency response. Gray: measurements, black: simulation 

 

 
Figure 4-17: Measurement vs. simulation example. 

Inputs: )/(3.34),(9.273 sradNR G =ω=  - Parameters: )/(1037.3),/(31.1 4
radNmscradNmk

−×==  

a) phase plot, b) frequency response. Gray: measurements, black: simulation 
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Figure 4-18: Measurement vs. simulation example. 

Inputs: )/(3.40),(3.314 sradNR G =ω=  - Parameters: )/(1004.3),/(65.1 4
radNmscradNmk

−×==  

a) phase plot, b) frequency response. Gray: measurements, black: simulation 

 

 
Figure 4-19: Measurement vs. simulation example. 

Inputs: )/(7.83),(5.327 sradNR G =ω=  - Parameters: )/(1007.4),/(75.1 4
radNmscradNmk

−×==  

a) phase plot, b) frequency response. Gray: measurements, black: simulation 
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Figure 4-20: Measurement vs. simulation example. 

Inputs: )/(3.37),(8.330 sradNR G =ω=  - Parameters: )/(1079.5),/(88.1 4
radNmscradNmk

−×==  

a) phase plot, b) frequency response. Gray: measurements, black: simulation 

 

 
Figure 4-21: Measurement vs. simulation example. 

Inputs: )/(9.27),(7.336 sradNR G =ω=  - Parameters: )/(1000.4),/(67.1 4
radNmscradNmk

−×==  

a) phase plot, b) frequency response. Gray: measurements, black: simulation 

 

These results show the effectiveness of the fine-tuning step in matching the dynamical behavior of 

the model with that of the real system. 

In order to perform parameter studies through simulation, two-variable bilinear fitting was 
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performed for each of the four parameters in (4.29) with respect to the gearbox output angular 

velocity, Gω , and the applied axial force, R. Contour plots in Figures 4-22 to 4-25 show the results of 

these fittings.  

 

 
Figure 4-22: Variation of coupling stiffness, k, with gearbox output velocity and axial force 

 

 
Figure 4-23: Variation of friction boundary effect, 1/r1, with gearbox output velocity and axial force 
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Figure 4-24: Variation of lead screw support damping, c (×10
-3

), with gearbox output velocity  
and axial force 

 

 
Figure 4-25: Variation of friction scaling, sµ, with gearbox output velocity and axial force 

 

It is interesting to note that, as expected, coupling stiffness varies mainly with the axial force and 

exhibits a “work-hardening” behavior. Also, the friction scaling ( µs ) was found to be very close to 

one which shows that the initial estimate for WGµ  was quite accurate. 
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4.5 Parameter Studies 

Using the identified and fine-tuned model parameters, various performance maps can be obtained to 

study the effects of the variation of system parameters on the initiation of limit cycles and the 

amplitude of steady-state vibrations. The amplitude of vibrations is directly related to the generated 

audible noise from the system. In the following, the effects of input angular velocity, damping of the 

lead screw supports, and coupling stiffness are investigated. 

4.5.1 Effect of Input Angular Velocity 

Figure 4-26 shows the contours of steady-state vibration amplitudes as a function of gearbox output 

angular velocity and the applied axial force. It can be seen from this figure that, beyond a certain 

value of applied axial force, increasing the angular velocity increases the amplitude of vibration. This 

finding is well correlated with the subjective tests on the audible noise intensity levels from the lead 

screw system and the experimental results in Figure 4-14 

 

 
Figure 4-26: Contour plots of the steady state vibration amplitude vs. applied axial force and gearbox 

output speed 

 

4.5.2 Effect of Damping 

To investigate the effect of damping on the threshold of instabilities, the above simulations were 

repeated for three values of the constant damping coefficient. Figure 4-27 shows the result of these 
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simulations where a vibration amplitude of 0.01 (rad) has been taken as the approximate threshold of 

stable/unstable regions. It can be seen that, by increasing the damping, instabilities occur at higher 

levels of axial force. This phenomenon will be analyzed further in Chapter 5 using the eigenvalue 

analysis method and the method of averaging. 

 

 
Figure 4-27: Effect of lead screw rotational damping on the threshold of instabilities. 

The thick black line corresponds to the instability threshold in Figure 4-26. 

 

4.5.3 Effect of Stiffness 

The effect of the torsional stiffness of the coupling was also considered. Figure 4-28 shows the 

variation of the vibration amplitude as a function of applied axial force and the torsional stiffness of 

the coupling. This map was obtained from numerical simulations assuming 40=ωG (rad/s). Similar 

plots can be obtained for other preset angular velocities. 

Figure 4-28 shows that if the applied force is below 100 N, by either increasing or decreasing the 

stiffness of the coupling from its current design value, rotational vibration leading to excessive noise 

may be eliminated. Note that the horizontal axis is a scaling parameter applied to the coupling 

stiffness of the system. At higher axial loads, by using stiffer couplings – beyond 10 times the current 

value – much lower vibration amplitudes are obtained. However, other design requirements may 

prevent the use of a high stiffness coupling in the system. This finding opens the door for two 

possible design modifications, which can either eliminate the steady-state rotational vibrations or 
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reduce its amplitude in such a way that no audible noise is emitted from the system. The former is 

accomplished by incorporating a very soft flexible shaft and the latter by replacing the flexible shaft 

with a solid shaft, which guarantees high torsional stiffness. Experimental results showed that by 

implementing each of the above solutions, in identical situations, the audible noise is eliminated from 

the originally noisy system. 

 

 
Figure 4-28: The effects of coupling stiffness and axial loading on the dynamic behavior of the lead 

screw - Gearbox output angular velocity 40 (rad/s) 

4.6 Conclusions 

In this chapter, a two-step identification/fine-tuning approach is developed to estimate various friction 

and damping parameters of the system. In the first step, using the steady-sliding test results, the 

velocity effects (i.e. damping and velocity-dependent parts of friction) were separated from the force 

effects (i.e. coulomb coefficient of friction) and appropriate parameters were estimated using the least 

squares technique. Then, using the open-loop test results in which limit cycles were observed, 

effective load-dependent torsional stiffness of the lead screw system was estimated by minimizing a 

cost function that quantified the difference between measured and calculated displacements and 

velocities. In this step, friction and damping parameters were also adjusted so that maximum 

conformity between measurements and simulation results was achieved. The presented numerical 

simulations showed the accuracy of the identified mathematical model of the lead screw system under 

a wide range axial loading and input speed settings.  
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Parameter studies were performed to assess the effects of lead screw rotational damping and 

coupling torsional stiffness on the onset of instabilities. Simulation results showed that by increasing 

the damping, instabilities occur at higher levels of applied force. In addition, it was shown that the 

torsional stiffness of the coupling could change the axial loading range (dependent on the input speed) 

where the system generates significant audible noise. 
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Chapter 5 

Negative Damping 

The conversion of rotary to translational motion in a lead screw system occurs at the meshing lead 

screw and nut threads. The contacting threads slide against each other creating a friction force 

opposing the direction of motion. The friction-induced instability mechanisms in dynamical systems 

were introduced in Chapter 2. In this chapter, the role of the velocity-dependent friction coefficient on 

the stability of lead screw systems is studied. As observed and reported in numerous previous works 

found in the literature, a decreasing coefficient of friction with relative sliding velocity can effectively 

act as a source of negative damping causing instabilities that lead to self-excited vibration1. In this 

study, the 1-DOF model of Section 3.3 is used, which captures all of the essential features of the 

system dynamics pertaining to the negative damping instability mechanism. 

The equation of motion of the 1-DOF lead screw model is presented in Section 5.1. In Section 5.2, 

eigenvalue analysis method is used to study the local stability of the steady-sliding state and to drive 

parametric conditions for the negative damping instability mechanism. This study is expanded in 

Section 5.3, using the method of first order averaging. A complete picture of the stability properties of 

the system is obtained in this section. The results from the averaging analysis can also be used to 

predict the amplitude of vibrations when instability occurs and to study the effect of various system 

parameters on the steady state vibrations. This concept is important in understanding the role of 

friction-induced vibration on the generation of audible noise from a lead screw drive mechanism. A 

summary of results and conclusions is given in Section 5.3. 

5.1 Equation of Motion 

To study the negative damping instability mechanism, the 1-DOF model of Section 3.3 is chosen. 

                                                      
1 See Section 2.1.1. 
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Neglecting 0F  and 0T  for simplicity, (3.13) becomes 

 Rkck i ξ−θ=θ+θ+θΓ &&&  (5.1) 

where 

 mrI m λξ−=Γ tan  (5.2) 

and ξ  is given by (3.14). Also, the velocity-dependent coefficient of friction is defined by (3.10). 

Let iz θ−θ=  then ω−θ= &&z  and θ= &&&&z  where dtd iθ=ω  is a constant representing the input 

angular velocity. Substituting this change of variable into (5.1), gives 

 Rckzzcz ξ−ω−=++Γ &&&  (5.3) 

At steady-sliding we have 0=z&& , 0=z& , and 0zz = . Substituting these values in (5.3) yields 

 
k

Rc
z 0

0

ξ+ω
−=  (5.4) 

where 

 
( )

( ) λωµ+

λ−ωµ
=ξ

tansgn1
tansgn

0

0
0

R

R
rm

 (5.5) 

and 

 ωµ+µ+µ=µ
ω−

3210
0re  (5.6) 

The change of variable 0zzu −=  converts (5.3) to 

 ( )Rkuucu ξ−ξ=++Γ 0&&&  (5.7) 

Also, (3.10) becomes 

 ( ) ω+µ+µ+µ=µ
ω+−

ueu
ur

&&
&

321
0  (5.8) 

Furthermore, the equation for the contact force, which was given by (3.16), is simplified to 

 
( )

( )Γλµ+λ

+λ+Γ
=

sincos

tan0

s

m uckumrR
N

&
 (5.9) 
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where 0Γ  is found from (5.2) by replacing ξ  with 0ξ  and the abbreviation (3.15) is now written as 

 ( ) ( ) ( )( ) ( )ω+µ=µ uuuNuuus
&&&& sgn,sgn,  (5.10) 

5.2 Eigenvalue Analysis 

The equations of motion in state-space form can be formulated by the following change of variables 

 uyuy &== 21 ,  (5.11) 

Assuming 0≠Γ , (5.7) is represented by two first-order differential equations 

 ( )






Γ

ξ−ξ−−−
=

=
Rcyky

y

yy

021
2

21

&

&

 (5.12) 

The stability of the system’s fixed point (i.e. the origin) can be locally evaluated by calculating the 

eigenvalues of the Jacobian matrix of (5.12). Rewriting (5.12) as ( )YfY =&  where [ ]Tyy 21=Y  

and ( ) ( )[ ]Tff YYf 21= , the Jacobian matrix is written as 

 
0=∂

∂
=

YY

f
A  (5.13) 

Assuming ω  and R to be away from zero, carrying out the differentiations yields 

 0,ˆ
10

0

00

≠Γ














Γ

+
−

Γ
−= cckA  (5.14) 

where mrI m 00 tan λξ−=Γ  and 

 
( )

( )( ) µ
λωµ+

λ+
= d

R

Rr
c

m

2
0

2

tansgn1

tan1
ˆ  (5.15) 

where µd  is the gradient of the coefficient of friction curve vs. relative velocity and is given by 

 320
0 µ+µ−=

ω−

µ

r
erd  (5.16) 

Note that ĉ  is the equivalent damping coefficient due to the velocity dependent friction and 
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becomes negative if 0<µd . The eigenvalues of the Jacobian matrix evaluated at the fixed point (i.e. 

A) are given by 

 ( ) 0
2

00
21 4ˆ

2
1

2

ˆ
, Γ−+

Γ
±

Γ

+
−= kcc

cc
ee  (5.17) 

 When 00 >Γ 1, the steady sliding fixed point becomes unstable if 

 0ˆ <+ cc  (5.18) 

The above instability threshold can be stated alternatively in terms of the applied axial force, R. 

The system is unstable if 

 
( )( )

( ) µλ+

λωµ+
−>

dr

R
cR

m

2

2
0

tan1

tansgn1
 and 0<µd  (5.19) 

Stable/unstable regions according to (5.19) for varying values of R and 3µ  is shown schematically 

in Figure 5-1.  

 

 
Figure 5-1: Local stability of fixed points of the 1-DOF lead screw system. 

 

                                                      
1 Violation of this inequality may also lead to instability. In Chapter 6, this type of instability is discussed in 

detail. 
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Expectedly, when negative friction damping is present ( 0<µd ), there is a limiting value of axial 

force, beyond which the system becomes unstable. This limit proportionally increases by increasing 

the damping in the lead screw supports. It is interesting to note that these findings are in agreement 

with the experimental results reported in Chapter 4. 

5.2.1 Numerical Examples 

The parameter values used in the numerical examples presented here are given in Table 5-1. Most of 

these values are taken from experimental study of Chapter 4 given in Table 4-1 and Table 4-3.  

 

Table 5-1: Parameter values used in the simulations 

Parameter Value Parameter Value 

md  10.37 mm 1µ  218.0  

λ  5.57° 2µ  0203.0  

I  61012.3 −× kg.m
2
 3µ  41047.4 −×−  s/rad 

k  1 N.m/rad 0r  0.38  rad/s 

c  51020 −×  Nms/rad R  ±100 N 

m  3.8 kg ω  ±40 rad/s 
 

For an axial force of 100±=R N and input angular velocity of 40±=ω rad/s, the critical 

damping coefficients, crcc = , according to (5.19) are found as 

 If ( ) 1sgn +=ωR  then 41025.2 −×≈crc   

 If ( ) 1sgn −=ωR  then 41043.2 −×≈crc   

Figure 5-2 and Figure 5-3 show the system trajectories for crcc <  and crcc > , respectively. In 

each simulation the initial conditions was ( )ω−= ,00y . As expected, for the damping level below 

(above) the critical value, the fixed point is unstable (stable). In the unstable cases, system trajectories 

are attracted to a limit cycle. Using the method of averaging, in the next section the periodic solutions 

of the nonlinear equation of motion (limit cycles) are studied and the amplitude of steady-state 

vibrations are estimated. 

It is interesting to note that results in Figure 5-2 show that, in cases where force and angular 

velocity have the same sign (i.e. force assisting the motion), the displacement amplitude is 

considerably smaller than cases where the axial force resists the motion (i.e. 0<ωR ). 
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Figure 5-2: system trajectories for c = 2××××10

-4
 < ccr; unstable steady-sliding fixed point (0,0) 

 

 
Figure 5-3: system trajectories for c = 3××××10

-4
 > ccr; stable steady-sliding fixed point (0,0) 

 

5.3 First-order Averaging 

The eigenvalue analysis of the previous section does not reveal any information regarding the 

behavior of the nonlinear system once instability occurs. The existence of periodic solutions (limit 

cycles), region of attraction of the stable trivial solution, and the effects of system parameters on these 

features as well as the size of the limit cycles (amplitude of steady-state vibrations) are important 
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issues that are addressed in this section. The powerful method of averaging is the perturbation 

technique utilized here to study the behavior of the 1-DOF lead screw model as a weakly nonlinear 

system. For the lead screw equation of motion to be considered as a weakly nonlinear system, the 

friction and damping coefficients must be small. The relative smallness requirement of these 

parameters will be put into a more concrete setting later in the section. 

Before performing the averaging, (5.7) must be transformed to standard form [35]. To that end, 

some simplifications are necessary. In the following sections, first the equation of motion is 

simplified and then converted into a non-dimensionalized form. In the next step, a small parameter, 

ε , is introduced and the new dimensionless parameters are ordered to reach an approximate weakly 

nonlinear equation of motion accurate up to ( )εO . 

5.3.1 Assumptions 

As mentioned earlier, the current study is only concerned with the instability caused by negative 

damping. Thus, it is assumed that 0>Γ  for all u& . 

From (5.10), it is easy to see that the equation of motion of the 1-DOF lead screw has a 

discontinuity whenever θ&  crosses zero. To deal with this situation, the coefficient of friction is 

smoothed at zero relative velocity (i.e. 0=ω+u& ) according to 

 ( ) ( )( )ω+−ω+−
−ω+µ+µ+µ=µ

urur
eueu

&&
&& 10 1321  (5.20) 

where 01 >r  is a relatively large number. Note that in Chapter 4, a similar friction-velocity 

relationship was used1. Substituting (5.20) into (5.10) yields 

 ( ) ( )( ) ( ) ( )( )uuNueueuu
urur

s
&&&&

&& ,sgnsgn1, 10

321 ω+−ω+µ+µ+µ=µ
ω+−ω+−  (5.21) 

It must be noted that, although (5.21) is discontinuous at ( ) 0, =uuN & , the differential equation of 

the system, given by (5.7), is continuous, since in its original form, given by (3.11) and (3.12), only 

the product Nµ  appears. 

From (5.9), we have 

                                                      
1 Similar smoothed friction models were used by others, see for example [34,82,83]. 
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++

λ

Γ
= ucku

mr

R
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m

&
tan

sgnsgn 0  (5.22) 

5.3.2 Equation of Motion in Standard Form 

The first step towards transforming the equation of motion to a proper form for averaging is to non-

dimensionalize the parameters. This is an important step to appropriately “order” each parameter 

according to its “size”. Expanding (5.7), yields 
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R
rkuucumrI

s

s
m

s

s
m 
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λ−µ
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λ−ωµ
=++









λµ+

λ−µ
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tan1
tan

tansgn1
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tan1
tan

tan
0

02
&&&  (5.23) 

Introduce the dimensionless time tΩ=τ , where 

 Ik=Ω  (5.24) 

The derivative with respect to τ is given as 

 
( ) ( )

τ

⋅
Ω=

⋅

d

d

dt

d
 (5.25) 

Also, define non-dimensional parameters 

 λ= tan2

I

m
rm m

)
 (5.26) 

 
kI

c
c =~  (5.27) 

 R
k

r
R m

ω

Ω
=

)
, 0≠ω  (5.28) 

Using these new parameters, (5.23) is transformed to 
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−
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λµ+
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−
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0  (5.29) 

where prime denotes derivate with respect to τ . Now that the equation of motion is in its non-
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dimensionalized form, based on physical insight, parameters are ordered using the small positive 

parameter ε . The new parameters, 

 
λ

µ
=µ

λ

µ
=µ

tan
,

tan
0

0

)) s
s  (5.30) 

 
λ

=
tan

~c
c
)

 (5.31) 

together with m
)

 and R
)

 are all assumed to be ( )1O  with respect to ε  where λ=ε tan  is taken as the 

small parameter. Assuming, ρε=Ωω  where ρ  is ( )1O  and scaling u as 

 vu ερ=  (5.32) 

gives 

 ( )[ ] ( ) ( )[ ]ε′Ξ−εΞε=+′ε+′′ε′Ξε− ,,,1 101 vRvvcvmvv
)))

 (5.33) 

where 

 ( ) ( )
( ) 0

2
0

0 sgn1

1sgn

µωε+

−µω
=εΞ )

)

R

R
 (5.34) 

 ( ) ( )
( )ε′µε+

−ε′µ
=ε′Ξ

,1
1,,

,, 21
v

vv
vv

s

s
)

)

 (5.35) 

Also, the expression for the signed velocity-dependent coefficient of friction, ( )ε′µ ,vs

)
, in terms 

new dimensionless parameters, is 

 

( ) ( )( )

( ) ( ) 







′ε++εΞε−ω+′ω×

−ω+′ωµ+µ+µ=ε′µ
ω+′ω−ω+′ω−

vcvR
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evevv
vrvr
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0

321

sgnsgn

1ˆˆˆ,, 10

 (5.36) 

where 3,2,1,tanˆ =λµ=µ iii . After rearranging, (5.33) becomes; 

 ( )ε′ε=+′′ ,,vvfvv  (5.37) 

where,  
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 ( ) ( ) ( )[ ]011
1

11,, Ξ−Ξ+Ξ+′Ξε−−=ε′ −
Rvmvcmvvf
))))

 (5.38) 

It is important to notice that, despite the presence of the two sign functions (i.e. ( )1sgn +′v  and 
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ε− vcvR
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)

)

)

)

0
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1
sgn ) in (5.38), ( )ε′,,vvf  is bounded and Lipschitz continuous with 

respect to its arguments for ( ) [ ]0,0,, ε×∈ε′ Dvv , and D  is any compact subset of 2ℜ  and 00 >ε  is 

some constant. To show this, we only need to investigate ( )ε′,,vvf  at instances where 01 =+′v  and 

0=N  (which is equivalent to ( ) 00 =′ε++εΞε− vcvRmR
))))

). For the first case, notice that 

( ) 0,1, =ε−µ vs

)
 and sµ

)
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uniformly in ε . Also, 
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∂
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ε∂
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 for all ( )vv ′,  in the domain D and 

0≠N .  

For the second case, let ( ) ( ) vcvRmRvv ′ε++εΞε−=ε′δ
))))

0,, . Substituting this relationship into 

(5.38) gives ( ) ( )[ ] ( ){ }vmRmvvvvf +−ε′Ξε−δε−=ε′ −− ))) 1
1
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f

 exist and 

are bounded, thus confirming the Lipschitz continuity of (5.38) with respect to its arguments. 

To transform (5.37) into the standard form, the following change of variables is used 

 ϕ−=′ϕ= sin,cos avav  (5.39) 

This leads to 

 

                                                      
1 This is the consequence of initial assumption 0>Γ  (see section 5.3.1). 
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 ( ) ϕεϕ−ϕε−=′ sin,sin,cos aafa  (5.40) 

 ( ) ϕεϕ−ϕ
ε

−=ϕ′ cos,sin,cos1 aaf
a

 (5.41) 

Since ϕ′  is away from zero1, dividing (5.40) by (5.41) yields 

 
( )
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( )εϕε≡

ϕεϕ−ϕ
ε

−

ϕεϕ−ϕ
ε−=

ϕ
,,

cos,sin,cos1

sin,sin,cos
ag

aaf
a

aaf

d

da
 (5.42) 

5.3.3 First Order Averaging 

In this section, the averaging method ([35]) is applied to (5.42). To obtain the first order averaged 

equations, the right-hand side of (5.42) must be averaged over a period (i.e. π= 2T ) while keeping a  

constant2. This gives 

 

( )
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π

π

ϕϕϕ−ϕ
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ϕϕ
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2
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2
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0,,
2
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 (5.43) 

There are a few variations on the basic theorem for the periodic first order averaging [35,44, 84]. In 

Appendix B, a slightly modified version of the theorem proven in [44] is presented and proved which 

establishes the error estimate of the averaged system, (5.43), with respect to the original differential 

equation, (5.42). Substituting (5.39) into (5.38) and then substituting the result into (5.43) gives 

                                                      
1 Note that the change of variable (5.39) is only allowed in situations where the RHS of (5.41) remains bounded 

as a approaches zero [84]. Here, this change of variables is allowed when R is away from zero, since after 

expanding (5.38) using power series, we get ( ) ( )εϕ=εϕ−ϕ ,,
~

,sin,cos afaaaf  for some bounded function 

( )ϕ,
~

af  for 
00 aa <≤  and for sufficiently small 10 <a  such that 0≠N . 

2 For simplicity of notation, from this point on, prime denotes differentiation with respect to ϕ. 
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After carrying out the integration of the first term, becomes 
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where 
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The averaged differential equation given by (5.45) is too complicated to be approached 

analytically. Limiting our study to the situations where 0>ω  and also where 0>R  is large enough 

such that N  remains positive over the domain of interest, sµ
)

 simplifies to 

 ( ) ( )( ) ( )ϕ−−ϕ−ωµ+µ+µ=ϕµ
ϕ−ω−ϕ−ω− sin1sgn1sin1ˆˆˆ, sin1

3
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21
10 aeaea

arar

s

)
 (5.47) 

Substituting (5.47) into (5.45) and simplifying yields 

 ( )∫
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,sin
22

daR
ac

a s

))
)

 (5.48) 

In addition to the assumption of 0>N , if the maximum amplitude is limited to 1, i.e. 10 ≤≤ a , 

(5.47) further simplifies to 

 ( ) ( )( )ϕωϕω −ϕµ−µ+µ=ϕµ sin
23

sin
21

10 1sin, arar

s eraea
))))

 (5.49) 

where ω−= 1
2

r
er  and also 

 ωµ+µ=µ 311 ˆˆ)
 (5.50) 

 ω−µ=µ 0
22 ˆ r
e

)
 (5.51) 
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 ωµ=µ 33 ˆ)
 (5.52) 

Substituting (5.49) into (5.48) and simplifying gives 

 

 

( )

( )
∫∫

∫∫
π

ϕω+
π

ϕω

π
ϕω

π
ϕω

ϕϕµ
π

ε
−ϕϕµ

π

ε
+

ϕϕµ
π

ε
−ϕϕµ

π

ε
+

µ+
ε−=′

2

0

sin
22

2

0

sin2
32

2

0

sin
12

2

0

sin
2

3

101

10

sin
2

sin
2

sin
2

sin
22

deRrdeRar

deRrdeR
aRc

a

arrar

arar

))))

))))
)))

 (5.53) 

Carrying out the rest of the integrations, one finds 

 
( ) ( )

( ) ( )( )arrRrarRar

arRrarRa
Rc

a

ω+Λµε−ωΛµε+

ωΛµε−ωΛµε+
µ+

ε−=′

100,12210,232

10,11200,12
3

2
))))

))))
)))

 (5.54) 

where 

 ( ) ∫
π

φζ φφφ
π

=ζΛ
2

0

sin
, cossin

2
1

de
mn

mn  (5.55) 

General formulae for (5.55) are derived in Appendix C. For the integrals in (5.54), one finds 

 ( )
( )∑

∞

=

−

−
ζ=ζΛ

1

12
2120,1

!2n

n

n
n

n
 (5.56) 

 ( ) ( )
( )∑

∞

=

−

−
ζ

−
=ζΛ

1

22
2120,2

!2

12

n

n

n
n

nn
 (5.57) 

In the next section, steady state solutions of (5.54) are studied. It must be noted that, in cases where  

stable (unstable) non-trivial solutions exist and 1≤= ∗
aa , the above averaging process guarantees 

that the original system, (5.29), has stable (unstable) limit cycle in an ( )εO  neighborhood of the 

circle Ωω= ∗ar , with a period ( )εO  to π2  for sufficiently small 0>ε [84]. 

5.3.4 Steady State Solutions 

Substituting (5.56) and (5.57) into (5.54) and rearranging 
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( )
( ) ( )( )∑

∞

=

−−−−−

−

−

+ωµ−ωµ−ωµ+−µ
ω

ε+

µ+
ε−=′

1

1212
1022

12
112

12
02

22
132212

22

3

12
!2

2

n

nnnnn

n

n

arrrrrrrnr
n

n
R

a
Rc

a

)))))

)))

(5.58) 

It is obvious that 0=a  is the trivial solution. To determine its stability, daad ′  is derived and 

evaluated at 0=a . From (5.58) 

 ( ) ( )( )[ ]102211202323
0 2

rrrrrrrRRc
dd

ad

a

+ωµ−ωµ−ωµ+µ+µ+−
ε

=
′

=

))))))))
 (5.59) 

From (5.59), one can find a parametric condition for the stability of the trivial solution (i.e. 

0
0

<
′

=add

ad
), which is found to be 

 ( ) ( )( )10221120232 1 rrrrrrrRc +ωµ−ωµ−ωµ+µ−>
))))))

 (5.60) 

By substituting the original system parameters, (5.60) is simplified to 

 
0=∂

µ∂
−=>

u

mcr
u

Rrcc
&

&
 (5.61) 

It is interesting to note that, (5.61) is accurate to ( )2εO  when compared to what was found from 

linear eigenvalue analysis ((5.15) and (5.16)): 

 
( ) 02

2
0

2

2
tan1

tan1

=
∂

µ∂

λµ+

λ+
−>

y

m
y

Rrc , 0,0 >ω>R  (5.62) 

Unfortunately, the other possible solutions (i.e. stable or unstable limit cycles) can only be found 

numerically due to the complexity of the averaged equations. However, some important insights can 

be gained be examining (5.58). In Appendix D, it is shown that, depending on the system parameters 

one of the following three cases defines the dynamic behavior of the averaged system: 

1. The trivial solution is stable and no other solution exists. 

2. The trivial solution is stable and is surrounded by an unstable limit cycle, which defines the 

region of attraction of the trivial solution. The unstable limit cycle is inside a stable limit 

cycle. 
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3. The trivial solution is unstable and is surrounded by a stable limit cycle. 

 

Two natural extensions of the averaging results of this section are included as appendices. In 

Appendix E, the possibility of using higher-order averaging to improve the accuracy of the predicted 

vibration amplitudes of the 1-DOF is shown. The method of first-order averaging is applied to a 2-

DOF model of Section 3.6 in Appendix F.  

5.3.5 Numerical Simulation Results 

In this section, a few numerical examples are presented. In these examples the system’s parameter 

values, unless otherwise specified, are those listed in Table 5-2. For the parameter values and the 

initial conditions selected, all simulation results satisfy 1−≥′v  and 0>N  conditions. As a result, 

the simplified averaged system equation given by (5.53) or (5.58) is used. Computationally, it is 

much more efficient to use (5.53) instead of the infinite sum of (5.58).  

 

Table 5-2: Parameter values used in the simulations 

Parameter Value Parameter Value 

md  10.37 mm 1µ  218.0  

λ  5.57° 2µ  0203.0  

I  61012.3 −× kg.m
2
 3µ  41047.4 −×−  s/rad 

k  1 N.m/rad 0r  0.38  rad/s 

c  51020 −×  Nms/rad 1r  2 rad/s 
m  1kg ω  40 rad/s 
R  100 N   

 

 Figure 5-4 and Figure 5-5 show comparisons between numerical integration of the approximate 

(truncated) equation of motion given by 

 ( )0,,vvfvv ′ε=+′′  (5.63) 

and the fixed points of the averaged amplitude equation, (5.53), for two values of lead screw 

damping; crcc <×= −4102  and 
crcc >×= −4103 , respectively. Note that in these figures, both 

amplitudes are scaled by Ωω  to reflect the physical system’s vibration levels. 

Results show very accurate prediction of the steady-state amplitude of vibration by the first order 

averaging method. However, when compared with the original (untruncated) equation of motion, 
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(5.37), the averaging results have some differences as shown in Figure 5-6 and Figure 5-7. This 

deviation is caused by the effects of the higher order terms omitted from the first order averaging 

process. It must be noted that, the steady-sliding amplitudes of vibration in Figure 5-6 and Figure 5-7 

are predicted very accurately by the averaged equation for the parameter values given in Table 5-2. 

 

 
Figure 5-4: First order averaging results. c=2××××10

-4
  

Grey: truncated equation of motion; Black: amplitude of vibration from first order averaging 

 

 
Figure 5-5: First order averaging results. c=3××××10

-4
  

Grey: truncated equation of motion; Black: amplitude of vibration from first order averaging 
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Figure 5-6: First order averaging results. c=2××××10

-4
  

Grey: original equation of motion; Black: amplitude of vibration from first order averaging 

 

 
Figure 5-7: First order averaging results. c=3××××10

-4
  

Grey: original equation of motion; Black: amplitude of vibration from first order averaging 

 

Figure 5-8 shows the bifurcation diagram of the amplitude equation, (5.53), where the damping 

coefficient, c, is taken as the control parameter. The trivial solution (i.e. the fixed point of the original 

system) undergoes a subcritical pitch-fork bifurcation [36] at approximately 

radsmNccr /..1032.2 4−×= . It can be shown that this bifurcation corresponds to a Hopf bifurcation 

of the original system [36]. The unstable branch, shown by the dotted line, determines the domain of 

u
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attraction of the trivial or steady-sliding fixed point.  

 

 
Figure 5-8: Bifurcation diagram of the averaged amplitude equation. 

 “–” Stable; “– –” Unstable 

 

The limiting values 1c  and 2c  in Figure 5-8 correspond to the limits discussed in Appendix D, 

Section D.3.  

Figure 5-9 and Figure 5-10 show the effect of Stribeck friction ( 2µ ) and linear negative friction 

( 3µ ) parameters on the amplitude bifurcation diagram, respectively. In these figure, bifurcation plots 

are drawn with respect to the applied axial force, R, as the control parameter. As shown, 2µ  controls 

the domain of attraction of the stable trivial solution without significant change to the limiting value 

of R. The reason for this is that the term ω−µ 0
2

r
e  is negligible for the considered values of 0r  and ω  

(see (5.60)). However, 3µ  directly controls the threshold of instability of the trivial or steady-state 

solution.  

Further examples and discussions are presented in Appendix D. 
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Figure 5-9: Effect of Stribeck friction on bifurcation 

 

 

Figure 5-10: Effect of negative damping on bifurcation. 

 

5.4 Conclusions 

In this chapter, using the 1-DOF model of a lead screw drive developed in Section 3.3, the instability 

caused by the negative gradient of the friction coefficient with respect to velocity was studied. The 

local stability of the steady-sliding fixed point of the system was studied by examining the 

eigenvalues of the Jacobian of the linearized system. It was shown that the steady-sliding fixed point 

of the system loses stability if the condition given by either (5.18) or (5.19) is satisfied.  
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The eigenvalue analysis result was extended by the application of the method of averaging. It was 

shown (see Appendix D) that depending on the system parameters, one the following cases define the 

dynamic behavior of the system:  

1. The trivial solution is stable and no other solution exists. 

2. The trivial solution is stable and is surrounded by an unstable limit cycle that defines the 

region of attraction of the trivial solution. The unstable limit cycle is inside a stable limit 

cycle. The presence of Stribeck effect is a necessary condition in this scenario. 

3. The trivial solution is unstable and is surrounded by a stable limit cycle. 

The numerical simulation results presented, also showed the applicability of the averaging results 

in approximating the amplitude of periodic vibrations. The accuracy of the approximations – as 

presented in Appendix E – can be improved by using higher order averaging. 
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Chapter 6 

Kinematic Constraint and Mode Coupling 

Instability Mechanisms 

In Chapter 2, three friction-induced instability mechanisms were introduced. Negative damping 

instability was studied in the previous chapter. In this chapter, the two remaining instability 

mechanisms, i.e. “kinematic constraint” and “mode coupling”, are studied. In contrast to the negative 

damping instability, these two mechanisms can affect a system even when the coefficient of friction is 

constant. The mode coupling instability mechanism is exclusive to multi-DOF systems.  

In Section 6.1, the kinematic constraint instability mechanism is studied using the basic 1-DOF 

lead screw model of Section 3.3. Mode coupling instability is studied in Sections 6.2 and 6.3 using 

the 2-DOF models of Section 3.5 and Section 3.6, respectively. In these sections, the kinematic 

constraint instability is also studied. Mode coupling in the 3-DOF model of Section 3.7 is discussed in 

Section 6.4. In each section, numerical examples are given to demonstrate the findings. Conclusions 

drawn in this chapter are reviewed in Section 6.5.  

6.1 Kinematic Constraint Instability in 1-DOF Lead Screw Model 

To study the kinematic constraint instability, the same 1-DOF model used in the previous chapter is 

considered here. For simplicity, a constant coefficient of friction is assumed (i.e. 10 µ=µ=µ ). The 

eigenvalues of the Jacobian matrix given by (5.17) are simplified to 

 0
2

00
21 4

2
1

2
, Γ−

Γ
±

Γ
−= kc

c
ee  (6.1) 

From (6.1), it is evident that regardless of the linear damping ( 0≥c ), divergence instability occurs 
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whenever 00 <Γ . In terms of systems’ parameters, the fixed point is unstable whenever the 

following inequalities hold simultaneously: 

 

0tan)

0)

tan)

00 <λξ−=Γ

>ω

λ>µ

mrIIII

RII

I

m

 (6.2) 

The first condition in (6.2) is the “self-locking” condition in lead screw drives [5,67]. The second 

condition states that instability can only occur if the axial force (load) is applied in the direction of 

motion (assisting)1. The third condition establishes a limiting ratio between lead screw inertia and the 

translating mass2. 

6.1.1 A Note Regarding the Solution of the Equation of Motion 

Before presenting a numerical example, it is worthwhile to study the unstable behavior of the system 

when conditions (6.2) are fulfilled. Setting 0F  and 0T  to zero for simplicity, the contact force given 

by (3.16) becomes 

 
( ) ( )

( )( )λξ−λµ+λ

+λ+λξ−
=

tansincos
tantan 0

ms

mm

mrI

uckumrRmrI
N

&
 (6.3) 

where the change of variables (5.11) was used. Limiting our study to a case where 0>R  and 0>ω , 

(5.5) simplifies to 

 
λµ+

λ−µ
=ξ

tan1

tan

0

0
0 mr  (6.4) 

Also, in the case of a constant coefficient of friction with 0>ω+u& , ξ  given by (3.14) reduces to 

 
( )
( ) λµ+

λ−µ
=ξ

tan1
tansgn

0

0

N

N
rm

 (6.5) 

It can be seen that, under the kinematic constraint instability conditions, if 

                                                      
1 See Section 6.1.3 below for further discussions. 
2 This relationship holds for other system configurations (See Section 3.3) where I and m designate the inertia of 

the rotating parts and translating parts of the lead screw drive, respectively. 
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 ( ) ( )RmrIuckumr mm 0tantan λξ−−>+λ &   (6.6) 

then (6.3) has no solutions; setting ( ) 1sgn =N  in the RHS of (6.3) results in a negative contact force, 

and setting ( ) 1sgn −=N  results in a positive contact force. If such a situation happens, further 

motion is impossible and the lead screw is to be considered stationary (i.e. 0=ω+u& ). The 

instantaneous lead screw seizure is accompanied by an infinite impulse-like normal force.  

On the other hand, if under the same conditions as above 

 ( ) ( )RmrIuckumr mm 0tantan λξ−−<+λ &   (6.7) 

then (6.3) has two distinct solutions: 

 
( ) ( )

( )( )
0,

tansincos
tantan 0 >

λξ−λµ+λ

+λ+λξ−
=

+

N
mrI

uckumrRmrI
N

m

mm
&

 (6.8) 

and 

 
( ) ( )

( )( )
0,

tansincos
tantan 0 <

λξ−λµ+λ

+λ+λξ−
=

−

N
mrI

uckumrRmrI
N

m

mm
&

  (6.9) 

where 
λµ+

λ−µ
=ξ=ξ+ tan1

tan

0

0
0 mr  and 

λµ−

λ+µ
−=ξ− tan1

tan

0

0
mr . 

These two solutions in turn lead to two different possible solutions for the equation of motion given 

in state-space form by (5.12). One finds 

 
( )

+λξ−

+−
=→>

tan
0

mmrI

ucku
uN

&
&&  and 

( )

−λξ−

+−
=→<

tan
0

mmrI

ucku
uN

&
&&  (6.10) 

Dupont [41] has studied the problem of existence and uniqueness in the forward dynamics 

equations of frictional systems and reported similar results for a lead screw. A possible way to resolve 

this problem is to give the contacting bodies flexibility [85, 86]. This is done in the model presented 

in Section 3.5, where nut and lead screw threads can deform. In the numerical example presented 

next, both rigid and flexible models are used to simulate the “sprag-slip” behavior of the lead screw. 

6.1.2 Examples 

The parameters values used in the numerical simulations of this section are listed in Table 6-1. First, 
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notice that the self-locking condition is satisfied for the selected value of the constant coefficient of 

friction (i.e. ( ) 0975.057.5tan218.0 =°>=µ ). 

Table 6-1: Parameter values used in the simulations 

Parameter Value Parameter Value 

md  10.37 mm c  51020 −×  Nms/rad 

λ  5.57° R  100 N 

I  61012.3 −× kg.m
2
 µ  218.0  

k  1 N.m/rad ω  40 rad/s 
 

Using (6.2), the critical translating mass is found to be; (kg) 10.10≈crm . Figure 6-1 shows the 

evolution of the real and imaginary parts of the two eigenvalues given by (6.1) as the translating 

mass, m , is varied. For crmm > , the system loses stability due to divergence. 

 

 
Figure 6-1: Evolution of the eigenvalues as the translating mass, m, is varied. 

 

Figure 6-2(a) and Figure 6-2(b) show the phase plane plots of the 1-DOF model for (kg) 10=m  

and (kg) 11=m , respectively. It can be seen that, by crossing the kinematic instability threshold, the 

system becomes unstable. This instability is characterized by a violent motion accompanied by very 

high decelerations and contact forces. 

To see what happens during the “sprag” phase, the same system parameters are used in the 

numerical simulation of the 2-DOF model of Section 3.5. In this example, very high contact stiffness 
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and damping values are selected; 810== cc ck . The 21 yy −  projection of the trajectories shown in 

Figure 6-3(a) is almost indistinguishable from the 1-DOF system trajectories plotted in Figure 6-2(b). 

The impulse-like peaks in the contact force as the system goes through the “sprag” phase is shown in 

Figure 6-3(b). For the selected values of the contact stiffness and damping, this force peaks to about 

320 kN. 

 
Figure 6-2: System trajectories for constant µ. (a) m = 10 < mcr (b) m = 11 > mcr 

 

 
Figure 6-3: Instability caused by kinematic constraint - 2DOF model with very high contact stiffness and 

damping. (a) phase-plane, (b) contact normal force 

As mentioned earlier, damping does not affect the stability of the 1-DOF model when the 

kinematic constraint instability mechanism is active. However, damping has a considerable effect on 
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the behavior of the nonlinear system. Figure 6-4 shows phase plots of the 1-DOF model with three 

levels of lead screw support damping.  

 

 
Figure 6-4: Effect of damping on the unstable system 

 

For each of these three simulation results, the line ( ) 0, =uuN &  is also drawn. In agreement with 

the discussions of Section 6.1.1, the onset of lead screw seizure is the point where the trajectory 

reaches this line. Note that from (6.3), the line ( ) 0, =uuN &  is given by 

 R
mr

mrI
u

c

k
u

m

m










λ

λξ−
−−=

tan
tan 0&  (6.11) 

As damping is increased, the amplitude of vibrations is slightly reduced. As shown in Figure 6-5, 

increasing damping increases the mean deflection of coupling element, which increases the mean 

thread normal force. 

The results presented in Figure 6-3 were obtained using a 2-DOF with very high contact stiffness 

and damping. As shown in Figure 6-6, by decreasing the contact parameters (i.e. ck  and cc ) the 

trajectories become smoother and the deflection of the coupling element (i.e. torsional spring, k) 

becomes positive during the sprag phase. In the next section, the stability of this 2-DOF model is 

studied in detail. 
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Figure 6-5: Effects of damping on the steady-state vibration of the lead screw system  

under kinematic constraint instability 

 

 
Figure 6-6: Effect contact parameters on the response of the system under kinematic constraint 

instability 

 

6.1.3 Region of Attraction of the Stable Steady-sliding Fixed Point 

The linear eigenvalue analysis of Section 6.1 showed that when the conditions given by (6.2) are not 

satisfied and 0>c , the trivial fixed point of the system is asymptotically stable. However, there can 

be situations where the region of attraction of the stable fixed point is quite small, leading to 

instabilities even when (6.2) does not hold.  
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Consider the case where  λ>µ tan0 , 0<R ,  and 0>ω . It is obvious that only the first condition 

of (6.2) is satisfied and hence the steady-sliding fixed point is stable. Further, assume that 

0
tan1
tan

tan
0

02
<

λµ+

λ−µ
λ− mrI m  (this is the third condition of (6.2) if 0>R ). First, notice that for 

any initial condition such that ( ) ( )( ) 00,0 >uuN & , no motion is possible and velocity instantaneously 

resets to zero (i.e. ( ) ω−=+0u& ). This behavior conforms to the same argument as in Section 6.1.1, 

when no solution exists (i.e. setting ( ) 1sgn =N in (6.3) results in a negative contact force and setting 

( ) 1sgn −=N  yields a positive contact force). At this point (i.e. ( )( )ω−,0u ), if N is negative, the 

system’s trajectory follows a path below the ω−=u&  line (i.e. reversed rotation of the lead screw) and 

reaches the 0=N  line again. This cycle continues until the point 

( )








ω−

ω
+

λ

λξ−
− ,

tan

tan 0

k

c

kmr

RmrI

m

m , where the 0=N  line intersects the horizontal ω−=u&  line. 

Also note that initial motion from conditions where ( ) ( )( ) 00,0 <uuN &  and ( ) ω−<0u&  is not possible 

(this also follows a similar argument as Section 6.1.1), and the system’s trajectory instantaneously 

transfers to ( )( )ω−,0u  from which the motion continues towards to origin. 

The solutions that start from initial conditions, satisfying ( ) ( )( ) 00,0 <uuN &  and ( ) ω−≥0u&  are 

attracted towards the origin and, if they do not touch the 0=N  line, reach it asymptotically. Because 

of the assumption of constant coefficient of friction, (5.7) is simplified and these solutions satisfy 

 00 =++Γ kuucu &&&  (6.12) 

If any of these trajectories reach the 0=N  line say at 1tt = , then the motion stops 

instantaneously and starts from the rest at ( )( )ω−,1tu . This pattern continues and may even result in a 

limit cycle at steady state. Otherwise, the solution reaches the origin asymptotically.  

Figure 6-7(a) shows two trajectories starting well away from the equilibrium point for NR 50−=  

and rad
smNc ..310−= . Other system parameters are taken from Table 6-1. Although trajectories cross 

the 0=N  line, the origin is stable. In Figure 6-7(b), the applied axial force is increased to 

NR 10−=  while the other parameters are unchanged. In this case, the system trajectories are 

attracted to a limit cycle.  
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Figure 6-7: System trajectories for ω=40 (rad/s). (a) R=-50 (N); (b) R=-10 (N) 

 

From the above discussions, one can conclude that, if R−  is large enough such that every 

trajectory starting from ( )ω−,0u  where 
( )

k

c

kmr

RmrI
u

m

m ω
+

λ

λξ−
−≤

tan
tan 0

0  asymptotically reach the 

origin, the steady-sliding fixed point is globally stable. Otherwise, the region of attraction is only a 

subset of 2ℜ . 

6.2 Stability Analysis of the 2-DOF Lead Screw Model with 

Compliant Threads 

In this section, the 2-DOF model of Section 3.5 with constant coefficient of friction is considered. In 

what follows, first, the equations of motion of the system are simplified and the steady-sliding fixed 

point is transferred to the origin by introducing a suitable change of variables. Then, the local stability 

of the steady-sliding fixed point is studied by evaluating the eigenvalues of the Jacobian matrix of the 

linearized system. In Section 6.2.1, the case of an undamped system is analyzed and necessary and 

sufficient conditions for instability are derived. The case of a damped system, which is somewhat 

more complicated, is treated in Section 6.2.2. The analyses presented involve both analytical and 

numerical approaches.  

 The equations of motion given are given by (3.25) and (3.26) 
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( ) ( )( )

( )( )λµ−λλθ−λ+

λµ−λλθ−λ+θ−θ−θ=θ

cossinsincos

cossinsincos

smcm

smcmi

rxcr

rxkrckI

&&

&&&

 (6.13) 

 
( )( )

( )( ) Rrxc

rxkxm

smc

smc

+λµ+λλθ−λ−

λµ+λλθ−λ−=

sincossincos

sincossincos
&&

&&
 (6.14) 

where sµ  is defined by (3.15). Also, here 0F  and 0T  are neglected for simplicity. To simplify the 

subsequent analysis, the steady-sliding fixed point of the system is transferred to the origin. Towards 

that end, let 

 
im

i

rxu

u

λθ−=

θ−θ=

tan2

1  (6.15) 

Substituting (6.15) into (6.13) and (6.14) and setting 02121 ==== uuuu &&&&&&  yields 101 uu =  and 

202 uu =  where 

 R
kk

c
u 0

10

ξ
−ω−=  (6.16) 

 
( ) 10

0
220 tan

tansgn1cos
1

ur
R

R

k
u m

c

λ+
λωµ+λ

=  (6.17) 

where 0ξ  is given by (5.5). To transfer the fixed point to the origin, let 

 
i

m

i

r

ux
y

uy

θ−
λ

−
=

θ−−θ=

tan
20

2

101

 (6.18) 

Substituting (6.18) into (6.13) and (6.14) and rearranging yields 

 ( )yyfKyyCyM &&&& ,=++  (6.19) 

where [ ]Tyy 21=y  and 

 







=

m

I

ˆ0

0
M  (6.20) 
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( ) ( )

( ) ( ) 








λωµ+λωµ−−

λωµ+−λωµ−+
=

cccc

cccc

cRccRc

cRccRcc

ˆtansgnˆˆtansgnˆ

ˆcotsgnˆˆcotsgnˆ

00

00
C  (6.22) 

 ( ) ( ) ( )( )( )( ) 








λ

λ
+−+−ω+µ−ωµ=

tan

cotˆˆˆˆˆsgnsgn, 121210 RycycykykyNR cccc
&&&&yyf  (6.23) 

where N is given by (3.24) and 

 cmc krk λ= 22 sinˆ  (6.24) 

 cmc crc λ= 22 sinˆ  (6.25) 

 mrm m λ= 22 tanˆ  (6.26) 

 
( )

R
R

r
R m

λωµ+

λ
=

tansgn1
tanˆ

0

. (6.27) 

Note that for a constant coefficient of friction ( 0µ=µ ), the nonlinear force vector given by (6.23) 

is non-zero only when the response trajectory reaches the stick-slip boundary ( 0=sv ) or when the 

contact force changes sign. Setting the force vector to zero gives the linearized version of the 

equations of motion for the case of constant coefficient of friction. One finds 

 0=++ KyyCyM &&&  (6.28) 

From (6.21) and (6.22), the role of friction in breaking the symmetry of the stiffness matrix and the 

damping matrix is evident. Because of this effect, either by varying the constant coefficient of friction 

( 1µ ), the coupling torsional stiffness ( k ), or the contact stiffness ( ck ), the linearized system (6.28) 

can have identical undamped natural frequencies, which defines the onset of the flutter instability 

[43].  
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6.2.1 Undamped System 

The natural frequencies of the undamped system are the roots of the following equation 

 ( ) 0det 2 =ω− MK  (6.29) 

which is a quadratic equation in 2ω . Expanding (6.29) yields 

 00
2

2
4

4 =+ω+ω aaa  (6.30) 

where 

 ( )( ) ( )( )

( )( )λωµ+=

−λωµ+−λ−ωµλ=

=

tansgn1ˆ

ˆtansgn1ˆtansgncotˆˆ

ˆ

0

2

4

Rkka

mkRIkRmka

Ima

c

cc  (6.31) 

Since 04 >a  and 00 >a 1, instability occurs (i.e. natural frequencies become complex numbers) 

whenever 

 02 >a  (6.32) 

or 

 04 40
2

2 <− aaa  (6.33) 

Instability condition given by (6.32) can be rearranged as 

 ( )( ) ( ) 0ˆtanˆtansgn1 02 >−λξ−λωµ+−= mkmrIkRa mc  (6.34) 

where 0ξ  is given by (5.5) and also (6.26) was used. Obviously, if 0tan00 >λξ−=Γ mrI m , 

inequality (6.34) cannot be satisfied. On the other hand, if ( ) 1sgn =ωR  and λ>µ tan  then for 

suitable values of system parameters, the inequality 00 <Γ  is satisfied. In this case, the system is 

unstable if 

                                                      
1 In this work, it is assumed that the condition; µ<cot λ always holds. Violation of this condition would require a 

very high coefficient of friction in a lead screw with a helix angle greater than 45o, which is not encountered in 

any practical situation [4]. 
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 ( )
c

m
k

k

m

I
r >








−λξλµ+λ tantan1cos 0

2  (6.35) 

where (6.24) and (6.26) were used. It is interesting to note that the necessary (but not sufficient) 

condition for instability to occur according to (6.35) is the same as the kinematic constrain instability 

conditions derived in the previous section for the 1-DOF model. Here, this type of instability is called 

the “secondary kinematic constraint” instability mechanism to distinguish it from the case of the 

previous section, where ( ) 1sgn =ωR , λ>µ tan , and 00 <Γ  were sufficient conditions for 

instability.  

Moreover, since 02 =a  satisfies (6.33), the boundary that is defined by 02 =a  is inside the region 

defined by (6.33). As ∞→ck , the undamped 2-DOF model reduces to the 1-DOF model of the 

previous section and (6.35) becomes the same as the condition for the kinematic constraint instability 

of the 1-DOF model. 

The second instability condition, given by (6.33), represents the mode coupling (flutter) instability. 

The equation for the flutter instability boundary (i.e. coalescence of the two real natural frequencies) 

is found by replacing the less-than sign with the equal sign in (6.33). After some manipulations, one 

finds 

 0ˆˆ 2
32

2
1 =++ kbkkbkb cc  (6.36) 

where 

 

( )( ) ( )( )[ ]
( )( ) ( )( )[ ]

2
3

2

2
1

ˆ

tansgn1cotsgn1ˆˆ2

tansgn1cotsgn1ˆ

mb

RIRmmb

RIRmb

=

λωµ+−λωµ−=

λωµ++λωµ−=

 (6.37) 

This equation is quadratic in k  and ck̂  and can be solved to find parametric relationships for the 

onset of the flutter instability. The conditions for the solutions to be real positive numbers are (either 

for k  as a function of ck̂  or vise versa) 

 04 31
2

2 ≥− bbb  (6.38) 

 02 <b  (6.39) 
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Inequality (6.38) can be expressed as 

 ( )( ) ( )( ) 0tansgn1cotsgn1ˆ16 3 ≤λωµ+λωµ− RRIm  (6.40) 

which holds if and only if 00 >ξ . This in turn requires that 

 0tan >ω∧λ≥µ R  (6.41) 

The second inequality (6.39) can be expressed as 

 ( )( )( ) 0tantansgn1 0 >λξ+λωµ+ mrIR m  (6.42) 

which is satisfied for 00 >ξ . 

Hence, for the undamped system, mode coupling can only happen in the self-locking lead screw 

drives where 0>ωR  (i.e. where the applied force is in the direction of the translation).  

6.2.1.1 Numerical Examples and Discussion 

Figure 6-8 shows the stability region of the 2-DOF model (6.29) for the parameters values in Table 

6-1 and 5=m . Note that ( ) 00 >µΓ  for 3.00 ≤µ≤ . As a result, stability is not affected by (6.32). 

The hatched region corresponds to the parameter range, where the two natural frequencies are 

complex and the system is unstable. The boundary of this region is the flutter instability boundary 

defined by 21 ω=ω .  
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Figure 6-8: Stability of the 2-DOF system as contact stiffness and coefficient of friction are varied.  

m = 5 and Rω>0. Hatched region: unstable. 

 

It is interesting to note that the flutter boundary is tangent to the λ=µ tan  line (at 6107.1 ×≈ck ). 

As predicted in the above, the instability region lies entirely on the right of this line. Figure 6-9 shows 

the variation of the real and imaginary parts of the eigenvalues of the undamped system for 

λ>=µ tan2.0 . It can be seen that flutter instability occurs as the two natural frequencies merge. 

Further increase of the contact stiffness uncouples the two modes and the stability is restored. 

 

 
Figure 6-9: Variation of the real and imaginary parts of the eigenvalues  

as the contact stiffness is varied. µµµµ = 0.2, m = 5. 
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For larger values of the translating mass, m, inequality (6.32) can also become active in the 

considered ranges of parameters, thus creating a mixed situation where both mode coupling and 

secondary kinematic constraint instability mechanisms influence the stability of the system. An 

example of this situation is given by the stability map of Figure 6-10. The translating mass is 

increased to kgm 15= , resulting in 0Γ  vanishing at 178.0≈µ . The hatched regions in this figure 

show parameter ranges where these two mechanisms are active. 

Consider the variation of the system parameters µ  and ck  along the dashed line in Figure 6-10. In 

the stable region, the two frequencies are distinct real numbers. At the flutter instability boundary, the 

two frequencies merge, i.e. 0,2
2,1 >=ω aa . By further increasing the parameters, the frequencies 

become complex-valued, i.e. 0,,2
2,1 >±=ω baiba . At the secondary kinematic constraint 

instability boundary the real part of 2
2,1ω  vanishes, i.e. 0,2

2,1 >±=ω bib . If the parameters are 

increased even further, the real part of the squared frequencies becomes negative, i.e. 

0,,2
2,1 >±−=ω baiba . At the second boundary of flutter instability, the squared frequencies are 

identical and purely imaginary, i.e. 0,2
2,1 >−=ω aa . Beyond this threshold, squared frequencies are 

different but remain purely imaginary. 

 

 
Figure 6-10: Stability of the 2-DOF system as contact stiffness and coefficient of friction are varied, when  

m = 15 and Rω>0. The  hatched area: mode coupling instability region;  
the  hatched area: secondary kinematic constraint instability region. 
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The variation of the real and imaginary parts of eigenvalues (i.e. natural frequencies) for 

178.0218.0 >=µ  as ck  is varied is plotted in Figure 6-11. Mode coupling instability occurs at the 

flutter boundary: 51065.9 ×=ck . It is interesting to note that, due to the secondary kinematic 

constraint instability, the systems remains unstable even when ck  is large enough that the two modes 

decouple. 

 
Figure 6-11: Variation of the real part (a) and imaginary part (b) of the eigenvalues  

as the contact stiffness is varied. µµµµ = 0.218, m = 15. 

6.2.2 Damped System 

The eigenvalues of the damped 2-DOF system ( 41, K=η ii ) are the solutions of the fourth-order 

equation 

 ( ) 0det 2 =+η+η KCM  (6.43) 

Assuming all of the system parameters to be non-negative, the stability conditions based on the 

Routh-Hurwitz criterion are found as 

 0ˆˆ 12 >+= mcDcD c  (6.44) 

 ( )( ) 0tansgn1ˆˆˆ
13 >λωµ+++= RccmkDkD cc  (6.45) 

(a) (b) 
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 ( ) ( )( ) 0tansgn1ˆˆˆ32 >λωµ++− RkckcImDD cc  (6.46) 

 ( ) ( )( ){ }( ) 0ˆˆˆtansgn1ˆˆˆ 2
232 >−+λωµ++− DkkkckcRkckcImDD ccccc  (6.47) 

where 

 ( )( ) ( )( )λωµ−+λωµ+= cotsgn1ˆtansgn11 RmRID  (6.48) 

These inequalities are too complicated to be useful in establishing closed-form parametric stability 

boundaries. However, some important special cases can be proven, which are listed here. 

 

• Special Case No. 1: The system’s fixed point is stable when the force is applied opposite to 

the nut translation direction, i.e. 0<ωR . 

 

• Special Case No. 2: The system’s fixed point is stable when the force is applied in the 

direction of the nut translation and the lead screw drive is not self-locking, i.e. 0>ωR  and 

λ<µ tan . 

 

It is clear that self-locking, as well as application of the load onto the nut in the direction of travel, 

are the two necessary (but not sufficient) conditions for the instability to occur.  

 

• Special Case No. 3: The system’s fixed point is unstable when 0>ωR , λ>µ tan , and  

00 ≠∧= ccc . 

 

• Special Case No. 4: The system’s fixed point is unstable when 0>ωR , λ>µ tan , and  

00 =∧≠ ccc . 

 

The presence of damping only in the rotational DOF (i.e. lead screw support damping, c) or in the 

translating DOF (i.e. contact damping, cc) destabilizes the system. Similar qualitative observations are 

found in the literature involving simple systems (see for example [87-90]). 

 

• Special Case No. 5: For very large contact stiffness and damping (i.e. ∞→cc ck , ), the 
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system’s fixed point is stable if 01 >D  and unstable if 01 <D  which agrees with the 

conditions for the kinematic constrain instability of the 1-DOF model in Section 6.1 since 

01 sgnsgn Γ=D . 

 

 

6.2.2.1 Numerical Examples and Discussions 

In Figure 6-12, the two damping coefficients are chosen as 210=cc  and 5102 −×=c . The other 

system parameters are selected as before, and 5=m . It can be seen that the addition of damping, 

contrary to common experiences, has reduced the stability region.  

 

 
Figure 6-12: Regions of stability of the 2-DOF model with damping.  

Black: stable, white: unstable. Rω>0, m=5, cc=10
2
, and c=4××××10

-5
. 

 

Variation of the eigenvalues for this case are plotted in Figure 6-13 for 15.0=µ . The coalescence 

of the natural frequencies can be seen in this figure. It must be noted that, due to the presence of 

damping, the two frequencies do not match exactly1, and the instability region does not necessarily 

correspond to the range where they are close.  

                                                      
1 Matching of the frequency of the two coupled modes is exact for the special case of proportional damping (see 

for example [90]). 
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Figure 6-13: Variation of the real part of the eigenvalues (a) and the natural frequencies (b),  

as the contact stiffness is varied. µµµµ = 0.15, m = 5, cc=10
2
, and c=4××××10

-5
. 

 

By increasing the damping, as shown in Figure 6-14, the stable region is expanded beyond the 

instability region of the undamped system. In this figure the damping coefficients are 3102×=cc  

and 4104 −×=c . Similar to Figure 6-13, Figure 6-15 shows that the evolution of the real and 

imaginary parts of the eigenvalues as ck  is varied, for 15.0=µ . The increased damping has resulted 

in the “overdamping” of the lower mode of vibration for roughly 51096.1 ×<ck . More importantly, 

in this higher damping level, the range over which the two natural frequencies are close has been 

almost completely eliminated. 

(a) (b) 
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Figure 6-14: Regions of stability of the 2-DOF model with damping.  

Black: stable, white: unstable. Rω>0, m=5, cc=2××××10
3
, and c=4××××10

-4
. 

 

 
Figure 6-15: Variation of the real part of the eigenvalues (a) and the natural frequencies (b), 

as the contact stiffness is varied. µµµµ = 0.15, m = 5, cc=2××××10
3
, and c=4××××10

-4
. 

 

Similar to the undamped case, the effect of secondary kinematic constraint instability on the 

damped system is considered next. The translating mass is now increased to kgm 15= . At this value, 

0Γ  changes sign at approximately 178.0≈µ=µ skc . Figure 6-16 shows the stability region of the 

system for 3102×=cc  and 4104 −×=c .  

 

(a) (b) 
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Figure 6-16: Regions of stability of the 2-DOF model with damping. 

Black: stable, white: unstable, Grey: region of instability of the undamped system 

Rω>0, m=15, cc=2××××10
3
, and c=4××××10

-4
 

 

As it was the case in the previous examples, the addition of damping has decreased the stable 

parameter ranges. The evolution of real and imaginary parts of the eigenvalues for two values of 

constant coefficient of friction is plotted in Figure 6-17.  

 

 
Figure 6-17: Variation of the real part of the eigenvalues (a) and the natural frequencies (b),  

as the contact stiffness is varied. m = 15, cc=2××××10
3
, and c=4××××10

-4
. Solid: µµµµ = 0.15; dashed µµµµ = 0.2. 

 

(a) (b) 
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As shown, at 15.0=µ  the system becomes unstable approximately for 51025.9 ×>ck . The 

system is unstable over the entire range contact stiffness values for 2.0=µ .  

By further increasing the damping coefficients, the stable region grows. However, due to the 

presence of secondary kinematic constraint instability (i.e. 00 <Γ ), the stable region is bounded by 

the vertical line 02 =D  where  2D  is defined by (6.44). The bound in terms of the friction 

coefficient is found from this equation as 

 
λ−

++
λ=µ

2tanˆ1

ˆˆ1
tan

m
I

c
c

m
I

c
dskc  (6.49) 

It is interesting to note that in (6.49) only the ratio of the two damping coefficients appears. 

Consequently, for a fixed ratio of ccc ˆ , the system will be unstable for dskcµ>µ  regardless of the 

size of damping coefficients. It must be mentioned that, for large ccc ˆ , the bound obtained by (6.49) 

will be too high as instability may occur at much lower values of the coefficient of friction. On the 

other hand, for 0ˆ →ccc , skcdskc µ→µ , where ( ) 00 =µΓ skc ; this becomes the special case No. 4 

mentioned above where the system is unstable for λ>µ tan . 

Figure 6-18 shows the stability map of the system for 4104×=cc  and 3108 −×=c , which are 20 

times higher than the values used in Figure 6-16. The ratio of damping coefficients here is 

08.0ˆ ≈ccc . The stable region is entirely on the left side of the vertical line defined by dskcµ=µ .  

In Figure 6-19, the evolution of the real and imaginary parts of the eigenvalues are plotted for the 

same parameter values as in Figure 6-18 and 218.0=µ . The lower mode of vibration is overdamped 

almost over the entire range of ck . The system becomes unstable for 71065.3 ×>ck . 
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Figure 6-18: Regions of stability of the 2-DOF model with damping. Black: stable, white: unstable, Grey: 

region of instability of the undamped system. Rω>0, m=15, cc=4××××10
4
, and c=8××××10

-3
 

 

 

Figure 6-19: Variation of the real part of the eigenvalues (a) and the natural frequencies (b),  

as the contact stiffness is varied. m = 15, cc=4××××10
4
, c=8××××10

-3
, and µµµµ = 0.218 

 

6.3 Stability Analysis of a 2-DOF Model with Axially Compliant 

Lead Screw Supports 

In this section, the 2-DOF model of Section 3.6 is considered. As will be discussed below, the 

(a) (b) 
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stability conditions of the lead screw model with axially compliant lead screw supports bears many 

resemblances to the study of previous section, where the source of flexibility was the compliant 

threads (see Appendix G for a comparison of the stability conditions of these two systems). There are 

some distinct and important differences that will be highlighted in what follows. First, the system 

model is simplified and converted to a suitable form for linearization and stability analysis. Then, 

similar to the previous section, the local stability of the steady sliding fixed point is analyzed using 

the eigenvalue analysis method. The stability of the undamped case is discussed in Section 6.3.1 

while the system with damping is covered in Section 6.3.2. In these analyses, both mode coupling and 

kinematic constraint instability mechanisms are encountered. 

The equations of motion are given by (3.29) and (3.30) 

 ( ) ( ) RckxmmrI im ξ−θ−θ−θ=ξ−θλξ− &&&&&
1tan  (6.50) 

 ( ) Rxcxkmrxmm m +−−=θλ++ 111111 tan &&&&&  (6.51) 

where, once again, 0F  and 0T  are neglected for simplicity. To bring the steady-sliding fixed point to 

the origin, the following change of variables is used 

 
2021

101

tan uyrx

uy

m

i

+λ=

+θ+=θ
 (6.52) 

where 

 
k

Rc
u 0

10

ξ−ω−
=  (6.53) 

 
1

20
k

R
u =  (6.54) 

Substituting (6.52) into (6.50) and (6.51) and after some simplifications 

 ( )yyfKyyCyM &&&& ,=++  (6.55) 

where 

 








+

λξ−λξ−
=

1

tantan

mmm

mrmrI mm
M  (6.56) 
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=

10

0

c

c
C  (6.57) 

 







=

10

0

k

k
K  (6.58) 

 
( )








 ξ−ξ
=

0
0 R

f  (6.59) 

Notice that, unlike the model studied in Section 6.2, here the inertia matrix is asymmetric, and 

stiffness and damping matrices are symmetric. For the case of constant coefficient of friction, the 

linearized equations of motion are given simply by 

  00 =++ KyyCyM &&&  (6.60) 

where 

 








+

λξ−λξ−
=

1

00
0

tantan

mmm

mrmrI mm
M  (6.61) 

where 0ξ  is given by (5.5). 

Similar to the steps taken in previous section, the case of undamped system is considered first, and 

then the damped system is studied. 

6.3.1 Undamped System 

The natural frequencies of the undamped system are the roots of the following equation: 

 ( ) 0det 0
2 =ω− MK  (6.62) 

which is a quadratic equation in 2ω . Expanding (6.29) yields 

 00
2

2
4

4 =+ω+ω aaa  (6.63) 

where 
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( )
( ) ( )

10

0112

0114

tan

tan

kka

mrIkmmka

rmmmmIa

m

m

=

λξ−−+−=

λξ−+=

 (6.64) 

Since 00 >a , instability occurs (i.e. natural frequencies become complex numbers) whenever 

 04 <a  (6.65) 

or 

 00 24 >∧> aa  (6.66) 

or 

 04 40
2

2 <− aaa  (6.67) 

In terms of system parameters, the instability condition given by (6.65) can be written as 

 0tan~~
00 <λξ−=Γ mrmI  (6.68) 

where 

 
1

1~
mm

mm
m

+
=  (6.69) 

The necessary condition for 0
~

0 <Γ  is 00 >ξ  which, in turn, requires ( ) 1sgn =ωR  and 

λ>µ tan . It is interesting to note that (6.68) takes the form of the kinematic constraint instability 

condition given by (6.2) with m~  as an equivalent translating mass. 

The instability condition (secondary kinematic constraint) according to (6.66) can be written as 

 
( )

( ) ( ) 0tan

0tan

011

01

<λξ−++

>+λξ−

m

m

mrIkmmk

mIrmIm
 (6.70) 

For the instability to occur according to (6.70), the following conditions are necessary and 

sufficient 

 0tan0 <λξ− mrmI  (6.71) 
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11

0 tan

k

k

mm

Imrm >
+

−λξ
 (6.72) 

It is interesting to note that inequality (6.71) is the same as the kinematic constraint instability 

condition given by (6.2). 

Finally, inequality (6.67) gives the necessary and sufficient for the mode coupling instability. 

Replacing the less-than sign with an equal sign for the instability boundary and after simplifications, 

one finds 

 02
312

2
11 =++ kbkkbkb  (6.73) 

where 

 

( )
( ) ( )[ ]

( )2
13

0012

2
01

tantan2

tan

mmb

ImrmImrmb

mrIb

mm

m

+=

+λξ−−λξ=

λξ−=

 (6.74) 

This equation is quadratic in k  and 1k  and can be solved to find parametric relationships for the 

onset of the flutter instability. The conditions for the solutions to be real positive numbers are 

 04 31
2

2 ≥− bbb  (6.75) 

 02 <b  (6.76) 

In terms of system parameters, inequality (6.75) becomes 

 ( ) 0tantan16 0
1

1
1

2
0 ≥








λξ









+
−+λξ mm r

mm

mm
Immrm  (6.77) 

which yields 

 00tan 00
1

1 >ξ∧≥λξ








+
− mr

mm

mm
I  (6.78) 

The second inequality given by (6.76), yields 

 
( )

0tan0
1

1 <−λξ
+

−
Ir

mm

mmm
m  (6.79) 
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which is satisfied whenever (6.78) is satisfied. From (6.68) and (6.78), it can be concluded the mode 

coupling and the (primary) kinematic constraint instability regions have no overlap in the parameter 

space. 

6.3.1.1 Numerical Examples and Discussion 

Figure 6-20 shows the stability region of the undamped 2-DOF model in the µ−1k  parameter space. 

Other system parameter values not given in the figure are selected according to Table 6-1. The 

hatched region corresponds to the parameter range where the two natural frequencies are complex and 

the system is unstable. The boundary of this region is the flutter instability threshold defined by 

21 ω=ω . In this figure, flutter boundary is plotted for two other higher values of the lead screw mass, 

1m . For small values of lead screw mass, this plot is almost identical to Figure 6-8. 

 

 

Figure 6-20: Stability of the 2-DOF system as support stiffness and coefficient of friction are varied.  
m = 5 and Rω>0. Hatched region: unstable. 

 

By increasing the translating mass to 15=m , the condition (6.71) is satisfied for approximately 

178.0≈µ>µ skc . As shown in Figure 6-21, there are two overlapping areas in the µ−1k  parameter 

space that constitute the unstable region. These regions correspond to the mode coupling and 

secondary kinematic constraint instability mechanisms. 
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Figure 6-21: Stability of the 2-DOF system as support stiffness and coefficient of friction are varied, when  
m = 15 and Rω>0. The  hatched area: mode coupling instability region; the  hatched area: secondary 

kinematic constraint instability region. 

 

For the above mentioned value of the translating mass, if 6.111 =m , then condition (6.68) is 

satisfied for 285.0≈µ>µ kc . As a result, the vertical line 285.0≈µ  becomes the divergence 

boundary in the parameter space, as shown in Figure 6-22. 

The variation of the real and imaginary parts of the eigenvalues (i.e. 
2ω ) are plotted in Figure 6-23 

for 6
1 104×=k  as a function coefficient of friction. For this value of the support stiffness, the system 

becomes unstable due to mode coupling as the real part of the two eigenfrequencies merge. A second 

instability region also exists for 285.0>µ , where the system becomes unstable due to the kinematic 

constraint. Similar to the results of Section 6.1, at the threshold of the kinematic constrain instability, 

one eigenvalue is at infinity. 
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Figure 6-22: Stability of the 2-DOF system as support stiffness and coefficient of friction are varied, when  
m = 15 and Rω>0. The  hatched area: mode coupling instability region;  

the  hatched area: secondary kinematic constraint instability region, and; the  hatched area: primary 
kinematic constraint instability region. 

 

 

Figure 6-23: Variation of the real parts (a) and imaginary parts (b) of the eigenvalues  

as the contact stiffness is varied. k1 = 4××××10
6
, m = 15, and m1 = 11.6 

 

(a) (b) 
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6.3.2 Damped System 

The eigenvalues of the damped 2-DOF system ( 41, K=η ii ) are the solutions of the fourth-order 

equation 

 ( ) 0det 0
2 =+η+η KCM  (6.80) 

Assuming all of the system parameters to be non-negative numbers, the stability conditions based 

on the Routh-Hurwitz criterion are found to be 

 ( ) 0tan0111 >λξ−+= mrmmmmID  (6.81) 

 ( ) ( ) 0tan0112 >λξ−++= mrIcmmcD m  (6.82) 

 ( ) ( ) 0tan01113 >λξ−+++= mmrIkccmmkD  (6.83) 

 ( ) 011132 >+− DckkcDD  (6.84) 

 ( ){ }( ) 02
211111132 >−++− DkkckkcDckkcDD  (6.85) 

Once again, the resulting conditions are too complex to be useful for parametric study of stability. 

However, as shown in Appendix G, there are many similarities between these conditions and those 

derived for the 2-DOF model in Section 6.2. Expectedly, similar special cases as in Section 6.2.2 can 

be proven for the model of this section. These cases are listed here. 

 

• Special Cases Nos. 1 and 2: The system’s fixed point is stable if 00 <ξ . From the definition 

of 0ξ , (5.5), it is easy to see that 00 <ξ  only if  0<ωR  or λ<µ tan , which coincides with 

the first and second special cases of Section 6.2.2. 

 

• Special Case No. 3: The system’s fixed point is unstable when 0>ωR , λ>µ tan , and  

001 ≠∧= cc . 

 

• Special Case No. 4: The system’s fixed point is unstable when 0>ωR , λ>µ tan , and  
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001 =∧≠ cc . 

 

• Special Case No. 5: The system’s fixed point becomes unstable due the kinematic constrain 

instability mechanism when 01 <D .  

6.3.2.1 Numerical Examples and Discussion 

Figure 6-24 and Figure 6-25 show samples of the regions of stability of the system as 1µ  and 1k  are 

varied. The hatched region in these figures is copied from Figure 6-20 and corresponds to the region 

of instability of the undamped system. In Figure 6-24 the two damping coefficients were chosen as 

2
1 10=c  and 5102 −×=c . It can be seen that the addition of damping has reduced the stability 

region. However, by increasing the damping further, as shown in Figure 6-25, the stable region is 

expanded beyond the instability region of the undamped system. In this figure the damping 

coefficients were 3
1 102×=c  and 4104 −×=c . In both series of examples, it can be seen that by 

increasing the lead screw mass, 1m , the stability region grows towards the unstable region of the 

undamped system. 

 

 

Figure 6-24: Regions of stability of the 2-DOF model with damping. (a) m1=0.232 kg, (b) m1=2.32 kg, and 
(c) m1=11.6 kg. Black: stable, white: unstable, and 

hatched: undamped instability region. Rω>0, m=5, c1=10
2
, and c=2××××10

-5
 

 

(a) (b) (c) 
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Figure 6-25: Regions of stability of the 2-DOF model with damping. (a) m1=0.232 kg, (b) m1=2.32 kg, and 
(c) m1=23.2 kg. Black: stable, white: unstable, and 

hatched: undamped instability region. Rω>0, m=5, c1=2××××10
3
, and c=4××××10

-4
 

 

If the translating mass is large enough such the solution of ( ) 00 =µΓ  lies in the considered range 

of the coefficient of friction, then an upper bound for the stable region may be found. The solution of  

( ) 00 =µΓ  is given by 
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Replacing > by = in the second stability condition (6.82) gives this limiting value for the coefficient 

of friction. Solving 02 =D  for µ , yields 
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Similar to (6.49), only the ratio of the two damping coefficients appears in (6.87). As a result, for a 

fixed ratio, no matter how large the damping is, the stable region will be on the left side of the vertical 

(a) (b) (c) 
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line dskcµ=µ  in the µ−1k  parameter plane. Note that, for large 1cc  such that (6.87) does not yield 

a positive solution, other stability conditions must be checked. If 01 →cc , then skcdskc µ≈µ . 

However, in this case, the system stability is defined by special case No. 4 above. On the other hand, 

for values of 1m  such that (6.81) is violated (kinematic constraint instability), then regardless of 

damping and stiffness parameters, the system is unstable for kcµ>µ where 
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Figure 6-26 shows the stability maps of the 2-DOF system for kgm 15= . At this value, ( ) 00 =µΓ  

at  178.0≈µ=µ skc . The damping values are the same as the previous example; 3
1 102×=c  and 

4104 −×=c . For 232.01 =m  and 32.21 =m , one has 258.0≈µdskc  and 270.0≈µdskc . Vertical 

lines for these two cases corresponding to dskcµ=µ  are shown in Figure 6-26.  

 

 

Figure 6-26: Regions of stability of the 2-DOF model with damping. (a) m1=0.232 kg, (b) m1=2.32 kg, and 
(c) m1=11.6 kg. Black: stable, white: unstable, and, hatched: undamped instability region. Rω>0, m=15, 

c1=2××××10
3
, and c=4××××10

-4 

 

(a) (b) (c) 
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For 6.111 =m , the system is unstable due to kinematic constraint for 285.0≈µ>µ kc  regardless 

of the damping and stiffness parameters of the system. Figure 6-27 and Figure 6-28 show the 

evolution of the real and imaginary parts of the eigenvalues for 6.111 =m  as support stiffness ( 1k ) 

and coefficient of friction are varied, respectively.  

In Figure 6-27, the real part of the eigenvalues and the damped natural frequencies are plotted for 

three close values of the constant coefficient of friction as the support stiffness is varied. It is 

interesting to note that, although the variation of the natural frequencies remains mostly unchanged, 

the stability of the system is very sensitive to the changes in the coefficient of friction. 

 

 

Figure 6-27: Variations of real parts of the eigenvalues (a) and damped natural frequencies (b) as a 
function of lead screw support axial stiffness, k1. µ = 0.11, 0.12, 0.13 

 

The plots in Figure 6-28 show the occurrence of the kinematic constraint instability at 

285.0≈µ=µ kc . Similar to the undamped case and the 1-DOF model of Section 6.1, at the 

kinematic constraint instability boundary, one eigenvalue is at infinity. Also note that, in Figure 6-28 

the system is unstable over a small range of coefficient of friction below the kinematic constraint 

boundary due to mode coupling. 

 

(a) (b) 
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Figure 6-28: Variations of the real part of eigenvalues (a) and the damped natural frequencies (b) as a 

function of the coefficient of friction, µ. k1= 4××××10
6
. 

 

Figure 6-29 shows similar stability maps as those in Figure 6-26  but with 20 times larger damping 

coefficients. As predicted, for the 232.01 =m  and 32.21 =m  cases, the proportional increase of the 

damping coefficients expanded the stability region towards the limiting dskcµ=µ  line. For 

6.111 =m , the limiting value of the coefficient of friction is unchanged compared to Figure 6-26, 

since the kinematic constraint threshold is independent of damping. For this case, however, the 

damping increase expanded the stability region into the mode coupling instability region of the 

undamped system.  

 

(a) (b) 
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Figure 6-29: Regions of stability of the 2-DOF model with damping. (a) m1=0.232 kg, (b) m1=2.32 kg, and 
(c) m1=11.6 kg. Black: stable, white: unstable, and hatched: undamped instability region. Rω>0, m=15, 

c1=2××××10
4
, and c=4××××10

-3
. 

 

For the case of 6.111 =m , Figure 6-30 shows the evolution of the real and imaginary parts of the 

eigenvalues as a function of support stiffness  for 2.0=µ . The increased damping has resulted in the 

overdamping of the lower vibration mode for most of the parameter range considered. The system 

loses stability due to mode coupling at 7
1 1016.3 ×≈k . In Figure 6-31, the evolution of the real and 

imaginary parts of the eigenvalues is shown as the coefficient of friction is varied for 6
1 105×=k . 

The system loses stability due to kinematic constraint at 285.0≈µ=µ kc , which is exactly the same 

value as in Figure 6-28. 

(a) (b) (c) 
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Figure 6-30: Variations of real part of the eigenvalues (a) and damped natural frequencies (b) as a 
function of lead screw support axial stiffness, k1. µ = 0.2. 

 

 

Figure 6-31: Variations of the real part of eigenvalues (a) and the damped natural frequencies (b) as a 

function of the coefficient of friction, µ. k1= 5××××10
6
. (c) Close-up view of the real part of eigenvalues 

 

6.4 Mode Coupling in a 3-DOF System 

In this section, local stability of the fixed point of the 3-DOF model described in Section 3.7 is 

investigated. The focus of this section is on the mode coupling instability mechanism. Parameter 

(a) (b) (c) 

(a) (b) 
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studies and comparisons are done numerically. Similar to what was done in Section 6.2 and Section 

6.3, the equations of motion are first transformed to a suitable form corresponding to the steady-

sliding fixed point. The equations of motion are given by (3.11), (3.12), and (3.27). Neglecting 0F  

and 0T , these equations simplify to 

 ( ) ( )λ−λ+θ−θ−θ=θ cossin fmi FNrckI &&&  (6.89) 

 RFNxm f +λ−λ−= sincos&&  (6.90) 

 λ+λ+−−= sincos111111 fFNxcxkxm &&&  (6.91) 

Introducing the change of variables 
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 (6.92) 

into (6.89), (6.90), and (6.91) and setting all time derivatives to zero, the steady-sliding fixed point is 

found as 
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To transfer this point to the origin and present the system in state-space form, the following change 

of variables is applied 
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which results in a system of six first order differential equations 

 ( ) 61, K& == ify ii y  (6.95) 

To study the stability of the steady-sliding fixed point, the eigenvalues of the Jacobian matrix are 

evaluated at 0y = . The Jacobian matrix is given by ( 0,0 ≠ω≠R ) 
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 (6.96) 

where ijγ ’s are given in Table 6-2. 

 

Table 6-2: Elements of the Jacobian matrix for the 3-DOF model 
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Figure 6-32(a) shows the variation of the three undamped natural frequencies of the 3-DOF model 
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with a constant coefficient of friction as a function of lead screw support stiffness ( 1k ) and contact 

stiffness ( ck ). Lead screw parameters are taken as before with kgm 5=  and kgm 232.01 = . The 

corresponding stability map, which is obtained by examining the real part of the eigenvalues, is 

depicted in Figure 6-32(b). This map shows that the system becomes unstable whenever two of the 

system modes merge. Note that the parameter range where coupling between the first and the second 

modes occurs agrees with instability range of the undamped 2-DOF model of Section 3.5  (Figure 

6-8) for large values of 1k  and also the undamped 2-DOF model of section 3.6 (Figure 6-20) for large 

values of ck . 

 

 

Figure 6-32: a) Evolution of the three natural frequencies of the undamped 3-DOF system (with constant 
coefficient of friction) as a function of kc and k1. b) Stability map. 

 

Figure 6-33 shows the stability maps of the 3-DOF model as the contact stiffness ( ck ) and the 

support stiffness ( 1k ) are varied. In the 3 by 3 series of plots included in this figure, the contact 

damping coefficient ( cc ) and lead support translational damping coefficient ( 1c ) take the values: 10 , 
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210 , and m
sN .310 . Also the lead screw damping (angular) coefficient is chosen as 

rad
smNc ..4103 −×= . Other parameters are selected as before. These plots clearly show the role of 

damping in both stabilizing an unstable fixed point and destabilizing a stable one. It is also interesting 

to note that, based on the symmetry of the plots and for the selected values and ranges of values of 

parameters, the stiffness and damping of the two translational DOFs (i.e. x  and 1x ) have a similar 

effect on the stability of the system. 

 

 

Figure 6-33: Local stability of fixed points of the 3-DOF lead screw system with constant coefficient of 
friction. Black: stable, white: unstable 

 

6.5 Conclusions 

In this chapter, the kinematic constraint and mode coupling instability mechanisms were studied. 

Together with negative damping instability studied in Chapter 5, these mechanisms constitute the 

three friction-induced instability mechanisms relevant to the lead screw systems. 

It was found that both kinematic constraint and mode coupling instability mechanism share the 

same necessary conditions – namely, that the lead screw must be self-locking (i.e. λ>µ tan ) and 

applied axial force must be in the same direction as the translating part (i.e. 0>ωR ). It was also 
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found that the quantity 

 mrI m 








λµ+

λ−µ
λ−=Γ

tan1
tan

tan2
0 , 

plays a central role in almost all of the instability scenarios covered in this chapter. 

Specific to the type of instability mechanism and the system model, parametric relationships were 

found that define the conditions for the local stability of the steady-sliding fixed point. An itemized 

list of the major findings is given here. 

1. Kinematic constraint instability in the 1-DOF basic lead screw model: Inequality (6.2), 

i.e. 00 <Γ  defines the instability relationship in terms of friction, geometry, and the inertia of 

the rotating and translating parts of the lead screw drive. 

2. Mode coupling instability in the undamped 2-DOF model with compliant threads: The 

flutter instability boundary is given by (6.36), which defines the parameter region where the 

two natural frequencies merge and become complex-valued. 

3. Secondary kinematic constraint instability in the undamped 2-DOF model with 

compliant threads: For the parameter values that satisfy 00 <Γ , inequality (6.35) defines the 

conditions leading to secondary kinematic constrain instability, which overlaps and expands 

the mode coupling instability region. 

4. Mode coupling instability in the damped 2-DOF model with compliant threads: The 

Routh-Hurwitz stability conditions are given by (6.44) to (6.47).  

5. Mode coupling instability in the undamped 2-DOF model with axially compliant 

supports: The flutter instability boundary is given by (6.73), which defines the parameter 

region where the two natural frequencies merge and become complex-valued. 

6. Secondary kinematic constraint instability in the undamped 2-DOF model with axially 

compliant supports: For the parameter values that satisfy 00 <Γ , inequality (6.72) defines 

the conditions for the secondary kinematic constrain instability, which overlaps and expands 

the mode coupling instability region. 

7. Kinematic constraint instability in the undamped 2-DOF model with axially compliant 

supports: For the parameter values that satisfy both 00 <Γ  and inequality (6.68), i.e. 

0
~

0 <Γ , the system is unstable and the line 0
~

0 =Γ  defines the divergence instability 

boundary. 
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8. Mode coupling instability in the damped 2-DOF model with axially compliant supports: 

The Routh-Hurwitz stability conditions are given by (6.82) to (6.85). 

9. Kinematic constraint instability in the damped 2-DOF model with axially compliant 

supports: Since damping does not affect the instability caused by the kinematic constraint 

stability, conditions are the same as in the undamped case, i.e. 0
~

0 <Γ . 

 

Mode coupling is by far the most complex instability mechanism of the three mechanisms 

considered in this work. In Appendix H, various numerical examples are given that show the complex 

effect of system parameters on the mode coupling instability and the resulting behavior of the system 

(e.g. amplitude and frequency of steady-state vibrations).  

In this chapter, using a 3-DOF model, it was shown that when mode coupling instability 

mechanism can affect a system, all of the relevant DOFs must be included in the model. It was also 

shown that the compliance caused by the thread flexibility has similar effects on the stability of the 

system as the axial compliance in the lead screw supports. 

 



 

131 

Chapter 7 

Vibration Control 

When efforts towards designing a lead screw drive fail to guarantee vibration-free operation due to 

design constraints, material properties, or variations in the operating conditions, active vibration 

attenuation may become necessary. Other system performance requirements such as accurate tracking 

of certain position and velocity profiles, may also necessitate the use of closed-loop control. 

In this chapter, robust control strategies are developed for lead screw drive systems with the main 

goal of suppressing vibrations caused by the negative damping instability mechanism while 

regulating the lead screw angular velocity to a constant reference velocity. Furthermore, the 

controllers are designed to perform these tasks in situations where there is significant uncertainty in 

the value of various system parameters.  

The controllers developed here are based on the “sliding mode control” method, which was 

pioneered by Utkin [91]. The basic idea is to design a control input that confines the system’s 

trajectories to a predefined “sliding surface or manifold”. On this surface, the system dynamics are 

governed by an asymptotically stable differential equation. The control law that moves system 

trajectory to the sliding mode is typically discontinuous and switches between two values based on 

the states of the system. The popularity of this approach in the design of feedback controller stems 

from its robustness properties to model uncertainties [84,92]. Numerous published works are found in 

the literature on the applications of the sliding mode control to various mechanical systems (see for 

example the survey paper [93]). 

The main drawback of the sliding mode control approach is what is known as chattering. In the 

implementation (or when the otherwise neglected dynamics of the actuators are included in the 

model), the delay in the switching action required by the discontinuous controller results in high 

frequency vibration that can deteriorate the performance of the controller or lead to instabilities 

[84,92].  
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A number of approaches were put forward by many researches that aim to reduce or eliminate 

chattering [94]. These methods include; continuous approximation of the discontinuous controller law 

[84,92,95,96], observer-based sliding mode control [94,97], and higher-order sliding mode control 

[98]. The most popular approach – the one adopted here – is the continuous sliding mode control by 

linear approximation of the control law or “boundary layer” method [96,99]. In this approach, in a 

small distance of the sliding (switching) surface (i.e. the boundary layer), the control law is replaced 

by an approximate linear high-gain feedback. Elimination of chattering with this approach usually 

leads to reduced performance of the controller, since the trajectories are only guaranteed to stay inside 

the boundary layer and not on the sliding surface. Integral sliding mode control is one of the 

approaches proposed to counteract this effect [99]. 

In this chapter, a simplified version of the model presented in Section 3.8 is considered. The 

mathematical model of this system presented in Section 7.1. The uncertainty in the system parameters 

is discussed in Section 7.2 and sample parameter values used in the simulations are given. In Section 

7.3, a sliding mode controller is designed with the assumption that the entire drive from power 

generator (e.g. DC motor) to the moving load is rigidly connected, and thus the system is represented 

by a single DOF. The rigidity condition is relaxed in Section 7.4, leading to a 2-DOF system model. 

Another sliding mode controller is developed to deal with the added complexity of this model. The 

special feature of this controller is its ability to stabilize the system in the face of unmatched 

uncertainties [84]. Numerical simulation results are included that demonstrate the effectiveness of 

both of these controllers. Finally, the conclusions are presented in Section 7.5. 

7.1 Mathematical Model 

A slightly simplified version of the model presented in Section 3.8 is considered here as shown in 

Figure 7-1. For the motor, Newton’s second law gives; 

 ( ) MMMWMfMMM ckTTJ θ−θ−θ+θ−=θ &&&&
2sgn  (7.1) 

where Mθ  is the rotor’s angular displacement, J  is the inertia of the rotor, and MT  is the generated 

(input) torque. fMT  and Mc  are the internal friction and damping of the motor, respectively. Also, 1k  

is the torsional stiffness of the coupling connecting the motor to gearbox, and Wθ  designates the 

input angular displacement of the gearbox. For the lead screw and nut, similar to (3.11) and (3.12), 

one can write 



 

133 

 ( ) ( ) θ−λ−λ+θ−θ−θ=θ &&&& sgncossin 01 TFNrckI fmG  (7.2) 

 xFRFNxm f
&&& sgnsincos 0−+λ−λ−=  (7.3) 

where the terms θ&sgn0T  and xF &sgn0  reflect the friction in lead screw supports and bearings of the 

translating mass, respectively. Also the normal contact force is given by (3.16), where Gi θ=θ . 

 

 

Figure 7-1: lead screw drive model 

 

For simplicity, that the gearbox is assumed to be mass-less and frictionless. As a result, for the 

gearbox, the following kinematic relationship holds: 

 ( ) ( )MWG krk θ−θ=θ−θ −
2

1
1  (7.4) 

where 

J 
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 WG rθ=θ  (7.5) 

Eliminating N between (7.2) and (7.3) yields 

 ( ) θ−θ−ξ−θ=θ+θ+θΓ &&&&& sgnsgn 0011 TFRkck G  (7.6) 

where 

 mrI m λξ−=Γ tan  (7.7) 
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and as before, ( ) Nus sgnsgn ω+µ=µ & . Also 

 ( ) ( )( )ω+−ω+−
−ω+µ+µ+µ=µ

urur
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&& 10 1321  (7.9) 

From (7.4) and (7.5) one finds 
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Substituting (7.10) into (7.1) and (7.6) yields the equations of motion of the 2-DOF model 

 ( ) ( ) θ−θ−ξ−=θ+θ−θ+θΓ &&&&& sgnsgn 00 TFRcrk M  (7.11) 

 ( ) MMMMfMMM crrkTTJ θ−θ−θ+θ−=θ &&&& sgn  (7.12) 

where 
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The contact force, N, is given by 

 
( )
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7.1.1 A Note on the Friction Model 

The friction model (7.9) includes a linear term ω+µ u&3  which could cause problems in the 

subsequent global stability analysis when 03 <µ . Although, in practical situations, 3µ  is small 

enough such that over the velocity range of interest µ  does not become too close to zero, here we 

need to formally set a limit on the velocity maxω , such that for maxω>ω , the coefficient of friction 

tapers off and becomes a constant. The easiest way to accomplish this while keeping the smoothness 

properties of the friction model is to modify the velocity-dependent coefficient of friction to 

 ( ) ( )ω+−ω+−
−






















ω

ω+
ωµ+µ+µ=µ

urur
e

u
eu

&& &
& 10 1tanh

max
max321  (7.15) 

where 0max >ω  is a large velocity such that 0max31 >ωµ+µ .  

The modified velocity-dependent coefficient of friction given by (7.15) is used in the subsequent 

sections only where global system properties are considered. In all other cases, it is assumed that 

maxω<<ω+u& , such that the difference between (7.15)  and  (7.9) is negligible. 

7.2 Parameter Uncertainty 

As mentioned earlier, control strategies are sought that are robust to parameter uncertainties. The only 

information assumed here are the bounds on each of the parameters. In this section, some 

relationships for the upper and lower bounds of system parameters are presented which are used in 

the numerical examples presented in the subsequent sections. 

From (7.15), one finds 

 ( ) µ<ϖµ≤0  (7.16) 

where 

 
0,

0,

3max321

321

>µωµ+µ+µ=µ

≤µµ+µ=µ
 (7.17) 

Based on (7.16), the upper and lower bounds for ξ  defined by (7.8) are given by 

 ξ≤ξ≤ξ  (7.18) 
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where 

 
λµ+

λ−µ
=ξ

λµ−

λ+µ
−=ξ

tan1
tan

tan1
tan

mm rr  (7.19) 

Note that 0<ξ  while ξ<ξ  can be negative, positive or zero depending on the direction of 

motion. It follows from (7.7) and (7.18) that 

 γ≤Γ≤γ  (7.20) 

where 

 ξ−=γξ−=γ mImI  (7.21) 

It is assumed 0>γ  to exclude parametric conditions where kinematic constraint instability can 

occur. In (7.21) it is assumed that III ≤≤  and mm ≤≤0 . For all of the other system parameters 

in (7.11) and (7.12), only the knowledge of upper bound ( ) and lower bound ( ) are assumed to be 

available. Throughout this chapter, numerical simulation results are presented that are obtained using 

parameter values listed in Table 7-1. These values are mostly taken from the experimental case study 

of Chapter 4. The “Min.” and “Max.” columns are the assumed available bounds on the uncertain 

parameters. In addition, the “Nom.” column lists the nominal values. 

 

Table 7-1: Parameter values used in the simulations 

Parameter True Value Min. Nom. Max. Unit 

mr  5.183  - 5.183 - mm 

λ  5.57° - 5.57 - deg 

r  193  - 193  - - 

m  12.1 kg 0.5 1.0 2 kg 

I  61012.3 −×  6100.3 −×  6101.3 −×  6103.3 −×  kgm
2
 

J  5105.8 −×  5100.7 −×  5105.8 −×  5100.9 −×  kgm
2
 

k  1  0.75 1.0 1.5 Nm/rad 

c  51020 −×   51010 −×  51030 −×  51040 −×  Nms/rad 

Mc  3101.5 −×   3102 −×  3106 −×  31010 −×  Nms/rad 

R  100  80 100 120 N 

fMT  2102.1 −×   0  2101 −×  2100.2 −×  Nm 
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Table 7-1 (continued): Parameter values used in the simulations 

Parameter True Value Min. Nom. Max. Unit 

1µ  218.0  15.0  2.0  3.0  - 

2µ  0203.0  0.0  02.0  04.0  - 

3µ  41047.4 −×−  41010 −×−  4101 −×−  0  s/rad 

0r  0.38  1 0.4 0.2 s/rad 

1r  2 0.2 2 5 s/rad 

0T  0 0 0 0 Nm 

0F  0 0 0 0 N 

 

7.3 Sliding Mode Control
1
 for Rigid Drives 

The rigid drive is obtained be assuming k to be very large which yields 

 MWG rr θ=θ=θ=θ  (7.22) 

Eliminating ( )Mrθ−θ  between (7.11) and (7.12) and using (7.22), yields 

 ( ) ( ) ( ) θ−θ−ξ−θ−+θ+−=θΓ+ &&&&&& sgnsgnsgn 0
2

0
222

TrFRrrTrTcrcrJ fMMM  (7.23) 

The normal contact force is now calculated from 

 
( )( ) ( )

( )( )Jr

crcrTrTTrmrxFRJIr
N

s

MMfMm

+Γλµ+λ

θ+θ+−θ+θλ+−+
= 2

2
0

2
0

2

sincos

sgnsgntansgn &&&&&
 (7.24) 

The second order differential equation (7.23) can be written in state-space form as 

 
( ) ( ) ( )[ ]22222

21

xuxGxxCx

xx

∆−+−=

=

&

&
 (7.25) 

where 

 
ω−θ=

ω−θ=

&
2

1

x

tx
 (7.26) 

and ω  is the reference constant lead screw angular velocity and MTu =  is the controlled input. Also 

                                                      
1 The approach followed in this section is taken from [84]. 
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 ( )
Γ+

+
= 2

2

rJ

crc
xC M  (7.27) 

 ( )
Γ+

= 2rJ

r
xG  (7.28) 

 ( ) ( ) ( )( ) ( ) ( )ω++ω++ω+−ξ+ω+=∆ −
rccrxrTxFRrxTx MfM

1
00 sgnsgnsgn  (7.29) 

Note that ( ) maxmin0 CxCC <≤< , ( ) maxmin0 GxGG <≤< , and ( ) max∆≤∆ x where 

 
γ+

+
= 2

2

min
rJ

crc
C

M , 
γ+

+
= 2

2

max
rJ

crc
C M  (7.30) 

 
γ+

= 2min
rJ

r
G , 

γ+
=

2max
rJ

r
G  (7.31) 

 ( ) ( )ω+++ξ++=∆ − crcrFRrTrT MfM

1
00max  (7.32) 

Let 

 21 xaxs += , 0>a  (7.33) 

define the sliding surface. Note that when 0=s , we have 12 axx −= , and if it is substituted in the 

first equation of (7.25), 11 axx −=&  is exponentially stable. The differential equation governing s is 

found as 

 
( ) ( ) ( )[ ]22222

22

xuxGxxCax

xaxs

∆−+−=

+= &&
 (7.34) 

Select ( )2xρ  such that 

 

( ) ( ) ( )
( )

( ) ( ) ( )

( )
( )2

min

maxmax2max

min

22222

2

22222

x
G

GxCa

G

xxGxxCax

xG

xxGxxCax

ρ=
∆++

≤

∆−−
≤

∆−−

 (7.35) 
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Then the control input is chosen as 

 ( ) ( )sxu sgn2β−=  (7.36) 

where 

 ( ) ( ) 022 β+ρ=β xx   (7.37) 

for some 00 >β . With this controller, the Lyapunov function candidate for (7.34) is chosen as 

2
2
1 sV = . The derivative of V  along the system trajectories is 

 

( ) ( ) ( )[ ] ( )
( ) ( ) ( )

( ) ( ) ( )[ ]

sG

xxxGs

uxsGxGxs

uxsGxxGxxCaxsssV

min0

222

222

222222

β−≤

β−ρ≤

+ρ≤

+∆−−== &&

 (7.38) 

Therefore, the trajectories starting away from the sliding surface reach it in finite time and once on 

the sliding surface, cannot leave it. It was already shown that trajectories on the sliding surface are 

exponentially attracted to origin.  

The controller given by (7.36) is discontinuous and suffers from the chattering problem in the 

implementation. One way to deal with this problem is to approximate (7.36) using a saturation 

function 

 ( ) ( )
ε

β−= sxu sat2  (7.39) 

where the saturation function, ( )⋅sat , is defined as 

 ( )
( )




>

≤
=

1sgn

1
sat

uu

uu
u   

Repeating the previous analysis, one finds that the system trajectories starting outside the boundary 

layer { }ε≤sx  reach it in finite time and once inside, cannot leave it. Inside the boundary layer the 

1x  equation becomes 

 saxx +−= 11& , ε≤s  (7.40) 
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The derivative of 2
11 2

1 xV =  satisfies 

 ( )
ϑ

ε
≥∀ϑ−−≤ε+−≤+−=

a
xxaxaxsxaxV 1

2
11

2
11

2
11 ,1&  (7.41) 

where 10 <ϑ< . As a result, the trajectories reach the set 

  { }ε≤
ϑ

ε≤=Ωε s
a

x ,1   (7.42) 

in finite time and remain inside it for all future time. This result shows ultimate boundedness with an 

ultimate bound that is a function of ε  and can be made arbitrarily small. Further analysis is needed to 

see what happens inside εΩ , where the control is given by ( ) 








ε

+
β−= 21

2

xax
xu . The closed-loop 

system equations are 

 
( ) ( ) ( ) ( ) ( ) 









ε

+
β−∆−−=

=

21
2222222

21

xax
xxGxxGxxCx

xx

&

&

 (7.43) 

This system has an equilibrium point at ( )0,10x  where 

 
( )
( )0
0

10
β

∆
ε−=

a
x  (7.44) 

To shift the equilibrium point to origin, set 1011 xxy −=  and 22 xy = . The system’s equations 

become 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) 









β

∆
−

ε

+
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=

0
021

2222222

21
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yyGyyGyyCy
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&

&

  

or 

 ( ) ( ) ( ) ( ) ( ) ( )22
22

21
22

2

21

yy
yyG

yCy
yyaG

y

yy

Θ+






ε

β
+−

ε

β
−=

=

&

&

 (7.45) 
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where ( ) ( ) ( ) ( )
( )

( ) ( )22222 0
0

yyGyyGy ∆−
β

∆
β=Θ . Note that ( ) 00 =Θ .  

Inside εΩ , we have ε−=
εΩ∈

2inf x
x

. Consequently, for ω<ε , ( )2yΘ  is a Lipschitz continuous 

function. From the Lipschitz continuity of Θ , assume ( ) yy κ<Θ  for some κ . Take 

 ( )
( ) ( )∫ β

+
ε

=
2

0

2
121 2

,
y

uuG

udu
y

a
yyV  (7.46) 

as a Lyapunov function candidate. Since ( ) 0>uG  and ( ) 0>β u  for εΩ∈∀u , it is obvious that V is 

a positive definite function of ( )21, yy . The derivative of V along the trajectories is found as 

 

( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
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( ) ( )

( )
( ) ( )
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β
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ε

β
+−

ε

β
−

β
+

ε
=

β
+

ε
= &&

 (7.47) 

From (7.47) it is evident that V&  can be made semi-negative definite by choosing ε  small enough, 

regardless of the value of κ . Using LaSalle’s invariance principle [84], and since the set 

( ) ( ){ }0,, 2121 =yyVyy &  contains only the trivial trajectory ( )0,0 , one concludes that the point 

( )0,10x  is asymptotically stable. 

7.3.1 Numerical Examples 

The controller designed in this section is simply a linear proportional plus integrator controller 

followed by a saturation function. To illustrate the effectiveness of the developed controller, some 

numerical results are presented here. The parameter values are taken from Table 7-1. 

7.3.1.1 Example #1 

Figure 7-2 shows two system trajectories under the action of the sliding mode controller (7.39). 
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Controller parameters are selected as 1000=a , 00 =β , and 1=ε . The boundary layer is shown by 

two parallel dashed-dotted lines (i.e. ε±−= 12 axx ). Inside the boundary layer, system (7.43) has an 

asymptotically attractive equilibrium point ( )0,10x , given by (7.44). In this example, 

radx
4

10 104 −×−≈ . The controlled input time histories are shown in Figure 7-3. 

 

Figure 7-2: System trajectories under the action of the continuous sliding mode controller. 

Dashed: ( ) ( )10,00 −=x  solid: ( ) ( )10,00 =x ; dashed-dot: boundary layer 

 

Figure 7-3: Controlled input. Dashed: ( ) ( )10,00 −=x  solid: ( ) ( )10,00 =x  
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7.3.1.2 Example #2 

Figure 7-4 and Figure 7-5 show simulation results obtained using the same settings as the above 

except for ε  which was increased to 5 (resulting in a much wider boundary layer). Here, the time 

required to reach steady state is increased but the required input signal is smoother. In addition, the 

displacement error has increased to radx
3

10 102 −×−≈ (about 20 time higher compared to the 

previous example). 

 

 

Figure 7-4: System trajectories under the action of the continuous sliding mode controller. 

Dashed: ( ) ( )10,00 −=x  solid: ( ) ( )10,00 =x ; dashed-dot: boundary layer 
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Figure 7-5: Controlled input. Dashed: ( ) ( )10,00 −=x  solid: ( ) ( )10,00 =x  

 

7.3.1.3 Example #3 

Figure 7-6 shows system trajectories starting from ( ) ( )10,00 −=x  (dashed lines) and starting from 

( ) ( )10,00 =x  (solid lines) for two values of 0β . Other control parameters are 10000=a  and 5=ε . 

Results show that by increasing 0β , which increases the control gain as per (7.37), trajectories go 

through a shorter reaching phase. Moreover, the steady state displacement error decreases as given by 

(7.44). The steady state errors are 5103 −×−  and 6103 −×−  for 50 =β  and 500 =β , respectively. 
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Figure 7-6: Effect of 0β  on the performance of the controller 

 

7.3.1.4 Example #4 

In the foregoing Lyapunov stability analysis, it was shown that to have asymptotic stability, ε  must 

be chosen small enough according to (7.47). Otherwise, the best provable result would be the ultimate 

boundedness given by (7.42). In this example, parameters are chosen to demonstrate this situation. 

The control parameters are selected as 50000=a , 5=ε , and  01.00 =β . 

Figure 7-7 shows system trajectories starting from ( ) ( )10,00 −=x  (dashed lines) and starting from 

( ) ( )10,00 =x  (solid lines). It is clear from this figure that the two trajectories remain in the invariant 

set εΩ  shown by the hatched region. In the close-up view depicted in Figure 7-8, it can be seen that 

the controlled system trajectories are attracted to a limit cycle. The pulsating behavior of the 

controlled system is shown in Figure 7-9. The velocity error varies between -0.73 to 1.43 rad/s. 

 

50 =β

500 =β

50 =β

500 =β
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Figure 7-7: System trajectories under the action of the continuous sliding mode controller. 

Dashed: ( ) ( )10,00 −=x  solid: ( ) ( )10,00 =x ;  

hatched region: bounds on the solution given by the stability conditions. 

 

 

Figure 7-8: Close-up view of system trajectories showing limit-cycle behavior.  

Dashed: ( ) ( )10,00 −=x  solid: ( ) ( )10,00 =x  
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Figure 7-9: A portion of velocity error time history 

 

For the selected parameters, according to (7.47), the limit cycle disappears for 8.0≤ε  and 

trajectories converge asymptotically to the equilibrium point. 

7.4 Sliding Mode Controller for Flexible Drive 

The controller presented in Section 7.3 was designed for a simplified system model where the system 

elements are considered to be rigid and rigidly connected. The rigidity of the drive, however, is not a 

realistic assumption in many cases, and it is natural to assume some degree of flexibility in the 

couplings, gearbox, or even the lead screw itself. Here, a sliding mode controller is developed for the 

2-DOF model presented in Section 7.1 that properly addresses the increased complexity of the model 

and the effect of the velocity-dependent coefficient of friction. 

One of the challenges in designing a sliding mode controller (or any robust controller for that 

matter) is the appearance of the so-called unmatched uncertainties in the system model1. Starting with 

(7.11) and (7.12), and introducing the following change of variables 

                                                      
1 Unmatched uncertainties do not satisfy the matching condition. Under the matching condition, the uncertain 

terms appear in the state equation of the system at the same point as the control input [84]. 
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&  (7.48) 

the equations or motion in the state-space form with three states can be written as 
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 (7.49) 

where Γ  and ξ  are defined by (7.7) and (7.8), respectively and u is the controlled input. Also 0T  and 

0F  were neglected for simplicity. 

The first step in designing a sliding mode controller for (7.49) is to find the sliding surface: 

( )213 , xxx ϕ= . Once confined to this surface, the system trajectories must asymptotically attract to 

the origin. This process can be viewed as finding a state feedback for the first two of the system 

equations when 3x  is seen as the control input. 

 

( )

ω
Γ

−ξ
Γ

−
Γ

−
Γ

−=

ϕ−=

c
Rx

k
x

c
x

xxrxx

1

,

122

2121

&

&

 (7.50) 

Once such a surface is found, the next step would be to design a controller action that brings the 

system trajectory from any initial point in the region of interest to the sliding surface ( )., 213 xxx ϕ=  

Here the sliding surface is chosen as 

 2
2

1
1

3 x
r

d
x

r

d
x −=  (7.51) 

where 1d  and 2d  are constants to be determined.  

7.4.1 The Sliding Phase 

Upon substituting (7.51) into the first two equations of (7.49), the governing equations of the sliding 

motion are found as 
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2211
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1 1

&

&
 (7.52) 

Converting (7.52) to a second order differential equation, gives 

 ( ) ( )( ) ( )( )Rcdxcdkdxdcx ξ+ω+−=+++Γ++Γ 11 2112111 &&&  (7.53) 

where the lead screw angular velocity error, 2x  (argument of ξ  and Γ functions) is given by 

 
12

111
2

+

+
=

d

xdx
x

&
 (7.54) 

Inspired by the results of Section 5.3, one would expect that a similar analysis using the averaging 

method should reveal that there is a positive constant 1

~
d  (dependent on 2d  and other system 

parameters), such that setting 11

~
dd >  would lead to asymptotic (exponential) stability of the 

equilibrium point of (7.53). 

The equilibrium point, ( )2010 , xx , of (7.52) is the solution of 
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02010

202101

cRcxkx

xdxd
 (7.55) 

where 

 
( ) ( )

( ) ( ) λω+µ+

λ−ω+µ
=ξ

tansgnsgn1
tansgnsgn

200

200
0

xR

xR
rm

 (7.56) 

and 

 ( )200 xµ=µ  (7.57) 

where ( )⋅µ  is defined by (7.15). 

From (7.55), 10x  is found as the unique solution of the following equation 

 0
1 010
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1 =ω+ξ+








+
+ cRx

d
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k  (7.58) 

and 
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d
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=  (7.59) 

Let 

 101 xxz −=  (7.60) 

then (7.53) becomes 

 ( ) ( )( ) ( ) ( )ξ−ξ+=+++Γ++Γ 02121 11 Rdzcdkdzdcz &&&  (7.61) 

The contact force, N, is simplified from (7.14) to 
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 (7.62) 

Let tΩ=τ  where 

 

 
( )

I

kd 12 +
=Ω  (7.63) 

Note that compared with (5.24), the natural frequency of the undamped unperturbed system is 

multiplied by 12 +d . Also, define the non-dimensional parameters 

 λ= tan2

I

m
rm m

)
 (7.64) 

 
( )kId

c
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1
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2 +
=  (7.65) 

 R
k

r
R m

ω

Ω
=

)
 (7.66) 

Note that (7.64) and (7.66) are the same as (5.26) and (5.28), respectively. (7.65) differs from 

(5.27) by a factor of 11 2 +d . Also, define 
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Using these new parameters, (7.61) is transformed to 
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 (7.68) 

where prime denotes derivate with respect to the dimensionless time τ . Now that the equation of 

motion is in its non-dimensionalized form, similar to Section 5.3.1, parameters are ordered using the 

small positive parameter ε . The new parameters 
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 (7.71) 

together with m
)

 and R
)

 are all assumed to be ( )1O  with respect ε  where λ=ε tan  is taken as the 

small parameter. Finally, z is scaled as vz ερ= , where 0>ρ  is ( )1O  and it is assumed 

 ρε=Ωω  (7.72) 

The system equation, (7.68), becomes 
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where, similar to (5.34) and (5.35), 
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Also, the expression for the signed velocity-dependent coefficient of friction, ( )ε′µ ,,vvs

)
, in terms 

of the new dimensionless parameters is 
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Also, from (7.62), one finds 
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After rearranging, (7.73) becomes 

 ( )ε′ε=+′′ ,,vvfvv  (7.80) 

where 

 ( ) ( ) ( )[ ]011
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 (7.81) 

Comparing (7.80) with (5.33), we can see that a damping term, vd ′−
)

, and a higher-order term, 

vdc
))

ε , are added to the system’s equation. Note that (7.76) has similar Lipschitz continuity properties 

as (5.33) with respect to ( )ε′,,vv .  

To transform (7.80) into the standard form, the following change of variables is used 

 ϕ−=′ϕ= sin,cos avav  (7.82) 

This leads to 
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 ( ) ϕεϕ−ϕε−=′ sin,sin,cos aafa  (7.83) 

 ( ) ϕεϕ−ϕ
ε

−=ϕ′ cos,sin,cos1 aaf
a

 (7.84) 

Since ϕ′  is away from zero, dividing (7.83) by (7.84) yields 
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The system equation (7.85) is in standard form with a bounded periodic right-hand side. The 

averaged amplitude equation can be found as 
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Expanding (7.86) gives 
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which immediately can be simplified to 
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where 
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and 
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Note that by setting 021 == dd , (7.88) simplifies to (5.46). In the following, the case of 

( )1OR =
)

 is treated first and then the case of ( )ε= OR
)

 or 0=R
)

 is discussed. 

7.4.1.1 The Case of ( )1OR =
)

 

For ( )1OR =
)

,  there is 
m

R
aN )

)

=  such that ( )R
m

R
a

m

R )

)

)

)

)

sgnsgncossgn =







=








ϕ+  for  Naa <≤0 . 

Also, since for 210 ϖϖ<≤ a  we have ( ) ( )121 sgnsinsgn ϖ=ϕϖ−ϖ a  then 

 ( ) ( ) ( )( ) ( )( ) ( )1
sin1

13
sin1

21 sgn1sin1ˆˆˆ, 1110 ϖ−ϕα−ϖµ+µ+µ=ϕµ
ϕα−ϖ−ϕα−ϖ− arar

s eaea
)

 (7.91) 

for ∗<≤ aa0 , where ( )1,min −∗ α= Naa  and 
1

2

ϖ

ϖ
=α . Substituting (7.91) into (7.87) yields 

 
( ) ( )∫

π

ϕϕµϕ
π

ε
+

+
ε−=′

2

0

,sin
22

daR
adc

a s

))
))

, ∗<≤ aa0  (7.92) 

For simplicity, here it is assumed 01 >ϖ .  Simplifying (7.91), one gets 

 ( ) ( )( )ϕαϖϕαϖ −ϕµ−µ+µ=ϕµ sin
23

sin
21

1110 1sin, arar

s eraea
))))

 (7.93) 

where 11
2

ϖ−= r
er  and 

 1311 ˆˆ ϖµ+µ=µ
)

 (7.94) 

 10
22 ˆ ϖ−µ=µ r
e

)
 (7.95) 

 αϖµ=µ 133 ˆ)
 (7.96) 

It is interesting to note that (7.93) is very similar to (5.49). Substituting (7.93) into (7.92) and 
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carrying out the integrations, one finds 

 
( ) ( )

( ) ( )( )arrRrarRar

arRrarRa
Rdc

a

αϖ+Λµε−αϖΛµε+

αϖΛµε−αϖΛµε+
µ++

ε−=′

1100,122110,232

110,112100,12
3

2
))))

))))
))))

 (7.97) 

where ( )⋅Λ 0,1  and ( )⋅Λ 0,2  are defined by (5.56) and (5.57), respectively. After linearization, one finds 

that the origin is locally exponentially stable if (in terms of the original system parameters), 

 
0

1

=ζ
ζ

µ
−>+

d

d
RrIdc m  (7.98) 

Comparing (7.98) with (5.61), it is clear that the only difference is the addition of Id1  to the linear 

damping which is caused by the controller.  

System (7.97) is structurally identical to (5.54)1 and as such, results obtained in Section 5.3.4 and 

Appendix D apply here. Consequently, there exists 01 ≥d
)

, such that selecting 1dd
))

>  guarantees that 

the origin is an exponentially stable fixed point of the averaged equation (7.97), and no other fixed 

points exist over [ ]∗∈ aa ,0 . Since the right-hand side of (7.85) is twice continuously differentiable 

with respect to ( ) [ ] [ ]0,0,0, ε×∈ε ∗
aa and ( ) 0,0, ≡εϕg , then, based on Theorem 1 of Appendix I, 

for sufficiently small ε , the origin of (7.85) is also exponentially stable. 

For ∗> aa , based on the arguments of Section 7.1.1 and (7.15), (7.88) is replaced by 

 

( ) ( )

( ) 







+ϕϕϖ−ϖ×

−


















ω

ϕϖ−ϖ
ωµ+µ+µ=ϕµ

ϕϖ−ϖ−ϕϖ−ϖ−

m

R
aa

e
a

ea
arar

s

)

)

)

cossgnsinsgn

1
sin

tanhˆˆˆ,

21

sin

max

21
max3

sin
21

211210

 (7.99) 

which is bounded and periodic with respect to ϕ . Substituting  (7.99) into (7.87) yields the averaged 

amplitude equation. Due to the boundedness (7.99), the following two definite integrals are also 

bounded: 

                                                      
1 Replace dc

))
+  by c

)  and αϖ1
 by ω  and (7.97) becomes (5.54). 
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 ( ) ( ) 1

2

0

1 ,cossin
2
1

ψ<ϕϕµϕϕ
π

=ψ ∫
π

daa s

)
 (7.100) 

 ( ) ( ) 2

2

0

2 ,sin
2
1

ψ<ϕϕµϕ
π

=ψ ∫
π

daa s

)
 (7.101) 

Using (7.100) and (7.101), from (7.87) we have 

 

( ) ( ) ( )

( )
21

2

0

2

,sincossin
22

ψε+ψε+
+

ε−≤

ϕϕµϕ+ϕϕ
π

ε
+

+
ε−=′ ∫

π

Ram
adc

daRam
adc

a s

))
))

)))
))

 (7.102) 

 Let 

 ( ) 















−ψ+ψ−ψ=

∗
0,

2
2,2max 2112 c

a

R
mcmd

)
)

))))
 (7.103) 

then ( ) 0<′ aa  for 2dd
))

>  and ∗> aa .  

Selecting ( )21,max ddd
)))

>  guarantees that the origin is an exponentially stable fixed point of the 

averaged system for initial condition ( ) [ )∞∈= ,00 0aa . Since the right-hand side of (7.87) is 

continuously differentiable with respect to a, Theorem 2 of Appendix I states that the solutions of 

(7.87) and (7.85) that start from the same initial value [ )∞∈ ,00a  remain ( )εO  close for all 

[ )∞ϕ∈ϕ ,0 . Consequently, for sufficiently small ε  and after a finite time, the solution of (7.85) 

enters [ ]∗a,0  where, as discussed above, the solution is exponentially attracted to the origin. This 

property naturally extends to the original system, (7.52). 

7.4.1.2 The Case of ( )ε= OR
)

 or 0=R
)

 

Here it is assumed that RR
)))

ε= , where ( )1OR =
))

 with respect to ε . The subsequent arguments apply 

to the case of 0=R
)

 by simply setting 0=R
))

 and 0=R . 

Substituting RR
)))

ε= into (7.73) gives 
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 ( ) ( )ε′ε+ε′ε=+′′ ,,,, 2
2

1 vvfvvfvv  (7.104) 

where 

 ( ) ( ) ( )vdcvmvcmvdvvf
))))))

ε+Ξ+′Ξε−−′−=ε′ −

1
1

11 1,,  (7.105) 

and 

 ( ) ( ) ( )Rmvvf
)))

10
1

12 1,, Ξ−ΞΞε−=ε′ −  (7.106) 

where 0Ξ  and 1Ξ  are given by (7.74) and (7.75), respectively. Furthermore, the scaling RR
)))

ε= , 

reduces the size of 10x , given by (7.58), from ( )1O  to ( )εO . In terms of ordered system parameters, 

(7.58) is rewritten as 

 ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) 0sgn1
sgnsgn1

1sgnsgn
1 2

2

200

200
10

2 =ω+ρε+
ω+µ+

−ω+µ
ερ+εε+ dcR

xR

xR
xcd

)
))

)

)
))

 (7.107) 

where (7.63), (7.65), (7.66), (7.67), (7.69), (7.70), (7.71), and (7.72) were used. Assuming ( )12 Od = , 

it is clear that ( ).10 ε= Ox  The first order averaged equation (7.87) is reduced to 

  
( ) ( )∫

π

ϕϕµϕϕ
π

ε
+

+
ε−=′

2

0

,cossin
22

da
amadc

a s

)
)))

 (7.108) 

where 

 

( )
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+
ω−ω×














−













ϕ

+
ω−ωµ+µ+µ=ϕµ

ϕ
+

ω−ω−ϕ
+

ω−ω−

sin
1

sgn

1sin
1

ˆˆˆ,

2

sin
1

2
3

sin
1

21
2

1
2

0

d

a

e
d

a
ea

d

a
r

d

a
r

s

)

 (7.109) 

The following two expressions were used to reach (7.108). First, from (7.78) and after substituting 

the solution of (7.107), we have 

 ( ) ω+′
+

ω
=′ζ v

d
vv

1
0,,

2

  

Second, from (7.79) 
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( )( ) ( )

( )( ) ( )vvvN

vdcvcR
m

R
vvN

sgn0,,sgn

1sgn,,sgn 2
0

2

=′→














ε++′ε+Ξε−

ε
=ε′

)))
))

)

))

 

If 210 da +<≤ , then ( )ω=







ϕ

+
ω−ω sgnsin

1
sgn

2d

a
 and consequently, (7.109) is simplified 

to 
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( )ω













−×























ϕ

+
−ωµ+µ+µ=ϕµ









ϕ

+
−ω−









ϕ

+
−ω−

sgn1

sin
1

1ˆˆˆ,

sin
1

1

2
3

sin
1

1

21

2
1

2
0

d

a
r

d

a
r

s

e

d

a
ea

)

210, da +<≤  (7.110) 

Define 

 ( ) ( )∫
π

ϕϕµϕϕ
π

=ψ
2

0

3 ,cossin
2

1
daa s

)
 (7.111) 

then there exists 3ψ , such that 

 ( ) 33 ψ<ψ a , 210 da +<≤  (7.112) 

In order to guarantee exponential stability of the origin of the averaged system for the initial 

conditions satisfying ( ) [ ]21,00 da +∈ , it suffices to select ( )3,0max dd
))

>  where 

 cmd
)))

−ψ= 33 2  (7.113) 

for then, (7.108) yields 

 
( ) ( ) ( )

0,
22 33 >ββ−<ψε+

+
ε−<ψε+

+
ε−=′ aam

adc
aam

adc
a

)
))

)
))

 

where (7.111) was used. Moreover, since (7.110) is twice continuously differentiable with respect to 

a uniformly in ϕ , the right-hand side of (7.85) is twice continuously differentiable with respect to 

( ) [ ] [ ]0,0,0, ε×∈ε ∗
aa . Also, since ( ) 0,0, ≡εϕg , based on Theorem 1 of Appendix I, for 
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sufficiently small ε , the origin of (7.85) is exponentially stable. 

For 21 da +≥ , based on the discussions of Section 7.1.1, (7.109) is modified to guarantee 

boundedness as ∞→a . (7.109) is replaced by 

 

( )









ϕ

+
ω−ω














−×









































ω

ϕ
+

ω−ω

ωµ+µ+µ=ϕµ

ϕ
+

ω−ω−

ϕ
+

ω−ω−

sin
1

sgn1

sin
1

tanhˆˆˆ,

2

sin
1

max

2
max3

sin
1

21

2
1

2
0

d

a
e

d

a

ea

d

a
r

d

a
r

s

)

 (7.114) 

Due to the boundedness of (7.114), there is a 4ψ , such that 

 ( ) 43 ψ<ψ a , 21 da +≥∀  (7.115) 

where ( )a3ψ  is given by (7.111) after substituting (7.114). Once again, exponential stability of the 

origin of the averaged system for the initial condition ( ) [ )∞+∈ ,10 2da  is guaranteed, if we select 

( )4,0max dd
))

>  where 

 cmd
)))

−ψ= 44 2  (7.116) 

Selecting ( )43 ,,0max ddd
)))

>  guarantees that the origin is an exponentially stable fixed point of the 

averaged system for the initial condition ( ) [ )∞∈= ,00 0aa . Since the right-hand side of (7.108) is 

continuously differentiable with respect to a, Theorem 2 of Appendix I states that the solutions of 

(7.108) and (7.85) that start from the same initial value [ )∞∈ ,00a  remain ( )εO  close for all 

[ )∞ϕ∈ϕ ,0 . Consequently, for sufficiently small ε  and after a finite time, the solution of (7.85) 

enters [ ]21,0 d+ , where as discussed above, the solution is exponentially attracted to the origin. This 

property extends to the original system, (7.52). 

7.4.1.3 Remark 1 

The above arguments did not provide a closed form relationship in terms of system parameters to 

determine the two control parameters, 1d  and 2d . It is, however, possible to calculate these 
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parameters based on the values of the system parameters, if available, or their upper and lower 

bounds. 

7.4.1.4 Remark 2 

The above proof of stability is based on the method of averaging and is applicable to systems with 

weak nonlinearities. In the preceding derivations, this requirement on the “size” of the nonlinear 

terms is quantified by the introduction of the small parameter ε . In particular, Theorem 1 of 

Appendix I states that, under the assumptions of the theorem, there exists an 0>ε∗ , such that 

for ],0[ ∗ε∈ε∀  the exponential stability of the origin of the unaveraged system can be deduced from 

the exponential stability of the origin of averaged system. Consequently, the upper bound on the size 

of the nonlinear terms is defined by ∗ε . Here, it is assumed that system parameter values (or their 

respective upper and lower bounds) are such that the above condition is satisfied1.  

 
Now that it has been shown that there exists control parameters 1d  and 2d  such that the subsystem 

(7.52) (i.e. the governing equation of the sliding motion) is exponentially stable, we can proceed with 

the design of a control input that brings the system’s state to the sliding surface in finite time. 

7.4.2 The Reaching Phase 

Based on (7.51), the equation of the sliding surface is given by 

 0=s  (7.117) 

where the variable s is defined as 

 2
2

1
1

3 x
r

d
x

r

d
xs +−=  (7.118) 

A controller is sought that brings s to zero in finite time. Differentiating (7.118) with respect to 

time, gives 

                                                      
1 Considering the complexity of the system equations and the number of parameters involved, the 

straightforward calculation of an upper bound on ε (i.e. ε*) can be very difficult. Numerical simulations may be 

used as an alternative to estimate this bound for a particular lead screw drive. See, for example, [100], where a 

similar issue is discussed in the context of the control of the underactuated manipulators. 
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 2
2

1
1

3 x
r

d
x

r

d
xs &&&& +−=  (7.119) 

Substituting (7.49) into (7.119), yields 

 

( )

( )ω+ξ
Γ
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Γ
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Γ
−+ω−ω+−= −

cR
r

d
x

c

r

d

r

d

x
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J
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Jr

c
rxT

J
u

J
s MM

f

2
2
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311
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3

1

sgn
11

&

 (7.120) 

Take the Lyapunov function candidate as 2

2
1 sV = ; its derivate along the system trajectories is 

found as 

 

( ) ( )

( )sxxx
J

us
J

sx
c

r

d

r

d
x

J

c
dx

k

r

d

J

rk

scR
r

d

Jr

c
rxT

J
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J

ssV

M

M
fM

3322110

2
21

311
2

21
3

11

1
sgn

11

ρ+ρ+ρ+ρ+≤


















Γ
+−








−+









Γ
−+









ω+ξ

Γ
+ω+ω+−=

=

−

&&

 (7.121) 

where, 30, K=ρ ii  are assumed to be known constants satisfying the following relationships 

 ( ) ( ) 0
21

3sgn ρ≤ω+ξ
Γ

+ω+ω+ −
cR

r

dJ

r

c
rxT M

fM  (7.122) 

 1
2 ρ≤

Γ
−

k

r

d
Jrk  (7.123) 

 2
21 ρ≤

Γ
+

c

r

d
J

r

d
J  (7.124) 

 31 ρ≤− McJd  (7.125) 

Using known upper and lower bounds of the parameters, one can find 
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 ( )ω+ξ
Γ

+ω+=ρ cR
r

dJ

r

c
T M

f
2

0  (7.126) 

 
Γ

+=ρ
k

r

d
Jkr 2

1  (7.127) 

 








Γ
+=ρ

c

r

d

r

d
J 21

2  (7.128) 

 McJd +=ρ 13  (7.129) 

Let 

 ( )( ) ( )su sgn0β+β−= x  (7.130) 

where 

 ( ) 3322110 xxx ρ+ρ+ρ+ρ=β x  (7.131) 

and 00 >β is some known constant, (7.121) becomes 

 

( )

( )( ) ( ) ( )

s
J

s
J

ss
J

sxxx
J

us
J

V

0

0

3322110

1

1
sgn

1

11

β−=

β+β+β−=

ρ+ρ+ρ+ρ+≤

xx

&

 (7.132) 

This result implies that the system trajectories reach the sliding surface 0=s  in finite time and, 

once on the surface, they cannot leave it. 

The sliding mode controller consisting of a reaching phase and a sliding phase is now developed. 

However, a few issues remain to be addressed before signing off on this controller. These issues are: 

• The steady-state error, 

• Chattering, which is caused by discontinuous nature of the controller and delays in the 

actual switching controller implementations, and 

• Initial high torque demand. 

In the following three sections, several approaches are presented to modify the controller in order 
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to circumvent these problems without jeopardizing the stability properties of the original controller. 

7.4.3 Feedforward Input 

From (7.53), we saw that the origin is not an equilibrium point of the governing equation for the 

sliding motion. This equilibrium point was calculated by (7.58) and translated to a lead screw velocity 

error given by (7.59), which in turn results in a motor velocity error when considering the sliding 

surface equation given by (7.51). In this section, a feedforward input is considered to reduce the 

velocity error as much as possible, depending on the availability and the accuracy of the nominal 

values for the system parameters. 

For the system (7.49), the constant input 

 0,0
1

0 >ωω+ξ+ω+= −
rcRrrcTu Mf  (7.133) 

is required to have the steady state point at 

 








ω+ξ

−









=

















0

0

0

30

20

10 k

cR

x

x

x

 (7.134) 

However due to parameter uncertainty, both 0u  and 0x  are unknown values. As a compromise, it 

is possible to modify the controller input with 

 0ûvu +=  (7.135) 

where 0û  is the feedforward input obtained from (7.133) using nominal values of system parameters. 

Substituting (7.135) into (7.49) and setting 

 1011 ˆ~ xxx −=  (7.136) 

where 10x̂  is obtained from (7.134) by using the nominal system parameters, the equations of motion 

become after simplification 
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 (7.137) 

where the tilde on 1x  was dropped to simplify the notations. 

The development of the sliding mode controller follows the same steps as described above and, 

except for pointing out the differences, it is not repeated here. The second order differential equation 

governing the sliding motion, (7.53), becomes 

 

( ) ( )( )

( ) 
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ξ−ξ+−=
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c
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xcdkdxdcx
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112111 &&&

 (7.138) 

where the “hat” designates the nominal parameter values. Note that had we known the “true” system 

parameters, (7.138) would yield 010 =x . However, one would expect that by the addition of the 

feedforward component, a smaller 10x  is obtained when the nominal parameter values are reasonably 

close to the true values. This in turn translates to smaller steady state velocity errors for motor and 

lead screw. 

The addition of the constant input also changes the sliding mode controller law. The equation for 

s& , given by (7.120) is changed to 

 ∆+
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where 
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The only difference compared with the previous controller is in 0ρ , which is now given by 
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 (7.141) 

7.4.4 Continuous Sliding Mode Controller 

The continuous version of the controller given by (7.130) can be constructed by replacing signum 

function with a unit saturation function 

 ( )( ) 








ε
β+β−=

1
0 sat

s
u x  (7.142) 

For this controller, the previous Lyapunov analysis can only show that the trajectories starting 

outside of the boundary layer (i.e. 1ε≤s ) reach it in finite time and, once inside, cannot leave it for 

all future time. Namely, (7.132) for the derivate of the Lyapunov function, now reads 

 10 ,
1

ε≥β−≤ ss
J

V&  (7.143) 

To ensure that the trajectories inside the boundary layer remain bounded, the boundedness of the 

solutions of the following system must be shown 
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, 1ε≤s  (7.144) 

where (7.144) is obtained by substituting (7.118) into the first two equations of (7.49). However, 
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since the aim of the controller is to eliminate lead screw vibrations, proof of boundedness will not be 

sufficient. Instead, the analysis continues by utilizing the “high gain” behavior of the sliding mode 

controller inside the boundary layer to prove the asymptotic stability of the system towards its fixed 

point (which is not the origin). This task is accomplished by considering the system as a singularly 

perturbed problem. The stability property is then given by Theorem 3 of Appendix I.  

To use this theorem, the control law given by (7.130) must be modified slightly to give it the 

required smoothness properties. Note that the partial derivatives of ( )xβ , given by (7.131), with 

respect to 3,2,1, =ixi , are not continuous. Here, ( )xβ  is replaced by ( )xβ
~

, which is defined similar 

to (7.131), except that the absolute functions are replaced by 

 ( )
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δ
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δ
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≡σδ

uu

uu

u
,

22
1

,

2  (7.145) 

where 0>δ  is a parameter designating the extent of the smoothed region. As illustrated in Figure 

7-10, function ( ).δσ  is continuously differentiable to any order and ( ) uuu ∀≥σδ , . 

 

 

Figure 7-10: Smoothed absolute function 

 

Now the modified controller 

 ( )( )
1

0

~
ε

β+β−=
s

u x , 1ε≤s  (7.146) 

is continuously differentiable inside the boundary layer. For 1ε≤s , the equations of motion become 
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 (7.147) 

where ( )ζsgn  was replaced by ( )2tanh εζ  for some small 02 >ε  as an approximation that has the 

required smoothness properties. The system described by (7.147) resembles a standard singular 

perturbation problem [84]. To convert it to the standard form, the fixed point must be transferred to 

the origin. Let 
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where 20x  is given by the solution of the following equation 
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Also, ( )3020100 ,, xxx=x  and ( )200 xξ=ξ . 10x  is found from 

 ( )ω+ξ+−= cRcx
k

x 02010

1
 (7.150) 

also 

 rxx /2030 =  (7.151) 

For 01 =ε , (7.149) simplifies to 
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which has a unique solution, *
20x . Since (7.149) is continuously differentiable with respect to 20x  and 

its derivative does not vanish at *
2020 xx =  and 01 =ε  (stability requirement sets 01 >d ), based on 

the implicit function theorem [101] it has a solution for sufficiently small 1ε . Substituting (7.148) into 

(7.147) yields 
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which is in the standard singularly perturbed form for the autonomous systems [84], given by 
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for ( )21, zzx = , 3zy = , and 1ε=ε . 

First, the “reduced model” and the “boundary-layer model” are defined. Setting 01 =ε , the third 

differential equation degenerates to an algebraic equation. The unique solution of this equation is 

given by 
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213 , z
r

d
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r

d
zzhz −==  (7.154) 

where the fact that ( )( ) 00 ≠β+β z  is used. Also, for 01 =ε , 10x  and 20x  coincide with the solution 

of (7.58) and (7.59), which gives ( ) 01
01010202

11
=−+

=ε=ε
xdxd . 

Substituting (7.154) into the first two equations of (7.153) and setting 01 =ε , the reduced model is 

found as 
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which can be expressed as a single second-order differential equation, given by 

 ( ) ( )( ) ( ) ( )ξ−ξ+=+++Γ++Γ 02121 11 Rdzcdkdzdcz &&&  (7.156) 

Note that (7.156) is exactly the same as (7.61), and the analysis of Section 7.4.1 proves that the 

origin is an exponentially stable equilibrium point of the reduced model. 

To obtain the boundary-layer model, we first apply the following change of variable 
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Upon substituting this into the third equation of (7.153), one finds 
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Define the fast time scale as t
1

1
−

ε=τ , which yields τ=ε ddyy&1 . Substituting this into (7.158) 

and setting 1ε  to zero, yields 
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τ
z  (7.159) 

which can be shown to have an exponentially stable origin (i.e. 0=y ). Let 2
1 21 yV =  be the 

Lyapunov function candidate. The derivative of V along the system trajectories is found as 
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Citing Theorem 3 in Appendix I, it is concluded that the system (7.153) has an exponentially stable 

equilibrium point at the origin for sufficiently small 1ε . 
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7.4.5 Variable Velocity Set Point 

The error is inversely proportional to 12 +d  and by choosing a large enough 2d , the position error 

can be limited to some allowable maximum thus reducing the lead screw and motor velocity errors. 

Unfortunately, this approach may increase the already large torque demand on the motor at the 

beginning of motion when the difference between system initial state (usually at rest, 0=θ& ) and the 

desired state ( dω=θ& ) is significant. From a practical point of view, this may not be desirable or 

feasible. An effective way to reduce the input torque demand is to increase the preset velocity from 

zero to its desired value, gradually. 

If ( )tω=ω  then the change of variable (7.48) gives 
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As a result (7.49) becomes 
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From (7.162), it is easy to see that the s&  equation given by (7.119) changes to 
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where the term ω
+

− &
r

d 12  is the only difference compared to (7.120). To compensate for this 

bounded addition, only 0ρ  in (7.126) needs to be modified. Let 
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where α  and ω  are chosen such that 

 ( )t
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sup  and ( )t
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ω≥ω
≥0

sup  (7.165) 

Note that since ( )tω  and ( )tω&  are known functions of time, ω  and α  can be chosen to be time-

varying too. 

We also need to know the effects of changing ( )tω  on the stability of the sliding phase. Adopting 

the same sliding surface as before, the governing equations of the sliding motion become 
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where compared to (7.52), ω&  has entered into the second equation. In the following, (7.166) is 

converted to a form where the variation of ( )tω  appears as a bounded perturbation. The ultimate 

boundedness of the sliding motion is then follows from the global exponential stability of the 

unperturbed system1. 

Let 

 ( ) ( )tt d ϖ−ω=ω ,  ( ) dt ω≤ϖ≤0  (7.167) 

where dω  is the final desired constant angular velocity value and ( )tϖ  is the variable part. For the 

problem considered here, ( )tϖ  is assumed to be a decreasing function of t, with ( ) dω=ϖ 0  and  

( ) 0=ϖ t , 1tt ≥∀  for some 01 >t . Also, ( )tϖ&  is bounded for 0≥∀t . Substituting (7.167) into 

(7.166) yields 
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where 

 

                                                      
1 See for example [84, Lemma 9.2]. 
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is a bounded term based on the above assumptions for ( )tϖ  and ( )tϖ&  and also based on the fact that 

( )2xΓ  is away from zero for 2x∀ . 

Setting 0≡δ , (7.168) reduces to (7.52) with constant dω=ω  which is globally exponentially 

stable. This property, together with the boundedness of ( )2, xtδ , guarantees that the solutions of 

(7.168) remain bounded [84]. Furthermore, once 1tt > , the perturbation term vanishes and the 

exponential stability of the equations of motion of the sliding phase is restored. 

7.4.6 Numerical Examples 

In the numerical examples presented here, the controller law defined by (7.142) is used. The system 

parameters and their bounds are given by Table 7-1. In addition, the system is considered to be at rest 

at the start of simulations. 

7.4.6.1 Example #1 

In the first example, the feedforward input of Section 7.4.3 and the variable velocity set point of 

Section 7.4.5 are not used. The selected controller parameters are listed in Table 7-2. 

 

Table 7-2: Controller parameters for example #1 

Parameter Value Parameter Value 

1d  25  dω  srad40  

2d  0  1ε  10 

0β  0    

 

Figure 7-11 shows the time histories of the lead screw and motor velocity errors. As can be seen, 

the sliding mode controller is able to dampen the lead screw vibrations in a short time. The steady 

state error is approximately  s
radx 1.220 −≈  (about 5% ) for the lead screw, which is equivalent to a 

s
radx 1.1330 −≈  error in the steady state value of the motor’s angular velocity, according to (7.151).  

The time history of the 1x  state is shown in Figure 7-12(a). This variable essentially represents the 

torsional deflection of the elements (coupling) connecting the motor to the lead screw. The steady 
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state deflection, 10x , is approximately rad054.0−  in accordance with (7.150). In Figure 7-12(b), 

the time history of the normal contact force of the threads is plotted. Note that, during the simulation, 

contact force remains greater than zero and at steady state reaches approximately, NN ss 5.98≈  

which can also be found from (3.16) as 

 
( ) λωµ+λ

=
sinsgncos 0 R

R
N ss   

The controlled input time history is given in Figure 7-13. As expected, at the beginning of motion, 

the controller demands high torque from the motor to bring the system’s state from 









×−−

3
19

40,40,0  towards the boundary layer. The initial torque is about mN.23.6 . At steady 

state, the torque required to maintain the system’s constant velocity is mNu .3.10 ≈ , which agrees 

with (7.133).  

 

 

Figure 7-11: Controller performance of example #1; 
 (a) lead screw velocity error, (b) motor velocity error 
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Figure 7-12: (a) Variation of the torsional deflection of the coupling, (b) variation of normal contact force 

 

The system’s trajectory is shown in Figure 7-14. The two planes in this figure are defined by 

( ) ( ) ε±=+− 22113 xrdxrdx  and are added to visualize the boundary layer. As can be seen, the 

trajectory enters the boundary layer at point “A” and, once inside, remains there for all future time. 

 

 

Figure 7-13: Controlled input of example #1 
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Figure 7-14: System’s trajectory for example #1 

 

7.4.6.2 Example #2 

In this example, the velocity set point is gradually varied from 0 to dω  according to 
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where 0t  and δ  control the onset of speed change and steepness of its ascent, respectively. Note that, 

based on (7.170), ( )


















δ
+δ

ω
≤ω

0tanh1
t

t d& , 0≥∀t .  

The controller parameters are selected as the previous example. Also for this example, st 25.00 =   

and s1.0=δ .  Figure 7-15 shows the lead screw and motor angular velocity time histories. The plots 

in this figure show successful tracking of the variable velocity set point. The controlled input for this 

example is shown in Figure 7-16. Compared with Figure 7-13, it is clear that by varying the velocity 

set point from zero to the desired final value, the initial high control torque is eliminated. 

A O 
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Figure 7-15: Lead screw (a) and motor (b) angular velocities of the closed loop system.  
Black: system response; dashed gray: velocity set point 

 

 

Figure 7-16: Controlled input of example #2 

 

7.4.6.3 Example #3 

In this example, the effect of the parameter 2d  on the performance of the controller is investigated. 

The parameter values used in this example are listed in Table 7-3.  
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Table 7-3: Controller parameters for example #3 

Parameter Value Parameter Value 

1d  40 dω  srad40  

2d  10,1,0  
0t  s25.0  

0β  0  δ  s1.0  

1ε  1   

 

Figure 7-17 shows the lead screw and motor velocity error time histories for three different values 

of 2d . It can be seen from this figure that by increasing the value of 2d , the steady state velocity 

error decreases, as was shown by (7.152). 

 

 

Figure 7-17: Effect of d2 on the performance of the controller.  

 

In Section 7.4.1, it was shown that 2d  has a stiffness-like effect on the reduced order model of 

sliding phase. It is interesting to note that the simulation results of Figure 7-17 show this effect; by 

increasing 2d , the amplitude of the transient vibrations of the lead screw is reduced. 

7.4.6.4 Example #4 

In this example, the feedforward input of Section 7.4.3 is added to the controller. To implement the 

feedforward input together with the variable velocity sliding mode controller of Section 7.4.5, the 
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feedforward input defined by (7.133) is changed to 

 ( ) ( )tcrRrtrcTu MfM ω+ξ+ω+= − ˆˆˆˆˆ
0

1
0  (7.171) 

Also, the term 0ρ  given by (7.141) for the feedforward input of Section 7.4.3, and the term 0ρ  

given by (7.164) for the variable velocity method of Section 7.4.5, are combined to give 
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Finally, the sliding mode control law given by (7.142) is changed to 

 ( )( ) 








ε
β+β−=

1
0 sat~ s

u x  (7.173) 

where  [ ]32101 ˆ~ xxxx +=x  and 10x̂  is calculated by substituting nominal values into (7.134).  

The controller variables for this numerical example are given in Table 7-4. Figure 7-18 shows the 

performance of the sliding mode controller with and without the feedforward input. The addition of 

the feedforward component clearly improved the steady state results. It must be noted that, this 

improvement is highly dependent on the accuracy of the nominal values of the system parameters.  

 

Table 7-4: Controller parameters for example #4 

Parameter Value Parameter Value 

1d  25  dω  srad40  

2d  0  0t  s25.0  

0β  0  δ  s1.0  

1ε  1   
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Figure 7-18: Effect of feedforward part on the performance of the controller.  
Gray: without feedforward; black: with feedforward 

 

The controller effort is shown in Figure 7-19 for the two cases considered in this example. It can be 

seen that the addition of feedforward input only slightly increased the input. The reduction of the 

sliding mode controller gain (comparing (7.172) with (7.164)) is compensated by the nominal input 

(7.171), resulting in reduced steady-state errors. 

 

 

Figure 7-19: Controlled inputs of example #4. Black: with feedforward input; 
gray: without feedforward input. 
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For comparison, Figure 7-20 shows simulations results when only the feedforward input was 

applied (open-loop system). The system is unstable and the lead screw DOF exhibits stick-slip 

behavior. The vibration amplitude of the motor, on the other hand, is significantly smaller which is 

due to the high gear ratio, r, between motor and lead screw1. The error in the steady state value of 

motor velocity error is attributed the difference between nominal values and true values of the system 

parameters. 

 

 

Figure 7-20: Performance under the action of feedforward input alone 

 

7.4.6.5 Example #5 

In the development of the sliding mode controller of this chapter, the velocity-dependent coefficient 

of friction was smoothed to satisfy the smoothness requirement for the averaging process of Section 

7.4.1 and the singular perturbation analysis of Section 7.4.4. However, there is no limit on the size of 

1r  parameter, since this parameter does not appear in the control law. The only difference is that a 

somewhat larger 1d  value may be needed to guarantee stability due to the increased negative slope of 

the friction curve at the lower relative velocities. This, however, does not affect the stability of the 

                                                      
1 Similar behavior was observed in the open-loop test results of Chapter 4. See Figure 4-15(a). 
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system once the variable reference velocity reaches its desired final value. This feature can be used to 

effectively recover the cases where the coefficient of friction does not vanish near zero relative 

velocity by selecting very large values for 1r .  

In this example, the actual value for 1r  is set to 10000 (compared with the previous examples, 

where 21 =r ). The resulting coefficient of friction is shown in Figure 7-21. Controller parameters 

used in this example are given in Table 7-5. 

 

 

Figure 7-21: Smoothed coefficient of friction 

 

Table 7-5: Controller parameters for example #5 

Parameter Value Parameter Value 

1d  40  dω  srad40  

2d  0  0t  s25.0  

0β  0  δ  s1.0  

1ε  1 1r  10000  

 

The performance of the controller is shown by the error time histories plotted in Figure 7-22. The 

stick-slip transient vibration in the lead screw angular velocity is clearly visible in the close-up view 

of Figure 7-23. The controlled input for this example is shown in Figure 7-24. 
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Figure 7-22: Lead screw (a) and motor (b) angular velocities of the closed loop system.  
Black: system response; dashed gray: velocity set point 

 

 

Figure 7-23: Close-up view of the transient vibrations of the lead screw 
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Figure 7-24: Controlled input for example #5 

 

7.5 Conclusions 

Active vibration control for lead screw systems was studied in this chapter. Based on the sliding mode 

control method, two robust regulators were designed that are capable of stabilizing the steady sliding 

fixed point of the system to a predefined set point. These controllers actively diminish the vibrations 

caused by the negative damping mechanism that is assumed to be present in the system. To 

implement these controllers, no knowledge of any of the system parameters is needed and only the 

bounds of the parameters are assumed to be available. 

In Section 7.3, the model of the lead screw drive was simplified under the assumption that all of the 

rotating parts, from motor to lead screw, are rigidly connected. The problem of chattering, which is an 

inherent consequence of all discontinuous (switching) controllers such as the sliding mode, was 

addressed, and a continuous version of the controller was developed to avoid chattering. Stability of 

this controller was proven using an appropriate Lyapunov function. Numerical simulation results also 

confirmed the applicability of the controller. 

This assumption of rigidity was relaxed in Section 7.4. In this section, a more realistic 2-DOF lead 

screw drive system was analyzed. First, a basic sliding mode controller was developed that addressed 

the presence of unmatched uncertainties in the system. The process of the proof of stability of this 

controller involved the analysis of the governing equations of sliding motion as a weakly nonlinear 
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system. Drawing heavily on the results of Section 5.2, it was proven that for a suitable choice of 

sliding surface, the sliding motion is globally exponentially stable. 

Three areas of deficiency were identified regarding the performance of the basic sliding mode 

controller. Each of these issues was addressed through an appropriate modification to the basic 

controller that retained its stability properties: 

 
1. Chatter – This problem stems from the discontinuous nature of the controller. Similar to 

the case of Section 7.3, boundary layer approximate control law was introduced. The 

asymptotic stability of the system inside the boundary layer was proven by recasting the 

equations of motion into a standard singular perturbation problem 

2. Steady state error – The origin (i.e. zero steady sliding error state) is not the fixed point of 

the sliding phase. As a result, the stable system exhibits a steady state difference between 

the attained velocity and the desired set point. To reduce this error, an additional 

feedforward input was added to the controller that utilizes the available knowledge of the 

system parameters (i.e. nominal values). 

3. High initial torque demand – For initial conditions that are away from the sliding surface, 

the controller requires high torque at the start of the motion. It was proven that the 

developed sliding mode control is capable of stabilizing the system while the velocity set 

point is varied. The proof of stability only requires bounded variations velocity set point 

with bounded rate of change. By gradually varying the velocity set point from zero (system 

at rest) to the desired value, the initial high torque was eliminated. 

 
The numerical simulation results showed the effectiveness of the modified sliding mode controller in 

dampening the vibrations caused by the negative damping instability mechanism and regulating the 

angular velocity of the lead screw to the desired set point. 
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Chapter 8 

Results Summary and Future Work 

In this chapter, a summary of the results obtained in this thesis is presented and possible areas for 

future work are discussed. 

8.1 Results Summary 

This thesis covers a wide range of topics regarding the dynamics of lead screw drives with friction. 

Mathematical modeling, model/friction parameters identification, mechanisms of friction-induced 

instability, and robust vibration control are the four areas that make up this research. The results 

obtained in this work aim to fill a substantial gap in the literature regarding the dynamics of lead 

screw systems with friction.  

A lead screw drive consists of a meshing lead screw and nut pair and converts rotary motion to 

translation. Depending on the configuration of the system, the driver (e.g. electric motor) may rotate 

either the lead screw or the nut. In both cases, the load may be translated by either translating the lead 

screw or translating the nut. Clearly, vibratory behavior in any mechanical system requires some 

degree of flexibility in that system. In lead screw drives, numerous compliant elements may 

contribute to the overall flexibility of the system and affect the number of degrees of freedom 

required for modeling the system accurately. In this work, a unified mathematical framework is 

presented for modeling the lead screw drives. Depending on the complexity of the drives under study 

and the elements (flexible or rigid) included in the power transmission chain, the mathematical 

models developed in this work are capable of representing the system’s dynamics while incorporating 

the handedness of the screw, direction of motion, and the direction of applied force. All models 

presented in this thesis are based on the basic 1-DOF lead screw drive model.  

A mathematical model by itself is an abstract object suitable only for qualitative studies. In order to 

convert such a model to a design tool, a (quantitative) validation process is needed. In this thesis, the 
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lead screw drive mechanism of a powered seat adjuster is investigated. The preliminary test results 

show that the friction-induced vibration of the two lead screws in the horizontal motion mechanism of 

this seat adjuster is the cause of unacceptable levels of audible noise. Based on the developed 

mathematical model of the lead screw drive of this seat adjuster, a novel parameter identification 

technique is introduced, which consists of an identification step and a fine-tuning step. Using the 

measurement data collected from the drive, system parameters such as velocity-dependent friction 

parameters, damping, and coupling stiffness are identified. Comparison between the measurements 

and simulation results confirms the accuracy of the identified parameters and validates the 

mathematical model of the lead screw drive. This model is then used to perform parameter studies, 

which results in the discovery of possible simple design modification to eliminate audible noise 

problem. 

Three distinct frictional instability mechanisms can affect a lead screw system. These mechanisms 

are: 1. Negative damping, 2. Kinematic constraint, and 3. Mode coupling. In this thesis, all of these 

mechanisms are studied in detail. Negative damping instability, which is a consequence of decreasing 

friction with increasing sliding velocity, is studied first. This mechanism is responsible for the 

instabilities observed in the lead screw drive of the seat adjuster mentioned above. The negative 

damping instability mechanism is studied using the 1-DOF basic lead screw model. After 

linearization, local stability of the steady-sliding fixed point is investigated by evaluating the 

eigenvalues of the Jacobian matrix of the system, which resulted in a parametric condition for 

stability in terms of the coefficient of friction (more precisely, the rate of decay of friction with 

sliding velocity) and rotational damping of the lead screw supports. This analysis is expanded by the 

application of the method of averaging. It is shown that, depending on the value of the parameters and 

because of the assumption of exponentially decaying coefficient of friction, one of the following three 

scenarios define the steady state solutions of the averaged system: 1. The origin (steady-sliding state) 

is stable and no other periodic solutions (limit cycles) exist; 2. The origin is unstable and it is 

surrounded by a stable limit cycle, or; 3. The origin is stable and it is surrounded by an unstable limit 

cycle (which defines the region of attraction of the stable trivial fixed point). The unstable limit cycle 

is inside a stable limit cycle. 

The kinematic constraint and mode coupling stability mechanisms can destabilize a mechanical 

system even with a constant (velocity-independent) coefficient of friction. The kinematic constraint 

instability can occur in 1-DOF systems, whereas mode coupling instability is exclusive to multi-DOF 

systems. 
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Parametric conditions for the onset of the kinematic constraint instability are found by analyzing 

the eigenvalues of the linearized version of the basic 1-DOF model. This analysis gives three 

conditions that together define the sufficient conditions for the steady sliding state to become 

unstable. The first condition states that the lead screw must be self-locking. The second condition 

requires that the force applied to the nut be in same direction as the nut translation. The third 

condition defines a limit ratio between the mass of the translating part and the inertia of the rotating 

part. In other words, there is limiting value for the mass of the translating part (depending on the lead 

screw inertia, coefficient of friction, and geometry of lead screw), below which instability does not 

occur. 

The mode coupling is by far the most complex instability mechanism of the three mechanisms 

studied in this thesis. In an undamped system with two or more DOFs mode coupling (flutter), 

instability occurs whenever two of the system modes merge. The necessary condition for the mode 

coupling instability is the presence of forces that are not conservative. In lead screw systems, friction 

provides the necessary condition for the mode coupling instability to occur. In this work, two 2-DOF 

models and a 3-DOF model of lead screw drives are studied. By evaluating the eigenvalues of the 

Jacobian matrix of the linearized equations, parametric stability conditions are derived in each case. 

These conditions, especially in the case of damped systems, are very complex, and numerical analysis 

is necessary to evaluate the effects of each system parameter on stability. The two 2-DOF models 

studied differ from each other in the source of additional compliance. One model incorporates 

compliance in the threads (contact of the lead screw and the nut threads are modeled with linear 

springs and dampers) and the other incorporates axial flexibility in the lead screw support. It is found 

that self-locking is a necessary condition for instability in both of these models. Another necessary 

condition for instability (similar to the kinematic constraint instability) is the application of external 

force in the direction of motion. It is also shown that introducing damping to only one of the two 

DOFs of the system (either translational or rotational), destabilizes the steady sliding fixed point. 

Design constraints, properties of the available materials, or variations in the operating conditions 

may hinder efforts to design a lead screw drive that operates without friction-induced vibrations. In 

such cases, active vibration control may be applied to guarantee vibration free operation. In this 

thesis, two speed regulators are designed based on the sliding mode control method. The most 

important feature of these controllers is their robustness to parameter uncertainties. It is assumed that 

the actual values of the system parameters are not available and only their upper and lower bounds are 

known.  
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The first controller applies to a simplified 1-DOF model, where it is assumed that all of the rotating 

parts are rigid and rigidly connected. Necessary modifications are made to this controller to eliminate 

the chattering problem, which is an inherent drawback of the discontinuous (switching) sliding mode 

control law. Stability properties of the modified controller are proven based on Lyapunov’s direct 

method.  

The second controller is developed for a more realistic model that incorporates a flexible torsional 

element between motor and lead screw. The presence of unmatched uncertainties (i.e. uncertain terms 

and inputs do not enter the equations at the same point) makes this model much more complicated 

compared to the 1-DOF case. Three modifications are applied to this sliding mode controller to 

improve its performance. First, to eliminate chattering, an approximate continuous version of the 

controller is developed. Second, a feedforward input is added to improve the steady state error. Third, 

the velocity set point is set to vary with time from zero to the final desired value, thus eliminating the 

high torque demand at the start of motion. Using Lyapunov’s direct method, the method first order 

averaging, and the singular perturbation approach, stability the controller is proven for each of these 

modifications. The presented numerical simulation results show the effectiveness of the two sliding 

mode controllers. 

8.2 Future Work 

Based on the results obtained in this thesis, some areas for further research are identified. These 

topics are listed here. 

1. The models presented in Chapter 3 do not include lateral, torsional, or axial flexibility of 

the lead screw. In applications where long and slender lead screws are used, it may be 

necessary to incorporate flexibility of the lead screw in to the model. 

2. Although backlash can be included in the models developed in Chapter 3, the dynamic 

effects of backlash on the friction-induced vibrations or active vibration control are not 

considered here. The study of the effects of backlash is important in positioning lead 

screws.  

3. The micro-pump system presented in Section 1.2 uses stepper motor, and the additional 

nonlinearities introduced by this driver to the system warrant a further focused study. 

4. In this thesis, the method of averaging was used to study the negative damping 

mechanism. This method or other perturbation techniques can be applied to systems with 

mode-coupling or kinematic constraint mechanisms. Such analyses may provide a more 
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complete picture of the nonlinear system as well as approximate and efficient methods to 

predict steady-state amplitude of vibrations for parameter studies. 

5. The controller presented in Section 7.4 assumes that all of the states are measured. 

Further research may be directed towards the development of output feedback versions 

of this controller that do not require measurement of all of the states. 
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Appendix A 

Test Setups 

A.1 Complete Seat Adjuster Experimental Setup 

As mentioned in Section 4.1, the preliminary phase of the experiments on the powered seat adjuster 

was limited to the analysis of the audible noise generated under different operational conditions. 

Figure A-1 shows the test setup developed for these experiments. 

 

 

Figure A-1: Experimental setup for preliminary tests on the complete powered seat adjuster 

 

The instruments used, shown in Figure 4-1, were as follows: 

• Force measurements: OMEGA1 pancake style LCHD 1000lb capacity 

• Sound level (dBA): TES 1350A Sound Level Meter2 

                                                      
1 www.omega.com 
2 www.tes.com.tw 
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• Audible noise (sound wave): A general purpose PC microphone 

• Seat displacement: CELESCO1 position transducer SP1-12 

Signals from load cell, position transducer, and sound level meter were collected using a PC 

equipped with a Measurement Computing2 data acquisition card model PCI-DAS1602/16. A small 

Matlab/Simulink program was written to record signals received by the data acquisition card. A 

screenshot of the data acquisition program during one test is shown in Figure A-2. The sampling 

frequency was set to 1000Hz.  

The signal from the microphone was recorded by Windows® standard sound recorder accessory 

software. The sound sampling frequency was 22050Hz. 

 

 

Figure A-2: Data acquisition in Matlab/Simulink environment  

 

A.2 Single Slider Experimental Setup 

The experiments performed on the complete seat adjuster were repeated for a single slider. Figure 

4-4 shows the test setup developed for these tests. To simplify the test setup, the lead screw slider 

mechanism was installed upside-down compared to its configuration in the complete seat adjuster. In 

this setup, the DC motor rotates a single lead screw, which is horizontally fixed. As in the case of the 

complete seat experiments, a pneumatic cylinder applies the required axial force to the system. As 

shown in Figure 4-4, force is applied directly to the nut parallel to the lead screw axis. 

                                                      
1 www.celesco.com 
2 www.measurementcomputing.com 
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Instrumentations used in these tests were those listed in the previous section. 

A.3 Lead Screw Experimental Setup 

The test setup used in the friction identification experiments of Chapter 4 is shown in Figures A-3 and 

A-4. See Table A-1 for a list of instruments and components of this test setup. Two separate sets of 

experiments were performed using this setup: a) closed-loop tests of Section 4.2. and open-loop tests 

of Section 4.4. 

In closed-loop tests, the DC motor is driven through a servo amplifier operating in the “current 

mode” (see Figure A-4). In this mode, the current output of the amplifier is proportional to the input 

voltage control signal. Consequently, the motor torque is proportional to the control signal. The 

amplifier gain and the DC motor torque constant are 1.0 (A/V) and 0.0266 (N.m/A), respectively. 

 

 

Figure A-3: Experimental setup for the lead screw friction identification tests 

 

Motor Speed Controller Program 

dSpace Unit  

Power Supply for the DC Motor Power Supply for the Solenoid Valve 

Load Cell Signal Conditioner 

Solenoid Valve 
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The control signal for the closed-loop tests is generated by the dSpace1 controller, which is 

programmed in Matlab. The pneumatic cylinder is activated by a solenoid valve which is also 

commanded by the controller. Two identical analog rotary encoders (sinusoidal signal, 1Vpp) are used 

to measure the angular displacement of the lead screw and the DC motor. These encoders have a 

resolution of 3600 counts per revolution, which is interpolated up to 4000 times by the dSpace 

controller and recorded. Other measured signals in these tests are the load cell signal (applied axial 

force) and the motor current, which are also acquired by the dSpace system. 

 

 

Figure A-4: Instrumentation used in the friction identification test setup 

 

Figure A-5 shows a sample of measured angular displacement and calculated angular velocity (by 

numerical differentiation) of the lead screw. The measurement data corresponding to the accelerating 

(start of motion) and decelerating (end of motion) portions of each test is discarded and the resulting 

near steady-state measurements is averaged and recorded as one data point. See Figure A-6 for a 

sample of near steady-state measurement results. 

                                                      
1 www.dspaceinc.com 

Rotary encoder measuring angular 
displacement of DC motor  

Rotary encoder measuring angular 
displacement of lead screw  Load Cell 

DC Motor Servo 
Amplifier 

Solenoid Valve 
(on the other side 

of the slider) 
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Table A-1: Partial list of components of the lead screw test setup 

NO. ITEM SPECIFICATION MODEL MANUFACTURER 

Heidenhain 
1 Rotary Encoders 

3600 lines per revolution, sinusoidal 
incremental signal (1Vpp) 

ERN 1080 
www.heidenhain.com 

Omega 
2 Load Cell 200 lbf Mini Universal Link Load Cell LC703-200 

www.omega.com 

Omega 
3 Load Cell Signal 

Conditioner 
Strain Gage Amplifier DMD-465 

www.omega.com 

Advance Motion 
Control 4 Motor Servo 

Amplifier 
Pulse width modulation amplifier 12A8M 

www.a-m-c.com 

BK Precision 
5 Power Supply DC Regulated Power Supply - 

www.bkprecision.com 

Mindman Pneumatics 
6 Solenoid Valve 

4 way, 2 solenoids valve with center 
exhaust 

MVSC 300 
4E2R www.mindman.com.tw 

Mindman Pneumatics 
7 Pneumatic 

Cylinder 
Double acting with 11¾” stroke 

MCQNF 11-
1.5-1175 www.mindman.com.tw 

 

 

 

Figure A-5: Sample test results. (a) Lead screw angular displacement,  
(b) Lead screw angular velocity. 
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Figure A-6: Near steady-state portion of a sample test results.  
(a) Lead screw angular velocity, (b) Axial load, and (c) Motor torque. 

 

In the second part of the experiments with this test setup, the same configuration was used but 

without the motor speed controller. The motor servo amplifier was switched to “voltage mode” and 

the dSpace system was only used to collect data. A sample of the open-loop experimental results is 

shown in Figure 4-14(b). 
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Appendix B 

First Order Averaging Theorem – Periodic 

Case 

In this appendix, based on theorems and proofs given in [35,44], a version of the first order averaging 

for the periodic systems is stated and proven that is used in Chapter 5. 

Theorem 

Consider the following system in standard form 

 ( ) ( ) 00,,, xxxfx =εε= t&  (B.1) 

Suppose 

• The function [ ] n
RDR →ε××+ 0,0:f  is a T-periodic with respect to t for Dx ∈ . 

nRD ⊂  is an open bounded set and 00 >ε  is some number. 

• There exists a constant 0>M  such that ( ) Mt ≤ε,,xf . 

• ( )ε,,xf t  is Lipschitz continuous with respect to x  and ε  with Lipschitz constants xλ  and 

ελ , respectively. 

• The average, ( ) ( )∫ ττ=
T

d
T 0

0,,
1

xfxf  exists uniformly with respect to x . 

• Considered the averaged system; 

 ( ) ( ) 00, xzzfz =ε=&  (B.2) 

• The solution of (B.2), ( )0,0; xz t , belongs to interior subset of D on time scale ε1 . 

Then 
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 There exists 0>c ,  00 >ε , and 0>L , such that the following holds for the solutions of 

(B.1) and (B.2) 

 ( ) ( ) ε≤ε−ε ctt ,, zx  (B.3) 

 For 00 ε≤ε≤  and ε≤≤ Lt0 . Also, c is independent of ε . 

Proof: 

Let 

 ( ) ( ) ( )ε−ε=ε ,,, ttt zxE  (B.4) 

denote the error. From the two differential equations, (B.4) is found as 

 ( ) ( )( ) ( )( )[ ]∫ τετ−εεττε=ε
t

dt
0

,,,,, zfxfE  (B.5) 

The integrant in (B.5) can be written as 

( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ]zfzfzfzfzfxf −τ+τ−ετ+ετ−ετ 0,,0,,,,,,,,  

where argument of E , x , and z  are omitted for brevity. As a result, from (B.5) we have 

 ( ) ( ) ( ) ( ) ( ) ( )[ ]∫∫∫ τ−τε+ττ−ετε+τετ−ετε≤
ttt

ddd
000

0,,0,,,,,,,, zfzfzfzfzfxfE  (B.6) 

The first and second terms on the right-hand side of (B.6) can be estimated using the Lipschitz 

constant xλ  and ελ  

 ( ) ( )[ ]∫∫ τ−τε+λε+τελ≤ ε

tt

x dtd
0

2

0

0,, zfzfEE  (B.7) 

The third term in (B.6) or (B.7) is estimated as follows: 

 ( ) ( )[ ] ( ) ( )[ ]
( )

( ) ( )[ ]∫∑ ∫∫ τ−τ+τ−τ≤τ−τ
= −

t

NT

N

i

iT

Ti

t

ddd zfzfzfzfzfzf 0,,0,,0,,
1 10

 (B.8) 

where N is chosen such that, ( )TNtNT 1+≤≤ . We have 
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( )( ) ( )( )[ ]
( )

( )( ) ( )( ) ( ) ( )( )( ) ( )( )( )[ ]
( )
∫

∫

−

−

τε−+ε−−−ετ−εττ=

τετ−εττ

iT

Ti

iT

Ti

dTiTiTi

d

1

1

,10,,1,1,0,,,

,0,,,

zfzfzfzf

zfzf

 

which holds since 

( )( )( ) ( )( )( )[ ]
( )

0,10,,1,
1

=τε−−ε−τ∫
−

iT

Ti

dTiTi zfzf  

As a result 

 

( ) ( )[ ]
( )

( )( ) ( )( ) ( )( )( ) ( )( )( )[ ]
( )

( )( ) ( )( )( )[ ]
( )

( )( )( ) ( )( )[ ]
( )

( ) ( )( )[ ]
( )

MNT

dTi

dTidTi

dTiTi

d

x

N

i

iT

Ti

x

N

i

iT

Ti

N

i

iT

Ti

N

i

iT

Ti

N

i

iT

Ti

2

1 1

1 11 1

1 1

1 1

2

,1,2

,,10,,1,0,,,

,10,,1,,0,,,

0,,

ελ≤

τε−−ετλ≤

τετ−ε−+τε−τ−εττ≤

τε−+ε−τ−ετ−εττ=

τ−τ

∑ ∫

∑ ∫∑ ∫

∑ ∫

∑ ∫

= −

= −= −

= −

= −

zz

zfzfzfzf

zfzfzfzf

zfzf

 (B.9) 

The first inequality in (B.9) holds since ( )xf  has the same Lipschitz constant as ( )ε,,xf t  with 

respect to x  

( ) ( ) ( ) ( )[ ] ( ) ( )

21

0

21

0

21

0

2121 0,,0,,
1

0,,0,,
1

xxxx

xfxfxfxfxfxf

−λ=τ−
λ

≤

ττ−τ≤ττ−τ=−

∫

∫∫

x

T

x

TT

d
T

d
T

d
T

 

The second inequality in (B.9) holds since ( )ετ,z  is the solution of (B.2) and as such is slowly 

varying: 

( ) ( )( ) TMTi ε≤ε−−ετ ,1, zz  

Also note that 
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 ( ) ( )[ ] TMd

t

NT

20,, ≤τ−τ∫ zfzf  (B.10) 

Using (B.9) and (B.10), (B.8) becomes 

 ( ) ( )[ ] ( )12220,, 2

0

+λ≤+λε≤τ−τ∫ LTMTMNMTd xx

t

zfzf  (B.11) 

Note that in (B.11), the inequality ε≤≤ LtNT  was used. Finally, using (B.11) the error estimate 

(B.7) becomes 

 ( )12
0

+λε+ελ+τελ≤ ε∫ LTMLd x

t

x EE  (B.12) 

Applying the Gronwall’s lemma [35,44] to (B.12) yields 

 
( ) ( ) ( )[ ]

( )[ ] L

x

t

x

x

x

eLTML

eLTMLtt

λ
ε

ελ
ε

+λ+λε≤

+λ+λε≤ε−ε

12

12,, zx
 (B.13) 

Taking ( )[ ] L

x
xeLTMLc

λ
ε +λ+λ= 12  completes the proof. �  
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Appendix C 

A Definite Integral Used in Averaging 

As seen in Section 5.3.3, the averaging equations lead to the following integral 

 ( ) ∫
π

φξ φφφ
π

=ξΛ
2

0

sin
, cossin

2
1

de
mn

mn  (C.1) 

Using the power series expansion for the exponential function 

 ∑
∞

=

=
0 !n

n
x

n

x
e  (C.2) 

(C.1) can be written as 

 ( ) ∑ ∫
∞

=

π
+ φφφξ

π
=ξΛ

0

2

0

, cossin
!

1
2
1

k

mknk

mn d
k

 (C.3) 

Noting that, 

 0cossin
2

0

=φφφ∫
π

d
qp  if p  or q  is odd. 

The following derivations are due to Moll [102]. The following two cases are identified: 

Case 1: n and m are both even numbers. 

Replacing n and m in (C.3) by n2 and m2 , yields 
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( )

( )
( )∑ ∫

∑ ∫

∫ ∑

∞

=

π
+

∞

=

π
+

π ∞

=

φφφξ
π

=

φφφξ
π

=

φ







φξφφ

π
=ξΛ

0

2

0

222

0

2

0

22

2

0 0

22
2,2

cossin
!2

1
2
1

cossin
!

1
2
1

sin
!

1
cossin

2
1

k

mknk

k

mknk

k

kkmn

mn

d
k

d
k

d
k

 (C.4) 

It can be shown that 

 ( )2
1,2

12cossin4cossin
2

0

22
2

0

22 ++Β=⋅⋅=⋅⋅ ∫∫
π

π

qpdxxxdxxx
qpqp  (C.5) 

where Β  represents the Beta function and is given by 

 ( ) ( ) ( )
( )qp

qp
qp

+Γ

ΓΓ
=Β ,  (C.6) 

which is defined using the Gamma function and is given for ∈qp, Z
+ as 

 ( ) ( ) ( )
( )!1

!1!1
,

−+

−−
=Β

qp

qp
qp  (C.7) 

and in the special case 

 ( ) ( )

( ) ( )
( )!!!

!2!2
22

1,2
1

2
qpqp

qp
qp

qp +

π
=++Β

+
 (C.8) 

Substituting (C.5) into (C.4) and using (C.8) yields 

 ( ) ( )
( ) ( )

( ) ( ) ( )∑
∞

=
++

ξ
+++

+
=ξΛ

0

2
22,2 !!!!2

!2!22
2

1

k

k

mknmn
mknmknk

mkn
,  K,2,1, =mn  (C.9) 

Case 2: n is an odd number and m  is an even number. 

Replacing n and m in (C.3) by 12 −n  and m2 , yields 
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( )

( )
( )∑ ∫

∑ ∫

∫ ∑

∞

=

π
−+−

∞

=

π
−+

π ∞

=

−
−

φφφξ
−π

=

φφφξ
π

=

φ







φξφφ

π
=ξΛ

1

2

0

21212

0

2

0

212

2

0 0

212
2,12

cossin
!12

1
2
1

cossin
!

1
2
1

sin
!

1
cossin

2
1

k

mknk

k

mknk

k

kkmn

mn

d
k

d
k

d
k

 (C.10) 

Once again substituting (C.5) into (C.10) and using (C.8) yields 

 ( ) ( )

( ) ( )
( ) ( ) ( )∑

∞

=

−

++− ξ
−++−+−

−+
=ξΛ

1

12
22,12 !1!!1!12

!2!222
2

4

k

k

mknmn
mknmknk

mkn
,  K,2,1, =mn  (C.11) 

Here are some special cases: 

 ( ) ∑
∞

=

ξ=ξΛ
0

2
220,0 !

1
2
1

k

k

k k
 (C.12) 

 ( ) ∑
∞

=

−

−
ξ=ξΛ

1

12
2120,1 !2

1

k

k

k
k

k
 (C.13) 

 ( ) ( )
( )

( ) ( )
( )

∑∑
∞

=

−

−

∞

=
+

ξ
−

=ξ
+

+
=ξΛ

1

22
212

0

2
2120,2 !

12
2

1
!1!2

!22
2

1

k

k

k
k

k

k k

kk

kk

k
 (C.14) 
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Appendix D 

Steady-state Solutions of the Averaged 1-DOF 

Lead Screw Model 

In this appendix, the averaged amplitude equation derived for the 1-DOF lead screw model in Chapter 

5 is examined. It will be shown that, depending on the system parameters, the averaged equation can 

have 1, 2, or 3 fixed points. The dynamic behavior of the system is described by one of the following 

scenarios: 

1. The trivial solution is stable and no other solution exists. 

2. The trivial solution is stable and is surrounded by an unstable limit cycle, which defines the 

region of attraction of the trivial solution. The unstable limit cycle is inside a stable limit 

cycle. 

3. The trivial solution is unstable and  is surrounded by a stable limit cycle. 

Before continuing, it is important to take a closer look at the velocity-dependent coefficient of 

friction given by (5.20). The coefficient of friction as a function velocity, 0>ω , can be written as; 

 ( ) ( )( )ω−ω− −ωµ+µ+µ=ωµ 10 1321
rr

ee  (D.1) 

where 001 >> rr . 

As shown in Figure D-1, depending on the value of 2µ  and 3µ , four cases can be identified for the 

variation of the coefficient of friction with velocity1. These cases are: 

• Case I: 00 32 ≥µ∧=µ . In this case, for the entire range of applicable velocities we have 

                                                      
1 Cases where µ2<0 are not considered since the term ω−µ 0

2
r

e  is added to the friction model only to emulate the 

Stribeck effect (i.e. decreasing of the coefficient of friction with increasing relative velocity at low velocities).  
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0>
ω∂

µ∂
.  

• Case II: 00 32 <µ∧=µ . In this case, 0≥
ω∂

µ∂
 when bω<ω≤0  and 0<

ω∂

µ∂
 when 

bω>ω . bω  designates the local maximum of the friction curve and defines the boundary of 

the “smoothed” neighborhood of zero velocity. Note that 0→ωb  as ∞→1r . 

 

 

Figure D-1: The velocity-dependent coefficient of friction. 

 

• Case III: 00 32 ≤µ∧>µ . This case is similar to Case II. However, a distinction is made 

due to the possibility of additional periodic solutions, as shown later in this section. 

• Case IV: 00 32 >µ∧>µ . In this case, similar to the Cases II and III, 0≥
ω∂

µ∂
 when 

bω<ω≤0 . Also 0<
ω∂

µ∂
 when mb ω<ω<ω  and 0≥

ω∂

µ∂
 when mω≥ω . Here bω  is 
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defined as before and mω  designates the local minimum of the friction curve. 

 

It must be noted that for the cases where 03 ≠µ  and particularly when 03 <µ , the assumed model 

of friction implies a limiting value for the coefficient of friction at high velocities. Beyond a certain 

value of the velocity, which is typically well outside the range of interest, the friction-velocity curve 

is assumed to be constant1.  

In Sections D.1 to D.4, each of the above cases is studied separately and the existence of limit 

cycles is investigated. The stability of each solution (trivial and non-trivial) is also evaluated. The 

study in this section, for simplicity, is limited to the cases where 0>R , 0>N , 0>ω , and 

( ) 01 ≥+′ω=ω+=θ vu&& 2. The last inequality, limits the averaged amplitude equation to 10 ≤≤ a . 

Some numerical examples are presented in Section D.5.  

Assuming 0≠a (for non-trivial solutions) and dividing (5.58) by a, an equating the right-hand 

side of the resulting equation to zero, the following polynomial equation in 2
a  is reached 

 0
1

2
0 =+=≡

′
∑

∞

=n

n

nabby
a

a
 (D.2) 

where 

 ( ) ( )( )102211202320 1
22

rrrrrrr
Rc

b +ωµ−ωµ−ωµ+µ−+−=
))))

))

 (D.3) 

 
( )

( ) ( )( )12
1022

12
112

12
02

2
13212

2

12
!1!2

+++

+
+ωµ−ωµ−ωµ++µ

+

ω
=

nnnn

n

n

n rrrrrrrnr
nn

R
b

))))
)

 (D.4) 

where .1
2

ω−= r
er  

D.1 Case I: 00 32 ≥µ∧=µ  

As mentioned earlier, in this case, 0>
ω∂

µ∂
 for the entire range of applicable velocities. As a result, 

                                                      
1 See Section 7.1.1. 
2 See change of variables (5.25) and (5.32). 
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(5.61) is satisfied for any 0≥c  and the trivial solution is stable in { }10 ≤≤= aaD . To investigate 

the possibility of non-trivial solutions, (5.53) is examined. Setting 02 =µ in (5.53) and rearranging 

gives 

 ∫∫
π

ϕω
π

ϕω ϕϕµ
π

ε
−









ϕϕ

π
−

µ
ε−ε−=′

2

0

sin
12

2

0

sin223 11 sin
2

sin1
22

deRrde
raRac

a
arar

))
)))

 (D.5) 

From (5.56) and (5.57), we know that the two definite integrals in (D.5) are non-negative and also, 

 

( )

( ) 1sin
1

sin
1

sin

110
2

0

2
2

0

sin12
2

0

sin22

sin1

11

1

=φφ
π

≤φφ
π

=ϕϕ
π

→

≤→≤≤

∫∫∫
ππ

ϕ−ω−
π

ϕω

ϕ−ω−

ddede
r

ea

arar

ar

 

which means that the second term in (D.5) is less than or equal to zero for 03≥µ . Since the first and 

third terms are also non-positive, one concludes that ( ) 0<′ aa for 10 ≤≤ a , and there are no other 

non-trivial fixed points in D. A typical plot of amplitude equation, (D.5), is shown in Figure D-2. 

 

 

Figure D-2: Schematic plot of amplitude equation for Case I. 

 

D.2 Case II: 00 32 <µ∧=µ  

First, we notice that for small velocities satisfying 

 bω<ω≤0  (D.6) 

where bω  is the solution of ( ) 01 11232 =ωµ−µ− rrr
))

, (5.61) is satisfied for any 0≥c . Thus, the 

trivial solution is stable. Moreover, since all of the coefficients of (D.2) are non-positive, no other 
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solution exists. When bω>ω , the trivial solution is stable if 

 ( )( ) 01 11232 >ωµ−µ−> rrrRc
))))

 (D.7) 

and it is unstable otherwise. In the case of stable trivial fixed point, once again all of the coefficients 

of equation (D.2) are non-positive, which implies that no other solutions are possible. However, if 

(D.7) is not satisfied, 0b  (given by (D.3)) is positive while the rest of the coefficients, nb , (given by 

(D.4)) remain less than or equal to zero. According to Descartes’ Rule of Signs [103], (D.2) has a 

positive solution which corresponds to a stable periodic solution of the original system. Going back to 

(D.5) with 03 <µ  the condition for the positive solution, say ∗
a , to be inside the region of validity of 

the approximation is ( ) 01 ≤′a . In terms of the system’s parameters, this condition can be written as 

 0
21

2
1

3 <
+−

+
ω

µ

−<µ
BA

Rr

cB

m  (D.8) 

where, ( )
∫
π

φ+−ω φφ
π

=
2

0

sin12 1sin
2

1
deA

r  and ( )
∫
π

φ+−ω φφ
π

=
2

0

sin11sin
2

1
deB

r . Also 210 << A . If this 

condition is violated the above first averaging results loses its ( )εO  accuracy. To obtain solutions 

with ( )εO  accuracy, (5.45) or (5.48) must be used in the averaging process to obtain results with 

( )εO  accuracy. Typical plots of amplitude equation, (D.5), for these two cases are shown in Figure 

D-3. 

 

 

Figure D-3: Schematic plots of amplitude equation for Case II. 
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C.3 Case III: 00 32 ≤µ∧>µ  

Similar to the previous case, for low velocities satisfying 

 bω<ω≤0  (D.9) 

where bω  is the solution of ( ) ( ) 01 10221120232 =+ωµ−ωµ−ωµ+µ− rrrrrrr
))))

, (5.61) is satisfied for 

any 0≥c . Thus, the trivial solution is stable. From (D.9), we have 

 ( ) ( ) 01 22101212032 <ωµ+−ωµ−ωµ+µ−
))))

rrrrrrr  (D.10) 

which yields, 00 <b . Multiplying (D.10) by n
r

2
0  yields, 

 ( ) ( ) 01 2
12

02210
2

0121
2

032
2

0 <ωµ+ωµ+−ωµ−µ−
+ )))) nnnn

rrrrrrrrrr  

Since ( ) nn
rrr

2
10

2
0 +< , nn

rr
2

1
2

0 < , ( ) ( ) 0121 2
12

2
02 <+−−

nn
rnrrr , and 03 <µ

)
, from the above 

inequality one finds 

 ( ) ( ) 012 12
0222

12
101

12
12

2
132 <ωµ+ωµ+−ωµ−+µ

+++ nnnn
rrrrrrrnr

))))
 

Consequently, from (D.4) it is obvious that 0<nb . Thus (D.2) has no other solutions. 

When bω>ω , the trivial solution is stable if 

 ( ) ( )( )10221120232 1 rrrrrrrRc +ωµ−ωµ−ωµ+µ−>
))))))

 (D.11) 

If (D.11) holds 00 <b  otherwise 00 >b . Note that ω−= 1
2

r
er  is small for bω>ω . For sufficiently 

large 2µ
)

, say ∗µ>µ 22
))

,  there exists  1>N  such that for Nn ≤<1 ,  

 ( ) ( ) 12
1022

12
112

2
132

12
02 12 +++

+µ+µ++µ−>µ
nnnn

rrrrrrnrr
))))

  

and  

 ( ) ( ) 12
1022

12
112

2
132

12
02 12 +++

+µ+µ++µ−<µ
nnnn

rrrrrrnrr
))))

  

for Nn > . As a result, the first few nb ’s are dominated by 
( )!1!2 12

12
02

2

+

ωµω
+

+

nn

rR
n

nn ))

 and are positive. As n 

grows, the other terms (all negative) will dominate the positive term and change the sign of kb  to 
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negative. Hence, depending on the parameters values, one the following three scenarios may occur; 

Scenario 1: If (D.11) holds and ∗µ>µ 22
))

, then the polynomial equation given by (D.2) has two 

sign changes in its coefficients. According to Descartes’ Rule of Signs, for the first case, (D.2) can 

have either two or zero positive roots. Typical plots of a′  as a function of a  are shown in Figure 

D-4. Note that similar to the previous case, for parameter values such that ( ) 01 >′a , the amplitude 

of the stable limit cycle can be greater than 1. 

 

 

Figure D-4: Schematic plots of amplitude equation for Case III - Scenario 1. 

 

The lead screw damping may act as the deciding factor between the above situations. A typical plot 

of (D.2) is shown in Figure D-5 for the case where two positive roots exist. Since the polynomial 

equation for y (i.e. (D.2)) is continuous, according to the mean-value theorem there is a maximum 

between the two roots and if this value for 00 =b  is maxy  (which is a finite number), the condition 

for non-existence of non-trivial solutions (i.e. no limit cycles) is 

 max0 yb −<  

or 

 02 1max12 >>+=> cyccc
))))

 (D.12) 

where ( ) ( )[ ]102211202321 1 rrrrrrrRc +µ−µ−µ+µ−Ω=
))))))

. 
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Figure D-5: The case of two positive zeros of (D.2) 

 

Scenario 2: If (D.11) holds and ∗µ<µ 22
))

, then the polynomial equation given by (D.2) has no sign 

changes. As a result, the trivial solution is stable and there are no non-trivial solutions. A typical 

plot of a′  as a function of a  are similar to the one shown in Figure D-2. 

Scenario 3: If (D.11) does not hold, then the polynomial equation given by (D.2) has only one sign 

change. As a result, there is a non-trivial solution. In this case, the trivial solution is unstable and 

there is a stable limit cycle. A typical plot of a′  as a function of a  is shown in Figure D-6. 

 

 

Figure D-6: Schematic plot of amplitude equation for Case III - Scenario 3. 

 

C.4 Case IV: 00 32 >µ∧>µ  

Similar to the previous case for velocities satisfying (D.9), the trivial fixed point is stable and there 

are no other solutions. In addition to the above condition, if 

 








µ

µ
−≈ω>ω

20

3

0

ln
1

rr
m  (D.13) 
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then (5.61) is satisfied for any 0≥c , which implies that the trivial solution is stable.  

For bω>ω  and for sufficiently large 2µ
)

, 21, NN∃ , 112 ≥> NN  such that 

 ( ) ( ) 0121 12
1022

12
112

12
02

2
1321 >→+µ+µ>µ++µ→≤≤

+++

n

nnnn
brrrrrrrnrNn

))))
  

 ( ) ( ) 012 12
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12
112

12
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2
13221 <→+µ+µ<µ++µ→≤<
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nnnn
brrrrrrrnrNnN

))))
   

For the first few terms, nb ’s are dominated by 
( )!1!2 12

12
02

2

+

ωµω
+

+

nn

rR
n

nn ))

 term which is positive. As n grows, 

the negative terms grow faster and change the sign of nb ’s to negative. For even higher values of n 

more sign changes are possible; however, the polynomial coefficients become exceedingly small for 

large n and the associated roots will be well outside the applicable region of the approximations. 

Based on the above argument, for mω>ω  or for mb ω<ω<ω  when c is large enough to satisfy 

(5.61), the equation given by (D.2) has at least two sign changes in its coefficients, resulting in either 

two or zero valid non-trivial solutions. Similar to the argument in Section C.3, the damping value 

may act as a deciding factor between these two cases. In other words, for sufficiently large damping, 

no non-trivial solution exists. A typical plot of a′  as a function of a  is shown in Figure D-4. Finally 

for mb ω<ω<ω , if c does not satisfy (5.61), the equation given by (D.2) has at least one sign change 

in its coefficients, resulting in one non-trivial solution. A typical plot of a′  as a function of a  is 

shown in Figure D-6. 

C.5 Numerical Examples 

In Chapter 5, numerical examples were presented that focus on the accuracy of the vibration 

amplitude prediction from averaging as well as the effect of friction parameters. The parameter values 

used were taken from the experimental case study of Chapter 4 and correspond to the cases II and III 

in Figure D-1 and Sections D.2 and D.3 of this appendix. Here, numerical examples are presented that 

also cover case IV. In the bifurcation plots presented, input constant angular velocity, ω , is taken as 

the control parameter. Instead of  a, ( )aΩω=α  is plotted versus the control parameter to better 

demonstrate the evolution of non-trivial solution in terms the original system vibration amplitudes. 

Parameter values not given in the examples are taken from Table 5-2 and are listed Table C-1 for ease 

of reference. 
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Table C-1: Parameter values used in the simulations 

Parameter Value Parameter Value 

md  10.37 mm 1µ  0.2 

λ  5.57° 0r  0.25 rad/s 

I  61012.3 −× kg.m
2
 1r  2 rad/s 

k  1 N.m/rad ω  0-40 rad/s 
m  1kg R  100 N 

 

 

Results of the first example are shown in Figure D-7. In this example 03 =µ  and three different 

values are considered for 2µ . The lead screw support damping is chosen as ( )
s

radmNc ..101 4−×= . 

For each value of 2µ , the coefficient of friction as a function of relative angular velocity is plotted in 

Figure D-7(left). As shown in the steady-state vibration amplitude plots in Figure D-7(right), for the 

selected damping value, as friction reaches its maximum the gradient becomes negative ( bω>ω ) the 

trivial solution loses its stability and a stable limit cycle emerges. 

For the three values of 2µ  selected, 1.0,05.0,01.0 and , bω  is found to be 

( )sradand 76.1,08.2,92.2 , respectively. These values are in agreement with (D.9). For smaller 

values of 2µ , the region of instability of the trivial solution is smaller. As shown in the close-up 

view, larger values of 2µ  result in stable amplitude of vibration closer to the limiting value (for the 

validity of approximations) of 1max =a  (or Ωω=αmax ), where Ω  is the natural frequency of the 

unperturbed system given by (5.24). For even larger values of 2µ  (not shown), the non-trivial 

solution of the amplitude equation (corresponding to the stable limit cycle), (5.58), becomes greater 

than 1 and is inadmissible due to violation of the approximating assumptions. In these cases, ( )εO  

accurate averaging results can be found by using (5.45) or (5.48) and carrying on the integrations 

numerically.  

It is interesting to note that in this example as well as the two examples that follow, as ω  is 

gradually increased, the trivial fixed point first goes through a supercritical pitchfork bifurcation and 

then a subcritical pitchfork bifurcation at a higher velocity. These bifurcations in the amplitude 

equation correspond to Hopf-bifurcations of the original equation. Figure D-8 shows results for 

1.02 =µ  and 4
3 104 −×−=µ  for three different values of lead screw damping.  
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Figure D-7: First example, µµµµ3 = 0, c = 10
-4

.  
Left - variation of the coefficient of friction with velocity;  

Right - variation of steady-state vibration amplitude with input angular velocity 

 

 

Figure D-8: Second example, µµµµ2 = 0.1, µµµµ3 = -5××××10
-4

.  
Left - variation of the coefficient of friction with velocity;  

Right - variation of steady-state vibration amplitude with input angular velocity 
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As expected, the trivial solution becomes unstable as ω  becomes greater than 76.1=ωb . As 

shown, increasing the damping decreases the region of instability of the origin. 

Figure D-9 shows results for 1.02 =µ  and 4
3 104 −×=µ  for three different values of lead screw 

damping. As expected, the trivial solution becomes unstable as ω  becomes greater than 76.1=ωb . 

Moreover, for 0=c  the trivial solution becomes stable again when 68.15=ω>ω m . Note that from 

(D.13), one finds 65.15≈ωm . At higher values of c, the trivial solution becomes stable at lower 

velocities. As shown, increasing the damping decreases the region of instability of the origin and 

decreases the amplitude of stable periodic vibration. 

 

 

Figure D-9: Third example, µµµµ2 = 0.1, µµµµ3 = 5××××10
-4

.  
Left - variation of the coefficient of friction with velocity;  

Right - variation of steady-state vibration amplitude with input angular velocity 
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Appendix E 

Higher-order Averaging 

The accuracy of the results obtained in Section 5.3 depends heavily on the “size” of the system 

parameters. In practical applications, such as the experimental example of Chapter 4, the ( )εO  error 

of the first order averaging may not be sufficiently accurate for the entire range of parameters in the 

domain of interest. A possible way to improve the accuracy of the amplitude and frequency estimates 

is to extend the averaging to higher orders.  

A slightly different approach to finding the equation of motion in standard form is used here. In 

Section E.1, the approximate system’s equation accurate to ( )4εO  is derived. The steps needed to 

carry out the averaging process up to the third order are presented in Section E.2. In Section E.3, a 

numerical example is presented that compares averaging results with numerical simulation results and 

actual measurements. 

E.1 Equation of Motion in Standard Form 

Two simplifying assumptions made in Chapter 5 to reached the averaged equation (5.54) – namely, 

the contact force does not change sign and lead screw velocity does not change sign. These 

assumptions are made here from the start to ensure the equations have the required smoothness 

properties. For simplicity here the analysis is limited to the case of 0>R  (thus 0>N ) and 

0>ω (thus 0>θ& ). Starting from (5.33) 

 
( )[ ] ( )[ ]

( )[ ] ( ) ( )[ ]ε′Ξ−εΞε′Ξε−ε=

ε′Ξε−+′ε′Ξε−ε+′′

−

−−

,,,,1

,,1,,1

10
1

1

1
1

1
1

vvmvvR

vmvvvcmvvv

))

)))

 (E.1) 

where ( )εΞ0  and ( )ε′Ξ ,,1 vv  are given by (5.34) and (5.35), respectively. The above assumptions 

simplify these functions to 
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 ( )
0

2
0

0 1
1
µε+

−µ
=εΞ )

)

 (E.2) 

 ( ) ( )
( )v

v
v

′µε+

−′µ
=ε′Ξ )

)

21 1
1

,  (E.3) 

where ( )v′µ
)

 is obtained from (5.36) 

 ( ) ( ) ( )( ) ( )( )1
3

1
21

10 11ˆˆˆ +′ω−+′ω− −+′ωµ+µ+µ=′µ vrvr
evev

)
 (E.4) 

( )εΞ0  and ( )ε′Ξ ,1 v  can be expanded in powers of ε  as 

 ( ) ( )( ) ( )42
0

2
00 11 ε+µε−−µ=εΞ O

))
 (E.5) 

 ( ) ( )( ) ( )422
1 11, ε+µε−−µ=ε′Ξ Ov

))
 (E.6) 

Also 

 
( ) ( ) ( )
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)))))))
)
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 (E.7) 

Substituting (E.5), (E.6), and (E.7) into (E.1) and keeping terms up to ( )3εO  gives 

 ( ) ( ) ( )vvfvvfvvfvv ′ε+′ε+′ε=+′′ ,,, 3
3

2
2

1  (E.8) 

where 

 ( ) ( ) ( )µ−µ+−µ−′−=′
))))))

01 1, Rvmvcvvf  (E.9) 

 ( ) ( ) ( ) ( )( )mRvmvcmvvf
))))))))))

µ−µ−µ+−µ−′−µ−=′ 0
22

2 111,  (E.10) 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )[ ]111

111,
2

0
2

0

2
0

23322
3

−µµ−−µµ−−µµ+

µ−µ−µ+−µ−′−µ−=′
))))))))

))))))))))

Rvm

mRvmvcmvvf
 (E.11) 

Unfortunately, the expressions involved become too cumbersome to be of any practical use in 

closed-form. However, if approached numerically, these higher order approximations can be used to 
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estimate the amplitude of the steady-state vibrations, efficiently.  

E.2 Higher-order Averaging Formulation 

In this appendix, following [104] the general formulations of first, second, and third order averaging 

are derived for a system of differential equations in standard form 

 ( ) ( ) ( )xXxXxXx ,,, 3
3

2
2

1 ttt ε+ε+ε=&   (E.12) 

where 
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a
x  (E.13) 
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To clarify the notations, the following expressions are given here 
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and 
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E.2.1 First Order Averaging 

Introducing the following near-identity transform 

 ( )ξFξx ,1 tε+=  (E.17) 

where ξ  is the solution of 
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 ( )ξPξ 1ε=&  (E.18) 

where 1F  and 1P  are unknown functions to be determined. Substituting (E.17) into (E.12) (neglecting 

2ε  and 3ε  terms) 

 ( )( ) ( )( )ξFξXξFξ ,,, 111 ttt
dt

d
ε+ε=ε+  

expanding RHS using Taylor series expansion and substituting (E.18) gives 

 11
2

111
21

1 FXXPF
F

P ⋅∇ε+ε=⋅∇ε+
∂

∂
ε+ε

t
  

Neglecting 2ε  terms 

 
( ) ( ) ( )ξPξX
ξF

11
1 ,

,
−=

∂

∂
t

t

t
 (E.19) 

The solution to this equation can be written as 

 ( ) ( )∫=
T

dtt
T 0

11 ,
1

ξXξP  (E.20) 

Substituting (E.20) into (E.19) and integrating 

 ( ) ( ) ( )[ ] ( )ξaξPξXξF 1

0

111 ,, +τ−τ= ∫
t

dt  (E.21) 

where following [35], ( )ξa1  is chosen such that ( )ξF ,1 t  has a zero mean 

 ( ) ( ) ( )[ ]∫ ∫ τ−τ=
T t

dtd
T 0 0

111 ,
1

ξPξXξa  (E.22) 

It can be shown that the solution of (E.18) remains ( )εO  close to the solution of the original 

differential equation (E.12) on a time scale of ( )ε1O , i.e. 

 ( ) ( ) ε≤− ktt ξx , 
ε

≤≤∀
L

t0  (E.23) 
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for some 0>k  and 0>L . 

E.2.2 Second Order Averaging 

The near-identity transform is modified to 

 ( ) ( )ξFξFξx ,, 2
2

1 tt ε+ε+=  (E.24) 

where ξ  is the solution of 

 ( ) ( )ξPξPξ 2
2

1 ε+ε=&  (E.25) 

where 1F  and 1P  are defined as before, and 2F  and 2P  are unknown functions to be determined. 

Substituting (E.24) into (E.12) (neglecting 3ε  terms) 

 
( ) ( )( ) ( ) ( )( )
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Expanding the RHS using Taylor series expansion 
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Substituting (E.25) and neglecting 3ε  terms 

 211
2

112 XFX
F

PFP +⋅∇=
∂

∂
+⋅∇+

t
 (E.26) 

The solution to (E.26) can be written as 

 ( ) ( ) ( ) ( ) ( ) ( )[ ]∫ +⋅∇−⋅∇=
T

dttttt
T 0

211112 ,,,,
1

ξXξPξFξFξXξP  

or since ( ) ( )ξPξF 11 , ⋅∇ t  has a zero mean 
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 ( ) ( ) ( )[ ]∫ +⋅∇=
T

dtttt
T 0

2112 ,,,
1

ξXξFξXP   (E.27) 

where ( )ξF ,1 t  is given by (E.21). Subsequently, integrating (E.26) gives 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( )ξaξPξXξPξFξFξXξF 2

0

2211112 ,,,,, +τ−τ+⋅τ∇−τ⋅τ∇= ∫ dt

t

 (E.28) 

where ( )ξa2  is chosen such that ( )ξF ,2 t  has zero mean 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]∫ ∫ τ−τ+⋅τ∇−τ⋅τ∇=
T t

dtd
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2211112 ,,,,
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It can be shown that given ( )tξ  to be the solution of (E.25) 

 ( ) ( ) ( )( ) ( )2
1 , ε=ε−− Otttt ξFξx  (E.30) 

for time ( )ε1O . 

E.2.3 Third Order Averaging 

Similar to the previous section, the near-identity transform is now defined as 

 ( ) ( ) ( )ξFξFξFξx ,,, 3
3

2
2

1 ttt ε+ε+ε+=  (E.31) 

where ξ  is the solution of 

 ( ) ( ) ( )ξPξPξPξ 3
3

2
2

1 ε+ε+ε=&  (E.32) 

where 1F , 2F  and 1P , 2P  are defined as Section E.2 and 3F  and 3P  are unknown functions to be 

determined. Substituting (E.31) into (E.12) 
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Expanding the RHS using Taylor series expansion 
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Substituting known functions 1F , 2F , 1P , and 2P  and neglecting higher order terms, yields 
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3P  is found to be 

 ∫
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It can be shown that given ( )tξ  to be the solution of (E.32) 

 ( ) ( ) ( )( ) ( )( ) ( )3
2

2
1 ,, ε=ε−ε−− Otttttt ξFξFξx  (E.35) 

for time ( )ε1O . 

E.3 A Numerical Example 

Here a numerical example is presented that is taken from the test results of Chapter 4. The parameter 

values are selected according to the sample simulation results/measurements depicted in Figure 4-16. 

The identified coupling stiffness, damping coefficient, and all of the friction parameters are given, for 

reference, in Table E-1. The applied axial force and input angular velocity values are also listed in 

this table.  
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Table E-1: Parameter values used in the higher order averaging example 

Parameter Value Friction Parameter Value 

k  1.18 N.m/rad 1µ  218.0  

c  51019 −×  Nms/rad 2µ  0203.0  

  3µ  41047.4 −×−  s/rad 

Inputs Value 0r  0.38  rad/s 

ω  35.6 rad/s 1r  0.41 rad/s 

R  153 N µs  0.97 

 

The results from the numerical averaging method are presented in Figure E-1. In Figure E-1(b), the 

measurements are compared with simulation results showing the accuracy of modeling and the 

identified parameters similar to Figure 4-16. In Figure E-1(a), the same simulation results are 

compared with the first, second, and third order averaging.  

It can be seen that for the selected parameter values, the first order averaging has considerable error 

in predicting the steady-state amplitude of vibrations (a relative error of approximately 22%). The 

second order averaging results, on the other hand, show significant improvement in both predicting 

the steady-state vibration amplitude (relative error is approximately 5%) and conforming to the shape 

of the observed limit-cycle. The accuracy of the approximation is further improved, though only 

slightly, by the third order averaging which has approximately 4% relative error in predicting the 

amplitude of vibration.  
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Figure E-1: First, second, and third order averaging results.  
(a) Numerical averaging results; gray solid: nonlinear system equation; dotted black: first order 

averaging; dashed-dot: second order averaging; solid black: third order averaging,  
(b) black: measurements; gray: simulation results 
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Appendix F 

First-order Averaging Applied to the 2-DOF 

Lead Screw Model with Axially Compliant 

Supports 

In this appendix, the method of first-order averaging is used to analyze the 2-DOF model of Section 

3.6. The equations of motion are given by (3.29) and (3.30). Neglecting 0F  and 0T  for simplicity and 

repeating the transfer of coordinates done in Section 6.3; 

 
2021

101

tan uvrx

uv

m

i

+λ=

+θ+=θ
 (F.1) 

where 10u  and 20u  are given by (6.53) and (6.54), respectively. After this change of variables, 

equations of motion in matrix form become 

 ( ) ( ) ( ) ( )1111 vvvv &&&&&&& fvKvCvM =++   (F.2) 
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and 
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Also 
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and 

 ( ) ( ) ( )( ) ( )ω+µ=µ 11 sgn,sgn, vNvs
&&&& vvvv   (F.8) 

where the contact normal force is given by 
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Assuming M  to be non-singular 
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Multiplying both sides of (F.2) by 1−M , one finds 
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The two natural frequencies of the undamped unperturbed system are 
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Taking λ≡ε tan  as the small parameter, it is assumed that m
)

 and sµ
)

 are ( )1O  with respect to ε . 

We can write the following asymptotic expansion for ξ  
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Define the non-dimensionalized time as t1Ω=τ . Derivative with respect to τ  is given by 
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Also, limiting the analysis to weakly damped systems, take 



 

228 

 
( )11

1
1

1

,
mm

c
c

I

c
c

+Ω
=ε

Ω
=ε

))
  (F.21) 

Assume ρε=Ωω 1  where ρ  is ( )1O  with respect to ε . Let, 

 zv ερ=  (F.22) 

Substituting (F.15), (F.16), (F.17), (F.21), and (F.22) into (F.23) and using (F.18), (F.19), and 

(F.20) and truncating ( )2εO  terms, yields 
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where 
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is considered to be ( )1O  with respect to ε . Also, η  is the ratio of the two natural frequencies 
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Assuming the two natural frequencies of the unperturbed system are widely apart, let 
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Let Twz = , systems’ equations (F.23) are transformed to 
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Finally, let1 
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Substituting (F.34) into (F.33) and expanding, after some algebra the following four first order 

differential equations in standard form are reached 
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1 Note that the more convenient choice of “amplitude/phase” transform (see Section 5.3.2) is not used here since 

the resulting differential equations would have been singular at the origin. 
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where ( )2εO  terms were neglected. From this point on, for simplicity, we assume that ( ) 0, >′yyN . 

Also not that argument of ( )θµ &)
s  (lead screw angular velocity) is given by 

 ( )τ+τω−ω=θ cossin 21 yy&   (F.39) 

It is more convenient to express the above system of first-order differential equations as 
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where [ ]Tyyyy 4321=y . The right-hand-side of (F.40) is quasi-periodic in τ  (i.e. it is π2  

periodic with respect to both 1ψ  and 2ψ ). Hence, the first order averaged equations can be derived 

from [35] 
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After some simplifications, carrying out the integration for (F.35), (F.36), (F.37), and (F.38) yields 

(dropping the bars) 
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where ( )( )1211 cossin ψ+ψω−ωµ=µ yyss

))
. Introducing the polar coordinates 

 

224

223

112

111

sin

cos

sin

cos

βη=

β=

β=

β=

ay

ay

ay

ay

 (F.46) 

the amplitude equations are found as 
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This equation is similar to the 1-DOF case studied in Section 5.3.3. In fact, if the same limitations 

are considered as in Section 5.3.1 (i.e. ( ) ( ) 1sgnsgn ==θ N& ),  it further simplifies to 
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where ( )( )11 sin1 ψ−ωµ=µ a
))

 and is defined similar to (5.49) by 

 ( )( )111110 sin
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21 1sin ψωψω −ψµ−µ+µ=µ arar
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))))
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and 1µ
)

, 2µ
)

, and 3µ
)

 are given by (5.50), (5.51), and (5.52), respectively. 

Notice that (F.49) is exactly the same as (5.48) if 1a  is replaced by a . The first order averaged 

equations for 1a , (F.49), and 2a , (F.48), are decoupled. Furthermore, (F.48) shows that, to this order 

of approximations, the vibration component with the frequency 2ω  dies out exponentially 

independent of 1a . 
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Appendix G 

Similarities in the Conditions for Local 

Stability of the Steady-sliding Fixed Point 

Between the 2-DOF Model of Section 3.5 and 

the 2-DOF model of Section 3.6 

The Routh-Hurwitz stability conditions for the 2-DOF models of Section 3.5 and 3.6, with constant 

coefficient of friction, are given in Chapter 6. These conditions were obtained from the characteristic 

equations of the linearized system models. For the 2-DOF model with compliant threads, the 

characteristic equation given by (6.43) is expanded as 

 001
2

2
3

3
4

4 =+η+η+η+η aaaaa  (G.1) 

where 

 mIa ˆ4 =  (G.2) 

 ( )( )( )[ ] mcmrIRca mc
ˆtantansgn1ˆ 03 +λξ−λωµ+=  (G.3) 

 ( )( )( )[ ] ( )( )λωµ+++λξ−λωµ+= tansgn1ˆˆtantansgn1ˆ
02 RccmkmrIRka cmc  (G.4) 

 ( ) ( )( )λωµ++= tansgn1ˆˆ
1 Rkckca cc  (G.5) 

 ( )( )λωµ+= tansgn1ˆ
0 Rkka c  (G.6) 

where ck̂ , cĉ , and m̂  are given by (6.24), (6.25), and (6.26), respectively. For the 2-DOF model 
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with axially compliant lead screw supports, the characteristic equation given by (6.80) is expanded as 

 001
2

2
3

3
4

4 =+η+η+η+η bbbbb  (G.7) 

where 

 ( ) λξ−+= tan0114 mrmmmmIb  (G.8) 

 ( ) ( )mrIcmmcb m λξ−++= tan0113  (G.9) 

 ( ) ( )λξ−+++= tan01112 mmrIkccmmkb  (G.10) 

 111 ckkcb +=  (G.11) 

 10 kkb =  (G.12) 

To see the similarities between (G.1) and (G.7), we divide (G.1) by the strictly positive quantity 

( )( )λωµ+λ tansgn1sin22
Rrm

1. Also using (6.24), (6.25), and (6.26), (G.1) becomes 

 001
2

2
3

3
4

4 =′+η′+η′+η′+η′ aaaaa  (G.13) 

where 

 ( )δ+=′ mmIa4  (G.14) 

 ( ) ( )mrIcmmca mc λξ−++=′
δ tan03  (G.15) 

 ( ) ( ) ( )mrIkccmmkmrIka mccmc λξ−++++λξ−=′
δ tantan 002  (G.16) 

 kccka cc +=′1  (G.17) 

 ckka =′0  (G.18) 

where δm  is defined as 

                                                      
1 See footnote on page 97. 



 

235 

 
( )( )

m
R

m 







−

λωµ+λ
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tansgn1cos
1

2  (G.19) 

Note that for λ>µ tan  and 0>ωR , δm  is a small negative quantity. For example, for 218.0=µ  

and o57.5=λ , 012.0−≈δ mm . 

The coefficients given by (G.9), (G.10), (G.11), and (G.12) are structurally identical to (G.15), 

(G.16), (G.17), and (G.18), respectively. In the two models, 1k  and 1c  have the same effect on the 

eigenvalues as ck  and cc . The major difference between the two characteristic equations is in (G.8) 

and (G.14). However, for small lead screw mass ( 1m ), the difference is small. As an example, 

compare Figure 6-12 with Figure 6-24. The difference between the stability conditions of the two 

models becomes significant for sufficiently large m and 1m , since 4b  can become negative, leading 

to kinematic constraint instability (see Section 6.3.2), while 4a′  is always positive. 
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Appendix H 

Further Observations on the Mode Coupling 

Instability in Lead Screw Drives 

Although the linear complex eigenvalue analysis method is useful in establishing the local stability 

boundaries of the fixed points of a system, it does not reveal any information regarding the dynamic 

behavior of the original nonlinear system. Since the focus of this work is on the lead screw vibration 

and the possibility of generation of undesirable noise, there is a great deal of interest in the actual 

behavior of the system. Even when the steady-sliding fixed point is unstable, there could be situations 

where the resulting amplitude of steady-state vibrations is very small and consequently no audible 

noise is generated from the system. 

In this appendix, through numerical simulation, the effects of various system parameters on the 

dynamic behavior of the lead screw drive under the mode coupling instability condition are 

investigated. First, in Section H.1, variations in the steady-state vibration amplitude of the lead screw 

is studied as the two damping coefficients in the 2-DOF model of Section 3.5 are varied. The effects 

of coupling stiffness and contact stiffness of the same model are investigated in Section H.2 through 

five different numerical simulations. In the last simulation, the possibility of chaos is also briefly 

mentioned. 

Unless otherwise specified, numerical values of the system parameters are those listed in Table 6-1. 

H.1 Effects of Damping on Mode Coupling Instability in a 2-DOF 

System with Constant Coefficient of Friction 

In Section 6.2.2, it was proven that in the extreme cases where damping is present in only one of the 

two system DOFs, the steady-siding fixed point is unstable. In addition, the complex effect of 

damping in expanding or reducing the parameter regions of stability was shown by the examples in 

Figure 6-12 and Figure 6-14. The actual variations in the steady-state amplitude of vibrations can 
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have an even more complex behavior.  

Figure H-1 shows a map of averaged amplitude of vibrations of the lead screw for 7102×=ck , as 

lead screw support damping and contact damping coefficients are varied. The two natural frequencies 

of the undamped system are approximately 148.2 and 194.6 Hz. The initial conditions were chosen 

close to the fixed point; ( ) ( ) 000 21 == uu  and  ( ) ( ) 1021 00 ω−== uu && . For each pair of damping 

coefficients, the numerical simulations were carried out for four seconds. The results for the first 

second were discarded to exclude the transients. As can be seen, the steady-state amplitude of 

vibrations varies considerably with the changes of the two damping coefficients.  

For the numerical value of the parameters chosen here, the system exhibits chaotic or multi-period 

behavior for many of the selected values of the two damping coefficients. Figure H-2(a) and Figure 

H-2(b) show the bifurcation diagrams of Poincare sections ( 01 =u& ), as the damping parameter is 

changed along the horizontal dotted line and the vertical dotted line in Figure H-1, respectively. 

Further examples of this phenomenon are presented in Section H.2 below. 

 

 

Figure H-1: Averaged amplitude of vibration, y1 (rad), as lead screw support damping, c, and contact 
damping cc are varied 
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Figure H-2: Bifurcation of Poincare sections. a) Along the horizontal dashed line in Figure H-1 
b) Along the vertical dashed line in Figure H-1. 

 

H.2 Effects of Stiffness on Mode Coupling Instability in a 2-DOF 

System with Velocity-dependent Coefficient of Friction 

In this section, results from five series of numerical simulations are presented that show the effect of 

stiffness (coupling, k, and contact, kc) on the stability of the 2-DOF model of Section 3.5. These 

numerical studies also include the amplitude and frequency of the steady-state vibration of the lead 

screw. 

Here the friction coefficient is assumed according to (3.10) with parameters taken from Table 4-3. 

Other system parameters, not specified in the examples, are selected as before. 

H.2.1 Example #1 

For this first example, the following parameters are considered; 

 1=m , 51040 −×=c , 210=cc  

and the contact stiffness, ck , is varied between 410  to 610  (N/m). Figure H-3(b) shows the variation 

of the real parts of the eigenvalues of the system’s Jacobian matrix as the contact stiffness is varied. 

The steady-sliding fixed points becomes unstable between 51091.1 ×=ck  and 51035.6 ×=ck . As 
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shown in Figure H-3(a) by the two-sided Poincare sections, the amplitude of lead screw vibrations 

varies considerably in this range and reaches a maximum of approximately 0.1 (rad). 

 

 

Figure H-3: Effect of contact stiffness 
(a) Two-sided Poincare bifurcation diagram, (b) Real part of the eigenvalues 

 

During this range, the two natural frequencies are close to each other as shown by the dashed lines 

in Figure H-4. It can be seen in this figure that the dominant frequency of vibrations follows the 

higher linear mode at the beginning of the unstable range and moves towards the lower linear mode at 

the end of it. 
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Figure H-4: (a) Black lines: Evolution of peak lead screw vibration frequencies, dashed grey lines: 
eigenfrequencies; (b) Frequency content of steady-state lead screw vibration at kc=4x10

5 

 

H.2.2 Example #2 

In this example, parameter values are chosen the same as the previous example except for the lead 

screw support damping, which is lowered to 5105 −×=c . As shown in Figure H-5(b), by lowering 

the lead screw damping, the system is unstable throughout the simulated range of ck . The amplitude 

of vibrations, as  shown in Figure H-5(a), hits a maximum of approximately 0.12 (rad) which is 

slightly higher than the previous case. 

It is interesting to note that at approximately 5107.8 ×=ck , the system undergoes a period-

doubling bifurcation [36] which lasts until 5105.9 ×=ck . The evolution of peak vibration 

frequencies are shown in Figure H-6(a). The dominant vibration frequency follows the higher linear 

mode and then shifts to the lower mode as the two linear frequencies move closer to each other. The 

dominant frequency of vibration continues to follow the lower mode as the two linear frequencies 

grow apart. The period-doubling bifurcation is also visible in this frequency plot and in the section 

shown in Figure H-6(b). At the instant plotted, the dominant frequency is 94Hz and the two peaks at 

either side of it, caused by the bifurcation, are at 2
9494 ± Hz. 
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Figure H-5: Effect of contact stiffness 
(a) Two-sided Poincare bifurcation diagram, (b) Real part of the eigenvalues 

 

 

Figure H-6: (a) Black lines: Evolution of peak lead screw vibration frequencies, dashed grey lines: 
eigenfrequencies; (b) Frequency content of steady-state lead screw vibration at kc=9x10

5 
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H.2.3 Example #3 

In this example the contact stiffness is fixed at 610=ck , and in its place the coupling stiffness, k, is 

varied between 0.1 and 8 (N.m/rad). The other parameters are selected as; 

 1=m , 51040 −×=c , 210=cc  

Similar to example #1 above, Figure H-7(b) shows that the steady-sliding fixed point is unstable in 

a portion of the parameter range (i.e. approximately between 1.58 and 5.57). The Poincare sections in 

Figure H-7(a) show that during the unstable parameter range, the amplitude of steady-state varies 

considerably. There is also a discontinuity at about 5.05 (N.m/rad). The amplitude of vibrations 

remains around 0.046 (rad) before the discontinuity but afterwards starts to diminish. 

 

 

Figure H-7: Effect of coupling stiffness 
(a) Two-sided Poincare bifurcation diagram, (b) Real part of the eigenvalues 

 

Parallel to the jump in the amplitude, a distinguishable jump in the dominant frequency of lead 

screw vibrations is discernable in Figure H-8(a). At this point, the two linear frequencies start to 

move away from each other and the frequency of vibration jumps toward the higher mode and 

follows it on. A section of this figure is shown in Figure H-8(b) for 4=k . 
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Figure H-8: (a) Black lines: Evolution of peak lead screw vibration frequencies, dashed grey lines: 
eigenfrequencies; (b) Frequency content of steady-state lead screw vibration at k=4 

 

H.2.4 Example #4 

The parameters chosen for this example are exactly the same as the previous example except for the 

two damping coefficients which are reduced to 5104 −×=c  and 10=cc . As can be seen from Figure 

H-9(b), the system’s fixed point is stable throughout the considered parameter range. Figure H-9(a) 

shows the bifurcation plot of two-sided Poincare sections. As expected, the vibration amplitude grows 

as the coupling stiffness is reduced. Also, it can be seen that the system exhibits chaotic behavior for 

the selected value of the parameters. 

Figure H-10 shows the evolution of dominant frequencies of the lead screw vibration as the 

coupling stiffness is varied. For 4=k , 7=k , and 1=k , various simulation results are plotted in 

Figures H-11, H-12, and H-13, respectively.  

At 4=k , the spectrum plot in Figure H-11(a) shows well separated peaks (those peaks which are 

visible in Figure H-10 are at 28.6, 157.6, 186.2, and 315.2 (Hz)). The y1-y2 projection of the system 

trajectory in Figure H-11(b) shows a periodic orbit (limit-cycle). The Poincare section shown in 

Figure H-11(c), confirms the presence of a 15-period periodic solution at 4=k .   
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Figure H-9: Effect of coupling stiffness 
(a) Two-sided Poincare bifurcation diagram, (b) Real part of the eigenvalues 

 

 

Figure H-10: Black lines: Evolution of peak lead screw vibration frequencies, dotted grey lines: 
eigenfrequencies 

 

The spectrum plot of lead screw vibration at 7=k  is shown in Figure H-12(a). The two 

incommensurable dominant frequencies are 163.8 and 227.2. The resulting quasi-periodic orbit is 

shown in Figure H-12(b), by the filled out region of the phase plane, and in Figure H-12(c), by the 

closed-curve Poincare section.  
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Figure H-11: Simulation results for lead screw at k=4; (a) Vibration frequency content, (b) y1-y2 projection 
of the trajectories, (c) Poincare section 

 

 

Figure H-12: Simulation results for lead screw at k=7; (a) Vibration frequency content, (b) y1-y2 projection 
of the trajectories, (c) Poincare section 

 

The spectrum plot of lead screw vibration at 1=k  is shown in Figure H-13(a). Here, in contrast to 

the two previous cases, the spectrum has a broadband character. The two dominant peaks are located 

at 95.2 and 147.3Hz. The y1-y2 projection of the system trajectory in Figure H-13(b) is similar to 

Figure H-12(b) and fills out a portion of the phase plane; however, the possibility of chaotic behavior 

is shown by Poincare section in Figure H-13(c). Further investigation is needed to confirm that this 
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attractor is indeed chaotic1, which is outside the scope of this work. 

 

 

Figure H-13: Simulation results for lead screw at k=1; (a) Vibration frequency content, (b) y1-y2 projection 
of the trajectories, (c) Poincare section 

 

 

                                                      
1 To verify that the attractor is chaotic, the sensitivity to the initial conditions must be shown [36]. 
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Appendix I 

Theorems Cited in Chapter 7 

In this appendix, three theorems used in Section 7.4 are stated without proof. Theorems 1 and 3 are 

taken from [84], and Theorem 2 is taken from [44]. The proof for these theorems is given in their 

respective references. 

I.1 Theorem 1 [84] 

Consider the following system 

 ( ) ( ) 0,0,,, xxxfx =εεε= t&  (I.1) 

Let ( )ε,,xf t  and its partial derivatives with respect to ( )ε,x  up to the second order be continuous 

and bounded for ( ) [ ) [ ]00 ,0,0,, ε××∞∈ε Dt x , for every compact set DD ⊂0 , where n
D ℜ⊂  is a 

domain. Suppose that f  is T-periodic in t for some 0>T  and ε  is a positive parameter. Let ( )ε,tx  

be the solution of (I.1) and ( )tεz  be the solution of the average system 

 ( ) ( ) 00, zzzfz =ε=&  (I.2) 

Then 

• If ( ) [ ]ε∈∀∈ε LtDt ,0z  and ( ) ( ) ( )ε=−ε O0,0 zx , then there exists 0>ε∗  such that 

for all ∗ε<ε<0 , ( )ε,tx  is defined and ( ) ( ) ( )ε=ε−ε Ott zx ,  on [ ]εL,0 . 

• If the origin D∈= 0z  is an exponentially stable equilibrium point of the average system, 

D⊂Ω  is a compact subset of its region of attraction, ( ) Ω∈0z , and 

( ) ( ) ( )ε=−ε O0,0 zx , then there exists 0>ε∗  such that for all ∗ε<ε<0 , ( )ε,tx  is 

defined and ( ) ( ) ( )ε=ε−ε Ott zx ,  for all [ )∞∈ ,0t . 

• If the origin D∈= 0z  is an exponentially stable equilibrium point of the average system, 
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then there exist positive constants ∗ε  and c such that, for all ∗ε<ε<0 , (I.1) has a unique, 

exponentially stable, T-periodic solution ( )ε,tx  with the property ( ) ε≤ε ct,x . 

• If the origin D∈= 0z  is an exponentially stable equilibrium point of the average system, 

and if ( ) 0,0, =εtf  for all ( ) [ ) [ ]0,0,0, ε×∞∈εt , then 0=x  is an exponentially stable 

equilibrium point of (I.1). 

Proof: 

The proof is given in [84, Theorem 10.4]. 

I.2 Theorem 2 [44] 

Consider the following system in standard form 

 ( ) ( ) 00,,, xxxfx =εε= t&   (I.3) 

where n
D ℜ⊂∈0,xx . Also consider the averaged system 

 ( ) ( ) 00, xzzfz =ε=&  (I.4) 

where ( ) ( )∫ ττ=
T

d
T 0

0,,
1

xfxf . 

Suppose that all of the conditions of the first order averaging theorem of Appendix B are satisfied. 

Assume further that: 

• The averaged system has an exponentially stable equilibrium point 0=z . 

• The function ( )zf  is continuously differentiable with respect to z  in D. 

• The stable equilibrium point 0=z  has a domain of attraction DD ⊂0 . 

Then, if 00 D∈x , then 

 ( ) ( ) ε≤ε−ε ctt ,, zx  (I.5) 

for some 0>c  independent of ε  and ∞<≤ t0 . 

Proof: 

The proof is given in [44, Appendix II]. 

Remark: 
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This theorem is similar to part 2 of theorem 1 given in Section I.1. However, the assumptions made 

are much weaker here than those of theorem 1. 

I.3 Theorem 3 [84] 

Consider the singularly perturbed system 

 
( )
( )ε=ε

ε=

,,,

,,,

zxgz

zxfx

t

t

&

&
 (I.6) 

Assume that the following assumptions are satisfied for all ( ) [ ) [ ]0,0,0,, ε××∞∈ε rBt x , where 

{ }rB n

r ≤ℜ∈= xx . 

• ( ) 0,0,0, =εtf  and ( ) 0,0,0, =εtg . 

• The equation ( )0,,,0 zxg t=  has an isolated root ( )xhz ,t=  such that ( ) 00, =th . 

• The functions f , g , h , and their partial derivatives up to the second order are bounded for 

( ) ρ∈− Bt xhz , . 

• The origin of the reduced system ( )( )0,,,, xhxfx tt=&  is exponentially stable. 

• The origin of the boundary-layer system ( )( )0,,,, xhyxg
y

tt
d

d
+=

τ
 is exponentially stable, 

uniformly in ( )x,t  . 

Then, there exists 0>ε∗  such that for all ∗ε<ε , the origin of (I.6) is exponentially stable. 

Proof: 

The proof is given in [84, theorem 11.4]. 
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