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Abstract 

Some commodity polymers such as linear low density polyethylene (LLDPE) suffer 

from melt defects including sharkskin, cyclic melt fracture, and gross melt fracture during 

processing. The occurrence of these defects sets an upper limit to the rate at which these 

polymers can be processed, thus increasing production costs. One method to eliminate or 

delay the formation of melt defects is through the addition of polymer processing additives 

(PPA). These PPA migrate to the surface of the polymer melt and form a layer inducing 

slippage on the metallic surfaces of processing equipment such as extruder screws and 

extrusion dies. This reduces energy consumption and increases processing throughput. 

Effective PPA are generally phase-separated from the host polymer and migrate to the die 

wall. Arborescent polymers (AP) are a class of dendritic branched polymers with 

characteristics, including a compact structure and a rigid sphere-like topology, making them 

potentially useful as PPA.  

A series of linear polyisoprene (PIP) and arborescent polystyrene-graft-polyisoprene 

copolymer samples was synthesized for the current investigation. The branched copolymers 

were derived from polystyrene (PS) substrates of different architectures (linear and 

branched), functionalized with acetyl or chloromethyl groups, and coupled with PIP 

macroanions. The copolymers thus obtained were modified by hydrosilylation with a 

perfluorohydrosilane (PHS), namely (tridecafluoro-1,1,2,2-tetrahydrooctyl)dimethylsilane, 

on 17 to 50 % of the isoprene units. The linear PIP samples were also modified by 

hydrosilylation for comparison. The additives were blended with LLDPE at concentrations of 

0.1 %w/w and 0.5 %w/w to evaluate their performance as PPA by extrusion at different shear 
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(deformation) rates. A coadditive [poly(ethylene glycol), ܯ௪  ≈ 4,000, PEG4K] was also 

blended with three of the PPA samples for comparison. Furthermore, the size of the PPA 

droplets within the LLDPE matrix was monitored by optical microscopy. 

All the samples led to some degree of improvement in the extrusion of LLDPE, but 

the lower molecular weight PPA appeared to perform better than those with a high molecular 

weight. Interestingly, several PPA samples caused the early onset of CMF but glossy, defect-

free surfaces were obtained at higher shear rates. This suggests that a minimum shear rate is 

required for these additives to coat the extrusion die. The incorporation of coadditive 

improved the performance of the PPA at 0.5 %w/w PPA concentration, but little or no effect 

was observed at 0.1 %w/w. The size of the PPA droplets dispersed in LLDPE ranged from 

1.0-1.5 μm, increasing to 1.4-2.1 μm with the coadditive. 

  

  



v 
 

Acknowledgements 

I would like to take this opportunity to express my gratitude and appreciation to my 

supervisor, Professor Mario Gauthier, for his guidance and support over the course of this 

study. 

 

I would like to express my thanks to my Supervisory Committee Members, Professors Jean 

Duhamel and Costas Tzoganakis, for their valuable time and helpful suggestions. 

 

I would like to thank Professor Neil McManus, in the Department of Chemical Engineering 

at the University of Waterloo, for allowing the use of his GPC equipment. Also, I would like 

to thank Dr. Shuihan Zhu and Ms. Michelle Zhou, in the Department of Chemical 

Engineering at the University of Waterloo, for their guidance in using the rheometer and the 

GPC, respectively.  

 

I would like to thank all my co-workers at the University of Waterloo for their assistance and 

friendship over the course of this research, but particularly Dr. Steven J. Teertstra, Dr. Firmin 

Moingeon, Dr. Abdul Munam, Jason Dockendorff, Olivier Nguon, Gregory Whitton, and 

Shahla Aliakbari. 

 

My special thanks go to my wife and my son for their love, understanding, and support. 

The financial support of Imperial Oil Limited for the work is gratefully acknowledged. 

  



vi 
 

I dedicate this work to all my family, in particular my mother Man Ying Lin, my son Jason 

and my wife Wendy for their indefatigable patience, support, and encouragements. 



vii 
 

Table of Contents 

List of Figures ............................................................................................................................ ix 

List of Tables ............................................................................................................................ xii 

List of Equations and Schemes ................................................................................................ xiv 

List of Abbreviations and Symbols .......................................................................................... xv 

Chapter 1 – Introduction ............................................................................................................. 1 

1.1 Opening remarks .......................................................................................................................... 2 

1.2 Outline .......................................................................................................................................... 3 

Chapter 2 – Background ............................................................................................................. 4 

2.1 Processing of commodity polymers ............................................................................................. 5 

2.1.1 Melt defects in polymers ....................................................................................................... 5 

2.2 Commercial processing additives ................................................................................................. 6 

2.2.1 Boron nitride .......................................................................................................................... 7 

2.2.2 Stearates ................................................................................................................................. 9 

2.2.3 Polydimethylsiloxane oils and derivatives .......................................................................... 10 

2.2.4 Polymer processing additives .............................................................................................. 10 

2.2.5 Coadditives .......................................................................................................................... 14 

2.3 Dendritic polymers ..................................................................................................................... 14 

2.3.1 Synthetic processes for dendrigraft polymers ..................................................................... 15 

2.3.1.1 “Grafting onto” methods .............................................................................................. 17 

2.3.1.2 “Grafting from” methods ............................................................................................. 44 

2.3.1.3 Hybrid methodology ..................................................................................................... 50 

2.4 Dendritic polymers as polymer processing additives ................................................................. 54 

Chapter 3 – Objectives .............................................................................................................. 56 

Chapter 4 – Experimental Procedures ...................................................................................... 58 

4.1 General procedures ..................................................................................................................... 59 



viii 
 

4.2 Solvent and reagent purification ................................................................................................. 59 

4.3 Acetylation of PS substrates ....................................................................................................... 60 

4.4 Synthesis of arborescent polystyrene-graft-polyisoprene .......................................................... 61 

4.5 Synthesis of PHS ........................................................................................................................ 66 

4.6 Hydrosilylation ........................................................................................................................... 67 

4.7 Characterization .......................................................................................................................... 67 

4.8 Blending of fluorinated polystyrene-graft-polyisoprene and PEG4K with LLDPE .................. 69 

4.9 Extrusion testing ......................................................................................................................... 71 

4.10 Optical microscope study of droplet size ................................................................................. 72 

Chapter 5 – Results and Discussion .......................................................................................... 73 

5.1 Introduction ................................................................................................................................ 74 

5.2 Acetylation of polystyrene substrates ......................................................................................... 74 

5.3 Arborescent polystyrene-graft-polyisoprene copolymers .......................................................... 76 

5.4 Synthesis of PHS ........................................................................................................................ 82 

5.5 Hydrosilylation of PIP ................................................................................................................ 84 

5.6 Extrusion testing ......................................................................................................................... 90 

5.6.1 High PPA concentration ...................................................................................................... 91 

5.6.2 Low PPA concentration ....................................................................................................... 97 

5.6.3 Mixed PPA samples ............................................................................................................ 98 

5.6.4 Coadditive effects ................................................................................................................ 99 

5.7 Droplet size analysis ................................................................................................................. 105 

Chapter 6 – Conclusions and Suggestions for Future Work ................................................... 107 

References ............................................................................................................................... 112 

 



ix 
 

 List of Figures 

Figure 2-1: Typical flow curve for linear low density polyethylene (LLDPE). ......................... 7 

Figure 2-2: Extrudate of LLDPE obtained at 163 0C: (a) SS at shear rate of 80 s-1 without 

BN, (b) GMF at 800 s-1 without BN, and (c) glossy extrudate at 800 s-1 with 0.01 

%w/w BN. ................................................................................................................ 9 

Figure 2-3: Cross section of extrusion equipment for polymer processing. ............................. 11 

Figure 2-4: Comparison of linear low density polyethylene (LLDPE) processing with (•) and  

without (�) PPA. .................................................................................................... 12 

Figure 2-5: Dependence of (A) coating thickness and (B) percent melt fracture on the volume 

of polymer extruded and the PPA droplet size. ..................................................... 13 

Figure 2-6: Comparison of the architecture of hyperbranched polymers, dendrimers, and 

arborescent polymers. ............................................................................................ 15 

Figure 2-7: GPC elution curves for the large scale synthesis of arborescent polystyrene. ....... 24 

Figure 2-8: Osmotic modulus as a measure of the structural rigidity of arborescent polymers.26 

Figure 2-9: Radial density profile for power law model and hard sphere model. .................... 27 

Figure 2-10: (a) Arborescent polystyrene molecules, (b) appearance in core-matching and 

shell-matching solvents. ......................................................................................... 28 

Figure 2-11: (a) Experimental SANS data fitted by the Indirect Fourier Transform method in 

deuterated toluene, (b) corresponding PDDF and (c) contrast profile. .................. 29 

Figure 2-12: Zero shear viscosity as a function of molecular weight. ...................................... 31 

Figure 2-13: Phase contrast SFM images for (left) G0PS-PIP5 and (right) G1PS-PIP5. ......... 34 

Figure 2-14: Dynamic modulus curves for (left) PS-PIPx and (right) G0PS-PIPx at 20 0C. ... 36 



x 
 

Figure 2-15: Dynamic modulus curves for overall G2 and G3 polyisoprene copolymer at 20 

0C. ........................................................................................................................... 37 

Figure 2-16: Zero-shear viscosity as a function of molecular weight at 20 0C in solution. ..... 38 

Figure 2-17: Temperature dependence of Dh in methanol and in toluene for (a) G1PS-P2VP5 

and (b) G1PS-P2VP30. .......................................................................................... 40 

Figure 2-18: Temperature dependence of (a) the csc and (b) the Gibbs free energy for G1PS-

P2VP5 and G1PS-P2VP30. ................................................................................... 41 

Figure 2-19: (a) TEM and (b) SEM images for G1PS-P2VP5, and (c) TEM image for G1PS-

P2VP30. ................................................................................................................. 42 

Figure 2-20: AMF images for (a) G1-30PS-LB-31 (ribbon-like structure), (b) G1-30PS-LB-

15 (island-like structure), and (c) G1-5PS-HB-74 (non-associated molecules). ... 53 

Figure 2-21: AFM images for G1-30PS-LB-22 at (a) 0 mN/m and (b) 8 mN/m. .................... 53 

Figure 2-22: AFM images for G1-30PS-HB-43 at (a) 12 0C and (b) 37 0C. ............................ 54 

Figure 4-1: Manifold for azeotropic purification of grafting substrate..................................... 62 

Figure 4-2: Manifold for monomer purification. ...................................................................... 63 

Figure 4-3: Reactor for the polymerization and grafting reactions........................................... 65 

Figure 5-1: 1H NMR spectrum for linear PS (A) and acetylated linear PS (B). ....................... 76 

Figure 5-2: GPC traces for grafting linear PIP (6,000 ≈ ࢝ࡹ) onto the G0PS substrate. ......... 79 

Figure 5-3: 1H NMR spectra for PIP6K (A) and PS-PIP6K (B). ............................................. 80 

Figure 5-4: Evolution of the 1H NMR spectrum from 1H,1H,2H-perfluoro-1-octene to 

(tridecafluoro-1,1,2,2-tetrahydrooctyl)dimethylsilane. .......................................... 83 

Figure 5-5: 1H NMR spectra for the hydrosilylation of PIP with the PHS. .............................. 85 



xi 
 

Figure 5-6: GPC elution curves for the conversion of (A) PS-PIP6 to PS-PIP6-F25 and (B) 

G0PS-PIP6 to G0-PIP6-F17. ................................................................................. 86 

Figure 5-7: Fluorine content (%w/w) variation with the molar PHS substitution level............ 88 

Figure 5-8: Surface stranding for a 0.5 %w/w blend of PIP30-F25 in LLDPE. ....................... 93 

Figure 5-9: Mild CMF for a 0.5 %w/w blend of PIP6-F39 in LLDPE. .................................... 93 

Figure 5-10: Load variation with the shear rate for (A) PIP6-F31 and (B) FX9613. ............... 96 

Figure 5-11: Micrograph at 100× for PIP6-F31 blend with LLDPE at 0.5 %w/w. ................. 106 

 

  



xii 
 

List of Tables 

Table 2-1: Characterization data for Comb-burst® polyethylenimines ................................... 19 

Table 2-2: Characterization data for arborescent polystyrene synthesized from chloromethyl 

coupling sites ......................................................................................................... 23 

Table 2-3: Scaling parameters for the second virial coefficient (A2), radius of gyration (Rg), 

and diffusion coefficient (Dz) for linear coils, arborescent polymers, and hard 

spheres .................................................................................................................... 25 

Table 2-4: Arborescent polystyrene-graft-polyisoprene composition and Tg analysis ............ 35 

Table 4-1: List of copolymer samples synthesized ................................................................... 64 

Table 5-1: Linear and arborescent PS substrates characterization data .................................... 75 

Table 5-2: Molecular weight characterization of linear PIP and arborescent polystyrene-graft-

polyisoprene copolymers ....................................................................................... 78 

Table 5-3: PIP content and microstructure analysis results ...................................................... 81 

Table 5-4: PHS modification of linear PIP and arborescent copolymers ................................. 87 

Table 5-5: Composition and residual isoprene units microstructure of PHS-substituted PIP .. 90 

Table 5-6: Extrusion results for LLDPE at 0.5 %w/w PPA concentration ............................... 92 

Table 5-7: Extrusion performance for LLDPE at 0.1 %w/w concentration of selected PPA ... 98 

Table 5-8: Extrusion performance for LLDPE with mixed PPA blends at 0.1 %w/w and 0.5 

%w/w ...................................................................................................................... 99 

Table 5-9: Extrusion performance for LLDPE with selected PPA and PEG4K coadditive at 

an overall concentration of 0.5 %w/w .................................................................. 102 



xiii 
 

Table 5-10: Extrusion performance for LLDPE with selected PPA and PEG4K coadditive at 

an overall concentration of 0.1 %w/w .................................................................. 104 

Table 5-11: Average droplet size for LLDPE blends with selected PPA at 0.5 %w/w and 

0.1 %w/w concentrations with and without PEG4K coadditive .......................... 106 

  



xiv 
 

List of Equations and Schemes 

Equation 2-1 .............................................................................................................................. 26 

Equation 5-1 .............................................................................................................................. 75 

Equation 5-2 .............................................................................................................................. 89 

 

Scheme 2-1: Generic “grafting onto” scheme for the synthesis of dendrigraft polymers. ....... 16 

Scheme 2-2: Comb-burst® polyethylenimine synthesis. .......................................................... 18 

Scheme 2-3: Synthesis of arborescent polystyrene by anionic polymerization and grafting 

onto chloromethylated substrate. ......................................................................... 20 

Scheme 2-4: Synthesis of arborescent polystyrene by grafting onto acetylated polystyrene 

substrate. .............................................................................................................. 21 

Scheme 2-5: Synthesis of arborescent polybutadiene. .............................................................. 32 

Scheme 2-6: Conversion of chloromethylated to bromomethylated substrate and coupling 

with poly(tert-butyl methacrylate). ...................................................................... 44 

Scheme 2-7: Synthetic scheme for the preparation of dendritic PEO through a “grafting 

from” method. ...................................................................................................... 45 

Scheme 2-8: Synthesis of dendritic polyglycidol. .................................................................... 48 

Scheme 2-9: Dendrigraft polystyrene and polystyrene-graft-poly(methacrylate) copolymers 

by SFRP and ATRP. ............................................................................................ 50 

Scheme 2-10: Synthesis of arborescent polystyrene-graft-poly(ethylene oxide) through a 

hybrid method. ..................................................................................................... 51 

Scheme 5-1: Synthetic scheme for PHS-functionalized polystyrene-graft-polyisoprene 

copolymer. ........................................................................................................... 74



xv 
 

List of Abbreviations and Symbols 

 

 ௪ Weight-average molecular weightܯ

௡ܯ  Number-average molecular weight 

2VP 2-Vinylpyridine 

A2 Second virial coefficient 

AP Arborescent polymer 

ATRP 

BN 

Atom transfer radical polymerization 

Boron nitride 

Ce Coupling efficiency 

CMF Cyclic melt fracture 

csc Critical self-assembly concentration 

Dh Hydrodynamic diameter 

DLS Dynamic light scattering 

DPE 1,1-Diphenylethylene 

Dz Diffusion coefficient 

fw Branching functionality 

G’ Storage modulus 

G” Loss modulus 

GMF Gross melt fracture 

GPC Gel permeation chromatography 

L/D Length/Diameter ratio 

LALS Low angle light scattering 

LLDPE 

MALLS 

Linear low density polyethylene 

Multi angle laser light scattering 

MWD Molecular weight distribution 

n-BuLi n-Butyllithium 

PDDF Real space pair distance distribution function 

PDI Polydispersity index = ܯ௪/ܯ௡  



xvi 
 

PDMS Polydimethylsiloxane 

PEG4K Poly(ethylene glycol), ܯ௪ ≈ 4,000 

PEG Poly(ethylene glycol) 

PEO Poly(ethylene oxide) 

PEOX Poly(2-ethyl-2-oxazoline) 

PHS Perfluorinated hydrosilane / (tridecafluoro-1,1,2,2-

tetrahydrooctyl)dimethylsilane 

PIP Polyisoprene 

PPA Polymer processing additive 

PS Polystyrene 

P2VP Poly(2-vinylpyridine) 

PTFE Polytetrafluoroethylene 

RALS Right Angle Light Scattering 

Rg 

Rh 

Radius of gyration 

Hydrodynamic radius 

SANS Small-angle neutron scattering 

sec-BuLi 

SEM 

sec-Butyllithium 

Scanning electron microscopy 

SFM Scanning force microscopy 

SFRP Stable free radical polymerization 

SS Sharkskin 

TEM Transmission electron microscopy 

Tg Glass transition temperature 

THF Tetrahydrofuran 

TMEDA N,N,N’,N’-Tetramethylethylenediamine 

TTS Time-temperature superposition 

ΔGo Standard Gibbs free energy 

ΔHo Standard enthalpy 

ΔSo Standard entropy 

ηo
 Zero-shear viscosity 

 



1 
 

 

 

 

 

Chapter 1 – Introduction 

  



2 
 

1.1 Opening remarks 

Dendritic polymers with a randomly branched architecture can be divided into two 

groups, namely hyperbranched and dendrigraft macromolecules.1,2 Hyperbranched polymers 

are typically synthesized in a one-pot method by the self-condensation of polyfunctional ABn 

monomers. The resulting structure is imperfect, since polymer branches of variable length are 

produced and the polydispersity index (PDI, ܯ௪/ܯ௡) of the product is usually greater than 

two.  

On the other hand, arborescent polymers (AP) are synthesized through multi-step 

reactions using polymeric building blocks. This leads to improved control over the length of 

the branches and thus a more uniform structure. The PDI of AP is correspondingly lower 

(<1.1) than for hyperbranched polymers. By varying their characteristics, AP could be 

tailored to optimize their performance in different applications. The number of studies on 

applications of these materials has been very limited so far, however.  

The processing of thermoplastics requires additives, among others to improve their 

surface appearance and increase the throughput. In the absence of these additives the 

achievable throughput is much lower, due to melt defects occurring at high shear 

(deformation) rates, leading to increased production costs. Hyperbranched polymers have 

been investigated as PPA by Hong et al.3,4 yielding interesting results. As such, it is 

reasonable to extend the PPA studies to include AP additives. Variations in the 

characteristics of the arborescent PPA (size and number of branches, fluorine content) would 

be interesting. 
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1.2 Outline 

 Chapter 2 includes a review on melt defects in polymers, dendritic polymers, polymer 

processing additives, and the use of branched polymers as processing additives. The 

objectives of the current investigation are set out in Chapter 3. Experimental procedures for 

the synthesis, blending, testing, and characterization of the polymers are outlined in Chapter 

4. The Results and Discussion section – Chapter 5 – provides a summary of the results 

obtained and a discussion of the data collected. In Chapter 6, the conclusions drawn from the 

results and suggestions for future work are presented. 
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Chapter 2 – Background 
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2.1 Processing of commodity polymers 

 A broad range of commercial polymers must be processed on a daily basis. This 

includes commodity polymers such as polyolefins, polymethacrylates, polystyrene (PS), and 

poly(vinyl chloride), which are produced with a wide range of molecular weights and PDI 

values. The ease of processing of these materials varies widely, but polymers with a narrow 

molecular weight distribution (MWD) are generally more difficult to process than those with 

a broad MWD.5 This is partly due to the fact that low molecular weight polymers have a 

lower zero shear viscosity than high molecular weight polymers.6 These low molecular 

weight components effectively dilute or separate the high molecular weight chains, reducing 

the overall zero shear viscosity of a broad MWD polymer. In other words, the low molecular 

weight components of the polymer act as lubricants for the higher molecular weight 

material.5,6 

2.1.1 Melt defects in polymers 

 Polymers for different uses are produced in millions of tons every year and processed 

by different methods including film blowing, injection molding, and melt extrusion. From PS 

to polyethylene to polyelectrolyte membranes, production limitations drive the cost of these 

polymers toward new summits. These limitations occur even at low shear rates, causing 

surface imperfections such as sharkskin (SS), cyclic melt fracture (CMF) and gross melt 

fracture (GMF). For example, when molten polymers are extruded through a die under 

pressure (shear stress) to form a monofilament by extrusion, they undergo four appearance 

changes as the shear rate increases. These changes are depicted in Figure 2-1 as a function of 

processing rate (shear or deformation rate). As the shear rate increases, the extrudate changes 

from a glossy smooth surface to a ridged (SS) surface after crossing the first critical shear 
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stress (change in slope).7,8 At even higher shear rates, the extrudate crosses a second critical 

shear rate leading to alternating smooth and ridged surfaces (CMF). Beyond CMF the 

extrudate may suffer from GMF, where the excessive throughput leads to a completely 

distorted filament.7,8 That being said, SS is most problematic because it appears first and even 

at very low processing rates – within the usual range of polymer processing rates.9,10 SS is 

therefore the surface defect that has the highest impact on manufacturing. 

A number of researchers have looked into the causes of SS formation; however 

contradictory evidence arose from these studies. Some investigators proposed that SS is 

induced by slippage of the extrudate at the die wall, while others suggested that SS is due to 

sticking on the die wall.7,8,11‐13 The exact SS formation mechanism is still elusive, but it is 

widely accepted that SS is formed when the extrudate exits the die.12,14 

2.2 Commercial processing additives 

 Additives of various chemical compositions are commonly used to minimize melt 

defect formation and reduce the load (or indirectly the shear stress) in polymer processing. 

This includes stearates, boron nitride, and polymer-based additives.9 All these additives have 

led to increased processing rates for different commodity products, but the most widely used 

additives are polymer-based. These products, known as polymer processing additives (PPA), 

include Viton® FreeFlow™ and Dynamar™ FX9613. These fluoropolymers, incorporated at 

low concentrations (typically less than 0.1 %w/w or 1000 ppm), increase the processability 

of molten polymers. The use of fluoropolymers as PPA was accidentally discovered in the 

1960s,15,16 and they have been further investigated for that purpose over the years. The major 
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additives used to improve the processability of molten polymers will be discussed briefly 

below. 

 

2.2.1 Boron nitride 

  Boron nitride (BN) was found to eliminate SS and CMF, and to delay the onset of 

GMF under certain conditions depending on the die, the temperature, and the loading level 

  

Figure 2-1: Typical flow curve for linear low density polyethylene (LLDPE). 

The diagram shows (A) a smooth extrudate, (B) sharkskin, (C) cyclic melt fracture, and (D) 
gross melt fracture.9 The abscissa represents the shear rate and the ordinate represents the 
applied pressure (load). A change in slope indicates the crossing of a critical point leading to 
a change in extrudate appearance. 
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used.9 Rosenbaum et al. suggested that BN acts as lubricant within the bulk of the polymer, 

which prevents the formation of SS and GMF.17 In capillary rheometry experiments using a 

circular die, the incorporation of 0.05-0.1 %w/w BN in LLDPE eliminated SS formation, but 

the onset of CMF and GMF were unaffected.17 It was also noticed that the addition of BN 

had essentially no effect on the flow curve, as the curve obtained for virgin (pure) LLDPE 

overlapped with the one containing BN. Significant improvement in processability was 

observed when a die for wire coating was used, however. At the same concentrations as 

above, SS and CMF were completely eliminated and GMF was delayed to a shear rate of ca. 

920 s-1, well above that of the virgin LLDPE resin (ca. 500 s-1) (Figure 2-2).9 Virgin LLDPE 

displayed SS and GMF formation at 80 s-1 and 800 s-1, respectively. Even at a concentration 

of 0.01 %w/w BN, the surface of the extrudate remained glossy at shear rates up to 800 s-1.  

 The influence of temperature was also investigated.17 At 163 0C, optimal performance 

was observed for BN concentrations between 500 and 1000 ppm. At the same temperature 

with 5000 ppm BN, melt fracture was however not eliminated. For an increase in 

temperature from 163 to 204 0C, the best performance was observed for blends with 5000 

ppm BN, the surface remaining glossy at higher shear rates. The influence of temperature on 

the optimal loading was attributed to a temperature-dependent critical dispersion 

concentration above which the BN formed aggregates, thus impeding the performance of the 

additive. 

 Boron nitride blended with Teflon® further increased the range of allowable shear 

rates from 1300 s-1 to 2400 s-1 (with 0.05 %w/w BN) and 1800 s-1 (with 0.05 %w/w Teflon®), 

due to enhanced mixing of the additive with the polymer in the barrel of the capillary 

rheometer.17 
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Figure 2-2: Extrudate of LLDPE obtained at 163 0C: (a) SS at shear rate of 80 s-1 
without BN, (b) GMF at 800 s-1 without BN, and (c) glossy extrudate at 800 s-1 with 0.01 
%w/w BN. 
From Achilleos et al.9 
 

2.2.2 Stearates 

 Stearates are the metal salts of stearic acid (e.g. calcium stearate, zinc stearate).9 It has 

been shown that stearates, when blended with metallocene polyolefins (with a narrow 

MWD), produce die conditioning phenomena similar to those observed for Teflon®. These 

stearates form a stagnant layer allowing the host polymer to slip during extrusion. 

Metallocene blends with ca. 1000 ppm stearates display an initial load rise when extruded in 

capillary rheometry experiments, which drops after several consecutive runs through 

reloading of the rheometer barrel. The load eventually attains a steady state value, indicating 

that full conditioning (coating) of the die is achieved.18 The authors also showed that in the 

presence of long chain branching in the polymer, the die conditioning time increased. 
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2.2.3 Polydimethylsiloxane oils and derivatives 

 Polydimethylsiloxane (PDMS) oils and their derivatives have been used as PPA since 

the 1970s. Silicone oil serves as a lubricant and a release agent in the injection molding of 

polyolefins.19 Due to the incompatibility of silicone oil and polyolefins, the silicone oil tends 

to migrate to the surface, which relieves the frictional properties of the polyolefins. However, 

the use of silicone oil must be avoided when the polyolefins need to be printed, painted, or 

come in contact with food products: The residues on the surface hinder the adhesion of paint 

and are relatively toxic. 

 Ultra high molecular weight PDMS, marketed by Dow Corning, also works as a 

processing additive for polyethylene and polypropylene. Due to their high molecular weight, 

these PDMS residues remain solid after processing of the host polymer. Consequently, they 

do not affect paint adhesion on the surface of the processed polymer.19 Reductions in LLDPE 

surface roughness have also been reported for this additive.20  

2.2.4 Polymer processing additives 

 PPA are widely used to improve the processability of commercial polymers and 

eliminate surface defects. Typical PPA have a high fluorine content, to promote their 

separation from the host polymer, and thus become dispersed as small droplets within the 

host polymer. During melt processing, these droplets migrate from the polymer matrix to the 

die wall and form a stagnant layer of additive acting as a lubricant (Figure 2-3).15,21 An 

effective PPA is generally immiscible with the host polymer, as miscibility diminishes the 

ability of a PPA to migrate to the wall.10,22 
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Figure 2-3: Cross section of extrusion equipment for polymer processing. 
As the polymer (grey) is extruded, the PPA (white) migrates to the die wall and forms a layer 
at the polymer-die interface. 
  

A PPA is typically used at a concentration between 500 ppm (0.05 %w/w) and 1000 

ppm (0.1 %w/w).9 No detrimental effects have been observed on the appearance and the 

mechanical properties of the extrudate at these concentrations.23,24 The effectiveness of a PPA 

at 1000 ppm on the processing of LLDPE can be seen in Figure 2-4.25 For pure LLDPE, SS 

formation starts at 200 s-1 but in the presence of the PPA, SS is completely eliminated and 

CMF is delayed to shear rates above 800 s-1. 
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Figure 2-4: Comparison of linear low density polyethylene (LLDPE) processing with (•) 
and  without (�) PPA. 
Sharkskin formation starts at 200 s-1 for virgin LLDPE and cyclic melt fracture (CMF) after 
300 s-1. For LLDPE with 0.1 %w/w PPA, SS formation is completely eliminated and CMF is 
delayed to above 800 s-1. From Teertstra.25 

 

  As mentioned before, these PPA are dispersed as small droplets within the polymer 

matrix. Some studies have demonstrated that the formation of the PPA coating is affected by 

the average droplet size, which should be around 0.2 µm for optimal results,9 while others 

have shown that a droplet size between 2 µm and 10 µm could also be very effective.10,26 It 

was determined that the thickness of the coating formed by larger droplets fluctuated more as 

compared to smaller droplets, however.10 The variation in coating thickness with the droplet 

size is described in Figure 2-5A. Furthermore, the droplet size and the amount of polymer 
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blend that must be passed through the extrusion die to form a stable coating vary in an 

opposite fashion: as the droplet size decreases, an increased amount of polymer is required to 

build up a stable coating. In Figure 2-5B, the percent melt fracture – defined as the portion of 

the extrudate surface covered with SS – decreases as more polymer passes through the die. 

By comparing both figures, it can be seen that the effective coating thickness for melt 

fracture elimination is between 150 and 200 nm.10 Larger droplets lead to shorter coating 

times and thicker coatings, but thicker coatings are unnecessary as SS is eliminated even with 

very thin coatings. 

 

Figure 2-5: Dependence of (A) coating thickness and (B) percent melt fracture on the 
volume of polymer extruded and the PPA droplet size. 
A PPA concentration of 0.1 %w/w (1000 ppm) was used in all cases. From Bigio et al.10 
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2.2.5 Coadditives 

 Coadditives are typically low molecular weight polymers that are commonly used in 

conjunction with processing additives to enhance their performance. Poly(oxyalkylene)s such 

as poly(ethylene glycol) (PEG)25,27‐29 and poly(ε-caprolactone),26 when used in combination 

with a PPA, have been shown to provide enhanced performance over the pure PPA or the 

coadditive alone, demonstrating that the additive-coadditive combination leads to a 

synergistic effect.25 It has been suggested that PEG acts as a partitioning agent between the 

host polymer and the PPA, which reduces the stress encountered by the PPA during 

processing and prevents the breakup of the PPA droplets.25‐27,29 This means that PEG coats 

the PPA droplets and prevents their breakup. 

2.3 Dendritic polymers 

Macromolecules with a dendritic (multi-level) well-defined branched architecture 

were first described by Buhleier et al.30 These macromolecules can be divided into three 

classes of dendritic polymers: hyperbranched polymers, dendrimers, and dendrigraft 

polymers. A high branching functionality can be achieved for all three dendritic polymer 

families, but they can be distinguished by their architecture. Hyperbranched polymers are 

synthesized mainly according to one-pot condensation schemes using multifunctional 

monomers of the AB2 or AB3 type (Figure 2-6).1,2 This leads to multiple structural 

imperfections such as missing branches, and variations in the length of the linear chain 

segments.3 Dendrimers are obtained through a series of protection-condensation-deprotection 

reaction cycles allowing precise control over the architecture and providing a very narrow 

MWD.2 Unfortunately, the molecular weight increases very slowly by this approach due to 

the fact that small molecules serve as building blocks.  
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Much faster increases in molecular weight could be achieved using polymeric 

building blocks and a large number of coupling sites on the substrate. This is the approach 

used in the synthesis of arborescent polymers (AP), the type of dendrigraft polymer used in 

the current investigation. The molecular weight of AP increases geometrically for successive 

generations, yielding very high molecular weights and branching functionalities in a few 

cycles. Very narrow MWD (PDI < 1.1) can be achieved for the AP as compared to 

hyperbranched polymers (PDI > 2).2 

  

Figure 2-6: Comparison of the architecture of hyperbranched polymers, dendrimers, 
and arborescent polymers. 

 

2.3.1 Synthetic processes for dendrigraft polymers 

 The synthesis of dendrigraft polymers can be achieved by two different processes, 

namely divergent and convergent methods. In the divergent method, growth of the molecules 

takes place from the core outwards, by grafting side chains in successive reaction cycles. 

Convergent methods utilize the reversed process, whereby side chains are grown and 

combined into larger fragments by successive coupling reactions of a single reactive site 

located at the core (focal point) of the fragments. The current discussion will be limited to the 

Hyperbranched Polymer  Arborescent Polymer Dendrimer 
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synthesis and the properties of dendrigraft (including arborescent) polymers obtained by 

divergent methods, since this is the type of polymers used in the current investigation. 

Inconsistent naming systems have been proposed by different groups, but for simplicity and 

convenience, a unique naming system will be used throughout this thesis. Molecules 

consisting in a linear polymer substrate grafted only once with side chains, also known as a 

comb-branched structure, will be called generation 0 or G0 (Scheme 2-1). The G0 polymers, 

when further grafted with side chains, are identified as generation 1 or G1 (the first 

generation with a dendritic or multi-level branched architecture), and so on. 

 

Scheme 2-1: Generic “grafting onto” scheme for the synthesis of dendrigraft polymers. 

  

 The divergent synthetic process can be divided into two sub-categories as “grafting 

onto” and “grafting from” techniques. The “grafting onto” path starts from a linear polymer 

that is randomly functionalized with coupling sites and reacted with living polymer chains to 

yield a G0 structure (Scheme 2-1). The G0 polymer can be further functionalized with 
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coupling sites and grafted to obtain a G1 polymer. Higher generation (G2, G3…) polymers 

result from repetition of the functionalization and grafting procedures. In the “grafting from” 

technique, the substrate is functionalized with reactive sites serving as initiator for the 

polymerization of a monomer. The side chains are thus grown from the substrate in this 

approach. It should be pointed out that the “grafting onto” techniques are much more 

widespread in practice, possibly due to the fact that in most cases, the “grafting from” 

method does not allow the detailed characterization of the side chains (molecular weight and 

PDI) nor the exact number of chains added. Another problem is that the polyfunctional 

initiator substrates, being highly charged, are often insoluble in common polymerization 

solvents.31 

 

2.3.1.1 “Grafting onto” methods 

Comb-burst ® polymers 

Comb-burst® polyethylenimine was first reported by Tomalia et al.32 The synthetic 

scheme relies on the coupling of “living” cationic poly(2-ethyl-2-oxazoline) (PEOX) chains 

with polyethylenimine substrates (Scheme 2-2). PEOX chains with a narrow MWD are 

obtained by cationic polymerization of 2-ethyl-2-oxazoline. The polymer is then deacylated 

to yield secondary amine groups, acting as coupling sites for the living PEOX chains. 

Repetition of the deacylation and grafting cycles yields upper generation polymers. This 

reaction provides polyethylenimine-graft-poly(2-ethyl-2-oxazoline) copolymers, or 

polyethylenimine homopolymers if the poly(2-ethyl-2-oxazoline) copolymer is deacylated in 

the final step. 
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 Polymers of generations up to G3 have been characterized by Yin et al.33 (Table 2-1) 

and are characterized by a geometric increase in molecular weight over successive 

generations and a relatively narrow MWD (PDI = 1.2 – 1.5). The grafting yield, defined as 

the fraction of living polymer chains generated that was coupled with the substrate, ranged 

from 65 to 80 %. An increase in either the length of side chains or the generation number of 

the polymers led to a decrease in grafting yield. 

 

Scheme 2-2: Comb-burst® polyethylenimine synthesis. 
From Teertstra.25 
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Table 2-1: Characterization data for Comb-burst® polyethylenimines 
Adapted from Yin et al.33 

௪ (LS) PDI(LS) fwܯ ௪ (RI)aܯ 
b 

Linear polyethylenimine 3000 1000 1.05 -- 
G0 4900 2500 1.22 5 
G1 8000 139,000 1.34 26 
G2 87,000 1,080,000 1.47 176 
G3 274,000 10,400,000 1.20 745 

a Apparent weight-average molecular weight from GPC analysis calibrated with PEG 
b Number of side chains added per generation based on ܯ௪ (LS) and the number of coupling 
sites 
 

 The intrinsic viscosity of these polymers was investigated as a function of generation 

number and found to increase nonlinearly up to G2, before decreasing slightly for G3 due to 

a denser, more rigid structure.34 This behavior is consistent with that observed for other 

dendritic polymer systems such as the dendrimers.35,36 

Arborescent polystyrene 

 Arborescent PS was synthesized by a method similar to Comb-burst® polymers, but 

by grafting “living” PS macroanions onto a substrate. Another important distinction between 

the two approaches is that the coupling sites in the AP syntheses are not inherent to the 

monomer but rather introduced randomly on the substrate by chemical functionalization. For 

PS substrates, both chloromethyl37 and acetyl groups38 have been investigated as coupling 

sites. 

 For example, a linear PS substrate was synthesized by anionic polymerization using 

sec-butyllithium (sec-BuLi) and chloromethylated under dilute solution conditions, to 

minimize the occurrence of intermolecular cross-linking. In a different reaction, living PS 

anions serving as side chains were capped with one unit of 1,1-diphenylethylene (DPE) 
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before they were reacted with the chloromethylated substrate (Scheme 2-3). Capping of the 

macroanions with one DPE unit increased the grafting yield from 50 to 96 %, due to the 

suppression of metal-halogen exchange reactions. Narrow MWD and controllable molecular 

weights were attained in these reactions (vide infra). 

 

Scheme 2-3: Synthesis of arborescent polystyrene by anionic polymerization and 
grafting onto chloromethylated substrate. 
From Teertstra. 25 
 

 Acetyl coupling sites were also investigated by Li et al. for the preparation of 

arborescent PS.38 By this method, the highly toxic chloromethyl methyl ether and carbon 

tetrachloride used in the functionalization step could be eliminated. Acetyl functionalities 

were introduced through Friedel-Crafts acylation (Scheme 2-4). Living polystyryllithium, 
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when capped with a few units of 2-vinylpyridine (2VP) or isoprene in the presence of LiCl, 

providing the G0PS in up to 95 % yield. Chain capping and the addition of salt were 

necessary to decrease the reactivity of the macroanions and avoid the competing proton 

abstraction reaction from the acetyl functionality; the grafting yield was decreased to 65 % in 

the absence of these modifications.   

 

Scheme 2-4: Synthesis of arborescent polystyrene by grafting onto acetylated 
polystyrene substrate. 
Adapted from Teertstra.25 
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 Regardless of the synthetic path selected (chloromethyl or acetyl coupling sites), the 

molecular weight, branching functionality, and polydispersity obtained for the products over 

successive generations were very similar.31 Characterization results for two series of 

arborescent PS of generations up to G4, synthesized by the chloromethylation path, with a 

side chain molecular weight of either 5,000 or 30,000, are reported in Table 2-2.39 The 

nomenclature adopted specifies the overall generation number of the polymers and the 

molecular weight of the side chains. For example, G0PS5 corresponds to a linear PS 

substrate grafted with ܯ௪ ≈ 5,000 PS side chains (G0 overall). Arborescent PS samples with 

weight-average molecular weights ܯ௪ (LS) ≈ 6 x 104 - 5 x 108 (from light scattering 

measurements) and branching functionalities fw = 14 - 22,000 were thus obtained. A low 

polydispersity (1.07-1.22) was maintained for all generations of arborescent PS. A geometric 

increase in molecular weight was observed up to G2, but the increase was more modest for 

the G3 and G4 polymers. This was attributed to increased steric hindrance for higher 

generations, leading to a decrease in grafting yield. The decreased grafting yield for the upper 

generations could also be partly due to difficulties in eliminating protic impurities from the 

larger grafting substrates. The molecular weight determined by gel permeation 

chromatography (GPC) analysis was strongly underestimated when compared with the 

absolute molecular weight from light scattering measurements, obviously due to the compact 

structure of the arborescent molecules.  

The procedures described above for the synthesis of arborescent PS, while successful, 

are typically applied on a small (10- to 20-g) scale. The large scale (100 g) synthesis of these 

materials was recently investigated by Munam and Gauthier to allow the generation of large 

amounts of material necessary for some of the physical characterization work.40 The grafting 
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yield (fraction of side chain precursor grafted on the substrate) for the small-scale procedure 

originally described by Li et al., when applied on a 100-g scale, decreased from 95 to 75 %. 

It was noticed that after capping the living polystyryllithium side chain precursor with only 3 

equivalents of 2VP prior to grafting, as it was done for the small-scale reactions, the GPC 

traces for the polymer became bimodal (Figure 2-7b). The fact that the leftmost peak in the 

elution curve for the capped chains had a molecular weight twice as large as the primary 

chains hinted at dimerization due to a side reaction. This problem was attributed to the very  

Table 2-2: Characterization data for arborescent polystyrene synthesized from 
chloromethyl coupling sites 
Adapted from Gauthier et al.39 

Samplea Side chain Arborescent polystyrene 
 ௪ (BR)bܯ 

( x 103) 
PDI (BR)b ܯ௪ (RI) 

( x 103) 
PDI (RI) ܯ௪ (LS) 

( x 103) 
fw

c 

G0PS5 4.3 1.03 130 1.07 67 14 
G1PS5 4.6 1.03 300 1.2 870 170 
G2PS5 4.2 1.04 450 1.15 13,000 2900 
G3PS5 4.4 1.05 -- -- 90,000 17,500 
G4PS5 4.9 1.08 -- -- 200,000 22,000 

       
G0PS30 28 1.15 210 1.12 510 18 
G1PS30 27 1.09 590 1.22 9,000 310 
G2PS30 27 1.09 -- -- 100,000 3400 
G3PS30 28 1.09 -- -- 500,000 14,300 

a Series prepared from linear polystyrene core with ܯ௪ ≈ 4800, PDI = 1.08 
b Absolute value determined by GPC calibrated with linear polystyrene standards 
c Number of branches added for each generation, calculated from ܯ௪ (LS) increase and ܯ௪ 
(BR) 

  

fast polymerization rate of 2VP in tetrahydrofuran (THF), leading to incomplete capping of 

the living polystyryllithium chains under the poor stirring conditions encountered in a large 

reactor. Consequently, some noncapped chains that were still present in the mixture attacked 
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the pyridine ring of another chain in the position α- to the nitrogen atom, causing 

dimerization.40 The problem could be avoided in the large-scale reactions by DPE capping of 

polystyryllithium prior to the addition of 3 to 6 equiv of 2VP, to ensure capping of all the 

chains by 2VP units.  

 

 

Figure 2-7: GPC elution curves for the large scale synthesis of arborescent polystyrene. 
(a) Polystyrene side chains before capping, (b) after capping with 3 equiv of 2VP, and (c) 
after coupling with a linear acetylated substrate. From Munam and Gauthier.40 
  

The physical properties of arborescent PS were investigated by different techniques in 

solution and in the molten state, to obtain information on the morphology of the molecules 

and to establish structure-property correlations. 

Dilute solutions of arborescent PS were thus investigated in light scattering 

experiments to determine the scaling behavior of their second virial coefficient (A2), radius 

of gyration (Rg) and diffusion coefficient (Dz). The scaling exponents obtained in double 

logarithmic plots of each parameter vs. molecular weight (Table 2-3) show that AP are best 

described as having a rigid sphere-like morphology in dilute solutions.41 
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Table 2-3: Scaling parameters for the second virial coefficient (A2), radius of gyration 
(Rg), and diffusion coefficient (Dz) for linear coils, arborescent polymers, and hard 
spheres 
Adapted from Gauthier et al.41 

Parameter Linear coils Hard spheres Arborescent 
polymers 

Dz -0.6 -0.33 -0.34 
A2 0.6 0.33 0.2 
Rg -0.2 -1 -0.9 

 

 The behavior of AP was also investigated in semi-dilute solutions in terms of the so-

called osmotic modulus, defined as the ratio of the absolute ܯ௪ (at infinite dilution) to the 

apparent ܯ௪ (at finite polymer concentrations) determined as a function of a scaling 

parameter X proportional to concentration c.31,41 The osmotic modulus, which measures 

intermolecular repulsions, was compared for AP of generations G0 to G2, linear polymer 

coils, and hard spheres (Figure 2-8). It is clear that the modulus rises much more rapidly with 

concentration for AP than for linear coils. An increase is observed from G0 to G1, whereas 

no further increase is seen for G2. Hence structural stiffening occurs from G0 to G1, but 

residual interpenetrability is still present for higher generation polymers. This result is 

consistent with a morphology corresponding to a hard core surrounded by a soft shell.    

Solution studies of arborescent PS were also conducted using small-angle neutron 

scattering (SANS) measurements to gain insight into the morphology of the molecules.42 It 

was observed that by changing the solvent type used in the measurements from deuterated 

toluene (a good solvent) to deuterated cyclohexane (a poor or θ-solvent), the Rg of the 

molecules decreased for G2 and G3 PS, but not for the lower generation molecules. The 

scaling exponents (ν) for Rg ~ Mν were determined to be 0.25 and 0.32 in deuterated 

cyclohexane and in deuterated toluene, respectively.42 The fact that the scaling exponent in 
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cyclohexane was lower than the value expected for rigid spheres of uniform density (ν = 

0.33) was attributed to a non-uniform density of chain segments within the molecules. A 

power law model for the radial density function [ρ(r)] corresponding to Equation 2-1, where r 

is the distance of the chain segments from the center of the molecules and Rmax is the 

hydrodynamic radius, was proposed to fit the SANS scattering profiles obtained. 

 

Figure 2-8: Osmotic modulus as a measure of the structural rigidity of arborescent 
polymers. 
(ο) G0PS5; (•)G1PS5; (Δ)G2PS5; (--)hard spheres; (__)random coils. From Gauthier et al.41 

 

 

ρሺrሻ ൌ 1 െ ൬
r

R୫ୟ୶
൰ן Equation 2-1 

 

The power law model with α = 4, found to fit the experimental data, is characterized by a 

high, constant segmental density in the inner (core) portion of the molecules and a diffuse 

layer on the outside (Figure 2-9). As the exponent, α, approaches infinity, Equation 2-1 

becomes identical with the hard sphere model. 
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 The extent of interpenetration of the PS “layers” added in successive grafting 

reactions was examined for arborescent PS substrates grafted with deuterated PS chains by 

the SANS contrast matching method.43 The principle behind the contrast matching method is 

illustrated in Figure 2-10. In a shell-matching solvent the shell becomes invisible and the Rg 

can be determined for the core portion of the molecules, and vice versa. It was noted that 

swelling of the molecules was more significant for the shell than for the core, due to the 

increased mobility of the shell chains only attached at one end, in contrast to the more rigid 

core chains attached at multiple branching points. 

 

Figure 2-9: Radial density profile for power law model and hard sphere model. 
From Choi et al.42 
 

 The scattering intensity profile was related to the so-called real space pair distance 

distribution function (PDDF), which enables the determination of the overall shape and size 
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of objects.43 The PDDF obtained for G3 and G4 PS molecules, compared in Figure 2-11b, 

have the shape expected for a core-shell morphology. Significantly, the G4PS sample 

displays two clear maxima whereas G3PS displays only one. This indicates that the G4PS 

molecules have better phase separation between the core and the shell than the G3 polymers. 

In Figure 2-11c, it can also be seen that the curve crosses from a negative sign to a positive 

sign, corresponding to the scattering contrast between the PS core and the deuterated PS 

shell. 

 

Figure 2-10: (a) Arborescent polystyrene molecules, (b) appearance in core-matching 
and shell-matching solvents. 
From Yun et al.43 
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Figure 2-11: (a) Experimental SANS data fitted by the Indirect Fourier Transform 
method in deuterated toluene, (b) corresponding PDDF and (c) contrast profile. 

From Yun et al.43 
 

Another technique used to probe the morphology of arborescent molecules is 

fluorescence quenching measurements in dilute solutions.44 Linear and arborescent PS were 

labeled with pyrene derivatives and characterized in quenching experiments with either 

nitrobenzene or nitrated linear PS. It was noted that the branched polymers behaved like two-

phase systems, corresponding to a shell of flexible polymer surrounding a less penetrable, 

highly hindered core. A decrease in the fraction of accessible pyrene labels was also 
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observed for higher generation polymers. This result was consistent with a gradual increase 

in stiffening of the core for successive generations.  

 Beyond the dilute and semi-dilute solution studies discussed above, the behavior of 

arborescent PS was also investigated in the molten state, where the molecules are much more 

likely to interpenetrate and entangle with each other. The melt rheology of arborescent PS 

was investigated as a function of chain length and generation number.45 It was noted that 

arborescent PS molecules have a very low zero-shear viscosity (ηo) relatively to linear PS of 

similar molecular weight. A scaling behavior ηo ~ ܯ௪
1 was also observed as compared with 

ηo ~ ܯ௪
3.4 for linear PS, consistent with a very low degree of entanglement for AP vs. linear 

polymers. Furthermore, ηo increased with the length of the side chains for both G0 and G1 

PS (Figure 2-12). For the G2 and G3 molecules a change in entanglement mode was 

observed, the two systems displaying a decrease in ηo as the molecular weight of the side 

chains increased. 

 Finally, scanning force microscopy (SFM) was used to investigate the molecular 

organization of G1-G3 arborescent PS molecules in thin films.46 A G1PS sample yielded 

granular films with no distinct order, but the G3PS film was characterized by a hexagonally 

packed array structure. Films of arborescent PS with short side chains (ܯ௪ = 5,000) had a 

thickness relatively close to the diameter of the molecules, whereas longer side chains (ܯ௪  = 

30,000) yielded a flattened “pancake-like” appearance. Annealing of the films above their 

glass transition temperature (Tg) caused the short-chain films to rupture, the individual 

molecules regaining a perfectly spherical shape due to elastic recovery, while for longer side 

chains no recovery was observed during annealing.  
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Figure 2-12: Zero shear viscosity as a function of molecular weight. 
(+) G0PSx; (*) G1PSx; (•) G3PSx (x = 5, 10, 20); (__) Linear polystyrene. From Hempenius 
et al. 45 
 

Arborescent polybutadiene 

 Hempenius et al. utilized successive functionalization and grafting reactions to 

generate arborescent polybutadiene by anionic polymerization and grafting.47 Butadiene was 

polymerized in hexane to yield ca. 6 % of 1,2-butadiene units that were subjected to 

hydrosilylation with chlorodimethylsilane to produce chlorosilyl coupling sites (Scheme 2-

5). These sites were then coupled with polybutadienyllithium to obtain a G0 or comb-

branched structure. An excess of side chains was required in these reactions, since it was 

impossible to monitor the grafting process by titration of the colorless polybutadienyllithium 

side chain precursor with the chlorosilylated substrates in analogy to what was done for 

arborescent PS.  

 Arborescent polybutadienes up to generation G2 and containing ca. 10 coupling sites 

per side chain with a molecular weight of approximately 104 were characterized. A geometric 

increase in molecular weight (from 190,000 to 71,000,000) and branching functionality (10 - 
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1160) were observed over successive generations while maintaining low PDI values (1.1-

1.3).  

  The solution properties of G2 arborescent polybutadienes were found to be consistent 

with a hard sphere morphology, the ratio of Rg(LS) over Rh(viscometry) being 0.8 (for hard 

spheres, this ratio should be 0.775), as compared with 1.4-1.5 for linear polybutadiene. 

 
Scheme 2-5: Synthesis of arborescent polybutadiene. 

From Teertstra.25 
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Arborescent polystyrene-graft-polyisoprene 

 The synthesis of polystyrene-graft-polyisoprene was achieved by grafting living 

polyisoprenyllithium chains onto PS substrates functionalized with either chloromethyl48 or 

acetyl coupling sites.38 The synthetic strategy with chloromethyl coupling sites was 

analogous to that provided in Scheme 2-3, but polyisoprenyllithium chains capped with DPE 

were used in the last grafting cycle. The grafting reaction on acetylated PS was likewise 

analogous to that described in Scheme 2-4 using polyisoprenyllithium chains, but the grafting 

yield was enhanced by the addition of LiCl. While this had no influence on the grafting yield 

per se, capping of the polyisoprenyllithium chains with a few 2VP units was advantageous to 

produce a darker-colored solution facilitating the colorimetric titration of the living 

polyisoprene (PIP) solution with acetylated PS, since the color gradually faded as the 

macroanions were consumed in the grafting reaction. 

 The microstructure of the PIP side chains can be controlled through the 

polymerization solvent polarity. Thus the polymerization of isoprene in THF yielded mixed 

microstructure side chains (with nearly equal proportions of 1,2-, 1,4-, and 3,4-units), 

whereas in cyclohexane a high cis-1,4-microstructure content could be achieved (>70 % cis-

1,4 units).48 The morphology of polystyrene-graft-polyisoprene copolymers was investigated 

by the SFM technique (Figure 2-13). For G1PS-PIP5 a distinct core-shell morphology could 

be observed in the phase contrast mode but for G0PSPIP5, phase separation between the two 

components was less distinct. Furthermore the PS core could not be detected for copolymers 

with long side chains (ܯ௪ ≈ 30,000), presumably due to the low PS content of these 

copolymers. 
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Figure 2-13: Phase contrast SFM images for (left) G0PS-PIP5 and (right) G1PS-PIP5. 
The width of the image is 500 nm. From Kee and Gauthier.48 
  

The Tg of polystyrene-graft-polyisoprene and linear PIP was investigated by 

differential scanning calorimetry (Table 2-4).49 For linear PIP with 30K < ܯ௪ < 340K, the Tg 

was virtually independent of ܯ௪ (-64.0 0C ≤ Tg ≤ -65.0 0C) and insensitive to slight changes 

in microstructure. The Tg for the side chain samples behaved similarly in spite of their lower 

molecular weight (5K < ܯ௪ < 30K). This was attributed to the fact that the linear PIP 

samples had a ܯ௪ above the critical molecular weight (Mc ≈ 2500) for Tg insensitivity in 

PIP.50 The Tg of the copolymers were only slightly (< 2 0C) higher than the corresponding 

side chain Tg, possibly as a result of reduced chain end mobility due to coupling with the PS 

substrate at one end, or else due to limited miscibility between the core and the shell portions 

of the molecules. These results are consistent with the two-phase morphology observed in the 

AFM measurements.48 

 Dynamic mechanical measurements were utilized to investigate the viscoelastic 

properties of polystyrene-graft-polyisoprene as a function of generation, branch length, and 

composition (Figure 2-14). The dynamic modulus curve for PS-cPIP5 (cis-1,4-PIP side 

chains) lacked an entanglement plateau, due to the low molecular weight of the branches as 
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compared with the critical entanglement molecular weight for PIP (Me ≈ 5400) (Figure 2-

14).51 An entanglement plateau appeared as the length of side chains was increased, however. 

The dynamic modulus curves for polystyrene-graft-polyisoprene copolymers of overall 

generation G1 for all side chain length was nearly identical to those observed for G1 

arborescent PS45 and star-branched polybutadienes.52  

Table 2-4: Arborescent polystyrene-graft-polyisoprene composition and Tg analysis 

Adapted from Teertstra and Gauthier.49 
Sample PS content (mol %)a Tg (0C)b 

Linear PIP/Side 
chain 

Arborescent 
copolymer 

cPIP30 -- -64.2 -- 
cPIP110 -- -64.9 -- 
cPIP130 -- -65.0 -- 
cPIP340 -- -64.7 -- 
cPIP1M -- -64.6 -- 

PS-cPIP5 6.2 -65.7 -64.2 
PS-cPIP10 3.6 -63.7 -61.6 
PS-cPIP30 0.89 -64.1 -62.4 
PS-cPIP40 0.89 -63.5 -62.5 

G0PS-cPIP5 7.2 -65.5 -63.6 
G0PS-cPIP10 3.6 -64.3 -62.3 
G0PS-cPIP30 1.8 -64.9 -64.0 
G0PS-cPIP40 1.8 -64.3 -63.1 
G1PS-cPIP5 7.2 -66.3 -63.2 
G1PS-cPIP30 4.5 -65.2 -63.5 
G2PS-cPIP5 26 -66.2 -63.1 
G2PS-cPIP30 20 -64.6 -63.3 

a Volume fraction of polystyrene in molecule based on molecular weight increase and bulk 
densities ρPS =1030 kg/m3 and ρPIP =913 kg/m3 at 25 0C. 
b Variation of ± 0.2 0C for a minimum of two measurements. 

 

The loss modulus (G”) curves for the G1 copolymers displayed two inflection points 

corresponding to the relaxation of the PIP side chains (at intermediate frequencies) and the 
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entire molecules (at low frequencies), respectively. As the side chain molecular weight 

increased, the inflection points shifted to lower frequencies. 

  

  

Figure 2-14: Dynamic modulus curves for (left) PS-PIPx and (right) G0PS-PIPx at 20 
0C. 
(▪) loss modulus, G”; (▫) storage modulus, G’. The side chain length increases from top to 
bottom (x = 5, 10, 30, 40). From Teertstra and Gauthier.49 
  

The dynamic modulus curves for copolymers of overall generations G2 and G3 

(Figure 2-15) were significantly different from the G0 and G1 copolymers. Their storage 

modulus (G’) was larger than G”, and the G’ curve reached a plateau at low frequencies. 

Both G1PS-PIP30 and G2PS-PIP30 also displayed an inflection point (Figure 2-15) at nearly 

the same frequency, corresponding to the relaxation of the PIP side chains. 
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Figure 2-15: Dynamic modulus curves for overall G2 and G3 polyisoprene copolymer at 
20 0C. 
From top to bottom: G1PS-PIP5, G1PS-PIP30, G2PS-PIP5 and G2PS-PIP30 with G’ 
(upper), G” (lower). From Teertstra and Gauthier.49 
  

 Failure of the time-temperature superposition (TTS) principle at low to intermediate 

frequencies was also observed for the modulus curves of G1PS-PIP5 and G2PS-PIP5, but 

both samples obeyed the TTS at high frequencies (corresponding to low temperatures). This 

effect was attributed to the biphasic nature of the copolymers, in analogy to other phase-

separated systems reported in the literature. 

 The ηo of the G0, G1 and G2 copolymers was compared to linear PIP samples of 

similar molecular weights. All copolymers displayed lower η0 values than linear PIP of 

identical ܯ௪ (Figure 2-16), with a slight apparent upturn observed for the higher molecular 
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weight G0 and G1 samples. Even though the effect was minor, it was attributed to enhanced 

entanglement formation for the PIP side chains, in analogy to star-branched polybutadienes51 

and hyperbranched polyisobutylenes.53 The G2 copolymers were also characterized by a 

significant decrease in η0 as their overall molecular weight increased from 13,000,000 to 

23,000,000 for side chains with ܯ௪ ≈ 5,000 and 30,000 respectively. The drop was attributed 

to the higher branching density of the copolymers with shorter side chains, G1PS-PIP5 

having a 3 times higher η0 value than G1PS-PIP30. The higher η0 for the short side chain 

sample hints at a change from a rigid, dense globular structure (G1PS-PIP30) to a more 

flexible structure (G1PS-PIP5). 

 

 

Figure 2-16: Zero-shear viscosity as a function of molecular weight at 20 0C in solution. 
(x) Linear polyisoprene; (▫) G0 copolymers; (Δ) G1 copolymers; (ο) G2 copolymers. From 
Teertstra and Gauthier.49 
 

Arborescent polystyrene-graft-poly(2-vinylpyridine) 

 The synthesis of polystyrene-graft-poly(2-vinylpyridine) has been accomplished by 

coupling living poly(2-vinylpyridine)lithium with both chloromethylated54,55 and acetylated55 
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polystyrene substrates. The reaction proceeded in similar fashion to Schemes 2-3 and 2-4 

except for the last grafting reaction, where living P2VP homopolymer chains were grafted 

onto the substrate. Due to the much lower reactivity of P2VP anions as compared to PS 

anions, capping of the living P2VP chains with DPE was unnecessary. In the presence of 

N,N,N’,N’-tetramethylethylenediamine (TMEDA), to increase the reactivity of the P2VP 

macroanions by complexation with the lithium counterion, the grafting yield increased from 

84 % to 92 % when grafting P2VP onto chloromethylated linear PS. 

 The thermodynamics of the self-assembly of arborescent polystyrene-graft-poly(2-

vinylpyridine) copolymers in solution were recently investigated by Yun et al.56 The 

hydrodynamic diameter of the molecules (Dh) was monitored with dynamic light scattering 

(DLS) measurements in methanol and in toluene as a function of temperature (Figure 2-17). 

For both G1PS-P2VP5 and G1PS-P2VP30 dissolved in toluene (poor solvent for the P2VP 

shell) an initial increase in Dh was observed as the temperature was increased, but was 

followed by an abrupt decrease above 26 0C for G1PS-P2VP5 and 41 0C for G1PS-P2VP30. 

Clearly, aggregation occurred below these critical temperatures. The persistence of the 

aggregates to higher temperatures for the copolymers with longer side chains suggests that 

their aggregation is energetically more favorable. For both copolymers dissolved in 

methanol, a good solvent for the P2VP shell, no aggregation was observed over the whole 

temperature range investigated. 
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Figure 2-17: Temperature dependence of Dh in methanol and in toluene for (a) G1PS-
P2VP5 and (b) G1PS-P2VP30. 
From Yun et al.56 
 

 The critical self-assembly concentration (csc), defined as the minimum concentration 

required for the formation of aggregates, was determined as a function of temperature using 

DLS measurements (Figure 2-18a). This allowed the determination of the standard Gibbs 

free energy for self-assembly [ΔG0 = RTln(csc)] as a function of the csc and the temperature 

(Figure 2-18b), as well as the standard enthalpy (ΔH0) of self assembly from the Gibbs-

Helmholtz equation (ΔH0 = R[d ln(csc)/d T-1]). Finally, the standard entropy (ΔS0) for self 

assembly was determined as the slope of a plot of ΔG0 vs. T according to the relationship 

ΔG0 = ΔH0 - T ΔS0. It was determined that ΔG0 for both copolymers was negative, longer 

side chains leading to a more negative value than shorter side chains. This indicates that the 
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self-assembly of the copolymer in toluene is favorable due to the solvophobic (unfavorable) 

interactions of the solvent with the P2VP shell segments, the more negative ΔG0 value for the 

longer side chain sample confirming an energetically more favorable aggregation process. 

The ΔH0 and ΔS0 values for both copolymers were negative, indicating that self-assembly of 

the copolymer was enthalpically favored, but entropically disfavored due to the highly 

organized structure of the aggregates. They also found that the superstructures formed by 

arborescent copolymers were much larger than those formed by linear and star-shaped block 

copolymers under similar conditions. 

 

 

 

Figure 2-18: Temperature dependence of (a) the csc and (b) the Gibbs free energy for 
G1PS-P2VP5 and G1PS-P2VP30. 
From Yun et al.56 
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The superstructures formed below the critical self-assembly temperature were 

investigated by scanning electron microscopy (SEM) and transmission electron microscopy 

(TEM) imaging (Figure 2-19). Aggregates were observed in both TEM and SEM for G1PS-

P2VP5 when the solutions were evaporated at 20 0C, while none were present when the same 

solutions were evaporated at 30 0C. The large sphere structures tended to associate further 

during solvent evaporation, giving rise to even larger aggregates (Figure 2-19b) but some 

unassociated copolymer molecules could still be detected, even at temperatures below the 

critical temperature (Figure 2-19a). This behavior contrasts with that of linear and star-block 

copolymers, which formed only monodispersed micelles below the critical micelle 

temperature. 

 

Figure 2-19: (a) TEM and (b) SEM images for G1PS-P2VP5, and (c) TEM image for 
G1PS-P2VP30. 
Evaporation of toluene at 20 0C. From Yun et al.56 
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Arborescent polystyrene-graft-(poly(2-vinylpyridine)-block-polystyrene) 

 The synthesis of complex arborescent polystyrene-graft-(poly(2-vinylpyridine)-block-

polystyrene) layered molecular structures, incorporating a core and a shell of PS chains 

surrounding an inner poly(2-vinylpyridine) layer, was recently reported by Dockendorff et 

al.57 The reaction scheme used was similar to Scheme 2-4 with the exception of the last 

grafting cycle, where living poly(2-vinylpyridine)-block-polystyrene chains were grafted 

onto acetylated PS substrates. 

 The grafting yield for the G0 and G2 polystyrene-graft-(poly(2-vinylpyridine)-block-

polystyrene) copolymers was 17 and 20 %, respectively, which is surprisingly low when 

compared with arborescent PS homopolymer (87 % and 55 %)38 and arborescent polystyrene-

graft-poly(2-vinylpyridine) copolymer (86 % and 34 %) syntheses with comparable 

characteristics (same substrate generation and side chain length).55 The low grafting yield 

was attributed to the formation of micelles by the PS-b-P2VP macroanions hindering the 

grafting reaction. 

Arborescent polystyrene-graft-poly(tert-butyl methacrylate)  

 The synthesis of arborescent polystyrene-graft-poly(tert-butyl methacrylate) 

copolymers was achieved by Kee and Gauthier,58 starting from chloromethylated PS 

substrates as shown in Scheme 2-3. The chloromethylated substrates were subjected to a 

halogen exchange reaction with sodium bromide to convert the coupling sites to more 

reactive bromomethyl groups (Scheme 2-6). A living poly(tert-butyl methacrylate) solution 

was then titrated with the bromomethylated substrate to generate the copolymers. The 
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corresponding poly(methacrylic acid) derivatives were generated by treating the copolymers 

with trimethylsilyl iodide and HCl. 

Two series of arborescent polystyrene-graft-poly(tert-butyl methacrylate) copolymers 

with a side chain molecular weight of either ܯ௪ ≈ 5,000 or 30,000 were synthesized. 

 

Scheme 2-6: Conversion of chloromethylated to bromomethylated substrate and 
coupling with poly(tert-butyl methacrylate). 
From Kee and Gauthier.58 
 

2.3.1.2 “Grafting from” methods 

Dendrimer-like poly(ethylene oxide) (PEO) 

 The synthesis of dendritic PEO molecules with a controlled architecture analogous to 

dendrimers, but incorporating PEO chain segments as spacers rather than monomer units 

between the branching points, was reported by Six and Gnanou.59 The method used (Scheme 

2-7) is based on the anionic ring opening polymerization of ethylene oxide starting from a 

trifunctional initiator (the potassium salt of trimethylolpropane), and subsequently from the 

chain ends of the polymer substrate. Chemical modification of each terminus of the newly 

grown chains with a chloro, iodo or tosyl derivative of 2,2-dimethyl-5-ethyl-5-

hydroxymethyl-1,3-dioxane, followed by hydrolysis, provided the dihydroxyl branching 

points serving as initiator for the growth of two chains in the next generation. 
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Scheme 2-7: Synthetic scheme for the preparation of dendritic PEO through a “grafting 
from” method. 
From Teertstra.31 
 

  Series of G1 PEO samples derived from the same trifunctional core but incorporating 

side chains with different molecular weights (by using different amounts of monomer in the 

chain growth step) have been characterized. Due to the inherent character of the “grafting 

from” method the side chains could not be characterized, but the overall PDI of the polymers 
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remained relatively low (1.1-1.3). The molecular weight determined by GPC analysis using a 

linear PEO standards calibration curve was underestimated for the G1 polymers as compared 

to the absolute values determined from LS analysis, in analogy with other dendrigraft 

polymers. 

 

Dendrimer-like polystyrene-graft-poly(ethylene oxide) (PS-PEO) 

 A variation of the procedure described in Scheme 2-7 allowed the generation of 

copolymers with six PS segments in the core and 12 PEO chains in the shell.60 Hexa[4-(1-

chloroethyl)phenethyl]benzene activated with SnCl4 served to initiate the cationic 

polymerization of styrene. The six-arm star-branched PS, containing chlorine chain termini, 

was then reacted with allyltrimethylsilane and SnCl4 to obtain allylic functionalities that were 

transformed into hydroxyl groups by reaction with 9-borabicyclo[3.3.1]nonane (9-BBN) and 

H2O2. Growth of the PEO chains was achieved after introducing branching points as 

described in Scheme 2-7, by reaction with the chloro, iodo or tosyl derivative of 2,2-

dimethyl-5-ethyl-5-hydroxymethyl-1,3-dioxane and hydrolysis. 

  GPC analysis using a solvent selective for the PEO chains (e.g. water/acetonitrile) as 

the mobile phase led to a single population (peak) corresponding to unimolecular micelles. 

This was compared to star-branched copolymers with six outer PEO arms of similar 

composition yielding bimodal distributions, indicative of aggregation. The unimolecular 

distribution therefore indicated that the 12-arm PEO copolymer shielded the cores more 

effectively from each other. 

 The formation of micelles was also confirmed by comparing 1H NMR analysis results 

in deuterated chlorinated solvents (e.g. CD2Cl2 and CDCl3) and in deuterated methanol. In 
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chlorinated solvents, signals for both the PEO and PS chains could be seen, but in methanol 

only the PEO signal was detected. 

 

Dendrimer-like poly(ethylene oxide)-graft-polystyrene (PEO-PS) 

 The synthesis of poly(ethylene oxide)-graft-polystyrene with terminal branching was 

achieved similarly to the synthesis of the dendritic PEO homopolymers (Scheme 2-7).61 In 

this case trimethylolpropane and pentaerythritol served in the preparation of 3- and 4-arm 

star-branched PEO, respectively. The chain ends were modified with 2,2-bis(2-

(bromomethyl)-propionato)propionyl chloride to introduce AB2 branching points containing 

two 2-bromopropionate groups. These were activated with a copper bromide/2,2’-bipyridine 

catalyst system to grow PS segments by an atom transfer radical polymerization (ATRP) 

mechanism. 

Arborescent polyglycidol 

 Walach et al.62 reported a “grafting from” scheme for the preparation of arborescent 

architectures starting from the polymerization of glycidol acetal with potassium tert-butoxide 

(Scheme 2-8). Deprotection of the acetal functionalities with formic acid yielded pendent 

hydroxyl groups on the linear polyglycidol substrate that were titrated with potassium tert-

butoxide (< 10 mol%) to serve as initiator in the growth of side chains. Repetition of the 

deprotection, titration, and side chain growth cycles yielded AP of generations up to G2. 

 Characterization results for some of the polyglycidol samples were reported. A 

geometric increase in molecular weight and a slight increase in PDI were observed for 

successive generations. In spite of the low degree of ionization used in the chain growth step, 
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to ensure the solubility of the polymers in organic solvents, between 76 % and 89 % of the 

polyglcidol units were identified as branching points. This was attributed to fast proton 

exchange occurring between the alcoholate anions and the free hydroxyl groups on the 

substrate. The authors suggested that partial deprotection rather than full deprotection of the 

acetal groups could have avoided this problem. 

Scheme 2-8: Synthesis of dendritic polyglycidol. 
From Teertstra.31 
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Dendrigraft polymers by “living” free radical polymerization 

 The synthesis of styrene homopolymers and styrene-methacrylate copolymers by the 

stable free radical polymerization (SFRP) and atom transfer radical polymerization (ATRP) 

techniques has been attempted with some degree of success.63 A linear substrate was obtained 

by the SFRP of styrene and p-(4’-chloromethylbenzyloxymethyl)styrene comonomers 

(Scheme 2-9). The chloromethyl groups of the copolymer were then reacted with the sodium 

salt of hydroxyl-terminated 2,2,6,6-tetramethylpiperidine-N-oxide)styrene before a side chain 

growth cycle using styrene and p-(4’-chloromethylbenzyloxymethyl)styrene to obtain a G0 

copolymer. The chloromethyl groups were then activated with CuCl and 2,2’-bipyridine to 

serve as initiating sites for styrene or n-butyl methacrylate polymerizations by ATRP.   

 For example, the molecular weight of a G0 substrate (ܯ௡ = 84,000, PDI = 1.24) 

increased significantly to ܯ௡  = 230,000 – 410,000 for the G1PS homopolymers while the 

PDI only increased slightly in most cases (PDI = 1.23 – 1.59). The modest increase in PDI 

was attributed to the large number of radical propagating centers increasing the probability of 

cross-linking. Cleavage of the side chains from the G0 substrate with trimethylsilyl iodide 

allowed the analysis of the PS side chains, which had molecular weights consistent with the 

expected values and PDI values < 1.3. 
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Scheme 2-9: Dendrigraft polystyrene and polystyrene-graft-poly(methacrylate) 
copolymers by SFRP and ATRP. 
From Teertstra.31 
 

2.3.1.3 Hybrid methodology 

Arborescent polystyrene-graft-poly(ethylene oxide)  

Only one synthetic procedure combining the “grafting onto” and the “grafting from” 

methodologies has been reported for the synthesis of arborescent polystyrene-graft-

poly(ethylene oxide).64 This approach provides highly controllable structures and low PDI 
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values, but inherits the limitations of the “grafting from” techniques hindering the complete 

characterization of the chains grown in the last reaction cycle.  

 Arborescent PS substrates were synthesized by a variation of the method described in 

Scheme 2-3 by coupling chloromethylated substrates with PS containing protected hydroxyl 

chain termini in the last cycle. This was achieved with a bifunctional initiator, 6-lithiohexyl 

acetaldehyde acetal, in the preparation of the side chains (Scheme 2-10). After grafting, the 

polymer was hydrolyzed to deprotect the hydroxyl groups, which were titrated with 

potassium napthalide to generate initiating sites for the polymerization of ethylene oxide. 

 

Scheme 2-10: Synthesis of arborescent polystyrene-graft-poly(ethylene oxide) through a 
hybrid method. 

From Teertstra.31  
  



52 
 

Arborescent PS-PEO copolymers of generations up to G3 and PEO contents varying 

between 19 % and 66 %w/w were obtained, the PDI remaining low (PDI = 1.07 – 1.21) after 

the addition of the PEO block. 

  Detailed studies on the morphology and the physical characterization of these 

copolymers have been published recently. The self-assembly behavior of these amphiphiles 

was investigated as a function of branching density (generation number) and PEO content.65 

It was determined that superstructures formed spontaneously at the air-water interface upon 

spreading of a copolymer solution, the topology and association level of the superstructures 

depending on the composition and the structure of the molecules.65 Ribbon-like 

superstructures were thus observed for PEO contents between 19 and 30 %w/w, irrespective 

of the arborescent copolymer architecture (Figure 2-20a). Large island-like superstructures 

were obtained for low PEO contents (≤ 15 %w/w) (Figure 2-20b), while molecules with a 

high PEO content (> 43 %w/w) had little tendency to associate (Figure 2-20c). The rigidity of 

the molecules also governed the type of topology formed at the air-water interface to some 

extent: High branching density copolymers had a lower association level as compared to low 

branching density copolymers. Most copolymers incorporating very compact cores, in 

particular, remained as isolated micelles at the air-water interface.65 

The formation of superstructures under the influence of compression and temperature 

variations was also investigated.66 The formation of larger structures was enhanced by 

compression (Figure 2-21) and increased at higher temperatures (Figure 2-22). Both effects 

were attributed to increased van der Waals attractive forces between the PS cores. The 

formation of these superstructures was also determined to be reversible, at least in some 

cases, when the external stimuli were removed. It was further confirmed using DLS 
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measurements that the formation of superstructures occurred upon spreading of the 

polymeric solution at the air-water interface rather than in solution. 

   

Figure 2-20: AMF images for (a) G1-30PS-LB-31 (ribbon-like structure), (b) G1-30PS-LB-
15 (island-like structure), and (c) G1-5PS-HB-74 (non-associated molecules). 
Image size 1.5 x 1.5 µm2. Adapted from Njikang et al.65 

 

 

  

Figure 2-21: AFM images for G1-30PS-LB-22 at (a) 0 mN/m and (b) 8 mN/m. 
Image size 1.5 x 1.5 µm2. Adapted from Njikang et al.66 
 

a  b

a b c
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Figure 2-22: AFM images for G1-30PS-HB-43 at (a) 12 0C and (b) 37 0C. 
Image size 1.5 x 1.5 µm2. From Njikang et al.66 
 

2.4 Dendritic polymers as polymer processing additives 

 The application of dendritic polymers as rheology modifiers was first proposed by 

Kim et al.67 who showed that blending hyperbranched polyphenylene with PS in a 5 %w/w 

ratio yielded a 50 % decrease in melt viscosity at 180 0C. Other studies were conducted by 

Hong et al.3 for the extrusion of LLDPE blended with a hyperbranched polymer (Boltorn® 

H30, a hydroxyl-functionalized dendritic polyester). A reduction in the severity of SS defects 

was observed at 0.05-0.1 %w/w, and at higher concentrations (0.5-1.0 %w/w) SS formation 

was eliminated completely. Studies of the same blends in film blowing operations yielded 

comparable results.4 

 Very little research effort has been devoted to developing applications for AP. Since 

Hong et al. successfully demonstrated the application of a hyperbranched polymer as a PPA, 

it is conceivable that AP could perform similarly or even better due to their specific 

characteristics. For example, the rigid sphere behavior and high molecular weight of AP may 

be beneficial when they are used as additives, as these should favor phase separation from the 

host polymer. Khadir also suggested that AP molecules tend to migrate to the surface of 
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polymer melts.68 This is interesting, since during polymer processing the additive should 

ideally migrate to the surface of the polymer melt for optimal performance. Teertstra 

investigated the potential of AP as PPA for LLDPE at a concentration of 0.1 %w/w for 

fluorinated arborescent PIP homopolymers, and to a lesser extent for the arborescent 

polystyrene-graft-polyisoprene copolymers used in the current investigation.25 Arborescent 

PIP homopolymers with a fluorination level >30 mol% decreased melt defect formation and 

yielded small (ca. 10 %) load decreases in capillary rheometry experiments. The formation of 

mild CMF and stranding on the surface of the extrudate was also observed at shear rates 

below the critical level for CMF formation in virgin LLDPE. These mild defects were 

attributed to instability of the PPA coating on the surface of the extruding die and to partial 

coating of the die. Significant improvement in performance was demonstrated when 

combining the fluorinated arborescent PIP homopolymers with a coadditive (PEG), and led 

to the elimination of melt fracture at shear rates up to 1000 s-1. The enhanced performance 

under these conditions was attributed to the action of the coadditive as a partitioning agent 

between the PPA and the host polymer, preventing the breakup of the PPA droplets during 

extrusion. A few fluorinated polystyrene-graft-polyisoprene copolymers were investigated 

and yielded only marginal processability improvements. The influence of the generation 

number, the side chain length, and the fluorination level of the copolymers was not studied, 

for example. One of the major objectives of the work described in this Thesis was to examine 

in detail the influence of these parameters on the performance of fluorinated polystyrene-

graft-polyisoprene copolymers as PPA.  
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Chapter 3 – Objectives 
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 The main objective of this project was to expand the investigation on the 

effectiveness of polystyrene-graft-polyisoprene copolymers functionalized with a 

perfluorinated hydrosilane (PHS, tridecafluoro-1,1,2,2-tetrahydrooctyl)dimethylhydrosilane) 

molecules as PPA for LLDPE. The copolymers used were synthesized from linear and G0 

acetylated PS substrates with substitution levels of 30 and 33 mol%, respectively, and a 

chloromethylated G1PS substrate with a substitution level of 24 mol%. The linear PS and 

G0PS substrates were grafted with ܯ௪ ≈ 5,000 and ܯ௪ ≈ 30,000 PIP side chains; G0PS 

grafted with ܯ௪ ≈ 15,000 and ܯ௪ ≈ 45,000 PIP side chains were also investigated. The 

G1PS substrate was only investigated with ܯ௪ ≈ 30,000 PIP side chains. For comparison, 

linear PIP samples with ܯ௪ ≈ 5,000, ܯ௪ ≈ 30,000 and ܯ௪ ≈ 115,000 were also investigated. 

Fluorinated substituents were introduced on 17 to 50 % of the isoprene units by 

hydrosilylation with the PHS. 

 The copolymers were characterized by GPC analysis and 1H NMR spectroscopy to 

obtain information on the molecular weight, the polydispersity, and the composition of the 

copolymers. The PPA were blended at concentrations of 0.1 and 0.5 %w/w with a 

commercial LLDPE resin (LL1001.32, Exxon Mobil Chemical), and in some cases with 

PEG4K as a coadditive. The performance of the PPA was evaluated by melt extrusion on a 

capillary rheometer, in terms of the elimination of melt defects and the load required on the 

extrusion plunger to maintain a constant deformation (shear) rate. The blends were also 

characterized by light microscopy to determine the size of the PPA droplets within the 

LLDPE matrix. 

 The systematic approach selected aimed to establish structure-property correlations 

for the novel additives and to optimize their performance as PPA. 
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Chapter 4 – Experimental Procedures 
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4.1 General procedures 

Most of the chemical reactions used in the synthetic portion of the project were 

water-sensitive. Consequently, all the glassware used was either oven-dried at 110 0C for 12 

h or flamed under high vacuum to remove moisture adsorbed on its surface. The monomers 

and other reagents utilized in the anionic polymerization and grafting reactions were purified 

on a high-vacuum line connected to a nitrogen (N2) purification system and glass ampoules 

equipped with high-vacuum poly(tetrafluoroethylene) (PTFE) stopcocks and ground glass 

joints for direct mounting on the polymerization reactor.  

4.2 Solvent and reagent purification 

Tetrahydrofuran (THF; EMD OmniSolv) was purified by distillation over sodium 

benzophenone ketyl under N2. Cyclohexane (Fisher, ACS reagent) was purified over 

oligostyryllithium under N2. The solvents were transferred directly from the distillation stills 

to the polymerization reactor and other high-vacuum manifolds through PTFE tubing. 

Nitrobenzene (Aldrich, 99%) was purified by distillation over CaCl2 under reduced pressure 

and stored under N2. Isoprene (Aldrich, 99%) was purified immediately before 

polymerization with n-butyllithium (n-BuLi; Aldrich, 1.6 M in hexane, 2 mL for 30 mL of 

isoprene), degassed with three freezing-evacuation-thawing cycles, and recondensed into an 

ampoule which was then filled with N2 and sealed. sec-Butyllithium (sec-BuLi; Aldrich, 1.4 

M in hexane) was titrated by the method of Burchat et al.69 n-BuLi (Aldrich, 1.6 M in 

hexane), anhydrous aluminum chloride (AlCl3; Acros, 98.5 %, powder), lithium chloride 

(LiCl; Aldrich, ≥ 98 %), acetyl chloride (Aldrich, ≥ 98 %), 1H,1H,2H-perfluoro-1-octene 

(Matrix Scientific, 98 %), chlorodimethylsilane (Alfa Aesar, 97 %), platinum-
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divinyltetramethyldisiloxane (Karstedt catalyst; United Chemical Technologies, 2 wt% in 

xylene), and chlorotris(triphenylphosphine)rhodium(I) (Wilkinson’s catalyst; Strem 

Chemicals, 99 %) were all used as received from the suppliers. 

4.3 Acetylation of PS substrates 

 The PS substrates used for the preparation of the copolymers were previously 

synthesized by Teertstra25 and characterized by GPC analysis on an instrument consisting in 

a Waters 501 pump, a Waters R401 differential refractometer, and a MiniDawn MALLS 

detector. Please refer to Section 4.7 for more details on the characterization procedures. 

 Linear and G0 PS substrates were randomly functionalized with acetyl coupling sites 

according to the method of Li and Gauthier.38 The functionalization of a G0PS substrate, with 

side chains having a weight-average molecular weight (ܯ௪) = 15,000, is described as an 

example. The polymer (5.13 g, 49.3 mmol styrene units) contained in a 250 mL round 

bottom flask was dried under vacuum for 12 h and dissolved in 150 mL of nitrobenzene with 

stirring after sealing the flask with a rubber septum. The flask was maintained in a water bath 

at room temperature and purged with nitrogen while stirring. A solution prepared from 10 

mL of nitrobenzene, 1.26 mL (17.8 mmol) of acetyl chloride, and 2.44 g (18.3 mmol) of 

AlCl3 was prepared and injected into the round bottom flask with stirring. The reaction was 

allowed to proceed for two hours at room temperature (23 0C) and terminated with 5 mL of 

10 %v/v methanol/water solution. The acetylated polymer was precipitated into 1 L of 

methanol acidified with 10 %v/v of concentrated HCl. The polymer was further purified three 

times by dissolution in THF and precipitation in acidified methanol. The solid was finally 

rinsed five times with 30 mL of methanol, collected by filtration and dried under vacuum for 
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12 h. The acetylation level was determined by 1H NMR spectroscopy analysis. The 

acetylation level of the polymer was 35 % and the recovery yield was 96 % (5.63 g). 

4.4 Synthesis of arborescent polystyrene-graft-polyisoprene 

 Three PS substrates were used in the synthesis of the copolymers: a linear PS with 

 ௪ (LS)ܯ ,௪ ≈ 5,000ܯ ௪ ≈ 5,000 side chains (backboneܯ ௪ ≈ 5,000, a G0PS substrate withܯ

= 104,000, fw = 17), and a G1PS substrate with ܯ௪ ≈ 5,000 side chains (derived from the G0 

substrate, ܯ௪ (LS) = 730,000, fw = 145). The linear PS and G0PS substrates were acetylated 

to substitution levels of 30 and 33 mol%, respectively. The G1PS substrate was 

chloromethylated to a substitution level of 24 %. The acetyl sites were coupled with mixed 

microstructure “living” PIP chains to generate the copolymers as described previously.70 PIP 

side chains with ܯ௪  ≈ 5,000 and 30,000 were grafted onto the linear and G0PS substrates. 

The G0 substrate was also reacted with PIP side chains having ܯ௪ ≈ 15,000 and 45,000. 

Another copolymer sample was obtained by grafting PIP side chains with ܯ௪  ≈ 30,000 onto 

the chloromethylated G1PS substrate. A complete list of the samples synthesized provided in 

Table 4-1. 

The following procedure describes the purification of an acetylated G0PS substrate 

by azeotropic distillation using the high-vacuum manifold shown in Figure 4-1. An ampoule 

(A) was connected to the manifold which was evacuated and flamed under vacuum. After 

cooling, the manifold was purged with nitrogen. The stopcock of ampoule (A) was removed 

and the substrate (5 g; 11 meq acetyl groups) dissolved in 50 mL of THF was filtered with a 

0.45 µm PTFE filter directly into the ampoule through the stopcock opening. The ampoule 

was then sealed under nitrogen, the system was evacuated, and the stopcock of the ampoule 
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was opened slightly until the solution started boiling to degas it. After isolating the manifold 

from the vacuum line, flask (D) was cooled in liquid nitrogen and the stopcock of the 

ampoule was opened to remove all the solvent. The transfer rate of THF was increased by 

immersing the ampoule in a warm water bath. After all the THF was removed, flask (D) was 

isolated by closing stopcock (B), the ampoule was cooled with liquid nitrogen, and ca. 30 mL 

of dry THF was added to flask (C) (immersed in a water bath) from the still. The solvent 

quickly transferred to the ampoule when the stopcock was opened. The THF in the ampoule 

was then thawed and stirred to fully dissolve the acetylated PS substrate before removal by 

condensation to flask D as before. The azeotropic purification cycle was repeated two more 

times. After the last cycle, 30 mL of THF was used to dissolve the acetylated PS substrate 

and the ampoule was sealed under nitrogen. 

 

Figure 4-1: Manifold for azeotropic purification of grafting substrate. 
From Cao.71 

 

The following procedure describes the synthesis of a copolymer derived from the 

G0PS acetylated substrate (fw = 17, ܯ௪  = 104,000, acetylation level = 33 mol%) and ܯ௡  ≈ 

15,000 PIP side chains. The isoprene monomer was dried through three freezing-evacuation-

thawing cycles as described below on the high-vacuum manifold shown in Figure 4-2. An 
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ampoule (A) was connected to the manifold which was evacuated and flamed. After cooling, 

the ampoule was sealed and the manifold was purged with nitrogen. Isoprene monomer (17.6 

g, 258 mmol) was then added to flask (B) with 2 mL (3.2 mmol) of n-BuLi solution through 

the opening on top of the manifold. The manifold was sealed and the solution was stirred for 

5 min. Partial vacuum was applied to degas the monomer until the isoprene started boiling, 

the solution was frozen in liquid nitrogen, and the system was fully evacuated for 10 min. 

The manifold was isolated from the vacuum line and the solution was thawed by immersing 

flask (B) in a water bath at room temperature while stirring. Two additional cycles of 

freezing, evacuation, and thawing were used to purify the monomer. After the last cycle, the 

isoprene was recondensed to ampoule (A) by cooling in liquid nitrogen. The opening of the 

PTFE stopcock was adjusted to recondense the purified monomer in ca. 45 min. The 

ampoule was then filled with nitrogen, sealed, and stored at 5 0C until it was used. 

 

Figure 4-2: Manifold for monomer purification. 
From Cao.71 
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Table 4-1: List of copolymer samples synthesized 
Sample PS 

substratea,c 
PIP target ܯ௡ 

   
PS-PIP6 PS 5 x 103 

PS-PIP302 PS 30 x 103 
G0PS-PIP6 G0PS 5 x 103 
G0PS-PIP13 G0PS 15 x 103 
G0PS-PIP24 G0PS 20 x 103 
G0PS-PIP45 G0PS 45 x 103 
G1PS-PIP30b G1PS 30 x 103 

a Polystyrene substrates synthesized by Teerstra.25  
b Sample synthesized by Teerstra.25 
c Linear PS substrate had an acetylation level of 30 
mol% and ܯ௪ = 6,500. G0PS had an acetylation level 
of 33 mol% and ܯ௪ = 104,000. G1PS had a 
chloromethylation level of 24 mol% and ܯ௪ = 
104,000. 

 

The anionic polymerization and grafting reactions were carried out in a 500 mL five-

neck round bottom flask (Figure 4-3). A magnetic stirring bar and LiCl (0.294 g, 6.93 mmol) 

were first placed in the reactor which was mounted on the vacuum line. The dry THF line, a 

rubber septum, and the ampoules containing the isoprene monomer (17.6 g, 258 mmol) and 

the acetylated G0PS substrate were then mounted on the reactor which was evacuated, 

flamed to remove adsorbed water, and filled with N2. THF (200 mL) was charged in the 

reactor before cooling to -20 0C with a methanol/water/dry ice slurry. Isoprene (10 drops) 

was added to the reactor and titrated with sec-BuLi (ca. 18 drops) using a syringe through the 

rubber septum, to obtain a light yellow color. sec-BuLi (1.07 mL, 1.17 mmol, for a calculated 

 ௡ = 15,000) was then added followed by all the isoprene. The polymerization reaction wasܯ

allowed to proceed at -20 0C for 30 min, then at 0 0C for 30 min, and finally at room 

temperature for 30 min. A 10 mL sample of the PIP side chains was withdrawn through the 
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septum with a syringe and terminated with 1 mL of degassed methanol acidified with 1-2 

drops of concentrated HCl, recovered by precipitation in methanol, dried under vacuum, and 

analyzed by GPC and 1H NMR spectroscopy. The reactor was cooled to 0 0C and the living 

PIP solution was titrated with the acetylated PS substrate dropwise over ca. 15 min until the 

color of the solution faded. The grafting reaction was allowed to proceed further for 20 min 

and terminated with 10 mL of degassed acidified methanol. The graft copolymer was 

precipitated in methanol and purified by precipitation fractionation from a hexane solution 

(polymer concentration ca. 50 mg/mL) using 2-propanol as a non-solvent. The crude and the 

fractionated products were analyzed by GPC.  

 

Figure 4-3: Reactor for the polymerization and grafting reactions. 

Adapted from Cao.71 
 

The copolymers derived from linear PS and G1PS substrates grafted with ܯ௡ ≈ 

30,000 PIP side chains, also used in the investigation, were previously synthesized by 

Teertstra.25 
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For comparison, three linear PIP samples with ܯ௪ = 6,000, 29,000, and 115,000 were 

also synthesized by the same method described for the preparation of the PIP side chains, to 

obtain a similar mixed chain microstructure. 

4.5 Synthesis of PHS 

 The procedure used was a combination of methods described by Hwang et al. and   

Ojima et al.72,73 1H, 1H, 2H-Perfluoro-1-octene (130.0 g, 0.376 mol) and 0.296 g (0.320 

mmol) of Wilkinson’s catalyst were placed into a ChemGlass 125 mL high pressure flask 

equipped with a magnetic stir bar. Chlorodimethylsilane (50 g, 0.528 mol) and THF (25 mL) 

were added to the flask which was sealed with the threaded PTFE stopper, and the flask was 

heated to 120 oC in an oil bath for 48 h while stirring. Complete conversion of the octene to 

the perfluorinated chlorosilane was confirmed by 1H NMR spectroscopy analysis. The 

sample was distilled under reduced pressure (20 mm Hg) at 60 0C (yield 150.3 g, 91 %). The 

full amount of perfluorinated chlorosilane recovered was then reduced with LiAlH4 (30.4 g, 

0.803 mol) in 500 mL of THF with stirring for 24 h. Complete reduction of the 

perfluorinated chlorosilane to (tridecafluoro-1,1,2,2-tetrahydrooctyl)dimethylhydrosilane was 

confirmed by 1H NMR analysis. The PHS was distilled under reduced pressure (20 mmHg) 

at 60 0C (yield 98.4 g, 71 %). The reagent was finally purified by stirring over CaH2 for 48 h 

and distillation under reduced pressure (yield 90.6 g, 92 %). The purity of the PHS was 

confirmed by 1H NMR spectroscopy [0.45 ppm (doublet), 1.15 ppm (multiplet), 2.19 ppm 

(septet), 3.95 ppm (septet)]. 
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4.6 Hydrosilylation 

 The pendent double bonds of PIP were functionalized with PHS through 

hydrosilylation. The procedure used was derived from the method reported by Hempenius et 

al. for the hydrosilylation of polybutadiene.47 The reaction provided as an example uses 

sample G0PS-PIP45 (fw = 177, ܯ௪  = 7,919,000, PDI = 1.10) as a substrate. The copolymer 

(1.6 g, 23.5 meq isoprene units) was placed in a 250 mL round bottom flask with a magnetic 

stirring bar, dried under vacuum for 48 h, and dissolved in 100 mL of dry cyclohexane under 

nitrogen after sealing the flask with a rubber septum. After dissolution of the copolymer, 

PHS (4.353 g, 10.49 mmol) and 0.3 mL of Karstedt catalyst were added to the flask with 

stirring. The reaction was terminated either when the desired hydrosilylation level was 

attained (as determined by 1H NMR analysis), when there was no further increase in the 

substitution level, or when the copolymer precipitated out of solution. The reaction was 

terminated by adding 2 mL of degassed methanol and stirring for 10 min. The sample was 

precipitated in a solution of 10 %v/v acetone in methanol. It was further purified by three 

cycles of redissolution in THF and precipitation in methanol. The functionalized polymer 

was finally dried under vacuum and the hydrosilylation level was determined by 1H NMR 

analysis. 

4.7 Characterization 

 The PS grafting substrates, the PIP side chains, the crude (non-fractionated) graft 

copolymers, and the fractionated graft copolymers were characterized by GPC analysis. The 

instrument used for routine characterization incorporated a Waters 501 HPLC pump, a guard 

column, a Jordi gel DVB mixed bed column (500 x 10 mm2, linear PS molecular weight 
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range 500 – 8.0 x 106), and a Waters 410 Differential Refractometer (DRI) detector. THF 

served as eluent at a flow rate of 1.0 mL/min and the instrument was calibrated with linear 

PS standards having a molecular weight range between 1.25 x 103 and 2.75 x 106. This 

method only provided apparent molecular weights for the arborescent copolymers and the 

PIP samples. 

 The absolute molecular weight of the copolymers, the PIP side chains, and the linear 

PIP samples was determined on a Viscotek TDA 302 GPC instrument equipped with a light 

scattering detector. The system included a Waters AF inline degasser, a Waters 515 HPLC 

pump, a 717plus auto sampler, one 50 x 7.5 mm Polymer Laboratories gel 10 µm guard 

column, and three PLgel 10 µm mixed-B columns (300 x 7.5 mm2) covering a molecular 

weight range between 500 and 10 x 106. The system utilized a Viscotek TDA 302 Triple 

detector incorporating right-angle (RALS) and low-angle light scattering (LALS) detectors 

operating at 670 nm, as well as DRI and viscometer detectors. A UV detector (model 2501) 

was also incorporated as an add-on. The molecular weight distribution of the samples was 

calculated with the OmniSEC v3.0 software package from Viscotek. 

 Refractive index increment (dn/dc) measurements for the arborescent copolymers and 

the linear PIP samples were conducted on a Brice-Phoenix differential refractometer 

equipped with a 632 nm band-pass interference filter. Calibration of the refractometer was 

accomplished using NaCl at five concentrations between 2 and 10 g/L. 

 The microstructure of the PIP samples and the composition of the copolymers were 

determined by 1H NMR spectroscopy analysis on a Bruker AC-300 nuclear magnetic 

resonance spectrometer in CDCl3 at a concentration of ca. 10 mg/mL. The method used to 

analyze the microstructure of the PIP side chains was described by Essel and Pham.74 
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4.8 Blending of fluorinated polystyrene-graft-polyisoprene and 

PEG4K with LLDPE 

A commercial LLDPE resin (LL1001.32, Exxon Mobil Chemical, supplied by 

Imperial Oil Ltd.) containing 2 %w/w of butene as comonomer and stabilized with 0.03 

%w/w of octadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate, having a melt flow 

index of 1.0 g/10 min (ASTM D1238), was used in the investigations. A PEG4K sample 

(Baker, ܯ௡ = 3,600) was also investigated as coadditive in some cases. The fluorinated and 

PEG4K additives were dried under vacuum for 48 h prior to blending. Using PIP5-F31 as an 

example, the following procedure describes the mixing of a master batch to a 1.0 %w/w 

concentration of PPA, and the dilution of the PIP5-F31 master batch with LLDPE to a 

concentration of 0.5 %w/w. The PIP5-F31 master batch was obtained by compounding the 

LLDPE resin (198.0 g) with 2.0 g of PIP5-F31, to obtain a 1.0 %w/w PPA concentration, 

using a Haake Torque Rheometer equipped with a 3000 mixing chamber at 190 0C (5 min at 

50 rpm). The master batch was then diluted to 0.5 %w/w PPA by further compounding with 

virgin LLDPE, corresponding to 100 g of the 1 %w/w PPA master batch and 100 g of virgin 

LLDPE resin at 190 0C (5 min at 50 rpm).  

Three of the PPA samples (G0PS-PIP5-F17, PS-PIP5-F25, and PIP5-F31), selected 

on the basis of their performance at 0.5 %w/w, were also evaluated in combination with the 

PEG4K coadditive. In this case, a PEG4K master batch was prepared as described above 

from 2.0 g of PEG4K and 198.0 g of virgin resin at 190 0C (5 min at 50 rpm). Using PIP5-

F31 as an example, the PIP5-F31 (40 g) and PEG4K (60 g) master batches were combined in 

a 2 : 3 weight ratio and further diluted with virgin LLDPE (100 g) to obtain a final 
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concentration of 0.5 %w/w additives (0.2% PPA and 0.3% PEG4K) using the Haake torque 

rheometer at 190 0C (5 min at 50 rpm) in one step. 

Three samples (G0PS-PIP5-F17, PS-PIP5-F25, PIP5-F31) were also investigated at a 

lower concentration (0.1 %w/w), corresponding to 40 g of the 0.5 %w/w PPA master batch 

combined with 160 g of LLDPE at 190 0C (5 min at 50 rpm). Furthermore, the PPA-

coadditive blends were tested at 0.1 %w/w (0.06 % PEG4K + 0.04 % additive) by combining 

16 g of 0.5 %w/w PPA master batch, 24 g of 0.5 %w/w PEG4K master batch, and 160 g of 

LLDPE at 190 0C (5 min at 50 rpm). This again corresponds to a 3 : 2 PEG4K to PPA ratio. 

In addition to the blends described above, a mixed PPA blend was prepared by 

combining the G0PS-PIP5-F17, PS-PIP5-F25, and PIP5-F31 additives into a single LLDPE 

blend, to shed light on the influence of sample polydispersity on PPA performance. The 

mixed blend at 0.5 %w/w was obtained by combining 33.3 g of the G0PS-PIP5-F17 master 

batch, 33.3 g of the PS-PIP5-F25 master batch, 33.3 g of the PIP5-F31 master batch, and 

100.0 g of virgin LLDPE resin at 190 0C (5 min at 50 rpm). Another mixed blend at 0.5 

%w/w incorporating PEG4K (0.3 % PEG4K + 0.2 % PPA) was also prepared from 13.3 g of 

the G0PS-PIP5-F17 master batch, 13.3 g of the PS-PIP5-F25 master batch, 13.3 g of the 

PIP5-F31 master batch, 60.0 g of the PEG4K master batch, and 100.0 g of virgin LLDPE 

resin at 190 0C (5 min at 50 rpm). The mixed PPA blends (without and with PEG4K) were 

also investigated at a lower concentration (0.1 %w/w). In the first case, 13.3 g of the G0PS-

PIP5-F17 0.5 %w/w blend, 13.3 g of the PS-PIP5-F25 0.5 %w/w blend, 13.3 g of the PIP5-

F31 0.5 %w/w blend, and 160.0 g of virgin LLDPE resin were combined at 190 0C (5 min at 

50 rpm). The 0.1 %w/w mixed blend with PEG4K (0.06 % PEG4K + 0.04 % additive) was 

obtained by combining 160.0 g of virgin LLDPE with 5.3 g of the G0PS-PIP5-F17 0.5 %w/w 
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blend, 5.3 g of the PS-PIP5-F25 0.5 %w/w blend, 5.3 g of the PIP5-F31 0.5 %w/w blend, and 

24.0 g of the PEG4K 0.5 %w/w blend.  

All the diluted blend samples were mechanically ground into ca. 2-3 mm flakes for 

extrusion testing and PPA droplet size analysis.  

4.9 Extrusion testing 

Extrusion testing of the polymer blends was conducted on a Galaxy V capillary 

rheometer (Model 8052) equipped with a stainless steel die. The die had a length of 1.00 

inch, a length/diameter (L/D) ratio of 50, and an entrance angle of 900. The polymer blends 

(20 g) were loaded into the extrusion barrel and heated to 190 0C for 5 min before extrusion 

of the polymer while applying a load of 150 lb. Before testing the samples and in-between 

runs, residual PPA was removed from the die wall by extruding 20 g of LLDPE containing 

50 %w/w of CaCO3 and then 20 g of virgin LLDPE. The LLDPE containing 50 %w/w of 

CaCO3 was prepared by blending 100 g of CaCO3 (Baker, 99.9 %) with 100 g of LLDPE 

using the Haake Torque Rheometer equipped with a 3000 mixing chamber at 190 0C (5 min 

at 50 rpm). The pure LLDPE extrusion provided baseline control, together with visual 

examination of the extrudate, to ensure that the extrusion was not affected by the additives 

used in the previous test (i.e. no glossiness remaining at a shear rate of 300 s-1). The blend 

was extruded at a shear rate of 300 s-1 until a constant load (constant load) was achieved. 

Reloading of the barrel with 20 g of the blend was necessary when the blend in the barrel had 

all been extruded. To achieve a constant initial load, 3 to 5 fillings of the barrel with polymer 

blend were necessary in some cases, to ensure uniform coating of the die wall with the 

additive. When a constant load was attained, the barrel was refilled with 20 g of polymer 

blend and the extrusion test was initiated. The blends were extruded at shear rates between 
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50 and 1600 s-1, until a constant load was achieved at each shear rate, and the test was 

stopped when CMF was observed. 

4.10 Optical microscope study of droplet size 

 The droplet size study was adapted from a procedure developed for the analysis of the 

Dynamar additive (FX9613) dispersed in polyolefins.75 Four to six flakes of the ground 

sample were placed between two 2.5 × 7.5 cm2 microscope glass slides. The slides were 

heated on a hot plate at ca. 150 0C for 5 min and a 10-lb weight was put on the glass slides to 

create a thin film (ca. 200 μm). The slides were examined on a Radical RXL-4B optical 

microscope at room temperature, at a magnification of 100x. The microscope was equipped 

with an AmScope 640x480 digital camera and calibrated using a 1.0 mm ABBOTA stage 

micrometer slide with 10 μm divisions. 

 Images of the samples at 100x magnification were recorded with the digital camera. 

The size (diameter) of the additive droplets was measured using the software (AmScope 3.0) 

provided with the instrument and the measured values were exported to Excel for averaging 

and standard deviation calculations. A minimum of 11 droplet diameter measurements was 

used in each analysis. 
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Chapter 5 – Results and Discussion  
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5.1 Introduction 

 Arborescent polystyrene-graft-polyisoprene samples were synthesized and 

functionalized with PHS according to Scheme 5-1. This was achieved by grafting living PIP 

side chains onto polystyrene substrates randomly functionalized with acetyl coupling sites. 

After purification, the isoprene homo- and copolymers were functionalized with PHS 

through hydrosilylation. 

Scheme 5-1: Synthetic scheme for PHS-functionalized polystyrene-graft-polyisoprene 
copolymer. 
 

5.2 Acetylation of polystyrene substrates 

 The PS substrates used in the current investigation were synthesized by Teertstra25 

and were characterized by GPC analysis using a combination of DRI and RALS/LALS 

detectors (Table 5-1). The branching density of the substrates was held relatively constant by 

using a side chain ܯ௪ ≈ 5,000 and a comparable acetylation level of 24-33 mol% in all cases. 

The branching functionality, fw, defined as the number of side chains added in the last 

grafting reaction, was calculated from Equation 5-1, where ܯ௪ሺܩሻ, ܩ௪ሺܯ െ 1ሻ, and ܯ௪
௦௖ 



75 
 

represent the absolute weight-average molecular weight of the graft polymer of generation G, 

of the preceding generation, and of the side chains, respectively.25 The number of coupling 

sites on each polymer substrate was calculated from its absolute molecular weight and 

functionalization level. As expected, fw and the number of coupling sites both increase 

roughly geometrically for successive generations. 

 

 

௪݂ ൌ
ሻܩ௪ሺܯ െ ܩ௪ሺܯ െ 1ሻ

௪ܯ
௦௖

 
Equation 5-1 

 

With the exception of sample G1PS, grafting sites were introduced on the PS 

substrates by acetylation. Similar acetylation levels were achieved for both the linear and the 

G0PS substrates through careful control of the reaction conditions, time, and stoichiometry, 

as determined by 1H NMR spectroscopy analysis (Figure 5-1). After the acetylation reaction 

(Figure 5-1B), two new peaks appear at 7.5 and 2.5 ppm, corresponding to the two aromatic 

protons (b) α to the acetyl group and to the acyl protons (a), respectively. The substitution 

Table 5-1: Linear and arborescent PS substrates characterization data 
Polymer ܯ௪

sc a 

(x 103) 
௡ܯ/ ௪ܯ

sc a ܯ௪
AP b 

(x 103) 
fw COCH3/ 

CH2Cl  
(mol %)c 

Grafting Sites 

PS (linear)d 6.5 1.08 __ __ 30 19 
G0PSd 5.8 1.07 104 17 33 329 
G1PSe 4.6 1.09 727 145 24 1,700 

a Absolute ܯ௪ of side chains from GPC analysis calibrated with linear PS standards.  
b Absolute ܯ௪ of arborescent polymer from GPC analysis with RALS/LALS detectors. 
c Acetylation/chloromethylation level determined by 1H NMR analysis. 
d Acetylated PS substrates. 
e Chloromethylated PS substrate synthesized by Teertstra.25 
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level x was determined from the ratio of the integrated peak intensities at 2.5 ppm (AAc) and  

6.2-7.2 ppm (AAr) as shown on Figure 5-1B using the equation AAc / AAr = 3x / 5-3x. 

 

Figure 5-1: 1H NMR spectrum for linear PS (A) and acetylated linear PS (B). 
The peak at ca. 7.25 ppm is due to residual CHCl3. 

 

The low polydispersity index of the acetylated substrates (ܯ௪/ܯ௡ ≤ 1.09) indicates 

that no cross-linking occurred during the functionalization reactions used to introduce the 

coupling sites. 

5.3 Arborescent polystyrene-graft-polyisoprene copolymers 

 sec-BuLi was used to initiate the polymerization of isoprene in THF at -20 0C, to 

obtain PIP side chains with a narrow MWD. The absolute weight-average molecular weight 

and PDI determined by GPC analysis with the RALS/LALS detectors for PIP samples 

[A] 

[B] 

b

a
c

b 

c 

a
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removed before the grafting reactions and for the arborescent copolymer samples are 

reported in Table 5-2. The refractive index increment (dn/dc) values of each polymer, 

determined using a differential refractometer with a 632 nm bandpass interference filter, are 

also reported in Table 5-2. The nomenclature used for the copolymers identifies the 

generation number of the substrate and the molecular weight of the grafted PIP side chains. 

For example, G0PS-PIP45 corresponds to a copolymer obtained by grafting a G0PS substrate 

with a PIP side chain having a ܯ௪ ≈ 45,000.  

The PDI of all the linear PIP, PIP side chain, and graft copolymer samples 

synthesized is low (1.01-1.10; see e.g. Figure 5-2). These low PDI values indicate that all the 

arborescent polystyrene-graft-polyisoprene copolymer molecules have a comparable number 

of side chains of uniform length. 

For increasing PIP side chain lengths, the branching functionality (fw) attained 

decreases as a result of enhanced steric hindrance. Also, as the generation number of the 

substrate increases, the number of potential grafting sites increases geometrically over 

successive generations. The coupling efficiency (Ce), defined as the percent fraction of 

coupling sites consumed in the grafting reaction, was calculated as the ratio of fw to the total 

number of coupling sites on the substrate.  
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The coupling efficiency is maximized for lower generation substrates (linear PS 

versus G0PS) and short PIP side chains (ܯ௪ ≈ 5,000 versus 30,000). Decreased coupling 

efficiencies, also reported by Li and Gauthier,38 were attributed to steric congestion of the 

acetylated polystyrene substrates as more chains are added: Coupling sites deeper within the 

substrate become shielded and unable to react with the living chains in the reaction mixture. 

 

Figure 5-2: GPC traces for grafting linear PIP (6,000 ≈ ࢝ࡹ) onto the G0PS substrate. 
[A] Linear PIP, [B] crude G0PS-PIP6, [C] purified product; [D] Purified G0PS-PIP24 shown 
for comparison.  

 

The PIP content of the copolymer samples was determined from their 1H NMR 

spectra (Figure 5-3B). After grafting PIP onto an acetylated PS substrate, the PS aromatic 

proton signal (AAr) is attenuated as compared to the PIP olefinic proton signal (APIP). This is 

attributed to the large number of PIP side chains grafted onto the PS substrate overwhelming 

the signals from the aromatic protons. The PIP content was calculated using the equation 

APIP / AAr = 2x / (5-5x) where APIP represents the integrated intensity of the olefinic protons 

[A] 

[D] 

[C] 

[B] 
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resonance in the isoprene units (4.2-6.1 ppm) and AAr is for the aromatic protons from styrene 

(6.2-7.2 ppm).  

 

Figure 5-3: 1H NMR spectra for PIP6K (A) and PS-PIP6K (B). 

The signal at 7.25 is due to residual CHCl3.  

 

 For example, the PIP content was determined to be 97 %w/w for PS-PIP6 by that 

method (Figure 5-3B and Table 5-3). The polystyrene component was essentially 

undetectable in all the other copolymer samples. These are noted as having > 98 %w/w PIP 

content in Table 5-3. The difference in weight-average molecular weight between the 

copolymer and the substrate can also be used to estimate the PIP content of the copolymers, 

[A] 

[B] 
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and ranges from 95-99 %w/w (third column in Table 5-3). 1H NMR analysis clearly provided 

an overestimated value for the PIP content of copolymer G0PS-PIP6 as compared to the 

composition calculated from the difference in molecular weight. This is attributed to 

differences in relaxation characteristics between the PS substrate and the PIP side chains 

affecting the relative intensity of the peaks.25 This problem is also obvious for some of the 

copolymers derived from upper generation substrates (e.g. G0PS-PIP6, G1PS-PIP30), where 

the restricted mobility of the PS chains within the crowded core led to no detectable signal in 

spite of their significant PS content.  

 

 The microstructure of the linear PIP and side chain samples was analyzed by 1H 

NMR spectroscopy (Figure 5-3A). The detailed analysis indicates that the PIP microstructure 

is comparable for all the samples, with roughly equal proportions of 1,2- (28-35 mol%), 1,4- 

Table 5-3: PIP content and microstructure analysis results 
 PIP (%w/w ) Composition (mol %)c 

Polymer 1H NMR ܯ௪
b % 1,2- % 1,4- % 3,4- 

PIP6 -- -- 31 38 31 
PIP29 -- -- 35 32 33 
PIP115 -- -- 33 34 33 

      
PS-PIP6 97 95 28 35 37 

PS-PIP30a >98 99 31 33 36 
G0PS-PIP6 >98 94 31 37 32 
G0PS-PIP13 >98 97 33 34 33 
G0PS-PIP24 >98 98 34 36 30 
G0PS-PIP45 >98 99 31 40 29 
G1PS-PIP30a >98 95 35 30 35 
a Data from Teertstra.25 
b Calculated from the absolute ܯ௪ of the graft copolymers and the substrates. 
c From 1H NMR analysis. 
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(30-40 mol%), and 3,4- (29-37 mol%) isoprene unit additions, typical for polymerization in a 

polar solvent such as THF (Table 5-3). 

5.4 Synthesis of PHS 

 The procedure developed for the synthesis of the PHS was adapted from methods 

described by Hwang et al. and Ojima et al.72,73 The modification was necessary due to the 

precipitation of Wilkinson’s catalyst out of solution over the first few hours of the reaction, 

leading to decreased conversion into the perfluorochlorosilane. A small amount of THF (15 

%v/v) added to the reaction increased the solubility of the catalyst, leading to complete 

conversion of the octene substrate within 48 hours. The use of a pressure flask also helped to 

improve catalyst solubilization, which only tended to precipitate out of solution near the end 

of the reaction.  

The reaction yielded essentially pure PHS after distillation, as confirmed by 1H NMR 

analysis (Figure 5-4B). The coupling reaction of 1H,1H,2H-perfluoro-1-octene (Figure 5-4A) 

with dimethylchlorosilane led to an upfield shift of the two peaks corresponding to protons 

“a” and “b” on the figure. The relative position of the two peaks is also inverted as a result of 

the increased shielding effect experienced by the “b” protons, as seen when comparing 

Figures 5-4A and B. The two methyl groups directly attached to the Si atom produce a 

singlet at 0.45 ppm (peak “c”).  

The extent of shielding of the three proton types increased after the reduction of the 

chlorosilane to the corresponding silane (PHS) (Figure 5-4C). A new peak “d” also appeared 

between 3.8 - 4.0 ppm for the silane proton, which is coupled with the “c” protons and splits 

the peak into doublets.  



83 
 

The two peaks present in all three 1H NMR spectra at 1.5 and 7.25 ppm correspond to 

water and chloroform, respectively. The large water peak could not originate from the 

product, which was dried over calcium hydride. The water peak was due to contamination of 

the deuterated chloroform, as confirmed by 1H NMR analysis of the pure solvent. 

 

 

Figure 5-4: Evolution of the 1H NMR spectrum from 1H,1H,2H-perfluoro-1-octene to 
(tridecafluoro-1,1,2,2-tetrahydrooctyl)dimethylsilane. 
(A) (tridecafluoro-1,1,2,2-tetrahydrooctyl)dimethylhydrosilane, (B) (tridecafluoro-1,1,2,2-
tetra-hydrooctyl)dimethylchlorosilane, and (C) 1H,1H,2H-perfluoro-1-octene. 
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5.5 Hydrosilylation of PIP 

 The linear PIP homopolymers and the arborescent copolymers were chemically 

modified with the PHS through hydrosilylation. The reaction was conducted in distilled 

cyclohexane under nitrogen atmosphere. The substitution level of the polymers was 

controlled by varying the stoichiometry of the reaction. For example, 1.5 times as much PHS 

was used for the synthesis of G0PS-PIP13-F41 as for G0PS-PIP13-F31. Approximately 93 % 

and 97 % of the PHS added reacted with the G0PS-PIP13 copolymer in each reaction, 

respectively. In general, over 85 % of the PHS added reacted with the polymer substrate. As 

the reaction proceeds, changes in polarity cause the polymer to precipitate from the solution. 

This sets an upper limit of ca. 39 mol% to the substitution level attainable under these 

conditions. The reactions were immediately terminated when precipitation of the polymer 

was observed, to ensure composition homogeneity of the product. The characteristics of the 

PHS-substituted polymers obtained are summarized in Table 5-4. The nomenclature used for 

the PHS-modified copolymers indentifies the generation number of the copolymer, the 

molecular weight of the grafted PIP side chains, and the fluorination level attained. For 

example, G0PS-PIP45-F39 corresponds to a copolymer of overall generation G1, derived 

from a G0PS substrate, with ܯ௪ ≈ 45,000 PIP side chains and with PHS substituted on 39% 

of the isoprene units. 

 The substitution level of the polymers was monitored by 1H NMR analysis, and also 

estimated from the mass of polymer recovered for comparison. 1H NMR spectra are 

compared in Figure 5-5 for the PHS, a copolymer with ܯ௪ ≈ 6,000 PIP side chains (PS-

PIP6), and a fluorinated copolymer (PS-PIP6-F41). The peaks for the silylmethyl (ASi) 

groups at ca. 0 ppm (6 protons) and the olefinic protons (APIP) from 4.5-6 ppm (6 protons) 
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can be used to determine the substitution level according to the equation 

APIP / ASi = 2x / (6-6x). The substitution levels thus determined ranged from 17 to 44 mol%. 

The substitution level estimated from mass recovery was significantly lower, which is 

attributed to the loss of product during polymer purification. For consistency, the substitution 

level determined by 1H NMR analysis was adopted for sample labeling.  

 

Figure 5-5: 1H NMR spectra for the hydrosilylation of PIP with the PHS. 
(A) PHS, (B) PS-PIP6, and (C) PS-PIP6-F41. 

 

The influence of PHS substitution on the GPC elution behavior of the polymers is 

relatively small, as can be seen in Figure 5-6 when comparing GPC traces for PS-PIP6 and 

PS-PIP6-F25, as well as for G0PS-PIP6 and G0PS-PIP6-F17. A slight shift of the peak to 

A 

B 

C 
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higher apparent molecular weights is observed for the fluorinated polymers. A small shoulder 

is also apparent on the left of the peak in both fluorinated samples, possibly indicating a 

small amount of cross-linking occurring during the hydrosilylation reaction with the PHS.  

 

 

Figure 5-6: GPC elution curves for the conversion of (A) PS-PIP6 to PS-PIP6-F25 and 
(B) G0PS-PIP6 to G0-PIP6-F17. 
  

A 

B 

G0PS‐PIP6‐F17 

G0PS‐PIP6 

PS‐PIP6‐F25 

PS‐PIP6 



87 
 

Table 5-4: PHS modification of linear PIP and arborescent copolymers 
 PHS (mol %)    

Polymer 1H NMRa MRb ௪ܯ
app c 

(x 103) 
௪ܯ ௡ܯ/

app c ܯ௪
abs d 

PIP6-F21 21 16 5.5 1.08 1.37 x 104 
PIP6-F31 31 14 5.8 1.08 1.74 x 104 
PIP6-F39 39 28 6.3 1.10 2.03 x 104 
PIP29-F21 21 18 28.1 1.14 6.44 x 104 
PIP29-F25 25 12 27.7 1.09 7.12 x 104 
PIP29-F35 35 27 28.9 1.09 8.83 x 104 
PIP29-F37 37 24 28.3 1.08 9.17 x 104 
PIP115-F26 26 9 116 1.18 2.92 x 105 
PIP115-F42e 42 25 Insol Insol 4.02 x 105 

      
PS-PIP6-F25 25 16 58.3 1.08 3.23 x 105 
PS-PIP6-F41e 41 23 Insol Insol 4.41 x 105 
PS-PIP6-F50e 50 12 Insol Insol 5.07 x 105 
PS-PIP30-F44f 44 -- 160 1.06 1.42 x 106 
G0PS-PIP6-F17 17 14 233 1.13 3.55 x 106 
G0PS-PIP6-F22 22 18 170 1.08 4.06 x 106 
G0PS-PIP6-F27 27 23 269 1.14 4.56 x 106 
G0PS-PIP6-F42e 42 30 Insol Insol 6.08 x 106 
G0PS-PIP6-F52e 52 44 Insol Insol 7.09 x 106 
G0PS-PIP13-F31 31 18 109 1.08 9.35 x 106 
G0PS-PIP13-F41 42 31 Insol Insol 1.13 x 107 
G0PS-PIP24-F25 25 21 536 1.19 1.25 x 107 
G0PS-PIP24-F39 39 27 Insol Insol 1.66 x 107 
G0PS-PIP45-F19 19 16 549 1.33 1.69 x 107 
G0PS-PIP45-F28 28 25 556 1.54 2.11 x 107 
G0PS-PIP45-F39e 39 29 Insol Insol 2.63 x 107 
G1PS-PIP30-F31f 31 27 Insol Insol 1.68 x 108 

a From 1H NMR analysis. 
b From mass recovery. 
c Apparent molecular weight from GPC analysis with a linear PS standards calibration curve. 
d Absolute weight-average molecular weight determined from fluorine content (1H NMR) 
and absolute weight-average molecular of copolymer substrate. 
e Sample insoluble in THF. 
f Sample synthesized by Teertstra.25 
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The apparent molecular weight and PDI values obtained by GPC analysis of the 

fluorinated copolymers are also reported in Table 5-4. High molecular weight samples with a 

fluorination level above 39 mol% were insoluble in THF, so they could not be analyzed by 

GPC. In spite of the presence of a small shoulder pointed out above, the PDI of the samples 

remained low after hydrosilylation (<1.2 for most samples). However samples G0PS-PIP45-

F19 and G0PS-PIP45-F28 yielded PDI values of 1.33 and 1.54, respectively. The increased 

PDI of these samples could be due to side reactions, as the samples dissolved in THF were 

difficult to filter prior to GPC analysis. An alternate explanation for the increased PDI could 

also be limited solubility of the higher generation polymers, however. Furthermore, these 

polymers could have reached the exclusion limit of the GPC column due to their large size.  

The molar substitution levels determined by NMR analysis were converted to weight 

percent (%w/w) fluorine contents using Equation 5-2; these are also reported in Table 5-5. 

The %w/w fluorine content increases rapidly with the molar substitution level of the 

polymers, but slows down at substitution levels above ca. 20 mol%. This leads to %w/w 

fluorine contents falling within a relatively narrow range (31-46 %w/w), even though the 

molar substitution level varied between 17 and 52 mol%, as shown in Figure 5-7. 

 

Figure 5-7: Fluorine content (%w/w) variation with the molar PHS substitution level. 
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ሻ%ݐݓሺ ݐ݊݁ݐ݊݋ܿ ݁݊݅ݎ݋ݑ݈ܨ ൌ

100 ൬ ሺ஺௧௢௠௜௖ ௪௧ ௢௙ ிሻሺ௡௨௠௕௘௥ ௢௙ ி ௔௧௢௠௦ ௜௡ ௉ுௌሻሺ௠௢௟% ௢௙ ௉ுௌ ௦௨௕௦௧௜௧௨௧௜௢௡ሻ
ሺெௐ ௢௙ ூ௉ሻሺ௠௢௟% ௢௙ ௨௡௥௘௔௖௧௘ௗ ூ௉ ௨௡௜௧௦ሻା൫ெௐ ௢௙ PHS-substituted IP൯ሺ௠௢௟ % ௢௙ ௉ுௌ ௦௨௕௦௧௜௧௨௧௜௢௡ሻ

൰  

ሻ%ݐݓሺ ݐ݊݁ݐ݊݋ܿ ݁݊݅ݎ݋ݑ݈ܨ ൌ 100 ቀ ሺଵ଼.ଽଽሻሺଵଷሻሺ௠௢௟% ௢௙ ௉ுௌ ௦௨௕௦௧௜௧௨௧௜௢௡ሻ
ሺ଺଼.ଵଵሻሺଵି௠௢௟% ௢௙ ௉ுௌ ௦௨௕.ሻାሺ଺଼.ଵଵାସ଴଺ሻሺ௠௢௟ % ௢௙ ௉ுௌ ௦௨௕.ሻ

ቁ  

ሻ%ݐݓሺ ݐ݊݁ݐ݊݋ܿ ݁݊݅ݎ݋ݑ݈ܨ ൌ 100 ቀ ଶସ଺.଼଻ሺ௠௢௟% ௢௙ ௉ுௌ ௦௨௕௦௧௜௧௨௧௜௢௡ሻ
଺଼.ଵଵା଺଼.ଵଵሺ௠௢௟% ௢௙ ௉ுௌ ௦௨௕.ሻାସ଻ସ.ଵଵሺ௠௢௟ % ௢௙ ௉ுௌ ௦௨௕.ሻ

ቁ  

ሻ%ݐݓሺ ݐ݊݁ݐ݊݋ܿ ݁݊݅ݎ݋ݑ݈ܨ ൌ 100 ቀ ଶସ଺.଼଻ሺ௠௢௟% ௢௙ ௉ுௌ ௦௨௕௦௧௜௧௨௧௜௢௡ሻ
଺଼.ଵଵାସ଴଺ሺ௠௢௟ % ௢௙ ௉ுௌ ௦௨௕௦௧௜௧௨௧௜௢௡ሻ

ቁ  Equation 5-2 

 

 The microstructure of the residual isoprene units in the PHS-substituted polymers 

was determined by 1H NMR analysis (Table 5-5). The results obtained show that 1,2-

isoprene units are more reactive towards hydrosilylation than the 1,4- and 3,4-units. A 

significant fraction of 1,4-units reacted under the conditions used, while 3,4-units apparently 

did not react. Overlapping of the NMR signals for the cis- and trans- isoprene units prevents 

the resolution of the two isomers. These results are in agreement with the findings of a 

previous investigation by Teertstra.25 Interestingly, three of the samples synthesized (PIP29-

F21, PS-PIP6-F25, and G0PS-PIP6-F17) behaved differently from the other polymers: The 

reactivity of 1,2- and 1,4-units in these samples was apparently similar, with no selectivity 

for the 1,2- over the 1,4-units. This peculiar but interesting effect could be due to impurities 

present in the reaction, but the exact origin of these deviations still needs to be determined. A 

common feature of these three samples is that they have a low substitution level. 

 

 



90 
 

Table 5-5: Composition and residual isoprene units microstructure of PHS-substituted 
PIP 

  Residual Isoprene Units Microstructure (%) 
Polymer F content 

(%w/w) 
1,2 1,4 3,4 

PIP6-F21 34 21 33 46 
PIP6-F31 40 9 44 47 
PIP6-F39 43 8 30 62 
PIP29-F21 34 29 27 42 
PIP29-F25 36 17 31 52 
PIP29-F35 41 14 24 62 
PIP29-F37 42 13 22 65 
PIP115-F26 37 11 33 56 
PIP115-F42 44 0 30 70 

     
PS-PIP6-F25 36 25 20 55 
PS-PIP6-F41 43 0 44 56 
PS-PIP6-F50 46 0 42 58 

PS-PIP30-F44a 44 0 31 69 
G0PS-PIP6-F17 31 31 32 37 
G0PS-PIP6-F22 35 19 34 47 
G0PS-PIP6-F27 38 22 32 46 
G0PS-PIP6-F42 44 0 41 59 
G0PS-PIP6-F52 46 0 34 66 

G0PS-PIP13-F31 40 21 28 51 
G0PS-PIP13-F41 43 0 42 58 
G0PS-PIP24-F25 36 18 31 51 
G0PS-PIP24-F39 43 6 17 77 
G0PS-PIP45-F19 32 25 34 41 
G0PS-PIP45-F28 38 14 37 49 
G0PS-PIP45-F39 43 4 32 64 
G1PS-PIP30-F31a 40 11 32 57 
a Synthesized by Teertstra.25 

 

5.6 Extrusion testing 

 The performance of the fluorinated polymer samples as polymer processing additives 

(PPA) was investigated by blending them at two different concentrations (0.5 and 0.1 %w/w, 
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identified as the high and low PPA concentrations, respectively) with a commercial LLDPE 

resin. The influence of the additives on the processability of the resin was assessed by 

capillary rheometry, on the basis of 1) their ability to eliminate melt defects, and 2) the 

reduction in extrusion load on the instrument relatively to the pure LLDPE resin. The die 

used had a length of 1.00 inch, an L/D ratio of 50, and an entrance angle of 900. The tests 

were performed at 190 0C at shear rates between 50 and 1600 s-1. The virgin LLDPE resin 

yielded SS at a shear rate of 200 s-1 and CMF at 400 s-1. 

5.6.1 High PPA concentration 

Preliminary studies conducted by Teertstra25 on the use of arborescent polystyrene-

graft-polyisoprene as PPA at 0.1 %w/w yielded marginal effects. In the current investigation, 

the work of Teertstra was extended to a higher concentration and a wider range of samples. 

The higher PPA concentration is not typical of commercial additives, but it is comparable 

with that used by Hong et al.3,4 for other types of dendritic PPA. The results obtained for the 

extrusion of blends of LLDPE with 0.5 %w/w PPA are summarized in Table 5-6. Two 

samples (PIP6-F31 and PIP29-F25) led to stranding on the surface of the extrudate (Figure 

5-8), defined as glossy stripes appearing alongside SS defects. Stranding typically indicates 

partial coating of the additives on the surface of the die, without the creation of a layer 

sufficiently stable to suppress SS formation.76  

Several of the PPA samples (PIP6-21, PIP6-F39, PIP29-F35, PS-PIP6-F25, PS-PIP6-

F50, G0PS-PIP6-F27, and G0PS-PIP13-31) also led to a mild form of CMF, characterized by 

alternating glossy and dull surfaces on the extrudate (Figure 5-9). The dull surface is clearly 

rougher than the glossy surface, but not nearly as serious as in the case of SS formation. 
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Furthermore, it is interesting to note that mild CMF occurred at very low shear rates (100 s-1) 

and was immediately followed by normal CMF as the shear rate was increased.  

Table 5-6: Extrusion results for LLDPE at 0.5 %w/w PPA concentration 

 Load reduction (%)a,b  
Sample 50 s-1 100 s-1 200 s-1 300 s-1 Extrudate Appearancec

FX9613 64.8 69.2 65.9 60.3 Glossy@50-1000 s-1 
      

PIP6-F21 6.3 -- -- -- Mild CMF@100 s-1; 
Glossy@400 s-1 

PIP6-F31 18.0 24.8 -- 45.4 Stranding@50-100 s-1; 
Glossy@300-1000 s-1 

PIP6-F39 7.6 -- -- -- Mild CMF@100 s-1 
PIP29-F21 8.2 7.9 -- -- CMF@≥200 s-1 
PIP29-F25 11.1 11.6 14.0 18.0 Stranding@50-200 s-1; 

Glossy@300-400 s-1 
PIP29-F35 3.1 -- -- 24.0 Mild CMF@100 s-1; 

Glossy@300-600 s-1 
PIP29-F37 10.7 10.2 -- -- CMF@≥200 s-1 

PIP115-F26 7.5 5.9 4.0 3.4 CMF@≥400 s-1 
PIP115-F42 9.4 8.4 6.6 -- CMF@≥300 s-1 

      
PS-PIP6-F25 11.8 -- -- 28.7 Mild CMF@100 s-1; 

Glossy@300-400 s-1 
PS-PIP6-F41 8.6 -- -- -- CMF@≥100 s-1 
PS-PIP6-F50 7.3 -- -- -- Mild CMF@100 s-1 

PS-PIP30-F44d 1.7 3.0 -- -- CMF@≥200 s-1 
G0PS-PIP6-F17 9.2 6.4 -- 20.3 Glossy @300-400 s-1 
G0PS-PIP6-F22 3.1 3.6 3.12 3.0 SS@200-400 s-1 
G0PS-PIP6-F27 9.0 -- -- -- Mild CMF@100 s-1 
G0PS-PIP6-F42 12.0 10.4 -- -- CMF@≥200 s-1 
G0PS-PIP6-F52 5.4 7.2 -- -- Glossy@400-600 s-1 

G0PS-PIP13-F31 8.0 -- -- -- Mild CMF@100 s-1 
G0PS-PIP13-F41 11.8 9.2 -- -- CMF@≥200 s-1 
G0PS-PIP24-F25 8.22 7.6 -- -- CMF@≥200 s-1 
G0PS-PIP24-F39 7.46 7.5 -- -- CMF@≥200 s-1 
G0PS-PIP45-F19 4.4 3.4 -- 9.2 Glossy@300-400 s-1 
G0PS-PIP45-F28 4.4 6.0 4.5 -- CMF@≥300 s-1 
G0PS-PIP45-F39 7.5 7.2 5.8 -- SS@200 s-1 
G1PS-PIP30-F31d 6.1 5.1 4.1 4.1 SS@200-300 s-1 

a Percent reduction in comparison to virgin LLDPE resin. 
b ‘--‘ indicates that CMF occurred, so the load is not reported. 
c Virgin LLDPE resin displays SS at 200-300 s-1 and normal CMF at 400 s-1. 
d Sample synthesized by Teertstra.25 
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Figure 5-9: Mild CMF for a 0.5 %w/w blend of PIP6-F39 in LLDPE. 
Mild CMF appears as alternating segments of glossy (left) and dull (right) surfaces. 
Observed at a shear rate of 100 s-1; the diameter of the filament is 0.058 cm. 

 

No load reductions are reported in Table 5-6 when CMF occurred, as the load 

oscillated between two values that were usually several hundred pounds apart under these 

conditions. In some cases (PIP6-F31, PIP6-F21, PIP29-F35, PS-PIP6-F25, G0PS-PIP6-F17, 

 

Figure 5-8: Surface stranding for a 0.5 %w/w blend of PIP30-F25 in LLDPE. 
Stranding is seen as bands of glossy surface (top and bottom of filament) surrounded by mild 
SS (closest side). The diameter of the filament is 0.061 cm. 
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G0PS-PIP6-F52, G0PS-PIP45-F19), the onset of CMF was observed at low shear rates but it 

was eliminated afterwards, which suggests that these samples require a minimum shear rate 

to coat the die. CMF formation eventually returned as the shear rate was increased due to the 

gradual load buildup. 

A series of fluorinated linear PIP samples was synthesized for comparison with the 

branched copolymers, to provide insight into the influence of branching on PPA 

performance. When comparing linear PPA samples derived from the same linear PIP 

substrate but with different fluorination (substitution) levels, it appears that samples with 

substitution levels between 25 and 35 mol% perform best. Furthermore, when comparing 

samples of different molecular weights but having similar substitution levels, the lower 

molecular weight samples have a superior performance. For example, PIP115-F26 and 

PIP29-F25 have similar compositions but the lower molecular weight sample (PIP29-F25) 

yielded larger load reductions and a glossy extrudate up to 400 s-1, while CMF started at 400 

s-1 for PIP115-F26. On the basis of the results reported by Teertstra25 for PIP5-F36 blended at 

0.1 %w/w with LLDPE, it was expected that PIP6-F31, when blended at a higher 

concentration (0.5 %w/w), would lead to further performance improvement: At 0.1 % w/w, 

that additive delayed the onset of CMF to 800 s-1 and reduced the load by 8.2 % at 200 s-1. 

PIP6-F31 was indeed able to eliminate SS and to delay the onset of CMF up to shear rates of 

1000 s-1 when used at a higher concentration. This enhanced effect is attributed to the fact 

that PIP6-F31 is a low molecular weight additive, which allows it to migrate easily from the 

LLDPE matrix to the die wall during extrusion. A higher PPA concentration should facilitate 

the migration of the additive to the die wall, thus promoting die coating.  
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When comparing the linear polymers to the arborescent copolymers, it appears that 

the more compact samples are more efficient at delaying the onset of melt fracture. For 

example, PIP116-F26 (ܯ௪
app=116 x 103, ܯ௪

abs=2.92 x 105) and PS-PIP6-F25 (ܯ௪
app=58.3 

x 103, ܯ௪
abs=3.23 x 105) have comparable absolute molecular weights and chemical 

composition but PS-PIP6-F25 has a much lower apparent molecular weight than PIP116-F26 

when measured by GPC. The lower apparent molecular weight of PS-PIP6-F25 indicates that 

the sample is more compact than PIP116-F26.  

The trends among the fluorinated polystyrene-graft-polyisoprene copolymer samples, 

and particularly the arborescent (G1 and G2) additives, are not very clear. This is partly due 

to the difficulty in selecting the parameters serving as a basis for comparison (comparable 

molecular weight, branching functionality, substitution level, etc.). Generally speaking no 

major processability improvements were observed for these samples but as the generation 

number of the copolymers increased, the performance of the additives usually decreased. For 

example, PS-PIP6-F25 yielded a significant (12 %) load reduction at 100 s-1 and the 

extrudate remained glossy up to 400 s-1, but for G0PS-PIP6-F27 mild CMF started at 100 s-1 

and normal CMF was observed immediately afterwards. Similar effects were also observed 

as the molecular weight of the grafted PIP chains was increased (e.g. G0PS-PIP6-F17 versus 

G0PS-PIP45-F19). All the PPA samples led to some load reduction at the different shear 

rates investigated, but in many cases the reduction remained within the experimental error 

limits (estimated at ca. 5 % in these types of measurements).25  

Samples PS-PIP6-F25 (ܯ௪
app = 58,000, ܯ௪

abs = 3.23 x 105) and PS-PIP30-F44 

௪ܯ)
app = 160,000, ܯ௪

abs = 1.42 x 106) have apparent molecular weights respectively lower 

and higher than one of the linear PPA samples PIP115-F26 tested (ܯ௪
app = 116,000, ܯ௪

abs = 
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2.92 x 105). PS-PIP6-F25 has a branched structure and short side chains leading to a much 

lower apparent molecular weight (smaller hydrodynamic volume in THF) than PIP115-F26 

and PS-PIP30-F44, however. When the performance of these additives was compared at 0.5 

%w/w, PS-PIP6-F25 performed far better than PIP115-F25 and PS-PIP30-F44: The load 

reduction was much larger and the appearance of the extrudate remained glossy between 300 

and 400 s-1, albeit a minimum shear rate was required for the formation of a stagnant coating. 

This suggests that the performance of additives with a lower apparent molecular weight (i.e. 

more compact molecules) is superior.  

A commercial PPA sample, FX9613, was also tested at a concentration of 0.5 %w/w 

in LLDPE (Table 5-6). The commercial additive reduced the load by 60-69% and completely 

eliminated SS. The onset of CMF was delayed to shear rates of 1100 s-1. The load reduction 

is compared for FX9613 and for PIP6-F31 as a function of shear rate in Figure 5-10. The 

load reduction is much more pronounced at low shear rates for the commercial additive but at 

shear rates above 800 s-1, PIP6-F31 actually led to larger load reductions.  

 

Figure 5-10: Load variation with the shear rate for (A) PIP6-F31 and (B) FX9613. 
The sudden drop in load seen in curve A is attributed to efficient coating of the die beyond 
300 s-1. 

A 

B 
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 The sudden drop in load for PIP6-F31 observed at a shear rate around 300 s-1, 

coinciding with the appearance of a glossy surface on the extrudate, has been linked to the 

formation of a stable PPA coating in previous studies.15,21 It therefore seems likely that the 

transition from mild CMF to a glossy surface observed for some of the additives has the 

same origin. Following the load drop the additive not only eliminated SS, but also delayed 

the onset of CMF. 

5.6.2 Low PPA concentration 

 Three samples were selected on the basis of their good performance at 0.5 %w/w to 

be evaluated at a lower concentration (0.1 %w/w), more typical of commercial PPA 

applications. The samples selected were PIP6-F31, PS-PIP6-F25, and G0PS-PIP6-F17. The 

commercial additive FX9613 was also tested at 0.1 %w/w. The results obtained for all the 

samples are reported in Table 5-7. As expected, the performance of all PPA was diminished 

when their concentration was reduced. For example, PS-PIP6-F25 eliminated SS formation 

and delayed CMF at shear rates of up to 400 s-1 when it was used at 0.5 %w/w, but it yielded 

no processability improvement at 0.1 %w/w. The same trend was observed for the linear 

additive: PIP6-F31 yielded glossy extrudates from 300-1000 s-1 at 0.5 %w/w concentration, 

but only SS and CMF defects were observed at 0.1 %w/w. Relatively speaking, smaller 

molecules like PIP6-F31 performed better than larger polymers at the lower concentration: 

While all samples suffered from melt defects, the reduction in load still decreased in the 

order PIP6-F31 > PS-PIP6-F25 > G0PS-PIP6-F17 at shear rates between 50 and 200 s-1. This 

again reinforces the hypothesis that smaller molecules migrate more efficiently to the die 

wall during extrusion, which leads to their enhanced performance. The performance of 

FX9613 at 0.1 %w/w is excellent in comparison to the PPA synthesized: This additive still 
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eliminated SS, delayed the onset of CMF, and yielded a large reduction in load at all shear 

rates. In comparison to the results obtained for FX 9613 at 0.5 %w/w, however, the 

magnitude of the load reduction was decreased and the onset of CMF was only delayed to 

1000 s-1 (versus 1100 s-1 for the commercial additive at 0.5 %w/w). 

Table 5-7: Extrusion performance for LLDPE at 0.1 %w/w concentration of selected 
PPA 

 Load Reductiona,b (%)  
Sample 50 s-1 100 s-1 200 s-1 300 s-1 Extrudate Appearancec 
FX9613 43.8 56.4 57.3 53.7 Glossy@50-800 s-1; 

CMF@≥ 1000 s-1 
      

PIP6-F31 10.1 10.0 9.4 -- SS@200 s-1; CMF@≥300 s-1 
      

PS-PIP6-F25 9.2 7.4 -- -- CMF@≥200 s-1 
      

G0PS-PIP6-F17 3.1 2.4 1.6 -- SS@200 s-1, CMF@≥300 s-1 
a Percent reduction as compared to virgin LLDPE. 
b Experimental error limit on load reduction is ca. 5 %. 
c Pure LLDPE displayed SS at 200-300 s-1 and normal CMF at 400 s-1. 
 

5.6.3 Mixed PPA samples 

 The same PPA samples selected for performance evaluation at 0.1 %w/w (PIP6-F31, 

PS-PIP6-F25, and G0PS-PIP6-F17) were also blended in a 1:1:1 ratio at overall PPA 

concentrations of 0.5 and 0.1 %w/w, to determine whether any synergistic effects could result 

from a broad PPA molecular weight distribution. The results obtained in performance testing 

are summarized in Table 5-8. The mixed PPA blends at 0.5 %w/w concentration yielded 

more significant load reductions than at the lower concentration (0.1 %w/w), but no 

significant processability improvement was observed at either concentration: CMF actually 

started at lower shear rates (200 s-1) under these conditions. No significant improvements 
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were observed in terms of surface appearance and load reduction when the mixed blends 

were compared with the individual additives either (Tables 5-6 and 5-7). For example, PS-

PIP6-F25 at 0.5 %w/w yielded a load reduction of ca. 28 % at 300 s-1, but CMF already 

occurred for the mixed blend at same shear rate. Similar results were obtained for the two 

other samples.  

Table 5-8: Extrusion performance for LLDPE with mixed PPA blends at 0.1 %w/w and 
0.5 %w/w 

 Load Reductiona,b (%)  
Concentrationc 50 s-1 100 s-1 200 s-1 300 s-1 Extrudate Appearanced 

0.1 %w/w 5.9 5.6 -- -- CMF@≥200 s-1 
      

0.5 %w/w 12.0 8.5 -- -- Mild CMF@50-100 s-1; CMF@≥200 s-1 
a Percent reduction as compared to virgin LLDPE. 
b Experimental error limit for load reduction is ca. 5 %. 
c PIP6-F31, PS-PIP6-F25 and G0PS-PIP6-F17 blended in 1:1:1 ratio, and diluted with 
LLDPE. 
d Pure LLDPE displays SS at 200-300 s-1 and normal CMF at 400 s-1. 
 

5.6.4 Coadditive effects 

Coadditives are commonly used in polymer processing to enhance the performance of 

fluoroelastomer PPA. They are low molecular weight compounds such as PEG27‐29 and 

poly(ε-caprolactone).26 The purpose of coadditives is to encapsulate the PPA droplets and 

promote their migration to the die wall. During extrusion, the PPA droplets experience large 

shear stresses that may lead to their breakup. The low molecular weight of the coadditives 

allows a reduction in the shear stresses experienced by the droplets.26,28 Two PEG samples 

(PEG4K and PEG10K) were previously investigated by Teertstra as coadditives for 

fluorinated comb-branched PIP homopolymers, and PEG4K was shown to be most efficient 
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at enhancing the performance of the PPA.25 Consequently, PEG4K was investigated to 

determine whether it could enhance the performances of the fluorinated PPA used in the 

current study. The mixed PPA sample and the three samples selected for testing at low 

concentration (PIP6-F31, PS-PIP6-F25, and G0PS-PIP6-F17) were further studied to 

determine whether they could benefit from the coadditive as reported previously. In a patent 

by Duchesne and Johnson,28 it was suggested that the ratio of additive to coadditive used 

should be between 1:1 and 1:10. It was also pointed out in their examples that ratios of 1:1 

and 2:1 were not as effective as ratios of 1:4, 1:2, and 3:5.28 In a contradictory patent by 

Woods,29 it was suggested that the ratio of additive to coadditive used should be between 1:1 

to 1:0.005.  Also, Teertstra have shown that a ratio of 2:3 were useful at eliminating the onset 

of melt fracture.25 Consequently, a ratio of 2:3, which falls within the limit of 1:1 and 1:10, 

was selected to evaluate the effectiveness of the selected samples with PEG4K. The influence 

of PEG4K on the PPA performance was monitored at both 0.5 and 0.1 %w/w concentrations. 

For comparison, the commercial PPA (FX9613) was also tested with PEG4K at both 

concentrations. Blends of pure PEG4K with virgin LLDPE at 0.5 and 0.1 %w/w were also 

extruded for comparison. The results obtained for overall PPA-coadditive concentrations of 

0.5 and 0.1 %w/w are summarized in Tables 5-9 and 5-10, respectively. 

When comparing Table 5-9 for the coadditive blends with the results reported for the 

pure (Table 5-6) and mixed (Table 5-8) PPA at a concentration of 0.5 %w/w, the addition of 

PEG4K appears to have reduced the load slightly. An important incremental load reduction 

was observed for G0PS-PIP6-F17 in the presence of PEG4K, the load reduction approaching 

30 % as compared to 9 % without PEG4K at 50 s-1. It should also be noted that all three PPA 
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(PIP6-F31, PS-PIP6-F25, and G0PS-PIP6-F17) displayed a minimum shear rate for enhanced 

effectiveness.  

However, the minimum shear rate required for optimal performance was shifted to 

higher values as compared to the same additives extruded without coadditive. For example, 

PIP6-F31 at a concentration of 0.5 %w/w without PEG4K required a minimum shear rate of 

300 s-1 for the elimination of surface defects, but in the presence of PEG4K a minimum shear 

rate of 600 s-1 was required to achieve the same result. For both G0PS-PIP6-F17 and PS-

PIP6-F27 the minimum shear rate shifted from 300 to 400 s-1. The appearance of the 

extrudate remained glossy for both additives at shear rates up to 600 s-1. While all additives 

were similarly efficient at eliminating surface defects with or without PEG4K, the presence 

of PEG4K was nonetheless beneficial in terms of enhanced load reductions at low shear 

rates. The mixed PPA blend did not benefit from the addition of PEG4K, however: The 

coadditive did not delay the onset of melt fracture nor increased the load reduction. 

For comparison, for FX9613 with PEG4K the onset of CMF was delayed to even 

higher shear rates and a larger reduction in load was observed. These results are in agreement 

with those reported by Chapman, who attributed the enhanced PPA performance to the 

coadditive acting as an interfacial agent for the PPA.26 The extrusion of the blend of pure 

PEG4K with LLDPE at a concentration of 0.5 %w/w yielded surprising results: It delayed the 

onset of CMF to 1000 s-1 after passing through a threshold shear rate of 300 s-1. The effect of 

pure PEG4K on the LLDPE resin at this relatively high concentration (0.5 %w/w) suggests 

that PEG4K, being a small molecule, also migrates readily to the die wall and provides 

sufficient lubrication to eliminate SS and delay the onset of CMF. 
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 coadditive at an overall 
concentration of 0.5 %

w
/w

 

368(30) 
Stranding 

450(14) 
G

lossy  

425(19) 
G

lossy 

464(11) 
G

lossy 

150(65) 
G

lossy 

452(14) 
G

lossy 

50 s -1 

Extrusion Load, Percent R
eduction and Surface A

ppearance (%
) a,b 

646(15) 
Stranding 

651(14) 
G

lossy  

-- 
C

M
F 

693(9) 
G

lossy 

221(69) 
G

lossy 

655(14) 
G

lossy 

100 s -1 

-- 
C

M
F 

-- 
C

M
F 

-- 
C

M
F 

-- 
C

M
F 

341(66) 
G

lossy 

-- 
C

M
F 

200 s -1 

-- 
C

M
F 

-- 
C

M
F 

-- 
C

M
F 

-- 
C

M
F 

448(56) 
G

lossy 

-- 
C

M
F 

300 s -1 

1037 
G

lossy 

992 
G

lossy  

-- 
C

M
F 

-- 
C

M
F 

594 
G

lossy 

812 
G

lossy 

400 s -1 

1140 
G

lossy 

1110 
G

lossy  

1032 
G

lossy 

-- 
C

M
F 

777 
G

lossy 

915 
G

lossy 

600 s -1 

-- 
C

M
F 

-- 
C

M
F 

1084 
G

lossy 

-- 
C

M
F 

926 
G

lossy 

1000 
G

lossy 

800 s -1 

-- 
C

M
F 

-- 
C

M
F 

-- 
C

M
F 

-- 
C

M
F 

1041 
G

lossy 

1060 
G

lossy 

1000 s -1 
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When comparing Table 5-10 for the coadditive blends with the results reported for 

the pure (Table 5-6) and mixed (Table 5-8) PPA at a concentration of 0.1 %w/w, it can be 

seen that there is no significant improvement in both load reduction and surface defect 

mitigation in the presence of coadditive at the lower concentration. The load reductions for 

the mixed blend, PIP6-F31, PS-PIP6-F25, and G0PS-PIP6-F17 are all unchanged within 

experimental error limits, and the overall appearance of the extrudate resembles that of the 

virgin LLDPE. Consequently, the additives have no significant influence on the extrusion 

process at a low (0.1 %w/w) concentration. 

 The commercial PPA FX9613 with PEG4K still performed remarkably well in the 

presence of coadditive even at a concentration of 0.1 %w/w. The load reduction remained 

large (>42 %), but the addition of PEG4K did not lead to further decrease in load (in contrast 

to the incremental decrease observed at the higher concentration). Furthermore, the onset of 

CMF was only delayed to 800 s-1 as compared to 1000 s-1 for pure FX9613 at 0.1 %w/w. One 

should consider that the FX9613 concentration in the blend is effectively decreased to 0.04 

%w/w in the presence of PEG4K, since it is the overall concentration of PPA and coadditive 

that is 0.1 %w/w. Again, the extrusion with pure PEG4K at 0.1 %w/w yielded surprising 

results as it delayed the onset of CMF to 800 s-1 (as compared with 1000 s-1 for a PEG4K 

concentration of 0.5 %w/w). 
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487(7) 
G

lossy 

474(9) 
G

lossy 

484(8) 
G

lossy 

491(6) 
G

lossy  

305(42) 
G

lossy 

502(4) 
G

lossy 

50 s -1 

Extrusion Load, Percent R
eduction and Surface A

ppearance (%
) a b 

715(6) 
G

lossy 

704(8) 
G

lossy 

717(6) 
G

lossy 

723(5) 
G

lossy  

341(55) 
G

lossy 

731(4) 
G

lossy 

100 s -1 

-- 
C

M
F 

978(6) 
SS 

991(5) 
SS 

998(4) 
SS 

462(56) 
G
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200 s -1 

-- 
C

M
F 

-- 
C
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M
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F 
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C

M
F 
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C

M
F 

-- 
C

M
F 

1007 
G
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G

lossy 

600 s -1 

-- 
C

M
F 

-- 
C

M
F 

-- 
C

M
F 

-- 
C

M
F 
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G

lossy 
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G
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-- 
C

M
F 

-- 
C
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-- 
C
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F 

-- 
C

M
F 

-- 
C
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F 

-- 
C

M
F 

1000 s -1 
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5.7 Droplet size analysis 

 It has been suggested that the optimal average PPA droplet size allowing the 

formation of a stable coating on the surface of the die is around 2 µm.76 Other researchers 

also suggested that the optimal droplet size is between 2-5 µm.10,26,77  

The size of the PPA droplets was determined for selected LLDPE blends (FX9613, 

mixed blend, PIP6-F31, PS-PIP6-F25, and G0PS-PIP6-F17) alone and in the presence of 

PEG4K at concentrations of 0.1 and 0.5 %w/w by optical microscopy. The average droplet 

size and the standard deviation determined for each sample are reported in Table 5-11. 

Considering the magnitude of the standard deviations on the measurements, there are no 

significant size differences among all the samples tested. The average size of PPA droplets 

varies between 1.38 ± 0.29 µm to 2.08 ± 0.47 µm and 1.03 ± 0.25 µm to 1.49 ± 0.33 µm for 

samples blended with and without PEG4K, respectively. A typical image recorded for a 

sample is shown in Figure 5-11. When comparing the droplet size for FX9613 with the other 

samples, the values found are also similar. Keeping in mind that the large variations in 

droplet size make the trends less statistically significant, smaller PPA average droplet sizes 

are nonetheless observed in the absence of coadditives. For example, PIP6-F31 with PEG4K 

at 0.5 %w/w concentration yielded an average droplet size of 1.47 ± 0.37 µm, while without 

PEG4K an average value of 1.20 ± 0.26 µm was found. This result reinforces the generally 

accepted view that encapsulation of the PPA droplets by the coadditive prevents their 

breakup under the influence of high shear forces during processing. However, there is 

obviously no clear link between improved polymer processability and the measured PPA 

droplet size in the current investigation.  
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Figure 5-11: Micrograph at 100× for PIP6-F31 blend with LLDPE at 0.5 %w/w. 
The additive droplets (average diameter 1.20 ± 0.26 µm) are visible as small bright spots. 
 

Table 5-11: Average droplet size for LLDPE blends with selected PPA at 0.5 %w/w and 
0.1 %w/w concentrations with and without PEG4K coadditive 

Sample Concentration 
(%w/w) 

With PEG4K (±)a 
(µm) 

Without PEG4K (±)a 
(µm) 

FX9613 0.5 1.38(0.29) 1.03(0.25) 
 0.1 1.38(0.34) 1.39(0.30) 

 
Mixed PPA 0.5 1.58(0.30) 1.36(0.30) 

 0.1 1.47(0.34) 1.37(0.31) 
 

PIP6-F31 0.5 1.47(0.37) 1.20(0.26) 
 0.1 1.73(0.46) 1.49(0.33) 

 
PS-PIP6-F25 0.5 1.58(0.42) 1.26(0.29) 

 0.1 2.08(0.47) 1.20(0.35) 
 

G0PS-PIP6-F17 0.5 1.40(0.37) 1.41(0.28) 
 0.1 1.50(0.31) 1.41(0.29) 

a Standard deviation calculated for 11 – 84 diameter measurements 
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Chapter 6 – Conclusions and Suggestions for Future 

Work  
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 A series of arborescent polystyrene-graft-polyisoprene copolymers and linear PIP 

samples was synthesized and subsequently functionalized to different levels by 

hydrosilylation with a perfluorohydrosilane. The arborescent polystyrene-graft-polyisoprene 

copolymers were synthesized by a “grafting onto” method, by coupling PIP side chains with 

acetylated PS substrates of different architectures. The PIP side chains and the linear PIP 

samples were synthesized in THF to obtain a mixed microstructure with roughly equal 

proportions of 1,2-, 1,4- and 3,4-units. The hydrosilylation reaction was generally selective 

for the 1,2-isoprene units, but 1,4-units also reacted to a lesser extent. The fluorinated PIP 

arborescent copolymers and linear homopolymers were investigated for their potential use as 

PPA in the processing of LLDPE, mainly at a concentration of 0.5 %w/w. Three samples 

(PIP6-F31, PS-PIP6-F25, and G0PS-PIP6-F17) were selected on the basis of their superior 

performance to be evaluated at 0.1 %w/w and in the presence of PEG4K as a coadditive. A 

mixed PPA blend of PIP6-F31, PS-PIP6-F25, and G0PS-PIP6-F17 was also evaluated at 0.1 

and 0.5 %w/w to examine potential synergistic effects. For comparison, a commercial 

additive (FX9613) and the PEG4K coadditive were evaluated under the same conditions. 

The arborescent copolymers, when blended with LLDPE at a concentration of 0.5 

%w/w, all reduced the load measured during extrusion processing, even though the 

magnitude of the reduction remained within the (5%) experimental error limits in some 

cases. Many of the samples required a minimum (critical) shear rate for good performance, 

suggesting that coating of the die was non-optimal below the critical shear rate. Thus PS-

PIP6-F25 and G0PS-PIP6-F17 at 0.5 %w/w yielded glossy surface between shear rates of 

300 s-1 and 400 s-1. Furthermore, the load reduction reached 20 – 30 % as compared to virgin 

LLDPE for a shear rate of 300 s-1. Linear PIP samples such as PIP29-F25 and PIP29-F35 
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also yielded glossy extrudates beyond 300 s-1 and reduced the load by up to 24 % as 

compared to virgin LLDPE. Good performance improvements were achieved with PIP6-F31 

at 0.5 %w/w, which eliminated SS formation and delayed the onset of CMF to 1100 s-1. This 

additive actually outperformed the commercial benchmark additive at shear rates above 800 

s-1. In general, most linear and arborescent PIP copolymers reduced the load, and some of the 

samples were able to eliminate SS formation and to delay the onset of CMF. No significant 

processability improvements were observed for the mixed blends with or without coadditive 

at 0.5 %w/w, however, with only a slight load reduction and no improvement in the surface 

appearance of the extrudate. The performance of three of the PPA samples was significantly 

improved at 0.5 %w/w with the addition of a coadditive, but these were still outperformed by 

the commercial additive with PEG4K. 

The PPA samples, when evaluated at 0.1 %w/w concentration, all displayed 

decreased performance. The addition of a coadditive nevertheless decreased the load slightly 

in some cases as compared with the same PPA samples blended at 0.1 %w/w without 

coadditive, but without significant improvements in the appearance of the extrudate. The 

commercial additive blended with and without coadditive at 0.1 %w/w again outperformed 

all the PPA under these conditions. 

The size of the PPA droplets dispersed within the LLDPE matrix was investigated. 

The average size of the droplets fell within a relatively narrow range between 1.03–2.08 µm. 

While the standard deviation on the measurements was large, the PPA blended with the 

coadditive at both concentrations yielded larger average diameters as compared with the 

same samples without coadditive. This result is consistent with earlier suggestions that 
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encapsulation of the PPA droplets by PEG reduces the magnitude of shear forces experienced 

by the additive during extrusion. 

On the basis of the results obtained, arborescent polystyrene-graft-polyisoprene 

copolymers appear to have little potential to compete with commercial PPA such as FX9613. 

Nonetheless, fluorinated linear PIP (e.g. PIP6-F31) and very compact branched polymer 

structures (e.g. PS-PIP6-F25) appear quite promising. Linear PIP-F31 eliminated SS and 

delayed the onset of CMF to shear rates above 1000 s-1 at 0.5 %w/w. PS-PIP6-F25 eliminated 

melt defects between 300 and 400 s-1 and reduced the load by up to 28 %. The addition of 

PEG4K to the additive at an overall concentration of 0.1 %w/w had no influence on PPA 

performance, but at 0.5 %w/w it apparently enhanced the performance of larger PPA 

molecules. For G0PS-PIP6-F17, for example, the load at 50 s-1 was reduced by 9.2 % without 

PEG4K and by 30 % with PEG4K.  

Surprising results were obtained for PEG4K blended by itself with LLDPE at both 

0.1 and 0.5 %w/w: Significant improvements in surface appearance were observed, albeit the 

load reduction was only marginal. This nonetheless suggests that PEG4K may have good 

potential as a PPA, in spite of potential product contamination problems. At both 

concentrations, CMF was delayed to higher shear rates and SS was eliminated. However, a 

minimum shear rate was required before optimum performance was achieved. 

In future investigations, the structure and composition of both linear and arborescent 

PIP copolymers could be further optimized to enhance their performance. In the current 

study, linear PIP with fluorination levels between 25 and 35 mol% performed best. Since the 

lower molecular weight linear PIP samples were most efficient, polymers with even lower 

molecular weights (e.g. with ܯ௪, = 1000 – 2000) should be examined as PPA. The most 
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compact arborescent copolymer structures likewise performed best among the branched PPA, 

so further copolymer syntheses incorporating even shorted PIP segments and more compact 

PS substrates (i.e. with shorter side chains) are also worthwhile examining. Other coadditives 

such as polycaprolactone, and different ratios of PPA to coadditive could be investigated, as 

suggested by Duchesne.28 This includes ratios ranging from 1:1 to 1:10, but ratios outside of 

this range (e.g. 2 parts PPA to 1 part coadditive) may also be of interest. Finally, the 

influence of the molecular weight of the coadditive performance would be worthwhile 

exploring. 
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