
Aiding Human Discovery of
Out-of-the-Moment Handwriting

Recognition Errors

by

Ryan Stedman

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2009

c© Ryan Stedman 2009

I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Handwriting recognizers frequently misinterpret digital ink input, requiring human
verification of recognizer output to identify and correct errors, before the output
of the recognizer can be used with any confidence int its correctness. Technologies
like Anoto pens can make this error discovery and correction task more difficult,
because verification of recognizer output may occur many hours after data input,
creating an “out-of-the-moment” verification scenario. This difficulty can increase
the number of recognition errors missed by users in verification. To increase the
accuracy of human verified recognizer output, methods of aiding users in the dis-
covery of handwriting recognition errors need to be created. While this need has
been recognized by the research community, no published work exists examining
this problem.

This thesis explores the problem of creating error discovery aids for handwriting
recognition. Design possibilities for the creation of error discovery aids are explored,
and concrete designs for error discovery aids are presented. Evaluations are per-
formed on a set of these proposed discovery aids, showing that the visual proximity
aid improves user performance in error discovery. Following the evaluation of the
discovery aids proposed in this thesis, the one discovery aid that has been proposed
in the literature, confidence highlighting, is explored in detail and its potential as a
discovery aid is highlighted. A technique is then presented, complimentary to error
discovery aids, to allow a system to monitor and respond to user performance in
errors discovery. Finally, a set of implications are derived from the presented work
for the design of verification interfaces for handwriting recognition.

iii

Acknowledgements

First, I would like to thank my supervisor, Edward Lank, for his guidance and
support throughout my time as a graduate student at Waterloo. I have learned a
great deal from him, and because of him I have accomplished a lot in my short time
here. I would also like to thank Michael Terry, who has played a big role in shaping
the work presented here. Without both of their guidance and insight, this work
would not exist. They also deserve thanks for creating an environment in the HCI
lab where everybody can turn to each other for ideas and support. I would like to
thank all the present and past members of the HCI lab during my study. Without
exception, every person in the lab was always willing to provide advice, assistance,
and encouragement when needed. Outside of the lab, I would like to thank Stacey
Scott for the great feedback she provided on this thesis.

My parents, Larry and Becky Stedman, have always supported me in my goals,
and in my graduate studies this has been no different. They have always been
there with encouragement and support. My sisters, Trish and Katie, have also been
supportive of me throughout my time here. Without the support of my family, I
would never have been able to make it to where I am.

Finally, I would like to dedicate this work to my girlfriend, Kait, who has seen
this through with me from beginning to end. Without her support and encourage-
ment, I doubt that I could have accomplished as much as I have, and I definitely
would not have had as much fun.

iv

Contents

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Motivation. 1

1.2 Error Discovery in Handwriting Recognition 2

1.3 Goals . 5

1.4 Contributions . 5

1.5 Organizational Overview . 6

2 Background & Related Work 8

2.1 Errors in Handwriting Recognition 8

2.2 In-the-Moment Recognition . 10

2.3 Out-of-the-Moment Recognition . 11

2.4 Error Discovery in Handwriting Recognition 13

2.5 Summary . 14

3 Design 16

3.1 Design Space . 16

3.1.1 Separation of Error Discovery and Correction 17

3.1.2 Availability . 18

3.1.3 Proximity of Ink and Recognized Text 18

3.1.4 Modality . 19

3.1.5 Visual Manipulation of Recognizer Output 20

3.1.6 Visual Manipulation of Handwritten Input 20

v

3.1.7 Presenting Hidden Information 20

3.2 Error Discovery Aids . 21

3.2.1 Spellcheck . 22

3.2.2 Visual Proximity . 22

3.2.3 Highlighting Fused characters 23

3.2.4 Highlighting Disregarded Strokes 24

3.2.5 Animation . 25

3.2.6 Text-to-Speech . 26

3.2.7 Typographic Manipulation 27

3.3 Summary . 28

4 Evaluation 29

4.1 Exploratory Evaluation . 29

4.1.1 Differences in Error Discovery Aid Designs 30

4.1.2 Method . 30

4.1.3 Participants . 31

4.1.4 Results . 32

4.1.5 Discussion . 33

4.2 Formal Evaluation . 36

4.2.1 Participants . 36

4.2.2 Experimental Task . 37

4.2.3 Experimental Setup & Apparatus 39

4.2.4 Procedure . 40

4.2.5 Results . 40

4.2.6 Performance of Error Discovery Techniques 42

4.2.7 Limitations . 43

4.3 Summary . 44

5 Confidence Highlighting 46

5.1 Using Recognizer Confidence Values 47

5.2 Evaluating Recognizer Confidence Values 48

5.2.1 Method . 48

5.2.2 Results . 48

5.3 Implications for Design . 48

5.4 Summary . 50

vi

6 Measuring User Performance in a Verification Task 51

6.1 Injecting Artificial Errors to Measure Performance 51

6.2 Evaluation . 53

6.2.1 Method . 53

6.2.2 Injecting Error . 53

6.2.3 Apparatus . 54

6.2.4 Participants . 55

6.2.5 Results . 55

6.3 Discussion . 56

6.3.1 Characterizing User Accuracy 56

6.3.2 Trade-off in Speed vs. Accuracy 58

6.3.3 Study Limitations . 59

6.4 Summary . 59

7 Implications for Design 61

7.1 When are Error Discovery Aids Necessary? 61

7.2 Attempting to Guide a User’s Attention 62

7.3 Proximity and Availability . 62

7.4 Adapting to User Performance . 63

7.5 Summary . 64

8 Conclusion and Future Work 65

8.1 Research Goals . 65

8.2 Contributions Revisited . 66

8.3 Future Work . 67

8.3.1 Limitations of Evaluation 67

8.3.2 Further Study into Error Discovery Aids 68

8.3.3 Error Injection . 68

8.4 Summary . 69

Appendices 70

vii

A Study Letters and Forms 70

A.1 Information-Consent Letter for Chapter 4 Formal Evaluation 72

A.2 Feedback Letter for Chapter 4 Formal Evaluation 75

A.3 Information Letter for Chapter 6 Study, Timed Participant Group . 76

A.4 Information Letter for Chapter 6 Study, Untimed Participant Group 78

A.5 Consent Form for Chapter 6 Study, Both Participant Groups 80

A.6 Feedback Letter for Chapter 6 Study 81

References 82

viii

List of Tables

3.1 The different dimensions in the design space for error discovery aids. . . 17

4.1 False corrections for each condition 42

5.1 Confidence values from a selected sample of forms filled out by par-
ticipants . 49

6.1 Summary of the experimental results, giving the average performance
results for each participant. 55

6.2 Correlations between recognition errors caught and injected errors
caught . 56

ix

List of Figures

1.1 A handwriting sample from a practicing nurse 2

2.1 The pen input panel on a Windows XP Tablet PC. An example of in-the-
moment recognition . 11

3.1 Highlighting spelling errors in recognition results. 22

3.2 The visual proximity aid. 23

3.3 The highlighting fused characters aid. 23

3.4 The highlighting disregarded strokes aid. 24

3.5 The animation discovery aid. 25

3.6 An exemplification of the text-to-speech technique. 27

3.7 The typographic manipulation technique 28

4.1 Interface used for the first task in the exploratory evaluation. 32

4.2 The experimental tasks . 38

4.3 Performance results from the experimental evaluation 41

6.1 Injected errors caught vs. real errors caught 57

x

Chapter 1

Introduction

Because handwriting is an ambiguous form of input, no matter how good handwrit-
ing recognizers get they will always be prone to error in their recognition results.
For handwriting recognition to be usable for applications where a high input accu-
racy is needed, such as in medical or research fields, user verification of recognizer
output is necessary. However, humans are also error prone, and are likely to miss
recognition errors in a verification task. This thesis looks at the problem of aiding
humans in the verification of handwriting recognition results.

1.1 Motivation.

Handwriting recognition is used in a variety of systems as a means of natural user
input. Applications range from personal note taking, such as with Microsoft Journal
[13], to recording patient medical information in a health-care setting, such as with
FusionForm Desktop [15]. Depending on the application, the potential severity of
errors in recognition changes.

In a personal note-taking application, the information that is being recognized
is meant for personal use. While errors in recognition still have some potential for
some harm, for example a misrecognized appointment date, the non-critical nature
of the input makes the risk of error acceptable.

In a health-care setting, however, the risk of error is much less acceptable, as
errors can have a much more serious impact. For example, changes in a patient’s
vital signs can be an early indication of health problems, and can be used to start
preventative treatment before the patient’s condition worsens. If a patient’s vitals
are recorded into a system using handwriting recognition, there is the potential for
a recognition error to occur on an irregular vital sign. Later review of that patient’s
vital signs will miss the early indicator of a health problem, which can seriously
impact the future health of that patient. This health-care scenario was the original
motivation for the work presented in this thesis.

1

Figure 1.1: A handwriting sample from a practicing nurse, with the result from the
handwriting recognizer used with the Anoto pen underneath.

A solution to the issue of errors in handwriting recognition is to enable users to
verify and correct recognizer output. However, this will not always ensure that all,
or even most, of the errors in recognition get corrected. In a health-care setting,
medical professionals are often very busy and pressed for time, and in these condi-
tions it can be easy for a user to rush over verification and miss critical errors. This
situation can be worsened if that user is fatigued, for example if they are at the
end of a 12-hour shift, making them less careful and more prone to missing errors
in verification.

Additionally, in health-care settings a majority of the medical information is
input into forms, referred to as “charting” by medical professionals. This provides
a clear separation of the information gathered for easier analysis, as well as acting
as a reminder for what information needs to be collected. However, verifying highly
structured data can quickly become repetitive as the amount of input that needs
to be verified increases. This can cause users to become bored or habituated and
stop paying close attention to the verification task, missing errors as a result.

There are a number of factors which can reduce the reliability of human ver-
ification, increasing the amount of residual error left behind by a user. However,
creating an interface which aids a user in discovering errors can help reduce the
amount of residual error left by a user, as well as reduce the impact of confounding
factors on error discovery.

1.2 Error Discovery in Handwriting Recognition

Handwriting recognition systems are currently able to achieve accuracies greater
than 90%. While this is a fairly high accuracy, it is not perfect. As the amount of
input that a recognizer must interpret increases, the amount of errors that can be
expected in the output also increases. Moreover, handwriting is an ambiguous form
of input, and as such recognizers will never acheive perfect accuracy, regardless of
how close they come.

Acknowledging the issue of errors in handwriting recognition, five key research
areas have been defined for the handling of errors in recognition-based interfaces
[12]. These are: error reduction, which seeks to improve recognizer performance;
error discovery aids, which seeks to allow easier identification of errors; error correc-
tion techniques, which seek to speed user correction of recognition errors; validation

2

of techniques, which studies the effectiveness of the previous research directions; and
toolkit level support, which simplifies incorporation of recognition error handling
techniques into applications. All five of these areas of research are important for
creating recognition interfaces which can make reliable use of handwritten input,
but existing research does not reflect this.

The primary goal of the majority of researcher in handwriting recognition has
been in the first described area for error handling research: error reduction. Re-
searchers study both off-line (scanned image) and on-line (stroke-based) algorithms,
with the specific goal of improving the reliability of recognition algorithms (for a
survey, see [14]). Another area of error handling research that has seen a signifi-
cant amount of work in has been techniques for correcting errors. Previous work
has looked at reducing the amount of input necessary from a user to correct an
error, for example by providing access to n-best lists [4], as well as supporting the
correction task when using stylus input. However, users still need to discover any
errors in recognition output before they are able to perform any correction, a prob-
lem not represented in existing research. This thesis explores how to design error
discovery aids: techniques which can be used to aid users in identifying handwriting
recognition errors.

There are a number of factors which can affect the verification task that need
to be taken into account when considering the problem of error discovery: Whether
recognition is performed in-the-moment or out-of-the-moment, how the handwritten
input is structured, how much recognizer output a user must verify at a time, if there
are any time constraints, and whether or not the user verifying is the user who wrote
the input. These factors are described in more detail below.

• In-the-Moment vs. Out-of-the-Moment. There are two different scenarios in
which a user can view and verify the results of a handwriting recognizer’s
output. In-the-moment, where they can view the recognizer output as they
write, and out-of-the-moment, where there is some delay in time between
writing and when recognition can be performed and verified by a user. In
an in-the-moment recognition scenario, possible with devices such as Tablet
PCs, a user can verify the correctness of recognition while the intended input
is still fresh in their mind, making the task of discovering errors simple. On
the other hand, in out-of-the-moment recognition a user may no longer recall
what the intended input was. This changes the nature of the verification task
from one of verifying that the recognizer output fits the intended input, to
a verification that the recognized output matches the handwritten input, a
task which requires more cognitive overhead and time to complete.

• Structural constraints on input. There are varying levels of constraint that
can be imposed on the structure of handwritten input: from completely un-
structured, such as with sketch and diagram recognition; to partially struc-
tured, such as with free-form input of handwritten text, where the input
follows certain constraints imposed by the language being written, yet has

3

little constraint on the information being input; to fully structured, such as
with form-filling, where the structure of the input, as well as the type of in-
put, is constrained based on the individual form fields. Unstructured input
faces the problem of recognition errors due to recognition performed on input
that is not handwriting. Partially constrained input has the benefit of some
context, where a user may notice a recognition error in the output due to the
fact that it does not make any logical sense with regards to the surrounding
context of the sentence. However, additional difficulties arise in error discov-
ery when a large amount of input is recognized, where a user may miss errors
in recognition, because of the volume of recognition to verify. Fully structured
input gains even more contextual benefits, as misrecognized results may not
fit in where they are recognized, such as a number in a field where only let-
ters are expected. On the other hand, it can become monotonous to verify, as
users may lose focus during the verification of large amounts of closely similar
input.

• Amount of verification. The user may only be verifying the correctness of a
small amount of recognized data, or they may need to verify a large quantity
of output. As the amount of recognized data that a user must verify grows,
and therefore the amount of time spent on the verification task increases, it
may cause boredom, habituation or fatigue in users, causing them to miss
errors.

• Time constraints. Any time constraint imposed on a user in the verification
task may impact that user’s performance in error discovery. With no time
constraint a user can take their time in verification, making sure that no errors
are left in the recognized results. With a time constraint a user may be forced
to rush through the verification task, missing errors in recognition because
they are being less careful in verification. The tighter the time constraint, the
more errors a user is likely to miss.

• User Verifying. Whether or not the user who is verifying is the user who
originally wrote the ink can impact the verification task. If the user verifying
the output is not the user who originally wrote the input, errors could be
missed due to misinterpretation of the original user’s handwriting. With the
original user verifying the output this problem is lessened, however people
can sometimes misinterpret their own handwriting.

To keep this problem manageable for the purpose of this thesis, the problem of
aiding error discovery has been scoped to the following three constraints:

1. Out-of-the-moment : The work presented in this thesis looks at the verification
process as an out-of-the-moment problem, meaning that there is some delay
in time between when the user writes the information and when they are able
to view and verify the recognition results.

4

2. Form-filling : The verification scenario looked at will be focused on input into
a multiple-field form.

3. Batch Verification: Finally, the verification problem will include a user having
to verify a batch of documents, rather than just one.

Most of the work presented in this thesis assumes some kind of time constraint
on the verification task, and that the user verifying is the user who input the
handwriting, though the error discovery aids presented don’t necessarily address
these issues.

1.3 Goals

In this thesis I will attempt to address the problems stated above with the following
goals:

Goal 1. To explore different design possibilities for the creation of error
discovery aids. Due to the lack of prior work in aiding users in error discovery,
only a single design exists for an error discovery aid (confidence highlighting) [12].
This lack of prior designs leaves little which can be used to inform further designs
of error discovery aids. To achieve this goal, a design space was created which
describes the different dimensions which can be used in the design of an error
discovery aid. From this design space, a number of designs for error discovery aids
were created.

Goal 2. Identify methods which can be used in a verification interface
to aid users in error discovery, reducing the number of residual errors –
errors that remain after a user verifies results. With an understanding of the
possible designs for error discovery aids (Goal 1), the next step is to identify which
error discovery aid designs provide real benefit in aiding users to discover errors.
Evaluations were performed on the designed error discovery aids, as well as on the
existing confidence highlighting discovery aid to achieve this goal. Additionally, a
method is explored to allow the system to monitor and respond to user performance
in error discovery to reduce residual error.

1.4 Contributions

This thesis contributes the following original ideas and knowledge to the field of
Human-Computer Interaction.

1. Design space for error discovery aids. A design space is presented for the
creation of error discovery aids for handwriting recognition.

5

2. Design and evaluation of seven error discovery aids. Designs for seven error
discovery aids are described, and later implemented into verification interfaces
and evaluated.

3. Visual proximity technique. Of the seven designs described, the visual prox-
imity technique is shown to provide a significant benefit in users’ performance
discovering errors in handwriting recognition.

4. Technique to measure performance of a user in error discovery. A method is
presented which can be used to allow a verification interface to keep track of
a user’s performance in error discovery during verification.

5. Data on Microsoft’s handwriting recognizer confidence values. An evaluation
is presented providing data on the accuracy of the recognizer’s confidence
values, which can be used to inform the use of the confidence highlighting
discovery aid.

1.5 Organizational Overview

This thesis is divided into 8 chapters:

Chapter 2 presents background to the problem, and presents previous work.
Motivation to the problem is presented with regard to the state of handwriting
recognition systems. The problem is then broken down to explain the differences
between in-the-moment recognition and out-of-the-moment recognition, and how
the problem is more significant in the latter. Existing research on aiding users in
error discovery is then presented.

Chapter 3 presents an exploration of design possibilities for the creation of error
discovery aids. A design space is first laid out which describes the different possible
factors that could be made use of in the creation of error discovery aids. A number
of designs for error discovery aids are then described.

Chapter 4 provides an evaluation of the error discovery aids presented in Chapter
3. First, an exploratory evaluation is presented which was used to guide and refine
the designs presented in Chapter 3. Then, an experimental evaluation to test the
effect of three of the discovery aids on user performance in verification is presented
against a control condition, and the results are discussed.

Chapter 5 explores the potential of the confidence highlighting technique, which
has been suggested as an error discovery aid in prior work, and examines in which
scenarios it would be appropriate to use as an error discovery aid. An evaluation
of confidence values from the Microsoft handwriting recognizer is presented, and
the implications from the results on the use of confidence highlighting as an error
discovery aid is discussed.

Chapter 6 presents a method of injecting artificial errors into recognition results
for the purpose of measuring the performance of a user in an error discovery task.

6

An experiment and its results are described which evaluates this method of mea-
suring performance. The chapter concludes with a discussion of the results of the
experiment.

Chapter 7 discusses the implications for the design of an error discovery inter-
face which can be derived from the work presented in previous chapters. First,
it examined when the use of error discovery aids is actually necessary. Next, the
dangers of attempting to guide a user’s attention toward potential errors are dis-
cussed. Results of the formal evaluation of the visual proximity technique, and
its implication on the use of proximity and availability are discussed. Last, the
performance measurement from Chapter 6 is discussed, and its possible uses in
verification interfaces are examined.

Finally, Chapter 8 concludes this thesis by summarizing how the research goals
were achieved. The contributions made by this work are re-visited, and areas for
future work are suggested.

7

Chapter 2

Background & Related Work

This chapter provides background information on the problem of aiding users in
error discovery for handwriting recognition, and an overview of related work. The
problem of error discovery is discussed in an in-the-moment recognition scenario.
The problem of error discovery is then looked at with respect to an out-of-the-
moment recognition scenario, and the differences and difficulties between the two
scenarios are discussed. Finally, a review of related research in the problem domain
of error discovery for handwriting recognition is presented. First, though, the state
of handwriting recognition systems are examined, and the significance of errors in
recognition results, and how they are handled, is highlighted.

2.1 Errors in Handwriting Recognition

There are two classes of handwriting recognition systems: on-line and off-line recog-
nizers. Recognition researchers define these categories based on the input provided
to their algorithms. On-line systems receive stroke information for input, while
off-line systems receive scanned images [14]. Within these two classes there are a
number of different strategies used in the recognition algorithms between different
recognizers, but these two classes describe the recognition scenario these systems
are used in, which in turn affect the amount of error in their recognition results.

On-line handwriting recognizers obtain handwritten input through some form
of digital pen device, such as any device which uses stylus input. Because the
input from the pen is directly recorded by a computational device, attributes of
the user’s handwriting are available to the recognizer instead of just the image of
the handwriting, such as stroke segmentation, the order in which strokes are input,
as well as speed and timing information. All of this information, as well as the
handwritten input itself, can be used to help recognize the input [14]. Because of
the extra information available to on-line handwriting recognizers, their recognition
accuracy is better on average than off-line recognizers. Academic evaluations show
that the accuracy of on-line handwriting recognizers can vary between 87-96% [5, 9].

8

Off-line handwriting recognizers are used to obtain recognition results from im-
ages of a user’s handwriting, for example, performing recognition on a scanned
image containing handwriting. The accuracy of off-line recognizers are much lower
than that of on-line, with academic evaluations acheiving recognition rates between
50-80% [7, 21, 25], depending on the experimental setup.

While reducing these error rates is a valuable goal, it has proven elusive in prac-
tice. Some of the major contributing factors to the error rates observed are a result
of differences in writing styles between users. Geometric variations in writing – that
is, the differences between users in the position, baseline orientation and slant of
their handwriting – adds to the complexity of recognition, increasing the possibility
of error [17]. Allograph variations for individual characters – that is, differences
between users in how individual characters are drawn – are another source of com-
plexity in recognition, and can cause errors [17]. On-line recognizers often make use
of the sequence in which strokes are added when performing recognition, causing
any sequencing variations of strokes between users to cause difficulties for the rec-
ognizer. Neurophysical and biomechanical variations, physical differences between
users which affect their ability to write, can affect the quality of handwriting [17],
making recognizers less robust for certain users.

The accuracy of academic evaluations of handwriting recognizers show relatively
good recognition accuracy rates, but there are a variety of other errors that occur
in real world usage that are generally not represented in academic evaluations.
Shomaker [16] lists a variety of factors that can produce errors not represented in
academic evaluations: discrete noises, canceled material, badly formed shapes, ma-
terial legible by humans but not the algorithm, misspelled words, words not in the
recognizer’s dictionary and device generated errors. Additionally, most recognizers
do not deal with the problems of post-hoc editing, correction of spelling errors and
letter insertion or deletion [14].

As a result of the differences in handwriting between users, handwriting is an
inherently ambiguous form of input. Humans will often misinterpret other peoples’
handwriting, and will occasionally misinterpret their own handwriting. Because
of this ambiguity in human handwriting, modern handwriting recognition systems
produce significant rates of error in their output. While there is still a lot of work
that can be done to improve the accuracy of handwriting recognition, because of
this inherent ambiguity no recognizer will achieve perfect accuracy; they will always
contain some degree of error. For handwriting recognition to be used in any system
where a high input accuracy is necessary, methods need to be in place to enable
handling of errors produced.

As we noted in the introduction, Mankoff and Abowd [12] have defined five
areas of research for the handling of errors in recognition-based interfaces:

1. Error reduction. Reducing the number of errors produced by a recognizer, in
other words increasing recognition accuracy, decreases the amount of errors
that need to be handled by a user or system. Researchers in the fields of

9

document analysis and recognition, as well as pattern recognition, produce
extensive research toward this goal (for examples, see [26, 5]).

2. Error discovery. An error must first be discovered by either the system or a
user before that error can be corrected. Techniques can be made to allow the
system to discover errors, or aid users in the discovery of errors, which is the
focus of this thesis.

3. Error correction techniques. Error correction techniques are used to support
users in the correction of discovered errors. The default method of error
correction would be re-entry of the desired input, however methods exist to
reduce the amount of work necessary, for example by providing access to n-
best lists [4], as well as providing correction mechanisms with the use of pen
input, which can be seen in the Cue-TIP interface [18].

4. Validation of techniques. To ensure that techniques in the previous areas of
research are providing positive benefits for error handling, they need to be
validated. Most research produced in any of the previous three areas contain
some form of validation for any new technique proposed.

5. Toolkit level support. Toolkits with validated methods of handling errors can
simplify the integration of these methods into a handwriting recognition inter-
face, ensuring that these error handling methods are properly implemented.
An example of this can be seen in OOPS, a toolkit for error correction tech-
niques in a recognition interface [11].

For the output of handwriting recognizers to be used with a high degree of
confidence in the accuracy of their results, successful methods of handling errors in
recognition are needed. This has been recognized by the research community, as
research exists in the areas of error reduction, error correction techniques, validation
of techniques and toolkit level support. Yet no research exists on aiding users to
discover errors in handwriting recognition. The reason for this omission in existing
research is that the problem of handling errors in handwriting recognition has been
looked at primarily in the scope of in-the-moment recognition.

2.2 In-the-Moment Recognition

The most common approach to error discovery is to rely on the user to indicate
an error in the recognized text, without any system output to assist in the dis-
covery process [12]. In fact, almost no research exists on error discovery aids in
the verification of handwriting recognition results. Even in related fields such as
Optical Character Recognition, where residual error rates and human correction
are frequently highlighted as motivators for improved recognition, no research has
been found that studies how best to support the error discovery task during human
verification of recognition results.

10

In handwriting recognition, one reason for this lack of research may be that
most systems have been designed for “in-the-moment” verification of recognition
results, where a user is able to see the output of the recognizer as they write and
correct recognition errors as they occur. The input panel of a Tablet PC is a typical
instantiation of this in-the-moment recognition process, seen in Figure 2.1. As the
user writes, the recognized text is displayed above or below the ink input and any
errors can be corrected immediately. In-the-moment recognition is only possible
using on-line recognition systems, as off-line systems necessitate a delay between
handwriting and recognition.

Figure 2.1: The pen input panel on a Windows XP Tablet PC. An example of in-the-
moment recognition

In a system where in-the-moment recognition is used, the problem of getting
a user to notice and identify an error is simplified. By being able to quickly and
easily view the output of the recognizer while a user is still writing, and while the
intended input is still fresh in the user’s mind, discovering errors in recognition
becomes a trivial task. In an in-the-moment recognition system, the more signifi-
cant problem is instead providing methods methods for correcting errors using pen
input. However, not all handwriting recognition systems provide in-the-moment
verification of recognition results, making the problem of discovering errors much
more difficult for the user.

2.3 Out-of-the-Moment Recognition

In-the-moment verification of recognition results is not always possible. Devices
such as Tablet PCs, which can afford on-line in-the-moment recognition, often have
applications that apply recognition to handwriting some time after the user has
written the input. This behavior can be seen in Microsoft Journal [13], where a user
may write a large amount of text and then apply a recognizer hours or days later.
Although in-the-moment recognition is possible, it may not always be appropriate.
For example, a user may be using Journal to write notes and ideas for a paper they
are writing. While most of the input is unnecessary to perform recognition on, they
may wish to copy parts of what they wrote into their paper, instead of having to
transcribe from one source to another. In this scenario, recognition is only needed
on select parts of input, making the use of in-the-moment recognition inappropriate
for the entire input.

11

Delay between writing of input and recognition is a characteristic of off-line
recognition algorithms. With off-line recognizers, a user must write the entirety of
the input that is to be recognized before they are able to scan that input into the
system and perform recognition. Examples of use can be seen in companies which
process large amounts of hand-filled paper forms from customers, such as banks
and insurance companies.

Other technologies exist for on-line handwritten input which create a similar
recognition scenario to off-line recognizers, in that a delay between input and recog-
nition is required. Examples of this are the Anoto [1] and Livescribe pulse [8] digital
pens, both which allow users to record their handwriting with use of a digital pen
and specially patterned paper, and download the recorded handwriting to a com-
puter at a later time. With these devices a user writes some amount of handwritten
input where no display is available to verify and correct recognition results, instead
having to download the recorded input information from the device to a computer
to perform recognition on, and then to verify and correct the results.

This delay between writing and recognition creates an “out-of-the-moment”
recognition and verification problem, rather than in-the-moment. With out-of-the-
moment recognition, recognition is a separate post-handwriting process, discontin-
uous from input. In other words, the capture of ink occurs, the ink is stored and
saved, and the user goes on to other tasks. At some later time, a user (either the
same user or a different user) returns to the digital ink and applies handwriting
recognition. Out-of-the-moment verification is challenging because the information
loses much of the context that is available in-the-moment. Users are no longer ac-
tively capturing information, instead, the information can be many hours old, and
the intent of what was to be written is no longer fresh in the user’s mind.

While out-of-the-moment verification may occur with both Anoto pen technol-
ogy and Tablet PCs, the important characteristic of out-of-the-moment verification
is that recognition results are not presented during capture. The raw digital ink can
be an aid in verifying the recognizer output during out-of-the-moment verification,
but if the ink was written quickly or by someone other than the person verifying,
it may be difficult to decipher and correlate with recognizer output. If illegible ink
coexists with out-of-the-moment verification, users may miss errors.

An additional problem that is a result of out-of-the-moment recognition is the
possibility of there being a batch of documents that need to be recognized and then
verified by a user, creating additional potential for recognition errors to be missed.
Over the course of hours or days, a significant amount of data can be captured and
stored by an Anoto pen or by a user of Tablet applications like Microsoft Journal.
Users may then apply recognition to, and verify the correctness of, a large number
of documents consecutively, and, as users examine the documents, boredom, habit-
uation, or fatigue may cause them to miss errors made by the recognizer. While
these missed or residual errors may not be significant in, for example, a classroom
notetaking task, they may be very costly in a health care setting.

12

2.4 Error Discovery in Handwriting Recognition

Out-of-the-moment recognition can make the verification task more difficult for the
user than in-the-moment, increasing the probability of errors in recognition being
missed by a user. To reduce this risk of residual error, error discovery must be
supported by the recognition interface. This section discusses related work in error
discovery, looking at both aiding users in error discovery as well as automated error
discovery by the system.

The most common approach to error discovery is to rely on the user to indicate
an error in the recognized text, without assistance from the system in the discovery
process [12]. Users of these systems examine the input provided to the system and
compare it to recognizer output displayed on the screen. This is not sufficient to
ensure that all errors in recognition are discovered, though, as users are prone to
error themselves, and are likely to miss some of the errors in recognizer output. To
decrease the possibility of a user missing an error in recognition, and increase con-
fidence in user accuracy, techniques must be used which aid users in the discovery
process.

The only technique found in the literature to aid users in error discovery is
the use of recognizer confidence values. This can be seen exemplified in Mankoff
and Abowd’s PenPad system [12], which changes the colour of a word based on
confidence values from the handwriting recognizer. Whether these confidence visu-
alizations aid the discovery of handwriting recognition errors is an open question.

Displaying recognizer confidence values as an aid to error discovery have been
studied in speech recognition interfaces [19, 20]. In these speech recognition in-
terfaces, as in Mankoff and Abowd’s PenPad system, recognizer output is flagged
when the confidence values for the output are low. In speech recognition, these
visualizations have been found to have any significant effect on a user’s ability to
discover errors [20]. Researchers note that the presentation of confidence values in
speech recognition may have a negative effect on error discovery, causing users to
miss errors that do not have low confidence values [20]. Though users are found to
be more likely to discover errors that have been highlighted with low confidence,
these visualizations seem to draw users’ attention to flagged data, causing users to
miss errors not highlighted by the system.

An alternate approach to error discovery is to try to eliminate human verifica-
tion and to instead automate the process. Baber and Hone [2] experimented with
both thresholding on confidence values and with the use of a rule-based system
to determine if an error is present in a speech recognition interface. Threshold-
ing suffers the same problem of recognizer inaccuracy as confidence visualization,
specifically that the recognizer may have high confidence in an incorrect result. As
well, a rule based system for diagnosing errors has proven extremely complex to
create. A rule-based system frequently needs knowledge of the context in which
something is being written. For example, ‘!ate’ would be a less probable inter-
pretation than ‘late’ in normal contexts, but in the context of taking notes in a

13

programming course, the probability of ‘!ate’ would increase. Any automated error
discovery technique might be unaware of context-based variations in allowable out-
put, forcing human intervention to both inform the recognizer and validate the use
of appropriate context. As a result of the difficulty of automatic error discovery,
Mankoff claims that only reliable source for error discovery is an explicit notification
of an error by direct user input [12]. However, as noted by Bourguet [3], although
the users are primarily responsible for notifying the system of errors in recognition,
the system is still responsible for enabling the discovery of errors.

Despite the lack of research literature on error discovery, handwriting recog-
nition systems do contain error discovery aids. Microsoft’s Journal both displays
recognizer output near handwritten text, and supports confidence highlighting for
batch recognition tasks. These techniques can be used both in real time, for in-the-
moment verification, and for batch validation of a large set of documents, i.e. for
out-of-the-moment verification. While in use, there is no research supporting that
these techniques aid error discovery.

2.5 Summary

In this chapter, the background and motivation for the work presented in this thesis
has been described. While handwriting recognition systems are able to achieve
high accuracy rates, there are a number of factors which will prevent handwriting
recognition systems from achieving perfect accuracy; handwriting recognition will
always contain some degree of error. Because of this unreliability in recognizer
output, recognition interfaces need to support the handling of recognition errors
for handwriting recognition to be used in any system where a high input accuracy
is necessary.

While the handling of errors in handwriting recognition has been acknowledged
in research, little work exists that looks at the problem of discovering errors in
recognition. The reason for this lack of research is that the problem of error handling
has been looked at largely in an in-the-moment recognition setting, where the user
is able to view the output of the recognizer as they write any input. In an in-
the-moment recognition scenario, the problem of error discovery becomes mostly
trivial, as the user can quickly verify the output of the recognizer as they write,
and the main problem becomes correcting the recognizer output using pen input.

The problem changes, however, in an out-of-the-moment recognition scenario,
when recognition is not performed on the ink until some time after input, causing
a delay between recognition and verification. In this scenario, the user is no longer
in the moment that the information is being recorded while verifying, and may
no longer recall what the intended input was, making errors difficult to recognize.
While the presentation of the original ink input can be used to give users something
to compare the results against, users may misinterpret the ink themselves, missing
errors in recognition. With out-of-the-moment recognition, the problem of batch

14

verification is also possible, where a user must verify the results of recognition
performed on a large amount of data, which could cause boredom, habituation or
fatigue in the user, causing errors to be missed.

Very little related research exists which examines the issue of error discovery for
handwriting recognition systems. The only suggested technique found in literature
is a confidence highlighting technique, where recognition results with low confidence
values from the recognizer are highlighted to bring a user’s attention to those areas.
However, while there has been no evaluation of this technique for handwriting
recognition, results of its use in speech recognition have implied that it may have
negative effects on a user’s ability to discover errors, and may not be suitable for
achieving high accuracy in error discovery. Automated methods of error discovery
have also been proposed for recognition systems, such as thresholding and rule-
based systems, where the system decides if an error is present rather than relying
on user verification. However, these also suffer from issues that cause them to be
unreliable for use in obtaining high accuracy results.

15

Chapter 3

Design

Due to the lack of previous research on the subject, no proven methods exist for
aiding users in error discovery for handwriting recognition. Given this lack of
previous designs to inform the design of new techniques, the first goal of this chapter
is to provide a framework for the exploration of design alternatives. From this
framework, we create a set of designs for aiding users in the discovery of handwriting
recognition errors.

First, a design space is described for the design of discovery aids. This design
space describes in detail seven different factors which can be used and varied in the
creation of error discovery aids, with examples given for each. Next, designs for
seven error discovery aids are presented and described in detail. The error discovery
aids presented are representative of a majority of the design space, and are designed
to solve specific problems in recognition or shortcomings in the discovery process.

3.1 Design Space

To explore design alternatives for error discovery, we explored different features
which can be varied to design new discovery aids. The set of features identified
form an initial space of potential designs, commonly called a design space in Human-
Computer Interaction work [10].

This design space is a useful tool for identifying additional factors that can be
taken advantage of in the design of a solution, and in understanding how these
factors can be varied. In addition, it is also a useful tool in understanding how dif-
ferent designs relate to one another when attempting to compare multiple designs.
While our design space does not exhaustively cover all possible factors, it does cre-
ate a space from which to pull ideas for designs of error discovery techniques. The
different dimensions identified in this design space are depicted in Table 3.1, and
described in greater detail below.

16

Dimension Description
Separation of Error Does a user correct an error
Discovery and immediately after discovery, or are
Correction discovery and correction separate

tasks?
Availability Is both the ink and recognized text

available on screen? Availability can
vary between static, to on-demand
availability, to changing over time.

Proximity of Ink and How close is the digital ink to the
Recognized Text recognized text? Proximity can vary

from ditantly separated to
overlapping.

Modality What modalities are used to present
information to the user? Single and
multimodal presentations are possible.

Visual Manipulation of Is the recognized output visually
Recognizer Output augmented in any way? Visual

manipulations can be used to make
errors in recognition stand out to a
user.

Visual Manipulation of Is the display of the digital ink
Handwritten Input visually augmented in any way? Visual

manipulations can be used to draw a
user’s attention to areas of ink which
may have been misrecognized.

Presenting Hidden Is any information which usually
Information remains hidden presented to the user?

Recognizer metadata, historical data,
and contextual information can all be
presented to the user in ways which
may aid error discovery.

Table 3.1: The different dimensions in the design space for error discovery aids.

3.1.1 Separation of Error Discovery and Correction

There are two steps to handling errors in a recognition interface from the user’s
perspective: discovering errors and correcting errors. These steps can be performed
in parallel (when a user discovers an error they immediately correct it) or they can
be performed separately (a user flags recognition errors, leaving the correction of
flagged errors until later). Performing the two steps in parallel may be somewhat
faster overall, but separating the two steps may allow users to focus more directly
on the error discovery process, allowing them to discover more errors.

17

In addition, in some systems it may be enough to signify that an error is present,
leaving the correction step for when the information is needed again. For example,
in a health-care setting, medical professionals are often pressed for time, and ver-
ifying and correcting handwritten information may take up time that they could
be spending with patients. In this scenario, only having to flag errors could save
a significant amount of time, especially if there is a large amount of information
that needs to be recognized. As long as the original ink is stored alongside the
recognized results, the next user that needs that data will know where any errors
are, and can make any necessary corrections.

3.1.2 Availability

Availability describes the presence or absence of the input (ink) data or the rec-
ognizer (text) output. A static technique would display ink data continually on
the display alongside the recognized text. While having all of the data constantly
visible allows users freedom in their visual search, the display can become crowded.
Having all of the data constantly visible also encourages skimming of the data,
instead of a careful comparison of the two, which can make errors that are less
apparent more likely to be missed (e.g. ‘A1’ misrecognized as ‘Al’).

An alternative to static display is to provide information on-demand. Either
recognizer output or the original ink is displayed on the screen, and the correspond-
ing information (ink or text, respectively) is hidden. When the user selects some
portion of the data on the screen, the corresponding information is displayed. For
example, the original ink handwriting could be displayed on the screen and, as
the user mouses over the handwriting, the recognized text could be displayed in
a tooltip. This on-demand mechanism has the benefit of limiting the amount of
information on the display, allowing the user to focus on a portion of the data when
verifying recognition. Microsoft Journal includes a type of on-demand recognizer
feedback: Journal can display recognizer output just above each word, allowing a
user to scan the document to identify recognition errors.

Beyond on-demand techniques, we consider animated techniques, where the
state of the information displayed changes over time. For example, rather than
having handwriting simply appear when the user calls up a form, the timing infor-
mation from the ink data could be used to “replay” the creation of the handwritten
form. As handwriting appears, the recognizer output could appear alongside the
handwriting, attempting to recreate the feel of in-the-moment verification tech-
niques where, as the ink is created, it is immediately recognized.

3.1.3 Proximity of Ink and Recognized Text

Placement of original ink data and recognizer output is another factor that can be
manipulated to affect the discovery of recognition errors. At one extreme, the ink
data could exist on a sheet of paper beside the computer and recognized data could

18

be displayed on the computer screen. This approach has the benefit of preserving
the original context of information capture.

However, data could be merged on the display to varying degrees. For example:

• An electronic version of the original form and the recognized data inserted into
a similar form could be displayed side by side. Side-by-side presentation of full
data forms can preserve the context of the original information. For example,
if an error occurs in a form-filling application because the user wrote outside
of the input area for a field, keeping the digital ink in its original context can
cause that error to be noticed, where that error can be missed if the ink for
each form field was moved to the recognized text.

• The data from the original form could be placed next to the recognized data
on an on-screen form. Creating a spatial proximity between the original and
recognized information can speed the scanning and comparison of the two.

• Alternatively, one type of data could be placed directly behind the other
using a “shadow” style presentation. Shadowing the two data types could
cause dissimilarities in character and word shapes to stand out. For example,
if the ascenders and descenders of a recognized word don’t match that of the
original ink, the dissimilarities between the two word shapes can stand out to
a user at a glance.

3.1.4 Modality

Current verification interfaces use visual display of information: ink input and
recognizer output are compared visually by a user to determine whether recognizer
output is correct. For example, when converting a selection of ink to recognized
text in Windows Journal, the recognized text is shown in a textbox, with the digital
ink of the word under the cursor shown next to the textbox. It is, however, possible
to use other modalities to communicate information to the user, such as sound or
speech. Multimodal error correction techniques have been explored in literature
[22], but multimodal error discovery techniques have not.

As an example of the use of alternative modalities, handwriting could be dis-
played on the computer screen and recognizer output could be spoken by the com-
puter using a text-to-speech engine. Using two modalities – visual for the original
ink data and auditory for the recognition results – might improve the reliability
of the error discovery task by eliminating the need for the user to compare two
separate pieces of information, the ink and the output, by visually scanning back
and forth between the two items.

19

3.1.5 Visual Manipulation of Recognizer Output

Visual manipulations can be applied to the output of the handwriting recognizer
to attempt to make errors in recognition, or possible errors in recognition, more
apparent to the user. At a basic level, visual manipulation can include simple
factors such as the use of a programmer’s font (fonts designed to reduce ambiguities
between characters) for displaying recognized text.

More active manipulations of output include the confidence highlighting tech-
nique, where the areas of output with low recognition confidence are visually high-
lighted. This attempts to bring a user’s attention to these areas of low confidence
as they are more likely to contain a recognition error. Presenting alternative rep-
resentations of the recognizer output may also be beneficial. For example, using
the health-care motivation in the introduction, one piece of medical information
that is usually collected is a patient’s weight. Instead of, or as well as, showing the
numerical value of that weight, that value could be shown as a point on a graph
against that patient’s normal weight range. This would allow a medical professional
to quickly interpret the output, and notice if a value is out of place, which could
be a result of a recognition error.

3.1.6 Visual Manipulation of Handwritten Input

When digital ink is displayed in the recognition interface, visual manipulations to
that ink can be used to draw a user’s attention to areas likely to contain error. For
example, occasionally a handwriting recognizer will misinterpret a stroke as noise
and omit it when recognizing the input, when the stroke was intended input. If it
were possible to identify the strokes omitted as noise by the recognizer, there may be
a benefit in making those strokes highlighted when viewed alongside the recognized
results. This could draw a user’s attention to the highlighted area making them
more likely to discover any recognition errors due to intentional input disregarded
as noise.

Visual manipulations on the handwritten input can be varied: from no visual
manipulation; to changing a characteristic of the ink, such as the size or colour of
strokes; to adding or removing content to the visual presentation of the ink, for
example drawing lines over the ink to show how the recognizer is segmenting words
allowing users to quickly notice ink that has been improperly segmented.

3.1.7 Presenting Hidden Information

Verification interfaces often have access to a variety of information which is usu-
ally left hidden to the user. Handwriting recognizers provide a host of metadata
associated with its recognition results. Historical data is often available to an in-
terface related to the data being recognized; for example, in recording patient data
in a health-care setting, prior information about that patient usually exists. Also,

20

there is usually a lot of contextual information inherent in data being recorded,
such as the language being used, or the form-field the information resides in. The
presentation of hidden information to a user could be used to aid them in error
discovery.

Recognizer confidence values, one of the pieces of metadata provided by the rec-
ognizer, have been used in previous systems to highlight words with low recognizer
confidence values, to bring the user’s attention to these words. While it may be
that highlighting words with low confidence may hamper a user’s overall ability to
discover recognition errors [20], this has not been studied for handwriting recogni-
tion results. Additionally, even if highlighting of results with low confidence reduces
a user’s error discovery accuracy, there may be some other way to present or use
confidence values to benefit error discovery. Besides confidence values, recognizers
also contain other metadata, such as n-best lists and ink segmentation data, all of
which may also be presented in ways which aid users in the discovery of errors.

Historical values of previous data entered may be accessible to the interface,
which could be used to present the data recognized with some context to historical
values. For example, in a numerical form-field it could be useful to highlight values
which fall outside of the normal range of values entered into that field. If an
irregular number is recognized due to an error in recognition, this could be used to
make that stand out to a user.

Contextual information of data being entered could be extremely effective at
highlighting errors in recognition. Information about the language being entered
could be used to bring a user’s attention to broken language rules, which could be a
result of a recognition error, such as a spelling or grammar errors. In a form-filling
scenario, contextual information about the type of information that is expected in
the individual fields could allow unexpected values caused by recognition errors to
be flagged for the user to check.

3.2 Error Discovery Aids

With the aid of the design space presented in the previous section, a host of designs
for error discovery aids were brainstormed. This section presents the designs of
seven error discovery aids: spellchecking, visual proximity, highlighting fused char-
acters, highlighting disregarded strokes, animation, text-to-speech and typographic
manipulation.

As was discussed in the introduction, the problem of error discovery for hand-
writing recognition was narrowed to an out-of-the-moment form-filling scenario for
this thesis work. Therefore, the discovery aids considered are designed in the con-
text of a verification task for recognition results in a form-filling application, where
the handwritten information in the form has already been collected. Additionally,
each of the discovery aids has been designed, and implemented, as extensions in
functionality to a regular textbox. When a description of a technique talks about

21

displaying ink and recognized text at the same time, the space underneath the
textbox has been expanded and has an added area to display the ink. The hand-
writing recognizer from Microsoft’s Tablet PC SDK is used for recognizing digital
ink, as well as obtaining any additional information needed from the recognizer,
such as ink segmentation information.

The seven error discovery aid designs are discussed in more detail below. For
each design, there is a description of what the aid does and how it helps discovery,
a description of any user interaction required with use of the aid, and a description
of how the aid can be implemented in a verification interface.

3.2.1 Spellcheck

Modern handwriting recognition systems generally use some kind of dictionary to
aid in the recognition process. Even still, there are occasions when the recognizer
is unable to match the handwriting to a word in the dictionary, in which case
character recognition is performed. If character recognition fails on a word, a
spelling error can occur. The spellcheck discovery aid brings these kinds of errors to
a user’s attention through the automatic underlining of any spelling errors present
in recognized text, as is common in most modern document editors.

Figure 3.1: Highlighting spelling errors in recognition results.

Spellchecking is implemented using Microsoft Word’s spellchecker to identify
words that contained spelling errors, and then underlining those errors with a red
wavy line, which is usually associated with spelling errors in modern software. An
example of this can be seen in Figure 3.1. The use of Microsoft’s spellchecking
software ensures that a large, robust dictionary is available, making false positives
unlikely.

Once an underlined spelling error is identified by a user as an error in recog-
nition, the user can then manually correct that error. However, most document
editors also provide a context menu for spelling errors which contains a list of sug-
gested corrections. This discovery aid can provide this context menu as a means of
supporting error correction.

3.2.2 Visual Proximity

Placing the digital form of the handwritten ink in close proximity to the recognized
text allows users to quickly compare the two, making it easier to notice differences

22

caused by recognition errors. However, this is not always possible. Adding fields
to display the ink alongside the recognized text can quickly overload the display,
which becomes more of a problem the greater the number of fields there are in the
form. While only either the ink or text need be always visible, the user must be
able to access the corresponding data (text or ink respectively) for verification.

The visual proximity technique hides the digital ink, only showing the form
fields containing the recognized text. When a user gives focus to a form field, using
either the mouse or tab, the digital ink is displayed above that field. Users can
then compare the ink to recognized output, as shown in Figure 3.2, and correct any
errors found.

Figure 3.2: The visual proximity aid.

3.2.3 Highlighting Fused characters

A characteristic of human handwriting that causes recognizers difficulty, which can
result in recognition errors, is when characters are fused together, meaning that two
or more characters are overlapping or connected in some manner. This technique
detects fused characters in the digital ink input, which is displayed statically next
to the recognized output, and changes the colour of that ink to bring a user’s
attention to these areas, making them more likely to discover any errors due to
fused characters, seen in Figure 3.3.

The implementation of this discovery aid identifies fused characters by analyzing
how the recognizer is interpreting each individual stroke of the handwriting. If a
single stroke is recognized as more than one character, it is assumed that multiple
characters were written in a single stroke. If the recognizer returns more than
one character, it is assumed that the stroke contains two connected characters. A
shortcoming of this technique is that it will only identify characters that are fused
due to being written in a connected-cursive style, and not disconnected characters
overlapping one another. However, connected cursive handwriting can still be an
issue for some recognizers, making this technique useful.

Figure 3.3: The highlighting fused characters aid.

This discovery aid could be incorporated into a verification interface in two ways.
The ink displayed on the interface can be highlighted statically from the moment the

23

interface is displayed. This could encourage users to skim over results at the start of
the verification task to quickly identify errors due to fused characters. Alternatively,
the highlighting could be enabled through some kind of user interaction, for example
enable highlighting only when the user has given focus to the textbox containing
the respective text. As opposed to a static presentation, this could discourage
skimming and instead encourage users to go through recognized results one field at
a time, yet still bring their attention to fused characters. In either case, once a user
discovers an error with this discovery aid, they can manually correct that error.

3.2.4 Highlighting Disregarded Strokes

Handwriting recognizers must occasionally disregard strokes as random noise, as
humans writers will sometimes touch the writing instrument to the writing surface
without the intention of creating a stroke. Without the ability to disregard some
strokes, handwriting recognition would be far more error prone, due to this artifact
of human handwriting. However, due to the ambiguous nature of handwritten
input, recognizers are not always accurate in determining which strokes are intended
input and which are not; occasionally, intentional strokes get disregarded as noise
causing the recognition to fail. As in the technique that highlights fused characters,
this technique displays the handwritten ink next to the recognized text, changing
the colour of the strokes that have been disregarded as noise to draw a user’s
attention to these areas. An example of this discovery aid in use can be seen in
Figure 3.4.

Disregarded strokes are detected in the implementation by using the recognizer’s
segmentation information to break the ink into a series of words, and each word
into a series of strokes. Each stroke is then individually recognized and compared
to the recognized value for the word that the stroke belongs to. In case a stroke
may be part of a multi-stroke character, each stroke is also recognized with the
previous stroke in the word, as well as the next stroke in the word, and compared
with the recognized result for that entire word. In both the single and multi-stroke
comparisons, if the recognition of any stroke(s) is not found in the recognized result
for the entire word, that stroke is assumed to have been disregarded as noise by the
recognizer, and its colour is changed. This discovery aid can be used in an interface
in the same ways as the highlighting fused characters aid.

Figure 3.4: The highlighting disregarded strokes aid.

24

3.2.5 Animation

One of the main benefits in-the-moment handwriting recognition has in error dis-
covery is that a user is able to view the output of the handwriting recognizer as
they write. This allows them to quickly compare the recognizer output against
what they are writing, while their intended input is still fresh in their mind. This
can make the discovery of errors a trivial task, as long as some attention is paid by
the user to the recognizer output.

The animation discovery aid attempts to recreate the benefits of in-the-moment
recognition in an out-of-the-moment setting by drawing the digital ink exactly as it
was written while displaying and updating the recognizer output as each additional
stroke is added. This allows users the benefit of being able to compare the output
of the recognizer to the ink input in much the same manner that is possible in an
in-the-moment error discovery scenario, which can be seen in Figure 3.5.

Figure 3.5: The animation discovery aid.

An additional benefit of animation over in-the-moment recognition, is that users
are no longer in the state of inputting information, allowing them to focus their
attention on discovering errors. For example, in an in-the-moment recognition
scenario, a user may be writing information relating to a task that they are currently
performing, dividing their attention between the task and writing. In this scenario,
a user may be more focused on the task they are performing, not being careful in
verifying recognition correctness, and missing errors as a result. With the animation
discovery aid, the benefits of in-the-moment recognition are present, but a user’s
attention will be solely on verification.

It is necessary for the animation discovery aid to be user-activated, to ensure
that the user’s attention is focused, since it is not useful if the user is not looking.
However, there are a couple of ways that animation could be activated in a veri-
fication interface. One method would be to allow users to activate animation on
a single field at a time, in the order of their choosing, by a user giving focus to a
field, using the mouse or tab. Once animation is activated on a field, it needs to
play out before the user is able to correct any errors discovered, since the content
of the recognized text field changes throughout the animation.

25

Animation can also be set to play out on all the form fields consecutively with the
press of a play button. As the animation plays out on the entire form, the interface
can allow users to flag fields which they have discovered errors in, highlighting those
fields for correction after animation has completed. Alternatively, the animation
could be paused by a user to allow correction of errors as they are discovered, either
through use of a pause button on the interface, or by allowing the user to click on
a field to indicate that an error is present and they want to switch from discovery
to correction modes. Once the user has finished correcting, the animation can be
resumed by pressing the play button again.

There is a trade-off in the speed in which users can verify recognized output with
the use of this technique. Having the ink drawn out is much slower than making
everything visible initially and allowing the user to scan. However, animation
speeds can be increased to much greater than the original input speed, increasing
verification speed. Also, a speed for accuracy trade-off is acceptable in situations
where high accuracy is necessary.

3.2.6 Text-to-Speech

The text-to-speech technique speaks the recognized text using a text-to-speech
engine while showing the handwritten ink. Each field is spoken serially, highlighting
the ink that is being spoken. There are two potential benefits to using this cross-
modal verification technique. First, the user does not need to repeatedly scan
back and forth between the input and output to identify any errors. The user can
focus solely on the input and listen for the output. Second, as a user reads the
handwritten ink they create an expectation of what they will hear; if the speech
output does not conform to that expectation, it can stand out as being incorrect,
which could signify an error.

The text-to-speech technique, exemplified in Figure 3.6, is activated by the
user clicking a play button, which causes the form fields to change from showing
textboxes with the recognized text to showing the handwritten ink. Starting with
the first field in the form, text-to-speech is performed on the recognized results of
the field, and the ink for that form field changes colour so a user knows which field
is being spoken. To make the speech easier to understand, numbers, combinations
of numbers and letters, and non-alphanumeric symbols are explicitly read. For
example, for a hyphen, the text-to-speech engine says the word “hyphen” rather
than leaving a pause. Similarly, a long number such as 109183 would be read by
the text-to-speech engine as “one zero nine one eight three”.

There are a two ways that text-to-speech can be implemented in a verification
interface to allow users to correct errors that they discover. First, the interface can
allow a user to pause the playback of text-to-speech, switching back the form fields
from displaying ink to showing the textboxes with the recognized text. Pausing
could be enabled with the use of a single pause button for the entire interface,
or by allowing users to click an ink field to indicate that an error is present that

26

Figure 3.6: An exemplification of the text-to-speech technique.

needs to be corrected. Second, users could be allowed to flag any suspected errors
that they hear by clicking on the ink that they believe contains an error. Once
the text-to-speech engine has spoken all of the fields, the form fields redisplay the
recognized text and the background colour of a field that has been flagged by a
user is highlighted. Users can then correct any errors that exist in the recognition
results.

Similar to the animation discovery aid, the drawback of text-to-speech is, poten-
tially, speed. Despite the fact that people can understand speech at speeds of up to
300 words per minute (or 5 words per second), text-to-speech may be slower than
other techniques. However, if the primary goal is to increase the number of errors
identified, slower sequential techniques such as text-to-speech merit consideration.

3.2.7 Typographic Manipulation

Handwriting recognizers sometimes recognize characters as numbers, or numbers
as characters. They may also incorrectly insert punctuation or symbols due to
spurious ink strokes or miss decimal points due to noise filtering. These kinds of
errors can be difficult for users to notice, as the misrecognized output can closely
resemble the correct output. For example, if the input of the letter ”I” (upper-case
i) is misrecognized as a 1 (one) or l (lower-case L), a user could easily miss this
error if they are not examining the output carefully enough.

The goal of typographic manipulation is to allow these kinds of errors to stand
out by changing the typographic characteristics of letters, numbers, or punctuation
and symbols, making them distinct from one another. Users select one of the three
character types to alter the typographic characteristics of in the recognized text,
for example with use of a slider, as seen in Figure 3.7. When a character type is
selected to be manipulated, the font size of all characters, across all form-fields, of
that type is enlarged and the font colour is changed. This allows users to quickly
scan the recognized results for any out of place characters, for example a number
where no numbers are expected, as well as creating a clear disambiguation between
any characters similar in shape, which could be confused.

27

Figure 3.7: The typographic manipulation technique

3.3 Summary

This chapter explores the range of possible designs of error discovery aids. A design
space was presented laying out the design dimensions which can be used to aid in
the exploration of designs for error discovery aids. With the aid of this design space,
several designs for error discovery aids were created for use in an out-of-the-moment
form-filling verification interface. These designs represent the first set of techniques
designed specifically to aid users in the discovery of handwriting recognition errors,
outside of confidence highlighting.

28

Chapter 4

Evaluation

The designs presented in the previous chapter are all potentially useful as error dis-
covery aids. However, evaluation is needed to determine important factors in their
design and use, such as how users perceive these designs, and if the designs could
be improved in a way which would improve user perception and use. Additionally,
the effects of these techniques on a user’s performance in error discovery need to
be evaluated to determine if they are beneficial to the task of error discovery.

This chapter presents evaluations performed on the error discovery aids from
the previous chapter. First, an exploratory evaluation is described which was used
to guide and refine the designs. Next, a formal evaluation on three of the most
promising aids against a control is presented. This formal study evaluated the
effectiveness of the three techniques in aiding users to discover errors in a carefully
designed out-of-the-moment handwriting recognition verification task.

4.1 Exploratory Evaluation

The final designs of the error discovery techniques described in this thesis were based
on the results obtained from a iterative evaluation and refinement of these aids.
While the ultimate goal of the error discovery aids is to enable users to easily and
quickly discover handwriting recognition errors, the goal of our initial evaluation
was to determine how users perceive these discovery aids, identify any difficulties
that may arise in their use, and refine the aids to maximize their effectiveness.

An additional goal of this evaluation was to determine which of the techniques
proposed are the most likely to be successful in aiding users in the discovery of
handwriting recognition errors. Though each of the techniques have potential to
succeed, the large number of techniques proposed creates a difficulty in attempting
to evaluate the effectiveness of all of them in aiding error discovery against a control,
as well as against each other. Narrowing the scope of the evaluation is necessary
before embarking on any formal experimental evaluation of a set of discovery aids.

29

This section provides a detailed account of the formative evaluation performed
on the error discovery aids, and the results obtained from the evaluation. The
results are then analyzed, and their effect on the final designs are discussed.

As a result of this evaluation, changes were made to the designs of the visual
proximity, animation and typographic manipulation techniques. Additionally, re-
sults of this evaluation imply that the visual proximity, typographic manipulation
and text-to-speech techniques had the greatest potential for success, and should be
explored further.

4.1.1 Differences in Error Discovery Aid Designs

Several of the error discovery techniques used in this evaluation were earlier design
variants of the techniques presented in the previous chapter, and were redesigned
as a result of this evaluation. These differences are described below.

• Visual Proximity : The original design of the visual proximity technique dis-
played the recognized ink in a tooltip when a user hovers the mouse over the
recognized form field, rather than displaying it statically when the field has
focus.

• Animation: In the animation technique, the displayed results of the recog-
nized text were updated after each segmented word was drawn out, rather
than after each additional stroke is added.

• Typographic Manipulation: The original design of this technique had the typo-
graphic properties of the three different character types statically set, rather
than allowing them to be manipulated by the user. Letters were the default
12pt Times New Roman font, numbers were set to a 14pt Arial font, and the
font for punctuation and symbols was set to 16pt Arial Black.

The “highlighting fused characters” aid changed ink colour of fused characters
to light blue, and the highlighting disregarded strokes aid changed ink colour to
orange. The spellchecking and text-to-speech discovery aids were the same as the
currently described designs.

4.1.2 Method

Several weeks prior to the evaluation, each participant was asked to fill out a short
survey using stylus input on a tablet PC, which allowed the use of samples of
each participant’s handwriting to recognize and use in the exploratory evaluation.
By collecting the handwritten data at an earlier time, we replicate an out-of-the-
moment recognition scenario. The questions asked in the survey, shown in Figure
4.1, were designed to obtain a variety of handwriting data from the participants

30

(i.e. words, numbers and alphanumeric sequences), so that the discovery aids could
be tested on a variety of data types.

The think-aloud method was used during the evaluation. Participants were
asked to perform a set of tasks, and vocalize their thoughts during the task. This
technique gives the benefit of allowing insight into how a user perceives any system
that they are using, rather than just observing them perform the task. The results
of the think-aloud are used to obtain a greater understanding of any problems
encountered during the task. Comments made by participants during a think-aloud
can also help identify solutions to problems encountered.

In the first task that participants performed, they were shown the interface
with the participant’s handwritten response to each question, and the recognized
text above it (Figure 4.1). The recognized text displayed was manipulated using
a typographic manipulation technique, and spelling errors were underlined. The
fused character and disregarded stroke highlighting discovery aids were also used
in the interface. Participants were asked to find any recognition errors and repair
them as quickly as possible, thinking aloud as they did so.

In the second task, participants were asked to use the animation technique in
a second experimental interface. In this interface, only a single form field was
displayed at a time. The field contained random selections of ink input from the
previous interface. Participants activated the animation technique on the field
by pressing a button. As animation was only applied to a single field, users did
not have the ability to stop playback. The goal of this task was to discover how
useful participants found animation, i.e. if they found it any easier to identify any
errors when animation was used. This task was repeated several times, with several
different selections of the participant’s handwriting.

For the final task the participants used the text-to-speech technique. Again,
only a single selection of handwriting was visible at a time. However, by this point
the participant had already viewed the recognized results of their handwriting twice,
so handwriting from different users was shown in case a participant remembered
errors in output from a previous task. The recognized text was not visible to the
user during the task. Instead, for each selection of input used, only the digital ink
was shown, and a text-to-speech engine spoke the recognizer output. Participants
were asked whether or not they believed an error existed in the recognized output
based on what they heard, as compared to the ink they viewed. The goal of this
task was to determine how well a user could identify an error based only on text-
to-speech output, and to determine if anything could be improved in the way the
technique spoke the recognized text.

4.1.3 Participants

The evaluation consisted of three participants: two male graduate students in com-
puter science (P1 and P2) and one female (P3), who worked as a registered nurse
in a long-term care home.

31

Figure 4.1: Interface used for the first task in the exploratory evaluation.

4.1.4 Results

During the first task, both P1 and P2 were confused as to what the difference was
between the two highlighting colours in the ink, which slowed them down until
their meaning was explained. P3, on the other hand, realized within a couple
of minutes that the blue highlighting meant that characters were fused. Once
explained, P1 noted he found the highlighting to be useful in discovering a couple
of the errors present due to disregarded strokes. Neither P2 nor P3 were able to
use the highlighting to their benefit.

P2 found the different font types very useful for quickly spotting certain kinds
of errors, specifically when numbers were erroneously mixed into words, or when
special characters were present that were not supposed to be (in one field it rec-
ognized a ‘£’ where there should have been a ‘6’). P1 and P3 on the other hand
did not find the font manipulations useful in discovering errors. In one instance it
actually hindered P1, when he was uncertain if a character was a front-slash (/) or
an italicized ‘l’. To figure out which character it was he had to delete it and re-type
the character. Afterward, P1 noted that if there were a more clear disambiguation

32

between the different character types, he would not have had any problems.

Spellchecking was found to be useless as an error discovery aid in this task. Due
to the dictionary-based fitting of recognition results in the Microsoft recognizer,
discussed more in the following section, no recognizer output contained any spelling
errors, even in the case of a recognition error.

For the second task, none of the participants found the animation of the ink to
be of any use in discovering errors. Both P1 and P2 found that the handwriting was
being drawn too quickly, hindering visual comparison of the ink to the recognized
text. P2 also noted that comparing the handwritten ink to the recognized text
was made even harder since individual words in the ink, and their corresponding
recognized text, were not always visually aligned; a result of the size differences
between handwriting and typeset text. As a result, both P1 and P2 found it easier
to just look at the recognized text after it was written out.

All of the participants found that the text to speech technique to be effective in
discovering errors. Without being able to see the recognized text, all participants
immediately noticed if a word was misrecognized the first time they heard it spoken,
though they were unable to identify exactly what the error was.

4.1.5 Discussion

Based on the results of this evaluation, a number of implications about the designs
of these error discovery aids were drawn, leading to changes in several of the designs.

Ink Highlighting Techniques

Though neither P2 nor P3 were able to make any use of either of the ink highlighting
techniques, the fact that P1 was able to use it to discover errors is encouraging. Part
of the reason that P2 and P3 did not find it useful was that they did not have as
much of a mental connection between a recognition error and a highlighting mark,
where P1 had more of an understanding of the significance of a highlighted stroke.
The original intention of these two techniques was to draw a user’s attention to the
highlighted areas without implying that an error is present. These results imply
that for these techniques to be useful, the user needs to be aware that highlighting
signifies potential errors.

The confusion seen by both P1 and P2 over the different colours could be solved
by explaining the meaning of the two colours before using the interface. However,
it is not completely necessary that a user understands the mapping of colour to
error type. As long as they have a mental connection between the highlighting and
the possibility of an error these discovery aids may prove effective. Their confusion
over colour interpretation could instead be resolved by highlighting all errors with
the same colour. A highlighted area would simply map to a potential error, rather
than a specific type of potential error.

33

The main cause of failure of the ink highlighting techniques is due to the in-
accuracy of the methods used in the implementations of these discovery aids for
identifying areas in the ink, fused characters and disregarded strokes, that they are
attempting to bring to a user’s attention. The “highlighting disregarded strokes”
aid suffers from a large number of false positives. While some disregarded strokes
are correctly highlighted, the number of false positives makes the use of this tech-
nique equivalent to simply comparing ink to recognized text without any highlight-
ing attempting to guide a user’s attention. The “highlighting fused characters” aid,
on the other hand, suffers from only being able to identify characters fused due to
being drawn in a single connected stroke, leaving a large number of fused characters
unidentified. In addition, results of the use of this discovery aid in the exploratory
evaluation seem to show that characters fused in a connected stroke do not pose
a problem for recognition by the Microsoft recognizer, as none of the highlighted
areas represented a recognition error.

While inaccurate, the methods used by these two discovery aids to identify fused
characters and disregarded strokes are useful in illustrating the potential of these
techniques. Highlighting can be used as a starting point to create better aids that
guide users attention to problem areas of ink. However, to be useful, improved
algorithms to identify likely problem areas in ink are also needed.

Spellcheck

The absence of spelling errors in any of the recognition results made the use of
the spellcheck technique useless in this evaluation, and thus no information was
gained on how users were able to use it. However, the absence of spelling errors
in recognition results does show that using spellchecking as an error discovery aid
may not be useful at all for the Microsoft handwriting recognizer. Handwriting
recognizers use dictionary-based fitting of recognition results so stringently that
little to no spelling errors will ever be present in their recognition results.

However, spellchecking does still merit consideration as a discovery aid. Al-
though spelling errors are very unlikely to occur, and did not occur during the
exploratory evaluation, we have observed occurrences of the Microsoft recognizer
producing spelling errors as a result of errors in recognition in our own informal
observations of this discovery aid. While very infrequent, spellchecking can aid a
user in quickly identifying these fringe cases, and correcting any errors that are
present.

Typographic Manipulation

The typographic manipulation technique had some success, particularly for P1.
However, as noted by P1, further disambiguation is required between the differ-
ent character types. Even with the font differences used in the interface for this
exploratory evaluation, there is still the possibility of confusion. We refined the

34

implementation of the typographic manipulation aid to instead make the typogra-
phy of the three character types change through user control, causing a selected
character type to be typographically distinct from the other two. This ensures that
no confusion will exist between character types, as only one character type will
stand out at a time.

Animation

The animation technique failed in its intended purpose, with none of the partici-
pants being able to use it in the intended manner. One of the main reasons that it
was observed to have failed was that participants were unable to quickly compare
the ink words to their recognized text as the ink was being drawn. Participants
instead waited for the animation to complete and then compared the input and
output when they were both fully visible. While the speed at which ink was drawn
may have been a factor, animation speed was not much faster than a user would
have input the information. Further slowing of the animation speed would also
make the technique less efficient, as users would have to wait for a slow animation
to complete.

Another possible reason that the participants found performing any comparison
during animation difficult was that each recognized word would only appear once
the entire ink for that word had been written out. As soon as recognized text
appeared, the user would be distracted by the following ink word being written out.
While no users commented specifically on this distraction, it had been observed in
our own personal use of this discovery aid. The current implementation of the
animation technique addresses this problem by updating the recognition results
after each additional stroke is drawn. This creates a smoother animation, rather
than the abrupt change of an entire word appearing in the textbox, causing less
visual distraction.

Text-to-Speech

The text-to-speech technique, in this limited evaluation, proved to be an effective
method to aid users in the discovery of handwriting recognition errors. Participants
had no trouble in understanding its use, or in identifying that errors were present in
recognition results. Although the participants were unable to identify specifically
what the error was, this would not be necessary in a verification scenario, as they
could re-check the field that they identified an error in after the text-to-speech
completed, and correct any errors present. This technique gives users a way to
identify where errors are present, separating error discovery and error correction.

35

4.2 Formal Evaluation

While many of the error discovery aids described in the previous section may seem
obvious candidates to experiment with, no comparisons exist between the various
aids. Whether any of the designs, or even which dimensions described in the design
space, help or hinder the error discovery process is unknown. Furthermore, none of
these discovery aids have been compared to a basic error discovery scenario, such
as comparing a handwritten page of notes to on-screen recognition results.

This section presents an evaluation of three of the the error discovery aids, and
compares these techniques to a control condition. While there are more than three
discovery aids designed, attempting to properly evaluate all of them against each
other, as well as a control, would make the size of the study unmanageable. To
keep the size of the study manageable, while still learning as much as possible,
three techniques were chosen and implemented into separate verification interfaces
based on their observed effectiveness during the think-aloud evaluations, and on
the coverage they collectively provide of the design space. The error discovery aids
evaluated were the visual proximity aid, the typographic manipulation aid, and the
text-to-speech aid. A control condition was used as a baseline to compare the three
discovery aids against.

The goal of this evaluation is to study a set of discovery aids which represent
a large portion of the design space, to study the aids and their ability to aid
users in the discovery of handwriting recognition errors, and to generalize from
this initial set of designs. To achieve this an experiment was designed to contrast
the three experimental techniques listed above with a control condition. In the
control condition, recognizer output was displayed on the computer screen, and the
participant would compare the output to data on the original handwritten paper
form created using an Anoto pen.

As a result of this experimental evaluation, it was found that while the typo-
graphic manipulation and text-to-speech aids had no significant effects on a user’s
ability to discover errors, the visual proximity aid did provide a statistically signif-
icant improvement in the number of errors in recognition caught by a user. Also,
results of the typographic manipulation aid imply that attempting to guide a user’s
attention may be detrimental to their performance in error discovery.

4.2.1 Participants

16 volunteer participants were recruited from the university campus with the use of
fliers posted around the campus advertising the study. The participants consisted
of 11 females and 5 males, with ages ranging from 19-55 (mean = 29.1 , sd = 9.2).
Participants received $50 (CDN) remuneration for participating in the experiment.
Each participant was informed that they were free to end their participation in the
study, and would still receive a prorated remuneration to the amount of $10 per
session participated in.

36

4.2.2 Experimental Task

The experiment involved a five-session form-filling transcription and verification
task using Anoto pen and paper technology. Participants all completed five one-
hour sessions in a five day period. The tasks performed by the participants on each
day are as follows:

• On the first day of the experiment, participants transcribed data from a set
of five forms onto blank forms printed with the Anoto pattern.

• On the second, third and fourth day of the experiment, the participants re-
turned, verified the recognized data from the first day’s forms using a veri-
fication interface which made use of one of the error discovery aids, or the
control, and transcribed five new forms.

• Finally, on the last day of the experiment, participants verified the forms
they recorded on day 4, were interviewed on their impressions of the error
discovery aids, and were paid for their participation.

The 24 hour delay between input and verification ensured that participants
would remember little about the specific content that they had transcribed, so that
the verification task mimicked an Anoto-pen-based out-of-the-moment verification
task.

Each verification session consisted of a separate condition, where one of four
error discovery aids were present in the verification interface:

• Control. Results were shown without any error discovery aids present. Par-
ticipants compared results to the ink on the original form.

• Visual Proximity. Handwritten ink is shown above the textbox containing
the recognized text of that ink, when that textbox has focus.

• Typographic Manipulation. The typography of different character types in
recognizer output can be altered to stand out through use of a slider bar at
the top of the form verification interface.

• Text-to-Speech. By pressing a play button at the top of the form verification
interface, text-to-speech is used to speak the recognition results while showing
the user the ink.

To simplify the verification task for each of these conditions, we made some effort
to ensure that text on the computer display was not ambiguous, so that errors in the
recognized text were not missed because of any ambiguities in that text. We used
10 pt Andale Mono font on a 21” computer display (a programmer’s font). This
font was chosen because it is designed to reduce the ambiguities between specific

37

Figure 4.2: The experimental tasks. Left shows an example of the paper form filled out
by participants. Right shows the verification interface used for the control condition.

characters that may be confused for one another, such as 1 (one) and l (lower-case
L). As well, participants were shown the results they were to verify in a form laid
out exactly the same as the physical form that they transcribed.

Sessions for days 2 through 4 of the experiment proceeded as follows. Partic-
ipants were reminded that the goal of the experiment was to test techniques for
finding errors in handwriting recognizer output. They were instructed to find and
correct any errors present in recognizer results as quickly and accurately as possible.
Next, participants were given a verbal overview of the discovery aid to be used to
find errors that day, and the experimenter demonstrated the aid’s use. Participants
performed two blocks: a practice block on the current error discovery aid and an
experimental block using the same aid. During the practice block, participants
verified the recognition results of two forms filled out by the experimenter. During
the experimental block, they verified the data on the five forms they transcribed
on the previous day. The screen layout for the verification task is shown in Figure
4.2. The computer recorded the time taken for correction, the errors caught, and
any false corrections participants made.

To further constrain the verification task, a three minute time limit was im-
posed on the verification of each form (shown as a count-down clock in the top
left of the display). This was used to prevent participants from taking too long in
the verification task, mimicking a real-life scenario where the person verifying is
attempting to complete the verification task in a timely manner. Given unlimited
time, a participant may spend more time verifying than a user would in a real-
world time constrained task, catching more errors as a result. During all practice
and experimental blocks, participants were given the original data forms that they

38

transcribed. Though it was not necessary for users to use the original forms for the
visual proximity condition, they were still provided with the original forms in case
there was a recording error with the Anoto pen.

Upon completion of the experimental block on days two through four, par-
ticipants transcribed five new forms for use on the following day. Participants
transcribed 20 forms over the course of the experiment (five per error discovery
technique). The forms were modeled to look like an order form. Each form had 53
fields with a variety of different information types, including item names, product
codes and prices. The data for the forms was taken from various online product
catalogs. Figure [4.2] depicts the form used in the transcription task.

At the end of each transcription task, the ink from each form was downloaded
from the Anoto digital pen and saved. Although the ink was saved digitally, the
recognition results displayed to the user in the verification tasks were not the re-
sult of handwriting recognition performed on participants’ handwriting. Instead,
the displayed results were predetermined. Recognition data for each form set was
seeded with the same set of errors, regardless of the participant’s writing. This
allowed the experiment to be controlled for the number and type of errors for each
participant for each form for each condition. Each block of five forms for each
condition contained 25 predetermined errors. The set of errors was chosen at ran-
dom from actual handwriting recognition errors that occurred during a exploratory
evaluation.

4.2.3 Experimental Setup & Apparatus

Due to the restrictive licensing and software costs of creating custom paper ap-
plications using Anoto software and paper-space (the pattern information that is
recognized by Anoto pens), the paper forms were created using Stanford’s Paper-
Toolkit [24]. Using papertoolkit, as well as the paper-space patterns provided with
the toolkit, it was possible to create forms layered with dot-patterns recognizable
by Anoto pens. A listener service was then created that would recognize when an
Anoto pen containing information from the experimental forms was docked, and
would start the download process.

During the download process, each stroke captured by the pen was categorized
depending on which form field it belonged to, and the individual form fields were
converted to Microsoft’s ink serializable format (ISF) and saved. To determine
which field each stroke belonged to, the first packet (point) of that stroke was
compared to the predetermined bounds of the fields. By only looking at the start
packet, this allowed participants to draw strokes outside of form field bounds, as
would commonly happen when writing a letter with a descender. This allowed
more natural, and less constrained writing, to help avoid errors in verification due
to participants misreading their own handwriting due to it being overly constrained.

Ink was converted from Anoto format to ISF through a one to one mapping of
stroke coordinates from Anoto coordinate space to ISF coordinate space. When

39

displayed to the user in the visual proximity and speech conditions, the ink was
scaled to fit the ink display areas, as the coordinates given by the Anoto pen are
not on the same scale as ISF.

The canned recognition results used in the experiment were kept in XML. The
stored data also contained information identifying recognition errors, thus allowing
for automatic logging of errors caught during the experiment. Before participants
performed the verification task, each form filled out by the participant was manu-
ally checked for transcription errors. If transcription errors were present, we altered
the canned recognition results to incorporate these errors. This prevented an er-
ror in transcription from causing an unintentional recognition error in our canned
recognizer output.

In the transcription tasks, participants wrote using a Logitech io2 digital pen on
a patterned form. For the verification tasks, participants used a desktop computer,
with a 21” 1280x1024 screen, and, in the text-to-speech condition, participants
wore jWin JH-V100 headphones. Text-to-speech synthesis was performed using
the Microsoft Sam text-to-speech engine, set at a speech rate of 5.

4.2.4 Procedure

The experiment was designed as a 4-condition (control, visual, typographic, speech)
X 4-form sets (form set A, B, C, or D) mixed design, with order of condition and
form set counterbalanced using a 4X4 perfect Latin square. Condition was a within
subjects factor, and form set (which set of forms corresponded to which condition)
and order of condition were between subjects factors. We counterbalanced form set
to ensure that one set of forms did not have an “easier” set of errors than any other
set of forms. We counterbalanced order of condition to ensure that inexperience
during earlier sessions and/or boredom or habituation during later sessions did not
bias our results. The requirement to simultaneously balance four different orderings
with four different form sets resulted in a unique experimental configuration for each
participant. For example, the four participants who used the discovery aids in the
same order had four unique orderings of the set of forms with their attendant errors.

Dependent variables measured were the time taken to perform the verification
task (maximum 15 minutes), the number of errors caught during the verification
task (maximum 25 errors) for each condition, and the number of false corrections
(i.e. fields that the user changed that did not contain an error). At the end of
the fifth experimental session, we asked participants which of the error discovery
techniques they preferred.

4.2.5 Results

Time for each condition is measured as the total time spent by a participant veri-
fying the forms, seen in the left graph in Figure 4.3. The mean verification times

40

were 632.6s for the control, 649.1s for the visual proximity technique, 681.9s for the
typographic manipulation technique and 726.3s for the text-to-speech technique.
Repeated measures ANOVA for time as a function of condition, order, and form
set indicates that time differences are marginally significant (F3,15 = 2.709, p =
.056). Order and form set were not significant.

Figure 4.3: Performance results from the experimental evaluation. Left shows the time
taken between conditions, and right shows the errors caught between conditions.

The left graph in Figure 4.3 shows the number of errors caught per condition.
Repeated measures ANOVA indicate that the assumption of sphericity has been
violated, χ2 = 13.831, p = 0.17 , therefore degrees of freedom were corrected using
Huynh-Feldt1 estimates of sphericity (ε = 0.84). The results show that there was
a significant effect of error discovery aid used on the number of errors caught,
F2.52,37.798 = 10.526, p < .001. These results suggest that the discovery aids used
do have a significant effect on a user’s performance in verification.

Because form set and order are not significant, paired t-tests with Bonferroni
adjustment can be used post-hoc to contrast the number of errors caught based
on the different error discovery techniques. As our goal is to understand the per-
formance of our new discovery aids relative to a control condition, we performed
three comparisons of each of our discovery aids against the control. Based on the
results of these paired comparisons, we added a fourth condition that compared
visual proximity to typographic manipulation. We report post-hoc testing using
Bonferroni adjustment based on four comparisons: visual to control, typographic
to control, text-to-speech to control, and visual to typographic.

The number of errors caught for the visual proximity technique (mean = 22.75,
sd = 2.05) was found to be significantly different than that of the control (mean =
21.31, sd = 2.39), (corrected p = .047). There was no significant difference found in
the number of errors caught between the control and the typographic manipulation
discovery aid (mean = 19.56, sd = 4.79), (p = 0.23). The control condition was
found to be significantly better than the text-to-speech condition (mean = 16.31,
sd = 5.77) (p = .004).

1A statistical rule of thumb is that Huynh-Feldt correction, while more permissive, should be
used when ε > 0.75.

41

Because the visual proximity condition was found to be better than the control,
and no difference was found between the typographic manipulation condition and
control, a fourth comparison was added to compare visual proximity to typographic
manipulation. The visual proximity technique was also found to perform signifi-
cantly better than the typographic manipulation technique (mean = 19.56, sd =
4.79) (p = .037). The probabilities reported here have been adjusted to account
for four comparisons.

False corrections for each condition are measured as any changes made to a form
field that did not contain an error, and are displayed in Table 4.1. Capitalization
changes and adding or removing spaces that did not change the meaning of the
text were not counted in these false corrections. Inspection of the false corrections
showed that the majority of them were caused by ambiguity in a participant’s
handwriting, causing them to misinterpret their own handwriting. No significance
was found between the discovery aids and the number of false corrections made by
the participants.

Control Visual Typography Speech
mean 1.19 1.31 1 0.75
sd 1.52 1.08 1.41 1.07

Table 4.1: False corrections for each condition

Finally, after the last session, we asked participants which discovery aid they
preferred. Eight participants preferred the typographic manipulations, seven pre-
ferred the visual proximity aid, and one preferred the text-to-speech aid. Two of
the participants who chose visual proximity as their preferred discovery aid stated
that they also liked the control.

4.2.6 Performance of Error Discovery Techniques

Our experimental results provide contrasting results based on speed, error rate,
and subjective preference. First, for mean time to complete the verification task,
the control condition was fastest, followed by visual, typography, and speech. This
result was surprising, as initially we had assumed that visual proximity would
perform better than the control condition, with input ink and output characters
spaced closer together. In analyzing our data, however, we noted that users were
required to tab or click through questionable fields, and that this need to examine
the fields individually slowed the users down. Despite the poor showing of our
visual technique with respect to completion time, our visual technique was very
effective in its ability to support error discovery. Participants were more accurate
with the visual technique than with control.

The statistically significant difference between visual and control technique may
be surprising, as the errors caught graph in Figure 4.3 shows little difference be-
tween the visual technique’s performance (mean = 22.75, sd = 2.05) and the con-
trol technique’s performance (mean = 21.31, sd = 2.39). However, because each

42

participant uses both techniques, we can use a paired t-test which examines perfor-
mance between matched participants. In all cases, participants did at least as well
with the visual technique, and in most cases, their performance improved slightly.
This consistent improvement in performance resulted in the statistically significant
measurement. It is also interesting to note the strong performance of the control
condition, both in terms of time and in number of errors caught. The control tech-
nique was the second most effective technique in mean number of errors caught,
and outperformed speech by a significant margin.

The most popular technique for our participants was the typographic manip-
ulation technique. Half of our participants preferred the typographic technique,
despite the fact that it ranked third in time and in errors caught. When we asked
the participants who preferred the typographic manipulation technique why they
preferred it, they indicated that they liked this technique because of its ability to
reduce ambiguities and its ability to divide the verification task into a set of smaller
tasks.

Finally, the text-to-speech technique was clearly the worst of the techniques ex-
amined. It was found to take longer on average than the control condition, though
not significantly so, and fewer errors were caught than with the control technique.
We did expect that timing would be poor with the text-to-speech technique, as par-
ticipants had to listen to recognizer output for each field in the form. Participants
also stated that they found the voice very hard to understand; for example, one
participant stated that it was like listening to somebody with a very heavy accent.
This difficulty in understanding the voice produced by the text-to-speech engine
may have caused the technique to perform worse than it otherwise would. Our
own informal observations support this conjecture. With training, users become
used to the intonations of the text-to-speech engine, and seem to go faster with
higher accuracy than they do initially. It may be the case that the text-to-speech
technique is more difficult to learn, but that, with mastery, it will perform on par
with other techniques.

4.2.7 Limitations

Although the visual proximity aid proved successful in this evaluation, is is unclear
which attribute of this aid is the most relevant to error discovery. Discussed further
in Chapter 7, this discovery aid varies two factors in the design space: proximity
and availability, yet the design of this experiment does not enable the effect of these
individual factors to be understood. To disentangle the results of this technique,
another study could be performed, similar in design to the experiment presented
here, but with only two conditions. The first condition would display the recognized
form and a digital version of the handwritten form side-by-side, where both the
digital ink and recognized text are visible the entire time, yet visually separated.
The second condition would statically display the handwritten ink above each text
field containing the recognized text of that ink, creating a close proximity between

43

the two. In each condition, the availability of the ink and text is static, but the
proximity between the two conditions changes. This would allow the significance
of proximity to be determined, and from that infer the effect of availability found
in this evaluation.

During this study, 25 recognition errors were inserted into each set of 5 forms
used by participants to test a specific condition. As noted earlier, these errors
were selected from exploratory evaluations using the Microsoft recognizer bundled
with the Windows XP Tablet PC SDK on a set of handwritten data forms. One
concern, however, is how representative our error rate is of real world usage errors
likely encountered by users of handwriting recognizer engines. It is possible that,
if our error rate is too high, users may become habituated during correction with
our techniques, and might begin to miss errors due to a larger number of errors
being inserted. As well, if our error rate is too low, it may be that user confidence
in the recognizer will be too high, and they will miss errors because they assume
the recognizer is more than likely correct. Unfortunately, it is not completely clear
how to properly balance error rates to account for these factors.

4.3 Summary

This chapter has presented two evaluations on the error discovery aids presented
in the previous chapter. An exploratory evaluation on early designs was first pre-
sented, which revealed a number of issues in the initial designs of the discovery aids.
Changes were made to the discovery aids. A subset of the most promising of these
designs were selected based upon the results of our exploratory evaluation, specifi-
cally the visual proximity, typographic manipulation, and text-to-speech discovery
aids.

A formal evaluation of the three selected discovery aids was presented, with
the goal of evaluating the effects of the discovery aids on a user’s performance in
discovering errors in handwriting recognition. The evaluation used an out-of-the-
moment verification task on handwriting recognition results for form-based data.
It was found that, while there were no significant changes in the verification times
between the discovery aid used, the visual proximity aid provided a statistically
significant improvement in the number of errors found by participants over the
control. No statistically significant difference was found in the errors discovered
using the typographic manipulation aid, and the text-to-speech aid was found to
perform significantly worse than the control.

The discovery aids evaluated in this chapter all represent techniques which have
never been explored as a means of aiding users in the discovery of errors. While
little work exists in error discovery for handwriting recognition, there has been one
technique proposed in the literature for use as an error discovery aid – confidence
highlighting. However, due to negative implications found with this technique
in related research in speech recognition [20], explained further in the following
chapter, we have avoided the inclusion of this discovery aid in our evaluations.

44

Although these negative implications exist, confidence highlighting has never
been evaluated as a discovery aid for handwriting recognition, without which no
real conclusions can be drawn. The next chapter examines confidence highlighting,
and its potential for use as an error discovery aid in handwriting recognition.

45

Chapter 5

Confidence Highlighting

Confidence highlighting, the highlighting of recognizer output with low confidence
values for the purpose of bringing a user’s attention to that output, is the only
proposed technique found in the literature which aims to aid users in error discovery
[12]. While the use of confidence values has been described in the design space,
the work presented in this thesis so far has not considered the use of confidence
highlighting.

A goal of the research presented in this thesis, discussed in the introduction, has
been to identify methods of aiding users to discover errors in handwriting recogni-
tion to reduce the amount of residual error left behind after verification. However,
implications from related research in speech recognition show that confidence high-
lighting may have a negative impact on user performance in error discovery, due
to users being more likely to miss errors that are not highlighted. If the goal is to
minimize residual error, such as in the health care scenario motivating this work
discussed in the introduction, confidence highlighting is not an ideal discovery aid.

However, applications likely exist which allow some tolerance for error in their
input. In spite of the negative implications of the use of this discovery aid, in
applications where a certain degree of residual error is acceptable, the confidence
highlighting technique could still be useful.

This chapter takes a closer look at the confidence highlighting technique as an
error discovery aid. First, the issues in using confidence highlighting are discussed,
examining when confidence highlighting is an appropriate error discovery technique
to use. Next, an evaluation of the confidence values given by the Microsoft hand-
writing recognizer is presented, finding that approximately 4% of recognition errors
are flagged with a strong confidence, and would not be highlighted using confidence
highlighting. The implications of these findings are then discussed with respect to
the use of confidence highlighting as an error discovery aid.

46

5.1 Using Recognizer Confidence Values

The effectiveness of confidence highlighting is impacted by two values that charac-
terize recognizer accuracy: the number of false positives, and the number of false
negatives. False positives in confidence highlighting occur when a correct recog-
nition result is given a low confidence value by the recognizer, and is therefore
highlighted by the confidence highlighting technique. False negatives, on the other
hand, occur when an error in recognition is given a high confidence value by the
recognizer, and is therefore not flagged by the confidence highlighting technique.
Both false positives and false negatives have potential impact on the effectiveness
of confidence highlighting as an error discovery aid.

False positives can affect a user’s verification accuracy by increasing the number
of values that the user must explore. This has two possible effects on verification.
The first is that the increase in the values that must be explored increases the
amount of time that the verification task will take. The second, more dangerous
effect is the possibility of habituation due to false positives. If a user becomes used
to false positives being present, they may start to skim over highlighted results
without close scrutiny, causing them to miss errors.

False negatives, errors that are not highlighted, have more serious drawbacks.
While confidence highlighting may aid users in the discovery of recognition errors
with low confidence values, it may hinder their ability to discover errors that have a
high confidence. Previous study of confidence highlighting in a speech recognition
interface has shown that, while it increased user performance in discovering high-
lighted errors, it decreased their performance in discovering non-highlighted errors
[20]. This implies that the use of confidence highlighting as a discovery aid may
result in false negatives being missed by users in verification, and left as residual
error.

While confidence highlighting is likely to suffer from a residual error rate approx-
imate to the false-negative rate, for applications where a certain amount of residual
error is acceptable, confidence highlighting may still be useful as an error discovery
aid. Confidence highlighting is a classic speed/accuracy trade-off: by highlighting
areas that are more likely to contain errors, a user can more quickly discover and
correct these errors at the expense of missing errors that are not highlighted. The
benefit of speeding the verification task may be worth the cost of residual error.

However, while a designer may be willing to accept some trade-off resulting in
increased residual errors, there must be some knowledge of the potential cost. To
determine the cost of confidence highlighting, one must examine the number of
recognition errors that receive a high confidence, resulting in a false negative. As
these unflagged errors are the weakness of this technique, this rate will give an idea
of how many residual errors may result.

Unfortunately, for the Microsoft handwriting recognizer, there exists no pub-
lished data on the recognizer’s recognition rate or confidence accuracy. Without
knowledge of how well a recognizer works, no informed decision can be made for

47

the use of confidence highlighting. To determine when confidence highlighting is an
appropriate error discovery aid to used, based on what residual error rate is accept-
able using the Microsoft handwriting recognizer, an evaluation on the accuracy of
confidence values from the Microsoft recognizer was performed, described below.

5.2 Evaluating Recognizer Confidence Values

5.2.1 Method

To test recognition accuracy, a set of forty forms were selected, filled out by ten of
the participants from the experimental evaluation in Chapter 4. For each form, an
XML document was created containing the recognizer result of the digital ink, the
intended input for each field and whether or not an error was present. A program
was then created which read in both the digital ink and XML document, comparing
the recognizer output of each handwritten word with the correct recognition result
from the document, recording for each word if the recognizer made an error as well
as the confidence value attributed to the recognition result.

5.2.2 Results

Overall, the recognizer examined over 2100 individual words, numbers and alphanu-
meric sequences to generate recognition accuracy results. The overall error rate for
the Microsoft recognizer was approximately 23%. Table 5.1 breaks down the error
rate with respect to the rate of assigned confidence values by the recognizer.

The Microsoft recognizer assigns confidence values to recognition results at three
different values: strong, intermediate and poor. Approximately 46.5% of the recog-
nition results returned in this evaluation were flagged with poor confidence. Of
these, 41% were recognition errors, accounting for approximately 19% of the to-
tal error rate. Recognition results flagged with intermediate confidence values
accounted for approximately 3% of all recognition results. Of these, 31% were
recognition errors, accounting for approximately 1% of the total error rate. Finally,
approximately 50.5% of the recognition results were given a strong confidence value
by the Microsoft handwriting recognizer. Approximately 6% of the results given a
strong confidence were recognition errors, which accounts for approximately 4% of
the total error rate, rounding up.

5.3 Implications for Design

This recognizer data gives an interesting insight into the usefulness of confidence
highlighting as an error discovery technique. If, using the Microsoft recognizer,
poor confidence results were highlighted, most of the recognition errors would be

48

Confidence Value Proportion Flagged Error Rate
Strong 50.5% 6%
Intermediate 3% 31%
Poor 46.5% 41%

Table 5.1: Confidence values from a selected sample of forms filled out by participants.
Amount Flagged represents the percentage of all recognized words flagged with a specific
confidence value and Recognition Errors represents the percentage of words flagged with
a specific confidence values that contain a recognition error.

flagged. If users corrected all highlighted errors and missed all non-highlighted
errors, the residual error rate would be approximately 4%.

The error discovery techniques presented in this thesis can be viewed as compli-
mentary to confidence highlighting. Using our results from Chapter 4, the expected
performance for systems that use confidence highlighting and the visual proximity
discovery aid together can be extrapolated. For example, the on-demand visual
technique in the study allowed participants to identify 91% of the errors in the
form set they examined (22.75 of 25 errors on average). Combining the visual tech-
nique with confidence highlighting might allow a user to perform to a similar level,
catching 91% of flagged errors. In a worse-case scenario users may miss nearly
all unflagged values. Given this, the residual error rate would then be approxi-
mately 5.8%. However, if the visual proximity technique was used and confidence
highlighting was not used, the user might still identify 91% of recognition errors,
yielding a residual error rate of 2%, assuming an overall error rate of 23%.

Confidence highlighting allows users to direct their attention toward recognition
results more likely to be wrong, and to ignore recognition results that are more likely
to be correct. The premise is not that all errors made by the recognition engine will
be flagged – all researchers are aware that false positives and false negatives will
occur. Instead, the goal is efficiency, i.e. users will identify most of the recognition
errors faster and with less effort. What this analysis shows is that, as part of the
cost of halving the amount of recognizer output that the user verifies (being able
to focus on 46.5% of the values) the residual error rate will increase slightly. If
a system makes use of the Microsoft recognizer and a 5-6% residual error rate is
acceptable, confidence highlighting combined with the visual proximity aid would
be a worthwhile technique.

There are many caveats to the numerical values calculated above. Another
recognizer with better precision (fewer false positives) might provide different num-
bers, as might a recognizer with better overall recognition accuracy. The Microsoft
recognizer was the chosen platform for evaluation because it is widely available,
and this analysis provides some understanding of how error discovery techniques
might combine with confidence highlighting in real world scenarios.

49

5.4 Summary

This chapter has examined the use of confidence highlighting to determine when it
would be appropriate to use as an error discovery aid. An evaluation was presented
on the accuracy of confidence values produced by the Microsoft handwriting rec-
ognizer, showing that approximately 4% of results flagged with strong confidence
contain error, which would be left unhighlighted using the confidence highlighting
aid. Based on implications from previous research, as well as experimental results
from Chapter 4, this would imply that a 5-6% residual error rate could be expected
from users making use of this technique.

50

Chapter 6

Measuring User Performance in a
Verification Task

All of the work presented in this thesis up to this point has looked at the problem
of aiding users in error discovery with the goal of reducing the number of residual
errors left by a user after verification. However the residual error rate can vary
greatly between users, and even a single user’s performance in error discovery can
vary over time due to factors such as boredom, habituation, fatigue or distraction.
Without some knowledge of a user’s performance in verification, it can be difficult
to have a high confidence in the correctness of recognized results verified by them.
If the performance of a user is known, on the other hand, measures can be taken
to attempt to improve that user’s performance, and a level of confidence can be
gained in the correctness of verified results.

This chapter introduces a method of controlled injection of errors into recognizer
output as a means to measure and track a user’s performance in error discovery
during a verification task. An experiment is presented to evaluate this concept, and
it is found that error injection can be used as an effective measure of performance
at several levels of granularity. The chapter concludes with a discussion of the
implications of these results, as well as limitations in the design of the study.

6.1 Injecting Artificial Errors to Measure Perfor-

mance

In the experimental evaluation of the three error discovery techniques in Chapter 4
it was found that while participants completed the verification task in the shortest
time with the control condition, they found significantly more errors with the visual
technique. It was also found that one of the reasons the visual technique was not
faster than the control condition was that users had to tab or click through every
field on a form and verify ink entry by entry. This slower field by field verification
possibly led to more errors being caught.

51

It seems likely that any error discovery and correction task may have speed
versus accuracy trade-offs, and that any technique created to aid users in this task
will in some way play off of these trade-offs. An error discovery aid may attempt to
decrease time taken in verification at the expense of errors caught, as with the con-
fidence highlighting aid, increase errors caught at the expense of time taken, as with
the visual proximity aid, or attempt to balance the two. However, these trade-offs
may be confounded by fatigue, habituation, boredom, and distractions, particularly
if the verification task is lengthy, which could cause a user’s performance to vary
throughout the verification task.

Beyond variations in a single user’s performance, the performance in error dis-
covery between different users can be expected to vary significantly. Some users
may be more careful than others in verification, catching more recognition errors
present, while others may rush verification, missing significantly more errors.

Both of these within-user and between-user variations in performance can be
expected even when using discovery aids shown to provide a benefit to users in
verification. This can make it difficult to accept with a very high confidence that
a user’s verified results are sufficiently error-free. In an application where a high
accuracy of input is required, confidence in verified results is necessary.

If a measurement of a user’s performance could be obtained, even an approx-
imation, this issue of confidence could be addressed. Knowledge of how a user is
performing during the task could be used to cause the system to respond to a user
performing poorly to attempt to improve their performance. Also, knowledge of a
user’s overall performance after verification could give a degree of confidence in the
number of residual errors left behind by that user.

While it is impossible to determine how many recognition errors a user is miss-
ing while verifying real handwriting recognition results, without prior knowledge
of what the results should be, it could be possible to determine user accuracy
by injecting artificial recognition errors into the real recognition results. Though
counter-intuitive to solving the problem of errors in handwriting recognition, the
insertion of a controlled number of errors into recognition results would allow a
verification interface to monitor how many of the artificial errors a user is correctly
identifying and correcting. This in turn could be used to get an approximate idea
of how well a user is performing over time. This measurement could then be used
to adapt the interface to increase a user’s performance. For instance, if a user is
found to be performing poorly, decrease the amount of recognition results available
for verification at a time to slow the user down, which in turn would cause them to
be more careful. Finally, a measurement of the user’s performance could be used
to get an approximation of the number of residual errors the user has left behind.

52

6.2 Evaluation

To determine if this method of injecting artificial errors into recognition results
is a feasible method of obtaining an approximation of user performance in error
discovery, an experimental evaluation of the technique was performed. As a result of
this evaluation, it was found that a correlation exists between real recognition errors
caught and injected errors caught, making it a suitable technique for measuring the
performance of a user in error discovery.

6.2.1 Method

The experiment involved a single verification task on handwriting recognition re-
sults for completed forms. Participants were given a set of twenty paper forms,
which were previously filled in using an Anoto pen, and were asked to verify, as
quickly and accurately as possible, the handwriting recognition results shown to
them on a computer. The application used to display the recognized results was
the same as was used in the error discovery techniques experiment for the control
condition, seen in Figure 4.2. Participants were not made aware that errors were
being artificially injected into the recognition results.

As in the experimental evaluation of the three error discovery aids, there was
also some need to simulate a real-life scenario where the user is trying to verify
and correct the recognition results, but discouraged from taking too long in the
task and catching more errors as a result. In the previous experiment there was a
time constraint to simulate this condition with participants. However, a concern
arose during the design of this experiment that a better method to motivate par-
ticipants to perform in this kind of scenario would be to provide incentives based
on performance. Instead of constraining the task, inform participants that two of
the participants with the top performance on the task, based on a combination of
speed and accuracy, will receive some reward.

As it is unclear which method of motivation is most effective, participants for
this experiment were split into two condition groups; one that had a 3 minute
time limit for the verification of each form, and one in which participants were told
that the top two performing participants would receive an additional $15 at the
completion of the study. By creating two participant groups with two motivational
conditions, it would be possible to compare the performance of the two groups to
get an idea of the effect of the two separate motivators. Though this comparison
is not directly related to the purpose of this experiment, it can be used to validate
the design of the experimental evaluation in Chapter 4.

6.2.2 Injecting Error

The main problem with creating artificial errors to inject into recognition results is
making the visibility of the artificial errors equivalent to that of real errors. If the

53

artificial errors are more or less visible than real recognition errors, the chances of
a user discovering an artificial error changes in relation to a real error. This would
make the use of injected errors useless in determining a user’s true performance in
error discovery.

With this in mind, the best resource for creating a false error for some recognized
result would be from the n-best list from the recognizer for that result. Any result
from the n-best list of a recognizer would be similar to any real recognition error in
visibility, and thus has a similar likelihood of being discovered by a user. However,
in using results from the n-best list, another possible problem occurs: what if the
false error selected is the correct recognition result? When selecting fields to inject
errors into, it is impossible to know whether the recognized result that is being
written over is correct or not, and if it is not correct, the correct result may reside
in the n-best list. An analysis of forty of the forms from the experimental evaluation
in Chapter 4 showed that, of the real recognition errors present in the recognized
results of those forms, 35% had the correct recognition result somewhere on the
n-best list. If a correct recognition result is injected over a recognition error, a
user will have no reason to perform any correction on that result, as it will appear
correct to them. This could cause an incorrect analysis of how well the user is
performing, as well as cause a real recognition error to be missed.

A more detailed analysis of the n-best list results for those forty forms was
performed. It was found that, of those 35% of errors with correct results on the
n-best list, 13% had the correct recognition result on the 2nd position of the list,
10% on the 3rd, 4% on the 4th and 8% on the 5th or lower. Knowing this, by
skipping the first four results on the n-best list, an 8% chance is left that, if you
are injecting an error over an existing error, the correct recognition result exists
somewhere on the rest of the list. This is an acceptable chance, and is the method
used in this experiment. In a real-life use of this technique, this problem could be
further addressed by bringing to a user’s attention any injected errors that they
missed before they accept the verification as correct, in case the injected error is
the actual correct recognition of the ink.

Another issue caused by selecting artificial errors from the n-best list comes
when attempting to inject errors over a correct recognition result. Frequently the
n-best list will contain results that are just variants of the top recognition result,
with capitalization differences. To address this, any results from the n-best list was
not a candidate for injection if it only contained capitalization differences, and the
next result on the list was considered.

6.2.3 Apparatus

The forms used in this experiment were selected from twenty of the forms filled
out by ten of the participants in the Chapter 4’s experimental evaluation. Forms
were selected based on the legibility of the writing on the form, to avoid the issue
of recognition errors being missed due to the participant being unable to properly

54

interpret the original handwriting. Unlike the previous experiment, however, the
recognition results presented to the participants were real results from the Microsoft
handwriting recognizer.

In each recognized form, ten artificial errors were randomly injected into the
results. To avoid the possibility of grouping injected errors, in which a participant
may catch all artificial errors because they are closely grouped together, and in case
participants were more careful in certain parts of the form therefore catching all
errors in those areas, the ten errors were spread out proportionally among the three
different blocks of each form. Two errors were randomly injected into the materials
block, five into the Ikea block, and three into the Future Shop block.

6.2.4 Participants

12 volunteer participants were recruited from the university campus (7 female, 5
male). Their ages ranged from 18-38 (mean = 22.5 , sd = 5.4). They were paid $15
(CDN) for participating in the experiment, with the top two performing participants
of the incentive block being given an additional $15.

6.2.5 Results

The results of the experiment are summarized in Table 6.1. An error occurred in
the experimental program during P10’s experimental session, causing some of the
data from that session to be invalid. All of P10’s data was excluded from analysis.

Condition Participant Average Average Injected Average False
Completion Errors Caught Errors Caught
Time (s) (%) (%)

Timed P1 143 0.951 0.965
Timed P2 196 0.792 0.825
Timed P3 137 0.607 0.625
Timed P11 179 0.941 0.925
Timed P12 138 0.791 0.82
Untimed P4 307 0.96 0.916
Untimed P5 176 0.967 0.935
Untimed P6 257 0.967 0.925
Untimed P7 185 0.97 0.96
Untimed P8 242 0.945 0.885
Untimed P9 211 0.961 0.98

Table 6.1: Summary of the experimental results, giving the average performance results
for each participant.

Correlations between the number of recognition errors caught versus the number
of injected errors caught were measured at a several levels of granularity: as a

55

Granularity
Correlation

Timed Group Untimed Group Combined
Individual Forms 0.58 0.11 0.59
Rolling Window 0.84 0.24 0.84
Participant Average 0.99 0.67 0.98

Table 6.2: Correlations between recognition errors caught and injected errors caught at
different levels of granularity. The correlation between the two participant groups are
shown separately, and combined.

measurement between the two for each form verified across all participants, as a
four-form average rolling window average across each participant, shown on the left
in figure 6.1, and as the average for each participant, shown on the right in Figure
6.1. These correlations are summarized in Table 6.2.

Some significant differences were observed in the performance of participants
between the two conditions. Participants in the timed condition took an average
of 159 seconds per form, and 229 seconds in the untimed condition. This makes
an average difference of 70 seconds taken to complete the verification of a single
form between the two groups. The number of recognition errors caught between
the two also differed significantly, with participants in the timed condition catching
on average 82% of real errors per form, and participants in the untimed condition
catching 96% on average; a difference of 14% more errors caught in the untimed
condition than the timed condition.

The differences in performance between the two groups also impacted the cor-
relation between real and injected errors caught between the groups. As can be
seen in Table 6.2, the correlation between real and injected errors caught is much
lower for the untimed participant group than it is for the timed participant group
at each level of granularity. The reason for this difference will be discussed in more
detail below.

6.3 Discussion

6.3.1 Characterizing User Accuracy

The results of this experiment show that it is possible, using this method of error
injection, to extract an approximation of a user’s performance in a verification task,
without the need of oracular knowledge in where the real errors exist. Moreover,
by looking at the accuracy of a user in discovering injected errors over longer pe-
riods of time, this approximation can become much more accurate, to the point of
almost perfectly characterizing a user’s performance. First, though, the difference
in correlations between the two participant groups must be considered.

As can be seen in Table 6.2, at each level of granularity the correlation between
real errors caught and injected errors caught is much lower for the untimed par-

56

Figure 6.1: Injected errors caught vs. real errors caught as a rolling window average
(left) and as an average over the entire verification task for each participant (right). Data
points between the timed and untimed participant groups are labeled differently.

ticipant group than the timed group. This seems to imply that the lack of a time
constraint caused a difference in how likely a user was to discover an artificial error
over a real error in recognition. Another likely explanation, however, is that the
number of errors injected in this experiment were not adequate to characterize the
performance of consistently high-performing users.

In the untimed condition, participants were consistently discovering a high per-
centage of the errors present in each form, yet they still missed a small number of
errors, which can be seen in Table 6.1. Because of the number of errors injected, ten
per form, if a user is discovering over 90% of the errors present and more than one of
the errors missed is an artificial error, the rate of real versus injected errors caught
will differ significantly. This creates an outlier in the data set which will reduce the
overall correlation. Looking at the left graph in Figure 6.1, this seems to be the
case, as most of the variance away from a one-to-one correlation is caused by data
points with high rates of real errors caught, but lower rates of injected errors caught.
As the entire untimed participant group consistently discovered a large percentage
of the errors present, these outliers changed the correlation substantially.

However, when the rates of injected errors caught versus real errors between both
participant groups are combined, these outliers do not affect the overall correlation,
as can be seen in Table 6.2. This shows that, as a measure of average performance,
error injection is still a useful method of measuring user performance.

The correlation between injected errors caught and real errors caught on a form-
to-form basis was found to be 0.59. While this is not a high enough correlation
to be relied upon to portray a user’s performance to high accuracy, it should be
noted that this is a correlation on 220 data points, meaning that it is a significant

57

correlation. This shows that the performance of a user can be characterized to
some accuracy on a real-time basis.

The four-form rolling window, however, shows a much higher correlation be-
tween the two values, at 0.84, over 187 data points. This shows that, using this
technique, it is possible to get a much more accurate characterization of a user’s
performance at any given time by looking at their average performance in discov-
ering injected errors over some window of previously verified forms. A window of
four forms was looked at in this experiment, which is equivalent to around a ten
minute time span, though that could be varied depending on the desired accuracy
in measurement.

Finally, this technique has proved extremely effective in characterizing users’
performance on the entire verification task, with a correlation of 0.98. This could
be valuable in summarizing how well a user has performed after the verification task
has completed. Additionally, another valuable use of this performance characteristic
would be to obtain an approximation of how many residual errors remain in the
data verified by the user, a number which could be further refined with knowledge
of the average error rate of the recognizer used.

6.3.2 Trade-off in Speed vs. Accuracy

The differences in performance between the two condition groups in this experiment
are a perfect example of the trade-off that comes in focusing on speed over accuracy.
Both participant groups were given motivation to complete their verification tasks
as quickly as possible, while still maintaining accuracy in verification: the timed
group by use of the time limit constraint and instruction to find all the errors, and
the untimed group by use of the incentive for performing quickly and accurately.
However, without the time constraint, the untimed participant group took more
time on verification (70 seconds per form, on average), and as a result discovered
more errors (14%).

In the experiments here and in Chapter 4 users sped up their verification of each
form to be able to verify the entire form before the time ran out, understandably
leaving a higher residual error rate. Though the imposed time constraints are arti-
ficial in these experiments, in real-world use of a similar system, some kind of time
constraint could be expected on the completion of a verification task. Users would
similarly perform the verification task quickly in order to meet any time constraint,
rather than taking time in the verification task to ensure greater accuracy in ver-
ification, as seen in the untimed condition. In this sense, the artificial constraint
used in these experiments accurately portrays time constraints that would occur in
real-world usage.

58

6.3.3 Study Limitations

The results of this study have shown that it is possible to measure, to varying
degrees of accuracy, the performance of a user in discovering errors in a verifica-
tion task through the use of error injection throughout that task. It does not,
however, show how this technique should be implemented and used in a real-world
application. There are a number of factors that still need to be explored:

1. Ratio of errors per form field needed to achieve a strong correlation, while
keeping the number of injected errors low.

2. Error injection’s effect on user performance.

3. How to appropriately handle injected errors left uncorrected by users.

4. User acceptance of error injection, a technique that intentionally creates more
errors, creating more work.

In addition, while this technique is useful in identifying when a user is performing
poorly, injecting errors into the results of a user who is performing well would be less
useful, as it would only serve to make more work for that user, slowing them down
in their task. The number of errors injected could be varied during the course of the
verification task based on the performance of the user. When a user is performing
poorly, the number of errors injected is increased to an amount that will give a more
precise measurement of their accuracy to enable the system to react accordingly.
When a user is performing well, the number of errors injected could be decreased to
enable the task to be completed faster. Of course, some baseline artificial error rate
should remain, to enable the system to determine if a user’s performance degrades,
possibly due to distraction or fatigue.

6.4 Summary

This chapter has presented a method of measuring a user’s performance in error
discovery throughout a verification task by means of injecting artificial error into the
recognizer’s output. An experimental evaluation of this technique was described,
which showed that a correlation exists between real recognition errors caught by a
user and injected errors caught, which grows stronger when observed at different
levels of granularity.

There are a number of factors that can affect user performance in verification,
making it difficult to gain confidence in the correctness of verified results from even
the most diligent user. In an application where high input accuracy is necessary,
such as recording patient medical information in a health care environment, it is
not enough to assume accuracy, since humans as well as recognizers are prone to
failure. A performance measure, such as the use of artificial errors, addresses this

59

issue of confidence by giving a means with which to respond to poorly performing
users to attempt to increase their performance, as well as gain an approximation
of the number of residual errors left by a user.

60

Chapter 7

Implications for Design

There are a number of implications for the design of an error discovery interface
which can be derived from the work presented in this thesis. This section discusses
these implications. We first discuss when error discovery aids are necessary in
a verification interface. Next, results of the typographic manipulation aid from
Chapter 4’s formal evaluation are examined, and compared to related research
in confidence highlighting, focusing specifically on the implications of attempting
to guide a user’s attention in a verification interface. Next, the importance of
proximity and availability of digital ink and recognized text is discussed. Finally,
the error injection technique is discussed, and implications of how it can be used to
adapt to user performance are examined. First, however, it is discussed when the
use of error discovery aids are necessary in a verification interface.

7.1 When are Error Discovery Aids Necessary?

Performance metrics in HCI generally use some combination of time, error rate,
and user satisfaction to contrast competing systems. One challenge with the results
of our formal evaluation of the error discovery aids is that the control, the visual
technique, and the typographic manipulation technique each perform well using one
of these metrics. However, there are implications for the design of error discovery
aids in these results.

The effort required to engineer error discovery aids involves a trade-off between
the time taken to create and properly implement these aids, and the benefits they
provide to the recognizer verification task. In some situations, residual errors may
be very costly. Examples of domains where residual errors are costly include health
care, scientific data collection [23], and first responders [6]. In these health, safety,
and research domains, the integrity of the information allows subsequent users of the
data to act appropriately by prescribing, deploying, or analyzing. However, other
domains, such as classroom notetaking and early design work, do not require error-
free recognition. In these domains, the information being recognized was recorded

61

and is consumed by the same person, rather than being shared with others. Between
these two extremes, there are various levels of residual error that are permissible.

As seen in the experimental evaluation of the error discovery aids, the control
interface, which made no use of any discovery aids, performed very well in the error
discovery task. While it may not allow users to identify every recognition error,
in applications where it is not critical to have highly error free data, it may not
be worth any of the extra effort required to design error discovery aids, as well
as any extra efforts required by the user to use any aids. Other error discovery
aids were neither faster nor slower, and it had the second best error identification
rate. Depending on the application, and the residual error rate acceptable for that
application, the use of error discovery aids may be unnecessary.

7.2 Attempting to Guide a User’s Attention

The poor performance of typographic manipulation echoes the implication from
Vertanen and Kristensson’s [20] evaluation of confidence highlighting in speech
recognition that using confidence values to flag data draws users’ attention away
from other errors. Visual manipulations do highlight a certain class of error, those
amenable to automatic detection, but the result of this visual augmentation is that
users find unhighlighted errors more difficult to identify.

Two additional pieces of information support a concern with visual highlight-
ing. First, with the typographic manipulation technique, participants could choose
to accentuate numbers, letters, non-alphanumeric symbols, or none of the above.
In the case where no characters are accentuated, our typographic interface was
identical to our control condition, yet the typographic augmentations made error
discovery worse than the control condition. Second, participants thought that the
visual manipulation technique reduced ambiguities, but the reduction in ambiguity
for a certain class of error came at the cost of participants detecting fewer errors
overall.

The implication for design in this is that augmentation techniques, including
typographic manipulations, confidence highlighting, and other discovery aid that
might highlight likely errors must be used with care in error discovery aids. While
they may aid users in the discovery of a certain class of errors, they come at the
cost of an increased residual error rate for the recognition errors which fall outside
that specific class.

7.3 Proximity and Availability

The visual proximity technique was found to be successful in aiding users to discover
a greater proportion of errors in recognition results over the control in the formal
evaluation presented in Chapter 4. The positive performance of this technique has

62

some interesting implications for the use of proximity and availability in creating
effective designs of verification interfaces for handwriting recognition.

First, the technique creates a close proximity between the recognized text and
the corresponding digital ink, allowing users to perform a quick comparison between
the two. This may allow users to identify less noticeable errors that may have been
otherwise missed if there was more of a visual separation between the two. For
example, if a number was recognized that contained a large number of repeating
numbers (e.g. ‘111000011’) and one of the repeating numbers was not recognized,
this could easily be missed by a user when glancing back and forth between the
screen and a paper form. However, by presenting the ink in close proximity to
the recognized text, a user can perform a one-to-one comparison of the individual
numbers very quickly. This implies a significant benefit in creating a close prox-
imity between ink and recognized text, and should be considered when designing a
discovery interface.

Second, the visual proximity technique reduces the availability of the digital ink
to only allow the ink for a single field to be viewed at one time. By providing the ink
information on-demand, users were slowed down in the verification task and forced
to consider each field individually, rather than allowing them to consider multiple
fields simultaneously. This technique does create a speed-for-accuracy trade-off,
though a small one (only 17 additional seconds, on average, over the entire ten to
fifteen minute task). In an application where verification accuracy is essential, this
trade-off may be acceptable.

7.4 Adapting to User Performance

The error injection technique was found to be an effective method of measuring
a user’s performance, both in real-time and to a higher accuracy when measured
over a longer period. While this technique has the drawback of creating more work
for the user, making the verification task more difficult, the benefits of how this
measurement can be used may outweigh that issue.

First, the real-time and near real-time (through use of a rolling window average)
knowledge of a user’s performance could be an invaluable tool to improve that user’s
performance. Using this measure, it is possible to tell if a user is performing poorly,
and react accordingly. A simple response to poor performance, for example, would
be to warn a user that errors still exist in their verified results, forcing them to
re-verify. If a user was aware that the system would force them to repeat their
work when they perform poorly, they may take more care in verifying results.
Alternatively, an adaptive interface could be used that reacts to a user’s poor
performance by changing the error discovery technique used in the interface; for
instance, reducing the amount of recognized results that can be verified at a time.

Another interesting idea is to present this performance measure to the user to al-
low that user to customize the verification interface to maximize their performance.

63

For example, if a verification interface had a set of discovery aids that could be used
in its interface, rather than having the system manage the use of these aids, allow
the user to enable or disable them. If a user was shown their performance during
the verification task, they could then customize the discovery aids used to a set
which improves their performance the most.

Second, this real-time knowledge of a user’s performance could be used to imply
the state of the user. For instance, if a user has been performing well in their
verification task, and suddenly their performance rate drops off, it may just be that
something distracted the user during the verification of that form, and no adaptive
action is immediately necessary. Instead, a warning to the user may be suitable
to regain their attention. However, if a user’s performance is gradually degrading
over time, it could imply that user is becoming bored or fatigued, and some kind
of adaptive action is required.

Finally, knowledge of the user’s average performance in discovering injected
errors over a verification task on many forms can be used to give confidence in the
results verified by that user. Using the performance measure, along with knowledge
of the average error rates for the recognizer being used, it would be possible to
determine an approximation of the residual error rate left in the verified forms
from that user. If that error rate is above the rate deemed acceptable, those forms
could be flagged for re-verification.

7.5 Summary

This chapter has presented a set of implications for the design of error discovery
interfaces derived from the work presented in previous chapters of this thesis. First,
the results of user performance in the control condition of the formal evaluation
were examined, showing that in applications where a moderately low degree of
residual error is acceptable, the use of error discovery aids may not be necessary.
The performance of the typographic manipulation technique in the formal evalu-
ation was next examined, and compared to implications in the use of confidence
highlighting on a user’s performance in error discovery. Implications were drawn
about the potential dangers in attempting to guide a user’s attention to a certain
class of error. Next, the positive performance of the visual proximity technique
was examined, finding implications that proximity and availability of digital ink
and recognized text can make a significant difference in a users performance in
error discovery. Finally, the performance measurement presented in Chapter 6 is
discussed, and implications are drawn about how this measurement can be used in
a verification interface.

64

Chapter 8

Conclusion and Future Work

This thesis has presented work which represents the first researched approach to
creating an interface that will aid users in the discovery of handwriting recognition
errors in an out-of-the moment verification task. This thesis has presented proposed
interface designs for this problem, experimental results on these designs, as well as
additional experimental results which provide insights into how these designs could
be used. This chapter will review the contributions made by this thesis, and propose
future research that arises from the work presented here.

8.1 Research Goals

Handwriting recognition, being an ambiguous form of input, will never achieve per-
fect accuracy. Because of this, human verification of recognizer output is necessary
for handwriting recognition to be used in applications which require input accura-
cies greater than can be provided by a recognizer. Modern handwriting recognition
systems have high enough error rates to make a verification step necessary to allow
any degree of confidence in the output of the recognizer. Most research into the
area of handling errors in handwriting recognition has viewed the verification pro-
cess as an in-the-moment problem, making the discovery of recognition errors by
users a smaller problem, and have instead focused on aiding correction of errors.
However, with technology such as the Anoto pen, out-of-the-moment verification of
recognition results takes place, making the problem of error discovery much more
difficult. This thesis addresses the problem of aiding error discovery in an out-of
the moment verification scenario, with a focus on batch verification of handwritten
form data.

The first goal of this thesis was to explore design alternatives for the creation
of error discovery aids, techniques which attempt to aid users in discovering recog-
nition errors. A design space was created laying out the possible dimensions which
could be used in the design of an error discovery aid. From this design space a set
of error discovery aids were created.

65

The second goal of this thesis was to identify methods which reduce the number
of residual errors left by a user after verification. Evaluations were performed on
the error discovery aids created to identify which of them allowed users to discover
more errors in recognition results. An evaluation was also performed on confidence
highlighting, the only error discovery aid presented in the literature, examining
its potential as an error discovery aid. In addition, a method was proposed and
evaluated to provide a measurement of user performance in error discovery, allowing
verification interfaces to react to poorly performing users to reduce the number of
residual errors left in verified results.

8.2 Contributions Revisited

This thesis has presented a number of contributions toward the problem of aiding
error discovery in out-of-the-moment handwriting recognition.

Design space for error discovery aids

A design space was presented in Chapter 3 for the creation of error discovery aids
for handwriting recognition. A variety of different factors are described which could
be varied to affect a user’s ability to discover recognition errors. Due to the lack of
prior research on error discovery, this design space can be used as a tool to guide
the design and exploration of additional error discovery aids.

Seven error discovery aid designs and evaluation

Designs for seven error discovery aids were presented in Chapter 3, and evaluated
in Chapter 4. These designs, and the results from their evaluations, can be used to
inform the design of future error discovery aids and verification interfaces.

Visual proximity technique

A number of designs for error discovery aids were presented in Chapter 3, including
the visual proximity technique, and a set of these were evaluated experimentally
in Chapter 4. The experimental evaluation showed that the visual proximity tech-
nique, which displays the handwritten digital ink on-demand in close proximity to
the recognized text, provides users with a statistically significant increase in their
ability to discover errors in recognition. This is the first method that has been
experimentally shown to increase a user’s performance in error discovery, and is a
valuable first step toward the creation of an interface designed to aid users in the
discovery of handwriting recognition errors.

66

Error discovery performance measurement

Chapter 5 presents the use of error injection into recognition results as a means
of measuring a user’s performance in error discovery, as well as an experimental
evaluation of this technique showing that the technique correlates well with actual
performance on error discovery tasks. The use of this measurement can be beneficial
in allowing systems to adapt to poorly performing users, as well as to give confidence
in a user’s verified results.

Data on Microsoft’s handwriting recognizer confidence values

The Microsoft handwriting recognizer, a high-performance recognizer that is readily
available to developers, has very little published data on its performance, making it
impossible to make informed decisions on how to properly use data from it. Chapter
5 presents data on the accuracy of the recognizer’s confidence values, which can be
used to make informed decisions on the use of confidence values, such as what
residual error rate can be expected when using a confidence highlighting technique
for error discovery.

8.3 Future Work

The work presented in this thesis has a variety of useful contributions, and repre-
sents a strong starting point toward creating interfaces which will aid users in the
discovery of handwriting recognition errors. However, there is still a lot more work
that can be done in this area, and a lot of research that can follow directly from
this thesis.

8.3.1 Limitations of Evaluation

There are a number of findings from the work in this thesis that warrant further
investigation. First, the success of the visual proximity technique is a valuable
contribution, however the implications of the technique would benefit from further
investigation. The visual proximity technique manipulates the availability and vi-
sual proximity of the handwritten ink to the recognized text, but further evaluation
could be performed to gain a greater understanding of how these two factors affect
a user’s performance in error discovery. For example, is limited availability or prox-
imity of ink and text more important to error discovery. The limitations section in
Chapter 4 suggests an experimental design to disentangle the results of the visual
proximity aid.

Second, while the text-to-speech discovery aid failed in the evaluation presented
in Chapter 3, comments from the participants on the technique, as well as informal
observations on use of the technique, show that it may be improved and used

67

successfully as an error discovery aid. One of the main issues participants had with
the technique was that the text-to-speech voice used was difficult to understand,
which is a likely cause of the participant’s decreased performance when using that
technique. Informal observations of use of this aid have shown that, with some
extended use of text-to-speech, it becomes significantly easier to identify errors in
recognition. Re-designing this technique with an easier to understand synthetic
voice, as well as further user training, could make this technique into a successful
error discovery aid.

Finally, there were a number of error discovery aids that were presented in
Chapter 3 that were not evaluated, to keep the scope of the formal evaluation man-
ageable. All of these techniques have potential for use as error discovery aids, and
warrant further evaluation. The techniques which employ highlighting of sections
of ink could, however, benefit from improvements to their algorithms for selecting
ink to highlight.

8.3.2 Further Study into Error Discovery Aids

The use of confidence highlighting, highlighting recognizer output with low confi-
dence values, is the only suggested technique in existing literature to aid users in
error discovery. While there are negative implications of the use of this technique,
both in speech recognition [20] and corroborated by the results of the typographic
manipulation technique in this thesis, it still may prove to be a useful tool for aiding
error discovery. The analysis of confidence values in Microsoft’s handwriting recog-
nizer, presented in Chapter 5, show that even assuming that users miss all errors
not flagged with low confidence, the residual error rate would still be relatively low.
However, as no experimental evaluation of this technique exists for handwriting
recognition, it still needs to be evaluated experimentally before assuming how it
would affect user performance and residual error rate.

Beyond the techniques presented in this thesis, and proposed in previous work,
there still exists a large number of possibilities for the design of error discovery
aids. The dimensions of the design space presented in Chapter 3 have not been
fully explored, and can be used as an effective tool for exploring the different design
possibilities, and a number of design possibilities are suggested in the description
of the design space.

8.3.3 Error Injection

Using error injection to measure the performance of a user in discovering errors,
presented in Chapter 5, has some interesting potential for use. However, the work
on error injection presented in this thesis only serves to show that it can be used
as a performance metric. A number of factors still need to be explored, such as:
what ratio of injected errors for amount of recognized results is necessary for a
strong correlation; how error injection affects user performance; how to handle

68

uncorrected error injections; and user acceptance of this technique. In addition, it
may be possible to vary the number of injected errors based on user performance,
to either reduce the number of errors for users performing well, allowing them to
perform the task faster, or increasing the number of errors for users performing
poorly, to obtain a better measurement of their performance.

In addition to these factors, there is also an open question of how to make the
best use of the measurement of performance obtained by error injection. It could be
possible to use this metric to adapt the interface based on the user’s performance,
changing the error discovery aids to best suit the user’s level of performance. Or it
could be used simply as a measure of confidence in the number of residual errors
left by the user. Access to this performance measurement has great potential in
improving and maintaining the residual error rate left by users, though there is
more future work that needs to be performed to identify how best to implement
and use it.

8.4 Summary

This thesis has presented work on the design and evaluation of techniques to aid
users in the discovery of handwriting recognition errors. A technique has been
presented which gives users a significant improvement in their ability to discover
errors, and implications have been drawn from the results of the other designs for
the creation of error discovery aids. In addition, a method to measure a user’s
performance in an error discovery task has been presented, which could be useful
in the creation of future interfaces for the verification of handwriting recognition
results.

Handwriting is, in many cases, a convenient form of input, and modern hand-
writing recognition systems are able to achieve very good accuracy rates. However,
since handwriting recognition is prone to error, a verification step in which a user
must discover and correct errors in recognition is necessary between input and ac-
ceptance of recognizer output to allow any confidence in the accuracy of the output,
a problem which is made more difficult in an out-of-the-moment recognition set-
ting. The work presented in this thesis is the first steps toward designing interfaces
which will aid users in discovering errors in recognition that need to be corrected.

69

Appendix A

Study Letters and Forms

The studies presented in this thesis received approval from the University of Wa-
terloo Office of Research Ethics.

This appendix presents copies of paperwork required by the Office of Research
Ethics: the Information-Consent Letter and the Feedback letter for participants in
each study.

70

A.1 Information-Consent Letter for Chapter 4

Formal Evaluation

David R. Cheriton School of Computer Science
University of Waterloo
Student Investigator:
Ryan Stedman (rstedman@cs.uwaterloo.ca)
Faculty Supervisors:
Professor Edward Lank (lank@cs.uwaterloo.ca)
Professor Michael Terry (mterry@cs.uwaterloo.ca)

Participant Information Letter and Consent Form

Overview
You are being asked to participate in a research study as part of a research project at
the University of Waterloo. The intent of this study is to determine how effective
a number of techniques are at aiding users in discovering errors in handwriting
recognition.

This study is being conducted by Ryan Stedman under the supervision of Professors
Edward Lank and Michael Terry.

Study Details
As a participant in this study, you will be asked to participate in five experimental
sessions taking place on five consecutive days. In the first session you will be asked
to copy ten forms given to you using an Anoto digital pen.

In the second session you will be asked to use a computer to verify the results of
handwriting recognition performed on the forms you filled out. After verifying the
forms, you will be asked to complete a questionnaire designed to determine your
mental workload while performing the verification of the form. Afterward, you will
be asked to copy another 10 forms in the same manner as the first day.

The third and fourth session will continue as the second, each day verifying the
forms you filled out the previous day, except the fifth session, where you will not
be asked to copy any more forms. However, each day you will be using a different
application to verify the results with, each application displaying the results in a
different manner.

At the end of the final session you will be given some open-ended interview questions
to determine how you found the tasks you performed.

Each session will take approximately 60 minutes.

The verification tasks will be video recorded. Additionally, screen capture software
will be used to record the actions you perform on the computer system used by you
during the second session. These recordings will allow us to more easily recall the
facts when we later analyze the information we have collected.

71

You may decline to answer particular questions, if you wish, and may withdraw
participation at any time.

Risks and Benefits
There are no known or anticipated risks to you as a participant, other than those as-
sociated with the normal use of computers. There are also no known or anticipated
benefits to you.

Confidentiality and Data Retention
All data collected is considered confidential. Codes, rather than names or other
identifying information, will be used in notes and/or recordings. Video capture
equipment will not be set up to capture face shots, as this can be used as identifying
information. Any incidental images of your face will be removed. Your name or any
other personal identifying information will not appear in any publication resulting
from this study. However, with your permission, anonymous quotations may be
used. Notes, images, and/or recordings collected during this study, with identifying
information removed, will be retained for a period of 1 year in a secure location in
the HCI research laboratory and then confidentially destroyed.

Remuneration
As a participant in this study, you will receive $50. In the event that you cannot
complete the requirements of the study, you will receive a prorated amount at the
rate of $10/per session.

Questions
If you have any questions about participation in this study, please feel free to ask
the researchers. If you have additional questions at a later date, please contact
Ryan Stedman via email at rstedman@cs.uwaterloo.ca, or Professor Edward Lank
at 519-888-4567 ext. 35768 or via email at lank@cs.uwaterloo.ca, or Professor
Michael Terry at 519-888-4567 ext. 34528.

This project has been reviewed by, and received ethics clearance through, the Office
of Research Ethics at the University of Waterloo. In the event you have any com-
ments or concerns resulting from your participation in this study, please contact
Dr. Susan Sykes at 519-888-4567, Ext. 36005.

Consent Form
I agree to participate in a study being conducted by Ryan Stedman for a research
project at the University of Waterloo. The faculty supervisors are Professors Ed-
ward Lank and Michael Terry. I have made this decision based on the information
I have read in this Information-Consent Letter and have had the opportunity to
receive any additional details I wanted about the study. I understand that I may
withdraw this consent at any time by telling the student investigator.

I am aware that my actions during the verification tasks will be video recorded.

I am aware that screen capture software will be used to record my actions on the
computer during the observation portions of the study.

I am aware that excerpts from the interview may be included in any publications

72

to come from this study, with the understanding that the quotations will be anony-
mous.

I was informed that I may withdraw my consent at any time without penalty by
advising the students or project supervisor.

This project has been reviewed by, and received ethics clearance through, the Office
of Research Ethics at the University of Waterloo. I was informed that if I have any
comments or concerns resulting from my participation in this study, I may contact
the Director, Office of Research Ethics at the University of Waterloo at (519) 888-
4567 ext. 6005.

With full knowledge of all foregoing, I agree, of my own free will, to participate in
this study.

YES NO

I agree to the verification tasks to be video recorded.

YES NO

I agree to the use of anonymous quotations in any presentation or report that comes
of this study.

YES NO

(Please print)
Name of participant

Signature of participant

Date

(Please print)
Name of witness

Signature of witness

Date

73

A.2 Feedback Letter for Chapter 4 Formal Eval-

uation

Date

Dear Participant,

We would like to thank you for your participation in this study. As a reminder, the
purpose of this study is to evaluate the effectiveness of a number of methods we have
developed to help people find errors in handwriting recognition. The data collected
through the experimental sessions will contribute to guiding future research and
designs of handwriting recognition error discovery interfaces.

Please remember that any data pertaining to yourself as an individual participant
will be kept confidential. Once all the data are collected and analyzed for this
project, We plan on sharing this information with the research community through
seminars, conferences, presentations, and journal articles. If you are interested in
receiving more information regarding the results of this study, or if you have any
questions or concerns, please contact us at either the phone number or email address
listed at the bottom of the page.

If you would like a summary of the results, please let me know now by providing
me with your email address. When the study is completed, I will send it to you.
The study is expected to be completed by January 1st 2009.

As with all University of Waterloo projects involving human participants, this
project was reviewed by, and received ethics clearance through, the Office of Re-
search Ethics at the University of Waterloo. Should you have any comments or
concerns resulting from your participation in this study, please contact Dr. Susan
Sykes in the Office of Research Ethics at 519-888-4567, Ext. 36005.

Ryan Stedman
University of Waterloo
Faculty of Mathematics
Department of Computer Science
519-888-4567 ext. 38318
Email: rstedman@cs.uwaterloo.ca

74

A.3 Information Letter for Chapter 6 Study, Timed

Participant Group

David R. Cheriton School of Computer Science
University of Waterloo
Student Investigator:
Ryan Stedman (rstedman@cs.uwaterloo.ca)
Faculty Supervisors:
Professor Edward Lank (lank@cs.uwaterloo.ca)

Participant Information Letter and Consent Form

Overview
You are being asked to participate in a research study as part of a research project
at the University of Waterloo. The intent of this study is to determine user accuracy
in discovering handwriting recognition errors.

This study is being conducted by Ryan Stedman under the supervision of Professor
Edward Lank.

Study Details
As a participant in this study, you will be asked to participate in a single session.
In this session you will be given a set of 20 handwritten forms, already filled out.
You will be asked to use a computer to verify the handwriting recognition results
performed on these forms, correcting any errors found. You will be give 3 minutes
to complete the verification of each form.

The session should take approximately 90 minutes.

You may decline to answer particular questions, if you wish, and may withdraw
participation at any time.

Risks and Benefits
There are no known or anticipated risks to you as a participant, other than those
associated with the normal use of computers.

From this study we hope to discover a method of modeling how precise a user is in
searching for errors in recognition, which could be used in future research and user
interfaces to improve user accuracy when searching for errors.

Confidentiality and Data Retention
All data collected is considered confidential. Codes, rather than names or other
identifying information, will be used in notes and/or recordings. Your name or any
other personal identifying information will not appear in any publication resulting
from this study. Data collected during this study, with identifying information
removed, will be retained indefinitely in a secure location in the HCI research
laboratory.

Remuneration
As a participant in this study, you will receive $15. In the event that you cannot

75

complete the requirements of the study, you will receive a prorated amount at the
rate of $10/per hour.

Questions
If you have any questions about participation in this study, please feel free to ask
the researchers. If you have additional questions at a later date, please contact
Ryan Stedman via email at rstedman@cs.uwaterloo.ca, or Professor Edward Lank
at 519-888-4567 ext. 35768 or via email at lank@cs.uwaterloo.ca.

This project has been reviewed by, and received ethics clearance through, the Office
of Research Ethics at the University of Waterloo. In the event you have any com-
ments or concerns resulting from your participation in this study, please contact
Dr. Susan Sykes at 519-888-4567, Ext. 36005.

76

A.4 Information Letter for Chapter 6 Study, Un-

timed Participant Group

David R. Cheriton School of Computer Science
University of Waterloo
Student Investigator:
Ryan Stedman (rstedman@cs.uwaterloo.ca)
Faculty Supervisors:
Professor Edward Lank (lank@cs.uwaterloo.ca)

Participant Information Letter and Consent Form

Overview
You are being asked to participate in a research study as part of a research project
at the University of Waterloo. The intent of this study is to determine user accuracy
in discovering handwriting recognition errors.

This study is being conducted by Ryan Stedman under the supervision of Professor
Edward Lank.

Study Details
As a participant in this study, you will be asked to participate in a single session.
In this session you will be given a set of 20 handwritten forms, already filled out.
You will be asked to use a computer to verify the handwriting recognition results
performed on these forms, correcting any errors found.

The session should take approximately 90 minutes.

You may decline to answer particular questions, if you wish, and may withdraw
participation at any time.

Risks and Benefits
There are no known or anticipated risks to you as a participant, other than those
associated with the normal use of computers.

From this study we hope to discover a method of modeling how precise a user is in
searching for errors in recognition, which could be used in future research and user
interfaces to improve user accuracy when searching for errors.

Confidentiality and Data Retention
All data collected is considered confidential. Codes, rather than names or other
identifying information, will be used in notes and/or recordings. Your name or any
other personal identifying information will not appear in any publication resulting
from this study. Data collected during this study, with identifying information
removed, will be retained indefinitely in a secure location in the HCI research
laboratory.

Remuneration
As a participant in this study, you will receive $15. In the event that you cannot

77

complete the requirements of the study, you will receive a prorated amount at the
rate of $10/per hour.

Two participants with the highest performance on the verification task, based on
a combination of speed in completing the task and accuracy in the task, will be
given an additional $15. There will be approximately six other people participating
in this study; the top two performers will receive notification once all participants
have completed the study.

Questions
If you have any questions about participation in this study, please feel free to ask
the researchers. If you have additional questions at a later date, please contact
Ryan Stedman via email at rstedman@cs.uwaterloo.ca, or Professor Edward Lank
at 519-888-4567 ext. 35768 or via email at lank@cs.uwaterloo.ca.

This project has been reviewed by, and received ethics clearance through, the Office
of Research Ethics at the University of Waterloo. In the event you have any com-
ments or concerns resulting from your participation in this study, please contact
Dr. Susan Sykes at 519-888-4567, Ext. 36005.

78

A.5 Consent Form for Chapter 6 Study, Both

Participant Groups

Consent Form
I agree to participate in a study being conducted by Ryan Stedman for a research
project at the University of Waterloo. The faculty supervisor is Professor Edward
Lank. I have made this decision based on the information I have read in this
Information-Consent Letter and have had the opportunity to receive any additional
details I wanted about the study. I understand that I may withdraw this consent
at any time by telling the student investigator.

I was informed that I may withdraw my consent at any time without penalty by
advising the students or project supervisor.

This project has been reviewed by, and received ethics clearance through, the Office
of Research Ethics at the University of Waterloo. I was informed that if I have any
comments or concerns resulting from my participation in this study, I may contact
the Director, Office of Research Ethics at the University of Waterloo at (519) 888-
4567 ext. 6005.

With full knowledge of all foregoing, I agree, of my own free will, to participate in
this study.

YES NO

Name of participant (Please print)

Signature of participant

Date

Name of witness (Please print)

Signature of witness

Date

79

A.6 Feedback Letter for Chapter 6 Study

Date

Dear Participant,

We would like to thank you for your participation in this study. As a reminder,
the purpose of this study is to attempt to determine user accuracy of error discov-
ery in handwriting recognition. While most of the errors you observed were real
recognition errors, some were artificially introduced into the forms, allowing us to
measure how accurate a user is in discovering error. The data collected through
the experimental sessions will contribute to guiding future research and designs of
handwriting recognition error discovery interfaces.

Please remember that any data pertaining to yourself as an individual participant
will be kept confidential. Once all the data are collected and analyzed for this
project, we plan on sharing this information with the research community through
seminars, conferences, presentations, and journal articles. If you are interested in
receiving more information regarding the results of this study, or if you have any
questions or concerns, please contact us at either the phone number or email address
listed at the bottom of the page.

If you would like a summary of the results, please let me know now by providing
me with your email address. When the study is completed, I will send it to you.
The study is expected to be completed by March 1st 2009.

As with all University of Waterloo projects involving human participants, this
project was reviewed by, and received ethics clearance through, the Office of Re-
search Ethics at the University of Waterloo. Should you have any comments or
concerns resulting from your participation in this study, please contact Dr. Susan
Sykes in the Office of Research Ethics at 519-888-4567, Ext., 36005.

Ryan Stedman
University of Waterloo
Faculty of Mathematics
Department of Computer Science
519-888-4567 ext. 38318
Email: rstedman@cs.uwaterloo.ca

80

References

[1] Anoto Group. Anoto Digital Pen, http://www.anoto.com/, Accessed February
2009.

[2] C. Baber and KS Hone. Modeling error recovery and repair in automatic
speech recognition. International Journal of Man-Machine Studies, 39(3):495–
515, 1993.

[3] M.L. Bourguet. Towards a taxonomy of error-handling strategies in
recognition-based multi-modal human–computer interfaces. Signal Processing,
86(12):3625–3643, 2006.

[4] D. Goldberg and A. Goodisman. Stylus user interface for manipulating text.
Human-computer interaction: toward the year 2000 table of contents, pages
500–508, 1995.

[5] S. Jaeger, S. Manke, J. Reichert, and A. Waibel. Online handwriting recog-
nition: the NPen++ recognizer. International Journal on Document Analysis
and Recognition, 3(3):169–180, 2001.

[6] Xiaodong Jiang, Jason I. Hong, Leila A. Takayama, and James A. Landay.
Ubiquitous computing for firefighters: field studies and prototypes of large
displays for incident command. In CHI ’04: Proceedings of the SIGCHI con-
ference on Human factors in computing systems, pages 679–686, New York,
NY, USA, 2004. ACM.

[7] G. Kim, V. Govindaraju, and S.N. Srihari. An architecture for handwritten
text recognition systems. International Journal on Document Analysis and
Recognition, 2(1):37–44, 1999.

[8] Livescribe. Livescribe Pulse Smartpen, http://www.livescribe.com/smartpen/
index.html, Accessed March 2009.

[9] I.S. MacKenzie and L. Chang. A performance comparison of two handwriting
recognizers. Interacting with Computers, 11(3):283–297, 1999.

[10] Jock Mackinlay, Stuart K. Card, and George G. Robertson. A semantic analy-
sis of the design space of input devices. Hum.-Comput. Interact., 5(2):145–190,
1990.

81

[11] J. Mankoff, S.E. Hudson, and G.D. Abowd. Interaction techniques for ambigu-
ity resolution in recognition-based interfaces. In International Conference on
Computer Graphics and Interactive Techniques. ACM New York, NY, USA,
2007.

[12] J.C. Mankoff and G.D. Abowd. Error Correction Techniques for Handwriting,
Speech, and Other Ambiguous or Error Prone Systems. 1999.

[13] Microsoft Corporation. Windows Journal,
http://www.microsoft.com/windowsxp/tabletpc/default.mspx, Accessed
February 2008.

[14] R. Plamondon, SN Srihari, E. Polytech, and Q. Montreal. Online and off-
line handwriting recognition: a comprehensive survey. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 22(1):63–84, 2000.

[15] Satori Labs. FusionForm Desktop, http://www.satorilabs.com/products/ Fu-
sionFormDesktop.html, Accessed March 2009.

[16] L. Schomaker. User-interface aspects in recognizing connected-cursive hand-
writing. Handwriting and Pen-Based Input, IEE Colloquium on, page 8, 1994.

[17] L. Schomaker. From handwriting analysis to pen-computer applications. Elec-
tronics & Communication Engineering Journal, 10(3):93–102, 1998.

[18] Michael Shilman, Desney S. Tan, and Patrice Simard. Cuetip: a mixed-
initiative interface for correcting handwriting errors. In UIST ’06: Proceedings
of the 19th annual ACM symposium on User interface software and technology,
pages 323–332, New York, NY, USA, 2006. ACM.

[19] B. Suhm, B. Myers, and A. Waibel. Multimodal Error Correction for Speech
User Interfaces. ACM Transactions on Computer-Human Interaction, 8(1):60–
98, 2001.

[20] Keith Vertanen and Per Ola Kristensson. On the benefits of confidence vi-
sualization in speech recognition. In CHI ’08: Proceeding of the twenty-sixth
annual SIGCHI conference on Human factors in computing systems, pages
1497–1500, New York, NY, USA, 2008. ACM.

[21] A. Vinciarelli, S. Bengio, and H. Bunke. Offline Recognition of Unconstrainted
Handwritten Texts Using HMMs and Statistical Language Models. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 26(6):709, 2004.

[22] Xugang Wang, Junfeng Li, Xiang Ao, Gang Wang, and Guozhong Dai. Mul-
timodal error correction for continuous handwriting recognition in pen-based
user interfaces. In IUI ’06: Proceedings of the 11th international conference on
Intelligent user interfaces, pages 324–326, New York, NY, USA, 2006. ACM.

82

[23] R. Yeh, C. Liao, S. Klemmer, F. Guimbretière, B. Lee, B. Kakaradov, J. Stam-
berger, and A. Paepcke. ButterflyNet: a mobile capture and access system for
field biology research. In Proceedings of the SIGCHI conference on Human
Factors in computing systems, pages 571–580. ACM New York, NY, USA,
2006.

[24] Ron B. Yeh, Andreas Paepcke, and Scott R. Klemmer. Iterative design and
evaluation of an event architecture for pen-and-paper interfaces. In UIST ’08:
Proceedings of the 21st annual ACM symposium on User interface software
and technology, pages 111–120, New York, NY, USA, 2008. ACM.

[25] M. Zimmermann and H. Bunke. Optimizing the Integration of a Statistical
Language Model in HMM based Offline Handwritten Text Recognition. money,
2044(8):8, 1990.

[26] M. Zimmermann, J.C. Chappelier, and H. Bunke. Offline grammar-based
recognition of handwritten sentences. IEEE transactions on pattern analysis
and machine intelligence, 28(5):818–821, 2006.

83

