
Augmenting Vehicle Localization
with Visual Context

by

Robert Andrew Rae

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2009

c© Robert Andrew Rae 2009



I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

Vehicle self-localization, the ability of a vehicle to determine its own location, is

vital for many aspects of Intelligent Transportation Systems (ITS) and telematics

where it is often a building block in a more complex system. Navigation systems

are perhaps the most obvious example, requiring knowledge of the vehicle’s location

on a map to calculate a route to a desired destination. Other pervasive examples

are the monitoring of vehicle fleets for tracking shipments or dispatching emergency

vehicles, and in public transit systems to inform riders of time-of-arrival thereby

assisting trip planning. These system often depend on Global Positioning System

(GPS) technology to provide vehicle localization information; however, GPS is chal-

lenged in urban environments where satellite visibility and multipath conditions are

common. Vehicle localization is made more robust to these issues through augmen-

tation of GPS-based localization with complementary sensors, thereby improving

the performance and reliability of systems that depend on localization information.

This thesis investigates the augmentation of vehicle localization systems with

visual context. Positioning the vehicle with respect to objects in its surrounding

environment in addition to using GPS constraints the possible vehicle locations,

to provide improved localization accuracy compared to a system relying solely on

GPS. A modular system architecture based on Bayesian filtering is proposed in this

thesis that enables existing localization systems to be augmented by visual context

while maintaining their existing capabilities.

It is shown in this thesis that localization errors caused by GPS signal multi-

path can be reduced by positioning the vehicle with respect to visually-detected

intersection road markings. This error reduction is achieved when the identities

of the detected road marking and the road being driven are known a priori. It is

further shown how to generalize the approach to the situation when the identities

of these parameters are unknown. In this situation, it is found that the addition

of visual context to the vehicle localization system reduces the ambiguity of iden-
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tifying the road being driven by the vehicle. The fact that knowledge of the road

being driven is required by many applications of vehicle localization makes this a

significant finding.

A related problem is also explored in this thesis: that of using vehicle position

information to augment machine vision. An approach is proposed whereby a ma-

chine vision system and a vehicle localization system can share their information

with one another for mutual benefit. It is shown that, using this approach, the

most uncertain of these systems benefits the most by this sharing of information.

Augmenting vehicle localization with visual context is neither farfetched nor

impractical given the technology available in today’s vehicles. It is not uncommon

for a vehicle today to come equipped with a GPS-based navigation system, and

cameras for lane departure detection and parking assistance. The research in this

thesis brings the capability for these existing systems to work together.
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Chapter 1

Introduction

Our society is becoming increasingly mobile, and with that mobility comes increased

traffic, increased congestion and increased uncertainty when traveling in unfamiliar

places. Intelligent Transportation Systems (ITS) aim to use intelligent technology

to make our roads safer and more efficient. Areas where ITS can make a difference

are traffic management systems, traveler information systems, and vehicle naviga-

tion systems. In each of these areas, it is required that knowledge of vehicle location

be available [21]; localization is the term used to describe the process of estimating

the vehicle location based on available sensory information. Localization systems

are often building blocks in more complex systems in ITS and in telematics. How-

ever, vehicle localization has the potential to become a very active research area in

its own right, due to its association with ITS and the increased importance that

ITS is expected to have in future transportation endeavors.

Vehicle localization is commonly achieved using satellite positioning technology,

of which the Global Positioning System (GPS) is the most established. However,

GPS technology is known to produce inaccurate position estimates in certain con-

ditions. The most significant contributors to these inaccuracies are: satellite vis-

ibility, where the location cannot be found because satellite signals cannot reach

the receiver due to large surrounding structures or dense foliage; and multipath

conditions, where signal reflections off of large buildings create large errors in the

location estimate [1]. The result is that GPS technology has difficulty providing ac-

curate position estimates in urban environments, where the ITS systems employing

this technology would arguably provide the most benefit.

Improving the robustness of vehicle localization to GPS inaccuracies would be a

major benefit to ITS, telematics, and other application areas that rely on accurate
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vehicle location information. Accurate and robust vehicle localization is achieved by

augmenting GPS technology with complementary sources of information, including

dead-reckoning sensors, digital maps and machine vision. This thesis investigates

the improvement in accuracy and robustness that machine vision can provide to

GPS-based vehicle localization.

1.1 Problem Description

This thesis deals with the problem of localization. In a general sense, localization

is the problem of tracking the location of an object of interest within a defined

coordinate space [67]. Therefore, the concept of localization can be applied to

anything we may want to track, such as a vehicle driving in a city, a robot exploring

a room, or a person in a public space.

Furthermore, we can speak of localization in global and local contexts. The

former involves locating the object within the coordinate space, while the latter is

relative to another entity, such as a landmark or the object itself at a previous time

instant. When we speak of vehicle localization we are normally considering a global

localization restricted to the surface of the Earth, thus a spherical latitude-longitude

coordinate system is often used.

Vehicle localization is achieved with the help of satellite positioning systems, of

which the most established and widespread is the Global Positioning System (GPS)

operated by the United States Department of Defense. A GPS receiver determines

its position by knowing the distance from itself to at least four satellites of known

position. For this purpose each satellite broadcasts its orbit and a navigation signal.

The time it takes this signal to reach the receiver is used to calculate this distance,

known as a “pseudorange.” A pseudorange measurement is affected by noise from

a number of sources, for example receiver clock bias, atmospheric transmission

errors, error in the broadcasted satellite orbit (ephemeris), and multipath (signal

reflections off of nearby objects) [54]. These noise sources will induce errors in the

calculated receiver positions.

The most persistent errors are multipath and reduced satellite visibility. Others,

such as atmospheric and ephemeris errors that can contribute tens of meters of error

to the estimated position, can be compensated for by differential means including

Differential GPS (DGPS) or the Wide Area Augmentation System (WAAS). Mul-

tipath effects are a function of the immediate environment of the receiver, while
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DGPS and others are designed to work over a wider range [21]. Using knowledge

of the receiver’s environment may thus be a worthwhile way of compensating for

multipath, and also maintaining accurate location estimates when there are an

insufficient number of satellites visible.

Methods known as “dead reckoning” and “map matching” are commonly used

to compensate for satellite visibility and multipath. Dead reckoning uses measure-

ments of the vehicle’s motion from on-board sensors, such as accelerometers and

gyroscopes, to extrapolate from the last-known vehicle position, heading and/or

speed [1, 52, 64]. The major challenge when using dead reckoning is the problem

of accumulated error; small sensor measurement errors accumulate over time into

large position errors [21]. This is especially problematic when GPS position esti-

mates are unavailable for a long period of time, as there is no capability to correct

the accumulated error.

Map matching involves using a map of the road network to restrict the vehicle

position (provided the correct road can be identified). Assuming this is the case,

the vehicle location can be corrected to lie on the road, allowing the error in GPS

estimates to be determined [65]. This correction will be predominantly in the lateral

direction (perpendicular to the road), unless the vehicle trajectory matches with

a distinct map feature such as a bend in the road or an intersection. Machine

vision may provide the means to correct the vehicle position in the longitudinal

(along-road) direction.

Vision provides the ability to sense the surrounding environment of the vehicle

to alleviate many of the vehicle localization issues identified above. By positioning

the vehicle with respect to objects in the environment, it will be possible to reduce

errors resulting from GPS multipath and dead reckoning accumulated errors. Also,

by observing objects in the surrounding environment, it should be easier to identify

which road the vehicle is on as well as correct the vehicle position in the longitudinal

direction. The use of vision represents a link between the vehicle’s location and

its surrounding environment that is not present in conventional vehicle localization

approaches.
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Figure 1.1: Block diagram illustrating augmentation of an existing localization
system.

1.2 Incorporating Visual Context into Localiza-

tion

I am proposing to augment GPS-based localization systems by sensing the sur-

rounding environment of the vehicle for the purpose of improving the accuracy and

robustness of vehicle localization. This approach uses visual context to provide

constraints on vehicle position that would lead to accurate localization estimates.

The approach also provides a connection between the environment surrounding the

vehicle and its location estimate, a capability that is not possible using a standalone

GPS system. A block diagram in Figure 1.1 illustrates this concept.

More specifically, I am proposing to augment existing localization systems using

environmental context, in the form of visually-detected features and a map of the

environment [25, 75]. The major advantage of this approach is that feature detec-

tion is not affected by any potential GPS issues such as multipath. Therefore the

information provided by vision offers a competing estimate of vehicle location that

can be used to reduce the effect of GPS inaccuracies. It is also to our advantage to

augment existing localization systems as it allows us to complement and enhance

their existing capabilities. For instance, it is very common to augment a GPS re-

ceiver with an inertial measurement unit (IMU) [13, 31, 37, 52, 64] to maintain

continuity of the localization estimates when GPS cannot provide a position, such
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as when the vehicle is in a tunnel or surrounded by tall buildings.

The proposed approach is analogous to mobile robot localization systems, which

primarily use landmarks and features of the environment to determine the position

of the robot in the world [12, 19, 41, 60]. Vehicle localization has been slow to adopt

these concepts due to the direct and convenient solution offered by GPS, and the

complexity involved with detecting and extracting features in a dynamic environ-

ment with moving objects and extreme illumination changes, weather conditions,

and appearances.

It is important to stress that I am not trying to solve the vision problem, but

rather to provide the framework for augmenting an existing localization system with

visual information. As machine vision improves in capability – and it will, based

on the amount of attention given to it in recent years – so will the effectiveness of

visually-augmented localization.

A question one may ask is: Why not avoid the use of GPS for localization,

and instead rely on vision? The answer is that machine vision has its own chal-

lenges, which in our case can be alleviated using information obtained from GPS.

For example, machine vision cannot easily be used to provide an absolute position;

most objects in the world are generic and instances occur in different places. Thus,

despite its inaccuracies, GPS can still give an initial estimate of the vehicle position

which can help identify more generic landmarks and thereby alleviate ambiguity.

It can thus be said that machine vision and GPS have a mutually-beneficial re-

lationship. Both sides of this relationship are explored in this thesis to varying

degrees.

In fact, the combination of location technology and environmental sensing tech-

nology, including vision, sonar, et cetera, would be beneficial in creating more intel-

ligent and autonomous vehicles [9]. Examples include vehicles capable of automatic

cruise control, lane departure detection, platooning, autonomous steering and nav-

igation, and obstacle avoidance. Figure 1.2 shows a number of such applications.

1.2.1 Challenges of Incorporating Visual Context into Lo-

calization

From the above discussion it is clear that there are significant challenges to incor-

porating visual context into vehicle localization. I see these challenges falling into
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Figure 1.2: Illustration of a variety of vehicular applications that can benefit from
location and environmental knowledge.

three broad categories: vision, data association, and data fusion. I discuss these

categories in more detail in the following.

Vision

Vision has the potential to be a powerful sensory modality for improving localiza-

tion, however sensing the environment visually is not a trivial task. Vision must

be able to detect features and objects in the surrounding environment, so as to

use these objects as landmarks to position the vehicle. To be reliable, this de-

tection must account for variations in object appearance, the presence of moving

objects such as other vehicles and pedestrians, occlusions created by a cluttered

environment, and varying illumination and weather conditions.

In addition to being able to detect objects, there must be a mechanism for

measuring features of that object that are relevant to the vehicle’s position. For

example, an estimate of the distance from the vehicle to the detected object, or its

angular displacement relative to the vehicle’s heading vector.
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Data Association

Data association is the problem of identifying the objects detected by vision using

a map of the environment. This can be ambiguous when similar objects occur in

close proximity – houses are one example – with the result that more than one

object is a plausible identity for the detected object. This has a significant impact

on localization, as an incorrect association means that the vehicle is localized with

respect to the wrong object, potentially leading to large localization error.

What objects will likely be seen by the vehicle is also dependant on what road

the vehicle is driving on. Knowing this information beforehand may reduce the

ambiguity of data association in identifying visually-detected objects. The opposite

may also be true, namely, knowing which objects have been detected may help in

determining which road the vehicle is driving on. This would be a significant help

to the map matching problem, where the identity of the road the vehicle is driving

on can often be ambiguous due to inaccurate GPS position measurements.

Data Fusion

Data fusion is needed to combine the visual information and the GPS measurement

data to achieve a more accurate and robust vehicle localization. This task is not

trivial, as these are two heterogeneous data sources. In this regard a map of the

environment is necessary to “translate” information from the position space to the

visual space, and vice versa, so that this information can be fused. The map allows

us to determine where the vehicle must be, given that the vehicle can see certain

objects. Conversely, it also allows us to determine what the vehicle is likely to be

seeing, given the location of the vehicle.

Fusing this information together to improve vehicle localization can be achieved

by a number of existing means. Bayesian filters (such as the Kalman filter and

particle filters) are popular due to, in part, their recursive nature and ability to in-

tegrate measurements from many sources into the vehicle state estimate. Other

approaches may include Maximum Likelihood (ML) estimation, and constraint

propagation [26].
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1.3 Thesis Objectives

Being mindful of the challenges involved with vehicle localization and incorporation

of visual context into it, I have set the following objectives for this thesis.

1. Design a system architecture that will incorporate multiple information sources

to achieve vehicle localization. Furthermore, to have as one of these informa-

tion sources a machine vision system to provide visual context to the local-

ization estimate.

2. Propose a method of fusing localization estimates with visual feature data,

and verify that the accuracy of vehicle localization is improved as a result.

Accuracy will be defined as error relative to the ground truth vehicle position.

3. Examine the effect that visual context has on the map matching problem.

Verify that the addition of visual information improves the ability of the

system to identify the road being driven by the vehicle.

4. Demonstrate with a real system implementation the improvement to vehicle

localization accuracy and map matching that results from the addition of

visual context.

5. Determine if a mutually-beneficial relationship between vision and location

information can be established. The rest of the objectives are related to using

vision to assist localization, but can we simultaneously use location to assist

vision?

Where each of these objectives is addressed in the remainder of the thesis is

illustrated in Figure 1.3, where the contents of each chapter are displayed in brief.
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Bayesian filtering background

Review of previous work on vehicle localization

Adding visual context to localization

A Kalman filtering algorithm

A particle filtering algorithm

Identifying roads and landmarks

An approach within the Kalman filtering framework

An approach within the particle filtering framework

Design of system architecture

Adding position context for visual feature estimation

Implementation within a localization system

System Implementation

Experimental Results

8
Conclusions of research

Future directions

Vehicle localization background

Figure 1.3: Layout of the remainder of the thesis, showing the material covered in
each chapter.
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Chapter 2

Background and Literature
Review

This chapter provides to the reader background information on localization and

Bayesian filtering to establish a context for the remainder of the thesis. The local-

ization background will discuss the problem within the vehicular domain. Much

of the work on vehicle localization involves compensating for the faults inherent in

GPS by using additional sensory information. This generally requires a combination

of the following:

• dead reckoning to compensate for GPS being temporarily unavailable or pro-

ducing unreliable estimates,

• map matching to adjust the estimated vehicle position based on the location

of roads, and

• external sensors such as vision to position the vehicle with respect to its

environment.

Bayesian filtering is the most popular approach taken for localization. It is

also the approach taken in this thesis. As a result, I provide background on

Bayesian filtering to enable the reader to better understand the concepts intro-

duced later in the thesis. I also discuss Bayesian filtering as a method of inference

in Dynamic Bayesian Networks (DBNs), graphical tools which combine probability

theory, graph theory and the notion of time dependency, and are well suited to

modeling the dependency between variables.

Finally, I then give a review of past accomplishments in vehicle localization, to

establish to the reader where my work fits with respect to the rest of the field.
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2.1 Vehicle Localization Background

Vehicle localization systems have been centered primarily around GPS receivers

to provide direct measurements of the vehicle position on the Earth. The various

shortcomings of this technology, which will be explained, have resulted in many

attempts to augment these measurements in a number of ways, including additional

infrastructure as well as within the vehicle itself.

The Global Positioning System

The Global Positioning System (GPS) is a satellite-based positioning system op-

erated by the United States Department of Defense (DoD), made available for use

by the general public. The full system is composed of the Space Segment, User

Segment and Control Segment [21]. The Space Segment consists of a minimum of

24 satellites orbiting the Earth and the signals they transmit. The Control Segment

consists of supervision and maintenance required for day-to-day operation of the

Space Segment. The User Segment consists of receivers and the many applications

of this technology.

For a receiver to calculate its position, it is necessary to know the distance

from the receiver to at least four satellites of known position. Each satellite broad-

casts its own orbit and a pseudorandom navigation signal for this purpose. The

delay between the received signal and an internal copy generated by the receiver

provides the transmission time for the signal [70]. Multiplying by the speed of

light c provides the range from the receiver to the satellite, whose position at the

time of transmission can be computed knowing its orbit. This range estimate ρ is

known as a “pseudorange” because it is derived from the time delay and is not a

direct range estimate. A pseudorange measurement is modeled as the true receiver-

satellite range r plus additive noise from a number of sources, for example receiver

clock bias, atmospheric transmission errors, error in the broadcasted satellite orbit

(ephemeris), and multipath [54].

The receiver clock bias δt affects all pseudorange measurements from a given

receiver, and is calculated from the following system of non-linear equations (2.1)

along with the estimate of receiver position {x, y, z} in Earth-Centered Earth-Fixed

coordinates. As there are four unknowns to be found, the pseudorange ρi and
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position {Xi, Yi, Zi} of at least four satellites must be known [40].

ρi =
√

(Xi − x)2 + (Yi − y)2 + (Zi − z)2 − cδt, i ∈ [1, N ], N ≥ 4 (2.1)

Atmospheric and ephemeris errors will similarly affect all receivers within the

same area, since they will have the same satellites in view, receive the same broad-

cast ephemeris data and be subject to the same atmospheric refraction errors [21].

These errors together result in computed position errors on the order of tens of

meters [54].

A number of augmentation systems exist to reduce these errors for all receivers

in a common area. Differential GPS (DGPS) is perhaps the most well known. At

a base station with a known position, errors in the received pseudoranges can be

computed and broadcast so that receivers can correct their own estimates. Position

accuracy can be achieved at the submeter level by this method [21].

A related approach is the Wide Area Augmentation System (WAAS). This is

a Satellite-Based Augmentation System (SBAS), using satellites rather than base

stations to broadcast correction data to receivers within a wider area than a single

DGPS base station [27]. Many receivers are capable of using the WAAS service,

which improves horizontal position accuracy to approximately 2 meters.

A more persistent error in GPS positioning is due to multipath effects, which

can be stated simply as the bias introduced into the pseudorange by satellite signals

reflecting off of objects in the immediate environment of the receiver. This makes

it appear that the satellite is further away due to the increased time for the signal

to reach the receiver. This problem can be alleviated somewhat by better antenna

and receiver design [21, 54]; however, many modern receivers still have significant

problems computing reliable solutions in “urban canyons” or under dense foliage [1].

These position erros cannot be totally corrected using differential techniques since

the multipath effect is heavily dependent on the immediate environment of the

receiver, while DGPS and others are designed to work over a range of 100 km from

the base stations [21], and WAAS over an even larger area [27]. Using knowledge

of the receiver’s environment may thus be a worthwhile way of compensating for

multipath effects.

Differential methods are viable means for improving the position estimate that

GPS provides, however they cannot mitigate the loss of satellite signals. In urban

environments it is common that only a small set of satellite signals are received in

12



2.1. Vehicle Localization Background

urban canyons. Therefore, a GPS receiver by itself will not be sufficient to provide

continuous and accurate localization in a vehicular application. For this reason

other complementary sources of location information must be considered, such as

dead reckoning, map matching and machine vision.

Dead Reckoning

Dead reckoning is commonly used to supplement GPS, to account for position

inaccuracies due to multipath and to mitigate the loss of GPS position fixes when

satellite visibility is low [1, 13, 14, 37, 52, 58, 64]. Both of these phenomena are

common in urban environments, where satellite signals are often obstructed near

tall buildings or in tunnels.

Dead reckoning uses measurements of the vehicle’s motion to extrapolate from

the last-known position, heading and/or speed. Sensors commonly used for this

task are:

• odometers for measuring distance traveled by the vehicle;

• accelerometers for measuring forward and lateral acceleration;

• compasses for measuring vehicle heading, and;

• gyroscopes for measuring the turning rate of the vehicle.

Accelerometers and gyros are commonly found together in what is known as

an Inertial Measurement Unit (IMU). An Inertial Navigation System (INS) uses

measurements from an IMU to estimate the current vehicle state (position, heading

and/or speed) based on the previous state estimate [13]. Wheel speed sensors can

also be used to determine the change in vehicle state, with the advantage that they

are present on most vehicles in the form of anti-lock braking systems (ABS) [10].

Estimates of vehicle position from dead-reckoning and GPS are often fused using a

Kalman filter or extended Kalman filter.

The major challenge when using dead reckoning is dealing with the problem

of accumulated error. Small sensor measurement errors will accumulate over time

into large position errors the longer that these measurements are used to compute

the vehicle position [21]. For this reason, they are primarily used when GPS is not

available or in the presence of multipath. GPS position measurements provide a
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way of calibrating the dead-reckoning sensors online, by comparing the measured

GPS position with the position predicted by dead-reckoning. This approach is one

that is used quite often to build high-integrity localization systems [52, 58, 64].

One drawback to the above calibration method would be cost. While it is

possible to achieve accurate localization using dead reckoning during long periods

of time when GPS signals are unavailable, the cost of dead reckoning sensors with

suitably low measurement drift errors would be prohibitively high. At the present

time, inexpensive sensors are not capable of achieving this level of accuracy.

Map Matching

Assuming that the vehicle is on the road, a map of the road network can be used to

restrict the vehicle position, provided the correct road can be identified. The process

of identifying the road driven by the vehicle and adjusting the vehicle position to

be consistent with the location of that road is known as map matching [72].

The road network is often contained in a vector database [65]. Roads are rep-

resented by piecewise-linear segments modeling the location of the road centerline

between two endpoints defined by intersections with other roads or by dead-ends.

Each entry in the database represents one such road “segment,” and thus each road

segment is uniquely identified by its index in the database.

The identity of the current road segment being driven by the vehicle is often not

known a priori except in special circumstances or applications. Rather this must be

inferred based on the measurement data, and is an example of the data association

problem. This problem was introduced in Section 1.2.1 in the context of identifying

objects detected using vision. The concept is the same for map matching, instead

we are identifying a road instead of a landmark. In both cases we are inferring

the identity of something that we cannot measure directly based on the available

measurement data.

Identifying the road segment being driven by the vehicle is not a trivial task.

It is often the case that multiple road segments are plausible candidates. This

can arise because the location estimate is inaccurate, and thus we must consider a

wide area containing many roads, or the roads are placed very closely together as

is the case in many old European cities. In addition we must contend with GPS

measurement inaccuracies such as multipath, which may introduce a significant bias

into the estimated vehicle location, thus complicating the map matching problem.
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One benefit of map matching is that, provided the road segment can be iden-

tified, the vehicle position can be restricted to lie on the road segment. This

provides a way of correcting for localization errors caused by multipath or other

GPS issues [51, 66]. There is however a limit to the degree of correction that can be

achieved. Since roads are modeled by their centerlines, they may not be indicative

of the true vehicle path and may introduce a bias on an order as large as tens of

meters into the vehicle localization estimate depending on the road width.

Vision in Localization

Vision provides the capability to observe the environment surrounding the vehicle,

and the information gained can be used to localize the vehicle with respect to its

environment. Vision can therefore be used to create a more robust localization sys-

tem that improves localization accuracy over GPS-based systems [16] or maintains

localization integrity in poor GPS environments [25].

Vision-based localization systems are defined by the visual information they

are capable of extracting, and by the information contained in their maps of the

environment. For example, one can use vision to measure the position of the vehicle

within its current lane [16, 39]. Visually measuring the location of lane boundaries

is rather straightforward as they are normally painted a color such as white or

yellow that highly contrasts with the dark road surface [15]. Provided the map

contains detailed information such as the location of lane boundaries, it would be

possible to determine which lane the vehicle is driving in and to precisely locate

the vehicle within that lane.

Vision can also be used to localize the vehicle with respect to objects surrounding

the vehicle. One simple approach is to use straight-line features [25, 35] which are

easily detected in an image using an edge detector and to associate them with

objects in the environment, such as buildings, trees or lamp posts, the location of

which we know from our map. The estimated position of these objects relative to

the vehicle enables us to maintain localization even in poor GPS environments.

Vision may also be used to determine the absolute location of the vehicle when

other absolute localization estimates such as those from GPS are not available [33,

75]. This would require using the appearance of the surrounding environment

to uniquely identify the vehicle’s location. While this may be straightforward in

circumstances when unique landmarks are visible (for example, the CN Tower in
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Toronto) in most circumstances it would require an exhaustive search of a map

database to find compatible scenery.

Regardless of the approaches that can be taken, there are some general guide-

lines one notices about the use of vision for localization. First, the capability to

extract features from images of the surrounding environment is required, and to es-

timate the position of these features relative to the vehicle. These features should

be static, like landmarks or road markings, in order to be used to position the ve-

hicle. Second, the location of these objects must be known, meaning that a map of

the environment is required. Third, it must be possible to establish correspondence

between the detected objects and those in the map (the problem of data associa-

tion). Finally, the capability is needed to use the above information to adjust (in

the case of relative localization) or determine (in the case of absolute localization)

the location of the vehicle in the absolute sense. The majority of methods employ

Bayesian filters (specifically Kalman filters and particle filters) for this purpose.

2.2 Bayesian Filtering Background

Bayesian filtering is the term given to a family of probabilistic filtering methods

that aim to infer the values of a set of variables of interest, collectively referred to as

the state of the system, from a sequence of related observations. In particular, we

wish to estimate the posterior probability distribution of the state at time instant

t, denoted xt, conditioned on all measurements made up to t, denoted z1:t, that is,

p(xt|z1:t). Often the mode of this distribution is of interest, as this indicates the

most probable value of the state vector xt based on the accumulated evidence.

2.2.1 Dynamic Bayesian Networks

A graphical tool known as a Dynamic Bayesian Network (DBN) can be used to

model the dependencies between variables in the Bayesian filtering problem. Each

node in a DBN represents a random variable, and directed arcs between nodes

represent causal or temporal relationships between them. For this reason DBNs

are useful for describing tracking problems, where the state of the system changes

over time and at each time step we make observations of variables related to the

state [48]. A simple DBN is shown in Figure 2.1. The convention used in this

diagram is to denote evidence nodes (those whose value has been observed) with
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Figure 2.1: A Dynamic Bayesian Network for the filtering problem. The measure-
ment variables zt = {z1

t . . . zN
t } are dependent on the value of the state xt, which

depends on the previous state xt−1. Thus, temporal and causal relationships are
captured.

shading and hypothesis nodes (those whose value we wish to infer) without shading

and a solid outline. Hidden nodes (those whose value is neither observed or of

interest) will be shown with a dashed outline. Furthermore, nodes representing

variables with continuous probability distributions are shown as circles, while those

with discrete distributions are shown as squares. This convention is maintained

throughout the thesis.

Each node in a Bayesian network (BN) is independent of every other node if the

values of its parent nodes are known. Thus, by knowing the probability distribution

of each node in the network conditioned on its parents, it is possible to describe the

joint distribution of all variables in the network [57]. The joint distribution allows

us to determine the posterior probability distribution of the subset of variables that

we are interested in (the state variables xt) given observations of a separate subset

of variables (the measurement or “evidence” variables z1:t). This is the process of

inference [63], of which filtering is one type.

In more complex networks, a series of elementary connections (serial, diverg-

ing and converging) define the paths by which hypothesis nodes are influenced by

evidence nodes. Certain pathways can be “blocked” due to the nature of the con-

nection and the location of evidence nodes. This represents an advantage of BNs

as it is known directly from the network structure whether a given node will in-

fluence another, regardless of the probability distributions assigned to the various

nodes [49].
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2.2.2 Bayesian Filtering Methods

Estimating the filtering posterior can be performed recursively with the result that

only the current state estimate and set of measurements need to be stored, thereby

keeping memory consumption at a minimum. This is a consequence of the Markov

assumption – that future states of the system are independent of past states if the

present state is known – that is made implicitly in Figure 2.1 by the arc directed

from the current state xt to the next state xt+1.

The recursive update can be developed as follows. The filtering posterior can

be factored according to Bayes’ rule (2.2). The term p(xt|z1:t−1) is a prediction of

the state xt based on measurements z1:t−1. This prediction is updated using the

probability of the current measurement p(zt|xt) to generate the posterior. The pre-

dicted state p(xt|z1:t−1) is found by multiplying the previous estimate p(xt−1|z1:t−1)

by a state transition probability p(xt|xt−1) and marginalizing xt−1. This is known

as the Chapman-Kolmogorov equation [4] and is either a summation, if discrete, or

an integration, if continuous (2.3).

p(xt|z1:t) =
p(zt|xt)p(xt|z1:t−1)

p(zt|z1:t−1)
(2.2)

=



p(zt|xt)
∑
xt−1

p(xt|xt−1)p(xt−1|z1:t−1)

p(zt|z1:t−1)
if discrete

p(zt|xt)

∫
p(xt|xt−1)p(xt−1|z1:t−1)dxt−1

p(zt|z1:t−1)
if continuous

(2.3)

Two assumptions of conditional independence are made in arriving at the above

expressions. First, zt is assumed conditionally independent of all previous z1:t−1

given the state xt. This assumption is in fact shown in Figure 2.1, where nodes

z1:N
t+1 are independent of z1:N

t when xt+1 is known. Second, the current state xt

is assumed independent of all previous states if its immediate predecessor xt−1 is

known. This is an example of the Markov property and is also encapsulated by the

network structure in Figure 2.1.

Bayesian filtering is used for a multitude of applications, and in fact many well

known methods such as Hidden Markov Models (HMM) and Kalman filtering (KF)

are special instances of Bayesian filtering. These problems can all be represented
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using the common language of DBNs [63]. The following discussion introduces these

methods, and groups them according to the type of DBN they correspond to: one

with discrete nodes, continuous nodes, or a hybrid of the two.

Discrete Networks

Discrete DBNs are useful for representing classification problems such as speech

recognition, and for continuous problems such as localization when the state space

is small. Hidden Markov Models (HMM) are an example of a discrete DBN. The

purpose of an HMM is to evaluate the probability of a sequence of unobservable (hid-

den) states in a Markov chain, based on an observed sequence of related events [53].

Discrete environmental representations have been used for localization by segment-

ing the environment into a grid of cells [11]. This approach is successful in handling

arbitrary distributions, however it can be very expensive computationally if the

state space is large and the cell size very small [24].

Continuous Networks

Many well-known methods of target tracking are in fact inference schemes for con-

tinuous DBNs. Included in this category are Kalman filters, extended Kalman

filters, unscented Kalman filters and particle filters.

A Kalman filter (KF) provides the optimal filtering result in the least-squares

sense for systems that are linear and Gaussian [36]. This means that the filtering

posterior has a Gaussian distribution parameterized by its mean vector E[xt|z1:t]

and covariance matrix V ar[xt|z1:t] (2.4).

p(xt|z1:t) = N (xt; E[xt|z1:t], V ar[xt|z1:t]) (2.4)

Furthermore, the next state xt+1 and current measurement zt are linear functions

of the current state xt (2.5)-(2.6), where ωt and νt are zero-mean Gaussian noise

terms. The equations for KF prediction and update can be found in many papers

and textbooks ([67] provides an extensive derivation), and so are not reproduced

here.

xt = Atxt−1 + ωt (2.5)

zt = Htxt + νt (2.6)
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When these assumptions are violated by a system with non-linear dynamics

or a non-Gaussian posterior, the KF framework can still be used however with

suboptimal results. A non-Gaussian posterior can be assumed Gaussian for the

purpose of filtering (2.7). However, this may not adequately represent the true

posterior, particularly if it is multi-modal. A good illustration of approximating a

multi-modal distribution with its mean and variance is given in [57], page 558.

p(xt|z1:t) ≈ N (xt; E[xt|z1:t], V ar[xt|z1:t]) (2.7)

Extended Kalman Filtering (EKF) can be used when the linearity assumption

is violated. Non-linear models are used to predict the values of the state xt (2.8)

and the measurement zt (2.9). To perform the KF update, however, linear models

At and Ht are required as in (2.5)-(2.6). Linear approximations to the non-linear

models are therefore found as the Jacobian of at and ht with respect to the state

xt. For this reason, if the models are locally-linear near xt then EKF may approach

the optimal filtering result.

xt = at (xt−1) + ωt (2.8)

zt = ht (xt) + νt (2.9)

To address the shortcomings of EKF, Unscented Kalman Filtering (UKF) was

proposed to better handle non-linearities [34]. UKF uses the Unscented Trans-

form, a deterministic sampling method that enables calculation of the statistics of

a random variable that undergoes a non-linear transformation [71]. Whereas EKF

will capture the posterior mean and variance to 1st order (Taylor series expansion),

UKF will capture it to 3rd order using the same level of complexity [71]. This is still

dependent on the Gaussian assumption, however, and as a result will have difficulty

with multimodal distributions.

Particle filtering (PF) is a different inference method than Kalman filtering,

both in terms of how it represents probabilities and how it updates estimates of

them. The KF uses a parameterization of the posterior, taking advantage of the

fact that a Gaussian distribution is completed specified by its mean vector and

covariance matrix. PF represents the posterior non-parametrically as a sum of

weighted samples (or particles) (2.10). Each sample or particle can be considered

to be a hypothesis of the value of the state xt. This non-parametric representation

enables arbitrary distributions to be handled; dense clustering of particles in one
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area of the state space indicates a peak in the posterior distribution.

p(xt|z1:t) ≈
N∑

i=1

wi
tδ(xt − xi

t) (2.10)

At each iteration of the filter, the weights and samples are updated to reflect

changes to the posterior due to the state transition from xt−1 to xt and any new

measurements zt. Unlike the KF, the state transition and measurement models can

be arbitrarily non-linear.

One inherent problem of PF is that after a few iterations of the filter, only a

small number of particles have significant weight. This implies that computational

resources are wasted updated particles that do not contribute to the posterior.

To improve the diversity among particles, resampling is used whenever the set

degenerates. A new set of N particles is randomly chosen (with replacement) from

the existing set, with the probability of choosing particle i equal to its weight wi
t.

A variety of ways to weight, sample and resample particles means there is no such

thing as a “standard” particle filter, although the Sequential Importance Sampling

(SIS) and Sampling Importance Resampling (SIR) filters [4] are perhaps the most

widely understood. Good overviews of particle filtering are given in [4] and [67].

Hybrid Networks

Hybrid (or mixed) networks contain both continuous and discrete nodes, making

the process of inference less straightforward. Examples of hybrid Bayesian networks

arise is many practical applications, such as target tracking or fault diagnosis [42],

where we are interested in the value of a continuous state that depends on a discrete

parameter. A DBN with a mixture of continuous and discrete nodes is shown in

Figure 2.2. In target tracking, there can be discrete variables for the identity of the

target or the maneuver it is performing, and continuous variables for the position,

speed or heading of the target. In fault diagnosis, there can be a Boolean variable

representing fault/nofault in a monitoring system, for example detecting pipe burst

events from the flow rates through a series of connected water tanks [2, 42]. Prob-

lems involving data association fall under this category since the expected value of

a sensor measurement will depend on the identity of the detected object [47].

The posterior of the network in Figure 2.2 is p(xt, ct|z1:t), which is not a con-

ventional probability mass or density, being a mixture of discrete and continuous
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Figure 2.2: Example of a hybrid DBN. Some continuous nodes in the network
depend directly on the value of discrete nodes.

variables. In order to create meaningful probabilities, the discrete variables can

be marginalized out of this posterior to create the conventional continuous pos-

terior (2.11). This is now a summation of a set of posteriors conditioned on the

individual values of ct. The discrete posterior p(ct|z1:t) is present as well providing

the weight to each conditional continuous posterior.

p(xt|z1:t) =
∑

i

p(xt, c
i
t|z1:t) =

∑
i

p(xt|z1:t, c
i
t)p(ci

t|z1:t) (2.11)

This approach is used in multiple-hypothesis tracking (MHT), which is a com-

mon method for handling unknown data associations. Each individual posterior

is tracked using its own Kalman filter. It is however intractable in practice [67]

because the number of discrete hypotheses grows exponentially over time. Assum-

ing there are N values in the domain of ct, then each of the N hypotheses at time

t creates N new hypotheses at t + 1 when all possible combinations are consid-

ered [47]. Therefore, it is common to prune hypotheses with low probabilities at

each iteration to maintain tractability of the filter.

The vehicle localization problem requires a hybrid DBN representation due to

the presence of discrete parameters that affect the localization result, such as the

identity of the road being driven and the object observed by vision. Data association

methods are discussed in more detail in Section 2.3.4.
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2.3 Vehicle Localization Literature Review

In this section I will highlight some of the recent work in vehicle localization and

related areas. I have organized this work into the following categories: passive

localization, referring to the use of GPS, dead reckoning, and other sources that

do not use environmental context; map matching, where localization is augmented

knowing the road being driven; vision-based localization, involving sensing of the

environment surrounding the vehicle; and data association, which refers to the

identification of detected objects, and is relevant for the map matching and vision-

based localization problems.

2.3.1 Passive Localization

“Passive Localization” is a term I am using to refer to those methods of vehicle

localization that do not involve the use of environmental context, in the form of

maps or sensing of the environment. This includes the more traditional sources of

information such as GPS (and other satellite positioning systems such as Russia’s

GLONASS and the European Union’s Galileo), INS and other dead reckoning sen-

sors (wheel-speed sensors, compasses), and emerging technology such as the Global

System for Mobile Communications (GSM) cellular telephony standard.

There are numerous examples of approaches that combine satellite positioning

with dead reckoning to create a “high-integrity” localization system. These tech-

niques are complementary: dead reckoning can provide relative changes in vehicle

location when GPS exhibits an occasional fault or lost signal, while GPS provides

reference positions to calibrate the dead reckoning sensor measurements against

their inherent bias.

The vast majority of such approaches use KF or EKF to perform localization,

although what these filters are used to track varies among the approaches. For

example, in [64], a Kalman filter is used to track the bias in positions calculated

using an IMU, using measurements from a DGPS receiver. This provides a method

of calibrating the IMU online, so that when GPS is not available or exhibits a fault

(such as multipath) the IMU can be used to maintain localization integrity for a

short period. This approach has been termed “indirect” localization, because the

filter does not have the vehicle position among its state variables [52]. So-called

“direct” methods, where the vehicle position is present in the state (among other

variables, including IMU bias terms) are explored in [13, 52, 58].
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To maintain robustness of the localization solution to GPS signal multipath, it

is common to monitor the innovation of the Kalman filter for any sudden unex-

pected changes in the GPS position measurements [13, 58, 64]. How the so-called

“erroneous” measurement is used varies among the approaches. For example, in [64]

the GPS measurement is discarded and localization continues with the IMU alone.

Conversely, in [13, 58] the GPS measurement is allowed to contribute to the local-

ization, however it is given a lower weight relative to the IMU. One advantage I can

see in the method of [13] is that faults in the IMU are detected as well, accounting

for the case where both sources are giving faulty information.

One deficiency in the studies mentioned above is that, although they discuss

detection of multipath events and use dead reckoning to compensate for them, the

ability to do so in an environment such as an urban canyon where these events are

common is not demonstrated. Testing is instead performed in an environment with

brief multipath occurences [64] or by artificially degrading GPS position measure-

ments with white noise [13, 58]. A possible reason for this deficiency is that dead

reckoning would have to operate continuously without calibration in the presence

of persistent multipath, thus leading to unbounded growth in the uncertainty of

vehicle localization.

One possibility for an alternative localization source in urban environments is

using GSM signals. At present, however, the accuracy of GSM-based localization

is on average approximately 100m [17]. Therefore, while it may provide a rough

estimate of location, currently it is not sufficiently accurate for, say, turn-by-turn

vehicle navigation.

2.3.2 Map Matching

Map matching, which has been defined previously as the process of identifying

the road driven by the vehicle and adjusting the vehicle location estimated to be

consistent with the location of that road [72], is an integral part of a localization

system. Without this capability, it is not possible to track the route taken by a

vehicle or to navigate a vehicle to a destination.

This process is trivial when there is only one road near the estimated vehicle

position. In this situation, or if the road is known a priori, the method of Scott [59]

can be used to make the position estimate consistent with the road location. It

becomes much more complicated when multiple roads lie within the uncertainty
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region of the vehicle position estimate. For example, when the vehicle is at an

intersection of two or more roads, or when two roads run parallel to each other

and the estimated position lies between them [72]. For this reason map matching

approaches tend not to make decisions based on a single position estimate, or to

consider only one road possibility.

Many map matching approaches use Bayesian filtering in considering multi-

ple road hypotheses. The common element among these approaches is that they

maintain multiple possibilities for the road until such time that one becomes sig-

nificantly more likely than the rest. Pyo [51] uses a Multiple Hypothesis Tracking

(MHT) approach with a number of threshold tests to decide among competing road

hypotheses. Measurements are obtained from a combined GPS-dead reckoning sys-

tem providing position and heading information. Gustafsson [28] and Chausse [16]

are examples of map matching using particle filtering methods. The former ini-

tially spreads the particles over a large number of possible roads surrounding an

initial position provided by a GPS receiver. Over time, the particles converge to the

correct road while position estimates are updated by dead-reckoning. Fast conver-

gence to the correct position is reported, however the restricted search space raises

concerns over the ability to scale up this method to a more general scenario. The

latter particle filtering approach [16] weights each particle based on 1) its proximity

to the position estimate from GPS, and 2) its proximity to a road.

Taylor [66] matches the trajectory of a series of raw GPS points to the shape

of the nearby roads. Roads which differ significantly in their shape from the GPS

trajectory can be filtered out, while roads with low error are candidates for the

vehicle location. This is determined by a least-squares criterion. In addition, once

the road has been identified, the corrected position is used to determine the error

in the GPS estimates, thereby providing a calibration for future measurements.

While map matching can improve the estimation of vehicle position, it pre-

dominantly does so in the lateral direction (perpendicular to the road). Without

additional information about the vehicle’s longitudinal (along-road) position, the

only adjustment that can be made is in the lateral direction. Distinct features such

as a change in the trajectory of the vehicle or landmarks observed using vision can

provide this information.
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2.3.3 Vision-based Localization

Uses of vision for localization in a vehicular environment and in a robotics en-

vironment is discussed here. Also, the literature provides us with some general

requirements for localization systems that rely on sensing their environment, by

vision or other means.

Vehicle Localization

There are numerous examples of vision being used within the context of vehicle

localization. Along the lines of map matching, vision has been used to measure the

location and heading of the vehicle relative to the boundaries of its current lane [16,

39]. In [39] the position and heading of the vehicle relative to the current lane are

converted to world coordinates using an accurate map of the road. These estimates

are combined with position and heading estimates from a GPS-dead reckoning

localization system using a Kalman filter. Chausse [16] extends this approach to

multi-lane roads using a particle filter in place of the Kalman filter. Reported results

indicate that this approach reduces uncertainty in lateral position (perpendicular

to direction of the road) while uncertainty in longitudinal position (parallel to

direction of the road) is less affected.

A similar investigation [31] uses visual estimates of road shape with GPS and

a gyroscope to determine the pose of the camera with respect to the current lane

in a digital map. The camera pose is used in a heads-up display to help the driver

navigate without distraction in an urban environment.

Georgiev and Allen [25] and Kais et al [35] use vision as a complement to GPS

and dead reckoning for estimating the pose of a robot in an urban environment

where satellite visibility may be limited. Both use straight line features that are

easily detectable and abundant in urban environments, such as building edges, doors

windows, trees, lamp posts, traffic signs and lane boundaries. In [35], the features to

be used for localization are mapped within a Geographic Information System (GIS)

database. The locations of GIS features are transformed to the camera coordinate

frame to define search regions for these features in the acquired image, driving the

operation of the vision system. In [25], the appearances of building facades are

modeled by their straight line features. The transformation required to align the

detected features with the model gives an indication of the pose of the robot with

respect to the building. Both of these approaches [25, 35] are used to control the
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accumulation of localization uncertainty when GPS estimates are unavailable due

to poor satellite visibility.

Similar investigations have been made into using only vision for performing

localization, without the use of GPS. For example, [75] uses images of buildings

to determine location. This is accomplished by identifying the most similar image

from a database of building images and determining the pose of the camera with

respect to the identified building. Johns [33] uses a slightly different approach by

extracting a contour of the skyline, and matching this contour against a database

of contours.

Robot Localization

Much can be learned from the robotics field, where localization depends strongly

on sensing the environment. Due to environmental constraints, such as operating

indoors, direct measurement of the state from GPS is often not available. Rather,

sensors are used to gather information about the environment, which is used to

update the localization state. This is a more general approach that does not rely

on the assumption of having a direct state measurement, and will also be relevant

regardless of the size of the environment.

Detecting objects in the environment for robot localization is often achieved

using laser scanners or sonar. One possible reason for this is that these sources

can give accurate localization with simpler maps and less-demanding data associa-

tion [50]. In an outdoor environment, the versatility of vision would be extremely

useful for distinguishing static objects from dynamic ones, and also dealing with

clutter. However, the use of vision for localization has been limited to simple fea-

tures rather than high-level objects.

For example, the localization systems described in [5, 19, 60] all use point fea-

tures that are invariant to the changing position and orientation of the robot. This

implies that these features can be reliably detected as the robot traverses its en-

vironment. These types of features are found by low-level feature detectors such

as [62, 43].

Perez [50] and Kosaka [38] used vertical line features belonging to doors and

walls in hallway images to localize the robot using Kalman filtering. The latter

used a model of the feature locations and the uncertainty in the robot position to

search for these features. This was accomplished by projecting the robot position
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uncertainty into the camera coordinate system and establishing a search region

for each feature. It is interesting how this same approach was used for vehicle

localization by Kais [35].

There does not appear to be an emphasis on identifying high-level features

and using them for localization, for example, tables, chairs, doors, et cetera. One

explanation may be the difficulty that would be associated with recognizing such

objects in a dynamic environment, where occlusions would be common. It may be

promising to build upon work using contextual priors for object recognition [68].

The idea is to use position of the robot to constrain the probability of certain object

classes. This would be especially promising with a Geographic Information Systems

(GIS) database describing the type of objects near a location, such as buildings or

street signs, that can be used to tailor the processing needs of the vision system.

General Requirements for Vision-based Localization

Regardless of the type of sources used, some general lessons can be learned from

the literature when sensing the environment for the purpose of vehicle localization.

First, the environment must contain features that can be detected and whose lo-

cation is known from a map of the environment. Without these, the robot cannot

update its location estimate and its uncertainty will grow without bound [41].

Second, features must be distinct and unambiguous [44, 67] to make them easy

to detect, and difficult to confuse with other features. The latter is extremely

important, because misidentified features can lead to large localization errors from

which it may not be possible to recover.

Third, an environment that is densely populated with such features would pro-

vide the best localization result [67]. In a sparsely-populated environment the state

is updated only periodically, again leading to uncertainty growth.

The prospects for using vision in vehicle localization are promising when consid-

ered in light of these points. Urban environments specifically contain many static

features useful for localization, such as street intersections, buildings, signs, tele-

phone poles, among others. A significant challenge will be identifying these features

in the presence of moving objects such as people and other vehicles, and also under

dynamic lighting and weather conditions. In terms of maps containing the location

of features, Geographic Information Systems (GIS) databases are promising as they

provide information on the location of roads and buildings, how land is used, et
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cetera [30]. The main issues may be the public availability and cost of using this

data, as well as possible inconsistencies between databases produced by various

municipalities [61].

2.3.4 Data Association

Data association involves the association of feature measurements with the ob-

jects being measured, that is, identifying the object of a particular measurement.

Within the context of vehicle localization, this could be the identification of a de-

tected building or street intersection. The data association problem is considered

an extremely difficult problem, especially in dynamic environments [73].

Data association is a necessary evil as it is required to determine which object

in the map a measurement refers to in order to use that measurement to update the

state. The consequences for incorrect associations can be quite severe. Failing to

associate a measurement with an object means that that measurement cannot be

used to update the state estimate. Furthermore, associating a measurement with

an incorrect object could bias the vehicle location estimate; essentially the vehicle

thinks it is seeing something it is not, and there thinks it is located somewhere it

is not.

The problem of localization with data association can be modeled using a DBN

with continuous and discrete nodes, as depicted in Figure 2.2. Continuous nodes

represent the vehicle state and measurements such as from GPS and vision. Dis-

crete nodes represent the identity of detected objects, which directly affect the

measurements. The continuous posterior is shown in (2.11), found by summing

over all possible values of the discrete node. Various ways of evaluating this sum

result in different data association techniques. For example, considering all pos-

sibilities for the object identity ct, and maintaining separate posteriors for each

is the premise behind multiple hypothesis tracking (MHT). Examples of MHT in

localization are [3, 6, 32].

The full MHT posterior is intractable because the number of hypotheses grows

exponentially over time [73]. Low probability hypotheses are often removed from

consideration (pruned) to maintain tractability of the filter. The growth of hy-

potheses over time can be considered as a search tree, with each path through the

tree representing one possible history (“track”) of detected object identities. Differ-

ent data association methods differ in terms of the branching factor of this search
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Figure 2.3: Search trees representing different approaches to data association. (a)
Maximum Likelihood (b) Multiple Hypothesis Tracking (c) Lazy data association.

tree and the methods of traversing it. Figure 2.3 provides a visual comparison.

• Maximum Likelihood Data Association chooses the association c∗t at each

iteration with the highest probability (2.12) and discarding the rest. This

creates a search tree with a branching factor of one. It can also be considered

a Depth-First Search [57].

c∗t = argmax
ci
t

p(ci
t|z1:t) (2.12)

• MHT discards hypotheses with probabilities below a threshold and keeps the

rest [67]. In the case of the full MHT where no hypotheses are discarded

the search tree will have a branching factor of M , where M represents the

number of possible objects detected at each time step. Since all hypotheses are

considered at each iteration, this is analogous to a Breadth-First Search [57].

• Lazy data association is a hybrid of these two approaches [29]. At each

iteration it chooses the most probable association, however it maintains past

associations and may revisit them if they provide a better explanation of the

subsequent measurements received. The tree in this case will have a branching

factor of M as with MHT, however the tree is explored by a Greedy Best-First

Search [57].

Rather than consider data association hypotheses one at a time, the Proba-

bilistic Data Association Filter (PDAF) [7] weights the contribution from various
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hypotheses into a single state estimate. While this gives an improvement in ro-

bustness over a Maximum Likelihood data association, it can be said that the state

estimate being a weighted average of the data association hypotheses is a draw-

back compared to those methods that maintain the true hypothesis among a set of

candidates.

Two other data association approaches are Monte Carlo and Multidimensional

Assignment. Monte Carlo data association is used in [46] with particle filter-based

localization. Each particle is assigned a random association, and the weight of that

particle is updated to reflect the probability of the current measurement for a robot

at that position with that association. The resampling step will then remove those

particles with low weights, and therefore unlikely associations. Multidimensional

Assignment [73] treats data association as an optimization problem, to find the

best assignment of associations for a window of N time instants. This method

gives similar performance to MHT but with reduced computational complexity.

2.4 Summary

Vision has the capability to be a significant part of a complete vehicle localization

system because it complements the established approaches. GPS is the basis for

the majority of vehicle localization systems for good reason; it represents a simple

method to determine an absolute location, and is sufficiently accurate in most sit-

uations. The most persistent faults with GPS occur in urban environments, where

multipath and satellite signal loss make the computed position biased or unavail-

able, respectively. Dead reckoning provides a way to mitigate these faults over

short time intervals, but can not be used indefinitely due to the accumulated error

issue. Map matching can provide limited accuracy improvement, however it is often

not clear what road the vehicle is driving on. Vision has so far found only limited

use, but has been successful in improving the accuracy of vehicle localization, and

controlling the accumulation of error when GPS position measurements are un-

available. However, this assumes the vehicle is in a landmarks-rich environment,

and that landmarks that are detected can be successfully identified.

In the next chapter, the architecture is presented for a complete vehicle local-

ization system incorporating passive localization, map matching and vision com-

ponents, in addition to a data association component to identify the road being

traveled and the landmarks detected using vision. In subsequent chapters, a sys-
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tem based on this architecture will be used to investigate the improvement that the

addition of visual context brings to the localization and map matching problems.
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Chapter 3

A System Architecture for Vehicle
Localization

This chapter presents a general system architecture of a localization system that

has the capability to integrate visual context into GPS-based localization. The

architecture employs a map that provides a priori information concerning features

of the surrounding environment that are relevant to localization, including their

type and location. This provides the system with the knowledge of what features

are expected to be visible from a particular location, as well as where the vehicle

must be located to observe these features.

The system architecture is designed to be modular, building on existing methods

of localization and feature detection. It is also purposefully designed such that

no assumptions have been made concerning the use of GPS or any other specific

type of sensor to perform localization. This makes the overall system flexible, and

applicable to a larger number of existing localization systems whose capabilities will

be complemented and enhanced by the addition of visual context. For example,

a system combining GPS and dead reckoning to provide multipath mitigation in

urban environments would maintain this capability and gain extra information

provided by vision.

The system architecture is designed around a probabilistic foundation in Bayesian

filtering. This further simplifies the integration of existing localization systems with

vision as they are often built upon the Kalman filter, an example of Bayesian fil-

tering applicable to linear-Gaussian systems. Assumptions of conditional indepen-

dence among the different sources of information enable the system to be designed

in a modular manner, and thereby built upon these existing methods. Section 3.1

discusses the theoretical foundations of the architecture while Section 3.2 defines
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the roles for each system component.

3.1 Theoretical Foundations

Bayesian filtering is chosen as the foundation of the system architecture for a num-

ber of reasons. Not least among these is the fact that the majority of existing vehicle

localization systems employ Bayesian filtering, either in the form of Kalman filter-

ing or particle filtering. A modular architecture with this foundation will enable a

wide range of existing localization systems to be augmented using visual context.

3.1.1 Notation

The localization problem will be viewed as a state estimation problem. Consistent

with the notation of Burgard [12], the expression bel(xt) will be used to denote the

“subjective belief” of the vehicle state xt. The vehicle state is unknown and must

be inferred from uncertain sensory data. Specifically, this expression is shorthand

for the posterior conditional PDF in (3.1), where xt is the state at time t, and z1:t

and u1:t are the set of measurement and control input vectors, respectively, from

all time instants up to and including t [67]. The state vector xt expresses the pose

of the vehicle in the world coordinates system using the vehicle position and speed,

in (3.2).

bel(xt) = p(xt|z1:t, u1:t) (3.1)

xt = {pt vt} (3.2)

The posterior represents the belief in xt after the current measurement zt has

been used to update the state. As Bayesian filters operate on a predict-update

cycle, it is useful to express the belief in the predicted state as well, prior to zt

being incorporated. This is the denoted by bel(xt) in (3.3).

bel(xt) = p(xt|z1:t−1, u1:t) (3.3)

A DBN for the generic Bayesian filtering problem is shown in Figure 3.1, il-

lustrating variable dependencies and conditional independence assumptions inher-

ent to the filtering problem. Control inputs are omitted from the figure. White

34



3.1. Theoretical Foundations
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Figure 3.1: The DBN for the general Bayesian filter.

nodes represent state variables, while observed nodes representing measurements

are shaded. This simple network is expanded as the complexity of the localization

problem grows throughout the chapter.

3.1.2 Vehicle Localization

Letting zt = {z1, . . . , zN} be the set of measurements used to update the filter at

time t, the update step of the filter can be written as in (3.4). p(zt|xt) which follows

from the DBN in Figure 3.1 is the measurement probability and reflects the idea

that the vector zt is a function of the state vector xt. The state vector described the

pose of the vehicle by its position and velocity: xt = {pt vt}. η is a normalization

constant. The prediction step of the filter, generating bel(xt) from bel(xt−1), is

found by the Chapman-Kolmogorov Equation in (2.3).

bel(xt) = η bel(xt) p(zt|xt) (3.4)

From a high-level perspective, any system utilizing Bayesian filtering, including

localization, undergoes this predict-update cycle. A simple block diagram illus-

trating this process is shown in Figure 3.2. The purpose of this diagram is simply

to illustrate Bayesian filtering performed by two modules: “State Prediction” and

“Measurement Update.” This simple diagram will be gradually expanded into the

final system architecture, as shown in Figure 3.7.

It is assumed that the measurement vector zt is composed of two vectors p̂t

and f̂t, that is, zt = {p̂t f̂t}. p̂t = {p̂1
t , . . . , p̂

L
t } represents a set of vehicle position

measurements (such as those from GPS), and f̂t = {f̂ 1
t , . . . , f̂M

t } represents a set

of visual feature measurements. It is reasonable to assume that the two sets of

measurements are conditionally independent given the vehicle pose as depicted

by the network in Figure 3.3, thus creating the factored measurement probability
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Figure 3.2: State Prediction and Measurement Update modules for Bayesian filter-
ing.
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Figure 3.3: A DBN for Bayesian filtering with independent measurement vectors.

in (3.5).

p(p̂t, f̂t|xt) = p(p̂t|xt) p(f̂t|xt) (3.5)

This assumption is made based on the rationale that different factors affect

the measurement of visual features than affect the measurement of vehicle posi-

tion. For example, the error in a GPS position measurement would intuitively be

uncorrelated with the success rate of detecting a landmark. This is of course an

oversimplification, as a number of external factors could result in correlated errors.

For example, being in an urban area degrades GPS signal reception, and also over-

whelms the vision system as it must deal with the complexity of a more cluttered

environment. Also, visual feature estimates are modeled as functions of vehicle

position, which is in turn estimated using GPS position estimates; thus the error in

this model is related to the error in the GPS position measurement. Modeling such

correlations would be rather difficult; therefore, such correlations are disregarded

for simplicity in this research.

The “Measurement Update” module is split into “Position Update” and “Visual

Context Update” as a result of the factorization of the measurement probability
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Figure 3.4: A modular update scheme.

depicted in Figure 3.4 and described by (3.6).

bel(xt) = η [bel(xt) p(p̂t|xt)] p(f̂t|xt) (3.6)

Recognizing that a localization approach involving only position sensors such as

GPS can be achieved using the “State Prediction” and “Position Update” modules,

these two modules can be encapsulated into a single “Passive Localization” module.

Doing so emphasizes that existing conventional localization approaches (see for

example, [13, 64]) can be augmented by a visual context update as a result of the

independence assumption in (3.5).

3.1.3 Data Association

The above discussion ignored the problem of data association, which is the associ-

ation of measurements with the objects in the map they refer to [7]. For example,

measuring the distance from the vehicle to a detected landmark provides no indi-

cation of vehicle pose unless the identity and position of that landmark are known.

However, this is confined to the vision modality, and the lack of data association

does not affect the other sensing modalities in the system.

The position of objects in the environment is provided by the map, however the

identity of which object is detected is often not known. Identifying objects with a

high degree of certainty is difficult in the presence of ambiguity, such as when many

similar objects occur in close proximity. The success of vision-based localization can

be extremely dependent on the success of data association. Incorrectly identified

objects can result in large errors in localization as the system believes it is seeing

something it is not, and therefore believes that the vehicle is somewhere it is not.
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Figure 3.5: A hybrid DBN for Bayesian filtering with data association.

A set of labels ot = {o1
t , . . . , o

M
t } are used to indicate the identity of objects

associated with the feature measurements f̂t = {f̂ 1
t , . . . , f̂M

t }. These are discrete

values that have been assigned to each object in the map. The measurement prob-

ability now depends on the value of the association variable ot as well as the map:

p(f̂t|xt, ot, m) [67]. This is illustrated in a DBN in Figure 3.5, where the square

nodes are used to represent the discrete-valued labels; therefore, visual context

localization requires a hybrid DBN representation.

3.1.4 Map Matching

What objects are visible by the vehicle at a particular time instant is constrained

by: the road the vehicle is traveling on; and the orientation of the vehicle on that

road. This knowledge can simplify the identification of detected objects by further

restricting the search for plausible measurement associations. This information is

also not normally known a priori, and must be inferred. The process of identifying

the road traveled by the vehicle, and augmenting the vehicle state in light of this

information, is known as “map matching” and was introduced in Chapter 2.

It is common for each road segment (a portion of the road defined by inter-

sections with other segments or by dead-ends) to be described separately in the

map database and to be assigned a unique label. Thus, map matching is a data

association problem as it involves inferring the value of this label. An association

variable rt is used to represent the value of the road segment label at time t.
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Figure 3.6: Addition of map matching to the system.

Furthermore, a second association variable γt is used to specify the orientation

of the vehicle on the road segment rt. The domain of γt is {−1, 1}, which represents

a vehicle facing toward and away from, respectively, the beginning endpoint of the

segment. Knowing which way the vehicle is facing is important, as it defines the

viewpoint of cameras mounted to the vehicle.

The complete data association problem involves identifying the road segment

rt, vehicle orientation γt and object associations ot. For convenience, these can be

grouped into a single association vector ct = {rt, γt, o
1
t , . . . , o

M
t }.

Knowing which road the vehicle is on allows the vehicle pose to be adjusted.

There are ways to achieve this adjustment, such as the methods reported in [59, 72],

which predominantly involve “snapping” the state estimate to the nearest point

(by some criterion) on the road segment. In this thesis, a method is developed to

incorporate map data into the vehicle pose using Bayesian filtering. This method

is discussed in Chapter 4.

The gist of the map matching approach involves the use of a pseudomeasurement

ζt, a measurement vector derived from the map data and used to update the vehicle

pose. This is assumed conditionally independent of the other measurements. The

full measurement vector is therefore now zt = {p̂t ζt f̂t}, and the posterior state

update can be written as in (3.7)

bel(xt) = η
{
[bel(xt) p(p̂t|xt)] p(ζt|xt, ct, m)

}
p(f̂t|xt, ct, m) (3.7)

In light of this multiple measurement update, we can add a “Map Matching”

module to the system, as shown in Figure 3.6. This makes for a modular system,

with one block for Passive Localization, one for Map Matching to update this initial

estimate using the map, and one to update this estimate using Visual Context.

39



3.2. System Architecture

Passive 

Localization

Visual

Context

Update
xt-1 xt

GPS

Map

Matching

INS

. . .

Data Association

Vision

Cameras

Map 

Database

Figure 3.7: System architecture.

3.2 System Architecture

An architecture for a system that implements vehicle localization according to this

theoretical foundation is proposed in this section. Six modules are used to define

the system, as shown in Figure 3.7. The remainder of this section discusses the role

of each module.

3.2.1 Passive Localization Module

The role of this module is to estimate the vehicle pose using traditional road vehi-

cle localization methods. Sensory data can come from satellite positioning systems

(GPS, GLONASS, and Galileo), dead reckoning (for example, Inertial Navigation

Systems, odometry, wheel speed sensors, steering angle sensors, and magnetic com-

passes) or other sources (for example, artificial beacons, infrastructure-to-vehicle

and vehicle-to-vehicle communications, and GSM).

This module encapsulates the state prediction and position update stages of the

localization process introduced in Section 3.1. State prediction takes into account

a model of the vehicle dynamics to predict how the vehicle pose changes over time,

and also incorporates control inputs ut to adjust this model. In active localization,

the control inputs are used to tell the vehicle to move in a certain direction that

facilitates the exploration of the environment [12]. While vehicle localization is
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strictly an active process (the driver provides input to the vehicle using the accel-

erator and brake pedals and the steering wheel) it is assumed to be passive since

one rarely has access to these inputs. Dead reckoning sensors provide similar in-

formation (distance traveled, turning rates, acceleration) typically with small noise

levels, and as a result can be used as control inputs in place of the actual system

controls. The reason is that even though they are sensors, dead reckoning sensors

measure the effect of control actions [67].

The state update uses vehicle position measurements, from GPS for example, to

correct the predicted vehicle pose. These measurements do not depend on the map

or data association variables, therefore the measurement probability can be written

as p(p̂t|xt, ct, m) = p(p̂t|xt). This assumption allows an initial estimate of vehicle

localization to be achieved by traditional means. It further enables the system to

be modular, building on existing vehicle localization methods by adding the vision

element.

3.2.2 Map Matching Module

This module updates the vehicle pose to be consistent with the map and the as-

sumption that a vehicle must be driven on a road at all times. The identity of the

road segment and the vehicle orientation will be provided by the Data Association

module.

When the road segment identity is known, map matching is simply the process

of determining the most probable location of the vehicle on that road. Scott [59]

provides a nice explanation of how to achieve this. To this end, map matching to

a known road based on Kalman filtering is developed in Chapter 4.

More often than not, the identity of the road is not known. Identifying the road

and the pose of the vehicle on it is the subject of many map matching papers [28,

51, 66]. Chapter 5 looks at the map matching and data association problems

together, and in this way uses visual information to help identify the road and

vehicle orientation. As far as I am aware, this represents a novel approach to map

matching.
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3.2.3 Vision Module

Cameras must be mounted to the vehicle so as to capture images of the surrounding

environment from which features can be extracted. No restriction is placed on the

number of cameras used for this purpose or their orientations; however, within this

thesis only a single forward-facing camera is used.

The role of the vision module is to process acquired images to detect objects in

the environment and estimate their features. Features that are of interest are those

that are distinct and unambiguous, ensuring that a detected object can be identified

and furthermore provide an indication of vehicle position. It is further advantageous

that such features densely populate the environment to facilitate continual updates

to the vehicle pose using visual context.

The design of vision algorithms to extract such features is beyond the scope

of this thesis. For the purpose of experimental testing, however, an algorithm to

detect intersection road markings has been developed. The details of this algorithm

are given in Chapter 6.

3.2.4 Map Database

The map provides a model of the environment that enables vision to be used to

help localize the vehicle. It provides the location of roads and landmarks that may

be used for localization.

The map database is an integral module in the system. It is used by the Data

Association module to determine possible roads and the location of detected land-

marks. It is used by the visual update module to predict the observed feature values

prior to updating the localization estimate. The map is assumed to be error-free,

complete, and a current representation of the world. This means that all landmarks

that are likely to be detected by the vision system are present and accurately po-

sitioned in the map. These assumptions are näıve and unrealistic in practice, yet

addressing them is beyond the scope of this thesis.

3.2.5 Data Association Module

This module uses the output of the Passive Localization module, map data and

visual data to choose possible road segments that the vehicle may be on and identify
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the vehicle orientation on those roads as well as possible objects that have been

detected. Under the premise that what features are visible will depend on the road

segment and vehicle orientation, these associations are considered together, rather

than separately, with the outcome of this block being used by both Map Matching

and Visual Context modules.

3.2.6 Visual Context Module

This module uses the features detected by vision, the map database, and the data

association result to produce a correction to the localization estimate that results

from the map matching module. Two tasks are necessary to achieve this correction.

First, a prediction of the value of the observed visual features is generated, which

represents how the features are expected to appear based on the current estimate

of vehicle pose and the knowledge contained in the map. This is achieved by

modeling the feature measurement as a function of the vehicle pose [4]. Second, the

localization estimate is updated using the predicted and measured feature values.

Achieving these two tasks is the focus of Chapter 4.

3.3 Summary

This chapter has developed a modular system architecture for vehicle localization,

based on Bayesian filtering principles. Assumptions of conditional independence

allow for a “passive” localization system to be augmented by the addition of map

matching and visual context.

In the following chapters, I will propose an implementation of this architecture.

Chapter 4 discusses the system for the case of known data associations. Chapter 5

generalizes this to consider the unknown data association case.
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Chapter 4

Augmenting Vehicle Localization
with Visual Context

This chapter proposes an implementation of the system architecture presented in

Chapter 3. Data Association is not addressed. Emphasis is given to the Visual

Context and Map Matching modules. Implementations based on Kalman filtering

and particle filtering are proposed, although more emphasis is given to the former;

the latter is emphasized more in Chapter 5. Data associations are assumed known,

to eliminate a significant source of ambiguity and to demonstrate the potential of

the proposed system. Chapter 5 will remove this restriction in an effort to enable

vision to be employed for localization in a more general and realistic case.

Visual features are modeled as functions of location on the current road. The

advantage of this method is that it takes advantage of the vehicle being restricted

to travel on the road. A road-based coordinate system is defined to express the

vehicle pose in the along-road (longitudinal) and across-road (lateral) directions.

This coordinate system is used for map matching, as well as for incorporating

visual context. Transformations to and from this coordinate system from world

coordinates are also defined.

4.1 Modeling Observed Visual Features

Features observed by vision are not by themselves sufficient to provide an indication

of vehicle position. It must be known where the observed features are located in

the world to estimate where the vehicle must be for those features to be observed.

This motivates the inclusion of a map of the environment in the system, containing
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4.1. Modeling Observed Visual Features

the location and identity of roads and landmarks. From an initial estimate of

vehicle location provided by passive sensors, and knowing what road the vehicle is

on and what direction it is facing, the map is used to predict the value of feature

measurements from the vision system, and from this prediction one can determine

the probability of these measurements given the localization estimate, p(f̂t|xt).

This section describes the methodology used to model visual features as func-

tions of vehicle position on the current road, thus enabling the value of observed

visual features to be predicted. The following introduces a road-based coordinate

system and conversion to/from this coordinate system from/to the world coordi-

nate system. A measurement model for intersection road marking landmarks is

introduced.

4.1.1 A Road-Based Coordinate System

Roads are represented in the map database as piecewise-linear curves. Each curve

is a representation of the centerline of a segment of road between two endpoints,

defined by the intersection with another road or a dead-end. Each road segment

is a single entry in the database, and is defined by a series of points in world

coordinates.

The vehicle pose xt can be tied to the piecewise-linear road segment rt by

expressing vehicle position and velocity in the lateral or across-road direction (⊥)

and the longitudinal or along-road direction (‖). The vehicle pose in the road

coordinate system for road segment rt is given by xr
t in (4.1).

xr
t =

{
pr

t,⊥ pr
t,‖ vr

t,⊥ vr
t,‖
}

(4.1)

World to Road Coordinates

Each road is defined by a set of points in world coordinates {q1, . . . , qN}, where q1 is

the “beginning” of the segment and qN is the “ending” of the road segment. Each

road is therefore composed of N − 1 line segments. Figure 4.1 shows a portion of

a map with road points.

Converting from the world coordinate system to the road coordinate system

requires finding the closest point on rt to the vehicle position in the world coor-
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Figure 4.1: A portion of a map showing piecewise-linear road segments. The be-
ginning point of a road is denoted by ‘.’, the ending point by ‘�’, and intermediate
points by ‘·’. The ending of one segment often coincides with the beginning of
another.

dinate system pt. Let p∗t denote this point. The conversion can be thought of as

“unrolling” the road segment to a straight line, which becomes the abscissa of the

road coordinate system along the longitudinal direction; the ordinate is the lateral

direction. This is shown in Figure 4.2.

The longitudinal position pr
t,‖ is defined as the distance from q1 along rt to reach

p∗t . This is found by the expression in (4.2), where j is the line segment of rt that

contains p∗t ; ‖ · ‖ represents the Euclidean norm.

pr
t,‖ = ‖p∗t − qj‖+

j∑
i=2

‖qi − qi−1‖ (4.2)

The lateral position pr
t,⊥ is defined as the distance from pt to p∗t , with a sign

indicating which side of the road segment pt falls on. This is found by the dot

product of the vector
−−→
p∗t pt and the unit normal −→nj to line segment j.

pr
t,⊥ = −→nj ·

−−→
p∗t pt (4.3)

Lateral and longitudinal velocity are found by projecting vt onto the unit vec-

tors −→nj and −→uj , respectively. This can be written in matrix notation as in (4.4).

Note that this expression is equivalent to applying a rotation matrix R(θj) to the

velocity vector, where θj is the angle of the line segment j in the world coordinate
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Figure 4.2: Converting between the world and road coordinate systems. The con-
version to the road coordinate system can be visualized as an unrolling of the road
segment rt.

system (4.5).

vr
t =

(
vr

t,‖

vr
t,⊥

)
=

( −→nj · vt

−→uj · vt

)
=

(
ne nn

ue un

)(
vt,e

vt,n

)
(4.4)

= R(θj)vt (4.5)

The full transformation of the vehicle pose from the world coordinate system to

the road coordinate system can be written as follows.

xr
t =


pr

t,⊥

pr
t,‖

vr
t,⊥

vr
t,‖

 =


−→nj ·
−−→
p∗t pt

‖p∗t − qj‖+
∑j

i=2 ‖qi − qi−1‖
−→nj · vt

−→uj · vt

 (4.6)

It would be convenient to convert the vehicle pose covariance matrix from the

world coordinate system to the road coordinate system as well, for those systems

that use Kalman filtering for localization. A method proposed in [59] can be the

basis for this coordinate conversion. Scott [59] provides a method for determining

the lateral and longitudinal components of position uncertainty for a long straight

road from a position covariance matrix Σ defined in the world coordinate system.

The method is equivalent to applying the rotation matrix in (4.7) to Σ, where θ

is the angle of the road in the world coordinate system. Equation (4.8) shows the
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result of this rotation.

R(θ) =

(
cos(θ) − sin(θ)

sin(θ) cos(θ)

)
(4.7)

Σr = R(θ)ΣRT (θ) =

(
σ2

p⊥
σp⊥p‖

σp⊥p‖ σ2
p‖

)
(4.8)

This approach can be extended to also determine the lateral and longitudinal

components of velocity uncertainty. The rotation matrix (4.9) is defined, which

when applied to the vehicle pose covariance matrix Pt, determines the approximate

lateral and longitudinal components of both position and velocity covariance (4.10).

The word ‘approximate’ signifies the fact that this conversion is performed using

the local heading angle θj, which implicitly assumes that the road is straight or

at least locally straight. On curving sections of the road, this conversion may not

provide a true representation of the vehicle pose covariance.

RP (θj) =

(
R(θj) 02

02 R(θj)

)
(4.9)

P r
t = RP (θj)PtR

T
P (θj)

=


σ2

p⊥
σp⊥p‖ σp⊥v⊥ σp⊥v‖

σp⊥p‖ σ2
p‖

σp‖v⊥ σp‖v‖

σp⊥v⊥ σp‖v⊥ σ2
v⊥

σv⊥v‖

σp⊥v‖ σp‖v‖ σv⊥v‖ σ2
v‖

 (4.10)

Road to World Coordinates

The inverse transformation requires first finding the point p∗t in world coordinates.

As this point lies on line segment j of road rt, it lies on a straight line between

points qj and qj+1, which are known directly from the map. p∗t is therefore found by

interpolation, given by the weighted average expression in (4.11). This expression is

simplified by recognizing that these distance calculations are given by the difference

in the longitudinal position of the vehicle pr
t,‖, and that of the two road points qj,‖

and qj+1,‖ (4.12). This can be done since all three of the points are on the same
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line segment of road rt.

p∗t =
‖qj+1 − p∗t‖qj + ‖p∗t − qj‖qj+1

‖qj+1 − qj‖
(4.11)

=
qj+1,‖ − pr

t,‖

qj+1,‖ − qj,‖
qj +

pr
t,‖ − qj,‖

qj+1,‖ − qj,‖
qj+1 (4.12)

The vehicle position pt lies normal to the road at a distance pr
t,⊥. Therefore,

this can be found using the normal vector −→nj , as in (4.13).

pt = p∗t + pr
t,⊥
−→nj (4.13)

The velocity vector is returned to the world coordinate system by the inverse

of the transformation shown in (4.5). The heading angle θj of the line segment j

is required to specify the rotation matrix R(θj). The full vehicle pose in the world

coordinate system is given by the following.

xt =

(
pt

vt

)
=

(
p∗t + pr

t,⊥
−→nj

RT (θj)v
r
t

)
(4.14)

The covariance matrix is returned to the world coordinate system by the in-

verse of the transformation shown in (4.10). The rotation matrix RP (θj) is defined

in (4.9). The covariance matrix Pt is thus given by the following.

Pt = RT
P (θj)P

r
t RP (θj) (4.15)

4.1.2 Measurement Models

Predicting the value of observed visual features is achieved by modeling the fea-

tures as functions of the vehicle pose in the road coordinate system xr
t . This takes

advantage of the fact that the vehicle is restricted to travel on the road, and its ori-

entation is restricted by the lanes of the road. Thus, how the world is seen from the

vehicle depends on the vehicle position with respect to the road. Observed feature

values ft are in general a function of xr
t , noise term ωt (expressing uncertainty in

the model), and the data association parameters ct consisting of the road segment

rt, the vehicle orientation γt and the observed objects ot. The noise term ωt is often
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d = 5.0541 meters

Figure 4.3: A detected intersection road marking used to estimate the proximity of
the vehicle to an intersection. As estimate of the distance from the camera to the
detected marking is overlaid on the image.

assumed to be additive, yielding the following generic feature model.

f̂t = Ft(x
r
t , ct) + ωt (4.16)

The nature of the function Ft plays a significant role in how visual features can

be incorporated into the localization estimate. When Ft is a linear function of xr
t ,

and xr
t and ωt have Gaussian distributions, f̂t will also be Gaussian implying that

Kalman filtering can be used to give the optimal update to the vehicle pose. If Ft

is non-linear in xr
t , extended Kalman filtering (EKF), unscented Kalman filtering

(UKF) or particle filtering (PF) may be more appropriate, all of which provide

sub-optimal solutions in the general case.

Throughout the remainder of the thesis, vision is used to detect landmarks

in the form of intersection road markings and to estimate the distance from the

camera to the detected markings. The following explains how this visual feature

measurement is modeled.

Distance to a Detected Road Marking

Painted road markings are typically present at intersections to delineate where

pedestrians may cross or where vehicles should stop. These markings appear at

the “entrance” to the intersection rather than within the intersection itself. Fur-

thermore, these markings are painted in a high contrast color (usually white) that
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4.1. Modeling Observed Visual Features

is easily visible on darker asphalt or concrete pavement, and appear as horizontal

lines in images acquired using a forward-facing camera. The known orientation and

high contrast simplify the visual detection of these markings. An algorithm was

developed to perform this detection, and to estimate the distance from the camera

to the detected markings under the assumption of a flat road surface. The details of

this algorithm are discussed in Chapter 6. Figure 4.3 shows the successful detection

of a horizontal road marking with the distance estimate overlaid on the image.

The location of the road markings must be known to use these distance esti-

mates to update the vehicle pose. The road network database does not provide

this information directly; instead it provides the center point of the intersection as

the point where two or more road segments meet. As road segments are modeled

by their centerlines, where these centerlines meet is the center of the intersection.

Knowing that intersections are designed and built to specified dimensions, including

the location of road markings (given in [45] for the Province of Ontario, Canada),

approximate locations for these markings on individual road segments can be de-

termined knowing the center point of the intersection.

The road marking detection algorithm does not distinguish between the three

lines typically present at the entrance to an intersection (two crosswalk lines and one

stop bar). Instead it returns an estimate of the distance to the marking nearest to

the vehicle. Rather than face a complicated data association problem to determine

which marking of the three is the one detected, a single point is used to represent

the average location of these markings. These points are located on the centerlines

of the intersecting road segments, indicating the average distance from the center

point of the intersection to the markings. The final result is that the locations of

intersection road markings are approximated as shown in Figure 4.4.

The measurement of distance to a detected road marking is modeled as the

difference in the longitudinal positions of the vehicle and the landmark on the

current road segment. This is shown in (4.17), where pr
o,‖ is the longitudinal position

of the intersection marking on road segment rt. Recall that γt is the orientation

of the vehicle; it takes a value from the set {−1, 1} to indicate when the vehicle is

facing toward or away from the beginning of the road segment, respectively. The

use of γt ensures that (4.17) produces a positive value whenever the marking is ‘in

front’ of the vehicle, regardless of which direction the vehicle is traveling on the

road segment. The noise term ωt ∼ N (ωt; 0, Ωt) is modeled as zero-mean Gaussian

51



4.2. Localization by Kalman Filtering

Figure 4.4: A model of intersection road marking locations, generated by knowing
the center point of the intersection and the distance from the center point to the
road markings.
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Figure 4.5: A block diagram illustrating the stages of the Kalman filter localization
algorithm.

noise.

f̂t = Ft(x
r
t , ct) + ωt

=
(
pr

o,‖ − pr
t,‖
)
γt + ωt (4.17)

4.2 Localization by Kalman Filtering

An implementation of a localization system incorporating visual context is proposed

in this section. Kalman filtering is used to integrate measurements from GPS and

vision, and context from the map as well, into the localization estimate. Figure 4.5
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4.2. Localization by Kalman Filtering

illustrates the flow of information in the localization algorithm. The following

system components are discussed.

1. The Passive Localization component which predicts the new vehicle pose and

updates this prediction using the GPS position measurements.

2. The Map Matching component which augments the vehicle pose using the

known road segment rt.

3. The Visual Update component which augments the vehicle pose estimate

using the context provided by visual feature measurements and the known

data associations, including the identities of detected objects ot.

Experimental results are presented illustrating the improvement in localization

accuracy that results from adding context in the form of the map and detected

intersection landmarks. These results are found using data collected by a vehicle

driving on suburban roads. This provides a number of advantages for the vision

system and GPS receiver in terms of clearly-defined road markings, fewer tall build-

ings and less traffic congestion than in urban area. The GPS receiver has a SiRF

Star III receiver chip with a horizontal position accuracy of 10m RMS. A camera

with an IEEE 1394 interface is used with a lens having a focal length of 2mm

that allows intersection road markings to be detected at a maximum range of ap-

proximately 15 meters from the vehicle. The map database is a single-line road

network GIS layer for the Regional Municipality of Waterloo made available to

the University of Waterloo community by the Region for research purposes. The

database is stored in a Shapefile format, developed by the Environmental Systems

Research Institute. Intersection models are constructed using the road network

data and road marking specifications defined by the Government of Ontario [45].

Finally, a Trimble Pathfinder ProXH GPS receiver with 30cm horizontal position

accuracy provides ground truth positions to evaluate the localization accuracy of

the proposed approach.

The path of the vehicle for an example data set is highlighted on the map in

Figure 4.6, showing the start, finish, and location of any detected intersections. At

one of these intersections (Landmark 2) the vehicle was stopped for approximately

20sec, continuously observing intersection markings during this time.
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Figure 4.6: The path driven by the vehicle during collection of the example data
set. The start (.) and stop (�) points of the trip are shown, as well as the location
of detected intersection road markings (?).

4.2.1 Passive Localization by GPS

The Passive Localization component uses Kalman filtering to predict the vehicle

pose using a linear model, and update the pose at each time step using position

measurements from a GPS receiver. The Kalman filter assumes that the posterior

at each time step has a Gaussian distribution, that is, it is fully parameterized by

its mean vector and covariance matrix (4.18). The symbols xt|t and Pt|t are used to

respectively refer to the mean vector and covariance matrix at time t, incorporating

measurements from all t time steps.

bel(xt) = N (xt; xt|t, Pt|t) (4.18)

It has been mentioned previously that the pose of the vehicle is defined as its

position and speed vector in world coordinates. The Universal Transverse Mercator

(UTM) coordinate system is used for this purpose. This defines approximate East-

North coordinate systems for a set of zones that are essentially partitions of the

Earth’s ellipsoid 8◦ of latitude high by 6◦ of longitude wide. The Region of Waterloo

is in zone 17T, located between latitudes 40◦N and 48◦N and longitudes 78◦W and
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84◦W. The vehicle pose is defined in this coordinate system as the following 4-

tuple (4.19); vertical position and speed are not considered because the vehicle is

restricted to the surface of the Earth.

xt = {pt,e pt,n vt,e vt,n} (4.19)

The constant-velocity model in (4.20) – where the vehicle is assumed to travel

along its current velocity vector – is used to describe the vehicle motion. An

additive Gaussian noise term wt ∼ N (wt; 0, Qt) captures the uncertainty in this

model. While this provides a simple way to predict the next vehicle pose, it may

not adapt quickly to vehicle accelerations and decelerations. A more complex model

involving vehicle acceleration variables, as considered by Caron [13], may perhaps

improve the modeling of the vehicle’s dynamics.

xt = At xt−1 + wt

=

(
I2 I2∆t

02 I2

)
xt−1 + wt (4.20)

The mean and covariance of the predicted belief bel(xt), denoted xt|t−1 and

Pt|t−1, respectively, are found by the following expressions (4.21)-(4.22).

xt|t−1 = At xt−1|t−1 (4.21)

Pt|t−1 = At Pt−1 AT
t + Qt (4.22)

A GPS position measurements p̂t = {p̂t,e p̂t,n} is modeled as a linear function

of the vehicle pose xt (4.23), where vt ∼ N (vt; 0, Rt) captures the uncertainty in

this model. GPS receivers provide position measurements in latitude and longi-

tude coordinates, which are converted to the UTM coordinate system [65] prior to

updating the pose.

p̂t = Ht xt + vt

=
(

I2 02

)
xt + vt (4.23)

Uncertainty in the GPS position measurement pt is expressed by Rt, the co-

variance matrix of the additive noise term vt. The GPS receiver used throughout

this thesis has a horizontal RMS error of 10m. This specification is used to set the
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4.2. Localization by Kalman Filtering

Algorithm 4.1 Pseudocode for GPS localization by Kalman filtering.

1. function GPSLocalizationKF( xt−1|t−1, Pt−1|t−1, p̂t )

2.

3. // Predict the new vehicle pose and covariance matrix

4. xt|t−1 = Axt−1|t−1
5. Pt|t−1 = APt−1|t−1A

T + Qt
6.

7. St = HPt|t−1H
T + R // Innovation covariance

8. Kt = Pt|t−1H
TS−1t // Kalman gain

9.

10. if p̂t != ∅
11. // Update using GPS position measurements, if available

12. xt|t = xt|t−1 + Kt(p̂t − Hxt|t−1)
13. Pt|t = (I− KtH)Pt|t−1
14. else

15. // Keep prediction result

16. xt|t = xt|t−1
17. Pt|t = Pt|t−1
18.

19. return xt|t, Pt|t

magnitude of Rt, which is kept at a constant value and is referred to as simply R.

Other parameters that can be kept constant are At, Ht and Qt. GPS localization is

achieved by Algorithm 4.1, which takes only three arguments: the previous vehicle

pose, its covariance matrix, and the current GPS measurement.

The principal benefit of using a Kalman filter with GPS position measurements

is to maintain localization integrity when the GPS receiver does not provide a mea-

surement as a result of poor satellite visibility. When this occurs the posterior belief

bel(xt) is considered equal to the predicted belief bel(xt), since no measurement is

available to perform the update. Thus the filter is more robust than a standalone

receiver to missing position measurements.

This result can be seen when the filter is applied to GPS measurement data

gathered from a vehicle-mounted receiver. In cases where satellites are not visible

for long periods, the localization error and covariance will increase dramatically

since no measurement is available to correct the predictions. Localization error in

this case may be controlled somewhat through the use of dead reckoning, however

this is not investigated here. Figure 4.7 shows a magnified section of the path trav-

eled by the vehicle plotted on a map of the roads. Missing GPS measurements are

handled by the prediction process, and consequently the vehicle position estimates

56



4.2. Localization by Kalman Filtering

6420 6440 6460 6480 6500 6520 6540 6560 6580
6340

6360

6380

6400

6420

6440

6460

East (meters)

W
es

t (
m

et
er

s)
GPS measurements
KF output

Figure 4.7: An illustration of using the Kalman filter to mitigate occasional missing
GPS position measurements.

at these time instants show larger error ellipses. Figure 4.8 shows the error in the

GPS measurements compared to the filtered results in the lateral and longitudinal

directions relative to the ground truth road segment at each time instant, for the

trip shown in Figure 4.6. Notice that neither error nor uncertainty are dramati-

cally different compared to the raw GPS measurements. This is expected since the

Kalman filter is simply tracking these measurements over time. These observations

are confirmed by Table 4.1, which summarizes the error in the raw GPS measure-

ments and in the output of the Kalman filter. This table contains the mean and

standard deviation of the position error (ε and sε), and the mean and standard

deviation of the position uncertainty (σ and sσ). The average position error from

the Kalman filter is slightly larger than from the raw data, because the filter is

following the raw measurements and is slow to react to sudden changes.
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Figure 4.8: A comparison of vehicle position error in the raw GPS measurements
and the output of the Passive Localization module using the Kalman filtering imple-
mentation. a) Error in the lateral direction. b) Error in the longitudinal direction.
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ε (m) sε (m) σ (m) sσ (m)

p̂ 7.4 7.1 10 0

pPL 8.5 7.6 8.0 1.5

Table 4.1: A comparison of position error and uncertainty between the raw GPS
data (p̂) and Passive Localization (pPL) using Kalman filtering.

4.2.2 Augmenting Localization using Map Matching

Incorporating context into the localization estimate from the map and from vision

is performed in the road-based coordinate system introduced in Section 4.1.1. As

shown in Figure 4.5 the vehicle pose is converted to road coordinates xr
t after Passive

Localization. The road segment rt required for this transformation is assumed

known a priori at this time. This is a strong assumption to make because such

knowledge will not be available in general. Chapter 5 relaxes this assumption to

make the localization approach more applicable in the general case. The approach

presented here is still applicable to situations where the road segment is known a

priori, for example, the localization of a public transit bus with a fixed route.

The map m used to update the vehicle pose is a GIS road network layer. The

vehicle pose xr
t is updated to be consistent with the location and heading angle of

the road currently being driven by the vehicle. Assuming normal driving behavior

– that 1) the vehicle is on the road network, and 2) the vehicle follows the heading

of the road – using the map effectively restricts the set of plausible locations for

the vehicle thereby keeping localization uncertainty low.

A Kalman filtering approach is used to update the vehicle pose with the road

network data, according to the two assumptions above. A pseudomeasurement

vector ζt is created based on these assumptions and used to update the vehicle pose

xr
t . ζt is defined in one of two ways, depending on the outcome of the conversion

from the world coordinate system to the road coordinate system. Specifically, it

depends on whether or not the longitudinal position pr
t,‖ falls within the bounds of

the road segment rt.

Case 1: Vehicle within the road segment bounds

The vehicle pose xr
t falls within the bounds of the known road segment rt if the

condition 0 ≤ pr
t,‖ ≤ Lr is satisfied, where Lr is the length of road segment rt. This
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Figure 4.9: An illustration of the vehicle pose relative to the bounds of the road
segment. Vehicle pose can be a) inside the bounds of the road segment, or b)
outside the bounds of the road segment.

is illustrated in Figure 4.9a. The pseudomeasurement ζt in this case is defined as

the expected lateral position and speed of the vehicle relative to the road segment

rt (4.24). Both are defined to be zero in accordance with our assumptions, meaning

that the vehicle position is restricted to lie on the road centerline with no lateral

offset, and that its velocity is aligned with the heading of the road segment. The

covariance matrix Zt may be tuned to reflect the level of confidence in the map

data. These values are set arbitrarily to σp⊥ = 5m and σv⊥ = 2m/s.

ζt =

(
p̂r

t,⊥

v̂r
t,⊥

)
=

(
0

0

)
(4.24)

Zt =

(
σ2

p⊥
0

0 σ2
v⊥

)
(4.25)

Case 2: Vehicle outside the road segment bounds

The vehicle pose xr
t falls outside the bounds of the known road segment rt if either

condition pr
t,‖ < 0 or pr

t,‖ > Lr is satisfied. This is illustrated in Figure 4.9b. The

pseudomeasurement ζt in this case incorporates the longitudinal position pr
t,‖ as

well (4.26). This takes on either a value of 0 or Lr if the vehicle pose xr
t is closer

to the beginning or ending of the road segment, respectively. The purpose of this

pseudomeasurement is to bring the vehicle pose closer to the nearest endpoint on
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Algorithm 4.2 Pseudocode for map matching using Kalman filtering.

1. function MapMatchingKF( xrt,p, P
r
t,p, rt, m )

2.

3. Lr = GetLengthOfRoad( rt, m )

4. // Create pseudomeasurement, covariance and measurement matrices

5. if xr‖ ≥ 0 && xr‖ ≤ Lr

6. ζt = ( 0
0 ), Zt =

(
σ2

p,⊥ 0

0 σ2
v,⊥

)
, Mt = ( 1 0 0 0

0 0 1 0 )

7. else

8. if xr‖ < 0, ζt =
(

0
0
0

)
9. else, ζt =

(
0

Lr
0

)
10. Zt =

(
σ2

p,⊥ 0 0

0 σ2
p,‖ 0

0 0 σ2
v,⊥

)
, Mt =

(
1 0 0 0
0 1 0 0
0 0 1 0

)
11.

12. // Kalman gain

13. St,m = MtP
r
t,pM

T
t + Zt

14. Kt,m = Prt,pM
T
tS
−1
t

15.

16. // Update vehicle pose and covariance matrix

17. xrt,m = xrt,p + Kt,m(ζt − Mtx
r
t,p)

18. Prt,m = (I− Kt,mMt)P
r
t,p

19.

20. return xrt,m, P
r
t,m

the known road segment. For tuning Zt we set σv‖ = 5m.

ζt =

 p̂r
t,⊥

p̂r
t,‖

v̂r
t,⊥

 =



 0

0

0

 if pr
t,‖ < 0

 0

Lr

0

 if pr
t,‖ > Lr

(4.26)

Zt =

 σ2
p⊥

0 0

0 σ2
p‖

0

0 0 σ2
v⊥

 (4.27)

The map matching procedure is shown in Algorithm 4.2. The KF update ap-

proach using a pseudomeasurement vector essentially matches the initial localiza-

tion estimate from the passive localization system to the nearest point on the known
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Figure 4.10: An illustration of vehicle pose estimates matched to the known road
segment. Note that uncertainty is reduced in the lateral direction.

road segment and aligns the heading vector with the heading of the road. In the

former respect it is similar to some previous map matching approaches [59, 72].

Figure 4.10 illustrates these updates to the vehicle pose, compared with the Pas-

sive Localization results. What is most obvious in this figure is that map matching

brings the localization estimate closer to the road centerline and reduces uncertainty

in the lateral direction, directing it along the road segment.

Figure 4.11 shows the error in the map matching result compared to Passive

Localization results in both the lateral and longitudinal directions. It is not sur-

prising that the longitudinal position error is unaffected for the most part since the

pseudomeasurement update occurs in the lateral direction except in rare circum-

stances. The effect of map matching on lateral position estimates is summarized in

Table 4.2. This table shows the sample mean and standard deviation of the lateral

position error ε⊥ (ε and sε) and the same for the estimated uncertainty σp⊥ (σ and

sσ).

The results show that average uncertainty in the lateral position estimate is
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Figure 4.11: A comparison of vehicle position error when using Passive Localization
(PL), and when using Passive Localization and Map Matching (PL+MM) in the
Kalman filtering implementation. a) Error in the lateral direction. b) Error in the
longitudinal direction.
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ε (m) sε (m) σ (m) sσ (m)

p⊥,PL 1.3 2.2 7.9 1.2

p⊥,MM -6.4 2.7 3.1 0.12

Table 4.2: A comparison of lateral position error and uncertainty between Passive
Localization (p⊥,PL), and Passive Localization and Map Matching (p⊥,MM) using
Kalman filtering.

reduced compared to Passive Localization, and is close to a constant value having

sample standard deviation close to zero. However, the average error in the lateral

position estimate is in fact larger than with Passive Localization. This illustrates an

important point of matching to road centerlines that should be a cause for concern.

This increase in error is due to the fact that the road centerline does not precisely

represent the location where the vehicle is actually driving: within a lane offset

from this centerline. In fact, the reduced lateral uncertainty is misleading as it

does not account for the bias introduced by the map matching process.

It will not always be the case that map matching introduces error into the

localization result; in this data set the amount of lateral position error in the GPS

measurements is already very small. It is expected that map matching will be able

to reduce localization error in environments where extreme multipath creates errors

in GPS position measurements larger than the 6 meters or so of bias that matching

to the centerline introduces.

In cases where a detailed map is available showing the boundaries of specific

lanes on the road, matching to the correct lane can improve accuracy over a stan-

dalone GPS receiver. This was performed in [16] using vision to help determine the

correct lane.

4.2.3 Augmenting Localization with Visual Context

Vision is used to provide further context for vehicle localization. The vehicle pose

xt is updated by incorporating the measured visual features f̂t. By positioning

the vehicle with respect to its environment in this way, the set of plausible vehicle

locations is further restricted. The map is required for this purpose, to provide

knowledge of the locations of objects in the surrounding environment.

What objects are in the field of view of the camera at a given time depends on
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the position and orientation of the vehicle, assuming that the camera is mounted

to the vehicle and has no moving parts. An initial estimate of the vehicle position

is provided by the Passive Localization and Map Matching components. Vehicle

orientation is given by the discrete variable γt. As stated previously, the value of

this parameter indicates that the vehicle is facing toward the beginning point of

the road segment rt (γt = −1) or facing toward the ending point of rt (γt = 1).

The vehicle heading is not used to define the orientation since it is possible for

the vehicle to be facing in one direction but moving in another (in reverse, for

example). Where the vehicle is facing defines the view of the camera. As with the

other discrete variables (road segment rt and detected objects ot), γt is assumed

known at this time.

Vision is used to detect intersection road markings and estimate the distance

to these markings from the camera. This distance estimate is modeled using (4.17)

as a function of the vehicle pose xr
t , the discrete parameters ct and the map m. As

this model is strictly a non-linear function of the vehicle pose (due the constant

offset term pr
o,‖) an EKF update is used to incorporate the measurement f̂t into the

vehicle pose estimate.

The EKF update requires the expected value of the feature measurement f̂t

as predicted by the feature model (4.28), and the Jacobian matrix Gt, being a

linearization of the feature model about xr
t (4.29).

E[ft] =
(
pr

o,‖ − E[pr
t,‖]
)
γt (4.28)

Gt =
df̂t

dxr
t

=
(

0 −γt 0 0
)

(4.29)

The linearization that results from using the Jacobian should not cause diver-

gence of the Kalman filter gain (which is a concern when measurement models

are highly non-linear) because the measurement model in this case is a first-order

equation in xr
t (4.17). The pseudocode for the visual context update is shown in

Algorithm 4.3.

Figure 4.12 shows plots of the localization error using visual context in the

lateral and longitudinal directions. Results are shown for map matching as well

for comparison. Longitudinal position error and uncertainty are reduced at times

when landmarks are detected (these instances are marked with three pairs

of dotted vertical lines in Figure 4.12b) compared to the map matching result at

the same time instants. This is summarized in Table 4.3, which shows the sample
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Figure 4.12: A comparison of vehicle position error when using Passive Localization
and Map Matching (PL+MM), and when using Passive Localization, Map Matching
and Visual Context (PL+MM+VC) in the Kalman filtering implementation. a)
Error in the lateral direction. b) Error in the longitudinal direction.
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Algorithm 4.3 Pseudocode for adding visual context to the localization estimate.

1. function KFVisionUpdate( xt,−, Pt,−, f̂t, ct )

2.

3. ft,− = FeatureModel( xt,−, ct )

4. Gt = Jacobian( FeatureModel, xt,−, ct )

5.

6. St = GtPt,−G
T
t + Rt // Innovation covariance

7. Kt = Pt,−G
T
tS
−1
t // Kalman gain

8.

9. // Localization update

10. xt = xt,− + Kt (f̂t − ft,−)
11. Pt = (I− KtCt) Pt,−
12.

13. return xt, Pt

ε (m) sε (m) σ (m) sσ (m)

p‖,V C 3.5 6.9 2.8 2.2

p‖,MM 14.3 8.7 12.6 4.0

Table 4.3: A comparison of longitudinal position error and uncertainty between
Passive Localization and Map Matching (p‖,MM), and Passive Localization, Map
Matching and Visual Context (p‖,V C), using Kalman filtering.

mean and standard deviation of the longitudinal position error ε‖ (ε and sε) and the

same for the longitudinal position uncertainty σp‖ (σ and sσ). These results indicate

that the addition of vision improves localization accuracy, and can compensate for

significant bias in the GPS position measurements. The reduction in uncertainty is

expected since the additional visual update step will further contract the posterior

PDF.

Elaborating on the performance of the filter within the time interval t = 107sec

and t = 123sec (detail shown in Figure 4.13). During this time interval, the vehicle

was stopped at an intersection, and the vision system was able to successfully

detect the intersection road markings at all but two time instants. It can be seen

in Figure 4.13 that the filter converges to zero error in the longitudinal direction by

continually observing this landmark, thereby correcting a GPS measurement bias

as large as 40m. In effect a feedback mechanism has been created that gradually

corrects for the bias in the GPS position estimates that could not be corrected

using map matching.

In the proposed implementation, visual context updates localization estimates
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4.2. Localization by Kalman Filtering
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Figure 4.13: An illustration of longitudinal position error converging to zero using
Kalman filtering, while a road marking is continually observed during the time
interval t = 107sec and t = 123sec.

in the longitudinal direction, while map matching updates primarily in the lat-

eral direction. They are therefore complementary operations. This should not be

considered a general rule, as this is the direct result of modeling map pseudomea-

surements as functions of lateral position and landmark distance measurements as

functions of longitudinal position.

4.2.4 Discussion

The results show that localization can be improved through the observation of

a specific feature: intersection road markings. To better understand the general

case, consider what will happen for a generic visual feature modeled as a non-linear

function of vehicle position. For simplicity it is assumed this model is a function of

longitudinal position only. The model and its Jacobian will be (4.30) and (4.31),

respectively, where αt is used to represent the value of the partial derivative.

f̂t = Ft(x
r
t ) + ωt = Ft(p

r
t,‖) + ωt (4.30)

Gt =
(

0 ∂Ft

∂pr
t,‖

0 0
)

=
(

0 αt 0 0
)

(4.31)
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4.2. Localization by Kalman Filtering

αt 0 ±√ρ ±∞

Kp 0 ± 1
2
√

ρ
0

Kσ 1 1
2

0

Table 4.4: Summary of feature rate-of-change dependency on position and variance
gains

The EKF equations result in the following expressions for updating the longi-

tudinal position estimate and variance, where the subscript ‘−’ is used to denote

the prior value of a quantity before it is updated.

pr
t,‖ = pr

t,‖,− + Kp

(
f̂t − Ft(p

r
t,‖,−)

)
(4.32)

σ2
p,‖ = Kσσ

2
p,‖,− (4.33)

The terms Kp (4.34) and Kσ (4.35) are gain terms determining the change in

the position estimate and variance, respectively. These terms depend on the feature

rate of change αt, the feature measurement uncertainty σ2
f and the prior position

uncertainty σ2
p,‖,−. The term ρ is the ratio of these uncertainties, used to simplify

the following expressions.

Kp =
αtσ

2
p,‖,−

α2
t σ

2
p,‖,− + σ2

f

=
αt

α2
t + ρ

(4.34)

Kσ =
σ2

f

α2σ2
p,‖,− + σ2

f

=
ρ

α2
t + ρ

(4.35)

It is apparent from these expressions that the rate of change of the feature

model, αt, influences how the position estimate is updated. A plot of the two gain

terms (4.34) and (4.35) versus αt is shown in Figure 4.14 for ρ = 1. Table 4.4

summarizes the gains at pertinent values of αt.

The parameter αt describes how the feature model is currently changing with

longitudinal vehicle position. It is an indication of how distinct the feature is. What

is particularly interesting is that when αt = 0, there is no contribution made to

the longitudinal position estimate (Kp = 0) and the estimated variance does not

change (Kσ = 1). This can be rationalized by considering a feature with a constant

value; measurements of this feature always return the same value no matter where

the vehicle is located; therefore observing the feature provides no indication of the
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Figure 4.14: Position gain Kp and variance gain Kσ versus feature rate of change
αt.

vehicle position.

There is also a maximum contribution to the position estimate that can be made

by a feature, occurring when αt = ±√ρ. While αt is a product of the environment

and cannot be adjusted, it would be possible to adjust the ratio ρ by designing

vision algorithms with a desired σf . Thus, one can to design a vision algorithm to

best use a particular feature.

Looking Ahead

The assumption of a correct world model, meaning road segments and landmark

locations, may contribute to localization error. In modeling the road marking

locations, all intersections are assumed to have the same dimensions for simplicity.

In practice this is rarely the case, as factors such as lane width, crosswalk width,

turning lanes, bicycle lanes, the angle of the road intersection, among others, create

highly variable intersection geometries. Such modeling errors manifest themselves

as localization errors since the vehicle is positioned with respect to an incorrect

reference point. This may become a limitation of a localization system if the error

in landmark location is larger than the desired accuracy of the system.
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4.3. Localization by Particle Filtering

On a larger scale, accurately mapping landmark locations would be a pro-

hibitively large undertaking to perform manually. It would thus be advantageous

to be able to update the landmark locations in the map in addition to using them

for localization. This would be an application of Simultaneous Localization and

Mapping (SLAM). The same approach would be useful to refine the road segment

locations as well, which may change due to alterations to existing roads or the

addition of new roads. An advantage to correcting this disparity automatically is

that is avoids the need to repeatedly purchase updated maps.

The results obtained in this section have assumed that the data association

parameters (the road segment identity, vehicle orientation and landmark identity)

are known, and these can therefore be considered best-case results. Achieving

similar results for the case of unknown associations is necessary for this approach

to be applicable in a general sense. Possible approaches are discussed in Chapter 5.

4.3 Localization by Particle Filtering

This section investigates using particle filtering in place of the Kalman filter for

localization. Particle filtering has the benefit that features are not required to be

linear functions of vehicle position as with the Kalman filter, and that the Gaussian

restriction is no longer present. However, the cost of this flexibility is losing the

optimality that Kalman filtering offers, as well as an increase in computational

complexity.

The particle filter represents the main change in the implementation of the sys-

tem architecture from the last section. The measurement models are still linear

functions of the vehicle pose, and Gaussian distributions are still assumed. As a

result, it is not expected that the outcome of using a particle filter will improve

upon the Kalman filter at this time. Rather, the benefit of particle filtering will

become more apparent when data associations are unknown, and the random sam-

pling of the state space allows for a more comprehensive consideration of plausible

hypotheses. This will not be explored until the next chapter; however, the particle

filter implementation for known data associations is presented here to simplify its

introduction in Chapter 5.

The key design decisions to make for implementing the particle filter are the

choice of the importance density and the resampling strategy. Samples are drawn
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4.3. Localization by Particle Filtering

from the importance density, denoted q(xt|xi
t−1, zt), to generate a new set of parti-

cles {xi
t}Ni=1 from the previous set {xi

t−1}Ni=1 [4]. Choosing the importance density

to be the state transition prior q(xt|xi
t−1, zt) = p(xt|xi

t−1) is a very popular choice of

importance density because of its simplicity. This choice also simplifies the update

of the particle weights, which can be achieved according to (4.36), by calculating

only the measurement probability for each particle.

wi
t ∝ wi

t−1p(zt|xi
t, c

i
t) (4.36)

The factorization of the measurement probability performed in (3.7) can be used

with (4.36) to update the particle weights in a modular manner. Thus, the modular

measurement update that characterizes the KF implementation can be maintained.

The set of particles representing the vehicle pose will be denoted as follows (4.37).

{
xi

t

}N

i=1
=
{
pi

t,e pi
t,n vi

t,e vi
t,n

}N

i=1
(4.37)

The localization procedure is illustrated in Algorithm 4.4. Each measurement

update reweighs each particle based on how well it agrees with the measurement

data. The resampling step removes low-weight particles by drawing N samples with

replacement from the set {xi
t}

N
i=1, where the probability of particle i being drawn

is proportional to the weight of that particle wi
t. After resampling, all particles

receive equal weight, wi
t = 1

N
. Resampling is performed every T time steps, where

T > 1. Letting T = 1 was found to create sample impoverishment; an insufficient

number of unique particles remained after resampling to adequately cover the state

space.

4.3.1 Passive Localization by GPS

As with the Kalman filter implementation, the purpose of this module is to perform

prediction of the vehicle pose at t based on the posterior at t − 1 using a motion

model for the vehicle, and to update the predicted pose using passive position

measurements p̂t. The prediction process generates a set of particles {xi
t}Ni=1 from

the previous set {xi
t−1}Ni=1. This is achieved using (4.38), where vi

t is a sample drawn

from the process noise, assumed to have a Gaussian distribution vt ∼ N (vt; 0, Qt),
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4.3. Localization by Particle Filtering

Algorithm 4.4 Pseudocode for particle filtering localization with known data
associations.
1. function PFLocalization( x1:Nt−1, w

1:N
t−1, zt, ct )

2.

3. // Vehicle pose prediction and GPS update

4. x1:Nt = PFPredict( x1:Nt−1 )

5. λ1:N
t,p = GPSWeight( x1:Nt , p̂t )

6.

7. // Map matching update

8. λ1:N
t,m = MapMatchingWeight( x1:Nt , ct )

9.

10. // Visual Context update

11. λ1:N
t,v = VisualContextWeight( x1:Nt , f̂t, ct )

12.

13. // Update particle weights

14. wit = wit−1 λi
t,p λi

t,m λi
t,v ∀i ∈ [1, N]

15.

16. if t%T == 0

17. x1:Nt = ResampleParticles( x1:Nt , w1:Nt )

18. wit = 1/N ∀i ∈ [1, N]
19. end if

20.

21. return x1:Nt , w1:Nt

and A is the constant velocity state transition model defined in (4.20).

xi
t = At xi

t−1 + vi
t (4.38)

The weight wi
t for each particle xi

t is updated using the measurement probability

p(p̂t|xi
t). Particles located near to the GPS position measurement p̂t = {p̂t,e p̂t,e} will

receive higher weight, and therefore have a higher probability of being resampled.

Weights are determined by the measurement probability (4.39), where Ht is defined

as in (4.23).

wi
t,p = p(p̂t|xi

t) ∼ N (p̂t −Htx
i
t; 0, Rt) (4.39)

This simple particle filter is applied to the same data set used in Section 4.2 with

the Kalman filter. The result of using this particle filter with N = 200 particles for

Passive Localization, incorporating measurements only from the GPS receiver, is

displayed in Figure 4.15. This figure shows the localization error at each time step

based on the mean of all particle locations, after resampling. The sub-optimality of
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4.3. Localization by Particle Filtering

ε (m) sε (m) σ (m) sσ (m)

p⊥,PL 1.5 4.2 12.6 2.5

p‖,PL 5.9 13 12.7 2.7

p⊥,MM -6.6 3.0 8.9 2.2

p‖,MM 5.9 13.6 12.6 2.6

Table 4.5: A comparison of position error and uncertainty between Passive Local-
ization (PL), and Passive Localization and Map Matching (MM), using particle
filtering.

the particle filter can be readily observed by comparing this figure with Figure 4.8.

The output of the Kalman filter smoothly follows the GPS measurements, while the

output of the particle filter resembles a random walk as it does so. Furthermore,

the PF appears to react slower than the KF to sudden measurement changes from

the GPS. Being a non-deterministic filter, running the filter twice with the same

measurements and initial state returns two different results. The results shown are

chosen as “typical” results. The localization error for this filter is summarized in

Table 4.5.

Resampling of particles is performed every T = 2sec. Resampling has the effect

of contracting the set of particles by discarding unlikely ones far from the true

vehicle position. The effect of resampling is visible in Figure 4.15; the uncertainty

envelope widens and contracts every two seconds, creating a sawtooth pattern. This

represents a drawback of using this resampling strategy; the most certain estimates

will occur when resampling occurs because outliers have been removed, however

this does not occur at every time instant.

4.3.2 Augmenting Localization using Map Matching

Map matching is implemented as with the KF implementation, except that it is

now on a per-particle basis. Each particle is reweighted to reflect how close it is to

the known road segment, and how similar its heading is to the angle of the road.

The pseudomeasurement ζ i
t is again used to represent the expected position and

heading of the vehicle relative to the known road segment. ζ i
t was defined previously

in (4.24)-(4.27). The major distinction between the KF and PF approaches is that

a pseudomeasurement ζ i
t is defined for every particle xi

t. Each particle is first ex-

pressed in road coordinates xr,i
t , and then reweighted using the pseudomeasurement
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Figure 4.15: A comparison of vehicle position error in the raw GPS measurements
and the output of the Passive Localization module using the particle filtering imple-
mentation. a) Error in the lateral direction. b) Error in the longitudinal direction.
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ε (m) sε (m) σ (m) sσ (m)

p‖,V C 9.4 12.2 8.8 2.8

p‖,MM 24.5 17.1 12.0 2.3

Table 4.6: A comparison of longitudinal position error and uncertainty between
Passive Localization and Map Matching (p‖,MM), and Passive Localization, Map
Matching and Visual Context (p‖,V C), using particle filtering.

probability (4.40).

wi
t,m = wi

t,p p(ζ i
t |x

r,i
t ) (4.40)

p(ζ i
t |x

r,i
t ) ∼ N (ζ i

t −Mtx
r,i
t ; 0, Zt)

Results from a typical run of the particle filter incorporating map matching are

shown in Figure 4.16, and the summarized in Table 4.5 with the Passive Localization

results. The mean lateral position error becomes more consistent as a result, and

the standard deviation is also reduced in the lateral direction. The bias shown is

again due to the fact that the lane the vehicle is driving in is offset from the road

centerline. As expected from the KF results, the error in the longitudinal direction

(Figure 4.16b) is similar to the passive localization case (see Figure 4.15b). Again,

these results will not be identical due to the non-deterministic nature of the filter.

4.3.3 Augmenting Localization with Visual Context

Visual context is added to the localization estimate by reweighting the particles

using the measurement probability of the observed visual features. Again, the vision

system is used to detect intersection road markings, which are used as landmarks

to localize the vehicle. The same feature model as the EKF (4.17) is used to predict

the feature measurement for each particle. The measurement probability p(f̂t|xr,i
t )

for each particle is used to reweight that particle, as in (4.41).

wi
t,v = wi

t,m p(f̂t|xr,i
t , ct, m) (4.41)

p(f̂t|xr,i
t , ct, m) ∼ N (f̂t − Ft(x

r,i
t , ct, m); 0, Ωt)

Results for the particle filter in this scenario are shown in Figure 4.17, and

the improvement over map matching demonstrated by Table 4.6. Immediately
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Figure 4.16: A comparison of vehicle position error when using Passive Localization
(PL), and when using Passive Localization and Map Matching (PL+MM) in the
particle filtering implementation. a) Error in the lateral direction. b) Error in the
longitudinal direction.
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Figure 4.17: A comparison of vehicle position error when using Passive Localization
and Map Matching (PL+MM), and when using Passive Localization, Map Matching
and Visual Context (PL+MM+VC) in the particle filtering implementation. a)
Error in the lateral direction. b) Error in the longitudinal direction.
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Figure 4.18: An illustration of longitudinal position error converging to zero using
particle filtering, while a road marking is continually observed during the time
interval t = 107sec and t = 123sec.

noticeable is that the longitudinal error component (Figure 4.17b) becomes very

consistent as a result of positioning the vehicle with respect to the intersection

road marking. While the vehicle was stopped and thus was continually detecting

the road marking, it was able to correct its position using this visual context. This

is shown in Figure 4.18. Thus, the longitudinal position error is quite small and

also very consistent. This is also reflected by the small standard deviation of the

particles in the longitudinal direction.

The results signify that by continually positioning the vehicle with respect to

its surroundings while the vehicle is stopped, it is possible to counteract GPS

measurement bias, using either a Kalman filter or particle filter.

4.4 Summary

This chapter has presented two implementations of the system architecture pro-

posed in Chapter 3: the first based on Kalman filtering, the second based on par-

ticle filtering. These implementations use a propose road-based coordinate system

to perform map matching and to incorporate visual context.
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4.4. Summary

With both implementations, it is shown that positioning the vehicle with respect

to detected landmarks improves vehicle localization accuracy. These results are

arrived at by assuming data association parameters (the road segment identity,

vehicle orientation and landmark identity) are known a priori.

The next chapter aims to relax this assumption of known data association using

methods of Multiple Hypothesis Tracking (MHT) and Monte-Carlo data associa-

tion.
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Chapter 5

Data Association: Map Matching
and Landmark Identification

In this chapter the assumption of known data associations is removed. Such infor-

mation will not be known a priori in the majority of applications, and therefore by

removing this assumption the localization approach becomes more practical.

From a high-level point of view, the data association problem within the Bayesian

filtering paradigm can be considered to be that of inferring the value of the discrete

parameters that affect the estimation of the continuous state variables. For the

vehicle localization problem these parameters are the identity of the road segment

where the vehicle is located, the orientation of the vehicle on that segment, and the

identity of any detected landmarks. This is discussed in Chapter 4. These param-

eters are not measured directly, but instead their values must be inferred based on

other available information, including measurements from GPS and vision, the map

database, and state estimates from previous time instants. However, their value

affects the state estimate and can cause a divergence if incorrect[46].

In particular, the two former discrete parameters (road segment and orientation)

are important for navigation of the vehicle, to tell the driver where to turn or when

they have reached their destination. They also allow localization to be improved

using the road network map, by restricting the position and heading to be consistent

with the road segment and the orientation of that segment. This process is typically

known as “map matching” or “road matching.”

The main question being investigated in this chapter is the following: How

does the addition of vision affect inference of these discrete parameters? Does the

detection of visual features make the choice of road segment and/or orientation
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5.1. Multiple-Hypothesis Tracking using Kalman Filtering

more obvious? Does it improve robustness when faced with problems such as drift

in GPS position estimates?

Two data association approaches are investigated in this chapter:

1. Multiple Hypothesis Tracking (MHT) with Kalman filtering; a number of

data association hypotheses are carried through to address the ambiguity

problem. Each hypothesis has its own state vector and covariance updated

by Kalman filtering. Managing the set of hypotheses is the major challenge

of this method.

2. Monte Carlo Data Association with particle filtering; each particle represents

a possible state of the vehicle with its own set of parameters. The resampling

step removes unlikely particles, and as such particles with the most plausi-

ble parameters should survive. Adequately covering the sample space, and

maintaining reasonable computational complexity are challenges.

5.1 Multiple-Hypothesis Tracking using Kalman

Filtering

5.1.1 Introduction

The first approach investigated is Multiple Hypothesis Tracking (MHT) based on

the Kalman filter. MHT maintains multiple data association hypotheses and up-

dates each of them independently over time using Kalman filtering. The motivation

behind MHT is that there is insufficient information available to choose the correct

hypothesis, so the decision is deferred until a later time when enough information

becomes available. MHT is often labeled a “deferred logic” method for this rea-

son [73]. A weight assigned to each hypothesis indicates the relative importance of

each hypothesis. Those hypotheses with very low weights are considered implausi-

ble data associations, and are discarded in favor of the higher-weight hypotheses.

A decision tree is often used to display the evolution of hypotheses over time in

MHT (see for example [6, 29]). A single hypotheses at time instant t may result in

two probable hypotheses at t+1, each of which may result in two more hypotheses

at t+2. As enough sensory information is gathered over time, the hope is that one

hypothesis becomes obvious and all others are discarded.
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Figure 5.1: A block diagram for Kalman filter localization with Multiple Hypothesis
Tracking.

It is interesting to note that the Maximum Likelihood (ML) approach to data

association can be considered a special case of MHT. Both MHT and ML choose

Nt hypotheses at time t; however with ML, Nt = 1 for all t. This can be illustrated

in a trivial decision tree with a branching factor of 1. The analogy between data

association and tree search is illustrated in Figure 2.3 of Chapter 2.

The motivation for using MHT is to deal with ambiguous data association sit-

uations while maintaining a Kalman filtering framework. The latter is desirable

because it is a simple and efficient localization method that was found to be suc-

cessful in integrating visual context in the known data association case in Chapter 4.

Therefore, an MHT approach will build upon this previous work. A block diagram

for the proposed MHT method is shown in Figure 5.1.

MHT allows the state of the system to be modeled using Gaussian distributions

as in standard Kalman filtering, with the caveat that multiple possibilities are

considered for the true state. Each such possibility is a state estimate dependent

on a unique set of discrete parameters, representing one data association hypothesis.

The full posterior is modeled as a mixture of Gaussians (5.1) rather than a single

Gaussian as in the standard KF.

bel(xt) =
∑

i

wi
t beli(xt) (5.1)

This mixture of Gaussians representation can be derived from the Bayesian filter

posterior by considering the full posterior bel(xt) to be a weighted summation over

all data association hypotheses (5.2). beli(xt) represents the posterior of a single
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hypothesis i ∈ [1, Nt] conditioned on the series of data association variables ci
1:t.

Considering all beli(xt) to be Gaussian, (5.2) represents a mixture of Gaussians

formulation.

bel(xt) = p(xt|z1:t, u1:t, m)

=
Nt∑
i=1

p(xt, c
i
1:t|z1:t, u1:t, m)

=
Nt∑
i=1

p(ci
1:t|z1:t, u1:t, m) p(xt|z1:t, u1:t, m, ci

1:t)

=
Nt∑
i=1

wi
t beli(xt) (5.2)

The weight wi
t assigned to each hypothesis i is updated at each time instant using

the measurement likelihood probability and the weight of the parent hypothesis

j ∈ [1, Nt−1] at the previous time step (5.3). The measurement likelihood can be

found by introducing the state variable xt and then marginalizing over it (5.4) [67].

wi
t = wj

t−1p(zt|z1:t−1, c
i
t, c

j
1:t−1, u1:t, m) (5.3)

p(zt|z1:t−1, c
i
1:t, u1:t, m) =

∫
p(xt, zt|z1:t−1, c

i
1:t, u1:t, m)dxt

=

∫
p(zt|xt, c

i
t, m)beli(xt)dxt (5.4)

When the measurement probability p(zt|xt, c
i
t, m) and predicted belief beli(xt)

are Gaussian, the resulting likelihood is also a Gaussian (5.5) whose mean is the pre-

dicted measurement and whose covariance is the innovation covariance matrix [67],

used to calculate the Kalman gain.

p(zt|z1:t−1, c
i
1:t, u1:t, m) = N

(
zt; ht(xt|t−1, c

i
t, m), Si

t

)
(5.5)

In keeping with the modular approach used to update the vehicle state with

the various measurements, the hypothesis weights can be updated as well at each

measurement update step. This follows from the factorization of the measurement
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likelihood in (5.6).

p(zt|z1:t−1, c
i
1:t, u1:t, m) =p(p̂t|z1:t−1, c

i
1:t, u1:t, m)

p(ζ i
t |p̂t, z1:t−1, c

i
1:t, u1:t, m)

p(f̂t|ζ i
t , p̂t, z1:t−1, c

i
1:t, u1:t, m)

(5.6)

The following section discusses the specifics of the MHT algorithm implemented

to perform localization in the unknown data association case. Hypothesis initial-

ization, termination and merging are discussed, and comparisons are made with

other MHT localization approaches, mostly within the realm of robotics.

5.1.2 MHT Algorithm Description

MHT as described above is suboptimal in the sense that it discards hypotheses

with low weight. An optimal MHT filter that maintained all hypotheses would be

intractable, however, because the number of hypotheses never decreases but instead

grows exponentially over time. This concept can be illustrated in the decision tree

in Figure 5.2a. Each node of the tree represents a separate hypothesis, and as such

is shown as a Gaussian. The height of the Gaussian is proportional to its weight

in the mixture. Over time, the weight of certain hypotheses becomes negligible,

however they are still maintained for optimality. The cost of optimality is thus an

increase in memory required to store the hypotheses at each step, and an increase

in computation to process each hypothesis.

Making MHT tractable involves removing hypotheses that are incorrect; the

policy whereby hypotheses are managed thus defines the MHT implementation.

Often this involves determining when to add a new hypothesis and when a hypoth-

esis becomes sufficiently unlikely that it can be pruned. A further step is also taken

to recognize when there are redundant hypotheses and to merge them together.

The decision tree may have converging nodes as illustrated in Figure 5.2b. This

hypothesis management policy is now described.

Each iteration of the localization filter requires the generation of new data as-

sociation hypotheses. For each hypothesis j ∈ [1, Nt−1] from iteration t − 1 (that

is, for each “parent hypothesis”) plausible data associations for iteration t are de-

termined (“child hypotheses”). The following describes how these child hypotheses

are generated.
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(a) (b)

Figure 5.2: Decision trees for a) the optimal MHT implementation, and b) the
proposed MHT implementation.

Passive Localization Update

As the GPS position measurement p̂t does not depend on any data association, it

can be incorporated into each parent hypothesis prior to searching for new associa-

tions. This has the advantage of contracting the PDF of each hypothesis j, making

it more obvious where the vehicle is located and therefore what are the possible

data associations. This is simply the straightforward application of Passive Local-

ization described in Section 4.2.1 to each parent hypothesis j. The resulting state

estimate and covariance matrix are denoted xj
t,PL and P j

t,PL, respectively.

The weight of each hypothesis is updated using the measurement likelihood

as described in (5.5). The contribution λj
t,PL made by the GPS measurement to

the hypothesis weight in (5.6) is given by (5.7). Hypotheses closer to the position

measurement p̂t are rewarded with a higher weight. The measurement model matrix

Ht is defined in (4.23), while Sj
t,PL is the innovation covariance matrix. η is the

normalization term.

λj
t,PL = p(p̂t|z1:t−1, c

i
1:t, u1:t, m)

= η exp

[
−1

2
(p̂t −Htx

j
t|t−1)

T Sj
t,PL

−1
(p̂t −Htx

j
t|t−1)

]
(5.7)

86



5.1. Multiple-Hypothesis Tracking using Kalman Filtering

Figure 5.3: A validation region in used to find possible road segments. This region
is defined as the 2σ contour around the vehicle pose estimate.

Identifying Candidate Road Segments

The first step in identifying possible associations is to search the area surrounding

the newly-updated state estimate for nearby road segments. This involves a search

of the road network database to find those near to the state estimate. A validation

region around the state estimate and topology constraints of the road network

are used to determine what road segments are plausible locations for the vehicle.

In order for a road segment r to be accepted, it must lie within the 2σ error

ellipse surrounding the state estimate xj
t,PL and defined by the state covariance

matrix P j
t,PL, as illustrated in Figure 5.3. Furthermore, this road segment must be

connected to the previous road segment rj
t−1. Road segments meeting these criteria

form the set of child segments Rj
t for hypothesis j. Hypothesis j is then split into

|Rj
t | copies, and each copy assigned one road segment from Rj

t . In the event that

Rj
t = ∅, it is assumed that no road segment is near the vehicle; the hypothesis j

is maintained, but will not be updated by map matching or visual context. This

process is repeated for all Nt−1 parent hypotheses.
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Algorithm 5.1 Pseudocode for finding nearby road segments.

1. function FindPossibleRoadSegments( x, P )

2.

3. R = ∅
4. for all road segments r in the database, do

5. d = PointToRoadDistance( x, r )

6. D = dP−1dT // Normalize distance by P

7.

8. if D < 2

9. r→ R

10.

11. end for

12. return R

Map Matching Update

Recall from Chapter 4 that a road-based coordinate system is used for map match-

ing and adding visual context. As the possible road segments that the vehicle may

be driving on have been determined, each child hypothesis i of the Nt generated by

the above procedure is now converted to the road coordinate system for its assumed

road segment ri
t. The state vector and covariance matrix in road coordinates are

denoted xr,i
t,PL and P r,i

t,PL.

Map matching is now used to update each of the Nt vehicle state hypotheses,

as described in Section 4.2.2. The pseudomeasurement ζ i
t used to perform map

matching must be defined for every hypothesis individually, to account for the

vehicle state xr,i
t,PL being inside or outside the bounds of the hypothesized road

segment ri
t. Each hypothesis therefore has its own measurement model M i

t and

measurement covariance matrix Zi
t , defined by Algorithm 4.2.

The resulting state estimate and covariance matrix for hypothsis i ∈ [1, Nt] are

denoted xr,i
t,MM and P r,i

t,MM , respectively. The weight of each hypothesis is updated

using the map matching measurement likelihood λi
t,MM given by (5.8), where Si

t,MM

is the innovation covariance matrix of the map matching update. A high weight

will be given to a hypothesis whose position estimate is close to the assumed road

segment ri
t – that is, it has a lateral position close to zero – and also whose velocity

vector is aligned with the road – that is, it has a lateral velocity close to zero.

λi
t,MM = p(ζ i

t |p̂t, z1:t−1, c
i
1:t, u1:t, m)

= η exp

[
−1

2
(ζ i

t −M i
tx

r,i
t,PL)T Si

t,MM

−1
(ζ i

t −M i
tx

r,i
t,PL)

]
(5.8)
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Figure 5.4: The topology of the road network is used to restrict the possible orien-
tations on the road segment candidates.

Assigning Vehicle Orientations

The orientation of the vehicle on each road segment is determined by using con-

straints imposed by the road network topology. The data associations assigned

to the parent pa(i) of each hypothesis i ∈ [1, Nt] are used in addition to a set of

heuristic rules to assign a vehicle orientation to each hypothesis. These rules are

as follows.

1. If a hypothesis has the same road segment association as its parent (ri
t =

r
pa(i)
t−1 ), then it also has the same orientation (γi

t = γ
pa(i)
t−1 ).

2. Otherwise, the orientation γi
t must point away from the intersection of ri

t

and r
pa(i)
t−1 , as illustrated in Figure 5.4. In this way the topology of the road

network can be used to restrict the possible vehicle orientations.

These rules implicitly make the assumption the vehicle does not make any U-

turns, since that would result in a change of orientation on the same road segment.

While this assumption is not realistic in the general case, it should be valid for the

majority of driving situations. It also keeps the number of hypotheses low by not

considering both possible orientations for each road segment, thereby helping to

maintain tractability of the MHT approach.
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Algorithm 5.2 Pseudocode for determining vehicle orientation.

1. function FindPossibleOrientations( Rt, Rt−1, Γt−1 )

2.

3. R∗ = ∅, Γt = ∅
4. for i = 1:{Rt}
5. if Rit == Rt−1
6. Rit → R∗, Γt−1 → Γt
7. else if CommonEndpoint( Rit, Rt−1 )

8. Choose Γ to point away from the common point

9. Rit → R∗, Γ→ Γt
10. else, this road segment Rit is rejected

11.

12. end for

13. return R∗, Γt

Both possible orientations of the vehicle on a particular road segment ri
t are

only considered if r
pa(i)
t−1 = ∅. This could occur because the filter is being initialized

or no roads were found in the previous iteration.

Identifying Detected Landmarks

The identity of a detected landmark is determined by using a validation region

on each candidate road segment. This validation region is defined by rearranging

the landmark measurement model (4.17) to solve for the landmark position in

road coordinates pr
o,‖ (5.9). The expected longitudinal position of the landmark is

given by (5.10) using the longitudinal vehicle position estimate pr,i
t,‖, the distance

measurement to the landmark f̂t and the assumed orientation γi
t. The uncertainty

in this expected value is denoted σo,‖ and is given by (5.11), where it is assumed

that f̂t and pr,i
t,‖ are uncorrelated. The validation region is established as the 2σ

interval E[pr
o,‖]± 2σo,‖, as illustrated in Figure 5.5.

pr
o,‖ = f̂tγt + pr

t,‖ + ωt (5.9)

E[pr
o,‖] = f̂tγt + E[pr

t,‖] (5.10)

V ar[pr
o,‖] = V ar[f̂t] + V ar[pr

t,‖]

= σ2
f + σ2

p,‖ = σ2
o,‖ (5.11)

The location of the intersection road marking occurring at the endpoint of the

assumed road segment ri
t in the direction γi

t is compared with the validation region.
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Figure 5.5: A validation region is used to identify a detected road marking.

The locations of these markings are determined using road construction standards

defined by the Government of Ontario [45], as discussed in Section 4.1.2. At most

one landmark will be found within the defined validation region, unless this region

is sufficiently large (or the length of the road segment ri
t is sufficiently small) to

encompass the entire road segment.

If a landmark is found within the validation region, its longitudinal position pr
o,‖

is used to update the state estimate for that hypothesis as described in Section 4.2.3.

The weight of the hypothesis is updated using the visual context measurement

likelihood λi
t,V C given by (5.12), where Si

t,V C is the innovation covariance matrix of

the visual context update. A high weight will be given to those hypotheses whose

relative position to the identified landmark is similar to the estimated distance f̂t.

λi
t,V C = p(f̂t|ζ i

t , p̂t, z1:t−1, c
i
1:t, u1:t, m)

= η exp

[
−1

2

(
f̂t − Ft(x

r,i
t,MM , ci

t)
)T

Si
t,V C

−1
(
f̂t − Ft(x

r,i
t,MM , ci

t)
)]

(5.12)

If a landmark is not found for a given hypothesis, then that hypothesis cannot

be updated using visual context. A disparity in the weight assigned to the various

hypotheses can therefore develop, as those without valid landmarks will not receive

a contribution from the visual measurement f̂t. Balancing this weight disparity is

addressed next.
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Algorithm 5.3 Pseudocode for finding landmarks.

1. function FindPossibleLandmarks( R, Γ, z, σz, x, P )

2.

3. Λ = ∅
4. ∀ r ε R, γ ε Γ

5. [pr, σr] = WorldToRoadCoords( x, P, r )

6. [pλ,max, pλ,min] = pr + zγ ± 2(σr + γ)
7. [λr, pλ,r] = GetIntersectionLandmark( r, γ )

8. if pλ,min < pλ,r < pλ,max

9. λr → Λ

10. else 0→ Λ

11. end ∀
12.

13. return Λ

The validation gating and road network topology constraints used in generating

data association hypotheses are such that only one hypothesis contains a valid land-

mark in most situations. Furthermore, this hypothesis will correspond to the road

segment upon which the vehicle was driving when it approached the intersection.

Thus, detecting a road marking landmark is an indication that the vehicle is still

on that road segment, and has not turned onto a different road.

Balancing the Weight Disparity

It is often the case with the procedure just described for generating data association

hypotheses that a valid landmark is identified found for only a subset of hypotheses.

Because the location of a landmark is required to update the localization estimate

using visual context (according to the measurement model (4.17)) those hypotheses

without landmarks do not receive this update. It may appear at first that these hy-

potheses would be at a disadvantage without the extra update step to correct their

localization estimates and contract their PDFs. However, the weight adjustment

given by the measurement likelihood (5.12) lowers the weight assigned to those

hypotheses that receive the update. This means that these hypotheses contribute

less to the overall weight, and are therefore prone to pruning.

To balance the weight disparity, an extra term is appended to the hypothesis

weights whenever a visual landmark detection is made. If a valid landmark cannot

be identified for a given hypothesis i, it is assumed that the detection is a false

positive. Thus, the weight is multiplied by the false positive rate α of the landmark

detector, as shown in (5.13), where the subscript ‘¬o’ is used to indicate that no
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object hypothesis oi
t was found. Conversely, if a valid landmark is identified, it is

assumed that the detection is successful. Thus, the weight is multiplied by the rate

of “true positives” 1−β of the landmark detector as shown in (5.14), where β is the

false negative rate. The subscript ‘o’ is used to indicate that an object hypothesis

oi
t was found.

λi
t,¬o = λi

t,gpsλ
i
t,mapα (5.13)

λi
t,o = λi

t,gpsλ
i
t,mapλ

i
t,vis(1− β) (5.14)

A well-designed landmark detector will have a low false positive rate and high

sensitivity (α � 1 − β), meaning that the vast majority of detections occur when

a landmark is present. If this is the case, this may be sufficient to compensate for

the weight disparity introduced by the visual likelihood λi
t,vis.

The MHT results presented in this thesis use values for α and β determined

by processing a set of images taken by the vehicle mounted camera with the road

marking detector. In actuality, these parameters do not need to be a function of

how well or how poorly the landmark detector performs. They can instead be

tuned to create the best filter performance provided that the weight disparity is

addressed. Using α and β is simply one way to achieve this, and represents a way

of relating the performance of the vision algorithm to the localization result.

Merging Redundant Hypotheses

It often arises that multiple hypotheses exist with identical associations and (nearly)

identical state estimates. Often this is the result of multiple hypotheses with dis-

tinct associations at one time instant t producing children with identical associa-

tions at the next time instant t+1. A possible situation is shown in Figure 5.6. If all

of these hypotheses have significant weight, none will be pruned and they will likely

converge to the same state estimate over time. All but one of such hypotheses are

redundant, needlessly consume computational resources, and create an unrealistic

distribution of weights among hypotheses.

It is therefore proposed to first determine when two or more hypotheses are

redundant, and then to merge them together into a single hypothesis whose weight

is the sum of its contributors’ weights. As opposed to discarding one of the hy-

potheses, merging them together allows each redundant hypothesis to contribute

to the outcome in a manner consistent with its weight in the overall mixture.
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(a) (b)

(c) (d)

Figure 5.6: An illustration of data association ambiguity resulting in redundant
hypotheses. Hypotheses with unique data associations (in b) can have children with
identical data associations (in c) that converge to similar vehicle pose estimates (in
d)

The redundancy of two hypotheses is determined by two conditions:

1. Both hypotheses have the same set of associations (road segment, orientation,

and detected road marking).

2. Their distributions are sufficiently similar to one another, as determined by

using the Kullback-Liebler divergence.

KL divergence measures the difference between two distributions in a directed

(non-symmetric) fashion. It is defined as in (5.15). If the divergence is below

a predefined threshold, D(xi||xj) < ε, the hypotheses are considered sufficiently
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Algorithm 5.4 Pseudocode for merging hypotheses.

1. function MergeHypotheses( x1:Mt−1, P
1:M
t−1, c

1:M
t−1, w

1:M
t−1 )

2.

3. x∗t = P∗t = c∗t = w∗t = ∅
4. cunique = FindUniqueCorrespondences( c1:Mt )

5. ∀ c ∈ cunique
6. [xct, P

c
t, w

c
t] = {states and covariances with associations c}

7.

8. [xkt, P
k
t, w

k
t] = KLDivergenceTest( xct, P

c
t, w

c
t )

9.

10. // Add failed hypotheses to the return variables.

11. (xct − xkt)→ x∗t, (P
c
t − Pkt)→ P∗t, c→ c∗t, (w

c
t − wkt)→ w∗t

12.

13. w =
∑

i w
k,i
t

14. x =
∑

i w
k,i
t x

k,i
t

15. P =
∑

i w
k,i
t P

k,i
t +

∑
i

∑
j,j 6=i w

k,i
t w

k,j
t x

k,i
t (xk,it − x

k,j
t )T

16.

17. // Add merged hypothesis to the return variables.

18. x→ x∗t, P→ P∗t, c→ c∗t, w→ w∗t
19. end ∀
20. return x∗t, P

∗
t, c

∗
t, w

∗
t

similar to be redundant.

D(xi||xj) =

∫ ∞

−∞
fi(x) log

fi(x)

fj(x)
dx (5.15)

The probability distribution of a random variable xt is modeled as the weighted

sum of M Gaussian distributions, which will be denoted {fi(xt)}Mi=1. It is desired

to determine the mean µ and covariance matrix Σ of this weighted mixture, which

would be sufficient to define a single Gaussian approximation of this mixture. The

calculation of these quantities is shown in (5.17) and (5.18), where Wt =
∑

wi
t.

p(xt) =
M∑
i=1

wi
t

Wt

fi(xt) (5.16)

E[p(xt)] =
M∑
i=1

wi
t

Wt

E[fi(xt)] =
M∑
i=1

wi
t

Wt

µi (5.17)

V ar[p(xt)] =
M∑
i=1

wi
t

Wt

V ar[fi(xt)] +
M∑

j=1
j 6=i

wi
tw

j
t

W 2
t

µi (µi − µj)
T (5.18)
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Pruning Unlikely Hypotheses

The weights for all newly-generated hypotheses are normalized to determine the rel-

ative contributions of each of the hypotheses to the overall Gaussian mixture (5.19).

wi
t =

wi
t∑

k wk
t

(5.19)

Hypotheses that contribute weakly to the overall mixture should be pruned in

order to maintain tractability of the MHT filter. A minimum weight threshold wmin

is used when deciding which hypotheses to keep. This threshold is chosen to be

quite small (on the order of 0.001) so as to be conservative in pruning hypotheses.

In principle, the number of hypotheses that can exist at a given time is 1
wmin

, which

would be 1000 for wmin = 0.001. In practice, the number of hypotheses is limited

by the number of road segments in the vicinity, the use of topology constraints and

the merging of redundant hypotheses.

A pseudocode description of the MHT approach is given in Algorithm 5.5.

Comparison with Selected Previous Approaches

Austin [6] uses MHT for mobile robot localization. Each robot pose hypothesis is

represented using a Gaussian, creating a mixture of Gaussians to approximate the

probability distribution of robot pose over the entire pose space. Updating the pose

estimates is accomplished using the covariance intersection method of Uhlmann [69],

rather than Kalman filtering. In terms of data association, a null hypothesis with a

uniform distribution is used to represent the case of sensor failure creating complete

ignorance of the robot pose. A novel weight redistribution strategy is implemented

as a result of this null hypothesis in order to maintain a constant probability of

sensor failure.

Jensfelt [32] uses track splitting and merging to avoid making false associations.

Prior to updating a hypothesis, it is split into two identical copies with equal weight.

One of these is updated while the other is not. If after updating the two copies

are not significantly far apart (based on a Mahalanobis distance criterion), they are

merged back together by summing their weights and retaining only the updated

copy.

Pyo [51] applies MHT directly to the problem of matching GPS measurements

to a map of the roads (map matching). Their approach has many similarities to the
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Algorithm 5.5 Pseudocode for MHT algorithm.

1. function MultiHypothesisTracking( x1:Mt−1, P1:Mt−1, c1:Mt−1, w1:Mt−1 )

2.

3. for i = 1:M

4. // State prediction and GPS update

5. [xit|t−1, Pit|t−1] = KFPredict( xit−1, Pit−1 )

6. [xit,gps, Pit,gps] = KFGPSUpdate( pt, xit|t−1, Pit|t−1 )

7. wit,gps = GPSWeightUpdate( w1:Mt−1, pt, xit|t−1, Pit|t−1 )

8.

9. // Choosing possible correspondences

10. Rit = FindPossibleRoadSegments( xit,gps, Pit,gps )

11. Γit = FindPossibleOrientations( Rit, Rit−1, Γit−1 )

12. Λit = FindPossibleLandmarks( Rit, Γit, xit,gps, Pit,gps )

13.

14. if {Rit} > 0

15.

16.

17. // Map update

18. [xit,map, Pit,map] = KFMapUpdate( Rit, Γit, xit,gps, Pit,gps )

19. wit,map = MapWeightUpdate( wit,gps, Rit, Γit, xit,gps, Pit,gps )

20.

21. // Vision update

22. [xit,vis, Pit,vis] = KFVisionUpdate( Λit, Rit, Γit, xit,map, Pit,map )

23. wit,vis = VisionWeightUpdate( wit,map, Λit, Rit, Γit, xit,map, Pit,map )

24.

25. // Final weight and state

26. wit = wit,vis, x
i
t = xit,vis, P

i
t = Pit,vis

27. else

28. wit = wit,gps, x
i
t = xit,gps, P

i
t = Pit,gps

29. end for

30.

31. [x1:Mt , P1:Mt , c1:Mt , w1:Mt ] = PruneHypotheses( x1:Mt , P1:Mt , c1:Mt , w1:Mt )

32.

33. [x1:Mt , P1:Mt , c1:Mt , w1:Mt ] = MergeHypotheses( x1:Mt , P1:Mt , c1:Mt , w1:Mt )

34.

35. return x1:Mt , P1:Mt , c1:Mt , w1:Mt
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proposed MHT method in terms of integrating map information into the state esti-

mate. First, potential roads are found within an elliptical validation region around

the position measurement. Second, for each road segment a pseudo-measurement is

created containing the measured position projected onto the road and the heading

angle of the road. In addition, the road network topology is used to determine the

likelihood of each hypothesis. Pruning of hypotheses is based on a number of pre-

defined thresholds rather than a single threshold, which may make the algorithm

brittle and difficult to tune.

5.1.3 MHT Performance in Unbiased GPS Conditions

This section presents results of using MHT for localization when data associations

are unknown and the position measurements from the GPS are unbiased. Results

are shown for two cases: one in which visual context is used and the other in which

it is not. This should illustrate the benefit (if any) that visual context provides to

data association in vehicle localization.

The results shown are for a trip where the vehicle comes to a stop at an inter-

section and is waiting at a traffic light. The path taken by the vehicle is shown

in Figure 5.7. This trip allows us to show how data association performs in the

trivial situation where there is only a single road segment nearby and in the more

complicated situation with multiple nearby segments at an intersection.

Results are shown first for the case where vision is not used, and the data

association is performed using only GPS and the map. Figure 5.8 plots the vehicle

position estimate and its error ellipse on the map at particular time instants. The

road and orientation are identified correctly in the trivial case where only one road is

nearby (Figure 5.8a). Ambiguity in the data association occurs at the intersection

and two competing hypotheses arise (Figure 5.8b). Eventually, the hypothesis

closest to the measured GPS position survives (Figure 5.8d) because it receives

consistently higher weight than the other at each iteration; this also happens to be

the correct hypothesis. It takes 35 iterations of the filter for the filter to converge

to a single hypothesis after the second is generated.

Figure 5.9 shows the localization result when vision is added to the system.

Since vision is only detecting landmarks at intersections, the performance away

from an intersection is the same (Figure 5.9a). A second hypotheses again arises

when the vehicle is at the intersection (Figure 5.9b). However, a valid landmark
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Figure 5.7: The vehicle path for the unbiased data set. Vision observes two inter-
section road markings; the second of these is visible for 60 seconds while the vehicle
is stopped.

can only be found for one hypothesis, and the extra weight given to it causes the

other to be pruned after only 6 iterations of the filter (Figure 5.9d).

The error in the MHT localization is shown in Figure 5.10. This is determined

by calculating the weighted mean and covariance of all hypotheses using (5.17)

and (5.18) respectively, and computing the error between the mean to the ground

truth position. Lateral and longitudinal errors are determined relative to the ground

truth road segment. Table 5.1 summarizes the localization error for the raw GPS

measurements, and the MHT method both with and without visual context.

The longitudinal error, shown in Figure 5.10b, is consistently close to zero within

the time interval between t = 36 sec and t = 98 sec during which the intersection

landmark was being observed. Table 5.2 summarizes the longitudinal localization

error within this time interval.

In addition to localization error, it is important to evaluate the data associa-

tion success of the MHT approach. In this application it is particularly important

to identify the road segment and the orientation of the vehicle, as these pieces of

information are required for map matching and also enable a comparison between

the vision and non-vision approaches to be made as both are common to the two
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0m 15m

(d)

Figure 5.8: An illustration of MHT localization without visual context. The known
data association result is shown for comparison in gray, and the GPS measurement
is shown as ‘∗’.

filter implementations. To evaluate the ability of the MHT to find the correct data

association, two measures are used. First, the entropy of the hypothesis weights

is calculated to determine how ambiguous the choice of hypothesis is at each time

step (Figure 5.11a). A large entropy value will indicate that the weight is dis-

tributed rather evenly amon many hypotheses, making it unclear which is correct.

A low value will indicate that most of the weight is concentrated on one hypothesis.

Second, the weight assigned to the hypothesis with the correct data association is

examined to determine how successful the filter is at identifying the correct hypoth-

esis. This is shown in Figure 5.11b for both the vision and no-vision situations.

What can be observed from these results is that by incorporating vision, the choice
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Figure 5.9: An illustration of MHT localization with visual context. The known
data association result is shown for comparison in gray, and the GPS measurement
is shown as ‘∗’.

of data association becomes less ambiguous because more weight is given to one

hypothesis than the others, and also that the weight in this case is assigned to the

correct hypothesis.

Discussion

The results shown above indicate that the addition of vision to the system improves

the ability to identify the road segment and orientation in an ambiguous data as-

sociation condition, such as when stopped at an intersection. In addition, accurate

localization is maintained with the use of vision despite this ambiguity. Vision ac-

complishes this by placing a high weight on successful landmark detections, thus
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Figure 5.10: Average position error at each time instant using MHT localization.
The error in the raw GPS position measurements are shown, with the average
error in MHT localization with and without visual context. a) Error in the lateral
direction. b) Error in the longitudinal direction; dotted lines show the beginning
and ending of time intervals where road markings are visible.
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Figure 5.11: A plot of a) the entropy among the hypothesis weights, and b) the
weight assigned to the correct hypothesis, for MHT localization.
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ε (m) sε (m) σ (m) sσ (m)

p⊥,GPS -0.7 1.6 10 0

p‖,GPS -3.0 4.3 10 0

p⊥,MHT -6.2 3.0 2.0 1.1

p‖,MHT -1.4 7.5 4.0 1.1

p⊥,MHT+V C -7.1 2.6 1.6 0.85

p‖,MHT+V C -2.7 5.2 2.6 1.9

Table 5.1: Lateral and longitudinal position error and uncertainty for the raw GPS
measurements, and for MHT with and without visual context (VC).

ε (m) sε (m) σ (m) sσ (m)

p‖,GPS -0.90 1.1 10 0

p‖,MHT 3.1 5.8 7.6 1.1

p‖,MHT+V C 0.18 0.74 2.1 0.9

Table 5.2: Longitudinal position error and uncertainty for the raw GPS measure-
ments, and MHT with and without visual context (VC) while a road marking is
visible.

providing further evidence in favor of a road segment for which a valid landmark

can be identified. In particular, continual observation of the same landmark of-

fers repeated evidence for one data association hypothesis over the others. The

mechanism by which this occurs is explored in the following.

It can be shown based on some reasonable assumptions that the MHT filter will

converge to a single hypothesis, as occurs in the results illustrated in Figures 5.8

and 5.9. As is approximately the case with the investigated data set, I am assuming

that the vehicle remains stationary and that there is minimal drift in GPS position

measurement error during this time. Under these conditions, the state estimate for

each hypothesis will converge to a steady state because the measurements at every

iteration are always the same: the GPS error does not drift, the map pseudomea-

surement is constant, and the vehicle does not move hence the estimated distance

to a landmark is constant. As a result, the measurement likelihood assigned to each

hypothesis will also be constant over time in these steady-state conditions.

Each hypothesis i ∈ [1, Nt] has an initial weight wi
0, which refers to its weight

104



5.1. Multiple-Hypothesis Tracking using Kalman Filtering

when it reaches steady state. The measurement likelihood assigned to hypothesis

i at time t is defined as λi
t = λi (the time subscript can be dropped because this

likelihood is constant). Hypothesis weights are also normalized after every iteration

of the filter, making the weight of hypothesis i to be as shown in (5.20). Recursively

substituting wi
t−1 back to wi

0 gives the expression (5.21).

wi
t =

wi
t−1λi∑

j wj
t−1λj

(5.20)

=
wi

0λ
t
i∑

j wj
0λ

t
j

(5.21)

The limit of this expression as t→∞ illustrates that one hypothesis will accu-

mulate all of the weight while the rest tend to zero, provided that one hypothesis

consistently receives a higher measurement probability.

lim
t→∞

wi
t = lim

t→∞

wi
0λ

t
i∑

j wj
0λ

t
j

= lim
t→∞

1

1 +
∑

j 6=i

(
wj

0

wi
0

)(
λj

λi

)t

=


0 if ∃λj, λi < λj

1 if ∀λj, λi > λj

wi
0

wi
0+

P
wk

0
if ∃{λk} ⊆ {λj}, ∀λk, λi = λk

(5.22)

The number of iterations of the filter it would require to prune away all but

the dominant hypothesis depends on the relative magnitude of the measurement

likelihoods as well as the relative magnitude of the initial weights. The condition

whereby only one hypothesis i would remain is wi
t > 1 − wmin, where wmin is the

pruning threshold. Using the expression for wi
t in (5.22), and dropping the limit,

this condition can be rearranged to (5.23).

∑
j 6=i

(
wj

0

wi
0

)(
λj

λi

)t

<
wmin

1− wmin

(5.23)

The number of iterations T required for condition (5.23) to be met (and therefore

for all hypotheses but i to be pruned) is at least as many as the slowest converging

sequence, that is the sequence with the ratio
λj

λi
nearest to unity. This provides a

lower bound on the number of filter iterations needed before pruning occurs, which
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Filtering Method Predicted time Observed time

MHT with VC 39 sec 39 sec

MHT without VC 76 sec 78 sec

Table 5.3: Predicted and observed convergence times for MHT localization with
and without using Visual Context.

can be found using (5.24).

T >

ln
(

wmin

1−wmin

)
− ln

(
wj∗

0

wi
0

)
ln
(

λj∗

λi

) (5.24)

This lower bound was tested on the experimental results, using measurement

likelihoods for GPS, map matching and vision. Predicted and observed conver-

gence times for the MHT filters with and without Visual Context are summarized

in Table 5.3. To perform this calculation the measurement likelihoods for both

filters were observed until such time that they reached steady-state. The hypoth-

esis weights at that iteration were then used along with the constant likelihoods

to predict the time until convergence. For the filter using Visual Context, conver-

gence was predicted at iteration t = 39 sec, which agrees with the observation (see

Figure 5.9d). Without Visual Context, convergence was predicted at t = 76 sec,

when it actually occurred at t = 78 sec (see Figure 5.8d). Thus, the lower bound on

convergence time appears to hold for this data set, indicating that the assumptions

of constant measurement likelihood are valid.

The above discussion explains why the MHT filter converges to a single hy-

pothesis. This validates the use of MHT to perform localization in unknown data

association conditions, because it is shown that, with enough evidence, the filter

will converge to one hypothesis. However, it is important that it does not converge

to an incorrect hypothesis, as this may create divergence of the localization esti-

mate. In order for the correct hypothesis to be the one chosen, therefore, it must

consistently receive higher weight than the alternatives.

As mentioned previously, the method used in generating data association hy-

potheses normally gives only one hypothesis with a valid landmark. In addition,

this hypothesis corresponds to the road segment upon which the vehicle was driv-

ing when it approached the intersection. Thus, detecting the painted road marking
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should provide evidence in favor of this hypothesis over the others.

In order for the filter to converge to the “landmark hypothesis,” that hypothesis

must have a higher measurement likelihood than the others, according to (5.22).

The measurement likelihood for this hypothesis is given by (5.14) because a land-

mark is successfully identified, while the remaining hypotheses have measurement

likelihoods according to (5.13) because the detection is considered a false positive.

In keeping with assumptions made previously, consider that the vehicle is again

stationary, and that there is no drift in the GPS position measurements. Further,

consider the GPS measurement p̂t to be equidistant between two road segments.

The result is that the two tracks being considered, one for each road segment,

receive equal weight from the GPS measurement and from map matching. We will

denote one of these by the subscript ‘o’ to denote the hypothesis with a landmark,

and the other by ‘¬o’. Therefore, the condition whereby the filter will converge to

the landmark hypothesis can be stated as in (5.25).

λo > λ¬o (5.25)

As the measurement likelihoods for GPS and map matching are equivalent for

the two hypotheses, the only difference between the two will be weight contributed

by vision (5.26), and the parameters α and β.

λV C,o(1− β) > α (5.26)

The need for these balancing parameters can now be demonstrated. Without

the α and β terms, (5.26) would reduce to λV C,o > 1, which is not possible because

λV C,o is a probability density and therefore limited to [0, 1]. Therefore, the filter

would always converge to the “non-landmark hypothesis” in the absence of these

balancing terms.

This theory can help to explain the results observed. The higher measurement

probability consistently applied to the landmark hypothesis results in a higher

weight relative to the other hypotheses, as shown in Figure 5.11b. As the weight of

one hypothesis increases over the others, the entropy of the set of weights will de-

crease indicating that the choice of hypothesis is becoming less ambiguous, observed

in Figure 5.11a.
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5.1.4 MHT Performance in Biased GPS Conditions

This section presents results of using MHT for localization when data associations

are unknown and the position measurements from the GPS are biased. Two sets of

results are shown: one in which the filter is implemented as previously described,

and another in which the filter is tuned to operate in biased GPS conditions. This

should illustrate the practical feasibility of using vision for localization within an

MHT framework.

The results shown are for the data set used in Chapter 4. This data set contains

a bias in the measured GPS positions as large as 40m while the vehicle is stopped

at an intersection. The results shown in this section are for the specific portion

of the data set when this occurs. The results shown use the entire system (using

Visual Context).

Figure 5.12 plots the vehicle position estimate and its error ellipse for each hy-

pothesis on the map at particular time instants. It is observed that the hypotheses

are following the biased GPS estimate, and that the use of vision does not help

to correct the localization. The reason this occurs is because the bias in the GPS

position measurement is larger than the validation region used to identify road seg-

ment candidates. Thus, the correct road is not among these candidates, and even

with the use of vision, no correction can be made.

This result indicates that the proposed MHT approach is not practical to use

in biased GPS conditions. However, as shown in Chapter 4, a significant advantage

of using vision is that this bias can be corrected. It should be possible to tune the

MHT filter to consider a wider range of road segments to combat this bias problem.

The concern in doing so is that the number of hypotheses will increase, thus raising

the computational demands of the filter.

Increasing the size of the validation region used to find candidate road segments

can be achieved in two ways: directly by increasing the size of the error ellipse, or

indirectly by increasing uncertainty in the GPS measurement. The former would

involve increasing the validation region to an nσ error ellipse around the state

estimate, where n = 2 for the current method. The latter would widen the size

of the current 2σ error ellipse, and put less emphasis on the GPS measurements

in the Kalman filter. I chose the latter approach of increasing the uncertainty of

the GPS measurements, but the amount of increase was dependant on the speed

of the vehicle, as measured by the GPS. The reasoning behind this is that the
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Figure 5.12: An illustration of MHT localization with visual context in biased GPS
conditions. The known data association result is shown in gray for comparison, and
the GPS measurement is shown as ‘∗’.

wider validation region is mostly needed at intersections, where the landmarks can

be detected and the vehicle is likely to be stopped. A sigmoid function (5.27)

is used to smoothly vary the GPS uncertainty σt,GPS between σmin = 10m and

σmax = 80m as a function of the vehicle speed v̂t measured by the GPS receiver.

The GPS measurement covariance Rt is then given by (5.28).

σt,GPS = σmax −
σmax − σmin

1 + exp
[
−1

2
(v̂t − v0)

] (5.27)

Rt =

(
σ2

t,GPS 0

0 σ2
t,GPS

)
(5.28)
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Figure 5.13: An illustration of MHT localization with visual context in biased GPS
conditions using a tuned filter. The known data association result is shown in gray
for comparison, and the GPS measurement is shown as ‘∗’.

The outcome of this change is shown in Figure 5.13, where the vehicle position

estimate and its error ellipse for each hypothesis are plotted on the map at the same

time instants shown in Figure 5.12. It is observed that the correct road segment

hypothesis is maintained despite the drift in the GPS measurements. Furthermore,

the filter converges to the correct hypothesis despite it being much further away

from the GPS position measurement.

The localization error for the two realizations of the MHT filter is shown in Fig-

ure 5.14. For the tuned filter, localization error approaches zero in the longitudinal

direction as the intersection landmark is continually observed. This agrees with the

result from the known data association case, shown in Figure 4.13. Lateral position
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error is largely unaffected in this case.

Tuning the MHT filter to operate in a biased GPS environment was performed

by trial-and-error on this specific data set, and as a result the parameters chosen

may not work for every data set. There are other methods that can be attempted

to improve the robustness of MHT to GPS measurement bias. Track splitting is

a method commonly used in multiple-target tracking to ensure that a new data

association hypothesis is not spurious. Whenever the data association changes, a

copy of the hypothesis is made. The original maintains the old data association

while the copy is assigned the new association [32]. If the new association is the

result of an incorrect detection (or a temporary GPS drift), it should be pruned

rather quickly. The old hypothesis is thus still present should it prove to be correct.

Lazy data association is similar to a Maximum Likelihood approach, except that

it allows past data association decisions to be revisited and changed, similar to

a tree search [29]. This could be applied to MHT, allowing parent states to be

revisited should the children prove to be poor candidates. The benefit of these two

approaches is that they can be implemented within the current MHT approach,

although they may not remove the need to tune the filter as this is a common task

when using Kalman filters, and one that can be quite delicate [64]. One reason for

this tuning sensitivity is that Kalman filters are often employed to systems that

violate the linear-Gaussian assumptions.

Another approach to data association that may prove beneficial is particle fil-

tering. By sampling the state space randomly and assigning random associations to

each particle, it is expected that the particles with the correct associations should

receive higher weight and thus improve their chances of survival [46]. The drawback

of this approach is that it requires a redesign of the localization method. This is

the topic of the next section.

5.2 Monte Carlo Data Association using Particle

Filtering

5.2.1 Introduction

A method based on particle filtering (PF) is investigated as an alternative to the

Kalman filter-based MHT approach in the hope that it will prove more flexible
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Figure 5.14: Average position error at each time instant using MHT localization
in biased GPS conditions. The error in the raw GPS position measurements are
shown, with the average error in MHT localization with and without tuning the
filter. a) Error in the lateral direction. b) Error in the longitudinal direction; dotted
lines show the beginning and ending of the time interval where a road marking is
visible.
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and robust to problems such as GPS measurement bias. The principal benefit of

particle filtering is that it uses a random sampling of the state space rather than

the closed form parameterization used by the Kalman filter, allowing multimodal

distributions which may occur as a result of ambiguous data associations to be

handled easily. A PF method for localization in known data association conditions

was presented in Section 4.3 and found to give similar accuracy as the KF method.

This method is now adapted to the case of unknown data associations.

A Monte Carlo approach is used to assign a random data association to each

particle from a set of possible associations [46]. This selection method allows the

consideration of relatively unlikely associations for some particles, which will im-

prove the robustness of the data association should significant bias in the GPS

measurements occur. The large number of hypotheses (N = 200 particles were

used in Section 4.3) means that one can be more liberal in assigning data associ-

ations, and can consider unlikely hypotheses. With the MHT method there are a

small number of hypotheses, and one must be conservative in selecting and pruning

hypotheses so as to avoid incorrect data associations that could diverge the filter.

The drawback to a particle filtering approach is that it is not guaranteed to

provide the optimal filtering solution. What it lacks in optimality, however, it

makes up for with flexibility. It can be thought of as a higher-level approach;

micro-management of hypotheses is not required since the randomness of the data

association process should ensure that enough alternatives are considered in order

to find the best association. Tuning of the filter is also a less demanding task.

5.2.2 Algorithm Description

Updating Particle Weights

The particle weights are updated as in the known data association case; see Sec-

tion 4.3. This involves updating the weight of each particle using the measurement

probability p(zt|xi
t, c

i
t). The principal difference between the known and unknown

association cases is that the associations are assigned on a per-particle basis, rather

than each particle having the same association. This creates the potential for the

same weight imbalance observed in MHT when a subset of particles have detected

landmark associations and the rest do not. The former receive an additional mea-

surement probability update, deemphasizing these particles since p(f̂t|xi
t, c

i
t) < 1.

113



5.2. Monte Carlo Data Association using Particle Filtering

Figure 5.15: Road segment candidates are those within the space occupied by the
particle set, represented by the dashed circle.

The imbalance is addressed using weighting terms as it was with MHT. Those par-

ticles without a landmark hypothesis are multiplied by α, the false positive rate

of the landmark detector (5.29). Those particles with a landmark hypothesis are

multiplied by 1− β, the “true positive” rate of the detector (5.30).

wi
t,¬o = wi

t−1p(pt|xi
t)p(ζ i

t |xi
t, c

i
t)α (5.29)

wi
t,o = wi

t−1p(pt|xi
t)p(ζ i

t |xi
t, c

i
t)p(ft|xi

t, c
i
t)(1− β) (5.30)

Determining Possible Associations

At each time filter iteration, a list of possible data associations is created, from

which the particular association for each particle is chosen randomly. First, the

candidate road segments are defined as those lying within the space occupied by

the set of particles. This can be represented by the smallest box or circle enclosing

the particles in world coordinates (Figure 5.15). A search of the map database

that returns road segments within this region provides the set of candidate road

segments Rt.

Second, the orientation of the vehicle is constrained by the topology of the road

network to be consistent with past orientation hypotheses. Three constraints are

used to identify the orientation of the vehicle on a particular road segment. First,
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Figure 5.16: Visible road markings lie at the end of each road segment in the
direction of the orientation hypothesis. Landmarks that lie outside the dilated
validation region are not considered.

each candidate road segment rt ∈ Rt must be connected to one of the candidate road

segments rt−1 ∈ Rt−1 from the previous iteration in order to maintain continuity.

Second, any road segment that persists from the previous iteration automatically

receives the same vehicle orientation. Third, a new road segment that was not

present at the previous iteration is constrained to be oriented away from its in-

tersection point with a previous road segment candidate, as previously illustrated

in Figure 5.4. By these constraints, the number of data association candidates is

at most |Rt|, and will be less if the connectedness constraint is violated for any

rt ∈ Rt.

Finally, the identity of detected landmarks are determined. The road marking

landmarks used are only visible to a vehicle facing an intersection of roads. The

orientation assigned to each segment indicates at which endpoint of the segment

exists a potentially visible landmark. Thus, there is one possible landmark for each

road segment. However, only those landmarks near enough to the particle set to be

visible are considered. To remove those far away, a validation region is used, defined

by dilating the road segment search region by 2f̂t, twice the measured distance to a

detected landmark. This is illustrated in Figure 5.16, where all but one landmark

will be removed from consideration.

By this procedure a set Dt of possible data associations has been created. Each
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element of Dt, dj
t ∈ Dt, is one data association hypothesis consisting of a road

segment, an orientation and any detected landmarks, dj
t = {rj

t γj
t oj

t}.

Per-Particle Monte-Carlo Data Association

The above procedure creates Mt data association hypotheses. Each particle i ∈
[1, N ] is assigned an association randomly from this set, where the probability of

selecting hypothesis j ∈ [1, Mt] is determined by the magnitude of its measurement

probability relative to all M hypotheses for that particle. The data association ci
t

assigned to the particle is assigned randomly from the set Dt, based on the mea-

surement probability for each hypothesis dj
t ∈ Dt (5.31). Thus, the measurement

probability of each data association hypothesis must be computed for each particle.

p(ci
t = dj

t) ∝ p(zi
t|xi

t, d
j
t) (5.31)

Selecting the association randomly accounts for ambiguity among the hypothe-

ses and in the measurements [46]. For example, bias in the GPS measurements may

place most of the particles near an incorrect road segment, however with Monte-

Carlo data association at least some of these particles should be matched with the

correct segment. After randomly selecting a hypothesis for each particle, the weight

of the particle is updated using the measurement probability for that hypothesis.

This step is trivial because this probability has been previously calculated.

Resampling

A very simple resampling procedure is used to maintain diversity among the set of

particles by pruning away those with low weight. This has the effect of removing

unlikely data association hypotheses from consideration as well, since the likelihood

of each data association is indicated by the weight of the particles it is assigned to.

It was found that periodically resampling the particle set was sufficient to main-

tain diversity among the particles while keeping the spread of the particle set rela-

tively small. The prediction component of the filter spreads the particle set, while

resampling contracts it to the highest weighted particles. After only a few iterations

of the filter without resampling, much of the weight tends to become concentrated

among a few particles [4]. A long resampling period therefore results in a highly
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5.2. Monte Carlo Data Association using Particle Filtering

Algorithm 5.6 Pseudocode for particle filtering algorithm.

1. function ParticleFilteringLocalization( x1:Nt−1, c
1:N
t−1, w

1:N
t−1, zt )

2.

3. // State prediction and GPS update

4. x1:Nt = PFPredict( x1:Nt−1 )

5. w1:Nt = GPSWeightUpdate( x1:Nt , w1:Nt−1, pt )

6.

7. // Find a set of associations

8. Dt = FindPossibleCorrespondences( x1:Nt , c1:Nt−1 )

9.

10. for i=1:N

11. // Monte-Carlo data association

12. [cit, λ
i
t] = MonteCarloDataAssociation( xit, Dt, f̂t )

13. // Update weight of particle

14. wit = witλ
i
t

15. end for

16.

17. if t%T == 0

18. x1:Nt , c1:Nt = ResampleParticles( x1:Nt , c1:Nt , w1:Nt )

19. wit = 1/N ∀i ∈ [1, N]
20. end if

21.

22. return x1:Nt , c1:Nt , w1:Nt

spread particle set where the weight is not widely distributed. Conversely, resam-

pling at every iteration of the filter results in a very small number of unique particles

which do not adequately cover the state space. Resampling every few iterations will

contract the particles to an acceptably small region, and redistributing the weight

evenly over all particles at this time will improve diversity. A resampling period of

T = 2 was found to produce an acceptable tradeoff between state space exploration

and weight distribution among the particles.

Pseudocode for the particle filtering localization algorithm with Monte Carlo

data association is shown in Algorithm 5.6.

5.2.3 Results

Localization results are provided to compare the performance of particle filtering

with Monte Carlo data association to the MHT method. Results are provided for

the two data sets shown in the MHT section, the first without bias in the GPS
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measurements, the second with bias.

Results are shown first for the case where Visual Context is not incorporated

into the system. Figure 5.17 plots the particle cloud (in black) on the road network

map, along with a particle cloud for the known data association case (in gray). It

can be seen that particles are concentrated around the GPS position measurement

(shown as ∗), but are also drawn to the road segments as a result of map match-

ing. Ambiguity in the data association can be observed in Figure 5.17b, where the

particles could be matched to any of the four road segments defining the intersec-

tion. The particles eventually converge to the road segment closest to the GPS

measurement as shown in Figure 5.17c. Particles in this region will receive higher

weight being closer to the GPS measurement, and therefore are more likely to be

resampled. These results are similar to what was observed with MHT.

Figure 5.18 shows the localization result when Visual Context is included in the

system. Performance of the filter is similar to the non-vision case, except that the

particle cloud converges faster to the road segment nearest to the GPS measurement

(Figure 5.18c) due to the presence of a detected landmark. The particle cloud is also

more tightly concentrated, indicating a lower degree of uncertainty in the location

of the vehicle.

It is of interest to note that the spread of particles is not significantly differ-

ent than the known data association case, despite weight contributions from map

matching to multiple roads. This result is surprising; it was expected that the

particles would gather around the road segments – similar to MHT where the state

estimate for each hypothesis is near its road segment – rather than remain in a sin-

gle cloud. This result may indicate that the particles are primarily attracted by the

GPS measurement, which would create a significant problem should the particles

follow a biased GPS measurement.

The localization error with and without Visual Context is shown in Figure 5.19.

The error in the longitudinal direction (Figure 5.19) tends to follow the GPS mea-

surement. Data association ambiguity (between t = 28 sec and t = 36 sec) causes

the error in both cases to increase, however through the observation of the intersec-

tion landmark this is resolved faster. Visual Context also reduces the localization

uncertainty in the longitudinal direction. The localization errors are summarized

in Table 5.4.

To evaluate the ambiguity associated with choosing among the data associa-

tion alternatives, the entropy of the weight assigned to the various hypotheses is
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t = 22 sec

0 40m

(a)

t = 32 sec

0 40m

(b)

t = 54 sec

0 40m

(c)

Figure 5.17: An illustration of PF localization using Monte Carlo data associa-
tion without visual context. A known data association result is shown in gray for
comparison, and the GPS measurement is shown as ‘∗’.

calculated and shown in Figure 5.20a. This calculation requires first finding the

total weight assigned to each data association hypothesis dj
t ∈ Dt. I will denote by

N j
t ⊂ [1, N ] the subset of particles with data association dj

t . I then find the total

weight W j
t assigned to this data association hypothesis as the sum of the weights

of the particles in this subset (5.32). The entropy of Wt = {W 1
t , . . . ,WM

t } is then

calculated.

W j
t =

∑
k∈Nj

t

wk
t (5.32)

Figure 5.20a agrees with entropy among the MHT hypotheses in showing that

the addition of Visual Context results in lower entropy of the weights, therefore in-
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t = 22 sec

0 40m

(a)

t = 32 sec

0 40m

(b)

t = 44 sec

0 40m

(c)

Figure 5.18: An illustration of PF localization using Monte Carlo data associa-
tion with visual context. A known data association result is shown in gray for
comparison, and the GPS measurement is shown as ‘∗’.

dicating that the weight is concentrated on fewer hypotheses. Therefore, it appears

to be the case that ambiguity is removed from the association process by adding

new information in the form of a landmark detection.

The total weight assigned specifically to particles with the correct data asso-

ciation hypothesis is shown in Figure 5.20b. This figure shows that the correct

hypothesis is receiving nearly all of the weight when a landmark is detected. This

is not the case when Visual Context is not used. This shows a significant advan-

tage of adding vision to the localization system; while there is little to separate the

two in terms of accuracy for this data set, as can be seen in Figure 5.19, with the

use of vision there is an improved certainty of which data association hypothesis is
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Figure 5.19: Average position error at each time instant for PF localization using
Monte Carlo data association. The error in the raw GPS position measurements
are shown, with the average error in MCDA using map matching (MM) and using
map matching and visual context (VC). a) Error in the lateral direction. b) Error
in the longitudinal direction; dotted lines show the beginning and ending of time
intervals where a road marking is visible.
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Figure 5.20: A plot of a) the entropy among the hypotheses in the particle set, and
b) the total weight assigned to the correct hypothesis, for PF localization using
Monte Carlo data association.
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ε (m) sε (m) σ (m) sσ (m)

p⊥,MM -7.6 1.7 9.5 2.2

p‖,MM -0.23 5.1 12.9 2.5

p⊥,V C -8.8 1.9 8.7 2.1

p‖,V C -0.13 3.2 8.7 2.8

Table 5.4: Lateral and longitudinal position error and uncertainty for particle fil-
tering with Monte Carlo data association. Results are shown using map matching
(MM) and using map matching and visual context (VC). These results are for the
time instants when road markings are visible.

correct. Without vision, there is still significant uncertainty in this regard despite

localization error being near zero while the vehicle is stopped at the intersection.

These results are not surprising since they echo those found when using MHT.

Thus, both appear to be viable approaches for maintaining localization perfor-

mance in unknown data association conditions with an unbiased GPS. What would

separate the PF approach from MHT would be to succeed in correcting GPS mea-

surement bias, which MHT was unable to accomplish without special tuning. For

the same data set containing GPS measurement bias used to test MHT, PF results

are shown in Figure 5.21. This shows the particle cloud plotted near the intersection

where the bias occurred, with known data association results shown for comparison

in gray. These results show that even with significant measurement bias, many

of the particles are clustered near the correct road segment (Figure 5.21b). After

10 sec of observing the landmark, the particle cloud has converged (Figure 5.21d).

The localization error for this data set during this period is shown in Figure 5.22.

It is important to note that this correction occurred because the observed land-

mark was correctly identified, and that it was identified without having to perform

any tuning of the filter in addition to that done for the unbiased case. This can

be attributed to the randomness of the particle filter that enables exploration of

regions of the state space further away from the GPS measurement. Thus, it can

not be guaranteed that this bias correction will occur every time this algorithm is

run on the same data set, since a different area of the state space may be explored,

in which case it would be less likely that the correct hypothesis would be identi-

fied. One way to improve the robustness of particle filtering to this problem are

to increase the number of particles to increase the chance of exploring the correct
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Figure 5.21: An illustration of PF localization with visual context in biased GPS
conditions. A known data association result is shown in gray for comparison, and
the GPS measurement is shown as ‘∗’.

region of the state space. This increases the computational burden of the filter, and

still does not guarantee convergence. Choosing an appropriate proposal density to

sample particles from is a more intelligent solution, whereby particles are guided

to the correct region of the state space while maintaining a reasonable number of

particles.

5.2.4 Discussion

As with MHT, the results indicate that through the addition of vision, choosing

among a set of data association hypotheses becomes less ambiguous. The reason
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Figure 5.22: Average position error at each time instant using PF localization with
Monte Carlo data association, in biased GPS conditions. The results show a reduc-
tion in longitudinal position error compared to the GPS position measurements.
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for this is similar to the discussion of MHT results; a higher weight assigned to

particles with landmark hypotheses versus those without results in the former group

of particles receiving a higher weight than the other. This distribution of weight

in favor of one group of hypotheses results in that group being the more probable

choice, therefore reducing entropy among all hypotheses.

How this distribution of weight occurs depends on the parameters α and β used

to balance the weight applied to these two groups of hypotheses. These parameters

are set to static values in this investigation, however they could be dynamic; their

values could be adjusted to reflect the probability of detecting a landmark at the

current vehicle position or depending on weather or illumination conditions. Also,

this type of imbalance would be made more complicated with more sophisticated

visual capability if more than one type of landmark is detected at a time. There

is therefore much that can be done within this localization framework in terms of

adding more sophisticated visual capability, including:

• detecting more types of landmarks in images from vehicle-mounted cameras,

• modeling the location of these landmarks as functions of vehicle location, and

• adaptively weighting hypotheses to reflect the likelihood of landmark detec-

tions, particularly when multiple landmark types are detected.

The incorporation of vision into the framework for particle filtering localization

under unknown data association conditions creates a feedback mechanism. The

added emphasis placed on particles with landmark detections results in a higher

probability of those particles being resampled. Consequently, these hypotheses are

more highly represented in the particle set after resampling. Repeated observa-

tion of the same landmark results in the convergence of the particle cloud to the

location(s) from which that landmark is visible. Again, this result assumes these

particles are more highly weighted than those from which landmarks are not visible,

and that the correct landmark is always present among the hypotheses.

If landmarks can be identified correctly, the use of vision can counteract the

effect of GPS drift. However, GPS has a significant advantage over vision in that

no data association is required in order to integrate it into the state estimate.

With vision, some particles may not be affected by the landmark detection because

those particles cannot be associated with any nearby landmark. Conversely, the

GPS measurement affects all particles and thus is a more ubiquitous, and therefore

powerful, attractor.
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Attribute MHT MCDA

Localization accuracy + −

Ambiguity of hypothesis selection + −

Execution time + −

Simplicity of approach − +

Exploration of search space − +

Robustness to GPS bias − +

Table 5.5: Comparison of MHT and PF data association techniques.

5.3 Summary

This chapter proposes two methods to achieve vehicle localization incorporating

visual context in the case of unknown data associations. These methods are Multi-

ple Hypothesis Tracking (MHT) based on a Kalman filtering approach, and Monte

Carlo Data Association (MCDA) based on a particle filtering approach. A com-

parison of MHT and MCDA approaches to highlight their relative advantages is

summarized in Table 5.5. Based on the results from applying both MHT and

MCDA to the same data sets, a number of observations can be made. First, it was

found that MHT provides a more consistent and accurate localization result with

a lower degree of ambiguity among hypotheses when there is no bias in the GPS

measurements (see Figures 5.10 and 5.11 versus Figures 5.19 and 5.20). Also, the

MHT algorithm executes faster than the MCDA algorithm, which is expected due

to the high number of particles (N = 200), however both are capable of executing

one iteration within the one second update period of the GPS receiver.

Second, the MCDA approach is in many respects a simpler algorithm than MHT,

due to the lack of hypothesis management methods needed to keep the number of

hypotheses low. These would include the merging and pruning of hypotheses; with

MCDA, unlikely hypotheses become removed after resampling. The randomness

of the MCDA approach is its strength, enabling greater exploration of the search

space and consideration of unlikely data associations which allows for correction of

the GPS measurement bias without requiring special tuning of its parameters to

do so.
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Chapter 6

Experimental Investigations

This chapter elaborates on the experimental work performed as part of the research

for this thesis. Experimental results are presented in the preceding chapters as

concepts are presented in order to show the impact of these concepts. The results

presented in this chapter summarize the experimental results presented previously.

The contributions of this chapter are: descriptions of the experimental setup and

the components that make up the vehicle localization system, and; a comparison

of the experimental findings for the various localization system implementations

presented.

6.1 Objectives

The purpose of this experimental investigation is to demonstrate the practical merit

of the proposed localization system. The common theme of the investigation is to

evaluate the effect of adding visual context to the localization system. In particular,

this investigation has the following objectives:

1. To compare the performance of GPS-based localization to the performance

when map matching and visual context are successively added to the local-

ization system. Data associations are assumed known to demonstrate the

potential of the proposed system.

2. To evaluate the performance of the localization system when data associations

are unknown, and to determine the ability of the system to identify the cor-

rect data association. This evaluation is performed with and without visual
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context to assess the benefit of adding vision to the system in the unknown

data association case.

3. To evaluate the capability of the proposed system to correct GPS measure-

ment bias in unknown data association conditions. This capability would

demonstrate the practical potential of using visual context to reduce the ef-

fect of GPS measurement errors on vehicle localization accuracy.

Each of these objectives is the subject of an experimental investigation discussed

in this chapter. Each are also explored within the context of both Kalman filtering

and particle filtering.

6.2 Experimental Setup

This section describes the setup of the experiments, including the hardware used,

how data was acquired and the preprocessing that was performed to create data

sets used for testing.

6.2.1 Hardware and Installation

Three pieces of sensory hardware were used: an inexpensive GPS receiver to provide

experimental vehicle position data; a camera to collect experimental images, and;

a highly-accurate GPS receiver to provide ground truth vehicle position data. The

vehicle used to acquire this data was a 2001 Volkswagen Golf.

A GlobalSat BU-353 WAAS-capable GPS receiver with an integrated antenna

and a USB interface, pictured in Figure 6.1a, was used to provide the experimental

GPS position measurements. This receiver has a horizontal position accuracy of

10m RMS, which is reduced to 5m RMS with WAAS enabled. It was decided to

operate the receiver with WAAS capability disabled, to make it more likely that

the receiver would provide inaccurate measurements exhibiting bias, so that this

could be corrected using vision. This receiver was installed on the interior dash

along the midline of the vehicle directly below the windshield (see Figure 6.1d).

The camera used was a Unibrain Fire-i board-level camera with an IEEE 1394

(Firewire) interface, pictured in Figure 6.1b. This camera has an RGB image sensor

with 640×480 pixel resolution. The camera was configured to provide RGB color
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(a)
 

(b) (c)

Trimble GPS
Receiver

Fire−i Camera

GlobalSat GPS
Receiver

(d)

Figure 6.1: Hardware used in data acquisition. a) GlobalSat BU-353 GPS receiver,
used to provide experimental data. b) Unibrain Fire-i camera, used to acquire
experimental images. c) Trimble Pro-XH GPS receiver, used to provide ground
truth data. d) Hardware installation locations in the test vehicle.

images in 320×240 pixel resolution, to reduce memory consumption requirements.

A lens with a 2.0mm focal length and infrared filter coating was used. Despite this

lens coating, direct sunlight caused significant saturation in the acquired images.

This camera was mounted to the back of the rearview mirror of the vehicle, as this

provided a convenience way of adjusting the view of the camera by adjusting the

mirror position (see Figure 6.1d). The camera axis was oriented along the vehicle

midline at an angle of approximately 20◦ below horizontal.

Ground truth vehicle positions were provided by a Trimble Pro-XH GPS re-

ceiver, pictured in Figure 6.1c with an RS-232 serial interface. This receiver has

submeter horizontal position accuracy. This is not a Differential GPS receiver, thus

no extra hardware was required to receive correction messages. The receiver moni-

tors the satellite configuration, and only provides position measurements when the
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configuration is favorable for providing accurate measurements. As a result, this

receiver often does not provide a position measurement in the presence of foliage or

tall buildings which obstruct satellite signal transmission. A light-emitting diode

(LED) on the receiver indicates when it has acquired a valid position measurement;

the receiver was installed on the interior vehicle dash beside the experimental GPS

receiver (see Figure 6.1d), and oriented such that the driver had view of this status

LED. This provided the driver with insight into the suitability of the environment

for acquiring reliable ground truth data.

6.2.2 Data Acquisition

The above three pieces of hardware were connected to a notebook computer run-

ning the Microsoft Windows XP operating system. A data acquisition utility was

written in the C programming language to interface to the GPS receivers and the

camera. The GPS receivers output ASCII sentences every second using the NMEA

0183 serial communications standard. A number of standard NMEA sentences exist

for GPS receivers. The specific sentence recorded each second from both receivers

is the GPRMC sentence, and contains the time, date, receiver position in latitude

and longitude, speed over ground in knots, and bearing relative to North in de-

grees. The GPRMC sentences are stored in a text file for each receiver by the data

acquisition utility. The successful reception of a GPRMC sentence from the ex-

perimental receiver is used to trigger the acquisition of an image from the camera.

The camera is capable of much higher frame rates (up to 30 frames per second

for the chosen resolution), however even with one frame per second the memory

requirements to store these images are considerable. Images were stored using the

lossless Tagged Image File Format, and given a name containing the time stamp of

the GPS measurement triggering acquisition of the image.

6.2.3 Data Collection and Preprocessing

Data was collected by running the acquisition utility while driving the vehicle

around the City of Waterloo, Ontario. The city is mostly suburban, thus there

is little opportunity to observe extreme multipath events which normally occur in

urban canyon environments. Data was collected during a weekday morning when

traffic was not heavy. This was a necessary precaution to create favorable condi-

tions for the vision system; it was found in previous testing that other vehicles often
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confused the road marking detection algorithm.

In all, approximately 40 minutes of driving data were collected over four separate

trips. Prior to using this data for experimental testing, preprocessing was needed

to generate data sets containing the necessary information for the system. The

criteria used to create data sets for testing were the following.

1. The presence of continuous ground truth data; the ground truth receiver of-

ten would not provide any data for minutes at a time as a result of poor

satellite reception in certain areas. Areas known to have poor reception were

avoided, however the ground truth receiver is extremely sensitive. “Continu-

ous ground truth data” was defined as a series of consecutive GPRMC strings

with temporary outages lasting at most 3 seconds.

2. Accurate representation of the road network; the road network database used

was approximately 7 years old at the time of data collection, meaning that

changes to the road network in the intervening period were not accounted

for. As an accurate representation of the road network is assumed by the

localization system, any data set used for testing needed to be in an area

where the road network was accurately represented. As the city of Waterloo

has grown significantly since 2001, this was found to be a very restrictive

requirement.

3. Favorable conditions for the vision system; as vision was used to detect road

markings at intersections, any data set must have the vehicle pass at least one

intersection that was detected. Ideally, the vehicle would also stop at the in-

tersection to enable the road marking to be continually observed. In a moving

vehicle, a marking is typically observable in one or two frames only, which is

not sufficient to determine if the use of vision provides any significant benefit

to localization. Furthermore, there could not be any major image saturation

resulting from direct sunlight while the vehicle was near an intersection, as

this would make it more difficult to detect the road markings. Also, inter-

sections where the paint of the road markings had faded significantly were

avoided.

4. Availability of experimental GPS data; this receiver was less sensitive to its

environment than the ground truth receiver, however it was still prone to

occasional outages.
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Of the 40 minutes of driving data acquired, only six minutes of data met these

conditions. These six minutes were split amongst two trips: one containing 129

seconds of data; the other 230 seconds of data. The former shows the vehicle

stopping at an intersection for approximately 60 seconds, during which time the

experimental GPS receiver provided position measurements with minimal error.

The latter shows the vehicle stopping at two intersections for approximately 10 and

17 seconds, respectively. During the second of these stops, the experimental GPS

receiver showed significant measurement bias of up to 30 meters. These two data

sets are used to evaluate the proposed system.

Having identified usable sets of data, it was necessary to determine what the

ground truth data associations were for these two data sets. The ground truth road

segment was found by matching the ground truth vehicle location with the closest

road segment; any mistakes made by this process were corrected manually. Vehicle

orientation was established knowing the sequence of road segments traveled by the

vehicle. Detected landmarks were manually identified by the road segment they are

located on, and by which of the two endpoints of that segment is the one detected;

therefore a set ot = {rt,o, γt,o} is used to identify the landmark. False detections

and images without landmarks are assigned an empty set association, ot = ∅.

GPS position measurements typically have a latency period between when sig-

nals are sent by the satellites to when the computed position is available. It was

necessary to account for the latency between the GPS position measurement and the

corresponding image acquired from the camera, so that fusion occurs only between

data acquired at the same time instant. This was found by manually adjusting

the amount of latency until the ground truth vehicle position and its correspond-

ing image were consistent with each other. For example, both sources would be

considered consistent when they indicate that the vehicle comes to a stop at the

same time. The latency period between the time stamp on an image and its cor-

responding GPS measurement was approximately 7 seconds for both data sets. No

latency was observed between the position measurements provided by the two GPS

receivers.

6.3 System Components

Data sets having been created and annotated with ground truth data associations,

testing can now be performed on this data. The following discusses the components
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of the system architecture (Figure 3.7) used in testing.

6.3.1 Road Network Database

The map database used for localization is a single-line road network layer of the

Region of Waterloo. The Region has made this data available to the University of

Waterloo community for research purposes. It contains municipal and private roads

within the Region as of 2001. The road network database is stored in a Shapefile

format, developed by the Environmental Systems Research Institute.

The road network is represented by a database of road segments. Each entry

in the database is one segment, representing the centerline of a road between its

two endpoints defined by intersections with other road segments or by dead-ends.

Each road segment is a piecewise-linear curve defined by a series of coordinates in

the Universal Transverse Mercator coordinate system (see Figure 4.1).

The information contained in the road network database is used to model the

location of the intersection road markings detected using vision. As road segments

are modeled by their centerlines, where two such centerlines meet defines the center

of an intersection. Knowing that intersections are designed and built to specified

dimensions, including the location of road markings (given in [45] for the Province

of Ontario, Canada), the approximate locations for these markings on individual

road segments can be determined knowing the center point of the intersection.

The road marking detection algorithm does not distinguish between the three

horizontal lines typically present at the entrance to an intersection (two crosswalk

lines and one stop bar). Instead it returns an estimate of the distance to the marking

nearest to the vehicle. A single point is used to represent the average location of

these markings. These points are located on the centerlines of the intersecting road

segments, indicating the average distance from the center point of the intersection

to the markings. This distance is modeled as (6.1), where Wl = 4m is the width of

one lane, Wc = 2.5m is the width of the crosswalk, Wb = 1.2m is the width of the

bike lane, and Wx = 0.6m is “extra” width representing the gap between the lane

boundary and the crosswalk or between the middle of the intersection and the first

lane (for example, when there is a boulevard in the middle of the road).

Do = 2Wl + Wc + Wb + Wx (6.1)
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The final result is that the locations of intersection road markings are approxi-

mated as shown in Figure 4.4. This is kept constant throughout the investigation,

as all of the intersecting roads observed in the data sets contain two lanes in each

direction, bike lanes and crosswalks.

6.3.2 Vision Module

The Vision module analyzes the images acquired from the camera to detect the

horizontal road markings at intersections. These features were chosen because they

are easy to detect and have a fixed position in the world, meaning they can be used

as landmarks to localize the vehicle in an absolute sense. The following describes

how these markings are detected, and how the distance from the camera to the

detected marking is estimated.

Road Markings Detector

The following simple procedure is used to detect intersection road markings. It

takes advantage of their horizontal orientation, uses the contrast of the light paint

on the dark road surface to remove false candidates, and gives preference to lines

detected closer to the vehicle.

1. A region of interest (ROI) is established limiting the search to the area of

the image containing the road. This is established a priori since the camera

is assumed to be rigidly mounted to the vehicle and does not have moving

parts.

2. A Canny edge detector produces a binary image of the significant gray-level

transitions within the ROI.

3. A Hough transform is used to detect straight lines in the edge image. Signif-

icant peaks in the Hough space are considered candidates for road markings

provided the angular orientation is within a predefined range, nominally ±5◦

from horizontal.

4. Candidate lines are examined systematically to determine if a horizontal road

marking is present.
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(a) (b)

Figure 6.2: Examples of successful road marking detections in overcast conditions.

(a) Candidates near the bottom of the image (which would correspond to

markings closer to the vehicle) are examined first, by sorting the list of

candidates by vertical image location.

(b) A series of vertical image gradient profiles are examined at regular in-

tervals along each candidate line to detect dark-light-dark transitions

characteristic of a bright marking on dark pavement.

(c) A majority voting scheme is used to confirm the presence of a road

marking; if the majority of tested profiles have the expected transitions, a

line is present. If none of the candidate lines pass this test, the algorithm

terminates without a detection.

The road marking detector is most successful in overcast conditions, where

sunlight does not saturate the image. Successful road marking detections in these

conditions are shown in Figure 6.2. The performance of the detector in overcast

conditions was evaluated on images belonging to the longer of the two data sets used

for testing. A 150 second contiguous portion of this data set was isolated which

did not show significant image saturation due to sunlight. Of these 150 images,

30 contained road markings which should be found by the detector. Table 6.1

shows a confusion matrix for this detector. From this matrix, the false positive rate

α = 2
120

and false negative rate β = 1
30

are determined, which are used by the Data

Association module to weight competing hypotheses.

Examples of incorrect detections are shown in Figure 6.3. The previously-

mentioned effect of image saturation by sunlight is illustrated in Figure 6.3a, where
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Actual

Present Not Present

Detected
Present 29 2

Not Present 1 118

Table 6.1: Confusion matrix for road marking detector.

(a) (b)

Figure 6.3: Examples of incorrect road marking detections due to a) image satura-
tion by sunlight, and b) the vehicle heading.

a false detection occurs near the bottom of the image. Another false detection

occurred as a result of the instantaneous vehicle heading, placing the road curb in

a horizontal orientation in the image as illustrated in Figure 6.3b.

Distance to Road Markings

To localize the vehicle with respect to the detected intersection marking, an estimate

of the distance between the vehicle and the marking is required. This will be used

in conjunction with a model of the road marking locations to update the vehicle

state.

The distance estimate is essentially a transformation from image coordinates

to world coordinates. Examples of this type of transformation for monocular sys-

tems can be found in [8, 15]. By assuming that the road surface is planar, this

transformation is simplified.

We use a method derived from [15]. The camera is mounted to the vehicle z0
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meters above the road’s surface. The camera’s optic axis is at an angle θ below the

parallel with the road’s surface. The vertical image location of the detected road

marking is transformed using (6.2) into an estimate of distance along the road from

the camera to the marking, f̂t. In this expression, v represents the vertical image

location of the detected road marking (in pixels, relative to the top of the image)

and ev = f
dv

, where f is the camera focal length and dv is the height of a pixel.

f̂t =
z0ev (1− θ2)

v − evθ
(6.2)

For our installation of the camera, z0 = 1.1m, θ = 20◦, f = 2.0mm, and

dv = 5.6µm.

6.3.3 Measurement Models

The measurement models used to update the localization state are described here.

These models are used for both Kalman filtering and particle filtering localization.

The state vector of the system is defined as the vehicle position and velocity in

the East-North plane: xt = {pt,e pt,n vt,e vt,n}. When using the road coordinate

system defined in Section 4.1.1 the state is expressed in the lateral and longitudinal

directions relative to the road segment: xr
t = {pr

t,⊥ pr
t,‖ vr

t,⊥ vr
t,‖}. The covariance

matrix is denoted Pt and P r
t in world coordinates and road coordinates, respectively.

GPS Measurement Model

A linear-Gaussian measurement model is used for the GPS position measurement.

GPS provides a direct measurement of the vehicle position in latitude and longi-

tude coordinates. This measurement is first converted to the Universal Transverse

Mercator coordinate system – the same used by the road network database – be-

fore it is used to update the vehicle position. Because the state vector explicitly

contains the vehicle position in this coordinate system, this measurement model is

extremely simple (6.3). wt ∼ N (wt; 0, Rt) is the additive Gaussian noise expressing

uncertainty in this model, where Rt is the measurement covariance matrix defined

by (6.4). The GPGST sentence is one of the NMEA sentences supported by GPS

receivers; this sentence provides the covariance matrix of the GPS position mea-

surement in the horizontal plane, and can therefore be used to dynamically adapt

the measurement uncertainty. Unfortunately, this information is not provided by
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pr
t,‖ ζt Mt Zt

0 ≤ pr
t,‖ ≤ Lr ( 0

0 ) ( 1000
0010 )

(
σ2

p 0

0 σ2
v

)
pr

t,‖ < 0
(

0
0
0

) (
1000
0100
0010

) (
σ2

p 0 0

0 σ2
p 0

0 0 σ2
v

)
pr

t,‖ > Lr

(
0

Lr
0

)
Table 6.2: Pseudomeasurement parameters ζt, Mt and Zt as a function of longitu-
dinal vehicle position pr

t,‖.

the GlobalSat BU-353 receiver, and therefore the constant value of σgps = 10m is

set based on the receiver’s specified RMS horizontal position accuracy.

p̂t = Ht xt + wt

=
(

I2 02

)
xt + wt (6.3)

Rt =

(
σ2

gps 0

0 σ2
gps

)
(6.4)

Map Matching Measurement Model

A pseudomeasurement ζt is used to perform map matching. The purpose of this

measurement update is to adjust the localization estimate to be closer to the road

segment being driven, and to align the heading of the vehicle with the road segment.

Map matching is performed in road coordinates, therefore the measurement model

is a function of xr
t (6.5). vt ∼ N (vt; 0, Zt) is the additive Gaussian noise expressing

uncertainty in this model.

ζt = Mt xr
t + vt (6.5)

The value of this pseudomeasurement and the form of its model depend on the

longitudinal position pr
t,‖. The reasons for this are given in Section 4.2.2 and not

repeated here. Table 6.2 provides the value of ζt, Mt and Zt as a result of the value

of pr
t,‖. Lr is the length of the road segment.

Vision Measurement Model

Vision provides a measurement of distance to the detected road markings. This

measurement is modeled as a function of the longitudinal vehicle position pr
t,‖ and
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the location of the detected landmark pr
o,‖ (6.6), as the difference between the two is

equal to the distance from the landmark to the vehicle. The orientation γt ensures

that this predicted distance is always positive whenever the landmark is in front of

the vehicle.

f̂t =
(
pr

o,‖ − pr
t,‖
)
γt + ωt (6.6)

The error in this model is given by an additive Gaussian noise term ωt ∼
N (ωt; 0, σ

2
f ). The value of σf = 2m that is used is larger than the value found

experimentally for this distance estimator of 1.1m. This is chosen to account for

the uncertainty in which road marking has been detected (an intersection normally

has three such lines, two crosswalk lines and one stop bar, within a distance of

approximately 3.5m), and the approximate location of the landmark pr
o,‖ for which

a standard model has been used for all intersections.

6.4 Experiment 1: Best-case localization perfor-

mance

The objective of this experiment is to evaluate the localization performance of the

proposed system. In particular, I would like to determine if an improvement in

localization can be expected when vision is added to the system, in the best-case

scenario that data associations are known a priori.

Localization performance is evaluated using the following two criteria.

• Localization accuracy is determined by the mean localization error.

• Localization consistency is determined by the standard deviation of the lo-

calization error: the lower the standard deviation, the more consistent is the

localization error.

This experiment is performed using what will be called Data Set 1 from now on.

This is the longer of the two data sets, containing an instance of GPS measurement

bias. The path taken by the vehicle in this data set is shown in Figure 6.4.

The mean localization error for Data Set 1 is shown in Figure 6.5 when using

only Passive Localization (PL), Passive Localization and Map Matching (MM) and

finally the full measurement update using Passive Localization, Map Matching and
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Figure 6.4: Path driven during collection of Data Set 1.

Visual Context (VC). Error bars of length one standard deviation are used to show

how consistent the localization estimates are. The error is divided into the lateral

and longitudinal directions to better illustrate the effect of adding one module to

the system.

Using only Passive Localization gives similar error in both directions as the raw

GPS measurements (GPS measurement error is shown as the yellow line). This is

expected since the PL module uses these measurements to track the vehicle location.

Adding the Map Matching module to the system maintained a similar level of

error in the longitudinal direction, however lateral error was increased. The fact

that lateral error is affected the most can be attributed to map matching primarily

adjusting the lateral position of the vehicle to bring it closer to the centerline. The

increase in error is due to the fact that the vehicle does not drive directly on the

road centerline, but rather offset from the centerline within a lane.

Adding the Visual Context module reduces the error in the longitudinal direc-

tion compared with PL, MM and the raw GPS measurements; lateral error was

maintained at the same level as MM. This result can be explained by a similar

argument as above; since visual context is used to adjust the longitudinal position

of the vehicle with respect to a landmark, lateral position is unaffected by this
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Figure 6.5: Localization accuracy for known data association case, using Data Set
1.
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Figure 6.6: Localization accuracy for known data association case while road mark-
ings are visible, using Data Set 1.

update.

One interesting observation of these results is that similar error is achieved

using both Kalman filtering and particle filtering. The difference between the two

is the consistency of this error, as indicated by the standard deviations. In all

cases shown in Figure 6.5, particle filtering errors were less consistent that Kalman

filtering. This can be attributed to the periodic resampling of the particle filter,

which allows the particle cloud to grow for two iterations before it is contracted by

resampling.

The results shown in Figure 6.5 are for the entire data set, however vision is only

able to detect landmarks when the vehicle is near an intersection. Figure 6.6 shows

the error in the lateral and longitudinal directions during times when landmarks

were visible. These results show that the addition of vision dramatically reduces
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the error in the longitudinal direction, using either Kalman or particle filtering.

Localization is also more consistent using vision, as seen by the smaller standard

deviation on the longitudinal errors. During these times, the GPS measurements

also contained a large bias, as shown by the average longitudinal GPS error being

14.9m. To reiterate, it is important to keep in mind the assumption that data

associations are known.

Based on these results, I am confident in saying that adding vision to a GPS-

based localization system has the capability to improve localization accuracy, pro-

vided data association parameters are known.

6.5 Experiment 2: Data Association in Unbiased

GPS Conditions

This experiment aims to evaluate the localization performance of the proposed

system in unknown data association conditions, and the success of identifying the

correct data association hypothesis. In particular, I am interested in the less chal-

lenging situation where the GPS measurements are not affected by significant bias.

Localization performance is evaluated as before using the mean and standard

deviation of the position error. Data association success is evaluated by calculating

the mean and standard deviation of the weight assigned to the correct data associ-

ation hypothesis. A correct hypothesis is one that has the same road segment and

orientation as the ground truth values. By not considering landmark identity, it is

possible to compare data association with and without vision. This could therefore

be considered map matching.

This experiment is performed using what will be called Data Set 2 from now

on. This is the shorter of the two data sets, containing unbiased GPS position

measurements. The path taken by the vehicle in this data set is shown in Figure 6.7.

Figure 6.8 shows the localization error and data association success for Data

Set 2. The mean localization error is shown using Passive Localization and Map

Matching (MM) system modules, and the full measurement update using Passive

Localization, Map Matching and Visual Context (VC). Error bars of length one

standard deviation are again used to show the consistency of the localization esti-

mates. The error is divided into the lateral and longitudinal directions to better

illustrate the effect of adding the Visual Context module to the system. The mean
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Figure 6.7: Path driven during collection of Data Set 2.

weight assigned to the correct hypothesis when using the MM and VC filter imple-

mentations is shown in Figure 6.8c.

These results show that localization accuracy is consistent with that found using

known data associations. The lateral position error (Figure 6.8a) shows the intro-

duction of a bias due to matching to the road centerlines. The longitudinal position

error (Figure 6.8b) is not significantly different from the GPS measurement error in

this case, however this is unsurprising as these measurements were unbiased. Re-

sults using Kalman filtering with Multiple Hypothesis Tracking (MHT) and particle

filtering with Monte Carlo Data Association (MCDA) are similar in terms of mean

position error. MHT shows more consistent position error than MCDA, having

smaller standard deviations in almost all cases. This agrees with the known data

association results as well, where KF was more consistent than PF.

The benefit of adding vision in this case is seen in the success of identifying the

correct data association. Figure 6.8c shows that the weight assigned to the correct

data association hypothesis is higher when Visual Context was used compared to

Map Matching. This can be attributed to higher measurement likelihood being

assigned to the correct data association hypothesis, because a valid landmark was

only identified for this hypothesis. As a result, the use of vision provides evidence

of the vehicle’s position on the road network, even if in this case it does not improve
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Figure 6.8: Localization accuracy and data association success in unbiased GPS
conditions, using Data Set 2.

upon the localization accuracy of GPS.

MHT consistently places a higher weight on the correct hypothesis than MCDA

in these results. The cause of this is that MCDA will always assign unlikely data

associations to some of its particles. Conversely, MHT prunes unlikely hypotheses

to maintain filter tractability. The ability to consider unlikely hypothesis is a benefit

of MCDA because it adds to the robustness of the filter – as will be examined next

– however the cost of this robustness is that these particles take weight away from

the correct hypothesis in trivial data association situations.

6.6 Experiment 3: Data Association in Biased

GPS Conditions

This experiment seeks to evaluate the localization performance of the proposed

system when data associations are unknown and the GPS position measurements
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Figure 6.9: Path driven during the portion of Data Set 1 exhibiting GPS measure-
ment bias.

exhibit significant bias. I am interested in determining how robust the proposed

filters are to the biased measurements, and whether the same data association

success can be achieved as in the unbiased case.

Three filters are used in this evaluation: the standard MHT formulation pro-

posed in Section 5.1.2, the tuned MHT filter proposed in Section 5.1.4 to improve

robustness to GPS measurement bias, and the MCDA method based on particle

filtering proposed in Section 5.2.2. All filters use the complete system architec-

ture, meaning that Visual Context is always included. Localization performance is

evaluated as before using the mean and standard deviation of the position error.

Data association success is again evaluated by calculating the mean and standard

deviation of the weight assigned to the correct data association hypothesis.

This experiment is performed using the portion of Data Set 1 with significant

GPS measurement bias; the vehicle path for this portion of Data Set 1 is shown in

Figure 6.9. Figure 6.10 shows the localization error and data association success

during this time period. The standard MHT is identified by ‘MHT-1’ and the tuned

MHT by ‘MHT-2.’

These results show that the tuned MHT filter is superior to the standard MHT

and MCDA filters in terms of longitudinal position error (Figure 6.10b), and in
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Figure 6.10: Localization accuracy and data association success in biased GPS
conditions, using the portion of Data Set 1 exhibiting GPS measurement bias.

identifying the correct hypothesis (Figure 6.10c). All three filters show similar

lateral position error (Figure 6.10a).

This result should not be surprising since the MHT was tuned to work for this

specific data set. What is more interesting is how the MCDA filter, with no extra

tuning, performs better than the standard MHT in terms of longitudinal error and

in identifying the correct hypothesis. This confirms that the MCDA method is a

more robust localization approach than MHT to GPS measurement biases.

More testing is needed to determine the best data association approach for ve-

hicle localization. The MHT method has advantages in that it can use constraints

of the road network to keep the number of hypotheses low, and methods of tuning

have already proven effective against GPS measurement bias. The MCDA approach

shows more robustness to GPS measurement bias without the need for filter tuning
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and is in many ways a simpler approach. Using more intelligent proposal distribu-

tions and resampling methods to guide the particle set to the correct region of the

state space may prove promising for achieving a robust vehicle localization system.

6.7 Summary

This chapter presents the results of the experimental investigations performed

within this thesis. The experimental setup is described, the data acquisition pro-

cedure explained, and a list of criteria given that were used to select appropriate

data sets for testing.

Two data sets are used to test the proposed system. Data Set 1 exhibits signifi-

cant GPS measurement bias, while Data Set 2 is without bias. Testing on Data Set

1 shows that the addition of vision to a localization system enables this bias to be

corrected, provided that data association parameters are known. Kalman filtering

and particle filtering methods gave similar results in this evaluation. These are

best-case results and would not be applicable in most situations, as it will not be

known ahead of time what objects are detected by the vision system.

Testing on Data Set 2 shows that vision can help to position the vehicle on

the road network, by improving the ability to determine which road the vehicle

is driving on. Data associations were unknown in this case, and GPS measure-

ments unbiased. The ambiguity created by considering multiple data association

hypotheses was lessened by the addition of vision, and localization accuracy was

maintained.

Data Set 1 was used to evaluate the ability to use vision to correct for GPS

measurement bias, this time with unknown data associations. A multiple hypoth-

esis tracking (MHT) approach tuned for this purpose gave accuracy similar to the

known data association case, and was successful in identifying the correct road

segment. However, a Monte Carlo Data Association (MCDA) method based on

particle filtering showed an inherent robustness to GPS measurement bias, and is

a promising avenue for further research.
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Chapter 7

Mutual Influence Between
Localization and Visual Feature
Estimation

Until now this thesis has focused on the use of vision to influence the result of

GPS-based vehicle localization. This chapter looks at the complementary (and, as

it happens, related) problem of using position knowledge to influence the visual

feature measurements. By using the map database and the visual feature measure-

ment model, the vehicle position estimated using GPS can be used to a predict

the value of the measured visual features. Fusing this with the measured values

provides a means for adding position context to the visual feature estimates, in an

effort to make them consistent with the vehicle position.

This chapter specifically examines how to add this capability to the developed

localization architecture, to enable the simultaneous adjustment of position using

visual features and vice versa. This is analogous to the idea of arc consistency [57].

Arc consistency ensures that two variables connected by a constraint have domains

consistent with that constraint. This involves pruning values separately from each

variable’s domain to ensure that the constraint between the two variables is always

satisfied. A simple example is shown in Figure 7.1. The analogy with arc consis-

tency comes from the separate consideration of each variable’s domain in light of

the other’s.

The motivation behind this investigation is to provide vehicle systems with im-

proved environmental awareness in addition to improved location awareness. Sys-

tems where this may be applicable would include:

• Autonomous driving systems, which visually measure and follow the curvature
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Figure 7.1: Example of arc consistency. The domains of x1 and x2 are pruned
separately of values that do not satisfy the constraint x1 > x2.

of the road [20, 15].

• Vehicle rollover warning systems, which use factors such as the lateral road

curvature and road cross-elevation to generate an indication of vehicle rollover

potential [55].

• Navigation systems capable of visually identifying their destination.

The remainder of this chapter develops an EKF formulation for mutual influ-

ence and integrates it within the developed architecture. Experimental results and

discussion follow.

7.1 A Mutual Influence Formulation using Kalman

Filtering

7.1.1 A Dynamic Bayesian Network Model

The mutual influence problem is modeled using the DBN in Figure 7.2a, with that

for the localization problem shown in Figure 7.2b for comparison. The difference

between these two models is the addition of a feature state ft, upon which the

feature measurements f̂t are now dependent, as opposed to being dependent on the
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Figure 7.2: Dynamic Bayesian Network models for a) the mutual constraint prob-
lem, and b) the localization problem.

position state pt. It was also decided to have the feature state ft be dependent on

the position state pt in order to simplify the prediction of feature values by using

available feature models. The principal reason for this is that features may cease to

be visible or become visible between time steps, making it difficult to use previous

feature values to predict new feature values. It is therefore being assumed that

what features are visible is a direct consequence of where the vehicle is located.

The connections within the DBN indicate how observation of certain variables

(through measurements) will affect other variables in the network [49]. For example,

the measured visual features f̂t affect the feature state ft and the position state pt

through the serial connection pt → ft → f̂t. Evidence for f̂t propagates up to the

other variables in the serial connection, as they all can provide an explanation for

the observed value. Similarly, the measured vehicle position p̂t affects the position

state pt through the serial connection pt → p̂t. The feature state ft is also affected

by this measurement through the diverging connection p̂t ← pt → ft; since p̂t

provides knowledge of pt, this knowledge propagates to ft due to its dependence on

pt [49].

Therefore, it is known from the network topology that measured features f̂t will

affect the position state pt, and that measured position p̂t will affect the feature

state ft. This makes using DBNs attractive for modeling, since without making

assumptions about the distribution of variables or the inference method, it can be

determined which variables will have influence on others from the network topology.
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7.1.2 Integration into Modular System Architecture

We can write without loss of generality the filtering posterior for the above DBN.

We wish to infer the values of vehicle position pt, vehicle speed vt and visual features

ft based on the measurements p̂1:t, ζ1:t and f̂1:t and any data associations c1:t. This

is identical to the localization posterior except for the addition of ft to the state.

The expanded state vector will be denoted x′t to distinguish it from the localization

state which will remain xt (7.1).

x′t = {pt vt ft}

= {xt ft} (7.1)

zt = {p̂t ζt f̂t} (7.2)

The posterior for the filtering problem is written in (7.3), dropping the associ-

ation c1:t for the time being. η represents a normalization term.

p(x′t|z1:t) = ηp(zt|x′t)p(x′t|z1:t−1) (7.3)

The predicted posterior p(x′t|z1:t−1) is found using the Chapman-Kolmogorov

equation in (7.4) [4].

p(x′t|z1:t−1) =

∫
p(x′t|x′t−1)p(x′t−1|z1:t−1)dx′t−1 (7.4)

Recognizing from the DBN in Figure 7.2a that the feature state ft is dependent

on the position state pt, the state evolution probability p(x′t|x′t−1) can be rewritten

as in (7.5). This shows the state evolution probability for the localization state xt

and an extra term p(ft|xt) denoting the dependence of ft on pt.

p(x′t|x′t−1) = p(xt, ft|xt−1ft−1)

= p(ft|xt)p(xt|xt−1) (7.5)

The Chapman-Kolmogorov equation (7.4) can now be rewritten as (7.6). Inte-

grating over ft−1 and factoring out p(ft|xt) reduces this expression to (7.7).

p(x′t|z1:t−1) =

∫
p(ft|xt)p(xt|xt−1)p(xt, ft−1|z1:t−1)dxt−1dft−1 (7.6)

= p(ft|xt)p(xt|z1:t−1) (7.7)
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Figure 7.3: New visual context component that achieves mutual influence. The
state is expanded using the feature model F (·), and the update now affects both
the localization state xt and the feature state ft.

Factoring the measurement probability p(zt|x′t) results in (7.8).

p(zt|x′t) = p(p̂t, ζt, f̂t|xt, ft)

= p(p̂t, ζt|xt)p(f̂t|ft) (7.8)

Substituting (7.7) and (7.8) into (7.3) gives a new form for the posterior, which

can be grouped as in (7.9).

p(x′t|z1:t) = η p(f̂t|ft) p(ft|xt) [p(p̂t, ζt|xt)p(xt|z1:t−1)] (7.9)

The terms within square brackets represent the update to the localization state

using the position measurement and map pseudomeasurement, as it was done using

the modular update presented in Chapter 3. No knowledge of the feature state ft

is required to do this. The only operations required to achieve mutual influence

are the expansion of the state vector to include the feature state ft, represented

by p(ft|xt), and the update to incorporate the feature measurements using p(f̂t|ft).

There is therefore very minimal change to the system architecture proposed for

localization in Figure 3.7. The only component to change is the Visual Context

component as shown in Figure 7.3.
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7.1.3 Extended Kalman Filter Inference

For simplicity and to be consistent with previous work on localization, an EKF is

used to perform inference on the DBN. This requires assumptions of Gaussianity

and (approximate) linearity in the system dynamics and measurements.

Keeping the notation the same, xt will denote the localization state (vehicle

position and speed) and x′t will denote the full state (localization state plus feature

state). The localization state prior to the visual update will be denoted xt,−. A

similar notation is used to represent the state covariance P .

Expanding the State

Expanding the state from the localization state xt to the full state x′t is a mapping

from 4 dimensions to 4 + N dimensions, where N is the number of features. This

mapping is denoted by the function bt(·) (7.10), and uses feature models F1 . . . FN

for each of the feature measurements, similar to the distance feature used in Sec-

tion 4.1.

x′t = bt(xt)

=


xt

F1(xt)
...

FN(xt)

 (7.10)

Similarly, the covariance matrix Pt is mapped to the full state covariance P ′
t .

This is achieved by first linearizing the mapping bt(·) using the Jacobian evaluated

at xt (7.11). The linearization of the feature models Fi results in a matrix Ct that

is analogous to the Jacobian Gt from (4.29) in Section 4.2.3. The Jacobian Bt is

then used to expand the covariance matrix (7.12).

B =
∂bt

∂xt

=


I4×4

∂F1

∂pt

∂F1

∂vt

...
...

∂F1

∂pt

∂F1

∂vt

 =

[
I4×4

Ct,N×4

]
(7.11)
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P ′
t = BtPtB

T
t

=

[
Pt PtC

T
t

CtPt CtPtC
T
t

]
(7.12)

Updating the Full State using Feature Measurements

From the expanded state, the modeling of feature measurements is quite straight-

forward and can be achieved using a linear model (7.13), where ωt ∼ N (0, Ωt).

f̂t = Hx′t + ωt

=
[

0N×4 IN×N

]
(7.13)

Using this model H, the Kalman gain Kt can be computed for the visual up-

date (7.14). The matrix St is the innovation covariance matrix (7.15), where Ωt is

the measurement uncertainty. Kt can be seen as two distinct gain terms: Kt,L that

affects the localization state, and Kt,F that affects the feature state. The feature

gain is also related to the localization gain as Kt,F = CtKt,L. The localization gain

Kt,L is identical to the Kalman gain that would be computed for a localization-only

filter.

Kt = P ′
tH

T S−1
t

=

[
Pt CT

t S−1
t

Ct Pt CT
t S−1

t

]
=

[
Kt,L

Kt,F

]
(7.14)

St = HP ′
tH

T + Ωt = CtPtC
T
t + Ωt (7.15)

The updated full state vector using this Kalman gain is shown in (7.16). This

equation indicates that the feature state update can be derived from the localization

state update knowing the predicted feature values F (xt,−) and the Jacobian Ct.

x′t = x′t,− + Kt

(
f̂t −Hx′t,−

)
=

 xt,− + Kt,L

(
f̂t − F (xt,−)

)
F (xt,−) + Ct Kt,L

(
f̂t − F (xt,−)

)  (7.16)

Similarly, the covariance update for the feature state can be found knowing

the localization gain Kt,L, the Jacobian Ct and the prior localization covariance
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Algorithm 7.1 Pseudocode for adding mutual influence to an existing routine.

1. function KFVisionUpdateMutualInfluence( xt,−, Pt,−, f̂t, ct )

2.

3. ft,− = FeatureModel( xt,−, ct )

4. Ct = Jacobian( FeatureModel, xt,−, ct )

5.

6. St = CtPt,−C
T
t + Ωt // Innovation covariance

7. Kt = Pt,−C
T
tS
−1
t // Kalman gain

8.

9. // Localization update

10. xt = xt,− + Kt (f̂t − ft,−)
11. Pt = (I− KtCt) Pt,−
12.

13. // Feature update

14. ft = ft,− + CtKt (f̂t − ft,−)
15. PF,t = (I− CtKt) CtPt,−C

T
t

16.

17. return xt, Pt, ft, PF,t

Pt,−. This is seen in (7.17) which shows the covariance update for the full state

(the correlation terms between the localization state and feature state have been

omitted for clarity).

P ′
t = P ′

t,− −KtHP ′
t,−

=

[
(I −Kt,L Ct) Pt,−

(I − Ct Kt,L) Ct Pt,− CT
t

]
(7.17)

Implementation Within an Existing Routine

The significance of the feature update being so closely related to the localization

update is that it becomes much simpler to implement mutual influence within an

existing localization system. Algorithm 7.1 shows in pseudocode how this can

be added with minimal effort to a routine designed to perform visual update to

the localization state. Lines 14-15 are the only additions to this existing routine

required to perform the feature update.
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7.2. Experimental Investigation

7.2 Experimental Investigation

The mutual influence code was added to the routine used for Kalman filter local-

ization under known data association conditions, given in Section 4.2. The primary

reason for adding it to this routine versus the MHT routine in Section 5.1 is to

avoid ambiguity associated with unknown data association. It will be easier to

see the effect of updating feature estimates using position without the ambiguity

associated with multiple vehicle location or landmark hypotheses.

The localization routine with mutual influence is applied to Data Set 2, used

previously to test data association performance in unbiased GPS conditions. A

GPS receiver with a horizontal accuracy of 10 m RMS provides the estimates of

vehicle position. A camera system is used to detect horizontal road markings at

intersections, and to estimate the distance to these detected markings from the

camera, as described in Section 6.2. The uncertainty in this distance estimate is

σf = 2m.

One objective of this experiment was to observe if the addition of position

context would improve the accuracy and consistency of the estimate of distance to

a road marking. The average estimation error and its standard deviation were used

to determine if estimates were more accurate and consistent, respectively. In both

cases, values closer to zero would represent an improvement.

Another objective was to observe how the uncertainty in the feature estimate

changed as a result of adding position context. This was achieved by comparing

the difference between the measurement uncertainty Ωt = σf and the posterior

variance of the feature state Pt,F . Because the Kalman filter update contracts the

posterior distribution, it should be true that Pt,F < Ωt, however I am interested

in the magnitude of this reduction compared with how much the uncertainty in

vehicle position Pt is reduced by the addition of vision.

7.2.1 Experimental Results

Position error is shown in Figure 7.4 for both lateral and longitudinal directions.

Error in the visual feature estimate is shown in Figure 7.5. As the ground truth

position p∗t is used to calculate the error in the position estimate (7.18), so it is

used to calculate error in the feature estimate by using the feature model F and
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ε (m) sε (m) σ (m) sσ (m)

ft 0.029 1.4 1.8 0.024

f̂t -0.0051 1.5 2.0 0

p‖,V C -0.029 1.4 1.8 0.024

p‖,MM -0.68 2.2 7.5 0.13

p⊥,V C -8.2 0.75 3.1 0.0060

p⊥,MM -8.2 0.75 3.1 0.0060

Table 7.1: Visual feature and localization errors showing the effect of mutual in-
fluence filtering. Comparison of filtered feature estimate using position context ft

and the raw measurement f̂t, and comparison of longitudinal (‖) and lateral (⊥)
position errors using visual context (VC) and map matching (MM).

known data association c∗t (7.19).

εp,t = pt − p∗t (7.18)

εf,t = ft − F (p∗t , c
∗
t ) (7.19)

In calculating the error in the visual feature estimate this way, the assumption

is being made that the feature model F is errorless and simply a mapping from

the position space to the feature space. This may not be true in general as the

accuracy of the model depends on the geometry of the intersection and the specific

road marking being detected. However, this assumption is necessary because it is

not known what the true distance from the camera to the road marking is, because

no sensor was available to provide ground truth nor was it feasible to manually

measure this distance while in traffic.

Table 7.1 summarizes the results of the mutual influence filter for those time

instants where vision correctly detected a landmark. The columns marked ε

and sε are the mean and standard deviation of the error in each estimated variable,

and are used to illustrate the accuracy and consistency of these estimates, respec-

tively. While the accuracy of feature estimates and longitudinal position estimates

is not changed significantly, these estimates are made more consistent by the filter

as shown by smaller standard deviation of the estimation error.

Another observation that can be made is that the amount of reduction in the

uncertainty of the feature estimate and localization estimate is not equal; this can

158



7.2. Experimental Investigation

0 20 40 60 80 100 120

−40

−30

−20

−10

0

10

20

30

40

time (sec)

er
ro

r 
(m

et
er

s)

Lateral position error

Raw GPS
MM
VC

(a)

0 20 40 60 80 100 120

−40

−30

−20

−10

0

10

20

30

40

time (sec)

er
ro

r 
(m

et
er

s)

Longitudinal position error

Raw GPS
MM
VC

(b)

Figure 7.4: Position error in KF localization with known data associations. This
plot shows the result of the KF incorporating GPS and visual feature measurements
compared with the raw GPS measurements. a) Error in the lateral vehicle position.
b) Error in the longitudinal vehicle position.
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Figure 7.5: Error in the visual estimate of the distance to an intersection road
marking. a) The result of the KF incorporating GPS and vision measurements
compared with the raw vision measurements. b) A magnified portion of (a) to
illustrate the reduced error and uncertainty.
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be seen in the column marked σ, denoting the mean uncertainty. Uncertainty

in longitudinal position is decreased more by the addition of visual context than

is uncertainty in the feature estimate by the addition of position context. This

can be observed in Figure 7.4b, where uncertainty is reduced significantly, and in

Figure 7.5b, where the reduction is small even when magnified. As I will discuss in

the next section, there is a tradeoff in the reduction of uncertainty in this mutual

influence formulation.

7.3 Discussion

The experimental results point toward two related phenomena. First, that large

errors in the feature estimates caused by false detections (the result of the landmark

detector identifying other objects as road markings) are not corrected by adding

position context; these spurious measurement errors can be observed in Figure 7.5.

Second, that the uncertainty in the vehicle position is reduced by more than the

uncertainty in the feature estimate is reduced. Both of these observations are

related to the amount of emphasis given to the feature estimate f̂t by the Kalman

filter.

7.3.1 Correcting Detection Errors

The estimated value of the feature state ft by the Kalman filter is a weighted average

of the feature measurement f̂t and its predicted value F (xt,−), which is a function

of vehicle position. The Kalman filter update equation (7.16) can be rearranged

into this weighted average form, shown in (7.20). The innovation covariance term

St representing the common denominator of this expression is shown in (7.15).

ft = F (xt,−) + Ct Kt,L

(
f̂t − F (xt,−)

)
= Ct Kt,Lf̂t + (I − Ct Kt,L) F (xt,−)

=
(
Ct Pt,− CT

t S−1
t

)
f̂t +

(
Ωt S−1

t

)
F (xt,−) (7.20)

The weights in this weighted average are given by covariance matrices, which

express uncertainty in the measurement and prediction. The measurement uncer-

tainty is given by Ωt, and that of the predicted measurement is given by Ct Pt,− CT
t ,

which represents a projection of uncertainty in the vehicle state Pt,− into the visual
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feature space. When Ωt < Ct Pt,− CT
t , more weight is given to the raw measure-

ment f̂t than its prediction F (xt,−) in this weighted average. Experimentally, the

measurement uncertainty was Ωt = σ2
f = 4m2, while Ct Pt,− CT

t = σ2
p,‖,− converged

to a value of 22.2m2 while a landmark was visible between t = 34 sec and t = 98

sec. These numbers indicate that approximately 85% of the weight in the estimate

of ft was given to the raw measurement f̂t.

The visual measurement model used was static; a value of Ωt = σ2
f = 4m2 was

always used. This model does not consider that the feature measurement (which is

a distance to a detected road marking) makes the assumption that the road marking

is successfully detected. False landmark detections occur occasionally, and produce

biased distance measurements as can be observed in Figure 7.5. These erroneous

measurements are given as much weight as valid measurements because of the static

measurement model.

A dynamic measurement model that assigns higher uncertainty to erroneous

measurements caused by false landmark detections would enable more consistent

feature estimates by placing more weight on the predicted value F (xt,−). Further-

more, it would improve the robustness of localization to false landmark detections,

thereby maintaining integrity of the localization system.

7.3.2 Uncertainty Tradeoff

The uncertainty in both position estimates and feature estimates is observed to

decrease as a result of mutual influence filtering. This in itself is not a surprising

result, as it is known that the Kalman filter update contracts the PDF of the state,

thereby reducing the variance. What is interesting to observe is that the reduction

in position uncertainty is greater than the reduction in feature uncertainty. In

fact, an inverse relationship exists between the reduction in uncertainty of the

localization state xt and that of the feature state ft. To make this relation evident,

one must rearrange the posterior feature covariance matrix PF,t which is given

in (7.17) into the form of (7.21). This form shows a gain term Ct Kt,L applied to

the feature measurement covariance Ωt.

Pt,F = (I − Ct Kt,L) Ct Pt,− CT
t

=
(
I − Ct Pt,− CT

t S−1
t

)
Ct Pt,− CT

t

=
(
St S−1

t − Ct Pt,− CT
t S−1

t

)
Ct Pt,− CT

t
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=
([

Ct Pt,− CT
t + Ωt

]
S−1

t − Ct Pt,− CT
t S−1

t

)
Ct Pt,− CT

t

= Ωt

(
S−1

t Ct Pt,− CT
t

)
=
(
S−1

t Ct Pt,− CT
t

)T
Ωt =

(
Ct Pt,− CT

t S−1
t

)
Ωt

= Ct Kt,L Ωt (7.21)

Pt,L = (I −Kt,L Ct) Pt,− (7.22)

Compare this expression to the posterior localization covariance matrix (7.22),

which has a gain term I −Kt,L Ct applied to the prior localization covariance Pt,−.

These gain terms are related by the presence of the terms Kt,L and Ct. Thus, for

large Kt,L and/or large Ct, the uncertainty in the localization state Pt,L will be

small compared to its prior uncertainty Pt,−. The reduction in uncertainty of the

feature state Pt,F over its measurement uncertainty Ωt will be small by comparison.

The principal factor affecting the Kalman gain Kt,L and in turn the posterior

uncertainties Pt,L and Pt,F is again the balance between Ct Pt,− CT
t and Ωt within

the innovation covariance matrix St. An uncertain localization estimate such that

Ct Pt,− CT
t > Ωt places more emphasis on the measured features f̂t in the state

estimate, as discussed in Section 7.3.1. This will reduce significantly the uncer-

tainty in the localization state due to the emphasis given to the more reliable

feature measurements. However, the uncertainty in the feature state will not be

reduced significantly since the feature measurements are considered more reliable

than the localization estimate. This explains the results shown in Figure 7.5, in

which feature uncertainty is not reduced significantly due to the fact that it is al-

ready significantly lower than localization uncertainty. However, Figure 7.4 shows

a significant reduction in localization uncertainty in the longitudinal direction as a

result of incorporating the more reliable feature measurement.

Conversely, an uncertain feature measurement such that Ωt > Ct Pt,− CT
t will

place more emphasis on the prior localization estimate xt,− in the state estimate.

This will reduce the uncertainty in the feature state Pt,F to reflect the contribu-

tion of the more reliable localization estimate. However, the uncertainty in the

localization state Pt,L will be less affected.

Therefore, it can be said that there is mutual influence between the localization

state and the feature state. The more uncertain of the two will receive a significant

contribution from the other, improving confidence in that estimate without the

other changing significantly. There is thus a selfless and cooperative aspect to this
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integration of localization with visual features.

An Illustrative Example

A simplified example demonstrates the tradeoff in uncertainty between the localiza-

tion estimate and the measured features quite well. This example uses the following

notation:

• xt = p is the prior position estimate, which is univariate.

• Pt,− = σ2
p,− is its uncertainty.

• f = F (xt) is the observed feature, modeled as a function of position p. The

Jacobian is simply the rate of change of f with respect to p, given by Ct = α.

• The measurement of this feature is f̂ . Ωt = σ2
f,− is its measurement uncer-

tainty.

The expressions for posterior uncertainty (7.21) and (7.22) are reduced to the

following. The symbol β is used to represent the uncertainty gain and is present in

both expressions.

σ2
f =

α2σ2
p,−

α2σ2
p,− + σf,−

σ2
f,− (7.23)

= βσ2
f,− (7.24)

σ2
p =

(
1−

α2σ2
p,−

α2σ2
p,− + σf,−

)
σ2

p,− (7.25)

= (1− β)σ2
p,− (7.26)

It is apparent from these expressions that the uncertainty gain for the two terms

are inversely related through the parameter β. Thus a small gain for one (indicating

a large reduction in uncertainty) is accompanied by a large gain (small reduction)

for the other. The term β is dependent on the relative magnitudes of σ2
f,− and σ2

p,−,

and the derivative α, and can be written as follows where r =
α2σ2

p,−
σ2

f,−
.

β =
r

r + 1
(7.27)
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Figure 7.6: Tradeoff in gain applied to position and feature uncertainty as a function
of the prior-variance ratio r.

The gain is plotted against this ratio r in Figure 7.6 to show the effect of varying

the relative magnitudes of σ2
f,− and α2σ2

p,− on the posterior estimates of σ2
f and σ2

p.

From this figure it should be apparent that there is a tradeoff in the uncertainty

given to the localization state and the feature state. Due to their inverse relation,

one will always have a lower gain than the other unless σf,− = |α|σp,−; in this case

both the position estimate and the feature measurement contribute equally to both

posteriors.

7.4 Summary

A Kalman filter formulation is developed in this chapter that performs simultaneous

estimation of vehicle localization and visual features. This formulation is termed

“Mutual Influence” because it is found that vision and localization systems can

share their information to achieve a common gain. In particular, each system

contributes to the other in accordance with its relative level of uncertainty, resulting

in a decrease in uncertainty for both systems. The end result is that the knowledge

contained in each system is made consistent with the other, so that subsequent
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systems can use this information without concern for potential conflicts.

Implementing a mutual influence filter was also found to require minimal effort

in addition to that required for adding visual context to localization. Results for an

implementation of the filter are shown in Section 7.2, and demonstrate the sharing

of information between vision and localization systems according to their respective

levels of uncertainty. These results assume known data associations and as a result

further work is required to demonstrate the feasibility of a mutual influence filter

in the general case. Improvements in modeling the visual feature measurements to

handle false landmark detections is also important to maintain system integrity.
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Chapter 8

Concluding Remarks

A number of contributions to the field of vehicle localization have been made by

this thesis research. I provide a summary of these contributions within this chapter,

discuss the significance of each to the future of intelligent vehicles and intelligent

transportation systems, and present conclusions reached and questions raised. I also

propose future research opportunities that extend the investigations performed in

this thesis research or that lie in related areas.

8.1 Summary of Contributions

Contributions arising from research presented in Chapters 3 through 7 are described

in the following. A summary of each contribution is given, its significance discussed,

and any conclusions reached or questions raised presented.

8.1.1 Chapter 3: System Architecture

Chapter 3 presents a modular system architecture for multi-source vehicle local-

ization incorporating visual context, in accordance with the first thesis objective

given in Section 1.3. The system architecture is built on a theoretical Bayesian

filtering foundation. Assumptions concerning the posterior distributions are made,

making this architecture applicable for localization in continuous domains using

either Kalman filtering or particle filtering, or in discrete domains using grid-based

filters.

The modularity of the architecture is due to the assumption of conditional

independence between passive measurements of vehicle position, measurements of
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visual features, and map information. It is this assumption that enables an existing

passive localization system to be augmenting using visual context or map matching.

The significance of this system architecture is that it builds on the use of

Bayesian filtering by the majority of current vehicle localization systems. Many

of these systems fuse GPS with dead reckoning for the purpose of mitigating the

satellite visibility and multipath issues that are the pitfalls of using GPS technology

in urban canyon environments. Being modular in nature, the developed system ar-

chitecture enables the current capabilities of such systems to be maintained, while

augmenting their localization results by the addition of visual context and map

matching in an effort to further improve localization accuracy and reliability.

8.1.2 Chapter 4: Visual Context in Localization

The focus of Chapter 4 is to provide an implementation of the proposed architecture

within a Kalman filtering framework. Its purpose is to propose a method of data

fusion between vehicle localization estimates and visual feature data, as described

by the second thesis objective in Section 1.3. A passive localization system using a

GPS receiver to provide vehicle position measurements is augmented using visual

context provided by observing intersection road markings and by map matching

which pulls the position estimate closer to the road the vehicle is driving on. These

augmentations are performed in a road-based coordinate system, which expresses

vehicle position and speed relative to the road rather than in world coordinates.

Data association parameters – including the identity of the road, the orientation of

the vehicle on the road, and the identity of detected landmarks – are assumed known

at this time to avoid a significant source of ambiguity and illustrate “best-case”

localization results. A particle filtering implementation is also briefly described,

however it does not improve upon Kalman filter localization in the known data

association case.

Augmenting Vehicle Localization by Visual Context

Visual context is added to an initial vehicle localization estimate using an extended

Kalman filter update. Vision provides an estimate of the distance from the camera

to a detected intersection road marking. Modeling this measurement as a function

of the longitudinal vehicle position, and knowing the location of the road marking
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from the road network database, a correction is made to the initial localization

estimate.

Experimental results show that, when landmarks are successfully detected and

identified, the average error in the longitudinal vehicle position estimate is de-

creased, giving improved accuracy compared to a filter without visual context.

Furthermore, the standard deviation of this error is decreased giving more consis-

tent localization estimates, and the uncertainty of the longitudinal position is also

reduced showing a higher level of confidence in the estimate. When landmarks are

not present or not detected, the position estimate converges to that provided by

the filter without visual context.

It can be concluded therefore that visual features modeled as functions of ve-

hicle position on a known road segment can provide sufficient context to correct

localization estimates potentially corrupted by GPS multipath or accumulated er-

ror from dead reckoning. However, it is only possible to do so when such features

are present and successfully detected.

The significance of this finding is that systems with the capability to use visual

context to help localize the vehicle can provide a more robust localization result.

This will improve the performance of vehicle localization in urban canyon environ-

ments. It also indicates that using multiple visual features would be beneficial to

help ensure that a high degree of accuracy can be continually maintained.

What is not addressed is whether or not vision can be used to maintain local-

ization integrity when GPS position measurements are not available. Provided the

environment is densely populated with detectable landmarks, can visual context

provide a consistent level of localization accuracy without the accumulated error

issues of dead reckoning?

In addition, can the use of visual context for localization be as successful when

data association parameters are not known a priori? This question is addressed in

Chapter 5.

Augmenting Vehicle Localization by Map Matching

Map matching is used to pull an initial vehicle localization estimate closer to the

road segment using a pseudomeasurement vector and Kalman filter update. This

pseudomeasurement is modeled as a function of lateral vehicle position and speed

and is created on the assumption that the vehicle is restricted to travel on the
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centerline of the road. The location of the road centerline is provided by the road

network database.

Experimental results show that map matching in this way creates a bias in

lateral position error. This is due to the above assumption, since the vehicle does

not travel on the centerline of the road, but rather within a lane offset from the

centerline. Unless the lateral error in the initial localization estimate is greater than

the magnitude of this bias, lateral position accuracy is degraded by this method.

Despite this issue map matching as implemented is shown to be complementary

to visual context since it affects lateral position whereas visual context is used

to affect longitudinal position. Map matching also has an advantage over visual

context in that it can always be used provided the identity and location of the road

being driven by the vehicle is known; it is not dependent on an environment densely

populated with features.

The significance of this map matching method is its simplicity, and implemen-

tation within a Kalman filter update aided by the use of the road-based coordinate

system. It could also be used with more detailed road network databases to match

the vehicle to the location of its lane.

As with visual context, it was assumed that the road driven by the vehicle was

known making map matching trivial. How will this extend to the unknown data

association case? In addition, how would map matching be complicated by more

detailed map databases with lane-level accuracy? The former question is addressed

in Chapter 5 along with landmark identification.

A Road-based Coordinate System

A coordinate system is defined expressing vehicle position and speed in the lateral

direction (perpendicular to the road) and longitudinal direction (parallel to the

road) relative to the current road segment. Conversions for the localization state

and covariance matrix are defined between East-North world coordinates and the

road-based coordinate system for a particular road. This coordinate system is used

to update the localization estimate using visual context and map matching.

The benefit of this coordinate system is it enables a natural modeling of visual

features as a function of vehicle position on a specific road. It takes advantage of the

fact that vehicles are restricted to drive on the road network, and are constrained

to follow the direction of the road. Map matching is also simplified, as the vehicle
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position estimate can be pulled closer to the road segment without affecting the

longitudinal position.

This coordinate system and the conversions to and from world coordinates are

based on an assumption of the road being locally-straight in the region near the

localization estimate. In situations where the road bends or the vehicle turns onto

a different road, a Gaussian distribution may not be adequate to define the vehicle

state in road coordinates. This issue is alluded to in [59], upon which much of my

work in this area is based, however it is not explained in depth. The impact of the

straight-road assumption should be studied to determine if it significantly affects

localization accuracy.

8.1.3 Chapter 5: Data Association

Chapter 5 is concerned with relaxing the known data association assumption made

in Chapter 4 to enable visual context to be used for vehicle localization in a gen-

eral context. Maintaining the Kalman filtering framework, a Multiple Hypothesis

Tracking (MHT) approach is proposed to simultaneously consider multiple data

association hypotheses. For comparison, a Monte Carlo Data Association (MCDA)

method based on a particle filtering framework is proposed as well. In both cases,

constraints imposed by the road network are used to limit the number of hypothe-

ses and thereby maintain filter tractability. Experimental results seek to evaluate

the impact of visual context on identifying the road segment being driven, and to

determine how well GPS measurement biases can be corrected by using visual con-

text in the unknown data association case. The former addresses the third thesis

objective given in Section 1.3.

Multiple Hypothesis Tracking

The MHT method is used to consider multiple data association hypotheses and

to track each using its own Kalman filter. The filtering posterior thus becomes

a mixture of Gaussians, one for each hypothesis. Each hypothesis has a weight

defining its relative importance to the mixture, calculated using measurement like-

lihoods. Those hypotheses that provide better explanations for the measurements

from GPS, vision, and map matching have higher likelihoods and receive higher

weight relative to other hypotheses. Merging redundant hypotheses and pruning

unlikely ones keep the number of hypotheses low and maintain filter tractability.
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Experimental investigations were performed using two data sets: one without

GPS measurement bias, and one with significant bias. In the unbiased case, it was

found that the use of vision results in a higher weight being given to the correct

road segment hypothesis on average, however localization accuracy in unchanged.

In this biased case, visual context was unable to correct for GPS measurement

bias because the detected road marking was not present among the hypothesis set

due to the magnitude of this bias. By tuning the filter to place less emphasis on

GPS measurements, the detected road marking was identified successfully and the

measurement bias was corrected.

From these investigations it can be concluded that using visual context within

an MHT framework can improve the success of identifying the correct road segment

being driven by the vehicle and can be used to correct for GPS measurement biases,

provided the correct landmark identity is among the set of hypotheses. It can also

be concluded that tuning of the MHT filter may be required to ensure that this

occurs.

This is significant because it implies that visual context can serve two purposes:

improving robustness to localization issues such as GPS multipath, and improving

the ability to locate the vehicle on the road network. The latter especially is relevant

because matching the vehicle to the road network is needed for applications such

as vehicle navigation, emergency vehicle dispatching, and monitoring road usage.

Further study is needed to determine how MHT would be complicated using

multiple visual features. Tuning the filter to operate reliably in biased GPS con-

ditions is also required, and may be aided by fault detection capabilities to detect

significant bias events indicative of multipath.

Monte Carlo Data Association

MCDA is proposed as an alternative method to MHT based on particle filtering

localization. This generalizes the particle filter presented in Chapter 4 to the un-

known data association case. Each particle is randomly assigned a data association

from a set of hypotheses. Coupled with the ability of the particle filter to randomly

explore the state space, this allows unlikely data associations to be considered. As

with MHT, each particle has an associated weight indicating how well it explains

the current set of measurements. This weight also implicitly indicates the like-

lihood of the data association hypothesis assigned to that particle. Resampling
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removes particles with low weight, representing unlikely locations for the vehicle

and unlikely data association hypotheses.

Experimentally, this filter shows similar accuracy results to MHT for the unbi-

ased data set, however by considering more hypotheses it takes weight away from

the true hypothesis even in situations where the correct data association is obvious.

For biased data, MCDA shows an improved robustness to GPS measurement bias

due to its ability to consider unlikely data association hypotheses in more areas of

the state space. Localization accuracy is improved over the untuned MHT filter

and partially corrects biased GPS measurements.

It can be concluded that MCDA is a viable alternative to MHT that has the

natural flexibility needed to correct for localization inaccuracies such as GPS multi-

path and dead reckoning error. More study is needed to determine the full extent of

its potential, including how using multiple visual features will complicate the data

association assignment, and how the number of possible data associations will affect

the number of particles required. Also, other proposal distributions and resampling

schemes can be implemented to better guide the particle set to the correct area of

the state space.

Use of Road Network Topology Constraints

Both MHT and MCDA take advantage of constraints imposed by the road network

topology to restrict the number of road segment hypotheses considered. Principal

among these is a connectedness constraint, being that any hypothesized road seg-

ment must be connected to a road segment considered at a previous time instant.

Also, a constraint is used to restrict the orientation of the vehicle on the road to

help define the view of the camera. This assumes that the vehicle does not make

unexpected maneuvers such as U-turns.

While these constraints are useful for keeping the number of hypotheses low in

most situations, they may restrict the flexibility of the filter to U-turns or when

driving on unmapped roads. Turning information provided by inertial sensors,

wheel speed sensors or visual odometry may be useful here, as well as a heading

sensor to better fix the view of the camera. A condition whereby the map matching

is reinitialized in situations where the road traveled is not connected to the rest of

the road network would also improve robustness to mapping inaccuracies.
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8.1.4 Chapter 6: Experimental Investigations

Chapter 6 is the fulfillment of the fourth thesis objective given in Section 1.3: to

demonstrate with a real system implementation the improvements in localization

accuracy and map matching that result from the addition of visual context. This

chapter describes the experimental testbed, which uses an inexpensive GPS receiver

and camera to gather experimental data, and a second GPS receiver with submeter

accuracy to provide ground truth vehicle positions. Installation locations within

a passenger vehicle for these sensors are described. Custom software is used to

acquire sensory and ground truth data at a frequency of 1 Hz. A description is

given of the machine vision system used to detect intersection road markings and

to estimate the distance to the detected marking from the camera.

Results from a series of experiments are shown which summarize the findings

from Chapters 4 and 5. It can be concluded from these findings that the addition

of visual context to a GPS-based vehicle localization system:

• Improves vehicle position accuracy in the known data association case, and in

the unknown data association case provided the uncertainty in GPS position

measurements is not underestimated.

• Provides evidence regarding the road driven by the vehicle, thereby assisting

map matching.

8.1.5 Chapter 7: Mutual Influence

Chapter 7 proposes a reformulation of the Kalman filter localization framework to

estimate the value of visual features as well as the vehicle localization state. This

enables position to provide context to augment the feature measurements by the

vision system, in addition to the existing capability of using vision to provide con-

text to vehicle position. This sharing of information is termed “mutual influence,”

and is found to be easily implementable in the Visual Context module of the system

architecture. This addresses the fifth objective given in Section 1.3.

Using the unbiased data set and assuming known data associations, experimen-

tal observations show that that longitudinal vehicle position is significantly affected

by visual context, while the estimate of distance to a road marking is largely un-

changed from the raw measurement. The reason for this observation is that the
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feature measurement has less uncertainty than the position estimate, and so the

position estimate receives the most benefit from the sharing of information, rather

than vice versa.

It can be concluded that the contribution provided by the localization system

and visual system is in accordance with the uncertainty of each system; thus, the

most uncertain system receives the most benefit. The end result is that the vehicle

localization estimate and visual feature estimate are made consistent with each

another.

The significance of mutual influence is that position information can be used as

a second visual sensor to more reliably sense the environment. It also provides a

level of robustness to visual detection errors for systems using visual information,

such as lane keeping systems. Also, by comparing what is seen by vision with what

is expected based on position, it may be possible to detect inaccuracies in the map

database.

It must be determined how the mutual influence filter will perform in unknown

data association conditions, in order for it to be useful in a general case. Improved

measurement models for visual features are also needed to detect false landmark

detections that may create a bias in the filter as a result of placing too much

emphasis on erroneous measurements.

8.2 Extensions to Thesis Research

A number of extensions to the research presented in this thesis can be undertaken

which will serve to improve localization results within the system’s current capa-

bilities. For example, improved measurement models for GPS and visual features

can be used to help identify measurement errors such as multipath or false land-

mark detections that will improve the integrity of the system. Increasing the frame

rate of the vision system would allow visual information to be integrated into the

localization estimate more often than once per second. In addition, by relaxing

topological constraints used for data association, unexpected driver behavior such

as U-turns can be handled. Also, by using visual information such as the location of

the vehicle within its lane, it will be possible to improve localization accuracy in the

lateral direction and address the bias introduced by matching to road centerlines.

The following are more ambitious extensions to the thesis research. I consider
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these to be within the same vein as the research presented, yet would be by them-

selves significant undertakings.

8.2.1 Maintaining Accurate Localization Without GPS

Using visual features for localization ultimately depends on the availability of visual

features; vehicle localization is unaffected when there are no features present, or

when features do not change with vehicle position. The presence of GPS, despite the

bias that is often present in its position estimates, controls the accumulation of un-

certainty and error that would otherwise occur in the absence of visual landmarks.

Maintaining localization integrity over long periods when GPS is unavailable is im-

portant for localization in urban areas, particularly in tunnels. This will involve

continual updates to the localization state using visual information to control the

accumulation of error in the absence of GPS. This therefore requires continuous

availability of visual information, necessitating improvements in machine vision ca-

pability to extract features and the use of more complete maps of the environment.

One can choose to investigate this problem in one of two ways: as a relative

localization problem, where an initial GPS position is provided and subsequent

positions must be determined using vision; or as an absolute localization problem,

where no initial position is provided. The latter is a much more difficult problem

necessitating comparison of detected features with all such features in a global map.

8.2.2 Generalizing Data Association to Improved Visual

Capability

It was shown that by continually observing the same features from a static position

eventually all but one data association hypothesis would be pruned. This was a

by-product of using intersection road markings as landmarks for localization. In a

moving vehicle features will play a much more transient role, possibly being visible

for only a few seconds. Is it possible to guarantee convergence to one hypothesis

for a moving vehicle? How will this be affected by new features becoming visible

and others no longer visible? Improved visual capability will result in the ability to

detect more features, therefore providing more context for localization. This comes

at a cost of increased data association ambiguity.
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8.2.3 Incorporating Uncertainty in Map Information

It has been assumed throughout this thesis that the map provides a perfect rep-

resentation of the world, that it is without error. This is not true in practice.

Localizing the vehicle with respect to a landmark or road at an incorrect location

in the map creates a biased result. By associating a degree of uncertainty with

the location of roads and landmarks in the map perhaps this type of bias can be

avoided. A natural extension of this approach would be to correct the location of

roads and landmarks in the map, and to add missing ones that are not present be-

cause the map is out of date or incomplete. This problem is known as Simultaneous

Localization and Mapping (SLAM).

8.2.4 Improved Visual Capability and Environmental Aware-

ness

In particular, the ability to recognize static objects is required for localization since

such objects can be mapped and their location known a priori. In complex envi-

ronments, it may be useful to use location knowledge to restrict what is expected to

be seen. For example, position-based priors can be used for object recognition [68].

Static object detection must also be robust to the presence of moving objects

such as other vehicles or pedestrians. Having the ability to detect and track moving

objects would therefore greatly improve the use of vision for localization, despite

such objects not being directly used for that purpose. Therefore, systems designed

for pedestrian and/or vehicle detection can be coupled with localization systems to

improve performance.

8.2.5 Using Shared Sensory Capability from Other Vehicles

It may not always be possible for a vehicle to generate a reliable, standalone local-

ization estimate. When satellite visibility is low and landmarks cannot be detected,

sensory data acquired by other vehicles may be the only way of maintaining an ac-

curate location. This is known as multi-robot or multi-vehicle localization, and is

possible to implement in a distributed manner [22, 56], with each vehicle comput-

ing its location based on its own sensory data and the relative location of other

vehicles.
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8.2.6 Building and Updating a Map of the Environment

One problem with using existing maps is that they may not be current or complete.

Having the vehicle update the map with detected features will aid future localization

efforts, and reduce the amount of manual mapping that needs to be performed.

Also, it will save time and money required to obtain updated maps. This is an

example application of SLAM.

Implementing SLAM for multiple vehicles that update a common map will have

even more benefits, since multiple areas of the map will be updated simultane-

ously [23, 74]. In particular, areas that are traveled most often by vehicles should

then have the most accurate maps, further assisting the use of vision for localization.

8.2.7 Impact of Vision on Other Localization Criteria

The research performed in this thesis has been concerned with improving the ac-

curacy of GPS-based vehicle localization systems using visual context. However,

accuracy is only one criterion by which a localization system can be evaluated.

Other performance criteria are integrity, availability and continuity of service [18].

Studying the effect of visual context on these performance criteria would be an

interesting endeavor.
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