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Abstract

Single reference coupled cluster theory has been established as the method of choice for calcu-

lating electronic properties of small-to-medium size molecules. However, in typical multireference

cases, such as bond breaking processes, biradicals, excited states, very high order excitations may

be needed in the cluster operator to obtain reliable and accurate results, which is not practical due

to the rapidly growing computational costs. Although there has been much effort to extend the

applicability of single reference methods, there is little doubt that genuine multireference methods

are indispensable.

The method we are developing, the State Specific Equation of Motion Coupled Cluster (SS-

EOMCC) method, generalizes the state universal Equation of Motion Coupled Cluster (EOMCC)

methods to a state specific version. SS-EOMCC works for both ground states and excited states.

It is rigorously spin-adapted. The cluster operator amplitudes are solved, taking the complete-

active-space self-consistent-field function as the reference function. The differential relaxation

effects are taken into account by diagonalizing the transformed Hamiltonian in the multireference

configuration interaction singles (MRCIS) space. To implement the method, we developed an

automatic program generator, the details of which are presented.

The strategy used in approximating residual equations in SS-EOMCC is based on a novel

normal order theory, which is a generalization of traditional particle-hole formalism based normal

order theory. We discuss normal order theory in a general context, start with the version developed

by Mukherjee and Kutzelnigg, and we furnish an algebraic proof for the corresponding contraction

rules. Then we proceed to show how our normal order theory works.

Finally we present the benchmark results to gauge the SS-EOMCC method. We calculate

the 3Σ−
u state of F2 to examine the behavior of the method for single reference systems, and

study the singlet states of H2O, CO and N2 to test its performance for multireference systems.

In addition, we illustrate the effect of a perturbative correction, which attempts to alleviate the

redundancy issue. We also apply the method to study the energetics of end-on and side-on

peroxide coordination in ligated Cu2O2 models, where SS-EOMCC[+2] employing a small active

space achieves quite accurate results.
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The final diagonalization of the transformed Hamiltonian in the MRCIS space is expensive and

limits the applicability of the method. We attempt to develop a cheaper internally contracted

multireference coupled cluster method by introducing semi-internal excitation operators in the

cluster operator such that the final diagonalization can be confined within the active space, but

the results are not satisfactory yet.

The Jeziorski-Monkhorst (JM) ansatz has been studied extensively, and different ways to

resolve the redundancy issue have been explored. We analyze these JM-ansatz based methods,

derive them in a simple way to disclose their connections transparently, and point out some

problem in these methods. Another issue of general interest which is examined in the thesis is

orbital invariance. For single reference methods the invariance property is usually clear, but this is

not always the case for multireference methods. We analyze this problem from the tensor theory

point of view, and propose a practical self-consistency-checking algorithm to determine whether

a method is orbital invariant or not. We apply the algorithm to different methods, in particular,

demonstrating the lack of the invariance property for JM-ansatz based methods.
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Chapter 1

Introduction

1.1 Coupled cluster theory

ab initio quantum chemistry methods aim to solve the Schrödinger equation

Ĥ|Ψ〉 = E|Ψ〉. (1.1)

The full Hamiltonian includes the kinetic and potential energies of the nuclei and electrons:

Ĥ =
∑

α

−
1

2mα
∇2α +

∑

i

(
−

1

2
∇2i −

∑

α

Zα
rαi

)
+
∑

α<β

ZαZβ
rαβ

+
∑

i<j

1

rij
, (1.2)

where α and β are nucleus indices, i and j are electron indices, Zα and Zβ are nuclear charges,

rαβ is the distance between nuclei α and β, and rij is the distance between electrons i and j.

It is difficult to solve the full Schrödinger equation for both nuclei and electrons. Mostly, the

Born-Oppenheimer approximation is employed, and at each nuclear configuration, we solve the

electronic Schrödinger equation and obtain the electronic state energies (the energies at different

nuclear configurations provide a potential energy hyper-surface on which the nuclei move and

nuclear dynamics can then be studied).

1
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The electronic Schrödinger equation has the form:

Ĥelec|Ψelec〉 = Eelec|Ψelec〉, (1.3)

where

Ĥelec =
∑

i

(
−

1

2
∇2i −

∑

α

Zα
rαi

)
+
∑

i<j

1

rij
. (1.4)

Since in the thesis we only deal with the electronic Schrödinger equation, we drop the subscripts

in the above equation to simply notation. That is, the electronic Schrödinger equation itself is

also written as

Ĥ|Ψ〉 = E|Ψ〉, (1.5)

and there should be no confusion arising.

Suppose that we have obtained a set of molecular orbitals {φ1, φ2, · · · , φk} for a system of

n electrons (e.g., from a Hartree-Fock calculation). Then we can construct a many-electron

determinantal basis {Φ0,Φ1,Φ2, · · · } by distributing the n electrons over the k spin orbitals

{φ1, φ2, · · · , φk} (to simply the discussion, here we neglect the spin and spatial symmetry con-

straints). Therefore the dimension of the many-electron basis is
(
k
n

)
. In principle an infinite

number of orbitals are needed to get a complete orbital basis, and correspondingly a complete

many-electron basis, but for practical reasons we always adopt a finite orbital basis in numerical

computations. Mostly, the larger the basis (the more orbitals), the more expensive the computa-

tions, the more accurate the results. To obtain computational results converged with respect to

the basis is a non-trivial issue, and developing fast convergent basis sets is so far a topic under

active study.

In ab initio quantum chemistry, second-quantization is carried out within the finite orbital ba-

sis, and we use finite representations of second-quantized operators (therefore the representations

are approximate). With this orbital basis, we can rewrite the (electronic) Hamiltonian and the
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determinants in the second-quantization language, using creation and annihilation operators [1],

Ĥ =
∑

p,q

hqpâ
p
q +

1

4

∑

p,q,r,s

V rs
pq â

pq
rs , (1.6)

with

âpq = â+p âq, (1.7)

âpqrs = â+p â
+
q âsâr, (1.8)

hqp =

∫
φ∗p(x)

(
−

1

2
∇2 −

∑

I

ZI
rI

)
φq(x)dx,

grspq =

∫
φ∗p(x1)φ

∗
q(x2)φs(x2)φr(x1)

r12
dx1x2,

V rs
pq = grspq − g

sr
pq, (1.9)

where ZI is the nuclear charge, rI the electron-nuclear separation, r12 the electron-electron sepa-

ration and x the electron coordinate including spin.

For any determinant |Φ〉 = |φi1φi2 · · ·φin〉, it can be written as a product of creation operators

acting on the true vacuum |〉:

|Φ〉 = â+i1 â
+
i2
· · · â+in |〉. (1.10)

The antisymmetry of determinants is automatically taken into account, due to the commutation

and anticommutation relations for fermions:

[â+p , â
+
q ] ≡ â+p â

+
q + â+q â

+
p = 0, (1.11)

[âp, âq] ≡ âpâq + âqâp = 0, (1.12)

[â+p , âq]+ ≡ â+p âq + âqâ
+
p = δpq . (1.13)

In this thesis, we still speak of determinants for convenience at certain places, but in practice, all

the work is done with the use of the second-quantization language, and in principle we can avoid
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using the term determinants.

Now we briefly discuss the concepts of dynamical and non-dynamical correlation effects. We

expand the wavefunction in this many-electron basis:

|Ψ〉 = c0|Φ0〉+ c1|Φ1〉+ c2|Φ2〉+ · · · . (1.14)

According to the characteristic of the wavefunction, we can categorize wavefunctions into two

classes: single reference wavefunctions and multireference ones. If there is one particular determi-

nant, for example, |Φ0〉, which makes a major contribution, that is, |c0|
2 À |ci|

2,∀ i 6= 0, we call

|Ψ〉 a single reference (SR) wavefunction.1 The ground states of closed-shell organic molecules are

the most usual SR systems. In contrast, if more than one determinant make major contributions,

we call |Ψ〉 a multireference (MR) wavefunction. Excited states, biradicals, and transition metal

compounds are typical MR systems. Mean field theories (such as the Hartree-Fock method) take

account of the instantaneous interaction between every pair of electrons in an average way. We

refer to the effects of the electron-electron interaction (other than this average portion) on the

wavefunction as correlation effects. Roughly, we define the correlation effects contained in the

few dominant determinants as non-dynamical correlations effects, and the others as dynamical

correlation effects.

Usually the Hartree-Fock (HF) determinant is a fairly good approximation to the exact wave-

function, but to predict chemistry, higher accuracy is required. More sophisticated methods

taking account of dynamical correlations have been developed. These methods are called correla-

tion methods or post-Hartree-Fock (post-HF) methods. Typically an ansatz for the wavefunction

is defined at first which contains unknown parameters. Then a set of equations (the so called

residual equations) are obtained in some way for the parameters. Solving the residual equations

give the parameters, and thus the wavefunction.

1To be precise, for a SR wavefunction, it may well happen that the contribution from |Φ0〉 is smaller than the
collective contributions from all the other determinants. That is,

|c0|
2 <

∑

i6=0

|ci|
2,

although |c0|2 À |ci|
2, ∀ i 6= 0.
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Coupled cluster (CC) theory is one of the most successful post-HF theories. For SR systems,

coupled cluster theory employs an exponential ansatz for the wavefunction:

|Ψ〉 = eT̂ |ψref〉, (1.15)

where the reference function |ψref〉, which takes care of non-dynamical correlation effects, is usually

the mean-field Hartree-Fock determinant, and T̂ is the excitation operator, which takes care of dy-

namical correlation effects. SRCC theory [2, 3, 4, 5] has been firmly established as the method of

choice for high-accuracy computations of small-to-medium size molecules [6, 7, 8, 9, 10, 11, 12, 13].

Since the implementation of the coupled cluster singles and doubles (CCSD) method [6, 14], the

theory has been extended to increasingly higher order, and now there are implementations of arbi-

trary order excitation coupled cluster methods [15, 16, 17]. In principle, the theory can treat both

single reference and multireference systems satisfactorily if sufficiently high order excitations are

included, but the rapid increase of computational cost hinders the application of high level cou-

pled cluster methods. The popular CCSD(T) [10] method represents a nice compromise between

computational expense and accuracy. However, coupled cluster methods truncated at low orders

have difficulties in treating multireference systems. To extend the applicability of the coupled

cluster approach within the single reference framework, various possibilities have been explored.

It is possible to obtain cluster amplitudes from a different source, for example, singles and doubles

in Ref. [18], triples and quadruples in Refs. [19, 20]. The energy functional can be modified as in

the renormalized CC approaches [21, 22, 23, 24], or the most important higher excitations can be

included in the cluster operator [25, 26, 27]. Other approaches essentially change the projection

manifold in obtaining the amplitude equations, as in variants of extended coupled cluster, unitary

coupled cluster and expectation value coupled cluster approaches [28, 29, 30, 31, 32, 33, 34, 35, 36].

Apart from the development in this direction, theories designed explicitly to treat multirefer-

ence systems have been under development since the early stage of coupled cluster theory [37, 38,

39]. In Fock Space coupled cluster theories [40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54],

one universal wave operator is used for all sectors of Fock space. Starting with a parent state

which has a closed-shell reference determinant, the open-shell systems are reached by chang-
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ing the number of electrons from the reference state. This method is suitable for computing

energy differences, such as ionization potentials and excitation energies. A second class of mul-

tireference coupled cluster (MRCC) methods are Jeziorski-Monkhorst (JM) ansatz based methods

[55, 56, 57, 58]. This ansatz has a set of excitation operators for every determinant in the reference

space. The current consensus is that for general open shell problems, the JM ansatz should be

employed in a state specific fashion, which introduces a redundancy problem. Attempts to solve

this problem have led to the development of different methods [59]: the Brillouin-Wigner coupled

cluster method[60, 61, 62], the Mk-MRCC method [63, 64, 65, 66, 67, 68, 69, 70], and the MR-

expT method [71, 72]. These methods are suitable for computing potential energy surfaces, and

encouraging results have been obtained. The major issues [59] include the lack of spin-adaptation

and orbital invariance [73].

To treat dynamical and non-dynamical correlation in a balanced way, it is conceptually at-

tractive to include the dominant determinants in the reference function, which takes care of

non-dynamical correlation effects, and then to build up dynamical correlation effects for each

determinant, as is done in JM ansatz-based methods. The computational scaling, however, is not

favorable if the number of the reference determinants is large. In contrast, the ansatz for internally

contracted coupled cluster methods is more compact, which usually assumes the following form:

|Ψ〉 = eŜ |R〉, (1.16)

where |R〉 is the reference function, and Ŝ is the cluster operator which takes care of dynamical

correlation and orbital relaxation effects. Using one universal cluster operator on the whole refer-

ence function has certain limitations. One of the major problems is the potentially unsatisfactory

treatment of differential orbital relaxation effects, unless sufficiently high order semi-internal and

internal excitation operators are included in Ŝ. Here the differential orbital relaxation effects refer

to the effects of orbital rotation of each individual active space determinant. Another drawback is

that the equations for the s-amplitudes (residual equations) can be ill-defined. This problem may

emerge in all methods adopting the above ansatz, and it may affect the stability and accuracy of

this type of method.
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In the multiconfiguration reference state coupled cluster method developed by Banerjee and

Simons [74, 75], only excitations from occupied orbitals to inactive virtual orbitals are included in

the cluster operator, so that the excitation operators are commutative. Therefore the differential

orbital relaxation effects are not properly accounted for. In the early effort of Hoffman and Simons

[76], an anti-Hermitian cluster operator Ŝ is employed, which contains internal and semi-internal

excitations, and the residual equation is defined by the stationary condition of the energy. In their

approach, the energy expression 〈R|e−ŜĤeŜ |R〉 is approximated by keeping up to quadratic terms

in s-amplitudes. Mukherjee proposed an ansatz [63, 64] which is based on a multireference normal

order theory [77, 78]. Physically important semi-internal excitation operators are included, and

the normal order exponential ansatz leads to a particularly attractive feature of this method:

residual equations automatically truncate at the quartic power of the excitation amplitudes. The

more recent canonical transformation (CT) [79, 80] method by Chan and Yanai and the closely

related anti-Hermitian contracted Schrödinger equation [81, 82] method by Mazziotti also use an

anti-Hermitian Ŝ, and the residual equation is obtained from projections. In addition, in the

residual equation, the many-body operators from the commutator expansion of the transformed

Hamiltonian e−ŜĤeŜ are approximated by one- and two-body operators by utilizing the cumulant

techniques [83, 84, 85, 86, 87, 88, 89, 90, 91] at each order of the commutator expansion. An-

other interesting internally contracted approach is the blocked correlated coupled cluster (BCCC)

method by Fang, Shen and Li [92, 93]. In BCCC, instead of orbitals, the basic construction units

of the wavefunction are so called block states, which can be multi-determinantal functions. The

relaxation and dynamical correlation effects are taken care of by Ŝ, which includes excitations

between block states. The Fock space feature of the method bears certain similarity to the density

matrix renormalization group (DMRG) approach [94, 95, 96, 97, 98, 99].

EOMCC methods [100, 101, 102, 103, 104, 105] (and closely related coupled cluster linear

response theory [106, 107, 108, 109, 110, 111, 112, 113], SAC-CI method [114, 115, 116], and

coupled cluster Green’s function method [117, 118, 119]) have been very useful for computing

energy differences. Here the cluster operator is obtained for a single reference parent state,

which accounts for dynamical correlation. The cluster operator is then used to transform the
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Hamiltonian. Finally, the transformed Hamiltonian is diagonalized over a suitable manifold to

obtain excited state energies and wavefunctions. Conceptually, the success of EOMCC methods

relies on the transferability of dynamical correlation. Many extensions of excited state EOMCC

(EE-EOMCC) methods have been developed, such as EA-EOMCC [120, 121], IP-EOMCC [122]

(and closely related coupled cluster Green’s function method [117, 118, 119]), DIP-EOMCC [123,

124] and SF-EOMCC [125, 126]. Most of these methods generalize the definition of the single

reference parent state. There are limitations to the concept, however, as it is not always possible

to define a single reference parent state which is reasonably close to the target state of interest.

Another issue is that EOMCC is not size-extensive, although it does satisfy the important property

of core-extensivity [127] and relatedly size-intensivity [128, 129].

To summarize, different approaches have been introduced in attempting to treat MR systems,

but none has been established as the method of choice which has all the desired properties: spin-

adapted, size-extensive, orbital invariant, effective inclusion of orbital relaxation and differential

orbital relaxation effects, and ease of convergence. In addition, computational cost is an important

factor, and it can severely limit the applicability of a method. If our goal is to construct accurate

potential energy surfaces, we need a method which is accurate for both SR systems and MR

systems. With the considertion of the essentially different features of SR and MR wavefunctions,

this requirement, which is essential for predicting chemistry, is not trivial.

1.2 Scope of the thesis

In the last few years we have been developing a generalization of EOMCC methods. In the

State Specific Equation of Motion Coupled Cluster (SS-EOMCC) approach both orbitals and

dynamical correlation are optimized for the target state, so the method is state specific. The

main idea is to fold the major dynamical correlation into the transformed Hamiltonian, and to

take care of non-dynamical correlation by a final diagonalization. The SS-EOMCC method is

an internally-contracted multireference approach, applicable to both ground and excited states.

Attractive features of the method are: (1) the SS-EOMCC wavefunction is qualitatively correct
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and rigorously spin-adapted, (2) both orbitals and dynamical correlation are optimized for the

target state, (3) non-dynamical correlation and differential orbital relaxation effects are taken

care of by a diagonalization of the transformed Hamiltonian in the multireference configuration-

interaction singles (MRCIS) space, (4) only one- and two-particle density matrices of a CASSCF

reference state are needed to define equations for the cluster amplitudes, and (5) the method is

invariant with respect to orbital rotations in core, active and virtual subspaces.

Properly defined equations and orbital invariance are not conditions trivial satisfied for mul-

tireference methods. In Chapter 2, we first discuss a class of important MRCC methods: Jeziorski-

Monkhorst (JM)-ansatz based methods. These methods are unified according to how to group

terms to eliminate the so called redundancy problem. It is found that some seemingly different

methods are equivalent. It is argued that the various defining equations are not entirely proper,

in the sense that the proper residual condition is not satisfied. This may partially rationalize the

unsatisfactory performance of the various methods for single reference systems. In contrast, the

MRexpT method satisfies the proper residual condition, and it is expected to outperform other

JM-ansatz based methods in single reference cases.

In Chapter 3, we examine the orbital invariance issue in a general context from a tensor theory

point of view. By utilizing the transformation property of second-quantized operators, and thus

also of determinants, we analyze the orbital invariance property of various methods by examining

the tensor property of residuals. A simple self-consistency-checking algorithm is proposed. To

reveal the essential transformation property of tensors, the antisymmetry property of certain

tensors is extensively used to rewrite them in contracted forms. We first establish the orbital

invariance of the Hartree-Fock, single reference configuration interaction (SRCI), coupled cluster,

complete-active-space self-consistent-field (CASSCF), and multireference configuration interaction

(MRCI) methods, and then discuss the invariance properties of the CASCC and CCSDt methods.

Finally, we demonstrate the lack of orbital invariance for JM-ansatz based methods. It appears

necessary to modify the ansatz if orbital invariance is desired for this class of methods, and

internal-contraction serves as one possible solution. From these discussions, the orbital invariance

property for SS-EOMCC can easily be established, as is discussed briefly in Chapter 4.
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Starting with Chapter 4, we elaborate on the theory of the SS-EOMCC method, how to

approximate the residual equation, and the practical convergence scheme. Since we have developed

a novel normal order theory (γ-normal order) for approximating the residual equation, and this

particular normal order is closely related to traditional normal order theory and a more general

one (λ-normal order) developed by Mukherjee and Kutzelnigg [63, 77, 78], it is desirable to have a

full-fledged discussion of normal order theory, which is the content of Chapter 5. We demonstrate

the relationships among different versions of normal order theory. In addition, we give an algebraic

proof of the generalized Wick theorem corresponding to λ-normal order.

In Chapter 6, we discuss the details of the implementation of the SS-EOMCC method. Since

manual implementation would be extremely tedious and prone to error, we wrote an automatic

program generator (APG) in Python to facilitate the implementation. Both equation derivation

and Fortran code generation mechanisms are expounded. We discuss the basic structure of the

code, how different versions of generalized Wick theorems are implemented, how equations are

canonicalized, how Fortran subroutines are called automatically, the factorization algorithm, and

possible further improvements. A major ingredient of SS-EOMCC in general active spaces is the

diagonalization of a non-Hermitian Hamiltonian in a MRCIS space. The CASSCF and MRCI

programs were implemented by K. R. Shamasundar, and the code to calculate three-body density

matrices and diagonalize the three-body transformed Hamiltonian was written by Ondrej Demel.

Prior applications of SS-EOMCC focused on biradical-like systems or singly bonded species, in

which only one extra orbital is needed to construct the active space. SS-EOMCC has been applied

to study the ground and excited states of O2 and F2, the dissociation of LiF, and organic biradicals,

such as the automerization barrier of cyclobutadiene, singlet-triplet gaps of trimethylmethylene,

and the activation and reaction energies of Bergman reaction. Now the applicability of the method

is extended to systems with general active spaces, and benchmark results are presented in Chapter

7. The 3Σ−
u state of F2 is calculated to examine the behavior of the SS-EOMCC method for single

reference systems. The singlet states of H2O, CO and N2 are computed to gauge the accuracy for

systems with somewhat large active spaces. In addition, the effect of a perturbative correction,

which attempts to alleviate the near singularity issue, is illustrated.
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In Chapter 8, the method is applied to study the relative energetics of µ-1:2(trans end-on) and

µ-η2 : η2(side-on) peroxo isomers of Cu2O2 fragments with 0 and 2 ammonia ligands. These model

systems had been shown to be problematic for multireference perturbation theory (MRPT) and

density functional theory (DFT) methods. In spite of the small reference space used, SS-EOMCC

gives much improved results by comparison to benchmark CR-CC results. In addition to the fully

symmetric 1Ag state, the 1Bg and 3Bg states are also computed, demonstrating the complexity

of the systems under study, as seen from the energy crossing at intermediate geometries. The so

called spin-flip idea introduced by Krylov is tested for the model systems, and Brueckner orbitals

are compared with B-CI orbitals.

In SS-EOMCC, the final diagonalization of the transformed Hamiltonian in the MRCIS space

takes account of the semi-internal excitations and differential orbital relaxation effects which are

missing from the cluster operator. This diagonalization is expensive, which limits the applicability

of the method. In Chapter 9, we describe our endeavor to develop a cheap internally contracted

MRCC (ic-MRCC) method. In ic-MRCC, semi-internal excitation operators are introduced into

the cluster operator to partially compensate for the missing effects, and the final diagonalization

is confined within the active space. Both h-normal order and γ-normal order has been attempted,

and the renormalization idea has been tested. The near-singularity issue and convergence issue

prove to be difficult to resolve, and the results are not satisfactory yet.



Chapter 2

Jeziorski-Monkhorst ansatz

In this chapter, we carry out a detailed examination of the Jeziorski-Monkhorst (JM) ansatz-based

methods.1 In the JM ansatz, the wave operator assumes the form:

Ω̂ =
∑

µ

eT̂µ |µ〉〈µ|,

where |µ〉 is any determinant in the reference function, and T̂µ is the cluster operator associated

with the reference determinant (in the following discussion we assume a complete active space of

dimension M). The wavefunction has the form:

|Ψ〉 = Ω̂
∑

µ

cµ|µ〉 =
∑

µ

eT̂µcµ|µ〉,

where
∑

µ cµ|µ〉 is the reference function. Balanced treatment of every reference determinant

is among the most attractive features of the JM ansatz, in the sense that every determinant is

associated with its own cluster excitation operator to take care of differential correlation and

dynamical correlation effects, instead of applying one universal operator to the whole reference

function, as in FSCC, EOMCC and internally contracted methods.

1Contents of this chapter were published in Int. J. Quant. Chem. 109, 441(2009).

12
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Inserting the ansatz into the Schrödinger equation yields:

Ĥ
∑

µ

eT̂µcµ|µ〉 = E
∑

µ

eT̂µcµ|µ〉

that is,
∑

µ

(Ĥ − E)eT̂µcµ|µ〉 = 0. (2.1)

If all the parameters are independent, there is redundancy in the ansatz in the sense that some

excited determinants can be reached in multiple ways by the linear excitation of some reference

determinants. The problem is how to define equations properly to fix the redundancy problem.

There are different ways to tackle the obstacle. In this work, various JM-ansatz based methods are

cast in a vector form and unified from the grouping point of view. It is hoped that the hindsight

reflection may reveal the connection between different methods more transparently. This chapter

is organized in the following order: Section 2.1 unifies a few JM-ansatz based methods; Section

2.2 discusses the transformed projection idea; Section 2.3 points out a possible problem present

in some methods; Section 2.4 presents our conclusions.

2.1 Grouping

In determinantal basis,

|Λ〉 =
∑

ν

(Ĥ − E)eT̂ν cν |ν〉 = 0 (2.2)

is a vector. In the following, we use µ, ν, ρ, σ (`, κ) to denote determinants in the active (external)

space and u (l, k) to denote the projection coefficients of active (external) space determinants in

|Λ〉. In vector form, the above equation becomes
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~Λ =




U1

U2
...

UM

L1

L2
...

LK

...




=




〈µ1|
∑

ν(Ĥ − E)eT̂ν cν |ν〉

〈µ2|
∑

ν(Ĥ − E)eT̂ν cν |ν〉

...

〈µM |
∑

ν(Ĥ − E)eT̂ν cν |ν〉

〈`1|
∑

ν(Ĥ − E)eT̂ν cν |ν〉

〈`2|
∑

ν(Ĥ − E)eT̂ν cν |ν〉

...

〈`K |
∑

ν(Ĥ − E)eT̂ν cν |ν〉

...




= 0. (2.3)

Let us assume that no pure active-active excitation operator is included, that is,

〈ν|T̂ (i)µ |µ〉 = 0, ∀µ, ν, i.

From

Ui = 0 (i = 1, 2, . . . ,M),

we naturally get M equations which define the cµ coefficients:

∑

ν

H̃µνcν = Ecµ, (2.4)

where H̃µν = 〈µ|e−T̂ν ĤeT̂ν |ν〉. The above is an eigenvalue equation and is adopted in all the

following methods. Once the t-amplitudes are determined, the reference function can be updated

by diagonalization of the matrix H̃µν and thus a self-consistent procedure is obtained.

We emphasize that the above equation holds because no pure active-active excitation operator

is included, so we have

〈µ|ĤeT̂ν |ν〉 = 〈µ|e−T̂ν ĤeT̂ν |ν〉 = H̃µν (2.5)

and E〈µ|eT̂ν |ν〉 = Eδµν . (2.6)
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The problem is the fact that the projection over the linear excitation manifolds

Li = 〈`i|
∑

ν

(Ĥ − E)eT̂ν cν |ν〉 = 0, (2.7)

does not furnish enough equations for t-amplitudes, because some excited determinants can be

reached by the linear excitation of reference determinants in multiple ways. In other words, it

may happen that

|`i〉 = T̂ (j)µ |µ〉 = T̂ (k)ν |ν〉 (µ 6= ν). (2.8)

The usual resolution is as follows. Since Li contains contributions from all tµ and cµ, the equa-

tions are defined naturally if we could group contributions to U into classes which can be labeled

(meaning will be clear below) by reference determinants

L =
∑

µ

Lµ, (2.9)

and we set

Lµ = 0, ∀ µ (2.10)

(in the above equations, the subscript i for l is dropped for notational simplicity).

Following the same grouping procedure, we can correspondingly group U terms into classes

U =
∑

µ Uµ. Therefore the problem is converted to how to group terms (the MRexpT method

[71, 130], which follows a different route, is discussed in Section IV). The form of L itself usually

presents a natural way to group terms, or we can reshuffle terms to achieve different groupings.

The basic idea is to change a single summation to a double summation, and then interchange

them [66].

Let us look at a few ways of grouping terms.

L = 〈`|
∑

ν

(Ĥ − E)eT̂ν cν |ν〉 = 〈`|
∑

ν

ĤeT̂ν cν |ν〉 − 〈`|
∑

ν

EeT̂ν cν |ν〉 = 0. (2.11)
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For E terms:

L = −〈`|
∑

µ

EeT̂µcµ|µ〉+ terms containing H (2.12)

=
∑

µ

−Ecµ〈`|e
T̂µ |µ〉+ · · ·

=
∑

µ

−Ecµ〈`|e
T̂µ |µ〉+ · · ·

=
∑

µ

lµ + · · · (E1), (2.13)

or

L =
∑

µ

−Ecµ〈`|e
T̂µ |µ〉+ terms containing H

=
∑

µν

−H̃µνcν〈`|e
T̂µ |µ〉+ · · ·

=
∑

ν

(−cν
∑

µ

H̃µν〈`|e
T̂µ |µ〉) + · · ·

=
∑

µ

(−cµ
∑

ν

H̃νµ〈`|e
T̂ν |ν〉) + · · ·

=
∑

µ

lµ + · · · (E2). (2.14)

In this manipulation the assumption is made again that no active-active excitation operator is

included, because the relation Ecµ =
∑

ν H̃µνcν has been used.

For terms containing H, the above trick doesn’t apply.

L =
∑

µ

cµ〈`|Ĥe
T̂µ |µ〉+ terms containing E (2.15)

=
∑

µ

lµ + · · · (H1) (2.16)
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Another way is to insert resolution identity:

L =
∑

ν

cν〈`|Ĥe
T̂ν |ν〉+ terms containing E

=
∑

ν

cν〈`|e
T̂ν 1̂e−T̂ν ĤeT̂ν |ν〉+ · · ·

=
∑

ν

cν〈`|e
T̂νQe−T̂ν ĤeT̂ν |ν〉+

∑

ν

cν〈`|e
T̂ν
∑

µ

|µ〉〈µ|e−T̂ν ĤeT̂ν |ν〉+ · · ·

=
∑

µ

cµ〈`|e
T̂µQe−T̂µĤeT̂µ |µ〉+

∑

µ

(
∑

ν

cν〈`|e
T̂ν |µ〉H̃µν) + · · ·

=
∑

µ

(
cµ〈`|e

T̂µQe−T̂µĤeT̂µ |µ〉+
∑

ν

cν〈`|e
T̂ν |µ〉H̃µν

)
+ · · ·

=
∑

µ

lµ + · · · (H2) (2.17)

The different ways of grouping are denoted by E1, E2, H1, H2. Now we can combine contribu-

tions from E terms and H terms in four ways, which correspond to four different methods, which

are denoted by H1E1, H2E1, H1E2 and H2E2, respectively. The linear combination of them may

also be worth trying [131, 132]. Although this may turn out to be numerically advantageous,

the physical meaning or motivation of the subsequent t-amplitude equations becomes unclear.

Furthermore, the exactness of the corresponding theory in the full limit deserves attention in that

case.

2.1.1 H1E1

The simplest way to group terms is the H1E1 combination:

Lµ = cµ〈`|Ĥe
T̂µ |µ〉 − cµE〈`|e

T̂µ |µ〉 = 0, (2.18)

that is, 〈`|ĤeT̂µ |µ〉 = E〈`|eT̂µ |µ〉. (2.19)

This gives the BWCC method [61, 132, 62, 133, 134, 135]. The state-specificity comes only from

the dependence on energy, which is specific for a particular state. Hence the state-specificity is

‘weak’ in the sense that the residual equations are nearly decoupled. The equation is formally
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close to a single reference coupled cluster equation. This method is not size-extensive.

2.1.2 H1E2

The H1E2 combination gives:

Lµ = cµ〈`|Ĥe
T̂µ |µ〉 − cµ

∑

ν

H̃νµ〈`|e
T̂ν |ν〉

= 0, (2.20)

that is, 〈`|ĤeT̂µ |µ〉 =
∑

ν

H̃νµ〈`|e
T̂ν |ν〉. (2.21)

The size-extensivity of this method is not obvious, but it will be shown below that the above

equation is equivalent to the residual equation in the State Universal MRCC (SU-MRCC) method

[55, 57, 58], so the method is size-extensive. As for SU-MRCC, this method is state-universal

because the t-amplitude equation (residual equation) does not depend on any particular state (no

cµ appears in the equation).

For later use, we give here an example of grouping U terms in the ‘H1E2’ manner. Uρ =
∑

µ Uµ
ρ

:

Uρ = 〈ρ|
∑

µ

(Ĥ − E)eT̂µcµ|µ〉

=
∑

µ

(
cµ〈ρ|Ĥe

T̂µ |µ〉 − cµ
∑

ν

H̃νµ〈ρ|e
T̂ν |ν〉

)

=
∑

µ

Uµ
ρ . (2.22)

In this case,

Uρ
ν =

(
cµ〈ρ|Ĥe

T̂µ |µ〉 − cµ
∑

ν

H̃νµ〈ρ|e
T̂ν |ν〉

)

= cµ(H̃ρµ −
∑

ν

H̃νµδρν)

= 0. (2.23)
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2.1.3 H2E1

The H2E1 combination gives:

Lµ =
(
cµ〈`|e

T̂µQe−T̂µĤeT̂µ |µ〉+
∑

ν

cν〈`|e
T̂ν |µ〉H̃µν

)
− cµE〈`|e

T̂µ |µ〉

= 0. (2.24)

This equation looks disconnected, but it will be shown that it is equivalent to the residual equation

used in the Mk-MRCC method [63, 64, 66, 68, 65, 136, 67, 69, 70, 137], so the method is also size-

extensive. Compared to BWCC, this method (or equivalently, the Mk-MRCC method) has a

stronger state-specific character in the sense that every residual equation explicitly depends on

all the reference determinants.

2.1.4 H2E2

The H2E2 combination defines another method:

Lµ =
(
cµ〈`|e

T̂µQe−T̂µĤeT̂µ |µ〉+
∑

ν

cν〈`|e
T̂ν |µ〉H̃µν

)
− cµ

∑

ν

H̃νµ〈`|e
T̂ν |ν〉 (2.25)

= 0. (2.26)

This method has not previously been reported in the literature.

2.2 Transformation of Projection Manifold

Another way of defining equations is introduced by the transformation of the projection manifold

[66]:

〈l| → 〈l̃| = 〈l|e−T̂µ .

(assume 〈l̃| is obtained from the excitation of 〈µ|). T̂µ acts on the bra state 〈l| as an de-excitation

operator. Let us denote by Sactive the space spanned by the bra states corresponding to the

reference determinants, and denote by Sµ the space spanned by the bra state corresponding to
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determinants from all possible excitations in T̂µ of |µ〉. It is not hard to see that 〈l̃| can be

expanded in Sactive and Sµ. In particular, 〈l̃| contains contribution from 〈ν| (ν 6= µ); this is where

the subtle difference between using 〈l| and 〈l̃| to define the equations arises, as will be clear below.

〈l̃| = 〈l|e−T̂µ =
∑

dν〈ν|+
∑

k

dk〈k| (2.27)

where |k〉 ∈ Sµ.

By replacing 〈l| with 〈l̃|, the lµ equations are transformed into

L̃µ =
∑

dνu
µ
ν +

∑

k

dkl
µ
k . (2.28)

We will certainly have

L̃µ = 0, (2.29)

if

Uµ
ν = 0, (2.30)

and Lµ
k = 0. (2.31)

From the direct projection, we defined Lµ
k = 0 (in truncated schemes, this equation still holds,

again, because |k〉 falls within the set of determinants { T̂ iµ|µ〉, ∀ i }). Thus if Uµ
ν = 0 is automat-

ically satisfied, the direction projection method is theoretically equivalent to the corresponding

transformed projection method.

Examining the above four ways to define equations, we find that following either H2E1, or

H1E2, we automatically have

Uµ
ν = 0, (2.32)

using 〈ν|eT̂ |µ〉 = δνµ or
∑

ν H̃µνcν = Ecµ (refer to the example in the H1E2 section). Hence
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using projections directly or using transformed projections are equivalent for the H2E1 and H1E2

methods. (this is not the case for the H2E2 method).

With transformed projections, we get a few ways to define equations, which might be denoted

by t-H1E2, t-H2E1 and t-H2E2 (t means ‘transform’); t-H1E1 leads to unreasonable equation,

so it is discarded. Due to the above argument, only t-H2E2 is different from the corresponding

untransformed method.

t-H2E1 defines the Mk-MRCC method and t-H1E2 defines the SU-MRCC method. Since

it has been shown that H2E1 and H1E2 are equivalent to t-H2E1 and t-H1E2, respectively,

this establishes the equivalence between H2E1/H1E2 and Mk-MRCC/SU-MRCC, respectively, as

claimed in previous sections. The t-H2E2 method ((Eq. (22) in Ref. [66])) has nearly the same

first order expression for t-amplitudes as does the Mk-MRCC method, since the denominator is

the same, so it should be free from the intruder state problem. The method is also size-extensive.

2.3 A Problem with These Methods, and Comparisons with

MRexpT

Let us denote by Lµ the set of excited determinants which can be reached by T̂µ (it contains a

set of excitation operators), and the union of the sets by L, that is,

L =
⋃
Lµ
⋃
Lν
⋃
· · ·

The number of elements in L is much larger than the number of elements in any particular subset

Lµ. Considering that excitations involving only core and virtual orbitals are far larger in number

than those involving active orbitals (unless the number of active orbitals is comparable to that of

core orbitals), we approximately have

|L| ≈M × |Lµ|,
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where |L| denotes the number of elements in L, and M is the dimension of the active space. This

is approximately the number of all independent t-amplitudes.

So far, formally it seems that we apply the projection to every |`〉 ∈ L and decompose

L = 〈`|
∑

ν

(Ĥ − E)eT̂ν cν |ν〉

=
∑

ν

Lν , (2.33)

and then set Lν = 0, ∀ ν. (2.34)

However, this is only for formal simplicity, and it is far from reality. Given the requirement

that the number of independent t-amplitudes must equal the number of equations, the following

cannot be true:

Lν = 0, ∀ ν,L (2.35)

because the total number of equations of this type is roughly M × |L|, whereas the number of

independent t-amplitudes is about |L|. We only have Lν = 0 for those ν which can be excited to

|`〉 by an excitation operator in T̂ν . Understanding this, let us examine two cases.

• First, consider the case in which |`〉 can only be reached by the linear excitation of a

particular reference determinant |µ〉, for example (in singles and doubles truncation schemes)

where |`〉 is from the double excitation of |µ〉 from two core orbitals to two virtual orbitals.

From the above methods, we only have Lν = 0 for the particular ν = µ. For ν 6= µ, we have

lν 6= 0. We illustrate this by the SU-MRCC method (the conclusion holds equally for the

BWCC and Mk-MRCC methods):

Lν = cν〈`|Ĥe
T̂ν |ν〉 − cν

∑

ρ

H̃ρν〈`|e
T̂ρ |ρ〉

6= 0, ∀ ν 6= µ. (2.36)
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The Schrödinger equation requires that

L = 〈`|(Ĥ − E)|Ψ〉 = 〈`|
∑

ν

(Ĥ − E)eT̂ν cν |ν〉.

Let us define L as the proper residual and L = 0 as the proper residual condition. After we

eliminate the redundancy problem and modify the definition equation to Lµ = 0, the proper

residual does not vanish:

L =
∑

ρ

Lρ

= Lµ +
∑

ρ6=µ

Lρ

=
∑

ρ6=µ

Lρ

6= 0. (2.37)

L may even be far from zero, based on the consideration of the numerous non-zero component

residuals Lρ (ρ 6= µ).

• For the other cases, suppose |`〉 can be reached by linear excitations of |µ1〉, |µ2〉, . . . , |µW 〉,

. Using a similar argument we arrive at

L =
∑

ρ

Lρ

= Lµ1 + Lµ2 + LµW +
∑

ρ 6= µ1,µ2,...,µW

Lρ

=
∑

ρ 6= µ1,µ2,...,µW

Lρ

6= 0 (2.38)

As a result the proper residual, which is supposed to vanish according to the Schrödinger

equation, is non-zero now. In fact, even the redundant |`〉’s can be reached only by a small

portion of {|µ〉}; thus, it is unclear how far L is from zero, given the large number of non-zero

component residuals.
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Therefore, in spite of the over-parameterization of the ansatz, almost none of the proper

residuals are zero. Similar arguments hold for the transformed projection method: the proper

residuals are non-zero.

In traditional CC methods, the proper residual condition provides a natural way to define

t-amplitude equations. While for the various (truncated) JM-ansatz based methods, there is a

conflict between the sufficiency condition and the proper residual condition. In general, it may be

hard to judge how reasonable the various sufficiency conditions are. Particularly in single reference

(SR) cases, we believe that the traditional way of doing CC, which utilizes the proper residual

condition, is rather reasonable. With this understanding, we may take ‘failing to fulfill the proper

residual condition’ as one unsatisfactory aspect of the various JM-ansatz based methods. (It is

another question how serious the drawback is.) The above argument may give a clue as to why,

say, the Mk-MRCC method is outperformed by single reference coupled cluster methods [69] for

SR systems.

The discussion naturally leads to the MRexpT method [71, 130] as a relevant comparison.

In MRexpT, the redundancy problem is removed by exerting some constraints on redundant t-

amplitudes so that they become dependent, and there is a one to one correspondence between

the excited determinant and the independent t-amplitudes. Then the proper residual condition

is invoked:

〈`|
∑

ν

(Ĥ − E)eT̂ν cν |ν〉 = 0. (2.39)

From the proper residual condition argument, the MRexpT method is expected to outperform

other methods for SR systems in general. It will be interesting to see more extensive tests (beyond

the model systems studied, which are typically very small [71, 69]).

2.4 Conclusion

Different JM-ansatz based methods are unified according to how to group terms L =
∑

µ Lµ. The

transformed projection provides extra flexibility; for example, t-H2E2 differs from H2E2. It has
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been shown that some seemingly different methods are indeed equivalent: H2E1 is equivalent to

Mk-MRCC (t-H2E1), and H1E2 is equivalent to SU-MRCC (t-H1E2). It is nontrivial to show the

size-extensivity in the untransformed forms (H2E1 and H1E2), while the transformation renders

the size-extensivity proof simpler.

Although different sufficiency conditions are proposed, the underlying physical meaning still

evades a clear understanding. It is argued that the defining equations are not entirely proper,

in the sense that the proper residual condition is broken. This may partially rationalize the

unsatisfactory performance of the various methods for SR systems. In contrast, the MRexpT

method fulfills the proper residual condition, and it is expected to outperform other methods in

SR cases. More extensive tests are needed to verify the statement.



Chapter 3

Orbital invariance issue

For ab initio methods, the solutions to molecular orbitals are often not unique unless extra con-

ditions are imposed, such as canonical orbitals for the Hartree-Fock (HF) method and natural

orbitals for the complete-active-space self-consistent-field (CASSCF) method. Different sets of

orbitals are often related by unitary transformations. It is certainly desired that energy and other

properties not be affected by the choice of orbitals. The sensitivity to orbitals introduces a certain

degree of arbitrariness into the solutions. If the energy does not change upon orbital rotations in

certain orbital spaces, we say that the method is orbital invariant. The orbital rotation spaces

are usually clear from the context. The transformation property of the energy is closely related

to that of the wavefunction, and we will discuss them together.

The orbital invariance issue generally does not pose a problem for single reference methods

(the single reference coupled electron pair (CEPA) approach [138, 139, 140, 141, 142] are among

the possible exceptions), but this issue is not well addressed yet for multireference methods. In

this chapter, we will use tensor theory as the tool to examine the orbital invariance property.1

The technique developed here is general and convenient to investigate the invariance issue for a

large class of methods. The invariance property of the Hartree-Fock, single reference and mul-

tireference configuration interaction, single reference coupled cluster and complete-active-space

1The contents of this chapter are submitted to J. Chem. Phys. for publication

26
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self-consistent-field methods are well known. There are simpler approaches to establish their in-

variance property. In comparison, the approach adopted in this work may appear tedious and

unwieldy at some places. In that case, the point of the analysis is not in the conclusion itself,

but mainly to develop and demonstrate a generally applicable technique, and to provide an al-

ternative route to establish the invariance property. In addition, the excitation amplitudes or

the determinant coefficients in the wavefunction are given explicitly in tensor form, therefore how

they transform upon orbital rotations is explicitly known, and thus the proof is constructive.

To define notation and draw the analogy between coordinate transformations and orbital

transformations, we summarize the basics of tensor theory [143]. For an (admissible) coordinate

transformation:

T : yi = yi(x1, x2, . . . , xn), i = 1, 2, . . . , n, (3.1)

a covariant tensor of rank one is the entire class of sets of quantities {Aα(x)}, {Bi(y)}, . . . related

to one another by the transformation of the form:

Bi(y) =

n∑

α=1

∂xα

∂yi
Aα(x), i = 1, 2, . . . , n, (3.2)

where {Aα(x)} is the representation of the tensor in the X-coordinate system, and {Bi(y)} is its

representation in the coordinate system Y, which is related to the X-system by the transformation

T. A contravariant tensor of rank one is the entire class of quantities such as {Aα(x)}, {Bi(y)}, . . .

related to one another by the transformation of the form

Bi(y) =
n∑

α=1

∂yi

∂xα
Aα(x), i = 1, 2, . . . , n. (3.3)

The generalization to tensors of higher rank is straightforward [143]. A set of nr quantities

Ai1i2...ir (x), associated with the X-coordinate system, represents the components of a covariant

tensor of rank r if the corresponding set of nr quantities Bi1i2...ir (y), associated with the Y-
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coordinate system, is given by

Bi1i2···ir =
∑

α1,...,αr

∂xα1

∂yi1
∂xα2

∂yi2
· · ·

∂xαr

∂yir
Aα1α2···αr . (3.4)

A set of nr quantities Ai1i2...ir (x), associated with the X-coordinate system, represents the com-

ponents of a contravariant tensor of rank r if the corresponding set of nr quantities Bi1i2...ir (y),

associated with the Y-coordinate system, is given by

Bi1i2···ir =
∑

α1,...,αr

∂yi1

∂xα1

∂yi2

∂xα2
· · ·

∂yir

∂xαr
Aα1α2···αr . (3.5)

A set of nr+s quantities, typified in the X-coordinate system by the expressions Aj1j2...js
i1i2...ir

(x), is

a mixed tensor, covariant of rank r and contravariant of rank s, provided that the corresponding

quantities Bj1j2...js
i1i2...ir

(y) in the Y-coordinate system are given by the law

Bj1j2···js
i1i2···ir

=

β1,...,βs∑

α1,...,αr

∂xα1

∂yi1
∂xα2

∂yi2
· · ·

∂xαr

∂yir
∂yj1

∂xβ1

∂yj2

∂xβ2
· · ·

∂yjs

∂xβs
Aβ1β2···βs
α1α2···αr . (3.6)

In this work, we follow the convention of using superscripts to denote contravariant indices

and using subscripts to denote covariant indices. The Einstein convention is not adopted herein,

as understandably it is not suitable to discuss equations that are not invariant.

In the context of studying orbital invariance, we examine the relation of the energy and/or

wavefunction to orbital rotations instead of coordinate transformations [144]. Without loss of

generality, we focus on a unitary transformation of a set of orthonormal molecular orbitals {φi}:

φ̃i =
∑

j

Ui
jφj , ∀ i, (3.7)

and correspondingly, the inverse transformation:

φi =
∑

j

Ūi
j φ̃j , ∀ i, (3.8)
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where

Ū = U−1 = U†. (3.9)

Tensor analysis is carried out with respect to this type of transformation (see Ref. [144] for an

interesting discussion of a tensor formulation of many-electron theory in a nonorthogonal single-

particle basis). Under these circumstances, creation operators behave like contravariant tensors,

and annihilation operators behave like covariant tensors [1]. The transformation properties of

molecular integrals are also straightforward to demonstrate. We will use these results directly,

and adopt proper tensor notations accordingly. One important result from tensor analysis is

that tensor contraction operations reduce tensor ranks. In other words, the contracted indices are

invariant, and we do not have to pay attention to them when examining transformation properties

(more precisely, if the contracted indices are within a certain class, the invariance of contracted

indices is limited to transformations within that class). With this knowledge, we readily see the

invariance of the Hamiltonian:

Ĥ =
∑

p,q

F q
p â

p
q +

1

4

∑

p,q,r,s

V rs
pq â

pq
rs , (3.10)

with

F q
p =

∫
φ∗p(x)

(
−

1

2
∇2 −

∑

I

ZI
rI

)
φq(x)dx, (3.11)

grspq =

∫
φ∗p(x1)φ

∗
q(x2)φs(x2)φr(x1)

r12
dx1x2, (3.12)

V rs
pq = grspq − g

sr
pq, (3.13)

where ZI is the nuclear charge, rI the electron-nuclear separation, r12 the electron-electron sep-

aration, and x the electron coordinate including spin. In addition, the true vacuum |〉 (not the

Fermi vacuum) is a physical state which does not depend on orbitals. It therefore behaves like a

scalar, and is invariant to orbital rotations. Combining all the established results, we can write a
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determinant in the following form, revealing the tensor property explicitly:

|φi1φi2 · · ·φis−1
φis〉 = â†i1 â

†
i2
· · · â†is−1

â†is |〉 = âi1 âi2 · · · âis−1 âis |〉 = âi1i2···is−1is |〉 (3.14)

by defining

âik = â†ik and âi1i2···ikis = âi1 âi2 · · · âis−1 âis . (3.15)

The tensor property is now explicit, since the creation operator âik is a contravariant tensor.

Being able to write determinants in tensor form is one key element of the analysis in this chapter,

and its advantages will be made clear.

To be precise, when we discuss orbital invariance, we should always clarify the space in which

the orbital transformation is performed. Depending on the method, usually the orbitals are

naturally divided into a few classes, and we always refer to the transformations within each

class. For single reference theories, we have usually two classes: occupied orbitals and unoccupied

(virtual) orbitals.

Now we outline the general algorithm to determine the transformation property (invariant or

not) of various methods. In summary, the algorithm is a self-consistency-checking procedure:

Firstly, we assume that residual equations have been solved, and that all quantities

(particularly excitation amplitudes) appearing in residual equations are tensors. The

ranks of the tensors are denoted by the numbers of superscripts and subscripts. Fol-

lowing these assumptions, usually we can show that energy is invariant, because it

has a scalar form in the sense that all indices in the energy expression are contracted

or energy is expressed completely in terms of invariant quantities (complication with

respect to the invariance of energy may arise in some cases, to which we will pay due

attention). Then we carry out an arbitrary unitary transformation of orbitals, and

check whether the residuals remain zero. If it is, then the self-consistency-checking is

passed, and the theory is orbital invariant. Otherwise, a contradiction is reached, and

the theory does not have the property of orbital invariance.

Thus, the main job is to check whether the residuals remain zero upon orbital transformations
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(supposing the energy expression behaves like a scalar, and does not pose a problem for invariance).

More precisely, we are looking at any infinitesimal unitary transformation (a finite transformation

can be taken as a succession of infinitesimal transformations), and for various methods to be

invariant, the residuals need to remain zero for such transformations. This is a rather strong

constraint. Residual equations are expressed in terms of tensor quantities (such as V rs
pq and

determinants) and excitation amplitudes, and tensor equations are known to be invariant, so we

feel justified to assume that these amplitudes are tensors (and thus that residual equations become

formally tensor equations), as stated in the above procedure.

Whether or not a method is invariant depends on the ansatz and the amplitude equations. The

procedure developed in this chapter only helps to reveal this property mathematically. To show

that a method is orbital invariant, we seek tensor expressions for the wavefunction and residual

equation to make the invariance explicit (see Section 3.2 on MRCI for an example). For a method

which is not invariant or whose invariance property is unclear, we first assume that the method

is invariant and strive to establish the tensor character of the amplitudes. Then we employ the

above procedure to check the self-consistency to determine whether the method is invariant or

not (see Section 3.3 on CASCC for an example). It can be tricky to establish the tensor character

of the amplitudes. If we fail to do this, the technique does not work (see Section 3.3 on MRCI in

the linearized CASCC ansatz for an example).

Single reference methods are examined in Section II. Then the complete-active-space self-

consistent-field (CASSCF) and multireference configuration interaction (MRCI) [145, 146, 147,

148] methods are scrutinized. The complete-active-space coupled cluster (CASCC) [25, 26] and

CCSDt [149, 27] methods are discussed afterwards. Subsequently the Jeziorski-Monkhorst (JM)

ansatz-based methods [55, 59] are analyzed. For simplicity, spatial and spin symmetries are not

considered in these discussions.
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3.1 Hartree-Fock, Single Reference CI and CC

Let us start with the Hartree-Fock method. There is the well-known result that for any determi-

nant

|ψ〉 = |φi1 · · ·φir 〉

= âi1···ir |〉, (3.16)

upon a unitary orbital transformation within the set of orbitals occupied in the determinant

G = {φi1 , . . . , φir}, |ψ〉 only changes by a phase factor eiθ [1, 150]. Thus, the Hartree-Fock

determinant |ψHF〉 changes by a phase factor upon an orbital rotation. The Hartree-Fock energy

EHF = 〈ψHF|Ĥ|ψHF〉 is invariant because Ĥ is invariant, and the phase factors from the ket state

and that from the bra state multiply to yield a factor of unity.

The result that âi1···ir changes by a phase factor det(U) is not so much related to the fact

that it is a product of second-quantized operators; rather it is based only on the assumption that

âi1···ir is an antisymmetric tensor. Here we prove the result.

Suppose Xi1···in is an antisymmetric tensor in the orbital basis {φi} and Y i1···in is the cor-

responding tensor in the orbital basis {φ̃i}. The two orbital bases are related by the unitary

transformation:

φ̃i =
∑

j

Ui
jφj ,∀ i. (3.17)

The result we will prove is that

Y i1···in = det(U)Xi1···in , (3.18)
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(det(U) = eiθ). From the transformation property of contravariant tensors:

Y i1···in =
∑

j1···jn

Ui1
j1
· · ·Uin

jn
Xj1···jn

=
∑

j1···jn

[
Ui1
j1
· · ·Uin

jn

1

n!

( ∑

k1···kn

δj1···jnk1···kn
Xk1···kn

)]

=
1

n!

∑

j1···jn
k1···kn

(
Ui1
j1
· · ·Uin

jn
δj1···jnk1···kn

Xk1···kn
)

=
1

n!

∑

j1···jn
k1···kn

[
Ui1
j1
· · ·Uin

jn

(
δj1···jni1···in

δi1···ink1···kn

)
Xk1···kn

]

=
1

n!

∑

k1···kn

[( ∑

j1···jn

Ui1
j1
· · ·Uin

jn
δj1···jni1···in

)
δi1···ink1···kn

Xk1···kn
]

=
1

n!

∑

k1···kn

(
det(U)δi1···ink1···kn

Xk1···kn
)

= det(U)
1

n!

∑

k1···kn

(
δi1···ink1···kn

Xk1···kn
)

= det(U)Xi1···in , (3.19)

in which δj1···jni1···in
is a generalized Kronecker delta tensor [151]. Such a tensor is antisymmetric in

superscripts and subscripts, and whose value is non-zero only if the superscripts are distinct from

each other, and the subscripts are the same set of numbers as the superscripts, being +1 or -1

according as an even or odd number of transpositions is required to arrange the superscripts in

the same order as the subscripts). In this derivation, we have used the identity that

Xj1···jn =
1

n!

∑

k1···kn

δj1···jnk1···kn
Xk1···kn , ki = 1, 2, . . . n, ∀ i, (3.20)

due to the antisymmetry of the tensor X. Additionally, to factorize out det(U) we use the identity

δj1···jnk1···kn
= δj1···jni1···in

δi1···ink1···kn
. (3.21)

The identity holds when there is no repeated index in {i1, . . . , in}, which is the case here. The

validity of the identity is clear since: (1) when there are repeated indices in either {j1, . . . , jn} or
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{k1, . . . , kn}, both sides are zero (the generalized Kronecker delta tensor is antisymmetric), (2)

δj1···jnk1···kn
is determined by the parity of the permutation of (j1 · · · jn) to (k1 · · · kn), (3) the parity

does not depend on the specific way that the permutation is carried out, so the parity of the

permutation of (j1 · · · jn) to (k1 · · · kn) is the same as that of the permutation of (j1 · · · jn) to

(i1 · · · in), then to (k1 · · · kn), while the parity of the latter equals δj1···jni1···in
δi1···ink1···kn

.

Formally it may be advantageous to modify the form of the Hartree-Fock wavefunction to

make it explicitly invariant, that is, to eliminate the phase factor:

|ψ̃HF〉 =
1

n!

∑

i1,...,in

Ci1···in â
i1···in |〉. (3.22)

where Ci1···in is an antisymmetric tensor. Suppose every index in {i1, . . . , in} goes from 1 to n. To

normalize the wavefunction, we can set C12···n = 1. Whether to use |ψHF〉 or |ψ̃HF〉 as the Hartree-

Fock determinant does not affect the invariance of the energy for the methods to be discussed in

this section, but using |ψ̃HF〉 also makes the wavefunction invariant. Hereafter, we assume that

|ψ̃HF〉 is used in the following discussions of single reference configuration interaction (SRCI) and

single reference coupled cluster (SRCC) methods, so that the wavefunction is explicitly invariant.

For notational simplicity, we drop the ‘˜’ and simply write the invariant HF determinant as |ψHF〉.

For SRCI methods, we take the configuration interaction doubles (CID) method as an example

for the sake of simplicity, assuming intermediate normalization.

Ω̂ = 1 + Ĉ = 1 +
1

(2!)
2

∑

i1,i2,b1,b2

cijabâ
b1b2
i1i2

, (3.23)

|ψCID〉 = Ω̂|ψHF〉 = Ω̂|φi1φi2φi3 · · ·φir 〉, (3.24)

ĤΩ̂|ψHF〉 = EΩ̂|ψHF〉, (3.25)

E = 〈ψHF|ĤΩ̂|ψHF〉, (3.26)

〈φb1φb2φi3 · · ·φir |
(
Ĥ − E

)
Ω̂|φi1φi2φi3 · · ·φir 〉 = 0, (3.27)

〈|âb1b2i3···ir
(
Ĥ − E

)
Ω̂âi1i2i3···ir |〉 = 0, (3.28)

where i1, i2, . . . denote occupied orbitals, and b1, b2, . . . denote unoccupied orbitals. From the
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algorithm outlined in Section I, we first assume that t-amplitudes are tensors covariant of rank

2 and contravariant of rank 2. Then it follows that: (1) Ĉ and Ω̂ are invariant due to tensor

contractions, (2) energy is invariant, and (3) the composite operator Ẑ is invariant if we define

Ẑ =
(
Ĥ − E

)
Ω̂. (3.29)

Since Ẑ is invariant, the tensor character of the residual is determined by âb1b2i3···ir and âi1i2i3···ir .

Thus we can write the residual in tensor notation:

Ri1i2i3···ir
b1b2i3···ir

= 〈|âb1b2i3···ir
(
Ĥ − E

)
Ω̂âi1i2i3···ir |〉 = 〈|âb1b2i3···ir Ẑâ

i1i2i3···ir |〉. (3.30)

Although we can prove orbital invariance using the residual in this form, we prefer to rewrite R

to reveal its fundamental transformation property:

Ri1i2i3···ir
b1b2i3···ir

=
1

(r − 2)!

∑

i3,...,ir

Ri1i2i3···ir
b1b2i3···ir

= Ri1i2
b1b2

. (3.31)

The above equations hold because R is an antisymmetric tensor. Utilizing antisymmetry of some

tensors to rewrite uncontracted quantities in contracted forms is another key element of the

analysis in this chapter. The tensor rank of R is reduced due to tensor contraction operations

indicated by the explicit summations. This is the form we often see in the literature. Now we can

prove orbital invariance easily by showing that the residual remains zero upon orbital rotations.

Suppose that

Ri1i2
b1b2

= 0,∀ i1, i2, b1, b2. (3.32)

Upon orbital rotations, the residual remain zero:

Rĩ1 ĩ2
b̃1b̃2

=
∑

i1,i2,b1,b2

Uĩ1
i1

Uĩ2
i2

Ūb1
b̃1

Ūb2
b̃2

Ri1i2
b1b2

= 0. (3.33)

Thus we have proved that the CID method is invariant.
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This line of arguments clearly can be extended to general single reference CI methods, irre-

spective of the level of truncation in Ĉ. The same arguments hold for single reference coupled

cluster (SRCC) methods, by redefining

Ẑ = e−T̂ ĤeT̂ , (3.34)

where T̂ is the excitation cluster operator. SRCC is orbital invariant with respect to separate ro-

tations within the occupied orbital space and within the unoccupied orbital space (in comparison,

Ĥ is invariant with respect to rotations within the space spanned by all orbitals). We emphasize

the restricted invariance because it will play a role in Sections III and IV.

The line of reasoning presented above will be used henceforth. Usually we can write the

residual equation in the form 〈φλ|Ẑ|φ〉, in which |φλ〉 is an excited determinant, |φ〉 is a reference

determinant and Ẑ is an orbital invariant operator, due to explicit summations of all indices in

it. We then identify the tensor character of the residual from 〈φλ| and |φ〉. Finally, we draw

conclusions, depending on whether the residual remains zero upon orbital rotations. This is a

simplification of the self-consistency-checking algorithm introduced in Section I.

3.2 CASSCF and MRCI

For the CASSCF method, upon convergence, the wavefunction has the form

|ψCASSCF〉 =
∑

µ

Cµ|µ〉

=
∑

i′1<i
′
2<···<i

′
k
,m1<m2<···<ms

Ci′1···i′km1···ms
|φi′1 · · ·φi′kφm1

· · ·φms
〉

=
∑

i′1<i
′
2<···<i

′
k
,m1<m2<···<ms

Ci′1···i′km1...ms
âi

′
1···i

′
km1...ms |〉, (3.35)

where i′1, . . . , i
′
k denote core orbitals and m1, . . . ,ms denote active orbitals. Since the summations

of indices are restricted, it will be awkward to demonstrate the invariance in this form. Let us
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rewrite the wavefunction:

|ψCASSCF〉 =
∑

i′1<i
′
2<···<i

′
k
,m1<m2<···<ms

Ci′1···i′km1···ms
âi

′
1···i

′
km1···ms |〉

=
1

k!

∑

i′1,...,i
′
k
,m1<m2<···<ms

Ci′1···i′km1···ms
âi

′
1···i

′
km1···ms |〉

=
1

k!s!

∑

i′1,...,i
′
k
,m1,...,ms

Ci′1···i′km1···ms
âi

′
1···i

′
km1···ms |〉. (3.36)

The amplitudes Ci′1···i′km1···ms
’s are assumed to be antisymmetric (if not, we can rewrite the wave-

function expression to make the C’s antisymmetric). In Eq. (3.36), utilizing the antisymmetry of

âi
′
1···i

′
km1···ms and Ci′1···i′km1···ms

, we lift the restrictions on the indices, and modify the restricted

summations to free summations. The free summations make the orbital invariance of |ψCASSCF〉

explicit (assuming the self-consistency-checking is passed). (Let us mention a related point: if

|µ〉’s span the complete active space, we can show, using the above summation technique, that

the projection operator in the active space, which has the form

P̂act =
∑

µ

|µ〉〈µ|,

is invariant to orbital rotations in active space.) The orbital invariance of the energy follows, since

E = 〈ψCASSCF|Ĥ|ψCASSCF〉, (3.37)

and every quantity in the expression is invariant with respect to separate rotations in core orbital

space, in active orbital space and in non-active virtual orbital space. Once the C-amplitudes are

converged, the final residual equation has the form:

〈φi′1 · · ·φi′kφm1
· · ·φms

|

((
Ĥ − E

)
|ψCASSCF〉

)
= 0, (3.38)

〈|âi′1···i′km1···ms

((
Ĥ − E

)
|ψCASSCF〉

)
= 0, (3.39)

Ri′1···i
′
k
m1···ms

= 〈|âi′1···i′km1···ms

((
Ĥ − E

)
|ψCASSCF〉

)
= 0,∀ i′1, . . . , i

′
k,m1, . . . ,ms.(3.40)
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Additionally, the wavefunction satisfies the stationary condition:

R̄mx

by
= 〈ψCASSCF|â

mx

by
Ĥ|ψCASSCF〉

= 〈ψCASSCF|â
mx

by

(
Ĥ|ψCASSCF〉

)
= 0,∀mx, by, (3.41)

R̈i′x
my = 〈ψCASSCF|â

i′x
myĤ|ψCASSCF〉

= 〈ψCASSCF|â
i′x
my

(
Ĥ|ψCASSCF〉

)
= 0,∀i′x,my, (3.42)

where ‘by’ denotes any non-active virtual orbital.

We have grouped orbital invariant quantities in parentheses, so that the tensor character of

the residual is clearly fully determined by the determinant on the left. Upon separate orbital

rotations in core orbital space and in active orbital space, the residual remains zero:

Rĩ′1···̃i
′
k
m̃1···m̃s

=
∑

j′1,...,j
′
k
,n1,...,ns

Ūj′1
ĩ′1
· · · Ūj′k

ĩ′
k

Ūn1

m̃1
· · · Ūns

m̃s
Rj′1···j

′
k
n1···ns

= 0,∀ ĩ′1, . . . , ĩ
′
k, m̃1, . . . , m̃s. (3.43)

Similarly, we can demonstrate that R̄mx

by
and R̈i′x

my remain zero upon orbital rotations in core

and active subspaces. Thus, we conclude that the CASSCF wavefunction and energy are orbital

invariant.

The arguments for the multireference configuration interaction (MRCI) method are similar.

The wavefunction has the form:

|ψMRCI〉 =
∑

x,y,z
x+y+z=N

∑

i′1<...<i
′
x

m1<...<my

b1<...<bz

Ci′1···i′xm1···myb1···bz â
i′1···i

′
xm1···myb1···bz |〉

=
1

x!y!z!

∑

x,y,z
x+y+z=N

∑

i′1,...,i
′
x,m1,...,my,b1,...,bz

Ci′1···i′xm1···myb1···bz â
i′1···i

′
xm1···myb1···bz |〉,(3.44)

where b1, . . . , bz are virtual orbital indices, x, y and z are the numbers of electrons occupying core,

active and virtual orbitals, respectively, and N is the total number of electrons. For the MRCI
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method truncated at some level, there are restrictions on the values of x, y and z, but this issue

does not affect the orbital invariance analysis, once we group terms/determinants into classes

according to the values of x, y, and z. With the above notation, we see that the wavefunction,

and hence also the energy, are orbital invariant with respect to separate orbital rotations in three

subspaces. The residual has the form

〈φi′1 · · ·φi′xφm1
· · ·φmy

φb1 · · ·φbz |

((
Ĥ − E

)
|ψMRCI〉

)
= 0, (3.45)

〈|âi′1···i′xm1···myb1···bz

((
Ĥ − E

)
|ψMRCI〉

)
= 0, (3.46)

Ri′1···i
′
xm1···myb1···bz = 0 ∀ i′1, . . . , i

′
x,m1, . . . ,my, b1, . . . , bz. (3.47)

Again, we group orbital invariant quantities together, and exhibit the tensor character of the

residual explicitly. It is almost the same as for CASSCF to demonstrate that the residual remains

zero after orbital rotations.

At this point it should be clear that orbital invariance is formally induced by orbital index

summations (tensor contractions) and is limited by the space of orbital index summations. If the

summation is confined to separate summations within space X and within space Y, then orbital

invariance of the method, if it exists, can hold at most for separate rotations in the same space.

3.3 CASCC and CCSDt

Once understanding the invariance property of MRCI, we can easily see the lack of invariance of

the CAS(2, 2)CCSD [152] and CCSDt [26, 149, 27] methods with respect to orbital rotations in

the whole active space. We analyze the two specific variants instead of the general formulations

because they are the representatives of the corresponding two classes of methods. Focusing on

the two special cases facilitates a concrete analysis.

The CAS(2, 2)CCSD method deal with the multireference systems with two active electrons in

two active orbitals. We focus on the version in which orbitals are obtained from a prior CASSCF

calculation [26]. The determinant |0〉 which makes the largest contribution to the CAS reference
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function is singled out as the reference function to define occupied and virtual orbitals. Thus, the

active orbitals are classified as active occupied or active virtual orbitals according to whether or

not they are occupied in |0〉. The wavefunction has the form:

|ψ〉 = e
T̂1+T̂2+T̂3

(A1a1a2

i1 i2I1

)
+T̂4

(A1A2a1a2

i1 i2 I1I2

)(
1 + Ĉ1 + Ĉ2

)
|0〉

= eT̂
ext(

1 + Ĉ1 + Ĉ2
)
|0〉

= eT̂
ext

eT̂
int

|0〉

= eT̂
ext+T̂ int

|0〉, (3.48)

where i1, i2 (a1, a2) denote occupied (virtual) orbitals, both active and inactive, and I1, I2 (A1,A2)

denote active occupied (active virtual) orbitals. For later use, we define

T̂ ext = T̂1 + T̂2 + T̂3
(A1a1a2

i1 i2I1

)
+ T̂4

(A1A2a1a2

i1 i2 I1I2

)
, (3.49)

and T̂ int is extracted from Ĉ1 + Ĉ2. The superscript ‘ext’ means that in each T̂ operator there is

at least one inactive (core or virtual) orbital index. The superscript ‘int’ means that all indices

are in the active space.

Now there are four subsets of orbitals: core orbitals, active occupied orbitals, active virtual

orbitals, and inactive virtual orbitals. All the summations (tensor contractions) in T̂ can be

explicitly classified according to the subset to which each index belongs. Since the invariance is

induced by tensor contractions, the energy of CAS(2,2)CCSD,

E = 〈0|ĤeT̂
ext+T̂ int

|0〉, (3.50)

is invariant with respect to orbital rotations within the four subspaces, following reasoning similar

to that used for SRCC.

In CCSDt [27], there are also four subsets of orbitals, as in CASCC. The wavefunction has the
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form:

|ψ〉 = e
T̂1+T̂2+T̂3

(A1a1a2

i1 i2I1

)
|0〉. (3.51)

To be clear, T̂1 and T̂2 here include all internal and external single and double excitations. Without

much difficulty, we can demonstrate that the energy is invariant with respect to orbital rotations

within the four subsets.

Although we have argued that restricted orbital invariance exists for these methods, the full

invariance in the whole active orbital space is certainly desired. However, the restricted index

summations break this more general invariance, which we now proceed to demonstrate explicitly.

For simplicity, we take the case of CAS(2,2)CCSD, in which T̂ int is fixed from the previous

CASSCF calculation, such that we can write the CASCC wavefunction as:

|ψ〉 = eT̂
ext

|ψCASSCF〉 = e
T̂1+T̂2+T̂3

(A1a1a2

i1 i2I1

)
+T̂4

(A1A2a1a2

i1 i2 I1I2

)
|ψCASSCF〉. (3.52)

For |ψ〉 to be invariant, T̂ ext must be invariant since |ψCASSCF〉 is invariant. Thus, every

component excitation operator must be invariant. For simplicity, we look at one particular class

of T̂2 operators:

T̂α =
∑

A1,b1,i′1,I1

t(A1b1; i
′
1I1)â

A1b1
i′1I1

,

where ‘b1’ denotes any non-active virtual orbital, although the conclusion applies to any external

excitation operator. The restricted summation of the indices already indicates that the operator

can not be invariant, but we still present the detailed analysis for completeness.

For this operator to be invariant, the amplitude t(A1b1; i
′
1I1) must transform like a tensor

covariant of rank 2 and contravariant of rank 2, t
i′1I1
A1b1

, because the tensor property of the corre-

sponding operator âA1b1
i′1I1

is already known. Thus, we can write the operator in tensor form:

T̂α =
∑

A1,b1,i′1,I1

t
i′1I1
A1b1

âA1b1
i′1I1

.
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We will show that the operator is not invariant with respect to orbital rotations in the whole

active space; hence a contradiction is reached, and the lack of invariance is demonstrated. In

other words, we will demonstrate that

T̃α 6= T̂α,

where T̃α denotes the operator in the rotated orbital basis.

Following the transformation property implied by the tensor form, upon orbital rotations in

the whole active space, we get:

T̃α =
∑

Ã1,b1,i′1,Ĩ1

t
i′1Ĩ1

Ã1,b1
âÃ1b1
i′1Ĩ1

=
∑

Ã1,b1,i′1,Ĩ1

∑

m1,m2,m3,m4

UĨ1
m1

Ūm4

Ã1
Ūm2

Ĩ1
UÃ1
m3
t
i′1m1

m4b1
âm3b1
i′1m2

=
∑

b1,m3,i′1,m2

( ∑

Ã1,Ĩ1,m1,m4

UĨ1
m1

Ūm2

Ĩ1
Ūm4

Ã1
UÃ1
m3
t
i′1m1

m4b1

)
âm3b1
i′1m2

(3.53)

6= T̂α, (T̂α =
∑

A1,b1,i′1,I1

t
i′1I1
A1b1

âA1b1
i′1I1

). (3.54)

T̃α 6= T̂α because m3 and m2 in â
m3b1
i′1m2

run over the whole active orbital space, while A1 and I1 in

âA1b1
i′1I1

are restricted;thus certain excitations in T̃α are not present in T̂α.

Therefore, T̂α is not invariant. The above arguments can be applied to other classes of ex-

citation operators. Hence T̂ ext is not invariant, and we conclude the lack of invariance of the

wavefunction and the energy.

The linear excitation manifold of CASCC is the same as that of MRCI at the same level; for

example, CASCCSD has the same linear excitation manifold as does MRCISD. Thus the projection

manifold does not create a problem for orbital invariance in the active space. In this sense, the

problem comes from the nonlinear ansatz. However, this understanding is possibly misleading

because, if we compare SRCC to SRCI, the nonlinear parameterization form in SRCC does not

affect the invariance property. The essential problem comes from singling out one particular

determinant in the multi-determinantal reference function to further divide active orbitals into

two disjoint sets, thus narrowing the invariance space. The foregoing rather technical discussion
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is just a reflection of the problem. In the JM-ansatz based methods, every reference determinant

has its corresponding excitation operator, whose amplitudes implicitly depend on the particular

reference determinant through the residual equations, instead of depending only on the whole

reference function (as in internally contracted methods). In some sense, there are multiple vacua

and the orbitals in each excitation operator are divided into two disjoint sets. This complicated

division even precludes a restricted invariance space.

Following the arguments about CASCC, we now illustrate the potential difficulty in analyzing

the invariance property using the tensor technique. The difficulty lies in establishing the tensor

character of the amplitudes. When we argue about the lack of invariance in the active orbital

space, we purposely assume that T̂ int is fixed from the previous CASSCF calculation such that

we can write the wavefunction in a product form:

|ψ〉 = eT̂
ext

|ψCASSCF〉. (3.55)

Since |ψCASSCF〉 is invariant, eT̂
ext

, and hence also T̂ ext, must be invariant to make the wave-

function |ψ〉 invariant (this is the initial assumption and the starting point of our arguments).

Then we can establish the tensor character of the T̂ ext-amplitudes. Finally, a contradiction is

reached, and we conclude the lack of invariance. Without the assumption that T̂ int is fixed from

the previous CASSCF calculation, we cannot separate |ψ〉 into an invariant part (|ψCASSCF〉) and

another part whose invariance property is unclear, as in Eq. (3.55). It is then unclear how to

proceed to determine the tensor properties of the amplitudes, and it would be awkward to prove

(if still possible mathematically) the lack of invariance for CASCC.

An another example to illustrate the difficulty, we write the MRCI wavefunction ansatz by

linearizing the CASCC ansatz:

|ψMRCI〉 = (1 + T̂ ext + T̂ ext)|0〉, (3.56)

since the linear excitation manifold of CASCC is the same as MRCI at the same level. In this

expansion, any operator in T̂ ext + T̂ ext may be written as t(p1, p2, · · · , pf ; q1, q2, · · · , qf )â
p1p2···pf
q1q2···qf ,
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not as t
q1q2···qf
p1p2···pf â

p1p2···pf
q1q2···qf , because the tensor character of t(p1, p2, · · · , pf ; q1, q2, · · · , qf ) is not yet

known, while the form t
q1q2···qf
p1p2···pf would imply it is a tensor covariant of rank f and contravariant

of rank f . In this ansatz, since |0〉 is not invariant with respect to orbital rotations in the active

space, the initial assumption of the invariance of the wavefunction |ψMRCI〉 does not lead to the

conclusion that T̂ ext + T̂ ext must be invariant. Therefore we cannot proceed to determine the

tensor character of the amplitudes, and we can not easily demonstrate the invariance for MRCI.

We emphasize that we are not led to the wrong conclusion that MRCI is not invariant; it is just

that we cannot prove it straightforwardly. The point of the foregoing discussions is that it can

be tricky to establish the tensor character of the amplitudes, and caution is needed to apply the

tensor technique. To prove that a method is invariant, as the first step we try various possibilities

for expressing the amplitudes in tensor forms until we find one which renders the invariance of

the wavefunction explicit.

3.4 MRCC: JM-ansatz based methods

In this section, we focus on the JM-ansatz based methods. From the analysis below, we will

see that there are serious difficulties in making JM-ansatz based methods orbital invariant with

respect to active space rotation. It will be clear by the end of this section that these methods are

not affected by rotations in core orbital space or rotations in inactive virtual orbital space.

3.4.1 Residual equation

Let us first make a ‘coarse’ analysis, neglecting the potential orbital invariance problem with

excitation operators and the wavefunction. We will, following the same arguments as before, focus

on the tensor structure of residuals indicated by the ket and bra states. For complete-model-space

(CMS)-based methods, the wavefunction from the JM ansatz assumes the form:

|ψ〉 =
∑

µ

eT̂µ |µ〉Cµ, (3.57)
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where |µ〉 is a determinant in the active space. For the majority of the JM-ansatz based methods,

we can abstract the residual equation to the following form:

〈l(µ)|Ẑ|µ〉 = 0, (3.58)

where |l(µ)〉 is a determinant excited from |µ〉, and

Ẑ =





e−T̂µĤeT̂µ −
∑

ν e
−T̂µeT̂ν |ν〉〈ν|e−T̂µĤeT̂µ (HSCC)[55, 57, 58]

ĤeT̂µ − EeT̂µ (BWCC)[61, 135, 153, 134]

e−T̂µĤeT̂µCµ −
∑

ν〈µ|e
−T̂ν ĤeT̂ν |ν〉Cνe

−T̂µeT̂ν (Mk-MRCC)[63, 65, 66, 136, 68, 69, 70].

(The closely related MRexpT [71, 130, 72] method is not discussed here, because it cannot easily

be cast into the above form. The discussion in next subsection, however, also applies to MRexpT.)

Let us assume that Ẑ is invariant (for all the methods except Mk-MRCC, all indices in Ẑ are

summation indices, and Ẑ is formally invariant; in other words, we first neglect the problem with

Ẑ and focus on the residual equations). Then the tensor character of the residual is determined

by 〈l(µ)| and |µ〉. As an example, we look at these methods truncated at the level of singles

and doubles and examine the system of 4 active orbitals (φm1
, φm2

, φm3
, φm4

), 2 core electrons, 2

active electrons, and

|µ〉 = |φi′1φi′2φm1
φm2
〉, (3.59)

〈l(µ)| = 〈φb1φb2φm1
φm2
|. (3.60)

〈l(µ)| is a doubly excited determinant from core orbitals to virtual orbitals. Then the residual is

R = 〈l(µ)|Ẑ|µ〉 = 〈φb1φb2φm1
φm2
|Ẑ|φi′1φi′2φm1

φm2
〉

= 〈|âb1b2m1m2
Ẑâi

′
1i

′
2m1m2 |〉

= Ri′1i
′
2m1m2

b1b2m1m2
. (3.61)
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Notice that the repeated indices here are not summation indices, so there is no tensor contraction.

Upon an orbital rotation in active space, the residual becomes

Ri′1i
′
2m̃1m̃2

b1b2m̃1m̃2
=

∑

mα,mβ ,mγ ,mρ,

Um̃1
mα

Um̃2
mβ

Ūmγ

m̃1
Ūmρ

m̃2
Ri′1i

′
2mαmβ

b1b2mγmρ
. (3.62)

Now in the rotated orbital basis, the residual does not vanish. For example, Ri′1i
′
2m̃1m̃2

b1b2m̃1m̃2
has a

contribution from

Ri′1i
′
2m3m4

b1b2m1m2
= 〈φb1φb2φm1

φm2
|Ẑ|φi′1φi′2φm3

φm4
〉.

(
set mα = m3,mβ = m4,mγ = m1,mρ = m2 in Eq(3.62)

)
(3.63)

This is a quadruple excitation with respect to |φi′1φi′2φm3
φm4
〉, and the residual is non-zero. This

observation can be extended to general active spaces.

3.4.2 Wavefunction and Energy

From the discussion of residual equations, it is clear that the methods under discussion are not

orbital invariant. However, we will see that neither the wavefunction nor the energy would be

invariant, even if the residual equations would be satisfied upon orbital rotations for the methods

under study. Let us first look at the wavefunction:

|ψ〉 =
∑

µ

eT̂µ |µ〉Cµ. (3.64)

Without going into details, we see that the invariance of the wavefunction would be limited by

that of the excitation operator T̂µ, even if we could assume that |µ〉Cµ did not affect the invariance

property, which itself is not a valid assumption. In T̂µ, the summation of active indices is done

separately for active orbitals contained in |µ〉 and for the other active orbitals. This limits the

‘invariance’ of T̂µ to orbital rotations in the two subspaces, as in CASCC. However, the situation

is even worse, because every T̂µ, corresponding to each |µ〉, has its own ‘invariance’ space, and
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the ‘invariance’ spaces for different T̂µ’s differ and at the same time also overlap. Thus the total

wavefunction cannot be invariant in the whole active space. Even a more restricted invariance

in subspaces of the active space does not seem possible, because it is hard to divide the active

orbital space into a few disjoint sets of orbitals associated with every |µ〉.

Let us go one step further. Even if we lift the restrictions on the range of every active

summation index in every T̂µ, the invariance problem with the wavefunction still exists, as long

as we retain the implicit dependence of the T̂ -amplitudes on |µ〉 (otherwise the method becomes

internally contracted). If the active summation index runs over the whole active orbital space, T̂µ’s

appear ‘formally’ to be orbital invariant with respect to active orbital space rotation (certainly the

redundancy problem in this case will be more severe, but we suppose that it is possible to design

certain sufficiency conditions to solve the redundancy problem). However, the ‘formal’ invariance

contradicts the dependence of T̂µ on |µ〉. To see this, let us look at the example introduced before:

a system of 2 core electrons, 2 active electrons, and 4 active orbitals.

|ψ〉 =
∑

µ

eT̂µ |µ〉Cµ =
∑

m1,m2

eT̂ (|i
′
1i

′
2m1m2〉)âi

′
1i

′
2m1m2 |〉Ci′1i′2m1m2

. (3.65)

T̂ (|i′1i
′
2m1m2〉) manifests the dependence of T̂µ-amplitudes on |µ〉 = |i′1i

′
2m1m2〉. Since |µ〉 is

determined by the active orbitals in it φm1
and φm2

, the dependence of T̂µ-amplitudes on |µ〉

implies the dependence on φm1
and φm2

, in an abstract way. More precisely, T̂µ has a certain

dependence on the combination of φm1
and φm2

which specifies the active space determinant

|i′1i
′
2m1m2〉. This dependence on a special subset of the active indices certainly contradicts the

‘invariance’ of T̂µ in the whole active space. Therefore, we see that summations of indices do not

automatically imply orbital invariance.

If the dependence does not exist, T̂µ = T̂ν ,∀ µ, ν, T̂µ’s can be pulled out, the ansatz changes

and becomes internally contracted [76, 154, 63, 64, 79, 80, 155, 156]:

|ψ〉 = eT̂
∑

m1,m2

âi
′
1i

′
2m1m2 |〉Ci′1i′2m1m2

. = eT̂ |ψactive〉. (3.66)

Then we can readily show that this approach is orbital invariant, provided that the active sum-
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mation indices in T̂ run over the whole active space and that the residual equation is modified

correspondingly, for example:

〈ψactive|T̂
+
λ e

−T̂ ĤeT̂ |ψactive〉 = 0. (3.67)

As another example, see Ref. [64].

Finally let us look at the energy in JM-ansatz based methods:

E = 〈ψactive|Ĥ|ψ〉, (3.68)

which can be derived from the usual definition equation:

〈µ|Ĥ|ψ〉 = ECµ,∀ µ (3.69)

by multiplying both sides by Cµ and summing over all µ’s. Since both Ĥ and 〈ψactive| are invariant,

the invariance of E requires the invariance of the wavefunction |ψ〉. Thus, the problem with the

wavefunction shows up here again.

The redundancy problem inherent in the JM ansatz forces ad hoc definitions of residual equa-

tions. The ansatz itself conflicts with the orbital invariance property, which leads to the orbital

invariance problem in residual equations. From the discussions, the problem is the use of multi-

ple vacua and the dependence of the excitation operator amplitudes on the associated reference

determinant. This issue seems unlikely to be solved without modifying the ansatz. For example,

even if T̂µ’s covered a much larger manifold, the problem with the wavefunction and energy would

remain. Internal contraction provides one possible solution, upon proper definitions of residual

equations.

For all the discussions in this section, we assumed that Ẑ is orbital invariant. At this point,

we can see that this is not really the case. Indeed, the tensor character of the residual equation is

even more troublesome. Since we have already drawn a rather strong conclusion from the analysis

of the wavefunction, we will not go back to analyze the residual equation.
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3.5 Conclusion

Tensor theory has been applied to examine the invariance properties of various ab initio methods

upon orbital rotations. By utilizing the tensor properties of second-quantized operators, we can

write determinants in tensor notation. Another noticeable technique employed here has been

rewriting antisymmetric tensors in contracted forms to expose the essential tensor properties.

To examine the orbital invariance issue, we have proposed a simple self-consistency-checking

algorithm.

Using this algorithm, we demonstrate that HF, single reference CI and CC methods are all

invariant with respect to rotations within occupied and unoccupied orbital spaces. The CASSCF

and MRCI methods are invariant with respect to rotations in three spaces: core orbital space,

active orbital space and inactive virtual orbital space. The particular versions of CASCC and

CCSDt methods which are discussed in this chapter are invariant with respect to rotations in the

four spaces: core orbitals, active-occupied orbitals, active-virtual orbitals, and inactive virtual

orbitals. The JM-ansatz based methods are not invariant with respect to rotations in the active

space, although they are invariant with respect to rotations in core orbital space and inactive

virtual orbital space. The problem is revealed first by analyzing the residual equations and then

by analyzing the wavefunction. The lack of invariance is inherent in the ansatz, and there does

not seem to be an easy solution without modifying the ansatz. Loosely speaking, the essential

deficiency is the use of multiple vacua and associated cluster operators whose amplitudes implicitly

depend on the corresponding reference determinant. Internal contraction provides one candidate

solution.

We have demonstrated theoretically the lack of orbital invariance for some methods. To what

extent the results from these methods are affected by the problem is a separate issue which needs

to be tested numerically.

This completes our discussion of the orbital invariance property. Starting with next chapter,

we will focus on the method on which we have been working: the State Specific Equation of

Motion Coupled Cluster (SS-EOMCC) method. From the discussion of the current chapter, we

can easily see that SS-EOMCC is orbital invariant.



Chapter 4

State Specific Equation of Motion

Coupled Cluster Method

4.1 General framework

The State Specific Equation of Motion Coupled Cluster (SS-EOMCC) method follows the first-

transformation-then-diagonalization route. As in EOMCC, the final state energies are obtained

from diagonalizing a transformed Hamiltonian ˆ̄H = e−T̂ ĤeT̂ over a suitable manifold of electronic

states. The definition of the operator T̂ is in principle arbitrary, as the eigenvalues of Ĥ, (when

diagonalized over the complete Hilbert space), do not change under a similarity transformation. To

define the cluster operator, we are therefore guided by convenience and the practical requirement

that diagonalization of ˆ̄H over a truncated manifold yields satisfactory results. Two issues require

definitions: the parameterization of the cluster operator T̂ or the excitation operators included

in T̂ , and the specification of a set of equations for the t-amplitudes. In SS-EOMCC, we proceed

as follows. Initially we parameterize the wavefunction in the following way (in order to obtain

t-amplitude equations):

|Ψ〉 = eT̂ |R〉, (4.1)

50
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where |R〉 is the reference function obtained in some way, usually from a complete-active-space

self-consistent-field (CASSCF) calculation. The definition of the cluster operator is analogous to

the single reference case:

T̂ =
∑

λ

tλΩ̂λ = T̂1 + T̂2 =
∑

i,a

tiaÊ
a
i +

1

2

∑

i,j,a,b

tijabÊ
ab
ij , (4.2)

where Ω̂λ stands for any excitation operator present in T̂ . Only single and double excitations

are included to capture the major dynamical correlation. In the above definition, i/j denotes a

hole orbital and a/b denotes a particle orbital. We take both core orbitals and all active orbitals

as hole orbitals, and the others as particle orbitals. Equivalently, any orbital (fully or partially)

occupied in the reference function is taken as a hole orbital. If we define as the physical vacuum

the determinant |0〉, in which all hole orbitals are doubly occupied, that is,

|0〉 =
∏

i

â+i |〉, (4.3)

the structure of the cluster operator in SS-EOMCC is the same as that in single reference CCSD.

In T̂ , since the active orbital creation operators are missing, not all two-body excitations out of

the active space are included, for example, core-active and semi-internal excitations are omitted.

Both types of excitations are included in the final diagonalization.

The Ê operators are spin-free:

Êa
i =

∑

σ=α,β

âaσiσ , (4.4)

Êab
ij =

∑

σ=α,β
ρ=α,β

â
aσbρ
iσjρ

. (4.5)

Since the spin-free operators are spin-singlet operators [1], the wavefunction is spin-adapted pro-

vided that |R〉 is a spin eigenfunction.
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The t-amplitude equations are defined as:

〈R|Ω̂+λ e
−T̂ ĤeT̂ |R〉 = 〈R|Ω̂+λ

ˆ̄H|R〉 = 0,∀ Ω̂λ. (4.6)

The transformed Hamiltonian ˆ̄H is obtained once these equations are solved. Then ˆ̄H is diagonal-

ized over the multireference configuration-interaction singles (MRCIS) space in an uncontracted

fashion to yield the final wavefunction and energy. The MRCIS space consists of all determinants

in the reference space and all determinants which can be reached by a single excitation of any

reference determinant. The final diagonalization takes care of differential orbital relaxation, semi-

internal excitations and non-dynamical correlation effects. If we denote the eigenfunction of ˆ̄H

from the diagonalization in MRCIS space as |C〉, the final wavefunction has the form

|Ψ〉 = eT̂ |C〉.

Hence the ansatz has relaxed singles (core-active and semi-internal excitations) from |C〉 and

contracted singles and doubles from cluster operators. However, one problem still remains: the

core-active double excitations are missing from both T̂ and the final diagonalization. As a tem-

porary fix to this problem, we do not allow core orbitals, and all hole orbitals are taken as active,

which makes the method more expensive. A more economical way would be to include the missing

excitations in the cluster operator in a contracted fashion, but this introduces the complication

that components of the cluster operator do not commute. This problem will be addressed in

future work.

Important features of the method are:

• The ansatz is internally contracted [76, 79, 81, 80, 82], which makes the parameterization

rather compact. The wavefunction is qualitatively correct and rigorously spin-adapted. The

method is state-specific. It is applicable to both ground and excited states. The energy is

invariant with respect to orbital rotations in core, active and virtual subspaces. In the first

step, we obtain |R〉 from a CASSCF calculation, so |R〉 = |ψCASSCF〉 is orbital invariant.
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For the residual equation, using the double excitation amplitude equation as an example,

Rij
ab = 〈R|Ê

ij
abe

−T̂ ĤeT̂ |R〉 = 〈R|Êij
ab

ˆ̄H|R〉. (4.7)

If we assume the tensor structure of t-amplitudes, this is clearly a tensor equation, if we

follow arguments similar to those used for CID (see Chapter 3). That is, the residual remains

zero upon orbital rotation. The last step is the diagonalization of the invariant quantity

¯̂
H in the MRCIS space. Following the proof for MRCISD, it follows that the energy is

invariant. Hence, the SS-EOMCC method is orbital invariant.

• SS-EOMCC is not size-extensive, but it is core-extensive [127], and relatedly size-intensive

[128, 129]. That is, if a molecule separates into one single-reference fragment and one

multireference fragment, the SS-EOMCC method will be size-consistent, provided that the

orbitals in the CAS space can be localized. To save space, we do not give a detailed proof,

but simply notice that a separable solution exists in such a situation,

|ΨAB〉 =
(
eT̂AĈA

)(
eT̂B ĈB

)
|〉,

where A is the single-reference fragment and all operators are second-quantized operators, to

avoid explicit antisymmetrization. ĈA|〉 gives the one determinant reference for fragment A,

and ĈB |〉 gives the reference function for fragment B, which comes from the diagonalization

of ˆ̄HB = e−T̂BĤeT̂B in the MRCIS space. The proof is straightforward, following the

techniques presented in Ref. [127].

• The spin-flip idea developed by Krylov [125, 126, 157, 158] is quite natural in the current

EOMCC framework. For example, we can calculate T̂ amplitudes based on a triplet state

calculation and use them to construct the transformed Hamiltonian and do diagonalization

to extract other states. In the SS-EOMCC framework all states are spin-adapted (or spin-

pure), including the states obtained from a spin-flip calculation.

• A Brueckner orbital scheme [159, 160, 161, 162, 163] can be implemented. We can rotate
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orbitals using the T̂1 operator and solve for T-amplitudes self-consistently, until finally

T̂1 = 0. Since we usually interpret in the fashion that T̂2 takes care of dynamical correlation

effects and T̂1 take into account orbital relaxation effects, we may regard Brueckner orbitals

as orbitals optimized in the presence of dynamical correlation, in contrast to, say, CASSCF

orbitals, which are optimized in the absence of dynamical correlation effects.

The computational cost of SS-EOMCC consists of two parts: evaluation of residuals and

diagonalization of ˆ̄H in the MRCIS space. The cost of the first part scales as v4o2 (there are

three terms with the cost of v4o2 in the residual equation, where v is the number of virtual

orbitals and o the number of hole orbitals), similar to single reference CCSD. This scaling is

due to the specific approximation we made in the residual equation: approximating many-particle

density matrices by one- and two-particle cumulants (see next subsection for detailed discussions of

density matrices). For the diagonalization of ˆ̄H, to reduce computational expense we may include

only up to two-body terms from ˆ̄H, which will make the cost the same as that of diagonalizing

the bare Hamiltonian Ĥ in the same space (the exact diagonalization needs up to three-body

components of ˆ̄H, because up to singles are included in the diagonalization space, and the cluster

operator only includes pure hole-to-virtual excitations). In Ref. [164], it has been shown that this

additional approximation yields small errors when the cluster amplitudes are small, at least for the

cases studied. For large active spaces, the MRCIS diagonalization dominates the computational

cost and the double excitation effect is included in the cluster operator instead of in the final

diagonalization, so we essentially get the (internally contracted) double excitation effect for free.

In contrast, for internally contracted MRCI, in the diagonalization, the contracted doubles interact

directly with the uncontracted singles, and this step dominates the computational expense (more

expensive than evaluating singles-singles interactions). Thus with proper implementation, the

SS-EOMCC method is potentially much cheaper than the internally contracted MRCI method.
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4.2 Appearance of density matrices

To illustrate the appearance of density matrices (DM’s) in residual equations, we take the doubles

equations as an example and use spin orbital normal order theory with respect to the true vacuum

|〉 for clarity:

〈R|âijab
ˆ̄H|R〉 = 0, (4.8)

where â stands for the normal order operator with respect to the true vacuum |〉:

â···pq···rs = · · · â+p â
+
q âsâr · · · . (4.9)

Corresponding to this normal order theory, there is a generalized Wick theorem which tells how

to expand the product of two normal order operators into a series of normal order operators by

carrying out contractions (the contractions are simply Kronecker deltas). Utilizing the theorem,

we expand âijab
ˆ̄H:

âijab
ˆ̄H = âijabe

−T̂ ĤeT̂ = z0 + zsr â
r
s +

1

2
zwtuv â

uv
wt + · · · , (4.10)

〈R|âijab
ˆ̄H|R〉 = z0 + zsr〈R|â

r
s|R〉+

1

2
zuvwt〈R|â

uv
wt|R〉+ · · · (4.11)

= z0 + zsrγ
r
s +

1

2
zuvwtγ

uv
wt + · · · (4.12)

= 0. (4.13)

The amplitudes z depend on the external labels and DM’s are defined as the expectation values

of normal order operators:

γpq = 〈R|âpq |R〉, (4.14)

γprqs = 〈R|âprqs |R〉, (4.15)

· · · (4.16)



CHAPTER 4. SS-EOMCC 56

Thus, DM’s appear in residual equations. Besides the Hamiltonian matrix elements and t-

amplitudes, DM’s are the only information needed. Thus the normal order theory allows us

to express residual equations in a compact way, in terms of DM’s.

For the SS-EOMCC method, due to the special structure of the cluster operator, up to four-

particle DM’s appear in residual equations. Since |R〉 has contributions from only hole orbitals,

γ = 0, if it has particle indices. Thus, for the normal order expansion of âijab
ˆ̄H, we only need to

consider terms whose operators do not contain any particle index. Therefore, all particle indices

in âijab
ˆ̄H must be contracted. T̂ has only particle creation operators, which must be contracted by

particle annihilation operators in âijab and Ĥ. Since Ĥ contains at most two particle annihilation

operators, âijab and Ĥ can contract at most four particle creation operators. Then it follows that

at most quadratic T̂2 will contribute to residual equations, because cubic and higher powers of T̂2

have more than four particle creation operators.

ˆ̄H = e−T̂ ĤeT̂ = e−T̂2
(
e−T̂1ĤeT̂1

)
eT̂2 (4.17)

= e−T̂2Ĥse
T̂2 (4.18)

= Ĥs + [Ĥs, T̂2] +
1

2

[
[Ĥs, T̂2], T̂2

]
+ · · · (4.19)

and (4.20)

〈R|âijab
ˆ̄H|R〉 = 〈R|âijab

(
Ĥs + [Ĥs, T̂2] +

1

2

[
[Ĥs, T̂2], T̂2

])
|R〉, (4.21)

where we have defined

Ĥs = e−T̂1ĤeT̂1 . (4.22)

If we denote the particle rank of an operator Â by N
(
Â
)
, then N

(
Ĥs

)
≤ 2, N

(
[Ĥs, T̂2]

)
≤ 3,

and N
(
1
2

[
[Ĥs, T̂2], T̂2

])
≤ 4. If we assume that all particle indices in âijab are contracted to indices

in ˆ̄H, then N
(
âijabĤs

)
≤ 2, N

(
âijab[Ĥs, T̂2]

)
≤ 3, and N

(
âijab

1
2

[
[Ĥs, T̂2], T̂2

])
≤ 4. Therefore, the

particle ranks of terms, which will contribute to 〈R|âijab
ˆ̄H|R〉, do not exceed four. It follows that

there are up to four-particle DM’s in residual equations.
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The many-particle DM’s are expensive to compute, and their inclusion in the residual equation

would also be expensive. We approximate the three- and four-particle DM’s by expanding them

in terms of cumulants [83, 84, 85, 86, 87, 88, 89, 90, 91]. Any contributions containing three-

or four-particle cumulants are discarded. In addition, quadratic two-particle cumulants are not

included either. This particular approximation scheme can be viewed as a natural approach from

the perspective of a novel normal order theory (γ-normal order), the details of which are presented

in Chapter 5.

For biradical-like systems (treated by the SS-EOMCC[+2] approach), we need not approximate

residual equations, and up to two-particle DM’s are sufficient. Let us see why. With |0〉 as the

vacuum (see Eq. (4.3)), all determinants in |R〉 are two-hole states:

|R〉 =
∑

ij

Cij âiâj |0〉. (4.23)

If we use particle-hole formalism based normal order theory with |0〉 as the vacuum and write

every quantity in âijab
ˆ̄H in this normal order, we can expand âijab

ˆ̄H accordingly. With this normal

order (denoted by ‘˜’ and ‘{ }’), the normal order operators are defined as:

ãi1i2 = {âi1i2} = −âi2 â
+
i1
, (4.24)

ãi1i2i3i4
= {âi1i2i3i4

} = âi4 âi3 â
+
i1
â+i2 , (4.25)

· · · (4.26)

The above arguments about particle ranks also hold here, so we have up to four-particle DM’s.

However, in this case, the hole-type DM’s are expectation values of ã’s. We term them as ξ:

ξi1i2 = 〈R|ãi1i2 |R〉, (4.27)

ξi1i2i3i4
= 〈R|ãi1i2i3i4

|R〉, (4.28)

· · · (4.29)
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In particular, three- and four-particle ξ’s vanish. For example:

ξi1i2i3i4i5i6
= 〈R|ãi1i2i3i4i5i6

|R〉 = 〈R|âi6 âi5 âi4 â
+
i1
â+i2 â

+
i3
|R〉 = 0, (4.30)

because all determinants in |R〉 are two-hole states, and â+i1 â
+
i2
â+i3 |R〉 = 0. Hence, only ξ1 and

ξ2 are needed and they are expressed in terms of γ1 and γ2. Thus we have argued that up to

two-particle DM’s are sufficient to evaluate residuals for biradical-like systems. In practice, we use

the above strategy to evaluate residuals for this type of systems, such as the single-bond breaking

processes of F2.

4.3 Convergence Scheme

In this subsection three issues will be discussed that are important in the context of converging

the cluster amplitudes in the internally contracted SS-EOMCC equations. The first issue con-

cerns the amplitude updating scheme and the solution of the typically nearly-singular non-linear

equations. The second issue concerns the definition of orbital energies and a diagonal zeroth-order

Hamiltonian that defines the denominator updates and the first-order perturbative corrections.

The last issue addresses a perturbative correction that attempts to provide reasonable estimates

for amplitudes that are discarded from the CC equations, which is applied to provide smoothened

potential energy surfaces. In the result section we will provide some examples that illustrate the

effectiveness of the approach.

4.3.1 Solving the near-singular non-linear equations

The cluster equations read

Rρ = 〈R|Ω̂+ρ e
−T̂ ĤeT̂ |R〉 = 0. (4.31)
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If we assume a current guess T̂ for the amplitudes, the correction ∆ to the t-amplitudes is obtained

from the following update equation:

〈R|Ω̂+ρ e
−(T̂+∆̂)ĤeT̂+∆̂|R〉 ≈ 〈R|Ω̂+ρ e

−T̂ ĤeT̂ |R〉+ 〈R|Ω̂+ρ [Ĥ0, ∆̂]|R〉 (4.32)

= Rρ + 〈R|Ω̂
+
ρ [Ĥ0, ∆̂]|R〉, (4.33)

where ∆̂ =
∑

i,j,a,b∆
ab
ij Ê

ab
ij . The zeroth-order Hamiltonian is assumed to have the simple form

Ĥ0 =
∑

p εp{â
+
p âp} (to be discussed later), and the commutator [Ĥ0, ∆̂] = X̂ =

∑
i,j,a,bX

ab
ij Ê

ab
ij

is then easily evaluated. Hence, if X is known the solution of the amplitudes ∆ reduces to a

conventional denominator update

∆a
i =

Xa
i

εa − εi
; ∆ab

ij =
Xab
ij

εa + εb − εi − εj
. (4.34)

Solving for the amplitudes of the operator X requires the solution of a set of potentially ill-

conditioned linear equations. Let us consider the doubles part of the equations explicitly (the

singles equations are treated similarly).

∑

k,l

〈R|Êij
abÊ

ab
kl |R〉X

ab
kl =

∑

k,l

Sij,klX
ab
kl = −Rab

ij . (4.35)

These equations are diagonal in the virtual orbitals because the reference state has zero occupation

for these orbitals. The metric matrix S can be nearly singular, and a regularized inverse of this

matrix is determined by diagonalization:

Sij,kl =
∑

λ

Uij,λλUkl,λ; S−1ij,kl =
∑

λ>η

Uij,λλ
−1Ukl,λ. (4.36)

In the sum over λ, only those vectors are included whose eigenvalues λ exceed a threshold value

η. Together with the regularized inverse, we also define a projector on the regular subspace

P ij
kl =

∑

λ>η

Uij,λUkl,λ. (4.37)
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In addition, for future reference we define a projector on a nearly singular subspace

Qij
kl =

∑

δ<λ<η

Uij,λUkl,λ. (4.38)

In practice the threshold η is taken to be fairly large, on the order of 10−2, while the lower

threshold δ can be fairly small, on the order of 10−4. (For all calculations shown in this chapter,

the value η = 0.01 is used, unless specified otherwise) The reason for the relatively large value

of the threshold is that amplitudes corresponding to small eigenvalues can easily grow large, and

they cause trouble due to the non-linearity of the CC equations. This is quite different from

an internally contracted MRCI calculation, where one also discards amplitudes corresponding to

small eigenvalues of the metric matrix, but larger amplitudes do less harm as they make only a

small contribution to the final wave function. Typical thresholds for MRCI would be similar to

our threshold δ that defines the truly singular subspace. The metric matrices and the regularized

inverse as well as the projectors are calculated once, and the diagonalization spaces involved are

small in general, as they only involve occupied orbitals. With the metric matrix defined as above,

the t-amplitudes correction, projected on the regular subspace, are obtained as

∆ab
ij =

∑

k,l

P ij
kl

(∑

m,n

S−1mn
kl Rab

mn

εa + εb − εk − εl

)
. (4.39)

The DIIS convergence accelerator [165] is used to improve convergence of the denominator update,

and we ensure that after a DIIS extrapolation the t-amplitudes still only have components along

the regular subspace, using the projector operator.

4.3.2 Orbital energies in the zeroth order Hamiltonian

The choice of orbital energies is critical, and desirable criteria for the zeroth-order Hamiltonian

include:

1. Smooth convergence of the CC equations and the MRCIS diagonalization step.

2. Replacing the full CC amplitudes by their perturbative analogs from first-order perturbation
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theory results in minor changes in final state energies.

The latter criterion is quite demanding, and a less stringent requirement is that excitation energies

obtained by diagonalizing the transformed Hamiltonian over the MRCIS space are only marginally

affected by a substitution of CC by PT amplitudes, at least for simple problems.

The virtual orbital energies present no problem, and we simply use the Fock matrix corre-

sponding to the one-particle density matrix of the reference state, and diagonalize this operator

over the virtual space. Since all of the excitations involve annihilation of an occupied orbital and

promotion of the electron into a virtual orbital, it is important that all occupied orbital energies

be substantially lower (negative) than the lowest virtual orbital energy (positive). This condition

would typically not be satisfied if we used the Fock matrix of the reference state and diagonalize

over the active space. While it is fine to diagonalize this Fock operator over the core space of dou-

bly occupied orbitals, active orbitals that are weakly occupied (essentially virtual orbitals), may

attain large (positive) orbital energies, and this can destroy convergence behavior. Moreover, this

behavior is also not physical in the sense of requirement 2. To solve this problem we use orbitals

and orbital energies from the the extended Koopmans’ theorem [166].

A set of active orbitals is obtained by solving a generalized eigenvalue problem

KC = DCε,C+DC = 1, (4.40)

where

Kij = 〈R|â+i [Ĥ, âj ]|R〉,Dij = 〈R|â
+
i âj |R〉. (4.41)

These orbital energies are interpreted as the variationally optimum ionization potentials that can

be obtained from the basis states âj |R〉. This ionization potential interpretation is consistent

with the promotion of an electron from orbital j to a virtual orbital a in the non-interacting limit

where the excitation energy reduces to the sum of an ionization potential plus an electron affinity.

Since the orbitals obtained from the EKT procedure are not orthogonal, after diagonalization

the orbitals are orthogonalized using Löwdin’s S−1/2 orthogonalization procedure [167], while
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the orbital energies remain the EKT values. The above definition of orbital energies provides a

smooth convergence of the CC and MRCIS equations, and it defines first-order t-amplitudes that

can be used effectively in the singular perturbation step (see next subsection). The first-order

t-amplitudes are obtained by solving the first order residual equation:

〈R|Êij
ab(Ĥ + [Ĥ0, T̂

(1)])|R〉 = 0. (4.42)

If we use the first-order t-amplitudes instead of those from solving the complete residual equation,

we call the method SS-EOMPT. The effectiveness of constructing the zeroth order Hamiltonian

using the EKT orbital energies is also reflected in the fact that excitation energies from first

order SS-EOMPT are in fair agreement with SS-EOMCC. We illustrate this using the example of

vertical excitation energies of ozone.

For comparison, we carry out two sets of calculations using SS-EOMCC[+2] and SS-EOMPT[+2],

and the results are listed in Table 4.1 (‘[+2]’ indicates that we include one more orbital, 2b1, to

construct the vacuum). In this table we list the vertical excitation energies for the lowest excita-

tions from 11A1 to both singlet and triplet states in each symmetry block: A1, B1, B2 and A2. The

results from EOM-CCSDT-3 [168] are also included. In addition, we present results from state-

averaged SS-EOMCC calculations (here the cluster amplitudes are solved by using the average

one- and two-particle density matrices and using an equal weighting of the ground and all eight

excited states considered). For all these calculations, we use CASSCF orbitals and the PBS basis

set [169]. For state specific calculations, the difference for the vertical excitation energies between

SS-EOMCC and SS-EOMPT is at most 0.07 eV. For state-averaged calculations, the difference is

even smaller, around 0.01 eV. In contrast, the absolute energies from SS-EOMCC and SS-EOMPT

calculations can differ as much as 6.7 eV. Therefore from SS-EOMCC to SS-EOMPT, the energy

for each state is shifted by approximately the same amount. We also notice a significant difference

for the vertical excitation energy from 11A1 to 21A1 between SS-EOMCC (or SS-EOMPT) and

EOM-CCSDT-3. This transition is dominated by double excitations: 6a21 → 2b21 and 4b22 → 2b21.

Thus, the accuracy of EOM-CCSDT-3 is suspicious, because probably up to quadruples are needed

to get satisfactory results for double excitations. In comparison, the SS-EOMCC method treats
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both single and multiple valence excitations in a balanced way, so that very likely the excitation

energy from EOM-CCSDT-3 for this particular transition is too high, and this speculation is

supported by the the CR-EOMCCSD(T) study of the adiabatic excitation energies of ozone by

Kowalski, Piecuch and co-workers [22, 170].

Table 4.1: The excitation energies of the first four singlet and triplet states of ozone in the
PBS basis set [169]. The total energies are in Eh and others are in eV. (the superscript ‘ex’
means ‘excitation energy’. The subscript ‘EOM’ refers to EOM-CCSDT-3 [168]. ‘∆’ stands for
EexCC − EexPT)

state specific
state ECC EPT EexCC EexPT EexEOM ∆
11A1 -225.0329 -225.0100
21A1 -224.8643 -224.8410 4.59 4.60 5.95 -0.01
11B1 -224.9498 -224.9253 2.26 2.30 2.29 -0.04
11B2 -224.8322 -224.8119 5.46 5.39 5.21 0.07
11A2 -224.9530 -224.9282 2.17 2.23 2.23 -0.05
13A1 -224.7342 -224.7119 8.13 8.11 7.90 0.02
13B1 -224.9655 -224.9410 1.83 1.88 1.77 -0.05
13B2 -224.9668 -224.9429 1.80 1.83 1.61 -0.03
13A2 -224.9618 -224.9373 1.93 1.98 1.91 -0.04
state-averaged
state ECC EPT EexCC EexPT EexEOM ∆
11A1 -225.0346 -225.0099
21A1 -224.8718 -224.8474 4.43 4.42 5.95 0.01
11B1 -224.9527 -224.9283 2.23 2.22 2.29 0.01
11B2 -224.8371 -224.8125 5.37 5.37 5.21 0.00
11A2 -224.9557 -224.9313 2.15 2.14 2.23 0.01
13A1 -224.7386 -224.7140 8.05 8.05 7.90 0.00
13B1 -224.9681 -224.9441 1.81 1.79 1.77 0.01
13B2 -224.9700 -224.9455 1.76 1.75 1.61 0.01
13A2 -224.9637 -224.9395 1.93 1.92 1.91 0.01

4.3.3 Singular perturbative correction

Since a fairly large threshold is used and a substantial number of t-amplitudes might be discarded,

this can cause troubles in obtaining smooth potential energy surfaces, as a different number of

amplitudes are retained at different geometries . The result is that SS-EOMCC potential energy

surfaces generally are not smooth. For a similar reason, SS-EOMCC might not yield balanced

energy differences between two critical points on a potential energy surface (for example, transition
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state energy) if different numbers of t-amplitudes are discarded at different geometries. To partly

correct for this behavior, we make a perturbative estimate of the amplitudes discarded from the

CC equations. To this end, we solve the following set of equations:

∑

k,l

Qij
kl〈R|Ê

kl
ab(Ĥ + [Ĥ0, T̂

(1)])|R〉 = 0, (4.43)

(1−Q)ijklt
(1)kl

ab = 0, (4.44)

where Q is the projector in the nearly singular subspace (Eq (4.38)). This near-singular pertur-

bative correction is solved at the initial stage of the CC iteration, and the overall t-amplitudes

are defined as the sum of the regular tP and near-singular tQ components:

tabij = tP
ab
ij + tQ

ab
ij =

∑

k,l

P kl
ij tP

ab
kl +

∑

k,l

Qkl
ij t
(1)
Q

ab
kl . (4.45)

These mixed t-amplitudes enter the transformed Hamiltonian which is used both in the solution

of the equations for the regular t-amplitudes, and in the final MRCIS diagonalization step (only

the correction for double excitation amplitudes is implemented). The inclusion of the singular

perturbative correction does smoothen the potential energy surfaces, but there is a remaining

discontinuity as we switch equations between the regular and nearly-singular amplitudes.

A possibly more attractive alternative would be to define a single equation

∑

k,l

Qij
kl〈R|Ê

kl
ab(Ĥ + [Ĥ0, T̂

(1)])|R〉+
∑

k,l

P ij
kl 〈R|Ê

kl
abe

−T̂ ĤeT̂ |R〉 = 0, (4.46)

and to use a smooth switching function to define the P and Q operators which would satisfy the

condition that their sum projects on the complete non-singular space (following recent work by

Subotnik and Head-Gordon for local correlation approaches [171].) This fully smooth strategy

has not been followed yet, as we first wish to examine the effect of the use of different equations

on the results. As we will see, current results are already fairly smooth, in comparison to not

using the correction (as shown by the example of N2 ground state energies in next section).

In the next chapter, we discuss normal order theory in a wide context, and we are not confined
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to the particular normal order used in our approach. Instead, we first focus on the multireference

normal order theory developed by Mukherjee and Kutzelnigg, which is a beautiful generalization

of the traditional particle-hole formalism based normal order theory. Then we can demonstrate

the normal order, used in SS-EOMCC to approximate the residual, and exhibit its relations to

other normal orders.



Chapter 5

Normal order and generalized

Wick theorem

In the case of the true vacuum state |〉, a normal order is an order of the creation or annihilation

operators · · · â+p · · · âq · · · in which the annihilation operators are to the right of the creation

operators. For example, âpq , â
pq
rs , · · · are in normal order if the operators are defined as follows:

âpq ≡ â+p âq, (5.1)

âpqrs ≡ â+p â
+
q âsâr, (5.2)

· · · , (5.3)

âp···rq···s ≡ â+p · · · â
+
r âs · · · âq. (5.4)

Let us call this normal order v-normal order (v means true vacuum). If we define particle-number-

conserving operators as those which have the same number of creation operators and annihilation

operators, all â defined above are particle-number-conserving operators. This class of operators

is the most important case in practice, and we will only be concerned with this particular class

in this work. If we call the true vacuum |〉 the reference state in this case, then the expectation

66
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value of any v-normal order operator vanishes: 〈|âp···q···|〉 = 0, ∀ â. For v-normal order, we have

a corresponding series of rules which tells how to express a product of any two v-normal order

operators âp···q··· and â
r···
s··· in terms of a set of normal order terms (a normal order term is a normal

order operator with a certain coefficient). These rules are called the generalized Wick theorem

(GWT).[172] In this special case of v-normal order, let us call them v-GWT.

The definition of normal order can be extended. In general we can define operators in other

normal orders (directly or indirectly) in terms of v-normal order operators. When defining new

normal order operators (denoted by ã) in terms of â’s, we often require that for ã of any particle

rank, the maximum particle rank of â’s in the definition is the same as that of ã. Thus, given an

operator

Ẑ = z0 + zqpâ
p
q + zqspr â

pr
qs + · · · , (5.5)

we can rewrite it in a new normal order:

Ẑ = z′0 + z′qpã
p
q + z′qsprã

pr
qs + · · · . (5.6)

The relation between the coefficients z and the coefficients z′ depends on the definition of the

particular normal order.

In single reference coupled cluster theory, the reference function |R〉 is one determinant, usually

the Hartree-Fock determinant |ψHF〉. In the particle-hole formalism, the orbitals occupied in the

reference determinant are called hole orbitals, and those unoccupied are called particle orbitals.

With respect to |R〉, if any hole creation operator â+i or any particle annihilation operator âb acts

on |R〉, it annihilates |R〉:

â+i |R〉 = 0,∀ i, (5.7)

âb|R〉 = 0,∀ b, (5.8)

where i is a hole orbital index and b is a particle orbital index. Therefore it is justified to call hole
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creation and particle annihilation operators quasi-annihilation operators, and other operators

(hole annihilation and particle creation operators) quasi-creation operators. We can define a

normal order of operators · · · â+p · · · âq · · · such that all quasi-annihilation operators are to the

right of quasi-creation operators. If we denote the operator in this normal order as ãp···q···, then

it can be verified that 〈|ãp···q···|〉 = 0, ∀ ã. Let us call this normal order h-normal order, and the

corresponding GWT (denoted as h-GWT) gives the rules for how to expand the product of two

h-normal order operators into a series of h-normal order terms.

In multireference cases, where |R〉 is a multi-determinantal function, it is not obvious how to

define a normal order of physical significance. A cumulant [83, 84, 85, 86, 87, 88, 89, 90, 91] based

normal order theory [63, 77, 78, 64, 87, 173, 174, 175, 176, 177] was proposed by Mukherjee and

Kutzelnigg, which is a generalization of h-GWT to multi-determinantal reference functions. In

this theory, the expectation value of any normal order operator vanishes, and cumulants (denoted

by λ) appear naturally as contractions in the theory. For simplicity, let us call this normal order

λ-normal order. The definition was outlined in Ref. [78], but the rules regarding how to expand

the product of two λ-normal order operators, that is, generalized Wick theorem (GWT), were

neither given explicitly nor proven. Here we give an algebraic proof for the GWT (denoted as

λ-GWT), and this formal proof is based purely on the normal order definition.

Normal order theory is important to us for the following reasons:

• It helps to derive working equations, as briefly explained in Section 6.1. In principle, com-

mutator relations suffice for this purpose, but using them would be far more cumbersome.

Normal order theory in general facilitates deriving details of equations.

• It enables us to define approximations more easily, as will be clear at the end of this chapter.

• It allows us to define a normal order exponential ansatz {eT̂ }, which is not used in SS-

EOMCC, but is used in the internally contracted MRCC method, as detailed in Chapter

9.
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Let us first define reduced density matrices for later use, denoted by γ’s:

γpq ≡ 〈R|âpq |R〉, (5.9)

γprqs ≡ 〈R|âprqs |R〉, (5.10)

· · · , (5.11)

γp···rq···s ≡ 〈R|âp···rq···s |R〉. (5.12)

Cumulants, denoted by λ’s, are defined recursively in terms of γ, by using the antisymmetriza-

tion operator Â:

γpq ≡ λpq , (5.13)

γprqs ≡ λprqs + λpqλ
r
s − λ

p
sλ

r
q = λprqs + Â

(
λpqλ

r
s)
)
, (5.14)

γprtqsu ≡ λprtqsu +
(
λpqλ

r
sλ

t
u − λ

p
qλ

t
sλ

r
u + λrqλ

t
sλ

p
u − λ

r
qλ

p
sλ

t
u + λtqλ

p
sλ

r
u − λ

t
qλ

r
sλ

p
u

)
+

(
λpqλ

rt
su − λ

p
sλ

rt
qu − λ

p
uλ

rt
sq + λrsλ

pt
qu − λ

r
qλ

pt
su − λ

r
uλ

pt
qs + λtuλ

pr
qs − λ

t
qλ

pr
us − λ

t
sλ

pr
qu

)

= λprtqsu + Â
(
λpqλ

r
sλ

t
u

)
+ Â

(
λpqλ

rt
su

)

= λprtqsu + Â
(
λpqλ

r
sλ

t
u + λpqλ

rt
su

)
. (5.15)

(the antisymmetrization operator Â is defined in Section II). The antisymmetry of λ is explicit

from the definition. All the quantities (including the operators in the following arguments) are

antisymmetric with respect to a transposition of any two of the upper indices or any two of the

lower indices.

5.1 Antisymmetrization operator

In this section, we define an antisymmetrization operator Â. Given a quantity f(· · · , p, · · · , q, · · · ),

where p, q, · · · are the indices of f , we require Â such that

1. Âf(· · · , p, · · · , q, · · · ) is antisymmetric with respect to the transposition of any two indices,

that is: Âf(· · · , p, · · · , q, · · · ) = −Âf(· · · , q, · · · , p, · · · ),∀ p, q.
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2. In addition, Âf = f if f itself is already antisymmetric without the action of Â.

To fulfill the requirement (1), we define Â such that

Âf(r1, r2, · · · , rn)

≡
∑

the sequence u1u2···un ∈ all possible
permutations of the sequence r1r2···rn

(−1)P
u1u2···un
r1r2···rn P̂u1u2···un

r1r2···rn f(r1, r2, · · · , rn)

=
∑

the sequence u1u2···un ∈ all possible
permutations of the sequence r1r2···rn

(−1)P
u1u2···un
r1r2···rn f(u1, u2, · · · , un). (5.16)

In this definition, the sequence u1u2 · · ·un is a permutation of the index sequence of r1r2 · · · rn, P̂ is

the permutation operator such that P̂u1u2···un
r1r2···rn f(r1, r2, · · · , rn) = f(u1, u2, · · · , un), and P

u1u2···un
r1r2···rn

is the number of transpositions needed to permute u1u2 · · ·un to r1r2 · · · rn. Thus (−1)
P
u1u2···un
r1r2···rn

is +1 if the parity of Pu1u2···un
r1r2···rn is even, and −1 if the parity of Pu1u2···un

r1r2···rn is odd.

For example,

Âf(p, q) =
∑

the sequence xy ∈ {pq,qp}

(−1)P
xy
pq f(x, y)

= (−1)P
pq
pq f(pq) + (−1)P

qp
pq f(q, p)

= (−1)0f(p, q) + (−1)1f(q, p)

= f(p, q)− f(q, p). (5.17)

If f is already antisymmetric with respect to index transpositions in a few groups of indices in

f , for example, {a1, · · · , am}, {b1, · · · , bn}, in order to satisfy the requirement (2), we extend the

definition of Â such that:

Âf(r1, r2, · · · , rn) ≡
1

m!n!

∑

u1u2···un ∈
permutations of r1r2···rn

(−1)P
u1u2···un
r1r2···rn f(u1, u2, · · · , un)

=
1

Find-sym

∑

u1u2···un ∈
permutations of r1r2···rn

(−1)P
u1u2···un
r1r2···rn f(u1, u2, · · · , un),(5.18)
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where Find-sym = m!n!, is the symmetry factor due to the antisymmetry of some indices in f . For

example, if g(p, q) is antisymmetric, that is, g(p, q) = −g(p, q), then

Âg(p, q) =
1

2!

∑

the sequence xy ∈ {pq,qp}

(−1)P
xy
pq g(x, y)

=
1

2!

(
g(p, q)− g(q, p)

)

= g(p, q). (5.19)

Therefore, this symmetry factor eliminates duplicate terms.

All the quantities to be used in this chapter have both upper indices and lower indices. To

antisymmetrize those quantities such that they are antisymmetric with respect to transpositions

of upper indices and transpositions of lower indices, we extend the definition of Â:

Âfr1r2···rns1s2···sn ≡
1

Find-sym

∑

u1u2···un ∈
permutations of r1r2···rn

(−1)P
u1u2···un
r1r2···rn P̂u1u2···un

r1r2···rn

(

∑

v1v2···vn ∈
permutations of s1s2···sn

(−1)P
v1v2···vn
s1s2···sn P̂v1v2···vns1s2···sn f

r1r2···rn
s1s2···sn

)

=
1

Find-sym

∑

u1u2···un ∈
permutations of r1r2···rn

∑

v1v2···vn ∈
permutations of s1s2···sn

(−1)P
u1u2···un
r1r2···rn

+P
v1v2···vn
s1s2···sn fu1u2···un

v1v2···vn . (5.20)

That is, we antisymmetrize the upper indices and the lower indices sequentially.

Clearly, (−1)P
u1u2···un
r1r2···rn

+P
v1v2···vn
sr1s2···sn is determined by the parity of the permutation, which oper-

ation permutes fu1u2···un
v1v2···vn to fr1r2···rns1s2···sn . It can be shown that this parity is the same as that of the

permutation, which brings indices fu1u2···un
v1v2···vn into a form having the same index pairng order as in

fr1r2···rns1s2···sn , that is, the lower index corresponding to s1 is r1, the lower index corresponding to s2 is

r2, · · · . Thus, to determine the parity, it is not necessary to carry out the complete permutation

from fu1u2···un
v1v2···vn to fr1r2···rns1s2···sn ; instead, we can stop permuting once the indices in the permuted form

have the same index pairing order as in the original form. From now on, we will use the latter

parity for (−1)P
u1u2···un
r1r2···rn

+P
v1v2···vn
s1s2···sn , because the sign rule with this parity is applicable to all the
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cases in this chapter.

When antisymmetrizing product terms, for example, Â(Bp
qC

r
s ), we treat B

p
qC

r
s as a compound

quantity X, whose upper indices are the collection of the upper indices from all the component

quantities of the product, and similarly for lower indices. Thus Xpr
qs = Bp

qC
r
s , and Â acts on the

product Bp
qC

r
s in the same way as it does on a single quantity:

Â(Bp
qC

r
s ) = ÂXpr

qs = Xpr
qs −X

pr
sq +Xrp

sq −X
rp
qs

= Bp
qC

r
s −B

p
sC

r
q +Br

sC
p
q −B

r
qC

p
s . (5.21)

In general, if the product term is Bp···
q···C

r···
s··· · · · , then Â acts on the product in the same way as

it does on a compound quantity. By extending the definition of Â in this way, for every product

term Y , ÂY is antisymmetric with respect to a transposition of any two upper indices or of any

two lower indices, where the indices may or may not come from the same component quantity of

the product.

In case the same type of quantities appear in the product, for example, B = C, a straightfor-

ward application of the antisymmetrization operator Â leads to:

Â(Bp
qC

r
s ) = Â(Bp

qB
r
s) = Bp

qB
r
s −B

p
sB

r
q +Br

pC
q
s −B

r
pB

q
s

= 2(Bp
qB

r
s −B

p
sB

r
q ). (5.22)

To eliminate duplicate terms, we need to take into account this type of symmetry. (Quantities

of the same type must have the same number of indices. For example, Bp
q and Br

s are of the

same type, but Bp
q and Bru

sv are of different types.) Suppose that in a product term, there are

m quantities of a certain type, n quantities of another type, etc., then we can define a symmetry

factor Fgroup-sym = m!n! · · · . Then the overall symmetry factor is changed to

Fsym = Find-sym ×Fgroup-sym. (5.23)
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Therefore, the final form of the definition of Â is:

Âfr1r2···rns1s2···sn ≡
1

Fsym

∑

u1u2···un ∈
permutations of r1r2···rn

∑

v1v2···vn ∈
permutations of s1s2···sn

(−1)P
u1u2···un
r1r2···rn

+P
v1v2···vn
s1s2···sn fu1u2···un

v1v2···vn . (5.24)

The effect of the symmetry factor Fsym is to eliminate duplicate terms such that after merging

equivalent terms (after that every term is unique), every permuted form appears with a coefficient

unity (the sign is determined by the sign rule). Here equivalent terms refers to those terms which

differ from each other only by the coefficients. Bp
qC

r
s and Cr

sB
p
q are equivalent, and Dpr

qsE
tv
uw and

Etv
wuD

rp
qs are also equivalent if D and E are antisymmetric quantities. In other words, we may

state the definition of the antisymmetrization operator Â as follows:

When Â acts on a quantity f , such that Âf is antisymmetric with respect to a trans-

position of any two indices between the upper indices or between the lower indices, it

generates all forms by permuting the upper indices and permuting the lower indices in

all possible ways. Every unique permuted form appears with a coefficient unity. The

sign for any permuted form is determined by the parity of the permutation, which

brings the indices of the permuted form into the original index pairing order.

5.2 λ-normal order

The λ-normal order operators, such as ãpq , ã
pr
qs , ã

prt
qsu, · · · , are defined recursively:

âpq ≡ ãpq + λpq , (5.25)

âprqs ≡ ãprqs + Â
(
λpq ã

r
s

)
+ Â

(
λpqλ

r
s + λprqs

)
= ãprqs + Â

(
λpq ã

r
s + λpqλ

r
s + λprqs

)
, (5.26)

âprtqsu ≡ ãprtqsu + Â
(
λpq ã

rt
su + λpqλ

r
sã

t
u + λprqs ã

t
u + λpqλ

r
sλ

t
u + λpqλ

rt
su + λprtqsu

)
, (5.27)

· · · , (5.28)
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(the above definitions is equivalent to the one given in Ref. [78]). Clearly, the operators ãpq , ã
pr
qs ,

etc. are uniquely defined if λpq , λ
pr
qs , etc. are specified. We may call λpq , λ

pr
qs , etc. cumulants, but

we prefer to term them contractions for consistent terminology.

In the above definition, a contraction is a quantity obtained in the following way: if we take

m upper indices {p1, p2, · · · , pm}, take m lower indices {q1, q2, · · · , qm} and associate them with

a quantity λ, then we get a contraction λp1p2··· ,pm
q1q2···qm . If m = 1, we call this contraction a one-one

contraction; otherwise m > 1, and we call it an m-m contraction, or simply a multiple contraction.

Later in this chapter we will meet contractions for a product Ar1r2···
s1s2··· × Bx1x2···

y1y2··· . In this case,

contractions are obtained similarly: in a contraction λu1u2···
v1v2··· , the upper indices {u1, u2, · · · } may

come from A or from B or from both, and the same is true for the lower indices {v1, v2, · · · }. If

all the indices of a contraction come purely from A or purely from B, we call this contraction an

internal-contraction; otherwise we call it a cross-contraction. In the above definition (5.25-5.28),

there is no constraint on the contractions, as long as any index appears only once in each term.

Formally, the chain of definitions can be taken as the expansion of â in terms of λ-normal

order ã, and can be stated as:

• In the expansions, all possible contractions are allowed.

• Every contraction contributes a λ.

• In each normal order term, the uncontracted indices appear in the normal order operator.

• Every unique term has a coefficient of unity. The sign rule is the same as in the definition

of λ’s: the sign of each term is determined by the parity of the permutation which brings

the indices of the term into the original index pairing order.

To illustrate, let us look at âprtvxzqsuwyk. If there are a few one-one contractions p-s, r-q, t-w and x-

k, we get the coefficient λpsλ
r
qλ

t
wλ

x
k. The uncontracted upper indices v and z and the uncontracted

lower indices u and y go to the normal order operator ãvzuy. Thus we get a term λpsλ
r
qλ

t
wλ

x
kã

vz
uy.

Compared with the original order prtvxzqsuwyk, an odd number of transpositions are needed to reproduce

the original pairing order, so the sign is negative and the final form from these four contractions

is -λpsλ
r
qλ

t
wλ

x
kã

vz
uy.
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Although we have defined λ’s as cumulants, the definition of normal order is certainly not

confined to this particular case. Indeed, we have the freedom of defining λ’s, and every definition

of λ’s corresponds to a definition of normal order. In the following proof, we do not refer to

the explicit definition of λ’s. Instead, the only assumption of the proof is that the λ’s in the

definitions are antisymmetric, which can be trivially satisfied by a proper definition. Thus, the

λ-normal order theory can be made more general by allowing the extra freedom of defining λ. If

λ’s are identified with cumulants, the expectation value of any λ-normal order operator vanishes.

(Henceforth, GWT and contraction rules and expansion rules will be used interchangeably.)

5.3 Generalized Wick Theorem

Suppose that the λ’s are defined in a way such that the antisymmetry property is enforced. Given

any two normal order operators ãσ and ãρ,

ãσ = ãp1p2···pm
q1q2···qm , (5.29)

ãρ = ãx1x2···xn
y1y2···yn , (5.30)

the GWT gives the result of expanding the product

ãσ × ãρ = ãp1p2···pm
q1q2···qm × ã

x1x2···xn
y1y2···yn (5.31)

into a series of terms, the operator being in λ-normal order in each term. For easy reference, let

us denote the upper indices of ãσ as LU (left up), the lower indices of ãσ as LL (left low), the

upper indices of ãρ as RU (right up) and the lower indices of ãρ as RL (left low).

Now we can state the GWT (to be proved) corresponding to λ-normal order:

• Any possible contractions are allowed except internal-contractions (internal-contractions are

those whose indices come purely from ãσ or ãρ).

• Each multiple contraction contributes a λ, with the only exception of one-one RU-LL con-
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tractions: any one-one contraction p-q between an RU index (p) and an LL index (q) con-

tributes a ξpq (ξpq = λpq +Θp
q = λpq − δ

p
q , Θ

p
q ≡ −δ

p
q , ξ

p
q = −ηpq , η

p
q being the one hole density

matrix ; we use ξ, instead of η, to make the sign rule the same as in the λ-normal order

definition, in order to have a universal sign rule).

• In each normal order term from the product expansion, the uncontracted indices appear in

the operator.

• Every unique term in the expansion has a coefficient of unity. The sign rule is also the same

as in the normal order definition: the sign of every term is determined by the parity of the

permutation of bringing the indices of the term into the original index pairing order.

For example, according to GWT, if we expand the product ãpq × ã
r
s, we get:

ãpq × ã
r
s = ãprqs − λ

p
s × ã

r
q − ξ

r
q ã

p
s − λ

p
sξ

r
q + λprqs . (5.32)

If we compare the result of expanding âσ+ρ in terms of λ-normal order operators (according

to the definition (5.25) - (5.28)) to the result of expanding the product of two λ-normal order

operators ãσ × ãρ according to GWT, we notice that there are only two differences:

1. In the product expansion, there is no internal-contraction. Only cross-contractions are

allowed.

2. Any one-one contraction p-q between an RU index (p) and an LL index (q) becomes ξpq ,

instead of λpq .
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5.4 Proof

Now let us proceed to prove the contraction rules for the product of a general m-body normal

order operator ãσ and an n-body normal order operator ãρ, or simply (m,n). Supposem+m = Ω.

ãσ = ãp1p2···pm
q1q2···qm

(
= âp1p2···pm

q1q2···qm −
(
ãp1p2···pm
q1q2···qm

)
d.c.

= âσ − ãσd.c.

)
, (5.33)

ãρ = ãx1x2···xn
y1y2···yn

(
= âx1x2···xn

y1y2···yn −
(
ãx1x2···xn
y1y2···yn

)
d.c.

= âρ − ãρd.c.

)
. (5.34)

For convenience, let us define a notation:

(
ãpq
)
d.c.

≡ âpq − ã
p
q = λpq , (5.35)

(
ãprqs
)
d.c.

≡ âprqs − ã
pr
qs = Â

(
λpq ã

r
s + λpqλ

r
s + λprqs

)
, (5.36)

(
ãprtqsu

)
d.c.

≡ âprtqsu − ã
prt
qsu

= Â
(
λpq ã

rt
su + λpqλ

r
sã

t
u + λprqs ã

t
u + λpqλ

r
sλ

t
u + λpqλ

rt
su + λprtqsu

)
, (5.37)

(
ãp···q···

)
d.c.

≡ âp···q··· − ã
p···
q···, (5.38)

(.d.c. means disconnected, for example, all contributions to
(
ãprtqsu

)
d.c.

appear disconnected except

λprtqsu). We interpret ãd.c. as ã with internal-contractions.

We first notice that λ-GWT holds for a special case, one of the operator is a constant: (n, 0),

or (0, n). In this case, since one of the operators has a particle rank of zero, no cross-contraction

is possible, thus the product expansion only gives one term with no contraction, according to

λ-GWT:

c× ãp1p2···pm
q1q2···qm = c · ãp1p2···pm

q1q2···qm . (5.39)

This is certainly what the product should be in normal order form. We first state this particular

case because it does show up in the following general proof, although implicitly.

Now let us start to prove λ-GWT in general, by induction. For Ω = 1, there are only two

possibilities: (0, 1), or (1, 0). λ-GWT trivially holds for both, according to the previous paragraph.
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For Ω = 2, the only nontrivial case is: (1, 1). Let us demonstrate explicitly that λ-GWT holds

for this case:

ãpq × ã
r
s = (âpq − λ

p
q)× (ârs − λ

r
s)

= âpq â
r
s − λ

p
q â

r
s − λ

r
sâ

p
q + λpqλ

r
s

= âprqs + δrq â
p
s − λ

p
q(ã

r
s + λrs)− λ

r
s(ã

p
q + λpq) + λpqλ

r
s

= (ãprqs + λpq ã
r
s + λrsã

p
q − λ

p
s ã

r
q − λ

r
qã

p
s + λpqλ

r
s − λ

p
sλ

r
q + λprqs) +

δrq(ã
p
s + λps)− λ

p
q(ã

r
s + λrs)− λ

r
s(ã

p
q + λpq) + λpqλ

r
s

= ãprqs − λ
p
s ã

r
q − ξ

r
q ã

p
s − λ

p
sξ

r
q + λprqs . (5.40)

Now assume that we have proved that the contraction rules hold for the case (M, N), for all M

and N such that M +N < m+ n = Ω.

ãσ × ãρ = ãp1p2···pm
q1q2···qm × ã

x1x2···xn
y1y2···yn

=
(
âσ − ãσd.c.

)
×
(
âρ − ãρd.c.

)

= âσ × âρ −
(
ãσd.c. × â

ρ + âσ × ãρd.c. − ã
σ
d.c. × ã

ρ
d.c.

)

= T1 − (T2 +T3 − T4), (5.41)

T1 = âσ × âρ, (5.42)

T2 = ãσd.c. × â
ρ, (5.43)

T3 = âσ × ãρd.c., (5.44)

T4 = ãσd.c. × ã
ρ
d.c., (5.45)

T2 +T3 − T4 = ãσd.c. × â
ρ + âσ × ãρd.c. − ã

σ
d.c. × ã

ρ
d.c.

= ãσd.c. ×
(
ãρ + ãρd.c.

)
+
(
ãσ + ãσd.c.

)
× ãρd.c. − ã

σ
d.c. × ã

ρ
d.c.

= ãσd.c. × ã
ρ + ãσ × ãρd.c. + ãσd.c. × ã

ρ
d.c.. (5.46)
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5.4.1 T2 + T3 − T4

Each term in T2 +T3 −T4 is a product of a term of particle rank M and a term of particle rank

N. Since there is at least one internal-contraction in the product term, either the particle rank of

the operator in the first term decreases, or the particle rank of the operator in the second term

decreases, or both. Thus, the requirement that M +N < m+ n is satisfied. From recursion, the

contraction rules for all product terms in T2 +T3 − T4 are known.

From λ-GWT, when T2 + T3 − T4 are expanded, only cross-contractions take place; that is,

no extra internal-contractions other than the ones already present in ãσd.c. and ã
ρ
d.c. appear from

the expansion. Therefore, upon expansion terms from T2 and T3 and T4 are characterized by the

types of internal-contractions in them, and all terms from the expansion of the three products are

unique:

• The internal-contractions in every term of T2 are purely from âσ.

• The internal-contractions in every term of T3 are purely from âρ.

• Every term of T4 has internal-contractions both from âσ and from âρ. Therefore T2, T3

and T4 form three distinct classes, and there is no overlap between them.

• In each of the three classes, every term is unique.

On carrying out all the contractions for T2+T3−T4, we get terms of normal order operators

whose coefficients contains all possible (including zero) contractions between the upper indices LU

+ RU and the lower indices LL + RL. Hence, T2 + T3 − T4 is the complete set of normal order

terms, with the only constraint that every term contains at least one internal-contraction (in Fig.

5.1, the three diagrams corresponds to the three terms in Eq. (5.46), the bridges correspond to

cross-contractions, and the straight lines connecting two heavy dots stand for internal-contractions

in ãσ and/or ãρ). Since finally there should be no internal-contraction surviving in the expansion

of ãσ×ãρ if the GWT is valid in general, all (normal order) terms in T2+T3−T4 shall be canceled

out by terms from T1, and only terms containing purely cross-contractions survive (every λ or ξ

contains indices from both σ and ρ) (the lower part of Fig. 5.1).
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σ ρ

σ ρ

σ ρσ ρ

T1 + T2 - T3

T1 - (T2 + T3 - T4)

Figure 5.1: Illustrative diagrams
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5.4.2 T1

Now let us focus on T1. Applying the GWT with respect to the true vacuum, we get

T1 = âσ × âρ

= âp1p2···pm
q1q2···qm × â

x1x2···xn
y1y2···yn

= â
p1p2···pm|x1x2···xn
q1q2···qm|y1y2···yn

+

( ∑

xα∈ RU
qβ∈ LL

δxαqβ â
p1···pβ−1pβpβ+1···pm|x1···xα−1xα+1···xn
q1···qβ−1yαqβ+1···qm|y1···yα−1yα+1···yn

+ nonumber(5.47)

∑

(xα,xθ)∈ RU, α6=θ
(qβ ,qε)∈ LL, β 6=ε

δxαqβ δ
xθ
qε â

p1pβ−1pβpβ+1···pε−1pεpε+1···pm|x1···xα−1xα+1···xθ−1xθ+1···xn
q1qβ−1yαqβ+1···qε−1yθqε+1···qm|y1···yα−1yα+1···yθ−1yθ+1···yn

+

· · · ( terms containing more than two δ′s)

)

= T1a +T1b, (5.48)

T1a = â
p1p2···pm|x1x2···xn
q1q2···qm|y1y2···yn

= âσ+ρ. (5.49)

(For clarity, the ‘|’ separates indices of âσ from indices of âρ.) The contraction rules with respect

to the true vacuum are:

• There can only be contractions between RU indices and LL indices.

• There are no multiple contractions, and any one-one contraction contributes a δ.

• If the uncontracted indices in the operators are lined up according to the contractions, there

is no sign change.

It is interesting to see that the sign rule can be recast in the following form:

If we replace δpq by Θp
q (Θp

q = −δpq ), then the overall sign for every term is determined

by the parity of the permutations needed to bring the indices of the term into the

original index pairing order.
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Thus,

T1 = âσ+ρ +

( ∑

xα∈ RU
qβ∈ LL

−Θxα
qβ
â
p1···pβ−1pβpβ+1···pm|x1···xα−1xα+1···xn
q1···qβ−1yαqβ+1···pm|y1···yα−1yα+1···yn

+

∑

(xα,xθ)∈ RU, α6=θ
(qβ ,qε)∈ LL, β 6=ε

Θxα
qβ

Θxθ
qε â

p1pβ−1pβpβ+1···pε−1pεpε+1···pm|x1···xα−1xα+1···xθ−1xθ+1···xn
q1qβ−1yαqβ+1···qε−1yθqε+1···qm|y1···yα−1yα+1···yθ−1yθ+1···yn

+ · · · ( terms containing more than two δ′s)

)
. (5.50)

With the introduction of Θp
q , we do not have to deal with different sign rules. Instead, the sign

rule is universal and consistent with the one already in use.

Now let us focus on T1a. According to the definitions of (5.25)-(5.28), if we expand âσ+ρ, we

get terms with all possible internal- or/and cross-contractions. As in T2 + T3 − T4, all internal-

contractions contribute λ’s, and all multiple cross-contractions contribute λ’s. The difference,

however, is that according to the normal order definition, in T1a, every one-one cross-contraction

between a RU index and a LL index contributes a λ, instead of ξ (as in T2 +T3 − T4).

Suppose we replace all one-body λ’s in T1a, which come from one-one RU-LL cross-contractions,

by ξ’s; then we can classify the normal order terms in T1a into two classes: terms containing

internal-contraction (from σ or/and ρ) and terms without internal-contractions. The first class

of terms will cancel out terms from T2 + T3 − T4, since the sign rule is the same, and both are

the complete set of those normal order terms in which every term contains at least one internal-

contraction. The second class of terms is exactly what we expect from the expansion of the

product ãσ × ãρ according to GWT in the case of (m, n) (the lower part of Fig. 5.1). Thus, if we

can show that the effect of adding T1b to T1a is simply changing every λ from a one-one RU-LL

cross-contraction to ξ = λ+Θ, the GWT in the case of (m, n) is proved, and therefore the GWT

is proved in general from recursion.
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5.4.3 T1a + T1b

Let us proceed to prove the above hypothesis. When we refer to T1a or T1b, we mean their

expansions in terms of normal order terms. The difference between T1a and T1b is that each

term in T1b contains at least one Θ, which is a one-one RU-LL contraction. Since other types of

contractions are the same and the sign rule is the same, we can just focus on the one-one RU-LL

cross-contractions. We can classify all normal order terms into classes according to the number of

one-one RU-LL cross-contractions. For terms in a particular class, we can group terms according

to the pairing or correspondence of the one-one RU-LL contractions. For terms with the same

number and the same paring of one-one RU-LL cross-contractions, we can further classify them

according to the numbers and index pairing of the other types of contractions (one-one RL-LU

cross-contractions and multiple contractions).

Now we will consider a general case: the terms in T1a + T1b with s one-one RU-LL (cor-

responding) cross-contractions between the RU indices {xi1 , xi2 , . . . , xis} and the LL indices

{qj1 , qj2 , . . . , qjs}, multiple contractions being same (if existent). That is, the pairing of the

one-one RU-LL contraction indices is [xi1 , qj1 ], [xi1 , qj1 ], · · · , [xis , qjs ]. If we prove that the above

hypothesis holds for this general case, we have proved the hypothesis.

Since the sign rule is the same for both T1a and T1b, all terms in this case have the same

sign. Therefore we can focus on the one-one RU-LL contractions without worrying about the

sign. T1a will contribute a term with the coefficient λ
xi1
qj1
λ
xi2
qj2
· · ·λ

xis
qjs , those terms in T1b which

contain one Θ will contribute
(
s
1

)
terms, such as Θ

xi1
qj1
λ
xi2
qj2
· · ·λ

xis
qjs , Θ

xi2
qj2
λ
xi1
qj1
· · ·λ

xis
qjs , etc. Similarly,

those terms in T1b which contain two δ’s will contribute
(
s
2

)
terms, suc as Θ

xi1
qj1

Θ
xi2
qj2
λ
xi3
qj3
· · ·λ

xis
qjs ,

Θ
xi1
qj1

Θ
xi3
qj3
λ
xi2
qj2
· · ·λ

xis
qjs , etc. Similarly for terms containing more Θ’s. In total, from T1b, we will

get

(
s

1

)
+

(
s

2

)
+

(
s

3

)
+ · · ·+

(
s

s

)
= 2s − 1 (5.51)

terms. Together with the term λ
xi1
qj1
λ
xi2
qj2
· · ·λ

xis
qjs from T1a, we get in total 2s terms with s one-

one contractions, 2s being just the number of terms we need to replace the λ
xi1
qj1
λ
xi2
qj2
· · ·λ

xis
qjs by
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(λ
xi1
qj1

+Θ
xi1
qj1

)(λ
xi2
qj2

+Θ
xi2
qj2

) · · · (λ
xis
qjs +Θ

xis
qjs ) = ξ

xi1
qj1
ξ
xi2
qj2
· · · ξ

xis
qjs . In the 2s terms, each term is unique

(only appears once in the expansion),and its origin can be traced back by counting the number

of Θ’s. Now we have all needed terms, all terms are unique (no double counting), all terms are

counted (no term missing), the number of terms is correct, and the signs are correct. We have

therefore proved that for this general case of s one-one (corresponding) cross-contractions, adding

T1b to T1a simply changes every λ coming from a LU-RL cross-contraction to ξ = λ + Θ. Thus

the GWT in the case of (m, n) is proved, and GWT is proved in general from recursion.

5.5 Extension

The proof is purely formal, with the only assumption that λ’s are antisymmetric. Hence, the

validity of the proof is more general than the original GWT. If λ’s are defined as cumulants

related to reduced density matrices (as in Eq. (5.13)-(5.15)), the expectation value of any λ-

normal order operator vanishes: 〈R|ãσ|R〉 = 0, ∀ σ. If λ’s are defined in other ways, this property

does not hold in general, but the proof still holds, and thus the GWT still holds.

In addition, we notice another interesting generalization due to the generality of the proof. If

we truncate the particle rank of λ’s to a certain level K in the recursive definition of normal order

operators, the whole proof still holds. Thus the GWT holds, with the only modification that only

up to K-body λ’s (contractions) are allowed when expanding the product of two normal order

operators. This truncation can be regarded as a family of different normal order theories. Due

to the truncation, the property, 〈R|ã|R〉 = 0, does not hold in general. Instead, it only holds for

those normal order operators of rank lower than or equal to K if λ’s are defined as cumulants (as

in Eq. (5.13)-(5.15)).
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5.6 γ-normal order

For K =1,

âpq = ãpq + γpq , (5.52)

âprqs = ãprqs + γpq ã
r
s + γrs ã

p
q − γ

p
s ã

r
q − γ

r
q ã

p
s + γpqγ

r
s − γ

p
sγ

r
q (5.53)

= ãprqs + Â
(
γpq ã

r
s

)
+ Â

(
γpqγ

r
s

)
, (5.54)

âprtqsu = ãprtqsu + Â
(
γpq ã

rt
su

)
+ Â

(
γpqγ

r
s ã

t
u

)
+ Â

(
γpqγ

r
sγ

t
u

)
, (5.55)

· · · . (5.56)

In the discussion of λ-normal order, we use λ to denote contractions for consistency. Here only

one-particle contractions appear, and we use γ instead of λ to denote them. The reason is that

we will define γ as the one-particle reduced density matrix, γpq = 〈R|âpq |R〉; therefore, using γ is

consistent with the notation introduced at the beginning of the chapter. Let us call this normal

order γ-normal order (we emphasize that only one-body contractions are present in γ-normal

order). The corresponding expansion rules, γ-GWT, should already be clear from the discussion.

According to Sec. 5.5, even the one-body contractions can be defined freely, and γ is not restricted

to be the one-particle reduced density matrix. In that case 〈R|ãpq |R〉 does not vanish, in contrast

to Eq. (5.60) where the contraction is defined as the one-particle reduced density matrix.

In single reference case, the contraction γpq = 〈R|âpq |R〉 = δpq if both p and q are hole indices,

and zero otherwise, so γ-normal order reduces to h-normal order, the particle-hole formalism based

normal order. Therefore γ-normal order can be regarded as a generalization of single reference

h-normal order.

If we define γ-normal order density matrix (DM) as the expectation values of the γ-normal
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order operators:

ζpq ≡ 〈R|ãpq |R〉, (5.57)

ζprqs ≡ 〈R|ãprqs |R〉, (5.58)

· · · , (5.59)

it is not hard to verify that:

ζpq = 0, (5.60)

ζprqs = λprqs , (5.61)

ζprtqsu = λprtqsu, (5.62)

ζprtvqsuw = λprtvqsuw + Â
(
λprqsλ

tv
uw

)
, (5.63)

· · · , (5.64)

if we take λ’s as cumulants, as defined in in Eq. (5.13)-(5.15). It can be shown that all indices in

ζ must be active in order for ζ not to vanish, which is a nice property shared by cumulants. [78]

γ-normal order is used in the SS-EOMCC method. We rewrite every quantity in the residual

equation in γ-normal order and carry out the expansions for T̂+λ
ˆ̄H. Similar arguments, as in

Chapter 4, tell that there will be up to 4-particle (γ-normal order) DM’s, so we can keep up to
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4-particle normal order terms in the expansion of T̂+λ
ˆ̄H:

T̂+λ
ˆ̄H = c0 + c1 × ã1 + c2 × ã2 + c3 × ã3 + c4 × ã4 + · · · , (5.65)

〈R|T̂+λ
ˆ̄H|R〉 = 〈R|c0 + c1 × ã1 + c2 × ã2 + c3 × ã3 + c4 × ã4|R〉

= c0 + c1〈R|ã1|R〉+ c2〈R|ã2|R〉+ c3〈R|ã3|R〉+ c4〈R|ã4|R〉

= c0 + c1ζ1 + c2ζ2 + c3ζ3 + c4ζ4

= c0 + c2ζ2 + c3ζ3 + c4ζ4

≈ c0 + c2ζ2

= c0 + c2λ2, (5.66)

where c1, c2, . . . are coefficients. The equation is written in a general way and we simply denote

the rank of the operators and DM’s by the subscripts without showing the indices explicitly. We

discard terms containing ζ3 and ζ4, to approximate the residual. In other words, we discard terms

containing three- or four-particle or quadratic two-particle cumulants. This is an approximation

made to simplify the theory.

All the contractions are γpq = 〈R|â+p âq|R〉. If the reference function |R〉 is an eigenfunction of

Ŝz, as in our method, p and q must have the same spin projection for non-vanishing γpq :

γ
pβ
qα = γpαqβ = 0. (5.67)

Furthermore, if |R〉 is an eigenfunction of Ŝ2 with S = 0 or an |S,MS〉 state with MS = 0,

γpαqα = γ
pβ
qβ = 1

2

∑
σ γ

pσ
qσ = 1

2Γ
p
q , where Γpq is the one-particle spatial density matrix. Therefore the

contractions for two spatial indices p and q of various spin projections are

γ
pβ
qα = γpαqβ = 0, (5.68)

γpαqα = γ
pβ
qβ =

1

2

∑

σ

γpσqσ =
1

2
Γpq . (5.69)

So we need not worry about the explicit spin projections of γpq , as long as p and q have the same
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spin projection.

With these results, the spin-free form of the γ-normal order theory is a trivial extension of the

spin-orbital form. It turns out that the normal order operator in spin-free form is simply the spin

summation of spin-orbital normal order operators:

Ẽpr···
qs··· = Σσ,ρã

pσrρ···
qσsρ··· , (5.70)

and the contractions γpq are replaced by 1
2Γ

p
q ’s. In addition, it can be verified that the spin-free

γ-normal order operator Ẽpr···
qs··· can be expressed as a linear combination of spin-free v-normal

order operators (Ê), which are spin singlet operators.[1] Therefore, the spin-free γ-normal order

operators are also spin singlet operators, and ζprqs = 〈R|Ẽpr
qs |R〉 can be expressed in terms of the

spatial density matrices (Γ). Now, in the residual equation both T̂ and Ĥ can be written in spin-

free γ-normal order; hence, all the quantities in the expansion T̂+λ
ˆ̄H are spin-free and the residual

equation is spin-free. Explicit spin projection quantities do not show up in the formulation and

the method.

Now we examine the non-singlet case (S 6= 0). From the above discussions, we observe that

the key element in γ-normal order to achieve a spin-free formulation is the property:

γpαqα = γ
pβ
qβ . (5.71)

This equality does not hold in general for non-singlet states. Now let us see how we can develop

a spin-free formulation for these states such that the equality (5.71) holds. (To be rigorous, the

equality γ
pβ
qα = γpαqβ = 0 is also required to hold. In the following discussions we will not consider

this equality explicitly because it holds for any reference function which is a spin eigenfunction

|S,MS〉, and this is always the case in our theory).

Suppose the residual equation for a particular method can be written as:

〈R|T̂+λ (Ĥ − E)eT̂ |R〉 = 0. (5.72)
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To simplify the notation, we further define Ĵ = T̂+λ (Ĥ −E)eT̂ . Since both Ĥ and T̂ contain only

v-normal order spin-free operators (Ê), which are spin singlet operators, Ĵ is also a spin singlet

operator. Therefore

[Ĵ , Ŝ+] = 0, (5.73)

[Ĵ , Ŝ−] = 0. (5.74)

In SS-EOMCC, |R〉 comes from a CASSCF calculation and is a spin eigenfunction: |R〉 = |S,MS〉,

where MS is the spin projection eigenvalue. The above equation therefore can be written as:

〈S,MS |Ĵ |S,MS〉 = 0. (5.75)

Following Ref. [178], with the use of spin latter operators Ŝ+ and Ŝ−, it is straightforward to

show that if the residual equation holds for a particular spin multiplet state,

〈S,MS |Ĵ |S,MS〉 = 0, (5.76)

then it holds for all spin multiplet states:

〈S,M ′
S |Ĵ |S,M

′
S〉 = 0, ∀ M ′

S . (5.77)

Therefore,

1

2S + 1

S∑

MS=−S

〈S,MS |Ĵ |S,MS〉 = 0, (5.78)

(the factor 1
2S+1 is added for convenience, as will be clear later). Therefore we can use the

above equation as the residual equation for non-singlet states. With this residual equation, the
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contraction γ will be defined correspondingly:

γxy =
1

2S + 1

S∑

MS=−S

〈S,MS |â
x
y |S,MS〉. (5.79)

The nice thing about this definition is that Eq. (5.71) is satisfied:

γpαqα = γ
pβ
qβ , (5.80)

γ
pβ
qα = γpαqβ = 0, (5.81)

due to the average over all multiplet states. Therefore a spin-free γ-normal order formulation is

achieved, as for singlet states.

In addition, as has been discussed, in this spin-free formulation, we can simply replace the

contraction γpαqα or γ
pβ
qβ by the spatial density matrix 1

2Γ
p
q , where:

Γpq =
1

2S + 1

S∑

MS=−S

〈S,MS |
(
âpαqα + â

pβ
qβ

)
|S,MS〉 (5.82)

=
1

2S + 1

S∑

MS=−S

〈S,MS |Ê
p
q |S,MS〉. (5.83)

Using spin ladder operators, we can show that the spatial density matrix is independent of the

spin multiplet states:

〈S,MS |Ê
p
q |S,MS〉 = 〈S,M ′

S |Ê
p
q |S,M

′
S〉,∀ M

′
S , (5.84)

and likewise for the spatial density matrices of higher ranks. Therefore

Γpq =
1

2S + 1
(2S + 1)〈S,MS |Ê

p
q |S,MS〉 = 〈S,MS |Ê

p
q |S,MS〉, (5.85)

and we can use any spin multiplet state to calculate the spatial density matrix Γpq , instead of

averaging over all states.
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This ends our discussion of normal order theory, and the approximation in the residual equation

in SS-EOMCC should be clear now. In next chapter, we look at how the method is implemented.



Chapter 6

Automatic program generator

The process of manipulating second quantized operators to derive working equations for vari-

ous many-electron theories and translating these equations into efficient computer programs is

extremely tedious and prone to error as the complexity of the theory increases. Hence, computer-

aided implementation is indispensable for that purpose. From the automatic derivation of per-

turbation theory [179, 180] to the development of the Tensor Contraction Engine [181, 182], there

has been much effort [183, 184, 111, 112, 185, 186, 15, 16, 17, 187, 188, 189, 190, 191, 155, 192,

193, 194, 195, 196, 197, 181, 198, 199, 200] devoted to automatic implementation (see Ref. [201]

for a nice review and references therein).

This chapter describes our endeavor to tackle this problem. An automatic program generator

(APG) is written to derive equations (SRCC or MRCC) and generate Fortran codes. The primary

goal is to use the symbolic manipulation program to implement MRCC methods. The APG

program, written in Python [202], is completely based on normal order theory; in other words,

on the generalized Wick theorem (GWT) [172, 77, 78]. Due to the extensive use of the class

data type, great flexibility is achieved and the capability of the program can be enhanced readily.

Section 6.1 briefly explains conceptually how to obtain equations from GWT. Section 6.2 presents

details of how the GWT is implemented. Section 6.3 tells how to generate Fortran codes from

derived equations.

92



CHAPTER 6. AUTOMATIC PROGRAM GENERATOR 93

6.1 Obtain Equations from Normal Order Theory

Let us start with a typical parameterization:

|Ψ〉 = Ω̂|R〉 = eŜ |R〉, (6.1)

where |R〉 is either a single determinant or multi-determinantal reference function, Ω̂ is the wave

operator and Ŝ is the cluster operator. The defining equations are usually obtained from projec-

tion:

〈R|Ŝ+λ e
−ŜĤeŜ |R〉 = 0, (6.2)

where Ŝλ denotes any excitation operator present in Ŝ. Let us write this equation in a general

form:

〈R|α̂|R〉 = 0, (6.3)

where α̂ is usually a composite operator. Suppose a certain normal order is defined and that

the corresponding contraction rules between two normal order operators are derived. Then, upon

expansion we can write α as

α̂ = z0 + zqp τ̂
p
q +

1

2
zrspq τ̂

pq
rs + · · · , (6.4)

and the equation is obtained:

〈R|α̂|R〉 = z0 + zqp〈R|τ̂
p
q |R〉+

1

2
zrspq〈R|τ̂

pq
rs |R〉+ · · · (6.5)

= z0 + zqpD
p
q +

1

2
zrspqD

pq
rs + · · · (6.6)

= 0, (6.7)

where τ̂ rs = {â+r âs} ({} denotes a certain normal order), and Dr
s is the expectation value of the

normal order operator τ̂ rs with respect to the reference function.
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Although the program works in both spin orbital and spatial orbital forms, our interest lies in

spin-adapted MRCC theory. To achieve spin-adaptation, spin free operators are used:

Êp
q = τ̂pαqα + τ̂

pβ
qβ (6.8)

Êpq
rs = τ̂pαqαrαsα + τ̂

pαqβ
rαsβ + τ̂

pβqα
rβsα + τ̂

pβqβ
rβsβ . (6.9)

Provided that the reference function is a spin eigenfunction and the excitation operators are

defined in terms of the Ê’s, the wavefunction is spin-adapted because Ê’s are spin singlet operators

[1] and commute with Ŝz and Ŝ
2. (Henceforth all the orbital indices refer to spatial orbitals unless

stated otherwise.)

6.2 Equation Derivation

From the discussion in Section I, clearly the most basic manipulation for equation derivation is

to expand the binary product of any two operators Â× B̂ according to GWT. For an expression

involving products of more than two normal order operators, we can evaluate the products se-

quentially. The sequential expansion idea is general enough to obtain tensor equations for usual

coupled cluster theories. Let us first see how to represent every term in the APG program.

6.2.1 Term representation: hierarchical class structure

Here is one example of a term:

1

2
th1h2
p1p2

fh4

h3
Êp1p2

h1h2
Êh3

h4
. (6.10)

We define a class Term, to represent this type of quantity. From the example, every term mainly

has two attributes: Coefficient (here, 12 t
h1h2
p1p2

fh4

h3
) and Operators (here, Êp1p2

h1h2
Êh3

h4
).

Following the chain of definitions, we have a hierarchical contraction for a term:

• Operators is a list of Operator’s (here, Êp1p2

h1h2
and Êh3

h4
).

• The class Operator has two attributes: ‘upperIndicees’ and ‘lowerIndicees’, which in turn

are lists of indices (for Êp1p2

h1h2
, [p1, p2] is the ‘upperIndicees’ and [h1, h2] is the ‘lowerIndicees’).
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• The class Index mainly has two attributes: ‘type’, ‘num’. For the index ‘p1’, ‘type’ = ‘p’

(particle), and ‘num’ = ‘1’.

• The class Coefficient has two attributes: ‘const’ and ‘matElement’. For 12 t
h1h2
p1p2

fh4

h3
, ‘const’

= 1
2 , ‘matElement’ = [th1h2

p1p2
, fh4

h3
]. ‘matElement’ is a list of MatElement.

• The classMatElement mainly has three attributes: ‘name’, ‘matUpperIndicees’ and ‘mat-

LowerIndicees’. For th1h2
p1p2

, ‘name’ = ‘t’, ‘matUpperIndicees’ = [h1, h2], and ‘matLow-

erIndicees’ = [p1, p2]. The ‘matUpperIndicees’ and ‘matLowerIndicees’ are lists of indices.

In our program, more attributes are attached to some classes, but the basic structure is as

shown above.

6.2.2 Generalized Wick Theorem

We first explain the implementation of h-GWT, that is, the GWT corresponding to the particle-

hole formalism based normal order. Once the data structure is established, the implementation

of h-GWT involves finding all possible contractions and replacing the contractions by Kroneckner

delta’s (provided that the coefficient is modified properly depending on the contraction type).

One example of an h-GWT contraction is shown below:
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1

2
vp1p2

h1h2
Êh1h2
p1p2

×
1

2
th3h4
p3p4

Êp3p4

h3h4

= 0.25vp1p2

h1h2
th3h4
p3p4

Êh1h2p3p4

p1p2h3h4
+ 0.25vp3p2

h1h2
th3h4
p3p4

Êh1h2p4

h3p2h4
+ 0.25vp4p2

h1h2
th3h4
p3p4

Êh1h2p3

h4p2h3
+ (term 1-3)

0.25vp1p3

h1h2
th3h4
p3p4

Êh1h2p4

p1h3h4
+ 0.25vp1p4

h1h2
th3h4
p3p4

Êh1h2p3

p1h4h3
− 0.25vp1p2

h3h2
th3h4
p3p4

Êp3h2p4

p1p2h4
(term 4-6)

−0.25vp1p2

h4h2
th3h4
p3p4

Êp4h2p3

p1p2h3
− 0.25vp1p2

h1h3
th3h4
p3p4

Êh1p3p4

p1p2h4
− 0.25vp1p2

h1h4
th3h4
p3p4

Êh1p4p3

p1p2h3
+ (term 7-9)

0.25vp3p4

h1h2
th3h4
p3p4

Êh1h2

h3h4
+ 0.25vp4p3

h1h2
th3h4
p3p4

Êh1h2

h4h3
+ 0.5vp3p2

h3h2
th3h4
p3p4

Êh2p4

p2h4
(term 10-12)

−0.25vp3p2

h4h2
th3h4
p3p4

Êh2p4

p2h3
− 0.25vp3p2

h1h3
th3h4
p3p4

Êh1p4

p2h4
− 0.25vp3p2

h1h4
th3h4
p3p4

Êh1p4

h3p2
(term 13-15)

−0.25vp4p2

h3h2
th3h4
p3p4

Êh2p3

p2h4
+ 0.5vp4p2

h4h2
th3h4
p3p4

Êh2p3

p2h3
− 0.25vp4p2

h1h3
th3h4
p3p4

Êh1p3

h4p2
(term 16-18)

−0.25vp4p2

h1h4
th3h4
p3p4

Êh1p3

p2h3
− 0.25vp1p3

h3h2
th3h4
p3p4

Êh2p4

p1h4
− 0.25vp1p3

h4h2
th3h4
p3p4

Êp4h2

p1h3
+ (term 19-21)

0.5vp1p3

h1h3
th3h4
p3p4

Êh1p4

p1h4
− 0.25vp1p3

h1h4
th3h4
p3p4

Êh1p4

p1h3
− 0.25vp1p4

h3h2
th3h4
p3p4

Êp3h2

p1h4
(term 22-24)

−0.25vp1p4

h4h2
th3h4
p3p4

Êh2p3

p1h3
− 0.25vp1p4

h1h3
th3h4
p3p4

Êh1p3

p1h4
+ 0.5vp1p4

h1h4
th3h4
p3p4

Êh1p3

p1h3
+ (term 25-27)

0.25vp1p2

h3h4
th3h4
p3p4

Êp3p4
p1p2

+ 0.25vp1p2

h4h3
th3h4
p3p4

Êp4p3
p1p2
− 0.5vp3p2

h3h4
th3h4
p3p4

Êp4
p2

+ (term 28-30)

0.25vp3p2

h4h3
th3h4
p3p4

Êp4
p2

+ 0.25vp4p2

h3h4
th3h4
p3p4

Êp3
p2
− 0.5vp4p2

h4h3
th3h4
p3p4

Êp3
p2

+ (term 31-33)

0.25vp1p3

h3h4
th3h4
p3p4

Êp4
p1
− 0.5vp1p3

h4h3
th3h4
p3p4

Êp4
p1
− 0.5vp1p4

h3h4
th3h4
p3p4

Êp3
p1

+ (term 34-36)

0.25vp1p4

h4h3
th3h4
p3p4

Êp3
p1

+ 0.5vp3p4

h3h2
th3h4
p3p4

Êh2

h4
− 0.25vp3p4

h4h2
th3h4
p3p4

Êh2

h3
(term 37-39)

−0.25vp3p4

h1h3
th3h4
p3p4

Êh1

h4
+ 0.5vp3p4

h1h4
th3h4
p3p4

Êh1

h3
− 0.25vp4p3

h3h2
th3h4
p3p4

Êh2

h4
+ (term 40-42)

0.5vp4p3

h4h2
th3h4
p3p4

Êh2

h3
+ 0.5vp4p3

h1h3
th3h4
p3p4

Êh1

h4
− 0.25vp4p3

h1h4
th3h4
p3p4

Êh1

h3
+ (term 43-45)

vp3p4

h3h4
th3h4
p3p4
− 0.5vp3p4

h4h3
th3h4
p3p4
− 0.5vp4p3

h3h4
th3h4
p3p4

+ vp4p3

h4h3
th3h4
p3p4

. (term 46-50) (6.11)

We illustrate the contraction rules with this example. We denote the four positions of indices in

the two operators (in this case Êh1h2
p1p2

and Êp3p4

h3h4
) as LU (LU = ‘left up’, the position of h1 and

h2 in Ê
h1h2
p1p2

), LL (LL = ‘left low’, the position of p1 and p2 in Ê
h1h2
p1p2

), RU (RU = ‘right up’, the

position of p3 and p4 in Êp3p4

h3h4
) and RL (RL = ‘right low’, the position of h3 and h4 in Êp3p4

h3h4
).

In h-GWT, contractions only take place between a hole-creation operator/particle-annihilation

operator on the left and a hole-annihilation/particle-creation operator on the right, respectively,
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in this case between a hole operator in LU (quasi-annihilation operator) and a hole operator in

RL (quasi-creation operator), or between a particle operator in LL (quasi-annihilation operator)

and a particle operator in RU (quasi-creation operator). By examining the number of each type

of index in each position, we can determine the maximum number of contractions, in this case 4.

Therefore there can be 0, 1, 2, 3 or 4 contractions. We examine the possibilities sequentially. For

the case of n-contractions, if there is a contraction between an operator in LU and one in RL,

the contraction contributes a Kronecker delta δ and a coefficient (-1), and then the corresponding

uncontracted operators in LL and RU are aligned. The sixth term is an example (‘h1’ and ‘h3’

are contracted). For a particle-particle contraction between LL and RU, the rule is similar, but

the sign of the coefficient does not change, as seen from the second term. In the case of more

than one contraction, the coefficient is further multiplied by (-2) if the contractions form a loop,

as seen from the twelfth term. The factor of 2 accounts for the fact that spin can be either α or β

and is a result of using a spin-free formulation. The δ’s are not explicitly present in the expression

because they are absorbed into the equation by equating contracted indices.

To incorporate λ-GWT into the program, we allow multiple contractions between two nor-

mal order operators, and the number of contractions increases rapidly. The possible contraction

patterns are more complicated. To expand the product of two λ-normal order operators, say,

ãpqrs × ã
tu
vw,

(all indices refer to spin orbitals here), the following procedure, according to λ-GWT, is adopted:

• Firstly, the maximum contractions are determined, in this case 4.

• Corresponding to a fixed number of total contractions (in this case, the number can be 0,

1, 2, 3, or 4), all possible contraction patters are determined. For example, if the number is
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3, the possible patterns are





three 1-1 contractions

one 1-1 contraction and one 2-2 contraction

one 3-3 contraction

• Corresponding to each contraction pattern, all possible contraction ‘configurations’, defined

by the specification of which index (indices) is contracted to which index (indices), are

determined.

• For each contraction configuration, every LU-RL contraction is replaced by a λ, every 1-1

LL-RU contraction is replaced by a η = δ−λ, every multiple LL-RU contraction is replaced

by a λ.

• The sign rule is stated in the previous chapter.
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tu
vw
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pqt
wsv + ηus ã
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pq
wv + λtursã
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pu
rw − λ

q
wη

t
sã
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vã

tu
sr + λpqvwã
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qt
sv

−λqvλ
tu
swã
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p
r + λqtusvwã
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p
v +

ηtrλ
qu
swã
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q
v − η

u
s λ

pt
rwã
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u
s − λ

pqt
rwvã
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u
w + λpwλ

qt
srã
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6.2.3 Canonicalization

Upon expansion, generally there will be many terms generated which are equivalent. The canoni-

calization procedure reduces equivalent terms to a unique form and merges them. The canonical-

ization algorithm in spin free form is somewhat simpler than in spin orbital form. We illustrate

the algorithm using the example of Eq. 6.11, 12v
p1p2

h1h2
Êh1h2
p1p2

× 1
2 t
h3h4
p3p4

Êp3p4

h3h4
, and the algorithm in

spin orbital form is straightforward to obtain by suitable extensions.
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The same term can appear in different forms. All equivalent forms can be obtained from each

other by permutations (the allowed permutations in spin-free cases include the order of the matrix

elements and the order of the index pairs in each matrix element). Suppose all permuted forms

are generated for a term A. What is needed to canonicalize a term is to define a criterion to select

a unique one from them. There are many ways to define the criteria. For example, the following

rules work:

• A preferred order of matrix elements of different names is defined, for example, “ f/v -> t1

-> t2 -> t3 -> γ > η · · · ”. f/v stands for the one/two particle Hamiltonian matrix element,

t1/t2/t3 stands for the T̂1/T̂2/T̂3 amplitude. The permutation forms which do not conform

to this criterion are discarded.

• For surviving terms, we compare each index correspondingly according to the criteria given

below. The comparison is done term by term, and those less favored forms are discarded.

That is, during the comparison of form X to form Y, we compare every index at the same

position in A and B. Once a difference is located according to the criterion, the less favored

term (X or Y) is discarded. Suppose X is discarded; we then compare Y with next form

in the same way. The following criteria are employed: (a) indices of explicit particle or

hole type are preferred to those of general type, (b) particle indices are preferred to hole

ones, (c) uncontracted (i.e., external) indices are preferred to contracted (i.e., summation or

dummy) ones, As we follow the procedure, we check one by one the matrix elements one by

one whose indices from already-checked matrix elements form gradually-growing libraries X

and Y for X and Y, respectively. Thus a specific order of indices is developed for both X

and Y, respectively. For the contracted index x in X and y in Y in comparison, the one

which is contracted to an index already in the library is preferred. If both x and y satisfy

this condition (suppose x is contracted to x̄, y is contracted to ȳ), we compare the position

of x̄ and ȳ in their corresponding libraries X and Y. If x̄ appears in X earlier than ȳ in Y,

then X is preferred, and Y is discarded.

• The above criteria can be extended when necessary. For example, when some indices are
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active, the selection criteria can be incremented by requiring that active indices are preferred

to the other indices.

In principle, we can first generate all permuted forms and then select one according to the

above criteria. In practice, however, for efficiency consideration we can proceed sequentially. For

example, we first permute the order of the matrix elements in a term without permuting index

pairs. Then we select the forms conforming to criterion A. In the next step we permute the index

pairs of the terms (survived from last selection), and then select the forms conforming to the rules

which are stated above.

For one term, if we finally get more than one form after this selection, we take any one of them.

The last step of canonicalization is reducing the numbers of indices. For example, we have two

terms 12v
p1p3

h1h2
Êh1h2
p1p3

and 1
2v

p1p4

h1h3
Êh1h3
p1p4

. The program can not recognize that they are equivalent at

this moment. After ‘number’ reduction, both are converted to the same form 1
2v

p1p2

h1h2
Êh1h2
p1p2

. The

reduction is done through a mapping process. Given a term, from the first to the last matrix

element, from upper to lower indices, from left to right indices, the first particle index is mapped

to p1, the second particle index is mapped to p2, etc. After this mapping process, the original

indices are replaced by the mapped ones. This is the procedure of canonicalization implemented

in our program. From the brief discussion of the algorithm in Ref. [181], it appears that ours is

rather similar to Hirata’s algorithm. An alternative canonicalization algorithm which is applicable

to connected terms in which there is no quantity of particle rank larger than two (which is the

most frequent situation in coupled cluster theory) is briefly discussed in Ref. [200].
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The canonicalization procedure simplifies the expression (6.11) greatly:

1

2
vp1p2

h1h2
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×
1

2
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6.3 Generating Fortran Codes

Once residual equations are obtained, the structure of each term in the equations is parsed, a

factorization of the residual expression is performed, primarily for efficiency consideration. The

proper subroutines are invoked thereafter to evaluate residuals.

6.3.1 Factorization

Suppose we have the residual expression:

Rp1p2

h1h2
= α+ β + · · ·

= ABCD + EF + · · · (6.14)

To add the product of ABCD to Rp1p2

h1h2
, if we carry out the multiplications sequentially, there

are 24 different orders to calculate ABCD: A-B-C-D (from right to left, first multiply C by D

together, then multiply the product by B, then by A), A-B-D-C, A-C-B-D, · · · . Different orders

often results in different computational costs. We first find the most efficient order by comparing

the costs of all permutations. This is a local optimization procedure (strength reduction).

Now we illustrate the factorization algorithm implemented in our code (though not yet tested)
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with one simple example:

R = A1 +

A2 ×B2 +

A3 ×B3 × C3 +

A4 ×B4 × C4. (6.15)

Suppose that for each term, the multiplication order is already determined (as indicated from

its form, from right to left). We first examine the terms which have the most components, in

this case, the third and the fourth terms which have 3 components. We check if A3 = A4 and

B3 = B4. If that is true, a factorization is possible:

R = · · ·+A3 ×B3 × (C3 + C4). (6.16)

In this case, we can define an intermediate: Ix = C3 + C4 and get

R = A1 +

A2 ×B2 +

A3 ×B3 × Ix (6.17)

= A1 +

A2 ×B2 +

A3 × Iy, (6.18)

upon defining Iy = B3×Ix. Now we check whether A2 = A3. If that is true, another factorization

is possible. In general, we first classify terms by the number of components (for notational

simplicity, let us call the number the ‘rank’ of the term), and carry out factorizations following

the order of decreasing rank. For terms of the same rank, we compare all the components except

the rightmost one. For this comparison, we simply compare element by element. If any two
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terms have the same components except the rightmost one, a factorization is found. In the

example above, if A4 = B3 and A3 = B4, a factorization is possible in principle, but this requires

comparisons of permutations. In general, this comparison is rather expensive if done fully.

Clearly, this factorization algorithm is far from optimal, and further optimization is possible.

We did not pursue further improvements, because our first goal is to get a reasonable working

code to test our theory. Very high efficiency will be of high priority to us when our method is

robust and satisfactory. Here we list a few potential issues which may be considered in future to

develop better factorization algorithms:

• The type of factorization A×B × C +A×D × C = A× (B +D)× C is not considered in

the current algorithm.

• It is hard to recognize common factors among terms of different types, for example, (B+C)

in

A× (B + C)×D + E × (B + C)× F.

• By identifying common factors which occur many times in the equation and storing them

during the computation process, the number of floating point operations can be reduced,

whereas more disk space is required. The space-time tradeoff is an important issue to

consider.

• A satisfactory algorithm should consider more sophisticated factorizations. For example,

instead of multiplying ABCD as follows,

I1 = C ×D,

I2 = B × I1,

ABCD = I3 = A× I2, (6.19)
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other ways should be examined:

I1 = C ×D,

I2 = A×B,

ABCD = I2 × I1. (6.20)

The final costs may differ greatly. For example, to compute

Arz
wx ×B

wx
vy × C

vt
su ×D

qs
tr ,

the first route leads to a cost ∝ N 7:

I1
ur
qv = Cvt

su ×D
qs
tr ,

I2
yur
xqw = Bwx

vy × I1
ur
qv ,

ABCD =
(
I3
yu
zq

)
= Arz

wx × I2
yur
xqw. (6.21)

In comparison, the second route leads to a cost ∝ N 6:

I1
ur
qv = Cvt

su ×D
qs
tr ,

I2
vy
rz = Arz

wx ×B
wx
vy ,

ABCD =
(
I3
yu
zq

)
= I2

vy
rz × I1

ur
qv . (6.22)

The difference is clear from the illustration Fig. 6.1.

Suppose that we have developed factorization algorithms of different levels of sophistication.

Usually it is not practical to carry out a complete search to find the optimum factorization of

the whole equation. In other words, global optimization is often not attainable. Presumably only

a small portion of the terms are of leading costs and determine the overall cost scaling of the

whole residual evaluation, so they should be the focus of the factorization step. Therefore, it
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Figure 6.1: Arz
wx ×B

wx
vy × C

vt
su ×D

qs
tr contraction pattern
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appears more practical to apply different factorization algorithms to different groups of terms. To

illustrate, we outline one plausible schematic procedure which may be implemented in future:

1. Group terms into classes according to their individual computational cost scaling, based on

strength reduction.

2. Apply the most sophisticated factorization algorithm implemented to terms of leading costs,

and less time-demanding algorithms to the other terms. In principle, we can set up a few

levels of algorithms if necessary.

3. If the costs for the leading terms are reduced substantially upon factorization, and some

other terms dominate the overall cost, we can repeat step (2).

In general, it is a complicated problem to find a good factorization algorithm; this issue has been

discussed in the literature[203].

6.3.2 Multiplication and addition subroutines

After factorization, the real input to the code generation module is the intermediates. Here is an

example. For the product ABCD, suppose the most efficient order is A-B-C-D. C × D generates

one intermediate quantity, say I1:

I1 = C ×D,

I2 = B × I1,

I3 = A× I2,

Rp1p2

h1h2
+ = I3. (6.23)

The intermediates themselves are products of other quantities, and are represented by a class

which allows internal structures. This class has an attribute which has the value ‘P’ or ‘S’, where

‘P’ means the intermediate is a product of two quantities, and ‘S’ means it is the sum of two

quantities. This class also has an attribute to store the constituent quantities of the product or

summation.
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In this case, the code generation module receives I3 as the input, parses its structure and

decides that it is the product of A and I2, which itself is an intermediate. By tracing the internal

structures, the module finally gets to I1, and find that it is a product of two quantities, which

are not intermediates, e.g., ti3i4p1p2
and vi1i2i3i4

. Then it starts to call multiplication and addition sub-

routines to execute I1 = C ×D. Once I1 is obtained, I2, I3, R
p1p2

h1h2
will be calculated sequentially.

In other words, the module deciphers the intermediate I3 and traces its internal structure to the

lowest level, then starts to call subroutines to execute the operations sequentially, following the

trace.

All intermediate quantities and primitive quantities such as ti3i4p1p2
and vi1i2i3i4

are represented as

lists. A list is an integer which tells where the quantities are stored. It is pre-determined how the

quantities represented by a list are stored, with symmetry being taken into account to reduce the

required space. Besides, every list has its associated particle-hole type, which tells the particle-

hole type of the indices in the quantity represented by the list. For example, ti3i4p1p2
is represented

by a list named ltaaii and the particle-hole type of the list is ‘aaii’. When the particle-hole type

is passed to the subroutine as an argument, it may contain information specifying how to select

a particular subclass of its corresponding quantity. This is illustrated later in this section. For

brevity, we will henceforth use interchangeably a list and the quantity it represents.

A series of highly efficient general-purpose addition and multiplication subroutines are written.

Every subroutine can realize a particular operation depending on the number of indices in every

quantity involved and the number of contracted indices. For example, to execute the operation

Ri1i2
p1p2

+ = 0.5× vi1i2i3i4
× ti3i4p1p2

, (6.24)

we need to call the subroutine diagram444. In general, to implement C = a × C + b × A × B,

where a and b are coefficients (C+ = b×A×B is a special case of a = 1), we call the subroutine

diagramXYZ, where X refers to the number of indices in A, Y refers to the number of indices

in B, and Z refers to the number of indices in C. To complete the call, the program needs to

decipher the expression (6.24):
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• determine which lists the quantities correspond to: vi1i2i3i4
↔ lviiii, ti3i4p1p2

↔ ltaaii, Ri1i2
p1p2

↔

lraaii. The correspondence is determined by the definition which is implemented in the

program.

• determine how to permute the orders of indices of lists lviiii, ltaaii and lraaii. Diagram

subroutines are implemented in such a way that it requires a particular ordering, for example,

the last two indices of list A and the first two indices of list B are the contracted indices,

and the uncontracted indices in A and B are in the same order as in C :

C(p, q, r, s)+ = b×A(p, q, x, y)×B(x, y, r, s). (6.25)

Since how A, B and C are stored is pre-defined and may not conform to the requirement,

the orders of the indices in them need to be changed. The program permutes the orders of

indices in A, B and C until the required ordering is achieved. By permuting indices, the

diagram procedures can use effective BLAS matrix multiplication subroutines.

• determine the particle-hole types of the lists after permutation (if there is no reordering,

the particle-hole types are the same as initially defined). Adding particle-hole types to the

arguments of diagram, instead of inferring it from the definition of the lists and their indices

orders, makes the call more explicit. More importantly, the particle-hole types may be used

to specify to shrink lists. Here is an example. Suppose in a subroutine the order of the list

ltaaii is not changed, that is ‘aaii’. If instead of vi1i2i3i4
×ti3i4p1p2

the multiplication is vi1i2i3m1
×ti3m1

p1p2

(m1 is an active-hole index), the list corresponding to ti3m1
p1p2

is still ltaaii, but its particle-

hole list in the subroutine is ‘aaim’ instead of ‘aaii’. The program will then only select

the portion of ltaaii in which the fourth index is an active-hole index and use them in the

multiplication. The automatic shrinking enhances the flexibility of the diagram subroutines.

The particle-hole list in the subroutine for lviiii will be changed correspondingly.

• determine the multiplication coefficients a and b.

Once the program deciphers the expression and extracts all the information needed for the ar-
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guments, the call can be completed. In APG, the multiplication and addition subroutines are

represented by two classes, and attributes are assigned to these classes to represent the arguments.

For example, for the class which represents multiplication subroutines, there are attributes to de-

termine which specific multiplication subroutine to be called, attributes to pass the multiplication

coefficient, attributes to determine how to reorder the indices in the multiplication component

quantities, etc.

Now we show a piece of the Fortran code generated, which corresponds to the operation

Ri1i2
p1p2

+ = 0.5× vi1i2i3i4
× ti3i4p1p2

. (6.26)

! R[ a1 a2, i1 i2 ] = v[ i3 i4, i1 i2 ] t[ a1 a2, i3 i4 ]

! R[ a1 a2, i1 i2 ] = v[ i1 i2, i3 i4 ] t[ a1 a2, i3 i4 ]

! lraaii[ i1 i2, a1 a2 ] = lviiii[ i1 i2, i3 i4 ] ltaaii[ i3 i4, a1 a2 ]

! [ 3 4, 1 2 ] = ’N’ [ 1 2, 3 4 ] ’N [ 3 4, 1 2 ]

call diagram444(lviiii, ’iiii’, ’1234’, ’N’,

$ ltaaii, ’iiaa’, ’3412’, ’N’, 0.5d0,

$ lraaii, ’iiaa’,

$ ’3412’, 1.0d0 , scr, mxcor)

The first four lines are comments generated by the program (coefficients neglected in the comment

lines). The first line is the same as the actual input expression (6.26) (except the factor of 0.5

which can be printed out if desirable); the second line writes the indices in the orders as they are

stored, which are pre-defined; the third line gives the indices in the orders which conform to the

requirement of the diagram444 subroutine; the fourth line prints out explicitly the permutations,

which can be understood by comparing the second to the third comment line. ‘N’ means ‘no

transposition’, and is related to the ‘N’ and ‘T’ arguments in BLAS DGEMM calls. The next



CHAPTER 6. AUTOMATIC PROGRAM GENERATOR 112

four lines are the actual call of the subroutine diagram444.

The above is the basic mechanism how Fortran codes are generated. In the above example,

what appears to the end user is: the term A×B × C ×D is the ‘feed-in’, the program finds the

optimal order from permutations, calls one multiplication subroutine to multiply C×D and store

the result in I1, . . ., and finally call one addition subroutine to add I3 to R
p1p2

h1h2
.

6.3.3 Minimize the number of intermediates

Now we study how to minimize the number of intermediates to save disk space. For the product A-

B-C-D, as shown in Eq. (6.23), three intermediates are created (if desired, the last two operations

can be incorporated into one, Rp1p2

h1h2
+ = A × I2, then only two intermediates are created). For

an equation containing many terms, many intermediates are created. Some effort is made to

maximize the reuse of intermediates. For example, after the second step, the intermediate I1

is free and ready for reuse. The same is true for I2 after the third step. We achieve this by

monitoring the states (‘free’ or ‘busy’) of all intermediates all the time and reuse them whenever

they are free. In this way, we maximize the use of intermediates such that we need at most two

intermediates for each type (the ‘type’ is characterized by the number of particle and hole indices).

6.4 Conclusion

The automatic program generator (APG) program is written in Python, which includes two

modules: equation derivation and Fortran code generation. The first module is based on the

generalized Wick theorem (GWT). Various versions of GWT are implemented: h-GWT, γ-GWT

and λ-GWT. In the second module, partial optimization to minimize computational cost is im-

plemented. The equation derivation module is presented in great detail. Usually the derivation of

an explicit residual equation is the first step of the implementation, so this module is of general

use and independent of the second module. The second module, Fortran code generation, is based

on a series of general-purpose multiplication and addition subroutines which are embedded in the

ACESII quantum chemistry program [204].
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So far, the APG code can derive various coupled cluster (spin-adapted or spin-orbital) equa-

tions, call subroutines to realize additions and multiplications automatically, output equations in

Latex form, etc. Extensive use of classes makes the program rather flexible, and its functions can

be extended readily. We are currently pursuing the development of some internally contracted

multireference coupled cluster methods with the aid of the APG program.

This ends our discussion of the method: theory and implementation. In next chapter we

presents benchmark results.



Chapter 7

Benchmark results

Prior applications of SS-EOMCC focused on biradical-like systems or singly bonded species, in

which only one extra orbital is needed to construct the active space. The method at this level is

termed as SS-EOMCC[+2], where ‘[+2]’ signifies that formally two extra electrons are needed to

construct the closed-shell vacuum state. SS-EOMCC[+2] has been applied to study the ground

and excited states of O2 and F2 [155], the dissociation of LiF [205], and organic biradicals [164]

such as the automerization barrier of cyclobutadiene, singlet-triplet gaps of trimethylmethylene,

and the activation and reaction energies of the Bergman reaction. Now the applicability of the

method is extended to systems with general active spaces.1

In Section 7.1, the method is applied to the triplet 3Σ−
u state of F2 to examine its behavior for

single reference systems. In section 7.2, tests are done on H2O, CO and N2. In section 7.3, the

effect of a perturbative correction which attempts to alleviate the redundancy issue, is illustrated.

All the studies in this section use the CASSCF orbitals, and the orbitals which define the

active space include all core and valence orbitals. For F2, the active space is (18 e, 10 o). For

H2O, the active space is (10 e, 7 o). For N2 and CO, the active space is (14 e, 10 o). All

single reference computations are done with the ACES II quantum chemistry package [204] and

CASPT2/MR-AQCC/MRCI results are obtained using the MOLPRO package [206].

1Contents of this chapter and Chapter 3 are being published in J. Chem. Phys. (in press)

114



CHAPTER 7. BENCHMARK RESULTS 115

7.1 Triplet state of F2

The triplet 3Σ−
u state of F2 molecule is a single reference system over the whole bond distance

range, and is used to test the performance of the SS-EOMCC method in single reference cases.

For this system, unrestricted CCSD(T) should give highly accurate results, and we compare the

results from unrestricted CCSD and SS-EOMCC with it. The numerical results are included in

supporting information and the comparison is plotted in Fig. 7.1. UCCSD exhibits a fairly large

absolute error (up to 12.3 mEh) and non-parallelity error (NPE) (ca. 4.9 mEh). SS-EOMCC

has smaller absolute error values (up to 4.6 mEh). More importantly, the NPE is significantly

reduced (ca. 0.3 mEh). Naively we might expect similar accuracy from CCSD and SS-EOMCC,

as in both cases the cluster operator only includes single and double excitations from a single

reference determinant (in SS-EOMCC, the determinant is |0〉). We attribute the superiority of

SS-EOMCC over CCSD to the partial inclusion of triple excitations. For example (see Fig. 7.2),

the determinant on the left is the dominant determinant in |R〉, and the determinant on the right,

which is included in the MRCIS space, is triply excited with respect to the reference determinant.

On the other hand, compared with CCSD(T), the inclusion of triple excitations is incomplete.

Hence, for single reference systems, we would expect the order of the accuracy to be:

CCSD < SS-EOMCC < CCSD(T).

7.2 General active spaces: N2, H2O and CO

Now we look at multi-bond breaking processes. All computations are done with both cc-pVDZ and

cc-pVTZ basis sets [207]. The C2v symmetry group is used for all three molecules. For H2O, both

O-H bonds are broken symmetrically, while the bond angle is kept at 109.57◦. The comparisons

are with MRCI+Q [145, 146, 148] (the benchmark calculations in Ref. [80] demonstrates the high

accuracy of MRCI+Q, but whether it remains so for large basis sets is uncertain). The MRCI

method in MOLPRO is internally contracted. In addition, we investigated these molecules with
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Figure 7.1: Energy difference from CCSD(T) for F2
3Σ−

u state. SS-EOMCC computations use an
active space of (18 e, 10 o).

the CASPT2 [208, 209] and MR-AQCC [210, 211] methods. To investigate the effect of three-body

terms in the transformed Hamiltonian, we also list results where these terms are included when

diagonalizing the transformed Hamiltonian.

The errors of different methods compared with MRCI+Q are plotted in Fig. 7.3-7.8 (all the

numbers can be found in supplementary information). The mean absolute errors (MAE’s) and

NPE’s are tabulated in Table 7.1, and, plotted in Fig. 7.9 and 7.10.

For N2 in the cc-pVDZ basis set, MR-AQCC has the smallest NPE and MAE. The error

curve of CASPT2 has a large fluctuation. The inferiority of CASPT2 to the other methods is

probably because the perturbative treatment of dynamical correlation is not sufficient. MRCI has

errors ranging from 7.7 to 10.9 mEh. Clearly the a posteriori quadruple correction in MRCI+Q is

important. The absolute errors for SS-EOMCC, ranging from 5.0 to 8.2 mEh, are lower than for

MRCI, but the NPE is similar to MRCI. The MAE decreases by 2 mEh and the NPE decreases

by 0.9 mEh, when three-body terms are included for SS-EOMCC. In the cc-pVTZ basis set, MR-

AQCC has its MAE increased by 1.3 mEh, but the NPE does not change. CASPT2 becomes
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Figure 7.2: ]
Illustration of certain triple excitations present in SS-EOMCC[+2].
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even less stable, with an NPE of 11.9 mEh. MRCI has its MAE increased by 6.2 mEh, but NPE

only increased by 0.4 mEh. For SS-EOMCC, both MAE and NPE exhibit a minor change. When

three-body terms are included, the MAE decreases by 1.6 mEh and the NPE decreases by 0.3

mEh, compared with when three-body terms are neglected.
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Figure 7.3: Comparison with MRCI+Q for N2 ground state in the cc-pVDZ basis set. The active
space is (14 e, 10 o) (SS-EOMCC-3p means that three-body terms are included when diagonalizing
the transformed Hamiltonian, refer to Section II).

For CO in the cc-pVDZ basis set, MR-AQCC is again the most stable, and the large fluctuation

for CASPT2 is again observed. SS-EOMCC has a MAE smaller than MRCI by 2.0 mEh and a

NPE smaller by 0.7 mEh. Including three-body terms decreases the MAE and NPE by 1.8 mEh

and 1.4 mEh, respectively. In the cc-pVTZ basis set, MR-AQCC has its MAE increased by 1.4
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Figure 7.4: Comparison with MRCI+Q for N2 ground state in the cc-pVTZ basis set. The active
space is (14 e, 10 o) (SS-EOMCC-3p means that three-body terms are included when diagonalizing
the transformed Hamiltonian).
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mEh (the changes are roughly the same for all three systems studied in this subsection) and NPE

unaffected. For CASPT2, the NPE increases by 6 mEh. In comparison, it only increases by 1.0

mEh for MRCI. Interestingly, the SS-EOMCC error curve becomes flatter than in the cc-pVDZ

basis set, and the NPE decreases by 0.8 mEh. When three-body terms are included, the MAE

decreases by 1.2 mEh while the NPE increases by 1.1 mEh, compared with when three-body terms

are neglected.
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Figure 7.5: Comparison with MRCI+Q for CO ground state in the cc-pVDZ basis set. The active
space is (14 e, 10 o) (SS-EOMCC-3p means that three-body terms are included when diagonalizing
the transformed Hamiltonian).

For H2O in the cc-pVDZ basis set, MR-AQCC and SS-EOMCC behave similarly. The MAE

and NPE decrease by 1.0 mEh and 0.3 mEh, respectively, when three-body terms are included.
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Figure 7.6: Comparison with MRCI+Q for CO ground state in the cc-pVTZ basis set. The active
space is (14 e, 10 o) (SS-EOMCC-3p means that three-body terms are included when diagonalizing
the transformed Hamiltonian).
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CASPT2 has the largest MAE and NPE among all methods. MRCI error curve lies in between,

with an NPE of 2.4 mEh. In the cc-pVTZ basis set, the NPE’s for CASPT2, MRCI and SS-

EOMCC increases by about 2 mEh, while only 0.7 mEh for MR-AQCC. In terms of MAE, only

MRCI is affected largely, MAE increasing by 3.6 mEh. For SS-EOMCC, including three-body

terms decreases the MAE by 0.6 mEh while increases the NPE by 0.2 mEh, in comparison to

when three-body terms are neglected.

R (Å)

E
-

E
(M

R
C

I+
Q

)
/m

E
h

1 1.5 2 2.5 3
0

5

10

15

20

25

CASPT2
MRCI
MR-AQCC
SS-EOMCC
SS-EOMCC-3p

Figure 7.7: Comparison with MRCI+Q for H2O ground state in the cc-pVDZ basis set. The active
space is (10e, 7o), ∠HOH = 109.57◦ and O-H bonds are stretched symmetrically (SS-EOMCC-3p
means that three-body terms are included when diagonalizing the transformed Hamiltonian).

Overall, MR-AQCC gives the best results in average, measured in terms of MAE, with respect

to the MRCI+Q approach. CASPT2 gives the largest MAE for all systems studied. The MAE’s
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Figure 7.8: Comparison with MRCI+Q for H2O ground state in the cc-pVTZ basis set. The active
space is (10e, 7o), ∠HOH = 109.57◦ and O-H bonds are stretched symmetrically (SS-EOMCC-3p
means that three-body terms are included when diagonalizing the transformed Hamiltonian).
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for MRCI are clearly larger than for SS-EOMCC. The relatively large MAE of MRCI is due to the

size-extensivity problem, which is less severe for SS-EOMCC, as this method is core-extensive.

The dependence of MAE on the basis set is most severe for MRCI.

For NPE, MR-AQCC again performs the best and CASPT2 the worst. CASPT2 also exhibits

a dependence on the basis set. MRCI and SS-EOMCC lie between MR-AQCC and CASPT2 and

behave similarly. For all the systems studied, their NPE’s are in the range of 1-4 mEh.

For SS-EOMCC, when three-body terms are included MAE always decreases while no clear

pattern is observed for the change of NPE, which may decrease or increase depending on the

system studied. For the three systems investigated here, the change of NPE is within 1.4 mEh.

Table 7.1: MAE’s and NPE’s for different methods in mEh. For CO and N2, the active space is
(14e, 10o). For H2O, the active space is (10e, 7o), ∠HOH = 109.57◦ and O-H bonds are stretched
symmetrically (SS-EOMCC-3p means that three-body terms are included when diagonalizing the
transformed Hamiltonian).

CASPT2 MRCI SS-EOMCC SS-EOMCC-3p MR-AQCC
MAE

N2(cc-pVDZ) 17.05 9.54 6.31 4.35 2.42
N2(cc-pVTZ) 15.51 15.78 5.15 3.56 3.78
H2O(cc-pVDZ) 10.36 4.64 1.56 0.60 1.72
H2O(cc-pVTZ) 11.05 8.27 1.64 0.99 3.00
CO(cc-pVDZ) 19.89 8.98 6.96 5.20 2.25
CO(cc-pVTZ) 20.88 15.24 7.02 5.83 3.60

NPE
N2(cc-pVDZ) 5.08 3.20 3.21 2.31 0.77
N2(cc-pVTZ) 11.87 3.62 3.93 3.67 0.75
H2O(cc-pVDZ) 4.88 2.44 1.12 0.86 0.89
H2O(cc-pVTZ) 6.82 4.31 3.23 3.43 1.53
CO(cc-pVDZ) 8.26 3.08 2.37 1.01 0.72
CO(cc-pVTZ) 14.35 4.06 1.61 2.71 0.80

7.3 Effect of a perturbative correction

The linear dependence of the states {Ω̂λ|R〉,∀λ}, which is reflected in the singularity of the metric

matrix (Eq. (4.36)), leads to the redundancy issue. Thus there are not enough residual equations

for t-amplitudes. To solve this problem, one way is to only solve the residual equations in the
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Figure 7.9: MAE’s of different methods for different systems (‘DZ’ stands for ‘cc-pVDZ’, ‘TZ’
stands for ‘cc-pVTZ’). For CO and N2, the active space is (14e, 10o). For H2O, the active space is
(10e, 7o), ∠HOH = 109.57◦ and O-H bonds are stretched symmetrically (SS-EOMCC-3p means
that three-body terms are included when diagonalizing the transformed Hamiltonian).
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Figure 7.10: NPE’s of different methods for different systems (‘DZ’ stands for ‘cc-pVDZ’, ‘TZ’
stands for ‘cc-pVTZ’). For CO and N2, the active space is (14e, 10o). For H2O, the active space is
(10e, 7o), ∠HOH = 109.57◦ and O-H bonds are stretched symmetrically (SS-EOMCC-3p means
that three-body terms are included when diagonalizing the transformed Hamiltonian).
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non-redundant subspace defined by the projector P (Eq. (4.37)) and simply discard the redundant

equations:

∑

k,l

P ij
kl 〈R|Ê

kl
abe

−T̂ ĤeT̂ |R〉 = 0, (7.1)

(1− P )ijklt
kl
ab = 0. (7.2)

An alternative is to add a perturbative correction in the nearly singular subspace, which has been

discussed in a prior section. Here we examine the effect of a perturbative correction, using the

example of ground state energies of N2 in the cc-pVDZ basis set with different thresholds.

We compare the energies obtained with and without the perturbative correction using large

thresholds η = 0.1 and η = 0.05, to results obtained with η = 0.01 and including the perturbative

correction. The results are plotted in Fig. 7.11-7.12. It is clear from the figure that the number

of discarded t2-amplitudes is the largest at short bond distances, when |R〉 is dominated by very

few determinants. This phenomenon is also observed for other molecules. Since the number

may vary significantly at different geometries, it is nontrivial to find a universal threshold which

works well for all geometries. If η is too low, the convergence issue appears because some residual

equations are ill defined. If η is too high, many t-amplitudes are discarded and the quality of the

results is compromised. From Fig. 7.11, as η decreases from 0.1 to 0.05, the number of discarded

amplitudes decreases at certain geometries. Once we decrease η to the standard value 0.01, the

number further decreases substantially. To be precise, the number refers to the discarded hole

orbital pairs ‘ij’ in Êab
ij (since it is determined by the discarded eigenvalues of the metric matrix

Sijkl), so the number of actually discarded t2-amplitudes should be multiplied by the number

of virtual orbital pairs. The percentages of discarded amplitudes may be roughly estimated by

dividing the discarded amplitudes by the total number of hole orbital pairs (in this case, there are

ten hole orbitals, and thus one hundred hole orbital pairs). Therefore, from Fig. 7.11, at short

bond distances as much as 50% of t2-amplitudes can be discarded, while at large bond distances

around 12% of t2-amplitudes are discarded.

Clearly, switching off the perturbative correction and using a high threshold η = 0.1 gives
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the worst result: significant deviation and large fluctuation. Once we switch on the perturbative

correction while maintaining the same η, we obtain great improvements. Similar things happen for

η = 0.05. We also see that as η decreases by 0.1 to 0.05, the improvement from the perturbative

correction is less prominent, which is as expected. At certain geometries, the curves for η = 0.1

and η = 0.05 overlap, because in those cases the same number of amplitudes are discarded. It

is also clear from the figures that the most significant improvement when switching η from 0.1

to 0.05 (with or without the perturbative correction), happens at those geometries for which the

change in η leads to a substantial decrease of the number of discarded t-amplitudes.

In practice, we have to choose a reasonable η to achieve both high accuracy and to avoid the

convergence issue. For all the calculations in this chapter, we adopt η = 0.01 and always switch

on the perturbative correction.

7.4 Conclusions

We have presented a generalization of the Equation of Motion Coupled Cluster method to a

state-specific multireference variant that is suitable for use with arbitrary active spaces. The

methodology has a number of attractive features, but there are also a number of less desirable

aspects. We will summarize these features here, and put our findings in a broader perspective.

As is common to all multireference approaches, the SS-EOMCC approach is built upon a

qualitatively correct wave function, and the inclusion of the remaining electron correlation effects

is a minor correction to the wave function, although the effect on the energy is certainly significant

from a chemical perspective. The parameterization of the cluster operator in SS-EOMCC is such

that the final wavefunction is spin-adapted, the results are invariant to rotations of the orbitals

within the core, active and virtual subspaces, while the number of cluster amplitudes is the same

as in a closed-shell calculation, in which all partially occupied orbitals in the reference state would

be fully occupied. The amplitude equations for the t-amplitudes are connected, such that the only

problem with extensivity can arise from the final diagonalization step. The amplitude equations

only require the spatial one- and two-body density matrices corresponding to the reference state
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(and Hamiltonian integrals of course), and the computational cost per iteration of the cluster

amplitude equations is approximately three times the cost of a single reference closed-shell CCSD

calculation. As in closed-shell CC theory, the amplitude equations are quadratic in T̂2 and quartic

in T̂1. The method can be used in both a state-selective mode, in which both the orbitals and

cluster amplitudes are optimized precisely for the state of interest, or the method can be used in a

state-averaged fashion, by using the density matrices from a state-averaged CASSCF calculation,

for example. The approach is conceptually straightforward, and the potential exactness of the

approach is guaranteed if no truncation would be made in the final diagonalization step. In

this sense, the definition of the equations for the cluster amplitudes is arbitrary. Using the

amplitude equations as presented here, the SS-EOM-CCSD approach is exact for two-electron

systems provided Brueckner orbitals are used such that the singles amplitudes are zero, while still

satisfying the singles residual equations.

Besides these considerable strong points of the approach, there are a number of drawbacks.

While the cost of solving the cluster amplitudes is minor in the context of MRCC approaches, the

final diagonalization over the MRCIS space is relatively expensive, in particular when three-body

contributions from the transformed Hamiltonian are included. It is clear that the MRCIS step

presents the bottleneck in the calculation, and this prevents the application of the method to

systems that require large active spaces. In the present incarnation of the method, all doubly

occupied orbitals also have to be included in the final diagonalization, but this we view as pri-

marily a technical problem that will be addressed in the future. In common with other internally

contracted exponential parameterizations, there is a severe issue with near-linear dependencies.

In the calculations presented here, we discard perhaps up to 20% of the cluster amplitudes, even

with the quite low threshold of 0.01 for the selection criterion we denoted as η. The number of

discarded amplitudes depends on the character of the reference wavefunction and typically more

amplitudes are discarded in the near single reference regime. This problem can partly be alle-

viated by providing a perturbative treatment for discarded amplitudes, as we have done in the

standard applications in this chapter. From the test cases considered, this seems to work fairly

well, but it is not unlikely that some of the non-parallellity errors we observed are due to this not
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particularly elegant feature.

There are other aspects to the SS-EOMCC approach which are not entirely clear at present.

The effect of using the cumulant approximation to the three and four-particle density matrices is

unknown. To establish whether the effect from this approximation contributes significantly to the

error one would need to compare to results in which the full three-and four-body density matrices

are used in the amplitude equations. In addition, there is no coupling in the SS-EOMCC amplitude

equations between the semi-internal excitations and the internally contracted double excitations.

This is quite different from internally contracted MRCI, and also different from other internally

contracted exponential parameterizations. While we have argued that the cluster amplitudes are

to some extent arbitrary, they are undoubtedly critical to the accuracy of the approach when

the final diagonalization is over the MRCIS space only, as is the case in practice. In practice,

it would be desirable if accurate results could be obtained without including a connected triples

correction. It is not clear (or perhaps doubtful) if this can be accomplished, in particular in

cases when one needs to balance the results between single-reference and multireference types of

situations. The present results indicate that an important fraction of correlation effects which

can be associated with connected triple excitations are included in the MRCIS step. This is

exemplified by calculations on the single reference case of the 3Σ−
u state of the fluorine molecule,

and it is also indicated by the relatively minor MAE and NPE errors for the other molecules,

in particular when viewed from the perspective that the cluster amplitudes include singles and

doubles only.

The SS-EOMCC approach can in principle be applied to a broad class of problems, and its

application by users is expected to be about as difficult as the CASSCF calculation of the reference

state. In particular, it is anticipated that the selection of the active space is comparable to the

selection of a CASSCF active space, and this is a different problem from selecting an active space

for a MRCI+Q, MR-AQCC or CASPT2 calculation, which often requires a larger active space

than needed from the perspective of a qualitatively correct description of the wavefunction. For

example, in MRCI the size of the active space may have to be increased to reduce size-extensity

effects or to include ’connected triple’ effects, while in CASPT2 the active space might need to
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be enlarged to account for deficiencies of the perturbative treatment. In SS-EOMCC and other

exponential multireference approaches, the hope is that the powerful cluster ansatz will allow the

use of a minimal active space that solely provides a qualitatively correct wavefunction.

In the benchmark calculations in this chapter, the methodology is applied to potential en-

ergy surfaces of relatively small molecules. When comparing to MRCI+Q calculations, the non-

parallelity errors range between about 1 and 4 mEh, which is comparable to other exponential

multireference approaches such as canonical transformation [79, 80], block correlated CC [92, 93]

and the anti-Hermitian contracted Schrödinger equation methodology [81, 82]. However, these

results are not as accurate as MR-AQCC [210, 211] or the MRexpT approaches [71, 72], or as

internally contracted MRCI+Q itself [145, 146, 148, 80]. While we used these type of problems

to benchmark the approach, the target application for the SS-EOMCC approach is not so much

a potential energy surface of spectroscopic utility. Target problems for SS-EOMCC we have in

mind are, for example, the calculation of energy differences between critical points on a poten-

tial energy surface such as activation barriers or isomerization energies for systems that require

a multiconfigurational treatment, or the energetics or geometry of the lowest point on a conical

intersection in a photochemical reaction. These kinds of target systems are similar to systems

that are currently the focus of CASPT2 calculations, and in this respect the SS-EOMCC approach

and other exponential multireference approaches likely represent a significant improvement in ac-

curacy, as can be gauged from the NPE for CASPT2 for the problems considered here, which are

considerably larger than for SS-EOMCC and strongly dependent on the basis set.

Considering the pros and cons of the SS-EOMCC approach, we think that further improve-

ments are needed. Finding a better solution to the redundancy or near singularity problem is

high on our list, while in the future we will also explore parameterizations in which semi-external

excitations are treated in an internally contracted fashion, to avoid the MRCIS bottleneck in

the calculations. It is likely that such modifications will build on the current design principles

underlying the SS-EOMCC approach: diagonalization of a spin-free transformed Hamiltonian, a

cumulant approximation for higher rank density matrices, EKT-based orbital denominators, and

a suitable definition of the concept of normal order.



Chapter 8

Ligated Cu2O2 models

Many metalloenzymes have been characterized which contain one, two or more copper atoms which

activate molecular oxygen to oxidize organic substrates [212, 213, 214, 215, 216, 217, 218, 219, 220,

221, 222, 223, 224, 225, 226, 227]. Hence, much interest has been attracted to molecules containing

Cu2O2 during the last decade [228, 229, 230, 231, 232, 233, 234]. For example, Tysosinase [212,

215, 216, 218] is an enzyme whose active site incorporates a Cu2O2 core. Spectroscopic and X-

ray structure studies have characterized several motifs for the binding of molecular O2 to two

supported Cu(I) atoms (Fig. 8.1) [222, 235]. With the coordination of different ligands, the

competition between local bond strength and steric effect leads to different motifs adopted for

different ligated compounds. Besides, the thermodynamically stable product could differ from the

kinetically stable one. This further complicates the situation.

Studying model compounds containing a Cu2O2 core can help to understand mechanisms of

how more complicated molecules with the same core participate in fundamental processes. In

general, however, it is not an easy task to theoretically study these transition metal compounds.

To study reaction paths, a balanced treatment of (possibly rapidly) varying dynamical and nondy-

namical electron correlation effects has to be maintained. Systems with significant nondynamical

correlation effects (multireference systems) have proven to be hard to deal with. Despite the

widespread use of the DFT method for studying transition metal compounds, its applicability is

134
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not well established and cases where it fails are not unusual. CR-CC [21, 22, 23, 236] has been suc-

cessfully applied to many systems [237, 238, 239, 240, 24, 241, 242, 243, 244], but being essentially

a single reference method, it is not transparent to what extent it can be used for multireference

systems. Multireference Configuration Interaction (MRCI), Multireference Perturbation Theory

(MRPT, especially CASPT2 [208, 209]) are well established ab initio methods. However, the lin-

ear ansatz of MRCI limits its ability to account for dynamical correlation effects (which leads to

the size-consistency/extensivity error). Although CASPT2 has been applied to many transition

metal compounds successfully, the selection of active space can be a subtle issue, and requires

expertise. In addition, the convergence behavior of perturbation theory w.r.t. the perturbation

order is generally unclear. Multireference Coupled Cluster (MRCC) [47, 55, 245, 38, 39] meth-

ods have been in development for many years, but at the same time they have been haunted by

problems such as the intruder state problem and conflict between redundancy and flexibility.

Comparisons have been done before between completely renormalized coupled cluster (CR-

CC), CASPT2 and DFT methods. DFT (whether pure or hybrid functional) results were irregular

and no systematic behavior was observed, which illuminates its deficiency, at least in treating these

systems. CASPT2 (and MSCASPT2) suffered from the convergence difficulty. A large active

space of size up to (16,14) have been employed in CASPT2 calculations, but no convergence in

relative energies was achieved with increasing active space size, and no systematic agreement

with CR-CC was achieved. The complicated interaction between static and dynamical correlation

seems to be the reason for the poor performance of CASPT2 (to be more specific, we had better

talk about the interaction in the context of a particular set of orbitals). In contrast, in the SS-

EOMCC[+2] theory, only a small reference space is used; that is, only one extra spatial orbital

is added compared to the closed shell. The hypothesis is that the T̂2 amplitudes will be small,

while the additional relaxation of the reference state coefficients is presumably not so important.

A big difference from CASPT2 is the use of Brueckner orbitals [159, 160, 161, 162, 163] in our

theory. Brueckner orbitals are optimized in the presence of dynamical correlation, in contrast to,

say, CASSCF orbitals.

In this work, the results for compound 0 and 1 are presented (Fig. 8.2) and compared with
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those from previous work by Cramer and co-workers [233] (systems with more ligands are still

computationally demanding for our current code). In addition to 1Ag state, 1Bg and 3Bg states

are also computed, and the spin-flip idea is tested. Finally, conclusions are briefly given. 1
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Figure 8.1: Binding motifs for Cu2O2.
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Figure 8.2: Model compounds

8.1 Computational Details

Following Cramer and co-workers [233], the Stuggart 10-electron pseudopotential and associated

basis functions (ECP10MWB) [246, 247] are used for Cu atoms (the difference from the parameters

1Contents of this chapter were published in Int. J. Quant. Chem. 108, 2097 (2008).
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listed on the website is that: (a) in the pseudopotential, angular momentum up to f is used, (b) in

the basis set, [12s12p9d] is contracted to [6s6p4d]). For light atoms, the Roos augmented triple zeta

ANO basis set [248, 249] is used. A [8s4p|2s1p] contraction is used for H and a [14s9p4d|4s3p2d]

contraction is used for N and O. As in the paper of Cramer and co-workers [233], this basis set

was named ‘BS1’.

In all the calculations, Brueckner orbitals are used (except those using B-CI orbitals for com-

parison). N and O 1s orbitals and Cu orbitals up to 3p are kept frozen.

The geometries are taken from the paper of Cramer and co-workers [233]. To be clear, they are

briefly restated below. The geometries of system 0 and 1 (including all intermediate geometries)

belong to the C2h point group. Intermediate geometries along linear isomerization paths are

generated for 0 and 1 according to

qi(F ) = qi(0) +
F

100

[
qi(100)− qi(0)

]
(8.1)

where qi is a given atomic Cartesian coordinate and F is the fraction of progress along the isomer-

ization coordinate so that 0 and 100 define the µ-1:2 and µ-η2:η2 peroxo geometries, respectively

(the less clear nomenclature (µ-η1:η1) was used in the original paper [233], but µ-1:2 is more

specific and has been used in later work [234]). Reference to a particular structure along an iso-

merization coordinate will henceforth be made by adding F as a subscript the structure cardinal,

for example, 120 refers to the structure 20% converted from 10 to 1100.

8.2 1Ag states of Cu2O2
2+ (0) and {(H3N)Cu}2O2

2+ (1).

The 1Ag state energies for structures of 0 as a function of F are presented in Table 8.1 and

the relative energies in Table 8.2 . Fig. 8.3 graphs the relative energy vs isomerization coor-

dinates predicted by different theories. Note that SS-EOMCC[+2] gives results very close to

those from CR-CC(2,3)+Q. In contrast, DFT curves have different shapes for different function-

als and CASPT2 is comparatively far above CR-CC curve( underestimate the stability of µ-1:2

and MSCASPT overestimates). But all theories predict that µ(1:2) is more stable than µ-η2:η2.
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The 1Ag state energies for structures of 1 as a function of F are presented in Table 8.3 and

the relative energies in Table 8.4. Fig. 8.4 graphs the relative energy vs isomerization coordinates

predicted by different theories. SS-EOMCC[+2] gives results relatively close to those from CR-

CC(2,3)+Q. In contrast, DFT predicts reverse relative stability and CASPT2 does not achieve

converged results.
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Figure 8.3: 1Ag state relative energy vs F for 0 at selected levels of theory (legend inset).

Table 8.1: Absolute energy (Hartree) of 0F structures with BS1

F 0 20 40 60 80 100
CR-CC(2, 3)+Q 1Ag -542.16894 -542.16927 -542.15572 -542.13434 -542.13641 -542.14321
SS-EOMCC[+2] 1Ag -542.12661 -542.12720 -542.11506 -542.09807 -542.10021 -542.10641

mrSF-EOMCC[+2] 1Ag -542.12576 -542.12700 -542.11431 -542.09766 -542.09793 -542.10954
SS-EOMCC[+2](B-CI) 1Ag -542.14146 -542.14213 -542.13029 -542.10931 -542.10785 -542.10932

SS-EOMCC[+2] 3Bg -542.14954 -542.15348 -542.14454 -542.13294 -542.12305 -542.10745
SS-EOMCC[+2] 1Bg -542.12180 -542.12411 -542.11547 -542.10619 -542.10158 -542.09094

mrSF-EOMCC[+2] 1Bg -542.12137 -542.12313 -542.11447 -542.10578 -542.10164 -542.09322
CASPT2(16, 14) 1Ag -542.40875 -542.40688 -542.39254 -542.37837 -542.39108 -542.39664

MSCASPT2(16, 14) 1Ag -542.43252 -542.42741 -542.41094 -542.39047 -542.39674 -542.39670
SumBS-BLYP 1Ag -544.25169 -544.24859 -544.23566 -544.22283 -544.21738 -544.21183
SumBS-B3LYP 1Ag -544.31860 -544.32209 -544.31227 -544.29986 -544.29095 -544.27844
SumBS-TPSS 1Ag -544.20265 -544.20137 -544.19021 -544.17973 -544.17621 -544.17232

DFT and CR-CC data are from [233].
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Figure 8.4: 1Ag state relative energy vs F for 1 at select levels of theory (legend inset).

Table 8.2: 1Ag state relative energy (kcal· mol−1) of 0F structures with BS1

F 0 20 40 60 80 100
CR-CC(2, 3)+Q -16.1 -16.4 -7.8 5.6 4.3 0.0
SS-EOMCC[+2] -12.7 -13.0 -5.4 5.2 3.9 0.0

mrSF-EOMCC[+2] -10.2 -11.0 -3.0 7.5 27.0 0.0
SS-EOMCC[+2](B-CI) -20.2 -20.6 -13.2 0.01 0.9 0.0

CASPT2(16, 14) -7.69 -6.4 2.6 11.5 3.5 0.0
MSCASPT2(16, 14) -22.5 -19.3 -8.9 3.9 -0.0 0.0

sumBS-BLYP -25.0 -23.1 -15.0 -6.9 -3.5 0.0
sumBS-B3LYP -25.2 -27.4 -21.2 -13.4 -7.8 0.0
sumBS-TPSS -19.0 -18.2 -11.2 -4.6 -2.4 0.0

DFT and CR-CC data are from [233].

Table 8.3: Absolute energy (Hartree) of 1F structures with BS1

F 0 20 40 60 80 100
CR-CC(2, 3)+Q 1Ag -655.26877 -655.27321 -655.26739 -655.26154 -655.27203 -655.28178
SS-EOMCC[+2] 1Ag -655.20731 -655.21248 -655.20631 -655.21126 -655.21992 -655.23057

mrSF-EOMCC[+2] 1Ag -655.20507 -655.21068 -655.20675 -655.20801 -655.21930 -655.23408
SS-EOMCC[+2] 3Bg -655.22331 -655.23005 -655.23099 -655.22739 -655.22237 -655.21537
SS-EOMCC[+2] 1Bg -655.20798 -655.21676 -655.21835 -655.21489 -655.20981 -655.20459

mrSF-EOMCC[+2] 1Bg -655.20510 -655.21561 -655.21796 -655.21465 -655.21003 -655.20515
sumBS-BLYP 1Ag -657.60831 -657.61162 -657.60773 -657.60024 -657.59473 -657.59109
sumBS-B3LYP 1Ag -657.71802 -657.72257 -657.72018 -657.71384 -657.70826 -657.70433

sumBS-mPWPW91 1Ag -657.89622 -657.90084 -657.89821 -657.89187 -657.88738 -657.88501
sumBS-TPSS 1Ag -657.60969 -657.61430 -657.61220 -657.60684 -657.60375 -657.60297

DFT and CR-CC data are from [233].
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Table 8.4: 1Ag state relative energy (kcal· mol−1) of 1F structures with BS1

F 0 20 40 60 80 100
CR-CC(2, 3)+Q 8.2 5.4 9.0 12.7 6.1 0.0
SS-EOMCC[+2] 14.6 11.4 15.2 12.1 6.7 0.0

mrSF-EOMCC[+2] 18.2 14.7 17.1 16.4 9.3 0.0
sumBS-BLYP -10.8 -12.9 -10.4 -5.7 -2.3 0.0
sumBS-B3LYP -8.6 -11.4 -10.0 -6.0 -2.5 0.0

sumBS-mPWPW91 -7.0 -9.9 -8.3 -4.3 -1.5 0.0
sumBS-TPSS -4.2 -7.1 -5.8 -2.4 -0.5 0.0

DFT and CR-CC data are from [233].

8.3 Effect of Brueckner orbitals.

In the wave operator, eT̂2 takes into account dynamical correlation effects and eT̂1 takes into

account orbital relaxation effects. At the end of the Brueckner rotation, T̂1 = 0. Due to the

presence of T̂2, the dynamical correlation is felt by the orbital rotation. In this sense, Brueckner

orbitals are optimized in the presence of dynamical correlation. To test the effect of Brueckner

orbitals, we optimize orbitals in a different way: switch off dynamical correlation (T̂2 = 0) and

rotate orbitals until T̂1 = 0. Orbitals optimized this ways are termed B-CI orbitals [205]. Then we

use these orbitals to carry out SS-EOMCC[+2] calculations. In other words, with the definition

of the vacuum described in this chapter, the B-CI orbital optimization works precisely as follows:

diagonalize H in 2-hole plus 3-hole-1-particle sector of the Fock space to obtain Ĉ|0〉, take the

2-hole component of Ĉ|0〉 as |R〉 and substitute into T̂1 amplitude equations and then use T̂1

amplitudes to rotate orbitals. The procedure is carried out self-consistently until finally tia = 0.

Dynamical correlation is not present in this optimization process. The results are presented in

Table 8.1 and Fig. 8.5 and denoted by SS-EOMCC[+2] (B-CI) [205].

From Fig. 8.5, with every set of data calibrated to F = 100, Brueckner orbital calculations

outperform B-CI orbital ones, especially for F = 80 and F = 60, based on comparison with

CR-CC results. On the other hand, results from the B-CI orbitals are still reasonable. Notice

that in obtaining the B-CI orbitals the diagonalization is done over the MRCIS space, and this

distinguishes this set of orbitals from the CASSCF orbitals. Relative to the CAS space (here more

precisely, the 2-hole sector of Fock space), the inclusion of the extra singles space passes more
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Figure 8.5: 1Ag state relative energy vs F for 0 from SS-EOMCC[+2] calculated with Brueckner
orbitals and CAS orbitals, respectively(legend inset).

information to the orbital optimization process and reinforces the state-specificity. In the study

of the LiF molecule [205], the CASSCF orbital optimization was plagued with the root-flipping

problem while the B-CI orbital optimization did not experience the convergence problem. As is

pointed out in Ref. [205], it is likely that the B-CI states (the states obtained when B-CI orbital

optimization is finished and they contain contributions from singles space) are not very different

from the CASSCF states (no singles space contribution), and they might even serve as a starting

point to optimize the true CASSCF states, if so desired. The B-CI procedure might be of value in

other procedures that require a CASSCF solution without resorting to a state-averaged procedure.

8.4 Convergence of EOMCC[+2] w.r.t. reference space

The question concerning the quality of the data from EOMCC[+2] is how well these calculations

converge with respect to the reference space. A convincing answer could be obtained if we do the

same type of calculations using a larger reference space (EOMCC[+n], n>2). An indirect way

is examining the t amplitudes. As in single reference coupled cluster calculations, say CCSD, if

all t2 amplitudes are small, the calculation is very likely converged w.r.t. excitation level. For
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our MRCC method, the hope is that the reference space is able to cover static correlation effects

and the exponential operator takes care of dynamic correlation (and therefore t-amplitudes are

small). Thus, if the final t-amplitudes are small, we can reasonably believe that the calculation is

converged w.r.t. the reference space. That is what we observed in our calculations (whether for

0 or 1, only a few excitation amplitudes are over 0.02, and they are all smaller than 0.03).

8.5 Neighboring states

Previous studies focused on the 1Ag state of model compounds with various ligands. There is,

however, no good reason to exclude the possibility of ground states of different spin or spatial

symmetries. Even if the ground state is indeed a 1Ag state, examining neighboring states (if there

are closely-lying states) will no doubt help to gain insight into the complexity of the systems under

study.

SS-EOMCC is a general theory and states of different spatial or spin symmetries can be

computed without difficulty. In Table 8.1, 1Bg and 3Bg state energies for 0 are presented and

graphed in Fig. 8.6. 1Bg and 3Bg state energies for 1 are included in Table 8.3 and graphed in

Fig. 8.7 (all the compounds studied here belong to the C2h point group).
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Figure 8.6: Absolute energy vs F for different states of 0.
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Figure 8.7: Absolute energy vs F for different states of 1.

Although 0 and 1 are structurally simple compared to large model compounds with more

ligands or compounds which actually function in biochemical processes, the calculations on them

already reveal the complexity of the real world. For 0, the SS-EOMCC[+2] calculation shows that

the triplet state (3Bg) is more stable than the 1Ag state (nearly degenerate for 0100), though for

both states 00 is more stable than 0100. Suppose somehow only singlet states can be accessed, the

close lying 1Bg state would still complicate the situation. From Fig. 8.6, at some intermediate

geometries it is lower in energy than the 1Ag state, while at the initial and final geometries it is

higher than the 1Ag state. Besides, the 1Bg calculations also suggest that 00 is more stable than

0100.

For 1, SS-EOMCC[+2] calculations show that the 3Bg state is more stable than the 1Ag state

except at 1100. As far as singlet states are concerned, the 1Bg state is lower in energy than 1Ag

for 120, 140 and 160, higher in energy for 180 and 1100, and nearly degenerate for 10.

For both 0 and 1, since the 1Bg and 1Ag states are so close, further studies would be desirable

to investigate the potential energy surfaces for lower symmetry where both states have the same

symmetry.

Since the triplet states are supposed to be reasonably single-determinantal, DFT and single

reference coupled cluster method may work well in that situation. The comparison between
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DFT [233], Brueckner Coupled Cluster Doubles (BCCD), Brueckner Coupled Cluster Doubles

with noniterative triples correction (BCCD(T)) and SS-EOMCC[+2] for 3Bg states of 0 and 1 is

done. The single reference coupled cluster calculations are done using the Gaussian 03 quantum

chemistry program [250] and the Brueckner orbitals are used to provide a better comparison

with our multireference Brueckner orbital calculations. The results are shown in Table 8.5 and

graphed in Fig. 8.8 and 8.9 (for clarity, only B3LYP and TPSS functional result is graphed). From

the graphs, the difference between BCCD and BCCD(T) is noticeable. All functionals, BCCD,

BCCD(T) and SS-EOMCC[+2] predict that F = 0 is more stable than F = 100 for both 0 and

1, but for different functionals [233], the relative stability spans a range of about 6 kcal · mol−1.

In addition, the shapes of the curves are functional-dependent. For 0, the SS-EOMCC[+2] curve

agrees with B3LYP and BCCD(T) very well (maximal difference less than 1.1 kcal · mol−1). For 1,

DFT methods predict a higher stability of 10 relative to 1100 than SS-EOMCC[+2], BCCD and

BCCD(T). SS-EOMCC[+2] curve again agrees with BCCD(T) very well, compared with DFT

results. The discrepancy between BCCD and BCCD(T) and the close agreement between SS-

EOMCC[+2] and BCCD(T) seem to indicate that the triplet state of 1 has a multi-configuration

character.
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Figure 8.8: Relative energy vs F for 3Bg state of 0.
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Figure 8.9: Relative energy vs F for 3Bg state of 1.

Table 8.5: 3Bg state relative energy (Hartree) of 0F and 1F structures with BS1

F molecule 0 20 40 60 80 100
SS-EOMCC[+2] 0 -26.4 -28.9 -23.3 -16.0 -9.8 0.0

BCCD 0 -30.4 -34.3 -28.6 -20.5 -12.6 0.0
BCCD(T) 0 -27.4 -29.4 -23.3 -16.1 -9.9 0.0
bs-BLYP 0 -27.5 -26.0 -18.6 -11.1 -6.7 0.0
bs-B3LYP 0 -26.4 -29.0 -23.6 -16.7 -10.9 0.0

bs-mPWPW91 0 -24.8 -24.7 -18.2 -11.2 -7.0 0.0
bs-mPW1PW91 0 -24.7 -29.3 -24.8 -18.2 -12.1 0.0
bs-MPW1K 0 -26.7 -34.3 -30.6 -23.3 -15.3 0.0
bs-TPSS 0 -22.0 -21.7 -15.3 -9.0 -5.8 0.0
bs-TPSSh 0 -22.0 -23.7 -18.2 -12.1 -8.1 0.0

SS-EOMCC[+2] 1 -4.7 -8.9 -9.6 -7.4 -4.1 0.0
BCCD 1 -7.6 -10.4 -10.9 -9.1 -6.8 0.0

BCCD(T) 1 -6.2 -9.5 -9.4 -7.2 -5.5 0.0
bs-BLYP 1 -15.0 -17.5 -15.7 -11.1 -5.8 0.0
bs-B3LYP 1 -12.9 -16.7 -16.1 -12.2 -6.9 0.0

bs-mPWPW91 1 -11.2 -14.5 -13.5 -9.5 -5.0 0.0
bs-mPW1PW91 1 -10.0 -14.5 -14.5 -11.3 -6.5 0.0
bs-MPW1K 1 -8.8 -13.8 -14.6 -11.9 -7.1 0.0
bs-TPSS 1 -9.0 -12.4 -11.6 -8.0 -4.1 0.0
bs-TPSSh 1 -8.9 -12.8 -12.4 -9.1 -5.0 0.0

DFT data are from [233].
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8.6 mrSF-EOMCC.

One feature of the SS-EOMCC method is that it is state-specific, but we can modify it to make a

multireference spin-flip EOMCC method (mrSF-EOMCC). However, our mrSF-EOMCC is rigor-

ously spin-adapted because the excitation operator, the Hamiltonian and the transformed Hamil-

tonian are all singlet operators.

For 0, the 1Bg state is closely related to the 3Bg state from symmetry consideration. To test

the spin-flip idea, T̂ amplitudes from 3Bg state calculations are used to calculate the 1Bg state.

Results are presented in Table 8.1 and Fig. 8.6 (where they are identified as mrSF-EOMCC[+2]).

These two Bg states are expected to have similar dynamical correlation effects, which is confirmed

by the close agreement between the two sets of calculations for 1Bg state (Fig. 8.6). This also

partially justifies the quality of the calculations. 3Bg →
1Ag spin-flip calculation also gives

reasonable results (see Tables 8.1 and 8.2).

For 1, reasonable agreement is achieved for both 3Bg →
1Bg and 3Bg →

1Ag spin-flip calcu-

lations (see Tables 8.3-8.4 and Fig. 8.7).

8.7 Conclusions

The relative energetics of µ-1:2 (trans end-on) and µ-η2:η2 (side-on) peroxo isomers of Cu2O2

fragments supported by 0 and 2 ammonia ligands are computed with the newly developed State

Specific Equation of Motion Coupled Cluster (SS-EOMCC) method. A small reference space is

used (SS-EOMCC[+2]) and reasonable agreement is achieved between SS-EOMCC and CR-CC

results. Calculations on states other than 1Ag states reveals a complication of this class of systems.

In addition to the multireference character of the systems, close lying states (near degeneracy)

and state-crossing pose a great challenge to quantum chemistry methods.

The spin-flip idea can be included in the framework of the SS-EOMCC method naturally,

and it is rigorously spin-adapted due to the use of spin free operators and a complete reference

space. Brueckner orbitals can be regarded as orbitals optimized in the presence of dynamical

correlation. The results presented here indicate the superiority of Brueckner orbitals over B-
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CI orbitals, which are close to CASSCF orbitals. On the other hand, the B-CI procedure may

be helpful to converge CASSCF calculations. However, in other test calculations, we did not

observe a universal overperformance of Brueckner orbitals over CASSCF orbitals, so it is not

completely clear yet what type of orbitals are the best. It is possible that Brueckner orbitals are

advantageous when calculating transition metals compounds, which are probably more sensitive

to orbital choices.



Chapter 9

Beyond SS-EOMCC: more

cost-effective solutions

The SS-EOMCC method involves the diagonalization of the transformed Hamiltonian ˆ̄H in the

MRCIS space. This step is potentially very expensive, even if we approximate ˆ̄H by its one- and

two-body components. If the dimension of the active space is M , the number of hole orbitals

is o, and the number of virtual orbitals is v, then the dimension of the MRCIS space is rougly

o× v×M . To reduce the computational cost, it is desirable to have a method, in which the final

diagonalization is confined to the active space only.

The purpose of diagonalizing ˆ̄H in the MRCIS space instead of in the active space is to take

into account the differential orbital relaxation effects and semi-internal excitations. These effects

are missing in T̂ . In contrast to the expensive diagonalization, a more economic way is to include

in the cluster operator a semi-internal operator T̂semi-int to partially include these effects. By

including T̂semi-int, we can confine the diagonalization within the active space, hopefully without

losing much accuracy. This idea is the topic of this chapter, and work in this direction is in

progress.

The other problem with SS-EOMCC is that core orbitals need to be included the diagonaliza-

tion space, due to the lack of the core-active excitation operator in T̂ . In future we would like to

148
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address this issue too.

9.1 Internally contracted multireference coupled cluster method

(ic-MRCC): ansatz

As the first step of our endeavor to develop an MRCC method, in SS-EOMCC, the semi-internal

and core-active excitations are excluded from T̂ to avoid complicated algebra and achieve a clean

formulation. In SS-EOMCC, T̂1 and T̂2 commute and the transformed Hamiltonian ˆ̄H = e−T̂ ĤeT̂

terminates automatically after the fourth order in the Baker-Campbell-Hausdorff expansion. In

comparison, if T̂semi-int is included in T̂ , ˆ̄H may not terminate after a finite expansion due to the

contractions between the T̂semi-int and T̂1 + T̂2. Therefore, the corresponding residual equation

becomes more complicated.

To avoid the complication, we propose to use the normal order exponential ansatz:

|Ψ〉 = {eŜ}|R〉, (9.1)

where we use Ŝ instead of T̂ to distinguish it from the cluster operator in SS-EOMCC. Compared

to eŜ , the contractions between Ŝ operators are eliminated in the normal order exponential {eŜ}.

Currently, the only semi-internal excitation operator included is Êam
ij , where a is a virtual orbital

index, m is an active orbital index, i and j are two occupied/hole orbital indices, active or core.

Therefore, we may write the cluster operator as:

Ŝ =
∑

i,a

tiaÊ
a
i +

1

2

∑

i,j,a,b

tijabÊ
ab
ij +

∑

i,j,a,m

sijamÊ
am
ij . (9.2)

In the implementation we have used both h-normal order and γ-normal order. Since h-normal

order can be viewed as a special case of γ-normal order, here we only discuss γ-normal order in

the formal development. All the equations corresponding to h-normal order can be obtained by

replacing the spatial density matrix Γij by 2δij .
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We rewrite the cluster operator in γ-normal order:

Ŝ =
∑

i,a

tiaÊ
a
i +

1

2

∑

i,j,a,b

tijabÊ
ab
ij +

∑

i,j,a,m

sijamÊ
am
ij (9.3)

=
∑

i,a

tiaẼ
a
i +

1

2

∑

i,j,a,b

tijabẼ
ab
ij ++

∑

i,j,a,m

sijam(Ẽam
ij + Γmj E

a
i −

1

2
Γmi E

a
j ) (9.4)

=
∑

i,a

(
tia +

∑

m,j

(sijam −
1

2
sjiam)Γmj

)
Ẽa
i +

1

2

∑

i,j,a,b

tijabẼ
ab
ij ++

∑

i,j,a,m

sijamẼ
am
ij , (9.5)

because

Êa
i = Ẽa

i , (9.6)

Êab
ij = Ẽab

ij , (9.7)

Êam
ij = Ẽam

ij + Γmj Ẽ
a
i −

1

2
Γmi Ẽ

a
j . (9.8)

Therefore, instead of parameterizing Ŝ as in Eq. 9.2, we can parameterize it in γ-normal order:

Ŝ =
∑

i,a

tiaẼ
a
i +

1

2

∑

i,j,a,b

tijabẼ
ab
ij +

∑

i,j,a,m

sijamẼ
am
ij . (9.9)

(9.2) and (9.9) just correspond to a definition of coefficients. We prefer to use (9.9), because

γ-normal order facilitates a natural way to approximate the residual equation, as shown in Eq.

(5.65) - (5.66).

Therefore, the ansatz for the wavefunction in our ic-MRCC method is:

|Ψ〉 = {eŜ}|R〉, (9.10)

Ŝ =
∑

i,a

tiaẼ
a
i +

1

2

∑

i,j,a,b

tijabẼ
ab
ij +

∑

i,j,a,m

sijamẼ
am
ij . (9.11)
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9.2 ic-MRCC: residual equation

Substituting the above ansatz in the Schródinger equation gives:

Ĥ{eŜ}|R〉 = E{eŜ}|R〉, (9.12)

{eŜ}−1Ĥ{eŜ}|R〉 = E|R〉, (9.13)

〈R|τ̃+λ {e
Ŝ}−1Ĥ{eŜ}|R〉 = E〈R|τ̃+λ |R〉 = 0, (9.14)

where τ̂λ ∈ {Ẽ
a
i , Ẽ

ab
ij , Ẽ

am
ij ,∀ i, j, a,m}. If we define

Ĝ = {eŜ}−1Ĥ{eŜ}, (9.15)

the above equations become:

Ĝ|R〉 = E|R〉, (9.16)

〈R|τ̃+λ Ĝ|R〉 = 0. (9.17)

Therefore, if we can solve for Ĝ, then we can diagonalize it in the multireference space (including

all hole orbitals) and get the energy E.

Now let us see how to obtain the residual equation. As shown in Eq. (5.65)-(5.66), if we know

Ĝ in γ-normal order, we can expand τ̂+λ Ĝ:

τ̂+λ Ĝ = c0 + c1 × ã1 + c2 × ã2 + c3 × ã3 ++ · · · , (9.18)

〈R|τ̃+λ Ĝ|R〉 = 〈R|c0 + c1 × ã1 + c2 × ã2 + c3 × ã3 + · · · |R〉 (9.19)

= c0 + c1〈R|ã1|R〉+ c2〈R|ã2|R〉+ c3〈R|ã3|R〉+ · · · (9.20)

= c0 + c1ζ1 + c2ζ2 + c3ζ3 + · · · (9.21)

= c0 + c2ζ2 + c3ζ3 + · · · . (9.22)

By truncating the terms in T̂+λ Ĝ at some level, we obtain an approximation to the residual
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equation.

Now let us see how to evaluate Ĝ. Following the arguments in Ref. [51], we get the following

expression for Ĝ:

Ĝ =
(
Ĥ{eŜ}

)
c
−
(
({eŜ} − 1)Ĝ

)
c
. (9.23)

This expression suggest a backward substitution procedure to obtain the components of Ĝ step by

step, as demonstrated in Ref. [51]. We approximate Ĝ by its one- and two-body components. In

addition, when evaluating
(
({eŜ} − 1)Ĝ

)
c
, for simplicity we only use Ĝhole, where Ĝhole includes

up to two-body components of Ĝ with only hole labels:

Ĝhole = g0 + gijẼ
j
i +

1

2
gklij Ẽ

ij
kl. (9.24)

Therefore,

Ĝ ≈
(
Ĥ{eŜ}

)
c
−
(
({eŜ} − 1)Ĝhole

)
c
. (9.25)

Now let us see how to evaluate Ĝhole. The normal order expansion of
(
({eŜ} − 1)Ĝ

)
c
must

contain at least one particle creation operator, since every operator in Ŝ contains at least one

particle creation operator, which cannot be contracted to any operator index from a term on its

right. Therefore
(
({eŜ} − 1)Ĝ

)
c
will not contribute to the components of Ĝhole, and thus we can

determine g0, g
i
j and gklij from the expansion of

(
Ĥ{eŜ}

)
c
. That is, if we expand

(
Ĥ{eŜ}

)
c
as

(
Ĥ{eŜ}

)
c

= µ0 + µijẼ
j
i +

1

2
µklij Ẽ

ij
kl + · · · , (9.26)

we can identify g with µ:

g0 = µ0, g
i
j = µij , g

kl
ij = µklij . (9.27)

It follows that all ingredients required to calculate Ĝhole and the residual equation (9.22) can be

readily obtained using the APG.
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9.3 ic-MRCC: h-normal order

Our first attempt is to develop an ic-MRCC method based on h-normal order, which is a natural

extension of the SS-EOMCC method. For biradical-like systems (as discussed in Section 4.2), if

we choose |0〉 as the vacuum, only up to two-body density matrices are needed for the residual

equation. As explained in Section 4.1, |0〉 stands for the determinant with all core and active

orbitals occupied.

To solve for the semi-internal s-amplitudes, the three-body metric matrix 〈R|
(
Êam
ij

)+
Êan
kl |R〉

is needed, which can be evaluated from one- and two-body density matrices. This matrix is

typically nearly singular, and we discuss s-amplitudes by analogy with the discussion in Chapter

4. Test calculations show that the s-amplitudes tend to be somewhat large, and that there are

serious convergence issues. As for accuracy, the smoothness of potential energy surfaces is not very

satisfactory. As we want to make the transition to general active spaces eventually, we proceed

to the next level and will discuss a way to avoid convergence problems, to some extent.

9.4 ic-MRCC: γ-normal order

To avoid large s-amplitudes and also extend the applicability of ic-MRCC to general active spaces,

we also explore the γ-normal order based ic-MRCC method and the idea of renormalization.

In the expression

T̂+λ Ĝ = c0 + c1 × ã1 + c2 × ã2 + c3 × ã3 + · · · , (9.28)

the constant term c0 stands for the fully contracted terms of T̂+λ Ĝ. That is

c0 =
(
T̂+λ Ĝ

)
f.c.

(9.29)

=

(
T̂+λ

((
Ĥ{eŜ}

)
c
−
(
({eŜ} − 1)Ĝ

)
c

))

f.c.

(9.30)

=

(
T̂+λ
(
Ĥ{eŜ}

)
c

)

f.c.

−

(
T̂+λ
(
({eŜ} − 1)Ĝ

)
c

)

f.c.

. (9.31)



CHAPTER 9. FUTURE PERSPECTIVE 154

The first term,

(
T̂+λ
(
Ĥ{eŜ}

)
c

)

f.c.

, is presumably the dominant contribution, because it contains

the bare Hamiltonian term

(
T̂+λ
(
Ĥ
)
c

)

f.c.

, while the second term contains at least t/s-amplitude

(
T̂+λ
(
ŜĜ
)
c

)

f.c.

and t/s-amplitudes are usually small. Let us focus on the first term. In this

term, since {eŜ} sits on the right, every hole index in T̂1 and T̂2, which appear as an annihilation

operator, must be contracted to a creation index on the left, thus contributing a γ. Therefore,

every tia is accompanied by a γki , and every tijab is accompanied by a product γki γ
l
j . Similarly,

we find that every sijam is accompanied by a product γki γ
l
jη

m
n , where the one hole density matrix

ηmn = δmn − γ
m
n . Therefore it is possible to define renormalized amplitudes

t̃ia = tkaγ
i
k, (9.32)

t̃ijab = tklabγ
i
kγ

j
l , (9.33)

s̃ijam = sklanγ
i
kγ

j
l η

n
m, (9.34)

and rewrite

(
T̂+λ
(
Ĥ{eŜ}

)
c

)

f.c.

fully in terms of t̃ and s̃.

The motivation for renormalized amplitudes can be understood from the example t̃ijab. For

simplicity, let us assume using natural orbitals such that the density matrix γ is diagonal for

hole orbitals: γij = γiiδ
i
j , where γ

i
i is the occupation number of the orbital i. The singularity

problem discussed in Chapter 4 comes from the weakly occupied orbitals, and leads to numerical

instability. The t-amplitudes will grow rapidly after a few iterations if no threshold is set. For

those weakly occupied orbitals, say i and j, the corresponding orbital occupation numbers are

very small: γii ≈ 0 and γjj ≈ 0. Therefore t̃ijab is damped if one or both orbitals i and j are very

weakly occupied. Similarly for s̃ijam. In s̃ijam (s̃ijam = s̃klanγ̄
i
kγ̄

j
l η̄

n
m), ηnm = δnm(1−γmm), which is small

for a strongly occupied orbital m. Thus s̃ijam is damped for excitations from weakly occupied

orbitals to a strongly occupied active orbital. The damping effect is desirable and the numerical

instability can be alleviated.

If

(
T̂+λ
(
({eŜ}−1)Ĝ

)
c

)

f.c.

and non-fully-contracted terms (c1× ã1+c2× ã2+ · · · ) are included

in T̂+λ Ĝ, the above observation breaks down. The hole indices in T̂1 and T̂2 may be contracted
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to form η’s or they may be left uncontracted to go to ζ’s when evaluating 〈R|T̂+λ Ĝ|R〉. However,

in this case it is still possible to rewrite the residual equation in terms of t̃/s̃ by introducing the

inverse density matrix γ̄ = γ−1 and the inverse hole density matrix η̄ = η−1:

tia = tkaδ
i
k = tka(γ

l
kγ̄

i
l ) = t̃laγ̄

i
l , (9.35)

tijab = ti1i2ab δii1δ
j
i2

= ti1i2ab γki1 γ̄
k
i γ

l
i2 γ̄

j
l = (ti1i2ab γki1γ

l
i2)γ̄

i
kγ̄

j
l = t̃klabγ̄

i
kγ̄

j
l , (9.36)

sijam = si1i2am1
δii1δ

j
i2
δm1
m = si1i2aml

γki1 γ̄
i
kγ

l
i2 γ̄

j
l η

m1
n η̄nm

= (si1i2aml
γki1γ

l
i2η

m1
n )γ̄ikγ̄

j
l η̄

n
m = s̃klanγ̄

i
kγ̄

j
l η̄

n
m. (9.37)

However, γ̄ij is ill-behaved for weakly occupied orbitals, and η̄mn is ill-behaved for strongly occupied

active orbitals. Large inverse density/hole-density matrices are associated with small ζ matrix

elements, but contributions from the products of inverse matrices such as γ̄ ij × γ̄
k
l × γ̄

x
y × η̄

m
n can

be expected to be problematic even if ζ is small. Approximations are needed to avoid numerical

instability associated with them, and the advantage of using renormalized amplitudes is com-

promised to some extent. Numerical experimentation is needed to determine the effect of using

renormalized amplitudes, and to find a satisfactory solution to remaining problems.

We first tested including only fully contracted terms c0. As anticipated, the renormalized

amplitudes are stable and we did not encounter convergence problems. The metric matrix

〈R|
(
Ẽam
ij

)+
Ẽan
kl |R〉f.c. is a unit matrix. Fig. 9.1 plots the error curve for the 1Σ+ state of

the HF molecule in the 6-31G** basis set, with the active space of (2 e, 2 o) (the 3σ and 4σ

orbitals chosen as the active orbitals). While the accuracy at large bond distances is reasonable,

it deteriorates strongly at small bond distances, where the 4σ orbital is almost unoccupied and

we need to compromise in the use of γ−1.

Fig. 9.2 plots the error curve for the singlet ground state of the N2 molecule in the cc-pVDZ

basis set, with the active space (6 e, 6 0), compared with MRCI+Q results. In this case, the

accuracy in the intermediate region is compromised, where cumulants (such as ζ2) are not small.

Therefore, if we only keep fully contracted terms, a large number of terms containing cumulants

is discarded, which leads to loss of accuracy. Hence, it seems necessary to include the non-fully-
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Figure 9.1: Comparison with FCI for HF 1Σ+ state in the 6-31G** basis set.

contracted terms.

Once we include the non-fully-contracted terms, the computational cost increases greatly. In

addition, the convergence problem resurfaces again, partly due to the inclusion of the inverse

matrices γ̄ij and η̄mn .

9.5 Final remarks

We have not been fortunate in developing a satisfactory internally contracted MRCC method.

Important issues which still need to be addressed include: the near singularity issue, better

schemes to approximate residual equations and more powerful convergence algorithms, none of

which is trivial. The varying single reference and multireference features of the wavefunctions in

different situations stand in the way of designing a universal ansatz which works for all cases. The

APG has been very powerful in generating equations and subroutines. Unfortunately, we do not

yet have a similar generator for good ideas.
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Figure 9.2: Comparison with MRCI+Q for the N2 ground state in the cc-pVDZ basis set.
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Table A.1: Comparison with UCCSD(T) for F2
3Σ−

u state in the cc-pVTZ basis set. The
UCCSD(T) energies are in Eh and other values (mEh) are energy differences vs UCCSD(T).
SS-EOMCC computations use an active space of (18 e, 10 o).

R (Å) UCCSD(T) UCCSD SS-EOMCC
1.00 -198.12348 12.29 4.30
1.10 -198.50142 10.45 4.35
1.30 -198.93540 8.80 4.47
1.32 -198.96206 8.70 4.49
1.37 -199.01963 8.48 4.52
1.38 -199.02975 8.44 4.53
1.39 -199.03946 8.40 4.54
1.40 -199.04876 8.36 4.54
1.41 -199.05768 8.33 4.55
1.42 -199.06623 8.29 4.55
1.43 -199.07442 8.26 4.55
1.44 -199.08227 8.23 4.56
1.46 -199.09702 8.17 4.56
1.48 -199.11057 8.11 4.57
1.50 -199.12302 8.06 4.57
1.55 -199.14990 7.95 4.58
1.60 -199.17167 7.86 4.58
1.65 -199.18929 7.78 4.58
1.70 -199.20356 7.72 4.57
1.75 -199.21512 7.66 4.57
1.80 -199.22449 7.62 4.56
1.90 -199.23825 7.55 4.55
2.00 -199.24730 7.51 4.54
2.20 -199.25712 7.45 4.54
2.40 -199.26127 7.41 4.55
2.80 -199.26374 7.38 4.58
3.00 -199.26405 7.37 4.59
3.50 -199.26426 7.36 4.59
4.00 -199.26431 7.35 4.59
4.50 -199.26434 7.35 4.59
5.00 -199.26436 7.35 4.59
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Table A.2: Comparison with MRCI+Q for the N2
1Σg state in the cc-pVDZ basis set with the

active space (14 e, 10 o). MRCI+Q energies are in Eh and others are differences from MRCI+Q
in mEh (SS-EOMCC-3p means that three-body terms are included when diagonalizing the trans-
formed Hamiltonian, refer to Section II).

R (Å) MRCI+Q CASPT2 MRCI AQCC SS-EOMCC SS-EOMCC-3p
1.00 -109.23292 18.67 7.74 1.99 5.42 4.07
1.05 -109.26793 18.88 7.93 2.03 5.62 4.16
1.10 -109.28174 19.05 8.10 2.07 5.85 4.29
1.15 -109.28062 19.19 8.27 2.12 6.02 4.36
1.20 -109.26926 19.29 8.45 2.16 6.27 4.51
1.40 -109.17899 19.30 9.19 2.34 7.30 5.12
1.60 -109.08520 18.31 10.04 2.54 8.08 5.57
1.80 -109.02051 15.97 10.77 2.72 8.24 5.49
2.00 -108.98674 14.22 10.94 2.76 7.54 4.95
2.20 -108.97275 14.27 10.72 2.70 6.57 4.34
2.40 -108.96741 14.85 10.50 2.65 5.85 3.85
2.60 -108.96518 15.32 10.36 2.62 5.42 3.55
2.80 -108.96408 15.60 10.27 2.60 5.17 3.37
3.00 -108.96345 15.77 10.22 2.59 5.03 3.26
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Table A.3: Comparison with MRCI+Q for the N2
1Σg state in the cc-pVTZ basis set with the active

space (14 e, 10 o). MRCI+Q energies are in Eh and others are differences from MRCI+Q in mEh

(SS-EOMCC-3p means that three-body terms are included when diagonalizing the transformed
Hamiltonian).

R (Å) MRCI+Q CASPT2 MRCI AQCC SS-EOMCC SS-EOMCC-3p
1.00 -109.36534 21.14 13.87 3.39 5.88 4.90
1.05 -109.39237 21.19 14.04 3.42 5.87 4.81
1.10 -109.40029 21.18 14.21 3.46 5.93 4.79
1.15 -109.39485 21.09 14.39 3.50 5.95 4.73
1.20 -109.38030 20.94 14.58 3.54 6.04 4.74
1.40 -109.28346 19.66 15.48 3.74 6.47 4.86
1.60 -109.18622 16.98 16.54 3.96 6.76 4.78
1.80 -109.11745 12.73 17.40 4.13 6.50 4.30
2.00 -109.07945 9.63 17.49 4.14 5.55 3.42
2.20 -109.06258 9.32 17.08 4.04 4.47 2.53
2.40 -109.05584 10.04 16.70 3.96 3.67 1.88
2.60 -109.05305 10.71 16.48 3.91 3.22 1.54
2.80 -109.05176 11.15 16.35 3.88 2.97 1.35
3.00 -109.05106 11.42 16.28 3.87 2.83 1.23
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Table A.4: Comparison with MRCI+Q for the H2O
1A1 state in the cc-pVDZ basis set with the

active space (1o e, 7 o). ∠HOH = 109.57◦ and O-H bonds are stretched symmetrically. MRCI+Q
energies are in Eh and others are differences from MRCI+Q in mEh (SS-EOMCC-3p means that
three-body terms are included when diagonalizing the transformed Hamiltonian).

R (Å) MRCI+Q CASPT2 MRCI AQCC SS-EOMCC SS-EOMCC-3p
0.90 -76.23442 13.31 5.93 2.20 2.00 1.12
0.95 -76.24279 13.31 6.00 2.22 1.87 0.83
1.00 -76.24056 13.27 6.04 2.23 1.86 0.71
1.05 -76.23097 13.21 6.06 2.24 1.88 0.60
1.10 -76.21645 13.11 6.07 2.24 1.91 0.47
1.20 -76.17918 12.80 6.01 2.22 2.00 0.26
1.40 -76.09740 11.72 5.67 2.09 2.12 0.31
1.60 -76.02778 10.29 5.15 1.90 2.13 0.52
1.80 -75.97771 9.08 4.64 1.71 2.02 0.69
2.00 -75.94606 8.48 4.23 1.57 1.82 0.79
2.20 -75.92849 8.43 3.96 1.47 1.59 0.82
2.40 -75.91970 8.60 3.81 1.41 1.41 0.81
2.60 -75.91546 8.77 3.73 1.38 1.25 0.75
2.80 -75.91337 8.88 3.68 1.37 1.15 0.69
3.00 -75.91229 8.94 3.66 1.36 1.09 0.61
3.20 -75.91172 8.98 3.65 1.35 1.06 0.52
3.40 -75.91140 9.00 3.64 1.35 1.03 0.44
3.60 -75.91123 9.01 3.63 1.35 1.02 0.38
3.80 -75.91112 9.01 3.63 1.35 1.01 0.34
4.00 -75.91106 9.02 3.63 1.35 1.01 0.32
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Table A.5: Comparison with MRCI+Q for the H2O
1A1 state in the cc-pVTZ basis set with the

active space (1o e, 7 o). ∠HOH = 109.57◦ and O-H bonds are stretched symmetrically. MRCI+Q
energies are in Eh and others are differences from MRCI+Q in mEh (SS-EOMCC-3p means that
three-body terms are included when diagonalizing the transformed Hamiltonian).

R (Å) MRCI+Q CASPT2 MRCI AQCC SS-EOMCC SS-EOMCC-3p
0.90 -76.33757 15.19 10.15 3.69 3.92 3.49
0.95 -76.34428 15.14 10.31 3.75 3.56 3.02
1.00 -76.34073 15.08 10.46 3.79 3.31 2.74
1.05 -76.33003 15.02 10.57 3.83 3.07 2.47
1.10 -76.31447 14.93 10.66 3.86 2.82 2.15
1.20 -76.27514 14.67 10.73 3.87 2.39 1.43
1.40 -76.18914 13.58 10.45 3.75 1.80 0.72
1.60 -76.11510 11.71 9.69 3.48 1.48 0.38
1.80 -76.06061 9.80 8.73 3.15 1.29 0.28
2.00 -76.02521 8.66 7.86 2.84 1.14 0.31
2.20 -76.00502 8.36 7.22 2.62 1.05 0.39
2.40 -75.99464 8.46 6.84 2.49 0.99 0.47
2.60 -75.98955 8.61 6.64 2.42 0.89 0.46
2.80 -75.98706 8.73 6.54 2.38 0.82 0.41
3.00 -75.98583 8.80 6.48 2.37 0.77 0.35
3.20 -75.98520 8.84 6.45 2.36 0.74 0.26
3.40 -75.98486 8.86 6.44 2.35 0.72 0.18
3.60 -75.98467 8.88 6.43 2.35 0.70 0.13
3.80 -75.98457 8.88 6.42 2.34 0.70 0.09
4.00 -75.98450 8.89 6.42 2.34 0.69 0.06
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Table A.6: Comparison with MRCI+Q for the CO1A1 state in the cc-pVDZ basis set with the
active space (14 e, 10 o). MRCI+Q energies are in Eh and others are differences from MRCI+Q
in mEh (SS-EOMCC-3p means that three-body terms are included when diagonalizing the trans-
formed Hamiltonian).

R (Å) MRCI+Q CASPT2 MRCI AQCC SS-EOMCC SS-EOMCC-3p
1.00 -112.99683 20.34 7.90 1.99 5.88 4.90
1.02 -113.01561 20.47 7.96 2.01 5.97 4.95
1.04 -113.03045 20.60 8.02 2.02 6.07 5.00
1.06 -113.04184 20.73 8.09 2.04 6.14 5.01
1.08 -113.05019 20.85 8.15 2.05 6.24 5.06
1.12 -113.05926 21.06 8.26 2.08 6.44 5.16
1.16 -113.06020 21.24 8.38 2.11 6.56 5.17
1.18 -113.05827 21.32 8.44 2.12 6.66 5.21
1.20 -113.05502 21.39 8.49 2.14 6.76 5.26
1.24 -113.04529 21.50 8.60 2.16 6.96 5.35
1.32 -113.01694 21.60 8.83 2.22 7.33 5.51
1.36 -113.00009 21.59 8.94 2.24 7.50 5.57
1.40 -112.98232 21.53 9.05 2.27 7.66 5.63
1.60 -112.89310 20.63 9.64 2.41 8.19 5.74
1.80 -112.81898 18.82 10.24 2.55 8.25 5.48
2.00 -112.76479 16.51 10.73 2.66 7.93 5.04
2.20 -112.72840 14.41 10.98 2.72 7.53 4.77
2.40 -112.70583 13.34 10.95 2.71 7.22 4.73
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Table A.7: Comparison with MRCI+Q for the CO1A1 state in the cc-pVTZ basis set with the
active space (14 e, 10 o). MRCI+Q energies are in Eh and others are differences from MRCI+Q
in mEh (SS-EOMCC-3p means that three-body terms are included when diagonalizing the trans-
formed Hamiltonian).

R (Å) MRCI+Q CASPT2 MRCI AQCC SS-EOMCC SS-EOMCC-3p
1.00 -113.12704 22.99 13.84 3.31 7.04 6.47
1.02 -113.14382 23.07 13.91 3.33 7.05 6.46
1.04 -113.15686 23.16 13.99 3.34 7.07 6.46
1.06 -113.16663 23.23 14.06 3.36 7.02 6.37
1.08 -113.17352 23.29 14.13 3.37 7.04 6.34
1.12 -113.18009 23.38 14.28 3.40 7.09 6.29
1.16 -113.17898 23.44 14.42 3.43 7.07 6.19
1.18 -113.17617 23.45 14.50 3.45 7.10 6.18
1.20 -113.17213 23.45 14.57 3.46 7.12 6.16
1.24 -113.16104 23.43 14.72 3.49 7.17 6.14
1.32 -113.13065 23.23 15.03 3.56 7.28 6.09
1.36 -113.11303 23.06 15.18 3.59 7.34 6.07
1.40 -113.09461 22.84 15.34 3.63 7.39 6.05
1.60 -113.00292 21.01 16.16 3.80 7.49 5.85
1.80 -112.92635 18.07 16.95 3.96 7.26 5.32
2.00 -112.86969 14.47 17.59 4.08 6.74 4.65
2.20 -112.83107 11.09 17.90 4.12 6.17 4.01
2.40 -112.80676 9.11 17.83 4.08 5.88 3.76
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A 108, 8878 (2004).

[240] K. Kowalski and P. Piecuch, J. Chem. Phys. 113, 5644 (2000).

[241] M. J. McGuire and P. Piecuch, J. Am. Chem. Soc. 127, 2608 (2005).

[242] A. Kinal and P. Piecuch, J. Phys. Chem. A 110, 367 (2006).

[243] A. Kinal and P. Piecuch, J. Phys. Chem. A 111, 734 (2007).

[244] S. Nangia, D. G. Truhlar, M. J. McGuire, and P. Piecuch, J. Phys. Chem. A 109, 11643

(2005).

[245] X. Li and J. Paldus, J. Chem. Phys. 119, 5346 (2003).

[246] Http://www.molpro.net/infor/current/molpro basis?element=Cu&basis=ECP10MWB&print=1.

[247] M. Dlog, U. Wedig, H. Stoll, and H. J. Preuss, J. Chem. Phys. 86, 866 (1987).
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