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Abstract 

The Intergovernmental Panel on Climate Change (IPCC) estimates that buildings account for 40% of 

the global energy use. The IPCC believes substantial improvements to building efficiency can be 

implemented easily by improving building enclosures through increased levels of insulation, 

optimizing glazing areas and minimizing infiltration of outside air.  

Building enclosure design encompasses a wide range of parameters but the transport of heat, air and 

moisture through the enclosure is of primary importance. In predominantly cold Canadian climates, 

adequate thermal insulation, effective air barriers, and proper moisture control are crucial for energy 

savings and durability of the structure.  

For decades, standard construction practice in Canada dictated a polyethylene sheet behind the 

interior drywall layer to serve as a vapour barrier for assemblies with traditional fibre-based cavity 

insulation. If the polyethylene sheet was sealed carefully enough it had the added benefit of reducing 

air leakage. Unfortunately, vapour barriers place the emphasis on the wrong moisture transport 

mechanism; air leakage can have 10 times or greater the wetting potential than vapour diffusion. 

Regardless, code enforcement personnel continued (and continue in some areas) to require vapour 

barriers in all climates, all assemblies, and all occupancies. To do so, they overrule the provision in 

Part 5 of The National Building Code of Canada that states vapour barriers are not required if it can 

be shown that the uncontrolled vapour diffusion will not affect the operation of the building and 

systems, or the health and safety of the occupants.  

Foam plastic insulations perform better than fibre-based insulation in terms of the combined 

resistance to transmission of heat, air and vapour. This research investigated several types of open cell 

and closed cell spray polyurethane foam insulation in a variety of assembly configurations both in lab 

tests and hygrothermal simulations. The simulations were extrapolated to seven Canadian climate 

categories and three levels of interior relative humidity. The goal was to determine which spray 

polyurethane foam applications required the addition of a dedicated vapour barrier layer beyond what 

the foam itself could provide.     

The moisture content of the oriented strand board sheathing layer (OSB) in the tested and modelled 

assemblies was used as the performance evaluation point because during wintertime vapour drives, 

the wood sheathing is the most likely condensing surface. Prolonged high moisture content (greater 

than 20%) in wood and wood products in wall assemblies leads to mould growth and decay. By this 

measure, if the wood sheathing moisture contents stay within the safe range (less than 19%) a vapour 

barrier is not necessary. The results are presented in Table 7-4. 

The performance of assemblies containing closed cell spray foam was excellent for all climates and 

humidity levels. Their performance was equivalent to traditional wall assemblies incorporating a 

polyethylene sheet vapour barrier. The performance of assemblies with open cell spray foam was 

equivalent to traditional wall assemblies containing no vapour barrier. Open cell spray foam and 

fibreglass batt both require additional vapour control layers with all but the mildest Canadian climates 

with the lowest interior humidities. However, in those mild climates with low interior humidities, the 

only vapour control layer required was a medium permeance latex paint with primer. 



 

 iv 

Acknowledgements 

Many thanks to Dr. John Straube for giving me the opportunity to join the Building Engineering 

Group at Waterloo. His knowledge and guidance were invaluable.  I wanted to be part of the building 

science field since 1993 and he helped me achieve that reality. 

Many thanks to Mike Richmond and the Canadian Urethane Foam Contractors Association for 

providing the materials and resources required to conduct this research. 

Two big thank-yous go to Terry Ridgway and Ken Bowman for lending their help and technical 

savvy to get the experiment up and running. 

Thanks to all my BEG cohorts for their help and friendship – Nick Bronsema, Aaron Grin, Kohta 

Ueno, Ivan Lee, Peter Mensinga, and Brittany Hanam. They made the experience richer when we 

shared our ideas, information and coffee breaks. In particular, I would like to profusely thank Jee 

Young Kim and Brian Kettlewell who were cheerfully willing to pitch in and help in any way.  

Many thanks to Dr. Achilles Karagiozis and Dr. Ric Soulis for providing their time and expertise to 

review this work and provide feedback. Their perceptive comments made this a better thesis. Thanks 

to Marguarite Knechtel for guiding me through the process. 

Finally, thanks to my friends on campus and at the Grad House. It was a much needed third place 

where I felt welcomed and enjoyed the company of the university community.  



 

 v 

 

 

 

 

 

 

For Jim and Toots 



 

 vi 

Table of Contents 

List of Figures ....................................................................................................................................... ix 

List of Tables.........................................................................................................................................xi 

Chapter 1 Introduction............................................................................................................................ 1 

1.1 Background .................................................................................................................................. 1 

1.2 Spray Polyurethane Foam (SPF) Insulation ................................................................................. 3 

1.3 Objectives..................................................................................................................................... 5 

1.4 Scope ............................................................................................................................................ 5 

1.5 Approach ...................................................................................................................................... 5 

Chapter 2 Building Science and Material Properties.............................................................................. 6 

2.1 Heat .............................................................................................................................................. 6 

2.1.1 Heat Control Layer ................................................................................................................ 6 

2.2 Air................................................................................................................................................. 7 

2.2.1 Air Control Layer .................................................................................................................. 8 

2.3 Moisture........................................................................................................................................ 9 

2.3.1 Moisture Control Layer ......................................................................................................... 9 

2.3.2 Vapour Diffusion................................................................................................................. 10 

2.3.3 Water Vapour in Air............................................................................................................ 12 

2.3.4 Moisture Storage ................................................................................................................. 14 

2.4 Vapour Barriers .......................................................................................................................... 18 

2.4.1 Requirements for Vapour Barriers ...................................................................................... 20 

2.5 Spray Polyurethane Foam Insulation.......................................................................................... 23 

2.5.1 Properties of SPF................................................................................................................. 23 

2.6 Wood Properties ......................................................................................................................... 25 

2.6.1 Wood Decay ........................................................................................................................ 27 

Chapter 3 Past Research ....................................................................................................................... 28 

3.1 History of Vapour Barriers......................................................................................................... 28 

3.2 Vapor Barrier/Air Barrier Confusion ......................................................................................... 29 

3.3 Is a Vapour Barrier Necessary?.................................................................................................. 29 

3.4 Spray Foam Insulation as Vapour Barrier .................................................................................. 30 

Chapter 4 Research Plan and Experimental Setup ............................................................................... 32 



 

 vii 

4.1 Research Plan ............................................................................................................................. 32 

4.2 Experimental Objective .............................................................................................................. 32 

4.3 Experimental Scope.................................................................................................................... 32 

4.4 Experimental Approach.............................................................................................................. 32 

4.5 Test Samples............................................................................................................................... 33 

4.6 Boundary Conditions.................................................................................................................. 34 

4.7 Experimental Setup and Apparatus ............................................................................................ 34 

4.7.1 Climate Chamber................................................................................................................. 34 

4.7.2 Design of Test Assembly and Test Boxes ........................................................................... 36 

4.7.3 Preventing Air Leakage in the Test Assembly .................................................................... 39 

4.7.4 Preventing Air Leakage in the Test Boxes .......................................................................... 39 

4.8 Instrumentation and Controls ..................................................................................................... 43 

4.8.1 Warm Side Controls ............................................................................................................ 43 

4.8.2 Cold Side Controls .............................................................................................................. 43 

4.8.3 Defrost Cycle....................................................................................................................... 44 

4.8.4 Moisture Content and Mass Measurements......................................................................... 44 

4.9 Experimental Procedure ............................................................................................................. 47 

Chapter 5 Experimental Results ........................................................................................................... 48 

5.1 Actual Climate Chamber Performance....................................................................................... 48 

5.2 Gravimetric Measurements ........................................................................................................ 49 

Chapter 6 Analysis and Discussion ...................................................................................................... 53 

6.1 Gravimetric Measurements ........................................................................................................ 53 

6.1.1 Glaser Method Calculations ................................................................................................ 53 

6.1.2 Calculated versus Measured Mass Gains ............................................................................ 55 

6.1.3 Interpretation of Measurements........................................................................................... 57 

6.2 Moisture Content Readings ........................................................................................................ 59 

6.3 Adsorption .................................................................................................................................. 61 

6.4 Conclusions ................................................................................................................................ 63 

Chapter 7 Hygrothermal Model Extrapolation..................................................................................... 64 

7.1 Evaluation of Enclosure Performance ........................................................................................ 64 

7.2 WUFI Computer Model ............................................................................................................. 64 

7.3 Parameters for the WUFI 4.1 Model .......................................................................................... 65 



 

 viii 

7.3.1 Assembly Materials ............................................................................................................. 66 

7.3.2 Orientation........................................................................................................................... 67 

7.3.3 Surface Transfer Coefficients.............................................................................................. 68 

7.3.4 Initial Conditions ................................................................................................................. 68 

7.3.5 Calculation Period ............................................................................................................... 68 

7.3.6 Outdoor Climate .................................................................................................................. 69 

7.3.7 Indoor Climate..................................................................................................................... 72 

7.4 Output from WUFI Model.......................................................................................................... 74 

7.5 Simulation Results...................................................................................................................... 77 

7.6 Conclusions ................................................................................................................................ 78 

Chapter 8 Conclusions and Recommendations .................................................................................... 80 

References ............................................................................................................................................ 82 

APPENDICES 

Appendix A .......................................................................................................................................... 85 

Appendix B........................................................................................................................................... 97 

Appendix C......................................................................................................................................... 102 

 



 

 ix 

List of Figures 

Figure 1-1: Average RSI values of Common Insulation Types (Straube and Burnett 2005)................. 3 

Figure 1-2: Location of Control Layers in Three Example Walls.......................................................... 4 

Figure 2-1: Vapour Diffusion from High to Low Vapour Pressure ..................................................... 10 

Figure 2-2: Wet Cup and Dry Cup Vapour Permeance Tests (Straube and Burnett 2005).................. 12 

Figure 2-3: The Psychrometric Chart ................................................................................................... 13 

Figure 2-4: Typical Sorption Isotherm of Hygroscopic Material (Straube and Burnett 2005) ............ 15 

Figure 2-5: Regimes of Moisture Storage in Hygroscopic Porous Material ........................................ 16 

Figure 2-6: Sorption Isotherms of Several Building Materials (Straube and Burnett 2005)................ 17 

Figure 2-7: Wetting Potential of Vapour Diffusion vs. Air Leakage per m
2
 of wall............................ 19 

Figure 2-8: Wall 2 with Thermal Gradient and Frost Accumulation ................................................... 20 

Figure 2-9: Permeance of Common Assembly Layers......................................................................... 21 

Figure 2-10: U.S. Vapour Barrier Classifications (Honeywell) ........................................................... 22 

Figure 2-11:  Apparent Conductivity of Several Types of Insulation (ASHRAE 2001)...................... 25 

Figure 2-12: Vapour Permeance vs. RH of OSB and Plywood (Straube and Burnett 2005) ............... 26 

Figure 3-1: BEGhut Full Scale Wall Tests (Finch et al 2007) ............................................................. 30 

Figure 4-1: Section of the BEG Climate Chamber............................................................................... 33 

Figure 4-2: Plan View of Climate Chamber Set-up ............................................................................. 35 

Figure 4-3: BEG Climate Chamber ...................................................................................................... 36 

Figure 4-4: Elevation View of Test Assembly ..................................................................................... 37 

Figure 4-5: Axonometric View of Test Box Construction ................................................................... 38 

Figure 4-6: Test Box, Prior to Insulation and Gypsum Board on Interior Face ................................... 40 

Figure 4-7: Test Box, After Tyvek Installed on Exterior Face............................................................. 40 

Figure 4-8: Test Boxes facing Cold Side in Test Assembly................................................................. 41 

Figure 4-9: Weather-stripping Around Test Box Opening, View from Cold Side............................... 41 

Figure 4-10: Manual Screw-Down Block to Force Test Box into Weather-stripping.......................... 42 

Figure 4-11: Test Boxes from Warm Side............................................................................................ 42 

Figure 4-12: Test Box Weather-stripping Detail, View from Warm Side ........................................... 43 

Figure 4-13: Photo of Under-scale Mass Reading of Test Box............................................................ 45 

Figure 4-14: Three Pairs of Moisture Pins Installed in Tyvek covered OSB....................................... 46 

Figure 4-15: Schematic of Moisture Pins in OSB ................................................................................ 46 

Figure 5-1: Conditions in Cold-Side Chamber..................................................................................... 48 



 

 x 

Figure 5-2: Mass Gain Rate of A-series Test Boxes with Polyethylene Vapour Barrier ..................... 49 

Figure 5-3: Mass Gain Rate of B-series Test Boxes with No Polyethylene Vapour Barrier ............... 50 

Figure 5-4: Corrected MC of OSB in A-series Test Boxes with Polyethylene Vapour Barrier........... 51 

Figure 5-5: Corrected MC of OSB in B-series Test Boxes with No Polyethylene Vapour Barrier ..... 52 

Figure 6-1: Mass Gain Behaviour of Representative Test Boxes with Poly Vapour Barrier............... 56 

Figure 6-2: Mass Gain Behaviour of Representative Test Boxes without Poly Vapour Barrier.......... 57 

Figure 6-3: The Sorption-Isotherm for OSB from the WUFI Materials Database............................... 61 

Figure 6-4: Vapour Pressure Drives in A-Series Test Box .................................................................. 62 

Figure 6-5: Vapour and Surface Diffusion under Opposing T and RH Gradients .............................. 63 

Figure 7-1: Cross-sections of Modelled Wall Assemblies ................................................................... 65 

Figure 7-2: Screen shot of WUFI Assembly Input............................................................................... 66 

Figure 7-3: Map of Canada Heating Degree Days (National Atlas of Canada, 5
th
 ed.) ....................... 69 

Figure 7-4: Screen shot of WUFI Plot of Outdoor Climate File for Toronto....................................... 72 

Figure 7-5: Screenshot of WUFI Plot of Low RH Category 30-50% .................................................. 74 

Figure 7-6: Screen Shot of WUFI Film for Open Cell SPF in Toronto at 30/55% RH........................ 75 

Figure 7-7: Close-up of Water Content in OSB ................................................................................... 76 

Figure 7-8: Screen Shot of WUFI Water Content Plot for OSB .......................................................... 77 



 

 xi 

List of Tables 

Table 2-1: Permeance of Type 1 and Type 2 Vapour Barriers............................................................. 22 

Table 2-2: Material Properties for 25 mm of Generic SPF .................................................................. 25 

Table 4-1: Test Box Variables.............................................................................................................. 34 

Table 6-1: Glaser Calculations for Condensation Potential in Sample Test Box................................. 54 

Table 6-2: Calculated Mass Gain due to Water Vapour Diffusion in A-series Test Boxes ................. 55 

Table 6-3: Calculated Mass Gain due to Water Vapour Diffusion in B-series Test Boxes ................. 56 

Table 6-4: OSB Moisture Content Results for Test Boxes with Poly Vapour Barrier......................... 60 

Table 6-5: OSB Moisture Content Results for Test Boxes without Poly Vapour Barrier.................... 60 

Table 7-1: Canadian Cities by Climate Category................................................................................. 70 

Table 7-2: General Conditions of Climate Categories Used in WUFI Simulations............................. 71 

Table 7-3: Categories for Indoor Relative Humidities ......................................................................... 73 

Table 7-4: Moisture Content Prediction for OSB Layer ...................................................................... 78 

 



 1 

Chapter 1 

Introduction 

1.1 Background 

In the past few years, public concern about rising energy costs, greenhouse gas emissions, and energy 

security have focused attention on buildings, one of the largest sectors of energy consumption. The 

Intergovernmental Panel on Climate Change estimates energy consumption by buildings is 40% of all 

global energy use (IPCC 2007). The IPCC report titled Mitigation of Climate Change concluded that 

the building sector could generate 29% reductions in its energy consumption by the year 2020 without 

large cost. This is the highest potential reduction of all sectors including transport, industry, energy 

generation, agriculture and forestry.  

The IPCC indicates the most cost-effective energy reductions come from reducing heating and 

cooling loads. The report states, “A simple strategy for reducing heating and cooling loads is to 

isolate the building from the environment by using high levels of insulation, optimizing the glazing 

area and minimizing the infiltration of outside air.”  

This statement from the IPCC report, whether intentional or not, is a succinct description of the main 

principles of energy-efficient building enclosure design. The aim of building science is to properly 

control the flow of heat, air and moisture through the building enclosure. This is achieved through the 

design and construction of four distinct functional elements of the enclosure: 

• Heat control layer – provided by thermal insulation.  

• Air control layer – in the form of a continuous air barrier to minimize uncontrolled air 

infiltration and exfiltration.  

• Rain control layer – a water resistant barrier (also called a rain drainage plane) to control 

liquid water penetration.  

• Vapour diffusion control layer – a wall could also include a vapour diffusion barrier, if 

warranted by assembly materials, local climate, and interior humidity conditions. 

This thesis investigates which Canadian climate conditions warrant a vapour barrier for several 

standard construction assemblies incorporating specific types of spray polyurethane foam insulation.  

There are many well-established techniques to maximize performance of each of the control layers in 

the building enclosure. The Canada Mortgage and Housing Corporation initiative Building for Energy 

Efficient Housing recommends some specific techniques (CMHC 2008). They are listed here with the 

relevant control layer indicated in brackets.  

• Increase the amount of insulation in the walls and roofs [heat control layer] 

• Seal all openings through which air could leak in or out [air control layer]  

• Eliminate thermal bridging, where non-insulating materials such as steel or concrete pass 

through the insulation and conduct heat from the building [heat control layer] 
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• Provide a vapour barrier to limit vapour diffusion condensation in the wall - condensation 

reduces the effectiveness of the insulation and causes deterioration of the wall [vapour 

diffusion control layer] 

• Use double glazed windows, glazed with low-emissivity glass, fill the air space with inert 

gas, such as argon [heat, air and rain control layers] 

CMHC estimates these technologies will increase costs by 10% and lead to energy savings of 60% 

compared to standard construction. They calculated the simple payback as 5 to 8 years at 2008 energy 

costs. 

It is well understood in the construction industry that increasing insulation is a means of reducing 

energy consumption over the life of the structure. Not so well understood, however, is that the amount 

of energy savings depends on the choice of insulation, how is it installed and where it is located in the 

building enclosure assembly. Poor design and workmanship can reduce the effectiveness of the 

insulation and produce an enclosure that transfers much more heat than the theoretical value of the 

insulation would indicate. In addition, if enclosure weaknesses such as thermal bridging are not 

properly addressed, the heat transfer will short circuit around the insulation, making the heat control 

layer less effective overall.   

Three categories of insulation are common: mineral fibre, organic fibre and foamed plastic. Mineral 

fibre insulation is non-combustible and air and vapour permeable. Examples of mineral fibre are 

fibreglass and rock wool. Organic fibre insulation is combustible but can be treated inexpensively to 

provide excellent performance. Like mineral fibre insulation it is air and vapour permeable. Examples 

of organic fibre insulations are cellulose and recycled cotton. Foamed plastic insulation products are 

combustible and have a range of air and vapour permeances. Examples of foam plastic insulation are 

expanded polystyrene, extruded polystyrene, polyurethane and polyisocyanurate. Some insulation 

materials provide higher resistance to heat flow than others for the same thickness of material (Figure 

1-1). 
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Figure 1-1: Average RSI values of Common Insulation Types (Straube and Burnett 2005) 

Some insulation materials have the added benefit of providing significant resistance to air leakage, 

rain penetration, vapour diffusion or any combination of the three. For example, some types of foam 

plastic have a high resistance to flow of heat, air, and water (both liquid and vapour) and therefore 

have the potential to function as the heat, air and moisture control layers. At the other end of the 

spectrum, a material like fibreglass batt performs well as a heat control layer only. In an enclosure 

using fibreglass as the heat control layer, the air and moisture control layers must be designed and 

provided separately by other materials.  

1.2 Spray Polyurethane Foam (SPF) Insulation 

Spray polyurethane foam (SPF) is one type of foam plastic that is of great interest in building 

enclosure design because it can perform very well as multiple control layers. SPF provides one the 

highest heat resistances of any commonly available insulation products  

SPF is created and applied on-site from two liquid components that are combined and mixed as they 

are being sprayed from a pressurized gun. The two liquids react chemically, bubbles form, the 

product expands, and the liquid is transformed into a cellular plastic. The advantage of the on-site 

application process is that the liquid foam enters cracks, gaps and irregular cavities and fills them up 
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as it expands. The foam cures within seconds and creates a seamless, semi-rigid thermal and air 

barrier layer. It also adheres tenaciously to most surfaces.  

There are two broad classes of SPF based on cellular structure – open cell and closed cell. Open cell 

foam is low density; closed cell foam is medium density to super high density. Open cell foam is 

classified as semi-flexible. It has relatively low values for compressive strength and density and is 

used in wall and joist cavities. Closed cell foam is more rigid and can withstand substantial 

compressive load without deforming and can be applied as a continuous layer to almost any solid 

substrate. Medium density foam is used in wall and floor cavities and outboard of exterior walls if it 

will be covered by cladding. High density and super high density closed cell foams are used in 

roofing applications because they are strong enough to support environmental loads and live loads 

from workers and maintenance. The foam surface will degrade when subjected to long-term UV 

exposure; therefore, exterior applications require a UV-blocking membrane. This project was limited 

to studying open cell foams and medium and high density closed cell foams.   

Medium and high density spray polyurethane foams also provide considerably more moisture 

resistance than traditional insulation materials. As a result, there may be some cases where medium 

and high density SPF can serve as the water and vapour control layers depending on where they are 

located within the assembly (Figure 1-2). 

12 mm drywall

200 mm concrete 

masonry unit

100 mm closed 

cell spray foam

25 mm air space

89 mm clay brick

12 mm drywall

140 mm wood stud

40 mm air space

100 mm closed cell spray foam

11 mm OSB sheathing 

1 layer house wrap 

19 mm strapping/air space

Lapped siding 

Thermal Barrier

Air Barrier

Water Barrier

Vapour Barrier

Wall A Wall B

Water Barrier

Air Barrier

Vapour Barrier

Thermal Barrier

Air Barrier

Water Barrier

Vapour Barrier

Thermal Barrier

Wall C

12 mm drywall

1 layer polyethylene sheet 

140 mm fibreglass batt

11 mm OSB sheathing 

1 layer house wrap 

19 mm strapping/air space

Lapped siding 

 

Figure 1-2: Location of Control Layers in Three Example Walls 

Unfortunately, there is often confusion on the part of designers, builders and code enforcement 

officials about if and when spray polyurethane foam acts as a vapour barrier. If the cases could be 

identified and codified, the construction industry could benefit from eliminating the time consuming 

and unnecessary construction step of installing a separate vapour diffusion control layer. There is also 

a risk of trapping construction moisture if an interior vapour barrier is unnecessarily applied. 
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1.3 Objectives 

The objective of the research was to investigate how different types of spray polyurethane foam 

insulation products perform as a vapour diffusion control layer in framed wall systems subject to a 

variety of Canadian climates and interior conditions. This thesis reviews the background science and 

previous research and documents the research results and findings.    

1.4 Scope 

The scope of the project included vapour diffusion tests of a series of open and closed cell foams with 

and without polyethylene vapour barriers. The foam samples were subjected to constant temperature 

and relative humidity conditions in a lab setting. The results from the lab experiment and previous 

field experiments were then compared and validated with a well-established hygrothermal computer 

modelling program. The computer model was then used to predict performance of other types of wall 

assemblies subject to a wide range of climates in representative Canadian cities with various interior 

humidity loads.  

1.5 Approach 

The thesis begins with an overview of how building science defines heat, air and moisture transport 

mechanisms. The discussion continues with how the mechanisms are affected by the material 

properties of assembly materials such as spray foam insulation, vapour diffusion control products and 

wood. Some previous work on vapour diffusion performance of spray foam is discussed. The 

experimental plan and set-up is covered in detail. The experimental results are presented and 

discussed in Chapter 5. The analysis and discussion of the test results are presented in Chapter 6. 

Computer and mathematical models are developed and presented in Chapter 7. Conclusions and 

recommendations for industry are presented in Chapter 8 
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Chapter 2 

Building Science and Material Properties  

Building science often focuses on the flow of heat, air and moisture through a building enclosure. The 

enclosure acts as an environmental separator which helps to provide controlled interior conditions 

regardless of the variability of the outdoor climate. The enclosure materials must be able to perform 

well under the changing loads from heat, air, moisture, solar radiation, impact, fire, sound, etc. If the 

materials are not suitably chosen, the building could experience problems such as excessively high 

operating costs, low occupant comfort, poor air quality, water leaks, material damage, decay and 

corrosion which could lead to premature failure of construction assemblies and systems.  

2.1 Heat 

Heat energy moves in the direction of warm to cold in three possible ways: conduction, radiation, and 

convection. Conduction occurs when heat energy is transferred from molecule to molecule in 

materials; the transfer cannot occur unless there is direct contact. Convection occurs when a fluid, 

such as water or air, moves away from a heat source taking the heat energy with it. Radiation occurs 

when a heat source emits electromagnetic energy to colder materials in its direct line of sight. 

Building enclosures can experience any of these modes of heat transport separately or simultaneously.  

2.1.1 Heat Control Layer 

Thermal insulation works because, by definition, it is a very poor conductor of heat. The conductivity 

of a material, k or λ, is a measure of how much heat flows across a unit area through a unit thickness 

for a temperature gradient of 1°C. It is measured in terms of Watt per metre Kelvin [W/m·K]. A low 

k-value means the material is a poor conductor and thereby a good insulator. Still air is a very poor 

conductor of heat; therefore, any material that incorporates a high amount of still air in its structure, 

(i.e., a low density material) is also a good insulator. In general, low density materials have low k-

values (Straube and Burnett 2005). Standard material tests combine all three modes of heat transport 

into the measurement of k-values.  

Spray polyurethane foams (SPF) are some of the lowest density insulation materials available due to 

their high air content. Even though spray foams are categorized as low, medium and high density 

foams, they all still contain a very large percentage of air (99% porosity) compared to other solid 

materials.   

The conductance of a material, C, is the conductivity of a specific thickness of material, Equation 2-1. 

For example, closed cell spray foam has a conductivity of 0.024 W/m·K; while 100 mm (4 in.) of 

closed cell spray foam has a conductance of 0.24 W/m
2·K. 
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t

k
C =                                   Equation 2-1 

C [W/m
2·K] Conductance, thermal 

k [W/m·K] Conductivity, thermal 

t [m] Thickness of material layer 

 

Good insulators tend to be materials that can reduce conduction to the 0.05 to 0.07 W/m·K range or 

lower (Straube 2005). The heat flow characteristics of some building products, such as windows and 

hollow concrete blocks are specified in terms conductance. If the reported value includes the 

resistance of the surface films, it is called the U-value. Insulation materials and enclosure assemblies 

use the inverse of conductance – the resistance or RSI.  

 

C
RSI

1
=                              Equation 2-2 

RSI [m
2·K/W] Resistance, thermal  

C [W/m
2·K] Conductance, thermal 

 

The average homeowner typically refers to the RSI by the better known imperial version of R-value. 

For example, average values in new residential construction are R-40 for attic insulation or R-20 for 

exterior walls. The R-value can be calculated by multiplying the RSI value by 5.678 which converts 

the units to hr·ft2·°F/Btu. 

2.2 Air 

Air can leak into or out of buildings through cracks, gaps and discontinuities in the enclosure. Some 

builders and homeowners say they prefer their buildings to “breathe” that way. Adequate ventilation 

is crucial in any occupied building, but uncontrolled air leakage is the cause of many building 

problems. For example, heating and cooling energy is wasted when air leaks in or out making the 

building expensive to operate. The humidity of the indoor air is difficult to control leading to 

occupant comfort problems. Moisture in the air can condense along the air leakage path putting the 

durability of the structure at risk. Uncontrolled air flows through the assembly can lead to air quality 

problems as the source and path of the air is random.  

A well designed and installed air barrier may be the most important aspect of building an energy-

efficient, comfortable, healthy, long-lasting building. Note that mechanical ventilation systems go 

hand-in-hand with air barrier systems. The mechanical ventilation provides fresh air, expels stale air, 

dilutes indoor pollutants, and helps keep the interior humidity under control. The absence of 

mechanical ventilation in an “air tight” building can lead to excessively high humidity, indoor air 
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quality problems, condensation build-up on cold surfaces and mould growth which could lead to 

structural damage if left unchecked.   

Air leakage is driven by air pressure differences between the inside and outside of a building. Three 

distinct mechanisms can create air pressure differences: 

Wind forces on a building create pressure on the enclosure. Windward surfaces experience 

infiltration of air. Leeward surfaces experience exfiltration. The amount of pressure at a particular 

point on the building enclosure depends on the magnitude and direction of the wind and the 

location of the point on the structure. Pressures on windward sides tend to be greater at the 

centres of walls and roofs. Suction forces on leeward roofs and walls tend to be greater at edges 

and corners. A wind speed of 15 km/h is equivalent to a 10 Pa air pressure difference. 

Stack Effect occurs when warmer air in a building rises naturally thereby increasing the pressure 

in the upper section of the building and decreasing the air pressure in the lower section. Over the 

top half of the building, there will be exfiltration of air; over the bottom half there will be 

infiltration of air. The taller the building, the more pronounced the effect. Wintertime stack 

pressures on a two-storey house can be 5 to 10 Pa. 

Mechanical Ventilation to bring in fresh air will pressurize the building. If fans are expelling 

stale air the building will be depressurized. A balanced ventilation system seeks to supply and 

exhaust the same volume of air. Some buildings are intentionally pressurized in order to control 

interior humidity conditions more easily, by preventing outdoor humidity from intruding. Some 

buildings are temporarily depressurized when exhaust fans are operating on equipment such as 

furnaces, fireplaces, cooking appliances, clothes dryers, and bathroom fans. Mechanically-

induced pressures can range from less than 5 Pa to more than 100 Pa.  

The intensity of the pressure difference determines the intensity of the air leakage. Air leakage rates 

are given in terms of L/s·m2
 at standard pressure of 50 or 75 Pa.  

2.2.1 Air Control Layer 

In order for the air control layer to prevent air leakage it must satisfy five requirements: 

Continuity - even small holes and discontinuities can permit a considerable amount of air leakage. 

Add up all the air leakage holes in an enclosure and the result is what is termed the normalized 

leakage area.  A 1997 National Resources Canada survey found that the national average normalized 

leakage area was 1.44 cm
2
/m

2
 for new conventionally-built (non-R2000) houses constructed after 

1991 (CANMET 1997). 

Strength – the air barrier layer must be able to withstand the pressure difference between the interior 

and the exterior of the enclosure. It is preventing the pressure from equalizing therefore it must 

transfer those forces into the structure. If it cannot, it will deform, loosen or puncture.  

Durability– the location of the air barrier may be in the interstitial space of the enclosure and 

therefore repairs or maintenance to the air barrier is impractical.   

Stiffness – the barrier must be stiff enough to transfer the forces from the pressure difference.  
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Air impermeability – if it is not impermeable, air leakage will occur.  

Heat loss from air leakage can account for 25-40% of energy loss in a building (CMHC 1999). 

Building codes recognize this heat loss mechanism and have created building air tightness 

recommendations. For example, the air permeance of the enclosure is specified as 2.0 L/s·m2
 at 75 Pa. 

The National Building Code of Canada (NBCC 2006) specifies maximum air permeances for 

materials (0.02 L/s·m2
 at 75 Pa) with some exceptions. Air leakage through the enclosure can also 

lead to moisture build-up within wall cavities when water vapour condenses along the air leakage 

path. A general requirement to limit condensation is that a building component (i.e. wall, window, 

roof) should not have an air permeance of more than 0.2 L/s·m2
 at 75 Pa.  

2.3 Moisture 

Water in liquid or vapour form can enter and exit building enclosures in a number of ways. The 

physics of moisture transport is a large, complex topic and in building science the main types of 

moisture transport are simplified to the following mechanisms: 

Liquid flow –The flow of liquid water can be driven by gravity forces as is the case with rain. 

Typically this is bulk water that creates leaks around windows, in roofs or in basements. Liquid flow 

can also be driven by capillary action as is the case with groundwater wicking up through concrete 

foundations. Capillary flow depends on the pore size of a material or gap size between materials. 

Capillary flow moves liquid water through spaces if they are sufficiently small. In larger spaces 

capillary flow is not an issue because it is small and hence overcome by gravity forces.      

Air movement – also called convective water vapour transport. This is the mechanism by which 

water vapour is moved along with air convection. As mentioned in the previous section on air 

transport, if air is leaking out of or into a building, water vapour is transported along with it and can 

condense if the air leakage path is cold enough. Once the water vapour condenses, liquid flow 

transport takes over.    

Vapour diffusion – water vapour will diffuse from areas of high water vapour concentration to areas 

of low water vapour concentration without any help from the above transport mechanisms. The 

vapour can diffuse through most materials as long as a difference in vapour concentration (measured 

by the partial vapour pressure of water vapour) exists. The amount that will diffuse through the 

material depends on the permeability of the material and the magnitude of the pressure difference.  

2.3.1 Moisture Control Layer 

Moisture intrusion into an assembly becomes a problem when the enclosure has very little moisture 

storage capacity and does not have the ability to dry out in a reasonable amount of time. Rain 

penetration and air movement can create significant moisture problems if the storage capacity and 

drying of the enclosure is limited.  

Moisture damage is rarely controlled by a single layer in an enclosure, but rather a combination of 

elements that perform different tasks to manage the different types of moisture migration through an 

enclosure.  
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Every enclosure requires some type of water resistant barrier (WRB) to minimize rainwater intrusion 

into the assembly. Water resistant barriers in above-grade walls often work in concert with the 

exterior cladding. The effectiveness of the cladding at shedding water and the rain exposure of the 

wall determine how resistant the WRB should be. Products such as self-adhesive rubberized asphalt 

membrane (“peel & stick”), spun-bonded polyolefin membrane (Tyvek), asphalt impregnated 

building paper, and closed-cell spray foam are some examples of water resistant barriers.  

Every enclosure also requires an air barrier to prevent convective water vapour transport, and air 

leakage, for reasons already outlined in Section 2.2. Examples of air barriers are metal cladding, pre-

cast concrete, gypsum board, and structural wood panels, as long as all edges and joints are air sealed.  

Vapour diffusion can also lead to water accumulation in the wall but it is often misunderstood or 

blamed for problems caused by the other transport mechanisms, particularly air movement. It can be 

difficult to identify vapour diffusion because it depends on a complicated relationship between 

exterior climate, interior climate, solar absorptance, rainwater absorption, the vapour and thermal 

resistance and safe storage capacity of all layers in the construction assembly, not just the presence or 

absence of a vapour barrier (Straube 2002). 

2.3.2 Vapour Diffusion 

As discussed in 2.3, vapour diffusion is driven by the difference in vapour pressures between two 

adjacent spaces (Figure 2-1). If there is a material layer separating the two air volumes, the rate of 

vapour movement that passes through depends on the pressure difference and the permeability of the 

material layer.  

Side B

T = 21°C

RH = 30%

Pw = 750 Pa

Side A

T = -20°C

RH = 80%

Pw = 100 Pa

Vapour permeable material layer

Vapour 

impermeable 

box

Vapour Drive
 

Figure 2-1: Vapour Diffusion from High to Low Vapour Pressure 

Water vapour diffusion through a single material can be estimated from one-dimensional steady-state 

simplification of Fick’s Law: 
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VV PA

l
Q ∆⋅⋅=

µ
                             Equation 2-3 

QV [g/s] Rate of vapour diffusion 

µ  [ng/Pa·s·m] Vapour permeability 

A [m
2
] Area 

l [m] Thickness 

∆Pv [Pa] 
Difference in water vapour partial pressure 

across the material layer 

 

Vapour permeability, µ, is a property inherent in the material structure and is measured in ng/Pa·s·m. 

The water vapour permeance of a material, M, is its permeability for a specific thickness and is 

measured in ng/Pa·s·m2
. The permeability is often assumed to be constant but actually varies with 

moisture content. The permeance of a material is determined by testing, usually ASTM E-96 Standard 

Test Methods for Water Vapour Transmission of Materials (ASTM 2000). One common way the test 

may be performed is according to “Procedure A” or the “dry-cup test” where a sample is affixed to 

the top of an open container into which desiccant has been placed. Once the sample has been sealed to 

the container it provides an interior humidity of 0% RH. Tests performed according to “Procedure B” 

or the “wet-cup test” are identical except the container holds water instead of desiccant in order to 

create an interior RH of 100%. In both procedures the entire container is placed in a 23°C /50% RH 

space and the subsequent mass gain or loss of the container is measured regularly over a period of a 

few days or weeks, depending on the nature of the sample, until the mass change has reached steady 

state. The vapour permeance is calculated by dividing the rate of mass loss (or gain) by the vapour 

pressure difference and the area of the sample (Figure 2-2).  
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Figure 2-2: Wet Cup and Dry Cup Vapour Permeance Tests (Straube and Burnett 2005) 

The tests may be performed for other temperatures or humidities, which will alter the vapour drives 

and calculations accordingly. The permeance of a material can change depending on its water content, 

which in turn depends on the relative humidity surrounding the material, therefore the dry-cup and 

wet-cup tests can yield quite different permeance values. A comparison of these values will help 

identify a material’s sensitivity to changing RH in situ. 

2.3.3 Water Vapour in Air 

Water vapour pressure in air is a function of temperature. At a given temperature, air can hold a 

maximum amount of water vapour before the air becomes saturated and water begins to condense. 

The maximum amount of vapour pressure at that point is called the saturation pressure and can be 

calculated using a simplified equation, Equation 2-4. 

 
)ln028.5

5.6790
28.52(1000 T

T
ePWS −−⋅=                             Equation 2-4 

PWS [Pa] Water vapour saturation pressure 

T [K] Temperature 

 

If the values of PWS are plotted for a series of temperatures, the result is the saturation curve shown in 

Figure 2-3.  

Relative humidity is defined as the ratio between the partial pressure of the water vapour in a sample 

of air and the saturation vapour pressure at the same temperature. The saturation pressure corresponds 

to a relative humidity of 100%.  
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Figure 2-3: The Psychrometric Chart 

For any other RH value at the same temperature the vapour pressure, Pw, can be calculated using the 

following equation:  

 

WS

W

P

P
RH =%)(φ                              Equation 2-5 

Φ [%] Relative humidity 

PW [Pa] Water vapour partial pressure 

PWS [Pa] Water vapour saturation pressure 

 

If the temperature of a given sample of air drops, the relative humidity of the sample increases. The 

amount of water vapour does not change, but the capacity of that air to hold water is reduced. If the 

temperature drops low enough, the relative humidity will increase to 100% and the water vapour will 

condense out of the air. The temperature at which this occurs is termed the dew-point of the air 



 

 14 

sample. The dew-point temperature can be calculated by rearranging Equation 2-4, which results in 

Equation 2-6. 

 
235

133
ln689.18

4030
−

−

=
W

d P
t                              

Equation 2-6 

td [°C] Dew-point temperature 

PW [Pa] Water vapour partial pressure 

 

2.3.4 Moisture Storage 

Most building materials are hygroscopic, that is, they have the ability to attract water in liquid and 

vapour forms. Non-porous materials such as steel, glass and some plastics have hygroscopic surfaces 

and can store a small amount of water as droplets, a layer of ice or frost or as an adsorbed layer on 

their surface. Adsorption occurs when there is molecular attraction between a water molecule (which 

is slightly polarized) and a surface. Adsorption layers tend to be only a few layers thick because the 

molecular attraction to the material surface is weakened by the increased distance of each successive 

layer of adsorbed water. Porous materials such as wood, concrete, and clay brick have the ability to 

store a much larger amount of adsorbed water because water vapour can diffuse into tiny pores and 

form layers of adsorbed molecules on the pore walls. The adsorbed layers may be only a few 

molecules thick, but the resulting amount of water storage is significant because there is such a large 

amount of internal surface area, often measured in terms of m
2
 per gram of dry material. 

If a dry, porous material is placed in a humid space, it will adsorb water until the material reaches 

equilibrium with the relative humidity of the space. The material will have an equilibrium moisture 

content quantifying how much moisture has been gained. The moisture content [%] is a ratio of the 

mass of water in the material to the mass of the material if it were completely dry. If the same 

material is removed to a lower humidity space it will emit water vapour until it is in equilibrium with 

the humidity of the new space which will result in a lower equilibrium moisture content of the 

material. This is termed desorption. Hence the moisture content of a material is closely related to the 

relative humidity of the air surrounding the material. This relationship is described in Figure 2-4 for a 

typical hygroscopic material. 
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Figure 2-4: Typical Sorption Isotherm of Hygroscopic Material (Straube and Burnett 2005) 

The sorption isotherm curve describes the adsorption (wetting) and desorption (drying) based on the 

moisture content and relative humidity. The sorption-desorption curves do not necessarily follow the 

same path for reasons that are not completely understood. One hypothesis is that hysteresis is 

occurring where capillary pressures (and RH) are the same but the pore may be empty in one case and 

full in the other, resulting in a difference in moisture content. In any event, the difference is usually 

small enough that collapsing the isotherm into a single curve provides adequate results.  

Likewise, sorption behaviour is slightly different at different temperatures, but not enough to make an 

appreciable difference for most building science problems, hence the temperature is removed from 

the relationship and the isotherm is the result. 

Once a porous material has taken on as much moisture as it can by adsorption (regimes A, B and C in 

Figure 2-5), it will begin to absorb water through capillary suction. At this point, moisture content 

increases dramatically for very small changes in RH (regime D). Materials generally do not reach 

super-saturation (regime E) unless there is some external force acting on the material to force water 

into every available pore space.   



 

 16 

 

Figure 2-5: Regimes of Moisture Storage in Hygroscopic Porous Material  

(Straube and Burnett 2005) 

 

Sorption isotherms are very useful for predicting the moisture storage potential of materials, but 

developing accurate sorption isotherms has proven difficult. The low RH or hygroscopic regimes of A 

through C can be measured and also predicted effectively through the use of some advanced theories 

that are beyond the scope of this thesis. The high RH (>95% ) regimes D and E are more difficult to 

measure, but again, some advanced theories help in defining behavior in this regime.  

Figure 2-6 shows the sorption isotherms of several building materials as reported by Kumaran et al 

(2002) at NRC’s Institute for Research in Construction. The data is a result of the Moisture 
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management by Exterior Wall Systems (MEWS) project where one of the tasks was to develop values 

for hygrothermal properties of several common generic building materials.  
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Figure 2-6: Sorption Isotherms of Several Building Materials (Straube and Burnett 2005) 

Reliable material property information is crucial for hygrothermal modelling software. Inaccurate 

material properties are considered one of the biggest obstacles to producing meaningful hygrothermal 

computer simulations. Building science researchers go to considerable trouble and expense to develop 

accurate material property information. The Fraunhofer Institute for Building Physics in Germany 

maintains an extensive database of material properties (for European as well as North American 

building materials) to use with their hygrothermal modelling software WUFI.      
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2.4 Vapour Barriers 

Most building materials are vapour permeable to some degree, with the exception of glass and metal 

which are vapour impermeable. Technically speaking the term vapour barrier is not quite accurate in 

many cases because vapour barriers may permit small amounts of vapour diffusion. For example, a 6 

mil polyethylene sheet (a commonly specified vapour barrier) has a permeance of around 5 

ng/Pa·s·m2
. To address this reality the term vapour diffusion retarder has come into use. However, 

this thesis follows uses the terms vapour barrier and vapour diffusion retarder interchangeably.  

As mentioned earlier, one of the problems with the emphasis on vapour barriers in construction is that 

vapour diffusion is often blamed for moisture problems caused by other transport mechanisms. To put 

the wetting potential of diffusion in perspective, the National Research Council published Building 

Practice Note No. 54 (Quirrouette 1985). Quirrouette calculated the wetting potential of a 1 m
2
 wood-

frame wall assembly with fibreglass insulation and wood sheathing under two scenarios. Wall 1 in 

Figure 2-7 was subjected to vapour diffusion only and contained a polyethylene sheet as a vapour 

barrier. Wall 3 was the same construction assembly, but contained a 625 mm
2
 (1 in

2
) hole in the air 

barrier. The two assemblies were subject to the same interior and exterior winter conditions. 

Quirrouette calculated the amount of potential vapour diffusion into Wall 1 to be 6 g for a one month 

period. He calculated the amount of convective water vapour transport (i.e. water movement from air 

leakage) in Wall 3 was equal to 14 kg for a one month period. Not all the water vapour would 

condense along the leakage path in Wall 3, therefore he assumed the amount of liquid water 

accumulation would be only 10% of the total amount, or 1.4 kg. Even so, the water accumulation due 

to vapour diffusion through Wall 1 was only 0.4% of the accumulation for air leakage in Wall 3. The 

vapour diffusion in Wall 1 of 6 g represents a trivial amount and could easily be stored and 

evaporated later without damaging the assembly. Keep in mind that the temperature conditions for 

both calculations were kept constant for an entire month. In reality, daily fluctuations of temperature 

and humidity would decrease both wetting potentials considerably.  

For the sake of comparison, Wall 2 has been added to Figure 2-7 to demonstrate the wetting potential 

of vapour diffusion of the same wall without a polyethylene sheet vapour barrier but with a coating of 

paint with a permeance of 275 ng/Pa·s·m2
. The calculated amount (96 grams) is still less than 7% of 

the air leakage wetting potential and may be tolerable if the assembly had the ability to dry adequately 

over the next season. 
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Exterior
T = -20°C
RH = 80%
Pw = 100 Pa

Wall 3
- Air leakage only

Interior
T = 21°C
RH = 30%
Pw = 750 Pa

Wall 1
- Vapour diffusion only
- Vapour barrier

6 g of water 
in one month 
= 1 teaspoon

1400 g of water
in one month

= 6 cups

1 sq. in. opening
10 Pa pressure

Wall 2
- Vapour diffusion only
- Drywall with paint

96 g of water 
in one month 

= 0.4 cups  

Figure 2-7: Wetting Potential of Vapour Diffusion vs. Air Leakage per m2 of wall 

The previous example emphasizes the importance of an effective air barrier. If a polyethylene sheet is 
used as a combination air/vapour barrier it is imperative that all holes and gaps are sealed for the sake 
of air control, not for vapour diffusion control. If an air barrier is provided by a means other than the 
polyethylene sheet, then gaps and tears in the vapour barrier have little potential to damage the wall.  

Vapour diffusion is not always harmless and there are cases where the wetting potential is high 
enough to be of concern. Buildings with high humidities, or moderate humidities in very cold 
climates, have much larger vapour drives and significant wetting potential. Swimming pools, 
hospitals, and museums tend to have intentionally high humidities and will almost certainly require a 
vapour barrier layer if a high permeance fibrous insulation layer is used. 

The rule-of-thumb for placement of a vapour barrier in an assembly is “install on the warm side of the 
insulation”. This prevents the moisture from diffusing into the wall and condensing, and potentially 
freezing, at the lowest permeance layer. In the case of Wall 2 in Figure 2-8, the frost build-up occurs 
on the wood sheathing layer. 
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Figure 2-8: Wall 2 with Thermal Gradient and Frost Accumulation 

In warm weather or in very low temperature buildings such as cold storage facilities, the vapour drive 
is reversed and flows from exterior to interior. The water vapour can condense on a layer close to the 
air conditioned interior if the layer reaches dew-point. In these conditions, the vapour barrier layer 
should be placed outboard of the insulation, i.e. the warm side. Vinyl wall coverings can be very low 
permeance and may unintentionally impede inward vapour diffusion and cause problems with 
moisture build-up and mold growth between the wall and wall paper. Hotels often use vinyl wall 
paper in guest rooms because it is inexpensive and easy to clean, but hotels in warm climates are 
notorious for developing mold problems behind vapour impermeable wall coverings. Canada has a 
climate with cold winters and warm summers; this means that the “warm side of the insulation” 
changes sides between seasons.    

2.4.1 Requirements for Vapour Barriers 

Part 5 of the National Building Code of Canada (NBCC) 2006 pertains to commercial or 
professionally-designed construction. Section 5.5 specifies vapour barriers are required “where a 
building component or assembly will be subjected to a temperature differential and a differential in 
water vapour pressure” except in cases “where it can be shown that uncontrolled vapour diffusion will 
not adversely affect any of, (a) health or safety of building users, (b) the intended use of the building, 
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and provides performance and physical requirements for each. The vapour permeance values are 

listed in Table 2-1.   

Table 2-1: Permeance of Type 1 and Type 2 Vapour Barriers 

Vapour Barrier Vapour Permeance 
[ng/Pa·s·m

2
] 

 

Type 1 (low permeance) 

 

 

15 (before and after aging) 

Type 2 (standard permeance) 45 (before aging) 

 

60 (after aging) 

 

From this information it is clear that some types of insulation products such as 3.5 inches of closed 

cell SPF and 2 inches of XPS fulfill the code requirements of vapour barriers. In fact, 2 inches of 

closed cell foam still meets the prescriptive permeance requirements of the code.  

In the U.S., the requirements are the same but the vapour barrier definition of “1 perm” converts to 

about 60 ng/Pa·s·m
2 
(Figure 2-10). The information in this figure is slightly dated; the definition of 

Vapor Retarder < 1 perm has now been adopted into the International Residential Code as well as the 

International Energy Conservation Code (IECC).  

 

Figure 2-10: U.S. Vapour Barrier Classifications (Honeywell) 
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2.5 Spray Polyurethane Foam Insulation  

The development of the first polyurethane foam was reported in Germany by Otto Bayer in 1947 

(Woods 1982). Rigid foams were developed by 1957 and used as insulation in building cavities since 

the 1960s. Spray polyurethane foam (SPF) comprises two liquid components - a polyisocyanate 

compound (often called the A component) and a polyhydroxyl compound (the B component).  

Component B contains additives such as blowing agents, catalysts, stabilizers and fire retardants.  

Most rigid foam plastic insulations (except expanded polystyrene) used chlorofluorocarbons (CFCs), 

such as Freon R, as a blowing agent until it became clear in the early 1990s that CFCs had high ozone 

depletion potential (ODP). Foam manufacturers switched to some form of hydrochlorofluorocarbon 

(HCFC) which breaks down faster and is much less damaging to the ozone layer. The trade-off was 

that RSI values of urethane type foams may be slightly lower and their global warming potential 

(GWP) may be higher. HCFCs are being phased out (by 2020) by using a chlorine-free 

hydrofluorocarbon (HFC) blowing agent with both low ODP and GWP values.  

2.5.1 Properties of SPF 

Two broad classes of SPF are used as cavity insulation – open cell (0.5 pcf) foam and closed cell (2 

pcf) foam. High-density rigid SPF is commonly used in roofing and can support the substantial 

compressive loads generated by environmental, material and maintenance loads. Other applications 

for SPF are in industrial process equipment and in pipe and duct insulation.  

Widespread acceptance of foam as insulation in residential construction has been rather limited due 

its high cost which is in the range of 3-5 times that of traditional fibrous insulation such as fibreglass 

or cellulose (Bomberg and Kumaran 1999).  

When open cell SPF is sprayed in wall cavities, it often expands beyond the wall framing and is 

trimmed flush with the face of the wall after it has cured. A skin may form on the surface of this type 

of foam but it is often trimmed off therefore can not be relied upon for any extra vapour control. Open 

and closed cell foams have different values in heat conductance and vapour permeance, with higher 

values corresponding to lower densities.  

The chemical reaction that creates the expansion of closed cell foam produces a considerable amount 

of heat. The foam installer applies the foam in lifts of up to two inches in order to avoid substantial 

heat buildup that could lead to combustion of building materials. The cavity of a 2x6 wood framed 

wall is rarely filled to full depth because thinner (and less costly) layers will provide sufficient heat 

resistance for most projects and the labour to cut back the foam is costly. The total thickness of closed 

cell foam layers should be close to 50 mm (two inches) in order for the foam layer to provide 

sufficient vapour control (Bomberg and Kumaran 1999). A smooth skin may form on the topmost 

surface of the foam; it cannot be relied upon to provide extra vapour diffusion resistance due to the 

fact that its formation is unpredictable and no design values have been published for this 

characteristic. Even so, the vapour resistance of the foam itself is often high enough that accounting 

for the increased resistance from the skin is unnecessary.  
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SPF must be applied to a dry, clean, rigid substrate in order to adhere well. In addition, the liquid 

components of the foam must be mixed in the correct ratios at the correct temperatures in order for 

the foam to react and cure properly. Failure to achieve proper mixing conditions can lead to foam 

shrinkage or uncured foam that does not reach published RSI values. Typically, if foam shrinkage 

occurs it is apparent within a day and can be remedied by filling gaps with one-component canned 

foam. If foam is sprayed on an excessively cold substrate, the exothermic reaction of the foam 

dissipates quickly reducing the effectiveness of the reaction leading to underdeveloped foam 

properties. This can be prevented by heating cold surfaces or covering them with a thin “flash coat” 

of foam which warms up the surface in preparation for a full thickness lift. If the foam is sprayed on a 

wet surface, the A component tends to react with the water which throws off the balance of the 

mixing ratio. One of the by-products of the reaction is carbon dioxide, essentially more blowing 

agent, which leads to larger cells, lower densities and less adhesion. Foam also will not adhere 

properly to dusty or oily surfaces. Foam chemical suppliers cite the rule of thumb that foam can be 

applied to any surface that can be painted safely.  

Many of these performance issues can be addressed through proper training of SPF installers. In 

Canada, only trained, certified and licensed installers can install medium density spray polyurethane 

foam building insulation. All work must meet the requirements of the CAN/ULC S705.2 Installation 

Standard and must be supervised by a licensed contractor. There is no mandatory certification 

required for installers or contractors in the United States.  

All densities of SPF permit negligible amounts of air leakage (in the range of 0.0001 L/s·m2
 at 75 Pa) 

and thereby fulfill the NBCC requirements for maximum air leakage rates for materials of 0.02 

L/s·m2
 at 75 Pa. Air leakage can reduce the effective RSI value of insulation materials. Denser 

materials reduce heat loss through convection, but increase heat loss through conduction. Figure 2-11 

shows various types of insulation and their relative amounts of “apparent thermal conductivity” a 

value which accounts for heat flow due to conduction, convection and radiation. Polyurethane foam 

outperforms the other materials by a significant amount.  
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Figure 2-11:  Apparent Conductivity of Several Types of Insulation (ASHRAE 2001) 

The generic material properties for both open cell SPF and medium-density closed cell SPF are listed 

below in Table 2-2.  

Table 2-2: Material Properties for 25 mm of Generic SPF 

Property Open Cell SPF Closed Cell SPF 

Density 8 kg/m
3
 (0.5 pcf) 32 kg/m

3 
(2 pcf) 

Compressive Strength 4.8 kPa (0.7 psi) 185 kPa (27 psi) 

Thermal Resistance RSI = 0.6 m
2·K/W 

(R-value = 3.4 hr·ft2·°F/Btu) 
RSI = 1.05 m

2·K/W 
(R-value = 6 hr·ft2·°F/Btu) 

Air Permeance <0.002 L/s·m2
 at 75 Pa <0.0001 L/s·m2

 at 75 Pa 

Vapour Permeance 1200 ng/Pa·s·m2
 90 ng/Pa·s·m2

 

 

2.6 Wood Properties 

Solid wood, plywood and oriented strand board (OSB) have very similar thermal resistance properties 

but their vapour transmission properties are quite different. The vapour permeance of plywood and 

OSB are plotted in Figure 2-12.  
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Most people have encountered real-life examples of the effects of moisture on wood and wood 

products. Excess moisture often results in swelling and possibly mold or decay of the wood. If one 

were to visualize the microscopic structure of wood material, one could imagine the structure 

swelling and closing off pathways for further vapour diffusion, reducing the vapour permeance. In 

fact, the opposite is true. Figure 2-12 plots the vapour permeance of plywood and shows the vapour 

permeability increases with increasing humidity, and therefore, moisture content. A publication from 

the British Columbia Homeowner Protection Office describes this property as an advantage in a wall 

assembly because “the assembly is self-correcting” (HPO 2006). Meaning that the higher its moisture 

content, the greater its diffusion and subsequent drying ability.   
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Figure 2-12: Vapour Permeance vs. RH of OSB and Plywood (Straube and Burnett 2005) 

There are several theories as to why the permeance increases with RH in wood-based products, but all 

of them acknowledge that vapour diffusion is not the only transport mechanism at play. 
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2.6.1 Wood Decay  

Wood-rotting basidiomycetes (WRB) are the main decay fungi for untreated wood and wood-based 

products (Morris 1998). WRB thrives in high humidity environments where high-MC wood can be 

found. Decay fungi require food, water, oxygen and warmth to sustain and grow. The wood itself 

supplies the food source and of the other three items, the water or moisture content of the wood is the 

only thing left under our control. Morris states, “Moisture control is key to durability of wood 

systems.” 

Some moulds can survive at moisture contents between below 20% but they achieve little growth. 

Moisture content above 20% can sustain growth, but in order for spore to infect outlying areas, 

moisture contents need to be at 29% or above. This would require a relative humidity of close to 96%. 

If moisture contents above 29% have established the WRB, the ongoing MC needs only to be in the 

22 - 24% range to proceed (Morris 1998). For this reason, safe MC levels are capped at 20%.  

A separate Building Engineering Group project researched mould growth on wood and wood 

products and found that the industry’s commonly quoted critical relative humidity threshold of 80% 

was very conservative (Black 2006). The project results indicated that wood sheathing with a 

moisture content of well over 30% and 25°C did not exhibit any mould growth and decay at 16-19 

weeks. It did find that mould growth accelerated rapidly once liquid water was present.  
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Chapter 3 

Past Research 

3.1 History of Vapour Barriers 

Prior to 1920, traditional residential construction disregarded vapour diffusion as a serious concern 

because it had little effect on building performance (Rose 1997). Materials like plaster and wood were 

generally vapour impermeable enough that any water vapour transport was safely stored in the 

material and evaporated later or diffused through each layer of the assembly until it evaporated to the 

interior or exterior depending on the conditions.  

Diffusion only started raising concerns when enclosures began to incorporate materials that were of 

much lower permeance, lower water storage capacity, higher thermal resistance or some combination 

thereof. These factors led to a buildup of water in the building enclosure which in turn led to 

problems with moisture damage, decay, corrosion and failure (Hutcheon and Handegord 1983).  

As researchers grew to understand the physics of water vapour transmission, they developed methods 

for permeance testing and formulating permeance values for building materials. By the building boom 

of the 1940s, Canadian construction was incorporating thermal insulation, water resistant barriers on 

the exterior, and some type of vapour barrier on the interior (Bomberg and Onysko 2002). In 1950, by 

reference in the National Building Code of Canada, vapour barriers became mandatory in 

construction. Under the imperial unit system of the time, vapour barriers were required to have a 

permeance of less than 0.75 perm (45 ng/Pa·s·m
2
). A perm, it was agreed in Canada and the U.S, was 

an acceptable amount of vapour diffusion in an enclosure. Bomberg and Onysko (2002) point out, 

“One must remember that 1 perm was a unit of water vapour permeance introduced to characterise a 

well performing but leaky wood-frame house built in 1930s.” Condensation from air leakage was not 

being addressed at all. 

In 1958, Glaser introduced a simple method for calculating the potential for condensation from 

vapour diffusion within construction assemblies (Glaser 1958) based on the earlier, individual work 

of Dr. Frank Rowley of the University of Minnesota (Rowley 1939) and J.D. Babbitt of the Canadian 

Scientific Liaison Office (Babbitt 1939). This led to somewhat of a fixation on vapour control in 

buildings. Bomberg and Onysko (2002) state that for Canada, “the emphasis on vapour control has 

received a disproportionate amount of attention.” If calculations predicted any condensation in an 

assembly, it was deemed unacceptable and vapour barriers were promoted as the solution. The 

treatment was unwarranted because it was clear from actual building performance that a certain 

amount of moisture storage in hygroscopic materials was harmless. Bomberg and Onysko (2002) 

speculate that diffusion control became the focus because, of all moisture transport mechanisms, 

water vapour transmission is the easiest to calculate. It is interesting to note that J.D. Babbit, one of 

the earliest researchers in this area, took exception to the amount of influence granted to vapour 

diffusion in total moisture transport. He stated in the early 1950s, "I think it worthwhile, therefore, to 
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take a little of your time to point out what is predicted by the traditional theory of diffusion and to 

show you how the migration of moisture departs from these predictions" (Rose 1997).  

3.2 Vapor Barrier/Air Barrier Confusion 

According to Bomberg and Onysko (2002) condensation from air leakage was relatively ignored until 

the early 1960s when researchers were investigating condensation rates on windows (Wilson 1960, 

1961). It was not until the early 1970s when researchers were able to tie some pertinent research to 

practical problems occurring in the field with condensation problems in houses with electric 

baseboards. These houses were presumably equipped with the mandatory vapour barriers, but 

moisture from air leakage was accumulating in attic spaces causing considerable damage in some 

climates. Air leakage was finally being given some consideration in moisture transport. By 1980, 

construction was tightening up enough that the National Building Code had to start specifying 

mechanical ventilation rates.  

It was a relatively short jump from there to the concept of a combination air/vapour barrier, which led 

to further confusion about the intended functions of air and vapour barriers. Not to mention the most 

commonly specified and used air/vapour barrier – polyethylene sheet, cannot properly perform as an 

air barrier in all cases because it can’t transfer significant wind load and is difficult to air seal in the 

field. The National Building Code does not require polyethylene sheet as a vapour or air barrier but 

provides performance thresholds for the enclosure to meet in both these areas. There are several other 

methods that could achieve these purposes as was discussed in Section 2.4.       

3.3 Is a Vapour Barrier Necessary? 

The Moisture Control Handbook (Lstiburek and Carmody 1993) refers to an “obscure 

recommendation” from F.A. Joy in 1957 of a 5:1 for a difference in permeability of exterior versus 

interior assembly layers. This recommendation meant that in cold climates the exterior elements of 

the enclosure should be five times more vapour permeable than the interior elements. This would 

allow outward drying of the enclosure should any moisture enter the enclosure from diffusion or 

leakage. The risk is that if low permeance layers are located on both the inside and outside they slow 

drying of any interstitial water, which could lead to water accumulation and subsequent decay. A 

recent Finnish research project using climate chamber testing confirmed that wall assemblies 

incorporating either mineral or organic fiber insulations should follow the 5:1 ratio for outside to 

inside vapour permeance (Vinha and Käkelä 1999) in cold climates. 

Straube (2001) argued that vapour barriers are rarely needed in most climates and in fact can add to 

problems by preventing inward drying during warmer months. Incidentally, Lstiburek published an 

errata for the Moisture Control Handbook in 2002 stating that vapour diffusion retarders (of any type) 

should be avoided in all below grade insulated wall assemblies as well as any above grade assemblies 

located in climates less than 8000 heating degree days °F (approximately 4430 heating degree days 

°C). He had determined diffusion was not problematic enough in these climates to warrant a 

dedicated vapour barrier layer and finishes like standard latex paint on gypsum board were adequate 
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for slowing diffusion. Furthermore, the addition of the vapour barrier layer was causing more 

problems (i.e. with inward summer drives) than it was solving. 

Some building envelope practitioners (Lawton and Brown 2003) disputed the assertion of vapour 

barriers creating moisture problems in summer months and pointed to simulations and field evidence 

of walls in Lower Mainland B.C. as proof that eliminating the polyethylene vapour barrier “did not 

significantly improve the wall’s ability to dry when there was rain penetration into the wall.” They 

believed that “Furthermore, both the analysis and field observations indicate that removing the 

polyethylene will increase the risk of mold growth on paper-faced gypsum board used as interior 

sheathing.”  

Straube et al (2007) responded to the dispute with data and simulations from a Canada Mortgage and 

Housing study conducted at the University of Waterloo’s Building Engineering Group test hut 

(BEGhut). They found that in three south facing walls – one with poly, one without, and one with 

XPS sheathing, the wall with the highest summertime condensation risk was the wall with poly. It 

was at risk 41% of hours over a 91 day period. The No Poly wall was at risk 1% of the hours and the 

XPS wall had no risk of condensation.  

3.4 Spray Foam Insulation as Vapour Barrier 

A study conducted with the Canadian Urethane Foam Contractors Association (CUFCA) investigated 

the performance of full-scale cavity walls containing either open or closed cell foam exposed to the 

environment of Southwest Ontario (Finch at al 2007). The walls did not contain any vapour control 

other than the spray foam and medium permeance paint (300 ng/Pa·s·m
2
). The exterior of the walls 

were finished with a ventilated brick cavity and the walls were exposed to real climate conditions for 

a number of months (Figure 3-1).  

 

Figure 3-1: BEGhut Full Scale Wall Tests (Finch et al 2007) 
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The BEGhut maintained interior conditions of 20°C and 50% relative humidity which is higher than 

most occupancies, except for hospitals, museums and pools. Finch did not recommend these interior 

conditions in cold climates and specified relative humidities should be kept to 40% or lower in 

practice. He found Wall 6 with open cell foam resulted in “dangerously high moisture contents of the 

sheathing as a result of vapour diffusion.” He recommended additional vapour control in climates of 

more than 4000 heating degree days °C (comparable to Toronto’s climate and colder (more on 

heating degree days in Chapter 7)) in the form of a vapour retarding paint (in the order of 300 

ng/Pa·s·m
2
), smart retarder, or polyethylene sheet.  

Finch found the walls filled with closed cell foam, Walls 7 and 8, performed well and were barely 

affected by the high humidity. His computer modelling showed that the closed cell foam performed at 

50% RH in climates as cold 6500 HDD ºC (Edmonton and colder).  

Incidentally, Finch mentioned a potential moisture issue for sheathing materials inboard of cladding 

with large water storage capacity, such as brick. During inward vapour drives in the summer months 

his measurements and modelling showed that the sheathing panels were experiencing a significant 

increase in moisture content. To control this he recommended an exterior vapour control layer on the 

exterior of the sheathing similar to the layer of closed cell SPF shown in Wall 9 of Figure 3-1.  
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Chapter 4 

Research Plan and Experimental Setup 

4.1 Research Plan 

The plan for this research was to investigate several types of open cell and closed cell spray 

polyurethane foam insulation in a variety of assembly configurations both in lab tests and 

hygrothermal simulations. The lab tests were conducted under steady state conditions. The 

hygrothermal simulations were conducted for seven wall assemblies, seven Canadian climate 

categories and three levels of interior relative humidity. The goal was to determine which spray 

polyurethane foam applications required the addition of a dedicated vapour barrier layer beyond what 

the foam itself could provide.     

4.2 Experimental Objective 

The objective of the lab experiment was to determine how much resistance to water vapour diffusion 

was offered by various spray polyurethane foam (SPF) insulation products installed in representative 

wall assemblies subjected to large-gradient temperature and humidity conditions. 

4.3 Experimental Scope 

The scope of the experiment was to test the most common types of open and closed cell spray 

polyurethane foam insulation used in Canadian residential and commercial construction. Fibreglass 

batt insulation was included in the test as a reference case.  

4.4 Experimental Approach 

The experiment was conducted by installing the test boxes into an air-tight wall assembly built into a 

climate chamber (Figure 4-1). One side of the climate chamber was conditioned to simulate room 

temperature with a high humidity load; the other side was conditioned to simulate cold outdoor 

conditions. The test boxes were subjected to large, steady gradients for temperature and relative 

humidity over a period of 57 days. Water accumulation was observed through periodic mass gain 

measurements and moisture content readings in the exterior oriented strand board (OSB) sheathing of 

each test box.  
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Figure 4-1: Section of the BEG Climate Chamber 

4.5 Test Samples  

The test boxes contained representative samples of SPF from different manufacturers and in different 

configurations based on common field applications. Eight different foam type/thickness combinations 

were tested, with each combination having a test box with a polyethylene vapour barrier (the A-

series) and a test box without a polyethylene vapour barrier (the B-series). A ninth combination of A 

and B test boxes included fibreglass batt insulation. The fibreglass acted as a reference case for 

standard wood frame wall construction. Two more test boxes were built, one to investigate the 

performance of high density foam and the other to investigate flame retardant treated foam on exterior 

gypsum and steel studs. Table 4-1 lists the details of each combination and its test purpose.   
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Table 4-1: Test Box Variables 

Test Boxes 

Insulation Type-Thickness Cell 

Poly 

VB 

No 

Poly  
Test Purpose(s) 

BASF Walltite - 3.5" closed 1A 1B +/- poly 

DOW Styrofoam™ 3.5" closed 2A 2B +/- poly 

+/- 

manufacturer 

Polar Foam PF7300 3.5" closed 3A 3B +/- poly 

Polar Foam PF7300 4.5" closed 4A 4B +/- poly +/- thickness 

Demilec HeatLok Soya 3.5" closed 5A 5B +/- poly 

Demilec Heatlok Soya 4.5" closed 6A 6B +/- poly +/- thickness 

Demilec Sealection 5.5" open 7A 7B +/- poly 

Icynene Gold Seal 5.5" open 8A 8B +/- poly 

+/- 

manufacturer 

Fibreglass 5.5" n/a 9A 9B +/- poly reference case 

Polar Foam, Class One, 2" min. closed - 10 commercial demo 

Polar Foam, High Density, 2" +/- closed - 11 role of density 

 

4.6 Boundary Conditions 

The climate chamber was bisected by the air-tight wall assembly that contained the test boxes. One 

half of the chamber was conditioned to warm, “room side”, or interior conditions of 25°C and 50% 

relative humidity. The other half of the chamber was conditioned to cold, “climate side”, or exterior 

conditions of -10°C with an unregulated relative humidity of approximately 60%.    

A higher than normal interior temperature of 25°C was chosen to increase the vapour pressure drive 

across the assemblies to 1417 Pa. It would have been difficult to reduce the vapour pressure on the 

cold side without large decreases in temperature, whereas a small increase from 21 to 25°C at 50% 

RH results in a 30% overall increase in the vapor pressure drive. The small difference in temperature 

should have no other effect on the material properties or behaviour. 

4.7 Experimental Setup and Apparatus 

4.7.1 Climate Chamber 

The Building Engineering Group (BEG) climate chamber is a large box constructed from 2x4 in. 

wood studs sheathed with plywood on the exterior and plastic-coated fibre board panels on the 

interior. The wall and roof cavities are filled with 3.5 in. of fibreglass batt insulation and covered with 

two layers of 1 in. aluminum foil-faced polyisocyanurate board insulation. The floor cavity is filled 

with 5.5 in. of fibreglass batt insulation and two layers of 1 in. polyisocyanurate board insulation 

(Black 2006). 
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The interior dimensions of the chamber are 8 x 8 x 8 ft. The chamber can be separated completely 

into two halves in order to insert an 8 x 8 ft. wide test assembly into the opening. The chamber is 

reassembled by forcing the two halves together using a system of ratchet buckles and nylon webbing. 

The joint between the halves are sealed with sill gasket and construction tape. Each half of the 

chamber can be accessed by a door built into the end walls (Figure 4-2).  
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Figure 4-2: Plan View of Climate Chamber Set-up 

The chamber walls and roof provide an effective thermal resistance of approximately RSI 4.7 (R-25), 

while the floor provides RSI 5.9 (R-30). The interior finish of the plastic-coated panels provides a 

very low permeance coating. The result is a closed chamber interior that is well isolated from ambient 

thermal and moisture effects of the Fluid Hydraulics Lab where the chamber is located in the 

University of Waterloo Engineering 3 building. 
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Figure 4-3: BEG 

Climate Chamber 

 

4.7.2 Design of Test Assembly and Test Boxes 

For this particular experiment, the cold side of the chamber contained the test assembly. The test 

assembly consisted of a plywood shelving unit that fit into the 8 x 8 ft. opening with a small amount 

of clearance between the assembly and the chamber walls (Figure 4-4). The assembly provided 

compartments for the test boxes in a 4x5 grid. 
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Figure 4-4: Elevation View of Test Assembly 
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The test boxes had to be large enough to eliminate possible edge effects but still mimic real life 
assemblies. This requirement determined the sample dimensions were each made with an interior 
width of approximately 16 x 16 in. to simulate full-size standard wood framing at 16 in. on-center. 
The height of the case was slightly less than 16 in. in order to accommodate all 20 boxes within the 
chamber opening.  

The standard construction for each test box was a melamine case with a panel of Oriented Strand 
Board (OSB) covered with Tyvek house wrap on the exterior face, and ½ in. gypsum board coated 
with primer and latex paint on the interior face. The panels were fastened at each side by a 1 x 6 in. 
board of Eastern White Pine to simulate a stud wall cavity at 16 in. on centre. The “stud” created a 5.5 
in. deep cavity between the faces of these two panels (Figure 4-5).  

 

Figure 4-5: Axonometric View of Test Box Construction 

In order to produce meaningful results, it was important that the test samples were applied using the 
same process and thicknesses that they would be out in the field. For this reason, the test boxes were 
delivered to various insulation providers in order to have the insulation applied by certified installers 
on existing jobsites.  



 

 39 

4.7.3 Preventing Air Leakage in the Test Assembly 

As mentioned previously, the test assembly was inserted into the cold side chamber. The 8 x 8 ft. 

opening in the cold chamber was first outfitted with 2 x 6 in. wood stud frame with a top plate, 

bottom plate and one column on each side. The shelf assembly fit snugly into the frame opening and 

was fastened in place. Any non-intentional openings were sheathed in plywood and all joints were 

caulked with silicone. The test shelf did not fill up the entire 8 x 8 ft. chamber opening; therefore the 

9 in. cavity around the perimeter was sheathed in ¼ in. plywood, insulated and all gaps were covered 

with foam, sealant or tape to prevent air leakage between the two chambers.  

The joint between the two chambers was filled with 1 in. foam backer rod to suppress convection and 

taped with construction tape as an air seal. Any air leakage from this joint would be from the ambient 

conditions of the lab to the warm side of the chamber.  Since conditions on the warm side chamber 

were relatively easy to regulate, the air leakage from this joint was not of as great concern as air 

leakage from the cold side chamber to the warm side chamber.  

4.7.4 Preventing Air Leakage in the Test Boxes 

The melamine case constructed for each test box was taped with aluminum tape at all cut edges 

before construction. Once each box was assembled, each exposed edge was taped again with another 

layer of aluminum tape and a one of construction tape (Figure 4-6). On the exterior face of the test 

box, the Tyvek layer was installed between the aluminum and construction tape layers (Figure 4-7). 

The gypsum board was fastened to the Eastern White Pine “studs” and all edges were caulked with 

silicone sealant to prevent any air leakage. If it was an A-series test box (one with a polyethylene 

vapour barrier) the polyethylene was attached to the backside of the gypsum board with construction 

tape on all edges. This created a test box that would only be subject to vapour diffusion and no 

convective (i.e., air leakage) moisture transport.   

The 20 test boxes were inserted into the test assembly shelf from the cold side (Figure 4-8). The 

empty assembly resembled a shelving unit of twenty equally sized compartments with an open back 

except for a short lip around the back perimeter of each compartment. The lip edge provided a means 

of minimizing air leakage between the two chambers when the test box was forced up against a strip 

of weather-stripping (3/4 in. wide closed-cell neoprene) installed on the lip (Figure 4-9). The lip edge 

necessitated that the test boxes be inserted or removed from the cold side only. Once the test boxes 

were inserted, a manual screw-down block provided enough compression to keep them tight against 

the interior compartment weather-stripping (Figure 4-10). As a further precaution, a flexible flap of 

closed-cell polyethylene sill gasket was installed on the front edge of each compartment to minimize 

convective currents in the space between the test box and shelf walls.  Another strip of closed-cell 

neoprene weather-stripping was installed along the top of each test box for the same reason. 
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Figure 4-6: Test Box, 

Prior to Insulation 

and Gypsum Board 

on Interior Face 

 

 

 

 

 

 

 

 

 

Figure 4-7: Test Box, 

After Tyvek Installed 

on Exterior Face 
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Figure 4-8: Test 

Boxes facing Cold 

Side in Test Assembly  

 

 

 

 

 

 

Figure 4-9: Weather-

stripping Around 

Test Box Opening, 

View from Cold Side 
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Figure 4-10: Manual 

Screw-Down Block to 

Force Test Box into 

Weather-stripping 

 

 

 

 

 

 

Figure 4-11: Test 

Boxes from Warm 

Side 
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Figure 4-12: Test Box 

Weather-stripping 

Detail, View from 

Warm Side 

 

 

 

4.8 Instrumentation and Controls 

4.8.1 Warm Side Controls 

Heat for the warm chamber temperature was generated using a 1500 Watt electric fan heater. The 

humidity was generated from a 1000 Watt high-output humidifier. Both the fan heater and the 

humidifier were regulated through relay switches of a Dwyer Series THC Temperature/Humidity 

Switch fastened to the exterior of the chamber. The controller monitored conditions in the chamber 

using a Campbell Scientific HMP50 humidity and temperature probe manufactured by Vaisala. 

Conditions in the chamber were measured and recorded with an Onset Computer Corp HOBO HO8-

003-02 temperature and relative humidity data logger. See Appendix B for details of the 

instrumentation.  

4.8.2 Cold Side Controls 

Cooling for the cold chamber was generated from two VWR model 1197P chillers. The chillers 

circulated a 50/50 water-glycol mix that was piped to the chamber through insulated three-quarter 

inch plastic tubing. Two fan-coil units were installed inside the cold side chamber, one per chiller. 

The first unit was constructed by the BEG group using an automotive radiator, plywood shroud, and 

Fantech in-line duct fan model FR140. The second unit was a manufactured fan coil unit model MU-

235 by Blanchard-Ness.  

The temperature in the chamber was measured by a Fenwal 10 kΩ precision thermistor (with +/-

0.2°C NIST traceable.) installed on the surface of the frame of the test assembly at mid-height and 
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mid-width. The thermistor had a lead extending out of the chamber in order to take manual readings 

without disturbing the conditions inside the chamber. Thermistor readings were taken with a digital 

multi-meter. The thermistor readings were converted from ohms to degrees Celsius using the 

conversion chart in Appendix A. Conditions in the chamber were also recorded with the same type of 

HOBO temperature and relative humidity data logger used on the warm side. 

4.8.3 Defrost Cycle 

To reach a target temperature of -10°C, chilled heat-transfer fluid of -20°C was supplied to the fan 

coils. All refrigerators and freezer cooling coils are prone to condensation if they drop to dew point 

temperatures or lower. If the coil temperatures drop to below freezing, frost build up occurs on the 

coils. Frost buildup adversely affects heat transfer from the chamber to the coil and slows down 

cooling which results in higher chamber temperatures. In order to handle frost buildup a manual 

defrost cycle was built-in to the testing regime. Every week to ten days, depending on the severity of 

frost buildup the chillers were reset to +10°C for approximately one hour. This gave the coil enough 

time to melt the frost into a drip tray, and partially dry. The liquid condensate was drained from the 

drip trays by plastic tubing connected to an otherwise closed plastic bucket. The collected liquid was 

then removed from the chamber. Once the frost was fully melted and drained, the chiller temperatures 

were set to just above freezing for approximately a two hour period to promote further condensation 

and drainage without frosting. After that time, the temperature was gradually dropped at about the 

rate 5°C per hour until it was back at the experiment set point of -20°C.        

4.8.4 Moisture Content and Mass Measurements 

In order for mass measurements to be taken at regular intervals throughout the testing period the test 

boxes had to be sturdy and relatively easy to insert and remove without damage to the test box. The 

test box could not exceed the 12 kilogram capacity of the Sartorius model FBC6CCE-H mass scale. 

The chambers had to provide a separation between the warm and cold side when the test boxes were 

removed otherwise, warm, humid air would flow into the cold side making it that much more difficult 

to maintain constant below-freezing conditions. The test boxes themselves could not be taken out of 

the cold chamber for weighing because ambient air conditions in the lab would immediately lead to 

condensation forming on all cold surfaces of the test box, affecting the accuracy of the mass 

measurements. 

The solution to these constraints was to install wire handles on the exterior of the test boxes so that 

they could easily be pulled out from test assembly. Before any box was pulled from the assembly, the 

whole face of the warm side of the assembly was covered with a curtain fashioned from a 

polyethylene sheet, over which a layer of foil-faced polyisocyanurate board was clamped. This 

measure served to minimize air and heat transfer from the warm side to the cold when a test box was 

removed from the assembly. The test box was weighed inside the cold chamber using a scale sitting 

on the roof of the chamber. A small hole was drilled through the ceiling roof. A chain was attached to 

the under-scale hook of the scale. The chain extended directly down through the hole to about one 

meter below ceiling level. A hook at the end of the chain could support a test box by its wire handle 
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(Figure 4-13). The chain was removed and the hole covered over whenever mass measurements were 

completed. 

 

Figure 4-13: Photo of Under-scale Mass 

Reading of Test Box 

 

 

 

Once mass measurements were complete all test boxes were measured for moisture content. Each box 

had three pairs of moisture content pins installed on the face (Figure 4-14). The pins were created 

from insulated brass nails that were driven from the outside so that the uninsulated tips were on the 

inside face of the OSB panel, the surface where moisture content was predicted to be highest (Figure 

4-15). The pins were installed as pairs separated by 1 inch. A Delmhorst J-4 wood moisture meter 

was attached to the wire leads soldered to the exposed side of the pins.  
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Figure 4-14: Three Pairs of Moisture 

Pins Installed in Tyvek 

covered OSB 

 

The Delmhorst wood moisture meter passes a small electrical current through the wood and measures 

the electrical resistance of the wood between the two pins. Water has a lower resistance than dry 

wood and the electrical current follows the path of least resistance, therefore the measurement occurs 

at the wettest part of the OSB (Figure 4-15). In this case, the OSB is wettest at the interior face which 

happens to be the location that is of most interest in the experiment. The coating on the pins tends to 

further isolate the reading to the interior face in case there were any anomalies in the deposition of 

water or in the structure of the OSB.  

 

 

Figure 4-15: Schematic of Moisture Pins in OSB 
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The Delmhorst meter is calibrated to base all moisture content readings in terms of Douglas-fir at 

70°F. Each MC reading was corrected for species and temperature given that the material was OSB 

and the temperature was typically -10°C when measurements were taken. Equation 4-1 from 

Garrahan (1988) calculates the corrected temperature from the uncorrected MC measurement, the 

temperature when the MC was taken, and two species-dependant regression factors. Engineered wood 

products such as plywood and OSB may be of no easily identifiable species, therefore generic 

coefficients for these products have been developed. Straube, Onysko and Schumacher (2002) 

published values for the regression coefficients as a = 1.1114 and b = 0.366 for OSB.   
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Equation 4-1 

 

MCc  [%] Corrected moisture content  

MCu [%]  Uncorrected moisture content reading  

t [°C] Temperature of the wood 

a, b  [-] Species-dependent regression coefficients: a = 1.1114, b = 0.366 

 

4.9 Experimental Procedure 

In order to monitor the amount of water accumulation over time in each of the test boxes, the 

moisture content of the OSB sheathing and mass readings of the boxes were measured and recorded 

approximately every ten days. The mass measurements were taken before the start of the test and at 

six other intervals up to and including the final day 57. Every test box was weighed at the start and on 

day 57, and on at least four of the six intervening measurement periods. Generally, the boxes 

predicted to have a relatively large mass change over time were weighed more often. 
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Chapter 5 

Experimental Results 

5.1 Actual Climate Chamber Performance 

The experiment started on March 10, 2008 with the intention of running for a 60-day period.  The 

chillers performed well and kept the cold side chamber to an average of -9.8°C with a low of -12.9°C 

throughout the first 47 days of the test (Figure 5-1).  

According to the HOBO data, the temperature of the cold side chamber started rising near midnight 

on day 47. It continued to rise until day 49 when it was discovered that Chiller 1 was no longer 

operating; this was represented by the +30°C spike in Figure 5-1. It appeared that the digital 

controller was electrically damaged. The fact that there was a partial blackout in the city of Waterloo 

on day 47 at the same hour the temperature started rising seems to indicate a power surge was the 

most likely culprit for the controller damage. 

The cold side chamber continued to run with reduced cooling power for the next eight days at an 

average temperature of 0.4°C. The experiment was shut down on day 57, three days short of the 

originally planned 60 day period; however the measurements taken up to that point were sufficient to 

fulfill the requirements of the experiment. 

The periodic temperature spikes that occurred before day 47 represent the defrost cycles and instances 

where the chamber door was opened to perform measurements.   
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Figure 5-1: Conditions in Cold-Side Chamber 
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The warm side chamber ran steadily at 25°C and 50% RH humidity according to the Dwyer THC 

switch. A HOBO data logger was placed in the warm side chamber as secondary measurement 

verification. At the end of the test, the data download showed that the HOBO logger was faulty and 

the recorded measurements were incorrect. This was not problematic as the Dwyer THC switch 

provided a sufficient measurement system. 

5.2 Gravimetric Measurements 

The first chart, Figure 5-2, shows the mass of water accumulation in the A-series of test boxes that 

contained a full polyethylene vapour barrier between the gypsum board and the insulation. Mass gains 

in the test boxes averaged in the 100 g range over the 57 day test period.      
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Figure 5-2: Mass Gain Rate of A-series Test Boxes with Polyethylene Vapour Barrier 

The second chart, Figure 5-3, shows the results for the B-series test boxes which had no polyethylene 

vapour barrier. The fibreglass (9B) and open cell SPF (7B and 8B) samples have the highest vapour 

permeance values and the largest mass gains over the test period. Average mass gains for the lower 

permeance test boxes were in the 200 g range, almost twice the gains seen in the A-series boxes. 
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Figure 5-3: Mass Gain Rate of B-series Test Boxes with No Polyethylene Vapour Barrier 

 

The corrected average MC measurements of the OSB in each test box are presented in Figure 5-4 and 

Figure 5-5. 
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Figure 5-4: Corrected MC of OSB in A-series Test Boxes with Polyethylene Vapour Barrier 
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Figure 5-5: Corrected MC of OSB in B-series Test Boxes with No Polyethylene Vapour Barrier 
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Chapter 6 

Analysis and Discussion 

6.1 Gravimetric Measurements  

The high humidity, warm side chamber (1590 Pa at 25°C and 50 % relative humidity) created a 

vapour pressure drive to the cold side chamber (173 Pa at -10°C and 60% relative humidity). 

Essentially, the test boxes were acting as large scale wet-cup permeance tests. The predicted results 

were that the A-series test boxes would experience a small amount of moisture gain through vapour 

diffusion governed by the low permeability of the polyethylene sheet layer. The B-series test boxes 

were predicted to take on a low, moderate or high amount of moisture through vapour diffusion 

governed by the permeability and thickness of their respective insulation materials.  

The predicted amount of water vapour diffusion through a sample is given by Fick’s law, written as 

Equation 6-1.   
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[(s/day)/(ng/g)] 

 
Conversion factor for ng/s to g/day 

 

6.1.1 Glaser Method Calculations 

The Glaser method predicts the vapour pressure at the upstream and downstream  side of each layer 

under static boundary conditions and whether there is a risk of vapour diffusion condensation at the 

layer. The first step is to calculate the vapour pressure change across each material interface in a 

building assembly (Table 6-1). If the resulting vapour pressure is higher than saturation pressure for 

the temperature and relative humidity at that interface (i.e., if the relative humidity exceeds 100%) 

condensation may be a risk. The example shown below shows low risk of condensation as the highest 
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RH is 73% at the spray foam-OSB interface. Thus, no condensation is predicted in this wall. 

However, if the polyethylene vapor barrier is removed (B-series), the RH at the inside face of the 

OSB is predicted to reach 100%RH for the open-cell SPF and batt samples. When condensation is 

predicted, further calculations can determine the amount of evaporative potential for the condensed 

water. The remaining water accumulation must be considered for its potential to create damage in the 

assembly.  

Table 6-1: Glaser Calculations for Condensation Potential in Sample Test Box 

Sample 1A thickness permeance resistance ∆Pv·Rvi/ΣRv

vapour 

pressure

rel. humidity

= Pw/Pws

BASF 3.5" With Poly t M=µ/t Rvi ∆Pw Pw RH

Material [m] [ng/Pa·s·m2] [Pa·s·m2/ng] [Pa] [Pa] [%]

interior 1590 50%

Interior film n/a 15000 6.7E-05 0.4

1590 53%

paint, latex + primer n/a 275 3.6E-03 20

1570 52%

gypsum board 0.0127 1969 5.1E-04 2.8

1567 55%

polyethylene sheet 0.0001 4.74 2.1E-01 1172

395 14%

air space 0.0508 3445 2.9E-04 1.6

393 14%

spray foam - BASF 0.0889 36 2.8E-02 156

238 73%

OSB 0.011 91 1.1E-02 61

177 58%

Tyvek n/a 1500 6.7E-04 3.7

173 57%

Exterior film n/a 75000 1.3E-05 0.1

exterior 173 60%

ΣRV = 0.255 Σ∆Pw = 1417

 

The method is simplified because it does not account for several factors - initial water contents of 

materials, the water storage capability of materials, material properties that change with water 

content, the presence of liquid transport, and fluctuations in boundary conditions. It cannot provide a 

realistic simulation of heat and moisture transport, but rather it is used as an initial check to see which 

aspects of an assembly may require further study. For a more complete picture of the assembly 

behavior computer simulation tools are required.  

It is important to note, however that the RH across the OSB layer drops from 74% to 58%. This 

change drives adsorption in the OSB from the cold side to the warm side. This mechanism will prove 

to be of importance later in this section.    
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For the A-series test boxes, the diffusion flow through the polyethylene sheet layer was of most 

interest because it was the lowest permeability of all the layers and would therefore determine how 

much water vapour reached the OSB from the warm side. Given that the permeance of the 6 mil 

polyethylene sheet is 3.4 ng/Pa·s·m2
, Equation 6-1 above was solved for each of the A-series test 

boxes, Table 6-2. This calculation is even simpler and more limited than the Glaser analysis above. 

 

Table 6-2: Calculated Mass Gain due to Water Vapour Diffusion in A-series Test Boxes 

Test Box – Foam Type 
Vapour Flow Qv1 

[g/day] 
Vapour Flow Qv57 

[g/57 day test] 

1A – 3.5 in. closed cell  0.06 3.2 

2A – 3.5 in. closed cell   0.06 3.2 

3A – 3.5 in. closed cell  0.05 3.1 

4A – 4.5 in. closed cell 0.05 2.9 

5A – 3.5 in. closed cell  0.05 2.9 

6A – 4.5 in. closed cell  0.05 2.8 

7A – 5.5 in. open cell 0.06 3.6 

8A – 5.5 in. open cell 0.05 2.7 

9A – 5.5 in. fibreglass  0.06 3.5 

 

The average calculated mass gain due to vapour diffusion through the polyethylene into the A-series 

test boxes was 3.1 g for the 57 day test period. This amount of liquid water is equivalent to 3 g or 

slightly more than one-half teaspoon; an insignificant amount in terms of moisture wetting of the wall 

assembly. The values listed in Table 6-2 would be even lower if the calculation had not been 

simplified to assume all vapour flow terminated and collected within the assembly, when in reality, 

and even in the Glaser analysis of Table 6-1, some or all will continue to diffuse completely through 

the OSB and out to the cold side chamber. It is an unrealistic simplification but it emphasizes that 

vapour barriers are not true barriers, even though they significantly reduce vapour diffusion.  

6.1.2 Calculated versus Measured Mass Gains  

The average calculated mass gain was 3.1 g and the results from Figure 5-2 showed the average 

measured mass gain for the A-series test boxes to be in the 100 g range at the end of the 57 day test. 

This discrepancy was further investigated in Figure 6-1 which plots the mass gains in terms of 

calculated values from Table 6-2 and measured values from Figure 5-2. The values for three test 

boxes are shown— values from 3A are representative of closed cell foam; test box 7A represents 

open cell foam; and test box 9A for the fibreglass batt sample. 
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Figure 6-1: Mass Gain Behaviour of Representative Test Boxes with Poly Vapour Barrier 

Similarly, the mass gains for the B-series test boxes were each calculated for their respective 

permeance values and vapour pressures, Table 6-3 using the full Glaser method (which accounts for 

the vapour flow into and out of the assembly). The difference in vapour flow represents the amount of 

possible moisture gain in the OSB sheathing. 

Table 6-3: Calculated Mass Gain due to Water Vapour Diffusion in B-series Test Boxes 

Test Box – Foam Type  
Vapour Flow Qv1 

[g/day] 
Vapour Flow Qv57 

[g/57 day test] 

1B – 3.5 in. closed cell 0.46 26 

2B – 3.5 in. closed cell 0.46 26 

3B – 3.5 in. closed cell 0.46 26 

4B – 4.5 in. closed cell 0.36 21 

5B – 3.5 in. closed cell 0.46 26 

6B – 4.5 in. closed cell 0.36 21 

7B – 5.5 in. open cell 1.8 103 

8B – 5.5 in. open cell 1.3 74 

9B – 5.5 in. fibreglass 3.5 200 

  

Figure 6-2 compares the calculated values from Table 6-3, and the measured values for the three 

representative test boxes.   
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Figure 6-2: Mass Gain Behaviour of Representative Test Boxes without Poly Vapour Barrier 

Both Figure 6-1 and Figure 6-2 clearly show the large discrepancy between the measured values and 

calculated values. Initially, it was assumed the gravimetric measurements would be straightforward 

and conform to predictable vapour diffusion behaviour from warm side to cold side. By day 14 of the 

test, it was clear the mass gains were much higher than anticipated. From the outset, the calculated 

values from the Glaser method were expected to be lower overall since it does not account for initial 

moisture contents or moisture storage capabilities within the materials themselves. However, the 

measured values were three times the calculated values. This warranted further investigation. 

6.1.3 Interpretation of Measurements 

One possible explanation for the high gravimetric measurements was that moisture transport due to 

convection was occurring. Convective moisture transport is caused by air leaking through holes in the 

assembly. The water vapour in the air can condense along the leakage path if the temperature along 

the path is sufficiently low. The problem with this explanation was that the test boxes were air sealed 

at all edges and foam insulation products, which meet the requirements of air barriers, completely 

filled the test box cavities. There were no leakage paths; it was unlikely convective moisture transport 

was occurring. 

Another possible explanation was that the melamine cases used to construct test boxes were taking on 

significant amounts of moisture, which indeed happened initially. An early experimental setup in 

November 2007 resulted in measurements that were much higher compared to the gains predicted in 
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the Glaser calculations and computer simulations. In fact, after fewer than 20 days observed mass 

gains were much higher than predictions for the planned eight-week test period.  

On day 31 of the Nov 2007 test there were visual observations of frost, ice and liquid water forming 

in the spaces between the test boxes and the test assembly shelves. Furthermore, the edges of the 

melamine cases were showing signs of swelling during the second set of measurements. Aluminum 

tape had been installed to waterproof the cut edges of the melamine and the tape adhesive appeared to 

have failed. The test boxes themselves were taking on extra moisture thereby rendering the 

gravimetric measurements meaningless. At that point, the experiment was shut off and the experiment 

was considered a failure (but an excellent demonstration of building assembly weaknesses). The test 

boxes were removed from the assembly, and left to dry in the fully heated and ventilated chamber. 

The dry-down process took almost a full month before the test boxes returned to their pre-experiment 

weight.  

While the test boxes were drying out, the test setup was improved in several ways: 

• Test boxes: all exposed edge tape was removed from the melamine cases. After the boxes 

had dried completely, all exposed edges and surface screw holes were treated with two layers 

of epoxy resin. 

• Melamine testing: a water absorption test was performed on melamine samples to determine 

if the melamine coating was faulty and not impermeable to water. The tests showed that the 

coating was indeed impermeable. 

• Test assembly shelving: The shelving was treated with a layer of impervious shellac primer. 

All cut butt joints on the lip edge strapping were caulked with silicone sealant. All weather-

stripping inside the test box compartments was replaced with wider and deeper weather 

stripping. Great care was taken to ensure it was continuous around the perimeter and aligned 

with the front face of the test box when inserted into the compartment. The perimeter cavities 

that contained fibreglass covered with edge-taped polyethylene sheet were emptied. The 

cavities were re-filled with single component expanding spray foam. All caulked joints on the 

remaining cavities were resealed.  

• Chamber pressure: An in-line duct fan with a manual variable-speed controller was 

installed on the exterior of the warm side chamber. This enabled the warm side to be 

negatively pressurized so that any air leakage between the two chambers would be from the 

cold to side to the warm side. This would prevent subsequent ice build-up from forming in 

the spaces around the test boxes. The chamber was depressurized to 5 Pa, slightly more than 

the stack effect pressure expected for a chamber 8 ft. high. 

The modifications to the set-up succeeded in that there was no frost, ice or liquid water build-up in 

the test assembly and there was no swelling of melamine edges on the test boxes. However, the 

second run of the experiment still resulted in high mass gains as displayed in Figure 5-2 and Figure 

5-3. The permeability of the melamine cases did not provide a plausible explanation for the high 

gravimetric measurements. 
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6.2 Moisture Content Readings 

The moisture content readings taken in the OSB were originally planned to be a secondary 

measurement to confirm the gravimetric measurements. They turned out to be a crucial part of the 

collected data and were quite important in investigating the results for the test boxes. 

The initial pre-test equilibrium moisture content readings of the OSB averaged about 6% for all test 

boxes, which corresponds to an ambient relative humidity of about 30 to 40%. This seems high for a 

late winter interior relative humidity, but the experiment and samples were located in the University 

of Waterloo’s Fluids Lab which has several large sources of open water nearby. The accuracy of the 

Delmhorst meter in the range of 6% MC is in the order of +/-2% MC. 

Several hygrothermal simulations were run on assemblies for the A-series and B-series boxes. The 

cases run were 3.5 in. of closed cell SPF, 4.5 in. of closed SPF, 5.5 in. of open cell SPF and 5.5 in. of 

fibreglass batt; all used generic values supplied by WUFI, the hygrothermal modelling software.  

WUFI is discussed in more detail in Section 7.2.   

Recall the corrected OSB moisture content readings were shown in Figure 5-4 and Figure 5-5. The 

final average value across the three MC pins is tabulated and compared to results from WUFI 

hygrothermal simulations performed on the test boxes for the same conditions.   

The A-series test boxes (Table 6-4) containing closed cell foam (excluding the outlier 2A) had OSB 

with an average moisture content of 8.0% at the end of the test. This corresponded very well with 

hygrothermal simulations of the experiment that predicted the average OSB moisture content of these 

test boxes to be 8.3%. These results did not correspond to the gravimetric measurements, which if the 

water gain was completely contained in the OSB, the moisture content readings would have read 5-

6% higher.  

The insulations with higher permeance values, open cell foam and fibreglass, had considerably higher 

measured MC values than their modelled counterparts. The dry density of the OSB is 650 kg/m
3
; an 

11 g water gain in the OSB layer resulted in a 1% increase in the moisture content. Test boxes 7A, 

8A, and 9A increased their measured MC values by 7.7%, 10.2%, and 12.6% respectively. The MC 

increases correspond to water weights of 85 g, 112 g, and 139 g. In reality they gained, 123 g, 126 g, 

and 161 g each. In that sense, the gravimetric and MC measured values corresponded well to each 

other but not well to the modelled values which were in the 8% MC range. Keep in mind the test 

boxes had polyethylene vapour barriers with no air leakage so the considerable moisture gain was a 

surprise.  
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Table 6-4: OSB Moisture Content Results for Test Boxes with Poly Vapour Barrier 

Test Box – Foam Type OSB - Measured MC OSB - Modelled MC 

1A – 3.5 in. closed cell  8.1 8.3 

2A – 3.5 in. closed cell   9.9 8.3 

3A – 3.5 in. closed cell  7.9 8.3 

4A – 4.5 in. closed cell 7.9 8.5 

5A – 3.5 in. closed cell  8.3 8.3 

6A – 4.5 in. closed cell  7.8 8.5 

7A – 5.5 in. open cell 13.7 8.1 

8A – 5.5 in. open cell 16.2 8.1 

9A – 5.5 in. fibreglass  18.6 7.7 

 

The corresponding B-series test boxes (Table 6-5) with closed cell foam did not have significantly 

higher MC values compared to the A-series and they averaged 8.3% at the end of the test (again, not 

including the outlier of 2B). These are very modest MC increases and are on average 1% lower than 

what was predicted by the WUFI hygrothermal simulations.  

The 7B, 8B and 9B test boxes were predicted to have high MC values almost into the fibre saturation 

zone (MC>30%) for the OSB. However, the modelled values of  MC were relatively close to the 

measurements. For example, 7B measured 22% and modelled 17%. Discrepancies between the actual 

and modelled material properties would be enough to produce the variation.  Unlike the A-series test 

boxes, these boxes did not correspond well to the gravimetric measurements. The measured MC 

values converted to mass gains were 176 g, 220 g, and 238 g. The gravimetric measurements were 

341 g, 650 g, and 544 g. Clearly all of the water was not entirely residing in the OSB as it would have 

corresponded to a MC value of 65% in test box 8B. Some of the moisture in these samples must have 

been stored in the foam and the wood “studs” along the side of the sample. 

Table 6-5: OSB Moisture Content Results for Test Boxes without Poly Vapour Barrier 

Test Box – Foam Type  OSB - Measured MC OSB - Modelled MC 

1B – 3.5 in. closed cell 8.3 9.5 

2B – 3.5 in. closed cell 13.0 9.5 

3B – 3.5 in. closed cell 8.5 9.5 

4B – 4.5 in. closed cell 8.1 9.1 

5B – 3.5 in. closed cell 8.5 9.5 

6B – 4.5 in. closed cell 8.3 9.1 

7B – 5.5 in. open cell 22.2 17 

8B – 5.5 in. open cell 26.1 17 

9B – 5.5 in. fibreglass 27.6 19.1 
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6.3 Adsorption 

The most likely explanation for the high gravimetric measurements is adsorption of water vapour into 

the OSB layer from the cold side of the chamber. Adsorption and wood behaviour were discussed 

previously in Section 2.6. The sorption isotherm for OSB is shown in Figure 6-3; it was derived from 

the material properties database of the hygrothermal modelling software.  It clearly shows large water 

content increases once capillary condensation has commenced in the pores at greater than about 90% 

RH. However, the experiment was run at 50% RH on the warm side and 60% on the cold side. The 

Glaser analysis shown earlier predicts that the OSB would be exposed to 73%RH on the warm side 

and 58% on the cold side. Depending on the shape of the assumed sorption isotherm, these conditions 

correspond to moisture contents in the 8-12% MC range which is one the high side of the MC 

measurements using the Delmhorst. 

Hence, the A-series test results (both gravimetric and Delmhorst) for samples with closed-cell SPF 

can be explained by the adsorption of vapor from the cold climate side, rather than diffusion of vapor 

from the warm side.  

The B-series tests were influenced by the additive effect of diffusion from the warm inside of the 

climate chamber and diffusion from the cold side. The results were only slightly higher than 

predicted, which could be due simply to a higher than assumed paint permeance values. 
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Figure 6-3: The Sorption-Isotherm for OSB from the WUFI Materials Database  
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The adsorption transport mechanism works by the attraction of a few layers of water vapour 
molecules to the walls of pores in the material. Materials with large amounts of very small pores, such 
as cement paste, can accumulate a significant amount of water through adsorption and in some cases 
reach capillary flow (liquid transport) with mid-range relative humidities (Straube and Burnett 2005).  

In the case of the experimental test boxes, vapour diffusion from the warm to cold side occurred from 
the vapour pressure drive of 1590 Pa inside to 173 Pa to the outside as shown in Figure 6-4. The 
graphic shows how a test box with a vapour barrier layer can gain water vapour from both sides of the 
chamber.  

 

Figure 6-4: Vapour Pressure Drives in A-Series Test Box 

However, once the pore walls have been lined with adsorbed layers of water molecules another 
process occurs – surface diffusion. It occurs when weakly attached molecules in the adsorbed layers 
move to nearby locations with a stronger attraction, usually thinner adsorbed layers. This mechanism 
is more dependent on RH than vapour pressure drive therefore it is possible for surface diffusion to 
occur simultaneously and in the reverse direction of vapour diffusion (Figure 6-5).   The importance 
of this mechanism is that the vapour permeance of the OSB sheathing increases as it is exposed to and 
reaches equilibrium with high relative humidity. The assumptions in the simple Glaser analysis are 
that the OSB has a fixed and relatively low permeance (91 metric perms). Because of surface 
diffusion, the effective vapour permeance actually increases significantly. 
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Figure 6-5: Vapour and Surface Diffusion under Opposing T and RH Gradients (Straube & 

Burnett 2005)  

6.4 Conclusions 

In summary, the laboratory experiments showed that: 

All samples of the closed cell SPF performed well in controlling the MC of OSB with or without a 

poly vapor barrier. Most of the moisture content rise noted was due to adsorption of water vapor 

diffusing from the climate side, not diffusion from the interior. 

The open cell SPF and fiberglass batt without poly performed very poorly. This was expected given 

the extreme conditions but the measured OSB moisture contents and sample mass gain were worse 

than the predictive calculations. 

The open cell SPF and fiberglass with polyethylene vapour barrier also performed poorly, and OSB 

moisture contents of 20-30%MC were recorded. These results were noted despite the exceptional 

efforts taken to ensure airtight test samples, and control the pressure so that any air leakage would be 

from the cold side to warm side. 

None of the samples, even the very wet ones, showed significant or visible mold growth, likely 

because the accumulation happened at cold temperatures. 
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Chapter 7 

Hygrothermal Model Extrapolation 

7.1 Evaluation of Enclosure Performance 

The review presented in Chapters 2 and 3 demonstrate that the amount of vapour diffusion control 

required in enclosures depends on many factors such as the resistance to heat and vapour of the 

individual layers of the wall assembly layers, their position in the assembly, the interior conditions, 

and the exterior climate. It is little wonder that designers, builders and code officials are confused on 

how to proceed.   

This section reports on a series of detailed hourly simulations that explore these variables. It evaluates 

seven common wall assemblies in terms of expected moisture content in the exterior OSB sheathing 

in seven Canadian climate categories and three interior humidity levels. A similar approach was used 

by Karagiozis et al (2007). 

7.2 WUFI Computer Model 

A more complete picture of building enclosure performance can be developed when the inter-

dependency of heat and moisture transmission is coupled using a model that includes realistic 

boundary conditions that incorporate fluctuations for weather and occupants, moisture sources and 

sinks, solar radiation, initial water contents and changes to material properties based on water content. 

Obviously, this is a much more complex calculation than the Glaser calculations mentioned earlier. 

Several hygrothermal modelling programs have been developed to perform these calculations. The 

University of Waterloo Building Engineering Group uses a program called WUFI from Fraunhofer 

Institute for Building Physics in Germany. WUFI is a German acronym for “transient heat and 

moisture”.  

The evaluations were performed with the WUFI Pro 4.1 hygrothermal model (WUFI 2006). This 

model was shown to predict the field performance of walls by Finch (2007). The simulations were 

repeated for each of seven types of wall assembly (Figure 7-1) in each of seven climate categories and 

three humidity levels for a total of 147 simulations. The results for the maximum moisture content 

(MC) of the OSB for all the simulations are presented in Table 7-4. 

The performance thresholds for the wood moisture content were chosen based on the level of wood 

decay expected in the moisture content range as mentioned in Section 2.6.1. The performance 

threshold are:  

• MC < 20% - no moisture problems expected  

• 20% < MC < 28% - potential for mould growth  

• MC > 28% - moisture problems expected, this design is NOT recommended 
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Wall 7 is a simulation of the stud portion of a 2x4 or 2x6 wood-framed wall. The properties of the 
cavity fill insulation are irrelevant to this because this simulation considers 1-dimensional 
hygrothermal behaviour through the stud only. Wall 7 has been included to address concerns that low 
permeance insulation, such as closed cell foam, promotes increased vapour diffusion through wood 
framing.    

 

Details for all Wall Assemblies
- ventilated vinyl cladding
- ¼“ air space
- polyolefin house wrap (Tyvek)
- 7/16" oriented strand board
- cavity insulation
- ½” interior gypsum board
- primer + latex paint

Wall 1 Wall 2 Wall 3 Wall 4

Wall 6 Wall 7Wall 5

- 5 ½” fibreglass batt
- 6 mil polyethylene sheet

- 5 ½” fibreglass batt - 5 ½” open cell SPF

- 2x4 or 2x6 wall
- 2" closed cell SPF
- air space

- 2x4 or 2x6 wall
- 2" closed cell SPF
- fibreglass batt

- 2x4 or 2x6 wall
- 3 ½" closed cell SPF
- air space

- 2x4 or 2x6 wood stud

 

Figure 7-1: Cross-sections of Modelled Wall Assemblies 

The remaining variables for the seven climate categories and three levels of interior relative humidity 
are detailed in separate sections below.  

7.3 Parameters for the WUFI 4.1 Model 

The following section documents all assumptions, material data, topology, and data inputs. The 
material data is provided as part of the WUFI materials database which contains Basic Values for a 
large number of North American building materials extracted from a variety of sources such as NIST 
publications, ORNL publications and ASHRAE 1018-RP - Thermal and Moisture Transport Property 
Data Base for Common Building and Insulating Materials (Kumaran et al 2002) (ASHRAE 2002).  
The Basic Values provided in the database include bulk density, porosity, dry specific heat capacity, 
dry thermal conductivity, and water vapour diffusion resistance factor.  The Basic Values have been 
modified in some cases to accommodate specific values provided by manufacturers’ technical 
literature. Refer to 0 for complete reports of all WUFI material data used in the simulations.   
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7.3.1 Assembly Materials 

The construction of the wall assemblies modelled in the simulations is identical with the exception of 

the contents of the insulation cavity and the presence of the polyethylene sheet vapour barrier. Figure 

7-2 shows a sample screen shot for an assembly containing open cell SPF and no polyethylene vapour 

barrier between the open cell foam insulation and the gypsum board. 

 

Figure 7-2: Screen shot of WUFI Assembly Input 

In order from exterior to interior, every assembly material is listed below. As mentioned previously, 

complete data for each assembly material is available in 0.    

Vinyl Ventilated – is a custom material added to the user-defined material database to simulate a 

light-colored vinyl cladding. Vinyl material is very impermeable but cladding installations are not 

airtight and permit a considerable amount of ventilation. The values for this item were modified from 

the roof membrane item listed in the WUFI Generic Materials database. The Water Vapour Diffusion 

Resistance Factor was adjusted to a low number (0.05) to account for the vapour permeable nature of 

the cladding installation. 



 

 67 

Air Layer (5 mm) – the material properties were taken directly from Generic Materials database. 

Spun Bonded Polyolefin Membrane (Tyvek Housewrap) – the material properties were taken 

directly from the WUFI Generic North American database. 

Oriented Strand Board (11 mm, 7/16 in.) – the material properties for all Basic Values were 

available in WUFI. The average bulk density was 650 kg/m
3
. Typical Built-in Moisture input was 

modified from 90.0 kg/m
3
 (moisture content of 19%) to 55 kg/m

3
 to correspond to more realistic 

closed-in moisture content reading in the 8.5% range. 

Low Density Open Cell Insulation – this type has a density in the 8 kg/m
3
 range. The experimental 

samples were supplied from Demilec and Icynene. Basic values in the Generic North America 

database for open cell Sprayed Polyurethane Foam were used with the exception of two values. Heat 

conductivity was modified from 0.037 W/m·K to 0.042 W/m·K, which better matches the 

manufacturers’ technical literature. The Water Vapour Resistance Factor was modified from 2.38 to 

5.8 – an average of the two manufacturers’ literature. 

Medium Density Closed Cell Insulation – this type has a density in the 32 kg/m
3
 range. The 

experimental samples were supplied by BASF, Dow, Polar Foam PF7300, Demilec Soya, and Polar 

Foam PF Class One. Medium density foams are listed in the North America database as Sprayed 

Polyurethane Foam; closed cell. The Basic Values were used as given. 

High Density Closed Cell Insulation – this type has a density of 46 kg/m
3
. The test sample for this 

type is PF 7203 from Polar Foam. Basic Values for closed cell foam were used except for the 

following properties bulk density = 45 kg/m
3
 average, k = 0.022 W/m·K. 

Fibreglass Batt Insulation – the material properties were taken directly from the WUFI Generic 

North American database. 

Air Layer – varies with thickness of insulation and the depth of the wall cavity. Possible air layers 

are 1.5 in., 2 in., and 3.5 in. thick. Basic Values were not changed from standard WUFI values for air 

layers.  

PE Membrane (poly; 0.07 perm) - this was chosen from the Generic Materials database for a 6 mil 

polyethylene vapour barrier. 

Gypsum Board (1/2 in.) – was chosen from the Generic North American database. No Basic Values 

were modified. 

7.3.2 Orientation 

The wall constructions were oriented facing north which will produce the lowest exterior surface 

temperatures of all compass orientations due to the near absence of direct solar radiation. This creates 

the worst-case scenario for vapour diffusion wetting because the thermal gradient and vapour drive 

gradient will be greater at the lower exterior temperatures. The wall inclination was assumed to be 

vertical at 90° and the building height was specified as a short building less than 10 m in height.  
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7.3.3 Surface Transfer Coefficients 

The exterior surface was selected as a light-colored ventilated vinyl cladding for all simulations.  

Exterior surface heat resistance - corresponds to the “Outer Wall” selection with a defined input of 

0.0588 m
2·K/W. This corresponds to a surface film conductance of 17 W/m

2·K which is considered 

average conditions for moving air across an exterior surface (Straube and Burnett 2005). 

Vapour diffusion thickness (Sd-value) - for the exterior side was set to zero because the ventilated 

vinyl cladding has already accounted for this property. 

Short-wave radiation absorptivity - was set to 0.4 which accounts for the fact that the cladding is a 

light color similar to values for aged white plaster and untreated spruce.  

Long-wave radiation emissivity - was set to 0.9 as it is with all non-metallic surfaces. 

Rain water absorption factor - set to zero, this factor accounts for how much rain water is not 

available for capillary suction into the wall material because it has been lost when it splashes away 

upon impact with the wall. Vertical walls have a factor of almost zero, horizontal walls have factors 

of almost one.   

Interior surface heat resistance - was chosen as 0.125 m
2·K/W. This corresponds to an inner wall 

vertical surface film conductance of 8 W/m
2·K which is considered average conditions for moving air 

across an interior surface (Straube and Burnett 2005). 

Vapour diffusion thickness (Sd-value) - the room side of the ½ in. gypsum board wall was finished 

with one coating of latex primer and paint. The paint and primer layer was specified as 0.6 metres. It 

is calculated by dividing the permeance of air (185 ng/Pa·s·m2
) by the permeance of the layer in 

question. A permeance of 300 ng/Pa·s·m2
 chosen for the primer and paint layer as a conservative 

value based on poor quality primer and paint at 400 ng/Pa·s·m2
 and better quality at 150 ng/Pa·s·m2

.  

7.3.4 Initial Conditions 

All of the wall simulations began with a constant temperature of 22°C across all components. The 

only layers with any appreciable initial moisture content were the OSB layer (at 55 kg/m
3
 or 8.5% 

moisture content by dry mass) and the wood stud (at 30 kg/m
3
 or 6% moisture content by dry mass). 

These settings correspond to the typical range from 4% to 10% moisture content of wood products in 

post-construction conditions (Morris 1998).  

7.3.5 Calculation Period  

The modelling period ran for one year from August 1, 2007 to August 1, 2008 in time steps of one 

hour. August was chosen as the starting month because it typically represents an annual minimum in 

plots of exterior wood sheathing moisture content values. An August start date also allows the annual 

winter moisture content peaks to plot in the middle of an annual graph, which is useful since they are 

of most interest.  
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7.3.6 Outdoor Climate  

Every simulation case was run for seven different Canadian climates. The climates were categorized 

according to the number of heating degree days below 18°C. Heating degree days (HDD) are 

calculated by summing the number of degrees each average daily temperature is below 18°C for a full 

year of historical temperature data. The total number provides a measure of how much annual heating 

is required in a particular location (Figure 7-3). 

 

Figure 7-3: Map of Canada Heating Degree Days (National Atlas of Canada, 5
th

 ed.) 

For Canada, most populated centres are in the range from 3000 to 6000 HDD, with most northern 

communities in the 6000 to 10,000 HDD range, Table 7-1. The heating degree data is derived from 

Environment Canada’s online database for Canadian Climate Normals 1971-2000 (Environment 

Canada, 2008). The city associated with each climate category is a representative location only (the 

black circles on the map in Figure 7-3). The results of the simulations in any given category apply to 

other geographic locations with HDD values in the same range. The urban core populations of the 

cities listed in Table 7-1 represent more than 60% of the Canadian population based 2006 Statistics 

Canada census data. 
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Table 7-1: Canadian Cities by Climate Category 

HDD Climate Category 

(with range) 

Representative 

Location (with HDD) 

Some Cities in this Range 

(with HDD) 

HDD 3000 (Up to 3500) Vancouver (2926) White Rock (2782) 

Abbotsford (2981) 

Victoria (3040) 

HDD 4000 (3501 to 4250) Toronto (4065) Windsor (3524) 

Niagara Falls (3661) 

Kelowna (3869) 

Oshawa (3917) 

Hamilton (4012) 

Halifax (4030) 

London (4057) 

HDD 4500 (4251 to 4750) Ottawa (4602) Kitchener-Waterloo (4288) 

Kingston (4289) 

Montréal (4518) 

Moncton (4585) 

Charlottetown (4715) 

HDD 5000 (4751 to 5500) Calgary (5108) St. John's (4881) 

Trois-Rivières (4929) 

Prince George (5132) 

Sherbrooke (5151) 

Québec City (5202) 

Sudbury (5343) 

HDD 6000 (5501 to 7000) Winnipeg (5777) Regina (5660) 

Edmonton (5708) 

Thunder Bay (5717) 

Saskatoon (5852) 

Whitehorse (6811) 

HDD 8000 (7001 to 9000) Yellowknife (8256) Dawson (8166) 

HDD 10,000 (9001+) Inuvik (9767) Iqaluit (10117) 

Resolute (12526) 

  

The seven climate locations used in these simulations are listed in Table 7-2 with a nominal HDD for 

the category and the actual HDD derived from the climate file used in the WUFI simulation for that 

particular location. Note the HDD values from the WUFI climate file and from Environment 

Canada’s Climate Normals are not the same. The two values were derived from different data sets, 

however, they fall within the prescribed HDD range for the category. Table 7-2 also lists general 

conditions for temperature, relative humidity and rainfall to give a sense of how the climates differ 

from one another.  
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Table 7-2: General Conditions of Climate Categories Used in WUFI Simulations 

Representative Locations Vancouver Toronto Ottawa Calgary Winnipeg Yellowknife Inuvik 

Nominal Heating Degree Days (<18°C) 3000 4000 4500 5000 6000 8000 10,000 

HDD<18°C in WUFI Climate File 3056
*
 4022

*
 4874

*
 5384

*
 6377

*
 8243

**
 9935

**
 

Mean Temperature, °C 9.1 6.7 5.2 2.5 1.2 -4.5 -9.2 

Max. Temperature, °C 27.2 32.8 36.1 30.6 33.9 27.8 28 

Min. Temperature, °C -11.1 -23.3 -28.3 -36.7 -45.0 -42.8 -47.2 

Mean Relative Humidity, % 78 76 67 63 73 66 67 

Maximum Relative Humidity, % 100 100 100 100 100 100 100 

Minimum Relative Humidity, % 14 21 18 14 19 17 24 

Normal Rain Sum, mm/year 1169 606 586 304 309 161 114 

*WUFI Climate Files derived from ASHRAE International Weather for Energy Calculations (IWEC). All files are “cold year” versions. 

**WUFI Climate Files derived from typical meteorological year (TMY2) data sets from the 1961-1990 National Solar Radiation Data Base.  

 

Each WUFI climate file contains a one-year data set of hourly information for temperature, relative 

humidity, wind speed, wind direction, rain fall, air pressure, cloud cover, solar radiation, and long 

wave radiation. It also maps the location according to latitude, longitude and elevation in order to 

calculate the actual amount of solar radiation the enclosure will experience based on its compass 

orientation and angle of inclination.    

WUFI plots the temperature and relative humidity values to give the user a general idea of how the 

yearly data varies seasonally. The Toronto “cold year” climate file is shown in Figure 7-4.  
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Figure 7-4: Screen shot of WUFI Plot of Outdoor Climate File for Toronto 

7.3.7 Indoor Climate  

The temperature for interior conditions in all simulations was set at 22°C with an annual variation of 

1°C, Figure 7-5. Each climate category was modelled with three interior climate conditions – low, 

medium and high indoor relative humidities. The actual number used for the indoor climate settings 

depended on the climate category. For example, a low interior relative humidity (30%) in a warmer, 

rainier climate like Vancouver is higher than what would be considered a low interior relative 

humidity (20%) in a cold, northern climate like Yellowknife.  
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Table 7-3: Categories for Indoor Relative Humidities 

Climate Categories Low RH* Medium RH* High RH 

HDD 3000 Vancouver 

HDD 4000 Toronto 

HDD 4500 Ottawa 

HDD 5000 Calgary 

HDD 6000 Winnipeg 

30% to 55% 40% to 60% 50% 

HDD 8000 Yellowknife 

HDD 10,000 Inuvik 

20% to 50% 30% to 55% 50% 

Description of possible 

conditions in this RH 

category 

- older, air-leaky  

construction 

- newer buildings with 

mechanical ventilation 

- few occupant activities 

contributing to 

humidity load 

- condensation rarely 

forms on standard 

windows during cold 

snaps  

- more air tight 

construction 

- operating a mechanical 

humidifier 

- high humidity loads 

from frequent cooking, 

washing, and firewood 

storage 

- condensation often 

forms on standard 

windows during cold 

snaps 

- mechanically-

generated RH levels are 

constantly high year 

round 

- examples are indoor 

pools, hospitals, 

museums 

- condensation 

constantly forms on 

standard windows 

during cold snaps  

*Seasonal variation - low end of range in winter, high end of range in summer  

 

The seasonal variations in the low and medium RH categories follow a sine wave formation which 

leads to the high end of range occurring on August 1, selected as the high point of the summer season. 

The low end of the range occurs six months later on February 1, the low point of the winter season. 

The indoor climate conditions for the Low RH category of 30 to 50% are shown in the screen capture 

of Figure 7-5.  
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Figure 7-5: Screenshot of WUFI Plot of Low RH Category 30-50% 

7.4 Output from WUFI Model 

The WUFI program provides several ways to displays the simulation data. One comprehensive way to 

view the data is running the “film”. This is an animation of the one-dimensional heat and moisture 

balances changing over successive one hour increments during the one-year simulation period. The 

final hour of the simulation is shown in the screen capture in Figure 7-6.  
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Figure 7-6: Screen Shot of WUFI Film for Open Cell SPF in Toronto at 30/55% RH  

In Figure 7-6, the exterior climate is represented on the far left with amounts shown for temperature, 

rainfall, solar radiation and exterior relative humidity. The interior conditions of temperature and 

relative humidity are displayed on the far right. The grid in between represents the multi-layer 

assembly; the labels along the bottom axis specify the location and thickness of each layer. The 

gradients for temperature, relative humidity and water content are plotted with the heavy red, green 

and blue lines respectively. The bars at the top of each section show the direction of heat or moisture 

transfer at a particular moment in time. The lighter green and blue areas are trace lines that indicate 

what the humidity or water content was over the previous time intervals.  

The area at the bottom showing the blue line and trace area represents the water content in the OSB 

and is of most interest in this exercise (Figure 7-7). Note that the dark blue line is indicating the OSB 

has a water content of approximately 50 kg/m
3
. The density of the OSB according to the WUFI 

material database is 650 kg/m
3
, therefore the moisture content of the OSB is 8% on August 1, at the 

end of the test period. The trace area shows the water content over the previous year. The peak 

occurred at the inside face of the OSB as predicted and was approximately 125 kg/m
3
 which converts 

to MC of 19%. The MC at the exterior face of the OSB is noticeably lower.   
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Figure 7-7: Close-up of Water Content in OSB 

Rather than read the values for water content from the film, WUFI provides a plot of values over the 

year long simulation period, Figure 7-8. In this particular case, the peak water content is at 

approximately 92 kg/m
3
, which is quite a bit lower than that shown in the film (125 kg/m

3
). As 

mentioned above, the trace of the MC over time shows the exterior and interior faces of the OSB 

having quite different peak values. The MC value plotted in Figure 7-8 is an average MC value taken 

across the full width of the OSB. This is considered acceptable because the peak values by definition 

cannot be sustained for long time periods, and the MC of the OSB will gradually come to a lower MC 

equilibrium under those conditions.    
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Figure 7-8: Screen Shot of WUFI Water Content Plot for OSB 

The plot shows a maximum value of approximately 92 kg/m
3
 but for only a brief period, perhaps a 

few hours. In order to dampen this effect, the maximum MC value was visually estimated by 

selecting a peak range rather than a peak point. In this case, it was chosen as 91 kg/m
3 
and is indicated 

by the solid red line added to Figure 7-8. The peak range was converted to MC = 14%; all MC values 

were rounded to the nearest whole number. 

7.5 Simulation Results  

The same method was executed for all 147 simulations and the results were tabulated in Table 7-4 

along with footnotes to help clarify the intention of how the results may be applied.  
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Table 7-4: Moisture Content Prediction for OSB Layer 

Vancouver Toronto Ottawa Calgary Winnipeg Yellowknife Inuvik

Depth of
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Type of
Vapour Control
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5.5" Polyethylene
sheet 12% 12% 12% 11% 11% 11% 10% 10% 10% 9% 9% 9% 10% 10% 10% 11% 11% 11% 10% 10% 10%

5.5" Latex
paint+primer 14% 18% 21% 18% 25% 30% 21% 27% 33% 22% 28% 35% 28% 37% 43% 27% 37% 43% 35% 43% 46%

Op
en

 
Ce

ll

5.5" Latex
paint+primer 14% 15% 17% 14% 18% 21% 16% 20% 23% 16% 20% 22% 21% 26% 28% 20% 25% 27% 24% 28% 29%

2"SPF 

+3.5"FG1
Latex

paint+primer 13% 14% 14% 12% 13% 13% 11% 12% 12% 10% 11% 11% 13% 13% 13% 13% 13% 14% 12% 12% 12%

2"SPF in 
3.5/5.5"

Latex
paint+primer 12% 13% 13% 11% 12% 13% 10% 12% 12% 10% 11% 12% 13% 14% 14% 12% 13% 14% 13% 14% 14%

3.5" SPF 
in 3.5/5.5"

Latex
paint+primer 12% 13% 13% 12% 12% 12% 10% 11% 11% 9% 10% 10% 12% 12% 12% 12% 12% 12% 11% 12% 12%

3.5" or 
5.5"

Latex paint + 
primer 7% 7% 7% 7% 7% 7% 5% 6% 6% 5% 5% 5% 6% 7% 7% 7% 7% 7% 5% 5% 6%

HDD 6000 HDD 8000

Moisture Content (MC) in Wood Exterior Sheathing Subjected to Various Canadian Climates and Interior Relative Humidities
Chart values are %MC by dry mass of wood and represent a predicted maximum annual value

Contents of 
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HDD 5000 HDD 10000Wall Construction

Cl
os

ed
 C

ell
3

HDD 3000 HDD 4000 HDD 4500

Other Applicable Locations
(Heating Degree Days 

below 18°C)

From Environment Canada's
Canadian Climate Normals

1971-2000

White Rock (2782)
Vancouver (2926)
Abbotsford  (2981)
Victoria (3040)

Windsor (3524)
Niagara Falls (3661)
Kelowna (3869)
Oshawa (3917)
Hamilton (4012)
Halifax (4030) 
London (4057)
Toronto (4065)

Inuvik (9767)
Iqaluit (10117)
Resolute (12526)

Kitchener-Waterloo 
(4288)
Kingston (4289)
Montréal (4518)
Moncton (4585)
Ottawa (4602)
Charlottetown (4715)

St. John's (4881)
Trois-Rivières (4929)
Calgary (5108)
Prince George (5132)
Sherbrooke (5151)
Québec City (5202)
Sudbury (5343)

Regina (5660)
Edmonton (5708)
Thunder Bay (5717)
Winnipeg (5777)
Saskatoon (5852)
Whitehorse (6811)

Dawson (8166)
Yellowknife (8256)

MC < 20%, no mold growth= MC is 20 to 28%, potential for mold growth= MC > 28%, moisture problems expected, this design is NOT recommended=

 

General Notes: 

a. Walls are residential wood frame with light-colored, thin cladding facing north: this is a worse-case scenario for cold-weather diffusion wetting. 
b. Values are for OSB; plywood sheathing values will be equal or lower. OSB permeance is always over 60 ng/Pa·s·m2 in exterior sheathing applications. 
c. Sheathings of DensGlas, FiberBoard, and Gypsum Board are all very vapour permeable and hence will have lower moisture contents. 
d. Thicker foam will always result in lower wintertime sheathing moisture contents. 
e. Effective Air Barrier is assumed to be installed, as is proper rain control. Interior temperature is 22°C. 
Specific Notes: 
1. Apply SPF directly onto back of exterior sheathing. 
2. MC values are for outer 1/2" of wood stud. 
3. Closed Cell SPF should be applied in total thicknesses of more than 2" (50 mm), usually in lifts of no more than 2" (50 mm). 

 
 

7.6 Conclusions 

The hygrothermal simulations validated the OSB test performance for the closed cell SPF. The closed 
cell SPF simulations performed well for all climates and humidities. The moisture content of the OSB 
sheathing in walls insulated with closed cell SPF is equivalent to that of the traditional wall assembly 
with a polyethylene vapour barrier and fibreglass batt.  

The hygrothermal model of the wall section at a wood stud shows that it is the least permeable of all 
modelled cases in all climates and interior humidities. It is difficult to foresee where vapour diffusion 
through the wood stud would be a problem.   
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The open cell SPF and fibreglass batt insulation performed similarly, which is to say, they both 

require additional vapour control layers in all but the mildest Canadian climates with the lowest 

interior humidities. However, in those mild climates with low interior humidities, the only vapour 

control layer required was a medium permeance latex paint with primer (with a permeance of 300 

ng/Pa·s·m
2
 or less).  

All simulations were assumed to have an effective air barrier, proper rain control and light-colored, 

ventilated cladding.  

Performance for walls not included in the simulations can be estimated for the following 

modifications, if all other variables are the same:  

• Plywood sheathing will result in lower or equal MC values as plywood is more vapour 

permeable.  

• DensGlas, FiberBoard, and gypsum board sheathing are much more vapour permeable than 

OSB and hence will have lower moisture contents. 

• Thicker foam will reduce wintertime sheathing moisture contents. Closed cell SPF must be at 

least 2 inches thick in order to provide sufficient vapour resistance for the conditions 

considered.  

Significant modifications to the simulation variables (climate, exposure, materials, humidities) 

beyond those outlined above require customized modelling to evaluate assembly performance. 
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Chapter 8 

Conclusions and Recommendations 

Water vapour diffusion through building assemblies is dependent on factors such as interior relative 

humidity condition, exterior temperature, and the permeability and location of materials within the 

assembly. Water vapour diffuses in the direction of high concentration to low concentration. 

Buildings with high interior relative humidities (50% RH) and low winter temperatures (HDD°C > 

4500) have very high vapour diffusion drives. Vapour diffusion through assemblies is only a problem 

if the vapour condenses within the assembly and cannot dry quickly enough to keep the water content 

of any water-damage susceptible materials within their safe range.  

The objective of the research was to evaluate the performance of wall assemblies containing closed 

cell or open cell spray polyurethane foam under various vapour diffusion drives and determine which 

assemblies required a dedicated vapour control layer as described in Part 5 of the National Building 

Code of Canada. The code specifies that vapour barriers are not required when “it can be shown that 

uncontrolled vapour diffusion will not adversely affect any of, (a) health or safety of building users, 

(b) the intended use of the building, or (c) the operation of the building services.” By this measure, if 

the wood sheathing moisture contents stay within the safe range (MC < 19%) a vapour barrier is not 

necessary.  

The wall assemblies considered in this research are typical for Canadian residential construction.  The 

moisture content was used as the performance evaluation point of the wood sheathing layer (OSB) in 

the tested and modelled assemblies because during wintertime vapour drives, the wood sheathing is 

the most likely condensing surface. Prolonged high moisture content (MC > 20%) in wood and wood 

products in wall assemblies leads to mould growth and decay.  

Experimental Conclusions 

Closed cell foam performed well and predictably for both measured and modelled cases, with and 

without polyethylene vapour barriers. The experimental gravimetric and moisture readings for the 

OSB sheathing in the lab test samples containing closed cell spray polyurethane foam showed 

excellent performance, with moisture contents not exceeding 10% in either the measured or modelled 

cases.  

Open cell foam and fibreglass performed poorly in the extreme climate chamber conditions and 

exhibited a greater amount of water accumulation than predicted, with and without polyethylene 

vapour barriers. The OSB sheathing in the laboratory test samples containing a polyethylene vapour 

barrier and open cell spray polyurethane foam or fibreglass test had much higher readings than 

anticipated. The results of these tests were surprising given the relatively low permeance of the 

vapour barrier layer and the care used in airtightening the samples. Adsorption of water vapour from 

the cold side of the climate chamber to the OSB is certainly one of the mechanisms at work, but is not 

sufficient to explain the measurements. The moisture gain in the test boxes with no polyethylene 

vapour barrier also show a much greater amount of water accumulation than predicted. Higher 
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permeance paint than assumed in the calculations or normal inaccuracies in warm side RH 

measurement could help explain at least some of this discrepancy. 

Hygrothermal Simulation Conclusions 

The hygrothermal simulations provided reliable results and validated the OSB performance in the lab 

test results. 

The closed cell SPF performed well for all climates and indoor humidity levels considered. The 

moisture content of the OSB sheathing in walls insulated with closed cell SPF is equivalent to that of 

the traditional wall assembly with a polyethylene vapour barrier and fibreglass batt. 

The wall section at a wood stud shows that it is the least permeable of all modelled cases.  

Open cell SPF and fibreglass batt insulation with no polyethylene vapour barrier performed poorly in 

all but the mildest Canadian climates with the lowest interior humidities where a standard layer of 

latex paint and primer provided sufficient vapour control. 

Recommendations 

Future work should extend this study to vented and unvented roof systems, as well as explore vapour 

diffusion control strategies for open cell SPF in cold climates. 
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Appendix A   

Material Properties of SPF Products 



 
                                                                                                                                                                                          

WALLTITE Series  
INSULATION SYSTEM  

 
 
 
 
 
 
 

PRODUCT DESCRIPTION: 
WALLTITE is a closed-cell polyurethane system utilizing an EPA approved, zero ozone-depleting  blowing 
agent.  It is designed for use in commercial and residential construction applications.  WALLTITE is 
compatible with most common construction materials.  The benefits of WALLTITE include: 

!" Superior insulation performance 
!" Control moisture infiltration 
!" Controls air infiltration 
!" Ease of application 
!" Non-fibrous 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPROVALS AND CREDENTIALS:   
 
ASTM E-84* Listed at SGS US Testing Co., Inc. NFPA 286 
Class I  8 inch wall   
SPF Thickness                      4.0 inches 12 inch ceiling 
Flame Spread Index              25 with 15 min. thermal barrier 
Smoke Development Index   350 Tested at Intertek ETL Semko 
  Test Report Number:  3116019-002d 

  Attic & Crawl Space
  Tested at Intertek ETL Semko 
  Test Method SwRI 99-02 
  Test Report Number: 3116311-002d   

* - This numerical flame spread rating does not reflect hazards presented by this or any other material under actual fire 
conditions. Polyurethane foam systems should not be left exposed and must be protected by a minimum 15-minute thermal 
barrier or other code-compliant material as allowed by applicable building code(s) and Code Officials.  Building Codes provide 
guidelines representing minimum requirements.  Further information is available at www.iccsafe.org.  Consult all Authorities 
having jurisdiction over an area for additional or specific requirements prior to beginning a project. 
 

 

TYPICAL PROPERTIES**: 

PROPERTY  VALUE  TEST METHOD

Liquid Resin – As Supplied 
Specific Gravity @ 70°F 1.180 ASTM D 1638 
Viscosity @ 70°F (cps)  440 Brookfield 

As Cured 
Iso:Resin Mix Ratio (vol:vol) 1:1 
Density, core (pcf @ 2” lift) Nominal 2.0 ASTM D 1622 
Compressive Strength (psi) 22 ASTM D 1621 
Tensile Strength (psi) 28 ASTM D 1623 Type C 
Closed Cell Content (%) >90 ASTM D 6226 
Initial k-factor (Btu in/ft2 hr °F) 0.165 (R=6.1/in)*** ASTM C 518 
Permeance (perms) 1.82 ASTM E 96  
Permeability (perm inch) 1.82 @ 1” SPF ASTM E 96 
 0.91 @ 2” SPF 
 0.61 @ 3” SPF 
 0.46 @ 4” SPF 
Air Permeance (L/s/m2 @ 75 Pa) 0.000025 ASTM E 2178-01 
Air Leakage (L/s/m2 @ 75 Pa) 0.000025 ASTM E 283-99 
Dimensional Stability (%Volume Change)  
 Dry Age 28 Days (158°F) +8 to +12% ASTM D 2126 
 Freeze Age 14 Days (-20°F) +0.07 to –0.21% ASTM D 2126                                                                                                                                                                     
** - These physical property values are typical for this material as applied at our development facility under controlled 
conditions.  SPF performance and actual physical properties will vary with differences in application (i.e. ambient conditions, 
process equipment and settings, material throughput, etc).  As a result, these published properties should be used as 
guidelines solely for the purpose of evaluation.  Physical property specifications should be determined from actual production 
material.   

 The above data was collected from samples prepared using the following equipment configuration: 
!" Gusmer® H-20/35 proportioner set at 1:1 volume ratio with 50 ft of heated delivery hose  
!" Gusmer® GX-7 spray-gun configured with a #1 mix module and #70 PCD and/or GAP spray-gun configured with a

#1 mix chamber 
!" Process temperature settings:  Isocyanate 130°F; Resin 130°F; Hose 130°F 
!" Process pressure:  1000 psig minimum while spraying 

WALLTITE has shown acceptable on-site performance with temperature settings in the range of 110°F - 130°F for 
Isocyanate, Resin and Hose.  Every job site and set of ambient /substrate conditions are different; therefore, one set of 
process settings may not work for every situation.  It is the responsibility of the applicator to evaluate the on-site 
conditions and then determine the appropriate SPF reactivity and process settings. 

 
***The data chart shows the R-value of this insulation.  “R” means resistance to heat flow.  The higher the R-value, the greater 
the insulating power.  Compare insulation R-values before you buy.  There are other factors to consider.  The amount of 
insulation will depend upon the climate, the type and size of your house, and the fuel use patterns and family size.  If you buy 
too much insulation it will cost you more than what you will save on fuel.  To achieve proper R-values, it is essential that this 
insulation be installed properly. 86
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GENERAL INFORMATION: 

WALLTITE is a spray polyurethane foam (SPF) system intended for installation by qualified contractors 
trained in the processing and application of SPF systems, as well as the plural-component polyurethane 
dispensing equipment required to do so.  Contractors and applicators must comply with all applicable and 
appropriate storage, handling, processing and safety guidelines.  BASF Polyurethane Foam Enterprises 
LLC technical service personnel should be consulted in all cases where application conditions are 
questionable.  

CAUTIONS AND RECOMMENDATIONS:  

WALLTITE is designed for an application rate of ½ inch minimum to 2 inches maximum.  Once  installed 
material has cooled it is possible to add additional applications in order to increase the overall installed 
thickness of SPF.  Typical installations are limited to a total thickness of 4 inches.  This application 
procedure is in compliance with the Spray Polyurethane Foam Alliance (SPFA).    

WALLTITE is NOT designed for use as an EXTERIOR roofing system.  BASF Polyurethane Foam 
Enterprises LLC offers a separate line of products for exterior roofing applications.  For more information 
please contact your sales representative. 

Cold-storage structures such as coolers and freezers demand special design considerations with regard to 
thermal insulation and moisture-vapor drive.  WALLTITE should NOT be installed in these types of 
constructions unless the structure was designed by a design professional for specific use as cold storage. 

WALLTITE is designed for installation in most standard construction configurations using common 
materials such as wood and wood products, metal and concrete.  WALLTITE has performed successfully 
when sprayed onto wood substrates down to 30#F.  For other substrates, please consult your BASF 
Polyurethane Foam Enterprises LLC sales or technical service representative for specific 
recommendations. 

Foam plastic materials installed in walls or ceilings may present a fire hazard unless protected by an 
approved, fire-resistant thermal barrier with a finish rating of not less than 15 minutes as required by 
building codes.  Rim joists and / or sill plates, in accordance with the IRC, IBC and approval by the local 
Code Authority, may not require additional protection.  Foam plastic must also be protected against ignition 
by code-approved materials in attics and crawl spaces.  See relevant Building Codes and www.iccsafe.org
for more information. 

This product is neither tested nor represented as suitable for medical or pharmaceutical uses. 

In addition to reading and understanding the MSDS, all contractors and applicators must use appropriate 
respiratory, skin and eye Personal Protective Equipment (PPE) when handling and processing polyurethane 
chemical systems.  Personnel should review the following document published by Spray Polyurethane 
Foam Alliance (SPFA): 

 AX-171 Course 101-R Chapter 1:  Health, Safety and Environmental Aspects of Spray Polyurethane 
Foam and Coverings 

and the following document available from the Center for the Polyurethanes Industries (CPI): 

 Model Respiratory Protection Program for Compliance with the Occupational Safety and Health 
Administration’s Respiratory Protection Program Standard 29 C.F.R. §1910.134 

 
As with all SPF systems, improper application techniques such as:  excessive thickness of SPF, off-ratio 
material and spraying into or under rising SPF. Potential results of improperly installed SPF include:  
dangerously high reaction temperatures that may result in fire and offensive odors that may or may not 
dissipate.  Improperly installed SPF must be removed and replaced with properly installed materials. 

LARGE MASSES of SPF should be removed to an outside safe area, cut into smaller pieces and allowed to 
cool before discarding into any trash receptacle. 

SPF insulation is combustible.  High-intensity heat sources such as welding or cutting torches must not be 
used in contact with or in close proximity to WALLTITE or any polyurethane foam. 

 

SHELF LIFE AND STORAGE CONDITIONS: 

WALLTITE Series has a shelf life of approximately three months from the date of manufacture when stored 
in original, unopened containers at 50-80°F.  As with all industrial chemicals this material should be stored 
in a covered, secure location and never in direct sunlight.  Storage temperatures above the recommended 
range will shorten shelf life.  Storage temperatures above the recommended range may also result in 
elevated headspace pressure within packages. 

 

LIMITED WARRANTY INFORMATION – PLEASE READ CAREFULLY: 

The information herein is to assist customers in determining whether our products are suitable for their 
applications.  Our products are only intended for sale to industrial and commercial customers.  Customer 
assumes full responsibility for quality control, testing and determination of suitability of products for its 
intended application or use.  We warrant that our products will meet our written liquid component 
specifications.  We make no other warranty of any kind, either express or implied, by fact or law, including 
any warranty of merchantability or fitness for a particular purpose.  Our total liability and customers’ 
exclusive remedy for all proven claims is replacement of nonconforming product and in no event shall we be 
liable for any other damages. 

                                                                                                          Revised 06.04.07
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wide range of applications
throughout the building 
envelope. In addition, 
STYROFOAM SPF Insulation
resists moisture and provides
structural reinforcement for
improved racking strength.*

SIZES
STYROFOAM™ SPF Insulation is
sold in 55 gal drum sets (one A
isocyanate and one B polyol
blend; total 950 lb). Contact
your Dow sales representative
with questions.

Technical Data 
APPLICABLE STANDARDS
Applicable test methods
include:
• ASTM C1029 – Standard

Specification for Spray-
Applied Rigid Cellular
Polyurethane Thermal
Insulation

• ASTM C518 – Standard Test
Method for Steady-State
Thermal Transmission
Properties by Means of the
Heat Flow Meter Apparatus

• ASTM D1621 – Standard Test
Method for Compressive
Properties of Rigid Cellular
Plastics

• ASTM D1622 – Standard Test
Method for Apparent
Density of Rigid Cellular
Plastics

• ASTM D6226 – Standard Test
Method for Open Cell
Content of Rigid Cellular
Plastics

Manufacturer
The Dow Chemical Company
Building & Construction
200 Larkin 
Midland, MI 48674
1-866-583-BLUE (2583)
Fax 1-989-832-1465
www.dowstyrofoam.com/architect
www.insulateyourhome.com

Product
Description

STYROFOAM™ Spray
Polyurethane Foam (SPF)
Insulation is a two-component
spray-applied polyurethane
foam insulation that creates a
seamless, monolithic barrier for
protection against water and
air. The SPF blend successfully
incorporates the Enovate 3000
blowing agent from Honeywell.

BASIC USE
STYROFOAM™ SPF Insulation is
created from a unique polyol
technology, which offers
improved foam yield and wide
processing latitude. Offered in
two formulations for both new
and retrofit applications, 
STYROFOAM SPF Insulation
expands during installation to
fill cavities, cracks and crevices,
preventing uncontrolled air
leakage and maintaining
consistent, comfortable indoor
temperatures. The closed-cell,
2.0 pcf foam serves as both an
insulation and air sealant for a

CODE COMPLIANCES
STYROFOAM™ SPF Insulation
complies with the following
codes:
• Conforms to IRC requirements 

for foam plastic insulation; see 
ASTM C1029

• Underwriters Laboratories, Inc. 
and Intertek Research Report 
(UL) Classified Class I at 4 inches;
see UL 723

• ABAA standards for air leakage 
per ASTM E283

Contact your Dow sales
representative or local authorities
for state and local building code
requirements and related accept-
ances.

®TMTrademark of The Dow Chemical Company (“Dow”) or an affiliated company of Dow
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STYROFOAM™ 2.0 pcf Spray 
Polyurethane Foam Insulation

*STYROFOAM SPF Insulation provides structural enhancement
only. Use in conjunction with approved structural components
and framing members consistent with following local building
code requirements.
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adequate temperatures and spray
pressures. Substrate must be at
least 5 degrees above dew point,
with best processing results
when ambient temperature
humidity is below 80 percent.
Substrate must also be free of
moisture (dew or frost), grease,
oil, solvents and other materials
that would adversely affect the
adhesion of the polyurethane
foam. Substrate temperatures
should not exceed 120°F for
STYROFOAM SPF 3049
(commonly referred to as
“Summer” formula) and 100°F
for STYROFOAM SPF 3062
(commonly referred to as
“Fall/Spring” formula).

Due to the exothermic
reaction of the isocyanate and
polyol blend, mixed components
should be applied in layers
(maximum 2-1/2" thickness
per layer). Allow foam to cool
completely before applying
successive layers.

Contact a local Dow
representative or access the
literature library at
www.dowstyrofoam.com/architect
or www.insulateyourhome.com
for more specific instructions.

PHYSICAL/CHEMICAL
PROPERTIES
STYROFOAM™ SPF Insulation
exhibits typical physical properties
as indicated in Table 1 when
tested as represented.

ENVIRONMENTAL DATA
STYROFOAM™ SPF Insulation is
chlorofluorocarbon (CFC) free
and uses the Enovate 3000
blowing agent from Honeywell,
which is a zero ozone-depleting
product.

FIRE PROTECTION
STYROFOAM™ SPF Insulation is
organic and combustible and
may constitute a fire hazard. Do
not expose foam to flame or
temperatures above 240°F.

Installation
Only personnel trained in
spray polyurethane foam
application should install
STYROFOAM™ SPF Insulation. 

STYROFOAM SPF Insulation
contains isocyanate, hydroflu-
orocarbon blowing agent and
polyol. Read the Material
Safety Data Sheet carefully
before use. Wear protective
clothing, gloves, goggles and
proper respiratory protection.
Supplied air or an approved air-
purifying respirator equipped
with an organic vapor sorbent
and a particle filter is required
to maintain exposure levels
below applicable ACGIH,
OSHA or WEEL limits. Provide
adequate ventilation.

Spray equipment must be
capable of delivering the proper
ratio (1:1 by volume) of polymeric
isocyanate and polyol blend at

P R O D U C T  I N F O R M A T I O N

2

5

®TMTrademark of The Dow Chemical Company (“Dow”) or an affiliated company of Dow

Property and Test Method Value

STYROFOAM™ STYROFOAM™ 
SPF Insulation SPF Insulation
3062 3049
35°F-80°F (35°F-100°F) 60°F-100°F (60°F-120°F)
Ambient (Substrate) Ambient (Substrate)
Processing Processing

Core Density, ASTM D1622, lb/ft3 >2 >2

Compressive Strength, ASTM D1621, lb/in2, parallel 26 26.4

Tensile Strength, ASTM D1623, lb/in2, parallel 55 53.3

Closed-cell Content, ASTM D6226 94 96

Thermal Conductivity, ASTM C518, k-factor(2) 0.154 0.154

Thermal Resistance, ASTM C518, R-value per inch(3) 6.5 6.5

Water Vapor Permeability, ASTM E96, perm-inch 1.1 1.4

Water Absorption, ASTM D2842, % by volume 3.2 3.2

Dimensional Stability, ASTM D2126, % volume change
At -20°F, 14 days <1.0 <1.0
At 200°F, 14 days <1.0 <1.0
At 158°F, >98% R.H. <4.0 <3.3

Surface Burning Characteristics(4), ASTM E84, 4" thickness 
(Intertek UL 723)

Flame spread <25 20
Smoke developed 400 <350

Typical Physical Properties(1) of STYROFOAM™ SPF Insulation

TA B L E  1

(1) Not to be considered sales specifications.
Properties determined by processing foam with Gusmer H2O/35 primary heater at 120°F (A,B), hose temperature of 120°F    
with GX7 gun; .028 drilled module with 70 PCD; dynamic pressures at 600 psi-1,000 psi.

(2) Initial value. Aged k-factor: 0.185 at 180 days, 50% R.H. per FTC requirements.
(3) Initial value. Aged R-value: 5.4 at 180 days, 50% R.H. per FTC requirements.
(4) Calculated flammability values for this or any other material are not intended to represent hazards that may be present under 

actual fire conditions.
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Availability
STYROFOAM™ SPF Insulation 
is distributed through an
extensive network. For more
information, call 1-800-232-2436.

Warranty
Not applicable.

Maintenance
STYROFOAM™ SPF Insulation
has a shelf life of six months
when stored dry between 60°F
and 90°F. Avoid direct sunlight
during shipping and storage on
the job site.

Caution should be exercised
when opening containers as
pressure may be present when
material has been exposed to
elevated temperatures. 

Empty drums are non-return-
able and should be disposed of
by using current industrial
practices in accordance with 
federal, state or local regulations.

6 Technical 
Services

Dow can provide technical
information to help address
questions when using
STYROFOAM™ SPF Insulation.
Technical personnel are avail-
able to assist with any insulation
project. For technical assistance,
call 1-866-583-BLUE (2583).

Filing Systems
• www.dowstyrofoam.com/

architect
• www.insulateyourhome.com
• www.sweets.com

9
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2925 Galleria Drive, Arlington, TX 76011 | T: 817 640 4900 | F: 817 633 2000 | E: info@heatlok.com | www.heatlok.com

HEATLOK	 	 	 Spray Foam Insulation
Technical Data Sheet	 Zero Ozone Depletion Substance,  Class I ASTM 

HEATLOK 0240 is a two component closed cell spray-applied rigid polyurethane foam system, green in color,
formulated to exceed the requirements of CAN/ULC S705.1-98 standard.  HEATLOK 0240 is applied exclusively by 
licensed contractors under the guidelines of CAN/ULC S705.1-98 standard.  HEATLOK 0240 is also an excellent 
air barrier, which has been tested by an independent laboratory: it exceeds 150 times the requirements of NBC 1995, 
article 5.4.1.2 (CCMC Report 12893-R).  Approved by the Ontario Ministry of Housing #99-12-71 

HEATLOK 0240 has been evaluated by CCMC since 1992 (Report # 12380-R) for residential use and complies with 
the intent of the National Building Codes of Canada 1995.  This product is also approved by Ontario Ministry of
Housing #94-0909.

PHYSICAL PROPERTIES

METHOD Description Values

ASTM D1622 Density 232-35 Kg/m3

ASTM C518 Thermal Resistance 90 days @ 230C	 6.9 ft2. h.0F/BTU.in

ASTM D2856 Open Cell Content 6.02%

ASTM D1621 Compressive Strength (10%) 174 kPa

ASTM D1623 Tensile Strength 212 kPa

ASTM D2126 Dimensional Stability
(% Volume Change @ 28 Days) 
                            -200C
                            1000C
                            700C,> 97 ± 3% R.H.

0.47
5.89
2.58

ASTM D2842 Water Absorption (% volume) 0.62

ASTM E96 Water Vapor Permeance (Core) 86.6 ng/Pa.s.m2

A-3136.1 (CNRC) Water Vapor Permeance (System) 
25 mm sprayed on concrete blocks
38 mm sprayed on exterior gypsum board

36.4 ng/Pa.s.m2
52.9 ng/Pa.s.m2

CCMC 07273 Air Barrier Material Test 0.00014 L/ (s.m2) @75 Pa

ASTM E330 Gust Wind (3000Pa = 225 Km/h) No Delamination

CAN/ULC Flame Spread Classification 25<FSC<500

S102M & S127 Smoke Developed <500

ASTM C 1338 Fungi Resistance No Fungal Growth

The information herein is to assist customers in determining whether our products are 
suitable for their applications.  We request that customers inspect and test our products 
before use and satisfy themselves as to contents and suitability.  Nothing herein shall 
constitute a warranty, express or implied, including any warranty of merchantability or 
fitness, nor is protection from any law or patent inferred.  All patent rights are reserved.  
The foam product is combustible and must be covered by an approved thermal barrier.  
The exclusive remedy for all proven claims is replacement of our materials.
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2925 Galleria Drive, Arlington, TX 76011 | T: 817 640 4900 | F: 817 633 2000 | E: info@heatlok.com | www.heatlok.com

LIQUID COMPONENTS PROPERTIES

PROPERTY ISOCYANATE RESIN

Color Brown Amber

Viscosity @ 26˚C 150-350 cps 100-300 cps

Specific Gravity 1.20-1.24 1.20-1.24

Mixing Ratio (volume) 100 100
  *See MSDS for more information.

PROCESSING PARAMETERS

Type of Machine
Gusmer HII, D gun, and # 62 

mix

Primary Heater (A&B) 41˚C

Hose Temperature 41˚C

Ambient Temperature 23˚C

Thickness per Pass 25 mm

Number of Passes 2

Substrate Wood

REACTIVITY PROFILE

Cream time Gel time Tack free time End of Rise

0-1 sec. 2 sec. 4-5 sec. 5-6 sec.

RECOMMENDED PROCESSING CONDITIONS

Values

Primary Heater (A&B) 410C

Dynamic Pressure 4137 kPa

Substrate & Ambient Temperature >-10˚C

Curing Temperature >-100˚F

Maximum Thickness per Pass 50 mm

GENERAL INFORMATION
It is recommended that the foam is covered with an approved thermal barrier in accordance to the local 
and national building codes when used in buildings and a protective coating when used outside. This 
product should not be used when the continuous service temperature of the substrate is outside the 
range of -60ºC to 80ºC.
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Sealection 500 / October 2006 

 
 

  TECHNICAL BULLETIN 
SEALECTION ™ 500 

RESIDENTIAL INSULATION 
 

SEMI-RIGID SPRAY APPLIED POLYURETHANE FOAM 
 

SEALECTION 500 is a two-component, open celled, spray-applied, semi-rigid polyurethane foam system. This 
product is a fully water blown foam system having a very low in-place density. SEALECTION 500 meets the 
off gassing requirements of CGSB 51.23-92 for new residential construction. SEALECTION 500 has been 
approved by the Environmental Choice Program of Canada and is listed as an environmentally friendly 
product. SEALECTION 500 complies with the intent of the US Building Codes for foam plastics insulation. 

 

PHYSICAL PROPERTIES 
ASTM Description British units SI units 
D 1622 Density 0.45 – 0.5 lb/ft³  7.21 – 8.01 kg/m³ 
C 518 Thermal Resistance 2 days @ 76o F, per inch 

Thermal Resistance 90 days @ 76 ºF, per inch 
3.81 ft².hºF/BTU 
3.81 ft².hºF/BTU 

0.671 m².ºC/W 
0.671 m².ºC/W 

Air Permeance   
• 3.5in @ 75Pa (25 miles/hr. wind) 
• 5.5in @ 75Pa (25 miles/hr. wind) 
• 7.5in @ 75Pa (25 miles/hr. wind) 
• 7.5in @ 1200Pa (100 miles/hr. wind)  

No air leakage detected 
No air leakage detected 
No air leakage detected 
No air leakage detected 

• 7.5in @ 2000Pa (129 miles/hr. wind) 0.00009 ft³/s.ft² 0.028 L/m²s. 
Sustained Wind Load for 60 minutes 
@ 1000 Pa (90 miles/hr. wind) 

No damage 

E 283-04 

Gust Wind Load Test 
@ 3000 Pa (160 miles/hr.) 

No damage 

D 1621 Compressive Strength 0.7 psi 4.83 kPa 

D 1623 Tensile Strength 5 psi 34.5 kPa 

E 413-87 
C 423 

Sound Transmission Class (STC) 
Noise Reduction Coefficient (NRC) 

50
75 See specific wall design  

E 96 Water Vapor Permeance (Dry cup), 1”(25mm) 5.47 Perms 313 ng/Pas.m². 

CGSB 51.23-92 Off Gassing Tests (VOC Emissions) Pass (No toxic vapors) 

E 84 Surface Burning Characteristics (6”) 
 • Flame Spread Index 
 • Smoke Development 

Class I 
21  

216 
 

The information herein is to assist customers in determining whether our products are suitable for their applications. We request that customers inspect 
and test our products before use and satisfy themselves as to contents and suitability. Nothing herein shall constitute a warranty, express or implied, 
including any warranty of merchantability or fitness, nor is protection from any law or patent inferred. All patent rights are reserved. The foam product 
is combustible and must be covered by an approved thermal barrier. The exclusive remedy for all proven claims is replacement of our materials. 
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Sealection 500 / October 2006 

 
 

 
SEALECTION ™ 500 

 

LIQUID COMPONENTS PROPERTIES 
PROPERTY ISOCYANATE A 500 RESIN B 500F 
Color Brown Transparent Clear 
Viscosity @ 77oF 180 - 220 cps 150-300 cps 
Specific gravity 1.22-1.25 1.09-1.11 
Shelf life* 6 months 6 months 
Mixing ratio (volume) 100 100 
* Drum unopened, consult MSDS for more information. 

 
All Properties were measured on core samples processed with the parameters listed below: 

PROCESSING PARAMETERS 
Type of machine Gusmer HF1600, Gap gun # 02 mix chamber 
Primary heater (A&B) 130ºF  54.5ºC 
Hose temperature 130ºF 54.5ºC 
Ambient temperature 70ºF 21ºC 
Thickness of passes 4 in 10cm 
Substrate Plaster board 
 
 

REACTIVITY PROFILE 
Cream time, s Gel time, s Tack free time, s End of rise, s 

1 – 2  3 – 4  6 – 7  6 – 7  
 
 

RECOMMENDED PROCESSING CONDITIONS 
 British units SI units 

Primary Heater 1300F 54.5ºC 
Hose temperature 1300F 54.5ºC 
Pressure of mix 900 psi 6205 kPa 
Substrate & Ambient temperature > 23ºF >(-5)ºC 
Curing temperature > 230F >(-5)ºC 

 
GENERAL INFORMATION: 
It is recommended that the foam be covered with an approved thermal barrier in accordance with the 
local and national building codes when used in buildings. This product should not be used when the 
continuous service temperature of the substrate is outside the range of -60°F (-51°C) to 176°F(80°C). 
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PRODUCT SPECIFICATION

1. PRODUCT NAME

Icynene® and The Icynene Insulation
System® are registered trademarks for
polyicynene insulation manufactured by
Icynene Inc. Icynene® spray formula is a
1/2 lb density free rise, open celled material.

2. MANUFACTURER

Icynene® is made on site from liquid
components manufactured by Icynene
Inc. Installation and on-site manufacturing
is supplied by independent Icynene
Licensed Dealers.

3. PRODUCT DESCRIPTION

Icynene® insulates and air seals at the
same time. Its performance is less
installation sensitive than factory
manufactured insulation materials. It is an
effective “breathing” air barrier that can
adjust with the building to maintain a seal
against energy-robbing air leakage for the
life of the building. Convective air
movement inside cavities is virtually
eliminated, providing more uniform
temperatures throughout the building.
The result is superior quality
construction, with higher comfort levels
and lower heating and cooling costs.
Energy savings vary depending on
building design, location, etc.

Icynene® is applied by spraying liquid
components onto an open wall, crawl
space or ceiling surface. There they
expand 100: 1 in just seconds to provide a
flexible foam blanket of millions of tiny
air cells, filling building cavities and
sealing cracks and crevices in the process.
It adheres to virtually all surfaces, sealing
out air infiltration. Excess material is
easily trimmed off, leaving a surface ready
for drywall or other finish.

4. TECHNICAL DATA
(Based on Core Samples)

Thermal Performance

Thermal resistance R/in. (RSI/25mm) 
ASTM C518: R3.6 hr. ft2 °F/BTU

RSI 0.62 m2 °C/W 

Average insulation contribution in stud wall:
2" x 4"  = R13         2" x 6" = R20

The Icynene Insulation System® provides
more effective performance than the
equivalent R-value of air permeable
insulation materials. Icynene® is not
subject to loss of R-value due to aging,
windy conditions, settling, convection or
air infiltration; nor is it likely to be
affected by moisture related conditions.
A FACT SHEET with R-value data is
available upon request.

Air Permeance/Air Barrier /Air Seal

The Icynene Insulation System® fills any
shaped cavity, and adheres to all materials,
creating assemblies with very low air
permeance. No additional interior or
exterior air infiltration protection is
necessary.

Air permeability of core foam:
ASTM E283 data
0.0049 L/S-m2 @75 Pa for 5.25"
0.0080 L/S-m2 @75 Pa for 3.25"

In all buildings, adequate mechanical
ventilation/air supply should be provided
for optimum IAQ (Indoor Air Quality).
See ASHRAE Guidelines.

Water Vapor Permeance

Icynene® is water vapor permeable and
allows structural moisture to diffuse and
dissipate. It will not entrap moisture in
materials to which it is applied.

Water vapor transmission properties:
ASTM E96 data

16 perms 941 ng/(Pa•s•m2) @ 3" (76mm) thick
10 perms 565 ng/(Pa•s•m2) @ 5" (127mm) thick 

Because of its low air permeance,
Icynene® is not infiltrated by moisture-
laden air. Computer modeling of moisture
movement in walls using a program
(MOIST) developed by Doug Burch of the
National Institute of Standards and
Technology (NIST) suggested that a 1.0
perm rating was not required when
Icynene® insulation was used, except in
climates as cold or colder than Madison,
Wisconsin (7500 Heating degree days).
This conclusion was in general agreement
with other computer modeling of
moisture movement in building envelopes
performed in Canada. In those situations
that warrant a vapor barrier, the use of

low vapor permeable paint on the interior
drywall is adequate.

Water Absorption Properties

Icynene® is hydrophobic and does not
exhibit capillary properties. It does not
wick and is water repellent. Water can be
forced into the foam under pressure
because it is open celled. Water will drain
by gravity rather than travel horizontally
or vertically through the foam. Upon
drying, thermal performance is fully
restored.

Acoustical Properties

Performance in a 2"x4" wood stud wall:

STC Sound Transmission Class - 37
Hz. Freq. 125 250 500 1000 2000 4000
ASTM E90 19 30 31 42 38 46

NRC Noise Reduction Coefficient - 70
Hz. Freq. 125 250 500 1000 2000 4000
ASTM C423 .11 .43 .89 .72 .71 .67

Actual performance is superior than
reported test results because of Icynene®’s
ability to control air leakage.

Burn Characteristics

Icynene® will be consumed by flame, but
will not sustain flame upon removal of
the flame source. It leaves a charcoal
residue. It will not melt or drip. It should
be applied in accordance with applicable
building codes.

U.S.A. Specifications
Surface Burning Characteristics of
Icynene® ASTM E84
Flame Spread <20
Smoke Development <400
Fuel Contribution 0

Oxygen Index ASTM D2863 23%
N.Y. State Fire gas toxicity LC50 –12

CANADA Specifications
Corner Wall Test CAN4-S102 FSC3
Flame Spread 510-530
Smoke Development 95-150

ICYNENE® – Spray Formula
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Electrical Wiring

Icynene® has been evaluated with both
14/3 and 12/2 residential wiring (max.
122°F/50°C). It is chemically compatible
with all electrical wiring coverings.

Note: For any insulation of knob and
tube wiring, please reference local
electrical code.

Corrosion

Icynene® did not cause corrosion when
evaluated in contact with steel under
85% relative humidity conditions.

Bacterial or Fungal Growth and 
Food Value

Independent testing conducted by Texas
Tech University has confirmed that
Icynene® is not a source of food for
mold; and as an air barrier, Icynene®

reduces the airborne introduction of
moisture, food, and mold spores into the
building envelope. It has no food value
for insects or rodents.

Environmental / Health / Safety

Icynene® contains no formaldehyde or
volatile organic compounds. It has been
thoroughly evaluated for in-situ emissions
by industry and government experts.
VOC emmissions are below 1/100 of the
safe concentration level within hours
following the application of Icynene®. A
24 HR waiting period is recommended
for highly sensitive people prior to
occupancy.

Not intended for exterior use. Not to be
installed within 2" (50 mm) of heat
emitting devices, where the temperature
is in excess of 200°F(93°C).

5. INSTALLATIONS

The Icynene Insulation System®  is
installed by a network of Licensed
Dealers, trained in the installation of
Icynene®. Installation is generally
independent of environmental conditions.
It can be installed in hot, humid or
freezing conditions. Surface preparation is
generally not necessary. Within minutes,
the foaming process is complete.

6. AVAILABILITY

Check regional yellow pages or contact
Icynene Inc. at 800-758-7325 or our
website at www.icynene.com.

7. WARRANTY

WHEN INSTALLED PROPERLY IN
ACCORDANCE WITH INSTRUCTIONS,
THE COMPANY WARRANTS THAT
THE PROPERTIES OF THE PRODUCT
MEET PRODUCT SPECIFICATIONS AS
OUTLINED IN THIS PRODUCT
SPECIFICATION SHEET.

8. TECHNICAL

Icynene Licensed Dealers and Icynene Inc.
provide support on both technical and
regulatory issues. Architectural
specifications in CSI 3-Part format are
available upon request.

9. RELATED REFERENCES

All physical properties were determined
through testing by accredited third party
agencies. Icynene Inc. reserves the right to
change specifications in its effort to
enhance quality features. Please confirm
that technical data literature is current.

10. PACKAGING AND STORAGE

Packaging - 55 U.S. gallon open top steel
drums
Component ‘A’ - 550 lb. per drum
Base Seal® - Polyisocyanate MDI
Component ‘B’ - 500 lb. per drum
Gold Seal® - Resin

Storage

Component A should be protected from
freezing.

Component B can be frozen but must be
protected from overheating (120°F/49°C)
and prolonged storage above
100°F/38°C. Component B separates
during storage and should be mixed
thoroughly prior to use.

11. INSTALLATION
SPECIFICATIONS

Refer to the Icynene Installer’s Manual
for expanded information.

Telephone: 905.363.4040
Toll Free: 800.758.7325
Facsimile: 905.363.0102
Website: www.icynene.com
E-mail: inquiry@icynene.com

Healthier, Quieter, More Energy Efficient®

7/03/PSA
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Appendix B 

Instrumentation 
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Fenwal Uni-Curve Series 10k Thermistor 192-103LET-A01
Note: These sensors formerly manufactured by Fenwal, now mfr under Honeywell Sensor Accuracy = +/- 0.2°C

Old Curve Fit:  Temp = -0.101(LnR)³ + 4.346(LnR)² - 77.18(LnR) + 446.05 (in °C) Curve fit accuracy over range of -20 to 60°C = +/- 0.12°C
New Curve Fit:  Temp = -0.0937(LnR)³ + 4.143(LnR)² - 75.31(LnR) + 440.385 (in °C) Curve fit accuracy over range of -20 to 60°C = +/- 0.03°C

Interactive Temp Calculator Using Straube's Eqn

Vmeas Vsup
(V) (V)

1.00 2.50 10,000 15,000 9.6158 15.9

Enter Measured Resistance OR Measured Voltage, Voltage Supply and Sense Resistor

Published Fenwal thermistor curve 16 data can't find this on Honeywell version of Fenwal site, but was on old Fenwal site

Temp Res Temp Res Temp Res Temp Res Temp Res Temp Res
-50 670,100 -25 130,630 0 32,613 25 10,000 50 3,605 75 1,482
-49 623,682 -24 123,070 1 30,996 26 9,571 51 3,471 76 1,433
-48 580,809 -23 115,991 2 29,469 27 9,163 52 3,343 77 1,387
-47 541,260 -22 109,358 3 28,026 28 8,774 53 3,220 78 1,342
-46 504,665 -21 103,141 4 26,664 29 8,405 54 3,101 79 1,299
-45 470,830 -20 97,313 5 25,375 30 8,053 55 2,988 80 1,258
-44 439,540 -19 91,839 6 24,157 31 7,718 56 2,880 81 1,218
-43 410,529 -18 86,705 7 23,004 32 7,399 57 2,776 82 1,180
-42 383,656 -17 81,888 8 21,912 33 7,095 58 2,676 83 1,143
-41 358,723 -16 77,355 9 20,879 34 6,806 59 2,580 84 1,107
-40 335,615 -15 73,100 10 19,900 35 6,530 60 2,488 85 1,073
-39 314,145 -14 69,098 11 18,973 36 6,266 61 2,400 86 1,039
-38 294,195 -13 65,337 12 18,094 37 6,014 62 2,316 87 1,007
-37 275,646 -12 61,797 13 17,259 38 5,775 63 2,235 88 977
-36 258,390 -11 58,466 14 16,469 39 5,546 64 2,157 89 947
-35 242,329 -10 55,330 15 15,719 40 5,327 65 2,083 90 918
-34 227,358 -9 52,391 16 15,007 41 5,118 66 2,011 91 890
-33 213,433 -8 49,626 17 14,331 42 4,919 67 1,943 92 864
-32 200,440 -7 47,026 18 13,689 43 4,728 68 1,877 93 838
-31 188,315 -6 44,581 19 13,079 44 4,545 69 1,813 94 813
-30 176,998 -5 42,280 20 12,500 45 4,371 70 1,752 95 789
-29 166,434 -4 40,110 21 11,948 46 4,204 71 1,694 96 766
-28 156,562 -3 38,068 22 11,425 47 4,045 72 1,638 97 743
-27 147,337 -2 36,142 23 10,926 48 3,892 73 1,584 98 721
-26 138,704 -1 34,327 24 10,451 49 3,745 74 1,532 99 700
-25 130,630 0 32,613 25 10,000 50 3,605 75 1,482 100 680

Measured Resistance (Ohms) vs Temperature Readings Using New Curve Fit (2004)

Temp Res Temp Res Temp Res Temp Res Temp Res Temp Res
-50 646,555 -25 130,458 0 32,639 25 9,999 50 3,607 75 1,478
-49 604,295 -24 122,902 1 31,017 26 9,572 51 3,473 76 1,429
-48 564,936 -23 115,825 2 29,485 27 9,165 52 3,344 77 1,383
-47 528,276 -22 109,195 3 28,038 28 8,778 53 3,222 78 1,337
-46 494,125 -21 102,981 4 26,670 29 8,409 54 3,103 79 1,294
-45 462,306 -20 97,155 5 25,377 30 8,058 55 2,990 80 1,252
-44 432,658 -19 91,692 6 24,155 31 7,724 56 2,882 81 1,212
-43 405,027 -18 86,567 7 22,998 32 7,406 57 2,777 82 1,173
-42 379,272 -17 81,758 8 21,904 33 7,102 58 2,678 83 1,135
-41 355,261 -16 77,243 9 20,867 34 6,812 59 2,582 84 1,100
-40 332,872 -15 73,004 10 19,887 35 6,536 60 2,491 85 1,065
-39 311,991 -14 69,021 11 18,958 36 6,272 61 2,403 86 1,031
-38 292,512 -13 65,280 12 18,077 37 6,020 62 2,318 87 999
-37 274,338 -12 61,762 13 17,243 38 5,780 63 2,237 88 968
-36 257,376 -11 58,455 14 16,452 39 5,551 64 2,159 89 938
-35 241,544 -10 55,344 15 15,702 40 5,332 65 2,084 90 909
-34 226,761 -9 52,417 16 14,990 41 5,122 66 2,012 91 881
-33 212,955 -8 49,662 17 14,315 42 4,922 67 1,943 92 854
-32 200,058 -7 47,067 18 13,674 43 4,731 68 1,877 93 828
-31 188,007 -6 44,624 19 13,065 44 4,548 69 1,813 94 802
-30 176,743 -5 42,322 20 12,487 45 4,373 70 1,752 95 778
-29 166,211 -4 40,153 21 11,938 46 4,206 71 1,693 96 755
-28 156,363 -3 38,107 22 11,416 47 4,047 72 1,635 97 732
-27 147,150 -2 36,177 23 10,919 48 3,894 73 1,581 98 711
-26 138,528 -1 34,357 24 10,448 49 3,748 74 1,529 99 689
-25 130,458 0 32,639 25 9,999 50 3,607 75 1,478 100 669

Rmeas 
(Ohm)

Rsense 
(Ohm)

Temp   (°C)
Rmeas 
(Ohm)

Ln(Res)
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Appendix C 

WUFI Material Data 



Component Assembly
Fibreglass 5.5" + Vapour Barrier
 

1,05,00,211,0 140,0 1,0 12,5

Thickness [mm]

Exterior Interior

- Monitor positions

Materials :

- Vinyl Ventilated

- Air Layer 5 mm

- Spun Bonded Polyolefine Membrane (SBP)

- Oriented Strand Board

- Fibreglass 5.5"

- PE-Membrane (Poly; 0.07 perm)

- Gypsum Board

Sd-Value Int. [m]: 0,6

WUFI® Pro 4.1 IBP

WUFI® Pro 4.1 IBP; Project: HDD-4000 Toronto.W4P; SPUF HDD 4000, / Case 1: Fiberglass 5.5"+VB - 30/55%RH; Date: 10/8/2008 3:42:37 PMPage : 2
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Component Assembly
          Fibreglass 5.5"

1,05,00,211,0 140,0 12,5

Thickness [mm]

Exterior Interior

- Monitor positions

Materials :

- Vinyl Ventilated

- Air Layer 5 mm

- Spun Bonded Polyolefine Membrane (SBP)

- Oriented Strand Board

- Fibreglass 5.5"

- Gypsum Board

Sd-Value Int. [m]: 0,6

WUFI® Pro 4.1 IBP

WUFI® Pro 4.1 IBP; Project: HDD-4000 Toronto.W4P; SPUF HDD 4000, / Case 4: Fiberglass 5.5" - 30/55%RH; Date: 10/8/2008 3:45:38 PM Page : 2
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Component Assembly
          Open Cell 5.5"

1,05,00,211,0 140,0 12,5

Thickness [mm]

Exterior Interior

- Monitor positions

Materials :

- Vinyl Ventilated

- Air Layer 5 mm

- Spun Bonded Polyolefine Membrane (SBP)

- Oriented Strand Board

- Open Cell 0.5 pcf SPF 5.5"

- Gypsum Board

Sd-Value Int. [m]: 0,6

WUFI® Pro 4.1 IBP

WUFI® Pro 4.1 IBP; Project: HDD-4000 Toronto.W4P; SPUF HDD 4000, / Case 8: Open Cell 5.5" - 40/60% RH; Date: 10/8/2008 3:59:33 PM Page : 2
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                 Component Assembly
  Closed Cell 2" with remainder as fibreglass batt or air

1,05,00,211,0 50,0 89,0 12,5

Thickness [mm]

Exterior Interior

- Monitor positions

Materials :

- Vinyl Ventilated

- Air Layer 5 mm

- Spun Bonded Polyolefine Membrane (SBP)

- Oriented Strand Board

- Closed Cell 2pcf SPF 2"

- Fibreglass - R12 (89mm, 3.5 in.)

- Gypsum Board

Sd-Value Int. [m]: 0,6

WUFI® Pro 4.1 IBP

WUFI® Pro 4.1 IBP; Project: HDD-4000 Toronto.W4P; SPUF HDD 4000, / Case 10: Closed Cell 2"/fg - 30/55% RH; Date: 10/8/2008 4:00:43 PM Page : 2
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Component Assembly
         Closed Cell 3.5"

1,05,00,211,0 89,0 50,0 12,5

Thickness [mm]

Exterior Interior

- Monitor positions

Materials :

- Vinyl Ventilated

- Air Layer 5 mm

- Spun Bonded Polyolefine Membrane (SBP)

- Oriented Strand Board

- Closed Cell 2pcf SPF 3.5"

- Air Layer 50 mm

- Gypsum Board

Sd-Value Int. [m]: 0,6

WUFI® Pro 4.1 IBP

WUFI® Pro 4.1 IBP; Project: HDD-4000 Toronto.W4P; SPUF HDD 4000, / Case 13: Closed Cell 3.5" - 30/55% RH; Date: 10/8/2008 4:02:41 PM Page : 2
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                    Component Assembly
Wood Stud 3.5" (modeled in two sections, inner and outer stud)

1,05,00,2 11,0 12,0 77,0 12,5

Thickness [mm]

Exterior Interior

- Monitor positions

Materials :

- Vinyl Ventilated

- Air Layer 5 mm

- Spun Bonded Polyolefine Membrane (SBP)

- Oriented Strand Board

- EW Pine - outer stud

- EW Pine - inner stud

- Gypsum Board

Sd-Value Int. [m]: 0,6

WUFI® Pro 4.1 IBP

WUFI® Pro 4.1 IBP; Project: HDD-4000 Toronto.W4P; SPUF HDD 4000, / Case 17: Wood Stud 3.5" - 40/60%RH; Date: 10/8/2008 4:04:52 PM Page : 2

108

BEG-2
Text Box
Case 16: Low RH
Case 17: Medium Rh
Case 18: High RH



Boundary Condition
 
 
Exterior (Left Side)

Location: All locations were cold year except Yellowknife and Inuvik
                                          which were user defined climate files. See chapter on

                                            computer modeling for details 
Orientation / Inclination: North / 90 °

Interior (Right Side)
Indoor Climate: WTA Recommendation 6-2-01/E

User Defined Sine Curve ParameterSee chapter on compter        
                                           modeling for details

Surface Transfer Coefficients
Exterior (Left Side)

 

         Name                                                       Unit         Value

       Description                                                                                                         Heat Resistance                                           [m²K/W]        0.0588      Outer Wall

Sd-Value [m]  ---- No coating

Short-Wave Radiation Absorptivity [ - ] .4

Long-Wave Radiation Emissivity [ - ] .9

Rain Water Absorption Factor [ - ] 0

Interior (Right Side)

Name Unit Value Description

Heat Resistance [m²K/W] 0.125 Outer Wall

Sd-Value [m] 0,6

Explicit Radiation Balance
Exterior (Left Side)

Name Value

Enabled no

WUFI® Pro 4.1 IBP

WUFI® Pro 4.1 IBP;                                                                                                                                                          Date: 10/8/2008 4:04:52 PM Page : 10
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Material :  Vinyl Ventilated

Checking Input Data

Property Unit Value

Bulk density [kg/m³] 2400,0

Porosity [m³/m³] 0,001

Specific Heat Capacity, Dry [J/kgK] 1000,0

Thermal Conductivity, Dry [W/mK] 0,5

Water Vapour Diffusion Resistance Factor [ - ] 0.05
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Material :  Air Layer 5 mm

Checking Input Data

Property Unit Value

Bulk density [kg/m³] 1,3

Porosity [m³/m³] 0,999

Specific Heat Capacity, Dry [J/kgK] 1000,0

Thermal Conductivity, Dry [W/mK] 0,047

Water Vapour Diffusion Resistance Factor [ - ] 0,79
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Material :  Spun Bonded Polyolefine Membrane - Tyvek Housewrap

Checking Input Data

Property Unit Value

Bulk density [kg/m³] 448,0

Porosity [m³/m³] 0,001

Specific Heat Capacity, Dry [J/kgK] 1500,0

Thermal Conductivity, Dry [W/mK] 2,4

Water Vapour Diffusion Resistance Factor [ - ] 328,4
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Material :  Oriented Strand Board

Checking Input Data

Property Unit Value

Bulk density [kg/m³] 650,0

Porosity [m³/m³] 0,95

Specific Heat Capacity, Dry [J/kgK] 1880,0

Thermal Conductivity, Dry [W/mK] 0,092

Water Vapour Diffusion Resistance Factor [ - ] 812,8

Reference Water Content [kg/m³] 83,3

Free Water Saturation [kg/m³] 470,0

Water Absorption Coefficient [kg/m²s^0.5] 0,0022

0.00

0.05

0.10

0.15

0.20

0.25

Th
er

m
al

 C
on

du
ct

iv
ity

 [W
/m

K
]

0

200

400

600

800

1000

D
iff

us
io

n 
R

es
is

ta
nc

e 
Fa

ct
or

 [ 
- ]

10-13

10-12

10-11

10-10

0 0.2 0.4 0.6 0.8 1.0
Normalized Water Content [ - ]

Li
qu

id
 T

ra
ns

po
rt 

C
oe

ffi
ci

en
t [

m
²/s

]

W/Wmax

Suction
Redist.

0

100

200

300

400

500

0 0.2 0.4 0.6 0.8 1.0

Relative Humidity [ - ]

W
at

er
 C

on
te

nt
 [k

g/
m

³]

0.95 0.96 0.97 0.98 0.99 1.0

0.0  -  1.0 RH
0.95 - 1.0 RH

Moisture Range:

WUFI® Pro 4.1 IBP

WUFI® Pro 4.1 IBP; Project: HDD-4000 Toronto.W4P; SPUF HDD 4000, / Case 17: Wood Stud 3.5" - 40/60%RH; Date: 10/8/2008 4:04:52 PM Page : 6

113



Material :  Fibreglass 5.5"

Checking Input Data

Property Unit Value

Bulk density [kg/m³] 30,0

Porosity [m³/m³] 0,99

Specific Heat Capacity, Dry [J/kgK] 840,0

Thermal Conductivity, Dry [W/mK] 0,035

Water Vapour Diffusion Resistance Factor [ - ] 1,3
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Material :  PE-Membrane (Poly; 0.07 perm)

Checking Input Data

Property Unit Value

Bulk density [kg/m³] 130,0

Porosity [m³/m³] 0,001

Specific Heat Capacity, Dry [J/kgK] 2300,0

Thermal Conductivity, Dry [W/mK] 2,3

Water Vapour Diffusion Resistance Factor [ - ] 50000,0
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Material :  Open Cell 0.5 pcf SPF 5.5"

Checking Input Data

Property Unit Value

Bulk density [kg/m³] 7,5

Porosity [m³/m³] 0,99

Specific Heat Capacity, Dry [J/kgK] 1470,0

Thermal Conductivity, Dry [W/mK] 0,042

Water Vapour Diffusion Resistance Factor [ - ] 5,8
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Material :  Closed Cell 2pcf SPF 2"

Checking Input Data

Property Unit Value

Bulk density [kg/m³] 39,0

Porosity [m³/m³] 0,99

Specific Heat Capacity, Dry [J/kgK] 1470,0

Thermal Conductivity, Dry [W/mK] 0,024

Water Vapour Diffusion Resistance Factor [ - ] 88,93
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Material :  Fibreglass - R12 (89mm, 3.5 in.)

Checking Input Data

Property Unit Value

Bulk density [kg/m³] 30,0

Porosity [m³/m³] 0,99

Specific Heat Capacity, Dry [J/kgK] 840,0

Thermal Conductivity, Dry [W/mK] 0,043

Water Vapour Diffusion Resistance Factor [ - ] 1,3
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Material :  Closed Cell 2pcf SPF 3.5"

Checking Input Data

Property Unit Value

Bulk density [kg/m³] 39,0

Porosity [m³/m³] 0,99

Specific Heat Capacity, Dry [J/kgK] 1470,0

Thermal Conductivity, Dry [W/mK] 0,024

Water Vapour Diffusion Resistance Factor [ - ] 88,93
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Material :  EW Pine - (Eastern white pine)

Checking Input Data

Property Unit Value

Bulk density [kg/m³] 460,0

Porosity [m³/m³] 0,81

Specific Heat Capacity, Dry [J/kgK] 1880,0

Thermal Conductivity, Dry [W/mK] 0,093

Water Vapour Diffusion Resistance Factor [ - ] 4427,4

Reference Water Content [kg/m³] 47,7

Free Water Saturation [kg/m³] 450,0

Water Absorption Coefficient [kg/m²s^0.5] 0,0066
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Material :  Gypsum Board

Checking Input Data

Property Unit Value

Bulk density [kg/m³] 850,0

Porosity [m³/m³] 0,65

Specific Heat Capacity, Dry [J/kgK] 850,0

Thermal Conductivity, Dry [W/mK] 0,2

Water Vapour Diffusion Resistance Factor [ - ] 8,3

Moisture-dep. Thermal Cond. Supplement [%/M.-%] 8,0
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