
Supporting Framework Use via
Automatically Extracted
Concept-Implementation

Templates

by

Abbas Heydarnoori

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2009

c© Abbas Heydarnoori 2009

I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Object-oriented application frameworks allow the reuse of both software de-
sign and code and are one of the most effective reuse technologies available today.
Frameworks provide domain-specific concepts, which are generic units of function-
ality. Framework-based applications are constructed by writing completion code
that instantiates these concepts. The instantiation of such concepts requires imple-
mentation steps in the completion code, such as subclassing framework-provided
classes, implementing interfaces, and calling appropriate framework services. Un-
fortunately, many existing frameworks are difficult to use because of their large and
complex APIs and often incomplete user documentation. To cope with this prob-
lem, application developers often use existing framework applications as a guide.
While existing applications contain valuable examples of concept implementation
steps, locating them in the application code is often challenging.

To address this issue, this dissertation introduces the notion of concept imple-
mentation templates, which summarize the necessary concept implementation steps,
and a technique named FUDA (Framework API Understanding through Dynamic
Analysis) which automatically extracts such templates from runtime information
collected when that concept is invoked in two or more different contexts in one or
more sample applications. The experimental evaluation of FUDA with twelve re-
alistic concepts on top of four widely-used frameworks suggests that the technique
is effective in producing quality implementation templates for a given concept with
high precision and recall from only two sample sample applications and execution
scenarios. Moreover, it was observed in a user study with twelve subjects that
the choice of templates vs. framework documentation had much less impact on
development time than the concept complexity.

iii

Acknowledgements

This is an opportunity for me to express my gratitude towards everyone who
has supported me throughout the course of this PhD. First and foremost, I would
like to sincerely thank my supervisor, Professor Krzysztof Czarnecki, for his en-
couragement, guidance, and support. His vast knowledge and experience led my
research towards the right direction and helped me overcome various obstacles. I
am also grateful for his great dedication and compassion that made him a valuable
supervisor.

I would like to thank all the members of my dissertation committee: Professor
Uwe Aβmann, my external examiner, for managing to travel all the way from
Germany to attend my oral defense despite his busy schedule, and provide me
his insightful comments; Professor Mike Godfrey and Professor Joanne Atlee for
taking the time and the effort to participate in my committee and provide me their
thoughtful feedbacks on my work along the way; Professor Sebastian Fischmeister
for his invaluable remarks on the thesis; and Professor Patrick Lam for accepting
to serve as a delegate in my oral defense. I also would like to thank Professor
Farhad Mavaddat who supervised the early stages of my doctoral research. Many
thanks also go to Professor Farhad Arbab who provided me the opportunity to visit
Centrum voor Wiskunde en Informatica (CWI) in Netherlands in Spring 2004.

A big thanks to all my friends at the University of Waterloo, especially my
friends at the Generative Software Development Lab. I was extremely fortunate
to spend enjoyable time with some great lab mates. In particular, I express my
appreciation to Thiago Tonelli Bartolomei for his contribution to this research and
Mohamed Abd-El-Razik, Michal Antkiewicz, Ca Bol Chan, Reza Dorrigiv, Afshar
Ganjali, Allen George, Chang Hwan Peter Kim, Herman Lee, Rafael Lotufo, Jason
Medeiros, Marcilio Mendonca, Ali Razavi, Steven She, Hossein Sheikh-Attar, and
Matthew Stephan for their kind help.

While living in Waterloo, I and my wife have been fortunate to have a warm
community of Iranian friends who made Waterloo a pleasant environment for us to
live and study. My special thanks go to all of them.

I am deeply thankful to my dear parents, Javad and Mehri, and my brothers
and sister, for their belief in me and their support throughout all of my life in
every possible way. I can not imagine how I could have achieved success in my
life without their prayers, help, and encouragement. I am also sincerely thankful
to my parents-in-law, Farsad and Zohreh, and my sisters-in-law for their prayers,
kindness, and nice wishes.

Last, but most certainly not the least, my profound appreciation and love goes
to my beloved wife, Mahsa. There is no doubt in my mind that this work would
not have been accomplished without her help and support. I really appreciate her
encouragement and patience and all the delight and happiness she has brought into
my life. My love and passion for her go far beyond the expressive power of words.

iv

Dedicated To:

My beloved wife, Mahsa,

for her love, patience, and enthusiastic support.

My dear parents, Javad and Mehri,

for their countless sacrifices and making me the person I am today.

v

Contents

List of Tables x

List of Figures xii

1 Introduction 1

1.1 Motivation . 1

1.2 Approach Overview . 2

1.3 Contributions . 4

1.4 Organization of the Dissertation . 5

2 Object-Oriented Application Frameworks 7

2.1 Object-Oriented Application Frameworks 7

2.2 Framework Usage . 9

2.2.1 Differences between Frameworks and Libraries 11

2.3 Advantages and Disadvantages of Frameworks 12

2.4 Summary . 13

3 Related Work 15

3.1 Framework Documentation Approaches 15

3.2 Framework Usage Comprehension 17

3.3 Specification Mining . 20

3.4 Concept Location . 23

3.5 Aspect Mining . 28

3.6 Program Slicing . 29

3.7 Summary . 31

vi

4 The FUDA Framework Comprehension Technique 33

4.1 A Running Example . 33

4.2 Concept Implementation Templates 36

4.3 The FUDA Approach Overview . 37

4.4 The FUDA Approach . 39

4.4.1 Concept Definition . 39

4.4.2 Selection of Sample Applications and Execution Scenarios . 39

4.4.3 Trace Collection and Marking 40

4.4.4 Automated Trace Processing 43

4.4.5 Existing Issues in Template Generation 56

4.5 Summary . 61

5 Template Extraction Evaluation 63

5.1 Experiment Objectives . 63

5.1.1 Experiment Definition . 63

5.1.2 Hypothesis Formulation . 64

5.2 Prototype Implementation of FUDA 64

5.2.1 FUDA Tracer . 65

5.2.2 FUDA Analyzer . 67

5.3 Experiment Setup . 68

5.3.1 Selection of Frameworks . 69

5.3.2 Selection of Concepts . 70

5.3.3 Selection of Sample Applications and Execution Scenarios . 72

5.3.4 Trace Collection . 73

5.3.5 Template Generation . 74

5.3.6 Analysis Procedure . 74

5.4 Experiment Results . 76

5.4.1 Quantitative Results . 76

5.4.2 Qualitative Results . 77

5.5 Threats to Validity . 80

5.5.1 Internal Validity . 80

5.5.2 External Validity . 81

5.5.3 Construct Validity . 82

5.5.4 Reliability . 82

5.6 Summary . 82

vii

6 Template Usage Evaluation 83

6.1 Experiment Planning . 83

6.1.1 Experiment Definition . 84

6.1.2 Context Selection . 84

6.1.3 Hypothesis Formulation . 85

6.1.4 Experiment Design . 86

6.1.5 Selection of Frameworks . 86

6.1.6 Selection of Concepts . 87

6.1.7 Selection of Target Application 88

6.1.8 Selection of Sample Applications 88

6.1.9 Selection of Documentation 88

6.1.10 Selection of Subjects . 90

6.1.11 Experiment Procedure . 92

6.1.12 Instrumentation and Measurement 98

6.1.13 Analysis Procedure . 99

6.2 Experiment Results . 101

6.2.1 Quantitative Analysis Results 101

6.2.2 Qualitative Analysis Results 104

6.2.3 Discussion . 113

6.3 Threats to Validity . 115

6.3.1 Internal Validity . 115

6.3.2 External Validity . 115

6.3.3 Construct Validity . 116

6.3.4 Reliability . 117

6.4 Summary . 117

7 Conclusions 119

7.1 Discussion . 119

7.1.1 Strengths and Weaknesses 119

7.1.2 Scenario Design Considerations 120

7.1.3 API Trace Slicing . 120

7.1.4 Incremental Analysis . 121

7.2 Summary . 121

7.3 Future Work . 122

viii

APPENDICES 124

A Materials for Template Usage Evaluation 125

A.1 Materials for Recruiting Subjects 125

A.2 Tutorials . 130

A.3 Task Package Materials . 137

B Template Generation Algorithms 149

References 149

ix

List of Tables

5.1 The choice of concepts for template extraction evaluation 71

5.2 The quantitative results of template extraction evaluation 77

6.1 Subjects’ background . 91

6.2 Sequence of performing concept implementation tasks 95

6.3 The subjects’ concept implementation times in minutes 101

6.4 Statistical analysis of the subjects’ concept implementation times . 103

6.5 Responses to experiment questionnaires for templates 105

6.6 Summary of comments made by subjects about the templates . . . 106

6.7 Responses to experiment questionnaires for documentation 108

6.8 Summary of comments made by subjects about the documentation 109

6.9 The subjects’ strategies of using the FUDA templates 111

6.10 Impact of false positives and false negatives on the implementation 111

6.11 The subjects’ strategies of using the documentation 114

x

List of Figures

2.1 A view derived from the Eclipse framework 9

2.2 Part of the code for creating an Eclipse viewer 10

2.3 A screenshot of an Eclipse tree viewer with a context menu 11

4.1 Implementation of a sample Eclipse view with a context menu (•) . 34

4.2 A sample implementation template for the concept “context menu” 35

4.3 FUDA technique overview . 38

4.4 Process of trace collection and marking 41

4.5 Framework API interaction trace 42

4.6 The sliced trace resulted from the API trace 46

4.7 Boundaries of application, framework, and language-specific types . 47

4.8 The generalized trace resulted from the sliced trace 49

4.9 Common facts . 50

4.10 Two sample Java applets . 51

4.11 An imaginary type hierarchy . 55

4.12 An example of existing issues in template generation algorithm . . . 57

4.13 Issue of cyclic dependency within the body of a method 59

4.14 Issue of cyclic dependency because of a loop 60

4.15 Issue of cyclic dependency because of implementing the same method 62

5.1 The FUDA Tracer GUI for recording an API trace 65

5.2 The FUDA Analyzer GUI for getting template generation options . 66

5.3 The FUDA Analyzer GUI for presenting the results 67

6.1 The procedure of template usage evaluation 93

6.2 Plot of concept implementation times 102

xi

B.1 The main template generation algorithm pseudocode 150

B.2 Create classes pseudocode . 150

B.3 Create methods pseudocode . 151

B.4 Create statements pseudocode . 151

B.5 Identify supertypes pseudocode . 152

B.6 Identify class and variable names pseudocode 152

B.7 Broadcast variables pseudocode . 153

B.8 Identify package imports pseudocode 153

xii

Chapter 1

Introduction

1.1 Motivation

Software reuse is one of the important goals in software engineering that can improve
the quality and productivity of software development. To this aim, object-oriented
application frameworks have shown to be effective since they allow the reuse of
both design and code [125]. According to Gamma et al. [39], an object-oriented
application framework is “a set of cooperating classes that makes up a reusable
design for a specific class of software”. In other words, by capturing the commonal-
ities of an application domain into a set of carefully designed abstract classes with
well-defined collaborations, frameworks enable reuse at both code level and design
level.

Frameworks provide domain-specific concepts, which are generic units of func-
tionality. For example, a graphical user interface (GUI) framework such as JFace
offers implementation for a set of GUI concepts, which include a text box, tree viewer,
and context menu. Framework-based applications are constructed by writing com-
pletion code that instantiates these concepts. The instantiation of such concepts
requires various implementation steps in the completion code, such as subclass-
ing framework-provided classes, implementing interfaces, and calling appropriate
framework services.

For an application developer, the most important part of a framework is its
Application Programming Interface (API). Unfortunately, the APIs of many mod-
ern object-oriented application frameworks are complex and difficult to use for two
main reasons [61]. First, the sizes of the APIs are often large. For instance, the
popular Java Swing framework has more than 800 classes and for instance, its
JTree class by itself has about 400 methods [60]. Second, many of the existing
frameworks suffer from the lack of proper manuals and documentation. To cope
with these problems, application developers frequently follow the Monkey See/-
Monkey Do rule [38] for framework-based application development: “Use existing
framework applications as a guide to develop new applications.”

1

While following the Monkey See/Monkey Do rule can be an effective applica-
tion development strategy, understanding how an existing application implements
a concept requires the ability to locate the code fragments implementing that con-
cept. Unfortunately, locating the concept implementation can be challenging since
these code fragments are often scattered in the application code and tangled with
the implementation of other concepts. As an illustration of this problem, consider
the task of implementing a context menu in a view of the Eclipse environment.
Although the concept of context menu has a crisp manifestation at the graphical
user interface, the implementation code typically involves multiple classes, such as
actions and menu managers, and may be scattered across and tangled with code
implementing other concepts. Consequently, despite the fact that a context menu
is present in many existing Eclipse plug-ins, finding the relevant instructions among
potentially many thousands lines of source code is a challenge.

Several categories of approaches have been proposed in literature to address
this difficulty. Framework usage comprehension approaches such as Strathcona [57]
and FrUiT [14] apply static analysis to the source code of example applications
and allow retrieving code snippets or usage rules for a particular API element.
These tools can be very helpful in understanding concept implementations, but
they require the developer to know at least the names of some of the API elements
involved in the concept implementation. However, they are less helpful if the de-
veloper has only a high-level idea of the concept that needs to be implemented or
if the concept spans multiple classes or both. Specification mining approaches such
as CHRONICLER [100] and Perracotta [142] use example applications to specify
temporal and/or behavioral protocols that a program must follow when interacting
with an API. Hence, they can not be particularly beneficial to the understanding
of concept implementations on top of a given framework. Finally, concept location
tools such as SNIAFL [149] and SITIR [80] could be used to locate parts of an ap-
plication source code that implement a desired functionality or concept. However,
these tools do not focus on framework API usage and, thus, the code identified
using these tools will still include many application-specific instructions that are
irrelevant from the viewpoint of framework usage.

This dissertation aims to address the above challenges in existing work and
propose a framework comprehension technique that could be used by application
developers to understand how to implement a concept of interest on top of a desired
framework. The following section provides an overview of the proposed approach.

1.2 Approach Overview

Before providing an overview of the approach presented in this dissertation to ad-
dress the problem of concept location for the purpose of framework comprehension,
the nature of the problem is clarified using the context menu example discussed
earlier in this chapter. For this purpose, consider the case of a developer creating
a plug-in in the Eclipse environment. During development, the developer notices

2

that many plug-ins already present in the workbench implement a context menu.
Interested in creating something similar, the developer has basically two choices.
One is to search for help on documentation, mailing lists, and newsgroups. Another
option is to look at the code of the plug-ins that implement the menu and search
for the parts relevant to its implementation. However, as mentioned before, the
implementation of such a simple framework-provided concept often requires that
certain steps be employed in conjunction, not necessarily in a single code location.
Moreover, such steps are frequently not well documented by framework developers
and waiting for answers in mailing lists and newsgroups can become a frustrating,
time-consuming task.

In order to tackle this problem, this dissertation introduces the notion of con-
cept implementation templates and FUDA (Framework API Understanding through
Dynamic Analysis), an approach to automatic extraction of such templates from
traces of sample applications [55]. A concept implementation template is a Java-like
pseudocode demonstrating the implementation steps that are necessary to instan-
tiate a given concept. In particular, an implementation template specifies which
framework packages to import, framework classes to subclass, framework interfaces
to implement, and framework operations to call. Such a template can be used as a
concise summary of the necessary implementation steps of a concept and a starting
point to further investigate the concrete concept implementations in the sample
applications. For the latter, FUDA templates provide traceability links between
each implementation step in the template to its corresponding program statements
in the sample applications.

In FUDA, a framework-provided concept is defined as a unit of functionality
that is realized in the example application’s source code by using the abstractions
provided by the framework API. Furthermore, it should be possible to trigger the
concept from the graphical or programmatic interface of the application. The key
idea of FUDA is to take advantage of the information contained in sample appli-
cations to understand the implementation of a desired concept. To this aim, it
utilizes dynamic analysis to determine the portions of the code in the sample appli-
cations that are relevant to the implementation of that concept. The goal is to be
able to extract useful implementation templates using as few sample applications
as possible to make the approach attractive in practise.

FUDA works as follows. Initially, the developer must identify a concept of inter-
est, and select one or more sample applications implementing that concept in two
or more different contexts. The next phase is to execute each sample application
while a tracer tool collects a trace of calls that occur at the boundary between
the application and the framework API. For the purpose of pinpointing the loca-
tion of the concept execution in the trace, the developer informs the tracer tool
the moments right before and after the invocation of the concept, a process called
marking. In the subsequent automated analysis phase, the developer uses an an-
alyzer tool to dissect the collected traces and extract the concept implementation
templates. The automated analysis starts with the application of a novel slicing
technique named API trace slicing. The goal of this step is to identify other events

3

that might be relevant to the implementation of the desired concept, and happen
either before or after invoking it (e.g., object creations as well as clean-up code),
and hence, are not included in the marked events. Next, the sliced traces go through
a process of removing application-specific content from the traces called general-
ization. Different kinds of facts about calls (e.g., call nesting and object passing)
are then extracted from these generalized traces. Afterwards, the extracted facts
are intersected across all traces. The common facts in the intersection as well as
the generalized traces provide the basis for further processing to generate a concept
implementation template.

The tracer and the FUDA template extraction approach have been implemented
as two separate but related Eclipse plug-ins. This prototype implementation was
used in a study to evaluate the quality of the extraction process for twelve concepts
with different characteristics on top of four widely-used frameworks. Some of these
concepts were sampled from developers’ forums. The study showed that the ap-
proach can produce templates with few false positives and false negatives for realis-
tic concepts by using only two sample applications. Furthermore, a user experiment
with twelve highly-skilled Java programmers was conducted to compare templates
to framework documentation. For the studied sample, no statistically significant
difference between using templates and documentation in terms of implementation
time and number of introduced bugs could be detected. More specifically, for the
studied sample, the choice of templates vs. documentation had much less impact
on development time than the concept complexity.

However, the presented approach in this dissertation has some potential difficul-
ties as well. First of all, it requires a number of executable sample applications that
implement the desired concept. Finding these sample applications might be tough.
Second, it should be possible to invoke the concept of interest from the graphical
or programmatic interface of the application. This is not necessarily feasible for
all kinds of concepts and frameworks. Finally, it requires the setup of the runtime
environment which might not be easy in some situations.

1.3 Contributions

This dissertation makes the following contributions to the field of software engi-
neering in general, and framework comprehension in particular:

• The API trace slicing as a novel slicing method that operates on traces rep-
resenting the interactions between applications and a framework API rather
than on complete instruction traces that is the case in traditional dynamic
slicing approaches [2].

• The notion of automatically-extracted concept implementation templates that
summarize the necessary implementation steps to realize a desired framework-
provided concept on top of a target framework, such as which framework

4

packages to import, framework classes to subclass, framework interfaces to
implement, and framework services to call.

• The FUDA framework comprehension technique as an approach to automatic
extraction of concept implementation templates from API interaction traces.

• Prototype implementation of the FUDA framework comprehension technique
as two separate but related Eclipse plug-ins for collecting API interaction
traces and analyzing them to generate concept implementation templates.

• An empirical study with twelve realistic concepts, some of which from devel-
oper forums, with different characteristics on top of four widely-used frame-
works that shows it is possible to extract the concept implementation tem-
plates with high precision and recall by using only two sample applications.

• A user study with twelve highly-skilled Java programmers in which the choice
of templates vs. documentation had much less impact on development time
than the concept complexity.

1.4 Organization of the Dissertation

The remainder of this dissertation is organized as follows:

• Chapter 2 presents the necessary background information about object-
oriented application frameworks.

• Chapter 3 positions FUDA in the context of related work. For this purpose,
the literature in the areas of framework documentation, framework usage
comprehension, specification mining, concept location, aspect mining, and
program slicing are surveyed and analyzed.

• Chapter 4 explains the details of the FUDA framework comprehension tech-
nique.

• Chapter 5 discusses the prototype implementation of FUDA and presents
the details of an empirical study conducted to evaluate the precision and
recall of the templates generated using the FUDA technique.

• Chapter 6 provides a detailed description of a user study performed to eval-
uate whether FUDA templates can serve as a substitute for framework doc-
umentation when no documentation is available.

• Chapter 7 presents discussion, concluding remarks, and future research di-
rections.

5

• Appendix A presents the materials used during the template usage evalua-
tion, such as different tutorials, various questionnaires, and specifications of
concepts implemented by subjects.

• Appendix B provides the pseudocode of template generation algorithms.

6

Chapter 2

Object-Oriented Application
Frameworks

This chapter provides the necessary background information about object-oriented
application frameworks. In particular, Section 2.1 introduces the main properties
of object-oriented application frameworks. Section 2.2 features how frameworks
are used in the development of applications. Section 2.3 presents the advantages
and disadvantages of frameworks from the viewpoint of framework usage. Finally,
Section 2.4 summarizes this chapter.

2.1 Object-Oriented Application Frameworks

There are a number of definitions for object-oriented application frameworks. For
example, a Taligent Inc. white paper [138] provides a definition that describes the
purpose of a framework:“a framework is the skeleton of an application that can
be customized by an application developer.” Another definition by Roberts and
Johnson [102] describes the structure of a framework:“a framework is a reusable
design of all or part of a system that is represented by a set of abstract classes
and the way their instances interact.” Finally, a definition by Gamma et al. [39]
covers both of these definitions:“a framework is a set of cooperating classes that
makes up a reusable design for a specific class of software. A framework provides
architectural guidance by partitioning the design into abstract classes, and defin-
ing their responsibilities and collaborations. A developer customizes a framework
to a particular application by subclassing and composing instances of framework
classes.” With respect to these definitions, a framework captures the programming
expertise required to solve problems in a specific domain; hides the parts of the
design that are common to all applications in that domain; and makes explicit the
pieces that need to be customized.

An important property of an object-oriented application framework that distin-
guishes it from traditional software libraries is that it often implements the main

7

control loop of the applications and dispatches events that the application-specific
handlers respond to. This is called the inversion of control or the Hollywood prin-
ciple [127] (“don’t call us, we will call you”) in computer programming. In other
words, the framework itself is responsible for determining which set of application-
specific methods to invoke in response to external events. Therefore, the application
developer is told by the framework when and where his code will be called.

A software developer implements an actual application by customizing, con-
figuring, and instantiating appropriate framework-provided classes and calling ap-
propriate framework-provided services. Each application framework provides an
Application Programming Interface (API) through which an application program
can either specialize the framework code which is referred to as the white-box reuse
or it can directly use the framework code which is referred to as the black-box reuse.
The API of a framework constitutes a set of hot-spots. Hot-spots are those parts
in the framework that are open to extension and customization. More specifically,
hot-spots express those aspects of the framework domain that may vary in different
applications of that domain and are expected to be specialized.

Fayad et al. [33] name four main characteristics for object-oriented application
frameworks:

• Modularity. Frameworks improve modularity by encapsulating implementa-
tion details into stable interfaces. This will result in improved software quality
since the effect of design and implementation changes is localized. This will
also decrease the effort needed to comprehend and maintain existing software.

• Reusability. Reusability is resulted from framework’s stable interfaces that
provide generic building blocks to create new applications. Reusability al-
lows to benefit from the domain knowledge of experienced developers who
developed the frameworks. This can enhance the productivity of applica-
tion developers and promote the quality, reliability, and interoperability of
software.

• Extensibility. A framework defines explicit hook methods or hot-spots that
allow applications to extend its stable interfaces. These hot-spots separate
the stable interfaces that describe general behavior and interaction in the
application domain from the variations required by different applications.

• Inversion of Control. This property was discussed earlier in this section. Un-
like traditional software libraries, frameworks define the main control loop
of applications, and hence, they may call the operations of the applications.
Therefore, the application developer is responsible for implementing the oper-
ations (callback methods) that respond to notifications from the framework.

8

A p p M e n u L i s t e n e r

+ m e n u A b o u t T o S h o w ()

A p p V i e w

+ c r e a t e P a r t C o n t r o l ()

+ d i s p o s e ()

< < c r e a t e > >

M e n u M a n a g e r

+ s e t R e m o v e A l l W h e n S h o w n ()

+ a d d M e n u L i s t e n e r ()

+ c r e a t e C o n t e x t M e n u ()

< < i n t e r f a c e > >

I M e n u M a n a g e r

+ s e t R e m o v e A l l W h e n S h o w n ()

+ a d d M e n u L i s t e n e r ()

< < a b s t r a c t > >

V i e w P a r t

< < i n t e r f a c e > >

I M e n u L i s t e n e r

+ m e n u A b o u t T o S h o w ()

< < a b s t r a c t > >

W o r k b e n c h P a r t

+ c r e a t e P a r t C o n t r o l ()

+ d i s p o s e ()

< < i n t e r f a c e > >

I V i e w P a r t

< < i n t e r f a c e > >

I W o r k b e n c h P a r t

+ c r e a t e P a r t C o n t r o l ()

+ d i s p o s e ()

< < c r e a t e > >

F r a m e w o r k

A p p l i c a t i o n

Figure 2.1: A view derived from the Eclipse framework

2.2 Framework Usage

Object-oriented application frameworks provide domain-specific concepts which are
generic units of functionality. For example, a graphical user interface (GUI) frame-
work such as JFace offers implementation for a set of GUI concepts, which in-
clude a text box, tree viewer, and context menu. Framework-based applications are
constructed by writing completion code that instantiates these concepts through
specializing framework hot-spots.

Depending on how a framework could be specialized, it is called a white-box,
grey-box, or black-box framework [33]. The use of a white-box framework is based
on inheritance and dynamic binding. A white-box framework is specialized by
deriving new subclasses from the base abstract classes of the framework and by
overriding and implementing required operations. On the other hand, in black-
box reuse, applications are constructed through plugging together concrete classes
(components) provided by the framework. Usually, a framework is not purely a
white-box or a black-box framework. Instead, the framework specialization may

9

public class AppView extends ViewPart {
TreeViewer viewer;
. . .
public void createPartControl() {

. . .
hookContextMenu();
. . .

}
private void hookContextMenu() {

menuMgr = new MenuManager(“#PopupMenu”);
menuMgr.setRemoveAllWhenShown(true);
menuMgr.addMenuListener(new AppMenuListener());
Menu menu = menuMgr.createContextMenu(viewer.getControl());
. . .

}
public void dispose() {

. . .
}
. . .

}
public class AppMenuListener implements IMenuListener {

public void menuAboutToShow() {
. . .

}
}

Figure 2.2: Part of the code for creating an Eclipse tree viewer that contains
a context menu on top of the Eclipse framework

utilize both white-box and black-box reuse which is referred to as grey-box reuse.
In grey-box reuse, a part of the specialization is performed by composing existing
components of the framework and the missing functionality is implemented through
deriving new subclasses.

Figure 2.1 illustrates some parts of a class diagram for specializing the Eclipse
framework for the purpose of creating an Eclipse view that contains a context menu.
Figure 2.2 also displays its corresponding Java implementation and Figure 2.3 rep-
resents a screenshot of this view. This example is actually an example of grey-box
reuse. The framework developer provides a set of classes and interfaces that can not
be changed by application developers. Framework classes provide service methods
that can be called by the application code and the rest of the framework methods are
private implementation details. Examples of service methods in Figure 2.1 include
setRemoveAllWhenShown(), addMenuListener(), and createContextMenu(). As
Figure 2.1 illustrates, framework classes define the architectural skeleton to which
the application program must conform. Application programs can define their own
classes that may extend classes from the framework (e.g., AppView) and may imple-
ment interfaces from the framework (e.g., AppMenuListener). An application pro-
gram may interact with a framework in ways that are permitted by object-oriented
programming languages. These application-framework interactions include: sub-
classing (e.g., AppView), implementing interfaces (e.g., AppMenuListener), over-
riding superclass methods (e.g., dispose()), calling framework service methods
(addMenuListener()), creating instances of framework classes (e.g., MenuManager),
and holding on to framework objects (e.g., viewer.getControl()). As could be

10

Figure 2.3: A screenshot of the Eclipse tree viewer resulted from the code in Fig-
ure 2.2

understood from this particular example, to implement a single functionality, ap-
plication developers may require to employ multiple application-framework inter-
actions in their programs.

At runtime, when the application program is started, the framework code starts
running first and at selected times it will run the methods from the application
program. These “selected times” are referred to as callbacks from the framework to
the application code. Therefore, a callback is a transfer of control from the frame-
work to the application program and is accomplished by the framework invoking a
method defined in the application program, typically overridden framework meth-
ods. The application code does not run except during callbacks. Hence, callbacks
are the only opportunity for the application program to affect the behavior of the
framework. During callbacks, application programs can implement their own logic
as well as calling the service methods on the framework. Callback methods often
pass objects from the framework as parameters to the application program.

2.2.1 Differences between Application Frameworks and Soft-
ware Libraries

Both application frameworks and software libraries offer the possibility to reuse
existing code. However, when reusing software libraries, the application program
always decides when to call the library. Libraries may require that requests from the
application program have the appropriate kinds of parameters or that the requests
are sequenced correctly. Nevertheless, libraries never require that the application
program has a particular structure and they never call the application program.
On the other hand, application frameworks call the application code, and it is this
inversion of control that is unique to application frameworks as discussed earlier in
this chapter.

11

A library publishes a list of provided services that it provides for application
programs. Then, application programs are said to ask services that are defined
by the library. On the other hand, in framework-based application development,
the application program both provides and requires services of a framework. It
provides services by implementing framework callback methods. It requires services
by calling framework service methods.

2.3 Advantages and Disadvantages of Frameworks

Application frameworks have both advantages and disadvantages. These advan-
tages make them attractive for creating new applications while their disadvantages
hinder their usage. In the following, these advantages and disadvantages are dis-
cussed.

Hautamäki [48] names the following benefits for frameworks:

• Reuse of both code and design. As discussed earlier, one of the main benefits of
frameworks is that they offer the reuse of both code and design. A framework
is not simply a collection of classes, but also defines a generic design and helps
the user to apply the underlying architecture.

• Stored experience. Frameworks are often implemented by developers who
are expert in an application domain. Problems are solved once and design
decisions are used again and again. In other words, by offering reusable
design and code, frameworks reduce the amount of architectural decisions
and implementation efforts that application developers have to make.

• Improved software development cycle. As a result of reusability of code and
design that frameworks offer, application developers typically require to put
less effort on programming, testing, and debugging.

• Maintainability. Applications developed on top of a framework utilize the
same protocols and share the same architecture. This can result in better
maintainability on top of mature frameworks. Nonetheless, this can be also
a source of difficulty if the framework is not stable enough.

Despite several benefits that frameworks offer, they suffer from a number of
difficulties as well. Fayad et al. [33] name the following difficulties with frameworks
from the viewpoint of framework usage:

• Framework development effort. The advantages of developing frameworks are
only obtained when they are reused several times. Nevertheless, it is hard
to predict a framework’s reusability beforehand. Especially, changes in the
domain requirements can cause the framework to become outdated earlier
than expected, and therefore, the framework development investment may
not be cost-effective.

12

• Learning curve. One of the main problems in framework-based application
development is the steep learning curve [33]. The complexity, variability, and
abstract nature of frameworks’ APIs make them difficult to learn. Moreover,
since the classes in a framework are typically designed to work together, one
may require to learn several classes all at once. Many modern frameworks
also suffer from the lack of proper documentation which makes the situation
even worse.

To cope with these problems, many authors emphasize the role of example
applications in learning frameworks [39, 33]. Example applications illustrate
how the framework’s classes can be instantiated, specialized, and used in an
application to gain a desired functionality. Nevertheless, there are a number
of difficulties associated with this approach as well. First of all, too much
emphasize on learning frameworks from example applications can prevent ap-
plication developers from going beyond the functionality that is explicitly
present in the examples [126]. Locating the code that implements the desired
functionality in the source code of example applications could be challeng-
ing as well since the code is often scattered across and tangled with code
implementing other functionalities. Finally, finding the example applications
themselves could be difficult too.

• Integratability. Software developers often require to use several frameworks
altogether in the same application. However, integrating frameworks whose
control loops are not designed to cooperate with other frameworks could be
challenging.

• Maintainability. As the requirements of the framework change, the framework
needs to evolve accordingly. Consequently, the applications developed on top
of that framework require to evolve as well. Therefore, if the framework is
not stable enough, its evolution can result in extra maintenance effort.

• Validation and defect removal. Validating and debugging applications imple-
mented on top of frameworks could be challenging because of different reasons:
(i) it is often difficult to distinguish bugs in the framework from bugs in the
application code; (ii) the framework’s inverted flow of control alternates be-
tween the application-specific method callbacks and application-independent
framework infrastructure; and (iii) frameworks typically employ several levels
of indirection (e.g., dynamic binding) to improve extensibility.

• Lack of standards. There are currently no standards for designing, imple-
menting, documenting, and using frameworks.

2.4 Summary

This chapter presented the necessary background information about object-oriented
application frameworks and differentiated them from traditional libraries. The

13

main property of frameworks that distinguishes them from traditional libraries is
the property of inversion of control, i.e., the framework decides when and where to
call the client application code instead of the reverse.

For an application developer the most important part of a framework is its
API. The framework’s API consists of several variation points or hot-spots through
which frameworks are specialized for specific applications. Although frameworks
offer several advantages such as the possibility to reuse both code and design,
they are often difficult to use for a number of reasons. Most importantly, they
typically have the issues of complex APIs and incomplete user documentation.
To cope with these challenges, application developers often benefit from example
applications. Nevertheless, this approach could be problematic as well since the
code implementing a desired functionality is often scattered in the source code of
those applications.

14

Chapter 3

Related Work

This chapter presents an overview of related work in the areas of framework doc-
umentation (Section 3.1), framework usage comprehension (Section 3.2), specifi-
cation mining (Section 3.3), concept location (Section 3.4), aspect mining (Sec-
tion 3.5), and program slicing (Section 3.6).

3.1 Framework Documentation Approaches

As mentioned earlier, object-oriented application frameworks allow the reuse of
both software design and code. Nevertheless, to be able to utilize frameworks effec-
tively, appropriate framework documentation plays an important role [88]. John-
son [64] mentions three aspects that a framework documentation must cover: (1)
the purpose of the framework, (2) how to use the framework, and (3) the design of
the framework. However, we are interested in the usability of frameworks, and so,
we concentrate on this aspect of framework documentation. The difficulty of the
framework usability has led to the proposal of several framework documentation
techniques, some of which are discussed below.

Cookbooks. Krasner and Pope [77] provide the API documentation in the form
of cookbooks. Each entry in the cookbook is a recipe that explains a typical problem
of using a framework and gives a stepwise guidance for solving it. Pree et al. later
in [98] introduce the concept of active cookbooks. An active cookbook includes not
only textual recipes, but also interactive elements to provide information on demand
and to perform certain programming tasks in a semiautomated manner. However,
documenting frameworks in the form of cookbooks is quite constraining. Cookbooks
specify only a limited number of predefined ways of using a framework [20].

Ortigosa et al. [92, 91] introduce an advanced version of cookbooks called Smart-
Books. SmartBooks supply instantiation rules describing the necessary tasks to be
done in order to specialize the framework. These instantiation rules are used by an

15

automated intelligent agent to guide the application developer during the frame-
work specialization process.

Froehlich et al. [35] document the framework hot-spots, i.e., the way a frame-
work is used, in the form of hooks. Hooks are similar in intent to textual cookbook
recipes but are more formal and structured.

Patterns. Gamma et al. [39] define a design pattern as “a description of commu-
nicating objects and classes that are customized to solve a general design problem
in a particular context”. In other words, a design pattern describes a recurring
solution to a common design problem. Gamma et al. [39] also introduce a cat-
alogue of twenty-three design patterns as an attempt to help software engineers
reuse successful designs. Design patterns can be used to document the framework’s
design as well as the way it is commonly used. The structure of a pattern is of-
ten represented as a class diagram which works as a template outlining the roles
and the relationships for the program elements (e.g., classes, methods, or fields)
participating in the solution [125].

Johnson [64] was the first to propose documenting frameworks using patterns.
For this purpose, he introduced an informal pattern language in which each pattern
describes a problem that occurs commonly in the problem domain of the framework,
and also describes how to solve that problem. Later, he used design patterns to
document the frameworks [65].

Pree [97] introduced the notion of meta-patterns as abstractions of design pat-
terns that describe how to construct frameworks independent of a specific domain.
The notion of meta-patterns was later used by Tourwé and Mens [122, 120] to
document framework hot-spots and support framework-based software evolution.

Hakala et al. in FRamework EDitor (Fred) project [45] use specialization pat-
terns to define the specialization interface (i.e., hot-spots) of the framework. Fred
supports both the framework developers in creating the specialization patterns for
the framework, and the application developers in specializing the framework by
providing a step-by-step task list implied by the specialization pattern. Fred dy-
namically adjusts this task list according to the choices made by the programmer,
and checks that the constraints of the framework are not violated.

Recently, Fairbanks et al. [32] introduced design fragments as a pattern that
encodes a conventional solution to how a program interacts with a framework to
accomplish a goal. The application developer has to manually browse the catalog
of available design fragments and select the one that fits her requirement. Then,
she has to manually bind the selected design fragment to the application code.
Afterwards, the conformance of the application code to the selected design fragment
is automatically checked and violations are reported.

Specific Approaches. Fontoura et al. [34] propose UML-F, a special profile of
the UML for representing frameworks’ API. The UML-F provides special UML

16

stereotypes and tags for annotating UML diagrams to encode framework con-
straints. Application developers can use a UML-F model to create the design
of their framework-based applications. An automated wizard then transforms the
model into code.

Hou et al. [59] use the Framework Constraint Language (FCL) to specify the
interface between the framework API and the user code such that the specification
describes all legal uses of the framework API. The language has a number of built-in
predicates. The semantics of FCL is based on a first-order logic extended with set
and sequence operations.

Antkiewicz and Czarnecki [7, 6] propose to use Framework Specific Modeling
Languages (FSMLs) to model how framework-provided abstractions are used in the
framework completion code, and automatically check for violations of framework
rules. The abstract syntax of an FSML defines a decomposition of a framework-
provided concept into a hierarchy of mandatory and optional features represented
as a feature model [22]. Features represent distinguishing characteristics of concepts
and can be used to discriminate among concept instances. Consequently, concept
instances are described by configurations of features.

Although framework documentation approaches can help application developers
learn how to implement a concept of interest on top of a framework, software frame-
works often lack complete documentation, and not all the framework-provided con-
cepts are necessarily documented by the framework developers. Moreover, frame-
work documentation requires manual effort and consequently, documentation of the
framework may become outdated as the framework evolves. On the other hand,
the FUDA framework comprehension technique presented in this dissertation can
automatically extract implementation templates for concepts of interest from ex-
ample applications implementing those concepts. As will be described later in
Chapter 6, a user study with twelve highly-skilled Java programmers shows that
FUDA templates can serve as a substitute for framework documentation when no
documentation is available. In particular, FUDA templates can be regenerated
automatically for new releases of a framework.

3.2 Framework Usage Comprehension

Although framework documentation approaches can help framework comprehen-
sion, their main difficulty is that manual effort is needed to create the correspond-
ing documentation. Nonetheless, framework developers are not often interested
in creating suitable documentation. Therefore, many modern application frame-
works have the difficulty of incomplete user documentation. On the other hand,
object-oriented application frameworks are often accompanied by several example
applications showing how to specialize those frameworks for different purposes.
Consequently, several framework comprehension approaches have been proposed
in literature that benefit from example applications for the purpose of framework

17

usage comprehension. These approaches often recommend the application devel-
opers to follow the Monkey See/Monkey Do rule for framework-based application
development: “Use existing framework examples as a guide to develop new ap-
plications” [38]. This section provides an overview of these techniques in three
different categories: code assistants, framework API comprehension, and example
application finders.

Code Assistants. There are a number of approaches that use existing frame-
work applications as a guide to aid application developers during programming.
Examples of these approaches include Prospector [85], PARSEWeb [116], XSnip-
pet [106], Strathcona [57], CodeWeb [89], and FrUiT [14]. Given two API types τin
and τout as a query, both Prospector and PARSEWeb mine for code snippets that
transform an object of type τin to another object of type τout. For this purpose,
Prospector mines signature graphs generated from API specifications and jungloid
graphs representing code, and ranks the results by the shortest path from τin to
τout. On the other hand, PARSEWeb interacts with the Google code search engine1

to gather relevant code samples. Then, it extracts method call sequences from the
directed acyclic graphs (DAGs) built out of the abstract syntax trees (ASTs) of the
collected code samples.

Both XSnippet and Strathcona are context-sensitive code assistant tools that
maintain a repository of code snippets. During application development, they com-
pare the context of the programming task at hand with the code snippets in the
repository and recommend relevant coding examples. In XSnippet, relevancy is
defined by the context of the code, both in terms of the parents of the class un-
der development as well as lexically visible types. On the other hand, Strathcona
applies six heuristics separately that match the structural context descriptions en-
capsulated in the developer code with that encapsulated in the example code. The
result is a set of code snippets that occur most frequently when applying all pro-
posed heuristics.

Both CodeWeb and FrUiT mine for frequent API usage patterns as association
rules, e.g., subclass A ⇒ call m, and keep them in a repository. FrUiT uses such
rules to automatically suggest implementation steps that are relevant in the context
of the current programming task.

All the approaches mentioned here are mainly code assistants in the context
of a programming task at hand and thus are useful to the understanding of fine-
grained framework extensions, such as how to call a specific framework method
or how to instantiate a particular framework class. Nevertheless, in contrast to
this dissertation, they do not provide a complete code snippet or implementation
template for instantiating a coarse-grained concept which may span multiple frame-
work classes and methods. Moreover, these approaches are most helpful when the
developer knows at least the API elements of interest; they are less helpful if the
developer has only a high level idea of the concept that needs to be implemented.

1http://www.google.com/codesearch.

18

http://www.google.com/codesearch

In contrast, FUDA uses primarily dynamic analysis to allow developers to identify
their concepts of interest by invoking them explicitly, while all these approaches
use static analysis and hence do not support concept identification by invoking
concepts directly from the application user interface. Consequently, in FUDA, as
will be described later in Chapter 4, the developer does not need any knowledge of
the framework API other than the names of the packages in which it resides.

The advantage of static analysis is that it can cope with large body of appli-
cations and potentially incomplete code. However, since FUDA applies dynamic
analysis, it requires complete executable code of applications and needs setting
up the applications’ runtime environment. Nonetheless, the advantage of dynamic
analysis is that it can handle highly polymorphic and reflective code, which is often
a part of modern frameworks.

Framework API Comprehension. Viljamaa in Pattern Extractor [125, 126],
Thummalapenta and Xie in SpotWeb [117], and Schäfer et al. in [110] propose ap-
proaches in which sample applications of the framework are used to provide a better
understanding of the framework API. The main aim of these approaches is to pro-
vide a starting point for the developers to investigate and learn the framework API.
In Pattern Extractor, the formal concept analysis [40] is adapted to reverse engineer
the framework’s API and produce Fred specialization patterns (see Section 3.1) from
the Java source code of the framework itself and its example applications. SpotWeb
mines the framework’s sample applications gathered from open-source repositories
to determine the framework’s hot-spots and cold-spots. Hot-spots are defined as API
classes and methods that are frequently used, while cold-spots are those that are
rarely used in the sample applications. Finally, in Schäfer et al.’s approach, a clus-
tering technique that employs usage data from framework instantiations is applied
to group the elements of a framework API into building blocks that are typically
used together. The assumption underlying this approach is that the more often
framework elements are used together by existing sample applications, the more
likely these elements are conceptually related to each other. This implies that they
should be considered together during framework-based application development.

Similar to FUDA, these approaches also aim to provide a starting point for
developers to investigate and learn the framework API. However, in contrast to
FUDA, which provides an implementation template for a concept of interest, these
approaches aim to provide a general view of the framework API and they do not
target any specific framework-provided concept. In particular, they do not provide
any example code snippets for implementing a desired framework-provided concept
that is the goal of this dissertation.

Example Application Finders. All the approaches introduced so far in this
section benefit from sample applications for the purpose of framework compre-
hension. Therefore, finding appropriate example applications plays an important
role in these framework comprehension approaches. To address this requirement,

19

a number of techniques, such as Assieme [56] and XFinder [24], are proposed in
literature that aim to find example applications for a desired framework.

Assieme is a special purpose Web search engine that allows developers to ask
queries attempting to identify an appropriate API for a problem, seeking more
information about a particular API, and seeking samples that use an API. For this
purpose, Assieme combines information from Web-accessible Java Archive (JAR)
files, API documentation, and Web pages that include explanatory text and sample
code. Even though it has been shown that Assieme can generate better results than
general-purpose Web search engines such as Google, Assieme may still generate
many results and it is up to the developer to discriminate or to choose something
among the results. Moreover, the example applications found by Assieme may
contain lots of application-specific code and it is up to the user to understand
which parts of the code implement her target concept. On the other hand, in this
dissertation, the developer has already a number of example applications at her
hand and she is interested in seeing how those sample applications implement her
desired concept.

XFinder is an extension of Mismar [23], a concept-oriented documentation
toolset that focuses on code artifacts and their relationships. XFinder accepts
concept implementation templates expressed in Mismar as input and tries to find
instances of those templates in its code base. Therefore, XFinder does the reverse of
the work done in this dissertation. More specifically, FUDA uses example applica-
tions to generate concept implementation templates, while XFinder uses templates
to find relevant example applications.

3.3 Specification Mining

Although generating specifications has been studied for decades in different areas
of software engineering [132, 31, 81, 19], the term specification mining was first
introduced by Ammons et al. [5] as an approach for automatically discovering the
protocols (or rules) that a program must follow when interacting with an API
(or library). The focus of this section is on this kind of specifications. A large
number of work on this topic have been reported in literature which can be mainly
classified into static [1, 78, 137, 79, 114, 101, 50] and dynamic [5, 83, 142, 84, 82, 109]
approaches. Static approaches extract the specifications directly from the source
code while dynamic approaches infer the specifications from the runtime traces. In
the following paragraphs, an overview of these approaches is provided.

Static Approaches. Interacting with APIs (or libraries) requires following a pro-
tocol such as following a specific set of method calls. Many of the static specification
miners analyze the source code of client applications to generate specifications of
method calls [141, 1, 79]. Xie and Pei [141] introduce MAPO. Given a query that
characterizes an API by a method, class, or package, MAPO searches relevant

20

source files from open source repositories available on the Internet. Then, method
call sequences are extracted from those source files. Afterwards, sequential pat-
terns are mined using the closed sequential mining technique, and the results are
presented to the user at the end. Acharya et al. [1] present a methodology to auto-
matically extract API usage scenarios as partial orders among user-specified APIs,
directly from API client source code. For this purpose, they statically generate
traces related to the APIs of interest. Next, they apply a frequent partial order
miner named FRECPO [94] to generate the specifications. LtRules implemented
by Liu et al. [79] extracts temporal specifications from known good programs using
the BLAST [51] model checker. More specifically, it uses a number of predefined
templates to generate all candidate temporal specifications, and checks the candi-
date specifications against known good client programs using the BLAST model
checker. Those candidate specifications that pass the BLAST test are considered
to be specifications.

Some other work on static specification mining accept a type as input and gen-
erate a temporal specification in the form of an automaton that encodes legal call
sequences of operations on that type. A call sequence is considered legal if it does
not lead to an assertion failure or exception. For instance, Static WML [137] infers
pairs of methods in a class that may raise an exception when called successively.
Other examples include JIST [4] presented by Alur et al. and Permissive Inter-
faces [50] introduced by Henzinger et al.

A number of approaches (e.g., [78, 131, 100]) not only determine protocols of
method calls, but also detect violations of those protocols in the source code of client
applications. For instance, Li and Zhou developed PR-Miner [78] in which they use
frequent itemset mining to extract highly correlated function calls from the source
code of a software system. Next, they use the obtained correlated function calls
as specifications and analyze the source code to find instances of sets of function
calls that violate those specifications to detect bugs. A similar approach named
JADET [131] is proposed by Wasylkowski et al. in which the tool uses frequent
closed itemset mining technique to infer ordering patterns among method calls and
to detect abnormal usages. Ramanathan et al. in CHRONICLER [100, 101] infer
function precedence protocols in the form of “a call to procedure q must always
be preceded by a call to procedure p”. For this purpose, their approach collects
predicates along each distinct path to each procedure call and analyzes them using
sequence mining techniques to create a collection of feasible precedence protocols.
Deviations from these protocols found in the program are tagged as violations, and
represent potential sources of bugs.

Dynamic Approaches. The work by Ammons et al. [5] is the pioneering work
on dynamic specification mining in which they introduce a machine learning ap-
proach to mine specifications that reflect temporal and data dependency relations
of a program through traces of its API-client interaction. The specifications dis-
covered model the API-client interaction protocols and are expressed using a finite

21

state automata (FSA). To handle traces of buggy applications, their approach re-
quires human experts to decide whether a violation is really a bug. Lo and Khoo
in SMArTIC [83] aim to improve the specifications mined by Ammons et al. by
(1) early identifying and filtering the erroneous traces from the input traces, and
(2) clustering related traces to localize the learning process to groups of related
execution traces. Moreover, they use probabilistic FSA (PFSA) instead of FSA to
express the specifications mined.

Perracotta [142] developed by Yang et al. generates temporal API rules involving
only two events, i.e., of the form of A → B, from dynamic traces. For instance,
acquiring a lock should be eventually followed by releasing the lock. In order to
generate longer rules, they propose the notion of chaining. For example, if both
A → B and B → C are significant, they can be merged to form A → B → C
which will be significant as well. Lo et al. in CLIPER [84] also mine for temporal
patterns, but in the form of iterative patterns, defined as the “commonly occurring
series of events exhibited repeatedly within a sequence [trace] and across multiple
sequences [traces]”. Using CLIPER, it is possible to capture temporal patterns
that may occur multiple times within traces because of loops and may include more
than two events, while using the Perracotta it is impossible to do so. Some other
work that extract temporal specifications from dynamic traces include Quark [82],
ADABU [25], Javert [36], GS [37], and WN [133].

Sankaranarayanan et al. [109] propose a technique to automatically infer declar-
ative specifications of the API behavior for target concepts such as the raising of
an exception, the return of a value by a function, or the printing of a specific mes-
sage onto the output. To this aim, their approach runs several unit tests on the
library for the target concept. Next, the data collected by these runs are fed into
an inductive learner to obtain specifications expressed in datalog/Prolog.

Different from framework usage comprehension techniques presented in Sec-
tion 3.2, the specification mining approaches mainly extract behavioral and tem-
poral protocols for interactions between the applications and the APIs of libraries,
while framework usage comprehension approaches provide aid for understanding
the framework API and/or framework-based application development. In contrast
to specification mining approaches, FUDA also does not recover API interaction
protocols. The latter is important for library API usage, but less so for frame-
works. Frameworks typically follow inversion of control by enforcing protocols in
framework rather than application code.

Additionally, dynamic specification mining techniques often require several run-
time traces in order to recover different legal execution sequences. On the other
hand, as will be discussed in Chapter 5, in this dissertation we aim to keep the
number of traces as small as two to make the FUDA technique attractive in prac-
tise.

22

3.4 Concept Location

Identifying the relevant parts of an application source code that implement a desired
functionality or requirement is an important problem in program comprehension
and maintenance; it is often referred to as the concept or feature location problem
in software engineering literature. Although it might be easily possible to manually
perform the concept location in small software systems, for large and complex
systems, it could be impractical without tool support. To address this issue, a
number of techniques have been proposed in literature [104, 44, 149, 112, 9, 80,
29]. Depending on how the information is extracted from the source code, these
techniques can be classified into three main categories: static [104, 44, 17, 112, 149,
86], dynamic [9, 139, 30, 140], and hybrid approaches [29, 80]. Static approaches
are based only on the information statically retrieved from the source code without
actually executing it. On the other hand, dynamic approaches collect information
during runtime by using a number of use cases. Hybrid approaches combine the
two.

The difficulty of the pure dynamic approaches is that they are highly dependent
on the input data that are considered during the runtime to collect information
and generalizing from this data might not be safe. Additionally, they often require
several use cases and designing these use cases might be hard, especially when the
concept is not user-triggerable. On the other hand, static approaches are more
conservative and safer. However, since many interesting properties of programs
are statically undecidable (e.g., which paths are taken at runtime), static analyses
are limited to approximative solutions that might be practically imprecise. Hybrid
approaches try to solve these problems and take the advantages of both static and
dynamic techniques. In the rest of this section, an overview of different concept
location techniques is provided.

Static Approaches. As mentioned earlier, static concept location techniques
extract information regarding the implementation of a given concept directly from
the subject application source code without executing it. There are three main
categories of static concept location techniques: exploratory approaches, lexical
code searchers, and information retrieval (IR)-based techniques.

Exploratory Approaches. Exploratory approaches typically provide tools by which
users can interactively explore and/or query the source code of an application.
These techniques are mainly based on the assumption that the user has some ini-
tial knowledge about the implementation of the concept at the beginning and then
builds up her knowledge during the process of concept location [148, 149]. Con-
sequently, these approaches are iterative, require a lot of human involvement, and
are hard to automate. Examples of these approaches are FEAT [104, 103], Con-
cernMapper [105], Active Models [21], JQuery [63], and Sextant [28, 111].

Chen and Rajlich [17] propose the idea of a computer-assisted concept location

23

process using the abstract system dependence graph (ASDG). An ASDG illustrates
the dependencies among routines, types, and variables at an abstract level. The
navigation on the ASDG is computer-assisted and the user takes on the search for
a concept’s implementation.

Robillard et al. present FEAT [104, 103] and ConcernMapper [105] as Eclipse
plug-ins that allow a software developer to iteratively create, visualize, and ana-
lyze concern graphs, where concepts are referred to as concerns. A concern graph
localizes an abstracted representation of a concern by explicitly documenting the
dependencies among the different sections of source code that play a role in im-
plementing that concern. This abstracted representation of the concern can be
mapped to the program source code to recover further implementation details.

Coelho and Murphy introduce an active model [21] as a structure diagram that
aims to reduce graphical complexity by presenting the right information about the
crosscutting concern to the developer at the right time. For this purpose, an active
model initially uses a description of the crosscutting concern generated by other
tools (e.g., FEAT). Next, by using a combination of interaction techniques and a
few automated operations, it specifies further crosscutting concern information of
interest and displays them to the user. The user continues interacting with the
model through the provided automated operations until she is satisfied with the
investigations. In this way, the developer can focus on a slice of the model of the
entire system.

Janzen and De Volder devise JQuery [63], a code query tool which is imple-
mented as an Eclipse plug-in on top of a modified version of the TyRuBa [128]
logic programming language as its query engine. The syntax of the TyRuBa is very
similar to that of Prolog. JQuery provides a tree-viewer browser for displaying
and navigating query results. In JQuery, a software developer can define her own
top-level logic queries and execute them against a logic database representation of
her source code. Nodes in the tree can then be queried individually in the same
manner, allowing further investigation of the complex web of relationships that
exist among scattered elements of code. In this way, investigations consisting of
multiple searches can be done within a single window without losing the context.

Eichberg et al. introduce Sextant [28, 111], a graph-based software exploration
tool that follows a query-based approach for both searching program elements and
browsing along different kinds of relations among the program elements. Nodes
in Sextant graphs represent program elements discovered in the search activity
and edges represent relationships among those program elements. In Sextant, it is
possible to navigate through software systems that include several kinds of artifacts.
For example, it is possible to navigate from the source code to some configuration
files or XML deployment descriptors and back. Similar to JQuery, all navigations
are visualized in Sextant in one view and hence, all single steps of the exploration
process are kept connected.

Lexical Code Searchers. Some approaches provide facilities to lexically search the

24

source code of applications using regular expression queries to locate concepts.
AspectBrowser [43], Prism [145], and Find-Concept [112] are examples of this kind
of approaches. AspectBrowser allows users to enter grep-like regular expressions.
Then, it lexically searches programs for those expressions and visually represents
the results. Prism also searches the source code for lexical patterns. However, it
provides an automated advisor that provides suggestions for improving the accuracy
of the queries. Finally, Find-Concept expands search queries with synonyms to
locate concerns more accurately in code and also provides source code exploration
facilities to help users explore the code based on the results of the queries.

The problem of lexical code searchers is that they are based on the assump-
tion that strict naming conventions are followed in the source code. Moreover, the
quality of the result is highly dependent on the regular expression queries and the
results may include lots of false positives and false negatives. For instance, fea-
tures like morphology changes, line breaks, and reordered terms may cause regular
expression queries to fail [112].

IR-based Approaches. Information retrieval (IR) is the process of determining the
relevant documents from a collection of documents, based on a query presented by
the user (e.g., search strings in Web search engines). There are a number of concept
location techniques (e.g., [149, 86]) that assume the identifiers and the comments in
the code contain a significant amount of useful information and apply IR techniques
to identify relevant parts of a source code that implement the desired concept.

Zhao et al. [149] introduce SNIAFL as a Static, Non-Interactive Approach for
Feature Location. In SNIAFL, users describe their features of interest using nat-
ural languages. Then, an information retrieval (IR) technique is used to identify
the basic connections between features and source code computational units (func-
tions in this approach). However, because of the imprecision in the results of IR
techniques, they also use a static representation of the source code named BRCG
(Branch Reserving Call Graph) [99] to further retrieve computational units that
may play a role in implementing the desired concept.

In another approach presented by Marcus et al. [86], the concepts expressed in
natural languages are treated as queries and the LSI (Latent Semantic Indexing) IR
technique is applied to retrieve the relevant parts of the source code. LSI derives the
meanings of terms from their usage in the text, instead of a predefined dictionary,
which is an advantage over the lexical code searchers. Unlike SNIAFL which uses
BRCGs to automatically investigate the results further, in Marcus et al.’s approach,
the results should be processed further manually by the user herself.

The same as the lexical code searchers, these approaches also suffer from the
assumption that the developers have followed a specified naming convention. Nev-
ertheless, IR-based approaches are less sensitive to poor search queries compared
to lexical code searchers.

25

Dynamic Approaches. Dynamic concept location techniques require a number
of use cases that exercise the target concept at runtime, and may require some
that do not. The collected traces are then analyzed and mapped to the source
code. One difficulty of dynamic approaches is that execution traces are usually
large and contain lots of irrelevant events. Consequently, as described below, these
approaches typically require at least two traces such that the role of one is to remove
noises from the other one [80].

Wilde and Scully [139, 115] introduce the Software Reconnaissance technique
in which the program is executed using some test cases “with” the desired concept
and some test cases “without” the desired concept. After that, the set of program
elements executed in the “without” tests are subtracted from the set of elements
executed in the “with” tests and the “marker” elements for the desired concept
are found. A similar approach is reported by Wong et al. [140], where the main
difference is that it can help to identify code that is unique to a concept or common
to a group of concepts at different levels of granularity (i.e., files, functions, blocks,
lines of code, etc.).

Dynamic Feature Traces (DFT) is proposed by Eisenberg and De Volder [30].
Similar to two techniques above, the DFT approach is also based on analyzing
the execution traces collected by running the system using a set of test cases that
invoke the target concept and a set of test cases that exclude it. However, the main
difference between DFT and the other two techniques is that it uses some heuristics
to rank the relevance of the code elements found to a concept.

Antoniol and Guehénéuc [8, 9] extend the Software Reconnaissance technique by
introducing the Scenario-based Probabilistic Ranking (SPR) approach with the aim
of concept location in large, multi-threaded, object-oriented software systems. For
this purpose, they use processor emulation, knowledge-based filtering, and proba-
bilistic ranking of events happened in the marked traces.

Salah and Mancoridis [107, 108] identify concepts in terms of marked traces, i.e.,
they demarcate the beginning and the end of a concept’s execution at runtime using
a trace marker utility. These marked traces are also used to provide a hierarchy of
views at different levels of abstraction capturing the concept interactions.

Hybrid Approaches. As discussed before, dynamic concept location techniques
typically require more than one execution scenario to filter noise from dynamic
traces. Hybrid approaches try to address the same issue by using static information.
It has been shown that hybrid approaches are typically more effective than pure
dynamic or pure static ones in terms of the quality of the results [95].

The pioneering work of hybrid concept location is the work done by Eisenbarth
et al. [29]. In this work, the execution traces collected at runtime by invoking the
concept or a set of concepts of interest are represented in the form of a concept
lattice [40]. Then, based on this lattice, various relationships between features and
computational units can be easily recovered. To further refine the results achieved

26

by this concept analysis, a manual static analysis based on the dependency graph
is applied next. Zhao et al. [147], however, mention that the scalability, complexity,
and visualization of concept lattices are the major issues of this approach when it
is applied to the exploration of a large program.

Poshyvanyk et al. in PROMESIR [95, 96] combine the static IR-based technique
that uses LSI [86] with the dynamic approach based on the probabilistic ranking
of events SPR [8, 9]. Both these approaches were introduced earlier in this section.
Developers use the LSI-based approach to query the source code and to get a ranked
list of facts probable to be relevant to the given concept. Using SPR, the user can
analyze dynamic traces of execution scenarios and obtain a ranked list of elements
(e.g., methods and classes) likely to be relevant to the concept exercised under
the given scenarios. Then, these two ranked lists are combined using an affine
transformation [62].

Liu et al. propose SITIR [80], a hybrid concept location technique which is based
on the assumption that a single execution trace, collected by invoking the concept
of interest, includes all the necessary information to locate the main parts of the
source code that are implementing that concept. With respect to this assumption,
they collect an execution trace by invoking the desired concept at runtime and apply
the LSI information-retrieval technique to filter noise from the collected trace based
on a user-defined query expressed in natural languages. To reduce the size of the
trace, they also use trace marking at runtime. Finally, the results are inspected by
the programmer.

None of the concept location techniques discussed in this section explicitly ad-
dress the issue of concept location in the context of framework comprehension.
In other words, unlike the FUDA framework comprehension technique, all of these
concept location techniques focus on retrieving concepts in general application code
rather than framework-provided concepts. Consequently, the results may contain
many application-specific instructions that are irrelevant from the viewpoint of
framework usage. FUDA avoids this problem by focusing on API interaction traces
and removing the application-specific content from those traces.

While FUDA enables the use of different sample applications implementing a
desired concept, all the dynamic and hybrid concept location techniques discussed
here except SITIR [80] work with different traces from a single application. The
use of different applications affords more diversity in the traces and can lead to
better results with fewer traces. In some cases, using different applications may
even be the only way to obtain any useful results. For example, obtaining traces
that use an Eclipse tree viewer in different ways from one application may not be
possible.

Finally, unlike FUDA, none of the dynamic or hybrid concept location tech-
niques discussed here uses API trace slicing with API trace marking. In particular,
although the SITIR [80] and the approach by Salah and Mancoridis [107, 108] for
concept location use runtime trace marking to reduce the size of the traces, none
of them apply slicing or any other technique to identify relevant events to the im-

27

plementation of the desired concept that happen before or after the marked events
and they will lose them. However, FUDA is able to identify such relevant events
by applying a novel API trace slicing approach.

3.5 Aspect Mining

In aspect-oriented programming (AOP) [69], aspects modularize the design and
development concerns that cut across parts or all of the traditionally developed
software systems. One of the important activities in applying AOP onto legacy
software systems is aspect mining [113]. Compared to concept location, aspect
mining can be seen as the reverse activity. More specifically, in concept location,
developers explicitly search the software systems for known concepts or crosscutting
concerns of interest. On the other hand, in aspect mining, developers search the
source code to identify unknown crosscutting program concerns in software systems
and modularize them into aspects. The same as the concept location techniques,
the aspect mining approaches can be also mainly classified into static [87, 15, 121,
47, 13], dynamic [12, 119], and hybrid [11] ones. Some of these approaches are
briefly discussed below.

Marin et al. [87] devise an aspect mining technique based on fan-in analysis.
The idea is that if a method is called many times from many different places, it is
likely to represent a functionality that is scattered across the code. Based on this
idea, the set of methods that have a fan-in above a certain threshold are analyzed
(largely manually) and candidate aspects are identified.

Bruntink et al. [15] use the output of code clone detectors (e.g., CCFinder [66])
to identify aspect candidates. A code clone is defined as a set of code fragments
that are duplicated (or cloned). In this work, a grade is attached to each code clone
based on some metrics. Code clones that are scored above a threshold value are
then chosen as the aspect candidates.

Tourwé and Mens [121] introduce an approach for aspect mining based on an-
alyzing the identifiers used in the program. The assumption in their approach is
that programmers often follow naming conventions to associate related but distant
program entities. They use formal concept analysis to group program entities with
similar identifiers. Then, the groups which have at least a certain number of el-
ements (e.g., 4) are marked as seeds for potential aspects. These seeds are next
manually analyzed by the user to identify valid aspects.

Tonella and Ceccato [119] suggest a pure dynamic approach in which they apply
formal concept analysis to identify the relationship between execution traces and
executed computational units. In another work, Breu and Krinke propose a method
named DynAMiT [12] in which program traces reflecting the run-time behavior of
a system are investigated for recurring execution patterns. Breu also reports on a
hybrid approach in [11] where the dynamic information of the previous DynAMiT
technique is complemented with static information such as static object types.

28

As with aspect mining approaches, the FUDA framework comprehension tech-
nique also addresses the problem of understanding crosscutting concerns. Neverthe-
less, FUDA aims to locate the implementation of user-specified framework-provided
concepts that may be scattered across and tangled with code implementing other
concepts, while aspect mining methodologies search for unknown crosscutting con-
cerns and aim to modularize them into aspects. Additionally, FUDA does not
extract the scattered code segments into separate aspect modules, but leaves them
inline and supports their localization through traceability links between the concept
implementation templates and sample applications.

3.6 Program Slicing

Program slicing was originally defined by Mark Weiser [134, 135] as an executable
subset of program statements that preserves the original behavior of the program
with respect to a subset of variables of interest V at a program point p. In other
words, the values of the variables in V at program point p are the same in both
the original program and the slice. Weiser’s slices are executable programs that
are constructed by removing zero or more statements from the original program.
After original definition by Weiser, several variations of program slicing with various
applications in software engineering have been introduced in literature. Some of
these variants are static slicing [135], quasistatic slicing [124], dynamic slicing [73],
simultaneous dynamic slicing [46], and conditioned slicing [16]. In the following,
we talk in more detail about static slicing and dynamic slicing which are the main
categories of slicing techniques.

Static Slicing. The original definition of program slicing by Weiser is referred to
as static slicing. However, Weiser himself in [136] showed that computing the mini-
mal subset of program statements that satisfies his definition of slice is undecidable
and approximation algorithms are required. For the purpose of this approximation,
he used data flow analysis on control flow graphs to compute intraprocedural and
interprocedural slices. Intraprocedural slicing refers to slicing a program that con-
sists of just one method with no calls, while interprocedural slicing refers to slicing
a program consisting of different methods and calls.

Ottenstein and Ottenstein [93] provided a more efficient algorithm for intrapro-
cedural slicing by defining a slice as all program statements and predicates that may
influence the value of a variable v at a program point p. This definition of slice has
been also referred to as backward slice in contrast to forward slice which is defined
as all program statements and predicates that may be influenced by the value of
variable v at program point p. Ottenstein and Ottenstein used a graph reachabil-
ity algorithm on a Program Dependence Graph (PDG) to compute slices. A PDG
consists of nodes representing the statements of the program, while edges carry
information about control and data dependencies among them. In this algorithm,

29

backward (forward) intraprocedural slicing from program point p is backward (for-
ward) reachability in the PDG from node p.

Horwitz et al. [58] extended the PDG based algorithm to an interprocedural
version that uses the System Dependence Graph (SDG) to compute backward (for-
ward) slices. A SDG consists of a collection of PDGs for each procedure and
interprocedural edges connecting calls to entries, actual parameters to formal pa-
rameters, and procedure results to call sites. Although the Horwitz’s algorithm was
originally designed for procedural languages like C, the same ideas work for a sub-
set of Java that excludes threads and exceptions. Later work by Ball/Horwitz [10],
Choi/Ferrate [18], and Allen/Horwitz [3] extended the algorithm to handle jumps
(e.g., goto, break, etc.) and exceptions (i.e., try, catch, throw).

Dynamic Slicing. Static slicing does not make any assumptions regarding the
program inputs. In other words, static slicing preserves the value of a variable v

at a program point p for all program inputs, and therefore, it covers all program
executions. However, there can be situations where one is interested in a slice
that preserves the program’s behavior for a specific program input. This type of
slicing is called dynamic slicing and was originally introduced by Korel and Lasky
in [72]. In other words, the purpose of dynamic slicing is to identify all the program
statements that affect a variable of interest in a particular program execution.

There are two main types of dynamic slicing approaches [76]: executable dynamic
slicing and non-executable dynamic slicing. The aim of executable dynamic slicing
approaches is to produce dynamic slices that are executable. For example, the
original dynamic slicing approach presented in [72] provides an iterative algorithm
based on data flow and control flow dependencies to compute executable dynamic
slices. In this algorithm, if any occurrence of a statement in the execution trace is
included in the slice, then all other occurrences of that statement are also included
in the slice.

Non-executable dynamic slicing approaches produce slices that are not neces-
sarily executable. For example, Agrawal and Horgan [2] introduced an approach for
computing dynamic slices that uses a Dynamic Dependence Graph (DDG) to take
into account different occurrences of a given statement that might be affected by
various sets of statements due to redefinitions of variables. In the DDG, there is a
distinct vertex for each occurrence of a statement in the execution trace. The main
issue of this approach is that the size of the graph can become too large. In another
work, Kamkar [67] presents an algorithm which is based on graph reachability in
dependence graphs. During the program execution, its execution trace is recorded
and based on that, an execution tree with dependence information is constructed.
Then, the slice is computed by traversing the execution tree backwards with re-
spect to the dependencies. Zhang et al. [146] proposed three new, more precise
algorithms for dynamic slicing, the most efficient of which is called the Limited
Processing (LP) algorithm where the dynamic dependence graph is constructed
on-demand in response to dynamic slicing requests from the execution trace that

30

is saved on the disk. While this approach greatly reduces the size of the dynamic
dependence graph held in memory, the on-demand construction of the dynamic
dependence graph is quite slow since it requires repeated traversals of the trace
stored on the disk. Wang and Roychoudhury [129] present JSlice which performs
backward dynamic slicing of sequential Java programs. Since backward slicing re-
quires storing the execution trace, JSlice performs online compression during trace
collection. The compressed trace representation is then traversed without decom-
pression during slicing. Finally, in another work, Wang and Roychoudhury [130]
present the concept of hierarchical dynamic slicing. The main idea of this work is
to present the slice to the programmer hierarchically and in different phases instead
of the whole slice all at once. This helps the programmer to understand large slices
better and focus on what she needs.

Compared to static slicing, dynamic slicing has the benefit of producing smaller
slices. This allows easier localization of bugs in the process of debugging applica-
tions. Although dynamic slicing was originally proposed for program debugging,
it has been used for other purposes such as program comprehension [74], software
testing [68], and software maintenance [71, 75] as well. Interested readers can refer
to [76] and [118] for a more complete survey of different slicing techniques and their
applications.

It is worth mentioning that the API trace slicing technique which will be in-
troduced in the next chapter is completely different from the traditional dynamic
program slicing approaches discussed here. As will be described later, API trace
slicing works with traces of interactions between applications and frameworks, while
traditional dynamic slicing techniques work with traces of program statements.
Moreover, while in program slicing the dependency among the events is defined in
terms of data and control dependencies, in API trace slicing, it is defined in terms
of the use of common objects as targets, parameters, or return values of calls.

3.7 Summary

This chapter provided an overview of the most related work in the areas of frame-
work documentation, framework usage comprehension, specification mining, con-
cept location, and aspect mining. Although this literature review showed that a
significant progress has been made in all these areas of research, none of them
can completely address the issue of concept location for the purpose of framework
comprehension.

Framework documentation approaches can explicitly document how to imple-
ment a target concept on top of a framework. However, their main difficulty is that
they may become outdated as the framework evolves and manual effort is required
for creating them. Consequently, many of the existing software frameworks suf-
fer from the lack of good documentation. To address this issue, framework usage
comprehension techniques are proposed that benefit from example applications of

31

the framework. Nonetheless, they are mainly beneficial for the understanding of
fine-grained framework extensions, such as how to call a specific framework method
or how to instantiate a particular framework class, but less so for coarse-grained
concepts which may span multiple framework classes such as those which are of
interest in this dissertation. Specification mining methodologies mainly mine for
behavioral and temporal protocols that a program must follow when interacting
with the API of a library. Therefore, they are not that useful for concept location
in the context of framework comprehension. Existing concept location tools also do
not focus on framework API usage and, thus, the code identified using these tools
will still include many application-specific instructions that are irrelevant from the
viewpoint of framework usage. Finally, aspect mining approaches aim to identify
unknown crosscutting concerns to modularize them into aspects, and hence are not
beneficial for the purpose of this dissertation.

This dissertation aims to address the above challenges in existing work and
move forward the state of the art. To this goal, next chapter describes the details
of the FUDA framework comprehension technique.

32

Chapter 4

The FUDA Framework
Comprehension Technique

The review of existing literature presented in Chapter 3 revealed that current con-
cept location and framework comprehension techniques fail to provide a solution
for the problem of concept location in the context of framework comprehension.
To address this issue, this chapter introduces the notion of concept implementation
templates and FUDA (Framework API Understanding through Dynamic Analysis),
an approach to automatically extract such templates from traces of sample applica-
tions [55]. A concept implementation template is a Java-like code example demon-
strating the implementation steps that are necessary to instantiate a given concept.
In particular, an implementation template specifies which framework packages to
import, framework classes to subclass, framework interfaces to implement, and
framework operations to call. Such a template can be used as a concise summary
of the necessary implementation steps and as a starting point to further investigate
the concrete concept implementations in the sample applications.

In the remainder of this chapter, the running example is first introduced in
Section 4.1. After that, the notion of implementation templates is presented in
detail in Section 4.2. An overview of the FUDA template extraction approach is
presented in Section 4.3 followed by its detailed description in Section 4.4. Finally,
Section 4.5 summarizes this chapter.

4.1 A Running Example

As the running example throughout this chapter, Figure 4.1 presents the code im-
plementing a context menu using the JFace framework. The result of this code will
look like the screenshot presented in Figure 2.3. The menu is located in SampleView,
which is a visual component that displays trees using a TreeViewer (l. 36). The
code was generated using one of Eclipse’s wizards. The lines implementing the
context menu are marked by •. The lines marked by ◦ implement a Welcome

33

. . .
public class SampleView extends ViewPart {35

private TreeViewer viewer;36
private DrillDownAdapter drillDownAdapter;37
private Action action1;•38
private Action action2;•39
private WelcomeWindow welcomeWindow;◦40
. . .
class ViewContentProvider98

implements IStructuredContentProvider, ITreeContentProvider {99
. . .

}162
class ViewLabelProvider extends LabelProvider {163

. . .
}189
public void createPartControl(Composite parent) {190

welcomeWindow = new WelcomeWindow();◦191
welcomeWindow.open();◦192
viewer = new TreeViewer(. . .);193
drillDownAdapter = new DrillDownAdapter(viewer);194
viewer.setContentProvider(new ViewContentProvider());195
viewer.setLabelProvider(new ViewLabelProvider());196
viewer.setInput(getViewSite());197
makeActions();•198
hookContextMenu();•199

}200
private void hookContextMenu() {•201

MenuManager menuMgr = new MenuManager(“#PopupMenu”);•202
menuMgr.setRemoveAllWhenShown(true);•203
menuMgr.addMenuListener(new IMenuListener() {•204

public void menuAboutToShow(IMenuManager manager) {•205
SampleView.this.fillContextMenu(manager);•206

}});•207
Menu menu = menuMgr.createContextMenu(viewer.getControl());•208
viewer.getControl().setMenu(menu);•209
getSite().registerContextMenu(menuMgr, viewer);•210

}•211
private void fillContextMenu(IMenuManager manager) {•212

manager.add(action1);•213
manager.add(action2);•214
manager.add(new Separator());•215
drillDownAdapter.addNavigationActions(manager);•216
manager.add(new Separator(IWorkbenchActionConstants.MB ADDITIONS));•217

}•218
private void makeActions() {•219

action1 = new Action() {•220
public void run() { showMessage(“Action 1 executed”); }221

};•222
action1.setText(“Action 1”);•223
action1.setToolTipText(“Action 1 tooltip”);•224
action2 = new Action() {•225

public void run() { showMessage(“Action 2 executed”); }226
};•227
action2.setText(“Action 2”);•228
action2.setToolTipText(“Action 2 tooltip”);•229

}•230
. . .

}267

Figure 4.1: Implementation of a sample Eclipse view with a context menu (•)

34

import org.eclipse.jface.action.Separator;1
import org.eclipse.jface.viewers.Viewer;2
import org.eclipse.jface.action.Action;3
import org.eclipse.jface.action.MenuManager;4
import org.eclipse.swt.widgets.Menu;5
import org.eclipse.jface.resource.ImageDescriptor;6
import org.eclipse.jface.action.IMenuListener;7
import org.eclipse.swt.widgets.Control;8

public class AppMenuListener implements IMenuListener { (l. 204)→9
public void menuAboutToShow(menuManager) { (l. 205)→10

Separator separator = new Separator(String)||(); //REPEAT (l. 215, l. 217)→11
menuManager.add(separator)||(appAction); //REPEAT (l. 213-l. 215, l. 217)→12

}13
}14

public class AppAction extends Action { (l. 220, l. 225)→15
}16

public class SomeClass {17
public void someMethod() {18

Viewer viewer = . . . ;19
Control control = viewer.getControl(); //MAY REPEAT (l. 208, l. 209)→20
AppAction appAction = new AppAction(); //MAY REPEAT (l. 220, l. 225)→21
appAction.setText(String); //MAY REPEAT (l. 223, l. 228)→22
appAction.setToolTipText(String); //MAY REPEAT (l. 224, l. 229)→23
MenuManager menuManager =24

new MenuManager(String)||(String,String)||(); (l. 202)→25
menuManager.setRemoveAllWhenShown(boolean); (l. 203)→26
AppMenuListener appMenuListener = new AppMenuListener(); (l. 204)→27
menuManager.addMenuListener(appMenuListener); (l. 204)→28
Menu menu = menuManager.createContextMenu(control); (l. 208)→29

}30
}31

Figure 4.2: A sample implementation template for the concept “context menu”

window. They were manually added as an example of code that is completely
unrelated to the context menu. The constituent parts of the view are created
in createPartControl(). In particular, this method calls makeActions() and
hookContextMenu(), which together create the context menu. In general, a con-
text menu consists of one or more actions (l. 220, 225) and potentially one or more
separators (l. 215, 217). It is constructed by a menu manager (l. 202, 208) and
invoked by a menu listener (l. 204). The latter implements the callback method
menuAboutToShow() (l. 205), which is called by JFace when the user clicks to open
the context menu.

The context menu example illustrates some of the challenges in locating concepts
in code. The implementation of the menu is scattered across and tangled with the
implementation of the view; and it involves a complex interaction of several objects,
namely view, menu manager, menu listener, menu, actions, and separators. To
complicate matters, a concept implementation may also be scattered across several
classes as in the case of Eclipse’s drag&drop. Consequently, although locating a
concept in the GUI of a sample application may be easy, locating its implementation
in the application code is often challenging and time consuming.

35

4.2 Concept Implementation Templates

An implementation template generated automatically using the FUDA technique
for the context menu example is illustrated in Figure 4.2. This template was gener-
ated using two traces that were collected by invoking the context menu in two sam-
ple applications: SampleView (Figure 4.1) and Console, which is part of Eclipse.
The generated template in Figure 4.2 has the form of a tutorial-like example in
Java-based pseudocode indicating the implementation steps necessary to instanti-
ate the given concept. More specifically, an implementation template specifies the
following implementation steps:

• Packages to import (l. 1–8 in Figure 4.2);

• Framework classes to subclass (l. 15);

• Interfaces to implement (l. 9);

• Methods to implement (l. 10);

• Objects to create (e.g., l. 11, 21, 25, 27); and

• Methods to call (e.g., l. 12, 20, 22–23, 26, 28–29).

Note that the specified steps involve only the elements of the framework API. For
example, the method calls makeActions() and hookContextMenu() in Figure 4.1
are specific to that particular implementation and are not reflected in the template.
The involved elements may be entirely framework-defined, e.g., the implementation
of Separator, which is instantiated in line 11, resides in framework code. Alter-
natively, the elements may also reside in the application code, provided that they
are framework-stipulated (i.e., declared in the framework and implemented in the
application code). For example, AppAction is both defined (l. 15) and instanti-
ated (l. 21) in the application code; however, JFace’s design stipulates the creation
of subclasses of the framework-defined class Action in the application code. In
addition to the basic implementation steps, the template also reflects:

• Call nesting, e.g., add() is called directly or indirectly by menuAboutToShow()

(l. 12);

• Call order, e.g., menu listener is added to the menu manager (l. 28) before
creating the menu (l. 29);

• Parameter passing patterns, e.g., the control object passed to the menu cre-
ation method (l. 29) is obtained by a prior call to getControl() (l. 20);

• The comments REPEAT and MAY REPEAT indicate that the commented step
appeared more than once in every or some of the traces used to generate the
template, respectively.

36

Templates are rendered in ordinary Java with two exceptions:

• Use the notion of ‘||’ to present alternative argument types : The templates use
a special syntax to show that a method with a given name was called with dif-
ferent argument types. For example, add(separator)||(appAction) (l. 12
in Figure 4.2) is due to multiple calls to add() with different arguments (l. 213
and 215 in Figure 4.1). As another example, new Separator(String)||()

(l. 11) illustrates different argument types with which the class Separator

can be instantiated.

• All variables are global: What appears to be a local variable declaration in
Java, such as appAction (l. 21), actually has global meaning in the template.
For that reason, appAction can be used as a method argument in another
method scope (l. 12).

A template extracted by FUDA is an approximation of the necessary implemen-
tation steps, and it can be incomplete or unsound or both. In particular, imple-
mentation steps can be missing (false negatives) or unrelated steps (false positives)
can be present in some cases (see Chapter 5). Given two or more traces, FUDA
will filter out any steps that are not common to all traces. If a necessary imple-
mentation step, say component registration, can be achieved in more than one way,
such as by calling different methods, such step may get filtered out. Furthermore,
FUDA relies on the assumption that input traces show the execution of the concept
of interest in different contexts. For example, SampleView and Console provided
entirely different contexts for the context menu concept. However, a view using a
TableViewer, even though graphically different from our SampleView, which uses
TreeViewer, would also call setContentProvider and setLabelProvider. As a
result, a template generated from the latter two applications would have included
these two JFace calls, even though they are not related to the context menu. Finally,
some implementation details maybe absent in a template. For example, whereas
the calls in lines 21–23 are marked as candidates to be repeated, the template does
not reflect the fact that they should be repeated as a block, rather than individually.
Nevertheless, the user can still extract the missing details from the actual sample
code and the traceability links between the template and the application code, as
shown in Figure 4.2, can support this task. In particular, each traceability link in
this figure illustrates the mapping between the implementation step in the template
and its corresponding program statements in the sample application presented in
Figure 4.1.

4.3 The FUDA Approach Overview

Before delving into the details of FUDA, this section provides an overview of this
technique. The key idea of this technique is to take advantage of the information

37

A u t o m a t e d S t e p

T e m p l a t e
G e n e r a t i o n

E v e n t
G e n e r a l i z a t i o n

A P I T r a c e
S l i c i n g

C o m m o n F a c t s
E x t r a c t i o n

4
T e m p l a t e

M a n u a l S t e p s

S e l e c t i o n o f S a m p l e
A p p l i c a t i o n s a n d
E x e c u t i o n S c e n a r i o s

2
C o n c e p t
D e f i n i t i o n

1
T r a c e C o l l e c t i o n
a n d M a r k i n g

3

Figure 4.3: FUDA technique overview

contained in sample applications and utilize dynamic analysis to help determine
the portions that are relevant to the implementation of the desired concept. To
make the approach attractive in practise, the goal is to be able to extract useful
implementation templates by using only a few sample applications. To do so, from
the user’s perspective, FUDA consists of four main steps (Figure 4.3) from which
steps 1-3 are performed manually and step 4 is done automatically:

Step 1: Concept Definition. As the first step, the developer has to exactly
specify what the concept of interest is, for which she wants to generate an imple-
mentation template.

Step 2: Selection of Sample Application(s) and Execution Scenarios. With
respect to the concept of interest, the user needs to identify one or more sample
applications that execute the desired concept in different contexts. A single appli-
cation may already satisfy this goal, e.g., an application implementing a context
menu in two different views would have been sufficient in our example. As will be
discussed later in the evaluations of template extraction (Chapter 5), the more the
contexts differ across the executions, the lower the possibility of false positives.

Step 3: Trace Collection and Marking. In this step, each sample application
is executed according to the execution scenarios designed in the previous step and
a tracer tool collects a trace of all calls that occur at the boundary between the
application and the framework API. For the purpose of pinpointing the location of
the concept execution in the trace, the user informs the tracer tool of the moments
right before and after the invocation of the concept, a process named marking [108].

Step 4: Automatic Fact Extraction and Template Generation. This step takes
two or more collected traces and generates the template. This step mainly consists
of (i) API trace slicing, (ii) event generalization, (iii) extracting facts about calls
that are common across the traces, and (iv) generating the template from the
common facts.

The following section elaborates on each step in more detail.

38

4.4 The FUDA Approach

Section 4.3 provided an overview of the FUDA framework comprehension technique
and generally described what steps are followed from the user’s perspective to gen-
erate concept implementation templates for a given concept. This section presents
a detailed description of these steps.

4.4.1 Concept Definition

In FUDA, a framework-provided concept is defined as a unit of functionality which
is accessible through the framework’s API and is implemented in applications by
writing framework completion code, i.e., the framework provides a certain function-
ality and prescribes steps for its reification and configuration in applications. As
mentioned earlier in Section 4.2, a typical framework completion code consists of
framework API method invocations, class extensions, interface implementations,
and so on. Therefore, a framework-provided concept may be implemented by one
or more classes.

FUDA imposes two requirements around the concepts it can successfully ana-
lyze. First, the developer must have a minimal knowledge about the framework that
provides the concept. FUDA requires as input the name of the framework’s package
so that the tracer tool can understand the framework’s boundary and concentrate
only on the interactions that cross this boundary. Without this delimitation, the
analysis would be flooded with irrelevant information. In our running example
(Section 4.1), the developer must know that those context menus are provided by
JFace, and that JFace’s package is named org.eclipse.jface.

Second, it must be possible to invoke the concept of interest in sample appli-
cations from their graphical or programmatic interfaces. The concept can itself
be a graphical interface concept, such as the context menu, but it can also be any
other concept, as long as it could be explicitly invoked from the sample applications’
graphical or programmatic user interface. FUDA can produce implementation tem-
plates covering the entire life cycle of a concept, which involves concept creation
(creating and setting up its implementation objects), concept invocations (calling
the objects) and concept destruction (tearing down and disposing the objects). The
following concept-defining question asks for the entire life cycle of a concept: “How
does one implement a context menu in an Eclipse view?” Alternatively, FUDA can
also produce implementation templates covering individual concept invocations, as
exemplified by this question: “What events occur when a user clicks on a figure?”

4.4.2 Selection of Sample Applications and Execution Sce-
narios

It is necessary that users have access to one or more sample applications execut-
ing the concept of interest in different contexts. The assumption underlying the

39

FUDA approach is that modern object-oriented frameworks typically come with
a number of example applications from which application developers can learn
about frameworks’ APIs. Moreover, thanks to many open source applications avail-
able on the Internet (e.g., http://www.sourceforge.net) and code searchers (e.g.,
http://www.google.com/codesearch), it is usually possible to find some sample
applications implementing a desired concept. As it will be shown later in Chapter 5,
in our experiments with twelve realistic concepts on top of four widely used frame-
works, it was possible to use FUDA to retrieve quality implementation templates
with only two sample applications.

Following the selection of sample applications, the user requires to design concept-
invoking execution scenarios. The applications and the scenarios should be selected
to achieve one or more of the following goals: (i) The scenarios are concept-focused:
ideally the majority of the executed instructions are part of the concept. (ii) The
concept is invoked separately from others as part of the scenario and the invocation
can be explicitly marked. (iii) Each concept instance is invoked in a different con-
text. A single application may already support the third goal, e.g., an application
implementing a context menu in two different views would suffice. Because FUDA
works by intersecting traces of different executions, the more the contexts differ,
the lower the possibility of false positives. For the same reason, it is important to
select scenarios that contain a similar variant of the concept, which minimizes false
negatives. For example, if a variant of the context menu concept with a separator
is desired, scenarios that contain separators should be selected. To design these
execution scenarios, the user can benefit from anything that could be a source of
information such as existing users of the applications, help systems of the applica-
tions, their user interfaces, manuals and documentation, existing test cases, and so
on.

4.4.3 Trace Collection and Marking

As mentioned earlier, object-oriented software frameworks provide their services
through their APIs. Therefore, to understand how an application uses a framework,
one must focus on the interactions between the application and the framework
API, i.e., the calls from the application to the framework API and callbacks from
the framework API to the application. Consequently, FUDA is interested in the
interactions between the sample applications and the framework API.

Figure 4.4 illustrates the whole process of trace collection and marking. In this
phase of FUDA, the user executes each sample application assisted by a tracer tool
and invokes the concept of interest according to the execution scenarios designed
in the previous step. If possible, pinpointing the moments before and after the
concept invocation will improve the template extraction results, which is in fact
essential for concepts whose defining question deals with the response to an event.
For the context menu example, it amounts to instructing the tracer to mark sub-
sequent events right before opening the menu and instructing it to stop marking

40

http://www.sourceforge.net
http://www.google.com/codesearch

F r a m e w o r k A P I
I n t e r a c t i o n T r a c e

S t a r t A p p l i c a t i o n
a n d T r a c i n g

S ta r t
M a r k i n g

S t o p A p p l i c a t i o n
a n d T r a c i n g

S t o p
M a r k i n g

C o n c e p t
I n v o c a t i o n

Figure 4.4: Process of trace collection and marking

right after the menu is open. If the moments before and after concept invocation
cannot be pinpointed, the whole trace is marked. Concepts invoked through a
programmatic interface can use the tracer tool to indicate the begin and end of
the concept execution. The user has to also specify for the tracer tool the pack-
age(s) in which the framework of interest and the sample application reside, e.g.,
org.eclipse.jface.* and SampleView for the context menu example. The tracer
logs all the calls that occur at the boundary between the application and the frame-
work, which results in a framework API interaction trace, called API trace for short.
An atomic interaction collected by the tracer is called a framework API interaction
event or interaction event for short, which is a runtime event corresponding to
method or constructor calls executed at the boundary between the framework and
application code. Each event has one of two directions:

• Outgoing : An event is outgoing if the call is made from within the application
code and the target is either implemented in the framework code or it is
framework-stipulated and implemented in the application code. An instance
method that is implemented in an application class is framework-stipulated
if it is declared in the framework. A constructor that is implemented in
an application class is framework-stipulated if the class is a subtype of a
framework class or interface.

• Incoming : An event is incoming (i.e., a callback) if the call is made from
within the framework code and the target is framework-stipulated and is
implemented in the application code.

We consider both static and instance variants of methods. This definition re-
flects the direction of the interaction with respect to the application, and distin-
guishes events that cross the application-framework boundary from internal events.
For instance, an outgoing event is triggered by the application, but is prescribed
by the framework (or at least declared). This definition includes both: (i) targets
fully implemented by the framework, such as a constructor or method, and (ii)
targets prescribed by the framework and implemented in the application, such as
an interface method implementation or an overridden method, provided that the
framework declared it. An incoming event occurs when the framework is the driver

41

↑null:WelcomeWindow.<init>():1e1
↑1:WelcomeWindow.open():2e2
↓1:jface.window.Window.createContents(3):3e3
↑1:WelcomeWindow.getShell():3e4

↑null:jface.viewers.TreeViewer.<init>(4,5):6e5
↑null:SampleView$ViewContentProvider.<init>(7):8e6
↑6:jface.viewers.TreeViewer.setContentProvider(8):Ve7
↑null:SampleView$ViewLabelProvider.<init>(7):9e8
↑6:jface.viewers.TreeViewer.setLabelProvider(9):Ve9
↑6:jface.viewers.TreeViewer.setInput(10):Ve10
↓8:jface.viewers.IContentProvider.inputChanged(6,10):Ve11
↓8:jface.viewers.IStructuredContentProvider.getElements(10):11e12
↑8:SampleView$ViewContentProvider.getChildren(12):11e13

↓9:jface.viewers.ILabelProvider.getText(13):14e14
↓9:jface.viewers.ILabelProvider.getImage(13):15e15
↓8:jface.viewers.ITreeContentProvider.hasChildren(13):16e16

↑null:SampleView$2.<init>(7):17•e17
↑17:jface.action.Action.setText(18):V•e18
↑17:jface.action.Action.setToolTipText(19):V•e19
↑null:SampleView$3.<init>(7):21•e20
↑21:jface.action.Action.setText(22):V•e21
↑21:jface.action.Action.setToolTipText(23):V•e22
↑null:jface.action.MenuManager.<init>(24):25•e23
↑25:jface.action.MenuManager.setRemoveAllWhenShown(26):V•e24
↑null:SampleView$1.<init>(7):27•e25
↑25:jface.action.MenuManager.addMenuListener(27):V•e26
↑6:jface.viewers.TreeViewer.getControl():28•e27
↑25:jface.action.MenuManager.createContextMenu(28):29•e28
↑6:jface.viewers.TreeViewer.getControl():28•e29
↑6:jface.viewers.TreeViewer.getControl():28•e30
↓27:jface.action.IMenuListener.menuAboutToShow(25):V•e31
↑25:jface.action.IMenuManager.add(17):V•e32
↑25:jface.action.IMenuManager.add(21):V•e33
↑null:jface.action.Separator.<init>():30•e34
↑25:jface.action.IMenuManager.add(30):V•e35
↓8:jface.viewers.ITreeContentProvider.hasChildren(13):31e36
↓8:jface.viewers.ITreeContentProvider.hasChildren(13):32e37
↑null:jface.action.Separator.<init>(33):34•e38
↑25:jface.action.IMenuManager.add(34):V•e39

↓8:jface.viewers.IContentProvider.inputChanged(6,10):Ve40
↓8:jface.viewers.IContentProvider.dispose():Ve41
↑1:WelcomeWindow.close():35e42

Figure 4.5: A framework API interaction trace resulted from executing the
SampleView presented in Figure 4.1 and invoking the context menu

and the implementation is in the application. This direction is usually implemented
by method callbacks, but also includes reflective usage of application objects by the
framework.

The complete API trace produced by running SampleView from Figure 4.1 and
invoking its context menu is shown in Figure 4.5. Each event is represented by
the notation D O:n(P):R, where D represents the direction of the event, with “↓”
denoting incoming and “↑” denoting outgoing events; O is the target object’s ID1

or “null” for constructor and static method calls; n represents the fully qualified
name [42] of the target method or constructor; P is a list of IDs of objects passed
as parameters; and R is the ID of the returned object or “V” if the return type

1At runtime, each object is assigned a unique hash value which we call the object ID.

42

is void. For brevity, the package prefix org.eclipse was removed for all JFace
events. The events in bold face are those that were marked by informing the tracer
about the moments before and after the context menu was invoked. This portion
of the API trace is referred to as the marked region.

Most of the events in Figure 4.5 can easily be traced back to their correspond-
ing code lines in Figure 4.1. The events e1–e30 are generated when the method
createPartControl() is called, e.g., e1 is due to line 191. The actual call to
createPartControl() is not traced because it resides in org.eclipse.ui, which
is not part of JFace. The calls in l. 209 and l. 210 are not traced for the same reason.
Indentation denotes event nesting. For example, events e3 and e4 were generated in
the control flow of the call to welcomeWindow.open() (l. 192). Anonymous classes
are denoted by numbers separated from their host classes by $, e.g., e17 constructs
action1 (l. 220).

The marked events (in bold face) were generated by the callback to menuAboutTo-
Show(), which is called by JFace when a menu is being opened. That method calls
fillContextMenu(), which generates the nested events e32–e39. The incoming
events e36–e37 are generated by method called in l. 216, which is not part of JFace
and thus not traced. The last three events, e40–e42, are generated during cleanup
(code not shown).

4.4.4 Automated Trace Processing

The automated trace processing stage receives two or more of the collected traces
and generates a concept implementation template. It consists of the following steps.

API Trace Slicing

We have seen that the interaction events that occurred during the concept execu-
tion are marked by the user during the trace collection stage. The marked region
therefore contains the events that were explicitly involved in running the concept,
potentially among other irrelevant events. However, if the goal is to understand
the complete life cycle of the concept, it is necessary also to consider calls related
to the initialization and clean-up of the involved objects, which are not necessarily
reflected in this marked region. For instance, in Figure 4.5, the marked region (bold
faced) contains the events that occurred when the context menu was being opened.
However, the events e17–e22 create and initialize the context menu’s actions, but
they are not included in the marked region in the interaction trace. Likewise, the
marked region may miss cleanup events, such as service deregistration.

To identify such relevant events, a novel slicing technique named API trace
slicing is applied here. The key idea in this technique is to introduce the notion of
object dependency between events. It is then used to compute the transitive closure
of the events in the marked region to determine the API trace slice. In API trace
slicing, the notion of dependency is based on the following heuristic:

43

Heuristic. Two events ei and ej in the API trace are said to be dependent if they
involve at least one object in common.

The rationale behind this heuristic is motivated by common API usage pat-
terns. For example, two method invocations sharing the same target object could
be related by the fact that one invocation initializes the target for the second in-
vocation, or the second invocation cleans up the object that was used in the first
invocation. Similarly, an invocation that returns an object that is later used as a
target or parameter in a subsequent invocation may be an invocation to a factory
method. Based on this heuristic, the notion of object dependency can be defined
in the following way:

Definition. Object-Dependent. Two events ei=Di Oi:ni(Pi):Ri and ej=Dj

Oj:nj(Pj):Rj are called to be object-dependent iff (({Oi, Ri} ∪ Pi) ∩ ({Oj, Rj} ∪
Pj)) \ {null,V} 6= ∅, i.e., they share any target, parameter, or returned objects.

With respect to this definition, one can introduce fine-grained versions of de-
pendencies, based on how the common object is used in the events. For instance,
since events are ordered in the trace, we can say that events ei and ej have a Target-
Parameter (TP) dependency if ei precedes ej in the trace and the same object used
as a target in event ei is subsequently used as a parameter in event ej. In this way,
it is possible to define nine kinds of fine-grained dependencies between two events
ei and ej such that ei precedes ej in the trace:

• Target-Target (TT) dependency if Oi = Oj;

• Target-Parameter (TP) dependency if Oi ∈ Pj;

• Target-Return (TR) dependency if Oi = Rj;

• Parameter-Target (PT) dependency if Oj ∈ Pi;

• Parameter-Parameter (PP) dependency if Pi ∩ Pj 6= φ;

• Parameter-Return (PR) dependency if Rj ∈ Pi;

• Return-Target (RT) dependency if Ri = Oj;

• Return-Parameter (RP) dependency if Ri ∈ Pj; and

• Return-Return (RR) dependency if Ri = Rj.

Note that in above definitions the object IDs must not be null or void. Careful
consideration of these definitions indicates that all these dependency types except
RR represent some form of object passing from the first event to the second event.
The purpose of RR will be explained later in Section 4.4.4. For example, in Fig-
ure 4.5, some events outside the marked region that contribute to the implemen-
tation of the context menu and have at least one kind of object dependency to at

44

least one of the events in the marked region are: e28 has TT dependency to e32, e18

has TP dependency to e32, e26 has PT dependency to e31, e17 has PP dependency
to e25, e23 has RT dependency to e39, and e23 has RP dependency to e31.

Based on the above notion of object dependency, the notion of object-relatedness
can be introduced as the transitive closure of object dependency. Then, an API
trace slice is defined in the following way:

Definition. API Trace Slice. An API trace slice is a portion of the input trace
consisting of all the marked events and the unmarked events that are object-related
to the marked events.

Based on this definition, those events that do not depend in any way on an
event of the marked region are declared irrelevant and are removed from the trace.
Note that this definition of API trace slicing is based on the assumption that all
the events in the marked region are relevant for the concept of interest which is not
necessarily true. However, as will be shown later in Chapter 5 for realistic concepts,
these false positives are typically filtered out in the common fact extraction phase
(see Section 4.4.4).

In Figure 4.5, the unmarked events that are object-related to the marked ones
are typeset in italic font. For instance, e5 is object-dependent to e7 through the
object with ID 6, and e7 is object-dependent to e36 through object 8. Consequently,
e5 is object-related to the marked event e36 and thus part of the slice. Note that
slicing eliminates the steps implementing the Welcome window (e2–e4, e42), which
are unrelated to the context menu. The resulting sliced trace that does not include
the unrelated events is illustrated in Figure 4.6.

API trace slicing is an approximation of the actual dependencies between API
calls. However, the approximation worked perfectly for the real framework APIs
in our template extraction evaluation (see Chapter 5): there was not a single false
negative due to slicing. Moreover, as mentioned earlier, the false positives are also
typically filtered out later based on the commonalities across traces. Slicing is
optional since some concepts focus on the invocation only, in which case no slicing
is needed and only the marked events are further processed. For example, the
user may explicitly ask the question of what code is involved when a context menu
is opened. In this case, slicing should be disabled through an option before the
traces are processed and FUDA will only process the marked regions. If marking
is not used at all during the trace collection, FUDA will process the entire trace,
which may be used, for example, to identify framework calls made on start-up and
shutdown of an application. Additionally, the API trace slicing technique can be
configured to account for all types of dependencies or for just a subset, depending
on the user’s opinion and nature of the concept (see prototype implementation of
FUDA in Section 5.2).

45

↑null:jface.viewers.TreeViewer.<init>(4,5):6e5
↑null:SampleView$ViewContentProvider.<init>(7):8e6
↑6:jface.viewers.TreeViewer.setContentProvider(8):Ve7
↑null:SampleView$ViewLabelProvider.<init>(7):9e8
↑6:jface.viewers.TreeViewer.setLabelProvider(9):Ve9
↑6:jface.viewers.TreeViewer.setInput(10):Ve10
↓8:jface.viewers.IContentProvider.inputChanged(6,10):Ve11
↓8:jface.viewers.IStructuredContentProvider.getElements(10):11e12
↑8:SampleView$ViewContentProvider.getChildren(12):11e13

↓9:jface.viewers.ILabelProvider.getText(13):14e14
↓9:jface.viewers.ILabelProvider.getImage(13):15e15
↓8:jface.viewers.ITreeContentProvider.hasChildren(13):16e16

↑null:SampleView$2.<init>(7):17e17
↑17:jface.action.Action.setText(18):Ve18
↑17:jface.action.Action.setToolTipText(19):Ve19
↑null:SampleView$3.<init>(7):21e20
↑21:jface.action.Action.setText(22):Ve21
↑21:jface.action.Action.setToolTipText(23):Ve22
↑null:jface.action.MenuManager.<init>(24):25e23
↑25:jface.action.MenuManager.setRemoveAllWhenShown(26):Ve24
↑null:SampleView$1.<init>(7):27e25
↑25:jface.action.MenuManager.addMenuListener(27):Ve26
↑6:jface.viewers.TreeViewer.getControl():28e27
↑25:jface.action.MenuManager.createContextMenu(28):29e28
↑6:jface.viewers.TreeViewer.getControl():28e29
↑6:jface.viewers.TreeViewer.getControl():28e30
↓27:jface.action.IMenuListener.menuAboutToShow(25):Ve31
↑25:jface.action.IMenuManager.add(17):Ve32
↑25:jface.action.IMenuManager.add(21):Ve33
↑null:jface.action.Separator.<init>():30e34
↑25:jface.action.IMenuManager.add(30):Ve35
↓8:jface.viewers.ITreeContentProvider.hasChildren(13):31e36
↓8:jface.viewers.ITreeContentProvider.hasChildren(13):32e37
↑null:jface.action.Separator.<init>(33):34e38
↑25:jface.action.IMenuManager.add(34):Ve39

↓8:jface.viewers.IContentProvider.inputChanged(6,10):Ve40
↓8:jface.viewers.IContentProvider.dispose():Ve41

Figure 4.6: The sliced trace resulted from the API trace presented in Figure 4.5

Event Generalization

At this point of the analysis, the sliced traces still contain application-specific in-
formation. Since the next step of the analysis will attempt to find commonalities
among traces, it is necessary to abstract any application-specific elements from the
events. This will allow the next processing stage to compare traces in terms of
framework API types. To this aim, event generalization replaces the application-
specific names of events with appropriate framework names2. For example, the fully
qualified name of e6 in Figure 4.6, i.e., SampleView$ViewContentProvider.<init>,
is application-specific and event generalization replaces it by [jface.viewers.IStr-

ucturedContentProvider, jface.viewers.ITreeContentProvider].<init>. The
two names in brackets refer to the framework interfaces that are implemented by
ViewContentProvider (l. 99).

To do this generalization, a simple static analysis on the type hierarchy of the

2Acknowledgments: This part of the work is mostly done by my colleague Thiago Tonelli
Bartolomei.

46

O b j e c t

+ e q u a l s ()

F W O b j e c t

I C o n t r i b u t i o n M a n a g e r

+ i s D i r t y ()

M e n u M a n a g e r

+ g e t O v e r r i d e s ()

C o n t r i b u t i o n M a n a g e r

+ i s D i r t y ()

+ g e t O v e r r i d e s ()

I C o n t r i b u t i o n I t e m

+ i s D i r t y ()I M e n u M a n a g e r

A p p M e n u M a n a g e r

F r a m e w o r k T y p e s

L a n g u a g e - S p e c i f i c T y p e s

A p p l i c a t i o n T y p e s

I T o o l B a r M a n a g e r

Figure 4.7: Boundaries of application, framework, and language-specific types

target’s enclosing class is performed to find the so called root types of the event
and generate a generalized event for each root type. Thus, a single event may
potentially result in several generalized events. Event generalization treats calls to
instance methods, constructors, and static methods differently. In the following,
the generalization rules are discussed for each type of target. This explanation is
done using Figure 4.7 that shows the context menu implementation in JFace, but
further extended to assist in explaining the process.

Instance Methods. When generalizing an instance method call, the procedure
aims at maximum generality and searches for the topmost types that declare the
method. For example, the method equals in Java is declared by Object and al-
though the method may be overridden in many subclasses, it conceptually belongs
to Object. A method may also have multiple topmost types, e.g., generaliza-
tion of a call to AppMenuManager.isDirty() would identify two topmost types:
IContributionManager and IContributionItem, because both interfaces declare
the method.

Constructors. A constructor invocation means that an object of a certain class is
going to be created. However, an application class may specialize many framework
and application-specific types. Looking bottom-up from the target type, the type
hierarchy is a directed acyclic graph (DAG), as can be seen in Figure 4.7 for the
class MenuManager. For constructor invocations, a meaningful generalization is to
generate one root type for each type at the bottom borderline of the framework of

47

the target type’s inheritance DAG. The rationale is that, both for incoming and
outgoing events, the construction of objects with application types is irrelevant,
hence we look for the most specific framework type. The analysis traverses the DAG
bottom-up and generates a root type for the first framework-declared type for each
branch. For example, if AppMenuManager is the target, it generates MenuManager

and IToolBarManager as root types; if MenuManager is the target, the only root
type will be MenuManager itself. Note that another approach could be to generate
a root type for each topmost framework type. While this approach would help
agglomerate more events, we would lose the information of framework variants in
use. To exemplify the problem, consider the hierarchy in the figure, where the
framework defines a root class called FWObject. Using this approach would yield
FWObject for every constructor call to a subclass of a framework class.

Static Methods. Although a static method cannot be polymorphically called,
it can be hidden by an equally-named static method in a subclass. Thus, the
procedure searches the type hierarchy of the application class being instantiated
and returns the first type that declares the method. For example, in Figure 4.7
both MenuManager and ContributionManager declare the getOverrides() static
method. Depending on which class is used statically, a different method is really
being used. Therefore, in order to find the actual member in use we search the
type hierarchy of the target bottom-up and assume the first type that declares the
member as the root type.

As an example of generalized traces, Figure 4.8 illustrates the generalized trace
for the sliced trace presented in Figure 4.6.

Common Facts Extraction

The aim of this phase is to identify the facts that are common among all input
generalized traces. As it will be described in the following of this section, three
types of facts are extracted from each generalized trace: event occurrence facts,
event nesting facts, and event dependency facts. The first represents the occurrence
of interaction events in the generalized trace, while the other two represent the
existence of certain relationships among events. Then, common facts are computed
as intersections of the extracted fact sets across all generalized traces. Figure 4.9
presents different kinds of common facts for the concept context menu extracted
from two generalized traces for SampleView (Figure 4.8) and Console example
applications.

Event Occurrence Facts. Event occurrence facts, called event facts for short,
are the names of the methods and constructors that were called at the application-
framework boundary and the corresponding call directions (Figure 4.9(a)). They
abstract away the numbers of occurrences, object IDs, and parameter and return
types of the corresponding calls. The rationale is that two methods with the same

48

↑null:[jface.viewers.TreeViewer].<init>(4,5):6e5
↑null:[jface.viewers.IStructuredContentProvider, jface.viewers.ITreeContentProvider].<init>(7):8e6
↑6:[jface.viewers.ContentViewer].setContentProvider(8):Ve7
↑null:[jface.viewers.LabelProvider].<init>(7):9e8
↑6:[jface.viewers.ContentViewer].setLabelProvider(9):Ve9
↑6:[jface.viewers.Viewer].setInput(10):Ve10
↓8:[jface.viewers.IContentProvider].inputChanged(6,10):Ve11
↓8:[jface.viewers.IStructuredContentProvider].getElements(10):11e12
↑8:[jface.viewers.ITreeContentProvider].getChildren(12):11e13
↓9:[jface.viewers.ILabelProvider].getText(13):14e14
↓9:[jface.viewers.ILabelProvider].getImage(13):15e15
↓8:[jface.viewers.ITreeContentProvider].hasChildren(13):16e16
↑null:[jface.action.Action].<init>(7):17•e17
↑17:[jface.action.IAction].setText(18):V•e18
↑17:[jface.action.IAction].setToolTipText(19):V•e19
↑null:[jface.action.Action].<init>(7):21•e20
↑21:[jface.action.IAction].setText(22):V•e21
↑21:[jface.action.IAction].setToolTipText(23):V•e22
↑null:[jface.action.MenuManager].<init>(24):25•e23
↑25:[jface.action.IMenuManager].setRemoveAllWhenShown(26):V•e24
↑null:[jface.action.IMenuListener].<init>(7):27•e25
↑25:[jface.action.IMenuManager].addMenuListener(27):V•e26
↑6:[jface.viewers.Viewer].getControl():28•e27
↑25:[jface.action.MenuManager].createContextMenu(28):29•e28
↑6:[jface.viewers.Viewer].getControl():28•e29
↑6:[jface.viewers.Viewer].getControl():28•e30
↓27:[jface.action.IMenuListener].menuAboutToShow(25):V•e31
↑25:[jface.action.IContributionManager].add(17):V•e32
↑25:[jface.action.IContributionManager].add(21):V•e33
↑null:[jface.action.Separator].<init>():30•e34
↑25:[jface.action.IContributionManager].add(30):V•e35
↓8:[jface.viewers.ITreeContentProvider].hasChildren(13):31e36
↓8:[jface.viewers.ITreeContentProvider].hasChildren(13):32e37
↑null:[jface.action.Separator].<init>(33):34•e38
↑25:[jface.action.IContributionManager].add(34):V•e39
↓8:[jface.viewers.IContentProvider].inputChanged(6,10):Ve40
↓8:[jface.viewers.IContentProvider].dispose():Ve41

Figure 4.8: The generalized trace resulted from the sliced trace illustrated in
Figure 4.6

name but different parameter or return types or number of parameters are likely
to be conceptually equivalent within an API, i.e., they probably serve the same
purpose and differ only in their input data. An event fact Di ti.ni, where ti is a
type name, is extracted from a generalized trace iff the trace contains one or more
events Di O:[. . . ,ti,. . .].ni:R, where O is any object ID or “null” and R is any object
ID or “V”. We say that the events match such an event fact. For example, a2 is
extracted from the generalized trace due to its events corresponding to e18 or e21

in Figure 4.8.

The events in Figure 4.8 that match the common event facts in Figure 4.9(a)
are marked by •. The remaining events are effectively filtered out as they were
unique to this trace.

Event Nesting Facts. Event nesting facts record the calling context for outgoing
calls (Figure 4.9(b)). A nesting fact ai→aj, where ai and aj are event facts, is

49

↑jface.action.Action.<init>a1

↑jface.action.IAction.setTexta2

↑jface.action.IAction.setToolTipTexta3

↑jface.action.MenuManager.<init>a4

↑jface.action.IMenuManager.setRemoveAllWhenShowna5

↑jface.action.IMenuListener.<init>a6

↑jface.action.IMenuManager.addMenuListenera7

↑jface.viewers.Viewer.getControla8

↑jface.action.MenuManager.createContextMenua9

↓jface.action.IMenuListener.menuAboutToShowa10

↑jface.action.Separator.<init>a11

↑jface.action.IContributionManager.adda12

(a) Common event occurrence facts

a10→a11

a10→a12

jface.action.IMenuListener→a11

jface.action.IMenuListener→a12

(b) Common nesting facts

RT(a1, a2) RT(a1, a3) RP(a1, a12) TT(a2, a3)
TP(a2, a12) TP(a3, a12) RT(a4, a5) RT(a4, a7)
RP(a4, a10) RT(a4, a12) RT(a4, a9) TT(a5, a7)
TT(a5, a9) TP(a5, a10) TT(a5, a12) RP(a6, a7)
RT(a6, a10) TT(a7, a9) PT(a7, a10) TP(a7, a10)
TT(a7, a12) RP(a8, a9) TP(a9, a10) TT(a9, a12)
PT(a10, a12) RP(a11, a12)

(c) Common dependency facts

Figure 4.9: Common facts

produced whenever the generalized trace contains two events ek and el such that
(i) ek and el match ai and aj, respectively; (ii) el is outgoing; and (iii) el is directly
nested in ek in the trace. For every such fact, an additional nesting fact of the
form ti→aj, where ti is the type name of ai, is also produced. The rationale for
generating the nesting facts in the form of ti→aj can be described using Figure 4.10.
This figure presents two code snippets for two different Java applets on top of
the Applet framework. In the first one the framework’s method showStatus() is
called from within the framework’s overridden method start() and in the second
one, the showStatus() method is called from within the framework’s overridden
method stop(). If we just generate nesting facts in the form of ai→aj, then the
fact that both of the sample Java applets called the showStatus() method would
have been missed in the set of common nesting facts because of different calling
contexts. Hence, to not lose the information that both sample applets called the
showStatus() method, in addition to generating nesting facts in the form of ai→aj,
nesting facts in the form of ti→aj are generated as well.

Event Dependency Facts. Event dependency facts represent call sequence and
object passing patterns. As mentioned in Section 4.4.4, nine types of event de-
pendencies are considered in concept trace slicing. Analogously, nine types of de-
pendency facts are extracted from each generalized trace (Figure 4.9(c)): target-

50

import java . app le t . Applet ;
public class SampleApplet1 extends Applet {

. . .
public void s t a r t () {

. . .
showStatus (‘ ‘ Applet Started ! ’ ’) ;
. . .

}
. . .

}
(a)

import java . app le t . Applet ;
public class SampleApplet1 extends Applet {

. . .
public void stop () {

. . .
showStatus (‘ ‘ Applet Stopped ! ’ ’) ;
. . .

}
. . .

}
(b)

Figure 4.10: Two sample Java applets calling the showStatus() method in two
different contexts

target (TT), target-parameter (TP), target-return (TR), parameter-target (PT),
parameter-parameter (PP), parameter-return (PR), return-target (RT), return-
parameter (RP), and return-return (RR). Similar to the definitions provided in
Section 4.4.4, a target-target dependency fact TT(ai, aj), where ai and aj are event
facts, is produced whenever the generalized trace contains two events ek and el such
that (i) ek and el match ai and aj, respectively; (ii) ek precedes el in the trace; and
(iii) both ek and el have the same object as target. The analogous definitions for
the remaining dependency fact types are obtained by modifying the third condition.
For example, if the return object ID of ek is used as a parameter in el, the resulting
dependency fact type is RP(ai, aj). Dependency facts indicate sharing of objects
and object passing; e.g., PR and TR may represent the registration of an object
with a framework and subsequent retrieval.

After the common facts are computed, the event facts that originated from
the same generic events (because of multiple type names due to generalization)
are collapsed and the affected common nesting and dependency facts are updated
accordingly.

Template Generation

This section provides the details of template generation algorithms. The pseu-
docode of these algorithms is provided in Appendix B. The input to this phase
are the three sets of common facts extracted from the generalized traces in the
previous step and the generalized traces themselves. The common facts determine
the overall structure of the template, and the generalized traces are used to extract

51

additional details as needed. The template generation phase mainly executes the
following steps:

1. The constituent classes of the template are identified.

2. For each of the identified classes, its constituent constructor and methods are
determined.

3. The program statements for the constructor and each of the methods are
identified.

4. The supertypes of each class are specified.

5. The class names and variable names are determined.

6. The variable names are broadcasted based on common dependency facts.

7. The package names are removed from the fully qualified names of types and
the list of package imports are determined.

The above steps are discussed in more detail in the following sections. However,
the reader should bear in mind that some technical details are omitted for simplicity.

Create Classes. The first step in generating a template is to identify its con-
stituent classes. To this aim, the common incoming method calls and outgoing
constructor calls are used. An incoming method call means that it should be im-
plemented in an application class. An outgoing constructor call which is of interest
in this phase happens when an application class extends or implements one of the
framework classes or interfaces.

For this purpose, first the set of incoming method calls are retrieved from the set
of common event facts. Then, a class C is created for each group of incoming method
calls that are related by TT dependencies in the set of common dependency facts. If
two incoming method calls have the same target then it means that they belong to
the same application-side class. For instance, the class in l. 9 (Figure 4.2) is created
for the fact a10 (Figure 4.9) which does not participate in any TT dependencies and
thus forms its own group.

After creating a separate class for each group of incoming method calls that
have TT dependencies, the list of outgoing constructor calls are retrieved from
the set of common event facts. Since no object yet exists when a constructor call
happens, the target object ID of that constructor call is null. However, the object
ID of the newly created object is returned in the returned object of that constructor
call event. Therefore, if an outgoing constructor call has RT dependency to any
of the incoming method calls grouped in a class C or RR dependency to any of
the outgoing constructor calls grouped in that class, that constructor call is also
grouped in that class. For instance, the constructor call a6 is assigned to the class

52

in l. 9 (Figure 4.2) due to the dependency fact RT(a6,a10). If there does not exist
such a class and the constructor call is calling an interface or an abstract class (e.g.,
when instantiating anonymous classes), then it means that one of the application
classes should implement or extend that interface or abstract class. Therefore, a
new class is created and that constructor call is assigned to it. For example, the
class in l. 15 is created for a1, a call to the constructor of the abstract class Action.
If none of these situations happen, it means that the outgoing constructor call is a
call to one of the framework classes and therefore no classes need to be created.

Create Methods and Constructors. For each incoming method call assigned
to a class in the previous step, a method is created in that class. For example, the
method in l. 10 (Figure 4.2) is created because of the incoming method call a10

(Figure 4.9) assigned to the class in l. 9 (Figure 4.2). A constructor is created in
a class if nesting facts whose source is any of the constructor calls assigned to that
class are present. In our running example, we do not have an example of this.

Create Statements. The sets of common event facts and common nesting facts
are consulted to identify the statements that should go into the body of each
method. Three cases can happen:

1. For every method m of each class C, based on common nesting facts, the set of
outgoing event facts that are in the calling context of that method are set as
its statements. For example, the nesting fact a10→a12 (Figure 4.9(b)) places
the call in l. 12 (Figure 4.2).

2. Based on the common nesting facts, the set of outgoing event facts that are
in the calling context of class C, but are not in the calling context of any of
its methods, trigger the creation of a specific method named someMethod in
class C to host those outgoing event facts. For instance, if the nesting fact
a10→a12 did not exist, the third nesting fact in Figure 4.9(b) would have
triggered the creation of the method someMethod() in AppMenuListener and
the call to add() would have been placed there. As another instance, consider
the example about Java applets presented in Figure 4.10. If we wanted to
generate a template for Java applets using the sample applets presented in
that figure, the call to showStatus() method would have been placed in the
someMethod() method.

3. A particular class named SomeClass with a someMethod method is created
to host the set of common outgoing event facts for which no calling contexts
are specified by the nesting facts. For example, the set of event nesting
facts in Figure 4.9(b) does not identify any calling contexts for the out-
going event facts a1-a9 and hence, all of them are placed in the method
SomeClass.someMethod() in Figure 4.2.

53

After specifying the event facts (statements) that should go into the body of
each method, the generalized traces are consulted to identify how many times each
event fact is repeated in a calling context. The statements are then commented in
the following ways:

• REPEAT: If the event fact is called multiple times in the given calling context in
all the input generalized traces. For example, l. 12 (Figure 4.2) is commented
as REPEAT since a12 was called multiple times in every trace in the calling
context of a10.

• MAY REPEAT: If the event fact is called multiple times in some of the input
generalized traces, but not all of them (e.g., l. 20).

Finally, within each method, calls are sorted in an order determined by the
dependency facts (except RR facts, which are only used in class creation). More
specifically, the call order of the statements are obtained by applying the topological
sort on a graph with statements as nodes and the dependency facts (except RR
facts) as directed edges among them. For example, the call order in the context
menu template was determined in this way.

Identify Supertypes. Superclass and interfaces for each class (except SomeClass)
are determined by constructing a type hierarchy of target types of method and con-
structor calls assigned to it in the first step of the template generation algorithm.
Then, the leaves of this type hierarchy identify the interfaces and the superclass of
the given class. Since in Java each class can have only one superclass, therefore, at
most one leaf of the type hierarchy would be of type class or abstract class and the
rest of the leaves would be interfaces. For instance, Figure 4.11(a) illustrates the
set of incoming method and constructor calls assigned to an imaginary class C and
Figure 4.11(b) illustrates an imaginary type hierarchy built based on these calls.
In this imaginary example, the superclass for the class C would be Class1 and the
interfaces would be interface1 and interface2 since they are at the bottom-most
level of the type hierarchy. As another example consider Figure 4.7 in which there
are no interfaces for the class AppMenuManager, but its superclass is MenuManager.

Generate Class and Variable Names. The aim of this step is to generate class
and variable names. In other words, this phase converts the statements that so far
are in the form of event facts into more Java-like formats. For this purpose, the
following steps are performed:

1. Identifying the names of the application classes (except SomeClass). Each
class is named by pre-pending App to its superclass name or to one of its
interface names if no superclass is present.

54

↑ Class1 .< i n i t>
↑ I n t e r f a c e 1 .< i n i t>
↑ I n t e r f a c e 2 .< i n i t>
↓ Class2 .m2
↓ I n t e r f a c e 3 .m3
↓ I n t e r f a c e 4 .m4

(a) Incoming method calls and outgoing constructor calls assigned to class C.

C l a s s 1 I n t e r f a c e 2I n t e r f a c e 1

C l a s s 2 I n t e r f a c e 3

I n t e r f a c e 4

(b) Type hierarchy of calls assigned to class C

Figure 4.11: An imaginary type hierarchy for framework types assigned to an imag-
inary class C

2. Identifying the return type and parameters of each method (except someMethod())
in every class. For this purpose, we benefit from the method signature de-
clared in the framework API. If the method has only one declared signature,
then the return type and parameters of this method are set as what is de-
clared in the framework API. Otherwise, if the method has several signatures,
then different alternatives are shown using the ‘||’ notation as described in
Section 4.2.

3. Identifying the return type, return type variable name, and parameters for
each statement in each method. Each statement in the body of each method
can be either a constructor or method call. Similar to the previous step, also
in this phase, the declared signatures of constructor and method calls in the
framework API are used. Again, if there are several signature declarations in
the framework API for a given constructor or method call, the notation of ‘||’
is used to show different alternatives.

More specifically, if the statement is a constructor call, the return type is the
same as the target type of the constructor call and the return type variable
name equals the target type in which the first letter is in lower case. If the
statement is a method call, the return type and parameters are set as what
is declared in that method’s signature. The return type variable name equals
the return type, but the first letter is in lower case.

55

Broadcasting Variables. The goal of this phase is to show how objects are
passed among the program statements in the template. Using a graph in which
program statements are set as nodes and the dependency facts (except RR facts)
as directed edges among them, the variables defined in the statements in the pre-
vious step are broadcasted to their successor nodes. For instance, in Figure 4.2,
appAction is passed as a parameter to add in l. 12 because of RP(a1,a12). Finally,
parameter objects of framework-stipulated types that were not returned by any
other calls are provided by dummy declarations as in l. 19.

Identifying Imports. This is the last step of the template generation algorithm
in which the package names are removed from the fully qualified names of types in
the generated template and the list of package imports is created. In particular, the
package names are removed from the fully qualified names of the following things
and are added to the list of package imports: (1) the supertypes of each class, (2)
the return type of each method, (3) the parameter types of each method, (4) the
return types of statements, (5) the target of statements, and (6) the parameters of
statements. In addition, the package names are removed from the fully qualified
names of the following things, but they are not added to the package imports list:
(1) If the type is one of the language-specific types such as java.lang.String

or java.lang.Object, it is not required to add java.lang to the list of package
imports. and (2) The method names in each class. Each method in the class either
implements or overrides one of the methods declared in that class’s supertypes.
Hence, it is not required to add the package names removed from the method
names to the list of imports because the package names of those supertypes are
already added to the imports set.

4.4.5 Existing Issues in Template Generation

This section discusses some of the remaining issues in the template generation
algorithms presented in the previous section and need to be addressed in future
work. These issues are related to the problems with creating classes, their methods
and constructors, and the cyclic dependencies among the program statements in
the body of a method. Nevertheless, the developer can still extract the information
missing in the templates because of these issues from the sample applications using
the traceability links in the templates.

Issues in Generating Classes and Their Methods

As discussed in Section 4.4.4, the current approach for generating classes and their
methods is based on the dependencies among the incoming method calls and out-
going constructor calls. Nonetheless, this approach can be problematic in some
situations:

56

import FrwkCls ;
public class AppCls extends FrwkCls {

public void m() { // framework−s t i p u l a t e d method
// Does Something !

}

public stat ic void main (St r ing [] a rgs) {
AppCls appCls = new AppCls () ;
appCls .m() ;

}
}

(a) A simple code snippet

↑null:[FrwkCls].<init>():1
↑1:[FrwkCls].m():V

(b) Generalized trace

↑FrwkCls.<init>
↑FrwkCls.m
RT(↑FrwkCls.<init>, ↑FrwkCls.m)

(c) Common facts

import FrwkCls ;
public class SomeClass {

public void someMethod () {
FrwkCls frwkCls = new FrwkCls () ;
f rwkCls .m() ;

}
}

(d) Template generated by FUDA

Figure 4.12: An example showing the issues of outgoing calls to framework-
stipulated methods and constructors

• No methods are created in the template for framework-stipulated methods for
which there are only outgoing calls, but not incoming calls in the trace. For in-
stance, consider the simple code snippet presented in Figure 4.12(a) in which
the application calls the framework-stipulated method m, but there are no in-
coming calls to this method as shown in the generalized trace (Figure 4.12(b)).
Based on the common facts extracted from this trace (Figure 4.12(c)), FUDA
generates the template illustrated in Figure 4.12(d). As can be seen in this
figure, the fact that the application should override the method m is missed.
One potential solution to this problem is to identify the calls to framework-
stipulated methods that are implemented on the application side.

• No classes are created in the template for those that extend non-abstract
framework-provided classes and for which there are no incoming calls to their
methods. For example, consider again the example presented in Figure 4.12.
In this example, class AppCls extends the framework’s concrete class FrwkCls.
However, since there are no incoming calls to framework-stipulated method m,
FUDA did not reflect this fact in its resulting template, i.e., the template does
not include any classes extending the framework class FrwkCls. Again, one

57

possible solution to this problem is to identify calls to framework-stipulated
methods.

• FUDA generates various classes for different instances of a single class from
which different methods are called by the framework. For instance, suppose
an application-side class C1 implements framework methods m1 and m2, both
provided by a single framework type. Moreover, suppose there are two in-
stances of C1 such that one calls m1 and the other calls m2. In this particular
example, FUDA would generate two different classes, one implementing the
method m1 and the other one implementing the method m2, which is not
necessarily appropriate. To address this issue, one strategy for creating the
classes would be to group incoming method calls and outgoing constructor
calls based on their types instead of their dependencies. Nevertheless, this ap-
proach can be problematic too. For example, consider the following example
in which two different classes implementing the same interface Interface1,
but the second one implements another interface Interface2 as well:

public class C1 implements Interface1 { . . . }
public class C2 implements Interface1, Interface2 { . . . }

In this example, if the method and constructor calls are grouped based on
their types to form classes, then we will have two different classes, one im-
plementing just the interface1 and the other one implementing just the
interface interface2 which is not correct. Consequently, we decided to gen-
erate classes based on their dependencies. This approach at least ensures that
incoming calls on a single instance will be treated together and the anoma-
lies listed above can be treated by the developer and/or more sophisticated
strategies are also possible. For instance, in the current prototype implemen-
tation of FUDA (Section 5.2), users have this option to merge classes if their
supertypes overlap to form more complex classes.

Issue of Cyclic Dependencies among Method Statements

As mentioned in Section 4.4.4, within each method, the order of the statements
are determined by applying a topological sort on a graph with statements (i.e.,
event facts) as nodes and the dependency facts (except RR facts) as directed edges.
However, it is possible that these dependency facts form some cycles in the graph
built in this way. In this case, since it is impossible to apply topological sort on
a cyclic graph, then it becomes impossible to order the method statements in this
way. In this case, benefitting from more sophisticated techniques such as mining
iterative patterns [84] might be of help. In the current prototype implementation of
FUDA, the user is just warned of this fact using the comment /* UNKNOWN ORDER

FOR THE STATEMENTS */ and the method statements are listed in a random order.

58

. . .
T1 .m(P) ;
T2 .m(T1) ;
T1 .m(P) ;
. . .

(a) Original code snippet

. . .
↑ IDT1 : [T1] .m(IDP) :V
↑ IDT2 : [T2] .m(IDT1) :V
↑ IDT1 : [T1] .m(IDP) :V
. . .

(b) Generalized trace

T 1 . m (P) T 2 . m (T 1)

T T , P P

P T

T P

(c) Dependency graph

. . .
/∗ UNKNOWN ORDER FOR THE STATEMENTS ∗/
T1 .m(P) ; // REPEAT
T2 .m(T1) ;
. . .

(d) FUDA template

Figure 4.13: Issue of cyclic dependency among the statements within the body of
a method

Figures 4.13-4.15 illustrate three situations in which dependency facts form
cycles among the method statements. All these figures indicate the original code
snippet in the sample application, the generalized trace, the dependency graph built
out of the generalized trace, and the template generated based on that generalized
trace. Note that in these figures, the nodes of the dependency graphs constitute the
event facts and therefore they should not indicate the method parameters. However,
they are illustrated for better understanding of the examples. The situations that
are presented in these figures were actually observed in the evaluations of template
extraction for real framework-provided concepts presented in Chapter 5.

Figure 4.13 indicates a situation in which the statements in the body of a method
form a dependency cycle. In this example, the second statement (i.e., T2.m(T1))
has TP dependency to the first statement and PT dependency to the third state-
ment while the first and the third statements are exactly the same (i.e., T1.m(P)).
Since in FUDA, multiple calls to a given method are collapsed into a single event
fact, therefore there is a cycle in the dependency graph as shown in Figure 4.13(c).

59

. . .
for (int i = 1 ; i <= 2 ; i++) {

T.m(P) ;
P.m(T) ;

}
. . .

(a) Original code snippet

. . .
↑ IDT : [T] .m(IDP) :V
↑ IDP : [P] .m(IDT) :V
↑ IDT : [T] .m(IDP) :V
↑ IDP : [P] .m(IDT) :V
. . .

(b) Generalized trace

T . m (P)

T T , P P

T P , P T

T P , P T

T T , P P

P . m (T)

(c) Dependency graph

. . .
/∗ UNKNOWN ORDER FOR THE STATEMENTS ∗/
T.m(P) ; // REPEAT
P.m(T) ; // REPEAT
. . .

(d) FUDA template

Figure 4.14: Issue of cyclic dependency among the statements because of a loop

Figure 4.14 indicates a situation in which the calls are in the body of a loop.
The resulting trace of this loop is presented in Figure 4.14(b). As can be seen in
this figure, although there is no cyclic dependency between the two statements in
the body of the loop, since those statements are repeated in the trace, they form a
cycle in the dependency graph.

Finally, Figure 4.15 presents a situation in which two different application-side
classes are implementing the same interface and an instance of each of them is
created for a desired concept. When FUDA generates a template using a trace of
such a code snippet (i.e., Figure 4.15(a)), the statements in the body of the same
method (or constructor) in both of these classes are placed together and may form
a cycle as presented in Figure 4.15(c). The reason for this situation is that all these
statements are in the calling context of the same method (or constructor) based
the set of common nesting facts and hence they are all put in the body of that
method (or constructor). However, it should be noted that in FUDA, the aim was
to show what statements were in the calling context of a given method, rather than

60

indicating alternatives of statements that may go into the body of that method.
Representing these variabilities requires further research.

4.5 Summary

This chapter presented the notion of concept implementation templates as a Java-
based pseudocode that indicates the necessary implementation steps to realize a
desired concept on top of a given framework, such as which framework packages
to import, interfaces to implement, classes to subclass, methods to implement, ob-
jects to create, methods to call, as well as some additional information such as
call nesting, order of calls, and object passing patterns. The FUDA framework
comprehension technique was also introduced as an automated approach for ex-
tracting such templates from traces obtained by invoking the concepts of interest
in sample applications. The next chapter presents the prototype implementation
of FUDA and will illustrate that it is possible to use FUDA to generate quality im-
plementation templates with high precision and recall for real framework-provided
concepts.

61

public class AppCls1
implements I n t e r f a c e 1 {

public void AppCls1 () {
T1 .m(P) ;
T2 .m(T1) ;

}
}
public class AppCls2
implements I n t e r f a c e 1 {

public void AppCls2 () {
T1 .m(T2) ;

}
}
. . .
AppCls1 appCls1 = new AppCls1 () ;
AppCls2 appCls2 = new AppCls2 () ;
. . .

(a) Original code snippet

↑ null : [I n t e r f a c e 1] .< i n i t> () :V
↑ IDT1 : [T1] .m(IDP) :V
↑ IDT2 : [T2] .m(IDT1) :V

↑ null : [I n t e r f a c e 1] .< i n i t> () :V
↑ IDT1 : [T1] .m(IDT2) :V

(b) Generalized trace

T 1 . m (P) | | (T 2) T 2 . m (T 1)

T T

T P

T P

(c) Dependency graph

public class AppInter face1
implements I n t e r f a c e 1 {

public void AppInter face1 () {
/∗ UNKNOWN ORDER FOR THE STATEMENTS ∗/
T1 .m(P) | | (T2) ; // REPEAT
T2 .m(T1) ;

}
}

(d) FUDA template

Figure 4.15: Issue of cyclic dependency among the statements because of imple-
menting the same method or constructor

62

Chapter 5

Template Extraction Evaluation

Chapter 4 introduced the notion of concept implementation templates and FUDA
as an automated approach for the extraction of such templates from traces collected
when the desired concept was invoked in a number of sample applications. This
chapter presents the results of an empirical evaluation performed to assess the
quality of templates generated using this technique for realistic framework-provided
concepts. For this purpose, FUDA was prototyped as a tool for Java and this tool
was used to generate implementation templates for a collection of twelve concepts
for four popular frameworks, some of which were sampled from developers’ forums.
This study showed that the approach can produce templates with only very few
false positives and false negatives for realistic concepts and sample applications.

The rest of this chapter proceeds as follows. Section 5.1 outlines the research
questions and the hypotheses of this empirical study. Section 5.2 describes the
prototype implementation of FUDA. Section 5.3 explains the setup of this empirical
evaluation. Section 5.4 presents the evaluation results followed by Section 5.5 that
discusses the threats to the validity of these results. Finally, Section 5.6 summarizes
this chapter.

5.1 Experiment Objectives

This section presents the objectives for which this empirical study was designed
and conducted.

5.1.1 Experiment Definition

The aim of the FUDA framework comprehension technique presented in Chapter 4
is to benefit from existing sample applications that implement a desired framework-
provided concept to generate an implementation template for that concept. It was
also discussed that an implementation template summarizes the steps necessary

63

to realize that concept such as which framework packages to import, framework
classes to subclass, framework interfaces to implement, framework services to call,
and so on. To assess how successful the FUDA approach is in extracting such
templates, this experiment was designed and conducted to answer the following
research questions:

1. Can FUDA generate quality implementation templates with high precision
and recall?

2. Can FUDA generate quality implementation templates using only a few sam-
ple applications?

3. What is the impact of API trace slicing on the quality of implementation
templates? How useful is it?

5.1.2 Hypothesis Formulation

Based on the research questions presented in the previous section, the following
evaluation hypotheses are formulated for this study:

Hypothesis 1: FUDA can extract templates with high precision and recall from
only two traces and/or two sample applications implementing the desired concept
in two different contexts.

Hypothesis 2: API trace slicing improves the precision and recall of the tem-
plates generated using the FUDA technique.

To make FUDA more practical, we aim to keep the number of traces per con-
cept as small as possible since the selection of sample applications and collection of
traces represent manual effort and the installation and execution of sample appli-
cations can be cumbersome too. Therefore, Hypothesis 1 was formulated based on
using only two sample applications implementing the given concept in two different
contexts. Nevertheless, it is worth mentioning that in an earlier experiment [53, 52]
we showed additional applications cause templates to concentrate on the minimal
common implementation steps, without much improvement in terms of false posi-
tives or negatives.

5.2 Prototype Implementation of FUDA

To test the hypotheses presented in Section 5.1.2, the FUDA technique was pro-
totyped as an integrated tool for Java consisting of two parts [54]: FUDA Tracer
and FUDA Analyzer. As described in Chapter 4, FUDA prescribes the use of a

64

(a) User names the trace (e.g., Tree
Viewer). Pushes the Start Application but-
ton to put the FUDA Tracer in the recording
mode. Then, opens the sample application.

(b) User clicks on the Start Marking but-
ton to put the FUDA Tracer in the marking
mode. Then, invokes the desired concept in
the sample application.

(c) When the job of the desired concept is
done, user presses the Stop Marking button
to finish marking the trace.

(d) User closes the sample application.
Next, pushes the Stop Application button to
stop recording. Then, exits from the FUDA
Tracer by pressing the Exit button.

Figure 5.1: The FUDA Tracer GUI for recording an API trace

tracer and an analyzer tool. The former is responsible for assisting the developer
in collecting and marking the traces during the trace collection step (discussed in
Section 4.4.3), and the latter implements the automated analysis phase (described
in Section 4.3). Currently, this prototype implementation contains 161 Java classes
distributed in 49 packages and includes about 15,000 lines of code1. A flash demon-
stration of these tools can be obtained from [41].

5.2.1 FUDA Tracer

The current prototype implementation of FUDA Tracer instruments applications
using aspects written in AspectJ 2. To instrument code inside the Eclipse platform,
the FUDA Tracer benefits from the AJEER3 plug-in. For this tracer, the user has to

1Excluding comments and blank lines.
2http://www.aspectj.org/.
3http://ajeer.sourceforge.net/.

65

http://www.aspectj.org/
http://ajeer.sourceforge.net/

(a) Slicing options

(b) Mining options

Figure 5.2: The FUDA Analyzer GUI for getting input traces and template gener-
ation options

66

Figure 5.3: The FUDA Analyzer GUI for presenting the results of FUDA’s auto-
mated analysis phase

specify the packages in which the framework of interest (e.g., org.eclipse.jface.*)
and the sample applications (e.g., ca.uwaterloo.gsd.SampleTreeViewer) reside
and then execute those instrumented sample applications under this tracer. The
tool also contains a GUI that helps developers demarcate the begin and the end of
a concept’s execution as depicted in Figure 5.1. This figure also shows the process
that the user must follow to record a trace using the FUDA Tracer.

5.2.2 FUDA Analyzer

FUDA Analyzer is implemented as a plug-in for Eclipse 3.2. The FUDA Ana-
lyzer accepts API traces stored in files by the FUDA Tracer tool, applies the whole

67

process of the automated analysis phase, and outputs the results. The tool also con-
tains a GUI that helps developers to identify the input traces (Figure 5.2), different
API trace slicing options (Figure 5.2(a)), and various template generation options
(Figure 5.2(b)). Depending on the user’s choices and the nature of the concept, the
developer can use the slicing options to (i) disable the slicing to account for either
the marked region only or the whole trace; or (ii) configure the slicing to account
for all types of dependencies or for just a subset. Based on the template generation
options selected, the tool can output only different kinds of common facts or it can
generate complete concept implementation templates. The user also has the option
to merge template classes whose supertypes overlap as discussed in Section 4.4.5.
Finally, as described in Section 4.4.4, since this prototype implementation uses the
frequent closed itemset mining [144] technique to find the commonalities among
the input traces, the user has the option to determine the minimum support whose
default value in this prototype is 100%, i.e., only the implementation templates
that are supported by all the input traces are generated. To conduct this mining,
this prototype uses LCM ver. 3.0 (Linear time Closed itemset Miner) [123] that
outperforms many of the existing algorithms.

FUDA Analyzer also provides a GUI for presenting the analysis results (Fig-
ure 5.3). This GUI illustrates the selected options, different kinds of common facts
extracted from the input traces, and the generated concept implementation tem-
plate in separate tabs.

5.3 Experiment Setup

This section presents the design of this empirical study and the way it was set up
to verify the hypotheses formulated in Section 5.1.2. In particular, this evaluation
setup included the following steps:

1. Selection of frameworks on top of which the experiment concepts were chosen.

2. Selection of experiment concepts for which the templates were generated by
applying the FUDA technique.

3. Selection of sample applications and execution scenarios to generate the tem-
plates.

4. Trace collection by using the selected sample applications and execution sce-
narios.

5. Specifying the quantitative and qualitative analysis procedures.

In the following, the details of these steps are explained in detail.

68

5.3.1 Selection of Frameworks

The evaluation includes four widely-used frameworks:

• Eclipse4— Eclipse is a large framework containing nearly two million lines of
code [26] which is currently undergoing extensive development. The Eclipse
project was originally created by IBM and is supported by a consortium of
software companies and the open source community. The Eclipse framework
is composed of many smaller frameworks that built upon each other. One of
the main frameworks in Eclipse is the Eclipse Platform framework, a plug-in
based framework that can be used to develop and integrate software tools
such as Integrated Development Environments (IDEs). For instance, the
popular Java Development Tool (JDT) framework which is widely used by
programmers as a Java IDE is an extension of the Eclipse platform framework.

• JFace5— JFace is a user interface application framework which is built on
top of the Standard Widget Toolkit (SWT). SWT provides the fundamental
building blocks of a user interface in a typical Eclipse application. However,
using JFace, the developer can implement user interface components with
less code and effort than if she had started at the basic SWT widget level. In
particular, it includes classes for handling common user interface components
such as wizards, preference pages, actions, text, image and font registries,
and dialogs. Although the JFace’s heritage is based on the frameworks that
are widely used for writing IDEs, most of JFace is generally useful in a broad
range of graphical desktop applications. JFace is widely used, from simple
stand-alone applications that do not use the Eclipse runtime, to workbench-
based Rich Client Platform (RCP) applications, to Eclipse plug-ins.

• Graphical Editing Framework 6 (GEF)— The Graphical Editing Framework
(GEF) is an open source framework that provides a visually rich, consistent
graphical editing environment for developing applications on the Eclipse Plat-
form. GEF is application neutral and provides the groundwork to build dif-
ferent kinds of applications, including, but not limited to, charts and graphs,
reports, activity diagrams, GUI builders, UML diagram editors, and even
WYSIWYG text editors for HTML. More specifically, GEF allows developers
to create a rich graphical editor for existing application models. GEF employs
an MVC (model-view-controller) architecture which enables simple changes
to be applied back to the model originating from the view.

• Java2D7— The Java2D API is a framework for drawing two-dimensional
graphics in Java, as well as an extension of the capabilities of Sun’s Abstract
Window Toolkit (AWT). The Java2D framework provides a robust package

4http://www.eclipse.org/.
5http://wiki.eclipse.org/index.php/JFace.
6http://www.eclipse.org/gef/.
7http://java.sun.com/products/java-media/2D/.

69

http://www.eclipse.org/
http://wiki.eclipse.org/index.php/JFace
http://www.eclipse.org/gef/
http://java.sun.com/products/java-media/2D/

of drawing and imaging tools to develop elegant, professional, high-quality
graphics. This framework provides extensive support for image compositing
and alpha channel images, a set of classes to provide accurate color space
definition and conversion, and a rich set of display-oriented imaging operators.

The main reasons for selecting these specific four frameworks are that they are
widely used, they provide a variety of concepts, and sample applications for these
frameworks are readily available in open source. Although they all involve graphical
concepts, FUDA is also applicable to non-graphical frameworks too, as long as
the concepts of interest can be explicitly invoked from the sample applications’
graphical or programmatic user interface.

5.3.2 Selection of Concepts

Table 5.1 presents the concepts selected for this evaluation. The Eclipse and JFace
concepts, except Focus, were selected as representative for FUDA based on the
author’s prior familiarity with these frameworks. The remaining concept defin-
ing queries were sampled from developer forums of the respective frameworks and
FUDA steps were performed for them without much prior knowledge of the corre-
sponding frameworks. In total, fourteen concepts were selected to cover a variety
of characteristics. These characteristics include:

• Scope. A concept can be either in the scope of FUDA’s intended usage or not.
A concept is considered out of scope if it is very unlikely to find applications
and scenarios satisfying the three goals from Section 4.4.2 for it.

• Slicing. It is not required to perform API trace slicing if the concept’s defi-
nition includes only the events that happened in the marked region or spans
the full trace.

• Frequency. A concept can be either frequent among the existing example
applications of the framework or rare. A frequent concept can be also referred
to as one of the framework’s basic concepts which is typically implemented
by most of its applications.

• Complexity. A concept can be either simple or complex in terms of imple-
mentation complexity measured as template size.

• Atomicity. A concept can be either composite in the sense of consisting of
several variable subsets of implementation steps or atomic if only a fixed set
of steps is involved.

In Table 5.1, an “X” in a column in front of a concept indicates that the concept
has the corresponding characteristic in that column.

70

Table 5.1: The choice of frameworks, concepts, and sample applications for the
template extraction evaluation (* indicates concepts from developer forums)

F
r
a
m

e
w

o
r
k

Concept Defining Question

Properties Sample Applications

In
S

c
o
p

e

S
li

c
in

g

F
r
e
q
u

e
n
t

S
im

p
le

C
o
m

p
o
si

te

Name Source

E
cl

ip
se

Table
Viewer

How to implement a typical Eclipse
table viewer?

X - X - X
Editor List eclipse-plugins

Table Viewer Eclipse Wizard

Tree
Viewer

How to implement a typical Eclipse
tree viewer?

X - X - X

LDAP
Browser

eclipse-plugins

Tree Viewer Eclipse wizard

Navigate
How to create the tree navigation
buttons (i.e., Go Home, Go Back and
Go Into) in a tree viewer’s toolbar?

X X - X X

KTreeMap SourceForge

SVN
Repository

Subclipse

Focus*
What events happen when a user clicks
on the title-bar of an Eclipse view?

X - X X -

LDAP
Browser

eclipse-plugins

Editor List eclipse-plugins

J
F

a
ce

Context
Menu

How to implement a context menu in
an Eclipse view?

X X X X X
Tree Viewer Eclipse Wizard

Console Eclipse UI

Toolbar
Button

How to add a button to a view’s
toolbar?

X X X X X

Package
Explorer

Eclipse JDT

Crosscutting
Comparison

AJDT

Content
Assist

How to implement a content assistant
in an Eclipse text editor?

X X - - X
Java Editor Eclipse JDT

JSP Editor Eclipse WTP

G
E

F

Select*
What events happen when a user
clicks on a figure in a GEF editor?

X - X X -
Flow GEF Examples

Shapes GEF Examples

Figure*
How to implement drawing a figure in
a GEF editor?

X X X - X
Flow GEF Examples

Shapes GEF Examples

Connection*
How to implement drawing a
connection between two figures in a
GEF editor?

X X X - X
Flow GEF Examples

Shapes GEF Examples

Title-bar
Color*

How to change the color of a GEF
editor’s title-bar?

- - - X -
– –

– –

J
a
v
a

2
D

Moving
Shapes*

How to draw shapes and let the user
drag them?

X X X X X
GTEditor Google Code

GeoSoft Google Search

Circle
Drawing*

How to draw a red circle on a black
background?

X X X X X
JHotDraw SourceForge

Scribble Google Search

Rounded
Image*

How to make the corners of an image
rounded?

- - X X -
– –

– –

71

Slicing is optional, as an invocation scenario can sometimes span the full concept
lifecycle, in which case the full trace is used. For example, Tree Viewer and Table
Viewer are the concepts in Table 5.1, where slicing was not used since the scenario
involving view opening and closing spanned the entire view lifecycle. Because of
trace slicing, FUDA also works well for concepts having life-cycles spanning beyond
the marked trace region, which are those shown with “X” in the Slicing column.
We also included two concepts, Focus and Select, for which only the marked region
is used, i.e., the user was just interested in the events that happened when the
given concept was invoked.

The FUDA technique could be applied for frequent concepts, in which case
finding sample applications is likely easy. It may be applicable to rare concepts, too,
if the user has already identified one or two applications with appropriate execution
scenarios. For example, users may apply FUDA to find out the implementation of
a rare concept that they noticed in an existing application. Also, concepts that
may appear rare at first might not be rare after all. For example, the choice of red
and black in Circle Drawing may be rare, but setting background and figure colors
is not.

Most of the considered concepts are composite as they include variable parts.
For example, a context menu may or may not include a separator. When apply-
ing FUDA, the user has to be aware that optional features will be lost if they are
not present in both traces. Thus, if the user is interested in context menus with
separators, both traces have to involve such menus. Concepts with only few imple-
mentation steps tend to be atomic and more complex ones are usually composite.

5.3.3 Selection of Sample Applications and Execution Sce-
narios

As mentioned earlier in Section 5.1.2, in this evaluation, we tried to keep the number
of sample applications and/or execution scenarios per concept as small as two to
make the FUDA technique attractive in practice. With respect to this, for each
concept, two sample applications implementing the given concept in two different
contexts were selected and for each of them one execution scenario was designed.
Table 5.1 presents these sample applications as well as their sources. As can be
seen in this table, the sample applications mainly came from the following different
sources:

• Applications packaged with the framework itself such as example applications
for the GEF concepts;

• Applications listed in online repositories such as eclipse-plugins.org or
SourceForge.net;

• Applications that are part of a larger familiar environment such as Java De-
velopment Tools (JDT) or Eclipse WTP; or

72

eclipse-plugins.org
SourceForge.net

• Applications that are automatically generated with the help of wizards such
as Eclipse Wizard.

Selection of these applications involved the following strategies:

• Reliance on prior familiarity with a given application. This strategy was
followed mainly for the Eclipse and JFace concepts because of author’s prior
knowledge of these frameworks;

• Browsing and running the standard examples of the framework. This strategy
was mostly applied for the GEF concepts;

• Searching or browsing in online application repositories. For instance, GTE-
ditor for the concept Moving Shapes was identified on Google Code by the
search keyword “shape” and seeing a screenshot of a drawing editor; or

• Tips by others. For example, Eclipse WTP for the concept Content Assist
was suggested by a colleague.

Selecting the applications for each concept took anywhere from no time for
Eclipse JDT or wizards thanks to author’s prior familiarity to up to an hour of
searching and browsing for eclipse-plugins.org or SourceForge.net. The selec-
tion process had a significant learning effect: familiarity with framework-packaged
examples or applications inspected for a given concept significantly reduced the se-
lection time for the next concept. Some execution scenarios were already specified
by the defining questions, e.g., “How does one draw a figure in a GEF editor?” In
other cases, an action invoking the concept of interest had to be identified, e.g.,
opening action for Context Menu.

5.3.4 Trace Collection

The FUDA Tracer was used to collect the API traces. As discussed in Sec-
tion 5.2.1, to trace each sample application, the user had to specify the packages
in which the framework of interest and the sample application reside. As the pack-
ages of interest, org.eclipse.*, org.eclipse.jface.*, org.eclipse.gef.*, and
java.awt.* were specified for Eclipse, JFace, GEF, and Java2D frameworks respec-
tively. Note that only the calls at the application-framework boundary are traced,
which are significantly fewer than all the calls involved in the implementation of
a concept. As a result, API tracing is quite efficient. For example, tracing all of
GEF was almost unnoticeable when using GEF applications. However, the appli-
cations ran two to three times slower when all of Eclipse was traced for Eclipse
concepts. Collecting a single trace took anywhere from several seconds to a few
minutes on a laptop with a single-core Pentium M 1.6MHz processor, 1GB of RAM,
and Windows XP.

73

eclipse-plugins.org
SourceForge.net

5.3.5 Template Generation

The templates were generated using the FUDA Analyzer introduced earlier in Sec-
tion 5.2.2. To maximize the reach of the API trace slicing for all the concepts that
require slicing, all types of dependencies in conjunction were used. The running
time for this step on a laptop with a single-core Pentium M 1.6MHz processor, 1GB
of RAM, and Windows XP, was anywhere from a few seconds up to six minutes.
Based on the measurements done, the main bottleneck of the process was the num-
ber of the dependency facts being generated. However, performance optimization
was not a goal in this prototype implementation since the running times for the
evaluated concepts were satisfactory.

5.3.6 Analysis Procedure

This section describes the procedure followed for analyzing the generated templates
in order to verify the hypotheses formulated in Section 5.1.2. This procedure in-
cludes both quantitative and qualitative analyses. The quantitative data is the
main source for testing the evaluation hypotheses, while the qualitative analysis
provides a deeper insight into the quantitative results.

Quantitative Analysis Procedure

The precision and recall of the generated templates were calculated against refer-
ence templates. For each concept in scope a mandatory and an optional reference
template were created. Mandatory reference templates represent the set of manda-
tory implementation steps, i.e., the ones that are essential to the instantiation of
a concept: if the step is removed, the concept does not work as expected. For
example, without calling the method createContextMenu() (l. 29 in Figure 4.2)
a context menu cannot be realized. For concepts that relate to the response to
an event, such as Focus and Select, the mandatory steps are the ones that always
occur as a result to the event. Optional reference templates additionally include
steps that are not essential but that are relevant to the concept and were present in
the sample applications. For instance, Context Menu’s optional reference template
includes calls to create and register separators.

Reference templates were carefully created to minimize threats to the validity of
the results. For all concepts, reference templates were created using documentation
found online (usually third-party articles or solutions posted in forums or both) and
manually inspecting sample applications. In order to guarantee their correctness,
reference templates were used in the creation of sample implementations. The
determination of mandatory steps was mostly obvious with the help of framework
documentation; dubious cases were verified by removing the step from the sample
implementation and testing. Reference templates were then compared against the
generated ones to identify optional features present in the sample applications. Each

74

non-mandatory step found in the generated template was examined and classified
as optional, if it was relevant to the concept, or irrelevant, otherwise. If not clear,
we were conservative and the step was considered irrelevant.

With respect to the above discussion, the calculation of precision and recall
is based on counting the implementation steps contained in a template and com-
paring them against the reference templates. The considered implementation steps
were superclass declarations, implement declarations (i.e., declaring that a class im-
plements an interface), method implementations (except someMethod()), method
calls, and constructor calls. These steps are the main elements of a template. Call
sequence and parameter passing patterns are considered supplementary information
that makes the templates more readable. The calculation of precision and recall is
based on determining three numbers:

• G : The number of all implementation steps in the generated template;

• M : The number of steps that are present in the reference template but missing
in the generated template (i.e., false negatives); and

• I : The number of steps that are incorrectly present in the generated template,
but absent in the reference template (i.e., false positives).

Precision (P) and recall (R) of a template are then calculated in the following
way:

P =
G− I
G

(5.1)

R =
G− I

G− I +M
(5.2)

To reduce bias, the ranges of values possible for the precisions and recalls of
generated templates were calculated using the mandatory and optional reference
templates. The lower bounds of precisions and recalls were determined by using
the mandatory reference templates in which all the optional steps in the generated
templates were considered false positives. The upper bounds were calculated with
the help of optional reference templates in which optional steps in the generated
templates were not counted as false positives.

To analyze the influence of API trace slicing on the quality of the generated
templates, all precision and recall calculations are also done for when full traces
without slicing are used.

Qualitative Analysis Procedure

The generated templates were qualitatively analyzed to (1) gain qualitative insights
into the false positives and false negatives identified in the quantitative analysis,

75

and (2) study the impacts of API trace slicing on the quality of templates and
specify the situations in which conducting slicing is more useful than not applying
it.

To perform the qualitative analysis, the generated templates were inspected and
compared against the reference templates and the sources from which the reference
templates were generated, i.e., the documentation of the frameworks, third-party
articles, actual example applications source code and their enclosing comments,
and the solutions provided in developers forums.

5.4 Experiment Results

This section presents and discusses the results of quantitative and qualitative anal-
yses of the generated templates conducted according to the procedures described
in Section 5.3.6.

5.4.1 Quantitative Results

Table 5.2 illustrates the results of quantitative analysis conducted according to
the procedure presented in Section 5.3.6. For the concepts with slicing, Table 5.2
also reflects the numbers obtained by using full traces without slicing to study the
impacts of API trace slicing on the quantitative results. The final numbers are
marked in bold, with precision ranging between 59% and 100% and recall ranging
between 79% and 100% when optional reference templates are used. When manda-
tory reference templates are used (in parentheses), precision ranges between 12%
and 100%, and recall ranges between 57% and 100%. The reason is that mandatory
reference templates did not include any of the optional implementation steps, and
hence, all those steps in the generated templates were counted as false positives.
For example, for Toolbar Button, the code in the mandatory reference template
would produce an empty button, i.e., one without any icon, caption, and tool-tip
text. When we compared the mandatory reference template with the generated
one, the code in the generated template that corresponded to optional steps were
counted as false positives. However, in real life, hardly any user is interested in the
concept of an “empty toolbar button” as opposed to “toolbar button with some
caption and icon”. Therefore, we concentrate on the results for optional reference
templates in the rest of this chapter.

The results for the No Slicing column, i.e., using full traces, indicate that using
the whole API trace is insufficient for getting quality templates because, although
those templates contain a few false negatives, their size is larger than when slicing
is used and they present more false positives. More specifically, slicing improved
precision by eliminating between 20% and 80% of false positives, except for Context
Menu, for which the sample applications were different enough to achieve 100%
precision without slicing.

76

Table 5.2: The quantitative results of template extraction evaluation

F
r
a
m

e
w

o
r
k

Concept

Precision and Recall Results

No Slicing With Slicing

G I M P R G I M P R

E
cl

ip
se

Table Viewer 39
0

(23)
0

(0)
100
(41)

100
(100)

– – – – –

Tree Viewer 45
0

(29)
1

(1)
100
(36)

98
(94)

– – – – –

Navigate 40
10

(20)
0

(0)
75

(50)
100

(100)
38

8
(18)

0
(0)

79
(53)

100
(100)

Focus* 4
0

(0)
0

(0)
100

(100)
100

(100)
– – – – –

J
F

a
ce

Context Menu 15
0

(4)
1

(1)
100
(73)

94
(92)

15
0

(4)
1

(1)
100
(73)

94
(92)

Toolbar Button 18
5

(14)
3

(3)
72

(22)
81

(57)
13

1
(9)

3
(3)

92
(31)

80
(57)

Content Assist 46
27

(30)
1

(1)
41

(35)
95

(94)
32

13
(16)

1
(1)

59
(50)

95
(94)

G
E

F

Select* 7
0

(3)
0

(0)
100
(57)

100
(100)

– – – – –

Figure* 83
25

(75)
0

(0)
70

(10)
100

(100)
68

10
(60)

0
(0)

85
(12)

100
(100)

Connection* 91
26

(82)
0

(0)
71

(10)
100

(100)
76

10
(66)

0
(0)

87
(13)

100
(100)

Title-bar Color* – – – – – – – – – –

J
a
v
a

2
D

Moving Shapes* 25
7

(16)
4

(4)
72

(36)
82

(69)
18

3
(9)

4
(4)

83
(50)

79
(69)

Circle Drawing* 12
4

(9)
0

(0)
67

(25)
100

(100)
10

2
(7)

0
(0)

80
(30)

100
(100)

Rounded Image* – – – – – – – – – –

These results quantitatively confirm the evaluation hypotheses that it is possible
to extract implementation templates with high precision and recall from only two
sample applications and/or execution scenarios implementing the desired concept
in two different contexts. Moreover, these results confirm that API trace slicing
can improve the precision of the templates.

5.4.2 Qualitative Results

This section presents the results of qualitative analysis of generated templates per-
formed according to the procedure described in Section 5.3.6.

In general, false positives were more frequent than false negatives. False pos-
itives were due to similarities among the sample applications that extend beyond
the concept of interest. For example, the remaining false positive for Toolbar But-
ton was due to calls to IShellProvider.getShell(), which are frequently used

77

in Eclipse views. On the other hand, false negatives were mainly a result of (1)
some difficulties in the current prototype implementation of FUDA, and/or (2) the
existing issues in generating classes and their methods in template generation al-
gorithms as described in Section 4.4.5. However, interestingly, there was not even
a single false negative in the generated templates because of the API trace slic-
ing. For instance, two of the false negatives for Moving Shapes were caused by
the limitation of AspectJ which is used in FUDA Tracer. AspectJ cannot intro-
duce code into java.awt.* packages or any other package belonging to the Java
runtime library and therefore, the incoming calls were not traced. As an example
of issues in template generation algorithms, for Tree Viewer, getChildren() was
a framework-stipulated method that was implemented on the application side and
there were no incoming calls to this method, except the outgoing calls. Therefore,
this method was not implemented in the generated template.

Regarding the API trace slicing, it was particularly more useful when example
applications shared more than the desired concept in common. For instance, for the
GEF Figure, the example applications shared other concepts such as Palette and
Toolbar as well, and therefore, performing slicing was highly beneficial. Slicing is
also likely to be useful for traces generated using a single application, as such traces
will likely have more common calls that are unrelated to the concept of interest.
Moreover, using slicing and the current prototype implementation of FUDA, the
user can see the effects of individual dependency types (e.g., TT, TP, etc.) on
the generated templates. Nevertheless, slicing is not required when (i) example
applications share only the desired concept; in this case, concept trace slicing has
no effect on the results compared to when the full traces are used; for instance, for
the Context Menu, slicing had no effect; and (ii) the user is interested in the whole
trace or just the events in the marked region; for instance, for the concept Table
Viewer the whole traces were used, while for Focus, only the marked regions were
used.

In the following, the qualitative analysis results are described for each concept
individually:

• Table Viewer and Tree Viewer: For these two concepts, the concept defining
question was how to implement a typical Eclipse table/tree viewer? Thus, the
scenario involving view opening and closing spanned the entire view lifecycle.
Consequently, API trace slicing was not needed.

For Tree Viewer, as described earlier in this section, the getChildren()

method was not implemented in the template and therefore was specified
as a false negative.

• Navigate: Since both of the sample applications used for this concept had also
the concept Context Menu in common, seven out of eight false positives for
this concept were those creating the context menu for a view. Nevertheless,
those false positives were easily identifiable by the user (almost all of them
had the term menuManager).

78

• Focus: For this concept the user was interested only in the events that hap-
pened when she selected a view in the Eclipse environment. Therefore, it was
not required to perform slicing, and only marked events were considered. This
example shows that if the FUDA did not support marking, then full traces
should have been taken into account which could have resulted in several false
positives.

• Context Menu: The example applications for this concept had only the con-
cept Context Menu in common. Therefore, performing slicing had no effect
on the generated templates. There were no false positives and the only false
negative was because of incorrectly identifying the framework packages. More
specifically, setMenu() (l. 209 in Figure 4.5) was missing because it is in the
Eclipse framework, not in JFace.

This example indicates that if the sample applications are so different that
they have only the desired concept in common, performing slicing may not
be necessary. However, it is not always guaranteed to find such sample appli-
cations as the evaluations for other concepts shows.

• Toolbar Button: As described earlier, IShellProvider.getShell() was the
only false positive which is widely used in Eclipse views. The false negatives
were because of incorrectly identifying the framework packages, i.e., they were
in the Eclipse framework, not in JFace.

• Content Assist: Both of the sample applications were JFace-based text ed-
itors that had several concepts in common such as those that initialize and
manipulate the text editors themselves. Again, the only false negative was
because of incorrectly identifying the framework packages, i.e., it was in the
Eclipse framework, not in JFace.

It is also worth mentioning that if the user knew the exact framework package
name for Content Assist, i.e., org.eclipse.jface.text.contentassisst,
then the result would not have had any false positives.

• Select: The description is similar to what we had for the Focus.

• Figure and Connection: Slicing was particularly useful for these two concepts
since all GEF editors use common parts such as palette and action bar. While
steps related to the action bar were eliminated by slicing, some palette-related
steps remained since palette was involved in all figure drawing scenarios.

• Title-bar Color: This concept was outside the scope of FUDA and therefore
no templates were generated for it.

• Moving Shapes: As described before, two of the false negatives for this con-
cept were due to the limitation of AspectJ that cannot introduce code into
java.awt.* and therefore the incoming calls were not traced. Consequently,
two method implementations were missed in the generated template. Never-
theless, this issue could have been addressed easily in this particular example

79

since those methods could have been determined by the interface of the class.
The other two false negatives for this concept were due to different instruc-
tions that our sample applications used to change the location of a shape.

• Circle Drawing: Although there were no false negatives for this concept, the
qualitative analysis revealed that one false negative was likely. The reason
is that there are multiple ways of implementing circle drawing, e.g., using
drawOval() or draw(new Ellipse), and the difference between these calls
is not visible to the application user through its GUI. This concept and the
Moving Shapes concept can be considered good examples of concepts that
have exactly the same graphical representation, but can be implemented in
different ways and therefore, introduce one potential threat to the applicabil-
ity of FUDA. However, this issue can be addressed by applying data mining
techniques and finding different alternatives in which a concept can be imple-
mented.

• Rounded Image: This concept was outside the scope of FUDA and therefore
no templates were generated for it.

5.5 Threats to Validity

This section discusses the potential threats that may impact the validity of the
experiment results presented in the preceding section.

5.5.1 Internal Validity

The internal validity relates to the extent to which the design and analysis may have
been compromised by the existence of confounding variables and other unexpected
sources of bias [70]. In other words, potential threats in executing the steps of the
experimental study are discussed.

The main threat to internal validity is incorrect reference templates which would
impact the calculation of the data. This threat was minimized by (i) using three
sources of knowledge for all concepts: manual inspection of sample applications,
consulting existing documentation, and testing the implementation steps in sample
implementations; (ii) both the author and another member of the Generative Soft-
ware Development Lab independently checked in several iterations the correctness
of all the reference templates and the values calculated for precisions and recalls;
and (iii) reporting not only the values for the comparison with the optional reference
templates, but also to the mandatory reference templates.

There might have been some problems with the prototype implementation of
FUDA that could have led to wrong conclusions. To minimize this threat, the
FUDA Tracer and a major part of FUDA Analyzer were debugged independently
by another member of the Generative Software Development Lab. However, as

80

discussed in Section 5.4.2 for the concept Moving Shapes, there could be still some
issues with the instrumentation of applications and frameworks because of the lim-
itation of AspectJ which cannot introduce code into packages belonging to the Java
runtime library.

5.5.2 External Validity

External validity relates to the extent to which the hypotheses capture the objec-
tives of the research and the extent to which any conclusions can be generalized [70].

This experimental evaluation involves three inputs: frameworks, concepts, and
sample applications. The way in which instances were selected for these variables
directly affects the external validity of the results.

Frameworks. One potential threat to external validity is that the selection of
frameworks for the evaluation might not have been representative of those used in
real-world development. In particular, the selected frameworks are all GUI frame-
works. This threat is addressed by selecting four popular frameworks that are
widely used in practise. However, it might be still required to do experiments with
other kinds of frameworks such as non-GUI frameworks; domain-specific frame-
works that provide concepts such as data/control algorithms, transactions, and con-
currency; and the frameworks that support reflection such as Struts8 and Spring9

which are quite common nowadays. Performing experimental study with these
kinds of frameworks is left for future work.

Concepts. The selection of concepts for the evaluation might not have been
representative of those used in real-world development. More specifically, they were
all GUI concepts, self-contained, and very easy to delineate during invocation. This
threat was addressed by including concepts from developer forums to answer real
programming issues, and selecting concepts with different kinds of characteristics.

Sample Applications. The number of false positives and false negatives are
highly dependent on how the given concept is implemented in the sample applica-
tions. Thus, the selection of sample applications for each concept directly influences
the results. Based on this, one threat to external validity is that the way the sample
applications selected for this experiment might not have been representative. This
threat was minimized by following the same identification strategies that would
be applied in practice, such as using the framework-packaged examples, searching
the online open-source repositories, tips by others, and use a mix of them in the
evaluation.

8http://struts.apache.org/.
9http://www.springframework.org/.

81

http://struts.apache.org/
http://www.springframework.org/

5.5.3 Construct Validity

The test of construct validity questions whether the theoretical constructs are in-
terpreted and measured correctly [27]. In the case of this experiment, the main
threat to construct validity is related to measuring the quality of generated tem-
plates by counting the number of false positives and false negatives. Additionally,
our definition of false positives and false negatives can be a source of threat to con-
struct validity. However, false positives and negatives are generally very subjective
and depend on the user’s definition of the concept. This threat was minimized by
generating templates for typical functionalities of the concepts and reporting not
only the values for the comparison with the optional reference templates, but also
to the mandatory reference templates.

5.5.4 Reliability

Reliability of a study relates to demonstrating that the operations of a study can
be repeated with the same results [143].

This chapter provided the setup of this experiment in detail, including the data
collection and data analysis procedures. The sample applications used in this study
are open-source. Moreover, the generated templates and reference templates are
available online and can be obtained from [41]. In particular, the false positives and
false negatives are highlighted in the generated templates. Consequently, it should
be possible to replicate the experiment.

5.6 Summary

This chapter presented the results of an experimental study performed to evaluate
the quality of the templates generated using the FUDA framework comprehension
technique presented in Chapter 4. To this aim, FUDA was prototyped and this
prototype implementation was used to perform the experiment for twelve concepts
with different characteristics on top of four widely-used frameworks. The concept
sample included both simple and complex ones. Six concepts corresponded to
questions found at developer forums.

Both quantitative and qualitative analyses of the generated templates confirmed
that FUDA can produce quality templates with high precision (59-100%) and recall
(79-100%) from only two sample applications and/or execution scenarios. They also
confirmed that API trace slicing can improve the results by eliminating between
20% and 80% of false positives, except for one concept, i.e., the Context Menu,
whose sample applications were different enough. The next chapter presents the
results of an empirical study conducted to see whether the FUDA templates can
be used in practise by software developers to perform real concept implementation
tasks.

82

Chapter 6

Template Usage Evaluation

This chapter presents the results of a user experiment performed to analyze the
usage of templates in the implementation of framework-provided concepts. This
experiment was designed primarily to answer the research question of whether the
implementation templates can serve as a substitute for framework documentation.

To answer the above research question, four concept implementation tasks on
top of Eclipse were selected which varied in their complexity (two simple and two
complex) and frequency (two frequent and two rare). Moreover, twelve highly
skilled Java programmers were recruited to perform concept implementation tasks.
These subjects were blocked into experienced and moderate groups based upon
their previous experience with the Eclipse framework. Each subject was asked to
implement one simple concept and one complex concept, each assisted by a different
documentation aid (i.e., implementation templates or framework documentation).
The assignment of concept implementations was constrained by prior knowledge of
the concepts. The experienced subjects were asked to implement the rare concepts
and the moderate subjects were told to implement the frequent ones. Finally, both
quantitative and qualitative analyses were conducted to compare the effectiveness
of implementation templates and framework documentation in providing aid to
subjects for developing framework-provided concepts.

The remainder of this chapter is organized as follows. Section 6.1 provides the
details of this experiment’s planning. Section 6.2 presents the experiment results
followed by Section 6.3 that discusses the threats to the validity of these results.
Finally, Section 6.4 summarizes this chapter.

6.1 Experiment Planning

This section presents how the experiment was designed and conducted.

83

6.1.1 Experiment Definition

The evaluation of the template extraction process presented in Chapter 5 showed
that it is possible to automatically extract implementation templates with high
precision and recall from only two sample applications. This experiment was de-
signed to evaluate whether these templates are useful for application developers
to realize framework-provided concepts. There are, of course, many possibilities
here, given the wide variation in software development practices. However, in this
experiment, the effectiveness of templates was compared with that of framework
documentation in assisting the application developers. The rationale behind this is
that if templates are as effective as framework documentation then they can serve
as a substitute when no documentation is available.

With respect to the above discussion, the experiment attempted to answer the
following research questions:

1. Are implementation templates as effective as framework documentation in
aiding the development of framework-provided concepts, such that “effec-
tiveness” is measured in terms of implementation time and resulting code
correctness?

2. What is the influence of template quality and its usage strategies on the
quality of resulting implementations? For example, if templates are simply
pasted into target applications, the false positives could pollute implemen-
tations with undesired code, whereas false negatives could yield incomplete
implementations.

6.1.2 Context Selection

The context selection is representative of situations where highly skilled Java pro-
grammers perform realistic concept implementation tasks for the first time on top
of a non-trivial framework such as Eclipse.

More specifically, twelve highly skilled Java programmers were recruited. These
subjects were a mixture of students and professionals, but mainly graduate stu-
dents. Nevertheless, all the subjects except one had at least one year of industrial
programming experience. The subjects were instructed to implement each assigned
concept without interruptions at their discretion either at home or in the lab.
Therefore, the results of this experiment can not be representative of implementa-
tion tasks in office settings in which phone calls, emails, and other distractions may
interrupt the development.

Since all subjects had no previous familiarity with templates and had various
degrees of experience with the Eclipse IDE and application frameworks, they were
provided a personalized training as well as with written tutorials.

84

6.1.3 Hypothesis Formulation

The experiment has three independent variables with two factor levels each: docu-
mentation aid (framework documentation (D) and implementation template (T)),
concept complexity (simple and complex) and subject experience (moderate and
experienced). Moreover, it has two dependent variables:

• T : Time to complete the assigned concept implementation task.

• C: Functional correctness of the implementation code, measured as a factor
with three levels:

1. Success : If the implementation code behaves properly with respect to
the task specification.

2. Buggy : If the implementation code does not behave properly with re-
spect to the task specification, but was considered a ‘Success’ by the
subject.

3. Incomplete: If the subject comes to the conclusion that she can not
implement the assigned concept properly after a certain amount of time.
Thus, she gives up the implementation and the code is incomplete.

Since we had no expectations as to which documentation aid is superior we
formulated the following two-sided null hypotheses for the first research question
presented in Section 6.1.1:

H0[T]: The time developers take to implement a framework-provided concept
with the help of templates equals the time when implemented with the help of
framework documentation. Formally, T (T) = T (D).

H0[C]: The functional correctness of the implementation of a framework-provided
concept when developed with the help of templates equals the functional correct-
ness when implemented with the help of framework documentation. Formally,
C(T) = C(D).

Note that these hypotheses tell that implementation templates are as effective
as the framework documentation in assisting the application developers to imple-
ment their desired concepts. However, they do not necessarily tell that templates
are as effective as the framework documentation in understanding the framework
API. A developer who has read a framework documentation might have a better
understanding of the framework API than someone who has used a FUDA template
to just implement a given concept.

For the second research question presented in Section 6.1.1, i.e., the impacts of
false positives and false negatives on the usage of templates and the quality of im-
plementations, the subjects’ concept implementations were qualitatively analyzed
as will be explained in Section 6.2.2.

85

6.1.4 Experiment Design

The remainder of the subsections in this section present the design of this exper-
iment. More specifically, they provide the choice of variables and the experiment
procedure that was followed to test the hypotheses formulated in Section 6.1.3.
These variables include:

• the choice of frameworks;

• the choice of concepts on top of the selected frameworks;

• the choice of target applications in which the subjects implemented their
assigned concepts;

• the choice of sample applications to generate templates and give to the sub-
jects as examples of actual implementations of the selected concepts;

• the choice of framework documentation; and

• the choice of subjects who performed the concept implementations.

In the following, first the choices of the above variables are described and then
the procedures for conducting the experiment and analyzing the results are dis-
cussed.

6.1.5 Selection of Frameworks

Eclipse was chosen as the target framework because of the following reasons:

• Eclipse is a mature and complex framework that can be considered a good
representative of modern object-oriented software frameworks.

• On top of Eclipse, it is possible to define concepts that can be implemented
in a reasonable amount of time, which makes it suitable for performing this
kind of experiments.

• Eclipse is quite popular these days and skilled Java programmers often have
programming experience in the Eclipse IDE as well. Because of this, it is
easier to find experienced subjects. As mentioned in Section 6.1.3, subjects’
experience was one of the independent variables and the impact of experience
on the results was of interest to this experiment.

86

6.1.6 Selection of Concepts

Five possible characteristics were mentioned for the framework-provided concepts
in Section 5.3.2: in the scope of FUDA or not, requires slicing or not, atomic or
composite, frequent or rare, and simple or complex. Since in this experiment the
templates had been already generated, the only characteristics that might have
influenced the results were the frequency and the complexity of the concepts. Fre-
quency matters because experienced subjects typically have experience with the
frequent concepts of the framework. In other words, experienced subjects can be
distinguished from inexperienced ones with respect to their previous knowledge of
frequent concepts. Complexity matters since it can determine the difficulty of a con-
cept implementation task. Therefore, to study the impact of concepts’ frequency
and complexity on the results, two rare concepts (Content Assist and Navigate)
and two frequent concepts (Context Menu and Table Viewer) were chosen for this
experiment. Context Menu and Navigate were examples of simple concepts and
Content Assist and Table Viewer were representative of complex ones. These con-
cepts were also used in the evaluation of template extraction process as discussed in
Section 5.3.2. It is also worth mentioning that one of the main reasons of selecting
the concept Navigate for the purpose of this experiment was that it had the worst
precision results (see Table 5.2 in Section 5.4.1) and evaluating the impact of several
false positives on the quality of the results was of interest in this experiment.

The above concepts can be sorted based on their complexity in terms of number
of lines of code: Navigate is the smallest one followed by Context Menu, Table
Viewer and Content Assist, respectively. In this experiment the subjects were asked
to implement a specific instance of these concepts as described in the following:

• Context Menu. Subjects were asked to implement a Context Menu in an
Eclipse tree viewer with two menu items, labeled Action 1 and Action 2,
and are separated by a separator. The functionality of these menu items did
not matter. Therefore, the subjects were told to, on their own discretion,
either implement no functionality for these menu items or simply present a
dialog-box showing that the menu item is selected.

• Content Assist. The content assistant feature of Eclipse text editors allows
users to provide context sensitive content completion upon user request. For
this concept, the subjects were asked to implement the functionality of the
content assistant in a simple text editor in such a way that whenever the user
enters the character dot (.) in the editor, a list of choices Choice 1−Choice 5
should be opened.

• Navigate. The Eclipse framework provides a specific class with which develop-
ers can implement a simple web style navigation metaphor for a tree viewer.
This metaphor supports the Go Home, Go Back and Go Into functions. For
this concept, the subjects were told to create a toolbar for an Eclipse tree
viewer and add these functions to it.

87

• Table Viewer. Implementation of this concept involves implementing an
Eclipse table viewer consisting of three cells labeled Cell 1−Cell 3 and a
toolbar with one button. The functionality of this toolbar button did not
matter: it could be empty or it could have presented a simple message on the
developer’s discretion.

6.1.7 Selection of Target Application

The target application for each concept was an incomplete Eclipse plug-in project
in which the subjects were supposed to implement that concept. For each concept,
the same target application was used for both T and D. To help developers focus on
implementing their assigned concepts instead of wasting their time on investigating
the source code of target applications, the size of these projects was kept minimal.

Particularly, the size of the target applications for the concepts Context Menu,
Content Assist, Navigate, and Table Viewer were only 126, 10, 186, and 2 lines of
code (LOC)1 respectively. The target applications for the concepts Context Menu
and Navigate were two simple Eclipse tree viewers that were generated automati-
cally using Eclipse wizards. The target application for the concept Content Assist
was a simple class that was extending the JFace’s TextEditor class. Finally, the
target application for the concept Table Viewer was an empty class.

6.1.8 Selection of Sample Applications

The same sample applications that were used to generate the concept implemen-
tation templates in Chapter 5 were used in this experiment as well. Consequently,
the same templates that were generated in Chapter 5 were used again in this exper-
iment. With respect to the precision and recall results presented in Table 5.2, these
sample applications were good enough to generate quality templates with few false
positives and false negatives. In other words, these sample applications provided
actual implementations of the given concept in two different contexts.

These sample applications were given to the subjects in addition to the tem-
plates and documentation. The sizes of these sample applications varied between
1 KLOC (EditorList for Table Viewer) and 66 KLOC (Subclipse for Navigate).

6.1.9 Selection of Documentation

There were the following criteria in selecting the documentation for each concept:

• It should be the standard documentation of the framework.

1Excluding comments and blank lines.

88

• There should be explicitly one dedicated section in the documentation that
describes how to realize the desired concept.

• It it preferable to contain either the complete template or the required code
snippets to realize the given concept.

The documentation was selected in such a way that developers have the minimal
effort for reading the text and that they can easily find the required implementa-
tion template or code snippets for realizing the concept. As it will be described
later in this section, for all the concepts except Navigate, the selected documenta-
tion included either the complete template or the required code snippets such that
some subjects were able to easily copy&paste the code from the documentation
and perform some minor changes to it to implement their assigned concepts (see
Section 6.2.2).

For this experiment, the documentation for a given concept was identified in
Eclipse Help, Eclipse Corner Articles2, or third-party Eclipse articles (web search).
The documentation length varied between 5 pages (for concept Navigate) and 28
pages (for concept Content Assist). These documents were comprehensive, i.e.,
they were providing some context information as well. For the concepts Navigate,
Content Assist, and Table Viewer a second documentation with more background
(or context) information about the desired concept was also provided. For the con-
cept Context Menu, the provided documentation was already presenting enough
background information and therefore there was no need to provide a second doc-
umentation. The documentation used in this experiment had a range of character-
istics, which are described next:

• Context Menu Documentation. The provided documentation for this concept
was the Eclipse Corner article on creating an Eclipse view3. This is the
standard Eclipse documentation that describes how to create a basic Eclipse
view. Moreover, this document includes a section that is dedicated to context
menus and contains the full context menu code. The length of this article was
19 pages.

• Content Assist Documentation. The first documentation provided for this
concept was the standard Eclipse help on the content assistant feature of
JFace text editors4. This is a concise 3-page documentation that provides
the required code snippets to implement a content assistant in a JFace text
editor.

2Eclipse Corner Articles, http://www.eclipse.org/articles/.
3Creating an Eclipse View, http://www.eclipse.org/articles/viewArticle/

ViewArticle2.html.
4Content Assist, http://help.eclipse.org/help32/index.jsp?topic=/org.eclipse.

platform.doc.isv/guide/editors_contentassist.htm.

89

http://www.eclipse.org/articles/
http://www.eclipse.org/articles/viewArticle/ViewArticle2.html
http://www.eclipse.org/articles/viewArticle/ViewArticle2.html
http://help.eclipse.org/help32/index.jsp?topic=/org.eclipse.platform.doc.isv/guide/editors_contentassist.htm
http://help.eclipse.org/help32/index.jsp?topic=/org.eclipse.platform.doc.isv/guide/editors_contentassist.htm

The second documentation was a non-standard third-party Eclipse article
from the web5. This documentation is a comprehensive 28-page article that
provides the details of implementing JFace text editors as well as the required
code snippets for realizing the Content Assist.

• Navigate Documentation. The first documentation for this concept was the
JavaDoc for the class DrillDownAdapter. The length of this documentation
was 5 pages. At the beginning of this JavaDoc there is a paragraph that
describes how to instantiate and use this class in order to create the navigation
actions (i.e., Go Home, Go Back and Go Into).

The second documentation for this concept was the Eclipse Corner article on
creating an Eclipse view as introduced earlier. The reason for providing this
document was that the subjects were supposed to add the navigation actions
to an Eclipse view’s toolbar.

• Table Viewer Documentation. The first documentation for this concept was
the Eclipse Corner article on creating an Eclipse view as introduced earlier.
This article includes the full template for creating an Eclipse table viewer.

The second documentation was a non-standard third-party Eclipse article
from the web6. This documentation is a comprehensive 23-page article that
provides in detail how to create an Eclipse table viewer. Nevertheless, this
document also contains the full template for creating an Eclipse table viewer.

6.1.10 Selection of Subjects

Twelve highly skilled Java programmers, represented by Subject1-Subject12 or S1-
S12 for short, were recruited for the purpose of this experiment. All these subjects
were recruited via direct contact throughout the experiment. These subjects were
current and former members of the Generative Software Development (GSD) Lab7

at the University of Waterloo as well as developers known to the author of this
dissertation or his supervisor. The criteria for recruiting these subjects were pro-
ficiency with the Java programming language and general experience with object-
oriented software frameworks. These subjects included one senior undergraduate
student (S11), nine graduate students (S1-S6, S8-S10), and two professionals (S7

and S12) from two different software companies. All subjects had between four
and ten years of Java programming experience and all subjects except subject S8

had at least one year of industrial programming experience in different software
companies. Moreover, all the subjects were male.

5Building an Eclipse Text Editor with JFace Text, http://www.realsolve.co.uk/site/
tech/jface-text.php.

6Using JFace Tables 3.3 API with Eclipse RCP - Tutorial, http://www.vogella.de/
articles/EclipseJFaceTable/article.html.

7http://gsd.uwaterloo.ca.

90

http://www.realsolve.co.uk/site/tech/jface-text.php
http://www.realsolve.co.uk/site/tech/jface-text.php
http://www.vogella.de/articles/EclipseJFaceTable/article.html
http://www.vogella.de/articles/EclipseJFaceTable/article.html
http://gsd.uwaterloo.ca

T
ab

le
6.

1:
S
u
b

je
ct

s’
b
ac

k
gr

ou
n
d

S
u

b
je

c
t

O
c
c
u

p
a
ti

o
n

E
x
p

e
r
ie

n
c
e

(Y
e
a
r
)

S
k
il

l
L

e
v
e
l

(1
-5

)
(1

=
n

o
sk

il
l,

5
=

h
ig

h
ly

sk
il

le
d

)
O

th
e
r

P
r
o
g
.

L
a
n

g
u

a
g
e
s

O
th

e
r

F
r
a
m

e
w

o
r
k
s

In
d

u
st

r
y

P
r
o
g
.

J
a
v
a

P
r
o
g
.

O
O

Id
e
a
s

Id
e
a
s

o
f

O
O

F
w

k
s

J
a
v
a

P
r
o
g
.

E
c
li

p
se

ID
E

E
c
li

p
se

F
w

k
J
F
a
c
e

F
w

k

Experienced

S
1

G
ra

d
u

a
te

S
tu

d
en

t
1

6
6

5
5

5
4

3
2

C
+

+
,

C
#

,
P

y
th

o
n

E
M

F
,

.N
et

,
A

p
p

le
ts

S
2

G
ra

d
u

a
te

S
tu

d
en

t
2

5
5

5
5

5
4

4
4

C
/
C

+
+

,
V

B
S

W
T

,
S

w
in

g

S
3

G
ra

d
u

a
te

S
tu

d
en

t
2

1
5

5
5

5
5

5
5

3
P

a
sc

a
l,

B
a
si

c,
S

ta
n

d
a
rd

M
L

A
p

p
le

ts
,

E
cl

ip
se

J
D

T
,

S
tr

u
ts

,
E

cl
ip

se
P

D
E

S
4

G
ra

d
u

a
te

S
tu

d
en

t
2

1
0

6
4

3
4

3
3

3
C

+
+

J
2
E

E
E

J
B

,
S

tr
u

ts

S
5

G
ra

d
u

a
te

S
tu

d
en

t
2

1
7

7
4

4
4

3
3

2
C

/
C

+
+

,
A

ss
em

b
ly

,
D

el
p

h
i

M
F

C
,

S
w

in
g
,

J
2
E

E
E

J
B

S
6

G
ra

d
u

a
te

S
tu

d
en

t
1
0

1
0

1
0

5
5

5
5

4
4

C
+

+
O

W
L

,
M

F
C

Moderate

S
7

P
ro

fe
ss

io
n

a
l

3
8

6
5

5
5

4
1

1
C

/
C

+
+

,
C

#
,

J
S

cr
ip

t
M

F
C

,
H

ib
er

n
a
te

,
S

p
ri

n
g

S
8

G
ra

d
u

a
te

S
tu

d
en

t
-

1
0

5
4

4
4

4
2

2
C

/
C

+
+

,
P

a
sc

a
l

-

S
9

G
ra

d
u

a
te

S
tu

d
en

t
2

7
7

5
5

4
3

1
1

-
J
2
E

E
,
D

O
M

,
X

P
a
th

,
A

ct
iv

eB
P

E
L

S
1
0

G
ra

d
u

a
te

S
tu

d
en

t
7

1
5

1
0

5
4

4
3

2
1

C
/
C

+
+

,
D

el
p

h
i

S
er

v
le

ts
,

A
p

p
le

ts
,

O
W

L
,

H
o
tD

ra
w

S
1
1

U
n

d
er

g
ra

d
.

S
tu

d
en

t
1
.5

4
4

4
4

5
5

1
1

O
b

je
ct

iv
e

C
C

o
co

a
,

S
er

v
le

ts
,

J
S

P

S
1
2

P
ro

fe
ss

io
n

a
l

1
6

4
5

3
5

4
1

1
C

/
C

+
+

,
C

#
,

P
a
sc

a
l

S
tr

u
ts

91

Table 6.1 provides background data on the subjects that participated in the ex-
periment. The subjects were blocked into two groups depending on their experience
levels with the JFace and Eclipse frameworks:

• Experienced Subjects: The subjects in this group were proficient Java pro-
grammers who had previous experience with developing Eclipse plug-ins. Par-
ticularly, these subjects had implemented both frequent concepts before (Con-
text Menu and Table Viewer), but not the rare ones (Navigate and Content
Assist).

• Moderate Subjects: The subjects in this group had good Java programming
experience, but had not previously implemented any of the four concepts
in this experiment. In particular, they had no or little experience with the
Eclipse and JFace frameworks.

6.1.11 Experiment Procedure

The following procedure was followed in this experiment as indicated in Figure 6.1:

Recruiting Subjects

In this step the potential subjects were contacted through email, phone, or in
person. Each potential subject was given an introduction explaining generally
the experiment in which he would be working. Furthermore, the subjects were
questioned to see if they meet the experiment’s criteria for recruiting subjects,
i.e., proficiency with the Java programming language and general experience with
object-oriented software frameworks. In particular, the potential subjects were
asked to see if they have any prior experience with the Eclipse framework.

Sending Subjects the Initial Package

In this step, an initial package was sent to subjects who met the experiment’s
criteria for recruiting subjects and agreed to participate in the experiment. This
package contained the following documents:

• An Overview Document. A concise 1.5-page document providing the subjects
with a brief introduction to FUDA, the purpose of the experiment, and the
steps of the study that each subject would be going through.

• A Background Questionnaire. This questionnaire captured the subject’s back-
ground and experience. As indicated in Table 6.1, some of the questions were:
student or professional, industrial experience, familiarity with the ideas of
object-orientation, knowledge of the ideas of object-oriented software frame-
works, programming experience in general and Java programming experience

92

2
S

e
n

d
in

g
 t

h
e

In
it

ia
l

P
a

c
k

a
g

e

1

)
O

v
e

rv
ie

w
 D

o
c

u
m

e
n

t

2
)

B
a

c
k

g
ro

u
n

d
 Q

u
e

s
ti

o
n

n
a

ir
e

1

)
F

U
D

A
 T

e
m

p
la

te
s

2

)
E

c
li

p
s

e
 I

D
E

3

)
Id

e
a

s
 o

f
O

.O
.

F
ra

m
e

w
o

rk
s

1

)
C

o
n

c
e

p
t

In
s

ta
n

c
e

 S
p

e
c

if
ic

a
ti

o
n

2

)
T

a
rg

e
t

A
p

p
li

c
a

ti
o

n

3
)

T
w

o
 S

a
m

p
le

 A
p

p
li

c
a

ti
o

n
s

4

)
T

re
a

tm
e

n
t

(D
 o

r
T

)

5
)

E
x

p
e

ri
m

e
n

t
In

s
tr

u
c

ti
o

n
s

6

)
E

x
p

e
ri

m
e

n
t

Q
u

e
s

ti
o

n
n

a
ir

e

R
e

c
ru

it
in

g

S
u

b
je

c
ts

1

R
e

s
u

lt
s

A
n

a
ly

s
is

9

S
u

b
je

c
t#

 <
 1

2
 (

n
u

m
 o

f
s

u
b

je
c

ts
)

T
a

s
k

#
 <

 2

(n
u

m
 o

f
a

s
s

ig
n

e
d

 t
a

s
k

s
)

E
n

d

3
T

ra
in

in
g

 B
a

s
e

d

o
n

 B
a

c
k

g
ro

u
n

d

S
e

n
d

in
g

 t
h

e
T

a
s

k
 P

a
c

k
a

g
e

5

T
a

s
k

P
e

rf
o

rm
a

n
c

e
6

D
e

b
ri

e
fi

n
g

In
te

rv
ie

w
8

S
ta

rt

1

)
R

e
s

u
lt

in
g

 C
o

d
e

2

)
E

x
p

e
ri

m
e

n
t

Q
u

e
s

ti
o

n
n

a
ir

e

R
e

s
u

lt
s

S
u

b
m

is
s

io
n

7

T
a

s
k

A
s

s
ig

n
m

e
n

t
4

F
ig

u
re

6.
1:

T
h
e

p
ro

ce
d
u
re

of
te

m
p
la

te
u
sa

ge
ev

al
u
at

io
n

93

in particular, knowledge of Eclipse IDE, whether or not he has implemented
any of the four concepts of the study before, and what other frameworks and
programming languages he is familiar with.

Training Subjects Depending on Their Backgrounds

Based on the subjects’ answers to the questions in the background questionnaire,
each subject was sent one to three different tutorials. These tutorials include:

• The FUDA Templates. This tutorial was a 3-page document describing the
syntax and the semantics of FUDA templates as discussed in Chapter 4. This
tutorial was sent to all subjects since it was the first time that they were going
to use FUDA templates.

• Introduction to Object-Oriented Software Frameworks. This tutorial was a
brief, 1-page document that was concisely introducing the ideas of object-
oriented software frameworks such as framework API, framework-provided
concepts, and mechanisms of using framework-provided services. This was
done with the help of an example of Java applets. This document was sent to
all subjects except the members of the GSD lab since they already had the
required background. It is worth mentioning that although all the subjects
had a general knowledge of software frameworks, it was noticed during the
introduction sessions that they might have been using different terminologies.
Therefore, this tutorial was sent to the subjects to make their terminologies
homogeneous.

• Introduction to the Eclipse IDE. This tutorial was directed to the Eclipse
IDE tasks that were required to be performed during the experiment, such as
how to run an Eclipse plug-in under development. The length of this tutorial
was 8 pages, but included several screenshots. This tutorial was sent to all
moderate subjects since they had not implemented any Eclipse plug-ins prior
to this experiment.

In addition to the above tutorials, each subject was given a personalized training
session for about half an hour. During this session the subjects were questioned to
become confident that they understood the ideas.

Concept Implementation Assignment

As mentioned earlier in Section 6.1.6, two frequent concepts (Context Menu and
Table Viewer) and two rare concepts (Navigate and Content Assist) were selected
for the purpose of this experiment. Furthermore, it was mentioned that the concepts
Context Menu and Navigate were selected as examples of simple ones and the

94

Table 6.2: Sequence of performing concept implementation tasks

Subject
JFace Framework Eclipse Framework

Context Menu Content Assist Navigate Table Viewer
T D T D T D T D

E
x
p

er
ie

n
ce

d S1 - - ¬ - - - -
S2 - - - - ¬ - -
S3 - - - - ¬ - -
S4 - - - ¬ - - -
S5 - - - ¬ - - -
S6 - - - ¬ - - -

M
o
d

er
a
te

S7 - - - - - ¬ -
S8 - - - - - ¬ -
S9 - ¬ - - - - -
S10 - - - - - - ¬
S11 - - - - - - ¬
S12 ¬ - - - - - -

concepts Content Assist and Table Viewer were selected as examples of complex
ones.

Based on the subjects’ responses to the questions in the background question-
naire, two concept implementations were assigned to each subject. Assignment of
two concept implementations to each subject helped to obtain more data points
with fewer subjects. The assignment was constrained by prior knowledge of the
concepts. In other words, the assignment made sure that the subjects had never
implemented the given concept before. With respect to this, since all the experi-
enced subjects had developed frequent concepts before performing this experiment,
they were assigned to implement the rare concepts. Consequently, implementing
the frequent concepts was assigned to moderate subjects. In this way, each subject
was assigned one simple concept and one complex concept to implement. The as-
signment was random and balanced over the simple and complex concepts within
each subject group (i.e., moderate and experienced). The implementation sequence
was also balanced within all subjects. In other words, six subjects first implemented
the simple concepts and then implemented the complex ones, and six other subjects
did the reverse.

Each subject was asked to use a template for one concept and documentation
for the other concept. The subjects within each subject group were assigned ran-
domly to documentation aids (T and D). The sequence of using the documentation
aids was balanced both within each subject group and within all subjects. More
specifically, in each subject group three subjects first used templates and then used
documentation, and the other three subjects first used documentation and then
used templates.

Table 6.2 illustrates the concept implementation assignments. In this table ¬

indicates the first concept that was implemented and identifies the second concept
that was implemented by a subject. As can be seen in this table, each concept was
implemented by three subjects using the templates and by three other subjects using
the documentation. Therefore, in total we had twelve implementations assisted by
the templates and twelve implementations aided by the documentation.

95

Sending Subjects the Task Package

After performing the concept implementation assignments, the next step was to
send a task package for each of the assigned concepts to its corresponding developer.
This task package constituted the following items:

• A concept instance specification presenting a precise description of the con-
cept, a snapshot of what the implemented concept would look like, and a
recommended implementation time. The concept instance specifications for
all the concepts are provided in Appendix A. The recommended implemen-
tation times for the concepts Context Menu, Content Assist, Navigate, and
Table Viewer were 60, 90, 45, and 90 minutes respectively. These times were
determined based on the author’s prior experience with developing these con-
cepts and a dry run experiment done with one of the members of the GSD
Lab.

• The target application in which the subject was supposed to implement the
given concept as discussed earlier in Section 6.1.7.

• Two sample applications from which the concept implementation template
had been generated as discussed earlier in Section 6.1.8.

• Either the implementation template (Section 6.1.8) or the documentation
(Section 6.1.9) of the given concept.

• A document representing a set of instructions that the subject must have
followed before and during the task performance. This document for the
documentation aids T and D is provided in Appendix A. This document
described to the subject what materials are included in the task package,
how to set up the task performance environment (e.g., importing the target
project and sample applications into the Eclipse workspace), how to measure
time, and a set of stepwise instructions to conduct the task performance.
Furthermore, the subject was instructed about what he was allowed to do
and what he was not allowed to do before and during the task performance.

Before the task performance, the subject was allowed to read the tutorials
and investigate the provided target application. The intent of the initial
investigation phase was to prevent the case where a developer would try to
perform the concept implementation task with almost no prior investigation
of the target application. In other words, we wanted to measure the time
that was actually spent on the concept implementation and not the target
application investigation.

Before the task performance, the subject was not allowed to read the provided
template or documentation, and investigate the two sample applications that
were actually implementing the concept.

96

During the task performance, the subject was allowed to use the provided tem-
plate or documentation, investigate the provided sample applications source
code, use the JavaDoc, and use the Eclipse Java editor code completion fea-
ture to complete the Java instructions. Note that JavaDoc documentation
does not explain how to implement concepts, but only how to use a given
framework-provided programming element such as an interface or a method.

During the task performance, the subject was not allowed to use the Eclipse
wizards, the Eclipse help, the Internet to search for implementations of the
concept, or any other source of information that may help to implement the
concept except the provided sample applications and either the template or
documentation. In other words, the only documentation aids the subject
could use during the task performance were either the template or documen-
tation, the two sample applications for the given concept, and the framework-
provided JavaDoc documentation.

The subject was told to write down the time when he actually started imple-
menting the concept, and write down the time when he either implemented
the concept successfully or came into the conclusion that it was impossible to
finish implementing the concept in a reasonable amount of time. Moreover,
the subject was instructed to implement the given concept in one shot and
without interruptions.

• A different experiment questionnaire, depending on whether the subject was
supposed to implement the concept using the template or the documentation
(see Appendix A). This questionnaire was used by the subject to provide us
feedback on the experiment. The subject was instructed to fill this ques-
tionnaire only after the task performance. In particular, the subject was
instructed to make short notes during the development, so that writing time
does not impact the results.

Some of the questions in this questionnaire for the subjects used templates
were: how much time was spent on implementing the concept? was the
concept successfully implemented or not? if not, why? how many and which
example applications were used? was the template useful or not? was the
format and the structure of the template okay? and, what kind of information
were missing in the template?

Some of the questions in this questionnaire for the subjects used documen-
tation were: how much time was spent on implementing the concept? was
the concept successfully implemented or not? If not, why? how many and
which example applications were used? how many and which documentation
was used? was the documentation useful? was the documentation concise
enough? was the subject able to find all the required information in the pro-
vided documentation? and, was it easy to access the required information or
not?

97

Task Performance

The task performance was done on subjects’ discretion either at home or in the lab
according to the instructions that were provided in the task package in the previous
step.

Submitting the Results

After the task performance, the subjects were instructed to fill the experiment
questionnaire provided in the task package and send it together with their concept
implementation code to the author of this dissertation via email.

Debriefing Interview

After submitting the experiment questionnaire and the implementation code for
both assigned concepts, each subject was asked to participate in a short informal
debriefing interview.

Results Analysis

As the last step of this experiment’s procedure, the subjects’ concept implementa-
tion code was tested and inspected to see if the correct functionality was present
as described in the concept instance specification in the task package. After col-
lecting the results from all subjects, they were analyzed according to the analysis
procedure provided in Section 6.1.13. The results of this analysis are presented in
Section 6.2.

6.1.12 Instrumentation and Measurement

The instrumentation and measurement process was specified before the experiment
began and determined precisely how the interaction with the subjects would be
performed. Moreover, it outlined how the data would be collected when interacting
with the subjects. As indicated in Figure 6.1, the data sources include:

• For every subject, an initial questionnaire capturing the subject’s background
and experience (see Table 6.1).

• For every task performance, an experiment questionnaire capturing the time
spent on implementing the concept as well as the subject’s feedback on the
given template or documentation, and the sample applications.

• For every task performance, a copy of the concept implementation code.

98

• For every subject, a short informal debriefing interview done after the subject
finished both of his assigned concept implementation tasks.

The resulting concept implementation code from each subject was tested and
inspected to determine whether the concept was correctly implemented according to
the concept instance specification or not. Full conformance to the concept instance
specifications is important to be able to compare concept implementations in terms
of development time and functional correctness. Given some subjects being slower
than others, the time allocated for task performances was not fixed to (1) get as
many concept implementations as possible, and (2) be able to observe differences
in development times.

In addition to the background and experiment questionnaires, other materi-
als for the experiment that were prepared in advance consisted of the experiment
overview document, three tutorials (on implementation templates, object-oriented
software frameworks, and how to use the Eclipse IDE), and, for each concept, the
concept instance specification, the template and the documentation, the target
application, the sample applications, and the instructions documents on how to
conduct the experiment using the template or documentation.

6.1.13 Analysis Procedure

This section presents the procedure for analyzing the data collected during the
experiment. This procedure constitutes both the quantitative and qualitative anal-
yses. The quantitative data is the primary source for testing the evaluation hy-
potheses presented in Section 6.1.3, whereas the qualitative analysis attempts to
gain a deeper understanding of the quantitative results and the work processes done
by subjects.

Quantitative Analysis Procedure

The main aim of this quantitative analysis was to statistically test the hypothesis
that the time to implement a framework-provided concept (T) aided by imple-
mentation templates equals the implementation time when aided by framework
documentation (see Section 6.1.3). For the dependent variable C (functional cor-
rectness of the implementation code), as it will be described later in Section 6.2.2,
there were only two buggy implementations and, thus, it did not make sense to
perform statistical analyses.

The quantitative assessment of the dependent variable T was performed through
univariate statistical analyses, which were applied to each independent variable.
For the independent variable documentation aid which was of particular interest,
univariate analyses were performed to test the hypothesis individually for each
concept, across simple and complex concepts, and across all concepts. Unpaired,
two-sample t-tests [90] were applied. However, the t-test assumes that data are

99

drawn from a normally distributed population. To reduce potential threats to the
validity of statistical conclusions resulting from violations of this assumption, the
non-parametric Wilcoxon rank sum test [90] was also performed. This test does not
rely on the assumption that data are drawn from a given probability distribution
(e.g., normal distribution).

The level of significance for the hypothesis tests was set to α = 0.05. However,
to allow for a stricter and more conservative interpretation of the results, p-values
are calculated for all the tests. If the resulted p-value is greater than α, then the
null hypothesis can not be rejected, and one can say that the difference between
the D and T is not statistically significant with respect to that test.

Finally, it is also beneficial to know not only whether an experiment has a
statistically significant effect but also the size of any observed effects. Thus, the
effect size was computed both as the percentage difference between the two means
(%diff), and using the Hedges’ g [49], which is defined as the difference between
two means divided by the pooled standard deviation for those means. In this
experiment, since the difference in means between the T and the D groups was
computed (T – D), a negative value of %diff and/or Hedges’ g corresponded to
the T documentation aid being more beneficial than the D documentation aid. To
interpret the Hedges’ g values, one suggestion is that g = 0.2 is indicative of a small
effect size, g = 0.5 a medium effect size, and g = 0.8 a large effect size.

Qualitative Analysis Procedure

The main goals of this qualitative analysis were to (1) test the hypothesis that
the functional correctness of a concept implemented with the help of templates
equals the functional correctness of that concept when implemented with the help
of framework documentation (see Section 6.1.3), and (2) understand the influence
of false positives and false negatives on the usage of templates and on the quality
of implementations (see Section 6.1.1).

As discussed earlier in Section 6.1.11, as the last step of this experiment’s pro-
cedure, the subjects’ concept implementation code was tested and inspected to see
if it had the correct functionality and behavior as described in the concept instance
specification in the task package. In this inspection, other code quality attributes
such as the elegance and the structure of the code were immaterial since they make
the evaluation subjective.

The experiment questionnaires were also qualitatively analyzed to extract and
classify different kinds of information, such as the main difficulties in using tem-
plates, subjects’ suggestions for improving the templates, for what purposes the
example applications were mainly used, the quality of the provided documentation,
and so on.

Finally, all the subjects participated in a short informal debriefing interview
upon completion of their assigned concept implementation tasks. Debriefing inter-

100

Table 6.3: The subjects’ concept implementation times in minutes

Subject
JFace Framework Eclipse Framework

Context Menu Content Assist Navigate Table Viewer
T D T D T D T D

E
x
p

er
ie

n
ce

d S1 - - 50 - - 25 - -
S2 - - 38 - - 11 - -
S3 - - 48 - - 10 - -
S4 - - - 50 10 - - -
S5 - - - 41 10 - - -
S6 - - - 90 35 - - -

M
o
d

er
a
te

S7 - 10 - - - - 30 -
S8 - 70 - - - - 80 -
S9 - 27 - - - - 50 -
S10 37 - - - - - - 47
S11 18 - - - - - - 38
S12 17 - - - - - - 67

views helped us understand better the subjects’ responses to experiment question-
naires, their style of working, whether they followed the experiment instructions,
what were the main reasons of buggy implementations, and how they benefited from
the provided documentation aids and sample applications (particularly their strate-
gies of using the templates and documentation). The information collected during
these interviews was used in the qualitative analysis of results (see Section 6.2.2)

6.2 Experiment Results

The results from the analysis procedures described in Section 6.1.13 are presented
and discussed in this section. This section first provides the results of quantitative
analysis followed by the results of qualitative analysis.

6.2.1 Quantitative Analysis Results

Table 6.3 indicates how many minutes each subject spent on implementing the
given concept using the documentation aids T and D. Figure 6.2 also plots the
time measured for each implementation as a function of the documentation aid and
concept complexity. Bold labels identify experienced subjects; solid lines indicate
the variance. Except subject S8 who implemented the concept Context Menu as-
sisted by the D in 70 minutes (> 60 minutes), the rest of the subjects were able to
implement their assigned concepts within the recommended implementation times.
Further investigation reveals that subjects S6 and S8 had the worst implementation
times.

Table 6.4 presents the results of statistical analyses of concept implementation
times indicated in Table 6.3 for each independent variable. This table presents
the mean of the subjects’ implementation times in the group (Mean), the standard
deviation (Std Dev), the smallest (Min), the median (Med), the largest imple-
mentation time (Max), the effect size as a percentage difference between the two

101

Figure 6.2: Plot of concept implementation times

means (%diff), the effect size using the Hedges’ g, the p-value from the unpaired
two-sample t-test, and the p-value from the Wilcoxon test.

The analysis of the statistical data presented in Table 6.4 reveals some inter-
esting facts about the effect of documentation aids on the subjects’ efficiency. The
effect sizes %diff and Hedges’ g, the variances, and the maximum data points indi-
cate that across all the concepts together and across simple and complex concepts,
the template group had slightly better results than the documentation group. In
particular, the template group spent 13.0% less time in total, although this is not
statistically significant according to the Hedges’ g. If each concept is considered
separately, it can be noted that for the concepts Context Menu and Content Assist
the template group had better results and for the concepts Navigate and Table
Viewer the documentation group had a little bit better results. The main reason
for this is that for the first two concepts, the least efficient subjects (i.e., S6 and
S8) were using the documentation and therefore, the template group had better
results. For the second two concepts, they were using the templates, and hence,
the documentation group had a little bit better results. However, according to the
Hedges’ g, except for the Content Assist which the documentation aid T had a
medium size effect, for the rest of the concepts the effect of the documentation aid
was not significant.

If the medians are taken into account, it can be observed that except for the
concept Table Viewer and across the complex concepts in which the documenta-
tion aid D was slightly better, for the rest of the concepts the documentation aid
T was slightly better. However, the difference between the medians was typically
negligible. Similarly, except for the concept Context Menu whose minimum im-
plementation time was smaller for the documentation aid D, for the rest of the
concepts the minimum implementation time was smaller for the documentation aid
T.

Consideration of p-values shows that for all the tests, the computed p-values

102

T
ab

le
6.

4:
S
ta

ti
st

ic
al

an
al

y
si

s
of

th
e

su
b

je
ct

s’
co

n
ce

p
t

im
p
le

m
en

ta
ti

on
ti

m
es

In
d

e
p

e
n

d
e
n
t

V
a
r
ia

b
le

T
a
sk

F
a
c
to

r
L

e
v
e
l

M
e
a
n

S
td

D
e
v

M
in

M
e
d

M
a
x

%
d

iff
H

e
d

g
e
s’

g
t-

te
st

(p
-v

a
lu

e
)

W
il

c
o
x
o
n

(p
-v

a
lu

e
)

D
o
cu

m
en

ta
ti

o
n

A
id

A
ll

C
o
n

ce
p

ts
T

3
5
.2

5
2
0
.3

3
1
0
.0

0
3
6
.0

0
8
0
.0

0
-1

3
.0

%
-0

.2
2

0
.5

8
5
5

0
.6

8
5
1

D
4
0
.5

0
2
5
.7

9
1
0
.0

0
3
9
.5

0
9
0
.0

0
S

im
p

le
C

o
n

ce
p

ts
T

2
1
.1

7
1
1
.9

9
1
0
.0

0
1
7
.5

0
3
7
.0

0
-1

7
.0

%
-0

.2
2

0
.6

9
5
0

1
.0

0
0
0

D
2
5
.5

0
2
3
.1

2
1
0
.0

0
1
8
.0

0
7
0
.0

0
C

o
m

p
le

x
C

o
n

ce
p

ts
T

4
9
.3

3
1
7
.0

0
3
0
.0

0
4
9
.0

0
8
0
.0

0
-1

1
.1

%
-0

.3
1

0
.5

7
4
8

0
.7

4
6
6

D
5
5
.5

0
1
9
.7

1
3
8
.0

0
4
8
.5

0
9
0
.0

0
C

o
n
te

x
t

M
en

u
T

2
4
.0

0
1
1
.2

7
1
7
.0

0
1
8
.0

0
3
7
.0

0
-3

2
.7

%
-0

.4
0

0
.5

9
0
1

1
.0

0
0
0

D
3
5
.6

7
3
0
.9

2
1
0
.0

0
2
7
.0

0
7
0
.0

0
C

o
n
te

n
t

A
ss

is
t

T
4
5
.3

3
6
.4

3
3
8
.0

0
4
8
.0

0
5
0
.0

0
-2

4
.9

%
-0

.6
3

0
.4

2
5
9

0
.4

0
0
0

D
6
0
.3

3
2
6
.0

8
4
1
.0

0
5
0
.0

0
9
0
.0

0

N
a
v
ig

a
te

T
1
8
.3

3
1
4
.4

3
1
0
.0

0
1
0
.0

0
3
5
.0

0
1
9
.6

%
0
.2

0
0
.7

7
4
7

1
.0

0
0
0

D
1
5
.3

3
8
.3

9
1
0
.0

0
1
1
.0

0
2
5
.0

0
T

a
b

le
V

ie
w

er
T

5
3
.3

3
2
5
.1

7
3
0
.0

0
5
0
.0

0
8
0
.0

0
5
.3

%
0
.1

0
0
.8

8
3
7

1
.0

0
0
0

D
5
0
.6

7
1
4
.8

4
3
8
.0

0
4
7
.0

0
6
7
.0

0

C
o
n

ce
p

t
C

o
m

p
le

x
it

y
C

o
m

p
le

x
5
2
.4

2
1
7
.8

4
3
0
.0

0
4
9
.0

0
9
0
.0

0
1
2
4
.6

%
1
.5

8
0
.0

0
0
6

0
.0

0
0
6

S
im

p
le

2
3
.3

3
1
7
.7

1
1
0
.0

0
1
7
.5

0
7
0
.0

0

S
u

b
je

ct
E

x
p

er
ie

n
ce

E
x
p

er
ie

n
ce

d
3
4
.8

3
2
3
.8

2
1
0
.0

0
3
6
.5

0
9
0
.0

0
-1

4
.9

%
-0

.2
5

0
.5

2
6
7

0
.5

4
3
1

M
o
d

er
a
te

4
0
.9

2
2
2
.4

9
1
0
.0

0
3
7
.5

0
8
0
.0

0

103

are greater than α = 0.05. This means that based on the data points presented
in Table 6.3, it is impossible to reject the null hypothesis H0[T] with high signif-
icance for any of the tests. The fact that H0[T] could not be rejected with high
significance indicates that this experiment failed in providing evidence that tem-
plates and framework documentation are different in providing aid for developers
to implement framework-provided concepts.

As the final point, it is worth mentioning that consideration of Table 6.4 for the
independent variable concept complexity presents a different picture. The choice
between a simple or a complex concept has an extremely significant (p = 0.0006 �
0.05) impact on development time. Complex concepts take consistently longer than
simple concepts to implement (124.6% on average), regardless of documentation aid
and experience. These trends can also be clearly verified by inspecting the diagram
in Figure 6.2, where complexity deeply impacts time, while documentation aid does
not.

6.2.2 Qualitative Analysis Results

This section presents the results of qualitative analysis conducted according to the
procedure presented in Section 6.1.13. For this purpose, the concept implemen-
tations, the experiment questionnaires, and the information collected during the
debriefing interviews were analyzed to gain qualitative insights into the impacts of
using the templates or the documentation on the corresponding concept implemen-
tation task.

Following The Experiment Instructions

Debriefing interviews confirmed that all the subjects followed the experiment in-
structions provided in their task packages.

Code Inspection Results

This qualitative aspect of the evaluation involved the functional correctness of the
concept implementations. Test and inspection of code for all concept implementa-
tions revealed two implementations that did not conform to the functional require-
ments. The first case was subject S6’s implementation of Content Assist aided by
documentation where the requirements were not fulfilled. In particular, his imple-
mentation of Content Assist was being activated by pressing the default buttons
(Ctrl + Space) in the text editor instead of pressing the dot (‘.’) button as speci-
fied in the concept instance specification. The second case was the implementation
of Navigate by subject S4 assisted by a FUDA template. In his implementation,
an extra button was added to the view’s toolbar besides the navigation buttons.

The remainder of the implementations satisfied the functional requirements of
the corresponding concept instance specification. Since there were only two buggy

104

Table 6.5: Subjects’ responses to questions on the experiment questionnaire for the
documentation aid T

Subject Concept
Overall Rank

(1-5)a
#Samples

Used
Content
Useful?

Format
Ok?

E
x
p

er
ie

n
ce

d S1

Content Assist
5 2 X X

S2 4 1 X -
S3 4 1 X X
S4

Navigate
3 0 X X

S5 4 1 X X
S6 4 1 X -

M
o
d

er
a
te

S7

Table Viewer
4 2 X X

S8 4 2 X X
S9 2 2 X -
S10

Context Menu
3 2 X X

S11 4 2 X X
S12 5 1 X X

Overall Avg = 3.83 Avg = 1.42
#Checked =

12/12
#Checked

= 9/12

a1 = Not Useful, 5 = Highly Useful

implementations, each assisted by a different documentation aid, this attests the
similarity of the templates and documentation in this respect.

Subjects’ Comments for Templates

The analysis of experiment questionnaires and debriefing interviews provided in-
sights into the subjects experience with implementation templates. Table 6.5 in-
dicates the subjects’ responses to questions on the experiment questionnaire and
Table 6.6 summarizes and categorizes the specific comments regarding the tem-
plates. As these tables show, all subjects declared that templates were sources of
useful information such that they ranked their usefulness 3.85 out of 5 on average.
Some of the comments mentioned that templates were particularly useful to help
focus on relevant classes and methods, and to indicate the portions of sample ap-
plication code relevant to the task. This is reflected in a larger inspection of sample
applications when using templates (1.42 on average) than when using documen-
tation (0.75 on average, see Table 6.7). Subjects also observed that the syntactic
resemblance between templates and Java code was important for understanding
and copy&pasting templates into the target application.

Subjects also recommended aspects that could be improved. Many proposed
features for a FUDA-specific graphical user interface (GUI), such as support for fol-
lowing the traceability links between templates and sample code, different template
views that would show only the parts extracted from a single sample application,
and decoration of templates with information from the sample applications. Some
subjects remarked they lacked familiarity with the template in terms of syntax
(such as the ‘||’ notation) and of strategies that could be used to implement the
concept using the information provided by the template. There were also some
other comments, such as templates should point out which parts of them should be

105

Table 6.6: Summary of comments made by subjects about the templates
Category Row Comment Subjects

Content

1 Templates were source of useful information All Subjects
2 The template was focused and concise S11

3
The template helped me to quickly implement the con-
cept without any prior experience with Eclipse plug-in
development

S7

4 Templates do not tell anything about their contents
S2, S4, S9,
S10

Java
Syntax

5
Syntactic resemblance between templates and Java
helped to understand the templates better

S2, S11-S12

6
Syntactic resemblance between templates and Java
helped to not perform too much programming

S1, S4, S8

7
Some differences with the Java can be confusing at the
beginning

S6

8 Defining all variables as global can be confusing S9

9
It is not clear the difference between various method
signatures separated by pipes (i.e., ‘||’)

S11

Reference
to Samples

10 References to sample applications were very useful
S1-S3, S7,
S10, S12

11
Templates helped to easily focus on relevant code snip-
pets in the sample applications

S1-S2, S10

GUI

12
Develop a GUI to easily jump from the templates to
relevant code snippets in the example applications

S2-S3,
S9-S12

13
Develop a GUI in which the subjects can see the tem-
plate of each sample application in isolation

S10

14
Inline the templates with the sample applications code
to prevent redundant copy&paste actions

S2

Usage
Strategy

15 The strategy of using the templates is unclear S3-S4, S9

16 Templates suffer from the lack of step-by-step flavor S2, S9

17
Templates have the issue that they encourage the
“just-get-it-working” attitude without understanding
completely what is going on

S2, S4

18
The templates should point out which parts of them
should be completed by the developer

S8

Comments
19 The "Unknown Order" comment was frustrating S9

20 Barely paid attention to annotations as "Repeated!" S10

106

completed by developers or the template should tell something about its content,
which are very hard to be automated. Nonetheless, these observations suggest that
the implementation of a user interface and more familiarity with the templates
could improve the usability and potentially increase the efficiency of development
with templates.

Subjects’ Comments for Documentation

The analysis of experiment questionnaires and debriefing interviews provided in-
sights into the subjects experience with the given documentation. Table 6.7 reflect
the subjects’ answers to questions that appeared on the experiment questionnaire.
As this table shows, most of the subjects (ten out of twelve) declared that the
given documentation contained enough information required for implementing the
assigned concept such that they ranked its usefulness 3.67 out of 5 on average (note
that this is very close to that of templates, i.e., 3.83). Yet, subjects S1 and S4

noted that they were not able to find all the required information in the given doc-
umentation. In particular, subject S1 complained about the lack of code snippets
in the Navigate documentation. However, subject S4 wrongly remarked that the
Content Assist documentation did not advert that text editors must create their
own sourceViewer class and he used sample applications to understand this fact.

The analysis of data in Table 6.7 reveals some interesting facts about the use
of provided sample applications and documentation as well. As mentioned in the
analysis of experiment questionnaires for templates, subjects inspected the sam-
ple applications much less often when using the documentation (0.75 on average)
than when using the templates (1.42 on average). A more careful consideration
shows that subjects mainly investigated the sample applications for complex con-
cepts (Content Assist and Table Viewer) and not so much for the simple concepts
(Context Menu and Navigate).

Most of the subjects only read the relevant parts of the first documentation. In-
terestingly, subjects S6, S8, and S12, who read a large portion of the documentation,
had the worst implementation times as well (see Table 6.3). All subjects except S1

and S5, who were provided two sets of documentation, also used the second one.
S1 told he did not read the second one because of his previous experience and S5

said that he did not even notice that there was a second documentation as well. As
Table 6.7 shows, subjects mainly skimmed the second documentation to get more
background information.

Table 6.8 provides a summary of specific comments made by subjects about the
given documentation and categorizes them into comments that are in favor of the
given documentation and those that are not. For all the concepts, there were sub-
jects who commented on useful code snippets and examples in the documentation
(Rows 3-6). Subject S10, who developed the Table Viewer concept, even mentioned
that the example code and the text were nicely related through graphical arrows
in the Eclipse Corner article on creating Eclipse views (Row 4). Moreover, subject

107

T
ab

le
6.

7:
S
u
b

je
ct

s’
re

sp
on

se
s

to
q
u
es

ti
on

s
on

th
e

ex
p

er
im

en
t

q
u
es

ti
on

n
ai

re
fo

r
th

e
d
o
cu

m
en

ta
ti

on
ai

d
D

S
u

b
je

c
t

C
o
n

c
e
p

t
O

v
e
r
a
ll

R
a
n

k
(1

-5
)a

#
S

a
m

p
le

s
U

se
d

S
e
lf

-
C

o
n
ta

in
e
d

E
a
sy

A
c
c
e
ss

C
o
n

c
is

e
#

D
o
c
s

U
se

d

A
m

o
u

n
t

o
f

D
o
c
1

R
e
a
d

A
m

o
u

n
t

o
f

D
o
c
2

R
e
a
d

Experienced

S
1

N
a
v
ig

a
te

2
1

-
-

-
1
/
2

R
P

b
-

S
2

5
0

X
X

X
2
/
2

R
P

R
P

S
3

4
0

X
-

X
2
/
2

R
P

R
P

S
4

C
o
n
te

n
t

A
ss

is
t

3
2

-
-

-
2
/
2

R
P

R
P

S
5

3
2

X
-

-
1
/
2

R
P

-
S

6
4

1
X

X
X

2
/
2

B
P

c
R

P

Moderate

S
7

C
o
n
te

x
t

M
en

u
5

0
X

X
X

1
/
1

R
P

-
S

8
4

0
X

-
X

1
/
1

B
P

-
S

9
3

0
X

-
X

1
/
1

R
P

-
S

1
0

T
a
b

le
V

ie
w

er
4

0
X

X
X

2
/
2

R
P

R
P

S
1
1

3
1

X
-

-
2
/
2

R
P

R
P

S
1
2

4
2

X
-

-
2
/
2

B
P

R
P

O
v
e
r
a
ll

A
v
g

=
3
.6

7
A

v
g

=
0
.7

5
#

C
h

ec
k
ed

=
1
0
/
1
2

#
C

h
ec

k
ed

=
4
/
1
2

#
C

h
ec

k
ed

=
7
/
1
2

-
-

-

a
1

=
N

ot
U

se
fu

l,
5

=
H

ig
hl

y
U

se
fu

l
b
R

P
:

O
nl

y
R

el
ev

an
t

P
ar

ts
c
B

P
:

A
B

ig
P

or
ti

on

108

Table 6.8: Summary of comments made by subjects about the documentation
Category Row Comment Subjects

Comments
in Favor

1
The documentation was adequate for imple-
menting the concept

S2-S3,
S4-S12

2
The documentation was useful in explaining
the purpose and the functionality of the con-
cept

S1

3 Had good examples
S2, S4,
S8-S10

4
The text and the code snippets were nicely
related through arrows

S10

5
It was impossible to realize the concept with-
out the examples

S9

6
It was easily possible to realize the concept
by just reading the section dedicated to the
concept

S7

7
Good correlation to the provided sample ap-
plications

S4-S5

Comments
Against

8
Need to filter a lot of unrelated material to
figure out the concept

S1, S4-S5,
S8, S10-S11

9 A long document S8

10 Had to read a big portion of the document S8

11
Need to do hunting in the documentation to
understand all the required information

S9

12
The documentation assumed it is being read
from start to finish

S9

13
The text and the code snippets did not link
well

S4

14
The document was in the form of a walk-
through

S5

15 The documentation was incomplete S1, S3

16
The documentation does not say how the
concept should be typically implemented

S1, S3

17
Had no sense whether or not the concept had
been implemented correctly

S1, S3

109

S9 alluded that without those code snippets he would not have been able to real-
ize the Context Menu concept (Row 5). Finally, two of the subjects (S4 and S5)
observed the strong correlation between the documentation and the given sample
applications for the concept Content Assist (Row 7). As will be discussed later,
both of these subjects used the documentation mainly as the starting point for
investigating the sample applications.

In addition to the above comments in favor of the given documentation, the
subjects also commented on several perceived shortcomings. However, it is also
worth mentioning that different subjects might have had different views on the
same documentation. For instance, although subject S7 said it was easy to realize
the Context Menu by just reading the section dedicated to this concept, subject S8

mentioned that he needed to read a big portion of the documentation for the same
task.

For all the concepts there were subjects who complained that they had been
required to filter out a lot of irrelevant material to realize the concept (Row 8).
Because of this, only four out of twelve subjects declared easy access to information
in the given documentation and five subjects believed that the documentation was
not concise enough (see Table 6.7). In particular, for the Context Menu concept,
subject S8 said that the documentation was long and he did read a big portion of
the documentation (Rows 9-10). On the other hand, subject S9 jumped directly to
the section dedicated to the context menus. Nevertheless, he later was required to
go back in the documentation to understand the code completely (Rows 11-12).

For the Content Assist concept (Rows 13-14), although S4 alluded that there
were good examples in the documentation, he complained that those examples were
not linked well to the text and S5 said that the documentation had the form of a
walk-through.

For the Navigate concept (Rows 15-17), two out of three subjects had difficulty
with the lack of code snippets in the documentation, which led them to consider
the documentation incomplete and not be confident on the correctness of their
implementation. This particular example shows that although there was a good
description of the Navigate concept in the documentation to realize it, developers
prefer to see actual code snippets rather than plain English text, even for simple
concepts whose implementations are only a few lines of code.

Template Usage Strategies

By analyzing the experiment questionnaires and performing the debriefing inter-
views, it was noticed that the subjects basically followed five different strategies to
use the given implementation template (TS stands for Template usage Strategy in
the following):

TS1. Copy&pasting the code from the template into the target application; then,
investigating the sample applications to refine that code.

110

Table 6.9: The subjects’ strategies of using the FUDA templates
Subject Concept Followed Template Usage Strategy

E
x
p

er
ie

n
ce

d S1

Content Assist
TS1

S2 TS4

S3 TS3

S4

Navigate
TS2

S5 TS5

S6 TS5

M
o
d

er
a
te

S7

Table Viewer
TS1

S8 TS1

S9 TS5

S10

Context Menu
TS4

S11 TS3

S12 TS3

Table 6.10: The impact of false positives and false negatives on the concept imple-
mentation code

Concept I M Effect

Context Menu 0 1 The false negative caused the implementation to fail.

Content Assist 13 1
The false positives caused a null pointer exception at runtime. The false negative
caused the content assistant to not show up.

Navigate 8 0 The false positives created an extra button in the view’s toolbar.
Table Viewer 0 0 –

TS2. Copy&pasting the code blindly from the template into the target application
without investigating the sample applications.

TS3. Copy&pasting the code blindly from the template; after encountering some
issues at runtime, inspecting the template code and sample applications to
find out the reasons of those issues.

TS4. Using the template just as an entry to sample applications; then, copy&pasting
the code snippets from the sample applications into the target application.

TS5. Using the template just as an entry to sample applications; then, investigating
the sample applications to learn their code; next, writing the code in the target
application by the subject himself.

Table 6.9 illustrates each subject followed which one of the above template usage
strategies.

Impact of False Positives and False Negatives. Table 6.10 indicates the impact of
false positives and false negatives on each concept’s implementation code. As it
shows, the concepts either did not work properly and it was visible at runtime (the
Context Menu did not show up, the runtime exception for the Content Assist, or
the extra button for the Navigate), or there were some compile errors in the code
(for the Table Viewer). Following describes how each subject tackled the issue of
false positives and false negatives in the templates:

• The template extracted for the concept Context Menu contained a false nega-
tive which prevented the context menu from showing up at runtime by simply

111

following the template. The subjects S11 and S12 were able to address this
issue by looking at the sample applications and noticing that one instruction
(setMenu()) was missed in the template. Since subject S10 used the template
only as an entry to sample applications, he did not encounter this issue.

• The template for the concept Content Assist included several false positives.
However, these false positives did not result in major problems for the subjects
S1 and S2 since S1 refined the template code using the sample applications
before actually executing the target application, and S2 used the template
as an entry to sample applications and got the concept implementation code
from them. However, subject S3 got a runtime null pointer exception by
simply using the template code. To address this problem, he inspected the
template code and noticed that one of the overridden methods in the template
was not required. All the subjects were able to detect the false negative in
the template using the sample applications.

• As mentioned earlier, subject S4 had a buggy implementation of Navigate
using the template. As Table 6.9 shows, he blindly copy&pasted the code
from the template into the target application without investigating the sample
applications. This polluted the target application with false positives (see
Table 6.10), i.e., code that was not related to the task. Since the developer,
in this case, did not inspect the sample applications, this code remained in
the target application, and caused an unwanted button in the view’s toolbar.
However, although this button was visible in the toolbar, the subject did not
try to solve the issue. Subjects S5 and S6 did not have difficulty with using
the template for this concept since they used the template as the starting
point to learn how the sample applications implement the Navigate concept.

• The template for the concept Table Viewer contained neither false positives
nor false negatives. None of the subjects reported any difficulty with using
the Table Viewer template.

With respect to the above discussion, it can be concluded that there were mainly
two use cases for templates:

1. Copy&pasting the concept implementation code from the templates into the
target applications. In this case, the subject must be careful with false posi-
tives and false negatives.

2. Using the templates as entries to sample applications. In this way, templates
can be considered as the output of feature location that provides a summary
of relevant program instructions as well.

These observations suggest that templates must be used together with sample
applications since they help to understand what is missing and to detect unneeded
code. Interestingly, the only subject (S4) who did not refer to sample applications
(see Table 6.5) had a buggy implementation.

112

Documentation Usage Strategies

Qualitative analysis of experiment questionnaires and debriefing interviews revealed
that the subjects used a variety of strategies to benefit from the provided docu-
mentation (DS stands for Documentation usage Strategy in the following):

DS1. First, reading a big portion of the text to get the background information;
copy&pasting the code template from the documentation into the target ap-
plication and fixing it.

DS2. Jumping directly to the code snippet in the documentation; copy&pasting the
code template from the documentation into the target application; reading
the text to understand the code and modifying it if needed.

DS3. Reading the relevant parts of the documentation to understand the involved
classes; jumping into the sample applications using those classes; copy&pasting
the code snippets from the sample applications into the target application and
amending them if needed.

DS4. Reading the relevant parts of the documentation to understand the involved
classes; jumping into the sample applications using those classes; copy&pasting
the code snippets from the sample applications into the target application;
reading again the documentation to understand better those code snippets
and performing the necessary changes.

DS5. Reading the relevant parts of the documentation; copy&pasting the code
snippets from the documentation into the target application; comparing the
implemented code against the sample applications to confirm its correctness.

DS6. Reading the relevant parts of the documentation; copy&pasting the code
snippets from the documentation into the target application followed by some
implementations by the subject himself.

DS7. Reading the relevant parts of the documentation; next, implementing the
concept by the subject himself from scratch.

Table 6.9 indicates each subject followed which one of the documentation usage
strategies. As can be seen in this table, subjects used the documentation in more
diverse ways compared to the templates. However, it could be understood that
the sample applications were mainly used either to get the concept implementation
code snippets or to confirm that the concept was implemented properly.

6.2.3 Discussion

The quantitative and the qualitative analyses confirmed that the null hypotheses
presented in Section 6.1.3 can not be rejected based on this experiment’s data. In

113

Table 6.11: The subjects’ strategies of using the documentation
Subject Concept Followed Documentation Usage Strategy

E
x
p

er
ie

n
ce

d S1

Navigate
DS3

S2 DS7

S3 DS6

S4

Content Assist
DS4

S5 DS3

S6 DS5

M
o
d

er
a
te

S7

Context Menu
DS2

S8 DS1

S9 DS2

S10

Table Viewer
DS2

S11 DS4

S12 DS5

other words, they failed in providing evidence that implementation templates and
framework documentation are different in assisting the application developers to
realize their desired framework-provided concepts. However, in these analyses the
following points should be taken into account:

• All the subjects had no prior experience with using templates before this
experiment; thus, a certain learning curve can be expected. This was also
observed by a number of subjects such as S6, S8 and S10. They mentioned
that it took them a while to get used to the templates and if they were
supposed to implement another concept with the help of FUDA templates it
would have been easier for them.

• There was no FUDA-specific GUI, specially one for following the traceability
links between templates and sample applications code. Because of this, the
subjects needed to manually search the sample applications for traceability
links which was a cumbersome task. As it was also confirmed by a number
of subjects such as S10 and S11, if there were a nice GUI for this purpose, the
subjects might have had a better efficiency.

Given the above circumstances, this experiment indicated that FUDA templates
are comparable to good framework documentation that provide complete descrip-
tions as well as some coding examples of desired concepts in such a way that some
subjects only copy&pasted the code from the documentation and performed some
minor modifications to it (e.g., Subject S7 for the concept Context Menu). How-
ever, for many frameworks and concepts, there is no documentation. In this case,
the FUDA technique would be even more useful.

Documents also have the issue of being typically written in only a few languages
(e.g., in English). Therefore, developers, who do not know the language in which
the document is written, may not be able to understand that document as well.
However, templates are in Java pseudo-code, which can typically be understood by
many software developers. Moreover, documents are written by humans and may
become outdated, while the FUDA templates can be generated automatically.

114

6.3 Threats to Validity

There are several factors that may potentially affect the validity of the results of
this experiment. This section provides a description of these factors.

6.3.1 Internal Validity

The main threat to internal validity concerns the distribution of subjects over the
concept implementation tasks. This threat was minimized by blocking subjects
according to experience and randomizing the remaining distribution. Moreover,
the subjects were constrained by their prior knowledge of concept implementation
tasks.

Another possible source of threat to internal validity relates to selection of sub-
jects using convenience sampling instead of random sampling. This may introduce
some bias in selecting the subjects. This threat was mitigated by contacting only
the professional Java programmers who had no prior knowledge about the assigned
concepts. Moreover, the subjects were blocked by experience and randomly assigned
to documentation aids within each block.

Since all the subjects performed two concept implementations, this may in-
troduce learning effects from one task to the next. This threat was minimized
by balancing the sequence of using the documentation aids and balancing the se-
quence of concept complexity. In particular, half of the subjects first used the
templates for the first concept implementation, and then used the documentation
for the second concept implementation, and the other half of the subjects did the
reverse. Similarly, half of the subjects first implemented the simple concepts and
then implemented the complex concepts, and the other half of the subjects did the
reverse.

One other source of interference could be the subjects’ prior knowledge and
proficiency with the development environment. To reduce this threat, the subjects
were blocked based on their experience, none of the subjects had previous knowl-
edge of FUDA templates, the moderate subjects were provided basic tutorials of
Eclipse and object-oriented frameworks, it was banned the use of powerful features
of Eclipse such as the debugger, and the entire study was scripted.

Finally, there is the threat of using wrong statistical analysis methods. This
threat was minimized by consulting four statisticians from the Department of Statis-
tics and Actuarial Science at the University of Waterloo.

6.3.2 External Validity

The principal threat to external validity refers to the generalization from students
to professionals. This threat was mitigated using a combination of mostly graduate
students (9/12), two professionals, and one senior undergraduate student. All the

115

subjects were highly skilled programmers with at least four years of Java program-
ming experience. Moreover, all the subjects except one had at least one year of
industry experience. In particular, the only undergraduate student who partici-
pated in this study, had 1.5 years of industry experience.

Selection of subjects through convenience sampling instead of random sampling
can be a potential threat to external validity as well. However, the participants
in this experiment had different levels of experience with the Eclipse framework,
they were from different universities, they had different nationalities, and they had
industry experience in different companies.

The size and the complexity of concept instances used in this experiment is
another source of threat to external validity. However, this is not actually a threat
since the experiment intentionally targeted the concept instances that could be
implemented in a short period of time as described in Section 6.1.6. Nevertheless,
two simple concepts and two complex concepts were used in this study.

All the concepts selected for this study were GUI concepts on top of the Eclipse
framework. Hence, the results cannot be necessarily generalized to other types
of concepts and frameworks. However, as mentioned in Section 6.1.5, Eclipse is a
mature, complex, mainly GUI framework that can be considered as a representative
of many of the modern object-oriented software frameworks.

Another potential limit to the generalizability of this experiment relates to gen-
eralization from the home or laboratory settings to real settings. This threat was
mitigated by using a realistic context with state-of-the-art technologies (e.g., Eclipse
IDE).

Finally, one possible constraint to the generalizability of the results comes from
the fact that the results of this experiment are based on using twelve subjects. We
might be able to gain more confidence in the results by recruiting more subjects
from a larger cross-section of backgrounds.

6.3.3 Construct Validity

In the case of this experiment, the main threats to construct validity are related to:

1. To compare the effectiveness of T and D in providing aid to developers, it
must have been made sure that the subjects have actually used the given
documentation aids.

2. Since the effectiveness of templates are compared with that of the documen-
tation in assisting the application developers, the definition of documentation
must be clear.

3. Because the effectiveness of documentation aids in assisting the subjects are
compared, the measurement of effectiveness should be precisely specified.

116

Regarding the use of documentation aids, all subjects in their experiment ques-
tionnaires reported on the usefulness of the provided documentation aids and pro-
vided some comments about them. This is an indication that all subjects used the
given documentation aids.

The definition of documentation used in this experiment is provided in Sec-
tion 6.1.9. As described in that section, the definition of documentation sought to
maximize its familiarity and conciseness by selecting standard documents dedicated
to the concept at hand.

The measurement of effectiveness was done by the implementation time and
the functional correctness of the concept. It is clear that different notions could
be used, such as code quality in terms of its modularity, that could affect the
results. However, in order to reduce the subjectivity of the assessment, source code
inspection and testing was done only to make sure that the implemented concept
had the correct behavior as described in the concept instance specification. It is
also worth mentioning that regarding the measurement of time, the subjects were
trusted that they would report correct times.

6.3.4 Reliability

This chapter documented the methodology of this experiment, including the data
collection and data analysis procedures. The complete experimental material as well
as the subjects’ background questionnaires and experiment questionnaires can be
obtained from [41]. Appendix A also presents the experimental material used in this
study. The target applications and the sample applications used in this study are
open-source. Moreover, the concept implementation templates and documentation
are available online. As a result, it should be possible to replicate the experiment.

6.4 Summary

This chapter presented the results of a user experiment with twelve subjects con-
ducted to compare the effectiveness of implementation templates with that of
framework documentation in providing aid for developers to implement framework-
provided concepts. For the studied sample, no statistically significant difference
between using templates and documentation in terms of implementation time and
number of introduced bugs could be detected. More specifically, for the studied
sample, the choice of templates vs. documentation had much less impact on devel-
opment time than the concept complexity. As a result, this experiment suggests
that templates can be considered as a replacement for documentation where no or
little documentation is available. This situation could become even better with the
implementation of a FUDA-specific user interface and subjects’ more familiarity
with the templates.

117

Finally, the qualitative analysis of results indicated that the templates should be
used together with the sample applications from which they were extracted rather
than just by looking at the templates alone in order to understand what is missing
in the templates (false negatives) and to detect unneeded code (false positives).

118

Chapter 7

Conclusions

This chapter provides the discussion in Section 7.1, features the summary of this
dissertation in Section 7.2, and suggests a number of future research directions in
Section 7.3.

7.1 Discussion

This section talks about a number of items that require further elaboration: strengths
and weaknesses of the FUDA framework comprehension technique, considerations
that should be taken into account in designing the concept-invoking scenarios, some
points about the API trace slicing, and the developers’ option to incrementally com-
prehend the concept implementations using the current prototype implementation
of FUDA.

7.1.1 Strengths and Weaknesses

The results of template extraction evaluation presented in Chapter 5 indicate that
FUDA can retrieve concept implementation templates with relatively high precision
and recall from only two sample applications. Furthermore, the approach is highly
automated. The processing of the traces is fully automatic and the instrumentation
does not impose significant overhead on the application execution since only the
API interaction rather than full traces are recorded. Given a set of applications and
scenarios, the amount of time needed to retrieve templates is mainly determined
by the amount it takes to execute the scenarios on the applications. Furthermore,
dynamic analysis detects the API elements that are actually being invoked. This is
important since frameworks typically use polymorphism and reflection, which can
render static analysis less precise. Finally, the results of the template usage eval-
uation discussed in Chapter 6 revealed that FUDA templates can be used instead
of framework documentation when no documentation is available.

119

Nevertheless, the approach has some potential drawbacks as well. Most impor-
tantly, it relies on the ability to find appropriate sample applications. The quality
of the results may depend on the selection of the applications and concept invo-
cation scenarios. In particular, creating the scenarios might require careful design
to isolate the API instructions of interest in the context of composite concepts.
Second, all dynamic approaches are dependent on the input data and generalizing
from this data might not be safe. In that sense, FUDA will retrieve the set of
API instructions that are invoked in each execution, but may fail to retrieve op-
tional API instructions. Both issues are discussed further in the next subsection.
Finally, dynamic approaches require the setup of the runtime environment, which
might not be easy in some situations. Therefore, being able to retrieve useful con-
cept implementation templates from only few application executions is particularly
important.

7.1.2 Scenario Design Considerations

The nature of the concept and the ways in which it is implemented by the appli-
cations can influence the results. Ideally, the concept is atomic, its invocation is
easily delimitable (for marking), and the sample applications have only this con-
cept in common. In this case, FUDA will yield best results. In general, concepts
are composites of other concepts, the invocation of a concept might not be easily
demarcated, and the sample applications may have several concepts in common.
For a composite concept, developers should select applications that vary those of
its components that should be eliminated. If the concept of interest is part of a
composite concept, developers should be able to demarcate the boundaries of the
concept execution. For example, most Eclipse views implementing context menus
also implement actions, toolbars and other Eclipse concepts, but the menu execution
can be marked. However, in some cases even marking cannot isolate the concept
of interest. For example, for the concept GEF Figure, the palette was involved
in all figure drawing scenarios, and hence, the extracted template contained some
palette-related steps (see Section 5.4.2). Nonetheless, developers could address such
issues by following the traceability links in the template and studying the actual
sample application code.

7.1.3 API Trace Slicing

It is worth noting that the API trace slicing presented in Section 4.4.4 is signifi-
cantly different from traditional dynamic program slicing techniques discussed in
Section 3.6. First, while program slicing is defined in terms of data and control
dependencies, API trace slicing is defined in terms of object-relatedness between
API calls, which is induced by the use of common objects as targets, parameters,
or return values. Furthermore, while traditional dynamic slicing is defined with re-
spect to a trace containing all program instructions that were executed, API trace
slicing operates on API interaction traces.

120

Object-relatedness is motivated by common API usage patterns. For example,
two method invocations sharing the same target object could be related by the fact
that one call initializes the target for the second call, or the second call cleans up the
object that was used in the first one. Similarly, a call that returns an object which
is later used as a target or parameter in a subsequent call may be an invocation to a
factory method. Clearly, object-relatedness as defined in this dissertation may lead
both to false positives and false negatives. For example, false positives commonly
occur if the same object is used in two calls for unrelated uses. False negatives
can happen if invocations are related by side effects, such as accessing some objects
in some framework registry. Nevertheless, as shown in the template extraction
evaluations, many of the false positives would be eliminated in the common fact
extraction stage, and situations leading to false negatives are typically uncommon
in the first place.

7.1.4 Incremental Analysis

To enable the application developers to incrementally comprehend how their con-
cepts of interest are implemented in example applications, in the current prototype
implementation of FUDA Analyzer (see Section 5.2.2), it is possible to select various
API trace slicing and template generation options. For example, one can enable or
disable different object dependency types to be considered in the API trace slicing.
In this way, the developer can build her knowledge about the implementation of a
given concept incrementally and see the impact of individual dependency types or a
combination of them on the results. Moreover, in the current prototype implemen-
tation of FUDA Tracer (see Section 5.2.1), the developer can define different filters
for the events to be recorded. Using these filters, she can narrow down her focus to
the events of her interest only. For example, if she is interested only in those events
in which the method createPartControl() is involved, she can simply define this
method as the filter.

7.2 Summary

Although object-oriented application frameworks are one of the most effective reuse
technologies available today, many of them are difficult to use because of their large
and complex APIs and often incomplete user documentation. To cope with this
problem, application developers often use existing framework applications as a guide
to comprehend how to implement a desired framework-provided concept. While
existing applications contain valuable examples of concept implementation steps,
locating them in the application code is often challenging. To address this difficulty,
this dissertation introduced the notion of concept implementation templates and
devised a technique to automatic extraction of such templates from traces of sample
applications.

121

This dissertation defined an implementation template as a Java pseudocode that
summarizes the necessary implementation steps to instantiate a given framework-
provided concept. More specifically, an implementation template specifies which
framework packages to import, interfaces to implement, classes to subclass, meth-
ods to implement, objects to create, methods to call, as well as some additional
information such as call nesting, order of calls, and object passing patterns. This
dissertation also introduced the FUDA framework comprehension technique as an
automated approach for extracting such implementation templates from traces ob-
tained by invoking concepts of interest in sample applications. FUDA was proto-
typed and tested on twelve concepts of four widely-used frameworks. The concept
sample included both simple and complex ones. Six concepts corresponded to ques-
tions found at developer forums. The experimental evaluation illustrated that, for
the considered concepts, FUDA can extract templates with relatively high precision
(59-100%) and recall (79-100%) from only two traces and two sample applications
per concept. Finally, in a user experiment with twelve subjects no statistically
significant difference between using templates vs. documentation in terms of im-
plementation time and number of introduced bugs could be detected. In particular,
for the studied sample, the choice of templates vs. documentation had much less
impact on development time than the complexity of the concept. Thus, based on
this experiment, it was concluded that FUDA templates could serve as a substitute
for framework documentation when no documentation is available. Nonetheless,
this user study also suggested that templates should be used together with the
sample applications from which they were extracted in order to obtain more infor-
mation about the implementation of the concept and to detect false positives and
negatives in the templates.

7.3 Future Work

This section concludes this dissertation by proposing future research directions in
three areas:

• Improving the process of FUDA and the template generation algorithms. This
dissertation showed that it is possible to automatically extract useful im-
plementation templates for a concept of interest from example applications.
Some interesting open problems are: improving the syntax of templates, ren-
dering templates in different formats (e.g., extracting templates in the form
of feature models), or using different template extraction techniques (e.g.,
applying static analysis instead of dynamic analysis).

The current process of FUDA can be also improved. Presently, FUDA con-
siders only the concept invoking scenarios. Nevertheless, there might be cases
where using a combination of invoking and non-invoking scenarios could be
more beneficial. Just for illustration purposes, consider the concept Title-bar
Color presented in Table 5.1. To comprehend how to implement this concept,

122

one possibility would be to have two scenarios: one that changes the title-bar
color and one that does not. Next, the difference between these two scenarios
could be the instructions that change the color of a GEF editor’s title-bar.

Another direction for future work is to improve the template generation al-
gorithms discussed in Section 4.4.4. Some possible improvements are related
to addressing the issues outlined in Section 4.4.5. These issues were problems
with creating classes, their methods and constructors, and the cyclic depen-
dencies among the program statements in the body of a method. The other
interesting problem for future work which is also related to the problem of
cyclic dependencies is to extract iterative patterns and framework interac-
tion protocols from the calls. As explained in Section 4.2, FUDA templates
currently do not reflect a sequence of statements that should be repeated
as a block, rather than individually. By extracting such patterns and pro-
tocols, FUDA templates would contain more useful information about the
implementation of a desired framework-provided concept.

• Developing a FUDA-specific GUI. Section 6.2.3 described that the current
prototype implementation of FUDA does not provide a FUDA-specific GUI,
particularly for supporting the traceability links among the templates and
sample applications. Development of such a GUI could make FUDA more
attractive in practise and improve the productivity of developers as explained
in Section 6.2.3.

• Performing more evaluations with more concepts and subjects. This disser-
tation presented the results of an empirical study for twelve realistic con-
cepts on top of four widely-used frameworks. Nonetheless, this evaluation
could be improved by performing more experiments with non-GUI concepts,
multi-threaded concepts, or some concepts on top of domain-specific frame-
works that provide concepts such as data/control algorithms, transactions,
and concurrency; and the frameworks that support reflection such as Struts
and Spring which are quite common nowadays. To conduct these extra evalu-
ations, it might have been required to improve the FUDA process and the tem-
plate generation algorithms as well. For instance, Antoniol and Guehénéuc
in [9] provide some guidelines and techniques for tracing and marking multi-
threaded applications.

Template usage evaluations could be also improved by performing experi-
ments with more subjects to compare templates vs. framework documenta-
tion and provide more evidence whether they are actually similar in aiding
the application developers or not. Finally, another interesting user experi-
ment would be to ask a group of developers to use only sample applications
as a guide to implement framework-provided concepts, and compare their
results with those groups of subjects who used the documentation or the
templates together with sample applications. This experiment would make
the conclusions made in this dissertation stronger.

123

APPENDICES

124

Appendix A

Materials for Template Usage
Evaluation

This appendix contains the supporting materials for the template usage evaluation
described in Chapter 6. Section A.1 features the materials used during recruiting
subjects. Section A.2 presents the tutorials used in training the subjects. Finally,
Section A.3 includes the task package materials. These materials as well as the
data from the study are available at [41].

A.1 Materials for Recruiting Subjects

This section features the materials used during recruiting subjects, i.e., the initial
package sent to the subjects as described in Section 6.1.11. This includes the
overview document and the background questionnaire.

125

1

An Overview of the FUDA Empirical Evaluation

FUDA (Framework API Understanding through Dynamic Analysis) is a semi-automated

framework comprehension technique developed by the members of the Generative

Software Development Lab
1
 at the University of Waterloo, Canada with the aim of

helping application developers during the process of implementing applications on top of

the object-oriented software frameworks. For this purpose, FUDA generates some

pseudo-Java templates that specify the implementation steps that are necessary to realize

a desired concept such as a Context Menu on top of a desired framework such as the

Eclipse JFace. These templates are generated from dynamic traces that are collected at

runtime by invoking the concept of interest in at least two sample applications.

The intent of performing this empirical evaluation is to see to what extent the FUDA

templates are comparable with the framework’s documentation. For this purpose, we

would like to ask you to implement two different concepts on top of a framework (either

Eclipse or JFace): one using the documentation of the concept, and one using the FUDA

templates. Then, we would like you to tell us about your experience.

The following steps will be followed during this empirical evaluation:

1) We will give you a questionnaire to understand about your background such as

your programming experience, your familiarity with the object-oriented software

frameworks, your familiarity with the Eclipse environment, and so on.

2) Based on your answers in the previous step, we will provide you some tutorials so

that we can be sure you have enough knowledge about the technologies involved.

These tutorials are mainly about the Eclipse environment, object-oriented

software frameworks, and FUDA templates.

3) Again, based on your answers to the questionnaire in Step 1, we will assign you

two concepts to implement: one with the help of the documentation of the

concept, and one with the help of the FUDA templates.

a) For each concept, the following things are provided to you in this step:

i. A document containing a set of instructions that we would like you

to follow during the implementation session.

ii. A description of the concept that we would like you to implement.

iii. An Eclipse project which is incomplete and we would like you to

implement the assigned concept in it.

iv. Two sample applications that provide example implementations of

the desired concept.

v. Based on how you are supposed to implement the concept, either

the documentation of the concept or the FUDA template.

b) We will define a recommended amount of time for you to try to

1
 http://gsd.uwaterloo.ca

126

2

implement the assigned concept in the provided project. Nevertheless, you

may continue the implementation until either you finish it successfully or

you come to the conclusion that it is impossible for you to implement the

concept successfully. You must mark exactly how much time it took you

to implement it. This is very important for the success of the experiment.

c) All the experiments should be done in the default installation of Eclipse

3.2.2 and it is not required to install anything extra.

4) After implementing each concept, your task would be to answer a questionnaire to

give us hints on your impressions about the experiment and send us your filled

questionnaire together with your implementation project to

aheydarnoori@uwaterloo.ca.

The results of this experiment will be published in academic publications. However, your

name is completely confidential and it will not be released wherever the results of the

experiment are published.

127

128

129

A.2 Tutorials

This section presents the tutorials used in training the subjects based on their
backgrounds. These tutorials include a tutorial briefly describing object-oriented
application framework, a tutorial about the syntax and the semantics of FUDA
templates, and a tutorial describing the necessary tasks that should be done in the
Eclipse IDE during a task performance. To save space, the screenshots are removed
from the Eclipse IDE tutorial.

130

Tutorial: Object-Oriented Application Frameworks

import java.awt.BorderLayout;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import javax.swing.JApplet;
import javax.swing.JButton;

public class ScrollingSimple
extends JApplet
implements ActionListener {

JButton button;

public void init() {
button = new JButton(“Click Me”);
button.addActionListener(this);
add(BorderLayout.SOUTH, button);

}
public void start() {

System.out.println(”Applet Starting.”);
}
public void stop() {

System.out.println(”Applet Stoping.”);
}
public void actionPerformed(ActionEvent event) {

button.setText(”Click Again”);
}

}

Figure 1: A simple applet on top of the Java Swing and
Java AWT frameworks.

An object-oriented application framework is a collec-
tion of classes implementing the shared architecture and the
common functionality of a family of applications. Each ap-
plication framework provides an Application Programming
Interface (API) through which an application program can
either specialize the framework code or it can directly use
the framework code.

Frameworks provide domain-specific concepts, which
are generic units of functionality. Framework-based ap-
plications are constructed by writing completion code that
instantiates these concepts. For example, a graphical user
interface (GUI) framework such as JFace offers imple-
mentation for a set of GUI concepts, which include a text
box, tree viewer, and context menu. The instantiation of
such concepts requires various implementation steps in the
completion code, such as subclassing framework-provided
classes, implementing interfaces, and calling appropriate
framework services.

In short, the framework classes define the architectural

skeleton to which the application program must conform.
Application programs can define their own classes that may
extend classes from the framework and may implement in-
terfaces from the framework. An application program may
customize and interact with a framework in ways that are
permitted by object-oriented programming languages such
as sub-classing, implementing interfaces, overriding super-
class methods, creating instances of framework classes, and
calling methods of framework classes. For example, the
Java source code in Figure 1 creates a simple Java applet
using the Java Swing and Java AWT frameworks. This
simple applet presents a button on the bottom of the ap-
plet. Whenever the user clicks on the button, the text of the
button changes from “Click Me!” to “Click Again!”. The
bolded sections of the source code are references to frame-
work classes, interfaces, and methods as described in the
following:

1. Subclass framework class JApplet.

2. Implement framework interface ActionListener.

3. Hold a field of type framework class JButton.

4. Override framework method init from JApplet.
Then, within this method:

(a) Instantiate an object of type framework class
JButton.

(b) Call the framework method
addActionListener on the the JButton.

(c) Read the framework constant
BorderLayout.SOUTH.

(d) Call the framework method add on the
JApplet.

5. Override the framework method start from
JApplet.

6. Override the framework method stop from
JApplet.

7. Implement the framework-declared method
actionPerformed from the framework in-
terface ActionListener. Then, within this
method:

(a) Call the framework method setText on the
JButton.

1

131

Tutorial: The Syntax and the Semantics of FUDA Templates

1 Definition
A template is a representation of the implementation steps that are necessary to instantiate a given concept. A part of a
template for the concept drawing a figure in a GEF editor on top of the Eclipse GEF framework is shown in Figure 1.
A FUDA template has the form of a textbook-like example in Java-based pseudo-code.

2 The Templates Content
Templates specify the following implementation steps:

• Packages to import (l. 1–4 in Figure 1);

• Framework classes to subclass (l. 5, l. 22);

• Interfaces to implement (l. 15);

• Methods to implement (l. 16);

• Objects to create (l. 7, 17, 26, 29, 31); and

• Methods to call (l. 9, 11, 12, 19, 28, 30, 32).

In addition to the basic implementation steps, the template also reflects:

• Call nesting, e.g., setModel() is called directly or indirectly by createEditPart() (l. 19);

• Call order, e.g., paletteRoot (l. 29) is first created before calling its setDefaultEntry()method (l. 30);

• Parameter passing patterns, e.g., the defaultEditDomain object passed to the setEditDomain()method
(l. 32) is obtained by a prior call to new DefaultEditDomain() (l. 31).

Note that the specified steps involve only the elements of the framework API and implementation steps that are
specific to a particular sample application are not reflected in the template.

It is also worth mentioning that the classes of the template only include the methods that are actually executed when
the desired concept is invoked at runtime. For example, the body of the class AppGraphicalNodeEditPolicy
is empty and it shows that none of its methods is called when the figure drawing concept is executed.

2.1 The Meaning of Comments
• The comments REPEATED! (e.g., l. 9) and MAY REPEAT! (l. 11) indicate that the commented step appeared

more than once in every or some of the traces used to generate the template, respectively.

1

132

import org.eclipse.gef.editpolicies.GraphicalNodeEditPolicy;1
import org.eclipse.gef.EditPart;2
import org.eclipse.gef.EditPartViewer;3
import org.eclipse.ui.part.WorkbenchPart;4

/* FTL 01 */ public class AppComponentEditPolicy extends ComponentEditPolicy {5
/* FTL 02 */ public Command createDeleteCommand(GroupRequest) {6
/* FTL 03 */ AppGraphicalNodeEditPolicy appGraphicalNodeEditPolicy =7

new AppGraphicalNodeEditPolicy();8
/* FTL 04 */ EditPart editPart = appComponentEditPolicy.getHost(); // REPEATED!9

/* UNKNOWN ORDER FOR THE FOLLOWING INSTRUCTIONS */10
/* FTL 05 */ Object object1 = editPart.getModel(); // MAY REPEAT!11
/* FTL 06 */ EditPart editPart = editPart.getParent();12

}13
}14

/* FTL 07 */ public class AppditPartFactory implements EditPartFactory {15
/* FTL 08 */ public EditPart createEditPart(editPart)||(appAbstractGraphicalEditPart) {16
/* FTL 09 */ AppAbstractGraphicalEditPart appAbstractGraphicalEditPart =17

new AppAbstractGraphicalEditPart();18
/* FTL 10 */ appAbstractGraphicalEditPart.setModel(object1)||(editPart); // REPEATED!19

}20
}21

/* FTL 11 */ public class AppGraphicalNodeEditPolicy extends GraphicalNodeEditPolicy {22
}23

public class SomeClass {24
public void someMethod() {25

/* FTL 12 */ TemplateTransferDragSourceListener templateTransferDragSourceListener =26
new TemplateTransferDragSourceListener(EditPartViewer)||(EditPartViewer,Transfer);27

/* FTL 13 */ EditPartViewer.addDragSourceListener(templateTransferDragSourceListener);28
/* FTL 14 */ PaletteRoot paletteRoot = new PaletteRoot();29
/* FTL 15 */ paletteRoot.setDefaultEntry(ToolEntry);30
/* FTL 16 */ DefaultEditDomain defaultEditDomain = new DefaultEditDomain(IEditorPart);31
/* FTL 17 */ GraphicalEditor.setEditDomain(defaultEditDomain);32

}33
}34

Figure 1: Part of a template generated by FUDA for the concept drawing figures in a GEF editor

• The comments in the form of /* FTL n */ are used to provide traceability between the templates and the
sample applications’ source code from which the templates are generated. In these comments, n represents the
number of the implementation step in the template. More specifically, all the lines of the sample applications’
source code are commented with /* FTL n */ that correspond to the nth implementation step in the tem-
plate. Therefore, you can search the sample applications’ source code with FTL n to see how that template’s
implementation step is actually implemented in the provided sample applications.

• Some templates have the comment /* UNKNOWN ORDER FOR THE FOLLOWING INSTRUCTIONS */
(e.g., l. 10). This comment shows that FUDA was not able to automatically identify an exact order for the
instructions that follow this comment.

3 Differences from Ordinary Java
There are two main differences between templates and ordinary Java programs:

1. Using the notion of ‘||’: FUDA uses a special syntax to show that a method with a given name was called with
different argument types. For example, setModel(object1)||(editPart) (l. 19 in Figure 1) is due to
multiple calls to setModel() with different arguments. As another example, l. 27 illustrates that the class
TemplateTransferDragSourceListener can be instantiated with different types of arguments.

2. All variables are global: What appears to be a local variable declaration in Java, such as object1 (l. 11),
actually has global meaning in the template. For that reason, object1 can be used as a method argument in
another method scope (l. 19).

2

133

4 The class SomeClass and the method someMethod in the Template
The method someMethod of class SomeClass hosts instructions that FUDA was unable to automatically identify
an exact place for them. Please note that the instructions in this method may or may not come together in the
concept’s implementation. You may specify the place of each instruction yourself, probably with the help of the
given sample applications.

5 Possibility of False Positives and False Negatives
A template is an approximation of the necessary implementation steps, and it can be incomplete or unsound or both.
In particular, implementation steps can be missing (false negatives) or unrelated steps (false positives) can be present
in some cases. Given two sample applications, FUDA will filter out any steps that are not common to both sample
applications. However, based on the experiments we did, false positives are more likely to happen than false negatives.

Furthermore, some implementation detail is still missing in a template. For example, the presented template in
Figure 1 only presents the implementation steps on top of the Eclipse GEF framework. However, there might be
some instructions on top of other frameworks that are necessary to see the correct functionality of the drawing figure
concept. Since they are on top of other frameworks (e.g., draw2d framework), they are not included in the template.
As another example, whereas the calls in lines l. 9 and l. 11 are marked as candidates to be repeated, the template
does not reflect the fact that they should be repeated as a block, rather than individually. Nonetheless, the user can still
extract the missing details from the actual sample code.

3

134

1

Tutorial: Eclipse IDE

As mentioned in the overview document sent to you before, this empirical study is

supposed to be performed in the Eclipse 3.2.2 environment. Furthermore, as mentioned in

that document, all the developers in this study are provided with an implementation

project in which the concept should be implemented and two sample applications that

actually implement the concept of interest. In this tutorial, we aim to describe the basic

tasks in the Eclipse environment that developers will perform during this study:

1) Importing the projects into the workspace.

2) Running the projects.

3) Searching the projects.

One can refer to the following page for more information about using the Eclipse

environment:

http://help.eclipse.org/help32/index.jsp?topic=/org.eclipse.jdt.doc.user/gettingStarted/qs-

BasicTutorial.htm

1. Importing the Projects into the Workspace

1) Unzip the implementation project and the two sample applications into a local folder

on your computer (e.g., ‘C:\FUDA’).

2) Run the Eclipse 3.2.2 and select ‘C:\FUDA’ as the workspace path.

3) Right click in the ‘Package Explorer’ view and select the ‘Import…’ command from

the opened context menu or you can select the ‘Import…’ command from the menu

‘File’ in the main menu of the Eclipse.

4) Select the ‘Existing Projects into Workspace’ command from the opened window and

press the ‘Next’ button on the bottom of the window.

5) Then, another window will be illustrated. In this window, select the choice ‘Select

root directory:’ and choose ‘C:\FUDA’ as the root directory. Then, you will see the

implementation project and the two sample applications on the bottom of this

window. Make sure to select all of them and make sure to check the option ‘Copy

projects into workspace’ off. Then, press the ‘Finish’ button. You will see that all

three projects are imported into your workspace.

2. Running the Eclipse Projects

1) Execute the ‘Run…’ command either from the ‘Run’ menu on the main menu or from

the toolbar of the Eclipse environment.

135

2

2) The ‘Run’ window will be illustrated. On the left side of this window, double click on

the ‘Eclipse Application’. A new eclipse configuration will be generated

automatically. Then, press the ‘Run’ button on the bottom right corner of the window.

You will see that a new instance of the Eclipse will be executed. The next time that

you would like to run a new instance of the Eclipse, you do not require creating an

Eclipse runtime configuration again and you can simply push the ‘Run’ button in the

Eclipse toolbar.

3) When the new instance of the Eclipse workbench is executed, you can see the Eclipse

view you are working on (e.g., Sample View) by executing the command Window →

Show View → Other… → Sample Category → Sample View in the new instance of

the Eclipse.

3. Searching the Projects

1) You may search the projects in your workspace for a desired keyword by executing

the ‘Search…’ command on the ‘Search’ menu in the main menu of the Eclipse.

2) The ‘Search’ window will be displayed. One can enter the desired keyword in this

window and search the projects.

136

A.3 Task Package Materials

This section contains the materials included in the task packages sent to subjects
for each concept implementation task. Each task package included a concept in-
stance specification, a target application, two sample applications, either the im-
plementation template or the documentation of the given concept, a different set
of instructions based on the treatment (using templates or documentation), and
a different experiment questionnaire based on the treatment (using templates or
documentation). The reader is referred to Section 6.1.11 for complete description
of task package materials. In the following, the set of instructions, concept instance
specifications, and experiment questionnaires are presented. The implementation
templates, concepts documentation, target applications, and sample applications
can be obtained from the FUDA web-page [41].

137

1

Instructions for Developers Using the FUDA Templates

The implementation material includes the following things:

• Concept Instance Description: Provides a description of the concept we are

asking you to implement and the recommended implementation time.

• Target Project: An Eclipse project in which you are supposed to implement the

concept.

• Sample Applications: Two real example applications that actually implement the

concept.

• Concept Template: Provides you a template generated automatically using the

FUDA technique with the help of the provided two sample applications.

• Experiment Questionnaire: A questionnaire we want you to fill after your

implementation session.

Please follow the following steps to perform the experiment:

1) Import the Target Project and Sample Applications into your Eclipse workspace.

2) Investigate the source code of the Target Project to become confident that you are

familiar enough with the provided target project. We tried our best to provide you

as simple target projects as possible to help you focus on the implementation of

the concept. You should be able to do this investigation in a few minutes.

3) Before starting the implementations, you are not allowed to investigate the

example applications’ source code and/or read the templates.

4) Start implementing the concept in the provided target project with the help of the

provided template and sample applications. Write down your start time.

5) During the implementation, please write whatever you think might be important

to the experiment such as what difficulties you had with the templates? What

instructions were missing? etc. However, do not waste your time on writing the

descriptions. Try to use simple keywords to write your comments. Write complete

descriptions after the implementation session.

6) Finish implementing the concept when you have finished implementing the

concept successfully or you have come to the conclusion that you are unable to

implement the concept. Write down your finish time.

7) Fill the provided experiment questionnaire and email it together with your target

project to aheydarnoori@uwaterloo.ca.

138

2

Note 1: Please note that time is an important factor in this experiment. Therefore, please

be careful to provide us the precise amount of time you spent on implementing the

concept.

Note 2: The implementation session should be done in one shot.

During the implementation you are allowed to:

• Use the provided template.

• Navigate and investigate the provided sample applications’ source code if you

wish. For this purpose, you may use the traceability links, i.e., the template

comments in the form of /*FTL_n*/, to trace back from the template to the sample

applications’ source code.

• Use the Java doc if needed.

• Use the Eclipse Java editor code completion feature.

During the implementation you are NOT allowed to:

• Use the Eclipse wizards.

• Use the Eclipse help.

• Use the Internet to search for the implementations of the concept.

• Use any other source of information that may help you implement the concept

except the provided template and sample applications.

139

1

Instructions for Developers Using the Documentation

The implementation material includes the following things:

• Concept Instance Description: Provides a description of the concept we are

asking you to implement and the recommended implementation time.

• Target Project: An Eclipse project in which you are supposed to implement the

concept.

• Sample Applications: Two real example applications that actually implement the

concept.

• Documentation: Provides you the best available documentation we were able to

find for the concept. The provided documentation presents enough information

required to implement the concept.

• Experiment Questionnaire: A questionnaire we want you to fill after your

implementation session.

Please follow the following steps to perform the experiment:

1) Import the Target Project and the Sample Applications into your Eclipse

workspace.

2) Investigate the source code of the Target Project to become confident that you are

familiar with the provided target project. We tried our best to provide you as

simple target projects as possible to help you focus on the implementation of the

concept. You should be able to do this investigation in a few minutes.

3) Before starting the implementations, you are not allowed to investigate the

example applications’ source code and/or read the documentation.

4) Start implementing the concept in the provided target project with the help of the

provided documentation and sample applications. Write down your start time.

5) During the implementation, please write whatever you think might be important

to the experiment such as what difficulties you had with the provided

documentation? What instructions were missing? etc. However, do not waste your

time on writing the descriptions. Try to use simple keywords to write your

comments. Write complete descriptions after the implementation session.

6) Finish implementing the concept when you have finished implementing the

concept successfully or you have come to the conclusion that you are unable to

implement the concept. Write down your finish time.

7) Fill the provided experiment questionnaire and email it together with your target

project to aheydarnoori@uwaterloo.ca.

140

2

Note 1: Please note that time is an important factor in this experiment. Therefore, please

be careful to provide us the precise amount of time you spent on implementing the

concept.

Note 2: The implementation session should be done in one shot.

During the implementation you are allowed to:

• Use the provided documentation.

• Navigate and investigate the provided sample applications’ source code if you

wish.

• Use the Java doc if needed.

• Use the Eclipse Java editor code completion feature.

During the implementation you are NOT allowed to:

• Use the Eclipse wizards.

• Use the Eclipse help.

• Use the Internet to search for the implementations of the concept.

• Use any other source of information that may help you implement the concept

except the provided documentation and sample applications.

141

Concept Instance Description for Concept Context Menu

The provided implementation project provides a simple Eclipse tree viewer named

‘Sample View’ as shown in the following figure. You can open this view by importing

this Eclipse plugin project into your Eclipse workspace and running a new Eclipse

instance using the ‘Run...’ command. Then, open this view using the command Window

→ Show View → Other… → Sample Category → Sample View.

In this experiment we would like you to develop the functionality of the context menu in

the provided implementation project. We want this context menu to include two menu

items that are labeled Action 1 and Action 2 and are separated by a separator. The

functionality of these menu items is not important for us. Therefore, these menu items

can do nothing or they can just represent a simple message on your discretion. The

following figure also illustrates a snapshot of the context menu we are asking you to

implement.

Recommended Implementation Time: 60 minutes

142

Concept Instance Description for Concept Content Assist

The provided implementation project implements a basic text editor named ‘FUDA Text

Editor’ and can be used to edit ‘.txt’ files. After importing this implementation project

into your Eclipse workspace and running a new Eclipse instance using the ‘Run...’

command, you may r-click on a ‘.txt’ file and execute the ‘Open With’ → ‘FUDA Text

Editor’ command from the popup menu to open and edit that file.

Content assist allows users to provide context sensitive content completion upon user

request. In this experiment we would like you to implement the functionality of the

content assistant in the provided text editor. We want you to change the provided editor

in such a way that whenever the user enters the character dot (‘.’) in the editor, a list of

choices Choice 1 – Choice 5 to be opened from which he can select one. The following

figure illustrates a snapshot of what we are asking you to implement.

Recommended Implementation Time: 90 minutes

143

Concept Instance Description for Concept Navigate

The provided implementation project provides a simple Eclipse tree viewer named

‘Sample Tree Viewer’ as shown in the following figure. You can open this view by

importing this Eclipse plugin project into your Eclipse workspace and running a new

Eclipse instance using the ‘Run...’ command. Then, open this view using the command

Window → Show View → Other… → Sample Category → Sample Tree Viewer.

The Eclipse framework provides a specific class by which developers can implement a

simple web style navigation metaphor for a tree viewer. This metaphor supports the Go

Home, Go Back and Go Into functions as shown in the following figure. In this

experiment, we want you to create a toolbar for the provided Eclipse tree viewer and add

these functions to it. The following figure illustrates a snapshot of what we are asking

you to implement.

Recommended Implementation Time: 45 minutes

Tree Navigation

Actions

144

Concept Instance Description for Concept Table Viewer

The Eclipse framework provides constructs to develop table viewers. The provided

implementation project is an incomplete Eclipse plugin project whose ‘plugin.xml’ file is

configured to represent a view named ‘Sample Table Viewer’.

In this experiment, we would like you to complete this project by implementing the

SampleTableViewer class. We would like this table viewer to consist three cells labeled

Cell 1 – Cell 3. We also would like this view to have a toolbar with only one item. The

functionality of this toolbar item is not important and it can simply do nothing or it can

represent a simple message on your discretion. The following figure illustrates a snapshot

of what we are asking you to implement.

If you implement this concept successfully, you can open this view by running a new

Eclipse instance using the ‘Run...’ command. Then, open this view using the command

Window → Show View → Other… → Sample Category → Sample Table Viewer.

Recommended Implementation Time: 90 minutes

145

146

147

148

Appendix B

Template Generation Algorithms

This appendix presents the pseudocode of template generation algorithms discussed
in Section 4.4.4.

149

Algorithm 1: Accepts the generalized traces and the set of common facts as
input and generates a concept implementation template as output.

Input EF : Common event occurrence facts;
NF : Common event nesting facts;
DF : Common event dependency facts;
Traces: Set of generalized traces.

Output T : A concept implementation template.

Function createTemplate(EF, NF, DF, Traces): T1:
begin2:

T.classes← createClasses(EF , DF);3:
for each (class c in T.classes) do4:

c.methods← createMethods(c, NF);5:
end for6:
createStatements(T.classes, EF , NF , Traces);7:
identifySupertypes(T.classes);8:
identifyVariables(T.classes);9:
broadcastVariables(T.classes, DF);10:
identifyImports(T);11:
return T ;12:

end13:

Algorithm 2: Creates constituent classes of the template using the sets of
common event occurrence facts and common dependency facts.

Input EF : Common event occurrence facts;
DF : Common event dependency facts.

Output C: Set of constituent classes of the template.

Function createClasses(EF, DF): C1:
begin2:

C ← φ;3:
for each (group gm of incoming method calls in EF that have TT dependency in DF) do4:

create a fresh class c;5:
C ← C ∪ {c};6:
c.methodCalls← gm;7:
c.constructorCalls← φ;8:

end for9:
for each (outgoing constructor call cnstrCall in EF) do10:

for each (class c in C) do11:
if (cnstrCall has RT dependency to any of the calls in c.methodCalls) then12:

c.constructorCalls← c.constructorCalls ∪ {cnstrCall};13:

end for14:

end for15:
for each (group gc of remaining outgoing constructor calls in EF to interfaces and abstract classes16:
that have RR dependency in DF) do

create a fresh class c;17:
C ← C ∪ {c};18:
c.methodCalls← φ;19:
c.constructorCalls← gc;20:

end for21:
return C;22:

end23:

150

Algorithm 3: Creates the constituent methods and the constructor for the
given class c.

Input c: A Given template class;
NF : Common event nesting facts.

Output M: Set of methods and the constructor for class c.

Function createMethods(c, NF): M1:
begin2:

M← φ;3:
for each (method call mtdCall in c.methodCalls) do4:

create a method m in class c;5:
M←M∪ {mtdCall};6:

end for7:
if (∃nf ∈ NF : nf.source ∈ c.constructorCalls, nf.target.direction = “outgoing”) then8:

Create a constructor cnstr for class c;9:
M←M∪ {cnstr};10:

end11:
return M;12:

end13:

Algorithm 4: Identifies the set of statements that should go into the body
of each method.

Input C: Set of constituent classes of the template;
EF : Common event occurrence facts;
NF : Common event nesting facts;
Traces: Set of generalized traces.

Procedure createStatements(C, EF, NF, Traces)1:
begin2:

// Specify statements for each method.3:
for each (class c in C

∧
method m in c) do4:

m.statements← {nf.target|nf ∈ NF, nf.source = m,nf.target.direction = “outgoing”};5:
end for6:
// Create the someMethod method.7:
if (∃nf ∈ NF : nf.source = c, nf.target.direction = “outgoing”, nf.target is not in the calling8:
context of any of the methods of c) then

Create a specific method m named someMethod in c;9:
m.statements← {nf.target|nf ∈ NF, nf.source = c, nf.target.direction =10:
“outgoing”, nf.target is not in the calling context of any of the methods of c};

end11:
// Create the SomeClass class.12:
if (∃ef ∈ EF : ef.direction = “outgoing”

∧
@nf ∈ NF : nf.target = ef) then13:

Create a specific class c named SomeClass in C;14:
Create a method m named someMethod in c;15:
m.statements← {ef |ef ∈ EF : ef.direction = “outgoing”

∧
@nf ∈ NF : nf.target = ef};16:

end17:
// Comment the statements.18:
for each (class c in C

∧
method m in c

∧
statement s in m) do19:

if (s is repeated in the calling context of m in all the input traces Traces) then20:
s.comment← “REPEAT”;21:

else if (s is repeated in the calling context of m in some of the input traces Traces) then22:
s.comment← “MAY REPEAT”;23:

end for24:

end25:

151

Algorithm 5: This algorithm identifies the supertypes, i.e., the superclass
and the interfaces, of the constituent classes of the template.

Input C: Set of constituent classes of the template.

Procedure identifySupertypes(C)1:
begin2:

for each (class c except SomeClass in C) do3:
hierarchy ← The type hierarchy of target types of method and constructor calls assigned to c,4:
i.e., c.methodCalls and c.constructorCalls;
c.interfaces← φ;5:
c.superclass← nil;6:
for each (leaf ` of the hierarchy) do7:

if (` is interface) then8:
c.interfaces← c.interfaces ∪ {`};9:

else10:
c.superclass← `;11:

end for12:

end for13:

end14:

Algorithm 6: This algorithm identifies class and variable names.

Input C: Set of constituent classes of the template.

Procedure identifyVariables(C)1:
begin2:

for each (class c in C) do3:
// Specify the class names.4:
if (c is not SomeClass) then5:

if (c.superclass 6= nil) then6:
c.name← “App” + c.superclass.name;7:

else8:
c.name← “App” + c.interfaces.get(0).name;9:

end10:
for each (method m in c) do11:

// Specify the methods declarations.12:
if (m is not someMethod) then13:

if (m has one declared signature in framework API) then14:
Set m’s return type and parameters as what is declared in the framework API;15:

else16:
Set m’s alternative return types and parameters using the ‘||’ notation;17:

end18:
// Specify the statements declarations.19:
for each (statement s in m) do20:

if (s has one declared signature in the framework API) then21:
Set s’ return type and parameters as what is declared in the framework API;22:
Set s’ return variable name as the return type, but the first letter in lower case;23:

end24:
else25:

Set s’ alternative return types and parameters using the ‘||’ notation;26:
Set s’ return variable name as one of the return types, but the first letter in lower27:
case;

end28:

end for29:

end for30:

end for31:

end32:

152

Algorithm 7: This algorithm broadcasts variable declarations among the
program statements based on the dependency types.

Input C: Set of constituent classes of the template;
DF : Common event dependency facts.

Procedure broadcastVariables(C, DF)1:
begin2:

G← A graph in which nodes are the statements in C, edges are dependency facts in DF except TR,3:
PR, and RR facts;
if (G is not cyclic) then4:

topologicalSort(G);5:
Broadcast variables along the edges of G according to dependency facts;6:

end7:
else8:

for each (class c in C
∧

method m in c) do9:
g ← Subgraph of G that corresponds to m;10:
if (g is not cyclic) then11:

topologicalSort(g);12:
Broadcast variables along the edges of g according to dependency facts;13:

end14:

end for15:

end16:

end17:

Algorithm 8: This algorithm creates the list of package imports.

Input T : Template.

Procedure identifyImports(T)1:
begin2:

T.imports← φ;3:
Remove package names from the fully qualified names of non-primitive types and add them to4:
T.imports;

end5:

153

References

[1] Mithun Acharya, Tao Xie, Jian Pei, , and Jun Xu. Mining API patterns
as partial orders from source code: From usage scenarios to specifications.
In Proceedings of the 6th joint meeting of the European Software Engineer-
ing Conference and the International Symposium on Foundations of Software
Engineering (ESEC/FSE), 2007. 20, 21

[2] Hiralal Agrawal and Joseph R. Horgan. Dynamic program slicing. In Pro-
ceedings of the 1990 Conference on Programming Language Design and Im-
plementation (PLDI), pages 246–256, 1990. 4, 30

[3] Matthew Allen and Susan Horwitz. Slicing Java programs that throw and
catch exceptions. In Proceedings of the 2003 Workshop on Partial Evaluation
and Semantics-based Program Manipulation (PEPM), pages 44–54, 2003. 30

[4] Rajeev Alur, Pavol Černý, P. Madhusudan, and Wonhong Nam. Synthesis
of interface specifications for Java classes. In Proceedings of the 32nd Annual
Symposium on Principles of Programming Languages (POPL), pages 98–109,
2005. 21

[5] Glenn Ammons, Rastislav Bod́ık, and James R. Larus. Mining specifications.
In Proceedings of the 29th Annual Symposium on Principles of Programming
Languages (POPL), pages 4–16, 2002. 20, 21

[6] Michal Antkiewicz, Thiago Tonelli Bartolomei, and Krzysztof Czarnecki. Au-
tomatic extraction of framework-specific models from framework-based appli-
cation code. In Proceedings of the 22nd Conference on Automated Software
Engineering (ASE), 2007. 17

[7] Michal Antkiewicz and Krzysztof Czarnecki. Framework-specific modeling
languages with round-trip engineering. In Proceedings of the 9th International
Conference on Model Driven Engineering Languages and Systems (MoDELS),
pages 692–706, 2006. 17

[8] Giuliano Antoniol and Yann-Gael Guehénéuc. Feature identification: A novel
approach and a case study. In Proceedings of the 21st International Confer-
ence on Software Maintenance (ICSM), pages 357–366, 2005. 26, 27

154

[9] Giuliano Antoniol and Yann-Gael Guehénéuc. Feature identification: An
epidemiological metaphor. IEEE Transactions on Software Engineering,
32(9):627–641, 2006. 23, 26, 27, 123

[10] Thomas Ball and Susan Horwitz. Slicing programs with arbitrary control-
flow. In Proceedings of the 1st International Workshop on Automated and
Algorithmic Debugging (AADEBUG), pages 206–222, 1993. 30

[11] Silvia Breu. Extending dynamic aspect mining with static information. In
Proceedings of the 5th Workshop on Source Code Analysis and Manipulation
(SCAM), pages 57–65, 2005. 28

[12] Silvia Breu and Jens Krinke. Aspect mining using event traces. In Proceedings
of the 19th Conference on Automated Software Engineering (ASE), pages 310–
315, 2004. 28

[13] Silvia Breu and Thomas Zimmermann. Mining aspects from version history.
In Proceedings of the 21st Conference on Automated Software Engineering
(ASE), pages 221–230, 2006. 28

[14] Marcel Bruch, Thorsten Schäfer, and Mira Mezini. FrUiT: IDE support for
framework understanding. In Proceedings of the 4th OOPSLA Workshop on
Eclipse Technology Exchange (eTX), pages 55–59, 2006. 2, 18

[15] Magiel Bruntink, Arie van Deursen, Tom Tourwe, and Remco van Enge-
len. An evaluation of clone detection techniques for identifying crosscutting
concerns. In Proceedings of the 20th International Conference on Software
Maintenance (ICSM), pages 200–209, 2004. 28

[16] G. Canfora, A. Cimitile, and A. De Lucia. Conditioned program slicing.
Information and Software Technology, 40(11/12):595–607, 1998. 29

[17] Kunrong Chen and Václav Rajlich. Case study of feature location using
dependence graph. In Proceedings of the 8th International Workshop on Pro-
gram Comprehension (IWPC). 23

[18] Jong-Deok Choi and Jeanne Ferrante. Static slicing in the presence of goto
statements. ACM Transactions on Programming Languages and Systems,
16(4):1097–1113, 1994. 30

[19] Mihai Christodorescu, Somesh Jha, and Christopher Kruegel. Mining speci-
fications of malicious behavior. In Proceedings of the 6th joint meeting of the
European Software Engineering Conference and the International Symposium
on Foundations of Software Engineering (ESEC/FSE), pages 5–14, 2007. 20

[20] Wim Codenie, Koen De Hondt, Patrick Steyaert, and Arlette Vercammen.
From custom applications to domain-specific frameworks. Communications
of the ACM, 40(10):70–77, 1997. 15

155

[21] Wesley Coelho and Gail C. Murphy. Presenting crosscutting structure with
active models. In Proceedings of the 5th Conference on Aspect-Oriented Soft-
ware Development (AOSD), pages 158–168, 2006. 23, 24

[22] Krzysztof Czarnecki and Ulrich Eisenecker. Generative Programming: Meth-
ods, Tools, and Applications. Addison-Wesley, 2000. 17

[23] Barthélémy Dagenais and Harold Ossher. Aiding evolution with concern-
oriented guides. In Proceedings of the 3rd Workshop on Linking Aspect Tech-
nology and Evolution (LATE), page 4, 2007. 20

[24] Barthélémy Dagenais and Harold Ossher. Automatically locating framework
extension examples. In Proceedings of the 16th International Symposium on
the Foundations of Software Engineering (FSE), pages 203–213, 2008. 20

[25] Valentin Dallmeier, Christian Lindig, Andrzej Wasylkowski, and Andreas
Zeller. Mining object behavior with ADABU. In Proceedings of the 4th ICSE
Workshop on Dynamic Analysis (WODA), pages 17–24, 2006. 22

[26] Danny Dig and Ralph Johnson. The role of refactorings in API evolution.
In Proceedings of the 21st International Conference on Software Maintenance
(ICSM), pages 389–398, 2005. 69

[27] Steve Easterbrook, Janice Singer, Margaret-Anne Storey, and Daniela
Damian. Selecting empirical methods for software engineering research. In
Forrest Shull, Janice Singer, and Dag I.K. Sjøberg, editors, Guide to Advanced
Empirical Software Engineering. Springer, 2007. 82

[28] Michael Eichberg, Michael Haupt, Mira Mezini, and Thorsten Schäfer. Com-
prehensive software understanding with SEXTANT. In Proceedings of the 21st
International Conference on Software Maintenance (ICSM), pages 315–324,
2005. 23, 24

[29] Thomas Eisenbarth, Rainer Koschke, and Daniel Simon. Locating features
in source code. IEEE Transactions on Software Engineering, 29(3):210–224,
2003. 23, 26

[30] Andrew D. Eisenberg and Kris De Volder. Dynamic feature traces: Finding
features in unfamiliar code. In Proceedings of the 21st International Confer-
ence on Software Maintenance (ICSM), pages 337–346, 2005. 23, 26

[31] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin.
Dynamically discovering likely program invariants to support program evolu-
tion. IEEE Transactions on Software Engineering, 27(2):99–123, 2001. 20

[32] George Fairbanks, David Garlan, and William Scherlis. Design fragments
make using frameworks easier. In Proceedings of the 2006 Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOP-
SLA), pages 75–88, 2006. 16

156

[33] Mohamed E. Fayad, Ralph E. Johnson, and Douglas C. Schmidt. Building
Application Frameworks: Object-Oriented Foundations of Framework Design.
Addison-Wesley, 1999. 8, 9, 12, 13

[34] Marcus Fontoura, Wolfgang Pree, and Bernhard Rumpe. UML-F: A modeling
language for object-oriented frameworks. In Proceedings of the 14th European
Conference on Object-Oriented Programming (ECOOP), pages 63–82, 2000.
16

[35] Gary Froehlich, H. James Hoover, Ling Liu, and Paul Sorenson. Hooking into
object-oriented application frameworks. In Proceedings of the 19th Interna-
tional Conference on Software Engineering (ICSE), pages 491–501, 1997. 16

[36] Mark Gabel and Zhendong Su. Javert: fully automatic mining of general
temporal properties from dynamic traces. In Proceedings of the 16th Interna-
tional Symposium on the Foundations of Software Engineering (FSE), pages
339–349, 2008. 22

[37] Mark Gabel and Zhendong Su. Symbolic mining of temporal specifications.
In Proceedings of the 30th International Conference on Software Engineering
(ICSE), pages 51–60, 2008. 22

[38] Erich Gamma and Kent Beck. Contributing to Eclipse: Principles, Patterns,
and Plugins. Addison-Wesley, 2003. 1, 18

[39] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995. 1, 7, 13, 16

[40] Bernhard Ganter and Rudolf Wille. Formal Concept Analysis: Mathematical
Foundations. Springer, 1999. 19, 26

[41] Generative Software Development Lab. FUDA supporting material. http:

//gsd.uwaterloo.ca/~aheydarn/fuda/, 2008. 65, 82, 117, 125, 137

[42] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. Java Language Spec-
ification. Addison-Wesley, 3rd edition, 2005. 42

[43] William G. Griswold, Jimmy J. Yuan, and Yoshikiyo Kato. Exploiting the
map metaphor in a tool for software evolution. In Proceedings of the 23rd
International Conference on Software Engineering (ICSE), pages 265–274,
2001. 25

[44] Elnar Hajiyev, Mathieu Verbaere, and Oege de Moor. CodeQuest: Scalable
source code queries with datalog. In Proceedings of the 20th European Con-
ference on Object-Oriented Programming (ECOOP), pages 2–27, 2006. 23

157

http://gsd.uwaterloo.ca/~aheydarn/fuda/
http://gsd.uwaterloo.ca/~aheydarn/fuda/

[45] Markku Hakala, Juha Hautamäki, Kai Koskimies, Jukka Paakki, Antti Vil-
jamaa, and Jukka Viljamaa. Annotating reusable software architectures with
specialization patterns. In Proceedings of the 2nd Working Conference on
Software Architecture (WICSA), page 171, 2001. 16

[46] R. J. Hall. Automatic extraction of executable program subsets by simultane-
ous program slicing. Journal of Automated Software Engineering, 2(1):33–53,
1995. 29

[47] Jan Hannemann and Gregor Kiczales. Overcoming the prevalent decomposi-
tion of legacy code. In Proceedings of ICSE Workshop on Advanced Separation
of Concerns in Software Engineering (ASOC), 2001. 28

[48] Juha Hautamäki. Pattern-Based Tool Support for Frameworks Towards
Architecture-Oriented Software Development Environment. PhD thesis, Tam-
pere University of Technology, Finland, 2005. 12

[49] Larry V. Hedges. Distribution theory for Glass’s estimator of effect size and
related estimators. Journal of Educational Statistics, 6(2):107–128, 1981. 100

[50] Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. Permissive in-
terfaces. In Proceedings of the 5th joint meeting of the European Software
Engineering Conference and the International Symposium on Foundations of
Software Engineering (ESEC/FSE), pages 31–40, 2005. 20, 21

[51] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Gregoire Sutre.
Software verification with Blast. In Proceedings of the 12th International
SPIN Workshop on Model Checking Software (SPIN), pages 235–239, 2003.
21

[52] Abbas Heydarnoori and Krzysztof Czarnecki. Comprehending implementa-
tion recipes of framework-provided concepts through dynamic analysis. In
OOPSLA Companion, Poster Session, 2007. 64

[53] Abbas Heydarnoori and Krzysztof Czarnecki. Comprehending object-oriented
software frameworks through dynamic analysis. Technical Report CS-2007-
18, University of Waterloo, 2007. Available at: http://www.cs.uwaterloo.
ca/research/tr/2007/. 64

[54] Abbas Heydarnoori and Krzysztof Czarnecki. Mining implementation recipes
of framework-provided concepts in dynamic framework API interaction
traces. In OOPSLA Companion, Tool Demonstration Track, 2007. 64

[55] Abbas Heydarnoori, Krzysztof Czarnecki, and Thiago Tonelli Bar-
tolomei. Supporting framework use via automatically extracted concept-
implementation templates. In Proceedings of the 23rd European Conference
on Object-Oriented Programming (ECOOP), 2009. 3, 33

158

http://www.cs.uwaterloo.ca/research/tr/2007/
http://www.cs.uwaterloo.ca/research/tr/2007/

[56] Raphael Hoffmann, James Fogarty, and Daniel S. Weld. Assieme: Finding and
leveraging implicit references in a web search interface for programmers. In
Proceedings of the 20th Symposium on User Interface Software and Technology
(UIST), 2007. 20

[57] Reid Holmes and Gail C. Murphy. Using structural context to recommend
source code examples. In Proceedings of the 27th International Conference
on Software Engineering (ICSE), pages 117–125, 2005. 2, 18

[58] Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural slicing
using dependence graphs. ACM Transactions on Programming Languages
and Systems, 12(1):26–60, 1990. 30

[59] Daqing Hou, H. James Hoover, and Piotr Rudnicki. Specifying framework
constraints with FCL. In CASCON, pages 96–110, 2004. 17

[60] Daqing Hou, H. James Hoover, and Changyu Yin. The framework use prob-
lem: A preliminary study with GUI frameworks. In Proceedings of the Mid-
west Software Engineering Conference (midWestSE), 2003. 1

[61] Daqing Hou, Kenny Wong, and H. James Hoover. What can programmer
questions tell us about frameworks? In Proceedings of the 13th International
Workshop on Program Comprehension (IWPC), pages 87–96, 2005. 1

[62] Robert A. Jacobs. Methods for combining experts’ probability assessments.
Neural Computation, 7(5):867–888, 1995. 27

[63] Doug Janzen and Kris De Volder. Navigating and querying code without get-
ting lost. In Proceedings of the 2nd Conference on Aspect-Oriented Software
Development (AOSD), pages 178–187, 2003. 23, 24

[64] Ralph E. Johnson. Documenting frameworks using patterns. In Proceedings of
the 1992 Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), pages 63–76, 1992. 15, 16

[65] Ralph E. Johnson. Patterns and frameworks. pages 375–382, 1998. 16

[66] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. CCFinder: a multi-
linguistic token-based code clone detection system for large scale source code.
IEEE Transactions on Software Engineering, 28(7):654–670, 2002. 28

[67] M. Kamkar. Interprocedural dynamic slicing with applications to debugging
and testing. PhD thesis, Linkoping University, 1993. 30

[68] M. Kamkar, P. Fritzson, and N. Shahmerhi. Interpocedural dynamic slicing
applied to interprocedural data flow testing. In Proceedings of the 9th Inter-
national Conference on Software Maintenance (ICSM), pages 386–395, 1993.
31

159

[69] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented
programming. In Proceedings of the 11th European Conference on Object-
Oriented Programming (ECOOP), pages 220–242, 1997. 28

[70] Barbara A. Kitchenham, Shari Lawrence Pfleeger, Lesley M. Pickard, Pe-
ter W. Jones, David C. Hoaglin, Khaled El Emam, and Jarrett Rosenberg.
Preliminary guidelines for empirical research in software engineering. IEEE
Transactions on Software Engineering, 28(8):721–734, 2002. 80, 81

[71] B. Korel. Identifying faulty modifications in software maintenance. In Pro-
ceedings of the 1st International Workshop on Automated and Algorithmic
Debugging (AADEBUG), pages 341–356, 1993. 31

[72] B. Korel and J. Laski. Dynamic program slicing. Information Processing
Letters, 29(3):155–163, 1988. 30

[73] B. Korel and J. Laski. Dynamic slicing of computer programs. Journal of
Systems and Software, 13(3):187–195, 1990. 29

[74] B. Korel and J. Rilling. Dynamic program slicing in understanding of program
execution. In Proceedings of the 5th International Workshop on Program
Comprehension (IWPC), pages 80–90, 1997. 31

[75] B. Korel and J. Rilling. CASE and dynamic program slicing in software
maintenance. International Journal of Computer Science and Information
Management, 1998. 31

[76] B. Korel and J. Rilling. Dynamic program slicing methods. Information and
Software Technology, 40(11/12):647–659, 1998. 30, 31

[77] Glenn E. Krasner and Stephen T. Pope. A cookbook for using the model-
view controller user interface paradigm in Smalltalk-80. Journal of Object
Oriented Programming, 1(3):26–49, 1988. 15

[78] Zhenmin Li and Yuanyuan Zhou. PR-Miner: automatically extracting im-
plicit programming rules and detecting violations in large software code. In
Proceedings of the 5th joint meeting of the European Software Engineering
Conference and the International Symposium on Foundations of Software En-
gineering (ESEC/FSE), pages 306–315, 2005. 20, 21

[79] Chang Liu, En Ye, and Debra J. Richardson. Software library usage pattern
extraction using a software model checker. In Proceedings of the 21st Con-
ference on Automated Software Engineering (ASE), pages 301–304, 2006. 20,
21

160

[80] Dapeng Liu, Andrian Marcus, Denys Poshyvanyk, and Vaclav Rajlich. Fea-
ture location via information retrieval based filtering of a single scenario ex-
ecution trace. In Proceedings of the 22nd Conference on Automated Software
Engineering (ASE), pages 234–243, 2007. 2, 23, 26, 27

[81] Benjamin Livshits and Thomas Zimmermann. DynaMine: Finding common
error patterns by mining software revision histories. In Proceedings of the 5th
joint meeting of the European Software Engineering Conference and the Inter-
national Symposium on Foundations of Software Engineering (ESEC/FSE),
pages 296–305, 2005. 20

[82] David Lo and Siau-Cheng Khoo. QUARK: Empirical assessment of
automaton-based specification miners. In Proceedings of the 13th Working
Conference on Reverse Engineering (WCRE), pages 51–60, 2006. 20, 22

[83] David Lo and Siau-Cheng Khoo. SMArTIC: towards building an accurate,
robust and scalable specification miner. In Proceedings of the 14th Interna-
tional Symposium on the Foundations of Software Engineering (FSE), pages
265–275, 2006. 20, 22

[84] David Lo, Siau-Cheng Khoo, and Chao Liu. Efficient mining of iterative
patterns for software specification discovery. In Proceedings of the 13th Inter-
national Conference on Knowledge Discovery and Data Mining (KDD), pages
460–469, 2007. 20, 22, 58

[85] David Mandelin, Lin Xu, Rastislav Bod́ık, and Doug Kimelman. Jungloid
mining: helping to navigate the API jungle. In Proceedings of the 2005 Con-
ference on Programming Language Design and Implementation (PLDI), pages
48–61, 2005. 18

[86] Andrian Marcus, Andrey Sergeyev, Vaclav Rajlich, and Jonathan I. Maletic.
An information retrieval approach to concept location in source code. In Pro-
ceedings of the 11th Working Conference on Reverse Engineering (WCRE),
pages 214–223, 2004. 23, 25, 27

[87] Marius Marin, Arie van Deursen, and Leon Moonen. Identifying aspects using
fan-in analysis. In Proceedings of the 11th Working Conference on Reverse
Engineering (WCRE), pages 132–141, 2004. 28

[88] Matthias Meusel, Krzysztof Czarnecki, and Wolfgang Köpf. A model for
structuring user documentation of object-oriented frameworks using patterns
and hypertext. In Proceedings of the 11th European Conference on Object-
Oriented Programming (ECOOP), pages 496–510, 1997. 15

[89] Amir Michail. Data mining library reuse patterns using generalized associa-
tion rules. In Proceedings of the 22nd International Conference on Software
Engineering (ICSE), pages 167–176, 2000. 18

161

[90] Douglas C. Montgomery. Design and Analysis of Experiments. Wiley, 6th
edition, 2004. 99, 100

[91] Alvaro Ortigosa and Marcelo Campo. SmartBooks: A step beyond active-
cookbooks to aid in framework instantiation. In Proceedings of the 29th
International Conference on Technology of Object-Oriented Languages and
Systems (TOOLS), page 131, 1999. 15

[92] Alvaro Ortigosa, Marcelo Campo, and Roberto Moriyón. Towards
agent-oriented assistance for framework instantiation. SIGPLAN Notices,
35(10):253–263, 2000. 15

[93] Karl J. Ottenstein and Linda M. Ottenstein. The program dependence graph
in a software development environment. In Proceedings of the 1st Software
Engineering Symposium on Practical Software Development Environments
(SESPSDE), pages 177–184, 1984. 29

[94] Jian Pei, Jian Liu, and Ke Wang. Discovering frequent closed partial or-
ders from strings. IEEE Transactions on Knowledge and Data Engineering,
18(11):1467–1481, 2006. Haixun Wang and Jianyong Wang and Philip S. Yu.
21

[95] Denys Poshyvanyk, Yann-Gael Gueheneuc, Andrian Marcus, Giuliano An-
toniol, and Vaclav Rajlich. Feature location using probabilistic ranking of
methods based on execution scenarios and information retrieval. IEEE Trans-
actions on Software Engineering, 33(6):420–432, 2007. 26, 27

[96] Denys Poshyvanyk, Andrian Marcus, Vaclav Rajlich, Yann-Gael Guehénéuc,
and Giuliano Antoniol. Combining probabilistic ranking and latent semantic
indexing for feature identification. In Proceedings of the 14th International
Conference on Program Comprehension (ICPC), pages 137–148, 2006. 27

[97] Wolfgang Pree. Design Patterns for Object-Oriented Software Development.
Addison-Wesley, 1995. 16

[98] Wolfgang Pree, Gustav Pomberger, Albert Schappert, and Peter Sommerlad.
Active guidance of framework development. Software - Concepts and Tools,
16(3):136–145, 1995. 15

[99] Tao Qin, Lu Zhang, Zhiying Zhou, Dan Hao, and Jiasu Sun. Discovering use
cases from source code using the branch-reserving call graph. In Proceedings
of the 10th Asia-Pacific Software Engineering Conference (APSEC), page 60,
2003. 25

[100] Murali K. Ramanathan, Ananth Grama, and Suresh Jagannathan. Path-
sensitive inference of function precedence protocols. In Proceedings of the
29th International Conference on Software Engineering (ICSE), pages 240–
250, 2007. 2, 21

162

[101] Murali K. Ramanathan, Ananth Grama, and Suresh Jagannathan. Static
specification inference using predicate mining. In Proceedings of the 2007
Conference on Programming Language Design and Implementation (PLDI),
pages 123–134, 2007. 20, 21

[102] Don Roberts and Ralph Johnson. Evolving frameworks: A pattern language
for developing object-oriented frameworks. In Proceedings of the 3rd Confer-
ence On Pattern Languages of Programs (PLoP), 1996. 7

[103] Martin P. Robillard and Gail C. Murphy. Concern graphs: finding and de-
scribing concerns using structural program dependencies. In Proceedings of
the 24th International Conference on Software Engineering (ICSE), pages
406–416, 2002. 23, 24

[104] Martin P. Robillard and Gail C. Murphy. Representing concerns in source
code. ACM Transactions on Software Engineering and Methodology, 16(1):3–
38, 2007. 23, 24

[105] Martin P. Robillard and Frédéric Weigand-Warr. ConcernMapper: simple
view-based separation of scattered concerns. In Proceedings of the 3rd OOP-
SLA Workshop on Eclipse Technology Exchange (eTX), pages 65–69, 2005.
23, 24

[106] Naiyana Sahavechaphan and Kajal Claypool. XSnippet: Mining for sam-
ple code. In Proceedings of the 2006 Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA), pages 413–430,
2006. 18

[107] Maher Salah and Spiros Mancoridis. A hierarchy of dynamic software views:
From object-interactions to feature-interactions. In Proceedings of the 20th In-
ternational Conference on Software Maintenance (ICSM), pages 72–81, 2004.
26, 27

[108] Maher M. Salah. An Environment for Comprehending the Behavior of Soft-
ware Systems. PhD thesis, Drexel University, 2005. 26, 27, 38

[109] Sriram Sankaranarayanan, Franjo Ivanči, and Aarti Gupta. Mining library
specifications using inductive logic programming. In Proceedings of the 30th
International Conference on Software Engineering (ICSE), pages 131–140,
2008. 20, 22

[110] Thorsten Schäfer, Ivica Aracic, Matthias Merz, Mira Mezini, and Klaus Os-
termann. Clustering for generating framework top-level views. In Proceedings
of the 14th Working Conference on Reverse Engineering (WCRE), pages 239–
248, 2007. 19

[111] Thorsten Schäfer, Michael Eichberg, Michael Haupt, and Mira Mezini. The
SEXTANT software exploration tool. IEEE Transactions on Software Engi-
neering, 32(9):753–768, 2006. 23, 24

163

[112] David Shepherd, Zachary P. Fry, Emily Hill, Lori Pollock, and K. Vijay-
Shanker. Using natural language program analysis to locate and understand
action-oriented concerns. In Proceedings of the 6th Conference on Aspect-
Oriented Software Development (AOSD), pages 212–224, 2007. 23, 25

[113] David Shepherd, Jeffrey Palm, Lori Pollock, and Mark Chu-Carroll. Timna:
a framework for automatically combining aspect mining analyses. In Pro-
ceedings of the 20th Conference on Automated Software Engineering (ASE),
pages 184–193, 2005. 28

[114] Sharon Shoham, Eran Yahav, Stephen Fink, and Marco Pistoia. Static spec-
ification mining using automata-based abstractions. In Proceedings of the
2007 International Symposium on Software Testing and Analysis (ISSTA),
pages 174–184, 2007. 20

[115] Sharon Simmons, Dennis Edwards, Norman Wilde, Josh Homan, and Michael
Groble. Industrial tools for the feature location problem: an exploratory
study. Journal of Software Maintenance and Evolution: Research and Prac-
tice, 18(6):457–474, 2006. 26

[116] Suresh Thummalapenta and Tao Xie. PARSEWeb: a programmer assistant
for reusing open source code on the web. In Proceedings of the 22nd Confer-
ence on Automated Software Engineering (ASE), pages 204–213, 2007. 18

[117] Suresh Thummalapenta and Tao Xie. SpotWeb: Detecting framework
hotspots and coldspots via mining open source code on the web. In Pro-
ceedings of the 23rd Conference on Automated Software Engineering (ASE),
2008. 19

[118] Frank Tip. A survey of program slicing techniques. Journal of Programming
Languages, 3(3):121–189, 1995. 31

[119] Paolo Tonella and Mariano Ceccato. Aspect mining through the formal con-
cept analysis of execution traces. In Proceedings of the 11th Working Con-
ference on Reverse Engineering (WCRE), pages 112–121, 2004. 28

[120] Tom Tourwé. Automated Support for Framework-Based Software Evolution.
PhD thesis, Vrije Universiteit, 2002. 16

[121] Tom Tourwé and Kim Mens. Mining aspectual views using formal concept
analysis. In Proceedings of the 4th Workshop on Source Code Analysis and
Manipulation (SCAM), pages 97–106, 2004. 28

[122] Tom Tourwé and Tom Mens. Automated support for framework-based soft-
ware evolution. In Proceedings of the 19th International Conference on Soft-
ware Maintenance (ICSM), page 148, 2003. 16

164

[123] Takeaki Uno, Masashi Kiyomi, and Hiroki Arimura. LCM ver.3: Collabora-
tion of array, bitmap and prefix tree for frequent itemset mining. In Proceed-
ings of the 1st Open Source Data Mining Workshop on on Frequent Pattern
Mining Implementations (OSDM), pages 77–86, 2005. 68

[124] G. A. Venkatesh. The semantic approach to program slicing. In Proceedings of
the 1999 Conference on Programming Language Design and Implementation
(PLDI), pages 107–119, 1991. 29

[125] Jukka Viljamaa. Reverse engineering framework reuse interfaces. In Proceed-
ings of the 4th joint meeting of the European Software Engineering Conference
and the International Symposium on Foundations of Software Engineering
(ESEC/FSE), pages 217–226, 2003. 1, 16, 19

[126] Jukka Viljamaa. Applying Formal Concept Analysis to Extract Framework
Reuse Interface Specifications from Source Code. PhD thesis, University of
Helsinki, Finland, 2004. 13, 19

[127] J. Vlissides. Protection, part i: The hollywood principle. C++ Report,
8(2):14–19, 1996. 8

[128] Kris De Volder. Type-Oriented Logic Meta Programming. PhD thesis, Vrije
Universiteit, 1998. 24

[129] Tao Wang and Abhik Roychoudhury. Using compressed bytecode traces for
slicing Java programs. In Proceedings of the 26th International Conference
on Software Engineering (ICSE), pages 512–521, 2004. 31

[130] Tao Wang and Abhik Roychoudhury. Hierarchical dynamic slicing. In Pro-
ceedings of the 2007 International Symposium on Software Testing and Anal-
ysis (ISSTA), pages 228–238, 2007. 31

[131] Andrzej Wasylkowski, Andreas Zeller, and Christian Lindig. Detecting ob-
ject usage anomalies. In Proceedings of the 6th joint meeting of the European
Software Engineering Conference and the International Symposium on Foun-
dations of Software Engineering (ESEC/FSE), 2007. 21

[132] Ben Wegbreit. The synthesis of loop predicates. Communications of the
ACM, 17(2):102–113, 1974. 20

[133] Westley Weimer and George C. Necula. Mining temporal specifications for
error detection. In Proceedings of the 11th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS),
pages 461–476, 2005. 22

[134] Mark Weiser. Program Slices: Formal, Psychological, and Practical Investi-
gations of an Automatic Program Abstraction Method. PhD thesis, University
of Michigan, 1979. 29

165

[135] Mark Weiser. Programmers use slices when debugging. Communications of
the ACM, 25(7):446–452, 1982. 29

[136] Mark Weiser. Program slicing. IEEE Transactions on Software Engineering,
10(4):352–357, 1984. 29

[137] John Whaley, Michael C. Martin, and Monica S. Lam. Automatic extraction
of object-oriented component interfaces. In Proceedings of the 2002 Interna-
tional Symposium on Software Testing and Analysis (ISSTA), pages 218–228,
2002. 20, 21

[138] A Taligent Inc. white paper. Building object-oriented frameworks.
http://lhcb-comp.web.cern.ch/lhcb-comp/Components/postscript/

buildingoo.pdf, 1994. 7

[139] Norman Wilde and Michael C. Scully. Software reconnaissance: Mapping
program features to code. Journal of Software Maintenance: Research and
Practise, 7(1):49–62, 1995. 23, 26

[140] W. Eric Wong, Swapna S. Gokhale, and Joseph R. Horgan. Locating program
features by using execution slices. In Proceedings of the 2nd Symposium on
Application-Specific Systems and Software Engineering and Technology (AS-
SET), pages 194–203, 1999. 23, 26

[141] Tao Xie and Jian Pei. MAPO: Mining API usages from open source reposi-
tories. In Proceedings of the 3rd International Workshop on Mining Software
Repositories (MSR), pages 54–57, 2006. 20

[142] Jinlin Yang, David Evans, Deepali Bhardwaj, Thirumalesh Bhat, and Manu-
vir Das. Perracotta: mining temporal API rules from imperfect traces. In
Proceedings of the 28th International Conference on Software Engineering
(ICSE), pages 282–291, 2006. 2, 20, 22

[143] Robert K. Yin. Case Study Research: Design and Methods, volume 5 of
Applied Social Research Methods Series. SAGE Publications, 3rd edition,
2003. 82

[144] Mohammed J. Zaki. Mining non-redundant association rules. Data Mining
Knowledge Discovery, 9(3):223–248, 2004. 68

[145] Charles Zhang and Hans-Arno Jacobsen. Prism is research in aspect mining.
In OOPSLA Companion, Tool Demonstration Track, 2004. 25

[146] Xiangyu Zhang, Rajiv Gupta, and Youtao Zhang. Precise dynamic slicing
algorithms. In Proceedings of the 25th International Conference on Software
Engineering (ICSE), pages 167–176, 2003. 30

166

http://lhcb-comp.web.cern.ch/lhcb-comp/Components/postscript/buildingoo.pdf
http://lhcb-comp.web.cern.ch/lhcb-comp/Components/postscript/buildingoo.pdf

[147] Wei Zhao, Lu Zhang, Dan Hao, Hong Mei, and Jiasu Sun. Alternative scal-
able algorithms for lattice-based feature location. In Proceedings of the 20th
International Conference on Software Maintenance (ICSM), page 528, 2004.
27

[148] Wei Zhao, Lu Zhang, Yin Liu, Jiasu Sun, and Fuqing Yang. SNIAFL: Towards
a static non-interactive approach to feature location. In Proceedings of the
26th International Conference on Software Engineering (ICSE), pages 293–
303, 2004. 23

[149] Wei Zhao, Lu Zhang, Yin Liu, Jiasu Sun, and Fuqing Yang. SNIAFL: Towards
a static noninteractive approach to feature location. ACM Transactions on
Software Engineering and Methodology, 15(2):195–226, 2006. 2, 23, 25

167

	List of Tables
	List of Figures
	Introduction
	Motivation
	Approach Overview
	Contributions
	Organization of the Dissertation

	Object-Oriented Application Frameworks
	Object-Oriented Application Frameworks
	Framework Usage
	Differences between Frameworks and Libraries

	Advantages and Disadvantages of Frameworks
	Summary

	Related Work
	Framework Documentation Approaches
	Framework Usage Comprehension
	Specification Mining
	Concept Location
	Aspect Mining
	Program Slicing
	Summary

	The FUDA Framework Comprehension Technique
	A Running Example
	Concept Implementation Templates
	The FUDA Approach Overview
	The FUDA Approach
	Concept Definition
	Selection of Sample Applications and Execution Scenarios
	Trace Collection and Marking
	Automated Trace Processing
	Existing Issues in Template Generation

	Summary

	Template Extraction Evaluation
	Experiment Objectives
	Experiment Definition
	Hypothesis Formulation

	Prototype Implementation of FUDA
	FUDA Tracer
	FUDA Analyzer

	Experiment Setup
	Selection of Frameworks
	Selection of Concepts
	Selection of Sample Applications and Execution Scenarios
	Trace Collection
	Template Generation
	Analysis Procedure

	Experiment Results
	Quantitative Results
	Qualitative Results

	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity
	Reliability

	Summary

	Template Usage Evaluation
	Experiment Planning
	Experiment Definition
	Context Selection
	Hypothesis Formulation
	Experiment Design
	Selection of Frameworks
	Selection of Concepts
	Selection of Target Application
	Selection of Sample Applications
	Selection of Documentation
	Selection of Subjects
	Experiment Procedure
	Instrumentation and Measurement
	Analysis Procedure

	Experiment Results
	Quantitative Analysis Results
	Qualitative Analysis Results
	Discussion

	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity
	Reliability

	Summary

	Conclusions
	Discussion
	Strengths and Weaknesses
	Scenario Design Considerations
	API Trace Slicing
	Incremental Analysis

	Summary
	Future Work

	APPENDICES
	Materials for Template Usage Evaluation
	Materials for Recruiting Subjects
	Tutorials
	Task Package Materials

	Template Generation Algorithms
	References

