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Abstract 

The Niagara Escarpment is one of Southern Ontario’s most important landscapes.  Due to the 

nature of the landform and its location, the Escarpment is subject to various development 

pressures including urban expansion, mineral resource extraction, agricultural practices and 

recreation.  In 1985, Canada’s first large scale environmentally based land use plan was put 

in place to ensure that only development that is compatible with the Escarpment occurred 

within the Niagara Escarpment Plan (NEP).  The southern extent of the NEP is of particular 

interest in this study, since a portion of the Plan is located within the rapidly expanding 

Greater Toronto Area (GTA).  The Plan area located in the Regional Municipalities of 

Hamilton and Halton represent both urban and rural geographical areas respectively, and are 

both experiencing development pressures and subsequent changes in land cover. 

 

Monitoring initiatives on the NEP have been established, but have done little to identify 

consistent techniques for monitoring land cover on the Niagara Escarpment.  Land cover 

information is an important part of planning and environmental monitoring initiatives.  

Remote sensing has the potential to provide frequent and accurate land cover information 

over various spatial scales. The goal of this research was to examine land cover change in the 

Regional Municipalities of Hamilton and Halton portions of the NEP.  This was achieved 

through the creation of land cover maps for each region using Landsat 5 Thematic Mapper 

(TM) remotely sensed data.  These maps aided in determining the qualitative and quantitative 

changes that had occurred in the Plan area over a 20 year time period from 1986 to 2006.  

Change was also examined based on the NEP’s land use designations, to determine if the 

Plan policy has been effective in protecting the Escarpment. 

 

To obtain land cover maps, five different supervised classification methods were explored: 

Minimum Distance, Mahalanobis Distance, Maximum Likelihood, Object-oriented and 

Support Vector Machine. Seven land cover classes were mapped (forest, water, recreation, 

bare agricultural fields, vegetated agricultural fields, urban and mineral resource extraction 

areas) at a regional scale.  SVM proved most successful at mapping land cover on the 
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Escarpment, providing classification maps with an average accuracy of 86.7%.   Land cover 

change analysis showed promising results with an increase in the forested class and only 

slight increases to the urban and mineral resource extraction classes.  Negatively, there was a 

decrease in agricultural land overall.  An examination of land cover change based on the NEP 

land use designations showed little change, other than change that is regulated under Plan 

policies, proving the success of the NEP for protecting vital Escarpment lands insofar as this 

can be revealed through remote sensing. 

 

Land cover should be monitored in the NEP consistently over time to ensure changes in the 

Plan area are compatible with the Niagara Escarpment.  Remote sensing is a tool that can 

provide this information to the Niagara Escarpment Commission (NEC) in a timely, 

comprehensive and cost-effective way.  The information gained from remotely sensed data 

can aid in environmental monitoring and policy planning into the future. 
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Chapter 1 

Introduction 

1.1 Overview 

The Niagara Escarpment has been called by many one of the Province’s most important 

natural landscapes (Gertler, 1968; Borodczak, 1995; Ramsay, 1996; Jankovic, 1999; Barnett 

et al., 2004; Then Niagara Escarpment Plan, 2005).  The creation of the Niagara Escarpment 

Plan (NEP), Canada’s first large-scale environmentally based land use plan was created to 

maintain balance between the natural landscape and the development pressures that threaten 

it (Barnett et al., 2004).  Millions of people live within 100 kilometers of the Escarpment and 

due to its proximity to the most populous regions in Southern Ontario, urban development 

and demand for new residential areas, mineral resource extraction for growing infrastructure 

and the subsequent degradation of natural areas along the Escarpment are all key planning 

challenges that face the Niagara Escarpment Commission (NEC) (Niagara Escarpment 

Commission, 2008a).  The area of the Escarpment that is cause for the greatest concern is the 

southern portion since it contains the rapidly growing urban centres of Hamilton and 

Burlington.  These cities are located in the Greater Golden Horseshoe (GGH) region that 

extends along the western end of Lake Ontario.  The GGH is both the most populous and the 

most heavily urbanized region in Canada (Martel and Caron-Malenfant, 2007).  It is home to 

8.1 million people, and its population grew by 630,631 between 2001 and 2006 (Martel and 

Caron-Malenfant, 2007).  Overall, the GGH area accounted for 84% of Ontario’s population 

growth during this time period (Martel and Caron-Malenfant, 2007).  New areas for concern 

within proximity to the Escarpment are Milton and Halton Hills (Georgetown), as these two 

towns saw rapid population growth since 2001 at +71.4% and +14.7% respectively (Martel 

and Caron-Malenfant, 2007).  As development pressure on the Escarpment increases, the 

need for monitoring land cover changes in the Plan has come to the forefront of monitoring 

initiatives. 
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The NEC is responsible for the protection of the landform through the NEP and as the 

responsible body, must establish consistent ways to monitor and protect the Escarpment.  

Monitoring the changes that are experienced in this area can be a challenge, since it 

encompasses such a large geographic area.  It stretches from Tobermory to Niagara Falls and 

beyond, and transcends eight regional municipal boundaries and falls under a variety of 

governing bodies including respective upper and lower tier municipalities and conservation 

authorities.  The NEC has a monitoring program currently in place called the Ontario Niagara 

Escarpment (ONE) Monitoring Program that is designed to assess whether the policies of the 

NEP are effective in protecting the escarpment and examines the linkages between land use 

change and ecosystem status (Cadman et al., 1997).  Through the program, a Cumulative 

Effects Monitoring (CEM) framework was developed consisting of monitoring objectives, 

questions, components, indicators, techniques, targets and an information management 

system (Cadman et al., 1997).  Studies on the changing landscape of the Niagara Escarpment 

were conducted in the past, and in the mid 1990’s remote sensing had been used to monitor 

the changing landscapes of the escarpment.  Previous studies have yet to provide the NEC 

with an effective methodology that can be used to monitor the Escarpment consistently and 

accurately over time.  Remote sensing is a technique used to analyze features on the Earth 

from a distance, and since it is often difficult to reach many parts of the Escarpment for 

detailed field studies; the use of remote sensing imagery to perform change detection is an 

asset to an organization like the NEC to monitor changes in their jurisdiction. 

 

1.2 Objectives 

The goal of this research was to examine land cover change in the Regional Municipalities of 

Hamilton and Halton portions of the NEP.  This was achieved through the use of Landsat 5 

TM remote sensing data and a supervised classification algorithm over a 20 year time period 

from 1986 to 2006.  The main objectives of the study were to: 



 

3 

1. Create land cover classification maps (as accurately as possible) at a regional scale in 

the Regional Municipalities of Hamilton and Halton portions of the NEP using 

remotely sensed data; 

2. Identify what land cover changes have occurred in the Regional Municipalities of 

Hamilton and Halton over a 20 year time period from 1986 to 2006 (qualitative 

assessment); 

3. Determine how much the land cover has changed in the Regional Municipalities of 

Hamilton and Halton over a 20 year time period (quantitative assessment); 

4. Examine both qualitative and quantitative changes that have occurred in the NEP land 

use designations over a 20 year time period in the Regional Municipalities of 

Hamilton and Halton; 

5. Detect (if any) potential land cover changes that are not compatible with the NEP 

land use designations and NEP policies. 

 

1.3 Research Significance 

Due to human impacts on the Niagara Escarpment landscape, there is a need to establish 

baseline datasets against which changes in land cover can be assessed (Lunetta and Elvidge, 

1998 from Jensen, 2005).  Previous studies have worked to provide land cover change 

information on the Escarpment through the use of air photo analysis and the classification of 

remotely sensed images for different areas of the NEP.  Ramsay (1996) and Jankovic (1999) 

used air photo images to produce land cover maps in the Regional Municipality of Halton 

and Grey County respectively.  These land cover maps were then used to determine changes 

in the NEP over time.  Through ONE monitoring initiatives two baseline remote sensing 

studies were also conducted in conjunction with one another to examine the change that had 

occurred across the entire NEP area.  Each study examined different portions of the Plan, one 

in the northern section and one in the southern section.  Land cover change over a 20 year 

time period from 1976 to 1995 was identified by using unsupervised classification of Landsat 
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imagery (Cowell, 1997; Lusted et al., 1997).  There is much room for improvement from 

these previous studies.  No formal accuracy assessment was performed on any of the final 

classifications causing the results to be unreliable.  Also the choice to use an unsupervised 

classification method neglects to incorporate valuable a priori land cover knowledge that an 

analyst can bring to a study.  In the case of the previous remote sensing studies, little 

knowledge of the NEP area existed which justified the unsupervised classification approach.  

In the current study, prior knowledge of Escarpment land cover allowed for a supervised 

classification approach to be used.  Remote sensing has the ability to provide the NEC with 

accurate and timely land cover information for the NEP area.  In a geographic location where 

minimal remote sensing projects have been conducted, there is a need to identify appropriate 

land cover classification methods that can produce accurate Niagara Escarpment land cover 

maps. 

 

With current imagery and an updated approach, land cover information in the Plan area can 

be updated in a more accurate way.  By using Landsat 5 TM imagery from 1986, 1996 and 

2006, land cover information was extracted and land cover change was examined over a 20 

year time period over almost the entire lifespan of the NEP.  Lusted et al. (1997) stated that 

more detailed work at the regional scale should be undertaken to describe the spatial 

dynamics of the change that is occurring in the Plan area. To achieve this, the study area for 

the current research was reduced to an urban and rural example, focusing on Hamilton and 

Halton Regions.  Looking at only two regions within the Plan allows for detailed 

methodological analysis that upon success may be applied to the remainder of the Plan area 

in future works.  Finally, to examine change in the Plan area from a new perspective, land 

cover change will be examined on an individual NEP land use designation basis to determine 

the type and magnitude of changes occurring in each designation. 
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1.4 Thesis Outline 

In Chapter 2, literature pertaining to planning on the Niagara Escarpment and the use of 

remote sensing for planning applications will be discussed.  The history of the NEP and its 

policies will be summarized as well as monitoring initiatives that have already taken place in 

the NEP area.  Remote sensing methods will be assessed for use in the NEP.  Chapter 3 sets 

the geographic context of the study and introduces the data sets to be used for the research.  

Chapter 4 outlines the detailed methodological approach employed for land cover 

classification on the Niagara Escarpment and for conducting change detection over a 20 year 

time period.  Chapter 5 reveals the results of the land cover classification and change 

detection and provides critical analysis of change in the study area.  Chapter 6 concludes the 

research with a brief discussion of the study, ideas for future research and final conclusions 

drawn from the work. 
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Chapter 2 

Literature Review 

2.1 Planning on the Niagara Escarpment 

The Niagara Escarpment is situated within Southern Ontario; a geographical area 

experiencing rapid land cover change.  With sections of its length located within the most 

heavily populated regions in Southern Ontario, exploitation of this valuable resource has 

become a concern for both the public and the Provincial Government.  The Southern Ontario 

portion of the Niagara Escarpment is approximately 725 km in length and runs from 

Tobermory, Ontario on the Bruce Peninsula to Queenston, Ontario on the Niagara Peninsula 

(Niagara Escarpment Commission, 2008b).  By the late 1700’s the Escarpment was 

recognized as a valuable resource and forests were cleared for farmland and used for lumber 

(Reid, 1977).  The limestone from the Escarpment was used as building materials and the 

water power harnessed by the falls on the Escarpment gave rise to the first industrial areas in 

Southern Ontario, focused around mill villages and towns (Reid, 1977).  The population 

increased as Southern Ontario began to develop and farm land continued to grow.  To date, 

the NEP covers approximately 480,233.3 acres in Southern Ontario with a wide range of land 

uses occurring in proximity to the landform such as urban areas, rural settlements, 

agricultural practices, mineral resource extraction, recreation, transportation and utility 

corridors, forested areas and rural non-farm developments (Ramsay, 1996; Niagara 

Escarpment Commission, 2007a). 

 

Protection of the Niagara Escarpment is associated with a number of planning challenges that 

exist for the NEC.  Mineral resource extraction, lot creation for residential developments and 

urban sprawl are just examples of the kinds of land use practices that are cause for concern 

for the NEC (Niagara Escarpment Commission, 2008a).  Today, the population surrounding 

the Niagara Escarpment continues to grow, and the battle remains, as it always has been, 

between those who wish to profit from the Niagara Escarpment lands and those who wish to 

preserve this landscape for future generations (Reid, 1977).  Development that occurs on the 



 

7 

Escarpment must be compatible with the landform and sustainable over time all while 

continuing to support local municipalities through a balance of natural resource management 

and sustainable economic and urban growth.  This balance of protection and appropriate use 

of escarpment lands presents the greatest challenge to the NEC for monitoring and protecting 

the Escarpment through NEP policies.  Creating policies and preserving natural areas that 

transcend political boundaries can be a challenge in itself (Fall, 1999).  The NEP is Canada’s 

first large scale environmental land use plan and is located in portions of 21 local 

municipalities, four cities and eight Regional Municipalities (Preston, 2003).   

 

As described by Dovers (2005), policies are positions taken and communicated by 

governments that identify problems and how to correct them (Dovers, 2005).  Policy 

framework involves problem framing, policy framing, implementation and monitoring 

(Dovers, 2005).  The central purpose of the NEP is to maintain the Escarpment as a 

continuous landform and to promote compatible development (The Niagara Escarpment 

Plan, 2005).  This purpose is reminiscent of the idea of sustainable development, described 

by the World Commission on Environment and Development in Dovers (2005) as 

―development that meets the needs of the present without compromising the ability of future 

generations to meet their own needs (WCED 1987: 43)‖.  Resource depletion and 

degradation is one of four constituent issues of sustainability outlined by Dovers (2005), and 

was the key issue that led to the formation of the NEP for protection of the Escarpment into 

the future.  This work will focus on the final piece of the policy framework outlined by 

Dovers (2005) and will discuss methods for monitoring land cover changes on the Niagara 

Escarpment.  

 

There is a need to establish persistent monitoring with a consistent methodology for 

identifying change over time in the Plan area to ensure that Plan implementation has been 

effective in regulating land use on the Niagara Escarpment.  The study area examined in this 

work is part of a highly developed region and resource consumption is a highly visible 
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practice occurring on the Escarpment today through agricultural use, urban development and 

mineral resource extraction.  The use of both qualitative and quantitative data are necessary, 

both of which may be acquired through the use of remote sensing technology. 

 

2.1.1 History of the Niagara Escarpment Planning Policy 

Due to an increase in public concern on the state of the Niagara Escarpment, in 1967 an 

announcement was made that a wide ranging study would be conducted to promote 

appropriate use of the landform (Schenk and Robinson, 1975).  This study preceded the 

enactment of bill 129 in June 1973 that created the NEC (Schenk and Robinson, 1975).  The 

Commission was put in place immediately to represent the municipalities and the public at 

large as well as to introduce Development Control (DC) measures while the Plan area was 

being established and while the Plan was being written (Schenk and Robinson, 1975).  The 

DC area was established to allow for the continuation of all developments that were already 

in progress, and to protect sensitive areas of the Escarpment from future developments prior 

to the inception of the Plan (Niagara Escarpment Commission, 1979).  The current area under 

protection can be seen in Figure 2.1 below outlining the Niagara Escarpment Planning Area, 

the DC area and the current NEP boundaries displaying the land use designations for a 

portion of the Regional Municipality of Halton.  Professor Leonard A. Gertler of the 

University of Waterloo directed the initial study on the Escarpment, and was assisted by a 

professional group of planners and geographers and was officially titled ―The Niagara 

Escarpment Study; Conservation and Recreation Report‖, but was generally referred to as 

―The Gertler Report‖.  Highlights of the final report, published in 1968, include important 

recommendations on how to achieve control over the Niagara Escarpment Lands (Schenk 

and Robinson, 1975). 

 

To begin the study, Gertler outlined ten terms of reference including some geared specifically 

towards appropriate land use on the Escarpment (Gertler et al., 1968).  Gertler and his team 

aimed to delineate the area of the Niagara Escarpment based on land they felt should be 
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Figure 2.1  Example of Current Niagara Escarpment Plan (NEP) 

Designations, Development Control and the Niagara Escarpment Planning 

Area 

 

preserved as a permanent part of the Ontario landscape (Gertler et al., 1968).  They focused 

attention on preserving the Escarpment for recreational purposes based on demand from the 

public at the time (Gertler et al., 1968).  In 1968, the pressure to develop on escarpment land 
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had increased due to high rates of urbanization in Southern Ontario and this necessitated 

coordination in planning for the future (Gertler et al., 1968). The authors achieved this by 

identifying activities that were incompatible with preservation, such as quarrying, and by 

developing a plan to acquire land and regulate its use through legislative and administrative 

control devices (Gertler et al., 1968).  Overall the primary objectives of the report were: 

1. The delineation of lands to be preserved for their recreational and environmental 

value 

2. The determination of the means of preservation 

3. The establishment of priorities for preservation action 

 (Gertler et al., 1968:2) 

 

To meet the first objective, methods of control over Escarpment lands were developed.  

Three levels of control were proposed that were early renditions of the plan designations that 

exist today.  The methods of control can be seen below in Table 2.1. 

Table 2.1  Gertler Report's Recommended Methods of Control for the Niagara 

Escarpment 

Control  Description 

Complete Control Outright acquisition of lands 

Selective Control Acquisition of defined rights to the land through easements or leases 

Regulatory 

Environmental Control 

Through land use regulations (e.g. preserving agricultural or forested 

lands) 

(Gertler et al., 1968) 

 

The second objective was to be met through acquisition of lands and through land use 

regulations (Schenk and Robinson, 1975).  Gertler recommended that two miles on either 

side of the highest contour (representing the Escarpment edge) should be the study and 

administration area (Gertler et al., 1968).  This broad study area allowed for the inclusion of 

river headwaters and other areas of environmental significance (Gertler et al., 1968).   Gertler 

also recommended that 7% of the administration area be under complete control and 25% be 

under land use regulations with the remainder eligible for acquisition (Schenk and Robinson, 
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1975).  The report also outlined major sections on a proposed parkland system, regulations 

on the extractive industry and an outline of the administration structure for the Niagara 

Escarpment (Schenk and Robinson, 1975).  The completion of the Gertler Report produced 

almost immediate results in the area of land acquisitions, recognition of the Niagara 

Escarpment into official plans and minimizing the impact of the extractive industry on the 

Escarpment (Schenk and Robinson, 1975).  In 1970 the Niagara Escarpment Protection Act 

was born and a year later the Pits and Quarries Control Act of 1971 was put in place (Schenk 

and Robinson, 1975).  The Pits and Quarries Control Act imposed immediate changes in the 

industry which made it necessary for all pit and quarry operators to operate under a license 

and with an approved site and rehabilitation plan (Schenk and Robinson, 1975).  Random 

inspections would occur and no new quarrying could occur within 300 feet of the natural 

edge of the Escarpment (Schenk and Robinson, 1975).  Two interim special policy areas 

were identified by Gertler by 1974.  These included areas that were undeveloped as well as a 

few land use control areas such as Pelham and St. Catharines (Schenk and Robinson, 1975).  

Government grants were also increased to provide for the purchase of Niagara Escarpment 

lands (Schenk and Robinson, 1975).  The Gertler Report was a significant first step in 

recognizing the importance of the Escarpment and the need for its protection in a changing 

landscape. 

 

In 1972, the Niagara Escarpment Task Force was established to develop priorities in the early 

stages of Escarpment monitoring and protection (Schenk and Robinson, 1975).  The Task 

Force consisted of nine members and was responsible for establishing priorities for the 

acquisition of land by the Province and creating development standards to ensure the 

appropriate use of Escarpment lands (Schenk and Robinson, 1975).  They achieved this by 

advising on all proposals that would result in major changes in existing land use patterns 

(Schenk and Robinson, 1975).  Until this point a lot of work had been done at the Provincial 

level to begin monitoring the use and land cover of the Escarpment, but the Task Force went 

beyond what had already been accomplished and decided to conduct public meetings in 

several communities along the Escarpment to understand how the public-at-large felt about 
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the progress being made for its protection (Schenk and Robinson, 1975).  Public meetings 

were held in St. Catharines, Hamilton, Milton, Orangeville, Collingwood, Owen Sound and 

Lion’s Head (Schenk & Robinson, 1975).  In the southern locations, the public felt that the 

Ontario Government had done little until that point to protect the Escarpment (The Niagara 

Escarpment Task Force, 1972).  In the public meeting in Hamilton, concerns were raised 

about subdivisions and of the divide between rural and urban land (The Niagara Escarpment 

Task Force, 1972).  The public stressed that certain buffer regulations needed to be put in 

place as well as selective urban and rural development controls to preserve the natural crest 

and toe of the Escarpment and beyond including adjacent natural areas (The Niagara 

Escarpment Task Force, 1972).  The concerns expressed in Hamilton were echoed in Milton, 

where major concerns included land protection from further development and from the 

extractive industry (The Niagara Escarpment Task Force, 1972).  The Task Force outlined a 

specific goal ―[T]to maintain the Niagara Escarpment as a continuous natural environment 

while seeking to accommodate demands compatible with that environment (The Niagara 

Escarpment Task Force, 1972: 2).‖  This goal along with several objectives outlined by the 

Task Force are closely related to the goal and objectives of the final Plan, proving the Task 

Force was moving in the right direction at the time.  A lot of the work undertaken by the 

Task Force included the following: building provincial and local planning relationships, 

examining financial impact of land use regulations and compensation, establishing the 

priority and funding arrangements for land acquisition, taking control of the extractive 

industry and designing legislation and interim measures of development control until the 

legislative requirements had been met (Schenk and Robinson, 1975).  With all the work done 

by the Task Force, the creation of the Niagara Escarpment Planning and Development Act 

(NEPDA) and the formation of the NEC became the next logical step in the fight to protect 

the Escarpment. 

 

2.1.2 The Current Niagara Escarpment Plan (NEP) 

Niagara Escarpment Planning and Development Act (NEPDA) 
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The NEPDA was passed by the Ontario Government in 1973.  The new legislation called for 

the establishment of the NEC and the subsequent preparation of the NEP by the Commission 

(Jankovic, 1999).  ―The purpose of the act is to provide for the maintenance of the Niagara 

Escarpment and land in its vicinity substantially as a continuous natural environment, and to 

ensure only such development occurs as is compatible with that environment (R.S.O. 1990, 

chp. N.2, sec. 2) (Niagara Escarpment Commission, 2007c: 1).‖  Several characteristics of 

this legislation made it unique from the Planning Act (Borodczak, 1995).  The NEPDA 

focused on environmental planning as opposed to being oriented toward development like the 

Planning Act (Borodczak, 1995).  Through the NEPDA, the goal was to create a provincial 

land use plan focused on the protection of the escarpment at the provincial level, with 

jurisdiction across municipal boarders (Borodczak, 1995).  This also varied from the 

Planning act, since it called for each municipality to plan within its own boundaries 

(Borodczak, 1995). 

 

The Niagara Escarpment Commission (NEC) 

The NEC was created in 1973 and has 17 members made up of municipal representatives and 

members of the public at large (Schenk and Robinson, 1975). The Commission’s first task 

was to create the NEP.  The preliminary proposals for the Plan were released by the 

Provincial Government in 1978 (Borodczak, 1995).  Negative reactions to the Plan from 

private land owners and municipalities resulted in a 63% reduction in Plan area from the time 

the NEP area was proposed to the inception of the final Plan and the creation of the final Plan 

Area (Borodczak, 1995).  After public hearings and Provincial recommendations, Cabinet 

approved the NEP in June 1985 (Borodczak, 1995). 

 

The Niagara Escarpment Plan (NEP) 

The NEP is the main piece of legislation that outlines how the province will protect the 

Niagara Escarpment into the future.  The purpose of the NEP was adopted directly from the 

NEPDA.  The Plan outlines seven main objectives, as follows: 
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1. To Protect unique ecological and historic areas; 

2. To maintain and enhance the quality and character of natural streams and water 

supplies; 

3. To Provide adequate opportunities for outdoor recreation; 

4. To maintain and  enhance the open landscape character of the Niagara Escarpment in 

so far as possible, by such means as compatible farming or forestry and by preserving 

natural scenery; 

5. To ensure that all new development is compatible with the purpose of the plan; 

6. To provide for adequate public access to the Niagara Escarpment; and 

7. To support municipalities within the NEP area in their exercise of the planning 

functions conferred upon them by the Planning Act. 

 (The Niagara Escarpment Plan, 2005: 3) 

 

To place regulations on developments that occur in the Plan area, 7 land use designations 

were outlined in the plan with varying levels of protection (Niagara Escarpment 

Commission, 2007b).  Each land use designation has a specific set of objectives and land use 

policies attached to it to determine what types of development are permitted in each distinct 

designation (Borodczak, 1995).  As can be seen below in Figure 2.2, the Escarpment Natural 

Area (ENA) designation has the most restrictive land use policies and the Escarpment Rural 

Area (ERA) designation has the least (Borodczak, 1995).  A summary of each land use 

designation can be seen in Table 2.2.  The policies that the NEP has in place for certain areas 

within the Plan should translate to the types of land cover that occur in each designation and 

remote sensing can be used as a cost efficient tool to monitor changes in land cover in the 

Plan Area. 

 

The Niagara Escarpment as a United Nations Educational, Scientific and Cultural 

Organization (UNESCO) World Biosphere Reserve 

In 1990, UNESCO named the Niagara Escarpment a World Biosphere Reserve under its Man 

and Biosphere (MAB) program, and is one of only 15 World Biosphere Reserves in Canada 

(UNESCO – MAB Secretariat, 2008).  The MAB program was created in 1971 with the aim  
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(Niagara Escarpment Commission, 2007a) 

Figure 2.2  Designation Percentages in the Niagara 

Escarpment Plan (NEP) 

 

Table 2.2  NEP Land Use Designation Summary 

Plan Designation Description 

Escarpment Natural Area 

(ENA) 

Escarpment areas that are in a natural state and that contain 

important plant and animal habitats, geological features, cultural 

heritages sites and scenic areas.  These areas will only be used for 

conservation, education and compatible recreation and the 

protection of natural flora, fauna and the landform itself. 

Escarpment Protection Area 

(EPA) 

The protection area acts as a buffer to the prominent Escarpment 

features named above in the ENA designation.  Its job is to 

enhance the open landscape character of the Escarpment, to 

maintain natural areas and to encourage agriculture, forestry and 

recreation.  These designated areas often have more visual 

prominence than ENAs. 

Escarpment Rural Area (ERA) 

 

Areas with minor escarpment slopes and landforms and is a 

designation used as a buffer to more ecologically sensitive areas of 

the Escarpment.  These are lands near the Escarpment necessary to 

provide open landscape character, to encourage conservation, 

agriculture, and forestry and to provide for compatible rural land 

uses.  Despite this, the Plan’s final objective is to also provide for 

the designation of new mineral resource extraction areas (MREAs) 

which can be accommodated by an amendment to the NEP. 

Minor Urban Centre (MUC) Rural settlements, villages and hamlets in the Plan area. 

Urban Area Urban areas that have encroached upon or are in close proximity to 

the Escarpment.  The purpose of this designation is to minimize 

future impacts. 

Escarpment Recreation Area Areas of existing or potential recreational development. 

Mineral Resource Extraction 

Area (MREA) 

Pits and quarries licensed under the Aggregate Resources Act and 

where future expansion may be permitted under the Plan. 

(The Niagara Escarpment Plan, 2005) 
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of promoting research, training, communications and the rational use of natural resources 

(UNESCO – MAB Secretariat, 2008).  Biosphere Reserves are protected areas of 

representative environments internationally recognized for their value for conservation, 

scientific information, environmental monitoring and local participation to support 

sustainable development (Ramsay, 1996).  More recently, efforts have been made by the 

MAB program to recognize urban environments that exemplify the Biosphere Reserve Model 

and could contribute the ideas behind the Biosphere Reserve to improving urban planning 

and management (Matysek et al., 2006).  Parts of the Niagara Escarpment, such as the 

Hamilton Region portion of the Plan, benefit from the Biosphere Reserve designation and are 

protected under similar protection strategies.  Biosphere Reserves are based on a hierarchy of 

environmental protection and compatible land use zones ranging from core protected areas 

(e.g., ENA designation) that conserve significant ecological areas and functions, buffer zones 

(e.g., EPA and ERA designations) in which research, environmental education and training 

can take place in a manner which does not impact the core areas, and transition zones (e.g., 

Urban areas and Minor Urban Centres (MUCs), ERA and MREA designations) where the  

Table 2.3  Comparison between the Niagara Escarpment Plan (NEP) Designations 

and the Biosphere Reserve Designations 

Biosphere Reserve 

Designations 

Acres in 

Biosphere 

Reserve 

Hectares in 

Biosphere 

Reserve 

Land Use Designations 

Total Biosphere 487,946.0 100.0% Total Area 

Core Area* 164,763.3 33.8% ENA** 

Buffer Area 288,513.9 59.1% EPA and ERA 

Zone of Cooperation 

(Transition Area) 

34,668.7 7.1% Urban Area, ERA and 

MREA 

Overlay Designation*** 

 7,038.5 1.4% MUC 

*The entire Bruce Peninsula National Park is considered core area under the Biosphere Reserve 

designation 

** The ENA includes the Fathom Five National Marine Park and the Bruce Peninsula National 

Park 

***The MUC designation is contained within the NEPA, and overlay the land use designations, 

therefore they are calculated separately. 

(Niagara Escarpment Commission, 2007a) 
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aim is to develop cooperation between human activities and the natural environment and to 

promote sustainable development (Ramsay, 1996).  The levels of environmental protection 

within the Biosphere Reserve designation coincide with the designations outlined in the NEP 

(Niagara Escarpment Commission, 2007a).  In both the Biosphere Reserve and NEP, there 

are portions of heavily protected areas along the cliff face with decreasing levels of 

protection moving away from the cliff face in both scenarios (Niagara Escarpment 

Commission, 2007a). 

 

2.1.3 Monitoring on the Niagara Escarpment 

Monitoring on the Niagara Escarpment is currently undertaken by the ONE monitoring 

program.  This program was launched to determine if the Plan, with its unique set of 

environmental land use policies, achieves its goals and objectives (Cadman et al., 1997).  The 

program itself is unique because it focuses on the Niagara Escarpment as a living and 

interconnected landscape, and as such, the ONE Monitoring Program is designed to assess 

the linkages between land use change and ecosystem values (Cadman et al., 1997).  Initial 

focus was placed on several key initiatives including land use change, forest cover health and 

vegetation status, forest fragmentation and corridor linkages, and disturbances from human 

activities (Cadman et al., 1997).  Several key studies were already undertaken and reported 

on through NEC projects, theses and reports and a select few will be outlined in the 

following sections.  The ONE Monitoring Program uses a CEM framework which consists of 

a set of monitoring objectives, questions, components, indicators, techniques, targets and 

information management systems (Cadman et al., 1997).  ―The CEM is the long term 

assessment or measurement of changes in the environment within a defined area (Cadman et 

al., 1997).‖  This is accomplished through the consideration of two concepts: cumulative 

environmental effects and monitoring (Cadman et al., 1997). 

 

A study conducted by Ramsay (1996) has provided the Commission with one of its most 

comprehensive land use change studies to date through the use of the CEM framework.  Land 
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cover metrics were calculated through aerial photograph inspection for map creation.  All 

maps were then digitized to be displayed in a GIS.  For a time period between 1974 and 

1994, Ramsay used a CEM strategy under the guidance of the NEC and the ONE monitoring 

program, to assess both negative and positive cumulative affects at the landscape-level in a 

northern portion of the Regional Municipality of Halton (Ramsay, 1996).  Cumulative effects 

are defined as ―[T]the combination and interaction of environmental effects due to multiple 

human activities (past, present and reasonably foreseeable future) occurring in a defined area, 

over time (Ramsay, 1996).‖  In a similar work, Jankovic (1999) reports a case study was 

conducted in Artemesia Township in Grey County where air photo interpretation was used to 

examine changes in forest cover and forest boundary relationships with the core and buffer 

zones of the biosphere reserve designation.  Instead of using the CEM framework, this 

examined change on the basis of boundaries.  Cross boundary issues exist especially when 

boundaries are being applied to a continuous natural area such as the Niagara Escarpment.  It 

can be argued that natural areas know no bounds and therefore should not be monitored with 

boundaries in mind (Jankovic, 1999). Boundary issues present a challenge in the NEP, as all 

the land in the Plan area is split between private, municipal, provincial and federal 

ownership. 

 

The purpose of Jankovic’s work was to determine the extent of the changes in forested area 

in the ENA designation of the NEP, an area that corresponds to the core area designation 

under the Niagara Escarpment Biosphere Reserve (NEBR) designation (Jankovic, 1999).  

The NEBR buffer zones were also examined to detect forest changes over a 20 year time 

period from 1974 to 1995 (Jankovic, 1999).  Any relationships between the change in 

forested areas and the boundaries placed around these areas were examined to determine the 

importance of boundaries and cross-boundary issues in the landscape (Jankovic, 1999).  In 

the CEM study, Ramsay (1996) employed the ABC (abiotic, biotic and cultural) research 

method.  The abiotic portion was used to map physical escarpment features, such as the 

escarpment brow.  The biotic portion focused on forest metrics to predict the amount, 

percentage and linkages that are suitable for selected bird indicator species, and the cultural 
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portion examined both historical and current land uses divided into six classes: inactive and 

active agricultural land, rural settlements, mineral resource extraction sites, recreational areas 

and rural non-farm development (Ramsay, 1996).  Jankovic (1999) used aerial photography 

from three years (1974, 1991 and 1995) to map boundaries of deciduous, coniferous and 

mixed forest drawn onto 1:10,000 base maps.  After the mapping was completed, the maps 

were overlapped and compared visually (Jankovic, 1999).   

 

Both studies concluded that there was no loss of forested area in either North Halton Region 

or in Artemesia Township (Jankovic, 1999; Ramsay, 1996).  Due to minimal changes being 

present from 1991 to 1995 conclusions were drawn by using the 1974 to 1995 air photos 

(Jankovic, 1999).  In that time period no forest loss was detected and younger trees began to 

take over uncultivated land that was adjacent to mature forests (Jankovic, 1999).  In 1974 

adjacent lands were intensively used for farming and this prevented forest succession 

(Jankovic, 1999).  Another major discovery was that forests showed more connectivity, 

especially forests outside of the 300m buffer mark from the brow that delineates the ENA 

(The Niagara Escarpment Plan, 2005: 9).  In fact, the period from 1974 to 1995 showed no 

loss of forested area, and most succession occurred in adjacent abandoned agricultural fields 

that are no longer cultivated (Jankovic, 1999).  Ramsay (1996) recognized in the North 

section of Halton Region that the most significant land use changes were a decrease in active 

agricultural land (from 86.3% in 1974 to 75.8% in 1994), an increase in mineral resource 

extraction sites (from 9.0% in 1974 to 14.8% in 1994) and an increase in recreational 

development (from 0.1% in 1974 to 4.1% in 1994).  The increase that occurred in the mineral 

resource extraction sites above the escarpment brow have had the most impact on the pattern 

and area of core habitat in this location, and were present prior to the creation of the NEP 

(Ramsay, 1996).  Continued efforts on MREA rehabilitation were recommended (Ramsay, 

1996).  Below the escarpment it was concluded that active agricultural lands have the most 

influence on forest change below the escarpment (Ramsay, 1996). 
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Similar limitations were expressed in both studies, due to the use of aerial photographs in the 

analysis.  Jankovic (1999) states that a major limitation to the Artemisia Township study was 

that all three photographs used were at different spatial scales.  In addition, the older black 

and white photos were hard copy photographs while the newer image used was a digital 

infrared photograph (Jankovic, 1999).  Another limitation to this study was the timing for the 

collection of ground reference data.  In situ measurements were collected in November 1999, 

late in the growing season and four years after the most recent photograph used for analysis 

(Jankovic, 1999).  Typically it is best to collect ground reference information as close to the 

time of analysis as possible (Jensen, 2005).  Qualitative measurements and subjective 

judgment was of great concern to Ramsay (1996).  Individual landscape measures were 

ranked in a subjective way through the examination of information such as ―forest 

naturalness‖, significance of physical features and ―landscape change significance‖ (Ramsay, 

1996).  These landscape measures were ranked on a scale from ―high‖ to ―low‖ based on 

guidelines outlined by Ramsay and were very subjective to the author’s opinion and 

background knowledge (Ramsay, 1996).  Furthermore, forest size was based on a range 

representing small to large forest patches (Ramsay, 1996).  Ramsay challenges the NEP and 

believes that the current state of the ENA designation does not accurately portray the natural 

area of the Escarpment, and therefore could be improved (Ramsay, 1996).  Both works point 

towards the need to support maintenance of the Escarpment’s continuous natural 

environment through more intensive monitoring, and creating policies that deal with the 

Escarpment as a region as opposed to curbing development only at a site specific scale 

(Jankovic, 1999; Ramsay, 1996).  Improved remote sensing technologies can provide 

effective quantitative monitoring at this scale, and previous studies on the Escarpment using 

remote sensing have led the way towards a future of monitoring using remotely sensed data 

at various scales for the Niagara Escarpment. 
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2.2 The Role of Remote Sensing in Protected Areas Planning 

Traditionally, land cover change in an area of interest would be examined through field 

investigations and/or by using aerial photography (Wilkie and Finn, 1996).  This has proven 

successful in the past, but at the rate and magnitude land cover changes are occurring today, 

information must be gathered at larger spatial and temporal scales (Wilkie and Finn, 1996).  

Remote sensing can provide the data necessary for consistent monitoring studies and is an 

important component of urban and regional planning (Treitz and Rogan, 2004; Wilkie and 

Finn, 1996).  It is a valuable tool that can aid decision makers in the creation of policies for 

environmental conservation (Treitz and Rogan, 2004).  The following section outlines the 

role of remote sensing in planning and will highlight monitoring initiatives that have already 

taken place in the NEP area through the use of satellite remote sensing.  Remote sensing for 

land cover change and change detection will be discussed with final recommendations for a 

remote sensing change detection strategy for the Niagara Escarpment. 

 

2.2.1 Remote Sensing for Planning 

Land cover information is an important aspect of the planning process (Treitz, 2004).  The 

rate of consumption of natural resources today is highly visible on our landscape (Wilkie and 

Finn, 1996).  Planning agencies at varying municipal scales have come to recognize the 

importance of monitoring change patterns and trends into the future (Rogan and Chen, 2004).  

Remote sensing is a tool that can aid land use planners in making management decisions in a 

more time and cost efficient way.  Planning is a very broad term, and many different sectors 

that make up the broad discipline of planning can benefit from the use of remote sensing data 

for land management such as agriculture, forestry, urban planning and environmental 

monitoring (Prenzel, 2004).  Although the information gathered from remote sensing may 

depend on knowledge of the analyst and cost of the data, and often requires additional field 

work, it is apparent that remote sensing and other information technology such as GIS is 

becoming a driving force in planning and protected areas research (Quinn and Alexander, 

2008). 
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Remote sensing has been recognized as a useful environmental planning tool and as 

technologies improve, remote sensing has played a more important role in improving 

monitoring programs (Stafford, 1993).  As opposed to using aerial photographs for visual 

assessments, spectral data can be used to provide new information that cannot be obtained 

from pure visual assessment (Wilkie and Finn, 1996).  For example, environmental 

professionals could determine the type and health of crops in an agricultural field.  As new 

sensors are introduced with higher spatial resolutions, there has been an increase in the 

number of planning applications that remote sensing can be used for (Treitz and Rogan, 

2004).  Urban planning, for example, benefits from the use of high spatial resolution data.  

Broader land cover studies across a landscape still benefit from the use of medium resolution 

imagery, so a greater understanding of land cover change at a regional scale may be obtained 

(Vogelmann et al., 1998).  Another advantage of remote sensing for natural resources 

monitoring is that it captures data on earth features without coming into contact with those 

features.  This is particularly useful for monitoring on the Niagara Escarpment where some 

sections are inaccessible.  Finally, information provided through remote sensing analysis can 

be converted and used within a GIS for mapping and analysis. 

 

Prenzel (2004) states that the analysis of remote sensing data for change analysis involves 

data input, analysis using a quantitative modeling approach, information output and research 

and decision making.  The accuracy of the information gained from a remote sensing study is 

very important for decision making, and starts at data acquisition (Quinn and Alexander, 

2008).  If actions are taken at every step of a project and everything is done to ensure the 

highest accuracy of the results possible, only then can confident decisions be made at the 

planning level (Quinn and Alexander, 2008).  Of course the classification of land cover using 

remotely sensed data is only a representation of what is on the ground, and so planners and 

policy makers should expect some degree of error and uncertainty in the final results whether 

it be quantitative values or qualitative information displayed on a map (Quinn and Alexander, 

2008).  All that can be done is to ensure these errors are identified, acknowledged and clearly 

quantified (Quinn and Alexander, 2008).  The benefit of up-to-date information that can be 
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acquired through remotely sensed data far outweigh potential limitations when managing 

development and planning for change (Treitz and Rogan, 2004).  Remote sensing is a key 

tool for the collection of long-term monitoring data so planning policies and protected areas 

management may be properly assessed and improved upon for the protection of our natural 

resources (Quinn and Alexander, 2008). 

 

2.3 Detecting Land Cover Change Using Remote Sensing 

Prior to conducting analysis, it is important to identify whether to focus on land cover or land 

use.  Barnsley et al. (2001) refer to land cover as the physical materials on the surface of the 

earth, such as grass, concrete and water.  Land use is the human activity that takes place on 

the land or makes use of it and is described as, for example, commercial, industrial or 

residential areas.  It is important to note that remote sensing does not directly measure land 

use which is a function of social, cultural, economic and political factors (Treitz and Rogan, 

2004).  Remote sensing records the spectral properties of surface materials on the earth 

without actually coming into contact with these features, and for this reason, remote sensing 

technology is more suitable for collecting land cover information (Treitz and Rogan, 2004).  

Various classification algorithms are then employed to extract land cover information and 

can be used to monitor land cover change (Aplin, 2004). 

 

2.3.1 Overview of Land Cover Mapping Methods 

Remotely sensed data collected of the earth’s surface can be turned into information to 

monitor land cover changes (Jensen, 2005).  Images such as photos and maps of the earth’s 

surface can provide information in much the same way, but multispectral imagery with data 

collected from multiple bands of the electromagnetic spectrum can aid in providing real-time 

information on change (Jensen, 2005).  Multispectral classification of remote sensing 

imagery can be done in a variety of ways.  A summary of the methods used are summarized 

in Table 2.4 below. 
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No one method is necessarily better than the next.  Jensen (2005: 338) states that ―the 

biophysical characteristics of the study area, the distribution of the remotely sensed data (e.g. 

Gaussian distribution), and a priori knowledge determines which classification algorithm will 

yield useful results.‖  Concern over the accuracy of classification maps produced through 

remote sensing techniques has prompted further research into improved supervised 

classification methods (Foody and Mathur, 2004).  Early basic algorithms, such as the 

Minimum Distance (MD) classifier have led to the development of more sophisticated 

statistical classifiers such as the Maximum Likelihood Classification (MLC), and even more 

recently, to non-parametric classifiers such as Neural Networks and Support Vector 

Machines (SVM) (Foody and Mathur, 2004). 

 

For this study much a priori knowledge exists about the types of land cover in the study area 

from previous field visits and also through interpretation of high resolution orthoimagery.  

For this reason, supervised classifications were chosen for land cover classification in Halton 

and Hamilton Region.  For a supervised classification four pieces of information must be 

identified before a classification is performed.  The geographic area of interest must be 

identified as this dictates the resolution of data to be used in the study (Jensen, 2005).  The 

classes of interest must be selected in a way so that they do not overlap and reflect all the 

land cover types that occur in the study region (Jensen, 2005).  Classes should also be 

hierarchical, so similar classes may be combined to improve land cover accuracy (Jensen, 

2005).  Classification type must also be identified, choosing between a hard or soft (fuzzy) 

classification type and a per-pixel or object-oriented classification (Jensen, 2005).  The next 

step is to obtain appropriate remote sensing and ancillary data to conduct the analysis.  GIS 

data, elevation data and orthoimagery are just a small example of ancillary datasets that may 

aid in the classification process.  Data must be chosen based on remote sensing system 

spatial, spectral/radiometric and temporal resolutions and also environmental considerations 

must be taken into account (Jensen, 2005).  Pre-processing is then performed where both 

atmospheric (radiometric) and geometric corrections take place.  Classification methods are 

then used for the extraction of thematic information based on training sites created by the 
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Table 2.4  Summary of Remote Sensing Classification Techniques 

Methods Examples Definition 

Parametric Maximum Likelihood Classification 

(MLC) and Unsupervised 

Classification etc. 

Assumptions: 

Data are normally distributed 

A priori knowledge of class density functions 

Non-

parametric 

Nearest-neighbour Classifiers, Fuzzy 

Classifiers, Neural Networks and 

Support Vector Machines (SVM) etc. 

No prior assumptions are made 

Non-metric Rule-based Decision Tree Classifiers Can operate on both real-valued data (i.e. 

reflectance values) and nominal scaled data (i.e. 

class 1 = forest) 

Supervised Maximum Likelihood Classification 

(MLC), Minimum Distance (MD), 

Mahalanobis Distance Classification 

(MDC) Parallelepiped etc. 

Analyst identifies Training sites to represent m 

classes and each pixel is classified based on 

statistical analysis 

Unsupervised ISODATA, K-means etc. -A priori ground information not known 

- Pixels with similar spectral characteristics are 

grouped according to specified statistical criteria 

Hard 

(parametric) 

Supervised and Unsupervised 

Classification 

Classification using discrete categories 

Soft (non-

parametric) 

Fuzzy Set Classification Logic -Considers heterogeneous nature of real world 

- Each pixel is assigned a proportion of the m land 

cover types found within the pixel (e.g. 10% soil, 

10% shrub etc.) 

Per-pixel  Classification of the image pixel by pixel 

Object 

Oriented 

 -Image segmented into homogeneous objects 

-Classification performed on each object vs. each 

pixel 

Hybrid 

Approaches 

 Includes expert systems (e.g. decision tree) and 

artificial intelligence (e.g. neural network) 

(Jensen, 2005: 337-338) 

 

analyst (Jensen, 2005).  Accuracy assessment is the last and most important step conducted in 

any classification.  It demonstrates that the analyst has identified the possible sources of 

error, minimized error as much as possible throughout the study and states the level of 

confidence the analyst has in the classification (Jensen, 2005).  After thematic maps are 

created with the highest level of accuracy, change detection can occur. 
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2.3.2 Review of Supervised Land Cover Mapping Methods 

The literature on using remote sensing techniques for land cover mapping is broad, with 

research efforts in this field spanning more than two decades (Aplin, 2004; King, 2002).  

Constant research efforts for improving remote sensing land cover classification techniques 

aim to improve the accuracy of the land cover information produced from remotely sensed 

data (Aplin, 2004).  Subsequently, there has been much research into the use of different data 

sources as remote sensing technologies improve and the spatial resolution of remotely sensed 

images becomes finer.  Still today there is much need for larger scale regional studies for 

which medium resolution imagery is still ideal (Franklin and Wulder, 2002).  Medium 

resolution imagery such as Landsat imagery is beneficial for broader regional land cover 

studies to support regional landscape planning and resource management (Aplin, 2004).  

Along with a multitude of work using more traditional classification techniques, newer 

methods are emerging and showing promise for land cover classification at regional scales. 

 

Very little recent research has focused on the more traditional classification methods such as 

parallelepiped, MD and Mahalanobis Distance Classifiers (MDC) except to compare them to 

more current methods being developed.  These traditional methodologies were described by 

Atkinson and Lewis (2000) before a newer approach on using the variogram for texture 

classification and as a smoothing function was explored (Atkinson & Lewis, 2000).  MLC is 

also discussed as a traditional supervised classification approach, and it is rare in the 

literature to find methods based purely on conventional methods such as MD or MDC alone.  

MLC is the most widely used algorithm in the land cover classification literature (Yan et al., 

2006), but it is rarely used on its own today and is often used as a baseline study to see how 

newer techniques can improve classification accuracy. 

 

It was established that typically more traditional supervised and unsupervised classification 

methods were used for large scale land cover projects (Fuller and Parsell, 1990; Foody and 

Hill, 1996; Cowell et al., 1997; Lusted et al., 1997; Price et al., 1997; Vogelmann et al., 
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1998; Guerschman et al., 2003).  A study conducted by Price et al. (1997) used a MLC and 9 

Landsat TM images from 1987, 1989 and 1992 (three for each year) to map land use/land 

cover in the High Plains Agro-ecosystem in Kansas.  Pixels were first classified into 100 

different spectral classes that were identified using an unsupervised ISODATA classification 

technique to extract spatial statistics (Price et al., 1997).  The 100 classes were then grouped 

into one of two classes, cropland or grassland.  MLC was then used to classify all cropland 

pixels into one of five crop land cover types: winter wheat, grain, corn, alfalfa and fallowed 

lands (Price et al., 1997).  Final accuracy results proved to be more than 20% higher on 

average than original single date classifications that only achieved an accuracy of 70% (Price 

et al., 1997).  The author contributed the increase in accuracy to the use of multi-seasonal 

images for each year (Price et al., 1997). 

 

An earlier study conducted in lowland Britain used the MLC to map land use in 

Cambridgeshire, England in 1984.  The classes that Fuller and Parsell (1990) identified for 

the classification were largely vegetation classes ranging from grass, coniferous/deciduous 

forests, arable land and bare soil.  Since vegetation types were the focus of the classification, 

only bands 3, 4 and 5 (red and infrared bands) from the Landsat TM data were used, as these 

bands are dominated by reflectance of healthy vegetation (Townshend, 1988; Fuller and 

Parsell, 1990).  Although only 74% accuracy was achieved, some individual classes 

performed at a higher accuracy than the overall value (Fuller and Parsell, 1990).  It was also 

noted that a MD classifier was attempted, but yielded lower results and was discarded (Fuller 

and Parsell, 1990).  Accuracy assessment was performed by comparing the MLC classified 

image with an existing map created through air photo interpretation in 1986 (Fuller and 

Parsell, 1990).  The maps were overlain and difference maps were created showing areas that 

had changed (Fuller and Parsell, 1990).  Limitations to this study exist because of the 

difference in dates of the imagery, as things may have changed over the 2 year time period.  

Also, having a qualitative accuracy assessment performed could introduce human error, 

especially since there was no indication of the accuracy of the map that was used for the 

accuracy assessment. 
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Many other medium resolution land cover classification programs exist all over the world 

(Franklin and Wulder, 2002).  Some examples of important Canadian classification systems 

are Baseline Thematic (BTM) from British Columbia using Landsat TM data, the Ontario 

Land Cover Data Base (OLCDB) produced by the Ministry of Natural Resources (MNR) for 

the Province of Ontario also using Landsat TM data and finally, a national classification 

called the Land Cover of Canada, produced using Advanced Very High Resolution 

Radiometer (AVHRR) data (Franklin and Wulder, 2002).  These data are slightly coarser 

than the TM classifications at an approximate 250m resolution (Franklin and Wulder, 2002).  

In the United States, it is a classification system, and not any one particular classification that 

is used for land cover analysis (Navulur, 2007).  The United States intelligence community 

created a standardized classification system known as the National Imagery Interpretability 

Rating Scale (NIIRS) that may be adjusted depending on the level of spatial scale of the data 

used in the study (Navulur, 2007).  Ten levels exist ranging from 0 to 9, 0 being for very low 

resolution data and 9 being for very high resolution data.  Another classification used is 

called the Anderson classification that consists of 4 hierarchical classification sections and is 

used by the United States Geological Survey (USGS) (Blaschke, 2004).  The scale of the data 

being used in any classification is an important consideration so an appropriate classification 

scheme can be chosen to represent land cover of interest at a particular scale. 

 

Variations in traditional classification methods have been attempted to increase overall 

accuracy of the classification maps produced.  Many variations exist and some techniques 

have proved more successful than others.  Guerschman et al. (2003) combined a normalized 

difference vegetation index (NDVI) with bands 3, 4 and 5 from a Landsat TM scene to create 

land cover classifications of the Argentine Pampas.  The authors also attempted to use 

multiple Landsat TM scenes for one year to aid in improving the classification (Guerschman 

et al., 2003).  Ancillary data sets were also incorporated to enhance traditional classification 

methods.  The use of a digital elevation model (DEM), GIS data sets and aerial photographs 

can enhance overall classification accuracies.  Fahsi et al. (2000) found that using a DEM 

with Landsat TM data improved classification accuracy by reducing the effect topography 
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had in a mountainous study area.  Xiao et al. (2006) combined GIS with a MLC to examine 

urban change in a province of China.  GIS was used to digitize historical land use maps to 

study the urbanization trends in Shijiazhuang City (Xiao et al., 2006).  Along with variation 

of traditional approaches, many new approaches have also emerged such as neural networks, 

decision tree classifiers, object oriented classifications and SVMs. 

 

Whereas most traditional classification methods are per-pixel classifiers, most features on the 

earth that analysts are trying to extract are composed of groups of pixels (Navulur, 2007).  

Image segmentation techniques divide remotely sensed images into a series of objects and 

use the attributes (such as spectral, shape, texture and morphology) of that object to perform 

the classification (Navulur, 2007).  Described by Wehrmann et al. (2004) as imitating human 

pattern recognition, this is a relatively new approach with many advantages to the user 

community, one being that the information derived from the object oriented approach can be 

used directly in a GIS (Geneletti and Gorte, 2003).  One great limitation to this method is the 

spatial scale of the image being used (Geneletti and Gorte, 2003). 

 

Comparisons between traditional per-pixel classifiers and the object oriented approach were 

examined by Yan et al. (2006).  They compared land cover classification results from the 

MLC pixel-based approach and the object oriented approach using ASTER data at a 15m 

spatial resolution.  Accuracy assessments were performed on each method through the 

creation and comparison of confusion matrices.  The object oriented method achieved an 

accuracy of 83.25%, which was much higher than the accuracy of the MLC at 46.84%.  Since 

the object oriented approach can use a classification algorithm to classify objects after image 

segmentation has been performed, there are studies that also examine the incorporation of 

more conventional parametric and non-parametric classifiers to classify the ―objects‖ 

(Navulur, 2007).  Wehrmann et al. 2004 began testing the combination of the object oriented 

approach with SVM using Landsat 5 TM data, a methodology that is explored later in this 

work.  Hill (1999) used MLC to classify both the original Landsat TM data on a per-pixel 
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basis, and on the objects derived from image segmentation being applied to the images.  This 

method was used to classify forest types in humid tropical forests.  Heavily forested areas 

exhibit a homogeneous land cover scenario and previous studies indicate that the object 

oriented approach may work better for more heterogeneous landscapes, so objects may be 

adequately segregated (Naumann and Siegmund, 2004).  Even though initial accuracy results 

were low, a combination of the classification of image objects and post classification 

merging of some of the forest types yielded respectable results that were over 90% accurate 

(Hill, 1999). 

 

One advantage to the object oriented approach is that objects can be created at various spatial 

scales, depending on the size of objects the analyst wished to extract from the imagery 

(Navulur, 2007).  The object oriented approach is well suited for high resolution data 

(Blaschke, 2004), but there are many studies that test the use of the object oriented approach 

on medium resolution Landsat data (Hill, 1999; Schneider and Steinwendner, 1999; Stuckens 

et al., 2000; Geneletti and Gorte, 2003; Naumann and Siegmund, 2004; Blaschke, 2005).  

Stuckens et al. (2000) used Landsat TM data to create land cover classification maps for a 

metropolitan area of Minnesota.  They focused on a generalized 10 class classification (a 

modified Anderson classification level II) scheme and found that the spatial resolution of the 

imagery was ideal with an overall accuracy of 91.4%.  Also because of its ability to integrate 

remote sensing object oriented methodologies with GIS (Smith and Fuller, 2001; Walter, 

2004; Blaschke, 2005), the number of applications for the planning and environmental 

monitoring communities have increased (Blaschke, 2005). 

 

SVMs have only recently been applied to classification of remotely sensed imagery (Keuchel 

et al., 2003).  A classification based on statistical learning theory (Vapnik, 1995), it had 

traditionally been used for face recognition in photos, and for handwriting and object 

recognition before it was recognized for remote sensing use (Hermes et al., 1999; Pal and 

Mather, 2003).  Widely used for hyperspectral remote sensing data (Camps-Valls et al., 
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2004; Melgani and Bruzzone, 2004; Fauvel et al., 2006), SVMs provide automatic 

classification of images by projecting data into a higher dimensional space through the use of 

kernels for increased separability between classes, and use an optimal hyperplane to separate 

the data (Fauvel et al., 2006).  Most studies conducted using SVM in comparison with other 

traditional parametric and more recently developed non-parametric classification methods 

have shown promising results, often with SVM producing classification images with higher 

accuracy (Hermes et al., 1999; Hsu and Lin, 2002; Huang et al., 2002; Keuchel et al., 2003; 

Pal and Mather, 2003; Foody and Mathur, 2004; Pal and Mather, 2005).  Although 

traditionally used in binary classification scenarios, the SVMs ability to discriminate based 

on geographical boundaries in feature space has proved successful for multi-class studies.  

With this success for applications using hyperspectral data, SVM is being tested on various 

types of data including Landsat multispectral data. 

 

Pal and Mather (2005) conducted a study comparing SVM to the maximum likelihood and 

neural network classifiers.  Landsat 7 ETM+ data and hyperspectral data from the DAIS 

7915 airborne imaging spectrometer from June 2000 were used (Pal and Mather, 2005).  The 

goal was to identify seven different agricultural land cover types from the ETM+ data and 

eight land cover types from the hyperspectral data including water, vegetation, bare soil, 

pasture lands and built up areas (Pal and Mather, 2005).  Both neural network and SVM 

classifiers depend on user defined parameters to function.  In the literature there is a lack of 

information on how these parameters are derived, so for most applications and in this study, 

the selection of the SVM parameters were chosen based on trial and error.  For this study, the 

values chosen were γ=2 and C=5000 (Pal and Mather, 2005).  The C parameter represents the 

penalty parameter for an SVM.  The penalty parameter controls the magnitude of the penalty 

for a training pixel on the wrong side of the decision boundary (Foody and Mathur, 2004).  

The gamma parameter controls the width of the Gaussian kernel used to project the data into 

a higher dimension (Foody and Mathur, 2004).  Results for the classifications showed SVM 

resulted in the highest overall accuracy for both data types (Pal and Mather, 2005).  In a 
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similar study, Hermes et al. (1999) found that for Landsat TM data, SVM outperformed the 

MLC stating that visually the results of the SVM appeared less ―noisy‖. 

 

In a study by Huang et al. (2002), SVM was compared to the maximum likelihood, neural 

network and decision tree classifiers using a high-dimensional data set.  TM imagery from 

eastern Maryland in 1985 was used and was degraded to a spatial scale of 256.5m from the 

original 28.5m resolution.  The objective of the study was to see the effect that training 

sample size and selection of appropriate input variables would have on the results.  A ―one 

against the rest‖ approach was used to perform a multi-class SVM.  Since SVMs are 

traditionally a binary classification (2 classes) approach, two strategies have been developed 

to apply SVM’s to a multi-class scenario (Pal and Mather, 2005).  The ―one against the rest‖ 

strategy compares one class to all the other classes combined to create the optimal 

hyperplane (Pal and Mather, 2005).  The ―one against one‖ strategy performs comparison of 

classes in pairs and evaluating all two class classifiers with the winning class getting a ―vote‖ 

(Pal and Mather, 2005).  They concluded that the ―one against the rest‖ strategy adopted by 

Huang et al. (2002) is less than ideal for a multi-class scenario since it may produce areas of 

unclassified data and therefore lower classification accuracies.  Despite this accusation, a 

familiar conclusion emerged: SVM outperform the other classifiers (Pal and Mather, 2005).  

Subsequently, Hsu and Lin (2002) found the ―one against one‖ better for operational use in a 

comparison of the newer ―all together‖ method versus the traditional ―one against all‖, ―one 

against one‖ and DAGSVM.  In all cases SVM proved successful for multi-class 

classification approaches. 

 

Another advantage to SVMs is that they require few training data (Foody and Mathur, 2004), 

but are not limited to a small training set.  This is merely an advantage to an analyst that has 

very few training data or very few resources for the collection of a training set.  In two 

studies conducted by Foody and Mathur (2004, 2008) they explore the affect that training set 

size has on the accuracy of SVMs.  In the 2004 study, Foody and Mathur used 5m airborne 
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TM data of an agricultural area in England in July 1986.  A variety of agricultural land uses 

were examined and six classes were identified in the study (Foody and Mathur, 2004).  To 

ensure optimal classification, individual field boundary pixels were masked out so training 

sites and ground reference points would be taken from homogeneous land cover types 

(Foody and Mathur, 2004).  The SVM was tested against other classifiers to determine the 

highest overall accuracy.  Discriminant analysis (similar to the MLC), decision tree and 

neural networks were also used to classify the image using three of the eleven available 

spectral bands (Foody and Mathur, 2004).  The SVM was run with a C value equal to 1 and 

the γ parameter was identified through trial and error, testing values between 0.005 and 1 

(Foody and Mathur, 2004).  It was determined that the γ value had an impact on classification 

accuracy, with accuracy decreasing as the value increased.  The SVM classification achieved 

the highest overall accuracy at 93.8%, and even though the SVM can function with little 

training data, there was a positive relationship between training set size and overall accuracy.  

An increased number of training sets produced a higher accuracy result, proving that an 

increased number and variation of training pixels can aid in identifying appropriate support 

vectors (Foody and Mathur, 2004).  In the second study conducted in 2008, Foody and 

Mathur explored the use of a small, intelligently selected training set versus a traditionally 

collected larger training set.  Even though the smaller training set yielded a lower accuracy, it 

was only lower by 1.34% but reduced the costs of training data acquisition (Mathur and 

Foody, 2008).  This shows promise for the use of smaller training sets although this method 

may require more expert knowledge (Mathur and Foody, 2008).  

 

Unsupervised classifications can be ideal for large scale land cover change studies so time 

need not be invested in selecting training sites for the classification algorithm, a job that can 

be both time and labour intensive.  Although more time is typically required to train the 

classifiers, supervised techniques incorporate knowledge of known land cover types on the 

ground and have the ability to enhance the classification with added knowledge of the study 

area (Jensen, 2005).  Land cover information that is accurate and up to date is ideal for land 

resource planning, studies of environmental change and conservation efforts (Foody and 
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Mathur, 2004).  Foody and Mathur (2004), state that the only feasible source of information 

on land cover over large areas is remote sensing since it allows data to be acquired in a 

repeatable manner. 

 

2.3.3 Land Cover Mapping on the Niagara Escarpment using Remote Sensing 

Remote sensing for land cover management on the Niagara Escarpment is a relatively new 

concept.  Two prior studies have been conducted in cooperation with one another to provide 

land cover change information across the entire Plan area.  Each study examined different 

portions of the Plan area, one in the northern section and one in the southern section.  The 

analysis of the southern portion of the escarpment was undertaken by Geomatics 

International Inc.  The supplemental northern study was conducted by a group of students 

from Sir Sandford Fleming College.  Fourteen classes were established and land cover was 

identified in the Plan area by using unsupervised classification of the images (Cowell, 1997; 

Lusted et al., 1997).  Both studies compared a 1975/1976 Landsat Multispectral Scanner 

(MSS) image with a 1995/1996 Landsat Thematic Mapper (TM) image to determine the 

change over a 20 year time period in the Plan area (Cowell, 1997; Lusted et al., 1997).  

Unsupervised classification was used in this study to distinguish between a proposed 14 

different land cover types in the study regions (Cowell, 1997; Lusted et al., 1997).  

Unsupervised classification is considered a basic form of classification in the field of remote 

sensing, as it requires no prior knowledge of the study area on the part of the analyst.  Pixels 

are grouped based on spectral characteristics according to a predetermined statistical criteria 

(Jensen, 2005).  This can be problematic since some classes are spectrally very similar such 

as agricultural classes and the deciduous forest class as was found in the Northern study 

(Lusted et al., 1997).  Also the change in sensors from the 1975/1976 MSS images and the 

1995/1996 TM images can introduce error into the classification as well, since MSS imagery 

is available at an 80 m resolution and TM data are available at a 30 m resolution.  The 

discrepancy in resolution caused some classes (such as transportation) to be undetectable, 

especially in the older images and the change in resolution also forced the authors to 
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acknowledge a probable reduction in the overall accuracy of the land cover change statistics 

stated in the final reports (Cowell et al., 1997).  To try and alleviate these potential problems, 

ancillary GIS data were used to identify known land cover types, such as roads, quarries and 

recreational areas, in the final classified images.  A major drawback to these studies was that 

no quantitative accuracy assessment was performed on the final classified images.  An error 

matrix should have been produced for each study with overall, user and producer accuracies 

stated, so the end user will know the accuracy of the information being presented. 

 

2.3.4 Change Detection 

Digital change detection using satellite remote sensing data is an effective way to monitor 

some environmental changes (Howarth and Wickware, 1981).  Where land cover changes 

occur over large geographic areas, monitoring landscape changes over the long term can be 

made easy through the use of remotely sensed data for change detection (Howarth and 

Wickware, 1981).  Change detection is one of the most popular applications of remote 

sensing data (Singh, 1989), and there are many ways to perform change detection on 

remotely sensed data or on classification maps produced by remote sensing data (Naumann 

and Siegmund, 2004).  

 

There are many different change detection techniques outlined in various works (Singh, 

1989; Mas, 1999; Civco et al., 2002; Coppin et al., 2004; Lu et al., 2004; Jensen, 2005).  

Naumann and Siegmund (2004) place change detection techniques into two categories:  One 

based on unclassified remotely sensed data and one based on classified multi-date images.  

Change detection that is based on more than one classified image is called post-classification 

comparison.  There are several advantages to this approach: it has been widely used, it 

minimizes atmospheric, sensor and environmental differences when using multiple images 

and it provides a complete matrix of land cover change (Lu et al., 2004; Naumann and 

Siegmund, 2004).  However, change detection results derived from this method are only as 

accurate as the individual classification maps themselves (Civco et al., 2002). 
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Since there are many change detection techniques, comparative analysis is undertaken by 

many in an attempt to identify the best change detection method for a particular dataset.  In 

Civco et al. (2002), six different change detection techniques were tested using Landsat TM 

and Landsat ETM data.  Their objective was to compare the results of each change detection 

method both qualitatively and quantitatively (Civco et al., 2002).  For the execution of the 

traditional post-classification method, an unsupervised ISODATA classification was 

performed on the imagery from March and September 1989 (Civco et al., 2002).  A process 

known as ―cluster busting‖ was used to generate seventy-five different clusters and separate 

them into nine land cover classes or an unknown class if the clusters could not be identified 

(Civco et al., 2002).  This is an iterative approach to classification that was run for three 

iterations on the remaining unknown clusters from each step until all were classified (Civco 

et al., 2002).  They concluded that no one approach was better than the other.  Alternatively, 

in a similar study conducted by Mas (1999), the conclusion was reached that post-

classification comparison technique was the most accurate procedure when compared to five 

other change detection techniques.  Two Landsat MSS scenes were used and classified into 

ten land cover classes using the MLC.  The author attributed the high change detection 

accuracy to the high accuracy of each individual classification, which improved when 

spectrally similar classes were grouped together.  Howarth and Wickware (1981) state that 

although post classification comparison is simple in nature, it is an intricate task that must 

take into account limitations and accuracy values in every step of the change process.  



 

37 

Chapter 3 

Geographical Context and Data 

3.1 Study Area 

The Niagara Escarpment in southern Ontario is a thin ridge of gently sloping sedimentary 

rock that runs from Tobermory in the north to Niagara Falls in the south (Niagara 

Escarpment Commission, 2008b).  To conduct this research a study area was chosen so the 

various types of land cover along the Escarpment would be represented.  The study area 

selected was the NEP portion of the Regional Municipality of Hamilton and the Regional 

Municipality of Halton.  A cartographic representation of the study area can be seen in Figure 

3.1.  The study area encompasses a portion of the southern extent of the Plan area and is 

1,840.9 km
2
 in size.  It begins in the Regional Municipality of Halton, at the intersection of 

Winston Churchill boulevard and the 32
nd

 side road in the north (near Terra Cotta, Ontario) 

and ends in the Regional Municipality of Hamilton at the City of Hamilton and Regional 

Municipality of Niagara municipal boundary (near Winona, Ontario).  This area was selected 

so the study would be conducted at a regional scale.  An attempt was made to select two 

areas on the Escarpment representative of a ―rural‖ region and of an ―urban‖ region within 

the NEP boundaries.  In each region, there are many different pressures being placed on the 

Escarpment. 

 

The portion of the Plan in Halton Region is characterized as a largely rural landscape, 

consisting of mostly agricultural and forested land.  This area contains 51.12% of the NEP’s 

Mineral Resource Extraction areas (MREAs) (Niagara Escarpment Commission, 2007a).  

South of the Halton Region portion of the NEP is the Hamilton portion of the Plan.  This area 

is characterized as heavily urbanized as it contains the largest percentage of the urban land 

use designation in the NEP at 66.06% (Niagara Escarpment Commission, 2007a).  Aside 

from the urban land cover, a large forested corridor has been maintained along the 

Escarpment length with some continuous natural areas located inside the urban area 

designation boundaries.  Even with the lowest percentage of rural land use designation, 
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agricultural practices exist west of the city centre and also east of the city along the south 

shore of Lake Ontario heading toward the Regional Municipality of Niagara.  In an urban 

context most land cover issues begin with a growth in population, as new demands are placed 

 

Figure 3.1 Niagara Escarpment Study Area (Regional Municipalities of 

Hamilton and Halton) 
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on the landscape.  It was estimated by Borodczak (1995) that more than 7 million people live 

within 100 kilometers of the Escarpment.  Today this number has increased and in many 

ways the preservation of the Escarpment has made it attractive for development (Barnett et 

al., 2004).  The Escarpment environment draws new homeowners to the area, with its scenic 

views, rural draw and recreation potential as well as organizations wishing to exploit the 

Escarpment for its natural resources.  The southern portion of the Escarpment is cause for 

concern with its rapidly expanding urban areas.  This area contains the rapidly growing urban 

centres of St. Catherines, Hamilton and Burlington.  These three cities are all located in the 

GGH that extends along the western end of Lake Ontario (Martel and Caron-Malenfant, 

2007).  New areas for concern within proximity to the Escarpment study area are Milton and 

Halton Hills, as these two towns have experienced rapid population growth since 2001 

(Martel and Caron-Malenfant, 2007).  An increase in urban lands in close proximity/within 

NEP boundaries has given rise to increases in demand for lot creation in the countryside as 

well as for more mineral resource extraction to supply the demand for aggregate resources, as 

the demand for building supplies increases with southern Ontario’s ever-growing 

infrastructure (Borodczak, 1995).  The increase in urban and rural developments in the NEP 

area can be cause for a decrease in agricultural land and forested areas outside of the 

immediate urban centre.  There is a need to examine these land cover changes consistently 

over space and time, so adequate protection measures can be continued into the future. 

 

3.2 Data Resolution Considerations 

An important step in any land cover change analysis is the selection of the appropriate scale 

of the study area, and with this, the selection of appropriate data to conduct the study at an 

adequate resolution.  For a remote sensing based land cover change study, this includes 

consideration of various scales such as spatial, spectral/radiometric and temporal resolutions 

of the data (Jensen, 2005).   
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3.2.1 Spatial Resolution 

The spatial resolution of data used in land cover classification is an important consideration, 

as it dictates the size of features that can be detected in the image (Jensen, 2000).  

Subsequently, the spatial resolution of the data is also an important consideration for change 

detection since comparisons are best between sensors with the same instantaneous-field-of-

view (IFOV) and georeferenced to ≤ 0.5 of a pixel (Jensen, 2005).  In remote sensing terms, 

spatial resolution refers to the IFOV or the area in metres that is captured by the sensor 

(Jensen, 2000).   For example, Landsat 5 TM multispectral images are created as scan lines 

move across the landscape in a ―whiskbroom‖ (across-track) fashion, using oscillating 

mirrors to measure energy below the aircraft in an arc ranging from 90º to 120º (Lillesand, et 

al., 2004).  At a particular moment in time the IFOV’s ―ground resolution cell‖ is a view of 

one section of the ground, and relays the energy emitted from the ground back to the sensor 

(Lillesand et al., 2004).  This represents the spectral signature from that particular ―pixel‖ in 

the image.  Typically for medium resolution sensors one pixel can contain a combination of 

land cover classes and is known as a mixed pixel (Lillesand et al., 2004).  Spatial resolution 

of an image can be calculated by using Equation 3.1 and is often represented in metres. 

 

 
 (3.1) 

Where: 

D = Detector size 

 = Flying height above the earth 

 Focal length of the scanner 

(Townshend et al., 1988)  

 

Landsat 5 TM imagery has a 30m×30m resolution for bands 1-5 and band 7 (visible to mid-

infrared) and a 120m×120m resolution for band 6 (thermal band) (Richards and Jia, 2006).  

Landsat imagery is referred to as medium resolution due to its spatial resolution in 

comparison to other types of sensors.  Very high spatial resolution imagery such as IKONOS 
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has a spatial resolution of 4m×4m multispectral (1m×1m panchromatic), whereas very low 

spatial resolution imagery such as NOAA (National Oceanic and Atmospheric 

Administration) AVHRR has a spatial resolution of 1.1km (Richards and Jia, 2006).  The 

selection of medium resolution imagery for land cover change analysis on the Niagara 

Escarpment is ideal since the NEP is a regional land use plan; one of the first large scale land 

use plans in Canada (Niagara Escarpment Commission, 2008b).  At a regional scale, the land 

cover classes that would be detectable with medium resolution Landsat 5 TM data coincide 

with land cover types one would expect to find in each land use designation outlined in the 

NEP. 

 

3.2.2 Temporal Resolution 

Temporal resolution of the sensor and the temporal scale of the study are important 

considerations for land cover change detection (Jensen, 2000).  Temporal resolution refers to 

the frequency that a sensor captures an image on the earth’s surface at a particular geographic 

location.  This can have much to do with what sensor an analyst would choose to conduct 

research.  Taking the example of the sensor chosen for this research (Landsat 5 TM), an 

image is captured at approximately the same time every 16 days (Townshend et al., 1988).  

Knowing the temporal resolution of the sensor being used in the research can provide much 

information to the analyst.  For example, when examining agricultural crops, variations in 

growing seasons for different crops occur in different geographic locations (Jensen, 2000).  

Having knowledge of the growing season for a particular crop can aid the researcher in 

choosing the appropriate image dates for analysis (Jensen, 2000). 

 

For the temporal scale of the study, the researcher must identify specific anniversary dates 

that would adequately capture the changes on the ground for a specific case.  For the case of 

the Niagara Escarpment, the Ontario Cabinet approved the final NEP in 1985 (Borodczak, 

1995).  Prior to the inception of the plan, development control measures were in place, but 

for the purposes of this research, only changes within the current Plan boundaries/Plan 
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designations were examined.  The images used in this study cover a 20 year time period 

beginning in 1986 and ending in 2006, so as to cover the majority of the lifespan of the NEP.  

A 1996 image was also used so change over two ten year periods could be examined.  The 

images selected for the study were acquired in the summer months, as close to the same time 

period each year as possible.  Each of the three images was captured between 3:00 and 4:00 

GMT, which eliminates diurnal sun angle effects (Jensen, 2005). 

 

3.2.3 Spectral/Radiometric Resolution  

The spectral resolution of a sensor refers to the sensitivity of an instrument to capture image 

objects on the earth’s surface (Jensen, 2000).  This can mean two things: it defines the 

number of distinct signal levels, and it describes the number of bands and the total energy 

each band captures (Schowengerdt, 2007).  Landsat 5 TM data records data in 8-bits, which 

means in each image we can view digital numbers (DNs) from 0-255 (Jensen, 2000).  This is 

an improved radiometric resolution from the old MSS carried aboard the Landsat 1-5 

missions, which recorded data in 6-bits (images contained DN values from 0-63) (Richards 

and  Jia, 2006).  Landsat 5 TM imagery is multispectral, which means it collects reflected, 

emitted or back-scattered energy form an area of interest on the ground in multiple bands of 

the electromagnetic spectrum (Jensen, 2000).  A description of the Landsat 5 TM sensor 

characteristics is discussed in the following section. 

 

3.3 Data 

Remote Sensing Imagery 

Townshend (1984) states that the accuracy of land cover maps produced with multispectral 

imagery are dependent upon the resolution of that imagery.  Medium spatial resolution 

imagery is ideal for conducting land cover analysis over a regional scale (Vogelmann et al., 

1998).  Using higher resolution imagery would be useful for detecting small scale land cover 

types such as urban areas, but purchasing this imagery would be costly and data processing 
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would take more time, since multiple images would be required.  The spectral resolutions 

should suit the analysis and adequately distinguish the types of land cover to be mapped.  

Spectral bands sensed by the TM sensor are matched closely to the spectral responses of 

vegetation and other surface materials (Townshend et al., 1988).  This is outlined in Table 

3.1.  The TM sensor provides a consistent temporal resolution, which is ideal for examining 

land cover changes over time. 

 

The Landsat 5 TM sensor captures images at medium resolution and provides information in 

7 multispectral bands (Ustin and Costick, 2000).  Landsat 5 TM data were chosen for this 

regional land cover study, since the spectral, spatial and temporal resolutions of the TM 

sensor were ideal for conducting land cover change across Hamilton and Halton Regions. 

Table 3.1 Characteristics of the Landsat 5 Thematic Mapper (TM) 

Spectral 

Bands 

Wavelength (µm) IFOV Dynamic 

Range 

(bits) 

Applications 

1 0.45-0.52 (blue) 30m×30m 8 Separates deciduous/coniferous forests 

2 0.52-0.60 (green) 30m×30m 8 Aids in detection of green healthy vegetation 

through chlorophyll reflection 

3 0.63-0.69 (red) 30m×30m 8 Aids in detection of green healthy vegetation 

through chlorophyll absorption 

4 0.79-0.90 (near IR) 30m×30m 8 Identification of vegetation through reflection 

from the mesophyll layer; also detects water 

bodies 

5 1.55-1.75 (mid IR) 30m×30m 8 Detects soil moisture 

6 10.4-12.5 (thermal) 120m×120m 8 Senses heat/longwave radiation from the 

earth 

7 2.08-2.35 (mid IR) 30m×30m 8 Similar to band 5; detects moisture and useful 

for geological mapping as it discriminates 

between rock type 

(Townshend et al., 1988; Richards and Jia, 2006) 

 

The data used in this study were acquired by the Landsat 5 mission that was launched March 

1st, 1984 and continues today (Richards and Jia, 2006).  Landsat 5 has two imaging 

instruments on board, the MSS and the TM, although the TM sensor is much improved in 
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terms of its resolution (spatial, temporal and spectral) in comparison to the MSS (Townshend 

et al., 1988; Richards and Jia, 2006).  Landsat 5 TM has a near polar, sun synchronous orbit, 

and moves along the sky in a similar path as the sun (Richards and Jia, 2006).  It has a 9:30 

a.m. local equatorial crossing daily, and captures information from the same place on the 

earth’s surface at approximately the same time each day (Richards and Jia, 2006).  It moves 

around the earth at an altitude of 705km and completes 14.56 orbits per day over a 16 day 

period which means it takes 16 full days to gain ―full‖ earth coverage (Richards and Jia, 

2006).  As mentioned previously, the Landsat 5 TM has a ―whiskbroom‖ scanner that moves 

across the earth in a forward motion and contains a scan mirror that moves back and forth 

across the landscape along scan lines, collecting radiation from the earth’s surface and 

generates an electrical signal which represents the amount of radiation reflected or emitted 

from the particular IFOV at a particular time (Townshend et al., 1988). The multispectral 

characteristics of the TM sensor can be seen in Table 3.1.  The Landsat imagery was 

provided to the University of Waterloo’s Mapping and Design office by the Grand River 

Conservation Authority (GRCA).  To conduct this analysis, three Landsat scenes, from 1986, 

1996 and 2006 were selected and are described in Table 3.2. 

Table 3.2 Landsat 5 Thematic Mapper (TM) Scenes Used for Land Cover Change Analysis  

 Satellite Instrument Pixel Size or IFOV (m) Date Path Row 

1986 image Landsat 5 TM 30x30 (re-sampled to 25m) June 03, 1986 18 30 

1996 image Landsat 5 TM 30x30 (re-sampled to 25m) May 29, 1996 18 30 

2006 image Landsat 5 TM 30x30 (re-sampled to 25m) August 13, 2006 18 30 

(USGS, 2008) 

 

Supplementary Data Sets 

Orthoimages 

High resolution orthoimagery of the study area was obtained from the University of Waterloo 

Map Library to aid in the training of the supervised classification.  Greater Toronto Area 

(GTA) orthoimagery from 2005 and Hamilton orthoimagery from 1995 were used as 

supplementary data in the creation of training sites for the 2006 and 1996 Landsat image 
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respectively.  The high resolution of the orthoimages provided adequate ―ground truth‖ 

information and thus, field verification of the classification maps was considered 

unnecessary.  The resolution of the 2005 GTA orthoimagery is 20cm and the images are full-

colour and cover the entire study area (Morgan, 2007).  The images were flown in April 2005 

and provided by First Base Solutions (Morgan, 2007).  They were projected in UTM 

coordinates, North American Datum (NAD) 1983 and are in MrSID data format with 

accompanying SDW world files (Morgan, 2007).  The resolution of the 1995 GTA 

orthoimagery is 1m and these images are also full colour (Morgan, 2006).  They cover all of 

the Hamilton study area and a portion of the Halton study region.  The images were provided 

by the Triathlon Mapping Corporation in Burnaby, British Columbia (Morgan, 2006).  They 

were provided in UTM coordinates, NAD 1927 (and re-projected into NAD 1983) and were 

compressed from .TIFF files to be made available as MrSID image files (Morgan, 2006).  

Since there was no available orthoimagery to act as reference information for the 1986 

imagery, another Landsat image from 1985 was used as reference information when needed.  

This image was captured on August 3, 1985 and has the same parameters as the three images 

used in the study as stated above in Tables 3.1 and 3.2. 

 

 GIS Dataset 

Shapefiles representing the NEP area were obtained from the NEC.  The outer boundary of 

the Plan and Plan designation boundaries were used to create classification masks to exclude 

areas outside of the Plan from the analysis.  All shapefiles provided by the NEC were created 

at a 1:50,000 scale, and therefore all subsequent maps created with these shapefiles should 

only be analyzed at this scale and at smaller scales than 1:50,000.  NEP boundaries are 

approximate and subject to change through plan amendments and site level boundary 

interpretations, but for the purpose of this research current NEP boundaries were used.  These 

data sets along with datasets obtained by the National Topographic Database (NTDB) and 

the MNR were also used for mapping purposes and were obtained from the University Map 

Library free of cost.  The NTDB data, which represents the entire set of information one 
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would see on a topographic map in shapefile format, were downloaded from the Geogratis 

website (www.geogratis.ca).  National Topographic Series (NTS) tiles obtained from the site 

were 30M04, 30M05, 30M12, 40P01, 40P08 and 40P09, and covered the entire study area.  

MNR datasets were used for reference only and included information such as old land cover 

map data as well as forestry data.  

http://www.geogratis.ca/
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Chapter 4 

Methodology 

4.1 Data Pre-processing 

Before analysis of the data can take place, each image must be pre-processed individually to 

reduce any geometric or atmospheric (radiometric) errors that may affect the classification.  

Pre-processing is an important step in change detection.  If corrections are not performed, 

subtle differences in spatial or spectral reflectance could decrease the accuracy of the 

classification, especially when examining change in a multi-temporal data set (Jensen, 2005).  

For each of the three images, geometric correction was performed by the GRCA prior to 

delivery of the data to the University of Waterloo.  Since the images were provided by the 

GRCA it is assumed that the images were operational within the organization and were 

corrected to the highest accuracy possible.  Atmospheric correction was not performed at the 

GRCA, so it was performed on each of the images using PCI Geomatica’s ATCOR2 module 

upon acquisition for this study. 

 

Atmospheric correction is performed to remove absorption and scattering of electromagnetic 

radiation (which can cause haze) in the earth’s atmosphere to reveal pure surface reflectance 

values (PCI Geomatics, 2005).  To perform atmospheric correction, PCI Geomatica’s 

ATCOR2 module was used.  This module is typically used for flat terrain whereas the 

ATCOR3 module is used for correcting imagery over rugged terrain.  This module allows the 

user to incorporate a DEM so the terrain of the area may be represented in the atmospheric 

correction.   Based on the study area location over the Niagara Escarpment, the ATCOR3 

module would be the preferred module to perform the correction, but since the University of 

Waterloo does not have access to this module, the ATCOR2 model was used with an 

assumed average height of 269.01 m above sea level (asl) over the Hamilton and Halton 

portions of the Plan.  This value was calculated by determining the average value of contours 

in the study area. 
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When performing atmospheric correction, there are several parameters which must be 

entered according to the image location and atmospheric conditions.  For each of the three 

subset images the average height was entered as 269.01 m.  The sensor type, Landsat 5 TM 

must be entered and the band setup performed.  As mentioned in the previous chapter, the 

TM sensor has seven spectral bands: six 30 m reflective bands and one 120 m thermal band.  

The thermal band (band 6) was excluded from the correction and subsequent classification of 

each image since it consists of a larger resolution than the other 6 TM bands.  The images 

provided to the University by the GRCA were re-sampled to a resolution of 25m and this 

value is input along with the date each image was captured.  Next, a calibration file was 

selected.  For this correction, a revised Landsat 5 TM radiometric calibration file from 

Chander et al. (2007) was used.  The radiance unit of each band in the calibration file is in 

. 

Table 4.1 Gain and Bias Values for the Selected Calibration File  

Date of 

Imagery 

June 3, 1986 & 

May 29, 1996 

August 13, 2006 

Band Gain Bias Gain Bias 

 1 0.602431 -1.52 0.762824 -1.52 

2 1.175100 -2.84 1.442510 -2.84 

3 0.805765 -1.17 1.039880 -1.17 

4 0.814549 -1.51 0.872588 -1.51 

5 0.108078 -0.37 0.119882 -0.37 

7 0.056980 -0.15 0.065294 -0.15 

(Chander et al., 2007) 

 

One set of gain and bias re-scale values is used for the two older images (1986/1996) and one 

set of gain and bias re-scale values is used for the new 2006 image.  To convert DNs in an 

image to radiance (Lλ) rescaled gain and bias values are calculated using Equation 4.1. 
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 (4.1) 

 

Where: 

LMAXλ = Spectral radiance (scaled to the minimum DN value in the image between 0 and 

255) [W/ (cm2.sr.µm)] 

LMINλ = Spectral radiance (scaled to the maximum DN value in the image between 0 and 

255) [W/ (cm2.sr.µm)] 

(Chander et al., 2007)) 

 

The result of the atmospheric correction is scaled surface reflectance with DN values ranging 

from 0 to 255 (PCI Geomatics, 2005).  These final scaled surface reflectance values are 

calculated using the following equation: 

  (4.2) 

Where: 

 = Spectral radiance collected at the sensor (for this research is rescaled to DN values) 

Gainrescale = Detector Gain rescaled 

Biasrescale = Detector bias or background response rescaled 

(Chander et al., 2007))  

 

As a sensor ages the gain and bias values change slightly and therefore the calibration file 

must be updated to reflect these changes (Chander et al., 2007).  A number of required 

atmospheric parameters for the geographic area of interest are added into the ATCOR2 

module to assist in the correction.  Table 4.2 summarizes the various parameters entered into 

the ATCOR2 module for all three images.  All three images had 0% cloud cover and 

therefore no mask was created to exclude cloud or haze.  The ATCOR module was run with 

constant conditions.  Once radiometric (atmospheric) and geometric corrections were 

completed, classifications took place. 
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Table 4.2 Parameters Entered for Atmospheric (Radiometric) Correction 

Images 

Parameters June 3, 1986 May 29, 1996 August 13, 

2006 

Explanation 

Sensor Type Landsat 5 

Thematic 

Mapper (TM) 

Landsat 5 

Thematic 

Mapper (TM) 

Landsat 5 

Thematic 

Mapper (TM) 

 

Pixel Size 25 metres 25 metres 25 metres Re-sampled resolution 

Atmospheric 

Definition Area 

Urban Urban Urban Proximity to large urban centres 

(Hamilton and Burlington) 

Condition Mid-Latitude 

Summer 

Mid-Latitude 

Summer 

Mid-Latitude 

Summer 

Atmosphere that has a total water 

vapour content of 2.92 (g cm-2) 

Thermal 

Atmospheric 

Definition 

Mid-Latitude 

Summer 

Mid-Latitude 

Summer 

Mid-Latitude 

Summer 

Same as above 

Solar zenith 31.06 33.21 34.49 Calculated using the local date and 

time of image capture as well as the 

central latitude and longitude value of 

the study region 

Solar azimuth 123.92 120.87 139.96 Same as above 

Visibility 23.4 km 22.7 km 24.1 km Acquired from historical weather data 

Adjacency 5 km 5 km 5 km Calculated to maximum effect (200 

pixels×0.025 km)  

Offset to surface 

temperature 

0.0 degrees 

Kelvin 

0.0 degrees 

Kelvin 

0.0 degrees 

Kelvin 

Default value 

 

 

4.2 Classification Algorithm Descriptions 

To conduct meaningful change analysis, a key objective of the research was to create the 

most accurate land cover maps as possible for each time period.  The selection of appropriate 

classification algorithms is an important consideration for land cover mapping using satellite 

remote sensing (Jensen, 2005).  Classification algorithms range in logic, from supervised to 

unsupervised; parametric to non-parametric to non-metric (Keuchel et al., 2003; Jensen, 

2005).  Throughout the literature, various methods have been chosen for a wide range of 

studies over time, and for this research, a decision was made to test a set consisting of 

supervised parametric and non-parametric algorithms common throughout land cover 
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mapping applications to examine which would yield the best results for the Niagara 

Escarpment scenario. 

 

Chosen for this study was a set of classifiers that would represent the wide range of 

classification algorithms used throughout the literature from traditional per-pixel classifiers, 

to more current methods.  All the classification algorithms selected were supervised 

classifications, so prior knowledge about the study area could be used for accurately selecting 

optimal training sites for each class.  Parametric and non-parametric examples were chosen 

for the study.  MLC, MD classifier and MDC were all tested.  All three are traditional per-

pixel methods and are parametric classifiers (Jensen, 2005).  Parametric classifiers make 

assumptions about the underlying probability density functions and under normal (Gaussian) 

distributions, calculate statistics needed to complete the classification such as mean and 

variance values (for mean vector and covariance matrix computation) (Keuchel et al., 2003; 

Jensen, 2005).  More recently developed classification methods such as object oriented 

classifications (parametric), and SVM (non-parametric), were also examined for the study.  

Object oriented classification is a special case of parametric classifier, as it uses image 

objects to calculate classification parameters and not individual pixels (Jensen, 2005).  This 

classifier, when paired with a supervised classification technique, considers not only the 

spectral information of the image, but the spatial as well (Jensen, 2005).  SVM’s are 

considered non-parametric classifiers since they divide training data into classes by 

identifying optimal boundaries between classes, thus disregarding any statistical distribution 

the training data may have (Keuchel et al., 2003).  All classifications were conducted using 

ENVI 4.5, as this program provides various supervised traditional per-pixel classification 

tools.  All the algorithms described above were used to identify which would yield the 

greatest classification results for all three images.  Each algorithm is statistically unique and 

can offer very different results. 
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4.2.1 Traditional Per-pixel Supervised Classifications 

All three traditional per-pixel classifiers (MLC, MD and MDC) used are distance classifiers 

that vary in their implementation.  The following section describes each of the three 

classifiers tested for the creation of the final classification maps and discusses the differences 

between them. 

 

Minimum Distance (MD) Classifier 

The MD classifier calculates the MD of each unknown pixel to the nearest mean vector from 

the training data (Jensen, 2005).  In this algorithm, the mean DN values for each training set 

and for each class are calculated.  It then takes each pixel in the image and classifies it based 

on its distance to the nearest class mean vector.  The algorithm provided in ENVI 4.5 uses a 

Euclidean distance measurement from each unclassified pixel to the mean vector of each 

class, and then, the unknown pixel is assigned to the class whose mean vector is the shortest 

Euclidean distance from the unknown pixel (ITT Visual Information Solutions, 2008c).  The 

Euclidean distance is calculated based on the Pythagorean Theorem and is calculated using 

Equation 4.3 and is demonstrated in Figure 4.1. 

 

 (4.3) 

Where: 

k = the number of bands used in the classification 

x and y = two unknown pixels used in calculating distance from the unknowns to the mean 

vector. 

(Jensen, 2005) 
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(Adapted from Jensen, 2005: 373) 

Figure 4.1 Graphic Representation of 

Euclidean Distance Parameters for the 

Minimum Distance (MD) Classifier  

 

Maximum Likelihood Classification (MLC) 

The MLC is the most widely used classification algorithm (Jensen, 2005).    The MLC is 

based on probability, and classifies an image based on the probability of an unclassified pixel 

in the image belonging to one of n classes identified by the analyst (through the selection of 

training classes) and then each unclassified pixel in the image is assigned to the class for 

which the probability value is highest (Jensen, 2005).  The MLC algorithm assumes that the 

training data collected by the analyst are normally distributed.  This means that if a frequency 

distribution representing each class in each band was created the results would resemble a 

normal (Gaussian) distribution.  Instead of creating frequency distribution graphs for each 

class in each band, the MLC algorithm assumes normality for all the training classes and 

approximates the normal curve for all cases.  This reduces processing time and the amount of 

stored data.  This approximation of the normal curve for each class in each band allows for 

the calculation of mean and variance values.  The mean and variance values are used to 

calculate the probability density functions for each class.  An example of probability density 

functions can be seen in the Figure 4.2 below taken from Lillesand et al. (2005). 
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(Lillesand et al., 2004: 560) 

Figure 4.2 Probability Density Functions  

 

In this particular example the vertical axis represent the probability density function values 

for each class.  The diagram is also a bivariate example since the x and y axes are represented 

by the DN values of bands 3 and 4 respectively.  In this study, 6 bands are used so the 

computations required for this research would exemplify a multinomial case and so that the 

full spectral range of the sensor could be used for a variety of land cover classes.  Also in this 

study, MLC is performed without any prior probability knowledge of the classes for the 

Landsat 5 TM scene.  In some cases, an analyst may know what proportion of land cover 

classes make up the image prior to classification.  If no a priori information is available, an 

assumption is made that each class has an equal probability of occurring in the landscape.  

Under this assumption, the probability density function is calculated by the following: 

 

An unclassified pixel is in class i if, and only if for all i and j out of 1,2, …n possible 

classes. 
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In the case of this research 7 classes are identified to create the land cover maps.  The 

probability density function for each class is calculated using Equation 4.4. 

 
 (4.4) 

Where: 

 = the mean for class i 

 = the covariance matrix of class i for all 1,2,…k bands 

(Jensen, 2005) 

 

Therefore, to assign an unclassified pixel to a particular class, the MLC decision rule 

computes the  for each class and then assigns the unknown pixel to the class for which the 

probability value is the highest (Jensen, 2005).  Computationally, each unclassified pixel has 

a measurement vector X computed for it.  To create this measurement vector the mean vector 

(value) ( ) and covariance matrix ( ) are calculated for each combination of classes in each 

band being used in the analysis.  An example of the measurement vector between two classes 

for each band being used from the Landsat 5 TM scene can be seen below: 

 

X =  (4.5) 

 

Where: 

BV = brightness value of the unclassified pixel 

i and j = two different classes 

1,2,…,k = image bands from Landsat 5 TM 

(Jensen, 2005) 
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This matrix, calculated for all possible class combinations for each band, calculates the 

probability of an unclassified pixel belonging to each class and then assigns the pixel to the 

class with the highest probability value.  In the event that the probability density functions of 

two or more training classes overlap in feature space (which often occurs), the unclassified 

pixel is assigned to the class with the highest probability density value (Jensen, 2005). 

 

Mahalanobis Distance Classifier (MDC) 

The MDC is similar in nature to the MLC with a few assumptions (Richards & Jia, 2006).  In 

fact, the calculation of mahalanobis distance is used in determining maximum likelihood.  

The major assumption made when calculating MDC is that all class covariance’s are equal 

(i.e. ) (Richards & Jia, 2006).  This means that there is an average variance (σ) 

assumed for each class across all n bands (in the case of this research, 6 bands), as opposed to 

the MLC, which examines the variance of all classes across all bands individually.  

Therefore, the MDC still retains a degree of direction sensitivity, only it is based on the 

assumption that all the covariance matrices are equal (Richards & Jia, 2006).  The following 

equation defines the squared mahalanobis distance: 

  (4.6) 

Where: 

= the sample variance-covariance matrix 

x = the sample value (pixel vector) 

= the sample mean value (mean vector) 

(Richards and Jia, 2006) 

 

The superscript t indicates the transpose of the vector.  The equation above represents the 

squared mahalanobis distance; the true mahalanobis distance is the square root of the above 

equation (Richards and Jia, 2006).  The MDC is a simple measure of distance from an 

unknown pixel to the mean of each class divided by the variance of that class.  The unknown 

pixel is assigned to the class that yields the shortest distance.  Since all three algorithms used 
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in this study are distance measures, each classification algorithm is related to one another.  

The MDC helps make up the MLC and the MDC can also be reduced to form the MD 

classifier. 

 

4.2.2 Recent Supervised Classification Methods 

Support Vector Machine (SVM) 

SVM is a non-parametric classifier that separates image data by identifying boundaries in 

feature space (Keuchel et al., 2003).  Classes are not differentiated by statistical means as in 

the distance classifiers described above, but by geometric criteria (Fauvel et al., 2006).  

Developed by Vapnik and colleagues in the 1990’s, it was used in a remote sensing context 

early on by Gualtieri and Cromp in 1998 (Pal and Mather, 2003).  For a simple example, an 

assumption is made that two classes are spectrally separable in feature space (Brown et al., 

1999).  If a line were to be drawn in feature space to separate these two classes, it should 

maximize the space between two classes identifying a central hyperplane (Pal and Mather, 

2005).  The identification of the hyperplane is achieved by measuring the central distance 

between the closest points of each of the two classes.  These points are known as support 

vectors (Pal and Mather, 2005).   A SVM in its simplest form (a binary example in a two 

dimensional feature space) can be seen below in Figure 4.3. 

 

An assumption is made that N training samples exist in the feature space with corresponding 

labels yi = +1 or yj = -1 respectively (Fauvel et al., 2006).  To define the optimal hyperplane, 

w represents the vector normal to the hyperplane and b represents the bias so the hyperplane 

is defined as: 

  (4.7) 
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Where: 

x = a point lying on the hyperplane 

w = is normal to the hyperplane 

b = bias 

 = the perpendicular distance from the hyperplane to the origin with  the Euclidean 

norm of w.  

(Foody and Mathur, 2004) 

 

 

(Adapted from Fauvel et al., 2006) 

Figure 4.3  Example of a Non-Linearly Separable Case by SVM 

 

For any training pixel x, the distance from the hyperplane can be calculated by: 

  (4.8) 
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For a training pixel x to be classified to either class, it must satisfy one of the two following 

conditions: 

 or 

 

 

Linearly separable data are ideal but rarely occur in a real world data set.  For data that are 

non-linearly separable, slack variables ξ are introduced so misclassified pixels may be moved 

in feature space back to their original class (Fauvel et al., 2006).  Therefore the conditions 

above become: 

 or 

 

 

Final optimization of the margin is defined as: 

 
 (4.9) 

Where the C represents the penalty parameter (Fauvel et al., 2006).   

 

This penalty parameter is one entered by the analyst in ENVI 4.5, and it allows for some 

misclassifications to be permitted (ITT Visual Information Solutions, 2008b).  The larger the 

C value assigned, the higher the penalty for pixels that are misclassified (Pal and Mather, 

2003).  Previously a simple binary class was described, but for examining change in the NEP 

area a multiclass approach is needed and methods have been developed for dealing with 

multiclass situations for remote sensing. 
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ENVI 4.5 runs what Pal and Mather (2005) call a ―one against one‖ strategy for a multiclass 

classification scenario.  SVM was a binary classification in its initial form, but a multiclass 

classification problem can be broken down so that a combination of several binary 

classifications are examined, or essentially, each pair of classes are evaluated separately (Pal 

and Mather, 2005; ITT Visual Information Solutions, 2008b).  Pal and Mather (2005) among 

others determined that this particular strategy provided the best results when dealing with a 

multiclass scenario (Melgani and Bruzzone, 2004; Pal and Mather, 2005).  In fact Melgani 

and Bruzzone (2004) state that SVMs provide higher accuracies than traditional methods 

such as the MLC; a theory that was tested in this study for Niagara Escarpment land cover 

classification mapping (Melgani and Bruzzone, 2004) . 

 

Also in a remote sensing scenario, it is rare to create linearly separable sets of training 

classes, but through the use of kernels, non linear SVMs can be created (Fauvel et al., 2006).  

Kernel methods are a way to generalize remote sensing data by sorting and projecting data 

into a higher dimension (Fauvel et al., 2006).  There are different kernels to choose from and 

ENVI 4.5 provides 4 different types: linear, polynomial, sigmoid and radial basis function 

(RBF) (ITT Visual Solutions, 2008b).  For this study, RBF provided the best results and was 

the kernel chosen most often throughout the literature (Hermes et al., 1999; Pal and Mather, 

2003; Foody and Mathur, 2004; Fauvel et al., 2006).  The RBF kernel is defined by the 

following equation: 

  (4.10) 

 

In which the gamma γ parameter is entered by the analyst and controls the width of the 

kernel (Foody and Mathur, 2004).  To use the RBF kernel in ENVI, the gamma γ and C 

parameters must be chosen wisely so the SVM does not over fit the training data, commonly 

caused by using high values for the two parameters (Foody and Mathur, 2004).  Little 

information exists in the literature on how to identify these parameters; therefore a process of 
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trial and error is best for choosing optimal values for γ and C (Pal and Mather, 2005).  For 

the Niagara Escarpment land cover change scenario, a series of kernel types were tested and 

the RBF kernel was chosen.  Through a process of trial and error the values chosen for γ and 

C were 0.167 and 1000 respectively.  Through the trial and error process it was determined 

that the fluctuations of these values made little difference to the accuracy of the final results, 

but the RBF kernel outperformed the other kernel types when using the same parameters. 

 

Object Oriented Approach with Supervised Classification: Support Vector Machines 

(SVMs) 

An object oriented approach is one taken to examine a remotely sensed image based on 

individual objects, as opposed to classifying an image on a pixel by pixel basis in the 

algorithms described above.  Navulur (2007) defines an object in a remote sensing context as 

a group of pixels that possess similar spectral and spatial properties.  The object oriented 

approach is similar to the more traditional air photo interpretation methods since the human 

eye and brain identify objects naturally as opposed to pixels.  The object oriented approach 

has the ability to benefit from basic air photo interpretation methods while still taking 

advantage of more advanced remote sensing classification techniques.  ENVI Zoom 4.5 

offers a feature extraction tool with supervised classification to conduct object oriented 

analysis.  The feature extraction tool can alternatively be used to extract features from 

multispectral imagery based on spatial, spectral and texture characteristics (ITT Visual 

Solutions, 2008a). 

 

The feature extraction tool with supervised classification extracts features of interest and then 

performs a supervised classification based on the object and not the individual pixel.  When 

analyzing Landsat 5 TM imagery at a 30m resolution mixed pixels can cause problems when 

trying to identify certain types of land cover.  An object oriented approach can be beneficial 

where spectral variations from pixel to pixel can cause error in classifying certain land cover 

types such as urban areas or individual agricultural fields.  For example, due to moisture 
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variation in a field or health of the crop, an individual field can be misclassified into two 

separate agriculture classes.  This methodology will be examined to see if it can help improve 

upon the accuracy of each classification map for each time period. 

 

To conduct image segmentation in ENVI 4.5 there are four main steps that lead to the final 

classification of the image: segmentation, merging segments, colour space and band ratio 

settings and classification (ITT Visual Information Solutions, 2008a).  In the segmentation 

step, the image is divided into objects using the statistical values from the image (Blaschke, 

2004).  It is assumed that pixels with similar DN values are likely to represent the same 

image object (ITT Visual Information Solutions, 2008a).  ENVI 4.5 employs an edge-based 

methodology in which the gradients between the grey scale values of the pixels delineate the 

boundaries between objects (ITT Visual Information Solutions, 2008a).  The object oriented 

approach worked well with the agricultural classes since they are parcel based in nature 

(Dean and Smith, 2003).  Segmentation was achieved by using a sliding scale (0 to 100) to 

represent segmentation where a low scale value causes more segmentation to occur and a 

large scale value causes less segmentation to occur, proportional to the resolution of the 

imagery (ITT Visual Information Solutions, 2008a).  For this case, a segmentation value of 

90 was selected for the Landsat 5 TM data. 

 

During the merging step, over-segmentation can be corrected by once again using a sliding 

scale to define the merge value.  If over-segmentation is unavoidable in the segmentation 

step, merging works to aggregate smaller segments within larger homogeneous areas (ITT 

Visual Information Solutions, 2008a).  Over-segmentation can occur, because the smallest 

homogeneous areas (such as highways and urban areas) must be represented, and to 

accomplish this, other areas may become over-segmented.  The merging step can correct for 

this.  The optimal merge value in this case was 70.  Following the merge step the analyst can 

perform an optional thresholding of the object means that groups similar objects based on 

their region DN values, but this option was not used for the Hamilton and Halton regions 
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since it was determined that visually, the segmentation and merging adequately delineated 

the land cover features of interest (ITT Visual Information Solutions, 2008a). 

 

In the colour space and band ratio step, settings must be set according to the spectral 

information the analyst wishes to use in the classification.  Colour space is set by selecting 

three spectral bands to be entered into the red, green and blue colour guns, and subsequently 

used in the classification.  Band ratio settings allow the analyst to calculate a normalized 

band ratio by choosing two bands to be entered into the following equation: 

 
 (4.11) 

 

The eps represents a small number to avoid division by zero.  By selecting band 3 and 

tagging it as ―band 1‖ and selecting band 4 and tagging it as ―band 2‖ in the band ratio 

equation, an NDVI calculation was added to the classification, which aided in distinguishing 

healthy vegetation from other land cover types, and was employed in this research. 

 

In the final classification step a suitable classification algorithm is selected to create the 

classification map.  This is a detailed step in which the analyst must select training objects 

and indentify other contextual information that can be gained from the imagery to be used to 

aid in the classification process.  Defining training data post segmentation is an easier and 

less time consuming process than training individual pixels for pixel-based classification.  

Homogeneous regions were selected to represent certain land cover types.  After all the 

classes are represented adequately (typically, the more training areas the better) a selection of 

other contextual information (called attributes by ENVI 4.5) are selected to aid in the 

classification.  Attributes contribute spatial, spectral and textural information to the 

classification to enhance results.  These attributes must be chosen wisely as unnecessary 

attributes can introduce noise into the classification and possibly reduce accuracy (ITT 
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Visual Information Solutions, 2008a).  Spatial information can introduce size of objects into 

the classification (such as length and width of features), spectral information can examine 

min and max DN values among other values and texture offers a unique look at smoothness 

or roughness of a feature based on spatial variation of tones within the image (Blaschke, 

2004; ITT Visual Information Solutions, 2008a).  ENVI 4.5 offers a tool which automatically 

selects the optimal attributes to perform the classification.  After automatically selecting the 

attributes, a classification algorithm must be chosen.  ENVI 4.5 offers two: K-nearest 

neighbour and SVM.  For the purposes of this research, SVM was chosen so comparisons 

may be made between the traditional SVM classifier described above and the use of SVM 

with object oriented classification.  For the classification of the image object by SVM the 

RBF was selected.  Since again, the values of the γ and C parameters changed the results 

very little the default values of γ=0.02 and C=100 were used.   

 

Figure 4.4 Object Oriented Mapping Procedure 

 

4.2.3 Comparison Procedures 

After all 5 classifications were performed, comparisons of the accuracy assessments were 

conducted to select the classification maps with the highest overall accuracy to be used in the 

change detection.  Overall accuracy percentages were used as the final deciding factor as to 

which maps would be used in the change detection, but Kappa statistics, accuracy values for 

individual classes and user and producer accuracies were also considered in the selection.  

Jensen (2005) states that classification maps with high overall accuracy are essential for 

accurate change detection evaluation.  Any classification errors present in the final 
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classification maps would contribute to, and increase error in the final change detection 

analysis.  The consideration of these errors is especially important for land use planning 

applications, as accurate land cover maps and change detection can contribute much to the 

planning process. 

 

4.2.4 Training the Algorithms  

To create meaningful classification maps for decision making, one must consider several 

factors when deciding upon the adequate number and type of land cover classes.  Land cover 

classes refer to the types of material present on the ground at a specific place in time (Jensen, 

2005).  This is in contrast to land use classes which take into account human uses of those 

materials present on the ground.  Remote sensing methodologies are best suited for the 

former since examining changes in land use over time involves a multi-disciplinary 

approach, often including examination of socio-economic factors as a reason for the changes 

detected.  As an example, a land cover classification would identify agricultural areas on the 

landscape where a land use classification would identify various crops and rationalize the 

type of agriculture at work. 

  

The classification scheme must be selected to represent each type of land cover that occurs in 

the study region.  The classification scheme should be created so that the classes on the final 

map will be exhaustive of the land cover in the study area.  For this research, land cover 

classes were identified by determining what types of land cover one would expect to find 

within the NEP area based on each land use designation outlined in the plan.  An example of 

the thought process can be seen below in Table 4.3.  Through the analysis of each NEP land 

use designation, an original group of 12 classes were identified for the classification 

[coniferous forest, deciduous forest, agriculture 1 (dry, bare soil), agriculture 2 (vegetated 

agricultural fields), agriculture 3 (wet, bare soil) agriculture 4 (wet, vegetated agricultural 

fields), water, shallow water, recreation, other vegetation, MREA and urban]. 
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Table 4.3  Identification of Niagara Escarpment Plan (NEP) Land Cover Classes (Based on 

NEP Land Use Designations) 

Plan Designation Description Classes 

Escarpment 

Natural Area 

(ENA) 

-Escarpment features which are in a relatively 

natural state 

-Associated with relatively undisturbed stream 

valleys wetlands and forested areas 

-This designation contains the most significant 

scenic and natural areas along the escarpment 

Forests, Wetlands, Bedrock and 

Water features 

Escarpment 

Protection Area 

(EPA) 

-Protection areas are important for their scenic 

value and their environmental significance 

-This designation acts as a buffer to the ENA 

designation, as it often includes any development 

that has significantly altered the natural 

environment, such as agriculture or residential 

developments 

Agricultural land, 

Residential/urban 

developments, Forests, 

Recreation Areas, Bedrock, 

Wetlands, Water features 

Escarpment 

Rural Area 

(ERA) 

 

-The ERA designates areas with minor escarpment 

slopes and landforms, and is used as a buffer to 

more ecologically sensitive areas of the 

escarpment 

-These lands near the escarpment are necessary to 

provide for compatible rural land uses 

Agricultural land, 

Residential/urban 

developments, Forests, 

Recreation Areas, Bedrock, 

Wetlands, Water features, 

Roads 

Minor Urban 

Centre (MUC) 

-This designation consists of rural settlements in 

the Plan (villages or hamlets)  

Residential/urban development 

and Roads 

Urban Area -Urban areas within city boundaries Residential/urban development 

and Roads 

Escarpment 

Recreation Area  

-Parks, ski resorts, golf courses and areas of 

manicured grass etc. 

Golf courses, Ski resorts, Parks, 

Manicured grass areas 

Mineral 

Resource 

Extraction Area 

(MREA) 

-Existing Quarries (operational and non-

operational) 

Quarries 

Niagara Escarpment Plan (2005).  The designations are colour coded based on NEP map designation colours 

 

Initial classifications were run with all 12 classes but as the results emerged, decisions were 

made to merge some of the classes for results with higher accuracies.  Due to spatial and 

spectral limitations, some of the classes initially identified in early experimentations had to 

be excluded from the final classification.  For example, small scale features such as wetlands 

and minor roads were poorly identified during classification due to the spatial resolution of 
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the data.  The ―other vegetation‖ class was one that was spectrally similar to other classes 

such as deciduous forests, agricultural fields containing crops and recreation areas.  After 

examination of the separability reports of the training sites and the accuracy assessments 

performed on the classified images, it was determined that this class was doing more harm 

than good and was eliminated.  With the inclusion of this class, the classes with similar 

spectral characteristics would have been underestimated significantly. 

 

There was consistent separability issues present in the results of each of the training data 

separability reports as well as the accuracy assessment of each of the final land cover maps.  

The four types of agriculture were spectrally similar, especially agriculture 1 and 3 (bare 

agriculture fields) and agriculture 2 and 4 (agriculture fields with crops).  In an effort to 

improve the classification accuracy, the four agriculture classes were merged into 2 – 

agriculture 1 (representing bare agricultural fields) and agriculture 2 (representing 

agricultural fields with crops present).  Forested areas were spectrally similar as well so the 

decision was made to combine the coniferous and deciduous forest classes into one forest 

class.  These classes were combined using a post classification merging technique which 

combines classes that are spectrally similar into one classification.  This can often improve 

classification accuracy.  The original 12 classes were merged into the final 7 classes for land 

cover classification in the Hamilton and Halton portions of the plan.  These 7 land cover 

classes are depicted on a map in Figure 4.5.  Figure 4.6 shows the original 12 classes selected 

for classification and the final 7 used in the study.  The final 7 classes were identified by 

collecting user defined training sites.  The advantage to the collection of training data for 

supervised classification is the user can contribute their own knowledge and create the 

necessary classes to the highest degree of accuracy.  Typically 10 times the number of bands 

used dictates the number of training pixels that should be collected to represent each class, 

but the more training pixels collected the higher the accuracy will be (Jensen, 2005).  The 

final classification scheme defined for the study area can be seen in Table 4.4. 
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Figure 4.5  Land Cover Class Map 
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Figure 4.6  Merging of Original 12 Classes into the Final 7 Classes 

 

4.3 Accuracy Assessment 

Error may be introduced into a study at any step in the analysis.  Errors made in the initial 

stages of data acquisition and can carry through the subsequent processes such as pre-

processing, classification, data conversion for analysis, and even the error assessment itself 

(Jensen, 2005).  For this study an accuracy assessment was performed on the final 

classification maps using a confusion matrix created by comparing the final classified map 

with an independent set of ground reference points. 
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Table 4.4  Description of Final 7 Land Cover Classes for Niagara Escarpment Study 

Class Description 

Forest This class represents all forested areas and is a merge between the 

original deciduous and coniferous forest classes 

Agriculture 1 

(Bare agricultural 

fields) 

 

This class encompasses all bare agricultural fields and was 

created by merging the original agriculture 1 and agriculture 3 

classes 

This type of agricultural field had a bright tone when viewed as a 

false colour composite (with bands 3,4 and 5), possibly indicating 

it was dryer soil with little vegetation in comparison to 

Agriculture 1 

Agriculture 2 

(Vegetated field) 

 

This agricultural field represents a merge between agriculture 

classes 2 and 4.  This class represents all agricultural fields with 

growing vegetation, whether operational or not. 

This type of agricultural had red fields when viewed as a false 

colour composite (see above) indicating healthy vegetation, with 

darker toned fields appearing a deeper red colour exhibiting a 

higher moisture content 

Recreation The recreation class consists of golf courses, parks, ski hills etc. 

Typically areas with manicured grass land 

Urban This class was any urban surface, including roadways, dwellings 

(rooftops), commercial and industrial areas etc. 

Anything ―man-made‖ 

Mineral Resource 

Extraction Areas 

or Quarries 

(MREAs) 

Existing quarry operations on the Niagara Escarpment 

Water Water includes deep waters showing lakes, rivers, open water 

swamps etc. and is a merge of the original water and shallow 

water classes. 

 

4.3.1 The Confusion Matrix 

The confusion matrix (also called a contingency table or error matrix) provides information 

on classification error (Jensen, 2005).  An example of a confusion matrix can be seen below 

in Table 4.5 
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Table 4.5  Example of the Confusion Matrix 

Ground Reference Point Information 

 

 

Classified 

Image 

Information 

Class 1 2 3 K Row Total 

1      

2      

3      

K      

Column 

Total 
    N 

(Adapted from Jensen , 2005) 

 

The confusion matrix states the classification accuracy of k classes used in the analysis.  The 

columns represent the ground reference points and the rows represent the final classification 

of the image under assessment (Jensen, 2005).  Summarized in the intersection of each row 

and column are either the pixel counts or percentage values assigned to each class in the final 

classification image as compared to actual ground reference data derived by the analyst 

(Jensen, 2005).  The total number of ground reference pixels collected by the analyst is 

represented by N. 

   

4.3.2 The Collection of Ground Reference Points 

Justification of Sample Size 

A set of ground reference points independent from the training data was used for accuracy 

assessment.  The collection of a separate set of ground reference points (pixels) is essential 

for an appropriate classification accuracy assessment.  If the training data are used to perform 

accuracy assessment, this could result in higher overall accuracies that are overestimated 

(Jensen, 2005).  The collection of training data is biased by the analyst’s prior knowledge of 

the study area (Jensen, 2005).  A separate set of ground reference points act as unbiased 

reference information for which to run the accuracy assessment.  For this study a stratified 

random sample was created and trained to be used as the ground reference information.  
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Decisions must be made prior to creating the ground reference points such as the sample size 

and the sampling design. 

 

To calculate the sample size the worst-case multinomial distribution algorithm as outlined in 

Jensen (2005) was used.  This algorithm was selected since no prior information about the 

proportion that each class makes up of the image was known.  An assumption is made that 

one class occupies 50% of the image (Congalton and Green, 1999).  Equation 4.12 represents 

the worst-case multinomial distribution algorithm. 

 
 (4.12) 

Where: 

N = the sample size required for the ground reference points 

B = the upper (α/k) × 100
th

 percentile of the  (chi-squared) distribution (with 1 degree of 

freedom) where k represents the number of classes used in the analysis 

b = the desired precision for the class 

(Jensen, 2005) 

 

Therefore, to determine the number of ground reference points per class using a confidence 

interval of 85% and a precision of 5%, the following calculations were used: 

 

 

 

To calculate the number of samples required per class: 
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For this study, approximately 100 ground reference points or pixels per class were collected 

for use within the confusion matrix.  Collecting these ground reference points was a time 

consuming process since each individual pixel had to be trained (confirmed) individually.  In 

some instances it was not possible to collect 100 ground reference points per class but in all 

cases, at least 50 ground reference points were collected as deemed suitable by Congalton 

and Green (1999). 

 

Sampling Design 

Once the appropriate number of ground reference points was determined, a sampling design 

was chosen to determine the geographic location of each point within the study area (Jensen, 

2005).  For this study, the stratified random sampling method was chosen.  The advantage to 

a stratified random sample is that a minimum number of ground reference points can be 

collected for each land cover class in the classification (Jensen, 2005).  The generation of the 

ground reference points occurs after the final classification map has been created.  In ENVI 

4.5, the analyst must choose between a proportionate or disproportionate sample.  Ideally a 

proportionate sample would be selected so that no matter what the size of a class a 

proportionate number of ground reference points will be allocated to that class.  This would 

reduce bias in the final confusion matrix.  However, when dealing with a proportionate 

sample, the analyst simply chooses the minimum sample size and the number of ground 

reference points are automatically filled in by ENVI.  It was discovered that when using the 

proportionate sample size, some of the samples for the larger classes (such as the forest class) 

were very large and would take too much time to train.  Therefore, it was decided to create a 

disproportionate sample size and assign each class 100 ground reference points for a 

maximum sample of 700 ground reference points per image. 

 

The next step was to label each ground reference point individually.  Since these ground 

reference points were created based on the final classification map, the assumption was made 

that the map was 100% accurate when in fact this is almost never the case.  The analyst must 
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make sure each ground reference point for each class represents that class accurately.  Each 

ground reference point was individually checked  and only the cells that contained 50% or 

more of that particular land cover type were assigned their respective class.  This is another 

example of where error can be introduced.  This is also why some sample sizes were either 

greater than or less than the 100 ground reference point sample size. 

Table 4.6  Number of Ground Reference Points per Class 

Number of Ground Reference Points per Class 

C
la

ss
es

 

 1986 1996 2006 

Forest 273 282 313 

Agriculture 1 284 276 321 

Agriculture 2 264 266 383 

Recreation 85 68 111 

Urban 95 135 163 

Mineral Resource 

Extraction Area 

(MREA) 

122 109 123 

Water 111 152 250 

 

The final step in the research was to take the classification maps with the highest accuracy 

and perform change detection over a 20 year time period.  As opposed to overall change that 

was explored in the previous studies, an attempt was made to examine the spatial dynamics 

of change occurring in the Plan area by examining the change in each NEP land use 

designation specifically to see how much and what kinds of change are occurring in each 

designation within the study area. 

 

4.4 Change Detection 

To perform change detection over a 20 year time period, the post-classification comparison 

change detection technique was chosen.  This technique is widely used and requires final 

classification maps with the highest accuracy possible to be compared pixel-by-pixel.  If 

accuracy is not high enough for the classified images, errors may be carried through to the 
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change detection stage, falsifying the true change occurring on the ground.  It is essential that 

classification maps in the Hamilton and Halton Regions of the NEP are created to the highest 

accuracy possible.  In ENVI 4.5, change statistics and change masks for each class in each 

image are produced.  One of the great advantages of the post classification technique is that it 

allows the analyst to identify the nature of the changes occurring in the study region (Mas, 

1999).  Change masks are created and show what each class in the initial state image changed 

to in the final state image.  This method is easy to understand and heavily used.  Results can 

also be converted into a vector format and used in a GIS for future analysis.  
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Chapter 5 

Results and Analysis 

5.1 Examination of Accuracy Assessment: 1986, 1996 and 2006 

To create classification maps with the highest accuracy for each image, several classification 

methods were tested.  MD classification, MDC, MLC, SVM and object oriented 

classification with SVM were all tested for the production of classification maps in the 

Hamilton and Halton portions of the Plan.  Prior to the final accuracy assessment being 

performed a majority filter post classification technique was used.  In this case a 3×3 window 

was used to convert outlying pixels to a particular class if the majority of its neighbours 

belonged to that class.  This technique serves to smooth the classes in the map, making it 

more suitable for analysis and increasing overall accuracy.  Below is a summary of overall 

accuracies and Kappa values for each method tested and for each image. 

Table 5.1  Overall Accuracy and Kappa Coefficients for Each Classifier 

 Landsat 5 TM 1986 

Image 

Landsat 5 TM 1996 

Image 

Landsat 5 TM 2006 

Image 

Overall 

Accuracy 

(%) 

Kappa 

Coefficient 

Overall 

Accuracy 

(%) 

Kappa 

Coefficient 

Overall 

Accuracy 

(%) 

Kappa 

Coefficient 

MDC 63.53% 0.57 72.34% 0.67 79.15% 0.75 

MD 

Classification 
67.40% 0.61 75.45% 0.71 77.40% 0.73 

MLC 80.31% 0.76 83.37% 0.80 88.03% 0.86 

SVM 82.58% 0.79 88.04% 0.85 89.60% 0.87 

Object 

Oriented 

Classification 

 

73.48% 

 

0.68 

 

77.37% 

 

0.73 

 

82.96% 

 

0.80 

 

After conducting all the classifications for each image, it was determined that SVM provided 

the highest results.  Out of the traditional per-pixel supervised classifications, MLC 

outperformed the more basic MDC and MD classifications, which was consistent with the 

literature.  The object oriented approach showed promising results when used to classify 
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Landsat data in previous studies, but that was not true for the Niagara Escarpment scenario.  

In this case, MLC outperformed the object oriented approach.  With alterations to the object 

oriented methodology, this technique could show great promise for detecting land cover 

change in the NEP, and will be discussed as recommendations for future work. 

 

The standard for overall accuracy for land-cover maps created using remotely sensed data is 

between 85% and 90% (Anderson et al., 1976; Lins et al., 1996 as stated in Treitz and 

Rogan, 2004).  Treitz and Rogan (2004) states that according to Rogan et al. (2003) a slightly 

lower overall accuracy value of 80% to 85% appears to be reasonable for studies involving 

land cover change detection.   An example of the final SVM accuracy assessment for the 

1986 image can be seen below in Table 5.3, and a map showing the final classifications of 

the study area can be seen in Figures 5.1, 5.2 and 5.3. SVM achieved the highest overall 

accuracy and the highest Kappa coefficient for each image, while the MDC had the lowest 

overall accuracy and Kappa coefficient with the exception of the 2006 image.  The MD 

classification resulted in a lower accuracy than the MDC but only by approximately 2%.  

Based on the assumption that the ground reference points collected are ―ground truth‖ 

information, the overall accuracy simply represents the percentage of correctly classified 

pixels out of the total number of pixels.  The Kappa coefficient is an unbiased value for 

accuracy assessment representing the amount of agreement between the final classification 

map and the ground reference information collected by the analyst (Jensen, 2005).  This 

value is slightly lower than the overall accuracy for each image since the Kappa statistic also 

takes into account the row and column totals representing the chance agreement for each 

class’s reference data with respect to the final classification map (Jensen, 2005).  The 

classification of the 1986 image resulted in the lowest accuracy results for all classification 

algorithms explored in the study.  Although overall accuracy was first considered when 

examining the confusion matrix, it is the errors or the values that occur off the diagonal that 

can offer more interesting results (Congalton and Green, 1999).  These off diagonal values 

offer clues to possible errors in the classification process such as errors in collecting the 

ground reference information, human interpretation errors, spatial scale of sensor for the land  
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Figure 5.1  1986 Support Vector Machine (SVM) Classification Map 
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Figure 5.2  1996 Support Vector Machine (SVM) Classification Map 
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Figure 5.3  2006 Support Vector Machine (SVM) Classification Map  
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cover classes identified and mapping error (Congalton and Green, 1999).  In the case of the 

1986 imagery, the reduction in accuracy across all the classification algorithms may have 

been due to the lack of ancillary data available for the study site during that time period.  For 

the 1996 and 2006 images, high resolution orthoimagery was obtained to aid in the 

classification of the ground reference points.  These supplementary images acted as ―ground 

truth‖ information.  In order to classify each individual ground reference point for this time 

period, pure spectral response of the image and knowledge of the study area were relied on.  

The full confusion matrices for the 1996 and 2006 images can be found in Appendix A.  

 

Individually, classes were examined for their accuracy to determine which classes performed 

well enough to be further studied for change detection.  For this study if a class’s overall 

accuracy percentage value was lower than that of the overall accuracy value for that 

classified image, the class was deemed not accurate enough to predict the changes that 

occurred in the study area.  For each image three out of seven classes fell below that overall 

accuracy threshold limit and the urban and MREA classes consistently underperformed 

across the entire time period.  These nine classes are highlighted in Table 5.2.  The lower 

accuracy of these classes is primarily due to the use of medium spatial resolution imagery.  

Typically higher resolution imagery is favoured for urban change detection since urban 

features are often smaller than the 25m re-sampled resolution of the individual image pixel.  

Also contributing to the low accuracy of the urban and MREA classes was their spectral 

similarities. 

 

Table 5.3 shows the confusion matrix for the 1986 image.  The highlighted values along the 

diagonal of the table represent the pixels that were classified correctly during the manual 

assigning of the ground reference pixels to their correct class.  For example, the forest class 

was created with 84.3% (230/273) accuracy, a value that is high enough to allow for further 

analysis.  Classes that were spectrally similar to the forest class in the 1986 image are also 

identified by analyzing the off diagonal values.  In the 1986 image, the forest class and the  
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Table 5.2  Summary of Class Accuracies 

Class 1986 image 

(82.6% overall accuracy) 

1996 image 

(88.0% overall accuracy) 

2006 image 

(89.6% overall accuracy) 

Forest 84.3% 89.4% 96.49% 

Agriculture 1 96.5% 96.4% 96.9% 

Agriculture 2 71.6% 95.5% 92.7% 

Recreation 96.5% 76.5% 91.9% 

Urban 48.4% 63.7% 65.6% 

MREA (Quarry) 79.5% 80.7% 78.1% 

Water 91% 89.5% 87.2% 

 

agriculture 2 class had low spectral separability, since 37 of the forest ground reference 

pixels were actually agriculture 2 on the ground.  Focusing on other more poorly performing 

classes in the final 1986 image, such as urban, agriculture and to a lesser degree MREA, it is 

clear that spectral separability between these classes and some of the other seven classes 

cause errors.  For example, the urban class appears to be most spectrally similar to 

agriculture 1 which represents bare agricultural soils.  It is also spectrally similar to MREA 

and agriculture 2 classes.  The spectral similarity between urban surfaces and MREA can be 

explained for the same reasons why bare agricultural soils are also spectrally similar.  An 

area of bare soil and rock appear spectrally similar to urban areas since they consist of 

materials such as gravel and concrete, and have little vegetation cover.  Interestingly, there 

was a similarity between the agriculture 2 class (which represents a vegetated agricultural 

field) and urban areas.  Although vegetation cover in urban areas is restricted to areas such as 

lawns, trees and parks, these areas do still exist within an urban environment and can account 

for the similarity.  At a spatial resolution of 25m a pixel of urban area can contain some 

vegetation and will affect the signal received at the sensor.  The above reasons also explain 

why the other two lowest performing classes in the 1986 image were MREA and agriculture 

2. 
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Table 5.3 1986 Image Confusion Matrix 

Overall Accuracy  (1019/1234)  82.58% 

Kappa Coefficient   0.788 

 

 

 

 

 

Class 

Ground Truth  (Pixels) 

 
Forest 

MREA 

(Quarry) 
Recreation Water 

Agriculture 

1 

Agriculture 

2 
Urban Total 

Forest 230 0 0 6 0 34 1 271 

MREA 

(Quarry) 

0 97 0 0 1 0 14 112 

Recreation 4 0 82 0 0 35 0 121 

Water 0 0 0 101 0 0 0 101 

Agriculture 1 2 18 0 0 274 6 21 321 

Agriculture 2 37 0 3 1 4 189 13 347 

Urban 0 7 0 3 5 0 46 61 

Total 273 122 85 111 284 264 95 1234 

 

The same can be examined for the 1996 and 2006 images.  The low accuracy results of the 

urban class were consistent for all three images and were previously discussed.  Also 

consistent for all three images was the poor performance of the MREA class, due to its 

spectral similarity to the urban and agriculture 1 classes.  For the 1996 image only 76.5% of 

the ground reference pixels assigned to the recreation class were actually placed on 

recreational areas.  Recreation showed spectral similarities to agriculture 2, which represents 

a vegetated agricultural field.  This type of land cover can often become confused with other 

healthy vegetation, such as grass, which explains the spectral similarity with recreational 

areas, since most recreation areas identified were golf courses or parks.  For the 2006 image, 

other than the urban and MREA classes, water had the lowest overall accuracy at 87.2%.  

Smith and Fuller (2001) suggest that confusion between water and forests, especially when 

the water is located in a forested region such as the Escarpment, can occur due to canopy 

texture and shading effects from vegetation and/or terrain.  This is likely why confusion 

between these two classes exists.  Smith and Fuller (2001) also discuss mis-classifications 

that can occur with mixed boundary pixels.  Throughout the analysis it was discovered that 

many water pixels had a percentage of vegetation cover in the same pixel.  For the purposes 

of this research only the pixels with 50% or more water were classified as water.  This mixed 
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pixel problem also occurred with other classes and occurred more often with boundary pixels 

between one land cover class and the neighbouring class. 

 

Through accuracy analysis, there are alternative accuracy measures that can help the user 

determine the accuracy of information obtained from the final map.  User and producer 

accuracies are also calculated and can be seen in Appendix B.  The producer accuracy is 

calculated by dividing the number of pixels that were correctly classified for each class by 

the total number of ground reference pixels for that class (Fung, 1990).  Fung (1990) states 

that producer accuracy determines if change detection can adequately predict land cover 

changes in a study area, since this accuracy indicates the probability that a ground reference 

point would be correctly classified, and thus, each class being correctly identified (Jensen, 

2005).  User accuracy describes to the user of the final produced map the probability that a 

pixel classified as a certain land cover type on the map actually represents that same land 

cover type on the ground (Story and Congalton, 1986 as cited by Jensen, 2005).  Since the 

purpose of creating these land cover maps is for land cover change detection over time, user 

accuracy is a very important statistic to note. 

Table 5.4  User and Producer Accuracies 

 1986 prod. 1986 user 1996 prod. 1996 user 2006 prod. 2006 user 

Forest 84.25 84.87 89.36 91.64 96.49 85.55 

Agriculture 1 96.48 85.36 96.38 88.08 96.88 85.67 

Agriculture 2 71.59 76.52 95.49 83.28 92.69 95.17 

Recreation 96.47 67.77 76.47 89.66 91.89 86.44 

Urban 48.42 75.41 63.7 87.76 65.64 82.31 

MREA 79.51 86.61 80.73 84.62 78.05 88.89 

Water 90.99 100 89.47 93.15 87.2 99.54 

 

The producer accuracy percentage for each class indicates to the producer of the map the 

probability that the SVM classified the image pixel correctly.  In terms of map production the 

urban classification underperformed consistently, indicating that some pixels classified as 
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urban by the SVM were not actually urban pixels.  For the 1986 image, the producer 

accuracy for the urban class was less than 50%, which will make comparison of urban extent 

across the entire time period difficult.  The degree of confidence in the statistical change 

results will be lower for this class.  Another low producer accuracy result occurred for the 

agriculture 2 class for the 1986 image.  To a lesser degree the MREA class also 

underperformed in the 1986 and 2006 classification.  Qualitative analysis of the change 

occurring in the classes with the lower accuracies will be important for drawing conclusions 

about land cover change in the NEP at a regional scale. 

 

The user accuracy states the probability that a classified pixel on the map actually represents 

that land cover class on the ground.  This statistic is of particular importance to the people 

who will eventually use the map to make decisions.  The user values for the 1996 and 2006 

images are high enough to indicate that a user may be confident that what is depicted on the 

map actually exists on the ground for that time period.  Again, error lies within the 1986 

image where the recreation, urban and agriculture 2 classes underperformed. 

 

5.2 Overall Study Area Change Analysis Overview 

This section examines overall trends in the change statistics across the entire study area for 

the entire time period.  Section 5.2.1 is a summary of qualitative changes visibly noticeable 

across the study area as a whole, covering both Hamilton and Halton Regions.  Following 

this, section 5.2.2 summarizes the overall quantitative change in the entire study area.  The 

previous two sections act as an introduction to sections 5.3 and 5.4 where classes and change 

statistics of interest are indentified for further study at the individual regional scale 

discussing changes in Hamilton and Halton Regions separately.  Changes in both regions are 

examined from a qualitative and quantitative perspective followed by an examination of 

change within the various NEP land use designations in section 5.5. 
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5.2.1 Qualitative Change Analysis of the Study Area 

Initial results of the overall change in the study area from 1986 to 2006 differ from class to 

class.  Qualitative examination across both Halton and Hamilton Regions combined was 

conducted on a class by class basis prior to more in depth analysis to.  Observations were 

made from classification masked images created while computing change detection statistics 

from ENVI 4.5 that show what each class (land cover type) in the initial state image (1986) 

changed to in the final state image (2006). 

Table 5.5 Description of Overall Land Cover Changes 

L
a

n
d
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o

v
er
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 Description of Land Cover Changes 

Forest  Conversions to quarry and urban 

 Conversion to small agricultural areas 

 Conversion to a few  noticeable areas of recreation in Halton 

 Conversion to large water bodies within MREA 

Agriculture 1  (Both agriculture classes showed the majority of changes in the 

study area with an overall loss) 

 Majority of conversion to agriculture 2 and urban 

Agriculture 2  Majority of conversion to forest with some smaller areas converted 

to agriculture 1 and urban 

Recreation  Conversion to multiple small areas of agriculture 1 and 2 , forest 

and urban 

Urban  Minor conversions to areas of forest or agriculture 

Quarry (MREA)  Conversion to urban, water and some small areas of agriculture 

Water  Minor conversions mostly to forest 

 

After initial observation of the results of the change detection, a few interesting observations 

were made.  A multitude of changes occurred in forested areas from 1986 to 2006 which will 

be examined in more detail in later sections, but a noticeable conversion is from forest in 

1986 to large areas of water within MREA boundaries.  These are likely created after the 

previously forested areas were converted to MREA’s between 1986 and 2006, exploited to 

their full potential and converted to ponds, small lakes or wetlands for future rehabilitation 

efforts. 
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Figure 5.4 Example of Change in Forested Area from 1986 to 2006 

(Location: 43°32’9.31”N  79°57’57.32”W in Halton Region)This image shows the change from forest in 1986 

to MREA and water within the MREA boundaries in 2006.  The forest class change mask represents what 

forested areas in 1986 changed into in the final 2006 classification map.  This exemplifies expansion of an 

existing quarry in the NEP area as well as conversion of a portion of the MREA to water. 

 

Another change that is highly visible through qualitative analysis is the conversion of the 

forest and agricultural classes to the urban class, with a few highly visible areas of urban 

expansion in the Hamilton region.  There were also small changes to forest and agriculture 

from the recreation class.  Grasses and other vegetation that occur in many recreational areas 

are very spectrally similar to the forest and agriculture 2 classes and so in some recreational 

areas, such as golf courses, this is really just a form of other vegetation.  Unfortunately the 

―other vegetation‖ class had to be removed early in the classification process due to low 

accuracy results because of its spectral similarity to the forest and agriculture 2 classes. 

 

Although unlikely that urban areas in 1986 would be converted to alternative land cover 

types in 2006 some changes were seen, but most changes appear to follow minor roadways 

and are therefore likely to be errors or roads that have been widened or expanded and 

therefore are detected more easily by the sensor .  Also large areas of urban class surround 

the MREAs, which is a known error due to the low spectral separability of these two classes.  

The urban areas surrounding the MREA’s are depicted as such due to mixed pixels of bare 

soil/rock and some vegetation around the boundaries of the MREA.  These urban areas are 
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actually part of the MREA class and therefore will negatively affect change statistics in the 

MREA and urban classes. 

 

The majority of the changes seen in the agriculture 1 class were changes to agriculture 2, 

which is likely considering the seasonal variation of the imagery.  The 1986 imagery was 

captured in early June and the 2006 image was captured in mid-August.  There would be 

more bare agricultural fields (agriculture 1) early in the growing season when the 1986 image 

was captured than later in the growing season when the 2006 image was captured showing a 

―change‖ to agriculture 2 (vegetated fields).  In reality, the 2006 image would have been 

captured at the height of the growing season for most crops, so more agricultural areas would 

appear vegetated.  Changes from one agricultural type to the next will not be focused on due 

to seasonal differences in the imagery; rather the conversion of agricultural land to other land 

cover types will be examined.  For the agriculture 1 class there were many conversions to the 

urban class which will be examined more in depth, but could be attributed to conversion of 

agricultural land to urban land.  These changes may also be erroneous due to the spectral 

similarity of these two classes.  Change to the urban classification was also exemplified in 

the agriculture 2 class although the majority of the changes in the agriculture 2 class were to 

forest.  Some errors exist in this land cover conversion due the spectral similarity between the 

agriculture 2 and forest classes. 

 

Final conclusions to be drawn from changes from one class to another will depend on the 

accuracy of the classification map in each year.  Prior to both qualitative and quantitative 

analysis it must be noted that the urban and MREA land cover classifications will be 

examined visually (qualitatively) for the most part, as the accuracy values for these two 

classes fell below the overall accuracy values in all three images.  For the Agriculture 2 class, 

the overall accuracy of 71.6% as quoted in Table 5.2 achieved for the 1986 image means 

meaningful analysis of the changes that occurred in this class may only be examined for a ten 

year period from 1996 to 2006.  Similarly, the recreation class achieved a low overall 
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accuracy of 76.5% in the 1996 image so change analysis should only be conducted over the 

entire 20 year time period.  These accuracy statistics will be discussed in greater detail in the 

following sections. 

 

5.2.2 Quantitative Change Analysis of the Study Area 

Change statistics across the entire study area can be seen in Table 5.6 below.  The table 

shows which classes increased and which decreased from the initial state 1986 image to the 

final state 2006 image across the entire study region.  There were reductions in agricultural 

land, recreational land and MREA from 1986 to 2006, while all other classes showed an 

increase.  Forested area showed a 34% growth over the 20 year period with the forest class 

increasing by 43.8 km
2
 in Hamilton and Halton Regions.  An increase in forested area was 

also concluded from previous studies (Ramsay, 1996; Cowell et al., 1997; Lusted et al., 

1997; Jankovic, 1999).  This increase is due to 45.4 km
2
 of agriculture 2 land cover being 

converted to forested area.  Urban land cover showed an almost 60% increase with an added 

12.9 km
2
 across the study area.  This increase is perhaps an overestimation due to the low 

overall accuracy of the urban class.  A 30% increase in water across the study area may also 

explain the slight decline of MREA.  MREAs decreased by a little over 2% and a portion of 

this decrease can be explained by the increase in ponds created in the MREA’s from 1986 to 

2006.  A decrease in agricultural land from 1986 to 2006 was observed across the entire 

study area, with a larger percentage of decline occurring in agricultural land with crops.  The 

examination of these agricultural changes must be undertaken carefully, since vegetated 

fields in one image may not be vegetated in the next due to seasonal differences in the 

imagery, therefore results of the change from one agriculture class to another may merely be 

reflecting these seasonal crop rotations. 

 

The overall quantitative changes across the study area for the problem classes identified in 

Table 5.2 will be examined on an individual basis.  The urban and MREA classes had lower 

overall accuracy results across all three images and therefore conclusions must be drawn 
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carefully for these classes.  The other two classes with lower accuracy levels can be 

examined in specific time periods to increase the validity of the conclusions drawn from the 

change statistics.  Agriculture 2 is best examined in the later 10 year period while the 

recreation class is best examined across the entire 20 year time period only.  These specific 

cases will be discussed in further detail in the following individual regional sections. 

 

Figure 5.5 Example of Change in Both Agriculture Classes from 

1986 to 2006 

(Location: 43°29’33.68”N  79°57’32.83”W in Halton Region) This image 

exemplifies the major changes in both agricultural classes over the 20 year 

study period.  The agriculture 1 change mask shows the conversion of 

agriculture 1 or bare agricultural soil being converted to agriculture 2 or 

vegetated fields.  This is likely a result of the dates the imagery was captured 

and conversion of one type of agriculture to another will not be focused on.  

Instead interesting changes occurring in the agriculture 2 class change mask 

show a conversion of some cropland to forested areas which was evident 

throughout the study area. 
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Table 5.6  Overall Study Area Change Statistics 
F
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a

l 
S
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 2
0
0

6
 

Initial State 1986      [Pixel (area in km
2
, percentage)] 

  Forest MREA Recreation Urban Water Agriculture 1 

(bare soil) 

Agriculture 2 

(crop) 

Row Total/Class 

Total 

Water 956(0.6,0.5) 1117(0.7, 

13.5) 

103(0.1,0.6) 321(0.2,0.9) 5999(3.8, 

78.2) 

745(0.5,0.6) 722(0.5,0.4) 9963(6.2,100.0) 

Urban 2766(1.7,1.4) 2418(1.5, 

29.2) 

734(0.5,4.3) 25941(16.2, 

74.5) 

89(0.1, 1.2) 10739(6.7, 

9.1) 

12695(7.9,7.0) 55382(34.6,100.0) 

MREA 1731(1.1,0.9) 3095(1.9, 

37.4) 

192(0.1,1.1) 589(0.4,1.7) 10(0.0, 0.1) 1153(0.7,1.0) 1342(0.8,0.7) 8112(5.1,100.0) 

Forest 180638(112.9,

89.9) 

160(0.1,1.9) 2119(1.3, 

12.4) 

2386(1.5, 

6.9) 

1173(0.7, 

15.3) 

11930(7.5, 

10.2) 

72588(45.4, 

39.7) 

270994(169.4, 

100.0) 

Agriculture 

2 (crop) 

7708(4.8,3.8) 215(0.1,2.6) 5791(3.6, 

33.9) 

1816(1.1, 

5.2) 

165(0.1, 2.2) 44599(27.9, 

38.0) 

50917(31.8, 

27.9) 

111211(69.5,100.

0) 

Recreation 941(0.6,0.5) 25(0.0,0.3) 5141(3.2, 

30.1) 

109(0.1,0.3) 8(0.0,0.1) 3849(2.4,3.3) 4424(2.8,2.4) 14497(9.1,100.0) 

Agriculture 

1 (bare soil) 

6166(3.9,3.1) 1249(0.8, 

15.1) 

3014(1.9, 

17.6) 

3646(2.3, 

10.5) 

225(0.1, 2.9) 44435(27.8, 

37.8) 

40096(25.1, 

21.9) 

98831(61.8,100.0) 

Class Total 200906(125.6,

100.0) 

8279(5.2, 

100.0) 

17094(10.7, 

100.0) 

34808(21.8, 

100.0) 

7669(4.8, 

100.0) 

117450(73.4, 

100.0) 

182784(114.2, 

100.0) 

 

Class 

Changes 

20268(12.7, 

10.1) 

5184(3.2, 

62.6) 

11953(7.5, 

69.9) 

8867(5.5, 

25.5) 

1670(1.0, 

21.8) 

73015(45.6, 

62.2) 

131867(82.4, 

72.1) 

 

Image 

Difference 

70088(43.8, 

34.9) 

-167(-0.1,       

-2.0) 

-2597(-1.6,      

-15.2) 

20574(12.9, 

59.1) 

2294(1.4, 

29.9) 

-18619(-11.6,         

-15.9) 

-71573(-44.7,            

-39.2) 
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5.3 Change in the Regional Municipality of Halton 

The Regional Municipality of Halton represents a more rural region in the NEP in 

comparison to Hamilton region.  The results of the change detection show a similar trend to 

the overall study area results.  The forest, urban, MREA and water classes all showed an 

increase over the 20 year time period while the other four classes showed a decrease.  The 

only difference in terms of image difference from the overall study area analysis was that 

overall MREA slightly decreased overall but in Halton Region, there was a slight increase of 

0.2 km
2
. 

 

The forest class in the Regional Municipality of Halton saw a large increase of 29.9 km
2
 

from 1986 to 2006.  Most (90%) of the original 1986 forested area did not change, and 

increases to the forest area mostly came from conversions of the agriculture 2 class to forest.  

This is shown in detail in Figure 5.7.  Of the original agriculture 2 class, 39.7% changed to 

forest by 2006.  Although the conversion of large amounts of agriculture 2 land into forested 

area is highly likely, there are spectral similarities between vegetated agricultural fields and 

forested areas that could cause confusion, so it is possible that this result of a 29.9 km
2
 

increase is larger than the actual change that occurred on the ground.  In terms of loss of 

forested area from 1986 to 2006, MREA’s had the most visual impact.  As exemplified in 

Figure 5.3, large MREA’s were added by 2006 but in other areas of Halton there was 

evidence of rehabilitation as can be seen in Figure 5.6. 

 

In Halton Region the change detection results showed an overall decrease in agricultural land 

within the plan area over the 20 year study period.  Agriculture 1 (bare agricultural soils) 

showed an 11.3% decrease and agriculture 2 (vegetated agricultural fields) showed a 39.8% 

decrease in Halton Region.  The statistics revealed that large portions of the respective 1986 

agriculture classes were converted to the other type of agriculture by 2006.  Of the bare 

agricultural fields in 1986, 38% had changed to vegetated fields by 2006.  This accounts for a 

total of 75.8% or 55.7 km
2
 total of the original bare agricultural field class remaining a type 

of agriculture.  Due to annual crop rotations or the different seasons the two images were  
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Figure 5.6 Evidence of Quarry Rehabilitation in Halton Region 

(Location: 43°30’7.19”N  79°55’28.00”W)  This figure shows the rehabilitation of 

the Milton Limestone Quarry in Halton Region (Conservation Halton, 2004) 

 

captured, the agricultural types may have switched from one year to the next.  The 1986 

imagery was captured on June 03, 1986.  This would have been early in the growing season 

resulting in less vegetated fields being classified by the SVM.  The 2006 imagery was 

captured on August 13, 2006.  This is at the height of the growing season therefore the SVM 

would have classified more vegetated agricultural fields (agriculture 2).  This along with 

seasonal crop rotations would have made it appear as though agriculture was changing from 

one type to another but this is not the case.  For this reason, changes from one agricultural 

class to another are not significant in this study.  This exemplifies why in agricultural land 

use studies involving remote sensing, the seasonal characteristics of agriculture must be 

taken into account when conducting a more thorough investigation of changing agriculture 

over time.  There were two other notable changes to the bare agricultural field class 

(agriculture 1).  Portions of what was originally classified as agriculture 1 in 1986 changed to 

forested areas and urban areas in 2006.  5.6 km
2
 changed into forested land and since these 

two classes have very different spectral signatures, this is likely an accurate portrayal of the 

conversion of agricultural land to forested areas.  Further, 3.4 km
2
 of bare agricultural fields 

in 1986 were converted to urban areas by 2006. 
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The agriculture 2 class representing vegetated agricultural fields showed the largest decrease 

of any other class in Halton Region.  In total, 31.1 km
2
 or 39.8 % of the original agricultural 

2 class was converted to other land cover types between 1986 and 2006.  In total, 49.8% of 

the original agriculture 2 class stayed a type of agriculture (either agriculture 1 or 2) but a 

large portion (39.7%) of the original class changed to forested area by 2006.  These values 

may not be entirely accurate due to the poor performance of this class in the 1986 classified 

image, therefore more accurate conclusions can be drawn for this class by looking only at the 

later 10 year study period from 1996 to 2006.  The statistical results for this class can be seen 

in Table 5.7 below. 

Table 5.7 Agriculture 2 Change Statistics from 

1996 to 2006 in Halton Region 

Agriculture 2 

 Pixel Percent Area (km
2
) 

Forest 33766 28.9 21.1 

Ag_1 34801 29.8 21.8 

Ag_2 38061 32.6 23.8 

Recreation 3942 3.4 2.5 

Urban 5375 4.6 3.4 

MREA 783 0.7 0.5 

Water 191 0.2 0.1 

Class Total 116919 100.0 73.1 

Class Changes 78858 67.4 49.3 

Image Difference -41608 -35.6 -26.0 

 

From 1996 to 2006, 32.6 % of the agriculture 2 class had not changed.  This is only a slightly 

higher percentage than what was noted from 1986 to 2006.  Another 29.8% was converted to 

bare agricultural fields, so a total of 62.4% of the 1996 agriculture 2 class remained a form of 

agriculture in 2006.  The most noticeable change in the agriculture 2 class was the conversion 

of 21.1 km
2
 of vegetated agricultural fields to forested area from 1996 to 2006.  A 28.9% 

change from agriculture 2 to forest is a large change although not as large as was previously 

stated in the results over the entire 20 year time period.  These results showed a much higher 
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39.7% of the 1986 agriculture 2 class being changed into forest, although there is a lower 

confidence for the 20 year change statistics.  As Table 5.2 shows, the agriculture 2 class 

achieved better accuracy results in the 1996 and 2006 images with accuracies of 95.5% and 

92.7% respectively.  Due to the high spectral similarity of the agriculture 2 and forest classes, 

conclusions can be drawn more confidently through the analysis of the later 10 year period 

only.  This result shows that the conversion of vegetated agricultural fields contributed much 

to the increase of forested area in Halton region over the 20 year study period although at a 

loss to agricultural land. 

 

 

Figure 5.7 Conversion of Agriculture 2 to Forest from 1996 to 2006 

(Location: 43°41’35.79”N  79°58’1.00”W in Halton Region) 

 

Other small scale land cover classes also saw changes over the 20 year time period.  MREA’s 

showed an overall 4% increase in Halton Region.  Changes to this class included conversions 

to urban areas, bare agricultural fields and water.  The change of 1 km
2
 of MREA in 1986 to 

urban area in 2006 is likely to be an error considering the spectral similarity of the two 

classes.  As can be seen in Figure 5.6 and in other images of the study area, white MREA’s 

are for the most part surrounded by purple which represents the urban classification.  This is 

an error that must be taken into consideration for future projects and one of the reasons why 

the overall accuracy of the urban and MREA classes were lower than the other classes.  Since 

MREAs and urban areas are smaller scale land cover types, it is hard to classify them 
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accurately using Landsat 5 TM imagery.  An area of 0.7 km
2
 changed to bare agricultural 

fields.  This could be an indication of quarry rehabilitation in the study area as old extraction 

sites are re-vegetated.  Another 0.7 km
2
 converted to water is due to the addition of ponds 

within existing MREA boundaries. 

 

Recreational areas had a slight decrease throughout the region overall, but upon qualitative 

analysis it appears that there were a few new recreational areas added to the region over the 

20 year time period.  In Figure 5.8, a new golf course can be seen in Halton region that was 

developed sometime between 1986 and 2006.  Due to the spectral similarity of the recreation 

class with the two agricultural classes, it was clear that several large agricultural areas were 

misclassified as recreation in the 1986 image which could explain the slight decrease even 

though visually there appears to be a slight increase. 

 

Figure 5.8 Addition of a Golf Course in Halton Region 

(Location: 43°26’48.25”N  79°54’45.92”W)  This figure shows the addition of a golf course in Halton Region 

sometime between 1986 and 2006.  The 2006 orthoimage tile shows the new golf course overlaid by the 

transparent 2006 classification map. 

 

The urban class showed a 70.9% increase over the 20 year period and represented an urban 

expansion of 5.1 km
2
 into the countryside.  This was visually confirmed by confirming urban 

expansion into both agricultural land and forested land and by identifying actual areas of 

urban expansion such as housing developments (addition of a subdivision) and most 



 

97 

noticeably the creation of a roadway south of highway 401.  The increase in urban area 

within the NEP will be examined in greater depth in the following detailed Hamilton change 

section. 

5.4 Change in the Regional Municipality of Hamilton 

The Regional Municipality of Hamilton is the most heavily urbanized region in the plan area.  

Similar to those for Halton Region, the results of the independent Hamilton change detection 

mimic the trends of the overall study area.  The forest and urban classes increased while all 

other classes showed a decrease over the 20 year time period.  There was a slight decrease in 

the MREA, with this class only showing an increase in Halton Region.  The water class 

showed a slight decrease in Hamilton differing from the overall statistics as well as the 

Halton statistics, but both the MREA and water class losses are very small in comparison to 

the changes in the other classes. 

 

The forest class in the Regional Municipality of Hamilton increased 13.9 km
2
 from 1986 to 

2006.  This equals a 36.2 % increase from the original forest class size, although this was a 

much smaller increase than in the forest class in Halton Region.  Similar to the changes in 

Halton region, the majority of the increases to the forest class came from conversions of the 

agriculture 2 land cover to forest with 14.3 km
2
 of agriculture 2 land being converted to 

Forest by 2006.  Decreases to the forest area came in the form of conversions to agricultural 

land and urban land.  The urban changes are important to note since Hamilton is a largely 

urbanized region.  Conversions of rural land to urban land are perhaps the most visually 

prominent in the forest change mask and examples of expanding urban developments such as 

subdivision and road construction can be seen in Figure 5.9.  Several examples of forested 

areas being converted to agricultural land can be visually identified from the forest change 

mask, but most of these changes are errors due to the spectral similarity between the forest 

and agriculture 2 classes, which will be discussed in detail later in the section. 
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Table 5.8 Regional Municipality of Halton Change Statistics 
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Initial State 1986      [Pixel (area in km
2
, percentage)] 

  Forest MREA Recreation Urban Water Agriculture 1 

(bare soil) 

Agriculture 2 

(crop) 

Row Total/Class 

Total 

Water 

817(0.5,0.6) 

1117(0.7, 

15.3) 94(0.1,0.9) 273(0.2,2.4) 

2144(1.3, 

69.8) 702(0.4,0.9) 612(0.4,0.5) 5759(3.6,100.0) 

Urban 1196(0.8, 

0.9) 

1656(1.0, 

22.7) 402(0.3,3.8) 

6036(3.8, 

52.2) 59(0.0,1.9) 5434(3.4,7.0) 4989(3.1,4.0) 

19772(12.4, 

100.0) 

MREA 1660(1.0, 

1.2) 

3067(1.9, 

42.0) 187(0.1,1.8) 554(0.4,4.8) 10(0.0,0.3) 970(0.6,1.3) 1146(0.7,0.9) 7594(4.8,100.0) 

Forest 125481(78.4,

90.0) 155(0.1,2.1) 

1264(0.8, 

11.8) 

1161(0.7, 

10.0) 

609(0.4, 

19.8) 8923(5.6,11.5) 49691(31.1,39.7) 

187284(117.05, 

100.0) 

Agriculture 

2 (crop) 4824(3.0,3.5) 181(0.1,2.5) 

3627(2.3, 

34.0) 

1163(0.7, 

10.1) 119(0.1, 3.9) 

29614(18.5, 

38.1) 35783(22.4,28.6) 

75311(47.1, 

100.0) 

Recreation 

811(0.5,0.6) 25(0.0,0.3) 

3077(1.9, 

28.8) 84(0.1,0.7) 4(0.0,0.1) 2768(1.7,3.6) 3459(2.2,2.8) 10228(6.4,100.0) 

Agriculture 

1 (bare soil) 4648(2.9,3.3) 

1101(0.7, 

15.1) 

2027(1.3, 

19.0) 

2299(1.4, 

19.9) 126(0.1, 4.1) 

29318(18.3, 

37.7) 29434(18.4,23.5) 

68953(43.1, 

100.0) 

Class Total 139437(87.2,

100.0) 

7302(4.6, 

100.0) 

10678(6.7, 

100.0) 

11570(7.2, 

100.0) 

3071(1.9, 

100.0) 

77729(48.6, 

100.0) 

125114(78.2, 

100.0) 

 Class 

Changes 

13956(8.7, 

10.0) 

4235(2.7, 

58.0) 

7601(4.8, 

71.2) 

5534(3.5, 

47.8) 

927(0.6, 

30.2) 

48411(30.3, 

62.3) 89331(55.8,71.4) 

 Image 

Difference 

47847(29.9, 

34.3) 292(0.2,4.0) 

-450(-0.3,      

-4.2) 

8202(5.1, 

70.9) 

2688(1.7, 

87.5) 

-8776(-5.5,       

-11.3) 

-49803(-31.1,       

-39.8) 
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Table 5.9  Regional Municipality of Hamilton Change Statistics 

F
in

a
l 

S
ta

te
 2

0
0

6
 

Initial State 1986      [Pixel (area in km
2
, percentage)] 

  Forest MREA Recreation Urban Water Agriculture 1 

(bare soil) 

Agriculture 2 

(crop) 

Row Total/Class 

Total 

Water 

139(0.1,0.2) 0(0.0,0.0) 9(0.0,0.1) 48(0.0,0.2) 

3855(2.4, 

83.8) 43(0.0,0.1) 110(0.1,0.2) 4204(2.6,100.0) 

Urban 

1570(1.0,2.6) 

762(0.5, 

78.0) 332(0.2,5.2) 

19929(12.5,

85.6) 30(0.0,0.7) 5308(3.3,13.4) 7711(4.8,13.4) 

35642(22.3, 

100.0) 

MREA 71(0.0,0.1) 28(0.0,2.9) 5(0.0,0.1) 36(0.0,0.2) 0(0.0,0.0) 183(0.1,0.5) 196(0.1,0.3) 519(0.3,100.0) 

Forest 55198(34.5,8

9.7) 5(0.0,0.5) 

856(0.5, 

13.3) 

1226(0.8, 

5.3) 

564(0.4, 

12.3) 3008(1.9,7.6) 22934(14.3,39.7) 

83791(52.4, 

100.0) 

Agriculture 

2 (crop) 2884(1.8,4.7) 34(0.0,3.5) 

2164(1.4, 

33.7) 653(0.4, 2.8) 46(0.0,1.0) 14995(9.4,37.7) 15144(9.5,26.2) 

35920(22.5, 

100.0) 

Recreation 

130(0.1,0.2) 0(0.0,0.0) 

2064(1.3, 

32.2) 25(0.0,0.1) 4(0.0,0.1) 1081(0.7,2.7) 965(0.6,1.7) 4269(2.7,100.0) 

Agriculture 

1 (bare soil) 1518(0.9,2.5) 

148(0.1, 

15.1) 

987(0.6, 

15.4) 

1353(0.8, 

5.8) 99(0.1,2.2) 15128(9.5,38.1) 10666(6.7,18.5) 

29899(18.7, 

100.0) 

Class Total 61510(38.4, 

100.0) 

977(0.6, 

100.0) 

6417(4.0, 

100.0) 

23270(14.5,

100.0) 

4598(2.9, 

100.0) 

39746(24.8, 

100.0) 57726(36.1,100.0) 

 Class 

Changes 

6312(3.9, 

10.3) 

949(0.6, 

97.1) 

4353(2.7, 

67.8) 

3341(2.1, 

14.4) 

743(0.5, 

16.2) 

24618(15.4, 

61.9) 42582(26.6,73.8) 

 Image 

Difference 

22281(13.9, 

36.2) 

-458(-0.3,    

-46.9) 

-2148(-1.3,      

-33.5) 

12372(7.7, 

53.2) 

-394(-0.2,     

-8.6) 

-9847(-6.2,       

-24.8) 

-21806(-13.6,         

-37.8) 
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Elsewhere in Hamilton Region urban expansion into the two agriculture classes is visually 

prominent.  Both agricultural classes saw large decreases in area in Hamilton over the 20 

year time scale.  Of the 1986 agriculture 1 class, 75% maintained its agricultural land cover 

status in 2006, but only 44.7% of the 1986 agriculture 2 class was still classified as 

agriculture in 2006.  Based on conclusions drawn in previous sections, statistical conclusions 

for the agriculture 2 class will only be drawn using the later 10 year time period statistics 

from 1996 to 2006.  Using these statistics, as outlined in Table 5.10, 58.2% of the original 

1996 agriculture 2 class stayed an agricultural class as either agriculture 1 or 2. 

 

Figure 5.9 Examples of the Forest Class Changing to the Urban Class 

Expansion of urban land cover into previously forested land cover can be seen above.  The first example 

(Location: 43°15’33.18”N  79°59’9.66”W) shows the development of a new subdivision in the rural-urban 

fringe around Hamilton.  The second example (Location: 43°12’26.24”N  79°48’25.75”W)shows the 

development of the Red Hill Valley Parkway that runs through the NEP area. 
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Conversions from agriculture 1 to both urban and forest land cover occurred in Hamilton.  

An area of 3.3 km
2
 was converted to urban land cover while 1.9 km

2
 changed into forest land 

cover.  After qualitative analysis of the agriculture 1 change mask, changes to the urban class 

were highly visible.  Many small areas converted to forest area are likely to be true 

representations of the changes from agriculture 1 into forested areas, since the spectral 

signatures of these two classes are very different.  The same changes occurred in the 

agriculture 2 class with 26.5% of agriculture 2 in 1996 changing to the forest class in 2006.  

An area of 3.5 km
2
 (11.4%) was changed to urban area over the ten year time period.  Again, 

in this heavily urbanized area, changes to the urban class were very visually recognizable 

when examining the agriculture change masks.  Examples of the urban expansions that have 

occurred in the Hamilton study area can be seen in both Figure 5.9 (conversion of forest to 

urban) and Figure 5.10 (conversion of agriculture to urban). 

Table 5.10  Agriculture 2 Change Statistics from 

1996 to 2006 in Hamilton Region 

Agriculture 2 

 Pixel Percent Area (km
2
) 

Forest 12936 26.5 8.1 

Ag_1 13208 27.0 8.3 

Ag_2 15215 31.2 9.5 

Recreation 1729 3.5 1.1 

Urban 5547 11.4 3.5 

MREA 170 0.3 0.1 

Water 26 0.1 0.0 

Class Total 48831 100.0 30.5 

Class Changes 33616 68.8 21.0 

Image Difference -12911 -26.4 -8.1 

 

Other small scale land cover changes also took place with the remainder of the land cover 

classes.  There are very few MREAs in Hamilton region, but the class experienced a slight 

decline over the time period.  Only 0.3km
2
 was lost from 1986 until 2006 and the most 

noticeable change was a 0.5 km
2
 conversion to urban.  Although small, this change raises  
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Figure 5.10  Conversions of Agriculture Land Cover to Urban Land Cover 

Expansion of urban land cover into previously agricultural land cover can be seen in this figure.  The top 

images (Location: 43°20’7.35”N  79°53’47.58”W ) exemplify residential expansion, while the bottom images 

(Location: 43°15’32.36”N  79°59’8.57”W) show an example of a new subdivision development in the Regional 

Municipality of Hamilton. 

 

some interesting topics for discussion.  The spectral similarities between the urban and 

MREA classes creates class confusion when performing the classification and resulted in low 

overall accuracy values.  Positive information that can be taken away from the change 

analysis is that often new development sites are mistaken for MREA due to the excavation in 

preparation for the development.  Excavation unearths rock and bare stone which can be 

mistaken for an MREA and is a good indication, upon visual inspection where new 

developments may take place in the future.  An example of this can be seen in Figure 5.11 

below. 
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Figure 5.11  Identification of Urban Development Sites 

This figure shows how a mistaken MREA area can provide clues to future 

urban expansion.  This example of urban expansion in Hamilton (Location: 

43° 15’19.31”N  79°58’59.92”W) was classified as MREA in 1986 and 

change to an urban class in 2006.  False colour imagery reveals that an area 

of bare rock/soil was converted to a subdivision and was likely the start of a 

residential development. 

 

The urban class had a 53.2% increase with 86.6% of what was classified as urban in 1986 

staying urban in 2006.  There were small changes from the urban class to the forest and 

agricultural classes, which could indicate an increase in green space or parks within urban 

boundaries.  Finally, the recreation and water classes both saw only very slight decreases in 

Hamilton Region. 

 

Change analysis has been undertaken at the regional level before (Ramsay, 1996; Cowell et 

al., 1997; Lusted et al., 1997; Jankovic, 1999), but since the NEP consists of its own set of 
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boundaries known as land use designations, further worthwhile analysis would be to examine 

change based on each individual land use designation.  The Plan is monitored based on 

designation criteria, and land cover change in the Plan area is governed by sets of rules for 

each designation that range in protection levels.  The following section will provide a new 

angle on change analysis within the NEP. 

 

5.5 Change within the Niagara Escarpment Plan (NEP) Land Use Designations 

To go beyond previous studies, change at the designation level was examined.  The NEP has 

seven different land use designations that divide up the Plan area.  They are: 

 Escarpment Natural Area (ENA) 

 Escarpment Protection Area (EPA) 

 Escarpment Rural Area (ERA) 

 Minor Urban Centre (MUC) 

 Urban Area 

 Escarpment Recreation Area 

 Mineral Resource Extraction Area (MREA) 

 

A designation map for the study area can be seen in Figure 5.12.  For this study, change will 

be examined across five of the seven land use designations: the ENA, EPA, ERA, urban area 

and the MREA designations.  MUC is a designation that identifies the various rural 

settlements, villages and hamlets that are distributed throughout the Plan area (The Niagara 

Escarpment Plan, 2005).  The boundaries of this designation outlining a rural settlement are 

superimposed onto the existing land use designations, therefore a MUC may also be, for 

example, in an area of ERA.  Because of the nature of this designation, its changes will not 

be examined specifically, but changes in MUCs may be reflected in changes within the urban 

class in each classification map. 
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Figure 5.12  Hamilton and Halton Region Land Use Designation Map  
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The second designation exempt from the final change analysis is the Escarpment Recreation 

Area designation.  Even though recreational areas as defined in this study do exist, there are 

no areas of actual Escarpment Recreation Area designation in Hamilton and Halton and 

therefore will not be included in the analysis.  For example under the NEP, golf courses are 

not designated as Escarpment Recreation Areas.  However as defined in this study, golf 

courses along with parks and other small scale recreational areas were defined under the 

recreation class and had to be included so the classes would be exhaustive.  The criterion for 

Escarpment Recreational Area designation under the Plan is that an area of recreation must 

be an established, identified or approved larger scale recreational development such as ski 

facilities and resorts (The Niagara Escarpment Plan, 2005). 

 

Even though the Escarpment land use designations are based on land use (as opposed to land 

cover), these development criteria outlined in the Plan helped establish the types of land 

cover an analyst would expect to find in the NEP area for land cover classification using 

remote sensing.  For the designation change analysis, change will only be examined over the 

entire time scale from 1986 to 2006.  Not every class will be examined for every designation 

as they were for the previous sections on Halton and Hamilton Regions.  Instead the analysis 

will focus on the key classes that changed the most for each designation.  Full statistics can 

be seen in Appendix C.  This section begins with the designation that has the highest 

protection in the Plan area. 

 

5.5.1 Escarpment Natural Area (ENA) 

The ENA protects the most natural components of the escarpment.  This designation, with 

the highest level of protection is placed on important natural features within the NEP such as 

wetlands, streams and forested areas and works to preserve important plant and animal 

species (The Niagara Escarpment Plan, 2005).  Although this policy provides the highest 

level of protection within the plan, it also allows necessary small scale developments such as 

single dwellings, non-intensive recreation such as footpaths and essential transportation and 
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utility facilities (The Niagara Escarpment Plan, 2005).  The change mask for this designation 

can be seen in Figure 5.13. 

 

Figure 5.13  Changes in Escarpment Natural Area (ENA) from 1986 to 2006 

 

Overall the changes in the ENA were few.  This was the anticipated result for this 

designation since this area of the escarpment is under the highest level of protection.  

However, some changes were seen and the changes that did occur over the 20 year time 

period followed the restrictions as outlined in the Plan.  The only significant changes were in 

the forest and agriculture 2 classes.  Forested area increased in the ENA by 12.9 km
2
 while 

areas of vegetated agricultural fields (agriculture 2) decreased by 13.4km
2
.  Most (98%) of 

the forested area in 1986 stayed forest in 2006, although there were some minor changes to 

other classes such as urban, water, agriculture 1 and agriculture 2.  Agriculture 2 was the 

class that contributed most to the growth of the forest class in the ENA.  An area of 12.5km
2
 

(77.9%) of agriculture 2 land cover in 1986 was converted to forest in 2006.  Due to the 

spectral similarities, this statistic may be somewhat overestimated; however changes in the 
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agriculture 1 class also took place.  An area of 0.8 km
2
 or 44.1% of the 1986 agriculture 1 

changed to forested area in 2006 indicating a conversion of agricultural land to forested area 

for an overall increase in this class.  Also interesting to note was a slight increase in the 

agriculture 1 class but with the 13.4km
2
 decrease in the agriculture 2 class, this would 

indicate an overall loss of agricultural land. 

 

The change statistics results showed little to no change in the remaining classes.  The MREA 

class experienced the smallest change of all with almost no gain in area.  This is a positive 

change result as it means the Plan has succeeded in protecting the most delicate ecological 

sections of the escarpment from mineral resource extraction operations.  A slight increase of 

72 pixels was seen in this class, but was determined upon visual inspection to be merely a 

designation boundary issue, as these boundaries are only accurate to a 1:50,000 scale and are 

not intended for site specific analysis as outlined in the Plan (The Niagara Escarpment Plan, 

2005).  There was a slight decline in recreational area by 0.4km
2
.  Not much recreational area 

was classified in this designation as most would consist of footpaths such as the Bruce Trail, 

which would be nearly impossible to detect at the 25m spatial resolution, especially with the 

full leaf on conditions of the canopy.  This designation has succeeded in preventing large 

scale recreational areas, such as golf courses, as can be seen in other designations throughout 

the Plan.  There was a very small increase (0.5km
2
) to the urban area within the ENA with 

some small pieces of agricultural land and forested areas changing to the urban class. 

 

5.5.2 Escarpment Protection Area (EPA) 

Protected for their environmental significance much like the ENA, these areas often represent 

some of the most visually prominent features of the Niagara Escarpment (The Niagara 

Escarpment Plan, 2005).  Not only do these areas have the most scenic views along the 

Escarpment, but they also have been significantly modified by land use activities such as 

residential developments and agricultural practices (The Niagara Escarpment Plan, 2005).  

EPAs act as a buffer to the highly protected ENAs and aid in preserving what natural slopes 
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still exist on the Escarpment today (The Niagara Escarpment Plan, 2005).  Permitted land 

uses within this designation are agricultural operations, single dwellings, recreational areas 

requiring minimal impact on the landscape and small scale commercial uses (The Niagara 

Escarpment Plan, 2005). 

 

Similar changes were experienced in the EPA designation as were seen in the ENA.  The 

major changes in this designation were seen in the forest and agriculture 2 classes.  The 

forest class saw a 16.5 km
2
 increase while the agriculture 2 class experienced a 15.4km

2
 

decrease in area.  The majority (81.8%) of forested area in 1986 stayed forest in 2006, which 

means the forest class in the EPA designation saw a greater percentage of change than the 

forest class in the ENA designation.  The forest class saw small changes to agricultural land, 

recreational areas and urban areas.  Decreases in area occurred for both agricultural classes 

with the agriculture 2 class seeing the largest decrease.  Although there was a slight decrease 

in the agriculture 1 land cover class, 78.9% of the original class in 1986 remained bare 

agricultural soils in 2006.  The largest changes in this class saw a conversion to forest (2.8 

km
2
), urban area (2.2 km

2
) and recreational areas (0.9 km

2
).  More than half (55.8%) of 1986 

agriculture 2 remained as one of the two agriculture classes in 2006.  The largest change to 

this class, which has been a consistent change throughout the analysis, was the change to 

forested areas.  Smaller agriculture 2 areas also changed to urban and recreational areas.  An 

interesting discovery seen in the change masks of the forest and agriculture 1 and 2 classes 

was the expansion of a golf course in Halton Region, which is typically prohibited under the 

policy of the EPA designation.  This can be seen in Figure 5.14.  Even though the recreation 

class showed a slight decrease statistically, it was this addition to the class that stood out 

from the qualitative analysis. 

 

Another increase seen in this designation was the urban land cover class.  This class 

increased by 2.9km
2
 and was converted largely from the two agricultural classes and small 

portions of forested land, which can be seen on the change masks.  The conversions to urban 



 

110 

from agriculture are largely composed of expansion of previous housing developments and 

the creation of roadways throughout this designation.  Once again, very little change was 

experienced in the MREA land cover class, with a loss of 4 pixels across the entire 

designation. 

 

Figure 5.14  Expansion of a Golf Course in the Escarpment Protection Area (EPA) Designation 

(Location: 43°32’45.96”N  79°56’48.73”W)  Figure 5.10 shows the expansion of a golf course in EPA.  

Typically, under section 1.4 of the NEP, golf courses are not permitted uses.  This expansion would have 

possibly required an amendment to the NEP. 

 

5.5.3 Escarpment Rural Area (ERA) 

The ERA designation provides the buffer for the more ecologically sensitive areas of the 

escarpment that is protected by the two previous designations discussed (The Niagara 

Escarpment Plan, 2005).  Although this designation allows for the most development, other 

than the specific urban and MREA designations, it is important in protecting lands in the 

vicinity of the Escarpment (The Niagara Escarpment Plan, 2005).  Permitted uses in this 

designation range from agricultural operations to small commercial and industrial 

developments to service rural communities (The Niagara Escarpment Plan, 2005).  Changes 

similar in magnitude and type to the EPA were seen in the change results for the ERA.  Since 

the policies on these two designations are more lenient, a greater magnitude of changes were 

experienced in the EPA and ERA designations as opposed to the small amounts of change 

seen in the highly restrictive ENA designation.  All classes experienced an increase in area 

except for the agricultural classes.  Once again forest area saw an increase of 13.9 km
2
 while 

the decrease experienced by the agriculture 2 class was a much lower percentage than in 
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previous designations.  Only 9.5 km
2
 of agricultural 2 land were lost in the ERA designation.  

The urban class saw the third highest change with the highest percentage of change so far 

with an increase of 2.5 km
2
.  The description of this designation and its land use restrictions 

help to explain the resulting changes. 

 

The forest class lost its lowest percentage of land out of all three designations analyzed so 

far.  The majority (80.3%) of 1986 forested area remained forested in 2006.  Minor 

conversions to agricultural land, recreational land and urban areas were seen, but mostly it 

was the conversion of agricultural land to forested area that contributed to the overall 

increase of this class.   Agriculture 2 had 13.7 km
2
 of land change to forested areas while 

60.4% remained agricultural (either agriculture 1 or 2 class).  An area of 3.3 km
2
 of 

agriculture 1 land was converted to forest, while 80.7% of agriculture 1 land remained one of 

the two types of agriculture.  Both agriculture classes experienced changes to the urban 

designation as well.  Agriculture 1 had 2.1 km
2
 and agriculture 2 had 1.8 km

2
 converted to 

urban lands in the ERA.  Overall, both agricultural classes saw a decrease in area with the 

agriculture 1 class experiencing an 8 km
2
 decrease and the agriculture 2 class experiencing a 

9.5 km
2
 decrease.  Although overall agricultural land in the Plan area is decreasing, this 

designation saw less of a decrease than the previous two designations, possibly suggesting 

some success of agricultural preservation in this area. 

 

All other classes experienced increases in area in the ERA designation.  As stated above, 

urban area increased in the ERA by 2.5 km
2
 mostly from the conversion of agricultural land 

and forested areas which could be seen when examining the change masks for each of these 

classes.  The recreation, MREA and water classes all saw minor increases in this designation.  

Small expansions and additions to golf courses were acknowledged as the reason for increase 

in the recreational class.  A very slight increase occurred in the MREA class.  Few changes 

have been seen in this class since changes to MREA classes are restricted to the MREA 

designation to be discussed in section 5.5.5. 
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5.5.4 Urban Area 

Existing urban areas within NEP boundaries have policies in place to prevent further 

encroachment on escarpment lands and minimize impacts from new developments (The 

Niagara Escarpment Plan, 2005).  Within the urban designation there are some areas that 

remain largely undeveloped while in other areas urban growth is encroaching on escarpment 

slopes and adjacent natural areas (The Niagara Escarpment Plan, 2005).  The underlying 

policy of the urban designation aims to minimize impacts where urban areas already exist 

while preventing the expansion of urban areas into the remaining natural areas and beyond 

(The Niagara Escarpment Plan, 2005).  To accomplish this, the NEP outlines permitted uses 

and development guidelines and works to ensure only development compatible with the 

Escarpment landscape is permitted (The Niagara Escarpment Plan, 2005). 

  

The changes that occurred in the urban classification were much different from the 

experiences previously discussed in the other designation types.  Since the urban designation 

is specifically used to designate urban areas in the vicinity of the Niagara Escarpment the 

changes that occurred most were increases in urban area.  Since there is no urban designation 

within the Halton Region portion of the plan, the analysis in this section only took place in 

Hamilton Region.  Urban area increased by 5.4km
2
 and forested area increased by 2.3km

2
.  

The recreation and water classes saw almost no change, with both classes’ image differences 

being less than 100 pixels each.  The MREA class and both agricultural classes experienced 

losses of area less than 5.1 km
2
. 

 

The majority of the changes seen in the forest class were changes to urban areas.  An area of 

0.7km
2
 or 27% was converted to urban, but 57% or 1.5 km

2 
stayed forested over the 20 year 

time period.  The class that contributed the most to the increase in area of the forest class was 

the agriculture 2 class which had 2.6 km
2
 converted to forested area.  For the agriculture 2 

class, 26.9% remained a type of agriculture; either agriculture 1 or agriculture 2.  Of the 

agriculture 2 class, 38.9% changed to urban area which could be easily seen when analyzing 
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the change mask for the class.  An interesting observation that was made from the qualitative 

analysis of the agriculture 2 class was that some of the conversions to forested areas were 

occurring within urban subdivisions.  A possible explanation for this change is that the 

vegetation that existed within these urban areas in 1986 may not have completely matured 

and would therefore be misclassified as a type of agriculture.  Since an ―other vegetation‖ 

type was not included in the analysis, this classification error was experienced in some areas 

throughout the study.  By 2006 this urban forest cover or urban vegetation would have 

increased, thus showing an increase in forested areas within urban boundaries.  An example 

of this can be seen in Figure 5.15. 

 

Figure 5.15  Example of Growth in Urban Natural Areas 

(Location: 43°13’31.94”N  79°59’46.03”W) This figure shows an example of the maturation of an urban 

forest as a possible explanation for the increase experienced in the forest class in the urban designation in 

Hamilton Region.  

 

The original 1986 agriculture 1 class showed 48% of the class staying as one of the two types 

of agriculture by 2006.  Of the agriculture 1 class, 40.8% changed to urban area and a small 

8% was converted to forested area.  Finally, the MREA class experienced a slight decrease in 

this designation due to an error discussed previously.  Visual inspection of the changes 

revealed most areas were excavated land for development, spectrally similar to a quarry, that 

were fully developed by the 2006 imagery date. 
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5.5.5 Mineral Resource Extraction Area (MREA) 

This designation was included in the Plan to place boundaries around existing mineral 

resource extraction sites to prevent further expansion into the NEP area.  This designation 

includes only pits and quarries that are licensed under the Aggregate Resources Act and 

allows for areas of minimal expansion to existing MREAs (The Niagara Escarpment Plan, 

2005).  It is also important to note that new MREAs producing less than 20,000 tonnes 

annually are permitted in the ERA designation without amendment to the Plan and anything 

larger would require an amendment (The Niagara Escarpment Plan, 2005). 

 

Interesting changes occurred in the MREA class overall.  The actual MREA class was the 

only class that did not change.  This class experienced only a very small increase in area; the 

equivalent of 35 pixels.  No increase in MREA may seem erroneous, since one would expect 

quarry operations to have expanded over the study time period.  Initially this result sounds 

promising but upon further analysis, there would appear to have been a slightly higher 

increase in this class than the results suggest.  This will be discussed later in the section, but 

overall an unchanged MREA statistic would indicate the Plan’s success in preventing further 

extraction operations on the escarpment.  In fact, qualitative analysis of the MREA change 

mask shows clearly where rehabilitation efforts are underway as in the Milton Limestone 

Quarry adjacent to the Kelso Conservation Area in Halton Region (Conservation Halton, 

2004).  This rehabilitation site can be seen in Figure 5.6. 

 

The forest area in the MREA designation decreased by 0.9 km
2
.  Some forest area remained 

but the majority of the changes were conversions to MREAs.  There were also smaller 

changes to the urban, agriculture 1 and water classes that led to some interesting conclusions 

about limitations with the MREA and urban classes.  These two classes had the lowest class 

accuracies for all three images.  Due to their spectral similarities boundary areas between the 

MREA and the surrounding buffer vegetation get misclassified as the urban class.  This was 

especially evident when examining the change mask for the urban class for this designation.  
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Visual inspection of the class mask images allow the analyst to see where the changes quoted 

in the statistical change detection report are occurring in the class geographically.  Figure 

5.16 shows this boundary pixel effect between the urban and MREA classes.  There were 

many conversions to water mostly from the MREA and Forest classes and were added as 

lakes or ponds on previous extraction sites.  There was minimal agricultural area within the 

MREA, with the exception of the areas designated for future expansion.  Agriculture 1 

showed a slight increase while agriculture 2 decreased and had most of its area converted to 

MREA.  In fact, both agriculture classes showed the most change to the MREA class.  Of the 

agriculture 1 class, 45.3% stayed as either agriculture 1 or 2 in 2006, while 14.4% changed to 

MREA and 17.1% changed to urban.  Since the urban classification in this designation 

actually represents MREA the two values can be totaled for a 31.5% change from agriculture 

1 to MREA.  The same can be done for the agriculture 2 class where 33.3% of the class 

stayed agriculture in 2006 and 35.1% changed to MREA.  To a lesser degree, there were also 

changes to the forest and water classes. 

 

Figure 5.16  Example of Urban Boundary Pixels around the Mineral Resource Extraction Area 

(MREA) Class 

(Location: 43°24’6.07”N  79°53’11.02”W)   
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Chapter 6 

Conclusion 

6.1 Discussion 

The goal of this research was to examine land cover change in the Regional Municipalities of 

Hamilton and Halton portions of the NEP.  This was achieved through the use of Landsat 5 

TM remotely sensed data and an SVM supervised classification algorithm over a 20 year 

time period from 1986 to 2006.  The main objectives of this study were to: 

1. Create land cover classification maps (as accurately as possible) at a regional scale in 

the Regional Municipalities of Hamilton and Halton portions of the NEP using 

remotely sensed data; 

2. Identify what land cover changes have occurred in the Regional Municipalities of 

Hamilton and Halton over a 20 year time period from 1986 to 2006 (qualitative 

assessment); 

3. Determine how much the land cover has changed in the Regional Municipalities of 

Hamilton and Halton over the 20 year time period (quantitative assessment); 

4. Examine both qualitative and quantitative changes that have occurred in the NEP land 

use designations over the 20 year time period in the Regional Municipality of 

Hamilton and Halton; 

5. Detect (if any) potential land cover changes that are not compatible with the NEP 

land use designations and NEP policies 

 

Land cover maps of the Regional Municipalities of Hamilton and Halton Region were 

created for each image at an average accuracy of 86.7% with an average Kappa coefficient of 

0.84.  Based on standards quoted by Treitz and Rogan (2004), land cover map accuracy 

should range between 85% and 90%, or between 80% and 85% for change detection.  The 

accuracy levels achieved with the SVM classification were ideal for the study of land cover 
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change at a regional scale in the NEP area.  With high accuracy results, land cover change 

was detected for the study area.  Change was examined across all seven land cover classes: 

forest, water, agriculture 1 and agriculture 2, recreation, urban and MREAs.  The main 

overall change trend was the increase in forested area within both Regional Municipalities.  

From 1986 to 2006 forest area increased by 43.8 km
2
, which represents an approximate 

increase of 35% forest cover from the original 1986 forest cover.  This was the most 

important finding as it is evidence of the success of Niagara Escarpment protection by the 

NEC and the NEP. 

 

There was a decrease in agricultural land overall in Hamilton and Halton Regions.  The 

examination of this class was unique since dates of the images used in the study covered 

different time periods in the growing season.  There was much change from one agriculture 

type to another (agriculture 1 changing to agriculture 2 or vice versa).  The post classification 

change statistics and change masks produced using ENVI 4.5 were ideal to examine changes 

in agriculture to other types of land cover and to disregard the changes between the two 

agricultural classes.  For the agricultural classes, the purpose of this work was to examine 

agricultural land change (whether it increased or decreased) and not focus on change of 

agriculture type.  Upon inspection of the change results, it was determined that the bulk of 

the decrease in agricultural land was due to a conversion to forest and urban land cover 

classes.  Due to the low accuracy results of the 1986 agriculture 2 class, this class was 

examined in Hamilton and Halton individually using the 1996 and 2006 images, since this 

class had a much higher accuracy value for the later 10 year time period.  The trends 

remained the same showing agricultural land being converted to forest and urban land cover 

but at a reduced percentage value, since forested area would have previously increased from 

1986 to 1996. 

 

Despite the fact that the urban class had poor accuracy results, changes in this designation are 

very important to note.  Due to the spectral similarities of the urban class with other classes, 
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such as the MREA and agriculture 1 (bare agricultural field) classes, quantitative change 

results were not completely accurate.  Qualitative analysis was necessary to reveal where true 

urban expansion took place in the Plan area.  Overall and in each Regional Municipality, the 

change statistics showed an increase in urban area.  The results of the urban analysis are best 

examined in each region individually as opposed to overall change.  In Halton Region the 

increase in urban land would be exaggerated, since spectrally similar boundary pixels of the 

MREA areas are erroneously classified as urban.  The change values in the urban class of the 

Hamilton Region would be more accurate since very minimal MREA class exists in this 

region.  The examination of urban change in the Hamilton Region alone eliminated this 

major limitation of this class, therefore yielding more accurate results.  The Regional 

Municipality of Hamilton experienced a 7.7 km
2
 increase in urban land cover. 

 

Similarly, there were areas of urban developments that were mistakenly classified as MREA 

in the Plan area.  It was determined that areas of early development, usually with exposed 

soil or bedrock, were classified MREA in 1986 or 1996 and appeared as urban developments 

in the final 2006 image.  This is due to the spectral similarity of the land cover materials.  

Overall there was much change in the MREA class but no increase.  This is a positive result, 

as one of the primary reasons the Plan was created was to monitor and control mineral 

resource extraction operations on the Escarpment.  However, this result may be deceiving.  

Large areas of mineral resource extraction turned into water by 2006.  Usually the creation of 

some of these water bodies came with slight expansions to the quarrying operations, so with 

the change of MREA to water there were also changes of forest and agricultural area to 

MREAs.  The expansions that did occur remained within the MREA designation and are 

permitted under the NEP. 

 

Examining change based on each land use designation was a new approach proposed to 

examine change in the Plan area and also provided the ability to mask out some problem 

classes such as the MREA and the urban class to examine change based on Plan policies.  
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Five of the NEP land use designations were examined, and change statistics were calculated 

individually for each designation.  The ENA is the core protection area of the NEP.  Largely 

forested, this area saw minimal land cover change.  There was a 12.9 km
2 

increase in forested 

area that was mostly added through the conversion of agriculture 2 land.  The EPA and ERA 

designations represent the buffer areas of the NEP.  Put in place to protect the core of the 

Escarpment, a wider range of land cover changes was seen in these designations.  In the EPA 

the familiar trend of an increase in forested area and a decrease in agricultural land was seen, 

with the agriculture land being converted to forest area.  Although an overall increase was 

observed, the forest class did change to some areas of recreation and urban.  This change of 

forest to recreation exemplified one of the few negative changes seen in the Plan.  A golf 

course was added in the EPA between 1986 and 2006, but is restricted under Plan policies.  

There was also a notable increase in urban area that is a more accurate representation of the 

urban changes in the plan since no MREA areas of similar spectral properties were included.  

In the ERA, all classes showed some increase except for the agricultural classes, which both 

decreased in area.  If large changes continue to occur in these ―buffer‖ designations, it could 

reduce the buffer around the most heavily protected section of the Escarpment, making these 

sensitive areas more vulnerable. 

 

Since two of the land cover classes studied in this work had their own NEP land use 

designations, studying these designations individually offered much insight into the changes 

occuring in these classes.  The urban designation encompasses most of the heavier urbanized 

areas within the NEP.  As expected the urban class increased, but so too did the forest class.  

This result could suggest that natural areas even within urban boundaries are increasing.  

This could be seen visually as the forest class increased within residential developments, for 

example.  The MREA designation made it possible to look at changes in individual quarry 

operations.  It was easy to see expansions and the start of rehabilitation efforts.  Forest and 

agriculture 2 areas decreased as some of these areas were converted to the MREA class, 

which increased slightly.  There was a large increase in urban area, but this was identified 

earlier as a mis-classification.  The urban class surrounding the boundaries of most MREA 
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areas was actually considered MREA, and so there was some increase to the class.  There 

was a large increase in water as ponds were added within MREA boundaries for future 

rehabilitation efforts.  For the most part, all MREA operations stayed within the boundaries 

of the designation. 

 

6.2 Limitations 

Limitations to this study exist and should be identified so correct information may be drawn 

from the conclusions.  Limitations exist at every step of a remote sensing study, from data 

acquisition, to the decisions that are made with the final information.  It is the job of the 

analyst to do everything possible to minimize these errors at every step of the remote sensing 

classification process, and it is the job of the final user to acknowledge these potential 

limitations when making decisions based on the information. 

 

Error may be introduced at any step of the project and can be built upon throughout the work 

(Jensen, 2005).  Error can begin at the point of data acquisition, although the analyst has no 

control over this error.  The analyst starts to have control over the quality of the data and 

information once pre-processing begins.  In the example of this study, the images were 

acquired from the GRCA.  Geometric corrections were performed at the GRCA and upon 

visual inspection were deemed adequate for the purposes of this study.  Once the data was 

received, atmospheric correction was performed.  Even though this correction was performed 

with as much data input as possible, some assumptions were made which could result in 

some degree of error. 

 

There are limitations associated with the selection of the Landsat 5 TM data for this study.  

Issues of spatial and temporal resolutions must be considered for an accurate classification.  

The 30 m spatial resolution of the Landsat 5 TM data (or in the case of this study, 25 m re-

sampled) was chosen, since this scale was ideal for a regional study of the Niagara 
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Escarpment.  Some land cover classes however, had objects on the ground smaller than the 

resolution of the imagery which reduced the classification accuracy of these classes and 

introduced a mixed pixel affect.  The urban, MREA and recreation classes were affected by 

this limitation.  The major drawback this caused was with the creation of boundary pixels 

around individual land cover objects.  As an example, the edges of agricultural fields were 

often misclassified due to the other vegetation types surrounding the fields.  This was present 

in other classes as well.  The edges of water bodies were often mixed with vegetation, which 

made these two classes spectrally similar.  Also the edges of the MREAs mixed with 

vegetation and created an erroneous urban classification.  Since the object oriented approach 

obtained an average spectral value from each object, mixed boundary pixels could have an 

effect on how each object was classified (Dean and Smith, 2003).  

 

There were limitations with the change detection due to the dates of imagery.  Even though 

images were chosen to cover as much of the lifespan of the Plan as possible, each of the three 

images were captured at different times during the year.  An attempt was made to use images 

from approximately the same time of year, but the dates ranged from May 29, 1996 to June 

03, 1986 to August 13, 2006.  As a result, slight differences in vegetation phenology, 

especially with the agricultural classes, introduced error.  The 2006 image was fairly late in 

the growing season and the 1986 image was fairly early in the growing season, and so this 

difference needs to be acknowledged when examining the change statistics. 

 

Although every precaution was taken to perform an accurate classification, human error may 

sometimes be introduced.  A high degree of knowledge of the study site was incorporated 

into the creation of the training data and of the classification of the ground reference points 

used for accuracy assessment.  To accomplish this, high resolution orthoimagery from 2005 

and 1995 were used for the 2006 and 1996 images respectively.  This process would only be 

as accurate as the skill of the analyst for air photo interpretation.  Alternatively field visits 

could have been conducted for the collection of ―ground truth‖ information.  The collection 
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of in situ data was excluded from the analysis since field work would have taken place in 

2008 and the high resolution orthoimagery was closer to the Landsat image dates.  

Unfortunately there was no imagery available for the 1986 image and so the training and 

ground reference point data sets had to be classified based on the Landsat 5 TM image and 

user knowledge.  This could account for the 1986 image having the lowest overall 

classification accuracy.  For some classification algorithms (such as the SVM and object 

oriented classifications), the analyst must enter parameter data.  The optimal parameters were 

chosen on a trial and error basis to determine which parameters would yield the best results. 

 

The amount and type of land cover classes were chosen wisely, so the entire image would be 

classified.  Areas of ―no data‖ cannot be included for land cover change detection.  

Considering the 25m spatial resolution of the images, classes had to be selected based on 

what land cover feature could be detected at this scale.  The original set of 12 classes had to 

be reduced, once initial classification trials showed potential separability issues between 

some of the classes. Early on in the study it was determined that one of the original classes 

under consideration, wetlands, would not be included in the classification.  Wetland areas 

were difficult to classify at the 25m resolution of the Landsat 5 TM data, since different types 

of wetlands range in size and the amount of water and vegetation present.  This class was 

spectrally similar to the forest, water and agriculture 2 and agriculture 4 classes and was 

almost impossible to separate.  As the study progressed similar classes were merged to obtain 

the highest accuracy possible.  The water/shallow water, coniferous/deciduous forest, 

agriculture 1/3 and agriculture 2/4 classes were all merged, while the ―other vegetation‖ class 

was deleted from the classification altogether.  Although these changes increased the 

classification accuracy some remaining classes still presented separability issues.  The forest 

and agriculture 2 classes were the most similar along with the recreation class since typically 

all these classes contained healthy vegetation. To a lesser degree, spectral similarity between 

the MREA, Urban and agriculture 1 classes also existed. 
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Finally, and most importantly to note, any errors accrued throughout the classification 

process will be carried forward to the change detection results.  Since classification of remote 

sensing data is merely a representation of the information captured at the sensor (which can 

have errors as well), it is nearly impossible to achieve 100% classification map accuracy, so 

some degree of error will always exist.  Sing (1989) states that if two classified images are 

used for change detection their combined accuracy is only as good as the product of their 

accuracies.  In this case overall change was calculated using the 1986 and 2006 images that 

had overall accuracies of 82.6% and 89.6% respectively.  This means that they may only 

have a joined 74% overall accuracy (0.826 × 0.896 ×100 = 74%).  Due to the above 

limitations, qualitative visual analysis was necessary to identify problem classes and justify 

the final change detection statistics.   It is important to acknowledge these errors when using 

the information provided in the final results.  One positive aspect of having limitations to any 

study means that directions and improvements for continued or future work may be 

identified.  It is also important to note where this work falls short in providing land cover 

change information to the NEC.  At a regional scale and with these particular image dates, it 

was not possible to determine specific changes in agricultural crop types.  It was also not 

possible to determine various types and stages of forest growth.  Smaller scale land cover 

features such as urban, MREA and recreational areas were classified with lower accuracy 

values, resulting in lower confidence in the statistical change analysis for these classes.  

Again, due to these limitations, qualitative analysis of the changes occurring in the Hamilton 

and Halton portions of the NEP were a valuable part of the analysis. 

 

6.3 Summary of Conclusions 

Landsat 5 TM remotely sensed data is ideal for a regional land cover study in the NEP area.  

A SVM supervised classification provided the highest overall accuracy for the creation of 

land cover maps versus other traditional per-pixel and object oriented supervised 

classifications.  The overall average accuracy of 86.7% was ideal for further land cover 

change studies through a post-classification qualitative and quantitative analysis. 
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The results of this study can provide much knowledge on the changing landscape of the 

Escarpment to the NEC.  An advantage to using remote sensing data to monitor land cover 

changes is that studies can be conducted over regular time intervals, so land cover 

information can be updated frequently.  Cowell et al. (1997) stated that changes in land cover 

in the NEP should be conducted every 5 years.  Implementation of a regular land cover 

monitoring schedule would be useful for the NEC since Plan reviews are required every 5 

years so the NEP can be updated.  This study shows how remote sensing can help monitor 

the Escarpment, detect the changes occurring on the landscape and provide useful 

information to the NEC for monitoring and updating Plan policies. 

 

This study acts as a baseline study to provide a regional look at land cover change in a 

portion of the NEP.  The SVM method provided accurate land cover maps at a regional scale 

and provided the NEC with an overview of which key land cover types where changing in 

the NEP area.  Through the analysis of the SVM classification results it could be determined 

which classes were increasing, which were decreasing and where geographically these 

changes were occurring.  Overall, the major changes that occurred in the Plan area were an 

increase in forested area, a decrease in agricultural land, relatively little increase in MREA 

and slight urban expansions.  Agricultural land is on the decline in the Plan area, mirroring a 

similar trend to the rest of the Province.  The slight expansions of MREA were contained 

within their designation.  There were also some positive changes in the MREA designation, 

showing some areas of rehabilitation.  Urban expansion occurred mostly in the form of 

residential development and roadways.  These urban expansions were also largely contained 

within the urban designation.  An examination of the change in each NEP land use 

designation indicated that the majority of the changes experienced in the NEP over the 20 

year time period coincide with the policies outlined in the Plan.  General knowledge of where 

land cover changes are occurring can direct the NEC to future land cover change research in 

the NEP area. 
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To improve upon the work examined in this study, the next step will be to examine where 

major changes are occurring in greater detail through the use of higher resolution imagery. 

Higher resolution imagery such as Ikonos will provide multispectral remote sensing imagery 

at a 4m resolution (Jensen, 2005).  It also has a 1m panchromatic band that can be 

incorporated into the classification and used to increase accuracy (Jensen, 2005).  Higher 

resolution imagery would be better suited for the classification of smaller scale land use 

classes such as urban areas, MREAs and recreational areas.  Although high resolution 

imagery can enhance the SVM classification, alternative classification methods may also 

work to improve classification accuracy.  Object oriented classification is well suited for high 

resolution data and could aid the NEC in conducting more in-depth land cover analysis.  

Since this methodology focuses on image objects as opposed to pixels, this method could 

help enhance the change analysis of agriculture in the NEP as well as more detailed forest 

fragmentation studies.  The results of object oriented classification mapping can also be 

easily incorporated with existing NEC GIS data sets.  For the incorporation of ancillary data 

and expert knowledge to enhance classification, an expert systems approach may be useful 

for the NEC.  Expert knowledge is used for a multi-stage classification to make a series of 

decisions and mimics human decision making with multiple data sets (Richards and Jia, 

2006).  This technique could be valuable to the NEC since more data and background 

knowledge could provide extra information for image classification enhancement.  Land 

cover change in the NEP must continue to be monitored into the future to ensure that certain 

land cover types (such as MREA and urban) remain within their designated boundaries so the 

more highly protected areas of the Escarpment (such as the ENA and EPA) remain protected 

for future generations to enjoy.  Continued research into new remote sensing data sets and 

methods is needed to continue monitoring land cover change in the NEP. 

  

6.4 Future Research 

With land cover mapping and change analysis completed for portions of the NEP that has 

been fully assessed for accuracy, further research into the use of remote sensing data for 
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monitoring land cover changes in the NEP can progress.  Although the SVM classifier 

performed well for the study area, there are still many new techniques, such as the object 

oriented classification and the expert systems approach that should be explored in greater 

depth to increase mapping accuracy in the Plan area.  The object oriented approach may be 

better suited for more local scale studies along the escarpment with higher spatial resolution 

data.  The final classification maps produced from the object oriented approach are also 

compatible with GIS, since classification is based on polygons or ―objects‖.  An expert 

systems approach could increase classification map accuracy through the inclusion of expert 

knowledge and a wealth of ancillary data.  Although more work could always be done in 

terms of choosing the appropriate classification algorithms at the regional scale, more local 

scale studies should be conducted for problem areas that may be detected at the regional 

scale specifically.  Local scale studies with higher resolution data (such as Ikonos) could be 

useful for urban area and MREA analysis in the NEP.  A whole other body of literature exists 

on the advances being made in urban area remote sensing (Forster, 1985; Ward et al., 2000; 

Masser, 2001; Miller and Small, 2003; Maktav et al., 2005). 

 

The use of ancillary data to enhance the classification should also be explored.  DEMs could 

be incorporated into the classification since the topographic effects of the Niagara 

Escarpment can introduce errors.  Similar land cover change studies have been conducted 

using GIS (Walker and Solecki, 1999; Schultz, 2002).  In situ measurements for use in a GIS 

can be useful for land cover change, but only remote sensing can provide detailed, 

quantitative land cover information at large spatial scales and at frequent temporal intervals 

(Prenzel, 2004). GIS could be used to enhance the classification accuracy results.  Some 

areas of known land cover type could be masked out so as to not introduce error.  This was 

attempted for the MREA class but yielded poor results.  The resulting classification maps 

could be converted into vector format and edited in a GIS to improve accuracy and have 

operational maps for GIS purposes. 
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Land cover change studies should be continued along the length of the NEP using Landsat 

5TM data.  Landsat data has ideal spectral temporal and spatial scales for regional land cover 

analysis and is ideal for a regional land use plan such as the NEP.  A move towards a 

standardized method for mapping land cover change on the Escarpment at regular time 

intervals should be made for the ONE monitoring initiative, and remote sensing data and 

methodologies can help to achieve this.  More in-depth studies should also be undertaken for 

each designation.  Since each designation has its own land use policies, it is important to 

monitor these areas to ensure that all developments or changes on the landscape are 

compatible with the Niagara Escarpment and its Plan. 
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Appendix A 

Confusion Matrices for 1996 and 2006 Images 

1996 Overall Accuracy  (1134/1288)    88.04% 

Kappa Coefficient   0.8548 

 

 

 

 

 

Class 

Ground Truth  (Pixels/Percentages) 

 Forest MREA 

(Quarry) 

Recreation Water Agriculture 

1 

Agriculture 

2 

Urban Total 

Forest 252 0 3 13 0 3 4 275 

MREA 

(Quarry) 
0 88 0 0 4 0 12 104 

Recreation 0 0 52 0 0 5 1 58 

Water 7 1 0 136 0 2 0 146 

Agriculture 1 1 12 0 3 266 1 19 302 

Agriculture 2 21 0 13 0 4 254 13 305 

Urban 1 8 0 0 2 1 86 98 

Total 282 109 68 152 276 266 135 1288 

 

2006 Overall Accuracy  (1491/1664)  89.60% 

Kappa Coefficient   0.8747 

 

 

 

 

 

Class 

Ground Truth  (Pixels/Percentages) 

 Forest MREA 

(Quarry) 

Recreation Water Agriculture 

1 

Agriculture 

2 

Urban Total 

Forest 302 1 2 23 1 13 11 353 

MREA 

(Quarry) 0 96 0 0 2 0 10 108 

Recreation 0 0 102 0 2 12 2 118 

Water 0 0 0 218 0 0 1 219 

Agriculture 1 3 9 0 7 311 3 30 363 

Agriculture 2 6 0 7 0 3 355 2 373 

Urban 2 17 0 2 2 0 107 130 

Total 313 123 111 250 321 383 163 1664 
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Appendix B 

User/Producer Accuracy and Commission/Omission Values 

1986 Commission/Omission Values and User and Producer Accuracies 

Class Commission Omission  Commission Omission 

 (Percent) (Percent)  (Pixels) (Pixels) 

Forest 15.13 15.75  41/271 43/273 

Agriculture 1 14.64 3.52  47/321 10/284 

Agriculture2 23.48 28.41  58/247 75/264 

Recreation 32.23 3.53  39/121 3/85 

Urban 24.59 51.58  15/61 49/95 

MREA 13.39 20.49  15/112 25/122 

Water 0 9.01  0/101 10/111 

      

Class Prod. Acc. User Acc.  Prod. Acc. User Acc. 

 (Percent) (Percent)  (Pixels) (Pixels) 

Forest 84.25 84.87  230/273 230/271 

Agriculture 1 96.48 85.36  274/284 274/321 

Agriculture 2 71.59 76.52  189/264 189/247 

Recreation 96.47 67.77  82/85 82/121 

Urban 48.42 75.41  46/95 46/61 

MREA 79.51 86.61  97/122 97/112 

Water 90.99 100  101/111 101/101 

 

1996 Commission/Omission Values and User and Producer Accuracies 

Class Commission Omission  Commission Omission 

 (Percent) (Percent)  (Pixels) (Pixels) 

Forest 8.36 10.64  23/275 30/282 

Agriculture 1 11.92 3.62  36/302 10/276 

Agriculture 2 16.72 4.51  51/305 12/266 

Recreation 10.34 23.53  6/58 16/68 

Urban 12.24 36.3  12/98 49/135 

MREA 15.38 19.27  16/104 21/109 

Water 6.85 10.53  10/146 16/152 
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Class Prod. Acc. User Acc.  Prod. Acc. User Acc. 

 (Percent) (Percent)  (Pixels) (Pixels) 

Forest 89.36 91.64  252/282 252/275 

Agriculture 1 96.38 88.08  266/276 266/302 

Agriculture 2 95.49 83.28  254/266 254/305 

Recreation 76.47 89.66  52/68 52/58 

Urban 63.7 87.76  86/135 86/98 

MREA 80.73 84.62  88/109 88/104 

Water 89.47 93.15  136/152 136/146 

 

2006 Commission/Omission Values and User and Producer Accuracies 

Class Commission Omission  Commission Omission 

 (Percent) (Percent)  (Pixels) (Pixels) 

Forest 14.45 3.51  51/353 11/313 

Agriculture 1 14.33 3.12  52/363 10/321 

Agriculture 2 4.83 7.31  18/373 28/383 

Recreation 13.56 8.11  16/118 9/111 

Urban 17.69 34.36  23/130 56/163 

MREA (Quarry) 11.11 21.95  12/108 27/123 

Water 0.46 12.8  1/219 32/250 

      

Class Prod. Acc. User Acc.  Prod. Acc. User Acc. 

 (Percent) (Percent)  (Pixels) (Pixels) 

Forest 96.49 85.55  302/313 302/353 

Agriculture 1 96.88 85.67  311/321 311/363 

Agriculture 2 92.69 95.17  355/383 355/373 

Recreation 91.89 86.44  102/111 102/118 

Urban 65.64 82.31  107/163 107/130 

MREA (Quarry) 78.05 88.89  96/123 96/108 

Water 87.2 99.54  218/250 218/219 
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Appendix C 

NEP Designation Change Detection Statistics 

Escarpment Natural Area (ENA) 

F
in

a
l 

S
ta

te
 2

0
0

6
 

Initial State 1986      [Pixel (area in km2, percentage)] 

  Forest MREA Recreation Urban Water Agriculture 1 

(bare soil) 

Agriculture 2 

(crop) 

Row Total/Class 

Total 

Water 

253(0.2,0.2) 0(0.0,0.0) 1(0.0,0.1) 18(0.0,0.8) 

3598(2.2, 

79.5) 10(0.0,0.3) 67(0.0,0.3) 3947(2.5,100.0) 

Urban 

357(0.2,0.3) 5(0.0,27.8) 19(0.0,2.3) 

1284(0.8, 

59.6) 24(0.0,0.5) 252(0.2,8.3) 1021(0.6,4.0) 2962(1.9,100.0) 

MREA 58(0.0,0.0) 12(0.0,66.7) 0(0.0,0.0) 6(0.0,0.3) 0(0.0,0.0) 7(0.0,0.2) 7(0.0,0.0) 90(0.1,100) 

Forest 124230(77.6, 

98.1) 0(0.0,0.0) 392(0.2,47.4) 577(0.4,26.8) 749(0.5,16.6) 1342(0.8,44.1) 

20054(12.5, 

77.9) 

147344(92.1, 

100.0) 

Agriculture 

2 (crop) 910(0.6,0.7) 0(0.0,0.0) 253(0.2,30.6) 113(0.1, 5.2) 92(0.1,2.0) 521(0.3,17.1) 2482(1.6,9.6) 4371(2.7,100.0) 

Recreation 24(0.0,0.0) 0(0.0,0.0) 78(0.0,9.4) 2(0.0,0.1) 0(0.0,0.0) 32(0.0,1.1) 109(0.1,0.4) 245(0.2,100.0) 

Agriculture 

1 (bare soil) 826(0.5,0.7) 1(0.0,5.6) 84(0.1,10.2) 154(0.1,7.1) 62(0.0,1.4) 876(0.5,28.8) 2010(1.3,7.8) 4013(2.5,100.0) 

Class Total 126658(79.2, 

100.0) 18(0.0,100.0) 

827(0.5, 

100.0) 

2154(1.3, 

100.0) 

4525(2.8, 

100.0) 

3040(1.9, 

100.0) 

25750(16.1, 

100.0) 

 Class 

Changes 2428(1.5,1.9) 6(0.0,33.3) 749(0.5,90.6) 870(0.5,40.4) 927(0.6,20.5) 2164(1.4,71.2) 

23268(14.5, 

90.4) 

 Image 

Difference 

20686(12.9, 

16.3) 72(0.0,400.0) 

-582(-0.4,      

-70.4) 808(0.5,37.5) 

-578(-0.4,      

-12.8) 973(0.6,32.0) 

-21379(-13.4,  

-83.0) 
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Escarpment Protection Area (EPA) 

F
in

a
l 

S
ta

te
 2

0
0

6
 

Initial State 1986      [Pixel (area in km2, percentage)] 

  Forest MREA Recreation Urban Water Agriculture 1 

(bare soil) 

Agriculture 2 

(crop) 

Row Total/Class 

Total 

Water 

90(0.1,0.2) 1(0.0,0.2) 23(0.0,0.2) 37(0.0,0.5) 

1959(1.2, 

78.0) 60(0.0,0.1) 150(0.1,0.2) 2320(1.5,100.0) 

Urban 

319(0.2,0.9) 177(0.1,29.0) 366(0.2,3.7) 

5135(3.2, 

62.9) 26(0.0,1.0) 3540(2.2,7.8) 3219(2.0,4.5) 12782(8.0,100.0) 

MREA 13(0.0,0.0) 268(0.2,43.9) 8(0.0,0.1) 65(0.0,0.8) 0(0.0,0.0) 171(0.1,0.4) 81(0.1,0.1) 606(0.4,100.0) 

Forest 29666(18.5, 

81.8) 21(0.0,3.4) 

1019(0.6, 

10.4) 561(0.4,6.9) 357(0.2,14.2) 4434(2.8,9.7) 

26545(16.6, 

36.9) 62603(39.1,100.0) 

Agriculture 

2 (crop) 3449(2.2,9.5) 44(0.0,7.2) 

3498(2.2, 

35.5) 773(0.5,9.5) 48(0.0,1.9) 

16550(10.3, 

36.3) 

22900(14.3, 

31.8) 47262(29.5,100.0) 

Recreation 

560(0.4,1.5) 5(0.0,0.8) 

3435(2.1, 

34.9) 32(0.0,0.4) 7(0.0,0.3) 1389(0.9,3.0) 1776(1.1,2.5) 7204(4.5,100.0) 

Agriculture 

1 (bare soil) 2179(1.4,6.0) 94(0.1,15.4) 

1495(0.9, 

15.2) 

1561(1.0, 

19.1) 115(0.1,4.6) 

19432(12.1, 

42.6) 

17247(10.8, 

24.0) 42123(26.,100.03) 

Class Total 36276(22.7, 

100.0) 

610(0.4, 

100.0) 

9844(6.2, 

100.0) 

8164(5.1, 

100.0) 

2512(1.6, 

100.0) 

45576(28.5, 

100.0) 

71918(44.9, 

100.0) 

 Class 

Changes 6610(4.1,18.2) 342(0.2,56.1) 

6409(4.0, 

65.1) 

3029(1.9, 

37.1) 553(0.3,22.0) 

26144(16.3, 

57.4) 

49018(30.6, 

68.2) 

 Image 

Difference 

26327(16.5,72.

6) -4(0.0,-0.7) 

-2640(-1.7,    

-26.8) 

4618(2.9, 

56.6) 

-192(-0.1,      

-7.6) 

-3453(-2.2,      

-7.6) 

-24656(-15.4,  

-34.3) 
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Escarpment Rural Area (ERA) 
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Initial State 1986      [Pixel (area in km2, percentage)] 

  Forest MREA Recreation Urban Water Agriculture 1 

(bare soil) 

Agriculture 2 

(crop) 

Row Total/Class 

Total 

Water 46(0.0,0.2) 4(0.0,1.8) 20(0.0,0.4) 19(0.0,0.3) 162(0.1,58.9) 64(0.0,0.1) 154(0.1,0.2) 469(0.3,100.0) 

Urban 

284(0.2,0.9) 96(0.1,43.8) 143(0.1,2.7) 

3207(2.0, 

54.7) 13(0.0,4.7) 3343(2.1,5.8) 2838(1.8,4.1) 9924(6.2,100.0) 

MREA 35(0.0,0.1) 39(0.0,17.8) 8(0.0,0.2) 67(0.0,1.1) 0(0.0,0.0) 154(0.1,0.3) 97(0.1,0.1) 400(0.3,100.0) 

Forest 24241(15.2, 

80.3) 2(0.0,0.9) 604(0.4,11.4) 468(0.3,8.0) 43(0.0,15.6) 5228(3.3,9.1) 

21906(13.7, 

31.6) 52492(32.8,100.0) 

Agriculture 

2 (crop) 2829(1.8,9.4) 11(0.0,5.0) 

1897(1.2, 

35.7) 700(0.4,11.9) 19(0.0,6.9) 

25310(15.8, 

44.0) 

23370(14.6, 

33.7) 54136(33.8,100.0) 

Recreation 

334(0.2,1.1) 4(0.0,1.8) 

1345(0.8, 

25.3) 62(0.0,1.1) 1(0.0,0.4) 2287(1.4,4.0) 2396(1.5,3.5) 6429(4.0,100.0) 

Agriculture 

1 (bare soil) 2411(1.5,8.0) 63(0.0,28.8) 

1302(0.8, 

24.5) 

1341(0.8, 

22.9) 37(0.0,13.5) 

21104(13.2, 

36.7) 

18505(11.6, 

26.7) 44763(28.0,100.0) 

Class Total 30180(18.9, 

100.0) 

219(0.1, 

100.0) 

5319(3.3, 

100.0) 

5864(3.7, 

100.0) 

275(0.2, 

100.0) 

57490(35.9, 

100.0) 

69266(43.3, 

100.0) 

 Class 

Changes 5939(3.7,19.7) 180(0.1,82.2) 

3974(2.5, 

74.7) 

2657(1.7, 

45.3) 113(0.1,41.1) 

36386(22.7, 

63.3) 

45896(28.7, 

66.3) 

 Image 

Difference 

22312(13.9, 

73.9) 181(0.1,82.6) 

1110(0.7, 

20.9) 

4060(2.5, 

69.2) 194(0.1,70.5) 

-12727(-8.0,    

-22.1) 

-15130(-9.5,    

-21.8) 
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Initial State 1986      [Pixel (area in km2, percentage)] 

  Forest MREA Recreation Urban Water Agriculture 1 

(bare soil) 

Agriculture 2 

(crop) 

Row Total/Class 

Total 

Water 

565(0.4,10.6) 

1112(0.7, 

16.5) 59(0.0,11.3) 224(0.1,10.8) 43(0.0,37.7) 604(0.4,11.8) 346(0.2,7.0) 2953(1.8,100.0) 

Urban 

704(0.4,13.3) 

1476(0.9, 

21.9) 99(0.1,19.0) 809(0.5,38.9) 26(0.0,22.8) 877(0.5,17.1) 677(0.4,13.8) 4668(2.9,100.0) 

MREA 

1590(1.0,30.0) 

2771(1.7, 

41.1) 174(0.1,33.4) 443(0.3,21.3) 10(0.0,8.8) 741(0.5,14.4) 1049(0.7,21.3) 6778(4.2,100.0) 

Forest 1653(1.0,31.1) 135(0.1,2.0) 98(0.1,18.8) 191(0.1,9.2) 24(0.0,21.1) 576(0.4,11.2) 1208(0.8,24.6) 3885(2.4,100.0) 

Agriculture 

2 (crop) 91(0.1,1.7) 156(0.1,2.3) 37(0.0,7.1) 74(0.0,3.6) 2(0.0,1.8) 275(0.2,5.4) 390(0.2,7.9) 1025(0.6,100.0) 

Recreation 0(0.0,0.0) 16(0.0,0.2) 5(0.0,1.0) 0(0.0,0.0) 0(0.0,0.0) 11(0.0,0.2) 1(0.0,0.0) 33(0.0,100.0) 

Agriculture 

1 (bare soil) 705(0.4,13.3) 

1077(0.7, 

16.0) 49(0.0,9.4) 340(0.2,16.3) 9(0.0,7.9) 2045(1.3,39.9) 1247(0.8,25.4) 5472(3.4,100.0) 

Class Total 5308(3.3, 

100.0) 

6743(4.2, 

100.0) 

521(0.3, 

100.0) 

2081(1.3, 

100.0) 

114(0.1, 

100.0) 

5129(3.2, 

100.0) 

4918(3.1, 

100.0) 

 Class 

Changes 3655(2.3,68.9) 

3972(2.5, 

58.9) 516(0.3,99.0) 

1272(0.8, 

61.1) 71(0.0,62.3) 3084(1.9,60.1) 4528(2.8,92.1) 

 Image 

Difference 

-1423(-0.9, 

26.8) 35(0.0,0.5) 

-488(-0.3,      

-93.7) 

2587(1.6, 

124.3) 

2839(1.8, 

2490.4) 343(0.2,6.7) 

-3893(-2.4,      

-79.2) 
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Initial State 1986      [Pixel (area in km2, percentage)] 

  Forest MREA Recreation Urban Water Agriculture 1 

(bare soil) 

Agriculture 2 

(crop) 

Row Total/Class 

Total 

Water 4(0.0, 0.1) 0(0.0,0.0) 0(0.0,0.0) 23(0.0,0.1) 5(0.0,45.5) 7(0.0,0.1) 7(0.0,0.1) 46(0.0,100.0) 

Urban 

1135(0.7,27.1) 666(0.4,95.4) 115(0.1,16.4) 

15775(9.9, 

93.1) 0(0.0,0.0) 2848(1.8,40.8) 5103(3.2,38.9) 25642(16.0,100.0) 

MREA 37(0.0,0.9) 6(0.0,0.9) 2(0.0,0.3) 9(0.0,0.1) 0(0.0,0.0) 85(0.1,1.2) 109(0.1,0.8) 248(0.2,100.0) 

Forest 2387(1.5,57.0) 2(0.0,0.3) 47(0.0,6.7) 645(0.4,3.8) 2(0.0,18.2) 558(0.3,8.0) 4237(2.6,32.3) 7878(4.9,100.0) 

Agriculture 

2 (crop) 484(0.3,11.5) 4(0.0,0.6) 134(0.1,19.1) 180(0.1,1.1) 0(0.0,0.0) 2116(1.3,30.3) 2111(1.3,16.1) 5029(3.1,100.0) 

Recreation 27(0.0,0.6) 0(0.0,0.0) 307(0.2,43.7) 13(0.0,0.1) 0(0.0,0.0) 136(0.1,1.9) 147(0.1,1.1) 630(0.4,100.0) 

Agriculture 

1 (bare soil) 117(0.1,2.8) 20(0.0,2.9) 97(0.1,13.8) 304(0.2,1.8) 4(0.0,36.4) 1235(0.8,17.7) 1415(0.9,10.8) 3192(2.0,100.0) 

Class Total 4191(2.6, 

100.0) 

698(0.4, 

100.0) 

702(0.4, 

100.0) 

16949(10.6, 

100.0) 11(0.0,100.0) 

6985(4.4, 

100.0) 

13129(8.2, 

100.0) 

 Class 

Changes 1804(1.1,43.0) 692(0.4,99.1) 395(0.2,56.3) 1174(0.7,6.9) 6(0.0,54.5) 5750(3.6,82.3) 

11018(6.9, 

83.9) 

 Image 

Difference 3687(2.3,88.0) 

-450(-0.3,      

-64.5) -72(0.0,-10.3) 

8693(5.4, 

51.3) 35(0.0,318.2) 

-3793(-2.4,      

-54.3) 

-8100(-5.1,      

-61.7) 

  

 


