
Poincaré Waves and Kelvin Waves
in a Circular Lake

by

Wentao Liu

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Applied Mathematics

Waterloo, Ontario, Canada, 2009

c© Wentao Liu 2009



I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

When wind blows over a stratified lake an interface tilt is often generated, and
internal waves usually appear after the wind stops. Internal waves in lakes are
studied in many literatures, but most assume a hydrostatic pressure balance. In
this thesis we discuss the internal Poincaré waves and Kelvin waves in a rotating,
continuously stratified, flat-bottom, circular lake with fully nonlinear and non-
hydrostatic effects.

An analytical solution is derived for the linearized system and it provides initial
conditions used in the MIT General Circulation Model (MITgcm). This model is
chosen due to its non-hydrostatic capability. Both Poincaré waves and Kelvin waves
are considered. The analytical solution of the linear system is verified numerically
when the wave amplitude is small. As the wave amplitude increases the waves
become more nonlinear. Poincaré waves steepen and generate solitary-like waves
with shorter wavelengths, but most of the energy contained in these waves is trans-
ferred back and forth between the parent wave and the solitary-like waves. Kelvin
waves, on the other hand, steepen and lose their energy to solitary-like waves. The
appearance of the solitary-like waves is not absolutely clear and higher resolution
is required to clear up the details of this process. This conclusion agrees with
de la Fuente et al. (2008) who discussed the internal waves in a two-layer model.
Moreover, in the Kelvin waves case, unexpected small waves are generated at the
side boundaries and travel inwards. The wave amplitude and wavelength of these
spurious waves become smaller as the horizontal resolution increases. One possible
reason to explain these waves is the use of square grids to approximate the circular
lake.
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Chapter 1

Introduction

1.1 Physical Processes in Lakes

Geophysical fluid dynamics studies naturally occurring, large-scale flows in the
atmosphere, oceans and lakes. Most of these problems are at the large-scale end,
where either the ambient rotation of the Earth or density differences (warm and
cold air or water, fresh and saline water) or both assume some importance. In this
respect, geophysical fluid dynamics comprises rotating-stratified fluid dynamics.

In this thesis, we are going to study the internal waves in lakes. Most lakes in
temperate regions, due to solar heating and wind-mixing of surface layers, undergo
a seasonal pattern, alternating between a two-layer stratification and complete mix-
ing. As a result, the temperature and oxygen levels of the lakes change accordingly,
which affects lives of both human beings and living creatures in water.

1.1.1 Thermal Processes

The greatest source of heat to lakes is solar radiation and most is absorbed directly
by the water (Wetzel 2001). As solar energy is converted to internal energy (heat),
lakes become thermally stratified. During summer time, lakes are warmer at the
top and cooler at the bottom. The warm surface layer is called the epilimnion, and
the cooler bottom layer the hypolimnion. The zone of rapid temperature decline
in the water column from shallow to deep water is called the thermocline or the
metalimnion. The thermocline is barrier to the mixing of surface and bottom water.
Energy is required for mixing, which is primarily provided by wind in the absence
of inflows and outflows. In the late summer and fall, the epilimnion begins to
cool down. As the thermocline fades away, lakes are mixed and reach a uniform
temperature. This destratification process is often called fall overturn (Davenport
2008). Since density of water has a maximum value at 4 ◦C, once water cools below
this value in winter a weak stratification can occur. Subsequently, mixing can occur
in spring.
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1.1.2 Oxygen Levels

Oxygen levels are vital to the survival of fish and other animals in lakes. During
the stratification in summer, the thermocline creates a strong barrier to mixing,
which isolates the hypolimnion from gas exchanges with the atmosphere. Without
an influx of oxygen, the hypolimnion becomes depleted of oxygen due to bacte-
rial decomposition of organic matter. A system with low DO (dissolved oxygen)
saturation, in the range between 1% and 30% DO saturation, is called hypoxic.
When DO is reduced to 0, it is called anoxic. Most fish cannot live below 30% DO
saturation.

1.2 Geophysical Fluid Dynamics Models

There are many numerical models developed in the geophysical fluid dynamics
field, for instance POM, DieCAST, ELCOM, SUNTANS, IGW, and MITgcm.
The Princeton Ocean Model (POM) is a sigma coordinate, free surface, three-
dimensional, primitive equation ocean model, which includes a turbulence sub-
model. It was developed in the late 1970’s by Blumberg and Mellor, with subsequent
contributions from other people. The model has been used for modeling of estuar-
ies, coastal regions and open oceans. The Dietrich Center for Air Sea Technology
model (DieCAST) is a z coordinate, hydrostatic, partially implicit, fully conserva-
tive, primitive equation ocean and lake model, which was developed by Dietrich in
1994. The Estuary and Lake Computer Model (ELCOM) is a z coordinate, hydro-
static, three-dimensional model used for predicting the velocity, temperature and
salinity distribution in natural water bodies subjected to external environmental
forcing such as wind stress, surface heating or cooling. It was developed by Hodges
in 1997 at the Centre for Water Research, University of Western Australia. The
Stanford Unstructured Nonhydrostatic Terrain-following Adaptive Navier-Stokes
Simulator (SUNTANS) is a z coordinate, non-hydrostatic, unstructured-grid, par-
allel, three-dimensional, coastal ocean simulation tool that solves the Navier-Stokes
equations under the Boussinesq approximation with a large-eddy simulation of the
resolved motions. The formulation is based on the method outlined by Casulli in his
1999 papers. The Internal Gravity Waves model (IGW) is a two-dimensional, non-
linear, incompressible and non-hydrostatic numerical model, using the Boussinesq
and traditional f -plane approximations. The model uses a finite volume method
based on the second-order projection technique developed by Bell et al. (1989a) and
extended to stratified flows by Bell and Marcus (1992) and to quadrilateral grids
by Bell et al. (1989b). The description of the model can be found in Lamb (1994).
The MIT General Circulation Model (MITgcm) is a numerical model for studying
both the ocean and atmosphere developed by Marshall, Hill, Adcroft along with
others in 1997 at MIT. It has a non-hydrostatic capability and is thus able to sim-
ulate fluids at a wide range of scales. Because of these aspects of the model, we
select MITgcm to perform the numerical simulations in this thesis. More details
on MITgcm are presented in following chapters.
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1.3 Internal Waves in Lakes

When wind blows over a stratified lake, an interface tilt is usually generated, causing
the thermocline to rise upwind and fall downwind (Monismith 1986). When the
wind stops blowing, the thermocline is released and adjusted through the generation
of basin-scale waves which may then steepen nonlinearly and transfer energy to
waves of higher frequencies and shorter wavelengths. Thereafter, internal waves are
often generated. The internal waves are responsible for mixing and redistribution
of nutrients, pollutants, and sediments in lakes (Ostrovsky et al. 1996; Imberger
1998). Internal waves in lakes are studied in many literatures, but most assume a
hydrostatic pressure balance, which is only good for long waves with low frequencies.
When the Earth’s rotation is negligible, the internal waves in a non-rotating water
body due to a surface shear stress were studied by Spigel and Imberger (1980),
who extended the earlier analytic solution developed by Heaps and Ramsbottom
(1966). The degeneration of internal waves was described by Fedorov and Melville
(1995), Horn et al. (2001), and Boegman et al. (2005). In Horn et al. (2001), by
assuming a simple two-layer model and comparing the timescales over which of these
degeneration mechanism act, regimes are defined in which particular processes are
expected to dominate. We will revisit the regimes plot in section 4.2.

The Earth’s rotation starts to affect internal gravity waves when lake dimension
approaches the internal Rossby radius of deformation, defined by c/f , where c is
the non-rotating phase speed and f is the Coriolis parameter. The effect of rotation
is to change the character of basin-scale internal waves, such that the crests begin
to propagate around the boundaries of the lake, instead of across the lake center,
as in the non-rotating case. When the gravity waves are affected by the rotation,
they are called Poincaré waves or inertia-gravity waves. When the gravity waves
are trapped against a topographic boundary such as a coastline, in the presence
of rotation a new type of wave appears, namely Kelvin waves. The amplitude
of these waves decays away from the boundary. The evolution of Poincaré waves
and Kelvin waves is modified by nonlinear wave steepening (Bennett 1973; Farmer
1978), topography (Romea and Allen 1984; Thorpe 1998), wave-wave interaction
(Phillips 1977), and dissipation (Hopfinger 1987; Ivey and Imberger 1991).

When the Earth’s rotation is considered, the linear solution for a uniform, con-
stant wind imposed suddenly over a circular homogeneous rotating lake with a flat
bottom was derived by Csanady (1968). Beletsky et al. (1997) studied the problem
of internal Kelvin waves and coastal upwelling both in a flat bottom and a parabolic
bottom basin using POM and DieCAST. In the case of the flat bottom basin, the
dynamical response to light wind forcing is a small amplitude internal Kelvin wave.
For strong wind forcing, the thermocline intersects the surface (full upwelling) and
a strong surface thermal front appears. After the wind ceases, the edges of this ther-
mal front propagate cyclonically around the lake similar to an internal Kelvin wave.
Hodges et al. (2000) used ELCOM to study Lake Kinneret, Israel. They provided
a detailed description of a turbulence closure for the vertical Reynolds stress terms
and vertical turbulent transport using a 3D mixed-layer model parameterized on
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wind and shear energy fluxes instead of the conventional eddy viscosity/diffusivity
assumption. Stocker and Imberger (2003) investigated the response of a stratified
rotating lake to the release of a linearly tilted interface. Energy partitioning is
studied as a function of the Burger number S (relative importance of stratification
versus rotation), showing the dominance of a geostrophic component over the wave
field for low S. For a stratified lake, a common model used is to approximate the
stratification as two, three or more layers in Mortimer (1952), Spigel and Imberger
(1980), Monismith (1985), and Munnich et al. (1992). de la Fuente et al. (2008)
studied the evolution of internal waves in a two-layer, rotating, circular lake under
nonlinear and weak non-hydrostatic effects. It is shown that a Kelvin wave evolves
by imparting energy primarily to submodes of the parent cyclonic wave by steep-
ening and to solitary-type waves. By contrast, a Poincaré wave is shown to evolve
without shedding much of its energy to other waves, and only a small fraction of
the wave energy goes to other submodes, and this is not lost from the parent wave
but rather is periodically transferred back into the parent wave. In this thesis, we
are going to investigate the internal waves in a flat bottom, continuously stratified,
rotating, circular lake under fully nonlinear and non-hydrostatic effects.

1.4 Thesis Structure and Goals

Chapter 2 presents some theoretical background for the governing equations used
in this thesis and for gravity waves. In chapter 3, the analytical solution in the
linear theory of the governing equations is derived. We assume that the wave solu-
tion is propagating around the lake in the θ angular direction. After substituting
the proposed solution into the governing equations, the method of separation of
variables is applied, which introduces an constant C. Different signs of C lead to
two cases to investigate: C > 0 giving internal Poincaré waves and C < 0 giving
internal Kelvin waves. When C = 0 there appears to be no solutions of the linear
problem. The numerical model is set up in MITgcm in chapter 4. One goal of ap-
plying the numerical model is to verify the analytical solutions we have obtained in
the linear system, and the other is to investigate the nonlinear and non-hydrostatic
properties of the waves. Chapter 5 and 6 present the results of numerical simula-
tions, conclusions, and future works. The analytical solution for the linear system
is verified in the “quasi-linear” setup (details in chapter 5). When the amplitude
of the waves increases, nonlinear and non-hydrostatic effects are studied. Poincaré
waves steepen and form solitary-like waves with shorter wavelengths, but most en-
ergy contained in these waves is transferred back and forth between the parent
wave and the solitary-like waves. Kelvin waves, on the other hand, steepen and
lose their energy to solitary-like waves which are formed after the steepening. This
conclusion agrees with de la Fuente et al. (2008).
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Chapter 2

Theoretical Background

In this chapter, the governing equations of geophysical fluids motion are briefly
derived using several conservation laws, and simplified using the Boussinesq ap-
proximation. Surface and internal gravity waves are introduced in section 2.2,
along with two special waves, namely Poincaré waves and Kelvin waves.

2.1 Governing Equations

In this section, the governing equations of geophysical fluids motion are briefly
derived using several conservation laws, and simplified using the Boussinesq ap-
proximation. Later on, three types of boundary conditions are stated. This chap-
ter is mainly based on Cushman-Roisin (1994) and Kundu and Cohen (2004) as
references.

2.1.1 Mass Conservation

As a material element moves, its mass remains constant, while its volume may
change, which leads to change of density. The equation relating the rate of change
of density to the fluid motion is

∂ρ

∂t
+∇ · (ρu) = 0, (2.1)

where ρ is the density of the fluid (in kg/m3), and u = (u, v, w) is the velocity vector
(in m/s), and and ∇ = (∂/∂x, ∂/∂y, ∂/∂z) is the divergence operator. This equa-
tion is often called continuity equation. Given the definition of material derivative
D/Dt, which is the rate of change while moving along the fluid,

D

Dt
=

∂

∂t
+ u · ∇, (2.2)
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the continuity equation can be rewritten as

1

ρ

Dρ

Dt
+∇ · u = 0. (2.3)

2.1.2 Momentum Conservation

Newton’s second law of motion states that mass times acceleration equals the sum
of the forces. Per unit volume, we have the following momentum budget in each
direction,

ρ
(Du

Dt
− fv

)
= −∂p

∂x
+ µ∇2u, (2.4)

ρ
(Dv

Dt
+ fu

)
= −∂p

∂y
+ µ∇2v, (2.5)

ρ
Dw

Dt
= −∂p

∂z
− ρg + µ∇2w, (2.6)

where f is the Coriolis parameter (in rad/s), p is the pressure (in Pa), µ is the
dynamic viscosity (in kg/(m· s)), and ∇2 is the Laplacian defined by

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (2.7)

Here we assume the fluid is a Newtonian fluid, so we can use the viscous terms
above. Also the traditional approximation has been applied in which only the
vertical component of the Earth’s angular velocity is used.

Currently, we have four equations (one continuity equation and three momentum
equations) along with five unknowns (u, v, w, ρ, and p). To form a closed system
of equations, we need one more equation.

2.1.3 Equation of State

The linearized equation of state gives us a relationship between density, tempera-
ture, and salinity for water,

ρ = ρ0[1− α(T − T0) + β(S − S0)], (2.8)

where T is the temperature (in ◦C or K), S is the salinity (defined in the past
as grams of salt per kilogram of sea water and recently by a practical salinity
unit “psu”, derived from measurements of conductivity and having no units). The
constant ρ0, T0, and S0 are the reference density, temperature, and salinity. α and
β are the coefficient of thermal expansion (in 1/◦C) and the coefficient of salinity
expansion (in 1/psu). More details can be found in Gill (1982). Although we add
one equation to the system, we also introduce two more variables T and S.
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2.1.4 Salt Conservation

The evolution of salt in sea water is governed by

DS

Dt
= κS∇2S, (2.9)

where κS is the coefficient of salt diffusion (in m2/s). It states that a seawater
parcel conserves its salt content except for diffusion.

2.1.5 Energy Conversation

Until now, we have six equations along with seven unknowns, so we still need one
more equation. The first law of thermodynamics states,

de

dt
= Q−W, (2.10)

where e is the internal energy, Q is the rate of heat gain, and W is the rate of work
done by the pressure around the fluid. From Cushman-Roisin (1994), we have the
energy equation as follow,

ρCν
DT

Dt
+ p∇ · u = kT∇2T, (2.11)

where Cν is the heat capacity at constant volume (in J/(Kg·K)) and kT is the
thermal conductivity (in J/(s·m·K)).

Finally we have a closed system with seven equations (one continuity equation,
three momentum equations, one equation of state, one salt equation, and one energy
equation) and seven unknowns (u, v, w, ρ, p, T , and S).

2.1.6 Boussinesq Approximation

In many geophysical systems, the fluid density varies by a small amount about a
mean value ρ0,

ρ = ρ0 + ρ′(x, y, z, t), |ρ′| � ρ0, (2.12)

where ρ′ is the density perturbation. Substituting ρ into the continuity equation
(2.1) gives

ρ0

(∂u

∂x
+

∂v

∂y
+

∂w

∂z

)
+ ρ′

(∂u

∂x
+

∂v

∂y
+

∂w

∂z

)
+ (

∂ρ′

∂t
+ u

∂ρ′

∂x
+ v

∂ρ′

∂y
+ w

∂ρ′

∂z
) = 0. (2.13)

For geophysical flows the relative variations of density in time and space are
usually much less than the relative variations of the velocity field. This implies
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that the terms in the third group are typically much smaller than those in the
second. However, terms in this second group are always much less than those in
the first because |ρ′| � ρ0. So the continuity equation is simplified to

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0. (2.14)

Using a similar procedure, we approximate the density in the horizontal mo-
mentum equations with the mean value ρ0. However, in the vertical momentum
equation ρ appears not only on the left hand side where we can approximate ρ by
ρ0, but also on the right hand side of equation, in front of the gravitational accel-
eration g, which we cannot apply the Boussinesq approximation to. In hydrostatic
balance, we know density ρ0 and pressure p0(z) have the following relation,

dp0(z)

dz
= −ρ0g. (2.15)

Expressing the pressure as a sum of a mean value and perturbation

p = p0(z) + p′(x, y, z, t), (2.16)

the vertical momentum equation becomes(
1 +

ρ′

ρ0

)Dw

Dt
= − 1

ρ0

∂p′

∂z
− ρ′g

ρ0

+ ν∇2w, (2.17)

where ν = µ/ρ0 is the kinematic viscosity (in m2/s). Given |ρ′| � ρ0, the ratio
ρ′/ρ0 can be neglected as in the horizontal momentum equations. However, the
buoyancy term ρ′g/ρ0 is very important and cannot be neglected. For example, it
is these density variations that drive the convective motion when a layer of fluid is
heated from below. Then the vertical momentum equation is simplified to

Dw

Dt
= − 1

ρ0

∂p′

∂z
− ρ′g

ρ0

+ ν∇2w, (2.18)

While given ∂p0(z)/∂x = ∂p0(z)/∂y = 0, we can exchange the pressure in the
horizontal momentum equations to the pressure perturbation p′, that is, the pair of
p and ρ and the pair of p′ and ρ′ are interchangeable in the governing equations. In
short density ρ can be approximated by its mean value ρ0 except when ρ is in front of
gravitational acceleration g. This method is called the Boussinesq approximation.

Next we simplify the energy equation (2.11). Using the simplified continuity
equation (2.14), the energy equation becomes

DT

Dt
= κT∇2T, (2.19)

where κT = kT /ρ0Cν is the kinematic diffusivity (in m2/s). If we assume S is a
constant, then salinity equation drops out. Using this equation for temperature
(2.19) and the equation of state (2.8), we obtain

Dρ

Dt
= κT∇2ρ, (2.20)
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which is often called density equation.

In summary, under the Boussinesq approximation we finally have the governing
equations of motions,

Du

Dt
− fv = − 1

ρ0

∂p

∂x
+ ν∇2u, (2.21)

Dv

Dt
+ fu = − 1

ρ0

∂p

∂y
+ ν∇2v, (2.22)

Dw

Dt
= − 1

ρ0

∂p

∂z
− ρg

ρ0

+ ν∇2w, (2.23)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (2.24)

Dρ

Dt
= κT∇2ρ, (2.25)

where p and ρ can be either total pressure and density or perturbation of pressure
and density.

2.1.7 Boundary Conditions

In order to solve the governing differential equations, we need initial conditions and
boundary conditions. On the solid bottom of the domain, the velocity must be
tangent to the land boundary, that is, the normal vector to the boundary surface
is orthogonal to the velocity vector. If we define the bottom as z − b(x, y) = 0, the
boundary condition at the bottom is obtained,

w = u
∂b

∂x
+ v

∂b

∂y
, (2.26)

which can be rewritten as

D(z − b)

Dt
= 0, at z = b. (2.27)

At the free surface z = η(x, y), we have a similar boundary condition,

D(z − η)

Dt
= 0, at z = η(x, y). (2.28)

Both boundary conditions are called kinematic boundary conditions.

In addition to the kinematic boundary condition at the surface, there is a dy-
namic boundary condition. We ignore surface tension because the scales of interest
are far too large for surface tension to be important. Then the pressure just below
the free surface is always equal to the ambient pressure.
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If the viscosity is non-zero, another boundary condition must be imposed, too.
At a solid boundary if the fluids have zero velocity relative to the boundary, that
is, u× n̂ = U× n̂, where u is the fluid velocity, U is the boundary velocity, and n̂
is the unit vector normal to the boundary, we have the no-slip boundary condition.
On the other hand, the free-slip condition has the form ∂u/∂y = ∂w/∂y = 0 for
boundaries y = constant, for instance.

2.2 Gravity Waves

One common wave motion that appears in everyday life is gravity waves. When
waves occur at the surface of a liquid, with gravity providing the restoring force,
they are called surface gravity waves. On the other hand, waves can also be gener-
ated in fluids with variable density and these are called internal gravity waves. In
this section, we briefly derive the governing equations for the surface gravity waves
and internal gravity waves. Two special waves, namely Poincaré waves and Kelvin
waves, are introduced thereafter.

2.2.1 Surface Gravity Waves

In this section, we consider surface gravity waves in a constant density, inviscid
fluid with a flat bottom having the following properties. The waves move slowly
enough so that f is not negligible. The fluid is shallow, that is, the wavelength λ
is much greater than the depth of the fluid H, so the vertical velocity w is much
smaller than the horizontal velocities u and v. Then the acceleration Dw/Dt is
negligible in the vertical momentum equation, and to a first approximation that
the pressure distribution is hydrostatic. Ignoring the viscous terms, we have the
following governing equations for a constant density fluid,

Du

Dt
− fv = − 1

ρ0

∂p

∂x
, (2.29)

Dv

Dt
+ fu = − 1

ρ0

∂p

∂y
, (2.30)

0 = − 1

ρ0

∂p

∂z
− g, (2.31)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0. (2.32)

Let z be measured upward from the bottom (Fig. 2.1), and η be the displacement
of the free surface. Then the pressure at height z is given by

p = ρ0g(H + η − z) + P0, (2.33)
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because it is hydrostatic, where the constant P0 is the atmospheric pressure. The
horizontal pressure gradients become

∂p

∂x
= ρ0g

∂η

∂x
,

∂p

∂y
= ρ0g

∂η

∂y
, (2.34)

which are independent of z. Therefore, from the horizontal momentum equations,
the horizontal velocities u and v are independent of z if they initially are.

Figure 2.1: Shallow water over flat bottom

Next we consider the continuity equation (2.32). Since u and v are independent of
z, w must linearly depend on z. Integrating vertically from z = 0 to z = H + η
gives,

(H + η)
∂u

∂x
+ (H + η)

∂v

∂y
+ w(η)− w(0) = 0, (2.35)

where w(η) is the vertical velocity at the free surface and w(0) = 0 is the vertical
velocity at the flat bottom. From the kinematic boundary conditions we stated in
the previous section, w(η) is given by

w(η) =
Dη

Dt
=

∂η

∂t
+ u

∂η

∂x
+ v

∂η

∂y
. (2.36)

The governing equations then become,

∂η

∂t
+

∂

∂x
[u(H + η)] +

∂

∂y
[v(H + η)] = 0, (2.37)

Du

Dt
− fv = −g

∂η

∂x
, (2.38)

Dv

Dt
+ fu = −g

∂η

∂y
, (2.39)

and this set of equations is often called shallow water equation.
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2.2.2 Linear Internal Gravity Waves

Waves exist not only at the free surface, but also on the interface between two
fluids of different densities. (The surface gravity waves are an extreme example of
internal waves since they appear on the interface of air and liquid. As the density or
movement of air is ignored this makes them somewhat different from internal waves
in which density or movement of the upper layer is taken into account.) There is
a well-known “dead water” phenomenon in which the ships experience unusually
high drag. It was a mystery until Bjerknes, a Norwegian oceanographer, explained
it as due to the internal waves generated at the interface between the lighter fresh
layer and heavier salty layer by the motion of the ship (Fig. 2.2). The two-layer
model is studied thoroughly in many fluid mechanics textbooks ,e.g., Kundu and
Cohen (2004, Chpater 7), so we will not explain it here.

Figure 2.2: “Dead water” phenomenon

Internal waves also occur in continuously stratified fluids, in which the vertical
density profile in a state of rest is a continuous function ρ̄(z). Recall the governing
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equations if we assume the diffusivity κT = 0 and the viscosity ν = 0,

Du

Dt
− fv = − 1

ρ0

∂p

∂x
, (2.40)

Dv

Dt
+ fu = − 1

ρ0

∂p

∂y
, (2.41)

Dw

Dt
= − 1

ρ0

∂p

∂z
− ρg

ρ0

, (2.42)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (2.43)

Dρ

Dt
= 0. (2.44)

We first express the equations in terms of perturbations from a state of rest.

p = p̄(z) + p′, (2.45)

ρ = ρ̄(z) + ρ′, (2.46)

where p̄(z) and ρ̄(z) are background pressure and density, and p′ and ρ′ are pertur-
bations. ρ̄(z) and pressure p̄(z) are in hydrostatic balance,

dp̄(z)

dz
= −ρ̄(z)g. (2.47)

The density equation (2.44) then becomes

∂

∂t
(ρ̄ + ρ′) + u

∂

∂x
(ρ̄ + ρ′) + v

∂

∂y
(ρ̄ + ρ′) + w

∂

∂z
(ρ̄ + ρ′) = 0. (2.48)

Here ∂ρ̄/∂t = ∂ρ̄/∂x = ∂ρ̄/∂y = 0, and the nonlinear terms u∂ρ′/∂x, v∂ρ′/∂y,
and w∂ρ′/∂z are negligible in small amplitude motions. Then the density equation
reduces to

∂ρ′

∂t
+ w

dρ̄

dz
= 0, (2.49)

which states that the density perturbation is generated only by the vertical advec-
tion of the background density. Next we define

N2 ≡ − g

ρ0

dρ̄

dz
, (2.50)

where N(z) is called the buoyancy frequency and it has units of rad/s.
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In summary, the governing equations for linear internal gravity waves are,

Du

Dt
− fv = − 1

ρ0

∂p

∂x
, (2.51)

Dv

Dt
+ fu = − 1

ρ0

∂p

∂y
, (2.52)

Dw

Dt
= − 1

ρ0

∂p

∂z
− ρg

ρ0

, (2.53)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (2.54)

∂ρ

∂t
− N2(z)ρ0

g
w = 0. (2.55)

Note that p and ρ are pressure perturbation and density perturbation respectively.
We will analyze this set of equations in detail in Chapter 3.

2.2.3 Poincaré Waves

Given the shallow water equation,

∂η

∂t
+

∂

∂x
[u(H + η)] +

∂

∂y
[v(H + η)] = 0, (2.56)

∂u

∂t
− fv = −g

∂η

∂x
, (2.57)

∂v

∂t
+ fu = −g

∂η

∂y
, (2.58)

we now look for progressive waves of the form

(u, v, η) = (û, v̂, η̂)ei(kx+ly−ωt), (2.59)

where k and l are the wavenumber in x and y direction. After substituting and
solving, we obtain the dispersion relation,

ω2 = f 2 + gHK2, (2.60)

where K =
√

k2 + l2 is the magnitude of the horizontal wavenumber. Waves af-
fected by Coriolis forces are called Poincaré Waves. The quantity

√
gH/f is called

Rossby radius of deformation or simply radius of deformation. It is the length scale
at which rotational effects become as important as buoyancy effects.

When there is no rotation f = 0, the frequency is ω = K
√

gH, and the phase
speed is c =

√
gH. The waves become classic shallow water surface gravity waves

without the effect of rotation. In the limit of large wavenumber K2 � f 2/gH, i.e.,
wavelengths are much shorter than the radius of deformation, we also obtain the
wave frequency ω = K

√
gH � f . Then the wave speed c ≈

√
gH and the waves

become classical gravity waves, too. It is not surprising since the wave is too short
and fast to feel the rotation of Earth.
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2.2.4 Kelvin Waves

The Kelvin wave is a traveling wave that requires the support of a lateral boundary,
which we can see along the coastlines (Fig. 2.3). Consider a semi-infinite layer of

Figure 2.3: Kelvin waves propagating in x direction

fluid bounded below by a horizontal bottom, above by a free surface, and on one
side by a vertical wall, say y = 0 plane, with waves propagating in x direction.
Using the boundary condition we presented before, v needs to be zero at the side
wall. Lord Kelvin thought that the vanishing of v at the side wall suggested the
possibility of v being zero everywhere. Let us assume v ≡ 0, then the shallow water
equations give the governing equations,

∂η

∂t
+ H

∂u

∂x
= 0, (2.61)

∂u

∂t
= −g

∂η

∂x
, (2.62)

fu = −g
∂η

∂y
, (2.63)

where H is the depth of the fluid. Assuming a solution is in the form of

[u, η] = [û(y), η̂(y)]ei(kx−ωt), (2.64)
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where k is the wavenumber (in 1/m) and ω (in 1/s) is the wave frequency. Substi-
tuting them into the governing equations and solving the system gives

η = η0e
−fy/c cos k(x− ct), (2.65)

u = η0

√
g

H
e−fy/c cos k(x− ct), (2.66)

v = 0, (2.67)

where c =
√

gH is the propagation speed of the Kelvin wave, η0 is the amplitude at
the coast, which is defined by maximum displacement by which the wave is going
above or below its resting position. In the Northern Hemisphere (f > 0), the wave
travels with the coast on its right, while in the Southern Hemisphere, with the
coast on its left. We can see Kelvin waves in the English Channel (Fig. 2.4). The
North Atlantic tide enters the Channel from the west to the east. With the effect of
rotation and coast boundary, we expect the Kelvin waves appear and travel against
the coast on its right, namely, France. This explains why tides are higher along the
French coast than along the British coast.

Analogous to the surface Kelvin waves, we also have the internal Kelvin waves
at the interface between two fluids of different densities. If the lower layer is very
deep, then the speed of propagation is

ci =
√

g′h1, (2.68)

where h1 is the thickness of the upper layer and g′ = g(ρ2 − ρ1)/ρ2 is the reduced
gravity acceleration, and ρ1 and ρ2 are the density of upper and lower layer respec-
tively. the quantity ci/f is called internal radius of deformation. It is the length
scale at which rotational effects become important in internal waves.
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Figure 2.4: Cotidal lines (dashed) with time in lunar hours for the tide in the English
channel showing the eastward progression of the tide from the North Atlantic Ocean.
Lines of equal tidal range (solid, with values in meters) reveal larger amplitudes
along the French coast, namely to the right of the wave progression in accordance
with Kelvin waves. (From Cushman-Roisin 1994)
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Chapter 3

Analytical Solutions: Linear
Theory

3.1 Problem Introduction

When wind blows over a stratified lake, an interface tilt is usually generated, caus-
ing the thermocline to rise upwind and fall downwind (Monismith 1986). When
the wind stops blowing, the thermocline is released and adjusts through the gener-
ation of internal basin-scale waves which may then steepen nonlinearly and transfer
energy to waves of higher frequencies and shorter wavelengths. The solution for
a uniform, constant wind imposed suddenly over a circular homogeneous rotating
lake with a flat bottom was studied by Csanady (1968). When the Earth’s rotation
is considered, Beletsky et al. (1997) studied the problem of internal Kelvin waves
and coastal upwelling both in a flat bottom and a parabolic bottom basin using
POM and DIECAST. Stocker and Imberger (2003) investigated the response of a
stratified rotating lake to the release of a linearly tilted interface. Energy partition-
ing was studied as a function of the Burger number S. de la Fuente et al. (2008)
discussed the evolution of internal waves in a two-layer, rotating, circular lake un-
der nonlinear and weak non-hydrostatic effects. They showed that Poincaré waves
steepen and generate solitary-like waves with shorter wavelengths, but most of the
energy contained in these waves is transferred back and forth between the parent
wave and the solitary-like waves. Kelvin waves, on the other hand, steepen and
lose their energy to solitary-like waves. In this thesis, we discuss internal waves in a
rotating, continuously stratified, flat-bottom, circular lake with fully nonlinear and
non-hydrostatic effects, which is different than most previous studies in the litera-
ture where hydrostatic balance is assumed. In this chapter, an analytical solution
for the linearized governing equations is derived.
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3.2 Governing Equations

In section 2.2.2, the governing equations for internal gravity waves are presented.
If we assume the fluid is inviscid, i.e. the viscosity ν = 0, and neglect the nonlinear
advection term u · ∇u when the wave amplitude is small, we obtain the linearized
governing equations which can be solved analytically,

ut − fv = −px, (3.1)

vt + fu = −py, (3.2)

wt = −pz − ρg, (3.3)

ρt =
N2(z)

g
w, (3.4)

ux + vy + wz = 0, (3.5)

where p and ρ are the pressure perturbation and density perturbation, and both
have been scaled by the reference density ρ0. Since we are studying waves in a
circular lake, we will use polar coordinates. The governing equations then become,

∂ur

∂t
− fuθ = −∂p

∂r
, (3.6)

∂uθ

∂t
+ fur = −1

r

∂p

∂θ
, (3.7)

wt = −pz − ρg, (3.8)

ρt =
N2(z)

g
w, (3.9)

1

r

∂

∂r
(rur) +

1

r

∂uθ

∂θ
+

∂w

∂z
= 0. (3.10)

If we assume a rigid lid instead of the free surface, then the boundary conditions
on the surface and bottom are w = 0 at z = 0 and z = −H, where z is measured
upward from the surface and H is the depth of the lake. At the side wall r = r0,
where r0 is the radius, no fluid through the wall. The side boundary condition then
is ur = 0 at r = r0.

3.3 Analytical Solutions in Linear Theory

Taking the divergence of the horizontal momentum equations (3.6) and (3.7), and
using the continuity equation (3.10) gives

1

r

∂ur

∂θ
− 1

r

∂

∂r
(ruθ) =

1

f
(wzt −∇2

hp), (3.11)

where

∇2
h =

1

r

∂

∂r
(r

∂

∂r
) +

1

r2

∂2

∂θ2
, (3.12)
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is the horizontal Laplacian. Next taking the curl of (3.6) and (3.7), and using (3.10)
leads to

∂

∂t

(1

r

∂ur

∂θ
− 1

r

∂

∂r
(ruθ)

)
+ fwz = 0. (3.13)

Substituting (3.11) into (3.13) yields

wztt + f 2wz = ∇2
hpt. (3.14)

Taking the partial derivative of (3.8) with respect to t and using (3.9) results in a
single equation for w,

wtt + N2(z)w = −pzt. (3.15)

Eliminating p from (3.14) and (3.15) gives

∂2

∂t2
∇2w + N2(z)∇2

hw + f 2wzz = 0. (3.16)

We now look for waves propagating around the lake in the θ direction of the
form

w(r, θ, z, t) = ŵ(r) sin(nθ − ωt)φ(z), (3.17)

for 0 ≤ r ≤ r0 and −H ≤ z ≤ 0. Substituting the proposed solution (3.17) into
(3.16) gives

φ(z)
(
N2(z)− ω2

)[
ŵ′′(r) +

ŵ′(r)

r
− n2

r2
ŵ(r)

]
+ φ′′(z)(f 2 − ω2)ŵ(r) = 0, (3.18)

which can be rewritten as

ŵ′′(r) + 1
r
ŵ′(r)− n2

r2 ŵ(r)

ŵ(r)
=

φ′′(z)(ω2 − f 2)

φ(z)
(
N2(z)− ω2

) = C, (3.19)

where C is a constant, with boundary conditions

φ(0) = φ(−H) = 0, (3.20)

ur = 0 at r = r0. (3.21)

To get the side boundary condition in terms of w, eliminating uθ from (3.6) and
(3.7) gives, ( ∂2

∂t2
+ f 2

)
ur = −f

r

∂p

∂θ
− ∂

∂t

(∂p

∂r

)
. (3.22)

From equation (3.8) and (3.9) we have

wtt + N2(z)w = −pzt. (3.23)

Eliminating p from (3.22) and (3.23) yields(f

r

∂

∂θ
+

∂2

∂t∂r

)(
wtt + N2(z)w

)
=

( ∂2

∂t∂z

)( ∂2

∂t2
+ f 2

)
ur. (3.24)
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Then at the boundary r = r0, applying the boundary condition ur = 0 results in(f

r

∂

∂θ
+

∂2

∂t∂r

)(
wtt + N2(z)w

)
=

(
N2(z)− ω2

)(f

r

∂

∂θ
+

∂2

∂t∂r

)
w = 0, (3.25)

after substituting w from (3.17). The boundary condition is then simplified to(f

r

∂

∂θ
+

∂2

∂t∂r

)
w = 0, r = r0. (3.26)

Three cases will be considered in turn, C < 0, C > 0, and C = 0.

3.3.1 Case I: C = −α2 < 0

From (3.19) we obtain equations for w and φ

ŵ′′(r) +
ŵ′(r)

r
− n2

r2
ŵ(r) + α2ŵ(r) = 0, (3.27)

φ′′(z) + α2N2(z)− ω2

ω2 − f 2
φ(z) = 0, (3.28)

with boundary conditions(f

r

∂

∂θ
+

∂2

∂t∂r

)
w = 0, at r = r0, (3.29)

φ(0) = φ(−H) = 0. (3.30)

Equation (3.28) with boundary condition (3.30) gives an eigenvalue problem for φ
and ω if α is given.

Defining r = x/α and w̃(x) = ŵ(r), (3.27) leads to

x2w̃′′(x) + xw̃′(x) + (x2 − n2)w̃(x) = 0, (3.31)

which is Bessel’s Equation of order n. The general solution is

w̃(x) = AJn(x) + BYn(x), (3.32)

where A and B are arbitrary constants. Jn(x) is the Bessel function of the first
kind, which has the Taylor Series expansion,

Jn(x) =
∞∑

j=0

(−1)j

j!Γ(j + n + 1)

(x

2

)2j+n

, (3.33)

where Γ is the Gamma function, defined by

Γ(x) =

∫ ∞

0

tx−1e−tdt. (3.34)
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If x is an positive integer, the Gamma function is reduced to

Γ(x) = (x− 1)!. (3.35)

Yn(x) is the Bessel function of the second kind, defined by

Yn(x) =
Jn(x) cos(nπ)− J−n(x)

sin(nπ)
. (3.36)

At the origin x = 0, we need w̃(x) to be finite. Since Yn(x) → ∞ as x → 0, we
must have B = 0, which gives

w(r, θ, z, t) = AJn(αr) sin(nθ − ωt)φ(z). (3.37)

Substituting w into boundary condition (3.29) gives the following problem,

fn

r0

Jn(αr0)− ωαJ ′n(αr0) = 0. (3.38)

In summary, we obtain the following eigenvalue problem for α and ω,

fn

r0

Jn(αr0)− ωαJ ′n(αr0) = 0,

φ′′(z) + α2N2(z)− ω2

ω2 − f 2
φ(z) = 0, (3.39)

with φ(0) = φ(−H) = 0.

Given the eigenvalues α and ω, and the expression for w we can proceed to find
the density, pressure and horizontal velocities. Equation (3.9) immediately gives ρ,

ρ = ρ̂(r) cos(nθ − ωt)N2(z)φ(z), (3.40)

where

ρ̂(r) =
1

ωg
ŵ(r). (3.41)

The continuity equation (3.10) implies that the z component of ur and uθ are φ′(z).
Equation (3.6) and (3.7) tells that p, ur, and uθ have the same z component, which
is φ′(z). From (3.8) we solve for p,

p = p̂(r) cos(nθ − ωt)φ′(z). (3.42)

Substituting p into (3.8) yields

p̂(r)φ′′(z) = ωŵ(r)φ(z)− ρ̂(r)N2(z)φ(z). (3.43)

Recalling equation (3.19)

φ′′(z)(ω2 − f 2)

φ(z)
(
N2(z)− ω2

) = −α2, (3.44)
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and combining (3.43) and (3.44), we obtain

p̂(r) =
ω2 − f 2

ωα2
ŵ(r). (3.45)

From (3.6) and (3.7), we can easily solve for ur and uθ.

In summary, we have the following solution of the linearized system,

w = ŵ(r) sin(nθ − ωt)φ(z), (3.46)

ρ = ρ̂(r) cos(nθ − ωt)N2(z)φ(z), (3.47)

p = p̂(r) cos(nθ − ωt)φ′(z), (3.48)

ur = ûr(r) sin(nθ − ωt)φ′(z), (3.49)

uθ = ûθ(r) cos(nθ − ωt)φ′(z), (3.50)

where

ŵ(r) = AJn(αr), (3.51)

ρ̂(r) =
1

ωg
ŵ(r), (3.52)

p̂(r) =
ω2 − f 2

ωα2
ŵ(r), (3.53)

ûr(r) =
nf
r

p̂(r)− ωp̂′(r)

f 2 − ω2
, (3.54)

ûθ(r) =
−nω

r
p̂(r) + fp̂′(r)

f 2 − ω2
. (3.55)

We also need to solve the following eigenvalue problem for ω and α,

fn

r0

Jn(αr0)− ωαJ ′n(αr0) = 0, (3.56)

φ′′(z) + α2N2(z)− ω2

ω2 − f 2
φ(z) = 0, (3.57)

with boundary conditions φ(0) = φ(−H) = 0.

In the MITgcm model, the temperature is used instead of the density, so we
need to find an expression for the temperature. The linear equation of state is

ρtotal = ρ0[1− αT (T − T0) + βS(S − S0)]. (3.58)

Since we are interested in lakes, the salinity is constant S0. Then the equation of
state becomes

ρtotal = ρ0

(
1− αT (T − T0)

)
. (3.59)

Next we express the temperature T as the sum of background temperature T̄ (z)
and a perturbation Tp,

T = T̄ (z) + Tp. (3.60)
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We assume the undisturbed temperature has a tanh distribution,

T̄ (z) = Tb +
(Ts − Tb

2

)[
1 + tanh(

z − z0

d
)
]
, (3.61)

where Ts is the surface temperature, Tb is the bottom temperature, z0 is the rest
position of the thermocline, and d is the thickness of the thermocline. From this
we obtain

N2(z) = gαT
dT̄ (z)

dz
= gαT

Ts − Tb

2d
sech2

(z − z0

d

)
. (3.62)

Fig. 3.1 shows typical distributions of T̄ (z) and N(z). From the linear equation of
state, we obtain Tp

Tp = −ρtotal − ρ0

ρ0

1

αT

= − ρ

αT

. (3.63)

Note that ρ = (ρtotal − ρ0)/ρ0 is the density perturbation scaled by ρ0.

Figure 3.1: Typical distributions of T̄ (z) and N(z)

3.3.2 Case II: C = β2 > 0

Case II can be obtained from case I by allowing α to be imaginary. In the analysis
of previous subsection, if α2 > 0 we get case I, and if α2 < 0 we get case II with
α = iβ where β is real. Using the property Jn(ix) = inIn(x), we will have the
eigenvalue problem for case II,

fn

r0

In(βr0)− ωβI ′n(βr0) = 0, (3.64)

φ′′(z)− β2N2(z)− ω2

ω2 − f 2
φ(z) = 0, (3.65)
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with boundary conditions φ(0) = φ(−H) = 0. Here In(x) is the modified Bessel
function of the first kind, defined by

In(x) = i−nJn(ix). (3.66)

The solution for case II now has the form

w = ŵ(r) sin(nθ − ωt)φ(z), (3.67)

p = p̂(r) cos(nθ − ωt)φ′(z), (3.68)

ur = ûr(r) sin(nθ − ωt)φ′(z), (3.69)

uθ = ûθ(r) cos(nθ − ωt)φ′(z), (3.70)

ρ = ρ̂(r) cos(nθ − ωt)N2(z)φ(z), (3.71)

T = T̄ (z) + Tp, (3.72)

Tp = − ρ

αT

, (3.73)

(3.74)

where

ŵ(r) = BIn(βr), (3.75)

p̂(r) = −ω2 − f 2

ωβ2
ŵ(r), (3.76)

ûr(r) =
nf
r

p̂(r)− ωp̂′(r)

f 2 − ω2
, (3.77)

ûθ(r) =
−nω

r
p̂(r) + fp̂′(r)

f 2 − ω2
, (3.78)

ρ̂(r) =
1

ωg
ŵ(r). (3.79)

3.3.3 Case III: C = 0

Again from (3.19) we get two equations for w and φ,

ŵ′′(r) +
ŵ′(r)

r
− n2

r2
ŵ(r) = 0, (3.80)

(ω2 − f 2)φ′′(z) = 0, (3.81)

with φ(0) = φ(−H) = 0. If φ′′(z) = 0, the boundary conditions gives φ(z) ≡ 0.
Well we are not interested in the trivial solution, hence φ′′(0) 6= 0, which gives
ω2 = f 2, and as a result φ(z) can take any form as long as it satisfies the boundary
conditions. Equation (3.80) is an Euler type ODE, and the solution is

ŵ(r) = Ern + Fr−n, (3.82)

where E and F are constants. We need ŵ(0) to be finite, so F = 0.
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Recall the relation between w and ur in (3.24),(f

r

∂

∂θ
+

∂2

∂t∂r

)(
wtt + N2(z)w

)
=

( ∂2

∂t∂z

)( ∂2

∂t2
+ f 2

)
ur. (3.83)

Then the right hand side of (3.83) is zero knowing ω2 = f 2 and we have(f

r

∂

∂θ
+

∂2

∂t∂r

)(
wtt + N2(z)w

)
= 0. (3.84)

Substituting w from (3.82) gives

fn

r
rn − ωnrn−1 = 0, (3.85)

therefore ω = f . Following the same procedure we used early, we cannot find
analytical solutions as similar as the ones in case I and II due to the uncertainty of
φ(z). In our thesis, we will not analyze more about case III,and instead we focus
on the first two cases more.

3.4 Eigenvalue Problem

3.4.1 Case I: C = −α2 < 0

Recall that the eigenvalue problem for case I is

fn

r0

Jn(αr0)− ωαJ ′n(αr0) = 0, (3.86)

φ′′(z) + α2N2(z)− ω2

ω2 − f 2
φ(z) = 0, (3.87)

with boundary conditions φ(0) = φ(−H) = 0. We continue our analysis by first
considering the case of constant N and subsequently the case of non-constant N(z).

Constant N

When the temperature is distributed linearly, N is constant. We can easily obtain
the value of N from the distribution of the temperature profile,

N2 = gαT
dT̄ (z)

dz
. (3.88)

For a constant N , we define

K = α2N2 − ω2

ω2 − f 2
. (3.89)
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If (N2 − ω2)/(ω2 − f 2) < 0, the general solution of (3.87) is

φ(z) = c1e
√
−Kz + c2e

−
√
−Kz, (3.90)

where c1 and c2 are arbitrary constants. Applying the boundary conditions φ(0) =
φ(−H) = 0 gives the solution φ(z) ≡ 0, which we are not interested in. If (N2 −
ω2)/(ω2 − f 2) > 0, by defining

m =
√

K = α

√
N2 − ω2

ω2 − f 2
, (3.91)

we can easily solve (3.87) and the solution is

φ(z) = sin(mz). (3.92)

For the first vertical mode m = π/H, and this gives us the relationship between α
and ω. The eigenvalue problem is now reduced to

fn

r0

Jn(αr0)− ωαJ ′n(αr0) = 0. (3.93)

Defining dimensionless variables Ω = ω/f , N∗ = N/f , (3.93) can be nondimen-
sionalized as follows,

nJn(αr0)− Ωαr0J
′
n(αr0) = 0, (3.94)

where α = m
√

Ω2−1
(N∗)2−Ω2 . Defining the function

G(Ω) = nJn(αr0)− Ωαr0J
′
n(αr0), (3.95)

we plot G(Ω) versus Ω for different values of N∗ and r0. For H = 50 m,m = π/H,
f = 10−4 s−1, N∗ = 198, we plot G(Ω) using r0 = 5, 10, 20, 40 km, (Fig. 3.2). The
zeros of G(Ω) decrease when r0 increases in Ω ∈ (1, 5). With values of H, m, and
f unchanged, we fix r0 = 20 km, and vary N∗ = 50, N∗ = 100, N∗ = 500 and
N∗ = 1000 (Fig. 3.3). The zeros of G(Ω) decrease when N∗ increases in Ω ∈ (1, 5).

Non-constant N(z)

When N(z) is not a constant we have two eigenvalues, ω and α, to find. In the
limit of the thermocline thickness d going to zero, a two-layer model is obtained, for
which the boundary value problem can be solved analytically. The solution gives
an initial guess of our eigenvalues, which will be especially useful when we deal with
a thin thermocline.

We start with the background temperature distribution,

T̄ (z) = Tb +
(Ts − Tb

2

)[
1 + tanh(

z − z0

d
)
]
, (3.96)
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Figure 3.2: G(Ω) plots in the eigenvalue problem in case I with a constant N∗ = 198,
for different r0 values: (a) r0 = 40 km, (b) r0 = 20 km, (c) r0 = 10 km, and (d)
r0 = 5 km.

and

N2(z) = gαT
dT̄ (z)

dz
= gαT

Ts − Tb

2d
sech2

(z − z0

d

)
. (3.97)

As d→ 0,
T̄ (z)→ Tb + (Ts − Tb)H(z − z0),

where H(z) is Heaviside step function, and

N2(z)→ g′δ(z − z0),

where δ(z) is the delta function which is the derivative of the Heaviside step func-
tion, and g′ is defined as g′ = gαT (Ts−Tb). Substituting N2(z) into equation (3.87)
leads to

φ′′(z) + α2 g′δ(z − z0)− ω2

ω2 − f 2
φ(z) = 0, (3.98)
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Figure 3.3: G(Ω) plots in the eigenvalue problem in case I with a constant r0 = 20
km, for different N∗ values: (a) N∗ = 50, (b) N∗ = 100, (c) N∗ = 500, and (d)
N∗ = 1000.

with φ(0) = φ(−H) = 0.

When −H ≤ z < z0, δ(z − z0) = 0, we get

φ′′(z)− α2ω2

ω2 − f 2
φ(z) = 0, (3.99)

with φ(−H) = 0. The solution of this ODE is

φ(z) = a sinh(M(z + H)), (3.100)

where M2 = α2ω2

ω2−f2 and a is an arbitrary constant. For now we assume ω > f .

When z0 < z ≤ 0, δ(z − z0) = 0, we obtain

φ′′(z)− α2ω2

ω2 − f 2
φ(z) = 0, (3.101)
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with φ(0) = 0. The general solution of this ODE is

φ(z) = b sinh(Mz), (3.102)

where b is an arbitrary constant. Since φ(z) is continuous at z = z0, we have

a sinh(M(z0 + H)) = b sinh(Mz0). (3.103)

If we define z0 = −h1, H = h1 + h2, where h1 and h2 are the thickness of upper
and lower layer, we can write this as

b = −sinh(Mh2)

sinh(Mh1)
a. (3.104)

From (3.100) and (3.102) we write φ(z) as

φ(z) = a sinh(M(z + H)) + [b sinh(Mz)− a sinh(M(z + H))]H(z − z0). (3.105)

Differentiating equation (3.100) and (3.102) with respect to z yields,

φ′(z) =

{
aM cosh(M(z + H)) if −H ≤ z < z0,
bM cosh(Mz) if z0 < z ≤ 0.

(3.106)

Then we rewrite φ′(z) as

φ′(z) = aM cosh(M(z + H)) + [bM cosh(Mz)− aM cosh(M(z + H))]H(z − z0).
(3.107)

Differentiating this with respect to z gives,

φ′′(z) =aM2 sinh(M(z + H)) + [bM2 sinh(Mz)− aM2 sinh(M(z + H))]H(z − z0)

+ [bM cosh(Mz)− aM cosh(M(z + H))]δ(z − z0). (3.108)

Note that the sum of the first two parts is M2φ(z), hence (3.108) becomes,

φ′′(z) = M2φ(z) + [bM cosh(Mz)− aM cosh(M(z + H))]δ(z − z0). (3.109)

Substituting φ′′(z) into equation (3.98) leads to,

[bM cosh(Mz)− aM cosh(M(z + H))]δ(z − z0) +
M2g′

ω2
δ(z − z0)φ(z) = 0, (3.110)

which implies that,

bM cosh(Mz0)− aM cosh(M(z0 + H)) +
M2g′

ω2
φ(z0) = 0. (3.111)

We know
φ(z0) = a sinh(M(z0 + H)) = a sinh(Mh2). (3.112)
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Substituting b from (3.104) results of

g′M

ω2
sinh(Mh1) sinh(Mh2) = sinh(MH), (3.113)

where M = αω√
ω2−f2

with ω > f .

Therefore, if ω > f the eigenvalue problem (3.86) and (3.87) becomes a system
of equations

fn

r0

Jn(αr0)− ωαJ ′n(αr0) = 0, (3.114)

g′M

ω2
sinh(Mh1) sinh(Mh2)− sinh(MH) = 0, (3.115)

where M = αω√
ω2−f2

with ω > f and g′ = gαT (Ts − Tb).

Next we will solve the system numerically. Defining F1 and F2 as the left hand
sides of (3.114) and (3.115) respectively, zero contour plots of F1 and F2 are made
in the domain ω ∈ [1.01 × 10−4, 4 × 10−4] and α ∈ [10−4, 10−3]. From these, the
intersections give the desired solutions. If f = 10−4 s−1, n = 1, H = 50 m, h1 = 15
m, and h2 = 35 m, we plot the zero contours of both functions for different values
of r0 (Fig. 3.4). In the plots, the zero contour of function F2 does not depend
on r0, which is trivial since there is no r0 in (3.115). For large values of r0 the
zero contours of F1 are nearly independent of ω, and there are more intersections
between the two sets of contours.

While if ω < f , we can use the results to find out the new eigenvalue problem
by defining M = iM?. Substituting M into equation (3.113), and using the relation
sinh(ix) = i sin(x), we obtain

− g′M?

ω2
sin(M?h1) sin(M?h2) = sin(M?H), (3.116)

where M? = αω√
f2−ω2

with ω < f . Hence the eigenvalue problem becomes,

fn

r0

Jn(αr0)− ωαJ ′n(αr0) = 0, (3.117)

g′M?

ω2
sin(M?h1) sin(M?h2) + sin(M?H) = 0, (3.118)

where M? = αω√
f2−ω2

with ω < f and g′ = gαT (Ts − Tb).

Now using the same method as ω > f case, we try to find the numerical solu-
tions for ω < f case. It turns out that we cannot find any solution for this case
numerically. Therefore, for case I, only ω > f is permitted.
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Figure 3.4: Zero contours plots in case I with non-constant N(z) for different r0

values: (a) r0 = 40 km, (b) r0 = 20 km, (c) r0 = 10 km, and (d) r0 = 5 km. Zero
contours of function F1 is in blue, while the ones for F2 is in red.

3.4.2 Case II: C = β2 > 0

For case II, we are solving the eigenvalue problem

fn

r0

In(βr0)− ωβI ′n(αr0) = 0, (3.119)

φ′′(z)− β2N2(z)− ω2

ω2 − f 2
φ(z) = 0, (3.120)

with boundary conditions φ(0) = φ(−H) = 0.

Constant N

If (N2 − ω2)/(ω2 − f 2) > 0, (3.120) with the boundary conditions gives the trivial
solution φ(z) ≡ 0. If (N2−ω2)/(ω2−f 2) < 0, we solve equation (3.120) and obtain

φ(z) = sin(m̃z), (3.121)

where m̃ = β
√

N2−ω2

f2−ω2 . For the first vertical mode, we have m̃ = π/H. Similarly to

case I define dimensionless variables Ω = ω/f , N∗ = N/f , and

G(Ω) = nIn(βr0)− Ωβr0I
′
n(βr0), (3.122)
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where β = m̃
√

1−Ω2

(N∗)2−Ω2 .

We now plot G(Ω) versus Ω for different values of N∗ and r0. For H = 50 m,
m̃ = π/H m−1, f = 10−4 s−1, N∗ = 198, we plot G(Ω) using r0 = 40 km, r0 = 20
km, r0 = 10 km, and r0 = 5 km (Fig. 3.5). The zero of G(ω) moves towards 1 when
r0 increases in Ω ∈ (0.01, 0.9). In fact, approximately when r0 < 4.5 km, there is
no solution for Ω. With values of H, m, and f unchanged, we fix r0 = 20 km, and
vary N∗ = 50, N∗ = 100, N∗ = 500, and N∗ = 1000 (Fig. 3.6). The solution of
G(ω) = 0 moves towards 1 when N∗ increases in Ω ∈ (0.01, 0.9). After a simple
check by Maple, there is no solution for Ω when N∗ > 900 approximately.

Figure 3.5: G(Ω) plots in the eigenvalue problem in case II with constant N∗ = 198,
for different r0 values: (a) r0 = 40 km, (b) r0 = 20 km, (c) r0 = 10 km, and (d)
r0 = 5 km.
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Figure 3.6: G(Ω) plots in the eigenvalue problem in case II with a constant r0 = 20
km, for different N∗ values: (a) N∗ = 50, (b) N∗ = 100, (c) N∗ = 500, and (d)
N∗ = 1000.

Non-constant N(z)

Similar to case I, we start with two-layer analysis. It basically follows the same
steps as case I with β2 = −α2. Let α = βi, then in the results of case I (3.114) to
(3.118), M = iβω√

ω2−f2
= iγ, with definition

γ =
βω√

ω2 − f 2
, (3.123)

and M? = iβω√
f2−ω2

= iγ?, with definition

γ? =
βω√

f 2 − ω2
, (3.124)

Substituting α = iβ, M = iγ, and M? = iγ? into equation (3.114) to (3.118), and
using the property Jn(ix) = inIn(x), sinh(ix) = i sin(x), and sin(ix) = i sinh(x),
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we have the two-layer approximation of eigenvalue problem for case II as follows.
If ω > f ,

fn

r0

In(βr0)− ωβI ′n(βr0) = 0, (3.125)

g′γ

ω2
sin(γh1) sin(γh2) + sin(γH) = 0, (3.126)

where γ = βω√
ω2−f2

and g′ = gαT (Ts − Tb).

While if ω < f ,

fn

r0

In(βr0)− ωβI ′n(βr0) = 0, (3.127)

g′γ?

ω2
sinh(γ?h1) sinh(γ?h2)− sinh(γ?H) = 0, (3.128)

where γ? = βω√
f2−ω2

and g′ = gαT (Ts − Tb).

Using the same method as case I, next we try to find the numerical solutions
of the system. If ω < f , again defining G1 and G2 is the left hand side of (3.127)
and (3.128) respectively, zero contour plots of G1 and F2 are made in the domain
ω ∈ (10−6 9.9 × 10−5) and β ∈ (10−5, 10−3). Given f = 10−4 s−1, n = 1, H = 50
m, h1 = 15 m, and h2 = 35 m, we plots the zero contours of both functions for
different values of r0 (Fig. 3.7). As r0 decreases, eigenvalue ω moves towards to
f = 10−4 s−1. When r0 = 5 km, there is no solution for the system. On the other
hand, when ω > f , we cannot find any solution numerically using the method we
described. Therefore, for case II, only ω < f is permitted, as opposite to case I.
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Figure 3.7: Zero contours plots in case II with non-constant N(z) for different r0

values: (a) r0 = 40 km, (b) r0 = 20 km, (c) r0 = 10 km, and (d) r0 = 5 km. Zero
contours of function G1 is in blue, while the ones for G2 is in red.
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Chapter 4

Numerical Model

4.1 Introduction to MITgcm

The MITgcm (MIT General Circulation Model) is a numerical model designed for
the study of the atmosphere, ocean, and climate. The MITgcm has a number of
novel aspects. It can be used to study both atmospheric and oceanic phenomena
(Fig. 4.1). It has a non-hydrostatic capability and so can be used to study both

Figure 4.1: MITgcm has a single dynamical kernel that can perform either oceanic
or atmospheric simulations (from Adcroft et al. 2008).

small-scale and large-scale processes (Fig. 4.2). Finite volume techniques are em-
ployed yielding an intuitive discretization and support for the treatment of irregular
geometries. Also the model is developed to perform efficiently on a wide variety of
computational platforms. There are many key publications on the development of
the model, e.g., Marshall et al. (1997a,b), Adcroft et al. (1997) and Marshall et al.
(2004) etc.
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Figure 4.2: MITgcm has non-hydrostatic capabilities, allowing the model to address
a wide range of phenomenon – from convection on the left, all the way through to
global circulation patterns on the right (from Adcroft et al. 2008).

4.2 First Application of MITgcm: Tilted Tank

We begin our applications of MITgcm model with a tilted tank simulation. This
has been studied in detail in many references e.g. Horn et al. (2001) and Boegman
et al. (2005). The results are compared with the simulations done by Dr. Kevin
Lamb’s Internal Gravity Waves model (IGW).

The tank we choose is 12 meter long, 0.3 meter high, and 0.06 meter wide. It
is fully filled with water of different densitie, using a layer of warm water overlying
a layer of cold water. The titled thermocline has the form

T (x, z) = Tb +
Ts − Tb

2

[
1 + tanh

(z − z0 − γx

d

)]
, (4.1)

where Tb = 10 ◦C and Ts = 20 ◦C are the temperatures of the bottom water and
surface water, z0 = −0.1 m is the position of the thermocline at x = 0 and and
d = 0.02 m is the the thickness of the thermocline, z ranges from 0 to −0.3 m, x
ranges from 0 to 12 m, and γ = 0.005 is a parameter to determine the slope of the
thermocline. Fig. 4.3 shows the initial temperature distribution.

The fluid is initially tilted at rest and then evolves freely. In Horn et al. (2001),
by assuming a two-layer model and comparing the timescales over which each of
these degeneration mechanisms acts, regimes are defined in Fig. 4.4. The boundaries
of these regimes are expressed in terms of two length scale ratios: the ratio of the
amplitude of the initial wave to the depth of the thermocline, and the ratio of the
depth of the thermocline to the overall depth of the lake. In our run it is easy to
work out the amplitude η0 ≈ 0.03 m, the thickness of the upper layer h1 ≈ 0.07 m,
and the lower layer h2 ≈ 0.23 m. Hence W−1 = η0/h1 ≈ 0.43 and h1/H ≈ 0.23,
where W−1 is the Wedderburn number (Thompson and Imberger 1980). From
the regime plot in Fig. 4.4, we expect solitary waves from the simulations. The
problem is 2D, while we are using a 3D simulation with each layer in y direction
being identical. The resolution is 800 × 5 × 80 in x, y, and z direction, and the
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Figure 4.3: The initial temperature profile of the tilted tank simulation in x-z plane

Figure 4.4: The regimes of the degeneration of internal waves in two-layer fluids.
(from Horn et al. 2001)

39



time step is 0.1 s. The viscosity and diffusivity are both zero. In order to make the
comparison of the schemes, we do not use any turbulence models and numerical
filters here. Fig. 4.5 and Fig. 4.6 show the time evolution of the tilted interface
from 0 to 2000 s with temperature advection scheme code set to be 2. There are
several temperature advection schemes in MITgcm model. The comparison is made
in Table 4.1, with the results for each schemes at t = 1000 s and 2000 s from Fig. 4.7
to Fig. 4.10. Here the horizontal and vertical schemes have the same code, i.e., if we
set TempAdvScheme = 1 in the model, then both horizontal and vertical scheme
codes are 1 by default, and we do not test mixed schemes here.

In summary, schemes 2 and 33 provide good results in our tank simulation in
the absence of viscosity and diffusivity, and the results using schemes 3 and 4 are
OK, while schemes 1, 20, 30, and 77 give unreasonable output.

Next, we run the same simulation in the IGW model. The numerical scheme
in IGW uses a second-order Godunov upwind scheme with a monotonized slope
computation which provides selective numerical dissipation and diffusion near sharp
gradients. Fig. 4.11 and 4.12 show the time evolution of the tilted interface from 0
to 2000 s. Comparing to Fig. 4.5 and 4.6, two results are almost the same except
that the wave speed in the MITgcm seems a bit larger than in the IGW. We will
continue to investigate the difference of the speeds in future work.
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Table 4.1: Advection schemes comparison in the MITgcm in the tilted tank simu-
lation
code Scheme MITgcm Manual MITgcm Run
1 1st upwind It is very diffusive and does not pro-

vide more useful results than the
positive higher order schemes.

It is very diffusive as expected.

2 2nd centered It is noisy and must be used with
finite amount of diffusion.

The result is not noisy through
the first 2000 s, but some noise
appears after that.

3 3rd upwind It is relatively good compromise be-
tween accuracy and smoothness.

The result is almost identical
to scheme 2 except that there
is noise at the top and bottom
near t = 2000 s.

4 4th centered It is the most accurate scheme. Like
scheme 2, it is noisy and must be
used with some finite amount of dif-
fusion.

It is almost identical to scheme
2, except it is noisier.

20 2nd DST 2nd DST (direct space time) deals
with space and time discretization
together.

It is one of the worst in all
simulations because it is very
noisy.

30 3rd DST 3rd order direct space time scheme. It is very noisy and has over-
shoots.

33 3rd DST
with flux
limiting.

The flux limiting is to avoid the
spurious oscillations that would
otherwise occur with high order
spatial discretization schemes due
to shocks, discontinuities or sharp
changes in the solution domain. The
overshoots in 3rd order DST can be
controlled with a flux limiter.

With the flux limiting, there is
no noise compared to scheme
30. The problem with over-
shoots is solved as expected.

77 2nd flux lim-
iter

2nd order with flux limiter The result is unusual because
the thermocline is shrinking in-
stead of diffusing.
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Figure 4.5: Temperature distribution on x-z plane at t = 0 s, 300 s, 600 s and 900
s using scheme 2
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Figure 4.6: Temperature distribution on x-z plane at t = 1200 s, 1500 s, 1800 s
and 2000 s using scheme 2
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Figure 4.7: Temperature advection schemes comparison at t = 1000 s (schemes 1,
2, 3, 4)
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Figure 4.8: Temperature advection schemes comparison at t = 1000 s (schemes 20,
30, 33, 77)
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Figure 4.9: Temperature advection schemes comparison at t = 2000 s (schemes 1,
2, 3, 4)
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Figure 4.10: Temperature advection schemes comparison at t = 2000 s (schemes
20, 30, 33, 77)
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Figure 4.11: Temperature on x-z plane at t = 0 s, 300 s, 600 s and 900 s using the
IGW model
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Figure 4.12: Temperature on x-z plane at t = 1200 s, 1500 s, 1800 s and 2000 s
using the IGW model
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4.3 Grid

The MITgcm uses the Arakawa C-grid and our grids are set up using a Cartesian co-
ordinate system. In the horizontal plane, the Matlab command G=numgrid(‘D’,nx)
is used to generate the approximate circular lake (Fig. 4.13). In a C-grid, within
the same horizontal plane, the external forcing F is applied at the grid cell corners,
temperature T at the centre, zonal velocity u on sides x = constant, and meridional
velocity v on on sides y = constant (Fig. 4.14). In the vertical plane, T , F , u, and
v are initialized at the centre of the grid, while w is on the top and bottom sides,
centred of horizontal. (Fig. 4.15).

Figure 4.13: Horizontal grid setup
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Figure 4.14: C-grid initialization in the horizontal plane
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Figure 4.15: C-grid initialization in the vertical plane
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4.4 Initialization in the MITgcm

Recall that the internal Rossby radius of deformation for a two-layer model R is
defined by

R =
√

g′h1/f, (4.2)

where h1 is the thickness of the upper layer, f is the Coriolis parameter, and g′ is
the reduced gravity which is defined by

g′ =
ρ2 − ρ1

ρ2

g, (4.3)

where ρ1 and ρ2 are the density of top and bottom layer, and g is the gravitational
acceleration. In the MITgcm, temperature is used instead of density and recall the
linear equation of state,

ρ = ρ0(1− αT (T − T0)). (4.4)

Then g′ ≈ −αT (T2 − T1)g if ρ2 ≈ ρ0. Assuming we are interested a lake at mid-
latitude with f = 10−4 s−1, T1 = 20 ◦C, T2 = 10 ◦C, and h1 = 15 m. Then R ≈ 5.4
km given that the thermal expansion coefficient is 2 × 10−4(◦C)−1. Therefore, we
choose a lake of radius 20 km in order to investigate the effect of Earth’s rotation.
In the MITgcm model, the initial vertical velocity w is not required since it is
automatically calculated in the model given the horizontal velocities u and v. In
addition to u and v, the initial distribution of the temperature T is required.

4.4.1 Case I: C = −α2 < 0

Recall ŵ(r) for case I in Chapter 3,

ŵ(r) = AJn(αr). (4.5)

Substituting ŵ(r) into the solutions we obtained (3.46) – (3.55) and letting t = 0
we get the initial conditions,

w = ŵ(r) sin(nθ)φ(z), (4.6)

ρ = ρ̂(r) cos(nθ)φ(z)N2(z), (4.7)

p = p̂(r) cos(nθ)φ′(z), (4.8)

ur = ûr(r) sin(nθ)φ′(z), (4.9)

uθ = ûθ(r) cos(nθ)φ′(z), (4.10)

T = T̄ (z) + Tp, (4.11)

Tp = − ρ

αT

, (4.12)
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where

ŵ(r) = AJn(αr), (4.13)

ρ̂(r) =
AJn(αr)

ωg
, (4.14)

p̂(r) = A
(ω2 − f 2)

ωα2
Jn(αr), (4.15)

ûr(r) =
A

rωα2

(
(ω − f)nJn(αr)− ωαrJn+1(αr)

)
, (4.16)

ûθ(r) =
A

rωα2

(
(ω − f)nJn(αr) + fαrJn+1(αr)

)
. (4.17)

In our simulation, a Cartesian coordinate system is used and the initial velocities
needed by the model are u and v, so we need to transform ur and uθ into u and v.
Using the simple relation,

u = ur cos θ − uθ sin θ, (4.18)

v = ur sin θ + uθ cos θ. (4.19)

we obtain the initial velocities u and v,

u =
[
ûr sin(nθ) cos θ − ûθ cos(nθ) sin θ

]
φ′(z), (4.20)

v =
[
ûr sin(nθ) sin θ + ûθ cos(nθ) cos θ

]
φ′(z), (4.21)

From (4.16) and (4.17), we notice that ûr and ûθ contain the 1/r term which are
not defined at r = 0. Now we are going to use the asymptotic behavior of the
Bessel functions to define those values at r = 0. First we know that as x→ 0,

Jn(x) ∼ 1

Γ(n + 1)

(x

2

)n

, (4.22)

with 0 < x ≤
√

n + 1. Γ(n + 1) is the Gamma function, and Γ(n + 1) = n! when n
is an non-negative integer. Therefore, as αr → 0

J0(αr) ∼ 1, J1(αr) ∼ 1

2
αr, J2(αr) ∼ 1

2

(αr

2

)2

,

For n = 1 applying the asymptotic approximation yields

ûr(0) =
A

2

ω − f

ωα
, (4.23)

ûθ(0) =
A

2

ω − f

ωα
. (4.24)

Substituting these into the u, v equation gives

u(r = 0) = 0,

v(r = 0) =
A

2

ω − f

ωα
φ′(z). (4.25)
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At the origin u and v are independent of θ, which is the result we are looking for.
The rest of the terms in the initial conditions do not contain the 1/r term, which
means they are defined at r = 0, and the values are

w(r = 0) = 0, ρ(r = 0) = 0, p(r = 0) = 0, Tp(r = 0) = 0. (4.26)

Constant N

We use the following parameters for the constant N problem in case I in Table 4.2,

Table 4.2: Values of parameters for constant N for case I
H depth of the lake 50 m
r0 radius of the lake 20 km
Ts temperature at the surface 20 ◦C
Tb temperature at the bottom 10 ◦C
η wave amplitude 2.5 m
αT coefficient of thermal expansion 2× 10−4(◦C)−1

f Coriolis parameter 10−4 rad · s−1

N buoyancy frequency 1.98× 10−2 rad · s−1

n wave number in θ direction 1
m wave number in z direction π/50 m−1

nx× ny × nz resolution 200× 200× 20

The temperature is linearly distributed if N is a constant. Given Ts = 20 ◦C
and Tb = 10 ◦C, N can be easily calculated

N =

√
gαT

dT̄ (z)

dz
= 1.98× 10−2(rad · s−1),

Recall that the solution of φ(z) for constant N is

φ(z) = sin(mz), (4.27)

where m = α
√

N2−ω2

ω2−f2 . For a mode-one wave, m = π/H, and the eigenvalue problem

(4.28) can be easily solved,

fn

r0

Jn(αr0)− ωαJ ′n(αr0) = 0. (4.28)

One pair of eigenvalues is ω = 1.29075 × 10−4 s−1 and α = 2.58982 × 10−4 m−1.
With all the values of parameters, we have the following plots for initial conditions
(Fig. 4.16).
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Figure 4.16: Initial profiles of T, u, and v in case I with a constant N . (a): T
in x = 20 km cross-section (y-z plane); (b): T in y = 20 km cross-section (x-z
plane); (c): T in z = −11.25 m cross-section (x-y plane); (d): u in z = −11.25 m
cross-section (x-y plane); (e): v in z = −11.25 m cross-section (x-y plane); (f): w
in z = −10 m (different depth than u and v due to use of C-grid) cross-section (x-y
plane);

56



Non-constant N(z)

We use the following setup for the non-constant N(z) problem in Table 4.3,

Table 4.3: Values of parameters for non-constant N(z) for case I
H depth of the lake 50 m
r0 radius of the lake 20 km
Ts temperature at the surface 20 ◦C
Tb temperature at the bottom 10 ◦C
z0 position of the thermocline at rest −15 m
d thickness of the thermocline 2 m

αT coefficient of thermal expansion 2× 10−4(◦C)−1

η wave amplitude 1.9 m
f Coriolis parameter 10−4 rad · s−1

n wave number in θ direction 1
nx× ny × nz resolution 200× 200× 50

First of all we need to solve the eigenvalue problem numerically. Recall that the
eigenvalue problem is

fn

r0

Jn(αr0)− ωαJ ′n(αr0) = 0, (4.29)

φ′′(z) + α2N2(z)− ω2

ω2 − f 2
φ(z) = 0, (4.30)

with boundary conditions φ(0) = φ(−H) = 0.

We begin with the two-layer limit analyzed in Section 3.4 to find an initial guess
for the eigenvalues. Recall that ω and α can be only found when ω > f in case I.
The system of equations (3.114) and (3.115), which is the approximate eigenvalue
problem in the two-layer limit, can be easily solved numerically,

fn

r0

Jn(αr0)− ωαJ ′n(αr0) = 0, (4.31)

g′M

ω2
sinh(Mh1) sinh(Mh2)− sinh(MH) = 0, (4.32)

where M = αω√
ω2−f2

and g′ = gαT (Ts − Tb). Defining F1 and F2 as the left hand

side of (4.31) and (4.32), zero contours plots of F1 and F2 are made using the given
values of parameters (Fig. 4.17). The intersections give the solution of the system.
In case I constant N , the initialization plots suggest that α = 2.5 × 10−4 m−1 is
a good value for a better view of horizontal structures. Hence, we choose the zero
near α = 2.5× 10−4 m−1 and ω = 1.6× 10−4 s−1.

Given the initial guessing eigenvalues, we choose an interval of ω and α con-
taining the initial guess and plot the zero contours of the left hand side of (4.29),
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Figure 4.17: Zero contours plots in case I two-layer model. Zero contours of function
F1 is in blue, while the ones for F2 is in red.

say G. For the ODE, we solve for φ(z) given ω and α and the boundary condition
φ(0) = 0, then plot the zero contours of φ(−H). The intersections of two contours
give the eigenvalues. Fig.4.18 shows the zero contours for ω from 1.01× 10−4s−1 to
4 × 10−4s−1 and α from 1 × 10−4 m−1 to 9 × 10−4 m−1. By refining the ω and α
intervals one pair of mode-one eigenvalue is obtained, ω = 1.50459× 10−4 s−1 and
α = 2.60062× 10−4 m−1.

Given all the parameters, we have the initializations as follows, see Fig. 4.19
and Fig. 4.20. The initial profiles have similar structures as in the constant N
case. However, there are some problems in the initialization. First, in Fig. 4.19
(b), there are two circles representing points at which the density field is statically
unstable. Moreover, we know the horizontal velocities over and under a traveling
wave are opposite in direction. In the y = 20 km cross-section (Fig. 4.20), there is
no sign of this phenomena since the wave is flattened by linearization. For small
amplitude waves, this is acceptable, however, when we study the nonlinearity of
large amplitude waves the exact structure has to be presented. In order to solve
these problems, we introduce a Lagrangian formulation in next section.
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Figure 4.18: Zero contours for G in blue and φ(−H) in red for case I.
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Figure 4.19: Initial temperature profile in case I with non-constant N(z) (Eulerian
formulation). (a): T in x = 20 km cross-section (y-z plane); (b): T in y = 20 km
cross-section (x-z plane); (c): T in z = −11.25 m cross-section (x-y plane).
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Figure 4.20: Initial horizontal velocities profiles in case I with non-constant N(z)
(Eulerian formulation). (a): u in z = −11.25 m cross-section (x-y plane); (b): v
in z = −11.25 m cross-section (x-y plane); (c): v in x = 20 km cross-section (y-z
plane); (d): v in y = 20 km cross-section (x-z plane); (u is zero at x = 20 km and
y = 20 km cross-section)
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4.4.2 Lagrangian Formulation

In the previous section, we encountered two problems: one is that the density profile
has regions of static instability, and the other is incorrect velocities distributions
over and under the traveling waves. In this section, we use a Lagrangian formulation
to generate the initial profiles, which helps us to solve these problems.

Define z∗ so that the density profile can be expressed as ρ = ρ̄(z∗), where ρ̄ is the
background density function. In the z∗ plane, z = z∗ + η where η is the amplitude
of the wave. Given the expression of w from (4.6), η is obtained by integration

η =

∫
wdt =

A

ω
Jn(αr) cos(nθ − ωt)φ(z∗). (4.33)

z∗ can be solved numerically using the following expression,

z = z∗ +
A

ω
Jn(αr) cos(nθ − ωt)φ(z∗). (4.34)

Then in the Lagrangian formulation the velocities ur and uθ are

ur = ûr sin(nθ − ωt)
dφ(z∗)

dz∗
(4.35)

= ûr sin(nθ − ωt)
dφ(z∗)

dz

(
1 +

A

ω
Jn(αr) cos(nθ)

dφ(z∗)

dz

)
, (4.36)

uθ = ûθ cos(nθ − ωt)
dφ(z∗)

dz

(
1 +

A

ω
Jn(αr) cos(nθ)

dφ(z∗)

dz

)
. (4.37)

Using the same parameters as the Euler formulation in Table 4.3 and the same pair
of eigenvalues ω = 1.50459 × 10−4s−1 and α = 2.60062 × 10−4 m−1, the initializa-
tion using the Lagrangian formulation is shown in Fig. 4.21 and Fig. 4.22. The
temperature profile in Fig. 4.21 no longer have overshoots. In Fig. 4.22, we see the
velocity profiles are initialized along the thermocline.
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Figure 4.21: Initial temperature profile in case I with non-constant N(z) (La-
grangian formulation). (a): T in x = 20 km cross-section (y-z plane); (b): T in
y = 20 km cross-section (x-z plane); (c): T in z = −11.25 m cross-section (x-y
plane).
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Figure 4.22: Initial horizontal velocities profiles in case I with non-constant N(z)
(Lagrangian formulation). (a): u in z = −11.25 m cross-section (x-y plane); (b): v
in z = −11.25 m cross-section (x-y plane); (c): v in x = 20 km cross-section (y-z
plane); (d): v in y = 20 km cross-section (x-z plane); (u is zero at x = 20 km and
y = 20 km cross-section)
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4.4.3 Case II: C = β2 > 0

Similar to case I, we have the initial conditions as follows,

w = ŵ(r) sin(nθ)φ(z), (4.38)

p = p̂(r) cos(nθ)φ′(z), (4.39)

ur = ûr(r) sin(nθ)φ′(z), (4.40)

uθ = ûθ(r) cos(nθ)φ′(z), (4.41)

ρ = ρ̂(r) cos(nθ)N2(z)φ(z), (4.42)

T = T̄ (z) + Tp, (4.43)

Tp = − ρ

αT

, (4.44)

(4.45)

where

ŵ(r) = BIn(βr), (4.46)

ρ̂(r) =
BIn(βr)

ωg
, (4.47)

p̂(r) = −B
(ω2 − f 2)

ωβ2
In(βr), (4.48)

ûr(r) =
B

rωβ2

(
(f − ω)nIn(βr)− ωβrIn+1(βr)

)
, (4.49)

ûθ(r) =
B

rωβ2

(
(f − ω)nIn(βr) + fβrIn+1(βr)

)
. (4.50)

Again asymptotic analysis is used to define the value of ur and uθ at the origin
r = 0. As x→ 0,

In(x) =
1

Γ(n + 1)

(x

2

)n

, (4.51)

with 0 < x ≤
√

n + 1. For n = 1, the asymptotic approximation gives,

ûr(0) =
B

2

f − ω

ωβ
, (4.52)

and

ûθ(0) ∼
B

2

f − ω

ωβ
. (4.53)

Substituting se into u and v gives,

u(r = 0) = 0,

v(r = 0) =
B

2

f − ω

ωβ
φ′(z). (4.54)

The rest of terms in the initial conditions do not contain the 1/r term, which means
they are defined at r = 0, and the values are

w(r = 0) = 0, ρ(r = 0) = 0, p(r = 0) = 0, Tp(r = 0) = 0. (4.55)
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Constant N

For the constant N problem in case II, the parameters are shown in Table 4.4.

Table 4.4: Values of setup parameters for constant N in case II
H depth of the lake 50 m
r0 radius of the lake 20 km
Ts temperature at the surface 20 ◦C
Tb temperature at the bottom 10 ◦C
η wave amplitude 2 m
αT coefficient of thermal expansion 2× 10−4(◦C)−1

f Coriolis parameter 10−4 rad · s−1

N buoyancy frequency 1.98× 10−2 rad · s−1

n wave number in θ direction 1
m wave number in z direction π/50 m−1

nx× ny × nz resolution 200× 200× 20

One pair of eigenvalue are easily to obtain using Maple as before, ω = 1.716748×
10−5 s−1 and α = 3.126215× 10−4 m−1. Fig. 4.23 shows the initial profiles of T , u,
v, and w.
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Figure 4.23: Initial profiles of T, u, and v in case II with constant N . (a): T in
x = 20 km cross-section (y-z plane); (b): T in y = 20 km cross-section (x-z plane);
(c): T in z = −11.25 m cross-section (x-y plane); (d): u in z = −11.25 m cross-
section (x-y plane); (e): v in z = −11.25 m cross-section (x-y plane); (f): w in
z = −10 m cross-section (x-y plane);
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Non-constant N(z)

For non-constant N(z) problem in case II, the parameters are in Table 4.5.

Table 4.5: Values of setup parameters for non-constant N(z) in case II
H depth of the lake 50 m
r0 radius of the lake 20 km
Ts temperature at the surface 20 ◦C
Tb temperature at the bottom 10 ◦C
z0 position of the thermocline at rest −15 m
d thickness of the thermocline 2 m

αT coefficient of thermal expansion 2× 10−4(◦C)−1

η wave amplitude 5.5 m
f Coriolis parameter 10−4 rad · s−1

n wave number in θ direction 1
nx× ny × nz resolution 200× 200× 50

Again, we begin with the eigenvalue problem,

fn

r0

In(βr0)− ωβI ′n(βr0) = 0, (4.56)

φ′′(z)− β2N2(z)− ω2

ω2 − f 2
φ(z) = 0, (4.57)

with φ(0) = φ(−H) = 0. We begin with the two-layer limit analyzed in Section 3.4
to find an initial guess for the solution. Recall that the eigenvalues ω and β can
only be found when ω < f in case II. The system of equations (3.127) and (3.128)
can be easily solved numerically,

fn

r0

In(βr0)− ωβI ′n(βr0) = 0, (4.58)

g′γ̃

ω2
sinh(γ̃h1) sinh(γ̃h2)− sinh(γ̃H) = 0, (4.59)

where γ̃ = βω√
f2−ω2

and g′ = gαT (Ts − Tb). As before, defining F̃1 and F̃2 as the

left hand side of (4.58) and (4.59), zero contour plots are made using the chosen
parameters values (Fig. 4.24).

Given the initial guesses, the eigenvalues are obtained numerically. Defining
G̃ as the left hand side of (4.56), Fig. 4.25 shows zero contours plots of G̃ and
φ(−H) and the intersections are the eigenvalues. One pair of eigenvalues are ω =
2.43961 × 10−5s−1 and β = 2.24343 × 10−4 m−1. Given all the parameters, the
initializations in Lagrangian formulation are presented in Fig. 4.26 and Fig. 4.27.
Fig. 4.26 shows that the waves are trapped at the boundaries, which are Kelvin
waves. In Fig. 4.27 (d), the velocities are initialized along the thermocline, which
is what we expect when the Lagrangian formulation is used.
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Figure 4.24: Zero contour plots in case II two-layer model. Zero contours of function
F̃1 is in blue, while the ones for F̃2 is in red.

Figure 4.25: Zero contours for G̃ in blue and φ(−H) in red in case II.
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Figure 4.26: Initial temperature profile in case II with non-constant N(z) (La-
grangian formulation). (a): T in x = 20 km cross-section (y-z plane); (b): T in
y = 20 km cross-section (x-z plane); (c): T in z = −11.25 m cross-section (x-y
plane).
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Figure 4.27: Initial horizontal velocities profiles in case II with non-constant N(z)
(Lagrangian formulation). (a): u in z = −11.25 m cross-section (x-y plane); (b): v
in z = −11.25 m cross-section (x-y plane); (c): v in x = 20 km cross-section (y-z
plane); (d): v in y = 20 km cross-section (x-z plane); (u is zero at x = 20 km and
y = 20 km cross-section)
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Chapter 5

Results

In this chapter, the results of the numerical simulations using the MITgcm are
presented. Appendix A gives brief instructions about how to run the MITgcm.
The analytical solution for the linear system is verified for Poincaré waves and
Kelvin waves with the buoyancy frequency N either a constant or dependent on
z. The result of Poincaré waves simulations is what we expected. However, in
the Kelvin wave case, small waves are generated at the boundary and observed
to propagate in the radial direction. When the horizontal resolution is increased,
both the amplitude and wavelength of these small waves decrease. As the wave
amplitude increases the waves become more nonlinear. Poincaré waves steepen
and generate solitary-like waves with shorter wavelengths, but most of the energy
contained in these waves is transferred back and forth between the parent wave
and the solitary-like waves. Kelvin waves, on the other hand, steepen and lose
their energy to solitary-like waves. This conclusion agrees with de la Fuente et al.
(2008).

We used one of the high performance machines in the Fluids group (winisk) as
well as SHARCNET (Shared Hierarchical Academic Research Computing Network)
to run the MITgcm model. “Winisk” is an Altix 350 with 16 Itanium2 processors
and 96 GB of memory which was upgraded to 32 CPUs and 192 GB of memory
recently. In SHARCNET, we used the machine “whale” because of the large number
of processors. It has 768 nodes with 4 Opteron processors and 4 GB of memory
in each node, but the interconnection among each node is gigabit ethernet which
is quite slow. “Whale” is powerful and fast enough for most simulations we did in
this thesis. However, in the Kelvin wave case with 800 × 800 × 50 resolution and
0.5 s time step, it takes a extremely long time to finish using 16 CPUs. When we
increase the number of CPUs to 64 the time needed is not shortened significantly,
because of the slow interconnection speed. Another SHARCNET machine “requin”
uses a faster interconnection method quadrics elan4, so our future high resolution
work is scheduled to run on “requin” instead of “whale”.
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5.1 Case I: C = −α2 < 0

In the MITgcm model we could not find a way to linearize the density equation, so
the model does not solve the exact linear equations. For now we name the system
with the linear momentum equations and the nonlinear density equation “quasi-
linear”. However, it approximates to a linear problem when the wave amplitude is
small.

To begin with, the analytical solution of the linear system is verified for a case
with a constant N . Then two cases with a non-constant N(z) are considered.
When the model is set to be “quasi-linear”, the linear solution is verified. When
the nonlinear advection terms in the horizontal momentum equations are turned on,
the system becomes fully nonlinear, in which the nonlinear effects are investigated
using different setups for waves with larger amplitudes.

5.1.1 Constant N

Recall that section 4.4.1 gives the initial condition for the temperature T and the
horizontal velocities u and v. In this run, we use the setup parameters in Table 5.1.

Table 5.1: Setup parameters for case I with a constant N
nx× ny × nz grid points in x, y, z direction 200×200×20

∆t time step 10 s
Vh, Vz horizontal and vertical viscosity 0 m2/s
Dh, Dz horizontal and vertical diffusivity 0 m2/s

free surface or rigid lid? rigid lid

u · ~∇u momentum advection included? no
temperature advection scheme 33

ω wave frequency 1.29075× 10−4 s−1

Tperiod wave period 13.5 hours
η0 wave amplitude 2.5 m

We use “winisk” with one processor to run this simulation. It approximately
takes six hours to finish a two days simulation. First we look at the temperature
at each cross-section. At z = −11.25 m (Fig. 5.1), from t = 0 to t = 2 hrs to
t = 4 hrs, the initial temperature profile rotates counterclockwise without changing
its shape. After 27 hrs, which is approximately 2 periods, the structure is nearly
identical to the initial state (compare Fig. 5.1(d) and Fig. 5.1(a)). At x = 20 km
(Fig. 5.2) and y = 20 km (Fig. 5.3) cross-sections, the waves move up and down
periodically. Observing the waves in the x and y cross-sections is not the best way
to follow the rotating waves, so we pick a circular vertical cross-section around the
lake centered at the lake centre (L/2, L/2) with a radius of 0.9r0, where r0 is the
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radius of the lake and L is the length of the square domain which is the diameter
of the lake. (shown in Fig. 5.1(a) as the red circle), and θ is set to be zero on the
interval x ∈ [L/2, L] and increases counterclockwise. Then we flatten this hollow
cylinder on a plane and plot the extracted data with respect to θ and z. In Fig. 5.4
the waves are clearly propagating around the lake without changing the shape with
an approximately 13.5 hour period. Besides the temperature, we now discuss the
velocities. Fig. 5.5, 5.6, and 5.7 show that the velocities u, v, and w rotate around
the lake without changing their shapes and the period is approximately 13.5 hours.
Therefore, we can conclude that they are indeed solutions for constant N case I
with “quasi-linear” setups.

Figure 5.1: T at z = −11.25 m (5th layer) for case I with a constant N at different
times: (a) t = 0, (b) t = 2 hrs, (c) t = 4 hrs, and (d) t = 27 hrs (approximately 2
periods). The red circle in (a) indicates the circular vertical cross-section picked in
Fig. 5.4, r = 0.9r0.
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Figure 5.2: T at x = 20 km for case I with a constant N at different times: (a)
t = 0, (b) t = 2 hrs, (c) t = 4 hrs, and (d) t = 27 hrs (approximately 2 periods).

Figure 5.3: T at y = 20 km for case I with a constant N at different times: (a)
t = 0, (b) t = 2 hrs, (c) t = 4 hrs, and (d) t = 27 hrs (approximately 2 periods).
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Figure 5.4: T at a circular vertical cross-section (radius 0.9r0 = 18 km) for case I
with a constant N at different times: (a) t = 0, (b) t = 2 hrs, (c) t = 4 hrs, and
(d) t = 27 hrs (approximately 2 periods).

Figure 5.5: u at z = −11.25 m (5th layer) for case I with a constant N at different
times: (a) t = 0, (b) t = 2 hrs, (c) t = 4 hrs, and (d) t = 27 hrs (approximately 2
periods).
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Figure 5.6: v at z = −11.25 m (5th layer) for case I with a constant N at different
times: (a) t = 0, (b) t = 2 hrs, (c) t = 4 hrs, and (d) t = 27 hrs (approximately 2
periods).

Figure 5.7: w at z = −10 m for case I with a constant N at different times: (a)
t = 0, (b) t = 2 hrs, (c) t = 4 hrs, and (d) t = 27 hrs (approximately 2 periods).
The 5th layer is at -10 m instead of −11.25 m due to using of a C-grid.
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5.1.2 Non-constant N(z)

For a non-constant N(z) two cases are considered. When the model is set to be
“quasi-linear”, the linear solution is found to be verified. As the amplitude of the
waves increases, the density equation can no longer be approximated linearly. In
this case, several runs are made to test the nonlinearity of the waves.

“Quasi-linear” case with small amplitudes

In the “quasi-linear” case, we use the setup parameters in Table 5.2.

Table 5.2: Setup parameters for case I with a non-constant N(z), “quasi-linear”
nx, ny, nz grid points in x, y, z direction 200×200×50

∆t time step 5 s
Vh, Vz horizontal and vertical viscosity 0 m2/s
Dh, Dz horizontal and vertical diffusivity 0 m2/s

free surface or rigid lid? rigid lid

u · ~∇u momentum advection included? no
temperature advection scheme 33

ω wave frequency 1.50459× 10−4 s−1

Tperiod wave period 11.6 hours
η0 wave amplitude 1.9 m

We use “winisk” with four CPUs to perform the run in this case. It approxi-
mately takes 20 hours to finish five day simulation. Similar to the constant N case,
plots of T , u, v, and w are made at different cross-sections. At horizontal cross-
sections, the temperature T (Fig. 5.8), the velocities u (Fig. 5.12), v (Fig. 5.13),
and w (Fig. 5.14) again rotate counterclockwise without changing their shapes with
an approximate period of 11.6 hours. Temperature plots at x = 20 km (Fig. 5.9),
y = 20 km (Fig. 5.10) cross-sections, and one circular vertical cross-section (with a
radius 0.9r0, Fig. 5.11) confirm our conclusion.
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Figure 5.8: T at z = −14.5 m for case I with a non-constant N(z) in the “quasi-
linear” setup at different times: (a) t = 0, (b) t = 1 hr, (c) t = 2 hrs, and (d) t = 23
hrs (approximately 2 periods). The red circle in (a) indicates the circular vertical
cross-section picked in Fig. 5.11, r = 0.9r0.

Figure 5.9: T at x = 20 km for case I with a non-constant N(z) in the “quasi-
linear” setup at different times: (a) t = 0, (b) t = 1 hr, (c) t = 2 hrs, and (d) t = 23
hrs (approximately 2 periods).
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Figure 5.10: T at y = 20 km for case I with a non-constant N(z) in the “quasi-
linear” setup at different times: (a) t = 0, (b) t = 1 hr, (c) t = 2 hrs, and (d) t = 23
hrs (approximately 2 periods).

Figure 5.11: T at a circular vertical cross-section (radius 0.9r0 = 18 km) for case I
with a non-constant N(z) in the “quasi-linear” setup at different times: (a) t = 0,
(b) t = 1 hr, (c) t = 2 hrs, and (d) t = 23 hrs (approximately 2 periods).
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Figure 5.12: u at z = −19.5 m for case I with a non-constant N(z) in the “quasi-
linear” setup at different times: (a) t = 0, (b) t = 1 hr, (c) t = 2 hrs, and (d) t = 23
hrs (approximately 2 periods).

Figure 5.13: v at z = −19.5 m for case I with a non-constant N(z) in the “quasi-
linear” setup at different times: (a) t = 0, (b) t = 1 hr, (c) t = 2 hrs, and (d) t = 23
hrs (approximately 2 periods).
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Figure 5.14: w at z = −19 m for case I with a non-constant N(z) in the “quasi-
linear” setup at different times: (a) t = 0, (b) t = 1 hr, (c) t = 2 hrs, and (d) t = 23
hrs (approximately 2 periods).
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Fully nonlinear cases with larger amplitudes

As the wave amplitude increases, the waves become more nonlinear. The setup
parameters are identical to the ‘quasi-linear” case in Table 5.2, except with a larger
amplitude 11.6 m and a non-zero viscosity 10−4 m2/s which is added to stabilize
the model. With the non-zero viscosity, we apply free slip boundary conditions at
the sides and bottom boundaries.

We use “whale” with 4 CPUs to run this case in 200 × 200 × 50 resolution. It
approximately takes 20 hours to finish a five day simulation. In 400×400×50, we use
“whale” with 16 CPUs and it takes about three days to finish three day simulation.
As usual to begin with, we make a plot of T at the horizontal cross-section z = −14.5
m (Fig. 5.15). Because of the nonlinearity the horizontal structure no longer holds
its shape while rotating. As can be seen from the circular vertical cross-section
with a radius of 0.9r0 in Fig. 5.16, the wave clearly steepens at t = 11 hrs, and
it seems there are solitary-like waves appearing after the steepening. The model
resolution is too coarse to confirm the solitary waves. Moreover, we observed that
the wave is not degenerated to solitary-like waves completely, as we still see the
large parent internal wave later on at t = 2 day 12 hrs (Fig. 5.16(f)). This confirms
the conclusion in de la Fuente et al. (2008), who state that a basin-scale Poincaré
wave in a rotating lake does steepen and form waves with shorter wavelengths,
but most energy contained in these waves is transferred back and forth between the
parent wave and its subharmonics. Fig. 5.17 gives the circular vertical cross-section
with a radius of r = 0.9r0 at a higher horizontal resolution of 400× 400× 50. The
steepening and degeneration are now clearer as the noise is reduced.

In summary, the analytical solution of the linear system is verified for both a
constant N and a non-constant N(z) using the “quasi-linear” setup. As the waves
become more nonlinear, they steepen and generate solitary-like waves. However,
the energy appears to transfer back and forth between the parent basin-scale wave
and the solitary-like waves.
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Figure 5.15: T at z = −14.5 m for case I with a non-constant N(z) in the fully
nonlinear setup at different times: (a) t = 0, (b) t = 6 hrs, (c) t = 11 hrs, and (d)
t = 23 hrs (approximately 2 periods). The red circle in (a) indicates the circular
vertical cross-section picked in Fig. 5.16, r = 0.9r0.
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Figure 5.16: T at a circular vertical cross-section (radius 0.9r0 = 18 km) for case
I with a non-constant N(z) in the fully nonlinear setup at different times (res:
200 × 200 × 50): (a) t = 0, (b) t = 6 hrs, (c) t = 11 hrs, (d) t = 1 day 11 hrs, (e)
t = 2 days 7 hrs, and (f) t = 2 days 12 hrs.

85



Figure 5.17: Same as Fig. 5.16 but with resolution of 400× 400× 50.
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5.2 Case II: C = β2 > 0

Internal Kelvin waves are investigated in this section. Similar to case I, first the
analytical solution of the linear system is verified in the “quasi-linear” setup if N
is a constant. Next, for non-constant N(z) two cases again are considered. When
the wave amplitude is small, solutions are verified in the “quasi-linear” setup, and
when the amplitude increases, the nonlinear effects are studied.

5.2.1 Constant N

When N is constant, we use the setup parameters in Table 5.3. We use “winisk”
with four CPUs and it takes about one day to finish 11 day simulation. From the
temperature plot at z = −11.25 m horizontal cross-section (Fig. 5.18), waves are
clearly trapped. From t = 0 to t = 10 hrs to t = 20 hrs, the kelvin wave is rotating
counterclockwise. However, there are small waves generated at the lake boundary
propagate towards the centre. We will discuss it more in the non-constant N(z)
case. At t = 205 hrs which is approximately 2 periods, the temperature profile
is similar as the one at t = 0 except that there are small waves generated at the
boundary and propagate in the r direction. The velocities u (Fig. 5.22) and v
(Fig. 5.23), plotted at z = −11.25 m, basically hold their shapes while rotating
counterclockwise. At the x = 20 km (Fig. 5.19) and y = 20 km (Fig. 5.20) vertical
cross-sections, the small propagating waves in the radial direction are clearly shown.
In the circular vertical cross-section (with a radius of 0.9r0 in Fig. 5.21), the Kelvin
wave is propagating around the lake with an approximate period of 101.7 hrs.
Therefore, except the small waves in the radial direction, the analytical solution for
the linear system is verified. We will analyze these small waves more in the fully
nonlinear case.

Table 5.3: Setup parameters for case II with a constant N
nx× ny × nz grid points in x, y, z direction 200×200×20

∆t time step 5 s
Vh, Vz horizontal and vertical viscosity 0 m2/s
Dh, Dz horizontal and vertical diffusivity 0 m2/s

free surface or rigid lid? rigid lid

u · ~∇u momentum advection included? no
temperature advection scheme 33

ω wave frequency 1.71675× 10−5 s−1

Tperiod wave period 101.7 hours
η0 wave amplitude 2 m
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Figure 5.18: T at z = −11.25 m for case II with a constant N at different times:
(a) t = 0, (b) t = 10 hrs, (c) t = 20 hrs, and (d) t = 205 hrs (approximately 2
periods). The red circle in (a) indicates the circular vertical cross-section picked in
Fig. 5.21, r = 0.9r0.

Figure 5.19: T at x = 20 km for case II with a constant N at different times: (a)
t = 0, (b) t = 10 hrs, (c) t = 20 hrs, and (d) t = 205 hrs (approximately 2 periods).
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Figure 5.20: T at y = 20 km for case II with a constant N at different times: (a)
t = 0, (b) t = 10 hrs, (c) t = 20 hrs, and (d) t = 205 hrs (approximately 2 periods).

Figure 5.21: T at a circular vertical cross-section (radius 0.9r0 = 18 km) for case
II with a constant N at different times: (a) t = 0, (b) t = 10 hrs, (c) t = 20 hrs,
and (d) t = 205 hrs (approximately 2 periods).
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Figure 5.22: u at z = −11.25 m for case II with a constant N at different times:
(a) t = 0, (b) t = 10 hrs, (c) t = 20 hrs, and (d) t = 205 hrs (approximately 2
periods).

Figure 5.23: v at z = −11.25 m for case II with a constant N at different times:
(a) t = 0, (b) t = 10 hrs, (c) t = 20 hrs, and (d) t = 205 hrs (approximately 2
periods).
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5.2.2 Non-constant N(z)

“Quasi-linear” case with small amplitudes

For the “quasi-linear” case, we use the setup parameters in Table 5.4.

Table 5.4: Setup parameters for case II with a non-constant N(z), “quasi-linear”
nx, ny, nz grid points in x, y, z direction 200×200×50

∆t time step 5 s
Vh, Vz horizontal and vertical viscosity 0 m2/s
Dh, Dz horizontal and vertical diffusivity 0 m2/s

free surface or rigid lid? rigid lid

u · ~∇u momentum advection included? no
temperature advection scheme 33

ω wave frequency 2.43961× 10−5 s−1

Tperiod wave period 71.5 hours
η0 wave amplitude 1.6 m

We use “winisk” with four CPUs and it takes about one day to finish 8 day
simulation. Similar to the constant N case, plots of T , u, and v are made at
different cross-sections. At horizontal cross-sections, the temperature T (Fig. 5.24),
the velocities u (Fig. 5.28), and v (Fig. 5.29) again rotate counterclockwise without
changing their shapes with an approximate period of 71.5 hours. Temperature plots
at x = 20 km (Fig. 5.25), y = 20 km (Fig. 5.26) cross-sections, and one circular
vertical cross-section (with a radius of 0.9r0 in Fig. 5.27) confirm our conclusion.
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Figure 5.24: T at z = −14.5 m for case II with a non-constant N(z) in the “quasi-
linear” setup at different times: (a) t = 0, (b) t = 10 hrs, (c) t = 20 hrs, and (d)
t = 142 hrs (approximately 2 periods). The red circle in (a) indicates the circular
vertical cross-section picked in Fig. 5.27, r = 0.9r0.

Figure 5.25: T at x = 20 km for case II with a non-constant N(z) in the “quasi-
linear” setup at different times: (a) t = 0, (b) t = 10 hrs, (c) t = 20 hrs, and (d)
t = 142 hrs (approximately 2 periods).
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Figure 5.26: T at y = 20 km for case II with a non-constant N(z) in the “quasi-
linear” setup at different times: (a) t = 0, (b) t = 10 hrs, (c) t = 20 hrs, and (d)
t = 142 hrs (approximately 2 periods).

Figure 5.27: T at a circular vertical cross-section (radius 0.9r0 = 18 km) for case II
with a non-constant N(z) in the “quasi-linear” setup at different times: (a) t = 0,
(b) t = 10 hrs, (c) t = 20 hrs, and (d) t = 142 hrs (approximately 2 periods).
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Figure 5.28: u at z = −4.5 m for case II with a non-constant N(z) in the “quasi-
linear” setup at different times: (a) t = 0, (b) t = 10 hrs, (c) t = 20 hrs, and (d)
t = 142 hrs (approximately 2 periods).

Figure 5.29: v at z = −4.5 m for case II with a non-constant N(z) in the “quasi-
linear” setup at different times: (a) t = 0, (b) t = 10 hrs, (c) t = 20 hrs, and (d)
t = 142 hrs (approximately 2 periods).

94



Fully nonlinear with larger amplitudes

For the fully nonlinear case with larger amplitudes, we use the same parameters
as the “quasi-linear” case in Table 5.4, except with a larger amplitude 5.5 m and
a non-zero viscosity 10−4 m2/s. With the non-zero viscosity, we apply free slip
boundary conditions at the sides and bottom boundary.

We use “whale” with 16 CPUs and it approximately takes nine days to finish six
day simulation in 200× 200× 50 resolution. First we have a look at the horizontal
cross-section at z = −14.5 m (Fig. 5.30). The temperature profile rotates around
the lake counterclockwise as before, but no longer holds its shape due to the nonlin-
earity. At t = 6 hrs in Fig. 5.30(b), the small waves propagating towards the center
appear as seen in the constant case N earlier in section 5.2.1. As time increases the
basin-scale wave becomes steeper, as evidenced by the temperature fronts visible
in Fig. 5.30(c) to Fig. 5.30(f). In Fig. 5.30(e) and Fig. 5.30(f), we observe another
interesting phenomenon. Ripples emerge across the lake starting at the location
where the steepening happens. Nonlinear waves analysis tells us that the larger the
amplitude of the nonlinear wave is, the faster it travels. Therefore, the waves near
the wall travel faster than the ones away from the wall. This confirms the observa-
tions in Maxworthy (1983). At the circular vertical cross-section with a radius of
0.9r0 in Fig. 5.31, wave steepening is clearly observed and in subplots Fig. 5.31(e)
and Fig. 5.31(f) it looks as though solitary-like waves are on the verge of forming,
although the resolution is too coarse to tell. Unlike the degeneration of Poincaré
waves in the previous section, there is no sign of the energy being transfered back
and forth between the parent wave and the solitary-like waves. This again confirms
the conclusion in de la Fuente et al. (2008).

Next we increase the resolution to 400×400×50. We use “whale” with 16 CPUs
and it approximately takes one day to finish six day simulation. At z = −14.5 m
cross-section in Fig. 5.32, the amplitude and wavelength of the small waves in the
radial direction become smaller. At the circular vertical cross-section in Fig. 5.33,
the solitary-like waves behind the steepening becomes clearer. To confirm our
conclusion further, we increase the resolution to 800 × 800 × 50. We use “whale”
with 16 CPUs in this simulation. To avoid the blowout, we had to decrease the
time step to 0.5 s. As a result, it takes a really long time to finish. When we
increase the number of CPUs to 64 the time needed is not shortened as it should
due the slow interconnection speed. Fig. 5.34 shows the temperature in z = −14.5
m cross-section in the first 19 hours when the solitary-like waves do not appear
yet. Again the amplitude and wavelength of the small radial waves decrease as we
expect. Hence the small waves are brought by the grid setup. One reason is that
we use square grids to approximate a circular lake and waves could be generated
at the corner of the grids. We also notice that almost no such small waves appear
in the Poincaré wave case. This is probably due to the different initial condition
structures they have. Kelvin waves have the maximum amplitude and velocities at
the boundary while Poincaré waves’ maximum amplitude and velocities are located
in the middle of the lake. Hence the grids at the boundary will affect the Kelvin
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waves more. Another SHARCNET machine “requin” use a very fast interconnection
method quadrics elan4, so our future high resolution work is scheduled to run on
“requin” instead of “whale”.

In summary, in this section we verified the analytical solution of the linear
system numerically in the “quasi-linear” setup, except that there are small waves
generated at the boundary and propagating in the radial direction. In the fully
nonlinear case, similar small waves appear, but the amplitude and wavelength of
these waves decrease as we refine the horizontal resolution. From the circular
vertical cross-section we observed that the Kelvin wave steepens and is degenerated
to solitary-like waves with shorter wavelength, although more evidences in higher
resolutions are needed to confirm. The energy of the waves is transferred to the
solitary-like waves and we do not see a sign of the energy being transfered back to
the basin-scale waves like in the Poincaré waves case.
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Figure 5.30: T at z = −14.5 m for case II with a non-constant N(z) in a fully
nonlinear setup at different times (res: 200 × 200 × 50): (a) t = 0, (b) t = 6 hrs,
(c) t = 33 hrs, (d) t = 60 hrs, (e) t = 71.5 hrs (approximately 1 period), and (f)
t = 101 hrs. The red circle in (a) indicates the circular vertical cross-section picked
in Fig. 5.31, r = 0.9r0.
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Figure 5.31: T at a circular vertical cross-section (radius 0.9r0 = 18 km) for case II
with a non-constant N(z) in a fully nonlinear setup at different times (res: 200 ×
200 × 50): (a) t = 0, (b) t = 6 hrs, (c) t = 33 hrs, (d) t = 60 hrs, (e) t = 71.5 hrs
(approximately 1 period), and (f) t = 101 hrs.
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Figure 5.32: Same as Fig. 5.30 but with resolution of 400× 400× 50.
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Figure 5.33: Same as Fig. 5.31 but with resolution of 400× 400× 50.
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Figure 5.34: T at z = −14.5 m for case II with a non-constant N(z) in a fully
nonlinear setup at different times (res: 800 × 800 × 50): (a) t = 0, (b) t = 6 hrs,
(c) t = 12 hrs, and (d) t = 19 hrs.
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Chapter 6

Conclusions

6.1 Summary

In this thesis, we derived the analytical solution of the linearized equations gov-
erning fluid motions in a rotating, circular lake with a flat bottom. We assumed
that the wave solution is propagating around the lake in the angular, θ, direction.
After substituting the proposed solution into the governing equations, the method
of separation of variables was applied, which introduces a constant C. Different
signs of C lead to two cases to investigate: C > 0 giving internal Poincaré waves
and C < 0 giving internal Kelvin waves. When C = 0 there appears to be no
solutions of the linear problem.

The analytical solution of the linear system is verified for Poincaré waves and
Kelvin waves with the buoyancy frequency N either a constant or dependent on z
using the MITgcm, in a lake with radius of 20 km and depth of 50 m. The result
of Poincaré waves simulations is what we expected. However, in the Kelvin waves
case, small waves are generated at the side boundary and propagate in the radial
direction. As the horizontal resolution increases, both the amplitude and wave-
length of these small waves decrease. One possible reason is that the use of square
grids to approximate the circular lake. When the amplitude of the waves increases,
nonlinear and non-hydrostatic effects were studied. Poincaré waves steepen and
form solitary-like waves with shorter wavelengths, but most energy is transferred
back and forth between the parent wave and the solitary-like waves. Kelvin waves,
on the other hand, steepen and lose their energy to solitary-like waves which are
formed after the steepening. The appearance of the solitary-like waves is not ab-
solutely clear and higher resolution is required to study such waves further. This
conclusion agrees with de la Fuente et al. (2008).

Meanwhile, we tested all the temperature advection schemes in the MITgcm
using the tilted tank simulation and concluded that schemes 2 and 33 are better
choices in this type of computation. We also ran this simulation using the IGW
model and the result in IGW is almost the same as the simulation we did using
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the MITgcm when scheme 2 was used. The only difference is that the waves travel
faster in the MITgcm than in IGW, something we will continue to study in the
future.

6.2 Future Work

There are many obvious extensions to this work. First of all, in the tilted tank
simulation we found out that internal waves travel faster in the MITgcm than in
IGW, which is an interesting phenomenon to continue investigating. One problem
in the Kelvin waves simulations is the appearance of small waves generated at the
side boundary and traveling in the radial direction. Although we have shown that
the amplitude and wavelength of these waves become smaller as the horizontal
resolution increases, we need to find out the cause of the waves. One reason for
the appearance of the short waves is that we use square grids to approximate a
circular lake, and hence waves could be generated at the corners. The solitary-
like waves in the Kelvin waves case is not absolutely convincing in 400× 400× 50
resolution, so we need to repeat the experiment at higher resolutions. Using the
800×800×50 resolution, we have to use a tiny time step (0.5 s), which results in an
extremely long running time. Further studies are needed to investigate the model
to determine if it can be run at higher resolutions using a much larger time step.
Since the wind is one of the most important energy sources to generate internal
waves, we certainly need to add wind in the simulations. We have already used the
MITgcm to reproduce Kelvin waves and full upwelling in the flat bottom case in
Beletsky et al. (1997) where POM and DieCAST were used, and we will present the
results in future work although for now a slight problem in the position of Kelvin
waves needs to be solved. Moreover, the energy transfer among internal waves is
also an important topic to discuss further. Using a similar method as the one in
Hodges et al. (2000), an analogical regime to Fig. 4.4 for rotating internal waves
would be very useful. Finally, the lake we are working on is an idealized model, so
adding realistic topography is a plan for the future studies.
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Appendix A

Running MITgcm

A.1 Directory structure

Each simulation directory has the following subdirectories:
code: Contains the code particular to the simulation. This directory includes at
least the following files:
packages.conf : Declares the list of packages or package groups to be used, e.g., geo-
physical fluid dynamics package, external forcing package, Shapiro filters package
etc.
CPP OPTIONS.h: declares CPP (the C pre-processor to use) keys related to the
numerical model part of the code. The non-hydrostatic balance is set here using

define ALLOW_NONHYDROSTATIC

SIZE.h: Declares size of underlying computational grid. Below is a sample code of
SIZE.h.

C Name: SIZE.h

C sNx - No. X points in sub-grid.

C sNy - No. Y points in sub-grid.

C OLx - Overlap extent in X.

C OLy - Overlat extent in Y.

C nSx - No. sub-grids in X.

C nSy - No. sub-grids in Y.

C nPx - No. of processes to use in X.

C nPy - No. of processes to use in Y.

C Nx - No. points in X for the total domain.

C Ny - No. points in Y for the total domain.

C Nr - No. points in Z for full process domain.

INTEGER sNx

INTEGER sNy
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INTEGER OLx

INTEGER OLy

INTEGER nSx

INTEGER nSy

INTEGER nPx

INTEGER nPy

INTEGER Nx

INTEGER Ny

INTEGER Nr

PARAMETER (

& sNx = 200,

& sNy = 200,

& OLx = 2,

& OLy = 2,

& nSx = 1,

& nSy = 1,

& nPx = 1,

& nPy = 1,

& Nx = sNx*nSx*nPx,

& Ny = sNy*nSy*nPy,

& Nr = 20)

C MAX_OLX - Set to the maximum overlap region size of any array

C MAX_OLY that will be exchanged. Controls the sizing of exch

C routine buufers.

INTEGER MAX_OLX

INTEGER MAX_OLY

PARAMETER ( MAX_OLX = OLx,

& MAX_OLY = OLy )

input: Contains the input data files required to run the program. This directory
includes at least the following files:
data: Written as a namelist, specifies the main parameters for the simulation. The
sample code is shown below.
data.pkg : Contains parameters related to the packages used in the simulation.
eedata: This file contains execution environment data.

# Name: data

# Model parameters

# Continuous equation parameters

&PARM01

tRef=,

sRef=20*0.,

viscAz=0.,

viscAh=0.,

no_slip_sides=.FALSE.,
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no_slip_bottom=.FALSE.,

diffkhT=0.,

diffKzT=0.,

momAdvection=.FALSE.,

f0=1.0E-4,

beta=0,

tAlpha=2.0E-4,

sBeta =0.,

gravity=9.81,

useConstantF=.TRUE.,

momForcing=.FALSE.,

saltStepping=.FALSE.,

staggerTimeStep=.TRUE.,

rigidLid=.TRUE.,

implicitFreeSurface=.FALSE.,

nonHydrostatic=.TRUE.,

eosType=’LINEAR’,

readBinaryPrec=64,

&

# Elliptic solver parameters

&PARM02

cg2dMaxIters=1000,

cg2dTargetResidual=1.E-7,

&

# Time stepping parameters

&PARM03

startTime=0,

endTime=2.0E5,

deltaTmom=10.0,

deltaTtracer=10.0,

abEps=0.1,

pChkptFreq=25920000000000000.0,

chkptFreq=120000000000000.0,

dumpFreq=3600.0,

monitorFreq=3600.0,

&

# Gridding parameters

&PARM04

usingCartesianGrid=.TRUE.,

usingSphericalPolarGrid=.FALSE.,

delX=200*200,

delY=200*200,

delZ=20*2.5,

&

&PARM05
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bathyFile=’topog.box’,

hydrogThetaFile=’tRefFile.bin’,

hydrogSaltFile=,

zonalWindFile=,

meridWindFile=,

uVelInitFile=’uVelInit.bin’,

vVelInitFile=’vVelInit.bin’,

#pSurfInitFile=’SurfInit.bin’,

#pLoadFile=’pInit.bin’,

&

A.2 Compiling and running

A.2.1 Single processor

First an option file winisk in /tools/build options need to be created for the specific
hardware and operation system. Next, compile the code which is simply built in
the /input directory here.

../../../tools/genmake2 -mods=../code

-of ../../../tools/build_options/winisk

make depend

make

After compiling, an executable file mitgcmuv is generated which can be run by the
following command,

./mitgcmv > out.txt

A.2.2 Multiple processors: MPI

MPI (Message Passing Interface) is a specification for an API (Application Pro-
gramming Interface) that allows many computers to communicate with one an-
other. MITgcm can use MPI to perform jobs using multiple processors. SIZE.h in
/code need to be modified to specify the number of processors accordingly. Differ-
ent option file winisk mpi in /tools/build options need to be created. Building in
the input directory follows,

../../../tools/genmake2 -mods=../code

-of ../../../tools/build_options/winisk_mpi -mpi

make depend

make
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The executable file mitgcmuv can be run by the command if four processors are
used,

mpirun -n -4 ./mitgcmv

A.3 Viewing output

The traditional output files are generated by the mdsio package. The instantaneous
state of the model is stored at a specified frequency,
U.000nIter : zonal component of velocity field (m/s).
V.000nIter : meridional component of velocity field (m/s).
W.000nIter : vertical component of velocity field (m/s).
T.000nIter : potential teperature (◦C).
S.000nIter : salinity (psu).
Eta.000nIter : surface elevation (m).
The chain 00000nIter consists of ten figures that specify the iteration number at
which the output is stored. The mdsio model data are written to “data/meta”
format. The .data file contains the data written in binary form and the .meta file
is a “header” file that contains information about the size and the structure of the
.data file. MITgcm provides a script rdmds.m to read the data, e.g.,

T=rdmds(’T’,0);contourf(T(:,:,2));colorbar;

MITgcm also supports NetCDF output files by mnc package and we do not explain
more details here.
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Appendix B

Matlab Scripts

B.1 Initialization in case I with a constant N

Below is the Matlab code for the Initialization in case I with a constant N which
we used in section 4.4.1).

ieee=’b’;accuracy=’real*8’;

%resolution 200*200*20

nx=200;ny=200;nz=20;

%A is the parameter which varies the wave amplitude

%L is the diameter of the lake and H is the depth

A=3e-2;L=40000;H = 50;

%center of the lake

cx=L/2;cy=L/2;

dx=L/nx;dy=L/ny;dz=H/nz;

%Please see detals about the C-grids in Figure 4.14

xCN=0:dx:(L-dx);%xCN: x points at the sides of grids

yCN=0:dy:(L-dy);%yCN: y points at the sides of grids

xHF=dx/2:dx:L;%xCHF: x points at the middles of grids

yHF=dy/2:dy:L;%yCHF: y points at the middles of grids

zCN=0:(-dz):(-H+dz);%zCN: z points at the sides of grids

z=-dz/2:(-dz):(-H);%z: z points at the middles of grids

G=numgrid(’D’,nx);%Generate the approximate circular lake

%Talpha is the coefficient of thermal expansion.

g = 9.8;rho0 = 999.8;Talpha = 2e-4;n=1;m=pi/H;

omega = 1.290746491E-4;f=1E-4;N = 1.98E-2;

alpha = sqrt(m^2*(omega^2-f^2)/(N^2-omega^2));

%Surface temperature Ts and bottom temperature Tb

Ts=20; Tb=10;

%h(x,y) is the depth at (x,y), which is used to generate the topography
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h=zeros(nx,ny);

%r and theta at the center and on the sides of the grids

rC = zeros(nx,ny);rU = zeros(nx,ny);rV = zeros(nx,ny);

thetaC = zeros(nx,ny);thetaU = zeros(nx,ny);thetaV = zeros(nx,ny);

%urU and UthetaU is the the velocities at (xCN,yHF) where u is initialized

%urV and UthetaV is the the velocities at (xHF,yCN) where v is initialized

urU = zeros(nx,ny,nz);urV = zeros(nx,ny,nz);

uthetaU = zeros(nx,ny,nz);uthetaV = zeros(nx,ny,nz);

u = zeros(nx,ny,nz);v = zeros(nx,ny,nz);w = zeros(nx,ny,nz);

%p is the pressure perturbation and rho_p is the density perturbation.

p = zeros(nx,ny,nz);rho_p = zeros(nx,ny,nz);

%T_p is the temperature perturbation and T_LG is the total temperature.

T_p = zeros(nx,ny,nz);T_LG=zeros(nx,ny,nz);

%Generate the topography

for i=1:nx

for j=1:ny

if (G(ny+1-j,i)>0)%The order of G(i,j) is different than the one

%we used for the grids.

rC(i,j) = sqrt((xHF(i)-cx)^2+(yHF(j)-cy)^2);

rU(i,j) = sqrt((xCN(i)-cx)^2+(yHF(j)-cy)^2);

rV(i,j) = sqrt((xHF(i)-cx)^2+(yCN(j)-cy)^2);

thetaC(i,j) = atan2(yHF(j)-cy,xHF(i)-cx);

thetaU(i,j) = atan2(yHF(j)-cy,xCN(i)-cx);

thetaV(i,j) = atan2(yCN(j)-cy,xHF(i)-cx);

h(i,j)=-H;%h(x1,y1) = zero means there is no water at (x1,y1).

end

end

end

%Generate the topography file topog.box.

fid=fopen(’topog.box’,’w’,ieee); fwrite(fid,h,accuracy); fclose(fid);

%Initial velocities

for i=1:nx

disp(i)

for j=1:ny

for k=1:nz

if (G(ny+1-j,i)>0)

%Below are the points in the lake which do not include the

%points on the boundaries.

if (G(ny+1-j-1,i)>0 && G(ny+1-j+1,i)>0 ...

&& G(ny+1-j,i-1)>0 && G(ny+1-j,i+1)>0)

urU(i,j,k)=A*(1/(f^2-omega^2))...

*(f*besselj(1,alpha*rU(i,j))/rU(i,j) ...

- omega*alpha*(-besselj(2,alpha*rU(i,j))...

+ besselj(1,alpha*rU(i,j))/(alpha*rU(i,j))))...

111



*sin(n*thetaU(i,j))*cos(m*z(k));

urV(i,j,k)=A*(1/(f^2-omega^2))...

*(f*besselj(1,alpha*rV(i,j))/rV(i,j) ...

- omega*alpha*(-besselj(2,alpha*rV(i,j))...

+ besselj(1,alpha*rV(i,j))/(alpha*rV(i,j))))...

*sin(n*thetaV(i,j))*cos(m*z(k));

uthetaU(i,j,k)=A*(1/(f^2-omega^2))...

*(-omega*besselj(1,alpha*rU(i,j))/rU(i,j) ...

+ f*alpha*(-besselj(2,alpha*rU(i,j))...

+besselj(1,alpha*rU(i,j))/(alpha*rU(i,j))))...

*cos(n*thetaU(i,j))*cos(m*z(k));

uthetaV(i,j,k)=A*(1/(f^2-omega^2))...

*(-omega*besselj(1,alpha*rV(i,j))/rV(i,j) ...

+ f*alpha*(-besselj(2,alpha*rV(i,j))...

+ besselj(1,alpha*rV(i,j))/(alpha*rV(i,j))))...

*cos(n*thetaV(i,j))*cos(m*z(k));

%u is calculated using urU and uthetaU, which are obtained

%from points (xCN,yHF). The same method applies to v.

u(i,j,k) = urU(i,j,k)*cos(thetaU(i,j)) ...

- uthetaU(i,j,k)*sin(thetaU(i,j));

v(i,j,k) = urV(i,j,k)*sin(thetaV(i,j)) ...

+ uthetaV(i,j,k)*cos(thetaV(i,j));

elseif(G(ny+1-j-1,i)>0 && G(ny+1-j+1,i)>0 ...

&& G(ny+1-j,i-1)==0 && G(ny+1-j,i+1)>0)%left boundary

u(i,j,k) = 0;

elseif(G(ny+1-j-1,i)>0 && G(ny+1-j+1,i)>0 ...

&& G(ny+1-j,i-1)>0 && G(ny+1-j,i+1)==0)%right boundary

u(i+1,j,k) = 0;

elseif(G(ny+1-j-1,i)>0 && G(ny+1-j+1,i)==0 ...

&& G(ny+1-j,i-1)>0 && G(ny+1-j,i+1)>0)%bottom boundary

v(i,j,k) = 0;

elseif((G(ny+1-j-1,i)==0 && G(ny+1-j+1,i)>0 ...

&& G(ny+1-j,i-1)<0 && G(ny+1-j,i+1)>0))%top boundary

v(i,j+1,k) = 0;

end

w(i,j,k) = -A*alpha^2*omega*besselj(1,alpha*rC(i,j))...

/((f^2 - omega^2)*m)*sin(n*thetaC(i,j))*sin(m*zCN(k));

p(i,j,k)= A*besselj(n,alpha*rC(i,j))...

*cos(n*thetaC(i,j))*cos(z(k));

p(i,j,k) = p(i,j,k)*rho0;

rho_p(i,j,k) = N^2/(omega*g)*(-A)*alpha^2*omega...

*besselj(1,alpha*rC(i,j))/((f^2 - omega^2)*m)...

*cos(n*thetaC(i,j))*sin(m*z(k));

T_p(i,j,k) = -rho_p(i,j,k)/Talpha;

end
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end

end

end

%Next we generate Tref file

delta = N^2/(g*Talpha)*H/nz;

T0 = (Ts-delta/2):(-delta):Tb;%background density

for k=1:nz

T_LG(:,:,k) = T0(1,k) +T_p(:,:,k);

end

T_LGX100 = zeros(ny,nz);T_LGX100(:,:)=T_LG(nx/2,:,:);

T_LGY100 = zeros(nx,nz);T_LGY100(:,:)=T_LG(:,ny/2,:);

v_X100 = zeros(ny,nz);v_X100(:,:)=v(nx/2,:,:);

v_Y100 = zeros(ny,nz);v_Y100(:,:)=v(:,ny/2,:);

figure(1)

contourf(yHF(2:end-1),z,T_LGX100(2:(ny-1),:)’);caxis([10 20]);colorbar;

title(’Initial T at x=20000 m’);xlabel(’x (m)’);ylabel(’Depth (m)’);

figure(2)

contourf(xHF(2:end-1),z,T_LGY100(2:(nx-1),:)’);caxis([10 20]);colorbar;

title(’Initial T at y=20000 m’);xlabel(’y (m)’);ylabel(’Depth (m)’);

figure(3)

pcolor(xHF,yHF,T_LG(:,:,5)’),shading interp;caxis([17.4 18.1]);colorbar;

title(’Initial T at Z=-11.25 m’);xlabel(’x (m)’);ylabel(’y (m)’);

figure(4)

pcolor(xCN,yHF,u(:,:,5)’),shading interp;caxis([-0.05 0.05]);colorbar;

title(’Initial U at Z=-11.25 m’);xlabel(’x (m)’);ylabel(’y (m)’);

figure(5)

pcolor(xHF,yCN,v(:,:,5)’),shading interp;caxis([-0.046 0.046]);colorbar;

title(’Initial V at Z=-11.25 m’);xlabel(’x (m)’);ylabel(’y (m)’);

figure(6)

pcolor(xHF,yCN,w(:,:,5)’),shading interp;caxis([-2E-4 2E-4]);colorbar;

title(’Initial W at Z=-10 m’);xlabel(’x (m)’);ylabel(’y (m)’);

figure(7)

pcolor(yCN(2:end-1),z,v_X100(2:(ny-1),:)’);shading interp;

caxis([-0.069 0.069]);colorbar;

title(’Initial V at x=20000 m’);xlabel(’x (m)’);ylabel(’Depth (m)’);

figure(8)

pcolor(xHF(2:end-1),z,v_Y100(2:(nx-1),:)’);shading interp;

caxis([-0.057 0.057]);colorbar;

title(’Initial V at y=20000 m’);xlabel(’y (m)’);ylabel(’Depth (m)’);

%Generate the inital velocities files uVelInit.bin and vVelInit.bin,

%and the initial temperature file tRefFile.bin.

fid=fopen(’uVelInit.bin’,’w’,ieee); fwrite(fid,u,accuracy); fclose(fid);

fid=fopen(’vVelInit.bin’,’w’,ieee); fwrite(fid,v,accuracy); fclose(fid);

fid=fopen(’tRefFile.bin’,’w’,ieee); fwrite(fid,T_LG,accuracy); fclose(fid);
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B.2 Initialization in case I with non-constant N(z)

gendata.m is the Matlab code for Initialization in case I with non-constant N(z) in
Lagrangian formulation in section 4.4.1). rsh.m and Gbessel.m are the subfunctions
used in gendata.m.

(a): gendata.m

ieee=’b’;accuracy=’real*8’;

nx=200;ny=200;nz=50;

A=5.0e-4;L=40000;H = 50;g = 9.8;rho0 = 999.8; alphaT = 2.0e-4; n=1;

cx=L/2;cy=L/2;

dx=L/nx;dy=L/ny;dz=H/nz;

xCN=0:dx:(L-dx);

yCN=0:dy:(L-dy);

xHF=dx/2:dx:L;

yHF=dy/2:dy:L;

z=-dz/2:(-dz):(-H);

G=numgrid(’D’,nx);

omega = 1.5045876E-4;

alpha = 2.600620346E-4;

f=1E-4; Tb = 10; Ts = 20; z0 = -15; d = 2;

h=zeros(nx,ny);rC = zeros(nx,ny);rU = zeros(nx,ny);rV = zeros(nx,ny);

thetaC = zeros(nx,ny);thetaU = zeros(nx,ny);thetaV = zeros(nx,ny);

urU = zeros(nx,ny,nz);urV = zeros(nx,ny,nz);

uthetaU = zeros(nx,ny,nz);uthetaV = zeros(nx,ny,nz);

u = zeros(nx,ny,nz);v = zeros(nx,ny,nz);

zstar = zeros(nx,ny,nz);T_LG = zeros(nx,ny,nz);

phi0=[0 1];zspan=[0 -H];

[zz,phi]=ode45(’rsh’,zspan,phi0,[],omega,alpha);

phiNormal = phi(:,1)/max(abs(phi(:,1)));

phiNormalDER = diff(phiNormal)./diff(zz);

phiNormalDER_ADD = [phiNormalDER’ phiNormalDER(end)]’;

N2Z = g*alphaT*((Ts-Tb)/(2*d))*(sech((z-z0)/d)).^2;

N1Z = (g*alphaT*((Ts-Tb)/(2*d))*(sech((z-z0)/d)).^2).^0.5;

Tbar = Tb + (Ts - Tb)/2*(1+tanh((z-z0)/d));

%Topography and initial height

for i=1:nx

for j=1:ny

if (G(ny+1-j,i)>0)

rC(i,j) = sqrt((xHF(i)-cx)^2+(yHF(j)-cy)^2);

rU(i,j) = sqrt((xCN(i)-cx)^2+(yHF(j)-cy)^2);
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rV(i,j) = sqrt((xHF(i)-cx)^2+(yCN(j)-cy)^2);

thetaC(i,j) = atan2(yHF(j)-cy,xHF(i)-cx);

thetaU(i,j) = atan2(yHF(j)-cy,xCN(i)-cx);

thetaV(i,j) = atan2(yCN(j)-cy,xHF(i)-cx);

h(i,j)=-H;

end

end

end

fid=fopen(’topog.box’,’w’,ieee); fwrite(fid,h,accuracy); fclose(fid);

%Initial velocities

for i=1:nx

disp(i)

for j=1:ny

for k=1:nz

if (G(ny+1-j,i)>0)

xi_temp = (1/omega)*A*besselj(n,alpha*rC(i,j))...

*cos(n*thetaC(i,j));

z_temp = z(k);

Q=min(z_temp+30,0):(-H/1000):max(z_temp-30,-H);

interpQ = interp1(zz,phiNormal,Q);

lenQ = length(Q);

for iter = 1:lenQ

if (abs(z_temp - Q(iter) - xi_temp*interpQ(iter))<5E-2)

zstar(i,j,k) = Q(iter);

break

end

end

T_LG(i,j,k) = Tb + (Ts - Tb)/2*(1+tanh((zstar(i,j,k)-z0)/d));

if (G(ny+1-j-1,i)>0 && G(ny+1-j+1,i)>0 ...

&& G(ny+1-j,i-1)>0 && G(ny+1-j,i+1)>0)

inter_der_temp = interp1(zz,phiNormalDER_ADD,zstar(i,j,k));

urU(i,j,k) =A/(rU(i,j)*omega*alpha^2)*((omega-f)*n...

*besselj(n,alpha*rU(i,j)) - omega*alpha*rU(i,j)...

*besselj(n+1,alpha*rU(i,j)))*sin(n*thetaU(i,j))...

*inter_der_temp*(1+xi_temp*inter_der_temp);

urV(i,j,k) = A/(rV(i,j)*omega*alpha^2)*((omega-f)*n...

*besselj(n,alpha*rV(i,j)) - omega*alpha*rV(i,j)*...

besselj(n+1,alpha*rV(i,j)))*sin(n*thetaU(i,j))*...

inter_der_temp*(1+xi_temp*inter_der_temp);

uthetaU(i,j,k) =A/(rU(i,j)*omega*alpha^2)*((omega-f)*n...

*besselj(n,alpha*rU(i,j)) + f*alpha*rU(i,j)*...

besselj(n+1,alpha*rU(i,j)))*cos(n*thetaU(i,j))...

*inter_der_temp*(1+xi_temp*inter_der_temp);

uthetaV(i,j,k) =A/(rV(i,j)*omega*alpha^2)*((omega-f)*n...

*besselj(n,alpha*rV(i,j)) + f*alpha*rV(i,j)*...
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besselj(n+1,alpha*rV(i,j)))*cos(n*thetaU(i,j))...

*inter_der_temp*(1+xi_temp*inter_der_temp);

u(i,j,k) = urU(i,j,k)*cos(thetaU(i,j))...

- uthetaU(i,j,k)*sin(thetaU(i,j));

v(i,j,k) = urV(i,j,k)*sin(thetaV(i,j))...

+ uthetaV(i,j,k)*cos(thetaV(i,j));

elseif(G(ny+1-j-1,i)>0 && G(ny+1-j+1,i)>0 ...

&& G(ny+1-j,i-1)==0 && G(ny+1-j,i+1)>0)%left

u(i,j,k) = 0;

elseif(G(ny+1-j-1,i)>0 && G(ny+1-j+1,i)>0 ...

&& G(ny+1-j,i-1)>0 && G(ny+1-j,i+1)==0)%right

u(i+1,j,k) = 0;

elseif(G(ny+1-j-1,i)>0 && G(ny+1-j+1,i)==0 ...

&& G(ny+1-j,i-1)>0 && G(ny+1-j,i+1)>0)%down

v(i,j,k) = 0;

elseif((G(ny+1-j-1,i)==0 && G(ny+1-j+1,i)>0 ...

&& G(ny+1-j,i-1)<0 && G(ny+1-j,i+1)>0))%up

v(i,j+1,k) = 0;

end

end

end

end

end

T_LGY100 = zeros(nx,nz);T_LGY100(:,:)=T_LG(:,ny/2,:);

T_LGX100 = zeros(ny,nz);T_LGX100(:,:)=T_LG(nx/2,:,:);

v_X100 = zeros(ny,nz);v_X100(:,:)=v(nx/2,:,:);

v_Y100 = zeros(ny,nz);v_Y100(:,:)=v(:,ny/2,:);

u_X100 = zeros(ny,nz);u_X100(:,:)=u(nx/2,:,:);

u_Y100 = zeros(ny,nz);u_Y100(:,:)=u(:,ny/2,:);

figure(1)

pcolor(yHF(2:end-1),z,T_LGX100(2:(ny-1),:)’);shading interp;

caxis([10 20]);colorbar;

title(’Initial T at x=20 km’);xlabel(’x (m)’);ylabel(’Depth (m)’);

figure(2)

pcolor(xHF(2:end-1),z,T_LGY100(2:(nx-1),:)’);shading interp;

caxis([10 20]);colorbar;

title(’Initial T at y=20 km’);xlabel(’y (m)’);ylabel(’Depth (m)’);

figure(3)

pcolor(xHF,yHF,T_LG(:,:,15)’),shading interp;caxis([12 19]);colorbar;

title(’Initial T at Z=-10 m’);xlabel(’x (m)’);ylabel(’y (m)’);

figure(4)

pcolor(xCN,yHF,u(:,:,10)’),shading interp;caxis([-0.037 0.037]);colorbar;

title(’Initial U at Z=-10 m’);xlabel(’x (m)’);ylabel(’y (m)’);

figure(5)

pcolor(xHF,yCN,v(:,:,10)’),shading interp;caxis([-0.027 0.043]);colorbar;
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title(’Initial V at Z=-15 m’);xlabel(’x (m)’);ylabel(’y (m)’);

figure(6)

pcolor(yCN(2:end-1),z,v_X100(2:(ny-1),:)’);shading interp;

caxis([-0.06 0.026]);colorbar;

title(’Initial V at x=20 km’);xlabel(’x (m)’);ylabel(’Depth (m)’);

figure(7)

pcolor(xHF(2:end-1),z,v_Y100(2:(nx-1),:)’);shading interp;

caxis([-0.02 0.05]);colorbar;

title(’Initial V at y=20 km’);xlabel(’y (m)’);ylabel(’Depth (m)’);

fid=fopen(’uVelInit.bin’,’w’,ieee); fwrite(fid,u,accuracy); fclose(fid);

fid=fopen(’vVelInit.bin’,’w’,ieee); fwrite(fid,v,accuracy); fclose(fid);

fid=fopen(’tRefFile.bin’,’w’,ieee); fwrite(fid,T_LG,accuracy); fclose(fid);

(b): rsh.m

function rsh=rsh(z,phi,dummy,omega,alpha)

g=9.8;

alphaT=2.0e-4;

f=1.0e-4;

Ts=20; Tb=10;

d=2;z0=-15;

Nsquare = g*alphaT*((Ts-Tb)/(2*d))*(sech((z-z0)/d))^2;

rsh=[phi(2);

-(( Nsquare - omega^2)/(omega^2-f^2))*alpha^2*phi(1)];

(c): Gbessel.m

function result = Gbessel(omega,alpha)

f=1.0e-4;

r0=20000.0;

result = f/r0*besselj(1,alpha*r0) - omega*alpha*(besselj(0,alpha*r0) ...

- besselj(1,alpha*r0)/(alpha*r0));
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