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Abstract

This thesis explores two infinite families of self-complementary arc tran-
sitive graphs: the familiar Paley graphs and the newly discovered Peisert
graphs. After studying both families, we examine a result of Peisert which
proves the Paley and Peisert graphs are the only self-complementary arc
transitive graphs other than one exceptional graph on 232 vertices. Then
we consider other families of graphs which share many properties with the
Paley and Peisert graphs. In particular, we construct an infinite family of
self-complementary strongly regular graphs from affine planes. We also in-
vestigate the pseudo-Paley graphs of Weng, Qiu, Wang, and Xiang. Finally,
we prove a lower bound on the number of maximal cliques of certain pseudo-
Paley graphs, thereby distinguishing them from Paley graphs of the same
order.
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Chapter 1

Introduction

Paley graphs are a remarkable family of graphs that have a variety of in-
teresting properties. For example, Paley graphs are one of the most widely
used examples of a family of deterministic graphs with random-like prop-
erties. They are also useful because their graph-theoretic properties relate
to the number theory of quadratic residues. Moreover, their construction
is surprisingly simple. Let Fq denote the field of order q such that q ≡ 1
(mod 4). The Paley graph of order q is the graph constructed on the ele-
ments of Fq such that two elements are adjacent if and only if their difference
is a nonzero square in Fq.

Many of the properties possessed by Paley graphs are a consequence of
their large automorphism group. In this thesis we are most interested in
two well-known properties of Paley graphs. First we see that a Paley graph
is isomorphic to its complement. We refer to graphs with this property as
self-complementary. Second we see that the automorphism group of a Paley
graphs act transitively on its arcs. We refer to such graphs as arc-transitive.
These properties force strong conditions on the automorphism group of the
Paley graph, and thus it is remarkable that the Paley graphs are an infinite
family of graphs that are both self-complementary and arc-transitive. This
prompts the following question: Are there any other self-complementary
arc-transitive graphs?

Peisert provides an answer by explicitly describing another infinite family
of self-complementary arc-transitive graphs, which we refer to as Peisert
graphs. Similar to a Paley graph, a Peisert graph is defined as a graph on
the elements of the finite field Fq. However, it must be the case that q = p2r

for some prime p such that p ≡ 3 (mod 4). Suppose that ω is a multiplicative
generator of Fq. Two elements in the Peisert graph of order q are adjacent
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1. INTRODUCTION

if and only if their difference is equal to ωk for k ≡ 0, 1 (mod 4). From
this definition Peisert proves that Peisert graphs are self-complementary
and arc-transitive. Using more elaborate algebraic techniques he confirms
that Peisert graphs are distinct from Paley graphs, with the exception of
the graph on 9 vertices [19].

With our own work, we see differences in the maximal clique structures
of Paley and Peisert graphs. From a result of Blockhuis [2], we know that
each pair of adjacent vertices in the Paley graph of order q2 is contained
in exactly one common clique of size q. However, in the Peisert graph of
order q2 where q ≡ 1 (mod 4), this is not the case. For this graph, we prove
that each pair of adjacent vertices contained in a common clique of size q is
contained in at least two cliques of size q. Using a computer, we also find
examples of Peisert graphs that do not contain maximal cliques of size q.

Impressively, Peisert does much more than find another family of self-
complementary arc-transitive graphs. He also proves the following theorem.

Theorem. A graph is self-complementary and arc transitive if and only if
|G| = pr for some prime p, pr ≡ 1 (mod 4), and G is Paley graph or a
Peisert graph or is isomorphic to an exceptional graph on 232 vertices.

In this thesis we study other families of graphs that share many proper-
ties with Paley and Peisert graphs. However, due to Peisert’s result these
graphs must not be self-complementary arc-transitive graphs. We attempt
to distinguish these families from the Paley and Peisert graphs, thereby
showing they are not self-complementary and arc-transitive.

In particular we focus on self-complementary strongly regular graphs.
All self-complementary arc-transitive graphs are vertex transitive strongly
regular graphs, but the reverse is not true. Thus Paley and Peisert graphs are
examples of infinite families of self-complementary strongly regular graphs,
but there may be other infinite families with these properties. In the spirit of
the well-studied generalized Paley graphs, we define a new family of graphs
that we refer to as generalized Peisert graphs. We also show that infinitely
many generalized Peisert graphs are self-complementary and strongly regu-
lar, and using a computer we verify that small examples of these graphs are
distinct from Paley and Peisert graphs.

While seeking out other imposters of Paley and Peisert graphs, we note
the Paley graph construction can be mimicked on algebraic structures other
than finite fields. It was recently shown by Weng, Qiu, Wang, and Xiang
that the Paley construction works well on commutative semifields, which
are algebraic systems that satisfy all of the field axioms except associativity
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of multiplication. The authors construct graphs on the elements of a finite
commutative semifield where two elements are adjacent if and only if their
difference is a nonzero square in the semifield. They refer to such graphs as
pseudo-Paley graphs, and they show the graphs are strongly regular with
the same parameter set as Paley graphs [24].

Weng, Qiu, Wang, and Xiang are able to distinguish small examples of
pseudo-Paley graphs from Paley and Peisert graphs, and they conjecture
this distinction holds true in general [24]. We devote the last chapter of this
thesis to confirming that the pseudo-Paley graphs on Dickson semifields are
distinct from the Paley graphs. From Blockhuis’ result [2], we know the
total number of cliques of size q in the Paley graph on q2 vertices. By
explicitly constructing more distinct cliques of size q in the graph on the
Dickson semifield, we prove that Paley graph and Dickson semifield graph
are not isomorphic. This successfully distinguishes Paley graphs from one
family of imposters. We also include computational results which suggest
similar methods could be applied to distinguish other families of pseudo-
Paley graphs.
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Chapter 2

Paley Graphs

A Paley graph is a graph constructed on the points of a finite field such that
two vertices are adjacent if and only if their difference is a nonzero square
in the field. Paley graphs possess many interesting properties that are a
consequence of their large automorphism group. Paley graphs are especially
useful because their graph-theoretic properties relate to the number theory
of quadratic residues.

Paley graphs on a prime number of vertices are also one of the most
widely used examples of a deterministic graphs with random-like proper-
ties. The randomness properties of such Paley graphs are established by
Bollobás and Thomason [3] using estimates from Weil [23] and Burgess [4]
for character sums. Chung, Graham, and Wilson show that Paley graphs
on a prime number of vertices are quasi-random, thereby showing that such
Paley graphs share a large number of graph properties with random graphs
[6].

We begin our exploration of Paley graphs by defining them as Cayley
graphs over the additive group of a finite field. From this definition we see
two standard results concerning the symmetry of Paley graphs. We also
note that Paley graphs are contained in the class of strongly regular graphs.
Then we give an alternate construction of a Paley graph on a square number
of vertices as a graph on the points of an affine plane. Finally, we see how
this construction is used by Blokhuis to prove a result that determines all of
the maximal cliques in Paley graphs with a square number of vertices [2].
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2. PALEY GRAPHS

2.1 Cayley Graphs

Our discussion of Cayley graphs follows the treatment given in Godsil and
Royle’s text [10]. For a group G, let S be a non-empty subset of G that is
closed with respect to inverses and does not contain the identity. We define
the Cayley graph X(G,S) to be the undirected graph with the vertex set G
where two vertices x and y are adjacent if and only if xy−1 ∈ S. We refer
to S as the connection set of of G.

Since S is closed under taking inverses, we have

xy−1 ∈ S ⇐⇒ yx−1 ∈ S.

This implies the graph X(G,S) is undirected. Furthermore, since the con-
nection set does not contain the identity, X(G,S) will not have any loops. It
is straightforward to see that the neighbours of the identity of G are precisely
the elements in S. Also it is useful to prove that the automorphism group
of a Cayley graph must act transitively on its vertices. We refer to graphs
with this property as vertex transitive. The following result is standard.

2.1.1 Lemma. Cayley graphs are vertex transitive.

Proof. For any pair of elements u and v in G, there is a permutation τu−1v

of G defined by τu−1v : x 7→ xu−1v that maps u to v. Let x and y be two
elements in G, and let C be a nonempty inverse-closed subset of G that does
not contain the identity. Note that xu−1v(yu−1v)−1 = xy−1. From this it
follows that xy−1 ∈ C if and only τu−1v(x)τu−1v(y)−1 ∈ C. Therefore x is
adjacent to y in X(G,C) if and only if τu−1v(x) is adjacent to τu−1v(y). From
this we conclude τu−1v is an automorphism of X that maps a to b. Moreover,
the subgroup {τt : t ∈ G} acts transitively on the vertices of X(G,C).

In this thesis we construct Cayley graphs on abelian groups, and there-
fore we use additive notation for the remainder of the thesis when describing
such graphs.

2.2 Standard Construction and Properties

Let q be a prime power such that q ≡ 1 (mod 4), and let Fq be the finite
field of order q with primitive root ω. Let S denote the set of nonzero
squares in Fq. The Paley graph of order q, denoted P (q) is the Cayley
graph constructed on the additive group of Fq using S as the connection set.
In other words, two vertices in the Paley graph are adjacent if and only if
their difference is a nonzero square in Fq.
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2.2. STANDARD CONSTRUCTION AND PROPERTIES

Note that the set of all nonzero squares of Fq form a multiplicative
subgroup of index two generated by ω2. Since q ≡ 1 (mod 4), it follows
that −1 is contained in S. Thus S is a nonempty subset of Fq that is closed
with respect to inverses, as required.

Let p denote the characteristic of Fq. Define f : Fq → Fq by f(x) = xp

for all x in Fq. It is useful to note that f is an automorphism of Fq. This
automorphism is generally referred to as the Frobenius automorphism. It is
a standard result that f generates the full group of automorphisms of Fq.

Now we deduce several simple results from this definition of Paley graphs.
For a graph X, we refer to an ordered pairs of adjacent vertices as an arc of
X. If the automorphism group of X acts transitively on its set of arcs, then
we refer to X as arc-transitive. The following result is standard.

2.2.1 Lemma. Paley graphs are arc-transitive.

Proof. Let θ denote the permutation of Fq defined by θ : x 7→ ω2x.
Recall that S is a multiplicative subgroup of Fq generated by ω2, and so the
subgroup of the permutation group generated by θ acts transitively on S.
Suppose that x, y are adjacent vertices in P (q), in which case x − y = ω2i

for some i. We see that

x− y = ω2i ⇐⇒ ω2x− ω2y = ω2(i+1).

Therefore x and y are adjacent if and only if θ(x) and θ(y) are adjacent.
From this we see θ is a graph automorphism of P (q) that fixes 0, and the
subgroup generated by θ acts transitively on the neighbours of 0.

Using the fact that the automorphism group of every Cayley graph acts
transitively on its vertices, we conclude that the automorphism group of
P (q) acts transitive on its arcs.

Next we give a well-known proof that Paley graphs are isomorphic to
their complements. We refer to graphs with this property as self-complementary.

2.2.2 Lemma. Paley graphs are self-complementary.

Proof. Let σ denote the permutation on Fq which maps x to ωx. Note that

x− y = ω2i ⇐⇒ σ(x)− σ(y) = ω2i+1.

Recall that S is generated multiplicatively by ω2, and so x and y are adjacent
in P (q) if and only if σ(x) and σ(y) are not adjacent. Therefore σ is an
isomorphism from P (q) to its complement.

7



2. PALEY GRAPHS

2.3 Strongly Regular Graphs

In this section we turn our focus to the adjacency properties of Paley
graphs. First we specify the necessary adjacency properties of strongly reg-
ular graphs, and then we see that Paley graphs are strongly regular.

2.3.1 Definition. A graph X on n vertices is strongly regular with param-
eters (n, k, a, c) if the following conditions hold:

i) Each vertex has k neighbours where k > 0.

ii) Each pair of adjacent vertices has a common neighbours where a < n−2.

iii) Each pair of distinct, nonadjacent vertices has c common neighbours.

Note that the conditions on k and a restrict strongly regular graphs to
graphs which have at least one edge and are not complete.

2.3.2 Example. The smallest example of a strongly regular graph is the
5-cycle. It can be easily shown that each vertex in the 5-cycle has two
neighbours, each pair of adjacent vertices have no common neighbours, and
each pair of distinct nonadjacent vertices has exactly one common neighbour.

Rather than proving that Paley graphs are strongly regular, we prove
a stronger result which states that every self-complementary, arc-transitive
graph is strongly regular. This proof follows directly from work in Godsil
and Royle’s text [10].

2.3.3 Lemma. Self-complementary, arc-transitive graphs are strongly reg-
ular.

Proof. Let X be a self-complementary, arc-transitive graph. Arc transi-
tivity implies vertex transitivity, and so we consider the neighbourhood any
vertex x in X without loss of generality. In particular, each vertex must
have the same degree, and so the parameter k for X is well-defined.

Let y be a neighbour of x. By arc transitivity there is in automorphism
of X which fixes x and maps y to any other neighbour of x. Therefore the
number of common neighbours of x and y must be independent of the choice
of y. This implies the parameter a is well-defined.

Let z be a vertex that is nonadjacent to x in X. Let X denote the
complement of X. Clearly x is adjacent to z in X. Since X is arc-transitive,
the number of vertices that are nonadjacent to x and nonadjacent to z is
independent of the choice of z. Therefore the number of common neighbours
of x and any nonadjacent vertex in X is constant, and so the parameter c
is well-defined.

8



2.4. AFFINE PLANE CONSTRUCTION

From this we immediately deduce that Paley graphs are strongly regular.

2.3.4 Corollary. Paley graphs are strongly regular.

2.4 Affine Plane Construction

Now we give a construction of Paley graphs of square order using affine
planes. This construction highlights the clique structure of the Paley graphs
and enables us to determine the form of the largest cliques. We recall the
properties of an affine plane.

2.4.1 Definition. An affine plane is a point-line incidence structure which
satisfies the following conditions:

(i) Given any pair of points, there is exactly one line incident to both
points.

(ii) Given a point p and a line l not incident to p, there is exactly one line
l′ through p which does not meet l.

(iii) There exists a set of four points, no three of which are incident to a
common line.

Next we note that a graph can be defined on the points of the affine
plane in the following way. First designate half of the parallel classes as
special, and then define two points in the graph to be adjacent if and only
they are incident to a common line that is contained in a special parallel
class. For example, if we start with an affine plane with q2 points, then each
vertex in the resulting graph will have exactly (q2 − 1)/2) neighbours.

Using this method on the affine plane AG(2, q) it is possible to choose a
special set of parallel classes such that the resulting graph is isomorphic to
the Paley graph P (q2). We give the details of this construction in the rest
of this section. First we give an explicit correspondence between AG(2, q)
and the additive group of Fq2 , and then we explain and justify the choice of
special parallel classes.

2.4.1 Constructing AG(2, q) from Fq2

First we consider Fq2 as a quadratic extension over Fq. We can identify the
elements of Fq2 with the following set.

Fq2 = {a+ bλ : a, b ∈ Fq}

9



2. PALEY GRAPHS

where λ2 = α for some fixed nonsquare α in Fq.
Next we consider Fq2 as a two-dimensional vector space over Fq. We

have the following isomorphism from this vector space into Fq × Fq.

ψ : (a+ bλ) → (a, b) (2.4.1)

It is straightforward to verify this map is a vector space isomorphism.
Lastly we construct the affine plane AG(2, q) on the points of Fq × Fq

by choosing the lines to be the translations of the one-dimensional vector
spaces. Accordingly, q of the lines incident to (0, 0) have the following form.

ly = {(c, cy) : c ∈ Fq} (2.4.2)

for some fixed y in Fq. We say a line ly of this form has slope y and note
the difference between any two points in ly is a scalar multiple of (1, y). The
other line incident to (0, 0) in AG(2, q) is

l∞ = {(0, c) : c ∈ Fq} (2.4.3)

We identify l∞ with slope ∞ and note the difference between any two points
in l∞ is a scalar multiple of (0, 1).

Every other line in AG(2, q) is a translate of a line incident to (0, 0). For
each y in Fq ∪ ∞, we refer to the set of all q translates of ly as a parallel
class and say each line in this parallel class has slope y. We see that the set
of all lines is partitioned into q + 1 parallel classes of size q.

2.4.2 Special Parallel Classes

Let ω denote a multiplicative generator of Fq2 . Note that the unique subfield
of order q is generated by ωq+1. We are only interested in odd prime powers
q, and so we assume that q + 1 is even. This implies that multiplication by
any power of ωq+1 fixes the squares of Fq2 . This further implies that the
elements of the vector space Fq × Fq corresponding to squares of Fq2 are
closed under scalar multiplication by elements of Fq. Therefore ψ−1(1, y) is
a square in Fq2 if and only if ψ−1(c, cy) is a square in Fq2 for all nonzero
scalars c in Fq. Note from our definition of ψ that ψ−1(0, 1) is not a square
in Fq2 .

Using these observations we partition the elements of Fq×Fq correspond-
ing to the squares of Fq2 into (q+1)/2 one-dimensional vector spaces. Each
of these one-dimensional vector spaces corresponds to a line ly in AG(2, q)
with slope y such that ψ−1(1, y) is a square in Fq2 .

10



2.5. MAXIMAL CLIQUES

Recall that two vertices in the Paley graph constructed on F2
q are adjacent

if and only if their difference is a nonzero square. Identifying the elements
of F2

q as points of AG(2, q), we see that two vertices in the Paley graph are
adjacent if and only if they are incident to a common line with slope y in Fq

such that ψ−1(1, y) is a square in Fq2 . This verifies the following alternative
construction of Paley graphs.

2.4.2 Construction. Let S denote the set of nonzero squares in Fq2 . Let
Ŝ denote the subset of slopes of AG(2, q) such that

m ∈ Ŝ ⇐⇒ ψ−1(1,m) ∈ S

Let G denote the graph constructed on the points of AG(2, q), considered
as elements of Fq × Fq, where two points x and y are adjacent if and only if
they are both incident to a line with slope m such that m ∈ Ŝ. Then G is
isomorphic to the Paley graph P (q2).

2.5 Maximal Cliques

We consider cliques in Paley graphs which are maximal with respect to size.
The size a maximal clique in P (p) is known by a result of Graham and

Ringrose [11] to be as large as c log p log log log p for infinitely many primes
p where c is some constant.

In general, it is a difficult problem to determine the size of a maximal
clique in P (q) unless q is a square. The Delsarte-Hoffman bound gives an
upper bound for the size of the largest independent set in a regular graph
in terms of the least eigenvalue of the adjacency matrix of the graph. We
state the bound as the following lemma.

2.5.1 Lemma. Let X be a k-regular graph on n vertices with least eigen-
value τ , and let α(X) denote the size of the largest independent set in X.
Then

α(X) ≤ n(−τ)
(k − τ)

.

It can be shown that the least eigenvalue of the Paley graph P (q) is
(−1−√q)/2 (eg. [10]). Therefore by Lemma 2.5.1, we have the following.

α(P (q)) ≤
q(1 +

√
q)

(q +
√
q)

=
√
q

Recall that Paley graphs are self-complementary, and therefore the max-
imal independent sets are in one-to-one correspondence with the maximal

11



2. PALEY GRAPHS

cliques by a self-complementing permutation. Thus the bound for α(P (q))
given above is also a bound on the size of a maximal clique. For a Paley
graph on a square number of vertices, say q2, this bound is obtained by
cliques of size q. The unique subfield of order q is an natural choice for such
a clique.

2.5.2 Lemma. The vertices corresponding to the unique subfield of order
q in Fq2 form a q-clique in P (q2).

Proof. Let ω be a primitive root of Fq2 . Recall the subfield of order q that is
multiplicatively generated by ωq+1 and q+1 is even. Therefore each element
in the subfield is a square, and the difference between any two elements in
the subfield is a square.

From the construction of P (q2) given in Section 2.4, we see that certain
lines of AG(2, q) form cliques of size q. Let ly denote a line with slope y
where ψ−1(1, y) is a square in Fq2 . Each pair of points incident to ly are
adjacent, and so the points incident to ly form a clique of size q. If fact, we
see that all the maximal cliques of P (q2) correspond to lines in AG(2, q).
This was first proved by van Lint and MacWilliams [22] for the case when
q is a prime and was later generalized by Blokhuis [2] for all prime powers
q. We review these proofs in the following sections.

2.5.1 q is a prime

When q is a prime, it can be shown using a theorem of Rédei [20] that the
only clique of size q in P (q2) containing 0 and 1 in P (q2) is the subfield
of order q. This result is due to van Lint and MacWilliams [22]. Using
the fact that Paley graphs are arc-transitive, this result determines that all
maximal cliques in P (q2) correspond to lines in AG(2, q) when q is a prime.
We give an elementary proof due to Lovász and Schrijver [15]. Throughout
this work, we assume that p is a prime.

2.5.3 Definition. For a subset X of the points of AG(2, p), we say that
X determines a slope m if some two distinct points in X are incident to a
common line with slope m.

Recall that each parallel class of AG(2, p) contains p lines. Therefore if
a subset X contains more than p points, each parallel class must contain
a line incident to two points of X. This implies if X > p, then X must
determine all p+ 1 possible slopes.

12



2.5. MAXIMAL CLIQUES

2.5.4 Theorem. Let p be a prime and let X be a subset of the affine plane
AG(2, p), such that |X| = p and X is not a line. Then X determines at
least (p+ 3)/2 slopes.

Proof. We assume that X does not determine all slopes, otherwise we
are done. Therefore there is at least one parallel class such that each line
in the parallel class contains exactly one point of X. This implies we can
coordinatize AG(2, p) in such a way that

X = {(k, bk) : k ∈ Fp}.

where b0, ..., bq−1 are elements of Fp. Let U be the collection of slopes de-
termined by X. Then

U =
{
bk − bm
k −m

: k,m ∈ Fp, k 6= m

}
.

Suppose for a contradiction that |U | < (p+ 3)/2. Consider the polynomial

Fj(x) =
∑
k∈Fp

(bk − kx)j

for j = 0, ..., p−2. Note that
∑

k∈Fp
kj = 0 if and only if j = 0 or p−1 does

not divide j. Therefore the coefficient of xj in Fj is zero, and so the degree
of Fj is less than or equal to j − 1 for nonzero j.

If x is a slope not contained in U , then the elements bk − kx for k in Fp

are all distinct. This implies that Fj(x) = 0 if x is not contained in U . Since
the degree of Fj is less than j − 1, it follows that Fj is the zero polynomial
if j − 1 < p− |U |. In particular, Fj is the zero polynomial if j ≤ (p− 1)/2.

Using the fact that every function over Fp is a polynomial of degree at
most p− 1, we can find elements ci in Fp for 1 ≤ i ≤ m such that

bk = cmk
m + ...+ c2k

2 + c1k + c0 (2.5.1)

where cm 6= 0 and m ≤ p− 1. We have assumed that X is not a line, and so
m ≥ 2. Let p− 1 = am+ b where a > 0 and 0 ≤ b ≤ m− 1. Since m ≥ 2, it
follows that a+ b ≤ (p− 1)/2 and so Fa+b = 0. In particular, the coefficient

13



2. PALEY GRAPHS

of xb in Fa+b is 0. Utilizing Equation 2.5.1 we have

0 =
∑

k

(
a+ b

b

)
bakk

b

=
(
a+ b

b

)∑
k

camkam+b +
p−2∑
j=b

djk
j


=
(
a+ b

b

)∑
k

camk
am+b +

p−2∑
j=b

dj

∑
k

kj


=
(
a+ b

b

)
cam
∑

k

kp−1

where dj is some element of Fp for b ≤ j ≤ p− 2. Note that∑
k∈Fp

kp−1 = 1.

Therefore we have

0 =
(
a+ b

b

)
cam.

The right hand side of this equation is clearly nonzero by our choice of cm,
and so we have our desired contradiction.

2.5.5 Corollary. Let p be an odd prime. If a set of p vertices in the Paley
graph P (p2) form a clique, then they are incident to a common line in Fp2

considered as the affine plane AG(2, p).

Proof. Using Construction 3.2.1 we construct P (p2) as a graph on the
points of the affine plane AG(2, q) where two points are adjacent if and only
if they are incident to a common line with slope y in Fq such that (1, y)
corresponds to a square in Fq2 . We have already seen that points incident
to lines with designated slopes form a clique of size q. There are exactly
(q + 1)/2 such designated slopes, and so a set of points in AG(2, q) that
determine at least (q + 3)/2 directions cannot form a q-clique in the Paley
graph. The result follows.

Rédei’s original formulation of Theorem 2.5.4 is stated as follows.

2.5.6 Theorem. If f : Fp → Fp is non-linear then the difference quotient

f(x)− f(y)
x− y

takes on at least (p+3)/2 distinct values for x and y in Fp such that x 6= y.

14



2.5. MAXIMAL CLIQUES

From this equivalent statement we prove one other interesting result due
to Lovász and Schrijver [15]. This diverges temporarily from our discussion
of maximal cliques.

Let τa,b denote the permutation of Fq defined as

τa,b(x) = ax+ b.

where a and b are elements of Fq such that a 6= 0. Again let S denote the
set of nonzero squares of Fq.

2.5.7 Corollary. The automorphism group of the Paley graph P (p) is pre-
cisely the following set of automorphisms

{τa,b : a ∈ S, b ∈ Fq}

Proof. We have already seen that for a in S and b in Fp, the map τa,b is
an automorphism of the Paley graph. Suppose that θ is an automorphism
of the Paley graph. For x and y in Fq we have

x− y ∈ S ⇐⇒ θ(x)− θ(y) ∈ S.

For distinct x and y this implies that

θ(x)− θ(y)
x− y

∈ S.

Therefore the quotient takes on at most (p+1)/2 values. By Theorem 2.5.6
we deduce that f is a linear function. Thus for some b and nonzero c in Fp

we have
θ(x) = cx+ b.

Since θ(x) − θ(y) = c(x − y) is a square if and only if x − y is a square, it
must be the case that c is a nonzero square in Fp. We conclude θ = τc,b.

2.5.2 q is a prime power

Blokhuis generalized the previous result for all prime powers q [2]. We prove
a series of lemmas that are a reproduction of Blokhuis’ proof using graph
theoretic terminology whenever possible.

Recall that the lines of AG(2, q), considered as subsets of Fq2 , can be
partitioned into those with square differences in Fq2 , say LS , and those with
non-square differences in Fq2 , say LN . There are q + 1 lines through 0 and
exactly half of them correspond to lines in LS . Each line in LS through 0

15



2. PALEY GRAPHS

is incident to only square elements in Fq2 , and each line in LN through 0 is
incident to only non-squares other than 0. Putting these simple observations
together, we see that there are exactly (q+ 1)/2 non-squares on each line of
LS not passing through 0.

Let X be a clique in P (q). Recall that if a is a nonzero square of Fq2 ,
then

x− y ∈ S ⇐⇒ ax− ay ∈ S
Thus aX is also a clique in P (q). On the other hand, if a is a non-square in
Fq2 , then

x− y ∈ S ⇐⇒ ax− ay /∈ S
In this case, aX is an independent set in P (q). For all a in Fq2 the set X+a
is a clique. Thus it suffices to consider cliques which contain 0. Otherwise
we choose the translate of the clique which contains 0.

For notational purposes, let σk(Y ) denote the kth elementary symmetric
function of the finite set of vertices Y . In particular, we have the following.∏

y∈Y

(1 + xt) =
|Y |∑
k=0

σk(Y )tk.

Also, if 0 is an element of a finite set Y , let Y0 denote the set Y \ {0}.
Now let X be a q-clique of P (q2). We assume that X contains 0, since

otherwise we consider the q-clique X−v for v in X that necessarily contains
0.

Define a polynomial f(t) as follows.

f(t) :=
∏

x∈X0

(t− x)

2.5.8 Lemma. The vertices in X correspond to a line in AG(2, q) if and
only if the following equation holds.

f(t) = tq−1 +
∏

x∈X0

x

Proof. Suppose that X corresponds to a line in AG(2, q). From our earlier
observations about AG(2, q), we saw that each line though 0 is incident to
the points {ia : i ∈ Fq} for some choice of nonzero a in Fq2 . Therefore

f(t) =
∏

x∈X0

(t− x)

=
∏
i∈Fq

(t− ia).

16



2.5. MAXIMAL CLIQUES

Choose an integer k such that 1 ≤ k ≤ q − 1, and let H denote the set of
q − k − 1-subsets of F∗q . Note that the coefficient of tk can be expressed as

[tk]f(t) = aq−1−k
∑
H∈H

∏
i∈H

(−i).

Now we see that
f(t) = tq−1 +

∏
x∈X0

x.

On the other hand, suppose that

f(t) = tq−1 +
∏

x∈X0

x.

Since f(x) = f(y) = 0 for all x and y in X0, we see that xq−1 = yq−1 for all
x and y in X0. This implies that

X = {ia : i ∈ Fq}

for some nonzero a. Therefore X is a line in AG(2, q).

Let A be a set of (q + 1)/2 non-squares that form a clique in P (q2). An
example of such a set is the non-squares incident to a line of LS not passing
through 0. We refer to such a set as a special clique. For two sets Y and Z,
we define the set product as follows.

Y · Z := {yz : y ∈ Y, z ∈ Z}

2.5.9 Lemma. Let A be a special clique and let X be a q-clique containing
0. Then A ·X0 is the set of all non-squares.

Proof. Since the product of a non-square and a square in Fq2 is a non-
square, every element in A·X0 is a non-square. There are (q2−1)/2 products
in A ·X0, and so if each product is distinct, then A ·X0 must contain all of
the non-squares.

Suppose that
ax = by (2.5.2)

for some a and b in A and some x and y in B. Subtracting bx from both
sides from Equation 2.5.2 yields

(a− b)x = b(y − x).

Since a and b are in a clique, a− b is a square, and so (a− b)x is a square.
Note that b(y − x) is not a square unless x = y, but if x = y, then a = b.
We conclude that A ·X0 is the set of all nonzero squares.

17



2. PALEY GRAPHS

Now we define a second polynomial fa(t) for an element a from our
special clique A.

fa(t) :=
∏

x∈X0

(t− ax)

2.5.10 Lemma. For any special clique A, the following equation holds.∏
a∈A

fa(t) = t
1
2
(q2−1) + 1

Proof. Let N denote the set of non-squares in Fq2 . We apply Lemma 2.5.9
to our definition of fa(t).

fa(t) =
∏

a∈A,x∈X0

(t− ax)

=
∏
n∈N

(t− n)

= t
1
2
(q2−1) + 1

Therefore the equality holds.

We use this result to show that the k-th symmetric function of X0 is 0
for small, positive k.

2.5.11 Lemma. If X0 is a q-clique in P (q2), then σk(X0) = 0 for all positive
k such that k ≤ (q2 − 1)/2.

Proof. Let m ≤ (q − 1)/2 denote the smallest positive integer such that
σm(X) 6= 0. If such an m does not exist, then we are done. Otherwise we
express fa(t) in terms of a polynomial p(t) of degree less than q − 1−m.

fa(t) = tq−1 + (−1)mamσm(X0)tq−m−1 + p(t)

Taking of the product of both sides over all a in A yields

∏
a∈A

fa(t) = t
1
2
(q2−1) + (−1)m

(∑
a∈A

am

)
σm(X0)t

1
2
(q2−1)−m + p′(t)

for a polynomial p′(t) of degree less than (q2 − 1)/2−m.
Applying Lemma 2.5.10, we see that

t
1
2
(q2−1) + 1 = t

1
2
(q2−1) + (−1)m

(∑
a∈A

am

)
σm(X0)t

1
2
(q2−1)−m + p′(t).
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2.5. MAXIMAL CLIQUES

This implies

(−1)m

(∑
a∈A

am

)
σm(X0) = 0.

However, we chose m such that σm(X0) was nonzero. Therefore∑
a∈A

am = 0

for all special cliques A.
Define A(s) to be the following set.

A(s) = {as : a ∈ A}

Suppose that a and b are in A, and so a and b are non-squares such that
a− b is a square. It follows that a−1 and b−1 are non-squares and

a−1 − b−1 = (ab)−1(a− b)

is a square. Thus A(−1) is a special clique. Likewise aq an bq are both non-
squares, and aq − bq = (a − b)q is also a non-square. Therefore A(q) is also
a special clique.

From these observations we deduce that∑
a∈A

a−qm = 0

For any non-square n, we have

n(q2−1)/2 = −1.

Combining this with our earlier result, we see that∑
a∈A

a
1
2
(q2−1)−qm = 0

Let t be any element in Fq2 that is not contained in the Fq subfield, and let
N denote the set of nonsquares of Fq2 . All of the results shown thus far in
this proof hold for any special clique A. Now we choose a specific special
clique A such that

A = {t+ i : i ∈ Fq, t+ i ∈ N}.
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The following calculations hold.

0 = 2
∑
a∈A

a
1
2
(q2−1)−qm

= 2
∑

i∈Fq ,t+i∈N

(t+ i)
1
2
(q2−1)−qm

=
∑
i∈Fq

(t+ i)
1
2
(q2−1)−qm +

∑
i∈Fq

(t+ i)(q
2−1−qm)

Define the polynomial F (t) to be the right hand side of the equation above.
Note that F (t) = 0 for all t in Fq2 \Fq. Since F (t) has degree less that q2−q,
it follows that F (t) = 0 for all t in Fq2 .

Finally, we consider the coefficient of tq
2−qm−q in F (t). It must be the

case that (
q2 − qm− 1

q − 1

)∑
i∈Fq

iq−1 = 0

On the other hand, if we let p denote the characteristic of Fq, then we see
the that following two congruences hold:(

q2 − qm− 1
q − 1

)
≡ 1 (mod p)

and ∑
i∈Fq

iq−1 = q − 1 ≡ −1 (mod p).

This contradiction proves that no such m exists, which proves the lemma.

Now we can apply Lemma 2.5.2 to prove the desired result.

2.5.12 Theorem. If X is a maximal clique of P (q2), then X is a line of
Fq2 , considered as the affine plane AG(2, q).

Proof. Let X be a clique of size q in P (q2), and let x and y be two distinct
vertices in X0. Since x and y are both squares, it follows that x−1 and y−1

are both squares. Moreover, x− y is a square, and so x−1y−1(y − x) is also
a square. Therefore X(−1)

0 ∪ 0 is a q-clique. This implies that for positive m
such that m < 1

2(q − 1) we have

σq−1−m(X0) =
∏

x∈X0

xσm(X(−1)
0 ) = 0
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2.5. MAXIMAL CLIQUES

From this we deduce σm(X) = 0 for all positive m such that m < 1
2(q − 1)

and
f(t) = tq−1 +

∏
x∈X0

x.

2.5.13 Corollary. Each pair of adjacent vertices of P (q2) is contained in
exactly one maximal clique.
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Chapter 3

Peisert Graphs

As we saw in the previous section, Paley graphs have several remarkable
properties. Most notably they are both self-complementary and arc-transitive.
It is plausible to believe they are the only infinite family of self-complementary
arc-transitive graphs. However, Peisert recently discovered a second infinite
family of graphs that possess both properties [19]. We refer to this new
family of graphs as Peisert graphs.

We proceed in a similar manner to Chapter 2. We begin by constructing
Peisert graphs on the points of a finite field. Using this definition we show
that Peisert graphs are self-compementary and arc-transitive. Then we give
an alternate construction of Peisert graphs of order q2 where q ≡ 3 (mod 4)
as graphs over the points of AG(2, q). Using this second construction we
apply Theorem 2.5.4 and Theorem 2.5.12 to obtain new information about
the maximal cliques of those orders of Peisert graphs. For Peisert graphs of
order q2 where q ≡ 1 (mod 4), we prove that any pair of vertices contained
in a clique of size q must be contained in at least two cliques of size q. By
Corollary 2.5.13, this new result implies that the number of cliques of size
q in Peisert graphs in this cases differ from the corresponding number in
Paley graphs. We also show that certain subgraphs of these Peisert graphs
are isomorphic to the Paley graph of order q.

3.1 Standard Construction and Properties

The construction of Peisert graphs given in Peisert’s paper is remarkably
similar to the standard construction of Paley graphs. Let p be a prime such
that p ≡ 3 (mod 4), and let q denote an even power of p. Let ω denote a
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3. PEISERT GRAPHS

primitive root of Fq, and let M be defined as follows.

M = {ωi : i ≡ 0, 1 (mod 4)}

The Peisert graph of order q, denoted P ∗(q), is the Cayley graph constructed
on the additive group of Fq using M as the connection set.

Let M0 denote the multipicative subgroup of Fq generated by ω4. Note
that the elements in M can be partitioned into M0 and the multiplicative
coset ωM0. Our constraints on p and q imply that q ≡ 1 (mod 8). Since
−1 = ω

q−1
2 , it follows that −1 ∈M0. Therefore M is closed with respective

to additive inverses, as required for the connection set of a Cayley graph.
There are many similarities between Peisert graphs and Paley graphs.

The following result, due to Peisert [19], highlights the first similarity.

3.1.1 Lemma. Peisert graphs are arc-transitive.

Proof. Let θ denote the permutation of Fq defined by

θ : x 7→ ω4x.

We see that x− y = ωi for some i ≡ 0, 1 (mod 4) if and only if

θ(x)− θ(y) = ωi+4.

This implies that θ is an automorphism of P ∗(q). Recall thatM = M0∪ωM0

and M0 is generated multiplicatively by ω4. It follows that the subgroup
generated by θ fixes 0 and acts transitively on M0, and so it also acts tran-
sitively on ωM0.

Let p denote the characteristic of Fq, and recall that x 7→ xp is an
automorphism of Fq. Let γ denote the permutation of Fq defined by

γ : x 7→ ωxp.

In order to show γ is an automorphism of P ∗(q), we consider two cases.
First, if x− y = ω4k for some k, then

γ(x)− γ(y) = ωxp − ωyp

= ω(x− y)p

= ωω4kp

= ω4kp+1.
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Second, if x− y = ω4k+1 for some k, then

γ(x)− γ(y) = ω(x− y)p

= ωω4kp+p

= ω4kp+p+1.

Recall that p ≡ 3 (mod 4), and so 4kp + p + 1 ≡ 0 (mod 4). This
implies that γ(x) − γ(y) = ω4s for some s. From this we see that γ is
an automorphism of P ∗(q) that interchanges M0 and ωM0. Therefore the
subgroup generated by θ and γ fixes 0 and acts transitively on the neighbours
of 0. Since the automorphism group of any Cayley graph acts transitively
on the vertices, we conclude that the automorphism group acts transitively
on the arcs of P ∗(q).

Next we show Peisert graphs are also self-complementary. This result is
also due to Peisert [19].

3.1.2 Lemma. Peisert graphs are self-complementary.

Proof. Let σ denote the permutation on Fq which maps x to ω2x. Note
that x − y = ωi where i ≡ 0, 1 (mod 4) if and only if σ(x) − σ(y) = ωi+2.
This implies x and y are adjacent in P ∗(q) if and only if σ(x) and σ(y) are
nonadjacent. Therefore σ is an isomorphism from P ∗(q) to its complement

Finally, as a corollary to Lemma , we see that Peisert graphs are strongly
regular.

3.1.3 Corollary. Peisert graphs are strongly regular.

3.2 Affine Plane Construction

Similar to our affine plane construction of the Paley graph P (q2), we con-
struct the Peisert graph P (q2) for q ≡ 3 (mod 4) using affine planes.

First we consider the elements of Fq2 as points of the affine plane AG(2, q)
as described in Section 2.4. Recall that we have the following vector space
isomorphism ψ from Fq2 , considered as a two-dimensional vector space over
Fq, to Fq × Fq.

ψ : (a+ bλ) → (a, b)

where λ2 = α for some fixed nonsquare α in Fq. Recall that lines in AG(2, q)
with slope y in Fq correspond to translates of the line

ly = {(c, cy) : c ∈ Fq}
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The lines in AG(2, q) with slope ∞ correspond to translates of the line

l∞ = {(0, c) : c ∈ Fq}

Let ω denote a multiplicative generator of Fq2 , and recall that the q-
subfield is generated by ωq+1. Since q ≡ 3 (mod 4), we see that q + 1 = 4k
for some positive integer k. Therefore multiplication by any power of ωq+1

fixes the connection set M of P ∗(q2). This implies that the elements of the
vector space Fq×Fq corresponding to elements of M are closed under scalar
multiplication by elements of Fq. Therefore we have

ψ−1(1, y) ∈M ⇐⇒ ψ−1(c, cy) ∈M

for all y in Fq and all nonzero c in Fq. We also have

ψ−1(0, 1) ∈M ⇐⇒ ψ−1(0, c) ∈M

for all nonzero c in Fq.
From these observations, it follows that we can partition the elements

in the vector space corresponding to elements of M into (q + 1)/2 one-
dimensional vector spaces. Each of these one-dimensional vector spaces
corresponds to a line ly in AG(2, q) with slope y such that ψ−1(1, y) ∈ M0

or ψ−1(1, y) ∈ ωM0.
Recall that two vertices in the Peisert graph constructed on F2

q are adja-
cent if and only if their difference is contained inM . Identifying the elements
of F2

q as points of AG(2, q), we see that two vertices in the Peisert graph are
adjacent if and only if they are incident to a common line with slope y in Fq

such that ψ−1(1, y) ∈ M or they are incident to a common line with slope
∞ and ψ−1(0, 1) ∈ M . This verifies the following alternative construction
of P ∗(q).

3.2.1 Construction. Let q = pr for some prime p such that p ≡ 3 (mod 4)
and q ≡ 3 (mod 4). Let ω denote a multiplicative generator of Fq2 , and let
M0 denote the multiplicative subgroup generated by ω4. Let M̂ denote the
subset of slopes of AG(2, q) such that

m ∈ M̂ ⇐⇒ ψ−1(1,m) ∈M0 ∪ ωM0.

Let G denote the graph constructed on the points of AG(2, q), considered
as elements of Fq × Fq, where two points x and y are adjacent if and only
if they are incident to a line with slope m such that m ∈ M̂ . Then G is
isomorphic to the Peisert graph P ∗(q2).
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If q ≡ 1 (mod 4), then q + 1 ≡ 2 (mod 4). Thus the elements of M in
P ∗(q2) are not closed under multiplication by all powers of ωq+1 in this case,
and so we do have a straightforward construction of P ∗(q2) using the lines of
AG(2, q) to define adjacency. However, we make the following observation.

3.2.2 Lemma. The vertices in P ∗(q2) corresponding to the unique subfield
of order q in Fq2 induce a subgraph that is isomorphic to the Paley graph
P (q).

Proof. Since 2k(q + 1) ≡ 0 (mod 4) for all integers k, it follows that M is
closed under multiplication by powers of ω2(q+1). Notice that the subgroup
generated by ω2(q+1) is precisely the set nonzero squares of the subfield of
order q. Therefore two points in Fq will be adjacent if and only if their
difference is a nonzero square in Fq. Thus the subgraph induced by the
elements of Fq will be the Paley graph P (q).

This result implies that if we identify the vertices of P ∗(q2) with the
points of AG(2, q) as above, then the lines of AG(2, q) will all induce sub-
graphs isomorphic to the Paley graph P (q).

3.3 Maximal Cliques

We have seen many similarities between the Paley and Peisert graphs, and
so it is reasonable to expect the size of the maximal clique to be the same
in P (q2) and P ∗(q2). Recall from Section 2.5 that the largest clique in the
Paley graph P (q) has size q. The following result is useful to determine
an upper bound on the size of a maximal clique in P ∗(q2). We do not
provide the details here, but the proof follows from results given in Godsil
and Royle’s text ([10] Ch. 10).

3.3.1 Lemma. Let G be a self-complementary strongly regular graph on q2

vertices. Then the least eigenvalue of the adjacency matrix of G is

(−1−√q)/2

It follows from this lemma that the least eigenvalue of the Peisert graph
P ∗(q2) is (−1 − √q)/2, and thus from the application of Lemma 2.5.1 we
deduce that the largest clique in P ∗(q2) has size at most q.

If q ≡ 3 (mod 4), then this bound is obtained. However, when q ≡ 1
(mod 4) the size of a maximal clique may be less that q. We consider each
case separately.
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3.3.1 q ≡ 3 (mod 4)

For this case, it is easy to show that the subfield of order q forms a clique
of size q.

3.3.2 Lemma. When q ≡ 3 (mod 4), the vertices corresponding to the
unique subfield of order q in Fq2 form a clique of size q in P ∗(q2).

Proof. Let ω be a primitive root of Fq2 . Recall that the subfield of order q
is generated by ωq+1. Since q ≡ 3 (mod 4), this implies the elements in the
subfield are all contained in the subgroup generated by ω4. Therefore each
element in the subfield is contained in M . Since the subfield is closed under
addition and additive inverse, we conclude that the elements in the subfield
form a clique of size q.

From our work in Section 3.2, we see that when q ≡ 3 (mod 4), we can
construct P ∗(q) on the points of the affine plane AG(2, q) . Therefore the
lines with slopes corresponding to elements in M form cliques of size q, and
so we see that Peisert graphs have at least (q + 1)/2 maximal cliques on
0 in this case. In particular, if q is prime, then the following corollary to
Theorem 2.5.4 implies that there are exactly (q + 1)/2 maximal cliques on
0 in this case.

3.3.3 Corollary. Let p be an odd prime such that p ≡ 3 (mod 4). If a
set of p vertices in the Peisert graph P ∗(p2) forms a clique, then they are
incident to a common line in Fp2 considered as the affine plane AG(2, p).

If q is a nontrivial prime power, then we apply Blockhuis’ result to gain
limited information about the cliques of size q. Recall that M = M0 ∪ ωM0

is the neighbourhood of 0, where we have

M0 = {ω4k : 0 ≤ k ≤ (q2 − 1)/4}.

Note that each element inM0 is a square, and therefore we have the following
corollary to Theorem 2.5.12.

3.3.4 Corollary. Let X be a maximal clique of P ∗(q) where q ≡ 3 (mod 4).
If the difference between every distinct pair of elements of X is contained in
M0, then X is a line of Fq2 , considered as the affine plane AG(2, q).

The same result holds for a maximal clique X in P ∗(q2) where the differ-
ences between distinct elements of X are completely contained in ωM . This
does not completely characterize the maximal cliques as Blockhuis’s result
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does for Paley graphs, but it is a start. It implies that any maximal cliques
on 0 that do not correspond to a line of Fq2 must contain elements from
both M0 and ωM0. Therefore, if we could eliminate the possibility of such
cliques existing, then we could deduce that each maximal clique corresponds
to a line.

3.3.2 q ≡ 1 (mod 4)

When q ≡ 1 (mod 4) and q is prime, there is no Peisert graph of order
q2. Thus Rédei’s result cannot be applied to any Peisert graphs in this
case. Moreover, since we do not have a convenient construction of P ∗(q2)
on the points of AG(2, q) when q ≡ 1 (mod 4), we cannot easily get any
information about the cliques using Blockhuis’ result.

Peisert gives the following lower bound on the size of a maximal clique
in P (q2) when q ≡ 1 (mod 4) [13].

3.3.5 Lemma. The size of a maximal clique in P ∗(q2) where q ≡ 1 (mod 4)
is at least q

1
4 .

Proof. By the definition of Peisert graphs, we must have q = pr for some
prime p such that p ≡ 3 (mod 4). Since q ≡ 1 (mod 4), it follows that r
is even, and so r = 2s for some positive integer s. Note that the unique
subfield of order ps in Fq2 is generated by ωd where

d =
p4s − 1
ps − 1

= (ps + 1)(p2s + 1).

Therefore d = 4k for some integer k, and it follows that the subfield of order
ps is contained in M0, the multiplicative group generated by ω4. It follows
that the difference between any two elements in the subfield is contained in
M0, and so the elements of the subfield form a clique of size ps.

There are many cases of Peisert graphs P ∗(q2) that obtain the upper
bound with cliques of size q when q ≡ 1 (mod 4). Here we show that if
P ∗(q2) has a clique of size q, then there are at least two cliques of size q on
each pair of adjacent vertices in these graphs. This gives an elementary way
to distinguish P ∗(q2) from P (q2) when q ≡ 1 (mod 4).

Recall that Peisert graphs are vertex-transitive, and therefore it suffices
to consider maximal cliques containing 0. We refer to a clique containing
0 as a central clique. Here we prove that there are at least two maximal
central cliques on each neighbour of 0 in P ∗(q2) where q ≡ 1 (mod 4). As a
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consequence, we show that the number of cliques of size q in P ∗(q2) when
q ≡ 1 (mod 4) differs from the number in the Paley graph of the same order.
This is original work.

3.3.6 Lemma. Let q = p2r be a prime power such that p ≡ 3 (mod 4). If
P ∗(q2) has at least one clique of size q, then each vertex in the neighbourhood
of 0 in P (q2) is contained in at least two central cliques of size q.

Proof. Suppose P ∗(q2) has at least one clique of size q. This clique must
be maximal with respect to size. Since P ∗(q2) is vertex transitive, we can
assume this clique contains 0. (Otherwise we consider a translation of the
clique which contains 0.) Since Peisert graphs are arc-transitive, each vertex
in M must be contained in the same number of maximal central cliques.
Assume for a contradiction that each vertex in the neighbourhood of 0 is
contained in exactly one maximal central clique. Using this observation, we
partition M into (q + 1)/2 sets of size q − 1 corresponding to the maximal
central cliques. Let C denote the unique clique in this set which contains 1.
Claim 1: |C ∩M0| = (q − 1)/2
Let r denote the number of elements in C that are contained in M0. Suppose
for a contradiction that r > (q − 1)/2. It follows that C contains less than
(q−1)/2 elements of ωM0. Recall that ω4iC is also a maximal central clique
for all integers i. Since multiplication by ω4i is an automorphism that fixes
M0 set-wise, there also must be exactly r elements of M0 and q − 1 − r
elements of ωM0 in ω4iC. Since each element of M0 is contained in exactly
one maximal central clique, the orbit of C under multiplication by ω4i must
have size at most |M0|/r. On the other hand, since ω4i is transitive on the
elements of M0, the orbit of C must have order exactly |M0|/r. Note that
|M0|/r < q + 1. This implies that the union of the sets in the orbit of C
contains at most (q + 1)(q − 1− r) elements of ωM0.

Since q ≡ 1 (mod 4), we see that q − 1 does not divide q2−1
2 . Therefore

r < q − 1, and it follows that there must be at least one element of ωM0 in
a set in the orbit of C0. Furthermore we see that

(q + 1)(q − 1− r) < (q2 − 1)/2,

and so there must be at least one element of ωM0 not contained in a set
in the orbit of C0. This contradicts the transitivity of ω4 on ωM0. Thus
r ≤ (q − 1)/2.

If we assume that r < (q− 1)/2, then we can apply the argument above
to show that the number of elements of ωM0 contained in C is less that
(q − 1)/2. From this we conclude that r = (q − 1)/2, which proves the first
claim.
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Claim 2: The set of elements in M0 ∩C form a multiplicative subgroup of
F∗q2 .

Let x and y be two elements of C ∩M0. It follows that x−1y ∈ M0. Since
multiplication by an element of M0 is an automorphism of P ∗(q2), the set
x−1yC is a maximal central clique containing y. However, there is exactly
one maximal central clique containing y, and so we must have x−1yC = C.
Therefore x−1y ∈ C for all elements x and y in C. Since C ∩M0 contains
1, this proves the second claim.

Combining the results of Claim 1 and Claim 2, we see that C ∩M0 is a
multiplicative subgroup of F∗q2 such that

|F∗q2 |
|C ∩M0|

= 2(q + 1). (3.3.1)

From Equation 3.3.1 we deduce that C∩M0 is generated multiplicatively by
ω2(q+1), and so C ∩M0 contains the squares of multiplicative group of the
subfield of order q. From our work with Paley graphs, we know that each
nonsquare of F ∗

q can be expressed as the difference of two squares. Therefore
there must be two distinct elements elements of C ∩M0 whose difference is
ωq+1. However, since q ≡ 1 (mod 4), the element ωq+1 is not contained in
M0 ∪ ωM0. This contradicts our assumption that C is a clique. Therefore
each vertex must be contained in at least two maximal central cliques.
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3.4 Computational Results

The following computations were performed on a computer with a 2.8 Ghz
processor using a combination of SAGE [21] and Cliquer [17] routines. The
results for small Peisert graphs are shown in the table below. The graph on
74 is the smallest P ∗(q2) that does not have a maximal clique of size q.

Table 3.1: Peisert Graphs

q2 Max Clique Size # Max Cliques on 0
32 3 2
72 7 4
34 32 10
112 11 6
192 19 10
232 23 12
74 17 15300
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Chapter 4

Self-Complementary
Arc-Transitive Graphs

We have seen that the Paley graphs and Peisert graphs are self-complementary
and arc-transitive. In this section we see a complete description of all self-
complementary arc-transitive graphs. First, we see a result of Zhang which
states that self-complementary arc-transitive graphs must be Cayley graphs
on the additive group of a vector space with a particular connection set.
Then we see a result of Peisert which gives a stronger algebraic character-
ization of a self-complementary arc-transitive graphs in terms of the auto-
morphism groups of the graphs. Finally we see how Peisert uses this char-
acterization in conjunction with results about primitive permutation groups
to show that Paley graphs, Peisert graphs, and one additional graph on 232

vertices are the only self-compementary arc-transitive graphs.

Before beginning, we clarify our use of terminology. Throughout this
chapter, we refer to a graph as symmetric if it is both vertex transitive and
arc-transitive. This definition is common in algebraic graph theory and is
used in Biggs’ text [1] and Godsil and Royle’s text [10]. As a word of caution,
we note that most of the works referenced in this chapter, including the
papers of Peisert [19], Zhang [25], and Chao [5], define symmetric graphs
as graphs that are vertex and edge transitive. An arc-transitive graph is
edge transitive, but the converse is not true. This is discussed in more
detail in Biggs’ text [1]. However, a result of Zhang proves that any self-
complementary vertex and edge transitive graph must also be arc-transitive
[25]. Therefore the results presented in this chapter hold for both definitions
of symmetric graphs.
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4.1 Algebraic Characterization

The following lemma and theorem are due to Hong Zhang [25]. The theorem
was the first major step towards a complete algebraic characterization of self-
complementary symmetric graphs. The lemma gives another reason for the
necessity of q ≡ 1 (mod 4) for the Paley graph P (q).

4.1.1 Lemma. If a graph X on n vertices is self-complementary and sym-
metric, then n ≡ 1 (mod 4).

Proof. Since the graph X is vertex transitive, each vertex must have the
same number of neighbours, say k. Furthermore, sinceX is self-complementary,
each vertex in the complement of X must also have k neighbours. Therefore
we have k = (n − 1)/2, which implies n is odd. Moreover, there must be
n(n− 1)/4 edges in X. Since n is odd, it follows that n ≡ 1 (mod 4).

Zhang also proves that the automorphism group of a self-complementary
symmetric graph must be a normal subgroup of index 2 in a doubly transitive
group with index 2. Utilizing deep algebraic results, Zhang gives the follow-
ing algebraic characterization of self-complementary symmetric graphs.

4.1.2 Theorem. A graph is self-complementary and symmetric if and only
if it is isomorphic to a Cayley graph X(V+, OH), where

a) V+ is the additive group of the vector space V of dimension r over the
finite field with p elements, and pr ≡ 1 (mod 4).

b) OH is an orbit of a group H such that

i) H ⊂ Ĥ ⊂ GL(V )

ii) [Ĥ : H] = 2

iii) Ĥ is transitive on V \ {0}
iv) H is not transitive on V \ {0}

We have already seen the construction of the self-complementary sym-
metric Paley graphs on pr vertices where p is an odd prime and r is a positive
integer such that pr ≡ 1 (mod 4). Therefore the following corollary holds.

4.1.3 Corollary. There exists a self-complementary symmetric graph on n
vertices if and only if n = pr for some odd prime p and positive integer r
such that pr ≡ 1 (mod 4).
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Using Chao’s classification of vertex- and edge-transitive graphs with a
prime number of vertices [5], Peisert shows that the only self-complementary
symmetric graphs on a prime number of vertices are Paley graphs [18]. If
we consider self-complementary symmetric graphs that are circulants, then
Zhang shows that the only such graphs are also Paley graphs of prime order
[26].

In [19], Peisert gives a full description of self-complementary symmetric
graphs and their automorphism groups.

For a graph G, denote the group of all automorphisms by Aut(G).
Let Γ(G) denote the group of permutations on the vertex set generated
by the group of automorphisms and the set of complementing permuta-
tions. Peisert gives the following one-to-one correspondence between the
self-complementary symmetric graphs and permuation groups with special
properties.

4.1.4 Lemma. Let G be a self-complementary symmetric graph, A =
Aut(G), and Γ = Γ(G). Then the following hold:

a) |G| ≡ 1 (mod 4)

b) Γ is doubly transitive

c) A is a rank-3 group

d) [Γ : A] = 2

e) |A| is even

Peisert also gives a partial converse to this lemma. To understand it, we
introduce the following notation.

4.1.5 Definition. An orbital of a permutation group Γ on a set V is an
orbit of Γ in its natural action on the Cartesian product V × V .

If Γ is transitive, then the number of orbitals is the rank of Γ. If an
orbital ∆ is not the diagonal, then the digraph with vertex set V and edge
set ∆ is denoted by Graph(∆). If for each element (x, y) in ∆, there exists
an element (y, x) in ∆, then we identify Graph(∆) with the corresponding
undirected graph.

4.1.6 Lemma. Let A and Γ be permutation groups satisfying conditions
(b)-(e) of Lemma 4.1.4. Let G and G′ be the nontrivial orbitals of A. Then
both Graph(G) and Graph(G′) are undirected graphs, and G and G′ are
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self-complementary, symmetric, and isomorphic to each other. Moreover,
A ≤ Aut(G) and Γ ≤ Γ(G). The equalities hold if and only if A is a
maximal rank-3 group.

As an immediate consequence of Lemmas 4.1.4 and 4.1.6, Peisert gives
the following algebraic characterization of self-complementary symmetric
graphs.

4.1.7 Theorem. Let Γ be a doubly transitive group, and let A be a sub-
group of index 2 in Γ which is not doubly transitive and has even order.
Then the orbitals of A are self-complementary symmetric graphs, and every
self-complementary symmetric graph can be constructed in this way.

4.2 Possible Automorphism Groups

Using the necessary conditions for the automorphism groups of a self-complementary
symmetric graph given in Lemma 4.1.4, Peisert narrows the possible auto-
morphism groups of such graphs by applying deep results from permutation
group theory.

4.2.1 Definition. The socle of a permutation group Γ is the subgroup of
Γ generated by all the minimal normal subgroups.

Peisert uses the Burnside theorem and classification of finite simple
groups to deduce that the automorphism group of every self-complementary
symmetric graph is a rank-3 primitive group with equal subdegrees and an
elementary abelian socle. Using Liebeck’s classification, Peisert distinguishes
four possible cases where the condition is satisfied.

Case 1 The group has degree 9.
This case is trivial. It can be verified that the Paley graph of order 9 is

the only self-complementary vertex-transitive graph on 9 vertices.

Case 2 The group is contained in AΓL1(pr).
Before exploring this case, we clarify more useful notation. Let ω denote

a fixed primitive root of Fpr as well as denote the corresponding scalar mul-
tiplication which maps x to ωx. Let α denote the Frobenius automorphism
of Fpr . That is, the automorphism α maps x to xp. We let 〈ω, α〉 denote
the subgroup of the automorphism group of Fpr generated by ω and α.
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4.2.2 Definition. Let γ = ωk1αm1ωk2αm2 · · · ωktαmt be an element of
the subgroup generated by ω and α. We say that γ is ω-even (ω-odd) if
k1 + · · · + kt is even (odd). A subgroup of 〈ω, α〉 will be called ω-odd if it
contains at least one ω-odd element. Otherwise, it is ω-even.

It can be shown that the ω-parity of an element of 〈ω, α〉 does not de-
pend on its representation and is preserved by conjugation. From these two
observations, it is straightforward to see that a subgroup of 〈ω, α〉 is ω-even
if and only if its generators are ω-even.

Consider the two-dimensional vector space over Fpr and the underlying
affine and projective groups. Let ζ : ΓL2(pr) → PΓL2(pr) be the natural
homomorphism. Let T be the group of translations contained in AΓL2(pr).
We use the notation TK to denote the subgroup of AΓL2(pr) which is a
split extension of T by a subgroup K of ΓL2. Since A ⊆ T and T is regular
and normal in AΓL1(pr), it follows that A is the split extension TA0 of T
by the stabilizer A0 ⊆ ΓL2(pr).

4.2.3 Lemma. Let G be a self-complementary symmetric graph whose au-
tomorphism group A is a ω-even subgroup of AΓL1(pr). Then G is a Paley
graph and Aut(G) = T 〈ω2, α〉.

Proof. From our work in Chapter 2, we see that T 〈ω2, α〉 is a subgroup of
the automorphism group of P (pr). Moreover we can see that

|T 〈ω2, α〉| = rpr(pr − 1)
2

.

Since it is known that |A| = (rpr(pr − 1))/2, we deduce that

A = T 〈ω2, α〉.

Note that all ω-even subgroups are contained in T 〈ω2, α〉. By Lemmas
4.1.4 and 4.1.6, we know the automorphism group of a self-complementary
graph must be a maximal rank-3 group. The result follows.

A similar result can be proved for ω-odd groups, although we do not
show the details here.

4.2.4 Lemma. Let G be a self-complementary symmetric graph whose au-
tomorphism group A is a ω-odd subgroup of AΓL1(pr). Then G is a Peisert
graph.
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The automorphism groups of the Peisert graphs vary for different values
of pr. Thus it is not always the case that

Aut(P ∗(pr)) = T 〈ω4, ωα〉.

After more work, Peisert gives the following result about the automor-
phism groups of Peisert graphs.

4.2.5 Lemma. If pr 6= 32, 72, 34, 232 then

Aut(P ∗(pr)) = T 〈ω4, ωα〉.

Furthermore, we have

|Aut(P ∗(pr))| = rpr(pr − 1)
4

.

Case 3 The group is solvable.
Peisert uses the Foulser’s classification theorem [9] to explore two possi-

ble groups of degree 72 and 232. We reproduce the explicit construction of
the graphs and summarize the proof that they are self-complementary and
symmetric.

Recall that ζ : ΓL2(n) → PΓL2(n) is the natural homomorphism from
ΓL2(n) → PΓL2(n), and that T is the group of translations contained in
AΓL2(n).

Let S4 denote the symmetric group of degree four, and let A4 denote
the subgroup of S4 consisting of all even permutations. Let J and J̄ be
subgroups of PSL2(n) such that J ⊆ J̄ , J ∼= A4, and J̄ ∼= S4. The existence
of such subgroups is known from Foulser [9]. Define

A(n2) = Tζ−1(J)

Also define
Γ(n2) = Tζ−1(J̄).

From Foulser and Kallaher [8], we see that for n = 7 or n = 23 the
group A(n2) is a maximal rank-3 group with order 12n2(n− 1). Again from
Foulser [9], we see for these values of n that Γ(n2) is doubly transitive of
order 24n2(n− 1). Therefore we must have

[Γ(n2) : A(n2)] = 2.

By Lemma 4.1.6, we conclude the orbitals of the graphs are self-complementary
symmetric graphs.

Utilizing more results from Foulser [9], it can be shown that this construc-
tion gives just one rank-3 group up to conjugation. The graphs constructed
from these groups is denoted by G(72) and G(232), respectively.
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Case 4 The exceptional group.
By a result from Liebeck [14], there is only one additional group satis-

fying the necessary requirements. Again we give the explicit construction
and summarize the Peisert’s proof that the constructed graph is indeed self-
complementary and symmetric.

Since PSL2(9) is isomorphic to A6, there exists a subgroup J ≤ PSL2(9)
such that J is isomorphic to A5. From Foulser’s work [9], we know that J has
a unique minimal pre-image J∗ under ζ. Let c be the scalar multiplication
by a fixed primitive root of F9 and σ be a permutation defined as follows.

σ : (a, b) → (a3, b3) (4.2.1)

We define
A(92) = T 〈J∗, c2, σ〉

where 〈J∗, c2, σ〉 denotes the subgroup of ΓL2(9) generated by J∗,c2, and σ.
Also define

Γ(92) = T 〈J∗, c, σ〉.

Again from Foulser’s results [9], we have that A(92) is a maximal rank-3
group and |A(92)| = 60 · 8 · 81. We also have that Γ(92) is double transitive
of order Γ(92) = 2|A(92)|. By Lemma 4.1.6, we conclude that the nontrivial
orbitals of A(92) are isomorphic self-complementary symmetric graphs. Us-
ing Foulser’s work again we see that this construction gives us one rank three
group, up to conjugation. We denote the corresponding graph by G(92).

4.3 Isomorphisms

From cases presented in Section 4.2, we see that a self-complementary sym-
metric graph must be a Paley graph, Peisert graph, or one of the three
exceptional graphs G(72), G(92), and G(232). We wish to determine if there
are duplications among this list.

First we distinguish between the Paley and Peisert graphs. When pr 6= 32

and pr 6= 72 a result of Foulser and Kallaher [8] can be applied to what is
known about the automorphism groups from Section 4.2 to distinguish the
corresponding Paley and Peisert graphs. We have already seen that P ∗(32)
is isomorphic to P (32). Peisert also shows that P ∗(72) is not isomorphic to
P (72). This leaves us with the following.

4.3.1 Lemma. If p ≡ 3 (mod 4), then P ∗(pr) is not isomorphic to P (pr),
except when pr = 32.
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It is known that there are only two self-complementary vertex transitive
strongly regular graphs on 72 vertices [16]. Since the automorphism groups
of P (72) and G(72) have different orders, it follows from Lemma 4.3.1 that
P ∗(72) is isomorphic to G(72).

Despite having an exceptional automorphism group, Peisert proves that
G(92) is isomorphic to P ∗(92). He then proves thatG∗(232) is not isomorphic
to G(232). Both of these results were obtained by distinguishing between
the automorphism groups.

Putting all of this work together, Peisert proves the desired result.

4.3.2 Theorem. A graph is self-complementary and arc-transitive if and
only if |G| = pr for some prime p, pr ≡ 1 (mod 4), and G is a Paley graph or
a Peisert graph, or is isomorphic to an exceptional graph on 232 vertices.
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Chapter 5

Geometric Graphs

We have seen constructions of Paley and Peisert graphs, and we have also
seen they are the only infinite families of self-complementary arc transitive
graphs. Now we investigate graphs that are similar to Paley and Peisert
graphs. We have already seen that Paley and Peisert graphs are strongly
regular graphs. In this chapter we see that Paley and Peisert graphs have the
same parameter set and are contained in a special subset of strongly regular
graphs. We refer to graphs in this subset as conference graphs. We see a
standard construction of other vertex transitive conference graphs on the
points of an affine plane. Notably, we generalize the definition of a Peisert
graph to describe a new infinite family of self-complementary conference
graphs that we believe are distinct from the Paley and Peisert graphs.

5.1 Conference Graphs

First we recall that a graphX is strongly regular with parameter set (n, k, a, c)
if the following conditions hold:

i) Each vertex has k neighbours, where k > 0.

ii) Each pair of adjacent vertices has a common neighbours, where
a < n− 2.

iii) Each pair of distinct, nonadjacent vertices has c common neighbours.

The parameters of a strongly regular graph are not independent from
each other. In particular, a simple condition can be derived from double
counting the edges between the neighbours and nonneighbours of a specific
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vertex. The proof of this condition is given in Godsil and Royle’s text [10].
We reproduce the result in the following lemma.

5.1.1 Lemma. The parameter set (n, k, a, c) of a strongly regular graph
must satisfy

k(k − a− 1) = (n− k − 1)c

Proof. Let X be a strongly regular graph with parameters (n, k, a, c). Let
x be a vertex of X, and let N denote the set of k vertices adjacent to x. Let
N denote the set of n− k− 1 vertices in X \ {x} that are not adjacent to x.
Each vertex in N is adjacent to a+1 vertices in N ∪{x}, and therefore each
vertex in N must be adjacent to k − a − 1 vertices in N . Therefore there
must be k(k − a− 1) edges between the vertices in N and N . On the other
hand, each vertex in N has c common neighbours with x, and so there must
be (n−k−1)c edges between the vertices in N and the vertices in N . From
this we conclude that k(k − a− 1) = (n− k − 1)c.

Using this lemma we prove that the parameter set of any self-complementary
strongly regular graph is determined by the size of its vertex set. Again,
this result follows from work in Godsil and Royle’s text [10].

5.1.2 Lemma. A self-complementary strongly regular graph on n vertices
has parameters (n, n−1

2 , n−5
4 , n−1

4 ).

Proof. Let X be a strongly regular graph with parameters (n, k, a, c), and
let X denote the complement of X. We begin by determining parameter
set (n, k̄, ā, c̄) for X in terms of k,a, and c. Since each vertex in X has k
neighbours, it follows that

k̄ = n− k − 1.

Let x and y be adjacent vertices in X. This implies x and y are not
adjacent and have c common neighbours in X. It follows that there are
n− 2− 2k + c vertices in X that are not adjacent to x and not adjacent to
y. Therefore x and y must have ā = n− 2− 2k + c common neighbours in
X.

Let x and z be nonadjacent vertices in X. There are a common neigh-
bours to x and z in X, and so there are c̄ = n − 2k + a vertices which are
nonadjacent to x and nonadjacent to z in X.

Further suppose thatX is self-complementary. The following three equa-
tions must hold:

(i) k = n− k − 1 = k̄
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(ii) a = n− 2− 2k + c = ā

(iii) c = n− 2k + a = c̄

From equation (i), we immediately see that k = n−1
2 . Substituting that

expression for k into (ii) yields a = c−1. Next, substituting those values for
k and a into the equation proved in Lemma 5.1.1, we deduce that c = n−1

4
and a = n−5

4 . Therefore the parameters of X are as claimed.

We define a conference graphs to be a strongly regular graph with the
parameter set (

n,
n− 1

2
,
n− 5

4
,
n− 1

4

)
.

The next two corollaries follow immediately from our work above.

5.1.3 Corollary. Paley graphs are conference graphs.

5.1.4 Corollary. Peisert graphs are conference graphs.

5.2 Construction and Examples

Using a geometric approach, we construct strongly regular graphs on the
points of an affine plane. We have already seen this method used in Sections
2 and 3 to construct Paley graphs and certain Peisert graphs. Now we
give the general construction of a strongly regular graph on the points of
AG(2, q). Then we narrow the construction to produce conference graphs.

Before beginning with the construction, we recall the three defining prop-
erties of affine plane that were given Definition 2.4.1.

First, any two points uniquely determine a line. Second, given a line l
and a point p not incident to l, there is a unique line l′ through p parallel to
l′. The last property states that an affine plane has at least four points, no
three of which are collinear. This ensures there is more than one line and
the plane is not a degenerate incidence structure.

It follows from these properties that each point is incident to a constant
number of lines and each line is incident to a constant number of points.
We say that an affine plane has order q if it has q2 points and q2 + q lines.
In such an affine plane each point is on q + 1 lines and each line is incident
to q points. Given any line l in the affine plane there are q − 1 other lines
that do not intersect l and are pairwise non-intersecting. These q lines form
a parallel class. We note that there are q + 1 parallel classes in the affine
plane.
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We recall the method we use to construct a graph on the points of the
affine plane. First we designate half of the parallel classes to be a special set,
and then we define two points in the graph to be adjacent if and only they
are incident to common line that is contained in one of the special parallel
classes.

In particular, we use the affine plane AG(2, q) derived from the two
dimensional vector space Fq × Fq. The points of this plane are ordered
pairs of elements of Fq, and the lines are translates of the one dimensional
subspaces of the vector space. It is not difficult to see that any pair of points
will be contained in exactly one coset. Also it can be shown that for a coset
C and a point p not contained in C, there is exactly one coset disjoint from
C containing that point. Therefore, AG(2, q), as constructed from Fq × Fq,
satisfies the necessary conditions in Definition 2.4.1. An explicit description
of the graph construction follows.

5.2.1 Construction. Let AG(2, q) denote the affine plane of odd order
q derived from the ordered pairs of Fq × Fq. Let P denote a subset of
Fq ∪ {∞}. We define G(P, q) to be a graph on the points of AG(2, q) such
that two points are adjacent if and only if the line incident to both points
has slope m such that m ∈ P .

For example, if P is the empty set, then G(P, q) has no edges. On
the other hand, if P = Fq ∪ {∞}, then G(P, q) is the complete graph on
q2 vertices. In fact, we note that if |P | > 1, then G(P, q) is connected.
Also, it is useful to note that the complement of G(P, q) is G(P ′, q), where
P ′ = Fq ∪ {∞}) \ P .

Using a straightforward counting argument, we show that when P is a
nontrivial subset of Fq ∪ {∞}, then the resulting graph is strongly regular.
This is a standard result.

5.2.2 Theorem. A graph G(P, q) constructed using Construction 5.2.1
where 0 < |P | < q+1

2 is strongly regular with parameters

(q2, t(q − 1), q − 2 + (t− 1)(q − 1), t2 − t)

where t = |P |.

Proof. Let L denote the set of tq lines contained in parallel classes of
AG(2, q) in with slopes in P . Note that two vertices in X are adjacent if
and only if they are both incident to the same line in L. Consider a fixed
point x in AG(2, q). Each parallel class with slope contained in P contains
exactly one line incident to x. Therefore x is incident to t lines in L, and
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each of those lines have only the point x in common. It follows that x is
adjacent to t(q − 1) points in G.

Consider a neighbour y of x in G. Let l denote the unique line L incident
to both x and y. There are q− 2 other points on l, and each of those points
is adjacent to both x and y. Moreover, each of the t− 1 other lines through
x in L is parallel to exactly one line incident to y. Therefore each of those
t − 1 lines intersect t − 2 of the lines incident to y in L \ {l}. This implies
there are (t − 1)(t − 2) points adjacent to both x and y in G that are not
incident to l in AG(2, q). In total, x and y have q−2+(t−1)(t−2) common
neighbours in G.

Finally, consider a point z that is not a neighbour of x in G(P, q). Obvi-
ously x is adjacent to z in G, the complement of G. Let P ′ = (Fq∪{∞})\P ,
and recall that G = G(P ′, q). Since |(Fq ∪ {∞}) \ P | = q + 1− t, it follows
from our earlier work, that x and z have q + 2 + (q − t)(q − t− 1) common
neighbours in G. Also from our earlier work, we see that both x and z each
have (q + 1− t)(q − 1) neighbours in G. This implies there are

2(q + 1− t)(q − 1)− 2− (q + 2 + (q − t)(q − t− 1)) = q2 + t− t2 − 2

points adjacent to either x or z in G. Therefore there are

q2 − 2− (q2 + t− t2 − 2) = t2 − t

points adjacent to both x and y in G.

Recall that we wish to construct conference graphs. Therefore we we
focus on graphs G(P, q) such that |P | = q+1

2 . From our previous result, we
see the parameter set of such a graph is

(n,
n− 1

2
,
n− 5

4
,
n− 1

4
).

For specific examples of graphs constructed using Construction 5.2.1, we
revisit the affine plane constructions for Paley and Peisert graphs given in
Sections 2.4 and 3.2, respectively.

5.2.3 Example. Let q = pr for some prime p such that p ≡ 3 (mod 4). Let
Ŝ denote the subset of Fq × Fq corresponding to the set of nonzero squares
of Fq2 . We choose P1 to be the following set of slopes.

P1 = {y : (1, y) ∈ Ŝ, y ∈ Fq}

The graph G(P1, q) is isomorphic to the Paley graph P (q).
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5.2.4 Example. Let q denote a odd prime power, and let M̂ denote the
subset of Fq × Fq corresponding to the set M of Fq2 where

M = {ωi : i ≡ 0, 1 (mod 4)}.

We choose P ′
2 to be the following set of slopes.

P ′
2 = {y : (1, y) ∈ M̂, y ∈ Fq}

If (0, 1) ∈ M̂ , then we define P2 = P ′
2 ∪ {∞}. Otherwise we define P2 = P ′

2.
The graph G(P2, q) is isomorphic to the Peisert graph P ∗(q).

5.3 Generalized Peisert Graphs

In this section we give one more construction of strongly regular graphs that
are similar to Paley and Peisert graphs. We revert to constructing graphs as
Cayley graphs, but we note that certain instances of these graphs can also
be constructed using affines plane. Thus using our work in Section 5.2, we
prove those certain instances are conference graphs.

5.3.1 Generalized Paley Graphs

There is a natural generalization of Paley graphs. These graphs do not
possess the particular properties we are interested in, but they do provide
motivation for our forthcoming generalization of Peisert graphs.

We construct another family of graphs on the additive group of a finite
field. Instead of using the set of nonzero squares as the connection set, we
use larger powers. As an example we use the set of nonzero cubes as the
connection set.

5.3.1 Example. Let q be a prime power such that q ≡ 1 (mod 3). The
cubic Paley graph of order q, denoted P(3)(q) is the graph on the points of
Fq where two vertices x and y are adjacent if and only if

a− b ∈ {y3 : y ∈ Fq}.

The condition q ≡ 1 (mod 3) ensures −1 is a cube in Fq, and therefore
P(3)(q) is a well-defined, undirected graph. We construct graphs using higher
powers also.
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5.3.2 Definition. Let q be a prime power such that q ≡ 1 (mod n). The
n-th power Paley graph of order q, denoted P(n)(q) is the graph on the points
of Fq where two vertices x and y are adjacent if and only if

x− y ∈ {an : a ∈ Fq}

We refer to the family of n-th power Paley graphs as generalized Paley
graphs. These graphs are also known as cyclotomic graphs. It is known that
the generalized Paley graph P(n)(q) is arc transitive, since the subgroup of
the automorphism group that maps x to ωnx fixes 0 and acts transitively on
the neighbours of 0. However, we note that the number of edges in P(n)(pr)
is

|E(P(n)(p
r)| = (pr − 1)pr

2n
.

For n > 2, we have

|E(P(n)(p
r)| < (pr − 1)pr

4
which implies there are more edges in the complement of P(n)(pr) than
in P(n)(pr). Therefore non-trivial generalized Paley graphs are not self-
complementary. Moreover, not all generalized Paley graphs are strongly
regular, and those that are strongly regular do not have our desired pa-
rameter set. Therefore we turn our attention to a generalization of Peisert
graphs.

5.3.2 Definition and Properties

Recall that Peisert graphs are Cayley graphs on Fq where the connection
set is half of the cosets the multiplicative subgroup group of order (q−1)/4.
Now we define a new family of graphs on the elements of Fq where the
connection set is half of the cosets of a different multiplicative subgroup.
We refer to this new family of graphs as generalized Peisert graphs.

5.3.3 Definition. Let n denote a positive even integer, and let q denote
some odd prime power such that q − 1 ≥ n and q ≡ 1 (mod n). The n-th
power Peisert graph of order q, denoted P ∗

(n)(q), is the graph on the points

of Fq where two vertices x and y are adjacent if and only if x−y ∈ M̂ where

M̂ = {ωnk+i : 0 ≤ i ≤ n

2
− 1, k ∈ Z}.

For example, the graph P ∗
(4)(q) is precisely the Peisert graph P ∗(q) for

appropriate q. Moreover, P ∗
(2)(q) is the Paley graph P (q). For a concrete

example, we consider the 10-th power Peisert graph of order 34.
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5.3.4 Example. Let q = 34, and let M̂ denote the set

M̂ = {ω10k+i : 0 ≤ i ≤ 4, k ∈ Z}.

The graph P ∗
(10)(3

4) is the graph on the points of F34 where two vertices x

and y are adjacent if and only if x− y ∈ M̂ .

Let ω denote a multiplicative generator of F34 , and consider the permu-
tation

γ : x→ ω5x.

Note that we have

x− y = ω10k+i ⇐⇒ γ(x)− γ(y) = ω10k+i+5.

This implies
x− y ∈ M̂ ⇐⇒ γ(x)− γ(y) /∈ M̂.

Therefore γ will be an isomorphism from P ∗
(10)(3

4) to its complement, which
implies the graph is self-complementary.

In fact, the same results hold for all generalized Peisert graphs.

5.3.5 Lemma. Generalized Peisert graphs are self-complementary.

Proof. Let n denote a positive even integer, and let q denote some odd
prime power such that q − 1 ≥ n and q ≡ 1 (mod n). Let P ∗

(n)(q) be the
generalized Peisert graph of order q. Recall that the connection set this
graph is

M̂ = {ωnk+i : 0 ≤ i ≤ n

2
− 1, k ∈ Z}.

where ω is a primitive root of Fq.
Let γ be the permutation on Fq defined as

γ : x→ ω
n
2 x.

We have that

x− y = ωnk+i ⇐⇒ γ(x)− γ(y) = ωnk+i+n
2 .

This implies
x− y ∈ M̂ ⇐⇒ γ(x)− γ(y) /∈ M̂.

Therefore γ is an isomorphism from P ∗
(n)(q) to its complement.
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When q is a square and n =
√
q + 1, we can construct the generalized

Peisert graph P ∗
(n)(q) as an affine plane graph. This construction enables us

to deduce that P ∗
(n)(q) is strongly regular for these values of q and n.

5.3.6 Lemma. Let q = p2r for some odd prime p, and let n =
√
q+ 1. The

generalized Peisert graph P ∗
(n)(q) is a conference graph.

Proof. We begin by constructing P ∗
(n)(q) as an affine plane graph. Let ω

denote a multiplicative generator of Fq. Note that the subfield of order pr

is generated multiplicatively by ωpr+1.
Recall that the connection set of P ∗(n)(q) is

M̂ = {ω(pr+1)k+i : 0 ≤ i ≤ (pr + 1)/2− 1, k ∈ Z}.

Therefore M̂ is closed under multiplication by powers of ωpr+1. From this
we conclude that we can partition the points of AG(2, q) corresponding to M̂
into (q+1)/2 lines incident to 0. Let P denote the set of slopes corresponding
to those lines. We see that G(P, q) as defined in Construction 5.2.1, will be
isomorphic to P ∗

(n)(q). From Theorem 5.2.2, we conclude that P ∗
(n)(q) is

strongly regular with parameter set

(n,
n− 1

2
,
n− 5

4
,
n− 1

4
).
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5.4 Computational Results

The generalized Peisert graphs are not always distinct from the Paley and
Peisert graphs. As we pointed out earlier, P ∗

(4)(9) is isomorphic to P ∗(9). In
fact, since there is only one vertex transitive self-complementary graph on
9 vertices, it follows that P ∗

(4)(9) is also isomorphic to P (9). Using a com-
puter and SAGE [21], we determine more information about these graphs.
We summarize the information in the table below. Recall that for each
graph on q2 vertices, the maximum clique size is q. The third and fourth
columns indicates whether the generalized Peisert graph is isomorphic to
the corresponding Paley and Peisert graph, respectively.

Table 5.1: Generalized Peisert Graphs

q2 # Max Cliques on 0 ∼= P (q)? ∼= P ∗(q2)?
32 2 Yes Yes
52 3 Yes No
72 4 No Yes
34 9 No No
112 6 No No
132 7 No No
172 9 No No
192 10 No No
232 12 No No
54 19 No No
36 14 No No
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Chapter 6

Pseudo-Paley graphs

In this section we construct other families of vertex-transitive conference
graphs that are self-complementary in some cases. These families were first
studied by Weng, Qiu, Wang, and Xiang, who believe the families are dis-
tinct from the Paley and Peisert graphs [24].

First we note the one-to-one correspondence between the connection sets
of strongly regular Cayley graph and partial difference sets. Then we give
Weng, Qiu, Wang, and Xiang’s construction of partial difference sets from
algebraic structures known as semifields. Finally, we see specific examples
of partial difference sets which are used to construct conference graphs.

6.1 Partial Difference Sets

We begin by deriving necessary conditions for the connection sets of strongly
regular Cayley graphs on abelian groups.

Let X(G,C) be a Cayley graph, and let x be a neighbour of 0 in X.
Note that 0 and x have a common neighbour y if and only if there exist
some element t such that y, t ∈ C and x + t = y. Since C is necessarily
closed under inverses, we see this is equivalent to having y,−t ∈ C such
that y − (−t) = x. Thus we see that the differences of elements in the
connection set determine whether a Cayley graph is strongly regular. We
use design theory terminology to describe these conditions.

6.1.1 Definition. Let G be a finite abelian group of order n. A k-element
subset D of G\{0} is called a (n, k, a, c)-partial difference set if the following
conditions hold:

(i) Each element of D is equal to x−y for exactly a ordered pairs x, y ∈ D.
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6. PSEUDO-PALEY GRAPHS

(ii) Each non-identity element of G \ D is equal to x − y for exactly c
ordered pairs x, y ∈ D.

From this definition it is straightforward to see that a Cayley graph
X(G,C) is strongly regular with parameter set (n, k, a, c) if and only if C is
an inverse-closed partial difference set of G. Recall that the set of nonzero
squares of Fq is the connection set of the Paley graph of order q where q ≡ 1
(mod 4). Recall the Paley graph P (q) is a conference graph, and every
conference graph has parameter set(

q,
(q − 1)

2
,
(q − 5)

4
,
(q − 1)

4

)
.

It follows that the set of nonzero squares is a partial difference set of the
additive group of Fq with the same parameter set. We refer to a partial
difference set with these parameters as a Paley-type partial difference set.

6.2 Commutative Semifields

In order to construct other Paley-type partial difference sets, we consider
the set of nonzero squares of a more general algebraic structure, a finite com-
mutative semifield. The study of finite commutative semifields was started
by Dickson in the early 1900s. Dickson is responsible for finding the first
nonassociative examples.

6.2.1 Definition. A set (K,+, ∗) equipped with two binary operations is
a commutative semifield if the following five conditions hold:

(i) K is an abelian group with respect to +.

(ii) x ∗ y = y ∗ x for all x and y in K.

(iii) x ∗ (y+ z) = x ∗ y+ x ∗ z, (x+ y) ∗ z = x ∗ z+ y ∗ z for all x, y, z in K.

(iv) There exists 1 in K such that 1 ∗ x = x ∗ 1 = x for all x in K.

(v) If x ∗ y = 0, then x = 0 or y = 0.

A finite fields is a simple example of a commutative semifield. It is not
difficult to see that a finite commutative semifield with associative multipli-
cation is a finite integral domain. Since finite integral domains are necessar-
ily finite fields, it follows that finite commutative semifields with associative
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multiplication are finite fields. For this reason we are interested in com-
mutative semifields with nonassociative multiplication, which we refer to as
proper semifields. It can be shown that a finite semifield must have a prime
power order, and a proper finite semifield of order q exists for all q = pr

where p is prime and r ≥ 3 if p is odd or r ≥ 4 if p = 2 [7].

6.2.2 Example. Let q be an odd prime power, and let j be a nonsquare in
Fq. Let σ denote a nontrivial automorphism of Fq. The Dickson semifield
(F2

q ,+, ∗) is defined by the following multiplication:

(a, b) ∗ (c, d) = (ac+ jbσdσ, ad+ bc)

From this definition, we observe that the Dickson semifield is an additive
group with respect to the usual addition, and the defined multiplication is
commutative. It is also straightforward to verify that the element (1, 0) is
the multiplicative identity which satisfies condition (iv). Thus it suffices to
show that conditions (iii) and (v) are met in Definition 6.2.1 in order to
confirm the Dickson semifield is indeed a semifield.

Suppose that x = (x1, x2), y = (y1, y2), and z = (z1, z2). First we show
that the right-sided distributive law holds.

x ∗ (y + z) = (x1, x2) ∗ (y1 + z1, y2 + z2)
= (x1y1 + x1z1 + jxσ

2y
σ
2 + jxσ

2z
σ
2 , x1y2 + x1z2 + x2y1 + x2z1)

= (x1y1 + jxσ
2y

σ
2 , x1y2 + x2y1) + (x1z1 + jxσ

2z
σ
2 , x1z2 + x2z1)

= x ∗ y + x ∗ z

Next we suppose that x ∗ y = 0 for some x 6= 0, where x = (x1, x2) and
y = (y1, y2). We must have the following.

(0, 0) = (x1y1 + jxσ
2y

σ
2 , x1y2 + x2y1)

Since x 6= 0, either x1 or x2 is nonzero. Suppose x1 6= 0. From the first
coordinate of x ∗ y, we must have

y1 = −jxσ
2y

σ
2x

−1
1

Substituting this expression into the second coordinate of x ∗ y yields

x1y2 = jxσ+1
2 yσ

2x
−1
1

Since the squares of Fq are closed under multiplicative inversion, it follows
that x1 is a square if and only if x−1

1 is a square. Likewise, since the squares
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of Fq are closed under any automorphism, it follows that y2 is a square if
and only if yσ

2 is a square. Putting this together, we see that x1y2 is a square
if and only if yσ

2x
−1
1 is a square. Since jxσ+1

2 is a non-square if x2 is nonzero,
this implies x2 = 0. However, substituting x2 = 0 into equation 6.2 yields
y2 = 0, and substituting x2 = 0 into Equation 6.2 yields y1 = 0. Therefore
(y1, y2) = (0, 0), as desired. We reach the same conclusion if we suppose
that x2 is nonzero.

Finally, we show that the Dickson semifield is not a field by demonstrat-
ing that the defined multiplication is not associative.

{(a, b) ∗ (c, d)} ∗ (e, f) = (ac+ jbσdσ, ad+ bc) ∗ (e, f)
= (ace+ jebσdσ + j(ad+ bc)σfσ, acf + jfbσdσ + ade+ bce)
= (ace+ jbσdσe+ jaσdσfσ + jbσcσfσ,

acf + jfbσdσ + ade+ bce)

Alternatively, we have

(a, b) ∗ {(c, d) ∗ (e, f)} = (ace+ jbσdσeσ + jadσfσ + jbσcσfσ,

acf + jbdσfσ + abe+ bce)

From these computations, we notice that the multiplication associative
if and only if jbσdσe = jbσdσeσ for all b, d, e in Fq, which holds if and only
if e = eσ for all e in Fq. Since σ is chosen to be a nontrivial automorphism,
it follows that the Dickson semifields are not associative, and therefore are
not finite fields.

6.3 Semifield Graphs

We wish to construct a strongly regular graph on the additive group of a
semifield that is a conference graph. Weng, Qiu, Wang, and Xiang show that
the set of nonzero squares of a semifield form a Paley-type partial difference
set [24]. Therefore the nonzero squares are an appropriate choice for the
connection set of our graph. We give a slightly modified version of their
proof in the lemmas and theorem that follow.

Let (K,+, ∗) be a commutative semifield such that |K| = n, where n is
an odd prime power. We utilize the notation x2 := x ∗ x, and we define the
set D to be the set of nonzero squares of the semifield K such that

D = {x2 : x ∈ K \ {0}}. (6.3.1)
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6.3.1 Lemma. For each y in D, there are exactly two distinct elements x
and −x in K such that y = x2 = (−x)2.

Proof. Suppose y is an element in D. There must be at least one x in K
such that y = x2. Now suppose x2 = a2 for an element a of K. It follows
that

x2 − a2 = (x− a) ∗ (x+ a) = 0.

Therefore either a = x or a = −x. Since y is nonzero and (K,+) is an
additive group of odd order, the elements x and −x are distinct.

6.3.2 Corollary. There are n−1
2 elements in D.

The next lemma uses the fact that each nonzero square has exactly two
roots to establish a useful equation.

6.3.3 Lemma. Let y denote an element of K. Let Sy denote the set of
ordered pairs (z1, z2) in K×K such that z2

1−z2
2 = y. The following equation

holds

|Sy| =

{
n− 1 if y 6= 0,
2n− 2 if y = 0

Proof. We consider both cases separately. First suppose that y 6= 0. We
define the map φ : Sy → K \ {0} as follows

(z1, z2) 7→ (z1 − z2)

Note that if φ(z1, z2) = 0, then z1 = z2. However, this implies z2
1 − z2

2 = 0,
which contradicts our assumption that y is nonzero. Thus φ(Sy) ⊆ K \ {0},
and so φ is well defined. Suppose φ(z1, z2) = φ(z3, z4). This implies

z1 − z2 = z3 − z4 (6.3.2)

Note that z2
1 − z2

2 = (z1 − z2)(z1 + z2) and z2
3 − z2

4 = (z3 − z4)(z3 + z4).
Using the cancellation law that follows from the semifield axioms given in
Definition 6.2.1, we have

z1 + z2 = z3 + z4 (6.3.3)

Combining equations 6.3.2 and 6.3.3 yields z1 = z3 and z2 = z4. Therefore
φ is one-to-one.
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Let a be any element of K \{0}. Consider the map ∆a : K → K defined
as follows.

∆a(x) = a2 + 2ax

Notice that
∆(x) = ∆(y) ⇐⇒ 2ax = 2ay.

This implies x = y and that ∆a is a bijection from K to itself. It follows that
for each y in K there is a uniquely corresponding x such that ∆a(x) = y.
In other words, for each y in K there is a unique x such that

(a+ x)2 − x2 = y.

Thus there exists an ordered pair (a+ x, x) in Sy such that φ(a+ x, x) = a.
This implies φ in onto. We conclude that φ is a bijection between Sy and
K \ {0} and |Sy| = n− 1.

Next suppose that y = 0 and count the ordered pairs (z1, z2) in K ×K
such that z2

1 − z2
2 = 0. Choose x to be any nonzero element of K. From

Lemma 6.3.1 we see there exists exactly two elements y and −y such that

x2 = y2 = (−y)2.

Furthermore, if we choose x = 0, then y = 0 is the only element of K such
that x2 = y2. This implies there are 2(n − 1) + 1 = 2n − 1 ordered pairs
such that z2

1 − z2
2 = 0.

The following theorem confirms that the set of nonzero squares of a
commutative semifield is an appropriate choice for the connection set of a
vertex-transitive conference graph.

6.3.4 Theorem. The set of nonzero squares of a finite semifield of order q
such that q ≡ 1 (mod 4) forms a Paley-type partial difference set.

Proof. For any y in K \ {0}, we recall that

Sy = {(z1, z2) ∈ K ×K : z2
1 − z2

2 = y}.

Also recall that
D = {a2 : a ∈ K \ {0}}.

Now consider the set

Ty = {(a, b) ∈ D ×D : a− b = y}.
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Each element in Ty corresponds to four distinct elements in Sy, namely

{(z1, z2), (−z1, z2), (z1,−z2), (−z1,−z2)}

where z2
1 = a and z2

2 = b. Let Uy be the following set.

Uy = {a ∈ D : a = y or a = −y}

Each element in Uy corresponds to two ordered pairs in Sy such that one
coordinate is zero. It is easy to see that |Uy| ≤ 2.

Putting these observations together, we have

|Sy| = 4|Ty|+ 2|Uy| (6.3.4)

From Lemma 6.3.3, we know that |Sy| = n − 1. Since q ≡ 1 (mod 4), it
follows that |Uy| = 0 or 2, depending on whether y ∈ D. Thus equation
6.3.4 can be rearranged to yield

|Ty| =

{
n−1

4 if y /∈ D,
n−5

4 if y ∈ D
Note that T is precisely the set of pairs of D whose difference is y. Using

Corollary 6.3.2, we conclude that D is a Paley-type partial difference set of
the additive group of K.

The following examples, together with Example 6.2.2, cover all known
proper finite commutative semifields in a recent survey by Kantor [12].
Weng, Qiu, Wang, and Xiang construct Cayley graphs on the additive groups
of these semifields using corresponding sets of nonzero squares as connec-
tion sets [24]. Their results given above confirm that the resulting graphs
are conference graphs.

6.3.5 Example. The Dickson semifield described in Example 6.2.2 has the
following set of nonzero squares.

D(q) = {(x2 + jy2σ, 2xy) : (x, y) ∈ F2
q , (x, y) 6= (0, 0)}

6.3.6 Example. Let q = 3r such that r ≥ 3 and r is odd. The Ganley
semifield (F2

q ,+, ∗) is defined by the following multiplication.

(a, b) ∗ (c, d) = (ac− b9d− bd9, ad+ bc+ b3d3)

By Theorem 6.3.4, we see that the subset

G(q) = {(x2 + y10, 2xy + y6) : (x, y) ∈ F2
q , (x, y) 6= (0, 0)}

is a Paley type partial difference set in (F2
q ,+).
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6.3.7 Example. Let q = 3r such that r ≥ 2, and let j be a nonsquare
in Fq. The Cohen-Ganley semifield (F2

q ,+, ∗) is defined by the following
multiplication.

(a, b) ∗ (c, d) = (ac+ jbd+ j3b9d9, ad+ bc+ jb3d3)

By Theorem 6.3.4, we see that the subset

CG(q) = {(x2 + jy2 + j3y18, 2xy + jy6) : (x, y) ∈ F2
q , (x, y) 6= (0, 0)}

is a Paley type partial difference set in (F2
q ,+).

6.3.8 Example. Let q = 35. The Pentilla-Williams semifield (F2
q ,+, ∗) is

defined by the following multiplication.

(a, b) ∗ (c, d) = (ac+ b9d9, ad+ bc+ b27d27)

By Theorem 6.3.4, we see that the subset

P (q) = {(x2 + y18, 2xy + y54) : (x, y) ∈ F2
q , (x, y) 6= (0, 0)}

is a Paley type partial difference set in (F2
q ,+).

Note that the additive and multiplicative identities of the the semifields
described in Examples 6.2.2, 6.3.6, 6.3.7, and 6.3.8 are (0, 0) and (1, 0),
respectively. Moreover, each of the semifields contain Fq as the following
subset equipped with the corresponding semifield operations.

Fq
∼= {(a, 0) : a ∈ Fq}

We can easily verify this claim by noting that (a, 0) + (c, 0) = (a+ c, 0) and
that (a, 0) ∗ (c, 0) = (ac, 0) for a and c in Fq using any of the above semifield
operations.

We take special note that for the Dickson semifields, Fq \{0} is contained
in D(q), the set of nonzero squares. For a in Fq such that a = x2 for some
x in Fq, this containment is easy to see.

(a, 0) = (x2, 0)
= (x, 0) ∗ (x, 0)

When a is a nonzero, it is slightly more complicated. Note that a = jx2 for
some x in Fq, and let y be the element of Fq such that yσ = x.

(a, 0) = (jx2, 0)

= (jy2σ, 0)
= (0, y) ∗ (0, y)

Of the examples given above, the Dickson semifields are the only semifields
which contain the subfield of size q in its set of squares.
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Chapter 7

Dickson Semifield Graphs

In this chapter we study the graphs constructed on the Dickson semifield
defined in Chapter 6.1. It is conjectured by Weng, Qiu, Wang, and Xiang
that semifield partial difference sets are different from the connections sets
of Paley and Peisert graphs [24]. Here we prove a new result about the
number of cliques of size q in the Dickson semifield graph of order q2. This
result enables us to distinguish the Dickson semifield graphs from Paley
graphs. This graph-theoretic result confirms that the corresponding partial
difference sets are distinct.

7.1 Partial Difference Set Equivalence

We begin by giving two definitions of equivalence for partial difference sets.

7.1.1 Definition. Let D1 and D2 be two partial difference sets contained
in a group G. We say the partial difference sets D1, D2 are PDS-equivalent
if there exists and automorphism φ of G such that φ(D1) = D2.

There is a weaker notion of equivalence that is more useful for our pur-
pose.

7.1.2 Definition. Let D1 and D2 be two partial difference sets contained
in a group G. We say the partial difference sets D1, D2 are SRG-equivalent
if the corresponding Cayley graphs X(G,D1) and X(G,D2) are isomorphic.

Note that if φ is an automorphism of G such that φ(D1) = D2, then φ
is an isomorphism between X(G,D1) and X(G,D2). Therefore, if D1 and
D2 are PDS-equivalent, then D1 and D2 are SRG-equivalent. The converse

59



7. DICKSON SEMIFIELD GRAPHS

is not true, and there are examples of partial difference sets which are SRG-
equivalent but not PDS-equivalent.

In order to show that the semifield partial difference sets are not PDS-
equivalent and SRG-equivalent to the connection sets of Paley or Peisert
graphs, it suffices to show that the corresponding Cayley graphs are distinct.

7.2 Uniqueness of Semifield Construction

We turn our attention to the graphs constructed from the Dickson semifields.
Recall the definitions given in Examples 6.2.2 and 6.3.5.

7.2.1 Definition. Let q be an odd prime power, and let j be a nonsquare
in Fq. Let σ denote a nontrivial automorphism of Fq. The Dickson semifield
(F2

q ,+, ∗) is defined by the following multiplication:

(a, b) ∗ (c, d) = (ac+ jbσdσ, ad+ bc)

The set of nonzero squares in the Dickson semifield are

Dq = {(x2 + jy2σ, 2xy) : (x, y) ∈ F2
q , (x, y) 6= (0, 0)}

It is useful to show that there is one Dickson semifield of order q2 for
each odd prime power q. In particular, we show that the structure of the
Dickson semifield does not specifically depend upon the nontrivial field au-
tomorphism σ or nonsquare j used to define the multiplication. We prove
this in the following two lemmas.

7.2.2 Lemma. The Dickson semifields of order q2 constructed in Example
7.2.1 are isomorphic regardless of the choice of nonsquare j.

Proof. Suppose j1 and j2 be two distinct nonsquares in Fq. Choose σ to
be a nontrivial automorphism of Fq. Let K1 = (F2

q ,+, ∗1) be the Dickson
semifield defined by the following multiplication:

(a, b) ∗1 (c, d) = (ac+ j1b
σdσ, ad+ bc)

Let K2 = (F2
q ,+, ∗2) be the Dickson semifield defined by the following mul-

tiplication:
(a, b) ∗2 (c, d) = (ac+ j2b

σdσ, ad+ bc)

We wish to show the semifields K1 and K2 are isomorphic.
Recall that the elements (0, 0) and (1, 0) are the additive and multiplica-

tive identities, respectively, of both K1 and K2 . To show K1 is isomorphic
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7.2. UNIQUENESS OF SEMIFIELD CONSTRUCTION

to K2, we must find a mapping θ from K1 to K2 that fixes the additive
and multiplicative identity and preserves addition and multiplication in the
following sense.

(i) θ((a, b) + (c, d)) = θ(a, b) + θ(c, d)

(ii) θ((a, b) ∗1 (c, d)) = θ(a, b) ∗2 (c, d)

Since both j1 and j2 are nonsquares in Fq, we know that j1(j2)−1 is a
nonzero square. Let r be an element of Fq such that r2 = j1(j2)−1. Define
θ : K1 → K2 by θ(x, y) = (x, ry) for all (x, y) ∈ K1. We consider the effect
of θ on addition.

θ((a, b) + (c, d)) = θ(a+ c, b+ d)
= (a+ c, rb+ rd)
= (a, rb) + (c, rd)
= θ(a, b) + θ(c, d)

Thus addition is preserved by θ. Next we consider the effect of θ on multi-
plication.

θ((a, b) ∗1 (c, d)) = θ(ac+ j1b
σdσ, ad+ bc)

= (ac+ j1b
σdσ, rad+ rbc)

= (ac+ j2(rbσ)(rdσ), a(rd) + b(rc))
= θ(a, b) ∗2 θ(c, d)

Therefore multiplication is preserved by θ, and we conclude that θ is an
isomorphism from K1 to K2.

7.2.3 Lemma. The Dickson semifields of order q2 constructed in Example
7.2.1 are isomorphic regardless of the choice of nontrivial automorphism σ.

Proof. Suppose σ and φ are two distinct nontrivial automorphisms of Fq.
Choose j to be a nonsquare in Fq. Let K1 = (F2

q ,+, ∗1) be the Dickson
semifield defined by the following multiplication:

(a, b) ∗1 (c, d) = (ac+ jbσdσ, ad+ bc)

Let K2 = (F2
q ,+, ∗2) be the Dickson semifield defined by the following

multiplication:
(a, b) ∗2 (c, d) = (ac+ jbφdφ, ad+ bc)
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7. DICKSON SEMIFIELD GRAPHS

We proceed by showing that K1 is isomorphic to another Dickson semi-
field K3, and then we apply Lemma 7.2.2 to show that K3 is isomorphic to
K2.

First note that the group of automorphisms of Fq forms an abelian group.
Since both σ and φ are nontrivial automorphisms, there exists a nontrivial
automorphism γ such that (xσ)γ = xφ for all field elements x in Fq.

Let K3 = (F2
q ,+, ∗3) be the Dickson semifield defined by the following

multiplication:

(a, b) ∗3 (c, d) = (ac+ jγbφdφ, ad+ bc)

We wish to show K1 is isomorphic to K3 by finding an isomorphism
θ from K1 to K2. Let θ be defined by θ(a, b) = (aγ , bγ). We proceed by
showing that θ is an isomorphism, as desired.

We easily confirm that θ(0, 0) = (0, 0) and θ(1, 0) = (1, 0). Next we show
that θ preserves addition.

θ((a, b) + (c, d)) = θ(a+ c, b+ d)
= ((a+ c)γ , (b+ d)γ)
= (aγ + cγ , bγ + dγ)
= (aγ , bγ) + (cγ , dγ)
= θ(a, b) + θ(c, d)

Now we consider the effect of θ on multiplication.

θ((a, b) ∗1 (c, d)) = θ(ac+ jbσdσ, ad+ bc)
= ((ac + jbσdσ)γ , (ad+ bc)γ)
= (aγcγ + jγ(bσ)γ(dσ)γ , aγdγ + bγ + cγ)

= (aγcγ + jγbφdφ, aγdγ + bγ + cγ)
= (aγ , bγ) ∗3 (cγ , dγ)
= θ(a, b) ∗3 θ(c, d)

From these computations we see that θ preserves addition and multipli-
cation, and so we conclude that θ is an isomorphism from K1 to K3, as
desired. From Lemma 7.2.2, we see K3 is isomorphic to K2, and therefore
we conclude that K1 is isomorphic to K2.
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7.3 Cliques of Size q

Let K denote the Dickson semifield of order q2. Our goal for this section
is to show that the semifield graph X(K,D(q)) contains a different number
of cliques of size q than P (q2) when q is a nontrivial prime power. As a
consequence we prove that X(K,D(q)) is not isomorphic to P (q2).

Recall from the work of Blockuis shown in Section 2 that the largest
cliques in P (q2) have size q. Furthermore, each vertex in the neighbourhood
of 0 in P (q2) is contained in exactly one central maximal clique in P (q2).
We show that some neighbours of 0 in X(K,D(q)) are contained in at least
two central cliques of size q. We do this by constructing a family of central
cliques of size q explicity.

7.3.1 Clique Construction

We define a family of q cliques of size q such that each element of D(q) is
contained in exactly two cliques in the family. Let q = pr for some prime
p and positive integer r, and let σ denote a non-trivial automorphism of
Fq. Throughout this section we assume that the Dickson semifield has been
constructed using a nonsquare j and the non-trivial automorphism σ. Let
L denote the following set.

L = {(x, 1) : x ∈ Fq} ∪ {(1, 0)}

Note that |L| = q + 1. For each l in L we let Cl denote the following
clique of size q.

Cl = {(a ∗ l) ∗ l : a ∈ Fq}

where ∗ denotes the Dickson semifield multiplication.
For example, we have

C(1,0) = {(a, 0) : a ∈ Fq}.

Also for any x ∈ Fq, we have

C(x,1) = {(ax, a) : a ∈ Fq}.

Finally, we define C, our desired family of cliques.

C = {Cl : l ∈ L} (7.3.1)
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7. DICKSON SEMIFIELD GRAPHS

7.3.2 Clique Verification

In order to prove that some elements in the neighbourhood of 0 inX(K,D(q))
are contained in at least two cliques of size q, we first verify that Cl is a
clique contained in D(q) for each l in L. Next we show that C contains q
or q + 1 distinct cliques, depending upon whether q ≡ 1 (mod 4) or q ≡ 3
(mod 4).

Recall from Section 6.3 that C(1,0) ⊂ D(q) and C(1,0) is an additive
subgroup of the semifield. It immediately follows that C(1,0) is a clique of
size q.

It requires more effort to prove that the other sets in C are cliques. We
break up the work into several lemmas.

7.3.1 Lemma. Let x be an element of Fq. The set C(x,1) is an additive
subgroup of the Dickson semifield of order q2.

Proof. Let a and b denote two elements of Fq.

(ax, a) ∗ (x, 1)− (bx, b) ∗ (x, 1) = (ax2 + jaσ, 2ax)− (bx2 + jbσ, 2bx)

= ((a− b)x2 + j(a− b)σ, 2(a− b)x)
= ((a− b)x, a− b) ∗ (x, 1)

Since a− b ∈ Fq, we conclude ((a− b)x, a− b) ∗ (x, 1) ∈ C(x,1).

Now we show that for each x and a in Fq such that a 6= 0, the nonzero
semifield element (ax, a) ∗ (x, 1) in C(x,1) is contained in the set of nonzero
squares D(q). We do this by finding an element (c, d) such that

(ax, a) ∗ (x, 1) = (c, d) ∗ (c, d).

This is easy when a is a square.

7.3.2 Lemma. Let a be a nonzero square in Fq. The element (ax, a)∗ (x, 1)
is a nonzero square in the Dickson semifield of order q2 for all x in Fq.

Proof. Since a is a nonzero square in Fq, we can express a = t2 for some
nonzero element t. Then we see the following.

(ax, a) ∗ (x, 1) = (ax2 + jaσ, 2ax)

= ((tx)2 + j(t)2σ, 2(tx)(t))
= (tx, t) ∗ (tx, t)

We conclude (ax, a) ∗ (x, 1) is a nonzero square in the Dickson semifield.
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Now consider the case when a is not a square in Fq. Before we prove that
(ax, a)∗ (x, 1) is a square, we need to do some preliminary work. Recall that
we let S denote the set of nonzero squares in F∗q . We begin by defining a map
fa from S to Fq using the nonsquare j, and the nontrivial automorphism σ.

fa(z) = ja−1z(z − a)σ−1 (7.3.2)

Next we prove that fa is a permutation of S when a is a not a square in Fq.

7.3.3 Lemma. Let a be a nonzero nonsquare in Fq. The function fa is a
permutation of S.

Proof. By our assumption that a is nonzero, we see that fa is well-defined
on its domain S. Moreover, since a is not a square, for each square z in S,
we see that ja−1z ∈ S. Also, since σ is an odd prime power, we see that
(z− a)σ−1 is a square. Therefore fa(z) ∈ S for all z in S. Thus to show that
fa is a permutation of S, it suffices to show that fa is one-to-one.

Suppose for a contradiction that fa(z1) = fa(z2). there is an element x
in F∗q such that

x2 = ja−1z1(z1 − a)σ−1 (7.3.3)

and also
x2 = ja−1z2(z2 − a)σ−1. (7.3.4)

Note that Equation 7.3.3 can be rearranged in the following way.

x2 = ja−1z1(z1 − a)σ−1

= ja−1z1(z1 − a)σ(z1 − a)−1

= ja−1z1(z1 − a)σz−1
1 (1− az−1

1 )−1

= j(z1 − a)σ(a(1− az−1
1 )−1

Therefore z1 satisfies the following equation

ax2 − a2x2z−1
1 = jzσ

1 − jaσ.

This can be further rearranged to yield

ax2 + jaσ = a2x2z−1
1 + jzσ

1 .

Therefore if we let d1 and c1 denote elements of Fq such that d2
1 = z1 and

c1 = axd−1
1 the following two equations hold.

(ax2 + jaσ, 2ax) = (c21 + jd2σ
1 , 2c1d1)

= (c1, d1) ∗ (c1, d1)

(ax2 + jaσ, 2ax) = (c21 + jd2σ
1 ,−2c1d1)

= (c1,−d1) ∗ (c1,−d1)
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Now let d2 and c2 denote elements of Fq such that d2
2 = z2 and c2 = axd−1

2 ,
then the following two equations also hold.

(ax2 + jaσ, 2ax) = (c22 + jd2σ
2 , 2c2d2)

= (c2, d2) ∗ (c2, d2)

(ax2 + jaσ, 2ax) = (c22 + jd2σ
2 ,−2c2d2)

= (c2,−d2) ∗ (c2,−d2)

Moreover since z1 and z2 are distinct, nonzero squares in Fq, it follows that
d1, −d1, d2, and−d2 are all distinct elements of Fq. By the previous equation
we see (c1, d1), (c1,−d1), (c2, d2), and (c2,−d2) are distinct elements of the
Dickson semifield that have the same image under squaring. This contradicts
Lemma 6.3.1, which states that g(y) = y2 is a two-to-one function on the
nonzero elements of a commutative semifield.

7.3.4 Lemma. Let a be a nonzero nonsquare in Fq. The element
(ax, a)∗ (x, 1) is a nonzero square in the Dickson semifield of order q2 for all
x in Fq.

Proof. If x = 0, then we have

(ax, a) ∗ (x, 1) = (0, a) ∗ (0, 1)
= (jaσ, 0)

From our comments at the end of Section 6.3, we see that (jaσ, 0) is a square
in the Dickson semifield for all a.

Now we consider the case when x 6= 0. By our result from Lemma 7.3.3,
the function

fa(z) = ja−1z(z − a)σ−1

is a permutation on F∗q . Therefore there exists an element z in S such that

fa(z) = x2.

If we let d and c denote elements of Fq such that d2 = z and c = axd−1 then
from our work in the proof of Lemma 7.3.3, we see that

(ax2 + ja2σ, 2ax) = (c2 + jd2σ, 2cx).

This implies.
(ax, a) ∗ (x, 1) = (c, d) ∗ (c, d)
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We piece together these results to prove that the family of cliques con-
structed in 7.3.1 contains q distinct cliques of size q.

7.3.5 Lemma. The family of sets C, as defined in Equation 7.3.1, contains
q distinct cliques of size q which contain 0.

Proof. We have already shown that C(1,0) is a clique. From Lemmas 7.3.2
and 7.3.4, we see that for each x in Fq the set C(x,1) contains q semifield
squares and is an additive subgroup of the semifield. Therefore we conclude
that C(x,1) is a clique of size q.

Now we prove that q of these cliques are distinct. First we consider the
cliques C(1,0) and C(0,1).

Note that
C(1,0) = {(a, 0) : a ∈ Fq}.

Also note that

C(0,1) = {(0, a) ∗ (0, 1) : a ∈ Fq}
= {(jaσ, 0) : a ∈ Fq}

Therefore C(1,0) = C(0,1), and these cliques are not distinct. To show
that the other q−1 cliques in C are distinct from C(0,1) and from each other,
it suffices to show that C(x,1) is distinct from C(y,1) for distinct x and y in
Fq. Suppose for a contradiction that C(x,1) = C(y,1) where x 6= y. Then for
each a in F∗q , we must have a corresponding b in F∗q such that

(ax2 + jaσ, 2ax) = (by2 + jb2σ, 2by)

Equality in the second coordinate implies b = axy−1. Substituting this
into the first coordinate implies

ax2 + jaσ = axy + ja2σx2σy−2σ.

Rearranging this yields

ax2 + jaσ − axy + ja2σx2σy−2σ = 0. (7.3.5)

Recall that x and y are fixed elements of F∗q . Therefore the left hand side
of 7.3.5 is a nonzero polynomial of a. Furthermore, each a in F∗q must be
a root of the polynomial on the left hand side of this equation. However,
since the polynomial has degree 2σ, there must be at most 2σ roots.

Recall that p is an odd prime and q = pr for some positive integer r.
Since σ is a nontrivial field automorphism, it follows that σ = pi for some
0 < i < r. Moreover, we have 2σ < q − 1. This contradiction confirms that
C(x,1) is distinct from C(y,1).
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This allows us to prove the desired distinction between the partial dif-
ference sets corresponding to the nonzero squares of Fq2 and the nonzero
squares of the Dickson semifield of order q2.

7.3.6 Theorem. Let q be a nontrivial odd prime power, and let G denote
the additive group of Fq2 , which is isomorphic to the additive group of the
Dickson semifield of order q2. Also let S denote the set of nonzero squares of
Fq2 , and let D(q) denote the set of nonzero squares of the Dickson semifield.
Then S is not SRG-equivalent to D(q), and hence not PDS-equivalent to
D(q).

Proof. From our comments in Section 7.1, it suffices to prove that the
Cayley graphs X(G,S) and X(G,D(q)) are not isomorphic. In Chapter 2,
we saw that X(G,S) contains exactly (q + 1)/2 distinct cliques of size q
which contain 0. By the result of 7.3.5, we know that X(G,D(q)) contains
at least q distinct cliques of size q which contain 0. Therefore the graphs
are not isomorphic.

7.4 Computational Results

As we did with Peisert Graphs, we use a computer to count the number of
cliques which contain 0 and are maximal with respect to size. Again, the
computations were performed on a 2.8 Ghz processor using a combination
of SAGE and Cliquer routines.

For all of the cases that were small enough to test in a reasonable amount
of time on a computer, we see that when q ≡ 1 (mod 4), the q distinct cliques
of size q from the family constructed in Section 7.3.1 are all of the maximal
cliques. In the other case, when q ≡ 3 (mod 4), there was one additional
clique of the form

{(0, a) : a ∈ F}.
However, at this time we are unable to prove in general that these are

the only cliques of size q or even that the size of the maximal clique is q.
We do not know if the semifield graphs are self-complementary in general.
Thus we cannot apply the Delsarte-Hoffman bound to obtain a bound on
the size of a maximal clique in the semifield graphs.

Weng, Qiu, Wang, and Xiang conjecture that semifield graphs are not
self-complementary when the graph has more than 81 vertices [24]. We
verified this holds in the small cases we tested.

Here we give a summary of our computational results for the semifield
graphs described in Section 6.3. The computations were performed using a
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combination of SAGE [21] and Cliquer [17] routines. The columns labelled
SC? indicate whether the corresponding graphs are self-complementary.

Table 7.1: Dickson Semifield Graphs

q2 Max Clique Size # Max Cliques on 0 SC?
34 32 32 Yes
54 52 52 No
36 33 33 + 1 No

Table 7.2: Cohen-Ganley Semifield Graphs

q2 Max Clique Size # Max Cliques on 0 SC?
34 32 32 Yes
36 33 33 + 1 No

Table 7.3: Ganley Semifield Graphs

q2 Max Clique Size # Max Cliques on 0 SC?
36 33 1 No
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Chapter 8

Future Work

There are a number of ways the work presented in this thesis could be ex-
tended. First, it would be useful to prove that when q ≡ 3 (mod 4) the only
cliques of size q in Peisert graphs of order q2 correspond to lines in AG(2, q).
where q ≡ 3 (mod 4). This result is suggested by the computational re-
sults given in Section 3.4. A possible method of proof might be to modify
Blockhuis’ proof of the same result for Paley graphs. However, there does
not seem to be a straightforward method of doing this, since the connection
set of a Peisert graph is not closed under multiplication as it is in a Paley
graph.

Second, it would be desirable to confirm that the generalized Peisert
graphs described in Section 5.3 are distinct from Peisert and Paley graphs
for infinitely many prime powers. This would answer a conjecture of Mathon
[16].

Finally, it would be interesting to completely prove Weng, Qiu, Wang,
and Xiang’s conjecture that the pseudo-Paley graphs described in Section 6.3
are distinct from Paley and Peisert graphs [24]. We proved that the Dickson
semifield graphs are distinct from Paley graphs by counting the number of
cliques of size q in both families of graphs. If it could be shown that when q ≡
3 (mod 4) the only cliques in size q in Peisert graphs of order q2 correspond
to lines in AG(2, q), then it would follow that the Dickson semifield graphs
are distinct from Peisert graphs in this case. However, another method
would need to be utilized to distinguish the Dickson semifield graphs from
Peisert graphs of order q2 where q ≡ 1 (mod 4). It is possible that the
clique counting method could be applied to distinguish other families of
pseudo-Paley graphs from Paley and Peisert graphs.
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Appendix A: SAGE Code

Below are the SAGE methods used to construct the graphs studied in this
thesis. Note that SAGE has a Python-based interface [21].

1. This method constructs self-complementary generalized Peisert graphs.
In particular, the method generates the (q+1)-th power Peisert graph
of order q2, which we have shown to be self-complementary and strongly
regular in Section 5.3.

def GenPeisert(q):
F.<a> = FiniteField(q^2)
n = (q+1)/2
pows = [a^(2*n*i+j) for i in [0..(p^2-1)/(2*n)-1] for j in [0..n-1]]
return Graph([F, lambda i,j: i-j in pows])

2. This method constructs the Dickson semifield graph on p2r vertices
where p is a prime and r > 1.

def DicksonSRG(p,r):
K.<a> = FiniteField(p^r)
V = [(x,y) for x in K for y in K]
D = [(x^2 + a*y^(2*p), 2*x*y) for x in K for y in K]
return Graph([V, lambda i,j: i != j and subt(i,j) in D])

3. This method constructs Ganley semifield graph for q = pr where p = 3
and r ≥ 3 and r odd.

def GanleySRG(q):
K.<a> = FiniteField(q)
V = [(x,y) for x in K for y in K]
D = [(x^2 + y^10, 2*x*y + y^6) for x in K for y in K]
return Graph([V, lambda i,j: i != j and subt(i,j) in D])
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4. This method constructs Cohen-Ganley graph for p = 3 and r ≥ 2.

def CGSRG(p,r):
K.<a> = FiniteField(p^r)
V = [(x,y) for x in K for y in K]
D = [(x^2 + a*y^2 + a^3*y^18, 2*x*y + a*y^6) for x in K for y in K]
return Graph([V, lambda i,j: i != j and subt(i,j) in D])

5. This method constructs the Pentilla-Williams semifield graph. The
graph has 310 vertices.

def PWSRG():
K.<a> = FiniteField(3^5)
V = [(x,y) for x in K for y in K]
D = [(x^2 + y^18, 2*x*y + y^54) for x in K for y in K]
return Graph([V, lambda i,j: i != j and subt(i,j) in D])
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