Vector Graphics for Real-time 3D
Rendering

by

Zheng Qin

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Doctor of Philosophy
in
Computer Science

Waterloo, Ontario, Canada, 2009

(© Zheng Qin 2009

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

i

Abstract

Algorithms are presented that enable the use of vector graphics representations of images
in texture maps for 3D real time rendering. Vector graphics images are resolution inde-
pendent and can be zoomed arbitrarily without losing detail or crispness. Many important
types of images, including text and other symbolic information, are best represented in
vector form. Vector graphics textures can also be used as transparency mattes to augment
geometric detail in models via trim curves.

Spline curves are used to represent boundaries around regions in standard vector
graphics representations, such as PDF and SVG. Antialiased rendering of such content
can be obtained by thresholding implicit representations of these curves. The distance
function is an especially useful implicit representation. Accurate distance function com-
putations would also allow the implementation of special effects such as embossing.
Unfortunately, computing the true distance to higher order spline curves is too expensive
for real time rendering. Therefore, normally either the distance is approximated by nor-
malizing some other implicit representation or the spline curves are approximated with
simpler primitives.

In this thesis, three methods for rendering vector graphics textures in real time are
introduced, based on various approximations of the distance computation.

The first and simplest approach to the distance computation approximates curves with
line segments. Unfortunately, approximation with line segments gives only C° continu-
ity. In order to improve smoothness, spline curves can also be approximated with circular
arcs. This approximation has C' continuity and computing the distance to a circular arc
is only slightly more expensive than computing the distance to a line segment. Finally an
iterative algorithm is discussed that has good performance in practice and can compute
the distance to any parametrically differentiable curve (including polynomial splines of
any order) robustly. This algorithm is demonstrated in the context of a system capable of
real-time rendering of SVG content in a texture map on a GPU.

Data structures and acceleration algorithms in the context of massively parallel GPU
architectures are also discussed. These data structures and acceleration structures allow
arbitrary vector content (with space-variant complexity, and overlapping regions) to be
represented in a random-access texture.

1l

Acknowledgements

I would like to thank my co-supervisors Michael McCool and Craig Kaplan for their
great help through all these years. Michael McCool taught me that I could do things I
didn’t think I was capable of doing, while Craig Kaplan showed me that there is always
one more way of looking at a problem.

I would like to thank my thesis readers Philip Beesley, Justin Wan, Steve Mann and
Bruce Gooch for their constructive suggestions, and for Sanjeev Bedi for serving on my
committee.

I would also like to thank IBM T.J. Watson Research for giving me the opportunity
to work with them.

Finally, I need to give special thanks to my family, my parents and my friends who
made it all possible.

v

Dedication

This thesis is dedicated to my dear daughter Tong Wu, who was my constant companion
and my foundation—and for her patience and independence.

Contents

[List of Tables|

[List of Figures|

(L__Introduction|

(1.~ Texture Mapping and Antialiasing|

(1.2 Representations of Images|

(1.3 Vector Images in 3D Renderingf.
1.4 The GPUl

[2.1 ~Methods Using Modified Interpolations|
2.2 Methods For Antialiased Bi-level Images|
[2.3 Methods for General Scalable Vector Graphics|.

Computing Distance to Curves|

(3.1 Finding Roots of Polynomuals|

[3.2 General Approaches in Finding Roots|
[3.3 Finding Real Roots|

4

Bilevel Images and Line Segment Features|

1 Intr 100 e e e e

4.2 Outline of Representation|.

4.3 Antialiasing|

vi

ix

xi

0O O W N

10

13
13
16
20

23
24
24
26

“.4.1 LmeSegments|, 33

M42 Cornersl 37
.43 Quadratics| e 38
444 Performancel L. 39

4.5 Vorono1 Grid Acceleratorlo oL 40
4.5.1 Voronoi Analysis| L. 40
M52 GridPackingl 41
453 Multiresolution 41

4.6 Glyph Sprite Mapping| 43
M7 Summary| 45
[Planar Regions and Arc Features| 50
1 Intr 100] . . . e e e 50
5.2 ArcSplmes| 51
[5.3 Feature Representations|. 52
[5.4 Flattening of Images| 55
[5.5 Interval Voronoi Analysis| 57
B Resulld. 60
[5.7 Summary| 62
[6 Layered Regions and Arbitrary Parametric Features| 65
1 Intr 100] . . . e e e 65
6.2 Algorithm| 66
[6.2.1 Preprocessing|. 67
[6.2.2 Shader Computation| 70

[6.3 Extensions and Applications| 77
6.4 Results|. 78
[6.5 Summary| 85

(7 Parallel K-Nearest Neighbor Search and an Alternative Data Structure for |

L Vector Texture Acceleration| 87
[7.1 A Data Structure for Vector Graphics Datal 88
(/.2 The Cell Architecturel 88
'/ The KNN Problem| 90

vil

(7.3.2 Parallel KNN Search|
7.4 Results and Futur Ir

[References|

viii

List of Tables

[6.1 Screen shots of performance tests.| 81
[6.2 Screen shots of performance tests (continued).|. 82
[6.3 Screen shots of performance tests (continued).|. 83

4 Performanceresults.|o Lo 84
[6.5 Performance comparison.| L Lo 85

ix

List of Figures

(1.1 Image magnification artifacts| 7
(1.2 Antialiased sharp boundaries in my vector image rendering| 7
[[.3 Diagram of the NVIDTAG8800GTS] 9
(1.4 Rendering result with my vector texture system.| 11
.1 Isotropic filtering vs. anisotropic filtering.| 32
4.2 Glyph A and its distance fields| 34
4.3 Errors caused by vertex ambiguity| L. 35
4.4 Glyph Dandits distance fields| 36
4.5 Outline examplesof glyph Al 0. 39
4.6 Vorono1 analysis of some TrueType glyphs.| 40
.7 Voronoi diagram packed ina texture| 42
4.8 Some examples showing embossed glyphs| 43
4.9 Sprite and fonttables.|.o L Lo 44
4.10 A map using a vector texture for labels.| 45
.11 Some example “documents” with multiple glyphs.|. 46
.12 Some example “documents” with multiple glyphs.|. 47
.13 Closeup example “documents’” with multiple glyphs.| 48
[5.1 Anarc feature and arc spline.| oL, 52
[5.2 Representation of arcs with large heights.| 53
[5.3 Example of line segments approximated with arc splines.| 55
[5.4 Flattening paths into a planar arrangement.|. 56
[5.5 Voronoi diagram undersampling error,| 57
[5.6 An arc subdivides space into fourregions.| 59
[5.7 Using interval analysis to overcome undersampling error.| 60

[5.8 SVG examples with boundaries approximated by arc splines.| 63

[5.9 SVG examples with boundaries approximated by arc splines (continued).| 64

[6.1 All curves can be split into simple shapes.| 67
6.2 Three textures are used to store the accelerator structurel 70
[6.3 Inside or outside test errors atthe corners.] 71
[6.4 Binary search to find the closestpoint.| 73
[6.5 The normal line only intersects a simple shapeonce.| 73
[6.6 Distance computation errors.| 74
[6.7 Antialiasing of embossing ridges.|.o L. 76
[6.8 The distances are modified to support borders(a) and strokes(b)| 78
[6.9 Scenes using vector textures.| Lo o .. 79
[6.10 Vector texture closeups.|. oL oL 80
[7.1 The Cell Broadband Engine (Cell BE) architecture.| 89

2 Hilbert cur ffirstthreeorders.) 94
[/.3 Packing Hilbert index and coordinates of 2D point.| 95
[7.4 Using Hilbert indices to group points and construct tree.| 96

X1

Chapter 1

Introduction

Texture mapping is a standard approach for increasing realism in computer graphics.
In 3D real-time rendering, raster image representations have traditionally been used for
representing sampled textures because of their ability to support random access and the
historical limitations of hardware graphics accelerators. With the emergence of power-
ful new generations of programmable graphics processors (GPUs), a new possibility has
arisen: the use of vector image representations directly in texture mapping during ren-
dering. The resolution-independent nature of vector image representations provides an
opportunity to overcome several problems intrinsic to raster image representations.

Vector graphics images are fundamentally more precise than raster images. They
represent geometric information in an exact and manipulable form that is independent
of its presentation on any particular display device. Conversion of vector graphics to
raster form is necessary for display on raster devices, but in a vector graphics system
this conversion is performed dynamically and deferred until the last possible moment
before display. Particularly for symbolic information, vector graphics are a natural rep-
resentation. The use of dynamic, on-demand rasterization enables the flexible display
of symbolic information in much wider variety of contexts than would be possible with
pre-rasterized (and therefore lossy) representations of the same content.

The aim of this thesis is to show that efficient, GPU accelerated, real-time imple-
mentation of texture mapping directly from vector graphics representations of images is
feasible and desirable.

In this chapter, I first discuss the basic idea of texture mapping, the aliasing artifacts
that arise in image sampling and in particular in raster image resampling, and the tradi-
tional approaches for eliminating these artifacts. Then I discuss image representations
and motivate the use of vector representations for texture mapping, as opposed to the
traditional raster representations. I also briefly review the architecture of GPUs and the
constraints they place on efficient implementation of random-access vector textures.

1.1 Texture Mapping and Antialiasing

In texture mapping, images known as fexture maps are pasted onto the surface of 3D
objects to provide surface detail and increase the realism of 3D scenes [25, 21} 126, 27, 9].
Traditional texture mapping uses raster images to represent textures. Raster images are
regular 2D arrays of color samples. Each such sample is usually called a texel. Although
textures and raster images are often considered synonymous, this is not necessary. For
example, there are many examples of images that are evaluated procedurally in shaders
to provide spatially-varying detail on a surface. In this thesis when I refer to “texture”
I will be referring to the more general concept of spatially-varying detail on a surface.
This detail may be represented in a variety of ways, including but not limited to raster
images.

Textures are parameterized in a continuous multidimensional space, usually two-
dimensional. Coordinates in this space are called fexture coordinates. In the description
of the scene, texture coordinates are often associated with primitive vertices to specify
where on an object each part of the texture map should be pasted. Later, when each
primitive of the 3D scene is rendered on the screen, the graphics accelerator pipeline
calculates the texture coordinates for each pixel via interpolation between the primitive’s
vertices. At the texture lookup stage, the graphics hardware retrieves the texture sample
color from the texture image using these interpolated texture coordinates. Every screen
pixel that should be covered by the texture mapped objects is mapped to some position
within the texture map. Note that texture coordinates are conceptually continuous. The
above assumes primitives are defined by interpolation between vertices. For other forms
of primitives, such as algebraic primitives, a function likewise needs to be defined that
associates a texture coordinate value with every point on its surface.

When raster images are used for texture maps, they need to be resampled during
rendering. Ideal raster image resampling is only possible when the pixels on the screen
have a one-to-one relationship with the texels (pixels of a raster image used as a texture).
In other cases, texel values have to be interpolated and filtered for high-quality rendering.

Suppose an object to be rendered is a flat rectangle and the rectangle rendered on the
screen has exactly the same number of pixels as texels in both horizontal and vertical
directions. Only in this special case is the texture mapping ideal. But when the object is
pulled away from the viewer and its size on the screen is smaller than the texture map,
the area of one screen pixel, after mapping into texture coordinates, can cover multiple
texels. This is called image minification. On the other hand, when the object is pulled
closer and its size on the screen is larger than the texture map, multiple pixels can be
mapped to a single texel. This is called image magnification.

Image minification and magnification can also be caused by the geometric shapes of
the objects because not all objects are flat rectangles. Scene objects generally will have
complicated geometric shapes, and the texture maps are warped when they are pasted
onto these object surfaces. Even for a flat object, continuously variable magnification
ratios can be caused by perspective. Image minification and magnification can therefore
happen simultaneously on the same object and within the same texture.

2

Each screen pixel also covers a certain physical area on the screen. When the texture
mapping coordinates are computed, the position of the center of the pixel is normally
used. In the perfect case, each texel corresponds exactly to the center of each pixel,
and the result will be ideal. However, this is often not the case. Even if the pixels and
the texels have the same resolution, the centers of the pixels may fall between the texel
samples. This poses a problem of which texel should be chosen to compute the rendered
pixel color (and if multiple texels need to be combined, what rule should be used).

Image minification and magnification have similar problems. In image minification,
one pixel’s area corresponds to multiple texels, so we need to decide whether we should
use the contribution from one texel or from multiple texels. If one texel is to be used,
which one? If multiple texels are to be used, how should their values be combined?
In contrast, for image magnification, multiple pixels map onto the same texel cell. We
need to decide how to interpolate the color for each pixel so that the enlarged texture
preserves as much detail as possible but without introducing artifacts. Computing the
pixel color during magnification is called reconstruction, since a high resolution image
is reconstructed from a smaller number of texels. During minification, each pixel color
must be computed from a larger number of texels, which requires reducing the total
amount of information. This process is called filtering. Often filtering is used for both
processes, but for clarity I will distinguish them in this document.

Reconstruction is needed during magnification. The simplest reconstruction mode
is nearest neighbor lookup, in which the texel closest to the texture coordinates of the
mapped pixel center is chosen. This method gives reasonably good results when the
pixel resolution and the texel resolution are similar.

Bilinear interpolation is a better reconstruction method that recovers a continuous
signal from a sampled signal by bilinearly interpolating the four samples at the corners
of a grid into which the texture coordinates of a given pixel falls.

Nearest neighbour lookup can also be used for filtering during minification. In this
case, the nearest neighbor lookup rule choses only one texel color (the one closest to
the pixel center projected back into texture space) and the other texels are discarded.
Unfortunately, if this filtering approach is used artifacts such as Moiré patterns, jaggies,
and crawling edges can occur.

Such artifacts are called aliasing because technically, they are caused by the fre-
quencies of the pixel sampling grid “beating” against the texel raster grid, causing high
frequencies in the texture to “alias” or “masquerade” as low-frequency artifacts. Due to
minification, the pixel grid has a lower resolution than the texel grid. As a consequence,
the pixel grid cannot represent all the information in the original raster image.

Techniques to remove these artifacts are called antialiasing. The basic idea of all
antialiasing techniques is that the high frequency information that can result in aliasing
needs to be removed before sampling.

Bilinear interpolation also can help reduce aliasing during minification since it av-
erages four samples rather than just one. This averaging reduces the troublesome high
frequencies that cause aliasing. However, a more accurate antialiasing approach is to

include the contributions of all texels that are covered by the footprint of a pixel, using a
weighted average to combine their values. The weights can be chosen using signal pro-
cessing theory to attenuate the frequencies that can cause aliasing, although in practice
the weights are usually limited to radially monotonic positive functions to avoid ringing.
Unfortunately, the size of a pixel footprint may vary and the projected shape may not
be isotropic. Also, the footprint can be large and averaging all the texels in it can be
expensive.

Various approaches have been developed for computing the texel contributions effi-
ciently. The most common approach, which is also implemented in GPU hardware, is
MIP-mapping [66]]. MIP-mapping is a multiresolution approach that prefilters the image
to a discrete set of resolutions and stores the results in an image pyramid, This pyramid
contains images filtered with low pass filters with different cutoff frequencies. When
the scene is rendered, depending on the scale of minification, a filtered image is chosen
from the image pyramid, and a simple interpolation method, such as nearest neighbor
search or bilinear interpolation, can then be used to retrieve the color. If the desired scale
falls between the scales for two images, then two lookups can be performed and then
interpolated. One problem with MIP-mapping is that only a single isotropic scale can
be used, but the footprint can be scaled anisotropically, and the footprint may also not
be axis aligned. This is currently resolved in hardware by taking multiple MIP-mapped
samples and computing a weighted combination to approximate the desired filter ker-
nel [37]. This technology is sufficiently advanced that raster texture antialiasing under
minification can be considered a solved problem.

However, when the image is magnified, multiple pixels are mapped onto one texel
and the resolution of the pixels is higher than that of the texels. In general, trying to
recover high frequency information from sampled low frequency information accurately
is impossible. One solution is to represent the images as compositions of primitives rep-
resented by mathematical equations. Primitives can include (but are not limited to) lines,
curves, and filled regions bounded by lines and curves. This approach, used in vector
graphics, is independent of any sampling grid and provides for unlimited magnification.
However, such an approach has its own antialiasing challenges. Sharp edges contain in-
finitely high frequencies, and sampling them precisely at only pixel centers will result
in aliasing. Instead, such sharp edges need to be filtered, even during magnification, by
integrating over the footprint of the pixel back-projected into texture space.

For images whose boundaries are represented mathematically, both supersampling
and analytic approaches can be used to compute these integrals. To use supersampling,
the image of any resolution can be computed by first sampling it at a higher resolution,
and then low-pass filtering it to the desired resolution.

Analytically, averaging over the footprint of a filter is equivalent to multiplying the
Fourier transform of the image with the Fourier transform of the low-pass filter in the
frequency domain, or equivalently convolving the low-pass filter with the image in the
space domain. Supersampling is really just a discrete implementation of the convolution.
An interesting observation, which I take advantage of later, is that the result of the con-
volution of a radial filter with a straight edge is just a function of the distance of the edge

from the center of the filter; in other words, straight edges in 2D images can be filtered
by applying a 1D function to the distance from the edge [23]].

In 3D rendering, because of different transformations and texture warping involved
in rendering, the footprint of a pixel can be warped and the projection in the texture map
of a circular pixel may not be a circle. It could be an ellipse or more complicated shape.
Accurate antialiasing should take into account the shape and orientation of the footprint,
and should be oriented along the major axis of the footprint. This kind of antialiasing is
called anisotropic antialising.

1.2 Representations of Images

In computer graphics, there are two common ways to represent an image: as a raster
image (bitmap) and as a vector image. A raster image uses an array of pixels to represent
an image, while a vector image uses parameterized mathematical formulae to represent
image components, including contours, shapes, colors, and shading. These representa-
tions are complementary to each other. Because of the different demands of applications,
sometimes it is better to use raster images, and sometimes it is better to use vector images.

Raster images can support efficient random access, but have a resolution limitation.
Display devices with larger resolutions require more pixels, which results in a larger
storage size. If the raster image resolution is not increased to match the display reso-
lution (at least), then artifacts will occur. Vector images, on the other hand, use a fixed
amount of storage size regardless of the resolution at which they are displayed. Vector
images can be sampled and displayed with high quality at any scale. However, the usual
representation of vector images does not support random access.

Many applications of vector images can be found in 2D graphics, especially for the
display of symbolic information. Vector graphics were used in some of the first computer
displays, including that of the US SAGA air defense system, air traffic control systems,
Ivan Sutherlands Sketchpad (one of the very first interactive graphics systems), Digitals
GT40, and early game systems such as Vectrex, Asteroids, and Space Wars. Vector fonts
have existed for decades, and resolution-independent vector graphics document, image,
and web content representations like PDF and Flash are now popular.

Existing 2D software that renders vector images usually rasterizes images using a
scan line method. In scan line methods, the pixel colors are processed sequentially along
the lines to solve issues concerned with antialiased colors. Because of the sequential
nature of this process, vector images have not been used in 3D real-time rendering, in
which pixel colors are computed in parallel. However, vector image content is in more
and more demand and it would often be useful to combine this content with 3D real-
time rendering. I will show that this is feasible by exploiting the rapid improvement
in GPU programmability and performance. Signs, text, and labels, if represented with
vector images, can be scaled with high quality, can be made more legible, and the GPU
memory for storing them in raster form can be saved. Cartoonish or symbol-oriented
effects in games or movies can also be represented with vector images with the same

5

advantages. In my work, I have aimed at providing solutions for using vector images as
a “native” content type for 3D real-time rendering.

1.3 Vector Images in 3D Rendering

In 3D rendering, textures are used to increase realism. Traditional texture mapping uses
raster images because of their efficient random access, especially in real-time rendering,
which demands high performance. However, textures often contain sharp boundaries
both in natural scenes and in artistic designs. Text, ornamentation, and other symbolic
surface patterns are typical examples of sharp boundaries. In the real world, when we
move close to or far away from such objects, the objects along with their decorations will
smoothly become smaller or larger. Sharp boundaries remain sharp when the objects are
close but should blur smoothly when they are far away.

Unfortunately, raster texture maps, the usual means of decorating surfaces in computer-
generated imagery, do not have this property. As I mentioned before, when we zoom a
raster texture mapped surface far away from us, a naive implementation will allow an-
tialiasing artifacts such as Moiré and crawling edges to appear. These artifacts, caused
by texture minification, can for the most part be solved by MIP-mapping. On the other
hand, when we zoom a raster texture mapped surface close to us, the surface detail starts
to appear blurred or pixelated as the texture is magnified. Such artifacts are demonstrated
in Figure [[.1] This problem is caused by limited resolution in the underlying image rep-
resentation, and I define it as the texture magnification problem.

A straightforward way to solve this problem is to increase the resolution of the raster
image, then downsample using averaging before display. This approach is called super-
sampling. However, supersampling incurs a large storage and bandwidth penalty, and
only defers the problem to a higher magnification. The solution I propose is to use vector
images, whose boundaries are natively, explicitly and exactly described by mathematical
equations. With vector images, we can preserve sharp boundaries at any magnification
level with efficient use of storage. Because of the limitations of previous generations of
GPUs and the complexity of vector image representations, vector graphics images have
not been previously applied in 3D real-time rendering. However, this thesis targets and
presents GPU-accelerated solutions for real-time rendering of resolution-independent
texture content with high quality antialiasing. With my approaches, sharp boundaries
can be well preserved as they are magnified. The result is shown in Figure[I.2]

The W3C standard for vector images is known as Scalable Vector Graphics (SVG).
Existing software such as Adobe Illustrator and Inkscape that comply with this standard
support editing and composition of SVG vector graphics images. My goal is to allow
the use of 2D vector images as texture maps in real-time 3D rendering. Editing and
composing 2D vector image content are not my main concerns. I assume that 2D vector
image content will be created using these existing tools. I therefore choose to support
the semantics of existing vector graphics formats so that artists can use existing software
to create their work conveniently.

(a) (b) ()

Figure 1.1: Image magnification artifacts caused by the limited resolution of a raster
image representation. (a) original image. (b) pixelated, when using nearest-neighbor
interpolation. (c) blurred, when using linear interpolation.

Figure 1.2: Well preserved and properly antialiased sharp boundaries in my vector image
rendering, rendered in real-time as a texture map using one of the approaches I will
present.

To use vector images in real-time rendering, a frame rate of at least 30 fps is de-
sirable. A minimum of 15 fps is necessary for the illusion of motion and interactive
manipulation. However, at this rate, the frames are still detectable. In addition, the tech-
nique must support random access to the texture content since the order in which textures
are accessed during rendering is not known in advance. Hardware acceleration (in the
form of Graphics Processing Units, or GPUs) are also widely used in real-time graphics
and so the technique should be compatible with GPU acceleration and with other exist-
ing accelerated techniques for rendering 3D content. There has not been much work on

hardware-accelerated random-access vector graphics texturing to date due to the limita-
tions on the programmability and the speed of GPUs. In general, any extra computation
other than a single texture lookup to retrieve the color for each pixel will reduce rendering
performance. However, recently GPUs have increased capabilities for programmability
and computational performance, enabling new, more sophisticated approaches to repre-
senting and rendering image content. Also, as computational capability growth outstrips
memory bandwidth growth, these more sophisticated approaches, with more efficient use
of memory bandwidth, become much more practical and perhaps in the long run even
superior to approaches based on simple table lookup into raster images.

Two basic issues have to be taken into account when I try to provide solutions for
texture magnification in real-time rendering. First, efficiency has to be high enough so
that the frame rate is adequate. Second, in addition to representing sharp boundaries, the
sharp boundaries should be antialiased. The performance, programmability and memory
bandwidth in the current generation of GPUs makes it possible for me to achieve these
goals. However, I can also anticipate the coming generation of hardware, which will
likely feature even greater computational and programmable capabilities, but likely with
only modest improvements in memory bandwidth. In this future context my results are
likely to be even more relevant.

1.4 The GPU

The Graphics Processing Unit (GPU) is an accelerator for 3D rendering. In general, the
graphics pipeline consists of three parts: the application part, the geometry processing
part, and the rasterization and per-pixel processing part. The application stage sets up
the scene, the geometry stage carries out all the transformation, projection, and clipping
work, and the rasterization stage rasterizes the image and computes the color for each
pixel. In a complete graphics system, typically a general-purpose CPU carries out the
application stage while a more specialized GPU executes the geometry and rasterization
stages.

The first generation of graphics hardware had no programmability, and all graphics
functions were hardwired into a fixed-function pipeline. Over the last ten years or so,
however, programmability has been added to the geometry and rasterization stages sup-
ported by the GPU. In the geometry section, vertex shaders were added to allow the user
to specify geometry transformations, and in the rasterization section, fragment shaders
were added to provide customized surface shading.

At first, vertex shaders and fragment shaders were implemented in physically sepa-
rate processing units. The shaders were different in programmable capabilities, texture
lookup support, and functionality. Some features were supported in one shader type but
not in the other. The vertex unit was specifically used for the shader computation for
each vertex on the geometry mesh, and the fragment unit for the shader computation for
each pixel on the screen. Memory for textures was also relatively small and control flow
was poorly supported. Initially, shaders were written in assembly language because of

the lack of high-level parallel shader programming language. This was the state of the
art when the work described here was begun.

However, each new generation of GPUs has gotten closer and closer in programma-
bility to CPUs. There are now no more practical limitations on the number of instruc-
tions in a shader. Control flow is well supported although it still affects performance if the
computations for a block of data are not consistent. Local addressable arrays are also now
supported, allowing stacks and recursive algorithms. The most important improvement
is that the vertex shader unit, fragment shader unit and other geometry processing units
are now unified. The advantage of this is that the GPU can balance the workload of these
stages in the graphics pipeline among a set of common physical processing elements.
For example in the NVIDIA G8800 GTS (whose architectural diagram is shown in Fig-
ure [[.3), there are eight processing units. Each unit has two vector processors each of
which is 8-way SIMD. The units take over different tasks according to the current work-
load. If the workload for the fragment shader is too heavy, more processing units will be
allocated for the fragment shader, and the same for other scenarios. Also with the emer-
gence of high-level parallel programming languages for GPUs, such as the RapidMind
platform, GLSL and Cg, shaders can be written more efficiently and productively. In my
work, I mainly use fragment shaders to allow the use of vector images as texture maps
in 3D rendering. The algorithms I will present have also been designed to be efficient
on GPU architectures, for example by avoiding complex pointer chasing (when possible)
and avoiding control flow (when possible). The techniques presented here are not limited
to GPUs. More generally, CPUs are evolving to include many of the features of GPUs,
including wide SIMD instructions (SSE is 4-way, but AVX will be 8-way and the Intel
Larrabee will be 16-way). The constraints upon algorithm design imposed by GPUs are
not unique to GPUs, they are a consequence of the architectural strategies used by GPUs
for high performance, strategies that are also rapidly being adopted by CPUs. Therefore
I expect that the results in this thesis will be relevant to future high-performance CPUs
as well as today’s GPUs.

Host

[I
L}
Inpat Aisembler | Setua ! Rlstri ZCull

Vix Thread Issue Geom Thread Issue Pixel Thriad Issue

== Thremd Processof

Figure 1.3: Diagram of The NVIDIA G8800 GTS Graphics Processing Unit.

1.5 Goals of the thesis

I set my goals as follows. I would like to develop representations of vector graphics
images suitable for real-time rendering, such that the storage size is efficient compared
to raster images. The natural properties of vector graphics should be supported, so my
representation should be resolution-independent and allow infinite magnification. Since
I want to support the use of existing tools and file formats, features in the original vector
image should be rendered exactly as specified. Also, all image boundaries should be
antialiased; this is an absolutely crucial property for image quality. Furthermore, my
methods should be easily extended to render other special effects useful in a 3D context,
such as embossing, halos, drop shadows, textured boundaries, and so on. Finally, the
rendering speed needs to be real-time. Note that unlike some previous work, 1 target
standard vector image content directly, rather than attempting to find an improved vector
representation for images of natural scenes.

My main contributions are as follows. I have developed a system that supports the
capabilities of the general SVG format and allows the use of this vector content as tex-
ture maps in 3D real-time rendering. My performance varies between about 30 fps to
more than 100 fps depending on the complexity of the image. To achieve this, I have
derived a simple and robust way to compute the distance to any curve. This can be used
to efficiently compute high-quality antialiasing. The distance computation also allows
special effects such as embossing and halo effects.

Vector textures have many applications in 3D rendering. They can be used not only
as texture maps to provide high quality renderings, but also to simplify the underlying
geometry of objects, while allowing the generation of complex visual effects. One of my
final results is shown in Figure Note, for example, that a matte (transparency) chan-
nel represented as a vector image can be used to represent complex geometric boundaries
in a compact way.

The outline of this thesis is as follows: In Chapter[2] prior work on vector textures is
introduced in chronological order. My published work is also referenced here in context.
In Chapter [3] approaches to finding the closest distance to high order curves are intro-
duced, along with the introduction to root finding methods for high order equations. In
Chapter {] a method that supports bi-level vector images in 3D rendering is introduced.
In this method, boundaries are all approximated by line segments with C° continuity. In
Chapter [5] the previous approach is extended to support a larger subset of the features
of general SVG files, including overlapping regions of different colors and gradient fills.
Here, boundaries are approximated with circular arcs with C' continuity. In Chapter@
I will introduce more efficient data structures for storing vector images that can support
rendering of all boundaries, including higher order splines, without approximation. In
Chapter [/| a parallel K-Nearest Neighbor search algorithm on multi-core Cell BE pro-
cessor is introduced. This problem is closely related to the distance computation used
for antialiasing in my vector texture representation. This approach can be extended into
an alternative way to store vector data that would allow dynamic updates, since the data
structure itself can be built in a data-parallel fashion. In Chapter[§] I will give a summary
of my research and discuss possibilities for future research.

10

Figure 1.4: Rendering result with my vector texture system.

1.6 Definitions

In this thesis, the terms exact, accurate, interactive and real-time are used with the fol-
lowing specific meanings:

exact: Assuming infinite-precision arithmetic, the result can be computed exactly us-
ing a finite amount of computation. In practice, the same computation may be
performed using finite precision arithmetic to generate a sufficiently accurate ap-
proximation.

accurate: Given a specific error tolerance (or “accuracy”), an approximate value can be
computed that is within this tolerance of the true value. It should be possible to
use a finite amount of computation to acheive any given finite tolerance, but the
amount of computation required may be higher for more accurate solutions.

11

interactive: A rendering process is considered interactive if a consistent frame rate of at
least 15 frames per second can be maintained, with a latency of no more than one
frame. At this rate and latency, immediate feedback to user input and the illusion
of motion can be supported.

real-time: in this thesis, I use this term to define rendering rate of at least 30 fps, which
supports fluid motion. -/ real-time: in this thesis, in contrast with the rest of com-
puter science but consistent with its use in graphics, I use the term “real-time” to
describe a process with a rendering rate of at least 30 fps. At this rate, fluid motion
can be supported.

12

Chapter 2

Prior Work

Research on GPU-accelerated vector-graphics approaches to image magnification started
in 2003 with the emergence of programmable GPUs. As the capabilities of GPUs were
improved gradually, different approaches ranging from simple extensions of raster im-
age formats to more advanced and complete SVG-compatible representations have been
developed. In the beginning, most approaches simply extended raster images to include
limited boundary information. The traditional bilinear interpolation was modified such
that the interpolation only used samples from within the same region, so sharp boundaries
were preserved. Several different ways to determine the regions and extend the interpo-
lation rules were developed. In these approaches, super-sampling was generally used
for antialiasing, if it was considered at all. However, as GPUs became more powerful,
more sophisticated methods were developed to support more general images, including
representations capable of supporting nearly the full feature set of SVG file formats.

In this chapter, I give a comprehensive introduction to the approaches to image mag-
nification published to date. The work will be introduced in chronological order. My
own published work will be introduced in sequence with my survey of previous work so
it can be seen in context. It also should be understood that this area has evolved alongside
continually evolving hardware capabilities.

2.1 Methods Using Modified Interpolations

Early in 2003 to 2004, research on texture magnification focused on combining extra
boundary information with the original raster samples, to extend raster image representa-
tions to have some of the properties of vector graphics images. In general, these methods
superimpose a uniform grid over the raster image, then record the boundary configuration
within each grid cell. With this approach, texture lookup is a generalization of bilinear
interpolation and can achieve high rendering speed. The difference between these meth-
ods and traditional bilinear interpolation is that the modified interpolation rules do not
cross the boundaries depicted in the grid cells and so can retain sharp boundaries when
images are magnified. Note that although some of this research investigated the problem

13

of obtaining boundary information from the high-resolution raster images, I consider this
problem to be out of the scope of this thesis. I simply assume boundary information is
available.

Sen [53]] uses two textures, a color bitmap texture and a “silhouette map” texture. The
silhouette texture records the boundary information going through each cell. These two
textures have about the same resolution and overlap each other. One of them is shifted by
half of the grid cell size, so that the sample colors in the bitmap texture fall at the corners
of the silhouette map cells. The boundaries in each cell separate the cell into different
regions. The color interpolation for a point is defined only among the corner samples
that belong to the same region.

Using Sen’s approach, the computation of the color involves only bilinear interpo-
lation, which is hardwired on GPUs. Although the modified interpolations are different
from the standard bilinear interpolation, he developed a common equation that includes
all scenarios supported in his approach. The computations in the fragment shader in
the GPUs have no branches and only a few bilinear interpolations, and so this approach
achieves high performance. At the time this approach was developed few GPUs sup-
ported true branching, so this approach was an absolute necessity. However, the ap-
proach is not general, as the number and configuration of boundaries in a cell is limited
and higher order curves are not supported.

To reduce the memory required to store boundary information, Sen uses two bits to
record the boundary configuration and a local coordinate system to store the boundary
coordinates. Since only two bits are used to record the boundary configuration in each
cell, this method only supports a limited cases of boundary configurations. In particular,
there cannot be more than four boundaries in each cell, and only one boundary can pass
through each cell edge. The resolution of the grid can always be chosen in an attempt to
support the content, but one small detail in the image could force the uniform grid to be
split until the boundary configuration is supported, which will increase texture size as a
consequence. Still, this is not a general solution. Some configurations, such as the many
lines meeting at the center of a pie chart, can never be represented accurately with this
technique. More bits might be used to support more boundary configurations. However,
a common formula that can handle these more complicated boundary configurations is
hard to develop, may be too expensive to be practical, and might not exist at all. Control
flow could be used to support additional cases, but this may cause lower performance.
In short, to use this technique in practice, users have to accept certain limitations on its
ability to represent content.

Since this method is simple to implement, Sen provided a GPU implementation.
Antialiasing was not supported in this implementation although theoretically it could
be added with some additional computation. It is also worth noting that Sen originally
developed his approach for representing shadow maps. Due to the simplicity of the
representation, it can be constructed on the GPU dynamically for this purpose.

The method developed by Tumblin and Choudhury [56] is similar to Sen’s. It com-
bines pixel sample values and boundary information into a single structure they call a
“bixel”. This method has more complicated interpolation rules to remove certain arti-

14

facts that appear between different interpolation patches. Any sudden changes of inter-
polation rules tends to cause false boundaries that do not exist in the original images, so
the interpolation rules have to be set up to provide a smooth transition. However, to sup-
port the more complicated interpolation cases, they had to apply control flow to handle
the various cases. The implementation was therefore more complex and the performance
was slower than Sen’s method. This approach was actually not implemented on GPUs,
although this was primarily due to the lack of control flow in GPUs at the time. This
approach, however, could be easily supported today.

Tumblin and Choudhury’s work also uses a small number of bits to record the bound-
ary information. The advantages and problems related to boundary configuration repre-
sentations with a small number of bits exist in this method as well. To antialias images,
they used super-sampling. As with Sen’s approach, boundaries are also approximated
with line segments.

Ramanarayanan et al. [47]] presented a technique that can support higher order bound-
aries. Boundaries represented by cubic Bézier curves are retained and evaluated exactly.
Curved boundaries are not approximated by line segments as in previous work. This
method also is aimed at supporting any boundary configuration and the features of stan-
dard vector graphics file formats such as SVG. Boundaries intersecting each other within
a cell split the cell into subregions. The interpolation happens in each subregion, and the
interpolation samples are not only from the same texel, but also from reachable samples
in nearby texels. Here more complicated data structures, such as kD-trees and feature
lists, were used to store the boundary features.

Although Ramanarayanan et al.’s approach aimed at supporting all boundary config-
urations, loops within a texel were still not supported. Small loops will cause problems
similar to the previous methods, since there may not be any color samples inside such
loops, or enough to use for good interpolation. This approach also requires complex
preprocessing. In particular, intersections between the boundaries represented by splines
have to be computed, so the input vector graphics image can be flattened into a planar
map of regions, and then these curves have to be segmented yet again into monotonic
regions. During run time, the rendering system needs to find the subregion each point
falls in and the reachable samples in the neighborhood. To compute this information, a
general cubic root solver is needed, which is relatively expensive for real-time rendering.
Due to this method’s run-time complexity, it was not implemented on a GPU. The soft-
ware implementation uses super-sampling for antialiasing. It should be noted that such
an approach to antialiasing can be used with any method, but is not efficient.

Tarini and Cignoni developed the “pinchmap” representation [S5]], which targets fast
rendering speed. Since changing the interpolation rules complicated the color computa-
tion, their method kept the standard bilinear interpolation but snapped the uniform sam-
ples to the vector content’s boundaries. Any point that needs to be evaluated then falls
into a region with four samples at its four corners, and interpolation can use existing GPU
hardware. This method requires a few instructions and only one extra texture lookup for
the snapping information. Antialiasing at one target scale can be achieved with little ex-
tra effort. Instead of snapping samples to the exact boundaries, they are snapped close to

15

the boundaries with small transition gaps. Points that fall into these gaps are interpolated
by the colors on both sides. As a result, the color transitions are smooth. However, as
the images are magnified, the transition zones become bigger because of the fixed gap
in the texture maps. In the correct solution for antialiasing, the transition zone should be
only one pixel wide on the screen, regardless of the texture transformation or projection.
Therefore, this approach ultimately has the same problem as raster images, although it
may allow a wider range of magnification factors in practice. Also, if the pinchmap is
too far away, the transition zone may be too small, causing minification aliasing.

Although the rendering speed of Tarini and Cignoni’s technique is good, it still places
restrictions on the discontinuity configurations. For example, 2 x 2 grids cannot all have
boundaries. When multiple boundaries cross each other, or they run too close to each
other, some of the lines are lost, and the images appear blurred. As with most previous
techniques, curves are represented by piecewise linear approximations.

One advantage of the above methods is that they can be used for natural images.
Natural scenes are usually so complicated that they cannot be represented by regions en-
closed by curves only, as in standard vector graphics images. Color samples are a better
representation than mathematical equations for photographic content. However, all these
methods represent only the low frequency and the high frequency information. The im-
ages are either over smoothed or very sharp. Information with in-between frequencies
are lost. Therefore, the images tend to look cartoonish. A more robust, multiscale repre-
sentation is needed. How to preserve the information of different scales in natural scene
images, however, is not the topic of this thesis. Instead, I will focus exclusively on how to
render vector graphics context as already represented in existing vector graphics image
formats.

2.2 Methods For Antialiased Bi-level Images

Instead of embedding boundary information within raster images and trying to extend
their semantics, we can accelerate a more limited vector graphics use case. One use case
of particular interest is that of bi-level images, in which we want to precisely represent a
boundary between a single foreground color and a single background color. The follow-
ing methods were designed to render such bi-level images, in which color samples can
be completely omitted. Bi-level images are simpler than general vector graphics images
but still have many applications, such as typography, signs, and ornamental decorations
composed of two colors. They can also be applied to the representation of alpha mattes
(transparency masks) in the case that only foreground (fully opaque) and background
(fully transparent) need to be distinguished. Such mattes are common, and appear in
both compositing and as the result of trimming in computational solid geometry.

For bi-level images, the problem of color retrieval reduces to that of finding out what
region (foreground or background) a query point falls in. All paths in bi-level images
must be closed, so we have to determine if the point is inside any closed path around the
foreground color. If it is not inside any such path, then it is the background color. Many

16

applications of bi-level image representations also make the simplifying assumption that
the paths are simple and the foreground regions are non-overlapping.

Typography is a typical application of bi-level images. Each glyph in a typeface
can be represented as a small number of closed paths(usually one or two) surrounding a
foreground region. As with many applications of bi-level images, we need to antialias the
result. One effective way to antialias a bi-level image is to compute the signed distance
to the nearest path rather than a simple inside or outside value. Then a smooth step
function can be used to antialias the shape by providing a transition between foreground
and background. The width of the transition zone of this smooth step should be scaled
so that it is roughly one pixel wide.

Distance fields can be computed exactly or can be approximated. Frisken et al. [18|,
17,143, 116] used adaptively sampled distance fields (an approximate representation, but
with controllable error) to represent 2D fonts or 3D shapes. For each point on an adaptive
grid, they computed the closest distance from this point to the curve/surface. A sign was
also stored to indicate whether each point was inside or outside of a closed foreground
path/shape. The boundary between foreground and background is then given by the locus
of points with an interpolated distance of zero.

Other than sampling distances over a uniform space, adaptive approaches sample
more densely in regions that have more details. The distances for points that fall between
the samples are approximated by the linear interpolation of the samples. A hierarchical
structure, such as an quadtree, is used to store the samples efficiently.

Adaptively sampled distances reflect the curves/shapes more accurately than non-
adaptively sampled distances. With more samples around the small details, small high
frequency features, like sharp corners, can be more accurately reconstructed. This im-
proves upon a uniformly sampled distance field in both reconstruction quality and storage
size. However, the more samples used in high frequency regions, the larger the storage
will be. Also, once the high frequency information exceeds the resolution limit of the
maximum sampling rate, the sharp features are still rounded off.

Ray et al. [48] used a cubic univariate Hermite function as the implicit function for
each spline segment within a cell. This function takes four parameters: the entry and exit
points of a curve over each cell, and the corresponding tangents. This function cannot
represent all kinds of cubic splines. If a spline segment in a cell cannot be represented
by the function, the grid will be refined until the spline segment can be represented. For
thin features, sharp turns, and more complicated cases, they combined implicit functions
in a CSG manner.

Using implicit functions only, Ray et al. obtained the same aliased results as in Sen’s
work [53]. To further improve the image quality, they used a region coverage ratio to
support antialiasing. When an image is magnified, the footprint of a screen point on
texture space is smaller than a texel. The ratio is defined as the area covered by one
color over the whole projected area of a screen point. This ratio is approximated by the
distance from the point to the edge over the average of the two partial derivatives of the
projection function in texture space. This approach to antialiasing is cheaper than super-
sampling, since derivative instructions are provided by GPUs. They used a hierarchical

17

tree structure to reduce the memory cost for varying resolution images. This work was
implemented on the GPU, and a font engine was provided.

The evaluation of the implicit functions and the region coverage ratio approximation
are efficient methods, so the implementation of this algorithm achieved high rendering
speed. Higher order representations for the splines preserve the smoothness of the spline
curves. However, low degree implicit functions cannot represent parametric polynomial
curves exactly, so parametric boundaries will have to be approximated.

Small boundaries that cannot be represented by implicit functions are recursively
split, but this recursive split can result in a large storage cost. Also, using CSG composi-
tion at run time required control flow and many dependent texture reads, which was not
efficient for real-time rendering.

Loviscach [34] suggested applying a filter function over MIP-map results. The pa-
rameters of the filter are set so that when the image is minified, the result is just the
MIP-map result; when the image is magnified, the level O image is converted to a thresh-
old image. There is a smooth transition from a greyscale image to a bi-level image, so
the switching between level 1 and level O is hidden. Intuitively, this approach uses the
partial derivatives of the projection function between screen space and texture space to
estimate how far the points on the screen are from the boundaries. In case of minifica-
tion, the relative MIP-map level is chosen and the greyscale result is returned. In case of
magnification, the antialiased greyscale result from level O can be regarded as a distance
approximation in texture space. It is then scaled by the partial derivatives to approxi-
mate the distance in screen space. This distance is later mapped through a smooth step
function to produce antialiased sharp boundaries.

In this approach, texture minification and magnification are combined into one equa-
tion. It is fast because the equation is simple. The transition between minification and
magnification is seamless. The problem with this method is that complicated bound-
aries are softened. Sharp corners are rounded, so this approach cannot represent vector
graphics content with high fidelity.

Loop and Blinn [33] proved that any quadratic or cubic spline can be projected onto
a canonical implicit spline. By assigning a fixed set of texture coordinates to the control
points of an arbitrary spline, which side a point is on relative to the curve can be evaluated
by substituting the point’s texture coordinates into an implicit function. The sign of the
evaluation can be used to find the query point’s color.

For antialiasing, they used the approximate closest distance of a point from the curve.
The approximate distance was computed using the ratio between the implicit function
and the magnitude of its gradient. This approach is justified by approximating the im-
plicit function with its first order Taylor expansion.

This is a fast rendering algorithm. However, it requires the vector images to be tri-
angulated. Some images can result in complicated triangle meshes. The images cannot
therefore be simply used as texture maps. To apply a vector image over an object, they
need to intersect the triangle meshes of the image with that of the object, resulting in
potentially a complex mesh with a poor distribution of triangle shapes and sizes. This is
therefore not a practical method for texture mapping.

18

Inspired by the work by Frisken et al. [18} [17, 43, [16] of using distance fields for
antialiasing, my methods [45, 144, 46] also used filtered distance for antialiasing because
it is more efficient than super-sampling. However, my method differs from theirs in that
an accurate closest distance, rather than an approximated distance, is computed for each
query point. Therefore, in my approach high-frequency details, like sharp corners, are
preserved regardless of the magnification. One of my goals was not only to provide
antialiased boundaries, but also to provide mechanisms for special effects. With accurate
distances, special effects, such as embossing, textured strokes, drop shadows, and halos,
can be implemented easily because these effects are based on the distances from points to
boundaries. In many schemes using approximate distances, in contrast, the error can be
arbitrarily bad, especially far from the edge. Unlike Frisken et al.’s methods that store a
sampled distance field, I also store the control points of the curves directly, which results
in a more compact storage size.

My work has three stages. Each stage involves further development of methods to
compute the closest distance to boundaries. I started with the simple case: images are
bi-level images, and boundaries are approximated by line segments with C° continuity.
In the second step, I targeted general vector images. To improve the smoothness of the
approximation, higher order curves, such as quadratic and cubic splines, are approxi-
mated by circular arcs with C! (actually G') continuity. Finally, in my most recent work,
I present a technique that supports distance to differentiable parametric curves (includ-
ing polynomial curves of any order) without approximation. A brief introduction to each
stage of my work will be given in this chapter, but one chapter will be devoted to each of
these stages in the following part of the thesis.

In the first stage of my work [45] I target bi-level images and also approximate all
curves by line segments. I use a uniform grid accelerator, and record for each cell only
the boundary features relevant to the color computations of the points in the cell, i.e.,
those boundary features whose Voronoi regions overlap the cell. All boundaries that
are certain distance away from the cell or blocked by other boundaries are considered
not necessary in color computation. For each point in a cell, its closest distance to the
boundary features is computed with the recorded features. The limited number of dis-
tance computations accelerates rendering. In my approach, all boundaries are oriented
clockwise without loss of generality. A negative distance indicates the point is inside
the path and therefore bears the foreground color, while a positive distance indicates the
point is outside the path and bears the background color. Unlike previous work that
had restricted the boundary configuration, my only constraint was that the number of
boundary features in each cell can not exceed a certain number. For any given image this
number can be increased as appropriate, although there is a trade-off with speed. In my
representation sharp corners are well preserved with no geometric roundings. Antialias-
ing is achieved by passing the closest distance through a smooth step function, which is
much more efficient compared to super-sampling. My work also shows anisotropic an-
tialiasing can be efficiently implemented by using the Jacobian matrix which projects the
distance gradient from texture map space to screen space. More details will be described
in Chapter {4

Green [20] also used an approximate closest distance for image magnification and

19

antialiasing of decals. First he generates a bi-level high-resolution raster image that con-
tains the in/out state of the decal at every pixel. Then for a low-resolution distance repre-
sentation texture, for each sample pixel, he computes the closest distance to a boundary
pixel by comparing with the neighbours using a brute-force method. This texture is then
interpolated using linear interpolation and used in alpha test for magnification. Distances
are clamped to the interval [0,1]. Negative distances are mapped to the interval [0,0.5],
and positive distances are mapped to the interval [0.5,1]. Points with distance 0.5 repre-
sent the points with the original distance zero, i.e., the boundaries. The threshold of alpha
test is set to 0.5. With an alpha test threshold of 0.5, an approximation to the original
vector image can be easily achieved.

Green’s method is fast. For better quality, a simple pixel shader implementing alpha
blending can be used for antialiasing. It can be used in low end GPUs, is practical, and
has actually been used in Valve’s Team Fortress game. This technique uses uniformly
sampled grids, and is a special case of Frisken’s distance field approach.

However, as with other simple methods, this method does not support complicated
edge configurations. Corners are rounded, and only bi-level images can be supported.
This technique cannot be extended to support general vector graphics, but because it is
fast, it is still useful as a representation for iconic and textual information in a game
environment.

2.3 Methods for General Scalable Vector Graphics

In the second stage of my work, I decide to extend my approach for bi-level images to
support general vector graphics, in particular the features supported by SVG images [44]].
By supporting the features of SVG images, I enable the use of standard vector graphics
applications for creating and editing texture content. The most fundamental feature of
a general SVG image is its support for multiple layered paths with different fills, which
can include colors, gradients, and even raster images. In addition, paths can be outlined
in different styles: path boundaries with borders, path with gradient fills, strokes with
various widths, and so on.

In my work, to support multiple layers the images are flattened, so that there is only
one layer that forms a partition of the plane. The idea is that after flattening, the image
only contains closed paths that do not overlap. Each boundary is then shared between
two paths. To compute the color for a point, I still compute the closest distance to the
boundaries. Once I find the closest boundary and the two colors on each side of it, the
color can be smoothly blended from the two colors. Although at some intersection points
more than two paths may share the same corner, I find that just using the closest distance
still gave good results.

In my previous work, in the examples of embossing, since I only support C° con-
tinuity some creases along the line segment junctions are obvious when the images are
magnified. For better quality, I decide to use a higher order approximation in this stage
of work, in which all boundary curves are approximated by circular arcs. Computing the

20

distance to a circular arc is almost as cheap as computing the distance to a line segment,
and yet the continuity can be improved to C'. More details about the second stage of my
work is described in Chapter [3]

The texel program approach developed by Nehab and Hoppe [40] also supports gen-
eral SVG images as texture maps in the context of real-time rendering. As with my work,
they use a uniform grid accelerator, but since it is sparse they store it in a (perfect) hash
table. For each cell, the boundary features that overlap with the cell are recorded in layer
order as they are drawn, so that layer overlap can be resolved in the shader, avoiding
the problems associated with flattening. This work was done in parallel with the final
stage of my work and there is considerable overlap. However, they use an approximate
approach to first approximate the cubic splines with quadratic splines and then use an ap-
proximate equation to compute the distances to quadratic splines. I develop an accurate
approach to compute accurate distance to spline curves of any order within fixed error
threshold.

In the pixel shader of Nehab and Hoppe’s approach, to compute the color for a point,
only the relevant boundaries are considered for each cell. The boundaries are processed
layer by layer from back to front. In each layer, while they compute the closest distance
to boundary, they also keep a count for the winding rule test. After a layer is processed,
an inside or outside test computed with winding rule is used to evaluate the sign of the
distance. This closest distance is then filtered for use in blending the current layer’s
color with the already computed color. In this work, all cubic splines are approximated
by quadratic splines. Furthermore, a fast but approximate equation to compute the dis-
tance to the quadratic splines is developed. This approximated distance is good enough
for antialiasing. However, away from the boundaries the distance accuracy drops dramat-
ically. Thick borders were therefore converted to closed paths, and special effects like
embossing cannot be supported. Another contribution of this work is a fast preprocessing
algorithm and the use of a perfect hash to store the sparse accelerator structure.

In the last stage of my work [46] I develop a solution that overcomes the flattening
problem, and can also render differentiable parametric curves of any kind precisely and
efficiently. Similar to the approach used by Nehab and Hoppe [40]], in each grid cell,
relevant boundaries and corresponding path colors are listed in layer order. To compute
the antialiased color, I still use the closest distance and the two colors on each side
of it. As I go through all the layers, the closest distance and the colors are updated
and eventually the distance to the closest visible boundary and the colors are obtained,
which are then used to blend between and so antialias the boundary between two adjacent
regions, or a stroke and region.

In a general SVG image, boundaries are normally described by a variety of para-
metric curves, including line segments, quadratic splines, cubic splines, and elliptical
arcs. In all previous work, either the higher order boundaries are approximated by lower
order primitives, which permits an easier distance computation, or the distance is approx-
imated. No techniques so far have dealt with rendering cubic splines directly, even with
approximated distances. Accurate distance to quadratic splines, cubic splines, or ellipses
has also not been used. The main contribution of the final stage of my work is that I can

21

render any differentiable parametric curves, including in particular the important case
of cubic splines, directly. With my approach, accurate distances can be computed for
any curve as long as the point is on the convex side of the curve or on the concave side
and within the radius of the curvature. The computation is easy, robust and practical for
real-time rendering. More details are given in Chapter [6]

22

Chapter 3

Computing Distance to Curves

As mentioned before, a crucial part of my approach to rendering vector graphics requires
the computation of the accurate distance to boundaries for antialiasing and special effects.
In this chapter, I will review general approaches to finding the closest distance to curves
for an arbitrary point, and explain the problems of using them in real-time rendering. In
the following chapters, I will introduce my own methods for distance computation.

In SVG files, boundaries are composed of line segments, quadratic splines, cubic
splines, and elliptical arcs. These are all parametric rather than implicit curves, and in
some contexts the distance along the primitive is important (for example, for dashed
curves). Distance computation to a line segment is easy and is used in the first stage of
my work. Distance computation to higher order parametric curves is harder. Computing
the distance to even a degree two parametric curve requires finding the roots of a cubic
equation. Theoretically, such roots can be found analytically using a closed formula, but
the solution is numerically unstable and involves many cases, and therefore is not suitable
for GPU implementation. For a degree three curve, such as a cubic spline (which is the
highest degree curve used in SVG files), the solution involves solving the roots of quintic
equations. Finding these roots analytically is infeasible so a numerical approach must be
taken.

Different approaches to finding the roots of polynomials are introduced here with
their advantages and disadvantages. I survey a variety of algebraic approaches. How-
ever, in general the main disadvantages of direct algebraic approaches are computational
expense and robustness. Instead of using any of these algebraic approaches, in Chap-
ter 6 I develop an iterative algorithm that exploits the geometry of the nearest-distance
problem. This iterative method finds the closest distance to a curve as well as the pa-
rameter along the curve at which that closest point lies (useful for texturing strokes). In
Chapter|6] we develop an iterative numerical method to find the closest distance to a para-
metric curve, and the parameter along the curve at which that closest distance lies (useful
for texturing curves). Compared with the classical (but more general) methods presented
in this chapter, our approach is simple, robust and suitable for GPU implementation.

23

3.1 Finding Roots of Polynomials

I will begin with a general description of the problem and a mathematical formulation of
its solution. Consider a parametric curve P : [0,1] — IR2. Suppose we know the value
t* €10, 1] for which P(¢*) is closest to a given query point Q. Then P(¢*) must satisfy
the following equation (although it may not be the only point to do so):

(P(") —Q)-P/(r") =0 (3.

This means the line between P(¢*) and Q is perpendicular to the tangent at P(#*). The
parametric value t* is a root of this equation. Not all the solutions to this equation give
minimum distances; some are maximum distances and some are not in the parametric
segment of the curve we care about. However, if we can find the roots to this equation,
we will be able to select the true minimum distance from among them. For quadratic
splines, this equation is cubic, and for cubic splines, it is quintic. Finding roots for
these equations however is not trivial. Analytic solutions for cubic roots are numerically
unstable and involve a case analysis, which requires control flow. The formula has six
cases, and two special cases to avoid division by zero. Many other techniques fail in
special cases, and this is usually unacceptable in graphics. For example, the otherwise
simple and elegant method given by Cardan [41] fails for the rare but possible case of
three co-located real roots.

Since use of control flow on the GPU has a substantial negative influence on perfor-
mance, [would like to avoid the use of case analysis. However, at the same time, quickly
and robustly finding all roots in all conditions is essential.

Finding roots for quintic equations is even more complicated. The Abel-Ruffini theo-
rem shows there is no general solutions for polynomial equations of degree five or higher
in terms of only arithmetic operations and radicals [[15]. Galois theory states what kind
of quintic equations are solvable by radicals: a polynomial equation can be solved by
radicals if and only if its Galois group is a solvable group. Even for the solvable quintic
equations, the solutions generally are still fairly complex: a general quintic equation is
converted to the Spring form, then we compute the roots of the Spring form, and finally
compute roots to the original equation from the roots to the Spring form. However this
solution can be so complicated that it might require hundreds of symbols, so even if the
above equation could be converted to Spring form (which we did not attempt to prove)
the result would still be impractical.

3.2 General Approaches in Finding Roots

In practice, people resort to numerical solutions. It is well known that Newton-Raphson
and other similar iterative algorithms sometimes do not converge; we need a more robust
solution. Although I only need real roots, I survey general approaches to finding roots,
including complex roots.

24

Typically, the Jenkins-Traub [30] and the Laguerre [19, 164, 42] algorithms are used to
find complex roots, because the Jenkins-Traub algorithm always converges, and Laguerre
algorithm almost always converges. Although Laguerre is simpler, it cannot be chosen
for my application, because even if the diverging cases are rare, any single case that fails
can cause visually disturbing artifacts during rendering. In contrast, the Jenkins-Traub
algorithm is too complicated to be used in real-time rendering. Also, both of these algo-
rithms (and many other polynomial root-finding approaches) entail polynomial deflation.
After one root is computed from the original polynomial, the polynomial is deflated to
lower order, and the second root is computed. This procedure goes on until all the roots
are found. Polynomial deflation is a another potential problem [8]. It can be numerically
unstable if the roots already computed are not accurate enough, thus the roots from the
lower order polynomials will be different from the roots in the original polynomial, es-
pecially if only single-precision arithmetic is used, as in GPUs. The deflation step is also
complicated. Finally, to find each root, Jenkins-Traub uses a three-stage method, and
each stage is an iterative procedure. The complexity of both these methods means that
they are simply not suitable for real-time rendering.

Aberth’s method [13,[1] is a relatively simple one. It approximates all the roots at the
same time based on the fundamental theorem of algebra that each polynomial of degree
n is identical to a product of n linear polynomials. In terms of complexity, in the case of
a cubic spline, the quintic equation has five roots. For each root at each iteration, it eval-
uates the polynomial and its first order derivatives over the complex numbers. Aberth’s
method needs to compute all five roots simultaneously all the time. Although it is rel-
atively simple, it still involves evaluation over complex numbers, which is complicated
for GPUs. Durand-Kerner’s method is a similar approach and has the similar problems.

Bairstow’s method can find complex roots using only real arithmetic. The idea is
that any polynomial can be factored into a quadratic polynomial and another lower order
polynomial. If the roots for the quadratic polynomial are the real roots, the remainder
of the original polynomial synthetically divided by the quadratic polynomial should be
zero. This method then iteratively updates candidate roots for the quadratic polynomial
until the remainder is zero. After two roots are found, the same method is applied to the
quotient polynomial until the remainder polynomial becomes quadratic or linear. This
method converges quadratically, except in some special cases.

Graeffee’s method squares the polynomial roots repeatedly to separate the roots and
then uses Vieta relations to approximate the roots. However, it does not work well under
single precision floating point computation.

The splitting circle method [52] numerically solves the roots for complex polyno-
mials. It uses the residue theorem to factor a polynomial to find the zeros within an
arbitrary error threshold. It is a complicated method that involves finding a splitting cir-
cle that separates the zeros of the polynomial into zeros that are within the circle and
those that are outside of the circle. It then computes the polynomial that vanishes at the
zeros within the circle, and finds the other factor polynomial using polynomial division.
The splitting circle is found by an iteration of Graeffe’s method. This method is not only
too complex for GPU implementation, but also will have similar numerical issues with

25

the single precision as the Graeffe’s method.

Brent’s method [7] is a root finding algorithm that combines the bisection method,
the secant method and inverse quadratic interpolation. It is relatively complicated and
involves many cases. It does not converge for all cases, but does apply to any kind of
parametric curve.

To compute the closest distance using these methods and their variations, basically
we need to find all the roots and choose the one with the smallest distance. So iterations
need to be done for each root.

3.3 Finding Real Roots

Although the general approaches to finding roots are all complicated, fortunately only
real roots are needed in my application. Therefore much simpler approaches can be
applied.

Certain iterative methods such as Regula-Falsi always converge if we can find a
monotonic, zero-crossing region of the curve and apply this method to such a region.
Therefore, the problem of finding real roots reduces to the problem of segmenting the
curve into zero-crossing monotonic regions. In case of quintic polynomial, one way to
compute the monotonic regions is to compute the roots for its first order derivative equa-
tion. These roots include the maximum and minimum values of the polynomial. After
sorting the roots, each region between two successive roots is monotonic. Within each
region a stable method can be used to find the root robustly.

However, the first order derivative of a quintic is a quartic, and it is still hard to find the
roots for a quartic. To find the quartic roots, we can nevertheless similarly find the roots
of its derivative, which is a cubic. The same procedure can be applied recursively until
the equation is a quadratic or linear where roots are easy to find analytically. However,
I decided not to use this method in my application because it involves too many levels
of iterative computations. With single precision floating point computation in GPUs,
inaccurate roots at one level may cause wrong results at higher levels. It also requires
constructing the quintic at run time, which requires the evaluation of both the cubic spline
and its first order derivative.

Another approach takes advantage of the convex hull feature of Bézier curves. For
a quintic equation, we can always transform it into a Bézier curve of degree five and
represent it with six control points. Given such a curve in Bézier form, we need to test if
the convex hull of its Bézier curve intersects with the line y = 0. If it does not, it means
there is no real root at all. Otherwise, the Bézier curve is subdivided into two Bézier
curves, and the intersection test is applied to each curve recursively. This step continues
until the curve is smaller than a threshold. This approach is stable but only converges
linearly.

A variation of this approach is to switch to a faster technique once we have proven
the segment is monotonic and crosses zero. A monotonic curve can be determined by

26

its control points. If the control points are monotonic (in other words, if all differences
between adjacent control points have the same sign), the curve is monotonic. Otherwise,
it is not. Once a monotonic curve is obtained, a stable iterative method like Regula-Falsi
can be used to find the roots.

However both of these methods require that we construct the quintic and transform
it into Bézier form at run time. These computations are complicated for GPUs. The
subdivision approach also needs a stack to store intermediate results and backtracking to
return complete results. Although a stack and backtracking can be implemented in the
latest generation of GPUs, such an approach would probably reduce the performance by
an order of magnitude. They are, therefore, not efficient enough for real time rendering.
Also, addressable arrays were not available in GPUs at the time I did my research.

As a comparison with other approaches, Wang et al [63] solved the same problem
as mine in robotics. They need to find the closest distance to a spline curve from any
point in real-time to control the behavior of a robot, with the assumption that the point is
within the radius of the road curvature.

In their work, they test with both Newton and quadratic minimization methods, and
develop a new method that combines the two. The experiments show that with quadratic
minimization method alone, about 1/3 of the points converge within 8 iterations, but most
of the points converge after hundreds of iterations, while a small number of points un-
fortunately do not converge at all. Using Newton’s method only, nine tenth of the points
converge quickly after three or four iterations, however one tenth of them need hundreds
of iterations or diverge. In their new combined method, the quadratic minimization is
used to refine the coarse initial guesses, and the Newton method is used to find the final
accurate results. All the points find their closest points between 5-8 iterations. Unfortu-
nately, in my application such erratic behaviour is simply unacceptable. I cannot trade
faster convergence most of the time for stability.

In Chapter [0] I introduce a method based on geometric bisection that only converges
linearly but which is simple and robust.

27

Chapter 4

Bilevel Images and Line Segment
Features

In this chapter and the following two chapters, I am going to present my own work.
This chapter is devoted to my work at the first stage of its development which aims
at rendering bi-level vector images as texture maps, using only line segment features.
As mentioned in previous chapters, although bi-level images are only a special simple
case of general vector images, they have many applications in fonts, documents, signs,
decals, and artistic designs. Research specifically for this case is therefore needed and
directly useful. At this stage [45], I develop an approach to use bi-level vector images,
fonts specifically, as texture maps in 3D real-time rendering, and provide a mechanism to
render documents with dynamic update of textual information and the display of kerned
text. I also develop my basic approach to efficient anisotropic antialiasing based on the
projected gradient of the distance field.

4.1 Introduction

While I later will extend my approach to general vector graphics, in this chapter I have fo-
cused on one specific problem: the rendering of text. Rendering text is a classic problem
in computer graphics, and one of the original motivations for antialiasing [10, [11} 65]].
The standard approach to rendering text is to prerender antialiased glyphs into a table
and then composite together images drawn from this table. However, this means that
the glyphs are stored at a fixed (and usually low) resolution. Mapping them onto a 3D
surface then requires resampling, which can degrade quality and introduce artifacts. Di-
rect rendering of the glyphs on the GPU as I propose avoids these problems, since the
antialiasing can be adapted procedurally to the local spatial distortion.

In this work I consider only the problem of rendering display text, not body text.
For maximum readability, body text needs to be aligned with and fitted to the display
grid, a process supported by hinting, or subtle variations in the shape of the characters.
Hinting assumes a fixed-scale, orthographic projection. Hinting cannot be supported in a

28

texture map representation since the characters will be dynamically deformed by surface
parameterization and perspective. For display text, the shape of the glyph is represented
independently of the sampling grid.

Glyphs in scalable fonts are represented using geometric contours consisting of line
segments, quadratic splines, and cubic splines. To render text, many of these glyphs
have to be placed in an image with precise positioning relative to one another. The
representations of the glyphs themselves can be precomputed, but it must be possible to
quickly lay out and modify an arrangement of glyphs interactively. However, the problem
of text rendering is simpler than that of general vector graphics: although glyphs must
be instanced many times, glyphs in normal text rendering do not exceed a certain density
in any one area and usually do not overlap. In the rare cases that glyphs do overlap, for
instance for accents or strikethroughs, it is with a constant offset and we can generate
new glyphs for these cases. Bounding box overlap must be supported for kerning, but
this is only in the horizontal direction in normal text layout. I can handle more general
cases such as support for glyph rotation or more complex overlap at some additional cost
in memory and shader execution time.

This chapter makes the following contributions:

1. An efficient anisotropic antialiasing technique for texture-mapped vector graphics

(Section [4.3);

2. A GPU-based representation of contours, including an inside or outside test, based
on exact evaluation of distance-to-feature functions (Sections 4.2 and [4.4));

3. A packed grid accelerator structure based on Voronoi analysis supporting efficient
constant-time evaluation of signed distance-to-contour functions (Section 4.3));

4. A sprite mapping technique that supports the dynamic composition of large num-
bers of glyphs in a single procedural texture map (Section4.6)); and

5. Techniques for supporting special effects such as outlining, miter rules, and em-
bossing (Figures 4.5 and [4.8).

4.2 Outline of Representation

My goal is to design a semi-procedural representation of vector graphics images that
could be used as if it were a random-access texture map in a shader. The representation
must support arbitrary contours and efficient antialiasing. Also, as GPU fragment shaders
do not support control flow without a loss of efficiency, and since such support was not
yet universal at the time when this work was undertaken, I decided to avoid a dependency
on control flow in my representation.

The representation used in this chapter consists both of data structures stored in tex-
ture maps and shader code to interpret that data. However, my system is implemented

29

using the object-oriented Sh GPU programming system [36, 35], which allows me to
strongly encapsulate my representation and use it in any context that a raster texture
could be used.

I begin with signed distance functions. Given a 2D shape, a signed distance func-
tion f measures the distance to the closest point on the shape’s boundary contour. The
distance function is negative inside the shape, positive outside, and zero on the contour.
Thresholding these functions at zero reproduces the original contours, and it is easy to
antialias edges by using a smooth transition function [23,138]], or to support special effects
like outlining or embossing.

Signed distance functions can be precomputed and sampled. Interpolation of these
samples can reproduce linear edges at any orientation, but interpolation tends to round
off corner features. To address this problem, distance fields can be adaptively sampled
[18]]. This could be implemented on the GPU using multiresolution textures [32], but
would require an extra level of indirection and, to support hardware bilinear interpolation,
redundant storage. It also does not completely solve the problem: at some magnification,
the corners will still be rounded.

Instead, I compute the distance function procedurally and accurately, using geometric
feature information rather than interpolation of distance samples. I use a Voronoi diagram
to build an accelerator, so at every point I only have to consider the minimal number of
features required to evaluate the distance field. I overlay a Voronoi diagram with a grid,
and in each grid cell I make a list of the contour features that contribute to the distance
field in that cell. The resolution of the grid is adapted to the complexity of each glyph,
so I can use less storage for simple glyphs and more for complex glyphs. My accelerator
structure also takes advantage of spatial coherence to reduce redundancy by searching
neighbouring texels for features. During preprocessing, an optimization process assigns
features to texels in anticipation of this runtime local search.

The second major challenge with text is the necessary support for dynamic layout of
large numbers of glyphs. First, the feature data for a set of desired glyphs are packed
into a “font” texture. Then, at every texel of a “sprite” texture I store the offset, scale,
and extent of a glyph that covers that texel’s cell. During rendering, I access (using
dependent texturing) a set of features from the glyph referenced from the current cell and
from any neighbours whose glyphs might overlap the current cell. I then compute the
overall minimum distance function to these features. This approach requires only one
level of texture indirection, is spatially coherent, and takes a constant amount of time per
rendered pixel.

4.3 Antialiasing

One of the major advantages of an implicit representation of contours is that it can be
antialiased easily. For an infinite straight edge, it has been shown that using the signed
distance function (normalized plane equation) as the implicit representation and using a

30

smooth transition function to convert the implicit form to intensity is equivalent to convo-
lution of the original hard edge with a radial filter [23]]. For corners, for a smooth thresh-
olding to be equivalent to convolution, theoretically I have to do more work, using the
distance to the two closest edges and a 2D lookup table. However, this is not necessary
for good results [23]: in practice simpler rules with approximately the right behaviour
suffice. For example, I can use the minimum distance as the implicit representation of
a corner [S7]] (which is suggested by the usual implementation of CSG operations on
implicit representations), or the thresholded edge functions can be combined with mul-
tiplication [38]. The important thing about antialiasing is to bound the bandwidth of a
signal before sampling it, not to simulate convolution exactly. It is also not necessary to
use the distance function, a fact that can be exploited to simplify the representation or to
compute various special effects, such as mitering. Any implicit function with the same
zero set can be used, although its gradient should be normalized to unity if we plan to
control the width of the transition region [33]].

The simplest smooth transition function is a clamped linear ramp, which in 1D would
be equivalent to convolution by a box filter. A better choice is the smooth cubic curve
given by the formula:

1 3
smoothstep(g) = 5 +8c(§ - 28%)7 4.1

where g. is g clamped to the interval [—1, 1]. This is equivalent to a parabolic filter.

Let f be a signed distance function. Relative to the texture coordinates (u,v), the
gradient Vf(u,v) of the signed distance function has magnitude 1. It points towards
the closest point on the contour on the inside (negative distances), and away from the
closest point on the outside (positive distances). For implicit representations that are not
true distance functions but whose gradient does not vanish, the gradient can be explicitly
normalized to unit length.

The normalized texture-space gradient can be used to implement inexpensive anisotropic
antialiasing. The texture-space gradient can be transformed into screen space coordinates
(x,y) as follows:

Vit = | o] 42)
[oujox av/ox [af/du P
= | ou/ay av/ay || af/av @.3)
= Joy(u,v)Vf(u,v). 4.4)

where J is the Jacobian of the (possibly procedural and usually nonlinear) transforma-
tion from texture space to screen space. GPUs provide the ability to approximate these
derivatives using differencing in fragment shaders, although they could also be computed
exactly using automatic differentiation.

31

Figure 4.1: Isotropic filtering vs. anisotropic filtering.

The gradient vector gives the direction of the maximum rate of change of an implicit
function. I can therefore compute the width of the transition region based on the magni-
tude of V f in screen space, then reparameterize a smooth step function to get the desired
final intensity value /,

= \(@r/ox7+(@f/o), @5)
I = smoothstep(f/2sw), (4.6)
where w is the desired width of the transition region in pixels.

By contrast, isotropic antialiasing, as is typically used in MIP-mapping [67], com-
putes the scale factor using

me = \/(Qu/dx) + (Iv/dx), @)
my = \/(9u/3y) +(3v/3y). (48)
s = max(my,my). (4.9)

The isotropic computation of s estimates the width of a worst case filter. Isotropic an-
tialiasing is often too conservative and can cause severe blurring when the transformation
is anisotropic, for instance under perspective foreshortening for oblique views near sil-
houette edges, or for highly nonlinear texture deformations (see Figure {.T). Isotropic
antialiasing can severely degrade the readability of text in particular. Fortunately, when
the gradient of the distance function is available, anisotropic antialiasing is inexpensive,
and produces a filter of constant screen-space width.

4.4 Features and Distance Functions

Each contour in a glyph is a piecewise path. The pieces of the path are line, quadratic
curve, and cubic curve segments. In this chapter, I consider primarily line segments.
Quadratic and cubic curves are adaptively approximated by line segments. I also present
some preliminary results based on computing the distance to quadratics, but computation
of distances to line segments is simpler and faster.

32

To construct a signed distance function for a contour, I break it down into geometric
features in such a way that the distance function for the contour can be found as the
distance to the closest feature. I consider two primary features: individual line segments,
and “corners” consisting of two half-segments meeting at a vertex.

For any feature, I want to compute not only the distance, but the gradient of the
distance function, a sign to be used in an inside or outside test, and optionally a “pseu-
dodistance” to be used for mitering (see Figures and[4.5). The pseudodistance is the
distance to the closest point on the infinite line containing the closest segment; the true
distance takes the segment endpoints into account.

The choice of features and distance function evaluation techniques for them is a sep-
arate decision from the rest of my system. However the distance field is generated, it can
be used for antialiasing and glyph placement as described later.

Any 2D curve can be described parametrically as a function P : IR — IR?. Given a test
point Q, I can solve for the parameter ¢* that minimizes |Q — P(¢*)|. For a curve segment,
I have to consider the endpoints as well. Without loss of generality, let the endpoints of
a curve segment be Py = P(0) and P = P(1). If * € [0, 1], then the closest distance is
given by |Q — P(¢*)|, otherwise it is given by min(|Q — Py|,|Q — Py|).

For line segments, by clamping the value of t* to [0, 1] I can reconstruct the true dis-
tance function and gradients, taking endpoints into account. If I do not clamp, I compute
the pseudodistance. It is also convenient to compute only the squares of the distances
and compare these, taking a single square root of the minimum distance to all features
under consideration. Likewise I can defer certain operations, such as normalization of
the gradient vector, until after I have found the closest of a set of features.

4.4.1 Line Segments

Figure .2 shows a glyph represented with line segments and the various fields associated
with it.

It is relatively inexpensive to compute the distance to line segment features. How-
ever, I also have to compute the sign of the distance to the contour, which depends on
whether my test point is on the inside or the outside of the contour. Unfortunately, certain
difficulties arise at corners.

A naive approach to computing the sign is to determine the closest line segment, and
then use the sign of the plane equation of that segment. However, this approach may fail
at corners since the distance to a shared vertex will be the same in the region bounded by
lines perpendicular to each segment, shown as c¢; to ¢; in Figure d.3] This may result in
the wrong sign being computed in the shaded regions shown in that figure.

One inexpensive (but inelegant) solution to this problem is to “shrink™ the line seg-
ments by a small amount, putting small gaps in the contour. In Figure the gap induces
a separating plane at f that bisects the corner. Unfortunately, if the gap is too large, it
can introduce artifacts in the rendering, and if it is too small, the angle of the separating

33

(a) (b)

(c) (d)
Figure 4.2: (a) A glyph with 11 line segments, (b) its distance field, (c) the gradient of
its distance field, and (d) its pseudodistance.

34

as ' aq

Figure 4.3: Errors caused by vertex ambiguity. The inside or outside test for the points in
the grey regions can be incorrect because the distances from each point to the endpoints
of both lines are equal. However, only one of the two choices is correct.

planes between the endpoints can be inaccurate (especially if the endpoints are stored
at low precision). To get the correct bisection angle (important in mitering), the shrink
distance has to be the same on both sides of a vertex. Care also has to be taken not to
reverse or eliminate very short line segments, which often arise as the result of curve
subdivision.

Another approach is to use the pseudodistance to break ties: above line b, the maxi-
mum absolute pseudodistance gives the closest line segment (consider that the pseudodis-
tance is the distance to extensions of the segments a; and a;). Below ¢ and ¢», the true
distance gives the correct answer, and below b, the maximum absolute pseudodistance
rule is wrong, so I need to not use it. To avoid pixel dropout, I need to switch between
the two rules, where they are both correct. Using this disambiguating rule unfortunately
results in a distance computation that requires about twice as many arithmetic operations
as using shrunken line segments. A line segment is described by its endpoints Py and P;.
Parametrically, points along the line can be generated by linear interpolation between
these points:

P(1) = (1—1)Py+1P. (4.10)

For points on the line segment, ¢ must lie in the range [0,1]. Given a test point Q =
(u,v), the parameter of the closest point on the (extrapolated) line can be found using the

35

(a) (b)

(c) (d)
Figure 4.4: (a) A glyph made with six quadratic segments, (b) its distance field, (c) the
gradient of its distance field, and (d) its pseudodistance.

36

following computations:

d = P, —P, (4.11)
q = Q-Py, (4.12)
* = d-q/d-d (4.13)

Note that no square root is required, only a division. However, t* may not lie in the
interval [0, 1], so a clamped value should be generated: ¢ = min(1, max(0,z")).

Then, the squares of the distance g and pseudodistance /4 can be calculated as
g = (Q-P) (Q-P()) (4.14)
B = (Q-P(r")) (Q—P(r")) (4.15)

To compute the sign (that is, determine which side of the line the point Q is on), I can
take the dot product of q with the normal:

n = (dy,—dy), (4.16)
s = sign(n-q), (4.17)
where
-1 : a<0
sign(a) = 0 : a=0 (4.18)
1 : a>0

Note that I do not have to normalize 1 to unit length to get the correct sign. However, if
I am willing to do so, an alternative way to compute the pseudodistance along with the
sign is

i = n/[a, (4.19)
h = q-n (4.20)

All the dot products in these computations are on two-tuples, but GPUs use four-
tuple registers. However, I often compute distances to several line segments at once
before comparing their magnitudes. A useful optimization in practice is to use “vertical”
as well as “horizontal” SIMD computations. For instance, I can use four-tuple operations
to compute two two-tuple operations in parallel, or four scalar operations to compute the
distance to four line segments in parallel. Some GPUs can also co-issue two two-tuple
instructions in a single cycle.

4.4.2 Corners

Corners are pairs of line segments meeting at a common point. A closed contour ex-
pressed as a sequence of N line segments can also be expressed as a sequence of N
corners by dividing all line segments at their midpoints. Although it is slightly more

37

expensive to compute the distance to a corner, and corners take more parameters to rep-
resent, corners do not suffer from ambiguity about which one is closer, since they always
meet with derivative continuity.

Corners are specified with three points: endpoints Py and P; and vertex P;. I compute
the direction tangents, then use these to compute the normal of the bisecting line:

dy = Py—Py, 4.21)
ngy = (dyo,—dxo), (4.22)
iy = Hp/|no, (4.23)
d = P,—Py, (4.24)
n = (dy1,—dx1), (4.25)
n, = n;/n, (4.26)
d = fg+h, 4.27)
i (dy, —dy). (4.28)

I make both tangent vectors point away from the corner point. Averaging the perpen-
diculars of the direction tangents rather than the tangent vectors themselves avoids a
degeneracy when the corner’s vertices are colinear. Two normalizations are required to
get the actual bisector. Once I have the normal of the bisector, though, it does not have
to be normalized.

Then, I compute a vector from the center vertex of the corner to the test point Q =
(u,v), and test this against the bisector normal:

q = Q-Py, (4.29)
s = q-n. (4.30)

If s is positive, then I compute the distance to the line segment given by Py and Py,
otherwise I compute the distance to the line segment given by Py and P,, reusing the
vector q. If i is precomputed, the extra cost of computing the distance to a corner
relative to a line segment is one dot product and a conditional assignment—plus the
cost of storing the additional center point and the precomputed bisection normal. A
corner feature therefore requires between 1.5 and 2 times as many stored values as a line
segment feature. However, since there is no ambiguity problem, corners can potentially
use lower precision for storage compared to shrunken line segments, which can result in
an equivalent storage cost.

4.4.3 Quadratics

For higher quality, I can consider features based directly on polynomial curves. Glyphs
in standard font formats use both quadratic and cubic segments, although quadratics
are far more common. I only consider distances to quadratic segments at this stage of
my research; a test glyph is shown in Figure Unfortunately, solving for the nearest
distance to a quadratic polynomial curve requires finding the roots of a cubic polynomial.

38

(a) (b)

Figure 4.5: Using a smooth pulse rather than a smooth step gives antialiased outlines.
(a) Using the true distance gives rounded outlines. The true distance takes the segment
endpoints into account. (b) Using the pseudodistance gives sharp miters. The pseu-
dodistance is the distance to the closest point on the infinite line containing the closest
segment.

I have found that it is most convenient to do this with an iterative root solver, since the
analytic solution to a cubic equation requires cube roots and a case analysis (which I can
avoid with suitable starting conditions on my own iterative solver). Quadratic splines,
like corners, require a minimum of six coordinates to specify. It is also possible to speed
up their computation by precomputation, but then twelve numbers are required for every
quadratic, which requires three texture elements to store.

Quadratics suffer from the same problem as line segments: distances to endpoints can
be ambiguous. As with line segments, either endpoint shrinking or midpoint subdivision
and grouping into corners can be used to resolve this.

4.4.4 Performance

At the resolution of the results in this chapter, roughly 512 x 512, and on my test ma-
chine (Pentium 4 2.6GHz and an NVIDIA 7800GT GPU), a glyph with 11 line segments
(the A glyph shown in the figures) runs at 150fps without explicit disambiguation (us-
ing shrunken line segments) and 80fps with pseudodistance disambiguation. Using 11
corners and precomputed separation planes, the same glyph runs at 60fps. Surprisingly,
the 6 quadratic polynomial features used in the curved test glyph (the D glyph shown in
the figure) runs at 70fps at the same resolution. In practice I find the quality of represen-
tations computed with linear features to be adequate. For the rest of the results in this
chapter, I use only line segment features and the “shrinking” approach for disambigua-
tion.

39

Figure 4.6: Voronoi analysis of some TrueType glyphs. Each color represents one line
segment.

4.5 Voronoi Grid Accelerator

The test renderings and performance numbers given so far are generated using a brute-
force approach, comparing the distances to all features in all contours of a glyph. This
is not practical for real glyphs, and certainly not for a page of text. I therefore have to
accelerate the computation by limiting the number of features considered at each texel.

4.5.1 Voronoi Analysis

To build an accelerated representation of the glyphs in a font, I read in the contour in-
formation using the FreeType library. I adaptively approximate quadratics and cubics by
line segments, subdividing the splines recursively until a given error bound is met. I then
compute the Voronoi diagram of each glyph using hardware acceleration [29]]. The hard-
ware acceleration approach to drawing a Voronoi diagram can also suffer from endpoint
ambiguity, so I shrink endpoints to resolve it (this problem would not arise if corners
were used as features). Some example analyses are shown in Figure 4.6 I compute the
Voronoi diagram only within some finite distance d of the contour. I also stretch each
character non-uniformly to fit a square with a minimum margin of d. The Voronoi cones
I draw are non-uniformly scaled so the distance computation is still correct even though
nonuniform scales are non-Euclidean: I get a scaled image of the Voronoi diagram of the
unscaled contours. It would also be possible to use a brute-force shader computation to
compute this diagram, to use a geometric (CPU only) Voronoi analysis, or to compute
the diagram for corner or polynomial features.

40

4.5.2 Grid Packing

Once the Voronoi diagram is computed, it is overlaid with a regular grid. Within each
cell of the grid, I make a list of all the features associated with regions in that cell. These
are the only features that need be considered when computing the minimum distance to
any point in this cell. Also, there are cells that are of distance greater than d from any
contour. These cells are black in the diagram, but I perform an additional test on the CPU
to determine if they are completely inside or completely outside of a region. In a flag
texture, I store (in a suitably biased fashion) —1 for cells completely inside, O for cells
on the boundary, and 1 for cells completely outside. Then, in a feature texture, I store
the parameters of features. These can be clipped and quantized, since I do not care about
features or parts of features more than distance d away. Note that only one feature can
fit in each cell of the feature texture. However, adjacent cells often refer to the same
features. In my shader, I will look at not only the features stored in the cell containing the
test point, but also at a number of neighbours (four is reasonably fast, but nine can also
be used). I use a simulated annealing process to assign features to texels of the feature
texture so that all the required features for each cell will be accessed by the shader. Note
that it is acceptable for a feature to be accessed and evaluated even if it is not necessary,
a fact I exploit to avoid conditionals. The flag texture marks texels that are completely
inside or outside, and more than distance d from the boundary. I multiply the value in
flag by a large number and add it to the computed minimum distance. Thus, I can store
“extra” features in these texels as well. The distance computation from these cells will
be incorrect, but [am going to swap it with a value of the correct sign (and then clean
up the distance field with a clamp), so it does not matter. This provides extra storage for
features that will not fit near a contour. I also make sure that the border of the glyph is
bounded by cells marked as being outside the contour. Figure[4.7shows how the Voronoi
diagram of a glyph is packed in a texture.

At a resolution of approximately 512 x 512, using four features per sample, a single
magnified glyph renders at about 100fps on my test machine.

4.5.3 Multiresolution

It is possible that the features for complex glyphs cannot be “packed” at a given resolu-
tion. I therefore start at the lowest possible resolution and, if I cannot successfully pack
the features at that resolution, increase the resolution of the accelerator in power-of-two
steps until I find a packing. Due to subdivision, curved edges can result in a large number
of features, whereas glyphs with straight edges can be stored at a relatively low resolu-
tion. If I want to use <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>