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Abstract

In digital watermarking, one embeds a watermark into a covertext, in such a

way that the resulting watermarked signal is robust to a certain distortion caused

by either standard data processing in a friendly environment or malicious attacks

in an unfriendly environment. In addition to the robustness, there are two other

conflicting requirements a good watermarking system should meet: one is referred

as perceptual quality, that is, the distortion incurred to the original signal should

be small; and the other is payload, the amount of information embedded (embed-

ding rate) should be as high as possible. To a large extent, digital watermarking

is a science and/or art aiming to design watermarking systems meeting these three

conflicting requirements. As watermarked signals are highly desired to be com-

pressed in real world applications, we have looked into the design and analysis of

joint watermarking and compression (JWC) systems to achieve efficient tradeoffs

among the embedding rate, compression rate, distortion and robustness.

Using variable-rate scalar quantization, an optimum encoding and decoding

scheme for JWC systems is designed and analyzed to maximize the robustness in

the presence of additive Gaussian attacks under constraints on both compression

distortion and composite rate. Simulation results show that in comparison with

the previous work of designing JWC systems using fixed-rate scalar quantization,

optimum JWC systems using variable-rate scalar quantization can achieve better

performance in the distortion-to-noise ratio region of practical interest.

Inspired by the good performance of JWC systems, we then investigate its appli-

cations in image compression. We look into the design of a joint image compression

and blind watermarking system to maximize the compression rate-distortion perfor-

mance while maintaining baseline JPEG decoder compatibility and satisfying the

additional constraints imposed by watermarking. Two watermarking embedding

schemes, odd-even watermarking (OEW) and zero-nonzero watermarking (ZNW),

have been proposed for the robustness to a class of standard JPEG recompression

attacks. To maximize the compression performance, two corresponding alternating

algorithms have been developed to jointly optimize run-length coding, Huffman cod-

ing and quantization table selection subject to the additional constraints imposed

by OEW and ZNW respectively. Both of two algorithms have been demonstrated to

have better compression performance than the DQW and DEW algorithms devel-

oped in the recent literature. Compared with OEW scheme, the ZNW embedding

method sacrifices some payload but earns more robustness against other types of

attacks. In particular, the zero-nonzero watermarking scheme can survive a class
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of valumetric distortion attacks including additive noise, amplitude changes and

recompression for everyday usage.
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Chapter 1

Introduction

1.1 Digital Watermarking

In the recent decade, new devices and powerful software have made it possible

for consumers worldwide to access, create, and manipulate multimedia data. In-

ternet and wireless networks offer ubiquitous channels to deliver and to exchange

such multimedia information. However, the potential offered by the information

technology era cannot be fully realized without the guarantee on the security and

protection of multimedia data. Thus, there is a strong need for techniques to pro-

tect the copyright of content owners. Cryptography and digital watermarking are

two complementary techniques proposed so far to protect digital content.

Cryptography is the processing of information into an encrypted form for the

purpose of secure transmission. Before delivery, the digital content is encrypted by

the owner by using a secret key. A corresponding decryption key is provided only

to a legitimate receiver. The encrypted content is then transmitted via Internet or

other public channels, and it will be meaningless to pirate without the decryption

key. At the receiver end, however, once the encrypted content is decrypted, it has

no protection anymore.

On the other hand, digital watermarking is a technique that can protect the

digital content even after it is decrypted. In digital watermarking, a watermark is

embedded into a covertext or host signal (the digital contents to be protected), re-

sulting in a watermarked signal called stegotext which has no visible difference from

the covertext. The stegotext is subject to manipulation by a malicious attacker,

who produces a forgery. The goal of the attacker is to make the watermark unde-

tectable from the forgery. Careful design of the watermarking system can minimize
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the chance that such an attack will be successful.

Three key issues in the design of watermarking schemes are as follows.

� Payload.

This refers to the number of information bits that are embedded in the cover-

text. This can vary from megabytes of information (for secret communication

applications) to as little as a few bits (for copyright protection applications).

For instance, DVD players have been proposed that verify the status of only

four information bits before recognizing the file as legitimate and playing it.

The payload is often normalized by the number of samples of the host signal,

resulting in a bit rate Rw per sample of the covertext.

� Transparency (Fidelity).

In most applications, embedding of information should not cause perceptual

degradation of the covertext. Embedded information should be invisible in

images and text, and inaudible in speech and audio. For a given application

there is a tolerable distortion level, generically denoted as D1.

� Robustness.

Although an attacker could possibly introduce distortion (e.g., common signal

processing operations such as compression, filtering, noise addition, desyn-

chronization, cropping, insertions, mosaicing, and collage.) into the stegotext

and thus create a forgery, the hidden message should still be detectable. The

watermark embedding schemes are commonly designed to survive a certain

level of distortion, generically denoted as D2.

Because of its applications to areas such as copyright protection, broadcast mon-

itoring and fingerprinting, digital watermarking has been studied extensively dur-

ing the past a few years. The best tradeoff among the embedding rate, distortion,

and robustness was investigated recently from an information-theoretic perspec-

tive. Specifically, in [5], Moulin and O’Sullivan introduced an information-theoretic

model of the watermarking game and determined upper and lower bounds on the

information embedding capacity for both public and private watermarking. In [6],

information rates were investigated for Gaussian host signals and the squared-error

distortion measure. In [10], Chen and Wornell showed that a coding strategy called

distortion-compensated quantization index modulation (DC-QIM) can achieve the

capacity for several scenarios when the statistics of the attack channel is known.
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A lot of practical watermarking schemes were also designed and tested em-

pirically (see, for instance, [1] [3] and the references therein). Among them are

two most popular approaches to watermarking problem proposed so far, that is,

spread-spectrum watermarking proposed in [27] and quantization based watermark-

ing proposed in [10]. In spread-spectrum watermarking, the watermark information

is embedded by linearly combining the host signal with a small pseudo-noise signal

that is modulated by embedded watermark. Although this approach has been re-

ceived considerable attention in the literature, it is limited by the interference from

the host signal when the host signal is not available at the watermark decoder,

which is typical in most of the watermarking applications. In quantization-based

watermarking, the watermark information is conveyed in the choice of different

quantizers. This approach has the advantage of rejecting the host signal interfer-

ence, therefore, it has a higher information embedding rate than spread spectrum

watermarking and is useful in a digital watermarking system where the watermark

decoder can not access to the host signal.

1.2 Research Problems and Motivations

Since in most applications, watermarked signals will be likely stored and/or trans-

mitted in compressed format, another aspect of the watermarking problem is that

of joint information embedding and lossy compression, where quantization and en-

tropy coding of the stegotext are carried out as an integral part of the watermarking

scheme. In contrast with a vast amount of research in digital watermarking, there

are only a few research works in the domain of joint watermarking and compres-

sion. Specifically, some ad hoc JWC algorithms were proposed for applications in

images, audio, and video [29] [22] [30]. A set of efficient practical schemes for joint

watermarking and compression (JWC) are proposed by Wu and Yang in [12]. The

schemes of JWC are based on creating disjoint codebooks representing different wa-

termarks by using fixed-rate different scalar quantizers and aim at maximizing the

robustness of the embedding in the presence of additive Gaussian attacks, under

constraints on the quantization distortion. Yet, another possible implementation

of such practical schemes is the one proposed in [13], which uses modulated lat-

tice vector quantization (MLVQ), based on dither modulation and lattice vector

quantization. Though it has been shown that the MLVQ scheme has good perfor-

mances, due to the high complexity of vector quantization, this approach has its

disadvantage in real applications.
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Inspired by the approach of designing JWC systems using fixed-rate scalar quan-

tization, we raise the following questions:

� Can we get more efficient joint watermarking and compression schemes if

we use variable-rate scalar quantization (VRSQ) instead of fixed-rate scalar

quantization?

� How can we implement VRSQ in the JWC system design for real world appli-

cations in order to get efficient tradeoffs among payload, transparency, com-

pression rate and robustness meanwhile the designed watermark encoder is

compatible with the decoders in current multimedia compression standards?

In this thesis, we will look into how to address these problems as described in

the following paragraphs.

(1) JWC using variable-rate scalar quantization: Since it has been shown that

JWC systems using fixed-rate scalar quantization have great advantage over sepa-

rately designed watermarking systems [12], we want to further improve the JWC

system performance by using variable-rate scalar quantization. We show that by

using variable-rate scalar quantization, a potential distortion-to-noise ratio (DNR)

gain can be obtained when considering decoding bit error probability in the pres-

ence of additive white Gaussian noise (AWGN) attacks. An alternating algorithm

is also developed to implement this scheme with low complexity.

(2) Joint image compression and blind watermarking with baseline JPEG de-

coder compatible: Inspired by the advantage of designing JWC using VRSQ, we go

one step further to investigate more efficient ways to embed watermark information

associated with an image invisibly into compressed bit streams. In this work, we

propose two innovative joint compression and blind watermarking methods to hide

the data or similar type of information invisibly into a compressed image with high

payload. The resulting data can be attacked by legitimate signal processing for

everyday usage in the decompressed domain. Later, the hidden information can be

extracted using a watermark decoder whenever necessary. We focus on embedding

watermarks into JPEG compressed bit streams, due to the wide applications of

the JPEG standard. It is shown that both of our proposed watermark embedding

algorithms achieve better rate-distortion performance than the DQW algorithm

[23] and the DEW algorithm [21] when the same information embedding rate and

JPEG recompression attacks are considered. In particular, the second proposed al-

gorithm, zero-nonzero watermarking (ZNW), also achieves good robustness against
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other types of valumetric distortion attacks including additive Gaussian noise and

amplitude scaling in everyday usage.

1.3 Thesis Organization and Contributions

The rest of the thesis is organized as follows. In Chapter 2, we first give a brief re-

view of digital watermarking and joint compression and digital watermarking from

the information-theoretic point of view. Then, some of the correlative theoretic

results are stated therein. In Chapter 3, we first review JWC system design using

fixed-rate scalar quantization in [12], and then a more efficient JWC scheme using

variable-rate scalar quantization with an alternating algorithm is proposed. The

experiment results in the case of AWGN attacks and a comparison with the perfor-

mance in literature are reported thereafter to show that better performance can be

obtained by using variable-rate scalar quantization in designing JWC systems. In

Chapter 4, two new joint JPEG compression and blind watermarking schemes are

proposed after reviewing the previous works in the literature. Experiment results

and comparisons with the DQW and DEW algorithms are reported therein. We

summarize the whole thesis and discuss open problems that arise from the presented

research in Chapter 5.

1.4 Notation

Throughout the thesis, the following notations are adopted. We use capital letters

to denote random variable, lowercase letters for its realization, and script letters

for its alphabet. For instance, X is a random variable over its alphabet X and

x ∈ X is a realization. We use pX(x) to denote the probability distribution of a

discrete random variables X taking values over its alphabet X , and also to denote

the probability density function of a continuous random variable X. If there is no

ambiguity, sometimes the subscript in pX(x) is omitted and we write p(x) instead.

Similarly, Xn = (X1, X2, . . . , Xn) denotes a random vector taking values over X n,

and xn = (x1, x2, . . . , xn) is a realization. Furthermore, E denotes the expectation

operator, H(X) is the entropy of X, and I(X;Y ) denotes the mutual information

between X and Y .
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Chapter 2

Joint Compression and Digital

Watermarking:

Information-Theoretic Viewpoint

Review

In this chapter, the standard model of digital watermarking is introduced first from

an information theoretic viewpoint. Then, the main problem on joint compression

and watermarking is formulated and the correlative results are stated.

2.1 Information-Theoretic Review of Digital Wa-

termarking

From an information theoretic viewpoint, a digital watermarking system can be

modeled as a communication system with side information at the watermark trans-

mitter, as depicted in Fig. 2.1. In this model, M is the message to be embedded

and it is uniformly distributed over the message set and is to be reliably transmitted

to the decoder. The host data are a sequence SN = (S1, S2, . . . , SN) of independent

and identically distributed (i.i.d.) samples drawn from p(s). The composite data

set XN is subject to attacks embodied by the channel A(y|x).

The information hider and the attacker are subjected to distortion constraints

between the covertext and watermarked signals. We define a distortion function for
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Figure 2.1: Formulation of information hiding as a communication problem.

the information hider as a nonnegative function d1 : S × X → R+. The distortion

function for the attacker is defined as a nonnegative function d2 : X × Y → R+.

The distortion function for the information hider is bounded and the distortion

functions di, i ∈ {1, 2} are extended to per-symbol distortions on N -tuples by

dNi (xN , yN) =
1

N

N∑
k=1

di(xk, yk).

Without ambiguity, the subscript N in dN is omitted in this chapter.

Definition 2.1.1. A length-N watermarking code subject to distortion D1 is a

triple (M, fN , φN), where

� M is the message set of cardinality |M|;

� fN : SN ×M→ XN is the encoder mapping a covertext sequence sN and a

watermark message m to a sequence xN . This mapping is subject to the dis-

tortion constraint Ed1(sN , fN(sN ,m)) ≤ D1 and the sequence xN = fN(sn,m)

is called a stegotext;

� φN : YN →M, m̂ = φN(yN) is the watermark decoder mapping the received

forgery sequence yN to a decoded message m.

If the watermark decoder can access to the covertext, then it is called a pri-

vate decoder otherwise it is called a public decoder. We only consider the public

watermarking decoder in this chapter.

Definition 2.1.2. An attack channel with memory, subject to distortion D2 , is a

sequence of conditional pmfs AN(yN |xN) from XN to YN , such that Ed2(xN , yN) ≤
D2. Denote this class of attack channels by AN(D2).

Moreover, R = 1
N

log |M| is called its watermark embedding rate. Given a wa-

termarking encoder and watermarking decoder pair (fN , φN), the error probability

of watermarking is defined by Pe = Pr{M̂ 6= M}.
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Definition 2.1.3. A rate R is achievable for distortion D1 and for a class of attack

channels {AN , N ≥ 1} , if there is a sequence of codes (M, fN , φN), subject to

distortion D1, with rate R such that supAN∈AN Pe(A
N)→ 0 as N →∞.

Consider an auxiliary random variable U defined over a finite set U of cardinality

|U| ≤ |X ||S| + 1. When the attack channel A(y|x) is a fixed known one, the

information hiding capacity is given by [5]

C = max
pX,U|S

I(U ;Y )− I(U ;S) (2.1)

where the sequence xN satisfies the distortion constraint Ed1(sN , xN) ≤ D1. In the

more general case, watermark embedding can be thought of as a game between two

players, the information hider (including watermark encoder and decoder) and the

attacker, in cases where the attack channel is not fixed and known. The first player

tries to maximize a payoff function (e.g., achievable rate), and the second one tries

to minimize it. The information available to each player critically determines the

value of the game. In our scenario, we assume that the information hider chooses

the encoder fN and the attacker is able to learn fN and choose the attack channel

AY N |XN (yN |xN) accordingly. We also assume that the decoder knows the attack

channel AY N |XN (yN |xN) and chooses φN accordingly. These assumptions may be

too optimistic. In [6] [8] a conservative approach for the watermark encoder and the

decoder is to assume that they are unable to know AY N |XN (yN |xN), but the attacker

is able to find out both fN and φN and design the attack channel accordingly.

Definition 2.1.4. A memoryless covert channel subject to distortion D1 is a con-

ditional distribution QX,U |S(x, u|s) from S to X × U such that∑
x,s,u

d1(s, x)QX,U |S(x, u|s)P (s) ≤ D1 (2.2)

The class Q is the set of all memoryless covert channels subject to distortion D1.

The class A(Q,D2) is the set of all memoryless attack channels subject to distortion

D2 under covert channels from the class Q. An expression for the information-

hiding capacity is derived in terms of optimal covert and attack channels in [5]
1.

Theorem 2.1.1. Assume that for any N ≥ 1, the attacker knows fN , and the

decoder knows both fN and the attack channel. A rate R is achievable for distortion

D1 and attacks in the class {A(fN)} if and only if R < C, where

1In [5], authors did not succeed to prove the converse part of the theorem 2.1.1. however, the
conclusion of this theorem is well accepted to be correct.
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C = max
QX,U|S(x,u|s)∈Q

min
AY |X(y|x)

{I(U ;Y )− I(U ;S)} (2.3)

and U is a random variable defined over an alphabet U of cardinality |U| ≤ |X ||S|+
1, and the random variables U , S, X, Y are jointly distributed as PU,S,X,Y (u, s, x, y) =

P (s)QX,U |S(x, u|s)AY |X(y|x), i.e. (U, S)→ X → Y forms a Markov chain.

A particular interesting case is also studied in [5] and [6] i.e. watermarking

in memoryless attack channels with Gaussian covertext. Consider the case of a

Gaussian S and the squared-error distortion measure d(x, y) , d1(x, y) = d2(x, y) =

(x− y)2. Here S = X = Y = R, and S ∼ N (0, σ2). The class of attack channels is

A(Q,D2). And we have the following theorem for Gaussian case [5]

Theorem 2.1.2. Let S = X = Y = R and d(x, y) = (x− y)2 be the squared-error

distortion measure. Assume that D2 < (σ +
√
D1)2. Let a be the maximizer of the

expression

f(a) =
[(2a− 1)σ2 −D2 +D1][D1 − (a− 1)2σ2]

[D1 + (2a− 1)σ2]D2

in the interval (ainf , 1 +
√
D1/σ), where

ainf = max

(
1,
σ2 +D2 −D1

2σ2

)
.

Then we have the following.

(a) If S has Gaussian distribution with zero mean and variance σ2, the embedding-

capacity is given by

C =
1

2
log

(
1 +

[(2a− 1)σ2 −D2 +D1][D1 − (a− 1)2σ2]

[D1 + (2a− 1)σ2]D2

)
. (2.4)

and the optimal covert channel is given by X = aS + Z and U = αS + Z,

where Z ∼ N (0, D1 − (a − 1)2)σ2 is independent of S. The optimal attack

channel A(y|x) is the Gaussian test channel given by

A∗(y|x) = N (β−1x, β−1D2)

where β = (2a−1)σ2+D1

(2a−1)σ2−D2+D1
and α = D1−(a−1)2σ2

D1−(a−1)2σ2+βD2
.

(b) If S is non-Gaussian with zero mean and variance σ2, (2.4) is the upper bound

on embedding capacity.
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2.2 Joint Lossy Compression and Watermarking

Another aspect of the watermarking problem is that of joint lossy compression

and watermarking. The problem is as follows: there is a set of messages to be

embedded in the covertext meanwhile the composite signal is compressed subject

to some distortion constraint. The embedded message must be reliably decodable

without access to the original host data, either directly from the stegotext or from

its forgery. Although the compression of the composite sequence can be lossless, the

entire process must be lossy since the reconstruction of the covertext from stegotext

cannot be perfect after the watermark embedding.

The difference between this model and the model presented in Fig. 2.1 is the

compression of the stegotext XN . The watermark encoder, in this setting, conveys

the covertext SN and the messagem through an encoding function fN , by producing

the watermarked signal XN = fN(SN ,m). Here, the stegotext XN is entropy-

coded, i.e., compressed in a blockwise manner using the optimum lossless code and

the corresponding watermarked signal rate should not exceed a prescribed value

Rc. The compressed watermarked signal is sent to the decoder. A simple way to

express it is that we add a constraint to the original model in Fig. 2.1, i.e.

H(fN(SN ,m))

N
≤ Rc. (2.5)

In this case, the Nash equilibrium of the game between the watermark embedder

and the attacker has not been found yet. However, two interesting cases, when both

of the covertext and the attack channel are discrete memoryless and both of them

are Gaussian, have been considered in [9] and [7] respectively. We refer them as

Discrete Memoryless Case and Gaussian Case respectively.

2.2.1 Discrete Memoryless Case

Let Ω denote the set of all triples (U, S,X) of random variables taking values in the

finite sets U , S, X , where U is an arbitrary finite alphabet of size |U| ≤ |S||X |+ 1,

and the joint probability distribution of (U, S,X), PU,S,X(u, s, x), is such that the

marginal distribution of S is PS(·), and Ed1(sN , xN) ≤ D1. For any triple (U, S,X),

there exists a related quadruple (U, S,X, Y ), with Y taking values in Y , such that

PU,S,X,Y (u, s, x, y) = PU,S,X(u, s, x)PY |X(y|x).
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where PY |X(y|x) is a transition probability of the discrete stationary memoryless

attack channel. Then the following theorem is obtained in [9].

Theorem 2.2.1. Let R(D) be the rate distortion function for source Ps(·). The

information hiding capacity for a discrete memoryless covertext S, a memoryless

attack channel AY N |XN (yN |xN) and Rc ≥ R(D1) is given by

C(Rc, D1) = max
(u,s,x)∈Ω

min{I(U ;Y )− I(U ;S), Rc − I(S;U,X)}. (2.6)

An alternative coding scheme to Gel’fand and Pinsker’s coding scheme [4] was

then proposed, which takes into account the compression. This coding scheme

utilized the classical random coding technique in information theory [2] and it is

listed as follows.

1. Code book generation

For each message m, generate 2NR0 codewords

UN(m, j) ∈ {uN(m, 1), . . . , uN(m, 2NR0)},

i.i.d. according to the distribution PU(·). For each codeword uN(m, j), gener-

ate 2NRx composite sequencesXN(m, j, k) ∈ {uN(m, j, 1), . . . , uN(m, j, 2NRx)}
i.i.d. according to the distribution PX|U(·|·). Let

C(m, j) = {uN(m, j, 1), . . . , uN(m, j, 2NRx)}.

2. Encoding/Embedding

Given the watermark message m and the state sequence sN , the encoder

seeks a codeword in bin m that is jointly typical with sN , say uN(m, j).

The first composite sequence found in C(m, j) that is jointly typical with

(sN , uN(m, j)), say xN(m, j, k), is chosen for transmission. If there exist more

than one such sequence, the described above process is applied to the first

matching uN(m, j) found in a bin’s list. If no such uN(m, j) exists declare an

encoding error.

3. Decoding

The decoder finds m̂ and ĵ such that uN(m̂, ĵ) is jointly typical with channel

output sequence yN . If there exist more than one such pair (m̂, ĵ), or no such

pair exits at all, declare a decoding error. The probability of encoding failure
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goes to zero as long as R0 ≥ I(U ;S) and Rx ≥ I(S;X|U), and the probability

of decoding failure goes to zero as long as Rw + R0 ≤ I(U ;Y ). Thus, the

overall probability of error goes to zero as long as Rw ≤ I(U ;Y ) − I(U ;S)

and Rx ≥ I(S;X,U). Now, since the compression procedure applied to the

composite sequences is lossless, it satisfies Rc ≥ Rw +Rx ≥ Rw + I(S;U,X).

Therefore, Rw ≤ min{I(U ;Y )− I(U ;S), Rc − I(S;U,X)}.

2.2.2 Gaussian Case

In this case, we assume both of the covertext and the attack channel are Gaussian as

shown in Fig. 2.2. No closed-form expressions for the rate region of watermarking

embedding rate Rw versus composite rate Rc have been found yet. In [7], Karakos

and Papamarcou established the achievable rate region in the terms of the relations

between the composite rate, the embedding rate, and the prescribed distortion

constraint for the private decoder case and it can serve as an outer bound of the

Gaussian case when the watermark decoder is public. It is stated as follows.

Figure 2.2: Gaussian joint compression and watermarking model.

Theorem 2.2.2. Assume covertext SN is i.i.d. Gaussian with zero mean and

variance σ2
s and the attack is additive i.i.d Gaussian noise with zero mean and

variance D2. A private, continuous alphabet joint watermarking and compression

code (2nRc , 2nRw , n) satisfies requirements

1

N
E ‖ SN −XN ‖2≤ D1

and

Pr{M̂ 6= M} → 0 as N →∞,

respectively, if and only if (Rc, Rw) ∈ RD1,D2 where RD1,D2 is defined as

RD1,D2 =

 (Rc, Rw) : Rc ≥
[

1
2

log( σ
2
s

D1
)
]+

,

Rw ≤ maxγ∈[σ2
s ,2

2Rc ] min{Rc − 1
2

log(γ), 1
2

log(1 + Pw(γ)
D2

)}

 (2.7)
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where

Pw(γ) =
γ(σ2

s +D1)− 2σ2
s + 2

√
σ2
s(γD1 − σ2

s)(γ − 1)

γ
σ2
s ≥ D1.

Specifically, we investigate the relationship between watermarking and compos-

ite rates in the presence of additive memoryless Gaussian noise, for the quantization

index modulation (QIM) watermark embedding system which is widely used in real

applications.

� Regular QIM [10], where no knowledge of the covertext is available at the

decoder (public scenario).

In the context of QIM for Gaussian case, the attack channel is none other

than AWGN channel and the auxiliary sequences UN are the source codewords

themselves. Therefore, in the review of the rate region in (2.6), we have the convert

channel given as U = X, which leads to the following relationships:

Rc = I(X;Y ) =
1

2
log

(
1 +

PX
D2

)
Rw = I(Y ;X)− I(S;X)

where PX is the variance of stegotext XN and D2 is the variance of additive noise.

Therefore, we can obtain the rate region for this scenario as follows

Rw =

[
Rc −

1

2
log

(
σ2
sD2(22Rc − 1)

σ2
sD2(22Rc − 1)− 1

4
(σ2

s +D2(22Rc − 1)−D1)2

)]+

where σ2
s is the variance of the covertext.

A numerical result with σ2
s = 1, D1 = 0.5 and D2 = 0.25 is shown in Fig. 2.3.

Compared with the outer bound given by (2.7), which is the straight line in the

figure, we can see that there is a huge gap between the rate region of the QIM joint

compression and watermarking scheme and its outer bound. Finding the optimal

convert channel, i.e., the optimal auxiliary variable U for Gaussian covertexts and

attack channels is now still an open problem.
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Figure 2.3: Achievable rate region for public QIM and private additive Gaussian

case is its outer bound.

2.3 Chapter Summary

In this chapter, we briefly reviewed the digital watermarking and joint watermark-

ing and compression model from information-theoretical point of view. Basically,

watermark embedding can be viewed as a game between two cooperative players

(the watermark encoder and watermark decoder) and an opponent (the attacker).

When there is no rate constraint on the stegotext, it has been found that both of

the optimal convert channel and attack channel are memoryless which give the sad-

dlepoints of the game. If there is a rate constraint on the stegotext, which gives the

joint watermarking and compression scenario, the rate region of the embedding rate

vs. composite rate for discrete memoryless attack channels and covertext sources

has been obtained. The rate region of public QIM when both of the covertext and

the attack channel are Gaussian has also been stated therein.
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Chapter 3

Joint Watermarking and

Compression Using Variable-Rate

Scalar Quantization

3.1 Introduction

In most applications, watermarked signals will be likely stored or transmitted in

compressed format. Instead of treating watermarking and compression separately,

it is interesting and beneficial to look at joint design of watermarking and compres-

sion schemes. In contrast with a vast amount of research in digital watermarking,

there are only a few research works in the domain of joint watermarking and com-

pression (JWC). Some ad hoc JWC algorithms were proposed for applications in

images, audio, and video, however, there is no unified design strategy until an

joint compression and watermarking algorithm using fixed-rate scalar quantization

(FRSQ), which is for the purpose of robustness in the presence of additive Gaussian

attacks, was proposed by Wu and Yang [12]. In the following section, we will first

briefly review the previous work of designing efficient embedding systems by quan-

tization index modulation (QIM) developed in [10] and the JWC systems designed

by using fix-rate scalar quantization proposed in [12]. Then, we propose an algo-

rithm to design the JWC system using variable-rate scalar quantization (VRSQ)

and it is shown that a potential gain can be obtained by using variable-rate scalar

quantization to design JWC systems.
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3.2 Review of Previous Work

Since the subject of watermarking and information embedding has been attracting

a vast amount of attention, quite a lot information embedding schemes have been

developed recently [3]. In [10], a coding strategy called quantization index modu-

lation (QIM) proposed by Chen and Wornell is now considered as one of the most

efficient embedding methods and it can achieve the embedding capacity for sev-

eral scenarios when the statistics of the attack channel is known to the watermark

encoder.

The basic idea of QIM can be explained by looking at the simple problem of

embedding one bit in a real-valued sample. Here we have watermark m ∈ {0, 1}
(1-bit message), and covertext or host signal s ∈ R (1 sample). A scalar, uniform

quantizer with step size is defined as Q(s) with step size 4 is defined as Q(s) =

∆b s+
∆
2

∆
c. We may use the function Q(s) to generate two new dithered quantizers:

Qi(s) = Q(s− di) + di, i = 0, 1 (3.1)

where d0 = −∆
4

and d1 = ∆
4

. The reproduction levels of quantizers Q0 and Q1 are

shown as circles and crosses on the real line in Fig. 3.1

Figure 3.1: Embedding one bit into one sample using original QIM.

One can extend the above dither modulation approach to general quantizers

Qm(s), m ∈ {0, 1} where each Qm is a mapping from the real line R to a codebook

Bm = {bm1 , bm2 , . . . bmL }. Here all codebooks are assumed to be disjoint 1. The output

values, bmj , 1 ≤ j ≤ L, are referred to as reconstruction points and L is the size of the

codebook Bm. At the receiver, upon receiving a distorted or corrupted watermarked

signal y , one has to form an estimate of the original watermark message so that

1The disjoint assumption makes the distinction between m = 0 and m = 1 easy and hence
allows one to use a simple decoder such as the MD decoder; it can be well justified at high
distortion-to-noise ratios (DNR). In general, however, if a sophisticated decoder such as the ML
decoder which uses source statistics is applied, the codebooks should be allowed to overlap or not
disjoint to get better performance at low DNRs.

18



the error probability P{m̂ 6= m} is as small as possible. One simple approach is to

apply a so-called MD decoder, which first chooses the reconstruction point closest

to and then extracts the watermark accordingly, i.e.

m̂(y) = arg min
m∈{0,1}

‖y −Qm(y)‖ (3.2)

In [12], Wu and Yang proposed a joint watermarking and compression (JWC)

strategy using fixed-rate scalar quantization to maximize robustness against addi-

tive white Gaussian (AWGN) attacks. In JWC, the quantization level L is finite.

Associated with the quantizerQm is a partition of the real line R into L quantization

cells Cm
j . The jth quantization cell

Cm
j = {s ∈ R : Qm(s) = bmj } = [zmj−1, z

m
j ) (3.3)

is an interval corresponding to the input range of bmj , where zmj−1, and zmj are defined

as end points of the Cm
j if 1 ≤ j ≤ L − 1, zm0 = −∞ and zmL = +∞. By mapping

(m, s) ∈ {0, 1} × R into Qm(s), the covertext signal is jointly watermarked and

compressed. Thus, as a mapping from {0, 1}×R to B0∪B1 serves as a binary JWC

encoding scheme using fixed-rate scalar quantization. To design a JWC system, an

optimal decoding rule first needed to be found. By simulations [12], it has been

shown that when distortion to noise ratio (DNR) is larger than 4.77dB, which is the

minimum DNR required to achieve the embedding capacity of one bit per sample,

the performance of the minimum distance (MD) decoder approaches that of the

maximum likelihood (ML) decoder. That is to say, in the DNR region of practical

interest, we can use the MD decoder instead of the ML decoder as the former has

low implementation complexity. Based on MD decoding rule, the decoding bit error

probability Pe of the corresponding system is defined as follows

Pe =
1

2

∑
m∈{0,1}

L∑
j=1

P (s ∈ Cm
j )Pm

j,e (3.4)

where P (s ∈ Cm
j ) is the probability that s lies in Cm

j . Pm
j,e is the conditional

decoding bit error probability given m and given the fact that the covertext s lies

in the quantization cell Cm
j . In the case of an AWGN attack channel with a noise

variance σ2
n, the conditional bit error probability Pm

j,e is given by
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
P 0
j,e = Q(| (b0L+b1L)−2b0j

2σn
|) +

∑L−1
i=1 | Q(| (b0i +b1i )−2b0j

2σn
|)−Q(| (b1i +b0i+1)−2b0j

2σn
|) |

P 1
j,e = Q(| (b01+b11)−2b1j

2σn
|) +

∑L
i=2 | Q(| (b1i−1+b0i )−2b1j

2σn
|)−Q(| (b0i +b1i )−2b1j

2σn
|) |

(3.5)

when L is even and Q(x) = (1/
√

2π)
∫∞
x
e−

t2

2 dt. A similar formula can be obtained

when L is odd. Assume the squared error distortion measure is used. Since water-

mark messages m are equally likely, the average embedding/quantization distortion

can be expressed as

D(S,X) =
1

2

∑
m∈{0,1}

L∑
j=1

∫ zm
j

zm
j−1

(s− bmj )2p(s)ds (3.6)

where p(s) is the probability density function of the host signal. To design the

optimal joint robust watermarking and compression system, is just to minimize the

decoding error probability Pe under the constraint of distortion no more than D,

i.e. to solve the following constrained optimization problem:

Minimize Pe, subject to

D(S,X) ≤ D
(3.7)

A Lagrangian method can be applied to solve the above problem, that is to

convert it to the following unconstrained problem

W (B,Z, λ) = Pe(B) + λD(B,Z) (3.8)

where the codebook set B = {B0, B1}, the end point set Z = {z0
1 , z

0
2 , . . . , z

0
L−1, z

1
1 ,

z1
2 , . . . , z

1
L−1} and λ ≥ 0. The distortion function D(B,Z) is defined as before in

(3.6).

Note that if each point zmj is force to have the relation as zmj = 1
2
(bmj + bmj=1) for

1 ≤ j ≤ L to minimize the distortion, the bit error Pe is a function of codebook set

B. An alternating algorithm was developed based on Lloyd-Max algorithm [16] to

solve the above unconstrained optimization problem and the convergence analysis

of the algorithm was also stated therein.
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3.3 Problem Formulation

Though in some applications fixed-rate scalar quantization is preferred with the

advantage of low implementation complexity, low time delay and immunity to error

propagation for transmission over noisy channel, more efficient compression could

be achieved by applying variable-rate scalar quantization which uses entropy coding.

This fact leads us to the following questions

� Is there any potential gain we can obtain if we design our JWC system using

variable-rate scalar quantization?

� Based on the constraints on compression rate and encoding distortion, how to

design the optimum JWC scheme to maximize the tradeoff between robustness

and rate-distortion performance of the resulting systems?

So in the following section, we will develop a novel joint watermarking and

compression system using variable-rate scalar quantization (VRSQ) to maximize

the robustness against AWGN attacks. It is shown that potential gains of bit error

probability versus DNR will be obtained.

Before formulating our optimization objective function, we first define the com-

posite rate of the JWC system as the entropy of the stegotext XN , i.e.

R = H(XN) = H(fN(SN ,m)) =
1

2

[
H(Z0) +H(Z1)

]
+ 1 (3.9)

where Z0 and Z1 stand for the two end points of the partitions of the codebook

B = {B0, B1} and watermark m is uniformly distributed. Normally, however, we

use (3.9) so as not to tie our results to a particular entropy code, since there are a

number of noiseless codes, e.g., arithmetic codes and Ziv-Lempel codes, that achieve

average rates quite close to the codeword entropy. Easily to see that composite rate

R is the function of end point set Z = {Z0, Z1}, we can rewrite it as follows

R(Z) = 1− 1

2

∑
m∈{0,1}

L∑
i=1

∫ zm
i

zm
i−1

p(s)ds log

∫ zm
i

zm
i−1

p(s)ds (3.10)

Now we formulate our objective is to solve the following constrained optimiza-

tion problem:
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
Minimize Pe, subject to

D(S,X) ≤ D

R(Z) ≤ Rc

(3.11)

This constrained optimization problem was solved in the classic Lagrangian

form,

J(B,Z, λ, ξ) = Pe(B,Z) + λD(B,Z) + ξR(Z) (3.12)

with λ ≥ 0 and ξ ≥ 0. B and Z denote the codebook set and the end-point set

respectively, however, the bit error probability is rewritten as

Pe(B,Z) =
1

2

∑
m∈{0,1}

L∑
j=1

∫ zm
j

zm
j−1

p(s)dsPm
j,e. (3.13)

And it is a function of codebook set B and end point set Z. In order to make

equations (3.13) and (3.9) holds all the time, the following two conditions need to

be satisfied b0
1 ≤ b1

1 ≤ . . . ≤ b0
j ≤ b1

j ≤ . . . b0
L ≤ b1

L.

zmj−1 ≤ bmj ≤ zmj for 0 ≤ j ≤ L
(3.14)

which are the constraints given by the relationships between the elements of code-

book set B and the points in the end point set Z.

The minimization of the Lagrange function (3.12) also leads to the solution of

the optimization problem in (3.11).

Theorem 3.3.1. For any λ ≤ 0 and ξ ≤ 0 the codebook set B∗(λ, ξ) and the end

point set Z∗(λ, ξ) which are the optimal solutions to the problem

min
B

min
Z
J(B,Z, λ, ξ) (3.15)

subject to the conditions in (3.14) are also the optimal solutions to the constrained

problem in (3.11) subject to the conditions in (3.14) when D(B∗(λ, ξ), Z∗(λ, ξ)) = D

and R(Z∗(λ, ξ)) = Rc.

Proof. For the optimal solution B∗(λ, ξ) and Z∗(λ, ξ), we have

Pe(B
∗, Z∗) + λD(B∗, Z∗) + ξR(Z∗) ≤ Pe(B,Z) + λD(B,Z) + ξR(Z)
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Equivalently, we have

Pe(B
∗, Z∗)− Pe(B,Z) ≤ λ(D(B,Z)−D(B∗, Z∗)) + ξ(R(Z)−R(Z∗)).

Since D(B,Z) ≤ D(B∗, Z∗) = D and R(Z) ≤ R(Z∗) = Rc and λ ≤ 0, ξ ≤ 0, we

have

Pe(B
∗, Z∗) ≤ Pe(B,Z).

That is, B∗ and Z∗ are the optimal solutions to the rate and distortion constrained

problem in (3.11). This complete the proof of the theorem.

As we sweep λ and ξ over the range from zero to infinity, set of solutions B∗(λ, ξ)

and Z∗(λ, ξ) and constraints D(λ, ξ) and R(λ, ξ) are obtained. We then find the

optimal solutions B∗(λ, ξ) and Z∗(λ, ξ).

3.4 Algorithm Design

Since the objective optimization problem (3.12) with conditions (3.14) is a double-

minimization problem, in principle, the following alternating minimization proce-

dure can be used to solve it.

� Fix the codebook set B, find the optimal end point set Z as follows

Z = arg min
Z
{Pe(B,Z) + λD(B,Z) + ξR(Z)} .

� Fix the end point set Z, find the optimal codebook set B as follows

B = arg min
B
{Pe(B,Z) + λD(B,Z)} .

However, it is difficult to find the minimization of the first step since the entropy

function R(Z) of the end-point set is there, which is virtually a concave function.

So we adopt the typical method in generalized Lloyd-Max algorithm for vector

quantization design [17]. It basically introduces another pmf Ω = {ωmi }Li=1 which

refereed as the code-distributions. The optimal code-distributions are given as

ωmi =
∫ zm

i

zm
i−1
p(s)ds, which are just the probabilities of covertext S falling into the

partitions Cm
j = [zmi−1, z

m
i ). Using divergence inequality [2], we have the following

fact which decouples the end-point set from the composite rate constraint:
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Fact 3.4.1. The entropy of a discrete random variable X with pmf p = {p(i)} can

be written as

H(X) = min
ω

∑
i

p(i) log
1

ω(i)

where the minimum is over all sub-pmf’s ω, that is, all nonnegative ω = {ω(i)} for

which
∑

i ω(i) ≤ 1.

So double-minimization problem (3.15) can be rewritten as

min
{ωm

i }
min
B,Z

J(B,Z, λ, ξ) = min
{ωi}

min
B,Z
{P (B,Z) + λD(B,Z)− ξR′(Z)}

= min
{ωm

i }
min
B,Z

1

2

∑
m∈{0,1}

L∑
j=1

∫ zm
i

zm
i−1

[
Pm
j,e + λ(s− bmj )2 − ξ logωmi

]
p(s)ds

 .

Here we omit the constant number 1 and this does not change the minimum. The

proposed iterative algorithm for optimization problem (3.12) is summarized as fol-

lows.

Algorithm: Joint watermarking and compression using variable-rate

scalar quantization (JWC-VRSQ)

1. Select an initial codebook set B satisfying

b0
1 < b1

1 < . . . < b0
j < b1

j < . . . < b0
L < b1

L.

The initial Z is set as follows: zmj = 1
2
(bmj + bmj+1) for 1 ≤ j ≤ L − 1.

zm0 = −∞ and zmL = ∞. The initial code-distribution Ω is set as follows:

ωmj =
∫ zm

j

zm
j−1

p(s)ds. Compute J(B,Z, λ, ξ) and denote it by J (1). Set t = 1,

B(1) = B, Ω(1) = Ω and Z(1) = Z.

2. Fix end point set Z(t) and code-distribution Ω(t). Update codebook set B(t+1)

by

B = arg min
B
J(B,Z, λ, ξ, {ωmi })

= arg min
B

1

2

∑
m∈{0,1}

L∑
j=1

∫ zm
i

zm
i−1

[
Pm
j,e + λ(s− bmj )2 − ξ logωmi

]
p(s)ds


subject to the conditions in (3.14).
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3. Fix codebook set B(t+1) and probabilities for each partition ω
m(t)
j . Update

end-point set Z(t+1) by

zmj =
1

2
(bmj + bmj+1) +

ξ(logωmj − logωmj+1)

2λ(bmj+1 − bmj )
.

for 1 ≤ j ≤ L− 1.

4. Fix codebook set B(t+1) and end point set Z(t+1), update code-distribution

Ω(t+1) by

ωmj =

∫ zm
j

zm
j−1

p(s)ds. (3.16)

Compute J(B(t+1), Z(t+1), λ, ξ) and denote it by J (t+1).

5. If the minimum distance between distinct points in B(t+1) is less than ε1 or

J (t)− J (t+1) < ε2 for some t , where ε1 and ε2 are prescribed thresholds, stop;

otherwise continue.

The core of the iterative JWC algorithm is Step 2 and Step 3, i.e. finding the

optimal end point set Z given codebook set B and code-distribution {ωi}, and

updating codebook set B with code-distribution {ωi} and end-point set Z. These

two steps are addressed separately as follows and the convergence analysis of the

algorithm is described thereafter.

3.4.1 Optimal End-point Set and Codebook Set Updating

Before updating codebook set B, we first rewrite the expression of bit error prob-

ability as

Pe(B, {ωmi }) =
1

2

∑
m∈{0,1}

L∑
j=1

∫ z̃m
j

z̃m
j−1

p(s)dsPm
j,e (3.17)

where z̃mj = 1
2
(bmj + bmj+1) +

ξ(logωm
j −logωm

j+1)

2λ(bmj+1−bmj )
. So the objective function in Step 2 is

rewritten as

min
B

Pe(B, {ωmi }) +
1

2

∑
m∈{0,1}

L∑
j=1

∫ zm
i

zm
i−1

[
λ(s− bmj )2 − ξ logωmi

]
p(s)ds

 (3.18)
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When the end point set Z and code distribution {ωmi } are fixed, we can update

the reconstruction points by the feasible direction method in nonlinear program-

ming [15] to minimize J(B,Z, λ, ξ, {ωmi }) in Step 2. The feasible direction operation

is an iterative mapping for the minimization of J(B,Z, λ, ξ, {ωmi }). The ith iter-

ation starts with the reconstruction points, which satisfies (3.14) and looks for a

feasible direction of displacement such that a small step in that direction does not

lead out of the constraint (3.14) and decreases strictly. We then move some distance

in this direction, to obtain a new codebook set, which is better than the previous

one in terms of the objective function J(B,Z, λ, ξ); for instance, we may look for

the minimum of in the direction v, subject to not violating the constraint (3.14),

i.e., the ith iteration generates improved reconstruction points by

b
m(i+1)
j = b

m(i)
j + α∗νmj (3.19)

where the optimum step size α∗ is a solution of a (single variable) line search

problem. The direction v can be generated by the following linear programming

problem



Minimize η subject to

∇bmj
J(B,Z, λ, ξ)v − η ≤ 0

b0
j − b1

j + ν0
j − ν1

j − η ≤ 0 1 ≤ j ≤ L

b1
j − b0

j+1 + ν1
j − ν0

j+1 − η ≤ 0 1 ≤ j ≤ L− 1

bmj − bmj+1 + νmj − νmj+1 + δ − η ≤ 0 m ∈ {0, 1}∑
m∈{0,1}

∑L
i=1 | νmi |≤ 1

(3.20)

Here we treat current end point set Z as the function of codebook set B and

the updated code distribution {ωmi }, i.e. Z = Z(B, {ωmi }). δ =

√
ξ
λ

log
ωm

j+1

ωm
j

and

∇bmj
J(B,Z, λ, ξ) represents the gradient of J with respect to B only. That is, the

direction v is an optimum solution of (3.20). (Note that (3.20) has to be solved

at each iteration; at the ith iteration, bmj is replaced by b
m(i)
j .) If η < 0 , then

∇bmj
J(B,Z, λ, ξ)v < 0 and hence v is a direction of descent. In view of [15], it can

be shown that there exists a constant β such that bmj +ανmj , m ∈ {0, 1}, 1 ≤ j ≤ L,

satisfy the constraint (3.14) for any 0 ≤ α ≤ β. The optimum step size at the ith

iteration is determined by the following formula

α∗ = arg min
0≤α≤β

J(b
m(i)
j + αυmj , Z, λ, ξ). (3.21)
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With the above iterative mappings, the objective function decreases as long as

η < 0.

To update the end point set in Step 3, we need to solve the following minimiza-

tion problem

Z = arg min
Z
{Pe(B,Z) + λD(B,Z) + ξR′(Z, {ωmi })} (3.22)

where

R′(Z, {ωmi }) = −1

2

∑
m∈{0,1}

L∑
i=1

∫ zm
i

zm
i−1

p(s)ds logωmi .

Since we have treated the bit decoding error probability as the function of end

point set B and {ωi}, i.e. Pe = Pe(B,Z(B, {ωi})) which now can be taken as a

constant since B and {ωi} are known. Therefore, we can find the optimal solution

of the above minimization by taking derivative of (3.22) with respect to Z. The

minimum is obtained when

zmj =
1

2
(bmj + bmj+1) +

ξ(logωmj − logωmj+1)

2λ(bmj+1 − bmj )
(3.23)

for 1 ≤ j ≤ L− 1.

Remark 3.4.1. In Step 3 of the above iterative algorithm, assuming end point set

Z is a function of codebook set B is necessary. That is to guarantee that finding

the exact decent direction of codebook set B for one updating cycle, i.e. updating

both Z and B once.

3.4.2 Convergence Analysis

The convergence of the above algorithm is stated in the following theorem.

Theorem 3.4.2. Fix λ and ξ. Assume that the probability density function p(s)

of the covertext S is continuous and has a finite support. Then the iterative min-

imization procedure described above with any initial codebook set satisfying (3.14)

either terminates at a local optimum or the limit of any convergent subsequence of

reconstruction points b
m(t)
j , m ∈ {0, 1}, 1 ≤ j ≤ L and end points z

m(t)
j , m ∈ {0, 1},

1 ≤ j ≤ L− 1 is a local optimum.
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Proof. To prove this theorem, we will employ Zangwills convergence theorem (1969)

[15]. The theorem states as follows: the convergence of the above iterative algorithm

depends on the following three sufficient conditions.

1. The codebook set B and the end point set Z are contained in a bounded and

closed domain.

2. There exists a continuous descent function.

3. The iterative mapping associated with the feasible direction operation for

codebook set updating and the optimal partitions updating is closed (see [15]

for the definition of closed mapping).

Under the assumption that p(s) has a finite support, it is easy to see that B and

Z are contained in a bounded and closed domain. Therefore, to apply Zangwills

convergence theorem, it suffices to show that the point-to-set map defined by the

alternative minimization procedure in Steps 2, 3 and 4 of the JWC-VRSQ algorithm

is closed and there exists a continuous descent function relative to this map.

Let A denote the point-to-set map specified in Steps 2, 3 and 4 of the JWC-

VRSQ algorithm. Starting with an initial codebook set B(1) and end point set

Z(1) , the algorithm generates a sequence of codebook sets and end point sets

(B(t), Z(t)) for which (B(t+1), Z(t+1)) ∈ A(B(t), Z(t)), i.e. (B(t+1), Z(t+1)) is obtained

from (B(t), Z(t)) by one application of Step 2, 3 and 4 in the JWC-VRSQ algorithm.

Since Step 2 includes two mini-steps, the point-to-set map A is actually a compo-

sition of five point-to-set maps: A1, A2, A3, A4 and A5. Here, A1 associates every

end point set Z with induced code distribution Ω, given by (3.16), i.e.,

A1(B,Z) = {(B,Z,Ω) : Ω is given by (3.16)}.

A2 associates every codebook setB, point set Z with the direction v, the optimal

solution of (3.20), i.e.,

A2(B,Z,Ω) = {(B,Z,Ω,v) : v is an optimal solution of (3.20)}.

The point-to-set map A3 associates (B,Z,Ω,v) with (B + α∗v, Z,w), i.e.,

A3(B,Z,Ω,v) = {(B + α∗v, Z,Ω) : α∗ = arg min
0≤α≤β

J(b
m(i)
j + αυmj , Z, λ, ξ)}.
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A4 represents the map specified in Step 3, which maps (B,Z,Ω) into B, Z̃,

where Z̃ is the end point set obtained from B and Ω by (3.22). Finally, the last

map A5 is minimizing the objective function J(B,Z, λ, ξ) by mapping (B, Z̃,Ω)

back into (B, Z̃) using (3.16) which is the same as A1. Since A1 is a continuous

mapping, A1 is closed. To prove that A2 is closed, we directly apply lemma 5.3 in

[15] to J(B,Z, λ, ξ) as a function of both B and Z. Note that in the corresponding

linear programming problem involving the gradient of J with respect to both B and

Z, there is no constraint on the direction with respect to Z. Therefore, the linear

programming problem involving the gradient of J with respect to both B and Z

can be decomposed into two independent problems: one given by (3.20) and the

other involving the direction with respect to Z only. From this the closeness of A2 is

proved. By using a similar argument to [ Theorem 3.1 and 3.3 ] in [15], one can also

show that A3 is closed. Obviously, A4 is continuous and hence closed. Therefore,

all A1, A2, A3, A4 and A5 are closed. Since A is a composition (or product) of A1,

A2, A3, A4 and A5 in the indicated order, it shows that A is closed.

To show that there is a continuous descent function relative to A, let us look

at the objective function J(B,Z, λ, ξ) itself, which is continuous with respect to

B and Z. As long as η < 0 in (3.20), the direction v is a descent direction for

J(B,Z, λ, ξ), and hence

J(B(t+1), Z(t+1), λ, ξ) < J(B(t), Z(t), λ, ξ).

On the other hand, if the optimum value η of (3.20) is zero, then the present

B(t) is a local optimum for the fixed Z(t). Subsequently, can not be updated by

Step 4 of the JWC-VRSQ algorithm either. Thus, (B(t), Z(t)) is a stationary point.

This completes the proof of the theorem.

Remark 3.4.2. In the above, the source statistics is assumed to be known. If the

source statistics are unknown, one can apply the proposed design algorithm to the

training sets.

3.5 Simulation and Comparison

Having described and analyzed algorithms for designing optimum binary JWC en-

coding schemes using variable-rate scalar quantization, in this section, we evaluate

its performance by simulation and comparison with designing JWC systems us-

29



ing fixed-rate nonuniform scalar quantization in the presence of additive Gaussian

attacks.

Consider i.i.d Gaussian covertexts with zero mean and unit variance. Assume

that the squared error distortion is used, the minimum distance decoder is employed

and the attack channel is an AWGN channel with variance σ2
n. Compute and

test the bit error probabilities for binary JWC schemes obtained from optimal

fixed-rate scalar quantization (FRSQ) in [12] and variable-rate scalar quantization

(VRSQ) described above respectively. We plot curves in terms of decoding bit error

probability Pe versus distortion noise ratio (DNR), where

DNR = 10 log10

D(S,X)

σ2
n

Fig. 3.2 plots the bit error probabilities versus DNR for the optimum binary

JWC systems using VRSQ and FRSQ. To make the comparison fair, we assume

that both of the two schemes have the same composite rate, which is Rc = 4.15

bits per sample and the encoding distortion constraint is D = 0.019. We can

see that the optimal binary JWC systems using variable-rate scalar quantization

achieve better performance than the optimal binary JWC systems using fixed-rate

nonuniform scalar quantization. In particular, the optimum binary JWC systems

using the variable-rate scalar quantization method provide about 0.3-dB DNR gain

over those using fixed-rate nonuniform scalar quantization in a wide range.

In the simulation, 55 sample sequences of length 106 were processed. The 94%

confidence intervals for bit error probability were computed and found to be within

3% of the true value. The prescribed threshold values ε1 and ε2 were set to 10−12

and 10−18 respectively for the FRSQ algorithm. For the VRSQ method, ε1 and ε2

were set to 10−15 and 5 × 10−15, respectively. Usually 1000 to 3000 iterations are

needed to terminate both of the two algorithms. Although plenty of computing

time is needed for running these two methods, the processes are offline. Once the

quantization codebooks are determined, the watermark and compression process

can be accomplished by the defined encoding rule.
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Figure 3.2: Decoding bit error probabilities comparison between VRSQ and FRSQ

when composite rate is 4.15 with distortion constraint 0.019.

3.6 Chapter Summary

In this chapter, we have investigated the design of JWCs using variable-rate scalar

quantization. The MD decoder is first selected as the decoding rule in our subse-

quent design. The binary JWC encoding scheme using variable-rate scalar quanti-

zation (VRSQ) are then presented. Simulation results show that optimum binary

JWC systems using variable-rate scalar quantization are better than optimum bi-

nary JWC systems using fixed-rate scalar quantization (FRSQ) proposed in [12].

In comparison with the results of JWC systems using FRSQ, optimum binary JWC

systems using VRSQ achieve about 0.3-dB DNR gain in the DNR region of practical

interest.
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Chapter 4

Joint JPEG Compression and

Robust Watermarking

4.1 Introduction

Watermarks designed to survive legitimate and everyday usage of content are re-

ferred as robust watermarks. Examples of processes a watermark might need to

survive include lossy compression, printing and scanning, format conversion, noise

reduction and so on. In this chapter, we consider designing the joint compression

and watermarking systems which have the robustness to a broad class of valu-

metric distortion attacks. In the real JWC applications, we have to design our

watermark encoder to be compatible with the decoders in current multimedia com-

pression standards, for instance, JPEG in image compression, MPEG-4 and H.264

in video compression. We propose two joint watermarking and compression schemes

to embed the data or similar type of information invisibly into images with high

payload. As JPEG is a widely used compression format [19] [18], in this chapter,

we use JPEG compression as an example to investigate how to maintain or even

improve the compression rate distortion performance of a JWC system after a wa-

termark message is embedded. Specifically, given a watermark embedding rate, we

develop a joint image compression and blind watermarking system to maximize the

compression rate distortion performance while maintaining baseline JPEG decoder

compatibility and satisfying the additional constraints imposed by watermarking.

In the following, we first review the previous work on JPEG optimization and a

joint JPEG compression and watermarking algorithm proposed in the recent liter-

ature. Then, in Section 4.3, we develop a joint odd-even watermarking (OEW) and
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JPEG compression algorithm to jointly optimize run-length coding, Huffman cod-

ing and quantization table selection which is subject to some constraint imposed by

watermark embedding for the purpose of being robust to a class of standard JPEG

recompression attacks and additive Gaussian noise attacks respectively. Iterative

algorithms are then proposed to maximize the compression rate-distortion perfor-

mance of the JPEG-compatible JWC systems under the robustness constraints.

Then, to obtain the more robustness against other types of valumetric distortion

attacks, in Section 4.5, we improve the OEW method to the zero-nonzero water-

marking (ZNW) scheme which can survive a class of valumetric distortion attacks

including recompression, additive Gaussian and amplitude scaling. Detailed exper-

imental results and comparisons are given in Section 4.6.

4.2 Previous Work on JPEG Optimization and

Joint JPEG compression and Watermarking

We now review the so called graph-based JPEG joint optimization [20] and a joint

JPEG watermarking proposed based on it–DQW algorithm in [23].

4.2.1 Graph-based JPEG Joint Optimization

A JPEG encoder consists of three basic steps [19] [18]: The encoder first partitions

an input image into 8×8 blocks and then processes these 8×8 image blocks one by

one in raster scan order (baseline JPEG). Each of these 8× 8 blocks is transformed

from the pixel domain to the DCT domain by an 8 × 8 DCT. Then the resulting

DCT coefficients are then uniformly quantized using an 8 × 8 quantization table,

whose entries are the quantization step sizes for each frequency bin. After that, the

DCT indices from the quantization are then entropy coded using run-length coding

and Huffman coding. The JPEG syntax leaves the selection of the quantization

step sizes and the Huffman codewords to the encoder provided the step sizes must

be used to quantize all the blocks of an image. This framework offers significant

opportunity to apply rate-distortion (R-D) optimization at the encoder where the

quantization tables and the Huffman tables are two free parameters the encoder

can optimize.

Inspired by the fixed-slope universal lossy data compression scheme considered

in [24] [25], Yang and wang in [20] proposed a JPEG-compatible joint optimization
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Figure 4.1: Block diagram of joint optimization of the run-length coding, Huffman

coding, and quantization step sizes.

algorithm to maximize the compression performance over all possible sequences

of run-size pairs (R, S) followed by in category indices amplitudes A, all possible

Huffman tables H, and all possible quantization tables Q in the procedure of JPEG

encoding as shown in Figure. 4.1. The free choice of these three parameters in the

JPEG syntax provides ample opportunity for the optimization of the compression

rate distortion performance. The authors also developed a neat graph-based run-

length code iterative optimization algorithm that chooses the sequence (R, S,A),

Huffman table, and quantization table iteratively to solve the objective minimiza-

tion function defined by (4.1).

min
(R,S,A),H,Q

J(λ) = d[I0, (R, S,A)Q] + λr[(R, S), H] (4.1)

where d[I0, (R, S,A)Q] denotes the mean square error distortion between the orig-

inal image I0 and the reconstructed image determined by (R, S,A) and Q over all

AC coefficients, r[(R, S), H] denotes the compression rate for all AC coefficients

resulting from the chosen (R, S,A) and H, λ is a fixed parameter that represents

the tradeoff of rate for distortion, and J(λ) is the Lagrangian encoding cost.

The iterative algorithm consists of two alternating steps, in which an optimal

sequence (R, S,A) is first determined given Q and H, and then Q and H are

updated when (R, S,A) is fixed. The core of the iterative algorithm is a so called

graph-based run-length coding (GBRLC) algorithm, which, given Q and H, can
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efficiently find an optimal sequence of (R, S,A) to minimize the Lagrangian cost

J(λ). The optimal sequence (R, S,A) is determined independently for each 8 × 8

image block as J(λ) is block-wise additive. The graph utilized in the searching of

the optimal sequence has 65 states (0 ≤ i ≤ 64). The first 64 states correspond to

64 DCT coefficient indices of an image block in zigzag order. Each state may have

incoming connections from its previous 16 states, which correspond to the run R, in

an (R, S) pair. The last state is called end state. The end state may have incoming

connections from all the other states, which correspond to the EOB (end-of-block)

code, i.e, code (0, 0). It may have incoming connections from all states i (i ≤ 62)

where the indices are not equal to zeros. State 63 goes to state end without EOB

code. For a given state i (i ≤ 63) and its predecessor i (0 ≤ i ≤ 15), there are 10

parallel transitions between them which correspond to the size group S in an (R, S)

pair. For each state i where i > 15, there is one more transition form state i−16 to

i which corresponds to the pair (15, 0), i.e., ZRL (zero run length) code. Associated

with each transition (r, s) is a cost defined as the incremental Lagrangian cost of

going from state i − r − 1 to state i when the ith DCT coefficient is quantized to

size group s (i.e., the coefficient index needs s bits to represent its amplitude) and

all the r DCT coefficients appearing immediately before the ith DCT coefficient

are quantized to zeros. Specifically, this incremental cost is equal to (4.2)

i−1∑
j=i−r

C2
j+ | Cj − qi · Ai |2 +λ(− logP (r, s) + s) (4.2)

where Cj, j = 1, 2, . . . , 63 is the jth DCT coefficient, Ai is the chosen amplitude

for the ith DCT index in size group s that gives rise to the minimum distortion

to Cj among all allowed amplitudes within size group s, qi is the ith quantization

step size and P (r, s) is the probability of pair (r, s), which determines the Huffman

table H. Similarly, for the transition from state i (i ≤ 62) to the end state, its cost

is defined as (4.3)

63∑
j=i+1

C2
j + λ(− logP (0, 0)) (4.3)

With these definitions, every sequence of (R, S) pairs of an 8× 8 block corresponds

to a path from state 0 to the end state with a Lagrangian cost. The authors then

applied a fast dynamic programming algorithm to first find a minimum encoding

cost for each state and then determine the optimal sequence (R, S,A) for the whole

graph which minimizes the Lagrangian cost.
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4.2.2 Joint JPEG Compression and Differential Quantiza-

tion Watermarking

Based on the aforementioned Graph-based JPEG optimization method, Yang and

Wu developed a joint JPEG compression and differential quantization watermark-

ing (DQW) algorithm [23] which embedded watermarks into images when images

are compressed into JPEG format. The embedded watermark can be detected

without the knowledge of the original image and the quantization step sizes in the

process of joint embedding and compression mean while it can survive a class of

standard JPEG recompression attacks.

The DQW strategy embeds binary watermarks into the JPEG compressed bit

stream utilizing the difference of the DCT indices of corresponding positions be-

tween adjacent blocks. This procedure can be expressed as follows in (4.4)

| IDa,k − IDb,k | qk(2mab,k − 1) ≥ mab,k∆k,Qjpeg
(4.4)

where the watermark bit mab,k = 1 or 0, IDa,k and IDb,k denote the kthe DCT

coefficient indices in block a and b respectively, qk is the kth quantization step size

in the quantization table of the proposed JWC alogrithm, and ∆k,Qjpeg
is the kthe

quantization step size in the quantization table of the standard JPEG recompression

attack with a quality factor equal to Qjpeg. At decoder, the watermark is decoded

using the decision rule as follows

m̂ = 1, if | θ̃a,k − θ̃b,k |≥ δ

m̂ = 0, otherwise
(4.5)

where θ̃a,k and θ̃b,k are the kth DCT coefficients in blocks a and b of the received

and possibly attacked image. δ is set to
∆k,Qjpeg

2
if the parameter Qjpeg is known

at the watermark decoder; otherwise, it is set to 1. The watermark can be fully

recovered without the knowledge of the original image and quantization step size

if the quality factor of the standard JPEG recompression attack is not less than

Qjpeg.

By binding the graph-based JPEG optimization and the DQW embedding

scheme together, a joint JPEG and DQW algorithm was then proposed. That

is, given the watermark embedding rate, actually is to maximize the compression

rate distortion performance while remaining faithful to the JPEG syntax and satis-

fying the additional constraint imposed by DQW embedding. It is indeed to solve

the following minimization problem:
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min(R,S,A),H,Q J(λ) = d[I0, (R, S,A)Q] + λr[(R, s), H]

s.t. | IDa,k − IDb,k | qk(2mab,k − 1) ≥ mab,k∆k,Qjpeg

(4.6)

A modified alternating algorithm was applied to find the local minimum of the cost

function J(λ) efficiently under watermarking embedding constraint in inequality

(4.4). A trellis-and-tree based graph-based run-length coding (GBRLC) algorithm

was also developed to embed multiple watermark bits per two blocks with relative

low complexity.

4.3 Joint JPEG Compression and Robust Water-

marking

Based on the GBRLC scheme of [20], we now develop two new joint watermarking

and compression schemes to maximize the variability and flexibility a watermark

encoder can enjoy when decoding compression syntaxes are given. Both of them

can survive standard JPEG recompression attacks. It is shown that our proposed

algorithms can achieve higher payload and better compression performance than

the previous developed DQW and DEW algorithms.

4.3.1 Joint Compression and Odd-Even Watermarking

As described in the last section, the free choice of the three parameters in the JPEG

syntax not only provides ample opportunity for the optimization of the compres-

sion rate distortion performance but also makes it possible to embed a watermark

message into the JPEG compressed bit streams. In this section, we propose an

odd-even watermarking (OEW) approach to embedding a watermark message into

the compressed bit streams by modifying the quantized DCT coefficient indices in

the process of JPEG compression, which can be fully recovered from the attacked

images and the watermark decoder does not need to know the original image when

decodes watermark messages but the quantization step sizes in the process of JWC

are required.

In OEW, we embed binary watermarks into the DCT indices of each 8 × 8

DCT block by forcing the the quantized DCT coefficient indices to be odd or even

according to the watermarks. This method can be viewed as a special case of

the lookup-table (LUT) embedding [26] and quantization index modulation (QIM)
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embedding [10]. In more details, we force the amplitude of DCT indices in the

embedding positions to be even when a 0 is embedded or to be odd when a 1 is

embedded. A more exact expression in mathematical form is that

Ai = 2k +mi k = 0, 1, 2, . . . (4.7)

where Ai is the amplitude of the index of ith position (1 ≤ i ≤ 64) in zigzag order

of each 8× 8 DCT block, and mi = 0 or mi = 1 is the watermark embedded in ith

position in zigzag order of this block. The OEW scheme also involves a constraint

on the step size in the embedding positions in the quantization table, which is

qi ≥ δattack (4.8)

where δattack is the parameter corresponding to the attack channel and the proposed

watermarking scheme can be implemented differently according to different classes

of attacks. Therefore, in the following, we demonstrate how to implement this

joint OEW and JPEG compression scheme for the robustness to standard JPEG

recompression attacks and additive Gaussian noise attacks respectively.

Recompression Attacks

Without loss of generality, we elaborate on the standard JPEG recompression at-

tacks with different quality factors (QFs), that is, the watermarked images are

compressed with a default quantization matrix scaled by various scaling factors

(SF) to achieve different compression ratios [18]. SF increases with the decrease of

QF. Mathematically, the relation is given by

SF =

 50
QF

if QF < 50

2− QF
50

if QF ≥ 50
(4.9)

where QF is in the range of 0-100.

Let’s denote the watermarked DCT coefficients in one 8×8 DCT block resulting

from (4.7) as θ̄i for 1 ≤ i ≤ 64. The property for the watermarked DCT coefficients

in the presence of JPEG recompression attacks is shown as follows.

Theorem 4.3.1. Let ∆k be the kth quantization step size in the quantization table

of the standard JPEG recompression attack and ∆k ≤ ∆k,Qjpeg
. Define θ̄i ≡ ¯IDi ·

(∆k,Qjpeg
+ 1) and ˜IDi ≡ Integer Round( θ̃i

∆k,Qjpeg
+1

) where θ̃i is the DCT coefficient
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of ith position in the corresponding DCT block after decoding and JPEG re-encoding

attacks. Then, we have:
˜IDi = ¯IDi. (4.10)

Proof. Let θ̃i = θ̄i+ri. If the JWC image is fully decoded and the re-encoded in the

JPEG recompression attacks, the round-off noise in the process of saving images

should be considered. Therefore, we have −∆k+1
2

< ri <
∆k+1

2
, then

θ̃i −
∆k + 1

2
≤ θ̄ ≤ θ̃i +

∆k + 1

2

Since

θ̃i −
∆k,Qjpeg

+ 1

2
≤ ˜IDi · (∆k,Qjpeg

+ 1) ≤ θ̃i +
∆k,Qjpeg

+ 1

2

and ∆k ≤ ∆k,Qjpeg
, we can see ˜IDi = ¯IDi. This complete the proof of the theorem.

The watermark bit m̂ is then decoded by the following decision rule:

m̂ = m, if |(b θ̃i
∆i

+ 0.5c)| = 2k +m. (4.11)

where θ̃i is the ith DCT coefficient in one block of the received image and k is 0

or positive integer. ∆i is the ith step size in the zigzag order of the quantization

table. Here it is set to ∆i,Qjpeg
+ 1 to guarantee zero error decoding. From theorem

4.3.1, the watermark can be fully recovered without the knowledge of the original

image if the quality factor of the standard JPEG recompression attack is not less

than Qjpeg.

Given the watermark embedding rate, we next want to maximize the com-

pression rate distortion performance while remaining faithful to the JPEG syntax

and satisfying the additional constraints imposed by OEW scheme. That is, our

problem is posed as a constrained optimization problem over all possible sequences

of run-size pairs (R, S) followed by in category indices amplitude A, all possible

Huffman tables H and all possible quantization tables Q


min(R,S,A),H,Q r[(R, S), H] subjec to

d[I0, (R, S,A)Q] ≤ dbudget

Ai = 2k +mi k = 0, 1, 2, . . .

qi ≥ ∆i,Qjpeg
+ 1

(4.12)
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where d[I0, (R, S,A)Q] denotes the distortion between the original image I0 and

reconstructed image determined by (R, S,A) and Q over all AC coefficients, and

r[(R, S), H] denotes the compression rate for all AC coefficients resulting from the

chosen sequence (R, S,A) and the Huffman table H and dbudget is the distortion

constraint. With the help of the Lagrange multiplier, we may convert the distortion

constrained problem into the following unconstrained problem

min
(R,S,A),H,Q

J(λ) = d[I0, (R, S,A)Q] + λr[(R, S), H] (4.13)

where (R, S,A) and Q are chosen in the set where the watermarking constraints are

satisfied. Since a run-size probability distribution P completely determines a Huff-

man table, we use P to replace the Huffman table H in the optimization process.

The proposed iterative algorithm for optimization problem (4.13) is summarized as

follows.

Algorithm 1: Joint compression and OEW under recompression attacks

1. Initialize a run-size distribution P0 from the given image I0 and an initial

quantization table Q0. Set t = 0, and specify a tolerance ε as the convergence

criterion. Fix a value of λ.

2. Fix Pt and Qt for any t ≥ 0. Find an optimal sequence (Rt, St, At) that

achieves the following minimum

min
(R,S,A)

J(λ) = d[I0, (R, S,A)Qt ] + λr[(R, S), Pt]

meanwhile satisfying (4.7). Denote d[I0, (R, S,A)Qt ]+λr[(R, S), Pt] by J t(λ).

For t > 0, if J t−1(λ) − J t(λ) ≤ ε, stop the iterative algorithm and output

(Rt, St, At) and Qt; otherwise, go to the next step to continue the iteration.

3. Fix (Rt, St, At). Update Qt and Pt into Qt+1 and Pt+1 respectively so that

Qt+1 and Pt+1 together achieve the following minimum

min
Q,P

J(λ) = d[I0, (Rt, St, At)Q] + λr[(Rt, St), P ]

while satisfying the constraint that qi > ∆i,Qjpeg
. Here qi is the ith quanti-

zation step of the quantization table Q in zigzag order where a watermark is

embedded.

4. Go to Step 2 for further iterations with t = t+ 1.
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Based on the joint optimization approach for JPEG compression proposed in

[20], we develop the following algorithm to fulfill the two steps respectively.

A. Joint OEW and GBRLC optimization

Figure 4.2: Graphic representation of sequences of run-size pairs of an 8× 8 block,

where s takes values from 0 to 10 in (15, s) and values from 1 to 10 in other cases.

Fix H and Q. We can see that J(λ) is block-wise additive when no watermark

is embedded. Therefore, a graph-based run-length coding (GBRLC) algorithm

developed in [20] and also described in Section 4.2 can be used to find the optimal

sequence (R, S,A) for each DCT block independently. We call it a joint graph-based

run-length coding and watermark embedding (GBRLCWE) procedure. Basically,

we define a directed graph with 65 nodes (or states). As shown in Fig. 4.2, the

first 64 states, numbered as i = 0, 1, . . . , 63, correspond to the 64 DCT indices of

an 8 × 8 image block in zigzag order. Each state i (i ≤ 63) may have incoming

connections from its previous 16 states j (j < i) , which correspond to the run,

R, in an (R, S) pair (in JPEG syntax, R takes value from 0 to 15). For a given

state i (i ≤ 63) and its predecessor i − r − 1 (0 ≤ r ≤ 15), there are 10 parallel

transitions between them which correspond to the size group, S, in an (R, S) pair.

For simplicity, we only draw one transition in the graph shown in Figure 4.2; the

complete graph needs the expansion of S. For each state i where i > 15, there is

one more transition from state i−16 to i which corresponds to the pair (15, 0), i.e.,

ZRL (zero run length) code.

However, when state i is watermarked using odd-even embedding method, some

void (R, S) pairs which contradict with embedding constraints should not appear.
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In more details, first, we divide size group S into three subsets, i.e. S = {S0, S1, S∅}
where S0, S1 and S∅ represent for the size group for watermark 0, watermark 1

and without watermark embedded according to the odd-even embedding constraint;

Second, when watermark 1 is embedded into state i, the run-length pair (R, S) and

the EOB code which is the code (0, 0) after the jth (j ≤ i) coefficient can not go

though state i. Therefore, for this case, we treat state i as the stopping state, i.e.

the state before state i can not reach the state after state i by whatever run-length

pair (R, S) or EOB code, and the state after state i treat it as the starting state 0.

After making these changes, we assign to each transition (r, s) from state i− r− 1

to state i a cost which is defined as the incremental Lagrangian cost of going from

state i − r − 1 to state i when the ith DCT coefficient is soft-quantized to size

group s and all the r DCT coefficients appearing immediately before the ith DCT

coefficient are soft-quantized to zero. Specifically, this incremental cost is equal to

i−1∑
j=i−r

C2
j+ | Cj − qi · Ai |2 +λ(− logP (r, s) + s) (4.14)

where the (r, s) pair belongs to the (R, S) set described above for each state i.

A more elaborate step-by-step description of the algorithm follows. As an ini-

tialization, the algorithm pre-calculates λ · (− logP (r, s) + s) for each run-size pair

(r, s) which is valid based on the given run-size distribution P . The minimum cost

to state 0 (DC coefficient) is initialized as 0 since it does not effect the run-length

coding optimization. The algorithm starts with state 1 (the first AC coefficient).

The cost associated with each path is calculated using (4.14), where the first term

in (4.14) is pre-calculated, and Ai is determined as follows. For simplicity, we only

consider positive indices here; negative indices are processed similarly by symmetry.

Suppose A′i is the output of the hard-decision quantizer with step size qi in response

to the input Ci , and it falls into the size group s′ ∈ S. If s = s′ , Ai is chosen as

A′i since it results in the minimum distortion for Ci in this size group. If s < s′, Ai

is chosen as the largest amplitude in size group s ∈ S since this largest amplitude

results in the minimum distortion in size group s. Similarly, s > s′ , Ai is chosen as

the smallest amplitude in size group s. After the ten incremental costs have been

calculated out, we can find the minimum cost to state 1 from state 0 by adding

the least incremental cost from state 0 to state 1 to the minimum cost to state 0.

Record this minimum cost as well as the run-size pair (r, s) and Ai which results

in this minimum cost at state 1. The procedure continues to the next coefficient

and so on until the minimum cost to the last coefficient at state 63 is sorted out.

By backtracking from the end state with the help of the stored pairs (r, s) and
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amplitudes Ai in each state, one can find the optimal path from state 0 to the end

state among all the possible paths.

This procedure is a full dynamic programming method, and always gives us

the optimal solution. To further reduce its computational complexity, we do not

need to compare the incremental costs among the 10 or 11 parallel transitions from

one state to another state. Instead, it may be sufficient for us to compare only the

incremental costs among the transitions associated with size group s−1, s and s+1,

where s is the size group corresponding to the output of the given hard-decision

quantizer satisfying the watermark embedding constraints.

B. Optimal quantization table updating

Fix (R, S,A). Huffman table is updated according to empirical run-size distri-

bution and we only need to minimize the distortion part in the Lagrangian cost as

the compression rate does not depend on the quantization table Q once (R, S, ID) is

given. That is, we need to find the minimum of d[I0; (R, S,A)Q] among all possible

Q subject to the constraint that qi > ∆i,Qjpeg
for the ith position with watermark

embedded. By applying the minimum mean square error criteria with respect to

the distortion function, we can obtain the optimum quantization step size

q̂i =

∑NumBlk
j=1 (Ci,j · Ai,j)∑NumBlk

j=1 A2
i,j

i = 0, 1, . . . 63. (4.15)

where NumBlk is the number of 8×8 blocks in an image. If there is a watermark bit

embedded at the ith position of a DCT block pair in zigzag order, the quantization

step size is determined as follows

q̂i = max

{
(∆i,Qjpeg

+ 1), b
∑NumBlk

j=1 (Ci,j · Ai,j)∑NumB lk
j=1 A2

i,j

+ 0.5c

}
(4.16)

where ∆i,Qjpeg
is the step size of ith position in the quantization table of JPEG

recompression with quality factor Qjpeg.

AWGN attacks

In the following, we consider designing a joint JPEG compression and watermarking

system which is robust to a class of AWGN attacks. We still utilize odd-even

embedding method and it can be shown that an efficient tradeoff among robustness,

embedding rate and rate distortion performance can be obtained.
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Assume that the additive noise involved by attackers have Gaussian distribution

with zero mean and variance σ2
n. We first compute the decoding bit error probability

Pe,i of ith position in zigzag order in each 8× 8 DCT block. That is,

Pe,i =
1

2

∑
m∈{0,1}

∞∑
j=−∞

P (s ∈ Cm
i,j)P

m
e,i,j

=
1

2

∑
m∈{0,1}

∞∑
j=−∞

P (s ∈ Cm
i,j)

∞∑
i=−∞

| Q(| (2i+ 0.5)∆i

σn
|)−Q(| (2i+ 1.5)∆i

σn
|) |

=
∞∑

i=−∞

| Q(| (2i+ 0.5)∆i

σn
|)−Q(| (2i+ 1.5)∆i

σn
|) | (4.17)

where Cm
i,j denotes the interval where the DCT transformed signal s is quantized as

j∆i and Pm
e,i,j is the conditional decoding bit error probability when the watermark

m is given and the signal s is quantized as j∆i.

It is not hard to prove that the bit error probability of the ith position Pe,i is a

decreasing function for all ∆i

σn
> 0. We show this property of Pe,i in numerical way

in Fig. 4.3.

Figure 4.3: Bit error probability Pe,i versus ∆i

σn
.

Based on the expression of bit error probability of the ith position, we set up
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our Language objective function as follows.

min
(R,S,A),H,Q

J(λ, ξ) =
1

Numbits

Numbits∑
i=1

Pe,i + ξ(d[I0, (R, S,A)Q] + λr[(R, S), H])

(4.18)

where Numbits denotes the number of bits to be embedded per DCT block. There-

fore, we have the following alternating algorithm:

Algorithm 2: Joint compression and OEW under AWGN attacks

1. Initialize a run-size distribution P0 from the given image I0 and an initial

quantization table Q0. Set t = 0, and specify a tolerance ε as the convergence

criterion. Fix a value of λ.

2. Fix Pt and Qt for any t ≥ 0. Find an optimal sequence (Rt, St, At) that

achieves the following minimum

min
(R,S,A)

J(λ, ξ) = d[I0, (R, S,A)Qt ] + λr[(R, S), Pt]

while satisfying (4.7) for all the watermark embedding position i in each DCT

block.

3. Fix (Rt, St, At). Update Qt and Pt into Qt+1 and Pt+1 respectively so that

Qt+1 and Pt+1 together achieve the following minimum

min
Q,P

{
J(λ, ξ) =

1

Numbits

Numbits∑
i=1

Pe,i + ξ(d[I0, (R, S,A)Q] + λr[(R, S), H])

}
Denote d[I0, (R, S,A)Qt ] + λr[(R, S), Pt] by J t(λ).

4. For t > 0, if J t−1(λ) − J t(λ) ≤ ε, stop the iterative algorithm; otherwise,

continue.

Here, Step 3 is different from the previous recompression attack case. Based

on the property of decoding bit error probability in ithe position Pe,i, we find the

optimal solution of step size q̂i as follows:

1. Update ith step size in the quantization table as

q̂i =

∑NumBlk
j=1 (Ci,j · Ai,j)∑NumBlk

j=1 A2
i,j

i = 0, 1, . . . 63. (4.19)
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2. If there is a watermark bit embedded into state i, keeping increasing q̂i by 1,

until J (t)(λ, ξ) begin to increase in Step 3.

Since the bit error probability is a decreasing function of step size qi for fixed

additive noise variance σ2
n, by doing above steps it is guaranteed for us to obtain

the optimal quantization table Q in Step 3.

4.3.2 Joint Compression and Zero-Nonzero Watermarking

Having described the OEW algorithm for designing a joint image compression and

watermarking with baseline JPEG decoder compatibility and robustness to JPEG

recompression attacks and AWGN attacks, we denote that the quality fact set up

in the process of JWC embedding is required at the watermark decoder which

means that this scheme is semi-blind. However sometimes it is undesirable when

the image is sent through existing large-scale, heterogeneous networks. On the

other hand, watermarks are designed to survive legitimate and everyday usage of

content. A class of very common distortion attack for everyday usage is so called

valumetric distortions which change the values of individual pixels of images [1]. In

the following, we design a zero-nonzero watermarking (ZNW) scheme for full-blind

watermarking with baseline JPEG decoder compatibility which can survive a class

of valumetric distortion attacks including additive Gaussian noise, recompression

and amplitude scaling. Compared with the previous designed OEW scheme, the

ZNW scheme sacrifices some compression performance and embedding rate but

obtains more robustness against other types of valumetric distortion attacks.

Similarly to OEW, in ZNW, we embed watermark bit into the DCT indices of

every 8× 8 DCT block to force the amplitudes of the DCT indices to be zero when

watermark 0 is embedded or nonzero when watermark 1 is embedded. We express

it in a mathematical form is that

Ai = 0 when m = 0;

Ai 6= 0 when m = 1.
(4.20)

To maintain certain robustness, we introduce another constraint on the ith step

size in zigzag order in the quantization table where a watermark is embedded, i.e.

qi ≥ δattack (4.21)

where δattack is the parameter corresponding to the attacks.
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At the watermark decoder, the knowledge of original image and the quantization

step in the process of JWC are not required. The watemark decoder decodes the

watermark bit m̂ as follows,

m̂ = 0 when Ai = 0;

m̂ = 1 when Ai 6= 0.
(4.22)

Having the embedding strategy, we now need to optimize the rate-distortion

function for compression under the constraints given by watermark embedding, i.e.

min(R,S,A),H,Q J(λ) = d[I0, (R, S,A)Q] + λr[(R, S), H]

subject to (4.20) and (4.21)

An alternating algorithm can also be used for solving the minimization problem:

� Fix P and Q. Find an optimal sequence (R, S,A) to minimize J(λ) while

satisfying (4.20) for all the positions where watermarks are embedded.

� Fix (R, S,A). Update H and Q respectively to achieve the minimum of J(λ)

while satisfying (4.21)

The detailed embedding procedure is similar to OEW scheme: when implement-

ing the first step of the above algorithm, void run-length pairs (R, S) and void EOB

codes for ith DCT index where a watermark is embedded should be omitted during

the joint ZNW and GBRLC optimization procedure. The size group S in an run-

length pair is divided into three subsets which are S∅, S0 and S1. They represent

that state i has no watermark embedded, watermark 0 embedded and watermark 1

embedded and include different elements according to the zero-nonzero embedding

scheme.

When standard JPEG recompression attacks are considered, the optimal ith

step size in the quantization table q̂i with watermark embedding is given by

q̂i = max{∆i,Qjpeg
, b
∑NumBlk

j=1 (Ci,j · Ai,j)∑NumB lk
j=1 A2

i,j

+ 0.5c}

where ∆i,Qjpeg
is the step size of ith position in the quantization table of JPEG

recompression with quality factor Qjpeg. It can be seen that by using above ZNW

scheme, the watermarks embedded into compressed images can be fully recovered

in the presence of standard JPEG recompression attacks with a quality factor not

less than Qjpeg.
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4.4 Experiment Results

Having described and analyzed two joint JPEG compression and robust watermark-

ing algorithms against JPEG recompression attacks, in this section, we first evaluate

the performance of the proposed algorithms and make a comparison with both the

DQW algorithm and the DEW algorithm proposed in the recent literature. Com-

parative studies of the embedding performance are shown by rate-distortion (R-D)

curves, with the distortion being measured by peak signal-to-noise ratio (PSNR)

which is defined as

PSNR = 10 log10

2552

MSE

In practice, watermarked content will be subjected to a variety of distortions

before reaching the watermark decoder. Therefore, the watermark encoder is impos-

sible to have the knowledge of attackers in advance. In the this section, we assume

that the watermark encoder and decoder are all designed for JPEG-recompression

attacks and the robustness to other types of valumetric distortion attacks are also

stated therein. Experimental results show that the proposed ZNW scheme against

recompression attacks also achieves good robustness to other types of valumetric

distortion attacks including additive Gaussian noise and valumetric scaling.

4.4.1 DCT Block and Coefficient Positions Selection for

Watermark Embedding

Before applying the proposed JWC algorithms to jointly watermarking and com-

press an image, positions of 8 × 8 DCT blocks in the image and DCT coefficients

within these blocks need to be determined for watermarking embedding. One pos-

sible way is to randomly select the positions based on a secret key. This requires

the transmission of the secret key to the watermark decoder, which is sometimes

undesirable. In this work, we follow the similar method proposed by Wu in [14], i.e.

selecting the positions based on empirical data training to obtain a good tradeoff

between perceptual quality and compression RD performance. The position infor-

mation is then published so that it is the same for all the images. In particular, we

select the DCT coefficients with positions from 9 to 20 of an 8 × 8 DCT block in

zigzag order for watermark embedding. Fig. 4.4 shows the R-D performance of the

512 × 512 Lena image after applying the proposed OEW JWC algorithm robust

for recompression attack when 1 bit of watermark information per DCT block is
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embedded at different DCT positions in the zigzag order. The quality factor for

the standard JPEG attacks, Qjpeg is set to 50. Form Fig. 4.4 we can see that com-

pression performance degrades gradually as the embedding position is larger than

21. Similar results were obtained for ZNW JWC, other images and other standard

JPEG recompression attacks.

Figure 4.4: Influence of the embedding position on the compression R-D perfor-

mance.

4.4.2 Robust Experiments and Comparisons

In our experiment, watermark embedding rate is set to 1 bit per DCT block in a

512 × 512 raw image, i.e. 4096 bits per image if all the DCT blocks all used for

embedding. The convergence threshold ε for the two proposed JWC algorithms

is set to 0.01 and the resulting average number of iterations is around 10 which

can be completed within 12 seconds for a PC with an AMD Turion (tm) 64 ×
2 TL-58+1.90GHz and 2GB memory and a float DCT transform algorithm was

implemented.

Figure 4.5 and Figure 4.6 show the PSNR performance of the proposed OEW

algorithm, the ZNW algorithm and the DQW JWC algorithm developed in [23] for

the 512×512 image Lena and Barbara respectively. In the figures, OEW stands for
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Figure 4.5: Comparison of compression performance for Lena 512× 512.

Figure 4.6: Comparison of compression performance for Barbara 512× 512.
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the odd-even JWC scheme, ZNW stands for the zero-nonzero JWC algorithm and

DQW stands for the differential quantization JWC scheme. In our experiment, 1
4

DCT blocks in the image were used for embedding watermarks in the OEW and

ZNW algorithms with embedding rate is 1 bit per DCT block. However, for the

benchmark DQW algorithm, half of all the DCT blocks were used for embedding

with embedding rate was 1 bit per two blocks. In both of the OEW and ZNW

algorithms, we embedded one bit watermarks at the 10th DCT coefficient position

in the zigzag order while at the 13th DCT coefficient position in the zigzag order

per block pair for the DQW algorithm. The quality factor for the standard JPEG

recompression attacks, Qjpeg was set to 50 and totally 1024 watermark bits were

embedded into each image. From the figures, we can see both of the proposed two

can achieve better performance than the DQW algorithm. In particular, when the

compression rate is equal to 1 bpp, the proposed JWC encoders can achieve 0.76

dB PSNR gain over the DQW JWC encoder for the Lena image and 1.22 dB PSNR

gain for the Barbara image. Similar results were obtained for other test images and

other standard JPEG recompression attacks.

Fig. 4.7 plots the comparison performance of the proposed two JWC schemes

with the DQW scheme for the 512 × 512 Lena image at different watermark em-

bedding rates. Half of all DCT blocks or 3
4

of all DCT blocks in the image were

selected for watermark embedding which result in different embedding rate at 2048

bits per image and 3072 bits per image respectively. For the DQW algorithm, we

embedded 2 bits and 3 bits of information per two DCT blocks respectively and

half of all blocks were used for watermark embedding. The quality factor for the

standard JPEG recompression attack, Qjpeg, was set to 50. It can be seen from

the figure that as the watermark embedding rate increases, the compression rate

distortion performance decreases as expected. The higher the embedding rate is,

the more PSNR dB gain for proposed JWC schemes over the DQW algorithm can

be obtained. In particular, the proposed OEW and ZNW algorithms achieve about

1.76 dB and 1.48 dB PSNR gain over the DQW algorithm respectively with em-

bedding rate 3072 bits per image and compression rate 1 bpp. Another phenomena

is that when embedding increases from 2048 bits per image to 3072 bits per image,

the RD performance of the proposed two algorithms decreases quite small com-

pared with the DQW algorithm which means that our proposed JWC algorithms

are more suitable for high embedding rate case than the previous DQW scheme.

Fig. 4.8 illustrates the compression performance of the proposed OEW and

ZNW schemes for 512× 512 image Lena in the present of different standard JPEG

compression attacks with quality factor equal to 25 and 50 when 1024 bits of infor-
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Figure 4.7: Comparison performance between OEW, ZNW and DQW algorithms

at different embedding rates for 512× 512 Lena.
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Figure 4.8: Comparison performance of the OEW scheme and the ZNW scheme

under different attacks for 512× 512 Lena.

mation were embedded into 1
4

of all DCT blocks in the image. Form Fig. 4.8, we

can see that the semi-blind JWC algorithm, OEW, get less gain over the full-blind

JWC algorithm, ZNW, when quality factor Qjpeg decreases, i.e. the worse attack

channels. The reason for this is that the ZNW JWC scheme which is modified

based on the OEW scheme, sacrifices the RD performance to earn more robust-

ness. When more robustness is needed, the advantage of the ZNW scheme comes

out.

Fig. 4.9 compares the compression performance of the proposed OEW and

ZNW algorithm with that of the DQW algorithm and the DEW algorithm for the

512 × 512 Lena image. In this figure, DQW stands for the differential quantiza-

tion JWC proposed in [23], STD-JPEG stands for standard JPEG compression

and DEW stands for the joint watermarking and compression scheme proposed in

[21]. In [21], watermarks were embeded in the JPEG/MPEG streams by selectively

removing high frequency DCT coefficients in certain image regions. However, the

compression performance was not optimized. In all of the OEW, ZNW, DQW and

DEW algorithms, 64 bits of watermark information were embedded and the qual-

ity factor of the standard JPEG recompression attack is set to 25. At such low

embedding rate, the RD curves of the OEW and ZNW emerge together, we plot
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Figure 4.9: Comparison performance of between the proposed OEW and ZNW

scheme, the DQW scheme and the DEW scheme.

one of them to stand both of them. The RD curve of the standard JPEG com-

pression we plot here is to be the benchmark for measuring the RD performance

of the proposed JWC schemes. It can be seen that the proposed OEW and ZNW

scheme can achieve better RD performance than both of the DQW algorithm and

the DEW algorithm. In particular, at compression rate of 1 bit per pixel, the OEW

and ZNW algorithms achieve about 0.76 dB and 2.46 dB PSNR gain over the DQW

algorithm and the DEW algorithm respectively. Similar results were obtained for

other test images.

Robustness to Gaussian Noise and Valumetric Scaling

In the following, we report robustness results for addition of Gaussian noise and

valumetric scaling attacks. Since the watermark encoder do not have the knowledge

of attack channels in advance, we still use the JWC encoder/decoder designed for

the JPEG recompression attacks. We compare the results of the proposed OEW

and ZNW algorithms with the informed coding and embedding algorithm (ICIE)

proposed in [28].

The results of robustness with respect to Gaussian noise are summarized in
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Fig. 4.10. Normally distributed noise with zero mean and standard deviation

σn was added to each of the watermarked images. The experiment was repeated

for different standard deviations, σn, and the decoding bit error probability has

been computed. The parameter of quality factor Qjpeg in process of JWC is set

to 25 and it is assumed to be known at the watermark decoder. From the figure,

we can see that ZNW algorithm achieves better decoding bit error probability

performance than the OEW algorithm. Both of these two algorithms achieve better

performance than the ICIE algorithm in [28]. In particular, when the decoding bit

error probability is equal to 0.2, the standard deviation of the Gaussian noise is

about 5.5, 10.5 and 32.5 for the ICIE, OEW and ZNW algorithms respectively.

Figure 4.10: Robustness versus Gaussian noise.

Another simple, but important distortion is changing amplitude. That is xn =

νx, where x is the stegotext or watermarked image and ν is a scaling factor. This

corresponds to a change of brightness and contrast for images and video. This

attack is of particular interest for us, and is indeed the main weakness of the

watermarking schemes of QIM proposed in [10]. Since the odd-even embedding

scheme is a special case of QIM, this type of attacks effect much on the proposed

OEW JWC algorithm. The results of valuemetric scaling attacks are reported

in Fig. 4.11. From the figure, we can see that the ZNW algorithm achieves much

better decoding error probability performance than both of the OEW algorithm and
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Figure 4.11: Robustness versus valumetric scaling up and down.

ICIE algorithm (see [28] for the performance). In particular, when the decoding

error probability is less than 0.2, the scaling factor is in the range of 0.5-2 and

0.1-1.2 for the ZNW and ICIE algorithms respectively. That means our ZNW JWC

scheme can achieve better performance than ICIE scheme for the scaling intensities

up attacks. We need to mention that in the case of the scaling factor is less than

0.5 the perceptual quality of the images degrades heavily. This has been showed in

Fig. 4.12 by 512 × 512 Lena image. In Fig. 4.12, the Lena image, with 4096 bits

of watermarks embedded at compression rate 0.757 bpp using ZNW JWC scheme,

was attacked by scaling with scaling factor 0.5 and AWGN attacks with standard

deviation σn = 20 respectively. We can see that the perceptual quality of the Lena

image degrades a lot after attacks.
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Figure 4.12: Watermarked Lena image without attacks, attacked by scaling with

scaling factor 0.5 and attacked by Gaussian noise with standard deviation σn = 20.
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4.5 Chapter Summary

In this chapter, we have presented an integrated approach to JPEG compression

and robust watermarking–a watermark is embedded in the process of compression

which is faithful to the JPEG syntax. We proposed two algorithms, i.e. OEW and

ZNW to embed watermarks into compressed bitstreams. The OEW algorithm is

semi-blind, i.e. the watermark decoder should have the JPEG quality factor Qjpeg

used in the process of joint compression and embedding while the ZNW scheme is

full-blind where the watermark can be decoded only based on the received signal.

We developed joint graph-based run-length coding and watermarking procedures

to embed watermarks while optimizing the compression performance. It has been

shown that the proposed JWC algorithms achieves better performance than the

DQW and DEW algorithms proposed in the recent literature. The proposed ZNW

algorithm designed for recompression attacks also has quite good robustness against

other types of valumetric distortion attacks including additive Gaussian noise and

valumetric scaling in everyday usage.
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Chapter 5

Conclusions and Future Research

5.1 Conclusions

In digital watermarking, a watermark is embedded into a covertext resulting in a

watermarked signal which is robust to certain distortion caused by either standard

data processing in a friendly environment or malicious attacks in an unfriendly

environment. As watermarked signals are highly desired to be compressed in real-

world applications, in this thesis, we present the design, analysis and application of

joint compression and watermarking systems. To broaden the application scope of

digital watermarking, we have not only developed the JWC scheme using variable-

rate scalar quantization but also proposed two new joint image compression and

blind watermarking algorithms to jointly watermark and compress an image with

baseline JPEG decoder compatible. The main results of this thesis are elaborated

as follows.

� JWC using variable-rate scalar quantization: Using variable-rate scalar quan-

tization for watermarking and compression, in Chapter 3, we have investigated

how to design JWC systems to maximize the robustness in the presence of

additive Gaussian noise attacks under constraints on both compression dis-

tortion and composite rate. We measured the decoding bit error probability

by MD decoding rule, under consideration of low computation complexity. In

comparison with the previous designed JWC systems using fixed-rate scalar

quantization, the optimal JWC systems using variable-rate scalar quantiza-

tion have been demonstrated to achieve better performance in the DNR region

of practical interest.
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� Joint image compression and blind watermarking with baseline JPEG decoder

compatible: In Chapter 4, we have investigated the application of JWC utiliz-

ing variable-rate quantization where an efficient tradeoff among compression

performance, embedding rate and robustness is desired to be obtained. We

have developed two joint compression and watermarking schemes, i.e. OEW

and ZNW, which are to maximize the embedding or compression performance

while maintaining baseline JPEG decoders compatible. The watermark em-

bedded by using these two schemes can survive a class of standard JPEG

recompression attacks with high payload. To maximize the compression per-

formance, two alternating algorithms have been developed to jointly optimize

run-length coding, Huffman coding and quantization table selection subject

to the additional watermark embedding constraints. The proposed two algo-

rithm are demonstrated to have better embedding/compression performance

than the DQW and DEW algorithm proposed in the recent literature. In par-

ticular, the ZNW algorithm designed for recompression attacks has also been

shown to be robust to other types of valumetric distortion attacks including

additive Gaussian noise and valumetric scaling.

5.2 Directions for Future Research

As a technique to protect copyright for digital content, digital watermarking has

been recently one of the most active research fields in both the academic world and

the industry. However, still a lot of theoretic and practical problems on optimal wa-

termarking system design are unsolved. Among them, the following two questions

related to our research are of particular interest:

1. As we know that watermark embedding can be viewed as a game between

encoder/decoder and attacker. When joint compression and watermarking

is considered, i.e. there is a constraint on the composite rate, what is the

equilibrium or saddlepoints of this game?

2. How to extend the work of joint JPEG-compatible image compression and

blind watermarking in this thesis to the design of JWC algorithms for audio

and video signals? In particular, it will be more interesting if these JWC

algorithms are backward compatible with industrial standards like MP3 and

H.264 to achieve efficient tradeoffs among the embedding rate, compression

rate, distortion and robustness.

62



References

[1] I. J. Cox, M. L. Miller, and J. A. Bloom. Digital Watermarking. New York:

Morgan Kaufmann, 2001.

[2] T. M. Cover and J. A. Thomas. Elements of Information Theory. New York:

John Wiley and Sons, 2006.

[3] P. Moulin and R. Koetter. Data-Hiding Codes. Proceedings of IEEE, vol. 93,

No. 12, pp. 2083-2127, Dec. 2005.

[4] S. I. Gel’fand and M. S. Pinsker. Coding for channel with random parameters.

Probl. Control Inf. Theory, vol. 9, no. 1, pp. 19-31, 1980.

[5] P. Moulin and J. A. O’Sullivan. Information-Theoretic Analysis of Information

Hiding. IEEE Transactions Information Theory, vol. 49, pp. 563-593, March

2003.

[6] A. S. Cohen and Amos Lapidoth. The GaussianWatermarking Game. IEEE

Transactions Information Theory, vol. 48, pp. 1639-1667, June 2002.

[7] D. Karakos and A. Papamarcou. A Relationship Between Quantization and Wa-

termarking Rates in the Presence of Additive Gaussian Attacks. IEEE Trans-

actions Information Theory, vol. 49, pp. 1970-1982, August 2003.

[8] A. Somekh-Baruch and N. Merhav. On the capacity game of public watermark-

ing systems. IEEE Trans. Inf. Theory, vol. 50, no. 3, pp. 511-524, Mar. 2004.

[9] A. Maor and N. Merhav. On Joint Information Embedding and Lossy Compres-

sion in the Presence of a Memoryless Attack. IEEE Transactions Information

Theory, vol. 51, no. 9, pp. 3166-3175, September 2005.

[10] B. Chen and G. W. Wornell. Quantization Index Modulation: A Class of

Provably Good Methods for Digital Watermarking and Information Embedding.

IEEE Trans. Inform. Theory, vol. 47, no. 4, pp. 1423-1443, May 2001.

63



[11] E. Martinian, G. W. Wornell and B. Chen. Authentication with Distortion

Criteria. IEEE Trans. Inform. Theory, vol. 51, no. 7, pp. 2523-2542, July 2005.

[12] Guixing Wu and En-Hui Yang. Joint Watermarking and Compression Using

Scalar Quantization for Maximizing Robustness in the Presence of Additive

Gaussian Attacks. IEEE Trans. on Signal Processing, Vol. 53, no. 2, pp. 834-

844 Feb. 2005.

[13] Ludovic Guillemot and Jean-Marie Moureaux. Indexing Lattice Vectors in a

Joint Watermarking and Compression Scheme. IEEE International Conference

on Acoustics, Speech and Signal Processing, ICASSP, 2007.

[14] Guixing Wu. On the design and analysis of quantization based-digital water-

marking system. PhD thesis, Unversity of Waterloo, 2005.

[15] M. Minoux, Mathematical Programming: Theory and Algorithms. New York:

Wiley, 1986.

[16] A. Gersho and R. Gray. Vector Quantization and Signal Compression. Boston,

MA: Kluwer, 1992.

[17] P. A. Chou, T. Lookabaugh, R. M. Gray. Entropy-constrained vector quanti-

zation. IEEE Trans. Signal Processing, vol. 37, no. 1, pp. 31-42, Jan 1989

[18] ISO/IEC 10918-1 and ITU-T Recommendation T.81. Information technology-

digital compression and coding of continuous-tone still images: Requirements

and guidelines, 1994.

[19] G. K. Wallace. The JPEG still picture compression standard. IEEE Trans.

Consumer Electronics, vol. 38, no. 1, pp. 18-34, Feb. 1992

[20] E.-H. Yang and L. Wang. Joint optimization of run-length coding, Huffman

coding and quantization table with complete baseline JPEG decoder compati-

bility. IEEE trans. on Image Processing, Vol. 18, No.1, pp.63-74, Jan. 2009

[21] G.-C. Langelaar and R. L. Lagedijk. Optimal differential energy watermarking

of DCT encoded images and video, IEEE Trans. Image Processing. Vol. 10,

No.1 , pp. 148-158, Jan. 2001.

[22] Ching-Yung Lin and Shih-Fu Chang. A Robust Image Authentication Method

Distinguishing JPEG Compression from Malicious Manipulation. IEEE Trans.

Circuits Syst. Video Technol., Vol. 11, No.2 , pp. 153-168, Feb. 2001.

64



[23] E.-H. Yang and G. Wu. Joint Compression and Blind Watermarking: A Case

Study in the JPEG-Compatible Scenario. in Proc. of 43rd annual Allerton Con-

ference on Communication, Control and Computing, 2005.

[24] E. h. Yang, Z. Zhang, and T. Berger. Fixed-slope universal lossy data compres-

sion. IEEE Transactions on Information Theory, vol. 43, pp. 1465-1476, Sep.

1997.

[25] E. h. Yang and Z. Zhang. Variable-rate trellis source encoding. IEEE Trans-

actions on Information Theory, vol. 45, pp. 586-608, Mar. 1999.

[26] M. Wu and B. Liu. Data hiding in image and video: part I-fundamental issues

and solutions. IEEE Trans. Image Processing, vol. 12, pp. 685-695, June 2003.

[27] Ingemar J. Cox, Joe Kilian, F. Thomson Leighton, and Talal Shamoon. Secure

Spread Spectrum Watermarking for Multimedia. IEEE Trans. Image Process-

ing, vol. 6, No.12 pp. 1673-1687, Dec. 1997.

[28] Matt L. Miller, Gwenael J. Doerr, and Ingemar J. Cox. Applying Informed

Coding and Embedding to Design a Robust High-Capacity Watermark. IEEE

Trans. Image Processing, vol.13, no.6, pp. 792-807, June 2004.

[29] F. Hartung and B. Girod. Watermarking of uncompressed and compressed

video. IEEE Trans. Singnal Processing, vol. 66, no. 3, pp. 283-301, May 1998.

[30] L. Xie and G. R. Arce. A class of authentication digital watermarks for secure

multimedia communication. IEEE Trans. Image Processing, vol. 10, no. 11, pp.

1754-1764, Nov. 2001.

65


