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Abstract

Paper is a complex fibrous material whose production involves substantial amounts of

natural and industrial resources. To reduce its manufacturing costs, the pulp and paper

industry often employs optical technology such as high sensitivity laser sensors used to mea-

sure physical parameters like thickness and opacity. More recently, computer simulations

of paper optical properties are also being used to accelerate the research cycle required to

the development of new types of paper. In these simulations, the bulk scattering of paper

is usually approximated by analytical formulas, notably the Henyey-Greenstein function.

In this work, we qualitatively investigate the degree of accuracy of such approximations

with respect to collimated light. More specifically, an experimental set-up was devised to

record the transmission of red and green HeNe lasers through different paper samples. The

measured data was compared with data obtained using the Henyey-Greenstein function

and data obtained using an alternative exponentiated cosine function. The comparisons

are used to qualitatively assess the degree of accuracy of the bulk scattering approxima-

tions provided by both functions. This work closes with a discussion on the practical

implications of our findings for the modeling of paper optical properties.
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Chapter 1

Introduction

In the field of grading paper, many appearance-related attributes are evaluated using op-

tical techniques. Properties like brightness and opacity can be determined through the

measurement of light reflection and transmission responses of material samples [13]. Ad-

ditionally, structural characteristics like roughness and thickness can be evaluated using

optical styli [47] and lasers [42]. Recently, computer simulations are also being used to

predict paper appearance attributes before manufacturing to mitigate production costs.

For example, the effect of dyes and pigments on colour and brightness can be predicted

before physical samples are produced.

It is important to note that different approaches can be used to simulate paper optical

properties, and no single approach is superior in all cases. While stochastic approaches

(e.g., Monte Carlo based models [26, 12]) are known for their flexibility, deterministic

approaches (e.g., Kubelka-Munk and discrete ordinate based models [23]) usually require

less computational time. Both approaches, however, employ functions to describe the bulk

scattering of material samples.

In practice, the choice of a function to describe the bulk scattering of a given material is

associated with data constraints. For example, after Bruls and van der Leun [11] suggested

that their measurements of the scattering profile of skin tissues could be approximated by

1



2

curves obtained using the Henyey-Greenstein (henceforth referred to as HG) function [31],

it started to be employed in studies involving light transport in tissues for which measured

scattering data is scarce, either by plugging it into the radiative transfer equation [36], or

using it to derive warping1 functions within Monte Carlo modeling frameworks [50].

One technique often employed in Monte Carlo integration is importance sampling [28].

If the integrand is a product of two functions and one of them is known, this function,

called importance function or probability density function (PDF), can be used to guide

the sampling strategy. In Monte Carlo simulations involving ray optics techniques, the

direction of a light ray interacting with a material’s internal structures is given by warping

functions derived from the integration of the PDF. In short, these functions provide the

scattering angles of the propagated ray.

Clearly the selection of an inappropriate PDF to approximate the scattering profile of

a material may introduce error in the modeling of its appearance attributes. For example,

the HG function is neither based on the mechanistic theory of scattering [36], nor was it

originally proposed to represent the bulk scattering of multilayered materials [31]. Fur-

thermore, as stated by Jacques et al. [36], “the use of the HG function to specify radiant

intensity for thicker samples is only descriptive, and should be distinguished from the cus-

tomary use of the HG function to describe single particle phase function”. Despite these

issues, due to its convenient mathematical tractability, it is often employed to approximate

the bulk scattering of complex media, including stochastic (e.g., using it as PDF in a Monte

Carlo integration [12]) and deterministic (e.g., expanding it using a Legendre polynomial

technique in a discrete ordinate formulation [23]) frameworks used to model paper optics

properties. As stated by Neuman [46], there is a need for more experimental data that can

allow the selection of functions that adequately described the light scattering in paper.

In this work, the accuracy of HG based approximations is investigated. More specif-

ically, data generated using HG based warping functions (HGWF) are compared with

1In the context of this investigation, the term “warping” refers to the transformation of uniform to
non-uniform distribution of sample rays (directions).
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scattering data measured for four different paper samples illuminated by collimated light2

sources (represented by two different HeNe lasers3), as well as data computed using a

warping function derived from an exponentiated cosine function (henceforth referred to as

ECWF and EC respectively). To the best of our knowledge, none of the current modeling

frameworks aimed at paper optical properties employs this function. It is worth mention-

ing that the main results of this investigation are also available in an open access journal

publication [15].

The remainder of this thesis is organized as follows. The next chapter presents the

mathematical background of the functions used in this research, and it is followed by a

chapter reviewing work related to these functions. Structural characteristics and physical

properties affecting the appearance attributes of paper are outlined in Chapter 3. Methods

for collecting the physical and simulated data are described in Chapter 5. The closest ap-

proximations between the physical and simulated data sets are presented and qualitatively

compared in Chapter 6. Finally, in the last chapter, the main conclusions derived from

this investigation are summarized and directions for future research are outlined.

2Collimated light sources are those that generate light beams in which rays are all nearly parallel [32].
3A laser is a device that utilizes the natural oscillations of atoms for amplifying or generating highly

monochromatic and coherent, visible radiation [1, 32].



Chapter 2

Mathematical Background

This chapter presents the mathematical background behind the functions used in this inves-

tigation. The concept of phase function will first be introduced, followed by a presentation

of the specific functions of interest. The corresponding warping functions’ derivation and

purpose will then be outlined.

2.1 Phase Functions

When a light encounters an optical interface, it is scattered and the direction of its optical

path is modified. A phase function, Γ(θ, φ), can be used to quantify the amount of light

that will be scattered in a certain direction at a polar angle θ ∈ (0, π) and an azimuthal

angle φ ∈ (0, 2π). We will use θ = 0 to denote the original direction of the light before

scattering. In this case, the phase function is used to describe the behavior of a single

scattering event.

However, phase functions have been used extensively to describe multiple or bulk scat-

tering as well. In this context, phase functions are used as PDFs to describe the behavior

of light after interactions at multiple optical interfaces [11, 22, 29]. Thus, given a phase

function, the integral over all directions must be equal to the unity.

We bring two items to attention. First, the term “phase function” is somewhat mislead-

4
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ing, since it does not have any connection to the phase of the electromagnetic wave (light).

Instead, it has its origins in astronomy, more specifically in the study of lunar phases [35].

Second, the phase functions discussed in this investigation are usually used while assum-

ing azimuthal symmetry, i.e., scattering is uniform in the azimuthal direction [12, 50, 22].

Thus, for the remainder of this thesis, we will omit the azimuthal component of the phase

function and write Γ(θ) to mean Γ(θ, φ).

The HG phase function can be written as [31]

ΓHG(θ) =
1

4π

1 − g2

(1 + g2 − 2g · cos θ)3/2
, (2.1)

where g is the asymmetry factor ranging from -1 to 1. For negative values of g, the function

simulates back scattering; 0, symmetric scattering; and positive, forward scattering.

The EC phase function is defined as [7]

ΓEC(θ) =
n + 1

2π
cosn θ, (2.2)

where n is the directional (specular) exponent. We note that the EC function was originally

designed to describe light propagation in the forward direction, and was defined only in the

domains 0 ≤ θ ≤ π
2

and n ∈ (0,∞). We will follow the same convention in this thesis. Like

g, a greater n would represent greater forward scattering. The effect of these parameters

are shown in Figures 2.1 and 2.2.

2.2 Warping Functions

At each bulk scattering event in a Monte Carlo simulation, a direction needs to be randomly

selected in accordance with the probability density functions. This can be done by choosing

a uniformly distributed random variable ξ ∈ [0, 1), and then warping it to conform with a

phase function’s distribution.



6

Figure 2.1: Probabilities densities given by the Henyey-Greenstein phase function param-
eterized by different values of g. The values of g from least to most forward scattering are
0.4 (solid line), 0.8 (dashed line) and 0.9 (dot-dashed line).

Figure 2.2: Probabilities densities given by the exponentiated cosine phase function pa-
rameterized by different values of n. The values of n from least to most forward scattering
are 20 (solid line), 50 (dashed line) and 100 (dot-dashed line).
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We first consider the simpler case of the azimuthal symmetry assumption. In this

case, the probability density function is a uniform distribution. Then, a specific random

azimuthal angle can be generated by

φ′ = 2πξ. (2.3)

Equation 2.3 is an example of a warping function.

For the polar angles, the warping functions are not as intuitive. We derive them by

first stating their cumulative density function P (θ < θ′) as an integral of the PDF.

Given a random variable ξ◦ defined over some region <, then the probability that ξ◦

will take on a value in subregion <′ ⊂ < is given by [7]

P (ξ◦ ∈ <′) =

∫

ξ◦∈<′

Γ(ξ◦)dζ(ξ◦).

In computer graphics, < is typically an area (dζ = dx dy) or, as in our case, a set of

directions (dζ = sin θ dθ dφ) [7].

Then, the warping function for the HG function can then be derived [6] by first stating

the probability of generating an angle smaller than some specific angle θ′ [7]:

PHG(θ < θ′) =

∫

2π

0

∫ θ′

0

ΓHG(θ) sin θ dθ dφ

=

∫

2π

0

∫ θ′

0

1

4π

1 − g2

(1 + g2 − 2g · cos θ)3/2
sin θ dθ dφ.

Evaluating the above results in

PHG(θ < θ′) =
1 − g2

2g

(

1

1 − g
−

1
√

1 + g2 − 2g cos θ′

)

.
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We equate PHG(θ < θ′) to a uniformly random variable ξ and solve for θ′ resulting in

θ′ = arccos

(

1

2g

(

1 + g2 −

(

1 − g2

1 + g − 2gξ

)2
))

, (2.4)

which effectively corresponds to the warping function for HG with respect to the polar

angle.

Similar steps can be taken for EC to derive its corresponding warping function [7].

Again, we start with the probability, in terms of an integral, which is given by

PEC(θ < θ′) =

∫

2π

0

∫ θ′

0

ΓEC(θ) sin θ dθ dφ

=

∫

2π

0

∫ θ′

0

n + 1

2π
cosn θ sin θ dθ dφ.

Then, evaluating the integral yields

PEC(θ < θ′) = − cosn+1(θ′) + 1.

We again set this equal to a uniformly random variable ξ and solve for θ′ resulting in

θ′ = arccos
(

(1 − ξ)
1

n+1

)

, (2.5)

which effectively corresponds to the warping for EC with respect to the polar angle.

Now, these warping functions can be used to generate a set of directions that follow the

distributions given by the HG or EC functions. For each random direction, we generate two

uniformly random numbers in [0, 1) and then substitute them into the desired warping

functions. For example, to generate a ray according to the HG function, we generate

uniformly distributed random variables ξ1, ξ2 ∈ [0, 1) and obtain the azimuthal angle from

Equation 2.3 using ξ1 and a polar angle from Equation 2.4 using ξ2.



Chapter 3

Paper Structural Characteristics and

Physical Properties

This chapter briefly outlines the main structural characteristics and physical properties of

paper that affect its appearance attributes. An emphasis is given on characteristics and

properties directly related to the spatial distribution (scattering) of light, which determine,

among other attributes, the degree of translucency1 of paper samples (Figure 3.1).

3.1 Fibers

Paper is primarily composed of cellulose fibers [18]. Cellulose is a chemical compound

which exists in varying degrees of purity in various plants [14]. Paper makers need to

purify cellulose since too much impurity would compromise the quality of the pulp. Alpha

cellulose can be considered the “pure” cellulose component. It is not a substance, but

rather, a portion of cellulose empirically determined through chemical analysis. Beta and

gamma cellulose are determined in a similar way, but are considered to be less pure.

1Almost all commercial papers are translucent. Translucency is the property of a specimen by which
it transmits light diffusely without permitting a clear view of objects beyond the specimen and not in
contact with it [21].

9
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Figure 3.1: Photographic composition illustrating the translucency of different types of
paper.
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3.1.1 Flocculation

Flocculation is defined as a process where some substance or material forms clumps. In

paper, this can be seen as a non-uniform distribution of the fibers’ centers. To the naked

eye, this would affect the uniformity of the paper. Figure 3.2 contains a sketch that

demonstrates this phenomenon. Figure 3.3 is a microscope image showing flocculated

fibers within a sheet of lens paper. In general, papermakers strive to limit flocculation to

produce uniform looking papers [17].

Figure 3.2: Flocculation: Flocculated straight lines (left). Unflocculated straight lines
(right).

Figure 3.3: A microscope image showing fibers from a sheet of lens paper. We can see
fiber flocculation as dark concentration of fibers near the left and upper-center portions of
the image.
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3.1.2 Orientation

While flocculation addresses the position of the fibers, orientation address the rotation of

the fibers. Note that it is usually easier to tear along long rather than short direction in

a sheet of paper. One would then suspect the fibers being aligned along the length of the

page [18]. This suspicion can be confirmed by the typical distribution of the orientation of

the fibers [17]. Figure 3.4 is a plot of the fiber orientation distribution of a typical sheet

of paper, while Figure 3.5 contrasts two extreme cases of orientation. This difference in

orientation may also affect the anisotropy2 of the optical properties of paper [25].
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Figure 3.4: A polar plot of the probability distribution of fiber orientation given by
p(θ) = 1

π + 0.208 cos(2θ) with 0◦ degrees being the machine direction (Machine direction
is the direction of how the fibers are fed into the rollers during paper manufacturing [13]).
Redrawn from [17].

2Anisotropy in this (external) context is defined as follows. When illumination and viewing directions
are kept constant, and the material is rotated about its normal, if the intensity of light observed by the
viewer varies, then the material is considered to be anisotropic. Otherwise, the material is considered to
be isotropic [7].
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Figure 3.5: Fiber Orientation: Uniformly oriented straight lines (left). Non-uniformly
oriented straight lines (right).

3.2 Solid Fraction

Solid fraction is the percent of the paper’s volume that is occupied by the solid composition

of the paper [2]. This value is not easy to measure, and may require chemical analysis or

gas expansion methods to obtain [2].

When all other factors are constant, it is qualitatively difficult to predict whether a

paper should be more or less transparent due to differences in solid fraction. When a

paper has a very low solid fraction, its properties would be similar to air, and be relatively

transparent. Thus, as the paper is compressed more, becoming more dense, the paper

would become less transparent. However, after a certain point, the compression would

result in more optical contact between the fibers, decreasing the amount of light scattering

interfaces. At the extreme theoretical case of maximum compression, the paper would

become a pure block of cellulose, containing minimal optical interfaces. Since cellulose

itself is relative transparent, this compressed paper would also have very low opacity3 [13].

Figure 3.6 presents data that illustrates this fact by relating physical measurements of

contrast ratio4 as a function of solid fraction.

3Opacity is defined as the reciprocal of the amount of light transmission [13]. A perfectly opaque paper
would be impervious to all visible light.

4Contrast ratio is a way to measure opacity, defined as the ratio between the reflectance when backed
by a black surface over the reflectance when backed by a white surface [13].
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Figure 3.6: A plot of the effect of solid fraction on contrast ratio for paper basis weight
45 pounds (solid line) and 20 pounds (dashed line). See Section 3.3 for definition of basis
weight. Redrawn from [20].

3.3 Basis Weight

Basis weight is arguably the most important property of paper from a commercial stand-

point. Most paper is sold based on this property [13]. Technically, it is the measure of the

paper’s mass per area. Density is also defined for paper but basis weight is usually used

since the usable area of paper is more important than the actual volume of the paper. In

the paper industry, basis weight is measured as the weight of a ream at the paper’s basic

sheet size, where a ream is 480 or 500 sheets.

A smaller basis weight would imply less mass per area. Intuitively, this would also infer

a decrease in thickness, strength and, most relevant to us, the opacity. However, caution

should be exercised when using basis weight for the analysis of optical measurements. For

example, an increase in basis weight may be correlated with increase in solid fraction,

which can increase or decrease opacity (see section 3.2).
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3.4 Dyes, Pigments and Optical Whiteners

Although not a property of the paper itself, dyes, pigments and optical whiteners are

frequently used to alter the appearance attributes of paper, especially those related to

color.

Cellulose fiber in its raw form is slightly yellow white but people prefer slightly blue

white. Therefore, the purpose of many artificial colours is to increase the blue reflectance

of the paper. Dyes and pigments accomplish this task, but they technically decrease overall

whiteness by absorbing the light of non-blue wavelengths [13]. This effect can be reduced

or eliminated by including submicron-sized particles like titanium oxide whose refractive

index greatly differs from that of the surrounding medium. The presence of these particles

will increase overall diffuse light reflection [16, 24]. Even if the reflectance is reduced,

the slightly more uniform spectral reflectance would appear whiter to the human visual

system [30].

Dyes and pigments also have an effect on the opacity of paper. Dyes will increase opacity

by absorbing light. Pigments can increase opacity by absorbing and increasing scattering.

However, some pigments can also decrease opacity if they fill the paper and decrease air-

fiber interfaces by increasing pigment-fiber interfaces. This is due to the refractive index of

pigments being closer to that of the fibers, and so the pigment-fiber interfaces will decrease

overall light scattering.

Optical whiteners, also known as florescent dyes, optical bleaches or whiteners, are

different from dyes in that they can actually brighten the paper and not just appear to

whiten paper [13, 30]. They accomplish this task by absorbing light from the invisible

ultraviolet end of the spectrum, and reemitting it as visible blue light. However, these

dyes fade fast, and rarely keep paper looking new for long. Also, whiteners depend on

ultraviolet light, so paper may not look as white when indoors, or look blue or purple

under sunlight.
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The modification of reflectance discussed in this section by normal and florescent dyes

is illustrated in Figure 3.7.
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Figure 3.7: A sketch plot of the reflectance of hypothetical fibers (solid line) and how
it might be modified by normal (dotted line) and florescent (dashed line) dyes. Based on
graph provided in [13].



Chapter 4

Related Work

This chapter will concisely review various applications of the HG and EC functions in

related fields and works addressing to the shortcomings of such applications.

4.1 Henyey-Greenstein Function

The HG function was first presented in 1941 by Henyey and Greenstein in the astrophysical

literature [31]. It was employed to approximate Mie scattering1 in the study of diffuse

radiation in galaxies [6]. It has no physical basis, and was introduced to fit scattering data

of stellar radiation. However, it has since been widely used in many different fields that

require light scattering approximations due to its mathematical tractability.

4.1.1 Biomedical Optics

One field that has seen extensive use of the HG function is biomedical optics. Bruls and

van der Leun [11] introduced it to this field by performing goniometric measurements of

the outermost layers of human skin, specifically the stratum corneum and epidermis, and

then suggesting the use of the HG function to approximate the scattering profile of skin

1Mie scattering occurs when the size of the participating medium compared to the wavelength of light
is on the same magnitude [8]. In this situation, traditional ray optics techniques cannot be applied.

17
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tissues. Following in his footsteps, Jacques et al. [36] and Yoon et al. [60] applied the

same function to approximate the scattering profile of the skin dermis and human aorta,

respectively. These investigations were conducted with specific medical applications in

mind and used a red HeNe laser at 633 nm. Prahl et al. [50, 51] was motivated by these

works and incorporated the HG function to a Monte Carlo-based algorithm to study light

transport in tissue during laser irradiation.

Bruls and van der Leun’s original measurements were examined by van Gemert et

al. [58], and it was concluded that the HG function provided a good description for the

investigated tissue samples. Since then, it is generally assumed that the HG function could

be used to approximate the scattering profile of organic tissues. For example, its use in

tissue optics for analytical and Monte Carlo models of light propagation simulations are

widespread in this field [56].

4.1.2 Computer Graphics

The computer graphics community is also interested in light interaction with organic tis-

sues. For example, to create more realistic virtual actors, a good model for skin is highly

desirable. Hanrahan and Krueger [29] and Stam [54] both used the HG function as a

component in their light scattering models to address this challenge.

Although Stam’s model was specifically directed at rendering skin, Hanrahan and

Krueger’s model was presented as a general subsurface scattering model employing a Monte

Carlo light transport algorithm (previously presented in the biomedical literature by Prahl

et al. [49, 50]) that could also model other organic materials such as plant leaves. In their

model, materials are modeled as layers, and scattering events occur at random positions

within a layer. The directional changes of light occurring at these scattering events are

simulated by the HG function.

In his model [54], Stam represents light interaction with skin as multiple scattering

events within a layer bounded by two rough surfaces. The skin tissue itself is modeled
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as a uniform material. The HG function was then applied to a discrete-ordinate radiance

transfer equation describing this geometry to infer the appearance of skin.

However, the use of the HG function was not limited to organic materials. Stam noted

that the aim of his model is to simulate the appearance of natural materials including

snow, sand and paint. Dorsey et al. [19] also used the function to render weathered stone,

and Jensen et al. [38] employed the use of the HG function to render various materials,

including wet and dry paper. Jensen et al. [37] also applied it to visualize clouds in night

scenes. In these models, the function is used to simulate multiple subsurface scattering

within the medium.

4.1.3 Paper Optics

Within the optics community, with a more quantitative and predictive mindset, Carlsson

et al. [12] used the function to simulate light scattering within paper using a Monte Carlo

simulation. They first shined lasers of different wavelengths through papers of various

basis weight2 and measured the time difference between laser emission and detection. This

time delay was used to determine the optical pathlenght of the transmitted light due

to scattering. A model was then constructed where paper was assumed to be layers of

cellulose in air. Light scattering was assumed to occur only at the cellulose-air interfaces

and follow the distribution given by the HG function. Using this assumption, Carlsson

et al. determined the best asymmetry factors that yielded the closest approximations to

the experimental data, and inferred the mean scattering angles occurring in the paper

simulations.

Edström’s discrete ordinate modeling package, DORT2002 [22], was specifically de-

signed for predictive simulations of paper for use in the paper industry. It also uses the

HG function. The model’s geometry is similar to that used by Carlsson: plane parallel

material layers. However, instead of using a Monte Carlo approach to the simulations,

2See Section 3.3 for definition of basis weight.
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Edström uses discrete ordinate methods to approximate solutions to the radiative transfer

equation. Users of the model can define distinct layers characterized by thickness, scat-

tering and absorption coefficients, and a function to describe the scattering. Although the

user can define different functions, the HG function is presented as the default.

4.1.4 Applicability

We first note that the HG function cannot be used to describe simultaneous forward and

backward scattering which are typical in many cases of Mie scattering [4]. However, many

researchers have accommodated for this by proposing variations based on the superposition

of two HG phase functions, given by

Γ′

HG = uΓHG,1 + (1 − u)ΓHG,2,

where ΓHG,1 and ΓHG,2 are both HG functions defined by Equation 2.1 but parameterized

by different asymmetry factors, and u is a weight factor from the interval (0, 1). Examples

of researchers that have employed this strategy include Irvin [34], Kattawar [39], Uesugi et

al. [57] and Witt [59], and more recently, Dorsey et al. [19] and Jensen et al. [38]. Other

similar ideas include the use of other functions in the superposition, such as replacing one

of the HG functions with the isotropic3 function [36].

However, despite its flexibility and adoption in numerous applications, the correctness of

the HG functions is still a topic of interest among researchers from various fields, including

biomedical optics [5, 45], remote sensing [44] and computer graphics [6]. Within biomedical

optics, the generalized use of the HG function has not been broadly examined since the

study by van Gemert et al. [58], despite the growing uncertainty about its accuracy. A

specific example of a shortcoming is the function underestimates the amount of scattering

of mammalian cell suspensions under certain conditions [45].

3Isotropy in this (internal) context indicates that light is distributed symmetrically in all directions
within the medium [7].
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Additionally, a common issue with many of the models presented above is the use of the

asymmetry factor. The HG function is an empirical function characterized by this single

parameter which bears no physical relation to the material being simulated. For example,

in the rendering of dry paper by Jensen et al. [38], they used the superposition of the HG

functions and with the asymmetry factors 0.05 and -0.05, and a weight factor 0.2. It was

not clear how these parameters are connected to the actual paper being rendered, namely,

the only property described being thickness equal to 0.8 mm. A similar issue exist in his

rendering of the wet paper as there were no clear mapping between water saturation and

the corresponding parameter values.

Results by Carlsson et al. [12] also show no clear relationship between the simulation

and physical properties. Although values of g were obtained that could explain the optical

path length of the transmitted lasers, no mathematical relation was proposed with the

actual lasers’ wavelengths and the papers’ basis weight.

As briefly described above, the HG function was initially used in optics just as a function

to fit multiple scattering data measured at specific wavelengths. Since then, it has been

adapted to various fields with questionable applicability. At the core of these issues is the

fact that the HG function has no direct connection with the underlying physical phenomena

being studied, which may negatively affect the predictability of any simulation that employs

it.

4.2 Exponentiated Cosine Function

The function we present as an alternative to the HG function is the EC function. This

function was first introduced in a reflectance model in the computer graphics community

by Phong in 1975 to quantify the specular component [48]. Since then, it has been applied

to numerous different fields as well. For example, Brakke et al. [10] noted the scatter-

ing profile of plant leaves approaches that given by the exponentiated cosine function.
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This observation has triggered the incorporation of this function into predictive models

of light interaction with organic [3] and inorganic [40] materials. This function has also

been used to render diffuse light transmission through translucent materials such as paper

lampshades [52].

The EC function is similar to the HG function in sharing many of the same advantages

and disadvantages. They are both straightforward to implement and apply in different

models with the function behaviour dictated by one parameter. Furthermore, the original

formulation of the EC function is not suitable for physically-based rendering applications

since it did not account for the conservation of energy [7]. It was later constrained by

Immel et al. [33] and Lewis [43] to become physically plausible. A constrained version

of this function (Equation 2.2), often used by stochastic models of light interaction with

matter (e.g., [7, 40]) to derive the corresponding warping functions, is also used in this

investigation (Equations 2.3 and 2.5).



Chapter 5

Experimental Materials and Methods

This chapter presents the materials and methods used to collect the physical and simulated

data used in this work. The physical design of the physical experiment will be presented

first, followed by the explanations of the strategies used in the simulations.

5.1 Physical Measurement Set-Up

The set-up used in this investigation was selected because of its low cost/effectiveness ratio.

It allows us to obtain reliable data to be used in the qualitative comparisons presented in

this work. It is also relatively simple to assemble, which facilitates the reproducibility of

the results. In fact, similar set-ups based on the use of a CCD camera and lasers have been

chosen in other studies tackling related optical questions. For example, Oksman [47] used a

CCD camera to capture images of paper to determine reflectance under different pressures.

Carlsson [12] used a CCD device to determine the time delay of the laser transmission at

different wavelengths and infer the spectral reflection and transmission of different paper

samples. Béland and Bennet [9] used a CCD camera in conjunction with scatterometry

techniques to assess the effect of microroughness on glossy papers. The reader interested in

more complex set-ups used to obtain highly accurate scattering measurements is referred

to a comprehensive book on this topic [55].

23
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The raw measurement data were collected as images of laser transmitted through pieces

of different paper samples. For each type of paper, multiple images were obtained, each

from a different random position from the paper sample. These photos were all taken in

a dark room to eliminate contributions introduced by unwanted light sources. The lasers

employed in this investigation were a red 1.07 mW low-power HeNe laser at 633 nm and

a green 0.5 mW low-power HeNe laser at 543 nm. To prevent saturation in the images,

the intensities of the lasers were limited by a neutral density filter placed at the exit

window. A Canon PowerShot S5 IS digital camera was then used to capture images of

the transmitted light. The settings used when taking the photographs were 2.48 second

shutter speed, f/3.5 lense aperture and 400 ISO. The camera was also set to apply minimal

post-processing in the images so that linear sensor sensitivity is reflect in the collected data.

The set-up of the experiment is illustrated in Figure 5.1.

Laser (Red or Green)

Laser Beam

Paper Sample

Camera

Intensity Filter

Figure 5.1: Sketch of the physical measurement set-up used to collect the scattering data
used in this investigation.

The paper samples used in this investigation were a sheet of lined paper from Hilroy

white wide ruled letter pads, a sheet of Staples multiuse 20 lb acid free paper, a sheet of

Heinz Jordan Acryloil Series 401 acid free illustrator’s paper and a sheet of 140 lb acid

free watercolor paper. These paper samples will henceforth be referred to as lined paper,

printer paper, sketch paper and water paper respectively. These papers were selected for

their differing characteristics with thickness being the most qualitatively apparent. With

this characteristic in mind, from the thinnest to thickest, the samples are ordered as follows:

lined paper, printer paper, sketch paper and water paper.

Since the primary interest is in the spatial distribution of propagated light, the trans-
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mitted laser intensities were radially collected and averaged. The resulting values were

then normalized and plotted as a function of the distance (in pixels) from the center of

the laser beam. This in effect calibrated the data against the dark frame of the camera,

and reduced the effect of any noise that might be present in the images. Figures 5.2 and

5.3 show these plots for the red and green lasers respectively. Due to the finite width

of the beam, the central portion of the intensity profile, represented as the partition left

of the vertical line in the plots, is characterized by relatively small fluctuations. Hence

the focus of this investigation is directed toward the decay in intensity near the edges of

the laser beam, marked as the region right of the vertical dashed line, which is associated

with the most significant changes in the spatial distribution of propagated light. For each

laser, the regions are kept with the same boundaries to ensure a fair comparison within

each laser trial. The plots were then normalized to the maximum and minimum value in

these regions. We remark that the results obtained using the two different lasers should

be analyzed independently of one another since their corresponding physical measurement

set-ups may contain minor inconsistencies due to the handling of the different emitters.

5.2 Simulation Approach

Data for each simulation instance was obtained by generating 107 rays in conjunction with

the corresponding warping functions given in Chapter 2: Equations 2.3 and 2.1 for the HG

function and Equations 2.3 and 2.2 for the EC function.

The generated rays were collected using a virtual goniophotometric measurements [41],

which are designed to simulate actual devices, known as goniophotometers (see Appendix A),

used to measure spatial light distribution. The collection hemisphere was divided into 30

intervals in the azimuthal component and 90 intervals along the polar component. The

number of rays, coupled with the strong forward scattering of the simulations, ensured

asymptotically convergent readings [41].
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Figure 5.2: Normalized intensity profiles of the paper samples using the red HeNe laser
(633 nm). Top left: lined paper. Top right: printer paper. Bottom left: sketch paper.
Bottom right: water paper. The dashed lines indicate the beginning of region of interest,
and each data set is normalized to the maximum in the region. The distance is given in
terms of the number of pixels between the position and the center of the laser beam in the
image.
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Figure 5.3: Normalized intensity profiles of the paper samples using the green HeNe laser
(543 nm). Top left: lined paper. Top right: printer paper. Bottom left: sketch paper.
Bottom right: water paper. The dashed lines indicate the beginning of region of interest,
and each data set is normalized to the maximum in the region. The distance is given in
terms of the number of pixels between the position and the center of the laser beam in the
image.
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Since azimuthal symmetry was assumed while using the warping functions, the az-

imuthal intervals were separated evenly. However, it was noted that some subdivision

schemes for the polar intervals, such as equal solid angles suggested by Krishnaswamy et

al. [41], did not provide enough resolution to capture highly directional scattering distribu-

tions along the material’s normal. Instead, the azimuthal intervals was divided according

to a sine distribution. Such a distribution results in more patches near the top of the collec-

tor hemisphere, which, in turn, increases the precision of measurements depicting forward

scattering profiles such as those investigated in this work. The differences in these two

patch distribution schemes are illustrated in Figure 5.4 and the differences in representing

the same scattering profiles are shown in Figure 5.5.

Figure 5.4: Comparison of different hemisphere subdivision schemes for the virtual go-
niophotometer. Polar intervals divided according to equal solid angles (left) and according
to a sine distribution (right). Both of these examples contain 30 azimuthal components
and 90 polar components. The most notable difference is near the top of the hemispheres
where the subdivisions in the right figure converges to a point.

The simulated data was collected1 as the intensity as a function of all possible forward

scattering directions (θ ∈ [0, π
2
] and φ ∈ [0, 2π)). Like the physical data, the simulated

data was then also radially averaged, resulting in the simulated intensities which depend

only on the polar angle.

A conversion was required from angle to distance in order to compare against the

1The simulated data collected was actually the bidirectional transmittance distribution function (See
Appendix B).
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Figure 5.5: Comparison of the same scattering profiles (HG function with g = 0.85)
collected using different hemisphere subdivision schemes for the virtual goniophotometer.
Polar intervals divided according to equal solid angles (left) and according to a sine distri-
bution (right).
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measured data, which was collected as intensity as a function of distance. Assuming the

raw simulated data is ρ◦, then the converted data ρ is obtained via the relation

ρ(tan θ) = ρ◦(θ).

However, note that tan(π
2
) = ∞, and thus, the measured profiles can only be compared

against a portion of the simulated profiles. This was accounted for by introducing a hori-

zontal scaling factor to the simulated data in order to ensure the data sets were of the same

magnitude, and then truncating the simulated data. This truncated distance is normalized

to the unity. The maximum value in the simulated data was normalized to the unity as

well.

5.3 Comparison Procedure

The selection of the parameters g and n involved two stages. Initially, a coarse explo-

ration of their space of values is performed to determine the ranges that yield the closer

approximations with the data obtained in the physical measurement set-up. The parame-

ter searching process is then refined within these ranges to obtain the best approximation.

At the end, the parameter space explored for g was 0.0001 to 0.9999 in refined steps of

0.0001, and the parameter space explored for n was 1 to 500 with refined steps of 1. The

best approximation was the one that yielded the smallest root mean square (RMS) error

defined as [53]

δ(A, B) =

√

∑N
i=1

(ai − bi)2

N

for two data sets A and B where ai and bi are the ith value of the A and B respectively,

each with N values.



Chapter 6

Results

Figure 6.1 presents the graphs depicting the closest agreements obtained between the

measured and simulated data sets for the red laser. Orthogonal plots that further illustrate

the differences of these data sets are shown in Figures 6.2 to 6.5. Figures 6.6 to 6.10

present the corresponding results for the green laser. The graphs show that none of the

approximations completely agree with their corresponding measured data, with the larger

deviations occurring in the region near the inflexion point of these curves. In general, the

HGWF does not conform to the relatively sharp bend at the normalized distance between

0.2 and 0.5. This is seen as an overall brighter image and more diffuse dot in the orthogonal

plots. However, the ECWF falls off too quickly, for normalized distance greater than 0.4,

although this differs on a much smaller scale.

Comparing the results provided by the two warping functions, one can verify the EC

data sets present the closer qualitative and quantitative agreement with the actual sets.

The later observation is confirmed by the RMS errors presented in Tables 6.1 and 6.2.

Also note that the parameters resulting in the best matches do not correlate with the

thickness of the paper samples. As the paper samples become thicker, the absolute intensity

of the measured data decreases, and the parameters would be expected to decrease as well.

However, neither g nor n decreases monotonically across the measurements for the same

31



32

laser.

It is worth mentioning that the ECWF is approximately 40% more expensive than the

HGWF. This figure is based on the elapsed CPU time required for their computation on

the SGI Onyx 3200 used in our investigation.
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Figure 6.1: Comparison of measured data using the red laser (633 nm) and simulated
scattering profiles obtained using the HGWF and ECWF that yield the closest agreements.
Top left: lined paper. Top right: printer paper. Bottom left: sketch paper. Bottom right:
water paper.
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Figure 6.2: Orthogonal projections of scattering profiles, from Figure 6.1, corresponding
to data obtained from lined paper using the red laser (633 nm) and its closest agreements
using the HGWF and ECWF.
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Figure 6.3: Orthogonal projections of scattering profiles, from Figure 6.1, corresponding
to data obtained from printer paper using the red laser (633 nm) and its closest agreements
using the HGWF and ECWF.
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Figure 6.4: Orthogonal projections of scattering profiles, from Figure 6.1, corresponding
to data obtained from sketch paper using the red laser (633 nm) and its closest agreements
using the HGWF and ECWF.
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Figure 6.5: Orthogonal projections of scattering profiles, from Figure 6.1, corresponding
to data obtained from water paper using the red laser (633 nm) and its closest agreements
using the HGWF and ECWF.
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Figure 6.6: Comparison of measured data using the green laser (543 nm) and simulated
scattering profiles obtained using the HGWF and ECWF that yield the closest agreements.
Top left: lined paper. Top right: printer paper. Bottom left: sketch paper. Bottom right:
water paper.
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Figure 6.7: Orthogonal projections of scattering profiles, from Figure 6.6, corresponding
to data obtained from lined paper using the green laser (543 nm) and its closest agreements
using the HGWF and ECWF.
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Figure 6.8: Orthogonal projections of scattering profiles, from Figure 6.6, correspond-
ing to data obtained from printer paper using the green laser (543 nm) and its closest
agreements using the HGWF and ECWF.
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Figure 6.9: Orthogonal projections of scattering profiles, from Figure 6.6, corresponding
to data obtained from sketch paper using the green laser (543 nm) and its closest agreements
using the HGWF and ECWF.
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Figure 6.10: Orthogonal projections of scattering profiles, from Figure 6.6, corresponding
to data obtained from water paper using the green laser (543 nm) and its closest agreements
using the HGWF and ECWF.
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Table 6.1: RMS errors associated with the approximations for the red laser (633 nm)
corresponding to plots in Figures 4 and 6.

Lined Paper Printer Paper Sketch Paper Water Paper

HGWF 0.047342 0.043760 0.036203 0.044042
ECWF 0.026609 0.023730 0.018162 0.017780

Table 6.2: RMS errors associated with the approximations for the green laser (543 nm)
corresponding to plots in Figures 5 and 7.

Lined Paper Printer Paper Sketch Paper Water Paper

HGWF 0.053489 0.057945 0.051973 0.042613
ECWF 0.025397 0.029789 0.021125 0.011227



Chapter 7

Conclusions

7.1 Alternative to the Henyey-Greenstein Function

Usually the choice of a function to approximate the bulk scattering of a paper’s inter-

nal layers, either in stochastic [12] or deterministic [23] simulation frameworks, represents

a compromise between accuracy and mathematical tractability. Such a compromise has

motivated the use of the HG function in these frameworks. Although the experiments

described in this paper were performed on whole samples, they suggest that, in the ab-

sence of measured data, the EC function may be a viable alternative for representing the

bulk scattering of paper layers, notably for applications requiring a low level of accuracy

(e.g., visual inspection of computer generated images of translucent paper). However, for

applications requiring a high level of accuracy (e.g., prediction of paper properties using

high sensitivity measurement data in conjunction with simulations), the degree of accuracy

provided by both approximations may be below acceptable limits.

7.2 Predictability

We remark that the parameters of both functions, asymmetry factor g and directional

exponent n, have no direct connection with the structural characteristics of paper. Addi-
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tionally, the results show that the trend of the parameters could not be predicted based on

the qualitative properties of the papers, namely thickness and transmission intensity. This

limitation may prevent their selection to be quantitatively guided by the characterization

data describing different samples, which, in turn, is likely to affect the predictability of

models employing these functions.

One of the strategies to increase the predictability of the current modeling frameworks

may involve the development of data driven approaches in which physically measured

data can be directly incorporated into the simulations. Such approaches, however, are

bound by data scarcity, which is one of the main reasons for the incorporation of bulk

scattering approximations into models in the first place. Therefore, there is a need for

more comprehensive measurements of paper optical properties that take into account not

only the degree of non-uniformity in different types of paper, but also a broad range of

measurement and environmental conditions. Such an undertaking will likely require a

close collaborative effort between industry and academia. Future initiatives in this area

should also include thorough studies on how the errors introduced by these approximations

propagate through complex modeling frameworks.

7.3 Future Work

In light of the findings of this research, future work may involve the development of a pre-

dictive physically-based framework [27] for the simulation the optical properties of paper,

with less reliance on “artificial” functions.

It has been noted that the macroscopic properties of paper are dictated by its mi-

croscopic structure. For example, non-uniform fiber orientation causes anisotropic re-

flectance [25]. The fibers in paper are also relatively transparent, but internal light scat-

tering that occurs within these fibers causes paper to be relatively opaque. The properties

of the fibers themselves, such as length, radius, and compression, also have different effects
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on material density, and thus, optical properties [13]. A way to decrease the dependence

on these functions is to model the physical microstructure of paper and apply Monte Carlo

techniques to reproduce its macroscopic light reflection and transmission behaviors. How-

ever, the structure of fibers in paper is not clearly defined, introducing a large degree of

complexity.

In order to adapt to this structural uncertainty, the modeling strategy must be flexible

but preserving the physical characteristics of the material. One approach to be considered

consists in generating fibers on the fly and discarding each one after an incident light

beam intersects it, which has been successfully applied to the problem of light interacting

with particulate materials [40]. This avoids the high cost of pre-computing and storing

the complete discrete structure of the fibrous material. Additionally, it avoids the need

in solving expensive ray-geometry intersection problems. Such an approach has not been

used in this context before.

As future work, we plan to develop a predictive modeling framework using this stochas-

tic approach. This framework may have applications not only in realistic image synthesis

but also in applied optics and material science. For example, the framework may assist the

pulp and paper industry in designing non-invasive optical techniques for quality control

and material evaluation.
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Appendix A

Measurement of Light Spatial

Distribution

The measurement of light spatial distribution is usually performed using goniophotome-

ters [32]. A goniophotometer is an instrument that measures radiant flux as a function

of angles of illumination and observation. More specifically, they are employed in the

measurement of light reflected and/or transmitted by different materials under different

lighting conditions. The light flux, which is incident on the sample from an emitter, in-

teracts with the specimen and the reflected and/or transmitted light is then captured by

a detector. Measurements can be obtained in different ways, using different geometries of

illumination and observation. Figure A.1 is a sketch illustrating the key components of a

goniophotometer set-up for the measurement of transmittance profiles. These instruments

are important tools for fundamental research in many different fields that require optical

measurements, ranging from colorimetry to remote sensing [41]. Needless to say, paper

science also benefits from this technology [25].

A comprehensive goniophotometric record for a material requires a sizeable number

of measurements. Both the emitter and detector need to be moved independently of one

another to all possible positions on a hemisphere centered around the specimen to be
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studied. To cover a complete hemisphere (2π steradians) with minimal overlap, about a

thousand distinct positions are required [41]. Then, a thousand radiance readings would

be needed for each of the one thousand illumination positions. Therefore, to capture the

full range of goniometric data, one million measurements would be required.

Figure A.1: A sketch of the key components of a goniophotometer used for measuring
spatial distribution of transmitted light. The specimen normal is represented by ~n. The
emitter casts light from patch I at a polar angle of θi and azimuthal angle of φi. A radiance
sensor detects the transmitted light at a patch V at a polar angle of θr and azimuthal angle
of φr.



Appendix B

Bidirectional Transmittance

Distribution Function

The bidirectional transmittance distribution function (BTDF) is one of the physical prop-

erties that can be measured by a goniophotometer and is the format of the simulated data

collected in this thesis. The mathematical definition of the BTDF, with light incident from

the solid angle ~ωi and detector’s location corresponding to the solid angle ~ωr, is

ft(~ωi, ~ωr) =
Φr

Φi ~ωr
p ,

where Φr is the transmitted flux that hits the detector, Φi is the incident flux and ~ωr
p is

the adjusted solid angle corresponding to the direction of the detector. Additionally, the

adjusted solid angle is given by

~ωr
p =

Ar cos θr

L2
,

with Ar being the area of the radiance detector, L being the distance between the specimen

and the radiance detector or equivalently the radius of the collecting hemisphere, and θr

being the polar angle between with the radiance detector and the specimen normal, as

labeled in Figure A.1.
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Assuming the incident light with radiant flux Φi is simulated by Ni rays in a virtual

goniophotometer, each with power Φray, then the total incident flux can be rewritten as

Φi = NiΦray .

Similarly, the received flux can be written as

Φr = NrΦray,

whereNr is the number of rays reaching the detector. Then, the expression for the BTDF

reduces to

ft(~ωi, ~ωr) =
Nr

Ni ~ωr
p .

Similar analogues can be defined for the reflectance by having the detector placed in

the upper hemisphere.


