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Abstract

In Software Product Lines (SPLs), a feature model can be used to represent

the similarities and differences within a family of software systems. This allows

describing the systems derived from the product line as a unique combination of

the features in the model. What makes feature models particularly appealing is

the fact that the constraints in the model prevent incompatible features from being

part of the same product.

Despite the benefits of feature models, constructing and maintaining these mod-

els can be a laborious task especially in product lines with a large number of features

and constraints. As a result, the study of automated techniques to reason on fea-

ture models has become an important research topic in the SPL community in

recent years. Two techniques, in particular, have significant appeal for researchers:

SAT solvers and Binary Decision Diagrams (BDDs). Each technique has been ap-

plied successfully for over four decades now to tackle many practical combinatorial

problems in various domains. Currently, several approaches have proposed the

compilation of feature models to specific logic representations to enable the use of

SAT solvers and BDDs.

In this thesis, we argue that several critical issues related to the use of SAT

solvers and BDDs have been consistently neglected. For instance, satisfiability is a

well-known NP-complete problem which means that, in theory, a SAT solver might

be unable to check the satisfiability of a feature model in a feasible amount of time.

Similarly, it is widely known that the size of BDDs can become intractable for large

models. At the same time, we currently do not know precisely whether these are

real issues when feature models, especially large ones, are compiled to SAT and

BDD representations.

Therefore, in our research we provide a significant step forward in the state-

of-the-art by examining deeply many relevant properties of the feature modeling

domain and the mechanics of SAT solvers and BDDs and the sensitive issues related

to these techniques when applied in that domain. Specifically, we provide more

accurate explanations for the space and/or time (in)tractability of these techniques

in the feature modeling domain, and enhance the algorithmic performance of these

techniques for reasoning on feature models. The contributions of our work include

the proposal of novel heuristics to reduce the size of BDDs compiled from feature

models, several insights on the construction of efficient domain-specific reasoning

algorithms for feature models, and empirical studies to evaluate the efficiency of

SAT solvers in handling very large feature models.
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Chapter 1

Introduction

The Software Product Line approach (SPLs) [25, 73, 26] is a contemporary paradigm

for software development that exploits the similarities and differences within a fam-

ily of systems in a particular domain of interest in order to provide a common in-

frastructure for deriving members of this family, i.e., software products, in a timely

fashion, with high-quality standards, and at lower costs. To some extent, SPLs

are similar to automotive product lines where it is possible to take a basic car

model and choose such items as the engine, transmission, upholstery, and color.

Substantial gains in productivity reported by industrial sectors adopting software

product lines along with the rapid emergence of supporting approaches, techniques

and tools have turned SPLs into a very attractive software approach that fits well

in the current highly competitive market. Currently, the research field of software

product lines is very active and academic research is focusing on real issues in the

software industry.

In software product lines, feature models [48, 26] are used to represent the

similarities and differences of system families in terms of features. This allows

systems produced from the product line to be described as a unique combination of

these features. The term feature is referred to in the literature as “any prominent

and distinctive aspect or characteristic that is visible to various stakeholders” [48].

For instance, modern Web search engine systems usually provide a “search by

language” feature that allows users to search for Web pages written in a specific

language such as English or Portuguese. Another common feature of these systems

focuses on the “types of searchable documents” supported such as text, images and

videos. Therefore, a feature model can be used to represent “search by language”

and “types of searchable documents” as features of a Web search engine product

line. What makes feature models particularly appealing is the fact that they can
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be used to prevent the derivation of illegal product specifications. That is, the

relations in the feature model constrain the way in which features can be combined

into products. For instance, it might be the case that feature “search by language” is

incompatible with particular types of searchable documents, say images and videos,

in the Web search engine product line. In this case, a mutual-exclusion relation can

be added to the feature model to prevent the generation of incorrect Web search

engine systems. The process of selecting features in the feature model for a new

system is commonly referred to as product configuration. The last decade has seen

an ever growing number of approaches to software product lines supporting the

notion of feature models [5, 75, 89, 50, 74, 15, 9, 59, 36, 72].

However, constructing and maintaining feature models can be a laborious task

especially when the scale grows to models containing thousands of features. This

has made the provision of automated tools and techniques critical for the effec-

tive manipulation of feature models. There are several practical contexts in which

automated support for feature models is necessary as we discuss next.

First, feature models might contain errors and thus need to be debugged [92,

8, 12]. For instance, a feature model is incorrect if it is unsatisfiable, i.e., it does

not contain any legal configuration. In fact, this is equivalent to stating that no

valid products can be derived from the product line. In addition, a feature model

is incorrect if it contains features that can never be part of any valid product, i.e.,

so called “dead” features. In this case, the relations in the feature model need to

be revisited and fixed to eliminate these “dead” features. Manually checking the

satisfiability of feature models or the presence of “dead” features is cumbersome

hence automated support is definitely required.

Second, feature models might need to be adjusted over time to follow the evo-

lution of the corresponding product line. When this happens, the changes made

to the models must be checked formally for soundness. For instance, there are

cases in which the new feature model must be backward-compatible with the orig-

inal model in the sense that every legal configuration in the original model is also

valid in the new model. In this case, we say the new model is a refactoring of the

old one [3, 41]. Checking the soundness of refactorings manually is complex and

error-prone, therefore there is a need for automated techniques.

Third, there are scenarios in which product configuration is performed inter-

actively [30, 65] which might require the enforcement of certain properties. For

instance, in interactive configuration [45], a feature model is configured through

successive steps, by one or more users, until a final configuration is obtained. In
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this context, the configuration system must enforce that only valid choices are shown

to users as decisions are made. This is important to enforce that the configura-

tion process is backtrack-free, i.e., users are never required to revisit past decisions.

Hence, appropriate automated techniques are required to enforce backtrack-freeness

in interactive configuration.

Finally, there exist important metrics associated with feature models that can

be used to measure different aspects of the corresponding product lines [10, 88].

For instance, the number of valid products in the product line can be computed by

counting the number of legal configurations in the feature model. The computation

of such metrics demands the use of appropriate automated techniques. We refer

generally to the process of examining distinct aspects related to feature models

across different contexts as feature model reasoning.

The need for effective techniques to reason on feature models has attracted the

attention of researchers and practitioners in the field, notably in the past five years.

In particular, the provision of rules to translate feature models to Boolean formulas

[8, 12, 32] has opened many interesting research opportunities especially in the

use of formalisms to improve automated support for feature model reasoning. For

instance, several approaches have proposed the use of specific logic-based systems

such as Alloy [40], SAT solvers [8, 33], constraint solvers [12, 33, 92], Binary Decision

Diagrams (BDDs) [5, 33], Z [83], and Prolog [17] to reason on feature models. There

are many trade-offs involved in using these systems and perhaps the best approach

is to use them in combination. For example, while a SAT solver can efficiently check

the satisfiability of a feature model, it can take an unfeasibly long time to compute

the number of legal configurations in the model. Instead, a BDD can quickly count

the legal configurations in the model but the size of the BDD structure can easily

become intractable. Research contrasting some techniques exists [10, 33].

Two techniques are particularly appealing: SAT solvers and BDDs, since they

are somewhat complementary. First, both techniques are very mature as they have

been applied for over four decades now to tackle several practical combinatorial

problems including scheduling, planning, configuration, logic synthesis, verification,

and optimization. Therefore, we can take full advantage of all the improvements

made to SAT and BDD technologies to provide improved support for feature model

reasoning. Second, these techniques usually serve as a basis for other more gen-

eral techniques. For instance, Alloy uses a SAT solver to perform formal analysis.

Hence, the evaluation of SAT solvers can somehow be extended to Alloy and other

SAT embedding techniques. Third, SAT and BDDs can be viewed as complemen-

tary techniques that together cover a variety of reasoning operations applied to

3



feature models. Not surprisingly, the use of SAT solvers and BDDs to reason on

feature models has already been tackled in the field [8, 12, 5, 66].

1.1 Problem Statement

Despite the relative success of approaches that make use of SAT solvers and BDDs

to automate support for feature model reasoning there are several critical issues

related to the use of these two systems that have been consistently neglected. For

instance, it is well known that SAT solvers and BDDs can lead to space and/or

time intractability problems. For instance, satisfiability is one of the most famous

NP-complete problems discussed in the literature. This means that a SAT solver

might take an infeasible amount of time to check the satisfiability of a Boolean

formula, i.e., the algorithm might not terminate in feasible time. It is also widely

known that the size of BDDs can vary dramatically depending on the order specified

for its variables. In worst cases, the size of the BDD grows exponentially in the

size of the Boolean formula and eventually becomes intractable. At the same time,

we still do not know precisely whether these are real issues when SAT- and BDD-

based techniques are applied in the feature modeling domain. If so, what are the

current limits in algorithmic space and time and what can be done to improve

these limits? If these are not issues, why is this the case and when, if ever, can

these become issues? Similarly important, how can we take advantage of domain

knowledge to boost automated support for feature model reasoning? We argue that

current approaches to feature model reasoning based on SAT solvers and BDDs

have adopted a “black-box” strategy, i.e., they have refrained from delving into

the intricacies of these techniques and thus have failed to tackle related crucial

sensitive issues. While this might be convenient, this also significantly decreases

our level of confidence in using these techniques in the feature modeling domain as

the following questions remain unanswered:

1. Can the size of BDDs for realistic feature models ever become intractable? If

so, what are the current limits?

2. Can these limits be improved? If so, how and by how much?

3. Are SAT solvers always efficient in checking the satisfiability of feature mod-

els? If so, can we provide some explanations for that?

4. How can we take advantage of domain knowledge to improve the performance

of algorithms to reason on feature models?
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5. What kind of feature-modeling-specific algorithms can be developed and what

are the improvements in performance in comparison to pure SAT solutions?

1.2 Research Hypothesis

Our research hypothesis is the following:

By exploring domain knowledge in the feature modeling domain and by

better understanding the mechanics of BDDs and SAT solvers and the

sensitive issues related to these techniques, we can i) provide more ac-

curate explanations for the space and/or time (in)tractability of these

techniques in the feature modeling domain, and ii) enhance the algorith-

mic performance of these techniques for reasoning on feature models.

1.3 Contributions

The main contributions of this thesis are the following:

1. Reasoning with BDDs

• We empirically compare several state-of-the-art heuristics for ordering

BDD variables and identify the one that is most effective in the feature

modeling domain, i.e., the one that usually produces the smallest BDDs.

• We identify several relevant properties of feature models that should

be considered when ordering the variables of BDDs for feature models.

Based on the insights provided we propose two novel heuristics to order

the variables of BDDs compiled from feature models.

• We show empirically that the new heuristics can compile, in average,

feature models twice as large as those compiled by previous heuristics.

The heuristics can be easily embedded in any BDD-based configuration

tool which demonstrates the practical contribution of our research. We

also expect that the insights we provide can influence the development

of even better heuristics in the future.
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2. Reasoning with Domain-Specific and SAT-Based Systems

• We explore several properties of feature models and show how these

properties can be used to develop efficient domain-specific algorithms to

reason on a subset of feature models.

• We also show how these domain-specific algorithms can be combined

with existing SAT algorithms into hybrid solutions that can deliver im-

proved performance for certain kinds of reasoning operations on feature

models.

• We empirically show that some of the domain-specific algorithms can

indeed be much more attractive than a pure SAT-based solution. We

expect that the insights provided can lead to many new domain-specific

algorithms in the future.

• We show empirically that SAT instances derived from a certain class

of feature models represent “easy” problem instances for a SAT solver.

Since we expect that most of realistic instances will yield much easier

SAT problems we claim that we have improved the confidence on the

general use of SAT solvers to handle feature models.

3. Feature Model Benchmarks and Support Tools

• Currently, a major challenge to overcome in the field is the lack of

publicly-available large real feature models. The vast majority of models

available are small (100 features or less) and fit well in research papers

but are rarely ideal for evaluating the scalability of feature model rea-

soning techniques. It is known that large models exist [7] but access to

them is usually not granted by third parties. Hence, in this thesis we

analyze several real feature models available in the literature in order to

identify as many similarities as possible among them. Next, we build a

benchmark tool that is capable of generating feature models that mirror

as much as possible real models. The generated models are used in our

empirical experiments to support scalability analysis. The models and

the benchmark generation tool were made public as we want to encour-

age other researchers to take advantage of the infrastructure we have

built. In fact, a research group is already using the benchmarks to per-

form empirical analysis on feature models using Alloy. In addition, two

other research groups have already contacted us to download the bench-

mark tools and some of the models we have used in our experiments in
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order to compare their techniques to ours.

• We developed a comprehensive software library for manipulating fea-

ture models and various reasoning techniques including SAT solvers and

BDDs. The API contains about 157 classes and 17,144 lines of code and

is extensible in at least two aspects: first, it allows new reasoning tech-

niques to be easily embedded and contrasted with existing techniques;

second, it allows new BDD variable ordering heuristics to be developed

and compared with existing ones, including the novel heuristics proposed

in this thesis.

We claim that our research provides a significant step forward in the state-

of-the-art by examining deeply many relevant properties of the feature modeling

domain and the mechanics of SAT solvers and BDDs and the sensitive issues related

to these techniques when applied in that domain. Specifically, we provide more

accurate explanations for the space and/or time (in)tractability of these techniques

in the feature modeling domain, and enhance the algorithmic performance of these

techniques for reasoning on feature models.

Ultimately, we expect the ideas discussed in this thesis to raise awareness in

our research field of the importance of taking domain knowledge into account for

analyzing and enhancing automated techniques for feature model reasoning.

1.4 Thesis Organization

This thesis is organized as follows. Chapter 2 provides the background information

necessary for reading this thesis including the subjects of feature models, constraint

satisfaction problems, constraint solvers, and binary decision diagrams. Chapter 3

reviews related work presented in the literature and classifies the feature model rea-

soning activities examined into four major areas based on the contexts where they

are applied. Following, work on configuration systems and automated techniques

for feature model reasoning is discussed and contrasted with our research. Chapter

4 explores several properties of feature models and, based on these properties, two

new heuristics are proposed to order the variables of BDDs compiled from feature

models. Chapter 5 examines further properties of the feature modeling domain

as a basis for the development of new domain-specific algorithms for reasoning on

a subset of feature models. The algorithms proposed are further integrated with

SAT algorithms to form hybrid solutions that can be applied to the entire feature

7



model. In addition, insights are provided that can help assessing the hardness of

SAT instances derived from feature models. The results of empirical experiments

to evaluate the ideas proposed in the thesis are reported in Chapter 6. First, the

models that supported the experiments are presented including the real models

gathered from the literature as well as those generated automatically. Following,

experimental results are discussed to compare the quality and the scalability of

the two BDD variable ordering heuristics proposed in Chapter 4 against existing

state-of-the-art heuristics. In addition, the performance of the hybrid algorithms

proposed in Chapter 5 is compared with that of pure SAT solutions. Finally, the

results of empirical experiments to evaluate the hardness of feature model SAT in-

stances are presented and discussed. Chapter 7 concludes the thesis and proposes

future research directions.
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Chapter 2

Background

In this chapter, we provide the background information necessary for reading this

thesis including the subjects of feature models, constraint satisfaction problems,

constraint solvers, and binary decision diagrams. We introduce feature models and

show how they can be used as a basis for constructing unique and valid specifica-

tions for software product line systems. In addition, we discuss translation rules for

converting a feature model into an equivalent propositional formula and how this

translation allows the configuration of the feature model to be addressed as a con-

straint satisfaction problem. Finally, we present two powerful techniques used for

decades to address many practical combinatorial problems, i.e., constraint solvers

and binary decision diagrams, and argue that these techniques can also be applied

effectively to reason on feature models and product configuration.

2.1 Feature Models and Configuration

Feature models [48, 26] are used in software product lines as a means to represent

the similarities and differences of system families in terms of features. The term

feature is referred to in the literature as “any prominent and distinctive aspect or

characteristic that is visible to various stakeholders” [48]. For instance, modern

Web search engine systems usually provide a “search by language” feature that

allows users to search for Web pages written in a specific language such as English

or Portuguese. During a process called product configuration features in the feature

model are selected and arranged into product specifications to describe unique

systems in the product line. Such specifications can be further used as input for

programs called generators [26, 24] to automate the generation of those systems.
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Figure 2.1: A feature model for a Web search engine product line

What makes feature models particularly appealing is the fact that they prevent

the derivation of illegal product specifications. That is, the relations in the feature

model constrain the way in which features can be combined into system specifica-

tions. For instance, the feature model enforces that mutually-exclusive features are

never part of the same product. In this sense, a specification is said to be invalid

or illegal if it violates any of the constraints in the feature model. Feature model

constraints can be specified in two ways. First, the features in the product line

can be arranged hierarchically in a structure called feature tree. The types of the

features and their particular arrangement in the tree structure describes a set of

feature relations. Second, additional relations can be attached to the feature model

to enrich its expressiveness which we shall call extra constraints. The feature model

is then the conjunction of the relations in the feature tree and the extra constraints.

Figure 2.1 depicts a simple feature model for a Web search engine product

line. The feature tree structure in the model is shown containing a hierarchy of

labeled nodes, i.e., the features. Five types of features are possible: mandatory,

optional, inclusive-OR, exclusive-OR and the root feature. The root feature is

usually called the concept as it models the variabilities associated with a particular

domain concept, in our case, a software product line. By convention, we always

assume that the root feature is part of any legal system specification in the product

line.

Optional features are illustrated in Figure 2.1 with an unfilled circle decorating
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the top of some labeled rectangles. For instance, features page-translation, search-

by-language, page-preview, image, and video are optional. Optional features can

only be part of a system specification if their parent features are also included in

the specification. Therefore, if feature doc-type (parent feature) is part of a product

specification (which coincidentally is always the case in the feature model) feature

video (child optional feature) may alternatively be added to the specification.

Mandatory features are represented by labeled rectangles decorated with a filled

circle on top. For instance, features doc-type and html are mandatory. Mandatory

features must be included in a system specification whenever their parent feature

is part of the specification. Therefore, feature html (child mandatory feature) must

be part of any specification containing feature doc-type (parent feature). Similarly,

feature doc-type must be part of any specification containing the root feature. Since

the root feature is part of any valid specification, we conclude that feature doc-type

and by transitivity feature html are part of any legal specification of the Web search

engine product line.

Alternatively, features can be grouped together into feature groups to form

cardinality-based relations (see dashed rectangles in Figure 2.1). Features that are

part of such groups are called grouped features (e.g. portuguese, english, spanish,

jpg, gif and svg). The cardinality [m,n] associated with a feature group indicates

that at least m and at most n features in the group must be included in the product

specification whenever the group’s parent feature is included. When m = n = 1

an exclusive-OR group is specified that enforces that only one feature in the group

can be selected (e.g. jpg, gif and svg). In this case, we generally omit parameter

n in the cardinality (e.g. [1]). Inclusive-OR groups are defined by cardinality

[1,*] enforcing that at least one feature in the group must be selected whenever

the group’s parent feature is selected. The “*” symbol is used to indicate that

parameter n corresponds to the total number of features in the group (e.g., in the

figure [1,*] is the same as [1,3]). We shall use the term subfeature to refer to the

descendants of a given feature in the feature tree. For instance, features jpg and

video are subfeatures of feature doc-type.

In addition to the feature tree, Figure 2.1 also depicts two extra constraints at

the bottom rectangle labeled “Extra Constraints”. Each constraint defines a rela-

tion between two or more features. For instance, relation (page-preview → ¬svg)

prevents features page-preview and svg from being part of the same valid specifi-

cation. That is, the relation reads “the inclusion of feature page-preview implies

the exclusion of feature svg”. Similarly, relation (search-by-language → page-

translation) requires that feature page-translation be always included in specifica-

12



Figure 2.2: The meta-model for feature models

tions containing feature search-by-language. Notice that both extra constraints add

new relations to the feature model not described in the feature tree.

As mentioned earlier, a system in a software product line can be specified as

a combination of feature model features. Hence, specification S1 ={search-engine-

PL, doc-type, html} describes a unique Web search engine system for the feature

model depicted in Figure 2.1. Such specification is valid as it does not violate

any of the constraints in the model. Instead, specification S2 ={search-engine-

PL, doc-type, html, search-by-language, page-preview} is invalid since it violates a

relation in the feature tree, i.e., the selection of parent feature search-by-language

requires that at least one of its child grouped features, i.e., portuguese, english and

spanish, be selected which is not the case. In addition, the selection of feature

search-by-language requires the inclusion of feature page-translation according to

extra constraint relation (search-by-language→ page-translation) yet feature page-

translation is not part of the specification. Hence, an alternative to fix specification

S2 is to add features page-translation and portuguese to it.

The feature model in Figure 2.1 is an example of a concrete model for a Web

search engine product line. However, it is important that we describe more generally

the class of feature models that are covered in this thesis. In the following, we use

the notion of UML meta-models and OCL constraints for this purpose.
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Figure 2.2 shows a meta-model for feature models, i.e., a meta specification

that must be followed to build correct models. The Node element in the meta-

model indicates that each node in the feature tree must be uniquely identifiable

(id attribute) and can optionally have a name (name attribute). The RootFeature

element represents the single root feature of the tree. Mandatory and optional fea-

tures are represented by the SolitaireFeature element. The type attribute is an

enumeration that indicates whether the solitaire feature is optional or mandatory.

The GroupedFeature element represents features that are part of inclusive-or and

exclusive-or groups. The FeatureGroup element enforces that a set of grouped

features are part of the same group. Attributes min and max refer to the mini-

mum and maximum cardinality of the group, respectively. We only consider the

cases of exclusive-or and inclusive-or groups as enforced by the OCL constraint in

the bottom of the figure. For max = −1 we assume that max corresponds to the

total number of features in the group. The relation between GroupedFeature and

FeatureGroup, labeled parent, enforces that only feature groups can be parent

nodes of grouped features. The ParentNode and ChildNode elements are con-

nected by relation parent that indicates that the root feature as well as grouped,

mandatory and optional features, all descendants of ParentNode, can be parent

nodes of ChildNode elements such as feature groups, mandatory and optional fea-

tures. The root node does not have a parent node. The FeatureTree element

represents a feature tree containing a single root node. The FeatureModel element

indicates that a feature model always have a single feature tree (FeatureTree) and

optionally an extra constraint (ExtraConstraint). The extra constraint consists

of one or more propositional formulas (PropositionalFormula) described textu-

ally through attribute formula. We introduce propositional formulas in the next

section.

Notice that the Web search engine feature model in Figure 2.1 conforms to the

meta-model just described. It has a feature tree rooted by feature search-engine-

PL as well as mandatory, optional and grouped features arranged hierarchically. In

addition, extra constraints are attached to the feature model to complement the

feature tree relations.

2.2 Constraint Satisfaction

Constraint satisfaction [76] is a powerful framework in computer science that has

been used for several decades to model and solve numerous practical combinato-
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rial problems. Examples of traditional problems include scheduling, planning and

configuration. More recently, other fields have been explored such as natural lan-

guage processing (construction of efficient parsers), computer graphics (visual im-

age interpretation), computational molecular biology (DNA sequencing), business

applications (trading), and radio frequency planning.

A constraint satisfaction problem (CSP) consists of a set of variables, domains

of values, and constraints that impose conditions that the variables must satisfy.

A solution to the problem is an assignment to the variables that satisfies all the

constraints. A classic example of a CSP is the popular number placement game

Sudoku1. The goal is to fill a partially-filled 9x9 grid so that each column, each row,

and each of the nine 3x3 boxes contains the digits from 1 to 9 only one time each.

By encoding the game rules as a CSP it is possible to automate the computation

of solutions and the creation of instances of the game.

Boolean Satisfiability (SAT) is a special case of constraint satisfaction problems

in which all the variables in the problem are Boolean. For instance, the configura-

tion of the Web search engine product line in Figure 2.1 can be represented as a

SAT problem. Features are variables that can be either true (included in the prod-

uct specification) or false (excluded from the product specification). The feature

tree and the extra constraints define the constraints in the problem. A solution

to the problem represents a valid product specification, i.e., a selection of features

that does not violate any of the constraints in the feature model. In the following,

we provide a more precise definition of Boolean satisfiability problems.

Definition 2.2.1 A Boolean satisfiability problem (SAT) is a triple 〈X,D,C〉
where X is a set of variables over domain D = {0, 1}, and C is a set of constraints

over X. Every constraint ci ∈ C restricts the combined values of its variables, de-

noted by V ars(ci). An assignment A(S) is a set of tuples 〈si, vi〉 such that S ⊆ X,

si ∈ S, vi = 0 or 1, and si appears at most once in A(S). We say that A(S)

satisfies a constraint ci ∈ C, if V ars(ci) ⊆ S and the assignments made to ci’s

variables in A(S) cause this constraint to evaluate to 1 (true). A solution to the

SAT problem is an assignment A(X) that satisfies all constraints in C in which

case the problem is said to be satisfiable. Instead, if no solutions can be found the

problem is unsatisfiable.

A SAT problem can be encoded as a a Boolean (or propositional) formula.

This formula is constructed by using Boolean variables and the logic operators ∨
1http://www.websudoku.com/
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Table 2.1: Rules for translating feature model relations into Boolean formulas

Feature model relation Corresponding formula
r is the root feature r
p is parent of optional feature c c→ p
p is parent of mandatory feature c c↔ p
p is parent of grouped features g1, . . . , gn, and group
cardinality is [1..*] (Inclusive-Or)

p↔ (g1 ∨ . . . ∨ gn)

p is parent of grouped features g1,. . . ,gn, and group
cardinality is [1] (Exclusive-Or)

p↔ ((g1 ∧ ¬g2 ∧ . . . ∧ ¬gn) ∨
(g2 ∧ ¬g1 ∧ . . . ∧ ¬gn) ∨
. . . ∨
(gn ∧ ¬g1 ∧ . . . ∧ ¬gn−1))

Extra constraints already propositional formulas

(or), ∧ (and), → (implication), ↔ (bi-implication), and ¬ (not). For example,

f = a → (b ∧ c) is a Boolean formula. A possible solution for f is the assignment

(〈a=1〉, 〈b=1〉, 〈c=1〉) as it causes f to evaluate to true. A Boolean formula is in

conjunctive normal form (CNF) if it represents a conjunction of clauses in which

a clause is a disjunction of literals and a literal is a variable or its negation. For

instance, formula f can be converted into the following equivalent CNF formula

containing four literals and two clauses: (¬a ∨ b) ∧ (¬a ∨ c). CNF formulas are

important in practice as there are well-known algorithms [35, 34] for solving SAT

problems encoded as a CNF formula.

As mentioned earlier, the configuration of a feature model can be viewed as a

SAT problem. This can be accomplished by translating the model into an equivalent

Boolean formula [8, 32], i.e., features represent variables and the relations in the

model represent the constraints of the SAT problem as shown in Table 2.1. In

this case, a solution to the problem represents a valid configuration in the feature

model. For instance, if the translation rules in Table 2.1 are applied to the Web

search engine feature model in Figure 2.1 formula f shown in the next page is

obtained. Formulas 1-10 in f represent the feature tree relations while formulas 11

and 12 represent the extra constraints in the feature model. Formula f is then a

formal representation of the feature model which enables the use of SAT systems

to reason on the feature model. For instance, a SAT system can be used to search

for valid configurations in the model.
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f =

(1) (search-engine-PL) ∧
(2) (page-translation→ search-engine-PL) ∧
(3) (doc-type↔ search-engine-PL) ∧
(4) (search-by-language→ search-engine-PL) ∧
(5) (page-preview→ search-engine-PL) ∧
(6) (html↔ doc-type) ∧
(7) (image→ doc-type) ∧
(8) (video→ doc-type) ∧
(9) (image↔ ((jpg ∧ ¬gif ∧ ¬svg) ∨

(gif ∧ ¬jpg ∧ ¬svg) ∨
(svg ∧ ¬jpg ∧ ¬gif))) ∧

(10) (search-by-language↔ (portuguese ∨ english ∨ spanish)) ∧
(11) (search-by-language→ page-translation) ∧
(12) (page-preview→ ¬svg)

In the next sections we discuss two important techniques to address SAT prob-

lems and show how they can be used to reason on feature models and configuration.

2.3 Constraint Solvers

Constraint solvers are systems used to reason on constraint satisfaction problems.

Different algorithimic techniques are applied by modern constraint solvers such

as backtracking search, local search, and dynamic programming. We focus on

backtracking search as it is currently the most important in practice and largely

supported. Besides, backtracking search implements a complete algorithm, i.e., it

guarantees that a solution will be found if one exists. This is particularly useful in

the context of configuration in which enforcing the satisfiability of feature models

is important.

A backtracking search algorithm dynamically builds and traverses in depth-first

order a hierarchical structure called search tree in an attempt to find a solution

for the CSP problem. Figure 2.3(b) shows a search tree for the feature model in

Figure 2.3(a). Alternatively, the constraints in the feature model are shown as a

conjunction of 6 propositional formulas at the bottom of Figure 2.3(a). The dashed

horizontal lines in Figure 2.3(b) represent the 8 levels of the search tree. Level

0 contains a single node that roots the tree. An initially-empty set of variable

assignments is attached to the root (see the curly brackets at level 0 in the figure).
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(a) (b)

Figure 2.3: A feature model (graphical view and formulas)(a) and its search tree

(b)

At level 1 the root node is expanded to add variable R to the set. Since R can

assume different truth values, two new branches are created in the tree in a process

known as branching. Each branch expands the initially-empty set at level 0 based

on the two possible values for R, i.e., {R=0} (false) and {R=1} (true). This

instantiates variable R. The same expand-and-branch process repeats for all other

levels causing new variables to be instantiated and added to the partial assignments

set (see underlined text at each level in Figure 2.3(b)). In this context, the nodes in

the tree represent a partial assignment to the variables analyzed that may or may

not lead to a solution.

Constraints are used to check whether or not a node leads to a solution. If the

partial set of assignments at a node violates one or more constraints the node is

considered a dead-end (marked with a capital X in Figure 2.3(b)) and its latest

assignment is retracted. For instance, node {R=0} at level 1 is a dead-end since

it violates constraint (1) in Figure 2.3(a) that requires R to be true. If all paths

examined at a given level lead to dead-ends the algorithm backtracks to the previous

level and attempts to explore new branches. If level 0 is reached during backtracking
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and there are no more branches to explore the algorithm indicates that the problem

is unsatisfiable and terminates. Instead, if the last level in the tree is expanded and

no constraints are violated the algorithm has found a solution. For instance, a

solution for the feature model in Figure 2.3(a) is found at level 7 of the search tree

in Figure 2.3(b). Three dead-ends were found during the search at levels 1, 4 and

7 for variables R, B and F which violated constraints (1), (4) and (5), respectively.

A serious drawback of the search algorithm just introduced is that it can lead to

“thrashing”, i.e., to examining several branches of the search tree unproductively

as they will never lead to a solution. This can cause severe deterioration in the

performance of the algorithm especially when the branches involved contain a large

number of variables. Not surprisingly, this has become a major issue in the his-

tory of backtracking-search algorithms. As a result, several techniques have been

proposed to cope with this problem, in particular, means to enforce some degree of

local consistency. For instance arc-consistency [55, 56] maintains a certain level of

local consistency by examining constraints and (temporarily) removing values from

the domain of some variables that would never be part of any solution considering

the values already assigned to instantiated variables. For instance, if constraint (1)

in Figure 2.3(a) is processed prior to starting the search process the value 0 (false)

would have been removed from the domain of variable R as it clearly violates that

constraint. This would have prevented the branching of R for value 0 ({R=0}).
However, it is important to notice that the term “local” in local consistency em-

phasizes that the pruning of the variable domains does not necessarily remove all

possible dead-ends from the search. Instead, it enforces that the values left in the

domains satisfy some of the relevant constraints in the problem.

Modern constraint solvers usually offer more than one alternative of local consis-

tency algorithms. One such algorithm that is particularly efficient for SAT problems

is called forward checking [46, 60]. Forward checking implements a restricted form

of arc-consistency by considering constraints with exactly-one uninstantiated vari-

able to prune the domains of uninstantiated variables so that only values consistent

with the current values of instantiated variables are left. This process is also known

as constraint propagation.

Constraint propagation is a particularly effective in the context of SAT prob-

lems since removing a value from the domain of a Boolean variable corresponds to

automatically instantiating the variable to the other truth value. Figure 2.4 depicts

the search tree of Figure 2.3(b) but this time considering the application of forward

checking to prune variable domains. A column named propagations illustrates the

pruning at each branch of the tree. Prior to the search process an initial propaga-
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Figure 2.4: Search tree with constraint propagation for feature model in Fig-

ure 2.3(a)

tion is performed and only constraint (1) in Figure 2.3(a) is considered as it is the

only constraint that has exactly-one uninstantiated variable. Variable R is then

assigned 1 (see column propagation for level 0) as value 0 violates the constraint.

At level 1, assignment {R=1} causes constraints (2) and (4) to have exactly-one

uninstantiated variable, i.e., A and B, respectively. No values are removed from

the domain of variable A since the assignment of either truth value to this variable

satisfies constraint (2). However, value 0 is removed from the domain of variable

B since R=1 and the only possible value for B that does not violate constraint

(4) is 1 (see column propagation for level 1). Constraint propagation is repeatedly

applied in other levels to prune the domains of variables C and D (level 2) and

variable F (level 6). Notice that dead-end branches {R=0}, {B=0} and {F =0} in

Figure 2.3(b) were not generated in Figure 2.4 as the domains of these variables

were pruned by constraint propagations in previous steps. As a consequence, 3 less

nodes were visited in the search tree in Figure 2.4 when compared to the search tree

in Figure 2.3(b) (8 and 11, respectively). In practice, the use of local consistency

algorithms can cause a significant reduction on the number of visited nodes in the

search tree and thus might have a tremendous impact on the performance of the

search algorithm.
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While general constraint solvers (CSP solvers) can be used to reason on SAT

problems, more efficient tailored solutions are available. One such solution is a

DPLL SAT solver [35, 34]. A DPLL solver also builds a search tree during the

search procedure but rather uses a specialized propagation algorithm known as unit

propagation to enforce local consistency. Unit propagation is equivalent to forward

checking in the sense that it examines formulas with exactly-one uninstantiated

variable.

Despite the enormous advances that have been made to the SAT technology in

the last decades, SAT problems are still “intractable” in worst-case scenarios. In

fact, this is one of the topics addressed in this thesis. In particular, we examine

domain-specific properties of Boolean formulas derived from feature models and how

these properties can be used to improve the performance of SAT-based solutions in

handling some traditionally “hard” operations (e.g. counting problem solutions).

In addition, we study the “hardness” of feature model formulas, i.e., whether SAT

instances generated from feature models can ever become “intractable”. These

issues are discussed in Chapters 5 and 6.

2.4 Binary Decision Diagrams

Binary decision diagrams (BDDs) [22, 4] are compact encodings for Boolean formu-

las that provide numerous efficient reasoning algorithms. During the last decades

BDDs have been widely explored in research areas as logic synthesis, verification,

configuration, constraint satisfaction and optimization. Currently, several BDD

engines are freely available (e.g. JavaBDD [91], BuDDy [54], CUDD [80]).

In terms of data structure BDDs are directed acyclic graphs (DAGs) having

exactly two external nodes representing constant functions 0 and 1, and multiple

internal nodes labeled by variables (see Figure 2.5a). Each internal node has exactly

two outgoing edges representing a decision based on an assignment to the node

variable: the low-edge (a dotted line in the figures) represents the choice of false,

while the high-edge (solid) represents the choice of true. A path from the root to

an external node represents an assignment of values to variables. For example the

rightmost path in Figure 2.5a represents a (non-satisfying) assignment (A=1, B=0).

The paths terminating in the external node 1 (respectively 0) represent satisfying

(respectively unsatisfying) assignments.

Figure 2.5b presents a BDD for the feature model and formulas in Figure 2.3(a)

The BDD contains 9 internal nodes, 2 external nodes, and 5 satisfying paths, each
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(a) A < B (b) C < A < D < F < E < B < R

Figure 2.5: (a) A simple BDD and (b) a BDD for the model in Figure 2.3(a), and

the corresponding order of their variables. Both BDDs are reduced and ordered.

representing one or more solutions. For instance, path {C =0, A=0, D=0, F =1,

E=1, B=1, R=1} is a satisfying solution for the BDD and therefore a legal con-

figuration for the feature model in Figure 2.3(a). There is a total of 10 distinct

solutions for the BDD as shown below:

1. (C=0,A=0,D=0,F=0,E=1,B=1,R=1)

2. (C=0,A=0,D=0,F=1,E=0,B=1,R=1)

3. (C=0,A=0,D=0,F=1,E=1,B=1,R=1)

4. (C=1,A=1,D=0,F=0,E=1,B=1,R=1)

5. (C=1,A=1,D=0,F=1,E=0,B=1,R=1)

6. (C=1,A=1,D=0,F=1,E=1,B=1,R=1)

7. (C=1,A=1,D=1,F=0,E=0,B=1,R=1)
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8. (C=1,A=1,D=1,F=1,E=0,B=1,R=1)

9. (C=1,A=1,D=1,F=0,E=1,B=1,R=1)

10. (C=1,A=1,D=1,F=1,E=1,B=1,R=1)

A BDD is ordered if every top-down path in the DAG visits the variables in

the same order. In a reduced BDD any two nodes differ either by labels or at least

by one of their children (uniqueness), and no node has both edges pointing to the

same child (non-redundancy). Notice that the BDDs in Figure 2.5 are both reduced

and ordered. In particular, the variable order of the BDD in Figure 2.5a is A < B,

i.e., variable A always precedes variable B in any top-down traversal of the BDD.

Reduced-ordered BDDs (RO-BDDs) are the most used in practice and we shall use

the term BDD to refer to them from now on.

The advantage of BDDs over SAT solvers is the superior performance of some

BDD algorithms once the BDD structure is built. For instance, while a state-of-

the-art SAT solver will almost certainly struggle to count the number of solutions

in a SAT problem, a BDD can perform this operation very efficiently. In addition,

equivalence checks of Boolean formulas can be performed in constant time using

BDDs while this is generally NP-hard for SAT solvers. Finally, there are efficient

BDD algorithms for calculating valid domains2 [45], i.e., giving an assignment of

some of the variables in the BDD it is possible to compute efficiently the available

valid choices for each unassigned variable. This is especially important in interactive

configuration in which while users make configuration decisions the configuration

system updates in realtime the available configuration options. In other words, the

system guides the user backtrack-free towards a valid configuration. Meanwhile,

SAT propagation algorithms only enforce some degree of “local” consistency which

does not guarantee backtrack-freeness. Instead, a SAT solver would have to perform

several rounds of satisfiability checks to achieve the same results as BDDs yet with

no guarantees of realtime responsiveness.

However, the high performance of BDD algorithms comes at a price. That is, the

BDD structure represents a compilation of the entire combinatorial space of a SAT

problem which causes building and maintaining such structure to be very costly

and even impossible in some cases. For instance, in worst-case scenarios the size of

the BDD is exponentially larger than the number of variables in the corresponding

Boolean formula which translates to BDDs containing several millions of nodes.

2also referred to as minimal domains
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Figure 2.6: Another possible BDD for the feature model in Figure 2.3(a) with

variable order (C < A < F < E < R < B < D). The BDD is 66% larger than the

structure in Figure 2.5b.

Building such large BDDs can consistently cause “memory overflow” errors even in

modern workstations. In this context, techniques to reduce the size of BDDs are

critical not only as a means to improve the performance of BDD algorithms but

also to allow the construction of such large BDDs using typical computer systems.

It is known that the size of a BDD can vary dramatically depending on the order

specified for its variables. For an illustration of this problem, consider the BDDs

in Figure 2.5b and in Figure 2.6 representing the same Boolean formula, i.e., the

feature model in Figure 2.3(a), but with different variable orders. While the former

BDD (Figure 2.5b) has only 9 nodes, the latter contains as many as 15 nodes, i.e.,

66% more! Thus, it is of crucial importance to care about variable ordering when

applying BDDs in practice.

A good variable order is one that keeps the size of the BDD as compact as

possible, i.e., ideally close to the optimal. Unfortunately, finding an optimal vari-

able order is an NP-hard problem [19, 62]. In the worst case, all possible variable

combinations would have to be checked which has an exponential cost. For this rea-
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son the BDD variable ordering problem has been typically approached by heuristic

algorithms. Heuristics exploit specifics of the problem domain in order to com-

pute good orders efficiently. Many research communities applying BDDs developed

such heuristics for their domain. In the next section, we discuss some of the most

renowned heuristics developed so far.

Another important property of BDDs is canonicity. For any Boolean formula

there is exactly one BDD b with a given variable order v. That is, the BDD

structure is canonical for a formula given a fixed variable order. Canonicity is what

makes the use of BDDs so attractive for checking the equivalence of formulas. If

two formulas f1 and f2 produce the same BDD for the same variable order the

formulas are equivalent. In many BDD libraries this can be performed by simply

checking if two variables refer to the same BDD object in memory.

2.4.1 A Survey of BDD Variable Ordering Heuristics

A pervasive goal of all the ordering heuristics is to place connected variables, i.e.,

variables that appear together in one or more Boolean formulas, close to each

other in the ordering. This task is nontrivial. Dependencies between variables

often interfere, i.e., optimizing the placement of a variable with respect to one

dependency often decreases the quality of the ordering with respect to the others.

Variable ordering heuristics can be categorized into dynamic and static. Dy-

namic heuristics reorder the variables on-the-fly during the construction and ma-

nipulation of a BDD, usually exploiting garbage collection cycles of the underlying

BDD system. Static heuristics compute a variable order off-line, which is then

applied once to construct and analyze the BDD.

Static Heuristics

BDDs have been very successful in synthesis and analysis of digital circuits. Similar

to a BDD, a circuit represents a Boolean function, and there exist direct translations

between circuits and BDDs in either direction. Since the efficiency of verification

strongly depends on the size of the BDD used, it is not surprising that the variable

ordering problem has been deeply studied for the circuit domain.

Feature models can be easily translated to Boolean circuits which enables the

use of existing ordering heuristics from that domain. However, since both feature

models and circuits are Boolean formulas there exist many possible translations that
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Figure 2.7: A feature model and two equivalent Boolean circuits representing the

model

produce different yet equivalent circuits for the same feature model. For instance,

a particular translation approach here called “bfs” might consider generating a

circuit based on a breadth-first traversal of the feature tree. That is, first a node

labeled output is added to the circuit. Next, the features in the feature tree are

visited in breadth-first traversal during which inputs and gates are generated. Gate

structures for parent-child relations are constructed and recursively grouped into

a hierarchy of AND gates. Finally, the extra constraints are taken into account

to connect existing input nodes through new gates. Notice that if we change the

traversal algorithm applied to the feature model from breadth-first to depth-first a

different circuit is generated. Figure 2.7 shows a feature model in the left-top corner

and a circuit graph for the model in the right top-corner assuming the breadth-first
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translation approach.

Yet, a possible translation might consider converting a feature model to a CNF

formula and then generating the circuit from the formula. Let us call this translation

method “cnf”. In this case, the circuit generated would typically exhibit a 5-layer

topology, i.e., the inputs, the NOT gates (for negative literals, if applicable), the

OR gates (one for each CNF clause), a single AND gate (to join the clauses), and

the output node. NOT gates can be reused for inputs whenever necessary. A graph

circuit for this translation approach is illustrated in the bottom of Figure 2.7. Notice

that the two circuits have a distinct number of nodes and edges and the input nodes

are ordered differently from left to right. We are not concerned with generating a

functional circuit but rather a graph that can be processed by circuit heuristics.

We chose the “bfs” approach to generate the circuits addressed in this the-

sis as the approach seems to reveal more of the feature model hierarchy than its

counterpart “cnf” that always produces a very flat circuit graph. In general, both

approaches perform linearly for all feature model elements except for exclusive-OR

groups, for which the number of gates is quadratic in the size of the group. In

our evaluations, the translations produce circuits 3 to 10 times larger than the

corresponding feature model.

Fujita’s Heuristic. Fujita-DFS [39] is a heuristic that traverses the circuit from

the output to the inputs (which correspond to variables) in a depth-first search

(DFS) order. During the traversal, inputs connected to two or more gates are

placed first in the generated variable ordering in the hope that the remaining nodes

in the circuit will form a tree-like structure for which a standard DFS produces

good variable orderings. Since a circuit is a directed-acyclic graph (DAG) with

a single output, nodes connected to many other nodes are removed from such a

rooted DAG, the remaining structure approximates a tree. Fujita-DFS proved to

generate good orderings for some circuit benchmarks, e.g. ICAS-85 [21].

Level Heuristic. The level heuristic [57] assigns the depth level to each circuit

node, which is the length of the longest path from that node to the output. Sub-

sequently, the inputs are sorted in decreasing order of levels to produce the final

order. The level heuristic performs particularly well for multi-level circuits in which

the outputs of a sub-network serve as inputs to the next subnetwork in the chain.
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FORCE Heuristic. FORCE [2] is a domain-independent static heuristic for vari-

able ordering. The heuristic is applied to a CNF formula and uses a measure called

span to assess quality of placement for related variables. Given a pair of variables

its span is defined to be their distance in a given variable ordering. The span of a

clause is the maximum span of all pairs of variables occurring in the clause. Finally,

the span of a CNF formula is the sum of spans of all its clauses.

FORCE begins with a random variable ordering and through successive steps

attempts to minimize the formula span by moving variables near each other. At

each iteration a new order is produced, which serves as input for the next iteration.

It stops when the span value no longer decreases.

In order to apply FORCE, we implemented a simple CNF translation algorithm

that traverses the feature tree in DFS and generates CNF clauses for each parent-

child and feature group relation. For simplicity, we assumed the conjunction of

the extra constraints was already in CNF form. The translation has the advantage

that it places features related in a feature tree together in the same clauses, which

makes FORCE try to put them close to each other in the ordering.

Sifting

Sifting [77, 62] is a popular domain-independent dynamic heuristic implemented

in most BDD libraries. Unlike a static heuristic, sifting operates dynamically by

trying to reduce the size of an already existing BDD on demand or on-the-fly; for

example during garbage collection cycles. The main advantage of sifting is that it

can enable the construction of BDDs that cannot be built with static heuristics.

Sifting is a local search algorithm. It swaps variables in the BDD if this leads to

an improvement of the BDD size. Despite its merits, sifting has a serious drawback.

The heuristic can be extremely slow in practice. In fact, we observed running times

of over an hour for tasks that could be performed in a few minutes by good static

heuristics. This is primarily caused by the fact that unlike FORCE a swap in

a variable ordering requires a modification of the existing BDD to obey the new

ordering.

Despite the advances made in BDD minimization research, space explosion of

BDD structures remains an issue for certain kinds of large formulas. This is one

of the topics addressed in this thesis. In particular, we explore several structural

properties of Boolean formulas derived from feature models and how these proper-

ties can be used to develop efficient domain-specific variable ordering heuristics for
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reducing the size of BDDs for feature models. These properties and the proposed

heuristics are discussed in detail in Chapter 4.

2.5 Summary

In this chapter, we introduced feature models and showed how they can be used to

build valid system specifications in software product lines. In addition, we presented

rules for translating feature models into propositional formulas and showed how

this translation enabled the configuration of feature models to be addressed as

a constraint satisfaction problem. Finally, we discussed two mature techniques

used for several decades to reason on many practical combinatorial problems, i.e.,

constraint solvers and binary decision diagrams, and argued that these techniques

can also be applied effectively in the feature modeling domain.
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Chapter 3

Related Work

In this chapter, we extend the discussion on feature models by examining and

classifying several feature model reasoning activities discussed in the literature into

four major areas based on the context where these activities have been studied.

Furthermore, we survey the state-of-the-art on automated techniques for feature

model reasoning and discuss how proposed configuration systems and reasoning

techniques relate to and benefit from our research.

3.1 Feature Model Reasoning

Several activities related to the manipulation of feature models in software product

lines have been examined by previous research. For instance, after construction

feature models might contain errors and thus need to be debugged. As well, feature

models might need to be adjusted to follow the evolution of the corresponding

product line. In addition, feature models must be correctly specialized and/or

configured to derive consistent product specifications. Finally, several metrics can

be applied to feature models to measure different aspects of the corresponding

product line. In the next sections, we examine in detail these four major areas where

feature model reasoning has been studied: debugging, refactoring, configuring, and

measuring feature models.

3.1.1 Debugging Feature Models

We refer to feature model debugging as the process of verifying the correctness of

a feature model, i.e., that the model accurately describes all product line features
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Figure 3.1: An unsatisfiable feature model fa becomes satisfiable (fb) after the

removal of constraint C2.

and relations. At least two properties have been related to feature model debugging

in the literature: satisfiability [7, 86, 58, 94] and the presence of “dead” features

[10, 32].

A feature model is satisfiable if at least one valid product specification can be

derived from the model, otherwise the model is unsatisfiable and thus incorrect.

In practice, an unsatisfiable model corresponds to a product line from which no

systems can be derived which is obviously a contradiction. Unsatisfiable models are

usually a result of careless analysis or mistakes made by feature model designers

especially when dealing with large models.

Figure 3.1 shows an unsatisfiable feature model fa. The model contains 7 fea-

tures and 2 extra constraints. Feature R roots the model and thus is always true.

Hence, feature B must also always be true as it is mandatory and directly connected

to the root. That is, features R and B must be true in all valid configurations of

feature model fa. Moreover, in order to satisfy constraint C1 (A xor B) feature

A (and consequently its child feature C ) must be false since feature B is true. If

feature C is false so must be feature B to satisfy constraint C2 (¬C → ¬B), which

is obviously a contradiction since we just stated that feature B must always be

true in any valid configuration of the model. Hence, we conclude that model fa is

unsatisfiable since there is no value of B that satisfies the constraints in the model.

One possibility to make model fa satisfiable is to eliminate one of the constraints

that is causing the contradiction. For instance, feature model fb in Figure 3.1, that

is obtained by eliminating constraint C2 from model fa, is satisfiable. For instance,

a possible solution for fb is the set of features {R, B, D}. This solution does not
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Figure 3.2: Feature model fb containing “dead” features A and C is fixed by making

feature B optional in model fc.

violate any of the constraints specified in model fb giving that constraint C2 has

been removed and thus feature B can now be safely assigned true.

A feature model is also incorrect when it contains “dead” features. A “dead”

feature is a feature that can never be part of any legal configuration of the model.

This corresponds to having a product line that provides features that can never

be included in any derived system. Figure 3.2 shows feature model fb again. As

we know, this model is satisfiable, in fact, it has 7 valid configurations. However,

in all these configurations features A and C are false, i.e., “dead” features. This

is caused by constraint C1 that falsifies feature A (and thus feature C ) whenever

feature B is true, which is always the case. Once again, the model needs to be

fixed by adjusting its relations. A possible alternative could be to make feature B

optional as is shown in model fc in Figure 3.2. This would allow features A and C

to be true in some solutions of fc. For instance, a valid configuration in fc could

be {R, A, C}.

3.1.2 Refactoring Feature Models

Software product lines evolve over time, for instance, to cope with market demands

or to improve the corresponding software architecture. In one way or another, it

is highly desirable that such changes do not compromise the compatibility of the

product line with its former products otherwise the costs involved in maintaining

different versions of the product line could quickly overcome the benefits. In this

context, feature model refactoring [3, 40] is referred to as the process of performing

semantic-preserving changes to the configurability of a product line. That is, a
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Figure 3.3: Feature model fc is refactored yielding models fd and fe. While mod-

els fe and fc share the exact same configurations (equivalence), model fe admits

additional configurations not valid in fc (extension).

refactoring maintains or increases the configurability of the product line.

When applied to a feature model a refactoring produces a new model such that

all valid configurations in the original model are equally valid in the new model.

In addition, the new model can have extra valid configurations. When two feature

models f1 and f2 are such that they have exactly the same configurations, we say

that f1 is equivalent to f2 or f1 ≡ f2. If otherwise, f2 is a refactoring of f1 but

contains extra valid configurations, we say that f2 is an extension of f1 or f1 ⊂ f2.

Notice that in this case (extension) the refactoring is not bi-directional, i.e., f2

cannot be refactored back to f1.

Figure 3.3 shows a satisfiable feature model fc and two refactored models fd and

fe. In fc, features A and B are optional while in fd and fe they appear together

as part of an inclusive-OR group. In addition, the xor constraint C1 in model fc

was modified to an implication in fd. Since models fc and fd have exactly the same

8 valid configurations the refactoring produced an equivalent model (fc ≡ fd).

Instead, constraint C1 was removed in fe causing the resulting model to be an
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Figure 3.4: Feature model fd is modified by replacing one of its inclusive-OR groups

by an exclusive-OR relation yielding a more restrictive model ff . Model ff is

further configured by having some of its features selected (e.g. features R and B)

and deselected (e.g. features A and C ) in model fg.

extension of the original (fc ⊂ fe). For instance, the set {R, A, B, C, D} is a

solution in fe but is invalid in fc in which features A and B are mutually exclusive.

In fact, model fe contains as twice as many solutions as fc (16 and 8, respectively).

3.1.3 Configuring Feature Models

As discussed in the previous chapter, product configuration is the process of selecting

features in the feature model in order to build a valid specification for a product

line system. In practice, configuration can be performed in different ways. In the

following, we discuss some approaches to configuration mentioned in the literature.
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In staged configuration [28] a feature model can be refined (or specialized) by

continuously eliminating configuration choices in stages by either adding constraints

to the feature model or by selecting/deselecting features. Each stage takes a feature

model as input and yields an implicant feature model, i.e., a model that contains a

subset of the configurations of the original model. Therefore, specialization can be

viewed as the inverse process of feature model extension discussed in the previous

section, i.e., if feature model f2 is an extension of feature model f1 (f1 ⊂ f2), then

f1 is a specialization of f2. Figure 3.4 shows a feature model fd that comprises 8

possible configurations. Feature model ff represents a specialization of fd in which

the cardinality of the feature group containing features D, E and F is modified from

an inclusive-Or ([1..*]) to an exclusive-Or ([1]) relation. This change makes model

ff more restrictive. In fact, ff contains only 4 valid configurations that represent

a subset of the valid configurations in fd (configurations 1, 2, 4, and 8 below).

1. (R=1,A=0,C=0,B=1,D=0,E=0,F=1) - solution for fd and ff

2. (R=1,A=0,C=0,B=1,D=0,E=1,F=0) - solution for fd and ff

3. (R=1,A=0,C=0,B=1,D=0,E=1,F=1) - solution for fd

4. (R=1,A=0,C=0,B=1,D=1,E=0,F=0) - solution for fd and ff

5. (R=1,A=0,C=0,B=1,D=1,E=1,F=0) - solution for fd

6. (R=1,A=0,C=0,B=1,D=1,E=0,F=1) - solution for fd

7. (R=1,A=0,C=0,B=1,D=1,E=1,F=1) - solution for fd

8. (R=1,A=1,C=1,B=0,D=0,E=0,F=0) - solution for fd and ff

Figure 3.4 shows a feature model fg that partially configures the specialized

model ff by selecting feature B. Feature R is also (and always) selected as it roots

the model. However, notice that the selection of feature B was propagated in the

model causing features A and C to be deselected (a check mark indicates selected

features and an “X” indicates deselected features). Propagation was caused by

constraint C1. Model fg is only partially configured as one decision still remains

in the model regarding which one of the features D, E or F is to be selected.

Therefore, 3 possible configurations are still represented in the model. Notice that

because fg is a configured version of ff then the relation (fg ⊂ ff ) holds and by

transitivity relation (fg ⊂ fd) also holds. In fact, an initial feature model f1 can be

refined in n stages by combining specialization and configuration techniques such

that the resulting model fn represents a product specification containing no more

decisions. In this case, the configuration process can be represented by n successive

refinement steps (f1 ⊃ f2 ⊃ . . . ⊃ fn).

A variation of feature model specialization is know as interactive configuration
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[45]. Configuration systems supporting interactive configuration must enforce that

any valid configuration is reachable (completeness), i.e., it must expose to its users

all possible combinations of features. In addition, the users should never be re-

quired to review past decisions (backtrack-freeness). This is usually achieved by

implementing algorithms to calculate valid domains [45]. These algorithms work by

eliminating decisions in the feature model that are incompatible with the current set

of decisions made by the users. Finally, the configuration system must respond to

user requests in realtime (realtime responsiveness). This includes system requests

to complete partial configurations or to list one or more valid configurations.

In collaborative configuration [64],[65], a feature model is configured concur-

rently by several users through multiple steps. A configuration plan is devised

upfront to define the configuration spaces and the decisions each user will work

on, the arrangement of the configuration steps (e.g. sequential or parallel), and the

strategy to handle eventual decision conflicts. For instance, conflicts can be resolved

by specifying user priorities. In this case, whenever a conflict occurs the decisions

of the users with higher priorities will prevail. Alternatively, another strategy for

conflict resolution could be to minimize the number of revisited decisions, i.e., the

configuration system would find a valid configuration that best approximates the

current set of decisions made [65, 92].

3.1.4 Measuring Feature Model Properties

Several metrics have been proposed to measure feature model properties. For in-

stance, computing the number of valid configurations in the feature model allows

reasoning on the flexibility and complexity of product lines [12, 86, 31]. In addi-

tion, this information can be used to measure how much the combinatorial space

of configuration decisions has been reduced after several rounds of configurations

steps in collaborative or interactive configuration. This is important as the target

is to find a single valid configuration. Alternatively, this metric has been called

variation degree[88] of feature models and has been related to issues that arise in

developing, maintaining and evolving product lines.

The number of valid configuration has also been used as a parameter to compute

other metrics on feature models. For instance, the variability factor of a feature

model [12, 11] is a value between 0 and 1 computed as the ratio of the number of

valid configurations to 2n, where n is the number of features in the feature model.

The smaller the ratio the more restrictive is the feature model and vice-versa. The
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Table 3.1: Summary of feature model reasoning activities and operations

Summary of Feature Model Reasoning Activities and Operations

Activity Operations (Technique)

Debugging - Checking satistiability of models (SAT)

- Detecting if a given feature is “dead”(SAT)

- Detecting “dead”features (SAT, BDD)

Refactoring - Checking equivalence of feature models (SAT, BDD)

- Checking extension of feature models (SAT, BDD)

Configuring - Checking specialization of feature models (SAT, BDD)

- Validating partial or full configurations (SAT)

- Calculating valid domains (BDD)

- Enumerating one or more valid configurations (SAT, BDD)

- Resolving decision conflicts in collaborative configuration

(SAT, BDD)

Measuring - Counting valid configurations (BDD)

- Computing variability factor (BDD)

- Computing commonality of a feature (BDD)

relevance of computing the variability factor has been related to decision-making

strategies for adopting the product line approach [12].

Finally, the commonality of a feature computes the number of valid configura-

tions that includes a given feature f (f=true). This can be used to detect “dead”

features or to plan the implementation order of features in the product line ar-

chitecture [10]. This information can also be computed dynamically as decisions

are made in interactive or collaborative configuration to support decision-making.

For instance, a particular strategy for conflict resolution in collaborative configura-

tion could alert decision makers about scenarios in which some “relevant” features

would not be included in the product specification and make sure that this is indeed

desirable.

3.1.5 BDDs, SAT Solvers and Feature Model Reasoning

Table 3.1 provides a summary of the feature model reasoning activities and respec-

tive operations discussed in the previous sections. There is no doubt that feature

model designers and users must be properly assisted by automated tools in order to

perform the activities listed in this table. For instance, debugging a feature model
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requires designers to check the satisfiability of the model and the presence of “dead”

features which is virtually impossible without proper tool support, especially for

large scale models. Also, interactive configuration strongly relies on the use of con-

figuration systems capable of reacting to user decisions in a fraction of seconds in

order to validate decisions and to prune the combinatorial space of configuration

choices accordingly. In other cases, tool support is required to check the soundness

of feature model transformations such as refactoring or specialization.

SAT solvers and BDDs can be very helpful in this context. Beside each operation

description in Table 3.1 (enclosed in parentheses) we have indicated the technique

that is most commonly suitable for performing the operation (SAT solver, BDD, or

both) based on a literature review and on our own experience using these techniques.

SAT solvers offer specialized algorithms to address the satisfiability problem and

thus can handle efficiently operations that fit well in this context such as checking

the satistiability of models, detecting if a given feature is “dead”, and validating

partial or full configurations. Although a BDD can also be used to perform these

operations, building a BDD would require compiling the entire combinatorial space

of a feature model which might delay the processing of operations that only require

a partial analysis of the problem space such as those mentioned earlier. Instead,

BDDs are typically suitable for handling computationally hard operations such as

counting valid configurations, computing the variability factor of a feature model,

computing the commonality of a feature, and calculating valid domains in inter-

active configurations. These operations usually require an exhaustive analysis of

the problem combinatorial space. Yet in other cases, it is not clear which tech-

nique is most suitable as researchers have applied either technique successfully. For

instance, past research has examined the use of SAT solvers [44, 18], BDDs [6]

and even the combination of both techniques [71] for checking formula equivalence.

Another important factor to consider for situations in which both techniques are

applicable is the frequency in which the BDD structure will be used once it is built.

Usually, if the BDD is used only once a SAT solver might be a better choice other-

wise the cost of building the BDD structure might pay off. A typical example where

a BDD is valuable is in interactive configuration in which the BDD is used several

times for refining the configuration choices until a final configuration is reached.

The major issue with BDDs is not the efficiency of BDD algorithms for pro-

cessing the operations just mentioned. In fact, this is the strength of this tech-

nique. Instead, the main issue is usually the inherent difficulty of building BDDs

of tractable sizes for large scale models. Similarly, most of the operations for which

SAT solvers are indicated in Table 3.1 rely on the efficiency of the solvers in per-
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forming satisfiability checks. Therefore, in our research we do not focus necessarily

on particular operations provided by these systems but rather on space and/or time

(in)tractability issues related to these systems. That is, we want to be able to build

BDDs of tractable sizes for as large as possible feature models, and to examine the

time (in)tractability of SAT solvers in handling SAT instances derived from feature

models.

3.2 Reasoning Tools and Techniques

In this section, we survey the state-of-the-art in configuration systems and feature

model reasoning techniques and show how research in this field relates to and

benefits from our work.

3.2.1 Product Configurators

Feature Model Plug-in (FMP) [5] is a configuration system based on feature mod-

els. The tool provides users with a graphical interface for building and configuring

feature models and is able to verify the correctness of generated product specifica-

tions. FMP also uses BDDs to keep track of the number of legal configurations in

the feature model as configuration decisions are made. The XPath1 language can

be used to add additional relations to the feature model not contemplated in the

feature tree. A novelty in the tool is its support for the staged configuration of

feature models [30] as discussed in Section 3.1.3. In staged configuration a feature

model is gradually specialized by adding constraints to the model or by select-

ing/deselecting features. FMP implements the specialization process by generating

copies of the feature model each time a specialization step is performed. The tool

enforces that the specialized models are indeed a specialization of the original mod-

els, i.e., the valid configurations in the specialized models are a subset of the valid

configurations in the original models

XFeature2 [75] is a feature modeling tool that relies heavily on the use of the

XML technology to model product families and instantiate product specifications.

Feature models are specified in XML and validated using XML schemas. While

standard constraints such as requires and excludes can be written in XML, arbi-

trary constraints can be specified using XPath expressions. Configurations are also

1See http://http://www.w3.org/TR/xpath
2See http://www.pnp-software.com/XFeature/
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described in XML and validated by automatically-generated XML schemas. XSLT,

an XML transformation language, is used to check whether a given configuration

conforms to the constraints in the model. The tool is mostly targeted to XML users

and hence provides a solid embeddable architecture.

RequiLine3 [89] is a requirements engineering tool that integrates requirements

and feature modeling to produce product specifications. Feature models as well as

standard relations such as requires and excludes can be constructed by using user

interfaces. Products can be configured manually or by following wizards that guide

the users through the configuration process. The tool offers a consistency checker to

verify the correctness of feature models and the validity of configurations. Feature

models are checked in a two-phase process. First, the feature graph is analyzed

and validated. Following this step, each standard constraint is individually checked

against the others. The strength of the tool is the integration between requirement

analysis and feature modeling.

Gears4 [50] is a commercial software product line engineering tool and frame-

work that incorporates a product configurator. The rationale of the tool is to

support the notion of software mass customization, i.e., the means of efficiently

producing and maintaining a family of similar software products. Gears offers a

development environment in which software assets (e.g. source code, UML models,

script files) are developed and maintained. Moreover, the environment supports

the construction of feature models and descriptions that map features to software

assets. Configurations of the feature model, known as feature profiles, serves as

input for the product configurator to generate products automatically. The tool

provides a proprietary solution to describe constraints and validate feature models

and configurations.

The Pure::Variant family5 [74, 15] is a set of commercial tools that cover the en-

tire life cycle of product line development, i.e., analysis, design, and implementation

of the product line as well as production, test, use and maintenance of products.

Feature models are used to capture and manage product variability and serve as

a guide for product configuration. Family models describe the individual software

components of the product line and their dependencies with features in the feature

model. A configuration, called feature selection, serves as input to a generator that

automates the generation of product line members. Pure::Variant uses Prolog to

describe constraints and to check the consistency of feature models and validity of

3See http://www-lufgi3.informatik.rwth-aachen.de/TOOLS/requiline/
4See http://www.biglever.com/solution/product.html
5See http://www.pure-systems.com/
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product configurations.

Other configuration tools supporting the notion of feature models are available

including CaptainFeature [9], AmiEddi [59], DecisionKing [36] and VarMod [72].

There is no doubt that the development of configuration systems represent im-

portant research contributions in the field of software product lines. In this thesis

we are concerned with the suitability of the techniques embedded in these tools for

handling large feature models. Unfortunately, this is often missed in most research.

That is, related publications do not provide enough details regarding the scalabil-

ity of the techniques used as the size of the models increases, the amount of space

required for building underlying structures, and the efficiency of the operations

supported. Yet, these are crucial practical issues. For instance, the FMP tool uses

BDDs to count the number of valid configurations in the feature model but it is not

known how the tool orders BDD variables, a fundamental issue related to the BDD

technique. As a consequence, we do not know how well the tool will scale given that

BDDs for large models can become unfeasibly large. Moreover, it is known that

the performance of XML tools such as XSLT and XPath degrades substantially for

large XML models yet the XFeature tool relies heavily on such technologies. In

other cases, configuration systems rely on SAT solvers to support the configuration

of feature models yet it is known that satisfiability is an NP-complete problem. In

this context, it is relevant to know whether feature model SAT instances can ever

become intractable.

Ultimately, we argue that it is extremely hard to make any assumptions regard-

ing the suitability of many current configuration systems in handling large models

giving that critical issues related to the techniques used by these systems have not

been addressed properly.

In our research, we provide a deep analysis of two powerful techniques for sup-

porting feature-based configuration, i.e., BDDs and SAT solvers. We examine prop-

erties of the feature modeling domain to develop efficient heuristics for minimizing

the size of BDDs and to build hybrid solutions that can improve the performance

of SAT solvers for certain operations. Also, we evaluate empirically all the tech-

niques and algorithms examined including their scalability. Current configuration

systems benefit directly from our research. For instance, BDD-based feature model

configuration tools can incorporate the new heuristics for BDD variable ordering

and benefit from reduced BDD sizes which ultimately allows larger feature models

to be processed. Also, these tools can embed some of the hybrid algorithms pro-

posed in our research to improve the efficiency of some operations. In addition,
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empirical evaluations provided in our research increase the level of confidence of us-

ing SAT-based configuration systems giving that the performance of these systems

have been empirically evaluated and limits were determined.

3.2.2 Reasoning Techniques

Researchers have explored several alternatives to represent feature models rigor-

ously. This gave rise to a number of techniques that capitalized on the strengths

of formal languages and related tools to improve automated support for reasoning

on feature models. In the following, we survey some of the most relevant works in

this subject.

The interest in the connection between feature model and logics has grown

substantially over the recent years as demonstrated by the increasing number of

research papers covering this subject [58, 8, 32, 12, 66]. As a result, rules were

introduced for translating feature models to propositional formulas and vice-versa,

and the advantages of such translation were discussed. In fact, by converting a

feature model to an equivalent propositional formula it is possible to use efficient

off-the-shelf tools such as SAT solvers and BDDs to reason on feature models as we

discussed in Chapter 2. This is especially important given the maturity of SAT and

BDD technologies and the successful application of these techniques to solve many

practical combinatorial problems. In feature-based configuration, SAT solvers can

be applied to check the satisfiability of a feature model, to verify whether a given

feature is “dead”, to enumerate one or more valid configurations, and to check the

validity of configurations. Meanwhile, BDDs are very useful in counting the number

of valid configurations, checking the equivalence of feature models, and computing

valid domains for uninstantiated variables. The suitability of these two particular

techniques for reasoning on large feature models is one of the major subjects of this

thesis.

Another publication [12] considered feature models containing non-Boolean vari-

ables, sometimes called extended feature models, which required the use of more

general solutions such as constraint satisfaction solvers (as opposed to specialized

solutions such as SAT solvers) to support automated reasoning on feature mod-

els. The paper provided a notation for extended feature models along with defi-

nitions mapping feature model elements to the corresponding abstractions in the

constraint satisfaction framework. Support for various reasoning operations were

discussed such as counting the number of configurations, checking satisfiability of

models, verifying the validity of configurations, and applying metrics for measuring
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the variability of models and the commonality of features. In our work, we do not

address extended feature models but rather models consisting only of Boolean vari-

ables and complying to the meta-model described in Figure 2.2 in Section 2.1. At

the same time, we go much deeper than previous work in examining SAT algorithms

and how well these algorithms handle formulas derived from feature models. For

instance, in Chapter 6 we draw a correlation between hardness and a phenomenon

called phase transition that clarifies some facts about the hardness of feature model

SAT instances.

The use of BDDs to reason on feature models has been tackled by some ap-

proaches such as the FMP configuration system [5]. As discussed earlier, the FMP

uses BDDs to count the number of legal configurations in a feature model dur-

ing product configuration. As configuration decisions are made the number of legal

configurations decreases and is dynamically recomputed in the BDD. As we showed

in Section 2.4 BDDs are very sensitive to the order of their variables and a bad

order can lead to BDDs that are exponentially larger than the corresponding fea-

ture models. Unfortunately, finding an optimal order is NP-hard and the problem

is typically addressed by using heuristics. While it is very important that efficient

heuristics are developed for minimizing the size of BDDs representing feature mod-

els this is still a mostly unexplored area of research. In fact, the proposal of such

kind of heuristics and their validation through empirical experiments represents one

of the relevant contributions of this thesis.

FAMA [85, 33] is an approach to feature model reasoning that combines three

logic-based reasoning techniques: SAT solvers, constraint solvers, and BDDs. The

work is perhaps the first to combine different alternatives explicitly in the same

suite. The approach is supported by an extensible tool called FAMA FW6 that

allows the production and analysis of extended feature models, i.e., feature mod-

els containing Boolean and non-Boolean variables. At the moment of this writ-

ing, FAMA FW supports four reasoning operations: satisfiability checks of feature

models, counting and listing configurations, and calculating the “commonality of

a feature”, i.e., the number of legal configurations containing a particular feature.

Based on user’s requests the tool automatically chooses the most suitable technique

to process the request. For instance, a BDD is selected whenever the user wants to

known the number of legal configurations in the feature model. Unfortunately, the

work does not elaborate much on the strategy applied for dynamically selecting the

reasoning techniques. For instance, once a BDD is built it should clearly be the

6See http://www.isa.us.es/fama
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preferred choice for handling all four reasoning operations available in the tool given

the superior performance of BDD algorithms when compared to those of constraint

solvers. Furthermore, the tool does not discuss other sensitive issues related to the

techniques supported, for instance, how BDD variables are ordered and the quality

of the orderings, or how variables/values are ordered for SAT solvers and what are

the practical impacts of these optimizations. Instead, our research addresses these

issues explicitly by examining the space and/or time (in)tractability of SAT solvers

and BDDs for reasoning on feature models.

Recently, some techniques to diagnose and fix configuration errors in feature

models have been discussed [92]. The techniques considered translating a feature

configuration into a respective constraint satisfaction problem and using a con-

straint solver to suggest corrections to the original incorrect model. The constraint

solver is given a set of rules (feature relations) and is asked to generate a series of

possible fixes for the incorrect configuration. Optimal and bounded strategies are

proposed to find the optimal and an approximate fix, respectively, out of the many

possible fixes proposed by the solver. Results reported indicate that for optimal

cases feature models with up to 2,000 feature can be fixed in an average time of 7.5

min. For the unbounded strategy, larger models with up to 5,000 features can be

handled in about 1 min of processing. The work recognizes that finding real feature

models of large sizes (hundreds or thousands of features) has been a challenge for

researchers in the field and hence generated models are commonly used to support

empirical experiments. A nice contribution of the work is the numbers provided

regarding the size of the models used and the required processing times. This is

certainly a major omission of most of the relevant works in the field today. Despite,

the work does not comment much on how supporting models were generated and yet

this can impact the results. First, it is very important that generated models embed

as much as possible observable properties of real models, otherwise few assumptions

can be made regarding the practical suitability of the studied techniques. Second,

it is known that the hardness of constraint problems can be strongly influenced by

factors such as the clause density, i.e., the ratio of the number of variables to the

number of clauses (or formulas) in the problem. In fact, thresholds for certain class

of formulas have been determined for which the problem becomes extremely hard

(and ultimately infeasible) for constraint solvers. Therefore, we might expect that

at a certain threshold, feature model formulas might derive complex or infeasible

constraint problems. It is important to consider such factors when running and

reporting results of empirical experiments. In our work, we conduct a careful ex-

amination of several real feature models and identify some relevant properties that
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can be borrowed to generate models of arbitrary sizes. In addition, we discuss the

hardness of feature model formulas based on the identification of threshold values

for which corresponding SAT problems should theoretically become hard to solve.

Experiments are performed to relate problem hardness to the thresholds.

Feature model refactorings are transformations applied to feature models that

preserve or improve the configurability of the models [3]. Currently, a catalog of

sound refactorings exist [3]. The catalog encompasses a set of uni- and bi-directional

refactorings that can help feature model designers to refactor feature models safely.

Each entry in the catalog is formally verified using a theorem proving system called

PVS7. The actual refactoring process is implemented using a template-matching

technique in which the elements of a template representing the state of the feature

model “before” the refactoring is matched to features in the feature model. Once the

matching is performed the feature model can be safely refactored by using another

template describing the output of the transformation “after” the refactoring. In

another paper [41] the authors proposed a safe procedure to extend the catalog of

refactorings based on algebraic laws. The laws are useful in constructing a formal

proof of the soundness of new refactorings proposed in the catalog. That is, by

successively applying the laws in a certain order it is possible to prove that a

given output model is indeed a derivation of an initial input model. No additional

knowledge on theorem proving systems is required. The PVS system is used to

prove a series of theorems on algebraic laws. The techniques exploited in this thesis

can be used directly to verify the soundness of feature model refactorings. For

instance, as discussed in Section 2.4 BDDs can compute equivalence checking in

constant time. As well, SAT solvers have proven useful for performing equivalence

checks of formulas in certain domains [43].

Alloy8 is a formal language based on first-order logic that has been considered

as a lightweight alternative for complex theorem proving system for feature model

reasoning [40]. Alloy comprises a specification language and an analyzer that sup-

ports automated reasoning on those specifications. The analyzer usually relies on

external tools such as SAT solvers for improved performance. For instance, version

4 of the analyzer uses the SAT4J solver9 by default (the same solver used in our ex-

periments in Chapter Section 6). Different theories for feature models in Alloy are

available. For instance, in [40] two theories were proposed to address the cases of

general (G-theory) and specific (R-theory) feature model reasoning scenarios. This

7http://pvs.csl.sri.com/
8See http://alloy.mit.edu
9See http://www.sat4j.org/
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enables the use of the Alloy analyzer to automate various feature model reasoning

activities such as verifying the validity of configurations and the satisfiability of

feature models, counting and enumerating configurations, and verifying the equiva-

lence of feature models. The work also provides some performance numbers for the

Alloy analyzer. It was reported running times of up to 9 minutes (about 4 minutes

for the best case) to validate some refactorings for a feature model containing 300

features using version 3 of the Alloy analyzer. Using another more-efficient Alloy

encoding and version 4 of the Alloy analyzer the authors have reported improved

performance results (seconds instead of minutes for performing analysis) for mod-

els containing up to 10,000 features. We believe that the insights provided in this

thesis can significantly increase the level of confidence regarding the use of Alloy

to reason on large feature models considering that Alloy relies on SAT solvers, one

of the techniques studied in our research, to perform automated analysis.

Research has also explored the use of alternative languages to reason on feature

models including OCL [81], Prolog [17], OWL-DL [90], and Z [83].

3.3 Summary

In this chapter, we provided a compilation of the most relevant feature model rea-

soning activities reported in the literature and classified these operations into four

major areas: debugging, refactoring, configuring and measuring feature models. In

addition, we discussed the needs of improved automated support for feature model

reasoning and surveyed existing tools and techniques aiming at this direction. We

also commented on how current research relates to and benefit from our research.
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Chapter 4

Reasoning with Binary Decision

Diagrams

As we argued in Chapter 2 (Section 2.4), binary decision diagrams (BDDs) are a

powerful mature technique that has been used successfully for several decades to

reason on many practical combinatorial problems. In our work, we are interested in

the application of the BDD technique to improve automated support for reasoning

on feature models and product configuration. By compiling the entire combinatorial

space of the configuration problem, BDDs can be very effective in counting the

number of valid configurations, checking the equivalence of feature models, and

supporting interactive configuration. Some research in the field of software product

lines already tackled BDDs by proposing the incorporation of this technique into

configuration systems [5] and reasoning tools for feature models [33].

However, it is well known that the size of the BDD structure can grow expo-

nentially in the size of the input, i.e., the size of the feature model in our case,

depending on the order specified for its variables. A bad ordering can lead to very

large BDDs that cannot be built using a typical computer system. Finding an

optimal order is an NP-hard problem [19, 62]. For this reason the BDD variable

ordering problem has been typically approached by heuristics. Yet, the study of

those heuristics for the feature modeling domain is still highly unexplored.

In this chapter, we expand our initial investigations [66] in the development of

heuristics for ordering BDD variables in the feature modeling domain. We explore

several structural properties of feature models and discuss how they can be used to

produce high quality orders, i.e., orders that reduce as much as possible the size of

the BDD. The novel heuristics developed are further evaluated by contrasting them
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with existing general and domain-specific heuristics through empirical experiments

in Chapter 6.

4.1 Preliminaries

The following definitions are used throughout this and the next chapters.

Definition 4.1.1 The extra constraints representativeness (ECR) of a feature model

is the ratio of the number of variables in the extra constraints (repeated variables

counted once) to the number of variables (features) in the feature tree.

The ECR for the feature model in Figure 2.1 equals 4
14
' 0.28.

Definition 4.1.2 For features f1, ..., fn their lowest common ancestor, written

LCA(f1, . . . , fn), is their shared ancestor that is located farthest from the root (where

a feature is an ascendant of itself).

For instance, LCA(html, video) = doc-type and LCA(jpg, spanish) = search-engine-PL

(see Figure 2.1).

Definition 4.1.3 Given f = LCA(f1, . . . , fn), the roots of features f1, ...,fn, writ-

ten Roots(f1, . . . , fn), is either set {f}, if f is parent of f1, ...,fn, or the set con-

taining the children of f that are ancestors of f1, ..., fn, otherwise.

For instance, Roots(jpg, spanish) = {doc-type, search-by-language}, since features

doc-type and search-by-language are children of LCA(jpg, spanish) and root the

subtrees containing features jpg and spanish, respectively (see Figure 2.1).

4.2 Exploring Structural Properties of Feature

Models for Improved BDD Minimization

Many heuristics adopt the rationale of identifying and shortening the distance of

dependent variables as a means to produce good variable orders. For instance, in

the Level heuristic connected variables share the same level in the circuit. Fujita’s

heuristic uses a DFS traversal to identify connected variables in a circuit. As we
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mentioned before, span is the measure used by FORCE to approximate connected

variables in a CNF formula. Based on this observation, we characterize the problem

of ordering BDD variables in our domain as the problem of identifying related

variables in feature models and producing variable orders that minimize the relative

distance of such variables. What makes the problem particularly challenging is the

fact that the relations in the extra constraints usually connect independent branches

in the feature tree. This causes good orders for the feature tree to be extremely

inefficient for the extra constraints, and vice-versa. In addition, the larger the ECR

(see Definition 4.1.1) of a feature model the harder it is to find a good order that

suits both the feature tree and the extra constraints.

One way of obtaining an ordering heuristic is to compile a feature model into an

intermediate representation such as a CNF formula or a circuit and use available

heuristics to process the ordering. However, this approach would completely ignore

the domain knowledge. For instance, the variables in the feature tree are arranged

hierarchically in a tree, for which simple traversals produce good orders. At the

same time, as will be seen later, such arrangements are obscured in a CNF or circuit

representation, which prevents the respective heuristics from exploiting them.

In the following, we consider factors that influence the development of new

heuristics for variable ordering in the feature modeling domain. These considera-

tions are then exploited in the next section when we propose such heuristics.

4.2.1 Good Orderings For The Feature Tree Are Usually

Effective For The Feature Model

The feature tree defines the variables in the feature model and specifies most of its

relations. From our experience in examining several feature models in the literature,

we noticed that feature trees are frequently orders of magnitude larger than the

extra constraints in terms of number of relations. This suggests that ordering

heuristics should primarily focus on the relations in the feature tree to produce

orderings. The observation is that good orderings for the feature tree are usually

effective for the entire feature model especially for models with low ECR.

4.2.2 Mandatory Features Disturb The Analysis

Feature models allow the specification of mandatory features which might improve

system family documentation but play no role in variability analysis. That is,
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Figure 4.1: A feature tree highlighting a parent feature P and its children A, B,

C, and D

mandatory features represent parent-child binary bi-implications and hence can

be automatically inferred from their parent features (or another ancestor if the

parent is a mandatory feature as well). For instance, consider an optional parent

feature p and its mandatory child feature c. Hence, relation (p ↔ c) must hold

which requires c to assume the same truth value as p in all valid configurations

of the model. Therefore, c can be eliminated from analysis and inferred from p’s

assignment. A simplification algorithm safely removes mandatory features from the

feature tree and updates all references to such features both in the feature tree and

in the extra constraints, while preserving the core semantics of the model. The

reduction of the number of features in a feature model can significantly reduce the

size of BDDs since each feature potentially corresponds to multiple BDD nodes.

We refer to feature models for which mandatory features were safely removed as

simplified models.

4.2.3 Parent-Child Relations Define The Connected Vari-

ables

Feature tree constraints are expressed in terms of ancestral relations and groups.

Our experiments have revealed that minimizing the distance between sibling fea-

tures in groups does not improve BDD sizes. Therefore, we only consider parent-

child relations to identify connected variables. Figure 4.1 shows an example of four

parent-child relationships involving a feature P and its children A, B, C, and D.

Since all five features are optional, relations R1, R2, R3 and R4 represent binary

implications (child → parent). The goal of a good heuristic for the feature tree
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(a)Pre-Order (b)Post-Order (c)Average-Order

Figure 4.2: BDDs for various traversals of the feature tree

should be to minimize the relative distance between P and each of its children

in the variable order produced. Excessive minimization in one branch of the tree

might cause poor minimization in others. For instance, one might decide to order

variables P , A, B, C, and D in a straight sequence. However, by doing so fea-

tures B, C and D are placed in between A and its children increasing their relative

distance. In fact, if this strategy is applied recursively in the feature tree, a BFS

traversal of the feature tree is implemented, which is an extremely poor ordering.

4.2.4 Depth-First Traversals Produce Good BDD Patterns

Depth-first traversals of the feature tree produce orders in which parent nodes are

placed either prior to (pre-order) or following (post-order) their child nodes. This

is far from ideal for reducing distances between variables. For instance, a better

approach would be to place the parent node in between its children. This would

clearly improve (shorten) the average distance between the parent node and its

children. However, quite surprisingly this strategy produces BDDs with chaotic

structures that in many cases are larger than one expects. We observed that the

placement of parents prior or after their children often produced compact BDD

structures. Figure 4.2 shows three BDDs for features Root, P , A, B, C and D

from Figure 4.1. A variable order for a pre-order traversal of the feature tree is

51



shown in Figure 4.2a (R indicates the root feature). A BDD of size 6 is shown

and a very compact structure is observed for pre-order, e.g., if P is true the BDD

evaluates to true no matter the values of its children. Conversely, if P is false,

whenever A, B, C, or D are true, the BDD evaluates to false. Post-order also

produces a compact pattern (Figure 4.2b). However, if P is placed between its

children and R is placed near P (referred to as average-order in Figure 4.2c) the

size of the BDD increases to 8 nodes despite the fact that the average distance

of P and its children is reduced. Therefore, considering that pre- and post-order

produce comparable good quality BDD patterns we arbitrarily choose pre-order

as the reference variable ordering implementation from now on. We refer to this

ordering simply as natural pre-order.

4.2.5 Sorting Decreases Parent-Child Distances

Considering that natural pre-order is able to produce compact BDD patterns the

goal now becomes to minimize variables distances while enforcing those patterns.

In this context, a drawback of the natural pre-order ordering is that it relies on

the natural placement of nodes in the feature tree which, despite the good BDD

patterns produced, is not necessarily good from the point of view of variable distance

minimization. Consider again the feature model in Figure 4.1, showing four subtrees

Ta, Tb, Tc, and Td containing 40, 10, 30, and 20 features, respectively. Natural pre-

order would produce the order: P < A < [Ta] < B < [Tb] < C < [Tc] < D < [Td],

where [Tn] replaces the set of features in subtree Tn. Hence, the total distance

between feature P and its children is 180, i.e., 1 (A to P ) + 42 (B to P ) + 53 (C to

P ) + 84 (D to P ). However, if the subtrees rooted by A, B, C and D are sorted in

ascending order of their size the new order would be: P < B < [Tb] < D < [Td] <

C < [Tc] < A < [Ta] and the total distance of P and its children is reduced to 110.

Note that sorting still preserves pre-order (and so the compact BDD patterns), only

the relative order in which child features are visited has changed. We refer to this

ordering as sorted pre-order.

4.2.6 Grouping Dependent Subtrees Minimizes Variable Dis-

tances In The Extra Constraints

So far we have focused primarily on the feature tree relations to order BDD vari-

ables. However, in practice feature models usually contain extra constraints at-

tached to them that complement the relations in the feature tree. A large number

52



(a) Natural Pre-Order (b) Sorted Pre-Order (c) Clustered Pre-Order

Figure 4.3: Three different arrangements for P ’s children: A, B, C, D, E, and F

Table 4.1: Variable distances for pre-order-based traversals of the feature tree

Feature Tree Traversals Variable Order
Feature Tree (FT) and Extra Constraint (EC) Variable Distances

FT Var.
Distance

EC Shortest Distance EC Longest Distance EC Average
Var.
Distance

C1 C2 C3 Total C1 C2 C3 Total

Natural Pre-Order P<A<B<C<D<E<F 67 5 5 12 22 12 10 16 38 30
Sorted Pre-Order P<E<F<A<B<D<C 48 9 15 5 29 16 20 9 45 37

Clustered Pre-Order P<D<F<B<E<A<C 54 5 1 1 7 10 8 5 23 15

of relations in the extra constraints can significantly affect the size of the BDD.

One way to take the extra constraints into account would be to group the children

of a node together based on identified dependencies among their subtrees, instead

of purely sorting nodes by subtree size. Figure 4.3a shows a parent feature P , its

children A, B, C, D, E, and F , and subtrees Ta, Tb, Tc, Td, Te, and Tf rooted

by each of P ’s children. Three extra binary constrains are shown: C1, C2 and C3.

These constraints indicate that some of the subtrees of P ’s children have dependen-

cies: Ta and Tc for C1, Tc and Te for C2, and Tb and Tf for C3. Different node

arrangements are shown representing the visitinqg order of different pre-order-based

traversals: natural pre-order (a), sorted pre-order (b), and clustered pre-order (c),

where the latter will be explained shortly.

Table 4.1 shows the variable orders and the relative variable distances for the

three different traversals depicted in Figure 4.3. The first row shows the distances

for the natural pre-order traversal. The total distance between P and each of

its children is 67 (column FT Var. Distance). Columns EC Shortest Distance

and EC Longest Distance indicate the shortest and longest possible distances for

extra constraint variables for each traversal as well as the average parent-child

distance, i.e., the mean of the shortest and longest distances (column EC Average

Var. Distance). For natural pre-order, the shortest (respectively longest) distance

between variables in the constraint C1 is 5 (respectively 12). In the shortest-
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distance case, C1 variables correspond to features X (see bottom-right feature on

subtree Ta in Fig. Figure 4.3a) and C. In the worst case, they correspond to

features A and Y (see bottom-right feature on subtree Tc in Fig. Figure 4.3a).

The average total distance of all variables occurring in the extra constraints is 30

(column EC Average Var. Distance).

The sorted pre-order traversal (second row in Table 4.1) considers sorting child

nodes in ascending order of the size of their subtrees. The distance between P and

its children is reduced to 48. However, since this traversal does not take the extra

constraint into account a bad average distance of 37 is observed. Figure 4.2b shows

the new arrangement of P’s children for sorted pre-order.

The third traversal, clustered pre-order, considers using extra constraint rela-

tions to decide which nodes should be visited first. Note that in Figure 4.3c nodes

A, B, C, D, E and F were rearranged based on the dependencies of their subtrees.

Features E, A, and C were grouped together into clusters since constraints C1 and

C2 connect their subtrees. The same is observed for features F and B because

of constraint C3. Feature D is isolated as none of its descendants is referenced in

the extra constraints. Three clusters are shown in Figure 4.3c: Cluster 1, Cluster

2, and Cluster 3. Note that the clusters have been sorted according to their size

from left to right so that larger clusters are in the rightmost positions. The size of a

cluster is the total number of nodes of its contained trees. The combination of these

two techniques, sorting and clustering, can considerably improve the quality of or-

ders produced by clustered pre-order traversals. In fact, while clustering enforces

distance minimization of extra constraint variables, sorting aims at parent-child dis-

tance minimization in the feature tree. A slightly higher distance for parent-child

variables is observed for the clustered pre-order when compared to sorted pre-order

(54 against 48, respectively), but still much better than natural pre-order (67). Yet,

a significant improvement on distance minimization for extra constraint variables

is achieved (15 against 37 for sorted pre-order and 30 for natural pre-order).

4.3 New Heuristics for Feature Models

In this section, we propose two novel heuristics to order BDD variables for feature

models taking the considerations made in the previous section into account. The

new heuristics are based on pre-order traversals of the feature tree and rely heavily

on the sorting and clustering techniques discussed earlier. Both heuristics assume

that a pre-processing stage has been performed in the feature tree in order to
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Algorithm 1 Clustering algorithm for the feature tree

Function FT-create-clusters()

1: EC = Extra constraints in CNF

2: for (each clause C in EC) do

3: for (each non-repeated pair of variables (vi, vj) ∈ C, vi 6= vj) do

4: A = LCA(vi, vj)

5: if (clusters set of A is empty) then

6: CS = create-initial-clusters-set(A)

7: else

8: CS = clusters set attached to A

9: end if

10: end for

11: R = Roots(vi, vj)

12: MC = merge-clusters-sharing-elements(CS,R)

13: add relation R to merged cluster MC

14: end for

15: for (each feature F without a clusters set attached) do

16: CS = create-initial-clusters-set(F )

17: end for

decorate the tree with clusters. Next, we discuss the clustering algorithm that will

further support the proposed ordering heuristics.

4.3.1 Clustering Procedure

A cluster C consists of two sets: a set F that defines the features in the cluster,

and a set of relations R that describe how the features in F are related to each

other. Clusters can be used to group the child nodes of a given feature to indicate

that their subtrees have dependencies caused by the extra constraints attached to

the feature model. For instance, consider a feature f , its child features a, b, c, d

and e, and the subtrees Ta, Tb, Tc, Td, and Te rooted by each of those child features,

respectively. Clusters C1 and C2 below split the child features into two groups, i.e.,

{a, b, d} and {c, e} (see set F in each cluster). In addition, cluster C1 indicates that

subtrees Ta and Td as well as Ta, Tb and Td have dependencies (see set R in cluster

C1). Notice that the same subtrees may appear in more than one relation indicating

that multiple extra constraint relations connect those subtrees. Similarly, cluster

C2 indicates that subtrees Tc and Te have dependencies. Notice that even when
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the relations contain the exact same features they are considered different (see set

R containing two similar relations {c, e} in cluster C2). Notice that clusters are

always associated with a single parent feature. In the example below, clusters C1

and C2 are associated with feature f .

C1 = { F = {a, b, d} R = {{a, d}, {a, b, d}} }

C2 = { F = {c, e} R = {{c, e}, {c, e}} }

Operation FT-create-clusters illustrated in Algorithm 1 creates clusters in the

feature tree based on the extra constraint relations. The extra constraints are

initially converted to CNF (line 1). Next, the algorithm visits each clause in the

CNF formula individually (line 2). For each clause, all combinations of pairs of

variables are examined (line 3). For a given pair (vi, vj) the lowest common ancestor

A=LCA(vi, vj) is found (line 4). A represents the parent feature for which clusters

will be created because of the dependency between variables (features) vi and vj in

the CNF clause being currently processed. If clusters have never been created for

A (line 5), a new cluster set CS is created using operation create-initial-clusters-set

(see Algorithm 31 in page 170 in the appendix). This operation simply creates one

cluster for each child feature C of A containing no relations. Now, each of A’s child

belong to an individual cluster (line 6). Instead, if A already has clusters associated

with it, set CS is assigned the current clusters set (line 8). In line 11, A’s children

that root the distinct subtrees containing vi and vj are retrieved and stored in

set R. These two child nodes will form a single cluster since their subtrees have

dependencies. R is used as an input to operation merge-clusters-sharing-elements

in order to merge all of A’s clusters that share features in R (see Algorithm 32

on page 170 in the appendix). The operation returns a new cluster MC that

represents the combination of the features and relations of all merged clusters (line

12). Relation R is then added to cluster MC to indicate the dependency between

the subtrees rooted by the features in the relation (line 13). For completion, the

algorithm examines all parent features in the feature tree for which clusters have

not been created. For each of those, operation create-initial-clusters-set is called in

order to create a single cluster for each child feature (lines 15-17). This indicates

that the child nodes have no dependencies.

4.3.2 Variable Ordering Heuristics

We introduce two new heuristics to order BDD variables for feature models: Pre-

CL-Size and Pre-CL-MinSpan. As we mentioned, both heuristics assume that
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Algorithm 2 Pre-CL parameterized recursive algorithm for heuristics Pre-CL-Size

and Pre-CL-MinSpan

O: variable order set (non-repeated elements)

N : feature being visited in the feature model

S: constant that indicates how clusters’ internal nodes are sorted

Function Pre-CL(O: feature{}, N : feature, S: constant) : { }
1: add N to the end of set O

2: CS = clusters set attached to N

3: Sort clusters in CS in ascending order of size

4: for (each cluster CL in the now sorted set CS) do

5: if (S = SIZE) then

6: Sort CS’s internal nodes in ascending order of subtree size

7: else if (S = MIN SPAN ) then

8: Use FORCE to sort CS’s internal nodes:

- FORCE initial order is the current order of the nodes

- FORCE relations are the relations in the cluster

9: end if

10: for (each node F in the now sorted cluster CL) do

11: Pre-CL-Rec(O,F ,S)

12: end for

13: end for

14: return O

children nodes have been clustered in the feature tree. Moreover, since the heuristics

share many implementation aspects, a single parameterized algorithm is provided.

In fact, we refer to both heuristics as part of the Pre-CL family of heuristics as we

hope that the family will gain new members in the future.

Operation Pre-CL implements a recursive parameterized algorithm for the Pre-

CL heuristics (see Algorithm 2). The algorithm takes as input an initially-empty

variable set O, a feature N , and a constant S. O is updated by the algorithm to

store the final variable order. N represents the feature being currently visited by

the algorithm. In the first call to operation Pre-CL N is assigned the root of the

feature tree. S is a constant that indicates the strategy to be used to sort the

internal features of each processed cluster. Strategy SIZE is used by heuristic Pre-

CL-Size while strategy MIN SPAN applies to heuristic PRE-CL-MinSpan. The
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algorithm starts by adding node N to the end of set O (line 1). Next, the clusters

associated with N are retrieved and stored in variable CS. CS represents a set of

one or more clusters (line 2). The clusters in CS are sorted left-to-right in ascending

order of their size. Recall that the size of a cluster is the sum of the sizes of each

subtree rooted by a feature in the cluster. The sorting procedure will move the

larger clusters to the rightmost positions in CS (line 3). The next step involves

another sorting procedure to sort the internal nodes of a cluster. Each cluster CL

in the set CS is examined left-to-right (line 4). If strategy S is constant SIZE the

features in cluster CL are sorted in ascending order of the size of their subtrees.

That is, the features rooting the larger subtrees are in placed in the rightmost

positions in the cluster (lines 5-6). Notice that the sorting does not affect the

relations in the cluster. Instead, if the strategy to be applied is MIN SPAN, the

FORCE algorithm is used to sort the cluster’s internal nodes. FORCE is passed

to as input the features and the relations in cluster CL (lines 7-8). As opposed

to sorting by size as in the SIZE strategy, FORCE will attempt to move the root

features of highly-connected subtrees to center positions in order to minimize their

relative distance. Once cluster CL is sorted, its features are visited left-to-right and

a recursive call is made with parameters O, feature F representing the next feature

to visit in the now sorted cluster, and strategy S (lines 10-12). Line 14, returns set

O containing the order in which the features in the feature tree have been visited.

4.3.3 Clustering and Heuristic Illustration

Figure 4.4 illustrates the clustering procedure and how the Pre-CL heuristics prune

the subtrees in the feature tree during the pre-order traversal. A feature model is

depicted on the top of the figure. Features are simply represented by circles with

internal labels. Feature r roots the model. Three extra constraints C1, C2, and C3

are attached to the model. For simplicity, we assume that each of those constraints

represent a CNF clause and thus only the variables are shown. Constraint C1, C2

and C3 represent relations involving features a and m, g and d, and a, k, and n,

respectively.

The clustering procedure starts by examining constraint C1. The lowest common

ancestor of features a and m is found, i.e., the root feature r. Since r does not have

clusters created, the algorithm will create one cluster for each of r’s children as

shown next:

cluster-r1 = {F = {a}, R = {}}
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Figure 4.4: A feature model is clustered and rearranged by heuristics Pre-CL-Size

and Pre-CL-MinSpan
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cluster-r2 = {F = {b}, R = {}}
cluster-r3 = {F = {c}, R = {}}
cluster-r4 = {F = {d}, R = {}}

Next, function Roots(a,m) is applied to merge r’s clusters. This function returns

the set R={a,b}. Therefore, all clusters containing features a or b need to be

merged. Set R is also added as a relation in the merge cluster. This causes r’s

clusters to be rearranged as follows:

cluster-r1 = {F = {a, b}, R = {{a, b}}}
cluster-r3 = {F = {c}, R = {}}
cluster-r4 = {F = {d}, R = {}}

Next, constraint C2 is examined. Again, root feature r is the LCA(g,d). Roots(g,d)

returns set {b,d} which causes another rearrangement of r’s clusters after the merg-

ing procedure. Clusters cluster-r1 and cluster-r4 are merged and we renamed

cluster-r3 to cluster-r2 as follows:

cluster-r1 = {F = {a, b, d}, R = {{a, b}, {b, d}}}
cluster-r2 = {F = {c}, R = {}}

Unlike constraints C1 and C2, constraint C3 is not binary and therefore variable

pairs (a,k), (a,n), and (k,n) need to be considered. Pairs (a,k) and (a,n) will once

again find the root node as the lowest common ancestor and nodes a and b as their

roots. As clusters exist for r, this will only cause two new relations {a,b} to be

added to cluster cluster-r1. On the other hand, pair (k,n) does not find the root

node as its LCA but node f . Since f does not have clusters, four initial clusters

are created, one for each of f ’s child. Since features k and n are children of f

these nodes are also their own roots. Therefore, relation (k,n) is used to merge f ’s

clusters. r and f ’s clusters now appear as follows (also as illustrated in the feature

model in the center of Figure 4.4):

cluster-r1 = {F = {a, b, d}, R = {{a, b}, {b, d}, {a, b}, {a, b}}}
cluster-r2 = {F = {c}, R = {}}
cluster-f1 = {F = {k, n}, R = {{k, n}}}
cluster-f2 = {F = {l}, R = {}}
cluster-f3 = {F = {m}, R = {}}
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Notice that in Figure 4.4 the clusters’ relations are illustrated as lines connecting

the clusters’ internal features. In addition, the constraint labels (C1, C2, and C3)

are placed near those lines to indicate which constraint built the relation. For

instance, in cluster cluster-r1 a line connecting features a and b has been labeled

C1 since this constraint has caused the dependency between those features.

The two feature models on the bottom of Figure 4.4 show how heuristics Pre-CL-

Size and Pre-CL-MinSpan prune the feature tree during the pre-order traversal to

order variables. Notice, though, that the heuristics do not actually move the nodes

in the tree but rather guide the traversal procedure through paths that minimize the

distance of variables in the extra constraints. One of the first steps performed by

both heuristics is to sort all clusters in the feature tree in ascending order of size (line

3 of Algorithm 2). This measure intends to shorten the distance between a parent

node and its children while respecting the children’s dependencies represented in

the clusters. Therefore, notice that r and f ’s clusters have been sorted in the same

way in both feature models. cluster-r2 of size 3 has been placed prior to cluster-r1

that contains 11 nodes in its subtrees. Similarly, clusters cluster-f2 and cluster-f3

with 1 node each have been placed prior to cluster cluster-f3 that contains two

nodes. The same cluster sorting strategy has been applied throughout the feature

tree.

What distinguishes the Pre-CL heuristics is the way the heuristics sort cluster’s

internal nodes. Heuristic Pre-CL-Size gives priority to parent-child relations in the

feature tree and thus sort clusters based on their size. For instance, in the feature

model on the bottom-left of Figure 4.4 the features in cluster cluster-r1 have been

sorted in ascending order of the size of their subtree’s. Hence, nodes a and d with

size 1 have been placed prior to node b with size 9. Instead, heuristic Pre-CL-

MinSpan (bottom-right) sorts cluster’s features in such a way that features with a

high number of connections are placed between the others in an attempt to minimize

the distance of extra constraint variables for pre-order traversals. Therefore, feature

b in cluster cluster-r1 has been placed between features a and d since b has 3

connections with a and 1 connection with d. The order produced by both heuristics

is generated by traversing the feature models illustrated in pre-order as shown

below:

Pre-CL-Size variable order: {r,c,i,j,a,d,b,e,g,h,f ,l,m,k,n}
Pre-CL-MinSpan variable order: {r,c,i,j,a,b,e,g,h,f ,l,m,k,n,d}

Heuristic Pre-CL-Size seems to be more effective when the number of dependen-

cies between cluster’s features is low in which case prioritizing parent-child relations
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in the feature tree can be more advantageous. On the other hand, heuristic Pre-

CL-MinSpan can be more effective when there are a fairly large number of relations

in the cluster concentrated on a few features in which case it is worth placing those

features in between their dependent features.

4.4 Summary

In this chapter, we explored several structural properties of feature models to pro-

pose two novel heuristics for ordering BDD variables for the feature modeling do-

main. The heuristics are based on pre-order traversals of the feature tree. However,

rather than following the “natural” arrangement of the nodes in the feature tree,

the traversal is guided by a clustering algorithm that identifies and connects depen-

dent sub-trees. As a result, the overall distance of the BDD variables in the orders

produced is reduced while compact structural patterns are enforced. In Chapter

6, the proposed heuristics are further evaluated by contrasting them with existing

general and domain-specific heuristics through empirical experiments.
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Chapter 5

Reasoning with Domain-Specific

and SAT-Based Systems

In Chapter 2, we discussed how the translation of feature models to propositional

formulas enables the use of constraint systems to reason on feature models and

product configuration. For instance, a SAT solver can assist feature model designers

in debugging feature models by checking the satisfiability of the models or the

presence of “dead” features. In addition, a SAT solver can be used to check the

soundness of transformations applied to feature models such as refactorings or to

complete partial system specifications on behalf of users in product configuration.

Currently, many configuration systems and reasoning approaches rely on the use of

constraint solvers as discussed in Chapter 3.

However, as we argued before, current research exploring the use of constraint

solvers to reason on feature models have adopted a “black-box” approach. That

is, the techniques proposed have mostly focused on translating a feature model

into a corresponding Boolean formula and using an off-the-shelf constraint system

to reason on the formula. While “black-box” approaches are convenient as they

refrain from delving into the intricacies of constraint systems they also neglect some

important sensitive issues related to these systems. For instance, satisfiability is

a well-known NP-complete problem which means that a SAT solver may take an

infeasibly long time to check the satisfiability of an “intractable” Boolean formula.

Yet, we do not know whether SAT instances derived from realistic feature models

can lead to intractability problems. In order to address this question properly, it

is necessary to understand the mechanics of SAT solvers and examine carefully

relevant properties of feature models that can provide some evidence about the

tractability of SAT instances derived from feature models. Another great advantage
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of examining such properties is that they open many opportunities for developing

efficient domain-specific algorithms for feature models as will be discussed next.

In this chapter, we explore several properties of the feature modeling domain

to propose efficient domain-specific and hybrid reasoning algorithms for feature

models. In addition, we examine properties that can help better understanding the

hardness of SAT instances derived from feature models.

5.1 FTRS: A Reasoning System for Feature Trees

As previously discussed, a feature model can be converted into a corresponding

propositional formula by applying the translation rules depicted in Table 2.1 to its

feature tree and conjoining the resulting formula with the extra constraints. As

a consequence, a SAT solver can be conveniently used to reason on the resulting

formula that represents the model.

In this section, we argue that there are advantages in not converting the feature

tree to a corresponding propositional formula but rather to use a tree structure that

conforms to the meta-model depicted in Figure 2.2 (FeatureTree element) as basis

for encoding feature relations. In fact, we show that there are interesting properties

in formulas represented in such a tree that support the development of efficient

reasoning algorithms. In the following, we explore some of these properties to

develop a domain-specific reasoning system for feature trees called FTRS (Feature

Tree Reasoning System).

The benefits of the FTRS are three-fold. First, it provides an efficient set of

reasoning operations for feature trees. Second, it provides insights on how to take

advantage of properties of feature trees to build efficient domain-specific reasoning

algorithms. As will be shown in Section 5.2, we can further integrate the FTRS with

a constraint system to form a hybrid reasoning system for the entire feature model.

That is, the FTRS cannot be used standalone to reason on feature models having

extra constraints attached. Third, the properties examined for the construction of

the FTRS can be used to better understand the hardness of feature model SAT

instances as will be discussed in Section 5.3.

In the following, we discuss the FTRS system and introduce its supporting

operations as listed in Table 5.1. Notice that the operations are named with prefix

“FT” as a reference to feature trees.
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Table 5.1: FTRS operations

Operation Description

FT-assign(f ,v) Assign the truth value v to feature f ; f becomes instan-

tiated

FT-save-state(id) Save the current state of the feature tree and associate

it to identifier id

FT-restore-state(id) Restore the feature tree rooted to a given state id

FT-propagate(f ,v) Propagate the assignment of v to f throughout the fea-

ture tree

FT-is-satisfiable(f) Returns true if the feature tree rooted by f is satisfiable

or false, otherwise

FT-count-sol(f) Returns the number of solutions in the feature tree

rooted by f

FT-create-sol-iterator(f) Returns an iterator object that can be used to enumer-

ate the solutions in the feature tree rooted by feature

f

FT-has-next-sol(iterator) Returns true if the solution iterator object iterator still

has a solution to enumerate or false otherwise

FT-next-sol(iterator) Returns a list of features representing the next solution

of the solution iterator object iterator

5.1.1 Assigning values

Operation FT-assign assigns a truth value to a feature in the feature tree. This

operation can be triggered, for instance, by a user performing configuration actions

on a feature tree such as selecting (true assignment) or deselecting (false assign-

ment) features. Algorithm 3 implements the FT-assign operation. A feature f

and a truth value v are passed as input parameters. If feature f is uninstantiated

it is assigned the truth value v (lines 1-2) and the function returns true (line 6).

Otherwise, if the current value of f is different from v a conflict has been found

and the function returns false to indicate this fact (lines 3-5).

5.1.2 Saving and restoring states

The FT-save-state (Algorithm 4) and FT-restore-state (Algorithm 5) operations

save and restore the state of the feature tree, respectively. For each instantiated
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Algorithm 3 Assign feature f the truth value v

Inputs:

f : feature to be assigned a value

v: truth value to be assigned to f

Output:

true if assignment succeeds or false, otherwise

Function FT-assign(f : feature, v : Boolean)

1: if (f is uninstantiated) then

2: f = v

3: else if (FT-get-value(f) 6= v) then

4: return falseConflict!

5: end if

6: return true

feature in the feature tree its name and truth value are saved and associated with

a unique identifier. The identifier can be used to restore the feature to a particular

saved state. These operations are particularly important in the integration of the

FTRS to a general-purpose constraint solver as will be shown in Section 5.2.

Algorithm 4 Save the current state of the feature tree and associate it to identifier

id

Inputs:

id: state identifier

Function FT-save-state(id:string)

1: state = {}
2: for (each feature p in the feature tree) do

3: add tuple〈p, FT-get-value(p)〉 to state

4: end for

5: associate state to identifier id

6: add id to the list of state identifiers

66



Algorithm 5 Restore the feature tree rooted to a given state id

Inputs:

id: state identifier

Function FT-restore-state(id:string)

1: state = state associated with identifier id

2: for (each tuple 〈p, v〉 in state) do

3: FT-assign(p, v)

4: end for

5: remove id from the list of state identifiers

5.1.3 Propagating value assignments

Constraint propagation [76] is a very important mechanism used by constraint

solvers to enforce local consistency and optimize the search process as discussed in

Section 2.3 (page 17). For instance, some propagation techniques such as forward

checking operate by eliminating values from variable domains that can not be part

of any solution during the search procedure. In practice, this can improve the effi-

ciency of a constraint solver tremendously as it prevents the solver from examining

numerous unproductive branches in the search tree. Propagation is particularly

effective in the Boolean domain (e.g., unit propagation) as eliminating a value

from the domain of a Boolean variable (say false) is equivalent to instantiating the

variable to the other value (true).

Instead of relying on a SAT solver propagation algorithm that would cause a

dependency between the FTRS and a proprietary SAT infra-structure we developed

a domain-specific propagation algorithm for feature trees. This make the FTRS

fully independent of any particular SAT implementation and additionally provides

insights on how to build recursive algorithms for feature trees.

The propagation algorithm works on feature trees and has the same effect as

known algorithms such as unit propagation and forward checking. That is, the

algorithm examines contexts containing a single uninstantiated variable and for

which a consistent assignment for the variable can be computed. Before delving

into the details of the propagation algorithm we first discuss the various scenarios

in which propagation can be applied in a feature tree.

Figure 5.1 compiles all possible scenarios involving a given feature P and the

impact an assignment to P may cause to adjacent features, i.e., P ’s parent, P ’s
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Figure 5.1: All possible propagation scenarios for a given feature P
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children and, if P is a grouped feature, P ’s sibling features in the group. Root,

mandatory, optional and grouped features are represented using the corresponding

notation described in Figure 2.1. In addition, whenever a scenario can be applied

to multiple types of features, the feature object is drawn as a rectangle decorated

with a curly-braced set in the top-right corner. The letters in the set “r” (root),

“o” (optional), “m” (mandatory), and “g” (grouped feature) indicate the kinds of

features that can assume the role of the feature object. For instance, in scenario c.1

parent feature P represents any of the three types listed in the set {o,m,g}, i.e., an

optional, mandatory, or grouped feature. In the figure, P=0 and P=1 represent a

false and true assignment to P, respectively. A question mark (?) indicates that the

feature is uninstantiated. Notice that because each scenario might describe multiple

situations a feature can be assigned more than one truth value and a question mark.

This indicates that the feature can assume any of these values in the scenario. For

instance, scenario c.2 represents the cases in which a parent feature P and its

mandatory child feature T are true while the optional child feature S is either

uninstantiated or false. Similarly, feature groups are sometimes shown containing

more than one cardinality relation to represent both inclusive-OR and exclusive-

OR groups. A check mark symbol in the top-left corner of a feature indicates the

state of the feature prior to assigning a value to feature P. An arrow indicates the

features that have been instantiated as a result of propagating the assignment on

P . For example, in scenario c.2 feature S is initially uninstantiated or false. Upon

assigning true to P propagation assigns true to T as indicated by the arrow.

In the following, we discuss each propagation scenario in Figure 5.1 in detail.
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Table 5.2: All possible propagation scenarios for feature P as shown in Figure 5.1

Initial Root Propagation

Scenario Propagation Effect

r.1 The first propagation step performed in a feature tree is triggered

by the unary formula (P ) that requires the root of the feature tree

to be always true (see first row in Table 2.1). This assigns true to

the root feature P as shown in scenario r.1. Notice that this might

trigger further rounds of assignments and propagations in the tree

as shown next.

Propagation to P ’s Children

Scenario Propagation Effect

c.1 Consider a parent feature P of type optional, mandatory or grouped

and its child feature C of type optional, mandatory, or grouped. C

is uninstantiated. P is assigned false. Formula fc=(C → P ) must

hold (see second row in Table 2.1). If P is assigned false C must

be false in order to satisfy formula fc. Therefore, scenario c.1 uses

an arrow pointing to feature C to indicate that propagation has set

this feature to false.

c.2 Consider a parent feature P of type root, optional, mandatory or

grouped and its optional and mandatory features S and T , respec-

tively. S is false or uninstantiated while T is uninstantiated. P

is assigned true. Formulas fo=(S → P ) and fm=(T ↔ P ) must

hold (see second and third rows in Table 2.1). If S is false formula

fo is already satisfied. If S is uninstantiated assignment P = true

satisfies fo and allows S to assume any truth value. Therefore,

propagation does not impact S. On the other hand, propagation

assigns true to T in order to satisfy formula fm that requires P and

T to necessarily assume the same truth value. Scenario c.2 uses

an arrow pointing to feature T to indicate that propagation has set

this feature to true.

70



c.3 Consider a parent feature P of type root, optional, mandatory or

grouped and its n child grouped features G1, G2, . . . , Gn part of

an inclusive-OR ([1..*]) or exclusive-OR ([1]) feature group. At

least two grouped features G1 and G2 remain uninstantiated in

the group while all others are either false or uninstantiated. P

is assigned true. Assuming the case of an inclusive-OR group,

formula fig=(P ↔ (G1 ∨ . . . ∨ Gn)) must hold (see fourth row

in Table 2.1). Therefore, assignment P = true requires at least

one of the uninstantiated features to be true. However, because

there are at least two uninstantiated features that can be po-

tentially set to true, propagation does not instantiate any fea-

tures. The same applies to exclusive-OR groups in which formula

feg=(P ↔ (G1 xor . . . xor Gn)) must hold (see fifth row in Ta-

ble 2.1). If P is true, one and only one grouped feature must be

true. However, once again because at least two features remain

uninstantiated in the group, propagation will not affect any grouped

features. Notice, however, that in both cases formulas feg and fig

are satisfiable. For instance, if G1 is assigned true and all other

uninstantiated features are set to false both formulas are satisfied.

c.4 Consider the same features as in scenario c.3 but now with all

grouped features assigned false but feature G1. If P is assigned

true propagation must assign true to G1 in order to satisfy formulas

feg and fig. Therefore, scenario c.4 shows an arrow pointing to

feature G1 to indicate that propagation has set this feature to true.

Propagation to P ’s Parent

Scenario Propagation Effect

p.1 Consider a child feature P of type optional, mandatory or grouped

and its parent feature Q of type optional, mandatory, or grouped.

Q is uninstantiated. P is assigned true. Formula fc=(P → Q) must

hold (see second row of Table 2.1). Therefore, Q must be true to

satisfy fc. Scenario p.1 shows an arrow pointing to feature Q to

indicate that propagation has set this feature to true.
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p.2 Consider an optional child feature P and its parent feature Q of

type root, optional, mandatory, or grouped. Q is initially true or

uninstantiated. P is assigned false. Formula fc=(P → Q) must

hold (see second row of Table 2.1). If Q is true formula fc is already

satisfied. IfQ is uninstantiated the assignment P = false will satisfy

fc and allow Q to be either true or false. Therefore, propagation

does not affect Q.

p.3 Consider a mandatory child feature P and its parent feature Q of

type optional, mandatory, or grouped. Q is initially uninstantiated.

P is assigned false. Formula fc=(P ↔ Q) must hold (see third row

of Table 2.1). Therefore, feature Q is assigned true to satisfy fc.

Scenario p.3 shows an arrow pointing to feature Q to indicate that

propagation has set this feature to false.

p.4 Consider a grouped feature P , its n − 1 siblings G2, . . . , Gn part

of an inclusive-OR ([1..*]) or exclusive-OR ([1]) feature group, and

its parent feature Q of type optional, mandatory , or grouped. At

least one of P ’s siblings is uninstantiated while all others are either

false or uninstantiated. Q is uninstantiated. P is assigned true.

Assuming the case of an inclusive-OR group, formula fig=(Q ↔
(P ∨G2 ∨ . . . ∨Gn)) must hold (see fourth row in Table 2.1). The

assignment P = false does not instantiate Q as this feature can still

assume a true or false value considering that at least one grouped

feature remains uninstantiated. Hence, propagation does not affect

Q. The same applies to exclusive-OR groups in which formula

feg=(Q↔ (P xor G2 xor . . . xor Gn)) must hold (see fifth row in

Table 2.1). If P is false, Q can still assume any truth value since at

least one grouped feature remains uninstantiated. Notice, however,

that in both cases formulas feg and fig are satisfiable. For instance,

if Q and G2 are assigned true and all other uninstantiated features

are set to false both formulas are satisfied.

p.5 Consider the same features as in scenario p.4 but now with all

P ’s siblings set to false. If P is assigned false propagation must

assign false to Q in order to satisfy formulas feg and fig. Therefore,

scenario p.5 in Figure 5.1 shows an arrow pointing to feature Q to

indicate that propagation has set this feature to false.

72



Propagation to P ’s Group

Scenario Propagation Effect

g.1 Consider a grouped feature P , its n − 1 siblings in the group

G2, . . . , Gn part of an inclusive-OR ([1..*]) feature group, and its

parent feature Q of type root, optional, mandatory or grouped. At

least one of P ’s siblings is true while all others are unknown (unin-

stantiated, trueor false). Q is true. P is assigned true. Formula

fig=(Q ↔ (P ∨ G2 ∨ . . . ∨ Gn)) must hold (see fourth row in Ta-

ble 2.1). Since one of the grouped features is true formula fig is

already satisfied. Hence, propagation does not affect any of P ’s

siblings.

g.2 Consider a grouped feature P , its n − 1 siblings in the group

G2, . . . , Gn part of an exclusive-OR ([1]) feature group, and its par-

ent feature Q of type root, optional, mandatory or grouped. All P ’s

siblings are uninstantiated. Q is true. P is assigned true. Formula

feg=(Q↔ (P xor G2 xor . . . xor Gn)) must hold (see fifth row in

Table 2.1). If P is assigned true all other grouped features must be

false to satisfy feg. Scenario g.2 shows an arrow pointing to each

of P ’s siblings to indicate that propagation has set them to false.

g.3 Consider a grouped feature P , its n − 1 siblings in the group

G2, . . . , Gn part of an inclusive-OR ([1..*]) or an exclusive-OR

([1]) feature group, and its parent feature Q of type root, op-

tional, mandatory or grouped. Exactly one of P ’s siblings G2 is

uninstantiated while all others are false. Assuming the case of

an inclusive-OR group, formula fig=(Q ↔ (P ∨ G2 ∨ . . . ∨ Gn))

must hold (see fourth row in Table 2.1). Therefore, assignment

P = false requires G2 to be true in order to satisfy formula

fig. The same applies to exclusive-OR groups in which formula

feg=(Q↔ (P xor G2 xor . . . xor Gn)) must hold (see fifth row in

Table 2.1). If P is false G2 is set to true in order to satisfy formula

feg. Scenario g.2 shows an arrow pointing to G2 to indicate that

propagation has set this feature to true.
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Figure 5.2: Propagation spaces for feature P

For all scenarios depicted in Table 5.2, if P is instantiated and assigned the same

truth value no propagations are performed. Instead, if P is assigned a different truth

value a conflict error is raised. For instance, in scenario c.1 if P is initially true an

error is raised since P can not be assigned false as illustrated in the scenario.

Based on the propagation scenarios depicted in Figure 5.1 we developed a prop-

agation algorithm for feature trees. The algorithm attempts to identify contexts

in the feature tree that match scenarios in Figure 5.1. Whenever a match is found

the corresponding propagation steps described in the scenario are performed. If a

conflict is found the algorithm raises an error to indicate this fact. The algorithm

is naturally recursive since propagating a context can give rise to new contexts that

can be matched to scenarios in Figure 5.1. For instance, the initial propagation

shown in scenario r.1 sets the root feature to true. This causes scenario c.2 to be

matched since a parent feature (in this particular case, the “root feature”) has been

set to true. As a result, scenario c.2 sets all root’s mandatory child features to true.

Once again, if those mandatory features have children scenario c.2 is matched and

propagation continues until no more mandatory child features are found.

The propagation algorithm named FT-propagate is shown on page 76 (see Al-

gorithm 6). It takes a feature f and a Boolean value v as parameters and returns a

list of tuples < fp, vp >, where fp is a feature and vp is a Boolean value assigned to

fp, representing the features that have been instantiated as a result of propagating

the assignment f = v. If a conflict is found the function returns an error. Opera-
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tion FT-propagate examines three disjoint “propagation spaces” in the feature tree

relative to feature f . Figure 5.2 shows these propagation spaces for a given feature

P (f = P ) named AS, DS and GS corresponding, respectively, to the anscestor

of P and their children (excluding P ), the descendants of P , and the siblings of P

within the feature group and their descendants. That is, AS = {A,B} ∪ T1 ∪ T2,

DS = T3, and GS = {Y, Z} ∪ T4 ∪ T5. If feature P is not a grouped feature GS

is the empty set.

The algorithm starts by checking if feature f is instantiated to a value different

than v. If that is the case a conflict has been found and an error is raised (lines

1-3). Next, the current state of the feature tree is saved (line 4). In line 5, the list of

instantiated features in the feature tree is retrieved by function FT-get-instantiated-

features and stored in variable I. If the value to propagate is true auxiliary func-

tions FT-prop-trueAS, FT-prop-trueDS, FT-prop-trueGS are called to propagate

the assignment on spaces AS, DS and GS, respectively (lines 6-9). Otherwise,

functions FT-prop-falseAS, FT-prop-falseDS, and FT-prop-falseGS are called to

address propagations for the assignment P = false (lines 10-13). For the complete

implementation of the FT-prop* auxiliary functions please refer to Appendix A. If

a conflict is found during the propagation process by any of the FT-prop auxiliary

functions the feature tree is restored to its initial state and an error is returned

(lines 15-18). Instead, if propagation succeeds without errors variable I is updated

to contain only the features that have been instantiated during propagation (line

19). For each feature fp in I a corresponding tuple 〈fp, vp〉 is created, where vp is the

value assigned to feature fp during propagation, and added to the initially-empty

set of tuples T (lines 20-23). The list of tuples is then returned (lines 24).

Functions FT-assign and FT-propagate should be used in combination. While

the former assigns a value to a feature the latter propagates the assignment in the

feature tree to enforce consistency. The following code fragment illustrates the case

in which a feature f1 is assigned true. If the assignment does not cause any conflicts

it is further propagated in the tree. The “assign and propagate” strategy is useful

to keep the feature tree in a consistent satisfiable state as will be discussed next.

. . .

if (FT-assign(f1,true)) then

FT-propagate(f1,true)

else

Error: assignment conflicts!

end if
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Algorithm 6 Propagates a variable assignment throughout the feature tree

Inputs:

f : propagation starting point; f is a feature assigned v

v: truth value assigned to f that starts the propagation

Output:

The list of features instantiated by propagation and their respective truth values

Function FT-propagate(f :feature,v:Boolean)

:〈feature, Boolean〉{}
1: if (f is instantiated AND FT-get-value(f) 6= v )) then

2: raises a conflict error!

3: end if

4: FT-save-state(ft-state)

5: I = FT-get-instantiated-features()

6: if (v = true) then

7: FT-prop-trueAS(f)

8: FT-prop-trueDS(f)

9: FT-prop-trueGS(f)

10: else

11: FT-prop-falseAS(f)

12: FT-prop-falseDS(f)

13: FT-prop-falseGS(f)

14: end if

15: if (a conflict has been found in any of the FT-prop* functions) then

16: FT-restore-state(ft-state)

17: Error: assignment conflicts during propagation!

18: end if

19: I = FT-get-instantiated-features() − I

20: T = {}
21: for (each feature fp in I) do

22: add 〈fp, FT-get-value(fp〉 to T

23: end for

24: return T
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5.1.4 Checking satisfiability

Some properties that support checking the satisfiability of feature trees are dis-

cussed next. We assume that referred feature trees conform to the meta-model in

Figure 2.2.

Property 5.1.1 Let f be a feature in the feature tree. Whenever f is assigned

false so must be all its descendants to satisfy the relations in the feature tree.

Proof Every child feature c holds an implication relation with its parent feature p

(c→ p) as depicted in Table 2.1. Therefore, the equivalent relation (¬p→ ¬c) also

holds which means that if p is false so must be c and all other p’s child features. If

this relation is enforced recursively for each of p’s children it is straightforward to

conclude that whenever p is false all its descendants must also be false.

Property 5.1.2 Feature trees conforming to the meta-model in Figure 2.2 (page

13) are always satisfiable.

Proof The following procedure always finds a solution for an uninstantiated feature

tree. Start at the root node r in pre-order traversal. Set r to true to satisfy the

formula that requires the root of the feature tree to be always true (first row in

Table 2.1). Visit each child c of the root node. If c is optional, the node is skipped

and the pre-order traversal backtracks to examine the remaining child features of

r. When c is skipped it is set to false along with all its decendants. This satisfies

parent-child relation (c → r) since c is false and r is true. In addition, it satisfies

property 5.1.1. If c is mandatory, set c to true and apply the procedure recursively

to each of c’s child features. This satisfies relation (c ↔ r) since c and r are

true. Finally, if c is an inclusive-OR ([1..*]) or exclusive-OR ([1]) feature group

set one arbitrary feature g in the group to true and all others to false and repeat

the procedure recursively to each of g’s child features. This satisfies the group

cardinality relation. The procedure stops when there are no more child features to

examine and the root feature has been reached again. Notice that the procedure

adds the minimum number of features to the solution.

We developed a recursive algorithm called FT-min-conf (see Algorithm 7) that

follows the procedure described previously to find the minimum valid configuration

for a feature tree. The root of the feature tree f and a variable named conf are

passed as parameters to the algorithm. Variable conf is initially an empty set that
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Algorithm 7 Find the minimum configuration for the feature tree rooted by f

Inputs:

f : root of the feature model

conf : solution containing only truefeatures

Function FT-min-conf(f : feature, conf : feature{})
1: if (f is the root feature) then

2: add f to conf

3: end if

4: for (each child c of f ) do

5: if (c is optional) then

6: skip it. . .

7: else if (c is mandatory) then

8: add c to conf

9: FT-min-conf(c, conf)

10: else if (c is a feature group) then

11: g = 1st child of c

12: add g to conf

13: FT-min-conf(g, conf)

14: end if

15: end for

will store the features added to the configuration. If f is the root feature, it is

added to conf (r = true). Next, each child feature c of f is visited in pre-order (line

4). Optional child features are skipped and not added to conf . Mandatory child

features are automatically added to conf (lines 7-8) and a recursive call is made

to examine each of their children (line 9). If c is a feature group the first grouped

feature g is added to conf and the others are skipped (lines 10-12). A recursive call

is made to examine each of g’s children (line 13). All skipped features are assumed

false and thus not added to conf .
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Figure 5.3: Subtree tree rooted by P is split into four independent formulas when

P is assigned true

Property 5.1.3 Let f be a parent feature in the feature tree. Whenever f is as-

signed true the formulas in the tree rooted by f are split into independent sets of

formulas that can be processed separately.

Proof Consider the feature tree fragment shown in the top of Figure 5.3 in which

a parent feature P , its children A, B, an exclusive-OR group containing n features,

and an inclusive-OR group containing m features are depicted. The semantics of

P ’s tree can be expressed by the following formula f :

f =

T1 ∧ T2 ∧
Ta1 ∧ . . . ∧ Tan ∧
Tb1 ∧ . . . ∧ Tbm ∧
(A → P ) ∧
(B ↔ P ) ∧
(P ↔ (Ga1 xor . . . xor Gan)) ∧
(P ↔ (Gb1 ∨ . . . ∨Gbn))

Once P is assigned true formula f is split into four formulas f1, f2, f3, and f4

that share no variables and thus can be processed separately as shown next:
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f1 = T1

f2 = T2 ∧ (B)

f3 = Ta1 ∧ . . . ∧ Tan ∧ (Ga1 xor . . . xor Gan)

f4 = Tb1 ∧ . . . ∧ Tbn ∧ (Gb1 ∨ . . . ∨Gbm)

Formula f is now a conjunction of independent formulas, i.e., f = f1∧f2∧f3∧f4

as shown in the bottom of Figure 5.3.

Notice that in the case of mandatory child features such as B in Figure 5.3 the

splitting process continues to be applied lower in the tree as B must be true to

satisfy formula f2. This causes B’s subtree to break up into another set of in-

dependent formulas again. Yet, in the case of feature groups the subtrees rooted

by grouped features (e.g., Ta1, . . . , Tan, T b1, . . . , T bm) are still connected by the

cardinality relation in the group. However, it is possible to process each of those

subtree formulas separately and combine the results obtained in accordance with

the cardinality relation. Property 5.1.3 can be used to improve the performance

of some reasoning algorithms for feature trees, e.g., to count the solutions in the

feature tree as will be shown in Section 5.1.5.

Property 5.1.4 A satisfiable feature tree remains satisfiable if any truth value is

assigned to one of its uninstantiated features and propagated. In addition, propa-

gation always succeeds, i.e., a conflict is never raised.

(*) For a graphical illustration of a scenario of the proof below please refer to Figure 5.4 on page 84.

Proof Let p be an uninstantiated feature of a satisfiable feature tree other than

the root node. We will show that when p is assigned any truth value and the assign-

ment is propagated in the feature tree the formulas in the tree are partitioned into

independent sets of satisfiable formulas, i.e., formulas that do not share any vari-

ables. Hence, the conjunction of these sets of formulas yields a satisfiable formula

that corresponds to the feature tree after p’s assignment.

Assumption 1: (p = true)

First, let us assume that p is assigned true and that the assignment is propagated

in the feature tree.
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Assumption 1.1: (p is a parent feature) Now, let us assume that p is a parent

feature and that c is one of p’s child features. We know that if p is assigned true all

p’s parent-child relations, including the relation between p and c, are satisfied. In

particular, the tree rooted by p is split into a set of independent formulas (property

5.1.3). In assumptions 1.1.* below, we show that these independent formulas are

satisfiable after p is assigned true. As a result, their conjunction is also satisfiable.

Assumption 1.1.1: (c is an optional child feature of p)

Let us assume that c is an optional child feature of p. This corresponds to scenario

c.2 illustrated in Figure 5.1 (p = P and c = S). When P is assigned true the

parent-child relation between P and S (i.e. S → P ) is satisfied. As a result,

the subtree rooted by S is disconnected from the feature tree, i.e., becomes an

independent branch (formula). None of the features in this subtree, including S,

are true otherwise propagation would have already set feature P to true which

violates the initial assumption that p is initially uninstantiated. Therefore, one

way to satisfy the relations in this subtree would be to set all its features to false.

Assumption 1.1.2: (c is a mandatory child feature of p)

Let us assume that c is a mandatory child feature of p. This corresponds to scenario

c.2 illustrated in Figure 5.1 (p = P and c = T ). We know that T must be

uninstantiated otherwise propagation would have already set P to the same truth

value as T which violates the initial assumption that p is initially uninstantiated.

When P is assigned true T is propagated to true in order to satisfy the parent-child

relation between P and T (i.e. T ↔ P ). As a result, the subtree rooted by T is

disconnected from the feature tree, i.e., becomes an independent branch (formula).

Hence, assumptions 1.1.* are applied recursively to T , i.e., p = T , in order to verify

the satisfiability of the T ’s subtree. In this context, the purpose of mandatory child

features is to propagate the true assignment of their parent features down in the

feature tree and thus split the tree into several independent sets of formulas.

Assumption 1.1.3: (c is a grouped child feature of p)

Let us assume that c is a grouped child feature of p. This corresponds to scenarios

c.3 and c.4 illustrated in Figure 5.1 (p = P and c = G1, G2, . . . , Gn) addressing

both group cardinality cases. In scenario c.3 at least two grouped features are

uninstantiated and none are true. In this case, if P is true the group relation can

be satisfied by falsifying all grouped features but one, say Gi. Hence, we can assign

true to Gi and apply assumptions 1.1.* to Gi recursively, i.e., p = Gi, to prove the

satisfiability of the feature tree. In scenario c.4, all grouped features are false but

one, say G1. Hence, if we assign true to G1 the group relation is satisfied and we can
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apply assumptions 1.1.* to G1 recursively, i.e., p = G1, to prove the satisfiability of

the feature tree.

Assumption 1.2: (p is a grouped feature)

Let us assume that p is a grouped feature. This corresponds to scenarios g.1 and

g.2 illustrated in Figure 5.1 (p = P ) addressing both group cardinality cases. If P is

true the group cardinality is satisfied immediately in both scenarios. In addition, in

scenario g.2 containing an exclusive-OR group, propagation will cause all grouped

features and their corresponding subtrees to be false.

Assumption 1.3: (p is a child feature)

Let us assume that p is a child feature. This corresponds to scenario p.1 illustrated

in Figure 5.1 (p = P ). If p is assigned true propagation will cause p’s parent,

i.e., feature Q, to be true to satisfy relation P → Q. Notice that Q cannot be

false otherwise P would have been already set to false by propagation which violates

the initial assumption that p is initially uninstantiated. Since Q is assigned true,

assumptions 1.1.*, 1.2 and 1.3 need to be applied to Q recursively, i.e., p = Q, to

prove the satisfiability of the feature tree.

Assumption 2: (p = false)

Now, let us assume that p is assigned false and that the assignment is propagated

in the feature tree.

Assumption 2.1: (p is a parent feature) Now, let us assume that p is a parent

feature and that c is one of p’s child features. This corresponds to scenario c.1

illustrated in Figure 5.1 (p = P ). We know that when P is assigned false propaga-

tion will set all of P ’s descendants to false in order to satisfy the relations in the

subtree rooted by P (property 5.1.1).

Assumption 2.2: (p is a child feature)

Let us assume that p is a child feature.

Assumption 2.2.1: (p is an optional feature)

Let us assume that p is an optional child feature. This corresponds to scenario

p.2 illustrated in Figure 5.1 (p = P ). We know that P ’s parent, i.e., feature Q,

is either true or uninstantiated otherwise propagation would have already set P to

false which violates the initial assumption that p is initially uninstantiated. If we

assign false to P the relation between P and Q (i.e. P → Q) is satisfied.
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Assumption 2.2.2: (p is a mandatory feature)

Let us assume that p is a mandatory child feature. This corresponds to scenario

p.3 illustrated in Figure 5.1 (p = P ). We know that P ’s parent, i.e., feature Q,

is uninstantiated otherwise propagation would have set P to the same truth value

as Q which violates the initial assumption that p is initially uninstantiated. If we

assign false to P propagation will assign false to Q to satisfy relation P ↔ Q. In

addition, assumptions 2.1.*, 2.2 and 2.3 need to be applied to Q recursively, i.e.,

p = Q, to prove the satisfiability of the feature tree.

Assumption 2.2.3: (p is a grouped feature and p’s parent is uninstanti-

ated)

Let us assume that p is a grouped feature and p’s parent is uninstantiated. This

corresponds to scenarios p.4 and p.5 illustrated in Figure 5.1 (p = P ) addressing

both group cardinality cases. In scenario p.4, Q is not affect by P ’s assignment

as at least one grouped feature remains uninstantiated and all others are either

uninstantiated or false. Hence, the parent-child relation between P and Q is sat-

isfied. In scenario p.5, all grouped features are previously false what causes the

assignment to P to propagate up in the tree and set Q to false in order to satisfy

the relation P → Q. In addition, assumptions 2.1, 2.2.*, and 2.3 need to be applied

to Q recursively, i.e., p = Q, to prove the satisfiability of the feature tree.

Assumption 2.3: (p is a grouped feature and p’s parent is true)

Let us assume that p is a grouped feature and p’s parent is true. This corresponds

to scenario g.3 illustrated in Figure 5.1 (p = P ) addressing both group cardinality

cases. Since at least one grouped feature is already true in the group, P ’s assignment

will cause no impact in the group relations which remains satisfiable.

Considering that whenever p is assigned any truth value the feature tree formulas

are split into independent satisfiable sets of formulas, we can conclude that the

conjunction of these formulas is satisfiable. In addition, we have seen that propa-

gation is either unnecessary or prunes the values of uninstantiated features. Hence,

the feature tree remains satisfiable after p’s assignment and propagation always

succeeds.

Figure 5.4 illustrates a possible scenario of the proof above. A feature tree is

shown at the top of the figure rooted by feature R that has value true (R=1).

The other features remain uninstantiated as indicated by the symbol “?”. An

assignment is made in the tree to instantiate feature F to true (F=1). This causes

the splitting of the subtrees in the tree as shown at the bottom of the figure. The
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Figure 5.4: The feature tree (top) is split into a set of nine independent satisfiable

formulas (bottom) after feature F is assigned true.

assignment to F causes the relations between this feature and its children (features

J and K) to be satisfied thus detaching the subtrees rooted by J and K from the

tree. In addition, feature J is assigned true via propagation as it is a mandatory

child feature and the splitting proceeds to J ’s subtrees. Hence, three subtrees are

disconnected from the original tree as illustrated by the dashed lines in f4, f5, and

f6. Similarly, the assignment to F satisfies the inclusive-OR group relation ([1,*])

that requires at least one grouped feature to be true. This causes each of the

subtrees rooted by a grouped feature to be disconnected from the tree as shown in

f7, f8, and f9. Finally, F is propagated up in the tree which causes parent feature

A to be assigned true. Similarly, A’s assignment is propagated which instantiates B
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to true and causes a splitting of some of A’s subtrees as shown in f1, f2, and f3. As

a result, the original feature tree (top) has now four new instantiated features (F ,

A, J , and B as illustrated by arrows in the figure) and nine independent subtrees

(or formulas). In fact, the subtrees share no variables.

Notice that each independent subtree in Figure 5.4 is rooted by an uninstan-

tiated feature. For instance, subtrees f1 and f2 are rooted by features C and D,

respectively. The fact that the root of each subtree is uninstantiated shows that

none of the features in these subtrees are true otherwise the root would have al-

ready been assigned true through propagation. Therefore, a possible solution to

satisfy each subtree is to falsify all of its features. We can then conclude that the

conjunction (f1∧ f2∧ f3∧ f4∧ f5∧ f6∧ f7∧ f8∧ f9) that represents the feature tree

after the assignment F=true is satisfiable since it is a conjunction of independent

yet satisfiable formulas. Although the figure illustrates just one possible scenario

of the proof previously discussed, it helps vizualizing the splitting of the formulas

in a feature tree when one of its features is instantiated.

Property 5.1.4 can be applied in at least three practical contexts. First, we can

conclude that the propagation procedure for feature trees (Algorithm 6) enforces

global (as opposed to local) consistency since the feature tree remains satisfiable

after each propagation step. Therefore, support for interactive configuration of fea-

ture trees is straightforward. That is, the feature tree can be configured backtrack-

free by simply selecting (true) or deselecting (false) uninstantiated features and

propagating these decisions one at a time. Recall that for general Boolean formulas

more robust solutions based on BDDs are required to support interactive configu-

ration. Second, property 5.1.4 supports the construction of proofs for the hardness

of SAT instances derived from feature trees. In particular, it can be shown that

SAT solvers take only linear time in the size of the feature tree to check the satis-

fiability of the Boolean formula derived from the tree (see details in Section 5.3).

Third, property 5.1.4 can be used to build an interplay between the FTRS and a

constraint solver system to support the development of efficient hybrid algorithms

to reason on feature models. This topic is discussed in the next section when we

introduce a reasoning system for feature models.

Operation FT-is-satisfiable that checks whether a feature tree is satisfiable is

described below (Algorithm 8). The algorithm simply returns true as it relies

on properties 5.1.2 and 5.1.4. That is, an initially satisfiable feature tree remains

satisfiable whenever a feature assignment is successfully propagated. Also, note that

for the cases in which propagation fails the feature tree is restored to a consistent

satisfiable state.
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Algorithm 8 Checks the satisfiability of the feature tree rooted by f

Inputs:

f : root of the feature tree

Output:

always true as the satisfiability of the tree is enforced by other functions

Function FT-is-satisfiable(f : feature)

1: return true

5.1.5 Counting solutions

Section 3.1.4 discussed the importance of computing the number of valid configura-

tions in a feature model to support other metrics such as the variability of a product

line. However, counting the solutions of a constraint problem can be an extremely

time-consuming task for SAT solvers as it usually requires the solver to iterate over

all the solutions in the problem. In practice, this can make the use of SAT solvers

prohibitive in this context. Fortunately, feature trees exhibit properties that allow

for a quick counting of their solutions without requiring an exhaustive enumeration

of those as discussed next.

We developed an algorithm called FT-count-sol (see Algorithm 9) as part of

the FTRS system to count the number of available solutions in uninstantiated or

partially-instantiated feature trees. The algorithm is recursive and takes advantage

of some of the feature tree properties described earlier (properties 5.1.1 and 5.1.3)

as will be shown next. The algorithm starts by visiting a given feature f passed as

an input parameter and continues by traversing the feature tree in depth-first order.

Feature f usually corresponds to the root of the feature tree when the algorithm

is first called (non-recursive call). If feature f is false (line 1) then, according

to property 5.1.1, there is only one possible configuration for f in which all its

descendants are false (line 2). Otherwise, if f is not false and f is an exclusive-

OR feature group (line 5), each of f ’s children have their configurations counted

recursively and the results obtained are added (lines 7-9). The reason for adding

the configurations is related to the fact that only one grouped feature can be true in

the group while all others are false as per the group cardinality [1]. If f is not an

exclusive-OR feature group but has children (line 11), then f child’s configurations

are recursively computed and multiplied (lines 12-14). Multiplication is applied

in this context since we need to account for all possible combinations of valid
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Algorithm 9 Count the number of solutions of the (possibly partially instantiated)

feature tree rooted by f

Inputs:

f : root of the feature tree

Output:

number of valid configurations in the feature tree rooted by f

Function FT-count-sol(f : feature) : integer

1: if (f = false ) then

2: return 1

3: end if

4: count conf = 1

5: if ( f is an Exclusive-OR Feature Group) then

6: count conf = 0

7: for (each child c of f) do

8: count conf = count conf + FT-count-sol(c) - 1

9: end for

10: else

11: if (f has children) then

12: for (each child c of f) do

13: count conf = count conf× FT-count-sol(c)

14: end for

15: if (f is Optional or Grouped and f 6= true) then

16: count conf = count conf + 1

17: else if (f is an Inclusive-OR Feature Group) then

18: count conf = count conf - 1

19: end if

20: else

21: if (f is Optional or Grouped and f 6= true) then

22: count conf = count conf + 1

23: end if

24: end if

25: end if

26: return count conf
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configurations represented in each of f ’s subtrees. In addition, if f is an optional

or a grouped feature and is uninstantiated (in this case we just check condition

f 6= true since we have already checked that f 6= false)(line 15), we add one more

configuration to variable count conf that stores the number of valid configurations

for feature f (lines 15-16). This accounts for the case where f and its decendants are

all false. Instead, if f is an inclusive-OR feature group we deduct one configuration

for the opposite reason, i.e., there is no such case where all grouped features are

false when their parent feature is true (line 17-19). Notice that in all the cases

where f is true the algorithm has taken advantage of property 5.1.3 to compute

the valid configurations for f by recursively combining the valid configurations of

each of f ’s independent subtrees. In the case of feature groups, group cardinalities

had to be considered as well. Finally, if f does not have children but is optional or

grouped feature and uninstantiated (line 21), we add one to variable count conf to

account for the case where f is false (lines 21-23). This will cause count conf to

evaluate to two to represent the two possible assignments to f , i.e., false and true.

For all other cases, f can only be true and thus count conf remains one. Line 24

returns the total number of valid configurations for f .

In the worst-case, when none of the features in the feature tree are instantiated,

the algorithm FT-count-sol visits each feature at most once in depth-first search.

As a result, the worst-case complexity of the algorithm is linear in the number

of nodes n in the feature tree (O(n)). Yet, a constraint solver would perform an

exponential number of steps to perform the same operation (O(2n)) as the solver

would have to find each solution.

5.1.6 Enumerating solutions

Enumerating the solutions of a feature tree corresponds to identifying the existing

valid product configurations. Here the term enumerating replaces the usual term

searching used by constraint solvers based on backtracking-search. Searching usu-

ally entails several cycles of constraint propagation and backtracking in order to

find solutions. On the contrary, enumerating solutions does not require propagation

or backtracking but rather combining intermediate results into complete solutions.

For that reason, enumerating typically involves less algorithmic steps potentially

translates to faster algorithms.

It is possible to enumerate the solutions of a feature tree efficiently by exploring

properties 5.1.1 and 5.1.3. That is, since the subtrees of a given feature f are

independent when f is true (5.1.3), the solutions of each subtree can be recursively

88



Algorithm 10 Returns an iterator object that can be used to enumerate the

solutions of the feature tree rooted by feature f

Inputs:

f : root of the feature tree for which solutions will be enumerated

Output:

f : solution iterator object for the feature tree rooted by f

Function FT-create-sol-iterator(f : feature)

: FT-sol-iterator

1: iterator = FT-create-iterator-object(f)

2: for (each child c of f) do

3: FT-add-child-iterator(iterator,FT-create-sol-iterator(c))

4: end for

5: if (f is a feature group) then

6: FT-set-iterator-combination(iterator,FT-min-cardinality(f),FT-max-

cardinality(f))

7: end if

8: return iterator

(bottom-up) combined until the root node is reached. In addition, an extra solution

is considered for the case where f is optional and assigned false (5.1.1). Feature

group solutions are enumerated simply by combining the solutions of each subtree

rooted by their grouped nodes. Unlike other parent feature nodes, feature groups

have the solutions computed by combining their subtrees’ solutions according to

the cardinality relations specified in the group.

Even though an algorithm to exhaustively enumerate all possible solutions in

a feature tree is straightforward to implement it is often inefficient and useless in

practice. A better approach is to consider algorithms that enumerate one solution at

a time. In the following, we provide an implementation of the latter using iterators

to navigate through available solutions in the feature tree. Since the corresponding

implementations are lengthy we focus on the main algorithms.

Algorithm 10 takes a feature f as input and creates a solution iterator for

the feature tree rooted by f . Line 1 of the algorithm creates an iterator object

for f . In addition, if f has children an iterator is created for each of f ’s child

feature and associated with f ’s iterator (lines 2-4). This allows computing the

solutions in f ’s tree incrementally by invoking the child iterators. Moreover, in
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case f is a feature group (line 5) operation FT-set-iterator-combination is called to

indicate that f ’ subtrees need to be combined in several different ways according

to the cardinality of the group (line 6). Function FT-min-cardinality(f) and FT-

max-cardinality(f) return the cardinality lower and upper bounds. For instance,

consider an inclusive-OR group ([1..*]) containing features f , g, and h. In order

to enumerate the solutions in the feature group the following subtree combination

sets need to be considered: {f}, {g}, {h}, {f ,g}, {f ,h}, {g,h}, and {f ,g,h}. For

each set, the solutions of the subtrees rooted by its elements are combined. Line 8

of Algorithm 10 returns a reference to the solution iterator object created for f .

Once the iterator object is created it can be used to iterate over f ’s solutions.

Function FT-has-next-sol checks whether there are still solutions that can be enu-

merated for a given subtree in the feature tree. It can be used to iterate over a set

of solutions safely until no more solutions are available. Algorithm 11 implements

this function. It takes a solution iterator created by function FT-create-sol-iterator

as input and returns true if there are still solutions to enumerate or false otherwise.

In line 1, the feature f associated with the iterator object is retrieved. If f is an

optional uninstantiated feature for which false is yet to be enumerated the function

returns true indicating that there is a solution to enumerate (lines 2-3). Instead, if

f is any kind of leaf feature (no children) and value true has not been enumerated

the function also returns true (lines 4-6). Yet, if none of the previous cases are true

f ’s children need to be examined (line 7). If f has no children, then all its values

(false and true) have already been already enumerated and the function returns

false (line 18). Otherwise, if f is not a leaf node, function FT-prepare-child-iterators

(listed in appendix A) takes the list of child iterators of a given iterator and pre-

pares those for the next enumeration cycle. The function returns true whenever

there are combinations of child iterator elements to be processed (and thus solu-

tions available). The child iterators are processed last-to-first and reset whenever

they have been fully processed. When the first child iterator is processed and reset

the operation returns false indicating that the elements of the child iterators have

been fully combined. Therefore, if feature f in FT-has-next-sol is not a feature

group (line 8) its child iterators are retrieved (function FT-get-child-iterators) and

processed by function FT-prepare-child-iterators. The result of the function is re-

turned. However, if f is a feature group other combinations of child iterators have

to be considered. In line 11, function FT-get-current-iterator-combination returns

the current child iterator combination set and stores in the child-iterators list. The

list of child iterators is processed by function FT-prepare-child-iterators until either

a combination is found containing yet-to-be-enumerated solutions or the conclusion
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Algorithm 11 Returns true if the feature iterator object still has a solution to

enumerate or false otherwise

Inputs:

iterator: the solution iterator object for feature trees

Output:

returns true if the feature iterator object still has a solution to enumerate or

false otherwise

Function FT-has-next-sol(iterator:FT-sol-iterator) : Boolean

1: f = FT-get-iterator-feature(iterator)

2: if (f is uninstantiated optional AND false has not been enumerated) then

3: return true

4: else if (f does not have children AND true has not been enumerated) then

5: return true

6: end if

7: if (FT-has-child-iterators(iterator)) then

8: if (f is NOT a feature group ) then

9: return FT-prepare-child-iterators(FT-get-child-iterators(iterator))

10: else

11: child-iterators = FT-get-current-iterator-combination(iterator)

12: while (child-iterators <> NIL AND

NOT FT-prepare-child-iterators(child-iterators)) do

13: child-iterators = FT-get-next-iterator-combination(iterator)

14: end while

15: return (child-iterators <> NIL)

16: end if

17: end if

18: return false
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that all combinations have been processed and enumerated (lines 12-14). In the

former case, the function returns true, otherwise it returns false (line 15).

Finally, operation FT-next-sol(iterator) retrieves the individual solutions of the

iterator object associated with a given feature in the feature tree. It is implemented

by Algorithm 12. In the algorithm, variable sol is created to store features that

are part of a solution in the iterator. Therefore, sol only stores the features that

are assigned true in the solution. The variable is initially set to NIL (line 1). If

there are no more solutions available according to the FT-has-next function (line 2)

NIL is returned (line 19). Otherwise, feature f associated with the iterator object

is retrieved (line 3). If f is any kind of feature that has been assigned false and

falsehas not been enumerated for this feature yet, then sol is assigned the empty set

(sol = {}) to indicate that whenever f is false so all its children are false (property

5.1.1) (lines 5-6). If false has already been enumerated NIL is returned as no more

solutions are available for the subtree considering that f is false. If f is rather

optional and uninstantiated, and false has not been enumerated sol is also assigned

an empty set (sol = {}) for the same previous reasons (lines 7-8). However, because

in this case f is uninstantiated there is still a need to check the case whether f is

true.

In fact, for all cases in which a feature is assigned true or needs to be enumerated

for this value the feature is included in the solution (line 10) and, if that is the case,

its children are examined (lines 11-19) (property 5.1.3). If f is not a feature group its

child iterators are retrieved by auxiliary function FT-get-child-iterators, otherwise

another auxiliary function FT-get-current-iterator-combination has to be used to

recover the current child iterator combination set to be stored in child-iterators.

Once the right combination set of child iterators is known, a unique solution needs

to be extracted from the set. Function FT-get-child-iterators-sol (see appendix A) is

used for that purpose (line 15). It extracts the next solution in a list of child iterators

by traversing the iterators list in first-to-last order. For all child iterators the current

solution is retrieved (function FT-current-sol) except for the last iterator in which

the next solution (function FT-next-sol) is considered. Remember that it is always

guaranteed that a solution will be found by FT-get-child-iterators-sol since function

FT-has-next-sol has returned true (line 2 of Algorithm 12). The solution returned

by FT-get-child-iterators-sol is then incorporated (union set) into sol (line 15). The

unique solution set sol is then returned (line 19).

Functions FT-create-sol-iterator, FT-has-next-sol, and FT-next-sol should be

used together to enumerate the solutions of a feature tree iteratively. The following

code fragment illustrates how these functions can be used together. First, a solution
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Algorithm 12 Returns a list of features representing the next solution of the

solution iterator object

Inputs:

iterator: the solution iterator object

Output:

returns a list of features representing the next solution of the solution iterator

object

Function FT-next-sol(iterator:FT-sol-iterator) : feature{}
1: sol = NIL

2: if (FT-has-next-sol(iterator)) then

3: f = FT-get-iterator-feature(iterator)

4: if (f is instantiated to false) then

5: if (false has not been enumerated) then

sol = {}
6: end if

7: else if (f is an optional uninstantiated feature AND false has not been

enumerated) then

8: sol = {}
9: else

10: sol = {f}
11: if (FT-has-child-iterators(iterator)) then

12: if (f is NOT a feature group) then

13: child-iterators = FT-get-child-iterators(iterator)

14: else

15: child-iterators = FT-get-current-iterator-combination(iterator)

16: end if

17: sol = sol ∪ FT-get-child-iterators-sol(child-iterators)

18: end if

19: end if

20: end if

21: return sol
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iterator iterator is created to enumerate the solutions of the subtree rooted by a

given feature f . Next, a loop is introduced to iterate over each solution in the

subtree while one can be found. Inside the loop, the solution sol is retrieved from

the iterator object and printed out. The solution sets contain only features assigned

true, i.e., all non-listed features are assigned false.

. . .

iterator = FT-create-sol-iterator(f)

while ( FT-has-next-sol(iterator) ) do

sol = FT-next-sol(iterator)

print-out(sol)

end while

. . .

5.2 FMRS: A Hybrid Reasoning System for Fea-

ture Models

Up to this point, we have explored several properties of feature trees to develop

a reasoning system called FTRS that provides efficient operations for reasoning

on feature trees. For instance, the satisfiability of feature trees can be checked in

constant time and the solutions in the tree can be computed in linear time in the

number of features in the tree. However, since most of these properties examined

previously do not hold for feature models containing extra constraints but rather to

feature trees the FTRS cannot be used to reason on feature models. For instance,

while it could be proved that feature trees are always satisfiable (property 5.1.2)

there is no guarantee that a solution exists for a feature model.

Despite this fact, in this section we show that the properties examined for the

FTRS can still be advantageous for building a reasoning system for the entire

feature model. In the following, we introduce a hybrid reasoning system for feature

models called FMRS (Feature Model Reasoning System). The system relies on

the FTRS to handle feature trees and a constraint system to address the extra

constraints, and explores an advantageous interplay between these systems. The

rationale of the FMRS is that it is possible to improve the overall performance of

reasoning operations for feature models by taking advantage of domain knowledge

through the FTRS system.

Next, we depict the archicture of the FMRS.
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(a) (b)

Figure 5.5: (a) The architecture of the FMRS and (b) the feature model illustrated

in the architecture

5.2.1 FMRS Architecture

The FMRS is a reasoning system for feature models that provides the same op-

erations shown in Table 5.1 but now applied to the entire feature model. We use

prefix “FM” to name the operations in the FMRS.

The architecture of the FMRS is shown in Figure 5.5(a) along with an illus-

trative feature model in Figure 5.5(b). Inside the larger rectangle, the two circles

represent the formulas in the feature model, i.e., the extra constraints (EC) and

the feature tree (FT). Notice that only a subset of the eleven problem variables are

referenced by EC formulas, i.e., variables A, C, Y and P . Instead, all variables are

referenced in the feature tree. The GPCS rectangle represents a general-purpose

constraint system (GPCS), for instance, a SAT or CSP solver, that addresses the

EC formulas. The other corresponding rectangle represents the FTRS system dis-

cussed in the previous section that can be used to reason on feature trees. The

FMRS rectangle in the bottom of the figure is the interface of the FMRS system.

It represents a facade that hides from external systems the fact that two internal

solvers support the major functionalities of the FMRS system. Therefore, external
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calls to the FMRS are always made through the facade interface. The combination

of two distinguished techniques to address feature model formulas characterizes

the FMRS as a hybrid system. Notice that the FMRS and its internal compo-

nents communicate through well-defined interfaces represented by labels (2) and

(3). In addition, there is an extra communication channel labeled (1) between the

two internal solvers. These communication channels play a key role in enforcing

the consistency of the solvers as will be shown later. The rationale as well as the

strengths of the FMRS architecture are explained next as the operations of the

system are introduced.

Algorithm 13 Assign feature f the truth value v

Inputs:

f : feature to be assigned a value

v: truth value to be assigned to f

Function FM-assign(f : feature, v : Boolean)

1: FT-assign(f ,v)

2: GP-assign(f ,v)

5.2.2 Assigning and propagating values

Even though the GPCS and the FTRS share some variables, each system keeps

its own local variables and a unique key is used to relate shared variables. This

is important to enforce the independence of these systems and to centralize their

integration in the FMRS. In this context, a value assignment to a variable in the

FMRS is implemented as forward calls to its two internal systems. Algorithm 13

implements the FM-assign operation for the FMRS in which value v is assigned

to feature f . The algorithm simply forwards the value assignment to the internal

solvers by calling operations FT-assign and GP-assign (lines 1-2). These calls

are represented in Figure 5.5(a) by communication channels (2) and (3) and are

important to enforce the consistency between the FTRS and the GPCS. Note that

GPCS operations are prefixed by “GP” and represent operations available in most

current SAT solver implementations (most likely with different names).

Similarly, propagation calls to the FMRS are simply forwarded to the internal

solvers. However, unlike value assignments several rounds of updates might be

necessary to keep the solvers consistent with each other. That is, the results of
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Algorithm 14 Propagates a variable assignment throughout the feature model

Inputs:

f : feature

v: truth value assigned to f that starts the propagation

Function FM-propagate(f : feature, v : Boolean)

1: FT-save-state(“ft-state-before-assignment”)

2: GP-save-state(“gp-state-before-assignment”)

3: FT tuples = {〈f, v〉}
4: GP tuples = {〈f, v〉}
5: tmp tuples = nil

6: solvers consistent = false

7: while (solvers consistent is false) do

8: tmp tuples = FT tuples

9: for (each tuple 〈f, v〉 in GP tuples) do

10: FT-assign(f ,v)

11: FT tuples = FT-propagate(f ,v)

12: Eliminate tuples in FT that refer to variables not present in the GPCS

13: if (assignment conflicts is FTRS) then

14: FT-restore-state(“ft-state-before-assignment”)

15: GP-restore-state(“gp-state-before-assignment”)

16: {Error: Assignment Conflict!}
17: end if

18: end for

19: for (each tuple 〈f, v〉 in tmp tuples) do

20: GP-assign(f ,v)

21: GP tuples = GP-propagate(f ,v)

22: if (assignment conflicts in GPCS) then

23: FT-restore-state(“ft-state-before-assignment”)

24: GP-restore-state(“gp-state-before-assignment”)

25: {Error: Assignment Conflict!}
26: end if

27: end for

28: if (FT tuples = {} and GP tuples = {}) then

29: solvers consistent = true

30: end if

31: end while
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every propagation in one of the solvers need to be updated in the other and vice-

versa.

Operation FM-propagate propagates the assignment of value v to feature f in the

FMRS by updating the state of its internal solvers repeatedly until either a conflict

error is raised or there are no more propagations to carry out. The implementation

of FM-propagate is shown in Algorithm 14. The algorithm starts by saving the state

of the two internal solvers (lines 1-2) prior to any propagations. This allows the

solvers to be restored to a consistent state in case of errors. Following, three sets

FT tuples, GP tuples and tmp tuples are defined to store propagations values (lines

3-5). The propagation tuples in the FTRS (GPCS) are recorded in the FT tuples

(GP tuples). The GT tuples set is traversed and each of its tuples that represent

propagations performed in the GPCS are used to assign values to variables in the

FTRS (lines 9-17). Similarly, propagations in the FTRS stored in the FT tuples

set are forwarded to the GPCS (lines 19-27). Notice that the FT tuples tuples

containing references to variables not found in the GPCS are removed from the set

(line 12). The propagation loop (line 7) continues until either a conflict arises in one

of the internal solvers (lines 13 and 22) or a consistent state is reached (lines 28-30).

The FMRS is consistent when the propagation sets FT tuples and GP tuples are

empty, i.e., there are no more propagations to carry out. If a conflict error is raised

the solvers are restored to their original states (lines 14-16 and 23-25). Once again,

the propagation calls forwarded to both solvers are represented in Figure 5.5(a) by

labels (2) and (3).

5.2.3 Checking satisfiability

Property 5.2.1 Let FM be a feature model formula obtained by the conjunction of

a feature tree FT and an arbitrary propositional formula EC, i.e., FM = FT∧EC.

The formula FM is satisfiable iff there is a solution S in EC that can be successfully

propagated in FT .

Proof First, let us prove the first part of the implication, i.e., whenever a feature

model is satisfiable there is a solution in EC that can be successfully propagated

in FT . If the feature model is satisfiable there is a solution S that satisfies the

model. In addition, S also satisfies EC (considering only EC variables) and FT

since S is a solution in FM . Therefore, S represents a solution in EC that can

be propagated successfully in FT since it is a solution in FM . Now, lets us prove

that if a solution in EC can be successfully propagated in FT the feature model is
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satisfiable. Let R be a solution in EC and let FT be a satisfiable feature tree. If

R can be successfully propagated in FT the remaining formulas represented in FT

are satisfiable (property 5.1.4) and so is the conjunction FM = FT ∧ EC. Hence,

it can be concluded that the feature model is satisfiable and R is part of at least

one of its solutions.

As was discussed in Chapter 3, existing techniques for reasoning on feature mod-

els consider translating feature models to a specific encoding and using a constraint

solver to check the satisfiability of the models. In this approach, the constraint

solver takes into account all feature model variables to make decisions during the

search procedure. For instance, the solver might decide to assign a given variable

v value true and propagate. If propagation fails, the solver backtracks and even-

tually attempts assigning false to v. The higher the number of decisions made by

the solver the higher the time required to process the operation. This explains

why constraint solvers are usually inefficient in counting problem solutions as this

operation usually requires dealing with a combinatorial number of decisions.

In this context, property 5.2.1 is interesting as it allows us to develop an alterna-

tive SAT procedure for feature models that performs a reduced number of decisions

in comparison to constraint solvers. That is, the satisfiability of the feature model

can be checked by examining whether a solution in EC can be propagated suc-

cessfully in FT . In other words, a constraint solver needs only to make decisions

on EC variables and attempt to propagate these decisions in FT . Hence, only a

subset of the feature model variables need to be examined. In practice, this means

that a solution can be found for the feature model and yet several variables in the

model remain uninstantiated as the satisfiability of the formula is guaranteed. In

fact, some of these variable are never reachable to the solver through propagation

which means that they will always remain uninstantiated in the feature model.

This fact can be explored to build an interesting interplay between the FTRS

and a constraint solver. That is, the solver searches for solutions in EC and at-

tempts to propagate these in FT . Once propagation succeeds, the feature tree is

now “pruned” and guaranteed to be in a consistent state. At this time, FTRS algo-

rithms can be applied to the pruned tree efficiently. Recall that FTRS algorithms

always take advantage of feature tree properties to deliver improved efficiency.

Ideally, these properties should also hold for pruned trees. For instance, algo-

rithm FT-count-sol (Algorithm 9) can count the number of solutions in a partially-

instantiated feature tree in linear time in the size of the tree. Therefore, the number

of solutions in the feature model can be computed by simply applying this algo-
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rithm repeatedly for each solution in EC that can be propagated successfully in

FT . In the following, we propose a SAT procedure for the FMRS based on the

ideas derived from 5.2.1.

A possible approach to develop the new SAT procedure could be to use a gen-

eral constraint solver to find complete solutions in the extra constraints and sub-

sequently use function FT-propagate in the FTRS to verify if the solution can be

successfully propagated in the feature tree. In addition, the state of the feature tree

could be saved and restored between verifications using functions FT-save-state and

FT-restore-state. Unfortunately, such approach can be very inefficient as it requires

a complete solution for the extra constraint formula to be found prior to any checks

on the feature tree. In practice, this can lead to several unnecessary search cycles

in which a large number of solutions in the EC are unproductively analyzed.

Instead, we propose an iterative search procedure in which partial solutions in

the EC are checked against the feature tree relations. Such solutions are either

continuously expanded if they do not violate any of the feature tree relations or

eliminated otherwise. This approach is more efficient than the one mentioned previ-

ously as it eliminates a group of unproductive solutions at once. Yet, the approach

can be implemented straightforwardly using a conventional constraint solver and

the FTRS system. The strategy is to register the FTRS as a constraint of the con-

straint solver. This allows the FTRS to be notified about all variable instantiations

performed by the constraint solver and to either accept the instantiation if the vari-

able assignment can be properly propagated in the feature tree or otherwise reject

the assignment and force the constraint solver to backtrack. The advantage of this

approach is that the entire searching infra-structure of the constraint solver can be

reused without modifications. The only requirement is that the FTRS conform to

the constraint interface required by the solver. In addition, the FTRS has to be

able to save and restore multiple states of the feature tree in order to synchronize

assignments and propagations in the tree with the expanding and backtracking

moves of the constraint solver.

Many modern constraint systems and SAT solvers (e.g. [23], [13]) provide well-

defined event-based interfaces to notify about relevant changes made to the state

of the system during the search process. In those systems, constraints are usually

implemented as objects that register to system events and thus can directly influ-

ence the search process. We are interested in three particular events to build a

constraint object for the FTRS system to support the SAT procedure described

previously. The first two events are related to the expanding and contracting of

the search tree. Let us name such events GP-on-expanding and GP-on-contracting,
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Algorithm 15 Interface for handling search tree expanding events

Inputs:

v: variable instantiated

b: Boolean value assigned to v

Function GP-on-expanding(v : variable, b : Boolean)

1: FT-save-state(v)

Algorithm 16 Interface for handling search tree contracting events

Inputs:

v: variable instantiated

b: Boolean value assigned to v

Function GP-on-contracting(v : variable, b : Boolean)

1: FT-restore-state(v)

respectively. That is, each time an assignment is posted in or retracted from the

tree, an event is generated. For instance, in Figure 2.3(b) the assignment R = 0

was posted in the search tree at level 1 and later retracted since a conflict was found

which forbids the assignment. Constraints should also receive propagation events

so that the value assignments performed by the solver can be properly propagated.

Let us name this event GP-on-propagating. Propagation events allow constraints

either to check the validity of a partial solution and eventually instantiate new

variables or to find a conflict and raise an error.

Algorithms 15 and 16 represent handlers to the constraint solver events men-

tioned. These operations simply save and restore the state of the feature tree for

each expansion and contraction of the search tree, respectively. Procedure GP-

on-expanding is called whenever a variable v is instantiated to Boolean value b.

Similarly, procedure GP-on-contracting is called whenever the assignment of b to

v is retracted. As a result, the consistency between the FTRS and the constraint

solver is enforced.

Operation GP-on-propagating is a little more sophisticated. It is an event han-

dler operation triggered by the constraint solver right after the call to GP-on-

expanding to allow constraints to perform propagation. Algorithm 17 implements

the propagation event handler. It starts by assigning truth value b to the feature in
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Algorithm 17 Event handler to address constraint solver propagation events

Inputs:

v: variable instantiated

b: truth valued assigned to v

Function GP-on-propagating(v : variable, b : Boolean)

1: FT-assign(v,b)

2: P = FT-propagate(v,b)

3: if (an assignment conflict is raised during FTRS propagation ) then

4: raises a conflict error to force the constraint solver to backtrack

5: else

6: for (each tuple 〈variable, value〉 in P , variable ∈ EC) do

7: GP-enqueue(variable,value)

8: end for

9: end if

the feature tree corresponding to variable v (line 1). Following, the assignment is

propagated in the feature tree by calling the FTRS FT-propagate operation (line

2). The tuples representing the new instantiations caused by the propagation call

in the feature tree are store in set variable P . If a conflict was found during prop-

agation, an error is raised (lines 3-4), otherwise each tuple in P that contains a

reference to a variable in the extra constraints is enqueued in the constraint solver

for further propagation (lines 6-8). This procedure supports the inverse synchro-

nization process, i.e., that assignments in the feature tree are correctly propagated

in the constraint solver.

Algorithm 18 Check the satisfiability of the feature model rooted by f

Inputs:

f : root of the feature model tree

Output:

returns true if the feature model is satisfiable or false otherwise

Function FM-is-satisfiable(f : feature)

1: return GP-is-satisfiable()

The constraint system discussed so far is represented by the GPCS component in
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the architecture of the FMRS in Figure 5.5(a). Once operations GP-on-expanding,

GP-on-contracting and GP-on-propagating are implemented the satisfiability of fea-

ture models (operation FM-is-satisfiable) can be checked by simply forwarding the

call to GPCS GP-is-satisfiable operation as shown in Algorithm 18. Notice that

those three GPCS operations are represented in Figure 5.5(a) by communication

channel (1). This channel allows a direct communication between the two internal

solvers.

Algorithm 19 Count the number of solutions of the (possibly partially instanti-

ated) feature model rooted by f

Inputs:

f : root of the feature model tree

Output:

returns the number of valid configurations in the feature model

Function FM-count-sol(f : feature)

1: num solutions = 0

2: for (each solution S in the GPCS) do

3: num solutions = num solutions + FT-count-sol(f)

4: end for

5: return num solutions

5.2.4 Counting solutions

As discussed earlier, the number of solutions in the feature model can be computed

by applying operation FT-count-sol (Algorithm 9) to the feature tree repeatedly

for each solution in EC that can be propagated successfully in the tree. This

operation named FM-count-sol is implemented in Algorithm 19. In line 1, the

counter variable num solutions is initialized to zero. For each solution found by the

GPCS in the extra constraints and propagated successfully in the feature tree, the

available solutions in feature tree are counted and added to variable num solutions

(lines 2-4). Operation FT-count-sol is applied to the feature tree after the GPCS

has pruned the tree properly by propagating assignments made to EC variables.

Finally, the total number of solutions in num solutions is returned (line 5).

While a constraint solver would take exponential time in the number n of fea-

tures (O(2n)) to count feature model solutions, the new procedure would take time
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O(n · 2k), where k is the number of variables in the extra constraints. That is,

O(2k) for the number of decisions required to find all solutions and O(n) for saving

and restoring the state of the feature model prior to and after each decision and

for applying FT-count-sol for each solution found. Considering that k is usually a

fraction of n the new algorithm can be orders of magnitude faster than a constraint

solver equivalent operation. For instance, for a feature model with 100 features

(n = 100) and 20% ECR (k = 20), 2n ≈ 1.27×1030 and n · 2k ≈ 1.05×108.

Algorithm 20 Returns an iterator object that can be used to enumerate the

solutions of the feature model rooted by feature f

Inputs:

f : root of the feature model tree for which solutions will be enumerated

Output:

f : Returns an iterator object that can be used to enumerate the solutions of the

feature model rooted by feature f

Function FM-create-sol-iterator(f : feature)

: FM-sol-iterator

1: ec-iterator = GP-create-iterator(FM-get-EC-formula())

2: return FM-create-iterator-object(f , ec-iterator)

5.2.5 Enumerating solutions

The same rationale used to count solutions can be applied to enumerate solutions in

the feature model. That is, each solution found in EC and propagated successfully

in FT prunes the feature tree to a satisfiable state and yet several variables remain

uninstantiated in the tree. This means that the tree encompasses several solutions.

Iterators can be used to traverse the tree and enumerate each of these solutions.

Operation FM-create-sol-iterator creates an iterator object for the feature model

rooted by feature f (see Algorithm 20). The iterator object for feature models con-

sists of a fixed iterator for the extra constraints named ec-iterator and a varying

iterator for feature trees named ft-iterator. That is, for each enumeration pro-

vided by the ec-iterator a new ft-iterator object is created to enumerate the solu-

tions in the partially-instantiated feature tree. Line 1 in Algorithm 20 creates the

ec-iterator using operation GP-create-iterator provided by the constraint solver.

Notice that the function takes as argument the extra constraint formula retrieved
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Algorithm 21 Returns true if the feature model solution iterator object still has

a solution to enumerate or false otherwise

Inputs:

fm-iterator: the feature model solution iterator object

Output:

returns true if the feature model solution iterator object still has a solution to

enumerate or false otherwise

Function FM-has-next-sol(fm-iterator:FM-sol-iterator)

: Boolean

1: ft-iterator = FM-get-FT-iterator(fm-iterator)

2: ec-iterator = FM-get-EC-iterator(fm-iterator)

3: if (ft-iterator = NIL) OR (NOT FT-has-next-sol(ft-iterator)) then

4: if (GP-has-next-sol(ec-iterator)) then

5: GP-next-sol(ec-iterator)

6: f = FM-get-iterator-feature(fm-iterator)

7: ft-iterator = FT-create-iterator-object(f)

8: FM-set-FT-iterator(ft-iterator, fm-iterator)

9: return true

10: else

11: return false

12: end if

13: end if

14: return true

by function FM-get-EC-formula. Next, an iterator object for the feature model

named fm-iterator is created using function FM-create-iterator-object. The root

of the feature model and the extra constraint iterator object are passed as parame-

ters to the fm-iterator. Notice that the ft-iterator object is not created until the

ec-iterator enumerates its first solution.

Algorithm 21 implements the FM-has-next-sol operation. This operation re-

turns true if there are still solutions to be enumerated in the feature model for

iterator fm-iterator or false otherwise. Lines 1 and 2 retrieve the two internal

iterator objects ft-iterator and ec-iterator using auxiliary functions FM-get-FT-

iterator and FM-get-EC-iterator, respectively. If the ft-iterator object is NIL or

its enumeration has been completed (line 3) a new iterator needs to be created for
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the feature tree. In order to create the ft-iterator it is necessary to prune the

feature tree by moving to the next solution in the extra constraints using operation

GP-next-sol(ec-iterator). If there are no more solutions in the extra constraint

iterator the function returns false (line 4 and 11), otherwise values are assigned

and propagated in the feature tree to reflect the assignments that form the solution

in the extra constraints (line 4-5). Once the feature tree is pruned the ft-iterator

object can be created using function FT-create-iterator-object (lines 6-7). The iter-

ator object is then associated with the feature model iterator (line 8) so this object

can be retrieved later. Finally, the function returns true to indicate that a solution

can be enumerated. Notice that the function returns true immediately whenever

the ft-iterator object is not NIL and still has solutions to enumerate (lines 3 and

14).

Algorithm 22 Returns a list of features representing the next solution of the

feature model solution iterator object

Inputs:

fm-iterator: the feature model solution iterator object

Output:

returns a list of features representing the next solution of the feature model

solution iterator object

Function FM-next-sol(fm-iterator:FM-sol-iterator)

: feature{}
1: sol = NIL

2: if (FM-has-next-sol(fm-iterator)) then

3: sol = FT-next-sol(get-FT-iterator(fm-iterator))

4: end if

5: return sol

Operation FM-next-sol shown in Algorithm 22 returns the actual solutions in

the feature model for a given iterator object fm-iterator. Variable sol stores the

features that are part of the solutions and is initially set to NIL. If a there is still

a solution to be enumerated in the feature model (line 2) this means that object

ft-iterator is not NIL and can be used to retrieve the solution. Operation FT-

next-sol finds this solution in the feature tree and the result is stored in variable sol

(line 3). Notice that auxiliary function get-FT-iterator has been used to retrieve

the ft-iterator object associated with the feature model iterator object. Finally,
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the solution found is returned (line 5).

Functions FM-create-sol-iterator, FM-has-next-sol, and FM-next-sol should be

used together to iteratively enumerate the solutions of a feature model. The fol-

lowing code fragment illustrates how these functions can be used together. First,

a solution iterator fm-iterator is created to enumerate the solutions of the feature

model rooted by feature f . Next, a loop is introduced to iterate over each solu-

tion in the subtree while one can be found. Inside the loop, the solution sol is

retrieved from the fm-iterator object and printed out. The solution sets contain

only features assigned true, i.e., all non-listed features are assigned false.

. . .

fm-iterator = FM-create-sol-iterator(f)

while ( FM-has-next-sol(fm-iterator) ) do

sol = FM-next-sol(fm-iterator)

print-out(sol)

end while

. . .

5.3 Hardness of Feature Model SAT Instances

In this section, we show that some of the properties discussed so far also allow us

to understand better the hardness of SAT instances derived from feature tree and

feature model formulas. In particular, the following property can be proved.

Property 5.3.1 SAT instances derived from feature trees can always be solved in

linear time by a SAT solver regardless of the variable/value order considered.

Proof The unit propagation algorithm of the SAT solver will initially propagate

the root feature as it represents a unary constraint. The propagation will succeed

(property 5.1.2). Next, any unassigned variable is picked, assigned any truth value,

and propagated. Propagation will succeed (property 5.1.4). The solver repeats

this step several times until no more uninstantiated variables are left. The search

algorithm never backtracks since all propagations succeed and the formula remains

satisfiable after each propagation step. Providing that at most one decision is made

for each variable the solver performs a linear number of steps to find a solution to

the model.
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Since a feature model is the conjunction of the feature tree and the extra con-

straint formulas and considering that the feature tree can be solved in linear time

by a SAT solver (property 5.3.1), we can conclude that it is the extra constraint for-

mula that can potentially make a feature model SAT instance hard. The question

is whether a formula that in practice usually consists of a mix of binary and ternary

constraints and uses a fraction of the variables in the feature model can affect the

hardness of the entire formula to an extent that the formula becomes intractable.

We examine this issue in detail in Section 6.5 through empirical experiments.

5.4 Summary

In this chapter, we explored several properties of feature trees to propose an efficient

reasoning system for feature trees called FTRS. The FTRS computes satisfiability

checks and counts the number of solutions in the feature tree in constant and

linear time in the size of the feature tree, respectively. The feature tree properties

were further expanded into more general properties to support building a reasoning

system for feature models called FMRS. The FMRS incorporates two reasoning

systems, i.e., the FTRS and a standard constraint solver and is able to capitalize

on the strengths of each system by defining an interesting interplay between them.

That is, the constraint solver is used to find solutions in the extra constraints that

propagate successfully in the feature tree, which prunes the tree after each solution

is found. Once the tree is pruned, the algorithms in the FTRS can be applied

efficiently on the pruned tree to extract some useful information. This approach

has proven valuable to reduce the algorithmic complexity of certain operations.

For instance, while a constraint solver requires exponential time on the number of

features n in the feature model to compute the number of solutions in the model

(O(2n)), the FMRS takes time proportional to O(n · 2k), where k is the number

of distinct variables in the extra constraints. Ultimately, the goal of the FMRS

is to provide insights and a ready infrastructure to encourage future research on

enhancing the performance of reasoning algorithms for feature models by exploring

specific properties of the feature modeling domain. Finally, the properties discussed

were related to the hardness of feature model SAT instances. In particular, we

showed that SAT instances derived from feature trees can be solved in linear time

in the number of nodes in the tree by a typical SAT solver. This suggests that

it is the extra constraint formula that can increase the hardness of feature model

SAT instances. The question raised was whether this formula that in practice

usually consists of a mix of binary and ternary constraints and uses a fraction of
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the variables in the feature model can affect the hardness of the entire feature model

formula to an extent that this formula becomes intractable. This issue as well as

the evaluation of the FMRS are addressed in Chapter 6 that reports on the results

of empirical experiments.
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Chapter 6

Evaluation

In this chapter we report on the results of several empirical experiments carried

out to evaluate the ideas proposed in this thesis. In particular, our goal is to

evaluate the quality of the orders produced by the two new BDD variable ordering

heuristics discussed in Chapter 4 in terms of BDD size reduction and the increase

on the size of feature models that can now be compiled to BDDs successfully. In

addition, we compare the performance of pure SAT solutions against the hybrid

algorithms discussed in Chapter 5 to verify the gains in terms of performance for

certain operations. Finally, we examine the hardness of SAT instances derived from

feature models to verify whether these instances can ever become intractable for

realistic feature models.

Next, we provide details of the resources used in the experiments and report

and discuss the observed results.

6.1 Hardware and Software

An AMD Turion system with a dual-core 1.6 GHz processor and 1 GB of RAM sup-

ported the experiments. Moreover, a testing tool was developed in Java (JRE 1.4.2)

to run the various test case scenarios involving BDDs and SAT solvers. Publicly-

available third-party Java libraries were embedded in the testing tool providing

a convenient infrastructure for manipulating BDDs (JavaBDD [91]), constraint

solvers (Choco [23]), and DPLL solvers (SAT4J [13]). The libraries sometimes

required specific parameters to be configured. Such parameters and their configu-

rations are discussed in the appropriate sections in this chapter.
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Table 6.1: Feature models from literature

Feature model [reference] Features ECR Clauses Arity

1. e-Shop [51] 213 15% 21 2, 3

2. Model Transformation [27] 71 0% 0 -

3. Home Integration System [49] 67 12% 4 2

4. Documentation Generation [86] 44 29% 8 2

5. Thread domain [14, ch.6, p.130] 44 0% 0 -

6. Web Portal [64] 35 25% 6 2

7. Graph Manipulation [61] 30 23% 8 2, 3

8. Digital Video System [82] 26 23% 3 2

9. Key Word in Context [83] 25 16% 3 2

10. Insurance Product [84] 25 28% 4 2

11. Weather Station [16] 18 22% 2 2

12. Text Editor [29] 18 0% 0 -

13. Monitor Engine System [20] 17 11% 1 2

14. Graph Product Line [8] 16 81% 14 2

15. JPlug [79] 14 28% 2 2

16. James [11] 14 28% 2 2

17. Virtual Office of the Future [52] 14 0% 0 -

18. Search Engine (thesis page 11) 14 28% 2 2

19. Telecommunication System [37] 12 33% 2 2, 3

20. Cellphone [88] 11 36% 2 2

6.2 Benchmarks

6.2.1 Real Feature Models

We carefully examined a large body of research works in the field of software product

lines and product configuration to build a collection of twenty feature models that

served as basis for our experiments. Those models have been used in a variety

of ways by their proposers and served mostly as a means to illustrate approaches

and techniques applied to software product lines or alternatively as a convenient

encoding for representing the common and variable aspects of a particular domain

of interest. Table 6.1 shows the twenty feature models sorted by their size, i.e., the

number of features in the model. Each row depicts a model. The first column in the

table describes the domain of interest and provides a reference to the work where
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the model was introduced. The second and third columns (“features” and “ECR”)

depict the number of features and the ECR (see definition 4.1.1) for each model,

respectively. Each model had its extra constraints converted to CNF. Column

“clauses” shows the number of CNF clauses in the extra constraints of each model

while the “arity” column shows the arity of those clauses. For instance, while the

model in the third row (Home Integration System) contains 4 binary clauses, the

model in the first row (e-Shop) contains 21 clauses with arities 2 and 3. Yet, other

models did not contain any extra constraints (ECR=0%) such as the models in

rows 2, 5, 12 and 17. In these cases we noticed that the models were used either as

a taxonomy (model 2) or to describe small domains for which feature tree relations

were sufficiently expressive.

Despite the quite good number of models available in the literature its was

extremely challenging to find larger models, i.e., comprising tens of thousands of

features. We are aware that such models exist and some have already been men-

tioned in the literature [7], however they are usually part of commercial projects

that offer limited access to their resources. Therefore, we took advantage of our

experience in assembling a collection of real feature models to develop a tool to

generate feature model instances of arbitrary sizes. This is the topic of the next

section.

6.2.2 Automatically-Generated Feature Models

We conducted a careful examination of several real feature models including those

listed in Table 6.1 to better understand the similarities and differences among the

models and to learn how to generate models that somehow mirror real models.

Based on this experience we make some observations as discussed next.

Size and types of relations in the feature tree

Feature trees can vary significantly in size in practice. For instance, while the

average size of feature trees in the models in Table 6.1 is 42, the smallest and

largest models have sizes of 11 and 287, respectively. The size of the feature tree is

usually related to aspects such as the complexity of the domain in terms of numbers

of concepts and the depth of the variability analysis. Moreover, we noticed that

most of the models examined make use of all types of features in their structure,

i.e., mandatory, optional, and grouped features. For instance, only model #8 in

Table 6.1 does not have grouped features. In addition, the frequency in which
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each type of feature appears in the models varies reasonably. For example, while

66% of the features in model #3 are mandatory only 26% of the features in model

#1 are of this type. The same is with features of inclusive-OR and exclusive-OR

groups. For instance, model #1 has 46% of grouped features while model #11

has no feature groups at all. This suggests that a generation tool has to be able

to generate models of arbitrary sizes and allow different types of features to be

represented. In addition, the frequency in which each feature type is expected to

appear in the models should be parameterized.

Number of children per parent node and size of groups in the feature

tree

The ratio of child nodes per parent can vary from model to model and even within

the same model. Similarly, the number of features in a group is variable and hard

to predict in practice. The smallest groups observed in the real models contained

two features. In fact, groups are expected to have at least two features otherwise

they could be easily represented as a mandatory feature relation. This suggests

that a generation tool has to be able to produce models with a varying number of

children per parent node, enforce a minimum of two nodes per feature group, and

allow the parameterization of the maximum size of the groups.

ECR, and number and arity of clauses in the extra constraints

While some models in Table 6.1 have no extra constraints (e.g. model #2) others

have a fairly large number of features as variables in the extra constraints, i.e.,

large ECRs (e.g. model #14). Also, most of the variables (94 or 74%) appear in

only one clause and in 95% of the cases the clauses are binary. Despite, there are

cases of models containing 3-ary clauses (e.g. models #1, #7, and #19) and having

the same variables appearing in multiple clauses. Hence, generation tools should

be able to produce models with different ECRs and eventually allow variables to

repeat in some clauses. Optionally, the arity of the clauses can be parameterized

within a range. Notice, however, that these parameters can interfere with each

other. For instance, if the number of clauses specified is too large compared to the

number of variables it is very likely that many variables will be repeated throughout

many clauses especially if the average arity is low.
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Extra constraints and horizontal relations in the feature tree

The total number of clauses in the extra constraints considering all feature models

in Table 6.1 is 84. Only 6 of those clauses (7%) contain variables that also have

an ancestral relation in the feature tree. That is, in 93% of the cases none of the

variables in a clause is an ancestor of the others which implies that the variables

belong to different subtrees in the model. This is a strong evidence that the rela-

tions in the extra constraints represent horizontal relations, i.e., connect different

subtrees in the feature tree. In fact, this makes sense since the purpose of the

extra constraints it to add new relations to the feature tree and this commonly

translates to connecting different branches in the tree. Therefore, generation tools

should enforce that most of the clauses generated for a model represent horizontal

relations.

Vertical and horizontal distribution of extra constraint relations in the

feature tree

We say a relation r in the extra constraint is modularized at level n if the lowest-

common ancestor of its variables, written LCA(r), is a node at level n in the

tree. This gives an idea of the impact of adding the relation to the feature model,

i.e., the larger the subtree rooted by LCA(r) the higher the impact the relation

can potentially cause to the feature tree. We are particularly interested in the

vertical and horizontal distributions of this modularization, i.e., how the LCA of

the relations in the extra constraints span over the various levels of the feature

tree (vertical distribution) and within a given level (horizontal distribution). We

examined the models in Table 6.1. The average vertical distribution of all models

was 43%, i.e., in average 43% of the levels in the feature trees in each model

contained the lowest-common ancestor of a relation in the extra constraints. For

instance, in model #1 the feature tree has a depth of 9 and the 21 clauses in

the extra constraints are modularized in the first four levels, i.e., 9, 7, 2 and 3

clauses in levels 0, 1, 2 and 3, respectively. In addition, within a given level the

relations are also spread horizontally, i.e., multiple same-level subtrees modularize

extra constraint relations. This suggests that a generation tool needs to be able

to distribute extra constraints relations vertically and horizontally throughout the

many feature tree levels.
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Satisfiability

All feature models in Table 6.1 are satisfiable as they allow at least one valid config-

uration to be specified. However, as we argued in Section 3.1.1 during the construc-

tion of feature models it is usually necessary to perform debugging tasks, e.g., to

check whether the models specified are satisfiable. Therefore, we understand that

generation tools should be able to generate both satisfiable and unsatisfiable models

in order to support the evaluation of techniques for debugging feature models.

Based on the observations previously made we developed a feature model gen-

eration tool called GenBench that is capable of producing collections of feature

models. Our understanding is that we should evaluate reasoning techniques using

collections of models rather than a single model and report the results as averages

for the collection. This not only improves fairness but also allows us to keep track of

specific cases in which a given technique performed (perhaps unexpectedly) better

than the others.

The GenBench tool can be parameterized according to the following major

parameters shown in Table 6.2

Table 6.2: Configuration parameters of the feature model generation tool GenBench

Collection name Name or path to identify the collection.

Size of collection Indicates the number of feature models that should be

generated in the collection.

Size of feature

models

A fixed size for the models in the collection. The final

size of the feature models can vary slightly from the size

indicated to accommodate other parameters.

Feature type odds Odds for mandatory, optional, and grouped features.

Ideally, these parameters should vary from 0 to 100 and

add up to 100.

Minimum and

maximum children

per parent node

Indicates a range for creating parent node’s children.

For instance, the range [1,3] indicates that each parent

node has a minimum of 1 and a maximum of 3 children.

Maximum size of

feature groups

Indicates the maximum number of grouped features in

feature groups. It is assumed that the minimum size of

groups is 2.
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ECR Indicates the ECR, i.e., the percentage of the number

of non-repeated features in the feature tree that will be

added to relations in the extra constraint. For instance,

if a feature tree has 500 features and the ECR specified

is 10%, 50 features will be chosen to be part of at least

one extra constraint relation.

Number of clauses

and arity

Indicates the number of CNF clauses to be generated

in the extra constraints and a range indicating the al-

lowed arities. Currently the tool only supports binary

constraints.

Vertical and hori-

zontal distribution

of extra constraint

relations

Indicates the levels to be considered for the vertical and

horizontal distributions of the extra constraint relations.

Since the depth of the tree is not known upfront, the lev-

els are specified in terms of percentage numbers. For in-

stance, if the tree has a depth of 9 then percentages 0%,

50% and 100% correspond to levels 0, 4 and 8, respec-

tively (vertical distribution). In addition, for each level

two other percentages are specified to indicate, respec-

tively, the percentage of features in the extra constraints

that should be allocated to this level, and the percent-

age of the nodes at this level that should modularize

extra constraint relations (horizontal distribution). For

instance, consider a feature tree containing 500 nodes,

ECR of 10% and depth 9. If parameters 30% and 50%

are specified for the 4th level of the tree that contains

10 nodes then 30% of the extra constraint variables, i.e.,

30% of 50 = 15 variables should be allocated for level 4,

and 50% of the 10 nodes at this level, i.e., 5 nodes should

be chosen randomly to modularize extra constraint re-

lations.
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Satisfiability Indicates whether the models in the collection should be

satisfiable (true) or unsatisfiable (false). This is imple-

mented by testing the satisfiability of the models right

after their generation using a SAT solver. If the goal is

to produce unsatisfiable models the ECR value specified

should ideally be high (e.g. at least 30%) otherwise it is

very likely that the models generated will be satisfiable.

In addition to the parameters in Table 6.2, the GenBench tool was designed

to generate horizontal relations in the extra constraints, i.e., to enforce as much as

possible that the variables that appear together in a clause do not have an ancestral

relation in the feature tree. As we have shown, this is typically the case observed

in real feature models.

Several collections have been generated to support our experiments. The col-

lections usually consisted of 50 models of pre-determined size and the size of the

models varied among different collections to support different types of experiments.

The ECR was also variable but typically fixed for a given collection. That is, a col-

lection can be typically characterized by the number of models in the collection, the

fixed size of its models and the specified ECR, e.g., a collection A with 50 feature

models containing 500 features each and ECR of approximately 10%. For different

collections the ECR ranged from 10% to 30% to mirror what has been observed

for real feature models. Yet, some other parameters have been fixed for collections

such as the odds for mandatory, optional, and grouped features for inclusive-OR

and exclusive-OR groups, respectively, 25%, 35%, 20% and 20%. The odds ap-

proximated those for real feature models but we have adjusted slightly the odds

for mandatory features to facilitate computing the size of simplified models, i.e.,

models for which mandatory features have been removed. For instance, if a given

model has 100 features and 25% of its mandatory features have been removed it is

easy to compute the new size of the model, i.e., 75 features.

The number of children per parent node and the size of groups varied from 1 to

5 and 2 to 10, respectively, in most of the collections. Those ranges match reason-

ably well what has been observed for real models but in practice they are rather

hard to predict. Most of the models generated were satisfiable but a few collec-

tions contained unsatisfiable models. The satisfiability of the models is indicated

in the appropriate sections when the experiments and their results are presented

next. Finally, the horizontal and vertical distributions of extra constraint relations
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spanned over a range of 2 to 4 levels in the tree depending on the size of the models

and vertically among 50% to 100% of the nodes within the level. These parameters

were eventually adjusted whenever the ECR of the generated models did not quite

matched the specified ECR for the collection. More details of the configuration of

the parameters used in the test cases are presented in the corresponding sections

next.

We have been very encouraged by other research groups to continue working on

the benchmarks. For instance, a research team in Brazil that uses the Alloy system

to reason on feature models has downloaded our tool and some of the benchmarks

to test the performance of Alloy in handling large scale feature models. Another

research group in Germany is now implementing support for our models in their

feature configuration tool called FeatureIDE [53].

In the following, we present the experiments performed to test the various rea-

soning techniques presented in this thesis and discuss the results obtained.

6.3 Evaluating BDD Minimization Heuristics

We performed a series of experiments to evaluate the BDD variable ordering heuris-

tics discussed in Chapter 4 including our proposed heuristics Pre-CL-Size and Pre-

CL-MinSpan. Only the most competitive heuristics have been considered thus

eliminating the level heuristic which performed very poorly. The goal was to mea-

sure the effectiveness of the proposed heuristics in reducing the size of BDDs for real

and automatically-generated feature models in comparison to naive (yet generally

efficient) implementations such as natural pre-order and other renowned heuristics

such as Fujita’s, FORCE and sifting. In addition, we wanted to measure the scal-

ability of the heuristics in terms of the maximum size of the models that could be

handled and how much this has been improved by the new heuristics.

6.3.1 Real Feature Models

Quality of BDD Size Reduction

Goal: This experiment aimed at measuring the quality of the Pre-CL heuristics in

reducing the size of BDDs for real feature models in contrast with existing heuristics.

Benchmark: The real feature models illustrated in Table 6.1 supported the exper-

iment. For this particular experiment mandatory features were not removed from
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Figure 6.1: BDD sizes for various BDD ordering heuristics for real feature models.

the models. Recall that we refer to feature models from which mandatory features

were safely removed as simplified models (see Section 4.2.2 on page 49).

Results & Analysis: Figure 6.1 shows the total size of the BDDs produced by

each heuristic for the models listed in Table 6.1. Heuristics Fuj-DFS (Fujita’s)

and FORCE produced very large BDDs containing 94,522 and 87,219 nodes, re-

spectively. Meanwhile, natural pre-order ranked 3rd yielding a BDD of size 71,469.

The Pre-CL heuristics produced the best variable orders, i.e., the orders that led

to the smallest BDDs. Heuristics Pre-CL-Size and Pre-CL-MinSpan produced a

total BDD size of 25,511 and 23,971 nodes, respectively, i.e., about 3 times smaller

than those produced by natural pre-order.

In the specific case of models containing no extra constraints (models #2, #5,

#12, and #17) the Pre-CL heuristics were never worse than natural pre-order and

in some cases significantly better (e.g. 1.9 times smaller BDD for model #5). This

shows that the pre-order traversals applied by those heuristics are usually much

more effective than the natural pre-order traversal when it comes to reducing the

size of BDDs.

The Pre-CL heuristics produced smaller BDDs in 12 (or 60%) of the cases.

Yet, in all other cases the difference between the better heuristic and the Pre-CL

heuristics was very low (about 13% smaller BDDs) and was usually observed for

the smallest models (18 features or less).

We strongly believe that the poor performance of circuit heuristics such as Fuj-

DFS is related to the fact that these heuristics are usually not able to capitalize on

the hierarchical arrangement of features in the feature model. Yet, this arrangement

certainly provides a good hint on how to order BDD variables for those models as
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we discussed when we proposed the Pre-CL heuristics. While features are nodes

in the feature model, they are inputs (leaves) in the circuit and circuit nodes are

represented by gates (Boolean functions). Therefore, the strategy for developing

circuit heuristics can be very different from that of feature model heuristics.

Another important issue that should be considered to evaluate the performance

of circuit heuristics, or generally any other domain-specific heuristic, is related to

the translation of feature models to a domain-specific encoding such as a circuit.

That is, there are many possibilities for translating the same feature model to a

circuit graph (see Figure 2.7 on page 26 for an example) yet this can significantly

impact the quality of the orders produced by circuit heuristics. Learning how to

produce the “most valuable” circuit structures can be time-consuming and inef-

ficient in practice. Even in the best cases, this approach would always require

building an extra structure that can be orders of magnitude larger than the cor-

responding feature model before applying the heuristics. Therefore, we do not see

real benefits in using circuit heuristics directly in the feature modeling domain but

rather in learning the rationale behind these heuristics and examining whether the

ideas can be somehow applied advantageously in that domain.

Summary:

• Pre-CL heuristics produced BDDs about 3 times smaller, on average, than

other heuristics.

• Pre-CL heuristics were effective even for models without extra constraints.

Quality of BDD Size Reduction on Simplified Models

Goal: The goal of this experiment was to learn how much the heuristics can cap-

italize on the simplification of the models (elimination of mandatory features) in

order to improve BDD size reduction. As we argued in Section 4.2.2 mandatory

features play no role in variability analysis and should be removed for this purpose.

Notice that this operation preserves the core semantics of the models and hence the

BDDs obtained for the simplified models can also be used to reason on the original

models.

Benchmark: The real feature models illustrated in Table 6.1 after simplification

supported the experiment.

Results & Analysis: We observed that all the heuristics were able to take advan-

tage of the simplification of the models to produce smaller BDDs (see Figure 6.2).
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Figure 6.2: BDD sizes for various BDD ordering heuristics for simplified models.

Indeed, this was quite expected since the size of simplified models were about 30%

smaller than the original models (odds for mandatory features in the models). The

performance of the heuristics were similar to what was observed in the previous

experiment with the exception of FORCE that performed better than pre-order.

However, it was quite intriguing that some heuristics achieved a much higher

reduction rate than others. For instance, while BDDs produced by heuristics pre-

order and Fuj-DFS were 3.5 and 2.8 times smaller, the Pre-CL heuristics and

FORCE observed reduction rates of 10 times or higher. As a consequence, the

difference in terms of quality of BDD size reduction among the heuristics increased

significantly. That is, while for the original models the Pre-CL heuristics produced

BDDs from 3 to 4 times smaller than the other heuristics this difference increased to

a range between 3.6 to 20 times for simplified models. Considering that simplified

models are the actual target of the heuristics it becomes critical to understand how

the heuristics are impacted by the structural changes made to the original models

after simplification.

Since FORCE is a non-deterministic heuristic it is hard to explain whether

the improvements observed were real or incidental. On the other hand, we are

interested in understanding the impact of model simplification on traversal-based

heuristics such as pre-order and the Pre-CL heuristics.

Figure 6.3a shows how simplification impacts the structure of a feature model.

In the figure, (a) shows a feature model containing 10 features, 2 of which are

mandatory (B and I), and two constraints C1 and C2. The simplification of the

model is depicted in (b). Notice that the simplification process updates both the

feature tree structure and the extra constraint relations in the original model. For

instance, since feature I has been removed the reference to this feature in relation
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Figure 6.3: How feature model clusters are affected by model simplification

C1 was updated to refer to feature H (since I can now be inferred from H). In

addition, the simplification causes a reduction on the depth of the feature tree from

4 to 2. This results in a “flattening” of the feature tree and increases the number of

children for certain nodes. That is, every parent of a mandatory node inherits the

children of this node after its removal from the model. For instance, consider the

root feature R in the model depicted in Figure 6.3a containing three children A,

B, and C. When the model is simplified R’s mandatory child feature B is removed

from the model causing B’s children to move one level up in the tree. As a result,

R has now five children: A, D, E, F , and C as depicted in Figure 6.3b.

In addition, the model simplification can increase significantly the complexity

of the clusters in the model. The clusters of each parent node are illustrated in

Figure 6.3 as dashed rectangles involving features. For instance, in the model in (a)

feature R has two clusters, one containing features A and B, and another containing

feature C. As well, feature E has two single clusters, one for each child node. Other

clusters are illustrated in the figure. Cluster relations indicate subtree dependency.

For instance, relation R1 shown in one of R’s clusters indicate that the subtrees

rooted by A and B have a dependency (caused by relation C1). When a mandatory

feature is removed from the model its clusters are inherited by its parent node. In

addition, whenever original and inherited clusters share nodes they are combined

into a single cluster. For instance, the removal of feature B caused feature R to

inherit its two clusters. However, because feature E replaces feature B in relation
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Figure 6.4: Level-one clusters of the “Document Generation” feature model (a)

before and (b) after model simplification

R1 and E is also related to feature F through relation R2, A, E, and F are combined

into a single cluster and attached to node R as shown in Figure 6.3b. As a result, R

now has a more complex cluster containing 3 features and 2 relations. In practice,

the collapsing of clusters caused by the removal of mandatory features increases

significantly the complexity of the clusters in the model both in terms of number

of nodes as well as in the number of relations.

Figure 6.4 shows the effects of simplification in the clusters at level one of

the “Document Generation” feature model in Table 6.1 (model #4). In (a) two

clusters for the root node doc gen are shown, one containing feature database and

the other containing features presentation and analysis. The latter comprises

6 relations indicating subtree dependencies caused by extra constraint relations.

Parenthesized numbers following feature names indicate the number of nodes in

the subtree rooted by the feature (e.g. 27 nodes in the subtree rooted by feature

presentation). Figure 6.4b shows the effects of simplification to ‘doc gen clusters.

Mandatory features presentation and analysis are removed and replaced some of

their descendant features in the cluster. In addition, several clusters residing at

lower levels in the tree are now moved up and collapsed to form a large cluster

comprising a complex network of relations. As a result, feature doc gen now has 2

single clusters and a cluster with 6 features and 8 relations.

123



The raise in the number of children for many parent nodes in simplified models

affect negatively the pre-order heuristic since the larger the number of child nodes

the higher the chances of natural pre-order to be inefficient. That is, it becomes

more likely that the heuristic will crosscut several subtree dependencies during the

traversal of the feature tree to generate an order. On the other hand, what makes

the Pre-CL heuristics effective for simplified models is the ability of the heuristics in

modularizing subtree dependencies into clusters and enforcing feature arrangements

that aim variable distance minimization.

However, the larger the number of relations within clusters the more likely the

Pre-CL-MinSpan heuristic will outperform its counterpart. This happens because

in clusters containing several relations it is common to have some of the nodes

connected to many others and the Pre-CL-MinSpan is able to place those highly-

connected nodes in between their dependent nodes thus minimizing their distances

in the variable order. For instance, consider the largest cluster in Figure 6.4b

containing 6 nodes and 8 relations. Nodes main pages and visualizations are con-

nected to many others. Despite, heuristic Pre-CL-Size will ignore this fact and will

order the cluster’s nodes according to the size of their subtrees, i.e., version mngt,

subsystems, interaction, visualizations, lang analysis, and main pages (0, 0,

1, 5, 6 and 13 nodes, respectively). Instead, Pre-CL-MinSpan will place nodes

main pages and visualizations in between their dependent nodes to produce the

order: version mngt, interaction, main pages, subsystems, visualizations, and

lang analysis. Since we observed that in many cases the clusters of simplified

models contain a high number of relations, we expect heuristic Pre-CL-MinSpan to

be more effective than heuristic Pre-CL-Size for those models.

Summary:

• All heuristics capitalized on model simplification to improve BDD reduction.

• Pre-CL heuristics produced BDDs up to 20 times smaller, on average, than

other heuristics.

• Simplified models significantly changed the structure of original models. How-

ever, Pre-CL heuristics did not performed poorer when models were simplified

but rather improved even more over the other heuristics.
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Table 6.3: Average running times and BDD sizes for 50 feature models with 500

features and 20% ECR

Heuristic Heur. Time [%] BDD Time [%] Running Time [ms] BDD Size Best Results

Pre-CL-MinSpan 2% 98% 273.70 2,683 36

Pre-CL-Size 2% 98% 218.69 3,496 14

Pre-Order 0.4% 99.6% 241.23 27,600 0

FORCE 69% 31% 14,741.71 137,515 0

Fuj-DFS 2% 98% 427.86 41,176 0

6.3.2 Automatically-Generated Feature Models

Quality of BDD Size Reduction and Running Times

Goal: This experiment aimed at comparing the quality of the heuristics in reducing

the size of BDDs for models generated automatically. As well, the times required by

each heuristic to generate orders and build the BDDs were compared and analyzed.

Benchmark: The experiment used a collection consisting of 50 satisfiable feature

models generated automatically each containing 500 features and average ECR of

20%. The odds for mandatory, optional, and grouped features of inclusive-OR and

exclusive-OR groups were set to 25%, 35%, 20% and 20%, respectively. The models

were simplified prior to running the experiments.

Results & Analysis:

Table 6.3 shows average space and time values for five different heuristics.

Columns Heur. Time and BDD Time indicate the percentage of the running time

for producing the variable order and building the BDD, respectively. The running

time in milliseconds and the size of BDDs are shown in columns Running Time and

BDD Size. The Best Results column indicates the number of test cases in which

the heuristic had the best performance among all others.

BDD sizes for Pre-CL-MinSpan and Pre-CL-Size were significantly smaller than

for any other heuristic. In particular, reduction rates of 10 and 8 times, respectively,

were observed when compared to pre-order that ranked third. Interestingly, this

accurately resembles the rates observed for those heuristics in the context of real

models. Pre-CL-MinSpan led to smaller BDDs in 72% of the cases (36 models)

while Pre-CL-Size performed best in 28% (14 models) (column Best Results). In

terms of BDD reduction, Fuj-DFS was worse but still competitive with pre-order.

FORCE produced poor results mainly due to its random starts. BDDs for FORCE
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were 52 times larger, on average, than those for Pre-CL-MinSpan.

Pre-order had the best heuristic running time due to its very simple algorithm

that performs linearly on the size of the feature tree. However, Pre-CL heuristics

were not far behind, just a few milliseconds worse but achieved total running times

comparable to pre-order. Fuj-DFS also required low running times for producing

variable orders. FORCE did not perform well. For all test cases, FORCE required

more time to produce orders than to build the BDD (69% and 31%, respectively).

As well, the total running time was very high when compared to the other heuristics

which suggests that the heuristic can become prohibitively slow for larger models.

In a specific run, the algorithm took 96 steps to reduce an initial span of 147,153

to a minimum span of 17,361. Each step took about 0.27 milliseconds to run which

led to a total running time of 27 seconds.

In the experiment, we also tried to use FORCE to improve the orders pro-

duced by Pre-CL heuristics. FORCE was given initial orders produced by Pre-

CL-MinSpan (the best heuristic) and strived for improvements based on span min-

imization. Despite the lower spans obtained FORCE was unable to improve the

quality of Pre-CL-MinSpan orders for 80% of the cases (40 models). This suggests

that this heuristic already produces high quality orders.

Summary:

• Heuristics’ performance resembled accurately what was observed for real mod-

els, i.e., much superior orders were produced by Pre-CL heuristics.

• Time to run FORCE was higher than time to build the BDD.

• FORCE could not improve Pre-CL-MinSpan orders in 80% of the cases which

suggests that the latter heuristic already produces high quality orders.

Scalability

Goal: This experiment measured the scalability of three of the best heuristics (Pre-

CL-Size, Pre-CL-MinSpan, and pre-order). The goal was to find the upper bounds

of each heuristic in terms of the maximum size of models that could be handled

without producing “memory overflow” errors. The testing tool was set to run on

650 Mb of dedicated memory.

Benchmark: Supported the experiments 5 collections consisting of 10 satisfiable

feature models each. The 10 models within a collection had the same size and the
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Table 6.4: Scalability measures for the best heuristics

Heuristic
Feature Model Size (20% ECR)

1000 1500 2000 2500 3000

Pre-CL-MinSpan
Successes [%] 100 100 100 70 0
Memory Overflows [%] 0 0 0 30 100
BDD sizes (# of nodes) 24,426 396,736 506,899 1,910,452 -
Running Times [seconds] 0.3 1.9 3.7 9.9 -

Pre-CL-Size
Successes [%] 100 90 90 10 0
Memory Overflows [%] 0 10 10 90 100
BDD sizes (# of nodes) 36,512 1,313,058 1,469,996 4,033,693 -
Running Times [seconds] 0.3 6.6 10.6 19.4 -

Pre-order
Successes [%] 100 70 30 10 0
Memory Overflows [%] 0 30 70 90 100
BDD sizes (# of nodes) 390,218 1,259,748 5,616,119 4,953,427 -
Running Times [seconds] 1.1 6.1 22.4 33.8 -

ECR of all models was set to 20%. However, the size of the models varied from

one collection to another, i.e., 1000, 1500, 2000, 2500, and 3000 features. In all

models the odds for mandatory, optional, and grouped features of inclusive-OR

and exclusive-OR groups were set to 25%, 35%, 20% and 20%, respectively. The

models were simplified prior to running the experiments.

Results & Analysis: Table 6.4 shows the results of scalability tests for the heuris-

tics Pre-CL-Min-Span, Pre-CL-Size and pre-order. Table columns indicate feature

models with different sizes. Rows indicate the completion or failure due to memory

overflow to build the BDD as well as the average BDD size and running time. The

running time represents the combined times of running the heuristic and building

the BDD.

Heuristic pre-order did not fail to produce BDDs for any of the 1000-feature

models. However, for larger models the percentage of failing cases increased signifi-

cantly, i.e., memory overflows were observed for 30%, 70% and 90% of the cases for

models containing 1500, 2000, and 2500 features. Meanwhile, the Pre-CL heuris-

tics were able to produce BDDs for at least 90% of the cases for models with 2000

features or less. This represents an improvement of about 2 times compared to non-

failing cases of pre-order. pre-order and Pre-CL-Size struggled to handle models
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containing 2500 features and were only able to build the BDD in a single case (1

model or 10%). Yet, Pre-CL-MinSpan handled 70% of those models satisfactorily.

An interesting fact observed was that in none of the cases in which Pre-CL-MinSpan

failed to build the BDD the other heuristics succeeded. Similarly, pre-order never

succeeded for thoses cases in which Pre-CL-Size failed. None of the heuristics were

able to produce BDDs for models containing 3000 features.

The size of the BDDs produced by Pre-CL-MinSpan were consistently smaller

than those observed for the other heuristics and never exceeded 2 million nodes in

average. Moreover, Pre-CL-Size produced smaller BDDs than pre-order in almost

all cases. The only exception seemed to be for models with 1500 for which BDDs

for pre-order had an average size of 1,259,748 nodes against 1,313,058 nodes of

Pre-CL-Size. However, note that the average numbers did not consider the failing

cases including the 3 models (30% of failures) not handled by pre-order that could

have increased considerably the averages for this heuristic.

Heuristics Pre-CL-MinSpan, Pre-CL-Size, and pre-order ranked 1st, 2nd, and

3rd, respectively, considering the total time to produce an order and build the

BDD. This matched the size of the BDDs produced by those heuristic, i.e., smaller

BDD structures were usually built faster. In general, the average running times

observed were very low, i.e., well under 1 minute.

The largest BDD structure generated in the experiment contained 8,402,608

nodes and was produced by pre-order for a model with 2000 features. It took

58.5 seconds for the BDD library to count the number of satisfying assignments

in the BDD structure which corresponds to the number of valid configurations in

the feature model. For BDDs containing 2 million nodes or less the number of

satisfying assignments could be counted in less than 3 seconds in most cases. This

shows that BDD operations can be performed quite efficiently even in very large

structures thus being building the BDD structure within a limited memory space

the major issue.

Summary:

• The largest models handled by pre-order without any failures contained 1000

features.

• The largest models handled by Pre-CL-MinSpan without any failures con-

tained 2000 features, an order of magnitude improvement over pre-order.

• Pre-CL-MinSpan handled 70% of the models containing 2500 features against

only 10% of successes observed for the other heuristics.
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• None of the heuristics handled models with 3000 features.

• The average running times for all three heuristics remained under 1 minute

for models with up to 2500 features.

• The largest BDD produced in the experiment contained 8,402,608 nodes. It

took 58.5 seconds for this BDD to count the number of satisfying assignments.

This operation is usually performed in 3 seconds or less for BDDs with up to

2 million nodes.

Sifting

Goal: Several “memory overflow” errors were observed for the Pre-CL heuristics

during the building of BDDs for very large feature models, e.g., models containing

2500 features or more. This experiment measured the practical use of sifting in

preventing memory overflows during the building of such large BDDs. Once again,

the Pre-CL heuristics were used to produce orders but this time the “sifting” option

was turned on in the JavaBDD library. During BDD construction, whenever the

size of the BDD structure reached 5 million nodes the “sifting” algorithm was

automatically invoked by the library to reduce the size of the structure.

Benchmark: A collection containing 10 feature models with 2500 features and

ECR of 20% (the same one used in the scalability experiment). The models were

simplified prior to running the experiments.

Results & Analysis: The results shown were not encouraging. Even though mem-

ory overflows were prevented successfully none of the 10 models could be compiled

after an hour of processing. Recall that Pre-CL-MinSpan was still able to generate

BDDs for 70% of the models with average generation time of about 9.9 seconds as

shown in Table 6.4. We observed many calls to the sifting algorithm during the

construction of the BDD each taking several minutes to complete. Therefore, we

do not see any real benefits of using sifting to build BDDs for feature models.

Summary:

• BDD construction using sifting never terminated after 1 hour of processing.

We do not see any real benefits of using sifting to build BDDs for feature

models.
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6.4 Evaluating Constraint Solvers and the FMRS

System

6.4.1 Satisfiability and solution counting with constraint

solvers

Goal: The purpose of this experiment was to measure the efficiency of two popu-

lar SAT (SAT4J 1.7 - DPLL solver) and CSP (Choco 1.2) solver implementations

in performing satisfiability checks and counting the number of solutions in fea-

ture models of varying sizes. The best solver instances available in each library

(according to their authors) were selected and given the same variable order (pre-

order traversal of the feature tree) and value ordering (false followed by true). The

SAT solver library provides several state-of-the-art optimization techniques such

as restarting strategies, watched literals and clause learning. Meanwhile, the CSP

solution does not currently support such advanced features and was simply con-

figured to apply forward checking to propagate assignments. In fact, the goal of

the experiment was not to make a direct comparison of the solver’s performance,

which would obviously favor the SAT solution, but rather to understand how well

general solver solutions could handle problems in a specific domain of interest, i.e.,

the feature modeling domain.

Benchmark: Supported the experiments 12 collections consisting of 10 satisfiable

feature models each. The 10 models within each collection had the same size and

the ECR of all models was set to 20%. However, the size of the models varied

from one collection to another. For satisfiability tests 7 collections were used with

model sizes of 500, 1000, 2000, 3000, 4000, 5000 and 10000 features. For solution

counting tests 5 collections were used including the real feature models in Table 6.1

and 4 other automatically-generated collections with model sizes of 20, 30, 40 and

50 features. In all models the odds for mandatory, optional, and grouped features

of inclusive-OR and exclusive-OR groups were set to 25%, 35%, 20% and 20%,

respectively. The models were not simplified prior to running the experiments.
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Table 6.5: Performance results for satisfiability tests on various collections of

feature models. Timeouts indicate lack of response within 30 seconds. Running

times are average results of the successful cases.

Solver
Feature Model Size (20% ECR)

500 1,000 2,000 3,000 4,000 5,000 10,000

SAT4J 1.7 (SAT solver)
Timeouts [%] 0 0 0 0 0 0 0
Running Times [ms] 4 8 11 15 10 21 55

Choco 1.2 (CSP solver)
Timeouts [%] 0 20 10 10 50 80 90
Running Times [ms] 14 20 61 239 78 53 197

Table 6.6: Performance results of SAT/CSP solvers in counting solutions on

various collections of feature models. Timeouts indicate lack of response within 30

seconds. Running times are average results of successful cases.

Solver
Feature Model Size (20% ECR)

Real 20 30 40 50

SAT4J 1.7 (SAT solver)
Timeouts [%] 20 0 0 90 100
Running Times [ms] 2,421 960 2,958 8,295 -

Choco 1.2 (CSP solver)
Timeouts [%] 20 0 0 30 80
Running Times [ms] 310 79 2,869 7,833 9,228

Results & Analysis:

Satisfiability

Table 6.5 shows the performance results for the SAT and CSP solvers in perform-

ing satisfiability checks on various collections of feature models. The “Timeouts”

rows indicate the cases in which no response was provided by the solver within

30 seconds of processing. The “Running times” rows are average results of the

successful cases.

The SAT solver performed extremely well (first row in Table 6.5) with no time-

outs even for models with 10,000 features. As well, the running times were very

low never higher than 55 milliseconds. During the tests the SAT solver was able to

“learn” from conflicts and adjust its searching strategy accordingly and for many

times avoided unproductive steps. As a result, we noticed a reduced number of
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decisions made by the SAT solver during the search. A decision corresponds to a

node in the search tree in which a truth value is assigned to a particular variable

by the solver. For instance, an average number of decisions of 2,681 was observed

for the collection of models containing 5,000 features, i.e., lower than the number

of variables in the problem. This result is consistent with what was discussed in

Chapter 5, i.e., during the search several variables corresponding to subtrees con-

taining no extra constraint relations in the feature tree could be instantiated in one

shot by assigning false to the root of the subtrees and propagating. In addition, the

vast majority of the relations in the problems were represent by binary constraints

which are usually an indication of easy SAT instances.

Meanwhile, the CSP solver (second row in Table 6.5) handled well models with

up to 3,000 features with an average of only 10% of timeouts. For larger models the

solver alternated cases of quick responses and no responses at all indicating that

for times the solver wasted too much time examining unproductive branches of the

search tree. For instance, only one model in the collection of models with 10,000

features could be handled within the time limit set for the experiment. Despite,

there is certainly room for improvements such as considering different variable/value

ordering heuristics or reducing the number of variables analyzed as will be discussed

in the next experiment (Section 6.4.2).

Counting Solutions

Table 6.6 shows the performance results of the SAT and CSP solvers for counting

the solutions on various collections of feature models within a 30 second time limit.

Table rows show the average timeouts and running times for each collection.

The SAT solver was able to count the solutions of 16 (or 80%) of the real feature

models shown in Table 6.1 in an average time of 2.4 seconds. The 4 models com-

prising the largest number of solutions could not be handled within the time limit,

i.e., models #1, #3, #4 and #18 containing approximately from 750 thousands to

2 million solutions. No timeouts were produced for automatically-generated mod-

els with up to 30 features (20% ECR) for which the average time remained under

3 seconds. However, for models with 40 and 50 features the timeouts increased

considerably to 90% and 100%, respectively, considering the substantial increase in

the number of solutions in those models (≈9.2×105 and ≈15×106, respectively).

The performance of the CSP solver was slightly better than the SAT solver. For

the real models as well as models with 20 and 30 features (columns 2, 3, and 4 in

Table 6.6) the solvers produced the exact same number of timeouts with a slight

advantage for the CSP solver in the average running time. In addition, the CSP
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solver performed better on models with 40 and 50 features completing the solution

counting for 30% and 80% of the models.

Considering the largest (smallest) number of solutions that could be counted

(not counted) by each solver we attempted to determine approximate upper bounds.

The SAT solver was able to count up to 80,658 solutions but failed for a model

containing 85,654 solutions thus suggesting the upper bound to be near 83,000

solutions. The CSP solver successfully counted 654,720 solutions but failed to count

1.2 million of solutions thus suggesting an upper bound within the range [6.5×105,

1.2×106]. Another factor that should be considered is the number of steps taken

by the solver to find the solutions. That is, the less the number of steps taken the

higher the number of solutions that can be counted.

Ultimately, the results confirm what is known for general cases, i.e., that SAT/CSP

solvers are not ideal for counting solutions of constraint problems. More broadly,

constraint solvers are highly specialized in the satisfiability problem and hence are

usually not expected to perform well when they are required to deal with a very

large portion of the combinatorial space. Despite, the experiment was important in

the sense that it allowed us to determine upper bounds for a given class of feature

models and ultimately encouraged the development of alternative hybrid solutions

for counting problem solutions as the hybrid reasoning system FMRS introduced

in Chapter 5 and evaluated in the next experiment (Section 6.4.2).

Summary:

• The SAT solver was able to check the satisfiability of models with up to 10,000

features in 55ms or less. In several situations the SAT solver “learned” with

conflicts and thus was able to reduce significantly the number of decisions

in the search tree. The CSP solver performed well for models with up to

3,000 features (only 10% of timeouts) but struggled with larger models (80%

and 90% timeouts for models with 5,000 and 10,000 features) most likely

because it wasted a significant amount of time examining useless branches of

the search tree.

• Both solvers performed poorly to count feature model solutions compared to

their performance on satisfiability tests. The upper bound limits approxi-

mate 80,000 solutions for the SAT solver and between 6.5×105 and 1.2×106

solutions for the CSP solver. This usually corresponded to models with 50

features or less (20% ECR).
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6.4.2 Satisfiability and solution counting with the FMRS

system

In Chapter 5 we introduced a feature model reasoning system called FMRS. The

FRMS combines a general-purpose constraint solver (GPCS) and a reasoning sys-

tem tailored to feature trees (FTRS) to form a hybrid reasoning system for feature

models. The FTRS component was presented in Chapter 5. Any SAT or CSP

solver can play the role of the GPCS. As the performance of the SAT solver in

the previous experiment was satisfactory and considering that the major strength

of the FMRS regards its improved ability to count solutions we decided to imple-

ment a version of the FMRS using the Choco CSP solver as the GPCS component.

Remember that Choco performed slightly better than SAT4J in the previous ex-

periment for solution counting. In the next experiment we measure the benefits

of the hybridization scheme implemented in the FMRS in terms of two operations:

satisfiability checks and solution counting.

Goal: The purpose of this experiment was to measure the efficiency of the FMRS

system in performing satisfiability checks and solution counting on collections of

feature models against a pure constraint solver.

Benchmark: Supported the experiments 14 collections consisting of 10 satisfiable

feature models each. The size of the models varied from one collection to another.

For satisfiability tests 7 collections were used with model sizes of 500, 1000, 2000,

3000, 4000, 5,000, and 10,000 features, and 20% ECR for all models. For solution

counting tests 7 collections were used including the real feature models in Table 6.1

and 6 other automatically-generated collections, i.e., 3 collections with model sizes

of 100, 150, 200 and 20% ECR, and other 3 collections with sizes 500 (5% ECR),

1,000 (2% ECR), and 10,000 (0% ECR) features. In all models the odds for manda-

tory, optional, and grouped features of inclusive-OR and exclusive-OR groups were

set to 25%, 35%, 20% and 20%, respectively. The models were not simplified prior

to running the experiments.

Results & Analysis:

Satisfiability:

Table 6.7 shows the performance results for the FRMS and the CSP solver

(CSP results copied from Table 6.5) for performing satisfiability checks on various

collections of feature models. Once again, a time limit of 30 seconds was given to

each solver to perform satisfiability checks on the sample models.

The FMRS succeeded in the satisfiability checks in 100% of the models analyzed
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Table 6.7: Performance results of the FMRS and the CSP solver for satisfiability

tests on various collections of feature models. Timeouts indicate lack of response

within 30 seconds. Running times are average results of the successful cases.

Solver
Feature Model Size (20% ECR)

500 1,000 2,000 3,000 4,000 5,000 10,000

Choco 1.2 (CSP solver)
Timeouts [%] 0 20 10 10 50 80 90
Running Times [ms] 14 20 61 239 78 53 197

FMRS (Choco as GPCS)
Timeouts [%] 0 0 0 0 0 0 0
Running Times [ms] 15 43 146 248 518 1,242 2,967

Table 6.8: Performance results of the FMRS and the CSP solver for counting

solutions on various collections of feature models. Timeouts indicate lack of re-

sponse within 30 seconds. Running times are average results of successful cases.

All models were satisfiable.

Solver
Feature Model Size

(20% ECR) (5% ECR) (2% ECR) (0% ECR)
100 150 200 500 1,000 10,000

FMRS
Timeouts [%] 0 0 90 40 0 0
Running Times [ms] 330 9,506 8,015 9,960 9,796 5

even for very large models with 10,000 features with an average running time under

3 seconds. This was quite surprising since we did not expect much in terms of

performance improvements for satisfiability checks. In fact, the running times were

compatible with the pure CSP solution but the number of timeouts were reduced

significantly. This suggests that the decisions made by the CSP solver playing the

GPCS role were either quickly propagated or a conflict was found earlier than in a

pure CSP solution. This likely avoided many unproductive searches. In addition,

the number of decisions made by the CSP solver (GPCS) was reduced since now

only extra constraint variables were considered which are usually a fraction of the

total number of variables in the feature model. As a consequence, many variables

remained uninstantiated after the satisfiability checks. For instance, about 30%

of the variables in the models with 5,000 features remained uninstantiated upon

the completion of the satisfiability checks. In a pure CSP solution those “skipped”

variables (as well as their containing clauses) are likely to disturb the solver by
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potentially increasing the number of backtrackings which might have caused many

timeout situations.

As an example, consider the feature model in Figure 6.5b in which only 5 (or

42%) features have been instantiated to confirm the satisfiability of the feature

model. That is, once an assignment satisfies the extra constraint relation (D → E1)

and is successfully propagated in the feature tree the satisfiability is of the entire

feature model is confirmed by the FMRS. Instead, a pure CSP solution would still

have to check the remaining feature tree clauses in order to come to a conclusion.

It is known that a constraint solver does not have necessarily to instantiate all the

variables in the problem during a satisfiability check. However, the hybridization

scheme can significantly increase the number of uninstantiated variables.

Counting Solutions:

Table 6.8 shows the performance results for the FRMS for counting solutions on

various collections of feature models within a time frame of 30 seconds. The FMRS

succeeded in 100% of the cases (no timeouts) for models with up to 150 features

and 20% ECR. Remember that the CSP solver struggled to handle models with 50

features generating timeouts in 80% of the cases. Considering only the cases where

no timeouts occurred, the FMRS was able to handle models about 5 times larger

than the CSP solver (from 30 to 150 features). For models with 200 features and

20% ECR the FMRS did not complete the counting in 90% of the cases.

As discussed earlier, the efficiency of a pure CSP-based solution for counting

solutions is related to factors such as the total number of solutions in the feature

model and the number of steps taken by the solver to find those solutions. Instead,

the performance of the FRMS is only related to the number of solutions in the

extra constraints as the solutions in the feature tree can be quickly counted by the

FTRS, i.e., the FMRS’s internal solver that handles feature tree operations. For

details of the FTRS counting solutions algorithm please refer to Section 5.1.5.

Therefore, the FRMS can be especially effective for models with low ECR.

Table 6.8 shows that models with 500 and 1,000 features (5% and 2% ECRs, re-

spectively) had their solutions counted by the FMRS in 10 seconds or less. In

particular, if the counting operation is applied only in the feature tree (0% ECR),

models with 10,000 features are easily handled (average time of 5ms) (see last table

column).

Figure 6.5 shows how the FMRS along with its two internal solvers, i.e., the

FTRS and GPCS, count feature model solutions. In the figure, (a) shows a feature

model with 12 features and a single extra constraint relation (D → E1). In (b), (c)

136



Figure 6.5: How the FMRS system counts the solutions in a feature model. A

feature model is shown in (a). For each solution found by the constraint solver in

the extra constraints depicted in (b), (c) and (d) the FMRS cumulatively counts

and adds the number of solutions in the “partially instantiated” feature tree to

later obtain the total number of solutions in the feature model.
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and (d) the feature model in (a) is “partially” instantiated after the propagation

in the feature tree of each solution found by the GPCS in the extra constraint.

For instance, in (b) the extra constraint solution (D=true, E1=true) is propagated

successfully in the feature tree thereby instantiating other features (see check marks

in the figure for instantiated features). Once propagation succeeds, the feature tree

is guaranteed to be consistent and satisfiable (property 5.2.1). The interesting fact

is that only some features are instantiated (e.g. 5 or 42% in (b)) while many others

are left uninstantiated. As a consequence, several solutions are represented in the

feature tree in each step that can be quickly computed by the FTRS rather than

by a slow search procedure of a pure CSP solution. By cumulatively counting

and adding the solutions in each step (36, 72 and 30 solutions in (a), (b), and

(c), respectively) the FMRS computes the total number of solutions in the feature

model (138 solutions in the example).

As a result, the FMRS can be viewed as an alternative approach for those unfa-

miliar with BDDs for counting the solutions of medium size models or large models

with low ECR. In addition, we are hopeful that the rationale of the FMRS, i.e.,

to combine efficient domain-specific algorithms in the feature tree with traditional

SAT/CSP search procedures, can inspire researchers to explore other interesting

contexts.

Summary:

• The FMRS was able to handle models about 5 times larger than the CSP

solver to count problem solutions (from 30 to 150 features in the model).

• Large models with low ECR could also be handled satisfactorily, e.g., models

with 500 (5% ECR) and 1,000 (2% ECR) features.

• The FMRS is an alternative approach for those unfamiliar with BDDs for

counting problem solutions of medium size models or large models with low

ECR.

6.5 Hardness and Phase Transition of Feature

Model SAT Instances

We were intrigued during the experiments by the fact that the SAT solver performed

extremely well in performing satisfiability checks for feature models containing up
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to 10,000 features and several extra constraints. This naturally arises the following

question: Are SAT solvers always efficient in checking the satisfiability of feature

models? If so, can we provide some explanations for that? We address this question

in this section.

Recall that in Section 5.3 we showed that feature tree formulas can be solved

in linear time by a typical SAT solver. This strongly suggests that it is the extra

constraint formula that can potentially increase the hardness SAT instances de-

rived from feature models. In the following, we provide a short background on the

hardness of SAT problems and report on the results of empirical experiments to

evaluate the hardness of feature model SAT instances.

6.5.1 Short Background

Research on the hardness of SAT problems has found many motivations in the

past being the most prominent the needs of improving the performance of SAT

algorithms such as the DPLL procedure [34]. As a result, many classes of SAT

problems have been examined [42, 1, 70, 69, 87]. In particular, researchers have

attempted to determine hardness threshold values for k-SAT [69, 38], i.e., the class

of SAT problems consisting of CNF clauses containing exactly k literals. These

thresholds were usually related to parameters such as the number of variables and

clauses in the problem and represent crossover points in which an “easy” SAT

instance becomes “hard”, and vice-versa. In this context, hardness is directly

related to the number of steps required by a SAT solver to perform satisfiability

checks. Obviously, the harder (easier) the instance the higher (lower) the number

of steps required. In worst cases, the number of required steps is so large that it

can never be performed in feasible time thus characterizing intractable instances.

An important discovery related the hardness of SAT instances to a phenomenon

called phase transition [47, 78, 93]. The phase transition characterizes the transition

of a SAT instance from a satisfiable to an unsatisfiable state given the variation of a

specific order parameter. For k-SAT problems the prominent parameter considered

has been the clause density, i.e., the ratio α of the number of clauses m to the

number of variables n in the problem (α = m
n

). As the clause density increases so

does the probability of k-SAT instances to become unsatisfiable. The notable find-

ing was that during the phase transition an “easy-hard-easy” pattern was followed,

i.e., a SAT solver that had been working efficiently starts to struggle up to a point

that the problem becomes intractable and as the clause density value continues to

grow the solver starts to perform efficiently again. The peak in hardness coincides
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with the 50% threshold point, i.e., the point where k-SAT instances switch from an

“almost always satisfiable” state (underconstrained problem) to an “almost always

unsatisfiable” state (overconstrained problem).

Nowadays, approximate bounds for the phase transition of uniform random 3-

SAT problems are known. An instance of a uniform random 3-SAT formula is built

by selecting three different random variables for each clause and negating each with

probability 1
2
. The maximum number of clauses is then 8

(
n
3

)
, where n represents

the number of variables in the problem. For random 3-SAT the phase transition

occurs for values of α varying from 3.42 to 4.506. The critical value is ≈ 4.25 that

represents a 50% probability of satisfiability which, as mentioned, coincides with

the peak in hardness of SAT algorithms. In other words, random 3-SAT instance

containing n variables and 4.25 × n clauses typically represent intractable SAT

instances especially when the number of variables is large.

Based on these observations, our goal from now on is two fold: first, we want

to find approximate phase transition thresholds for a certain class of feature model

SAT instances; second, we want to examine the increase in hardness of those in-

stances as they approximate the thresholds identified. To achieve these goals we

conducted several tests summarized in the following experiment description.

6.5.2 Relating Hardness and Phase Transition

Experiment

Goal: The purpose of this experiment was to identify approximate phase transition

threshold values for a certain class of feature model SAT instances and to examine

the increase in hardness of those instances as they approximate the thresholds iden-

tified. We consider feature model formulas obtained by conjoining a feature tree

formula and a uniform random 3-SAT formula representing the extra constraints

attached to the tree. This is a quite reasonable configuration to consider giving that

in practice extra constraint formulas usually consist of a combination of binary and

ternary clauses. As a matter of fact, we are assuming the worst-case scenario (and

the most likely to produce hard instances) in which all clauses are ternary. We

consider “random” 3-SAT ensembles for which phase transition thresholds approx-

imations are known. In addition, we consider feature trees containing mandatory,

optional, inclusive-OR and exclusive-OR features with each type of feature having

an equal probability to appear in the tree, i.e., 25% for each type. Also, we enforce

that parent nodes have a minimum of 1 and a maximum of 6 children (branching

140



Table 6.9: Phase transition thresholds for feature model SAT instances

Size & ECR
50% Satisfiability Threshold

(10% ECR) (20% ECR) (30% ECR) Size Range

1,000 2.35 1.75 1.40 [1.40 - 2.35]

2,000 2.15 1.45 1.10 [1.10 - 2.15]

3,000 1.90 1.30 1.00 [1.00 - 1.90]

5,000 1.65 1.05 0.80 [0.80 - 1.65]

10,000 1.30 0.75 0.50 [0.50 - 1.30]

ECR Range [1.30 - 2.35] [0.75 - 1.75] [0.5 - 1.4] [0.50 - 2.35]

factor). This is important since realistic feature trees are not “flat” but rather have

the features distributed throughout the many levels of the tree. For the purposes

of the experiment, we developed a tool that based on given ECR and clause den-

sity parameters randomly selects variables in the feature tree and creates a random

3-SAT formula with those variables.

Benchmark: One hundred models were generated “on-the-fly” for each combina-

tion of size (1,000, 2,000, 3,000, 5,000 and 10,000), ECR (10%, 20% and 30%) and

clause density (from 0.1 to 3.5 in increments of 0.1) to support the experiment. In

addition, other density ranges (from 3.6 to 5.0) were considered for models with

10,000 features and 30% ECR. The clause density refers to the density of clauses

in the extra constraints not in the feature model. This makes sense as we want to

examine how feature model SAT instance increase in hardness as new clauses are

added to the extra constraints. In total, 54,000 models were generated during the

experiment some of which are available online for download at [63]. The SAT solver

(SAT4J [13]) was given 30 seconds to complete satisfiability checks on generated

models.

Results & Analysis:

Phase Transition

Table 6.9 shows the 50% satisfiability thresholds found for several feature models

of varying sizes and ECRs, i.e., extra constraint clause densities for which the

feature model formula has equal probability of being satisfiable and unsatisfiable.

The thresholds were calculated for each combination of model size and ECR by

considering only density values within the range in which at most 70% and at least

30% of the models analyzed represented satisfiable instances. The median of the

density values was defined as the threshold. For instance, consider the density

values in the range from 2.0 to 2.7 observed for feature models with 1,000 features
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Figure 6.6: Threshold phase transition values for varying model size and ECR

parameters

and 10% ECR. The median was then the average of the two middle values 2.3 and

2.4 which resulted in the threshold value of 2.35 (see second row/column on table).

This means that if the CNF formula corresponding to a feature tree containing 1,000

nodes is conjoined to a random 3-SAT formula containing 100 of the feature tree

variables (10% ECR) and 235 clauses (density of 2.35) the resulting SAT instance

has 50% probability of being (un)satisfiable. This “satisfiability crosspoint” is also

illustrated in Figure 6.6 (see value 2.35 in the figure). For densities higher (lower)

than 2.35 SAT instances are more likely to be unsatisfiable (satisfiable).

Column “Size Range” in Table 6.9 depicts the threshold ranges for a given

model size. For example, for models with 1,000 features (second row) the threshold

decreases from 2.35 to 1.40 as the ECR increases. That is, for a fixed size, the

higher the ECR the earlier the feature model instance reaches the threshold and

becomes unsatisfiable. This is quite expected given that the number of variables and

clauses in the extra constraints increases and makes the formula more constrained.

Similarly, row “ECR Range” shows threshold ranges but now for fixed ECR values.

For instance, densities decrease from 2.35 to 1.30 for models the 10% ECR as

the size of the models increases. That is, for a fixed ECR, the larger the model

the earlier the feature model instance reaches the 50% satisfiability threshold and

becomes unsatisfiable. This is interesting since the number of variables in the extra

constraints is equally proportional to the size of the models but yet larger models

become unsatisfiable earlier. Figure 6.6 illustrates both cases, i.e., thresholds for
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models with same size but different ECRs and for models with same ECR but

different sizes. For instance, given two models with 10,000 features and ECRs

of 10% and 30%, the one with higher ECR reaches the 50% threshold first (see

values 0.50 and 1.30 in the figure). Similarly, given two models with ECR of 10%

and containing 1,000 and 10,000 features, the one with higher number of features

reaches the 50% threshold first (see values 1.30 and 2.35 in the figure).

This is the first time phase transition has been studied and threshold parameters

have been calculated in the context of feature model formulas. The results obtained

provide a solid ground for further analysis of the hardness of feature model SAT

instances as discussed next.

Hardness

As mentioned previously, for many classes of SAT problems (e.g. k-SAT) the

peak in hardness occurs near the 50% satisfiability threshold when the number of

steps performed by SAT algorithms grow exponentially on the size of the problem

until they become too large to be processed in feasible time. Therefore, we want

to examine how the hardness of feature model SAT instances increases as those

instances approximate the thresholds identified.

We considered very large feature model SAT instances (10,000 features) with

a high ECR value (30%) that should represent challenging SAT problems, at least

when compared to most of realistic feature model instances. The threshold found for

models with 10,000 features and 30% ECR was 0.5 as shown in Table 6.9. Figure 6.7

shows the running times (average of 100 test cases for each point) of the SAT solver

(SAT4J) to perform satisfiability checks on those models for various clause density

values. As it can be observed in the figure, the SAT solver was extremely efficient

in handling all models regardless of the density considered. That is, the average

running time for satisfiability checks was never higher than 61ms. In particular,

there was no decline in performance of the SAT solver for instances near the 0.5

threshold (see (A) in the figure). This provides a strong evidence that typical feature

model formulas represent “easy” SAT instances for any standard SAT solver.

Another interesting point is illustrated in Figure 6.7-B when the extra constraint

formula (in isolation) reaches its threshold (from 3.42 to 4.506) and becomes com-

putationally hard to solve. In fact, we ran the SAT solver for the extra constraints

in isolation and observed many cases of unfeasibility (several hours without a re-

sponse from the solver). As depicted in the figure, the experiment shows that when

such “hard” extra constraint formulas are conjoined to a feature tree formula the

resulting feature model formula is unsatisfiable and trivially solvable. In fact, cases
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Figure 6.7: Running times of satisfiability checks for feature models with 10,000

features and 30% ECR

of 100% unsatisfiability started at density 1.6, i.e., all models with density 1.6 or

higher were unsatisfiable.

We believe that the major reasons behind the consistent efficiency of SAT solvers

in dealing with feature model formulas is due to the fact that the largest number

of relations in the feature model, i.e., the feature tree, represent a very easy SAT

instance that can be solved by a SAT solver in linear time in the size of the model.

Because the extra constraints typically uses only a fraction of the variables in the

feature tree the resulting conjoined formula is still an “easy” SAT instance, even

when the extra constraints are considered “very hard” instances in isolation.

Despite the fact that the experiments considered a particular class of feature

model formulas, i.e., models composed of random 3-SAT formulas as extra con-

straints, we believe that those models represent even harder SAT instances than

what we expect from most of practical models. In fact, in most of the real feature

models that we studied the extra constraints usually consisted of a mix of binary

and ternary constraints what makes the problems potentially easier to solve.

We are very satisfied with the results of the experiments as they seem to provide

better explanations to some challenging research questions recently posed related

to the manipulation of very large feature models (particularly those containing up

to 10,000) [7]. We have shown that certain operations such as satisfiability can be

successfully handled by current technologies such as SAT solvers.

Summary:

144



• Various 50% satisfiability thresholds could be identified for feature models

with different sizes and ECRs.

• For a fixed size, the higher the ECR the earlier the feature model instance

reaches the 50% satisfiability threshold and becomes unsatisfiable.

• For a fixed ECR, the larger the model the earlier the feature model instance

reaches the 50% satisfiability threshold and becomes unsatisfiable.

• SAT solvers can efficiently handle (61ms or less) feature models with up to

10,000 features and 30% ECR for which extra constraints are represented

by random 3-SAT formulas. Hence, typical feature model formulas represent

“easy” SAT instances for any standard SAT solver.

• When known “hard” extra constraint SAT instances (uniform 3-SAT) are

conjoined to a feature tree formula the resulting feature model formula is

unsatisfiable and trivially solvable.

6.6 Tool Support

Several tools were developed in our research to support automated model genera-

tion and analysis, to run the various experiments, and to visualize and reason on

various aspects of feature models. The tools were built on top of a Java library we

developed to provide proper interfaces for manipulating feature models, clausal and

propositional formulas, variable ordering heuristics, Boolean circuits, hypergraphs,

graphical interfaces for feature models, circuits and BDDs, and several reasoning

techniques based on BDDs, and SAT and CSP solvers. Currently, the library con-

tains 157 Java classes distributed in 12 packages and has about 17,144 lines of

code. A tool called 4WATREASON was built to illustrate most of the components

available in the library and can be accessed online at [63].

A screenshot of the main window of the 4WATREASON tool is depicted in

Figure 6.8. On the left-hand side, the Web-Portal feature model listed in Table 6.1

is shown loaded in the tool. The tree structure represents the feature tree and the

left-bottom table shows the extra constraints attached to the feature tree. Below

this table, two buttons are provided that allow the visualization of feature model

clusters (see Figure 6.4 for screenshots) and Boolean circuits (see Figure 2.7 for

screenshots) representing the feature models. On the right-hand side, several BDD

variable ordering heuristics can be explored to build BDDs for feature models.
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Figure 6.8: 4WATREASON Tool Main Screen

In addition, various reasoning techniques based on BDDs, SAT and CSP solvers

for reasoning on feature trees, the extra constraints or the entire feature model

are available. Multiple techniques can be used simultaneously which facilitates a

direct comparison of their strengths and weaknesses. The FRMS, our proposed

hybrid reasoner, is also part of the techniques available. In the right-bottom, an

output area displays the results of applying the reasoning operations on the feature

model. Various operations are supported including satisfiability checks, and the

enumeration and counting of solutions using the different reasoning techniques. It

is also possible to select and deselect features in the feature model while performing

the operations.

For more screenshots and an online demo of the 4WATREASON tool please

refer to [63].
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Chapter 7

Conclusion

In this thesis, we have discussed two powerful techniques that can be used to au-

tomate support for feature model reasoning, i.e., SAT solvers and BDDs. We have

shown that by better understanding the mechanics of BDDs and SAT solvers and

the sensitive issues related to these techniques, we can provide more accurate expla-

nations for the space and/or time (in)tractability of these techniques in the feature

modeling domain, and enhance the algorithmic performance of these techniques for

reasoning on feature models.

In particular, we discussed the space intractability problem associated with

BDDs. That is, BDDs are very sensitive to the order of their variables and a bad

ordering can lead to BDDs of intractable sizes. Since finding an optimal order is NP-

hard, we argued that the problem has been typically approached by using heuristics.

Hence, in Chapter 4 we explored several relevant properties of the feature modeling

domain that should be considered when ordering the variables of BDDs compiled

from feature models. Based on the insights provided, we then proposed two novel

BDD variable ordering heuristics that considered clustering and sorting the nodes

in the feature model tree recursively and traversing the tree in DFS in order to

produce a good quality ordering for BDD variables. We showed empirically that

our heuristics could produce orders that were consistently better than state-of-the-

art heuristics for the feature modeling domain. In particular, we showed that the

orders produced by our heuristics could lead to BDDs about 10 times smaller than

BDDs produced by other heuristics considering real and automatically-generated

feature models. As a result, feature models twice as large (2,000 features) as those of

previous heuristics (1,000 features) could be built. The heuristics were implemented

as part of an extensible algorithmic infrastructure that allows new heuristics to be

easily incorporated as further properties of feature models are examined.

147



Furthermore, we explored several properties of feature models and showed how

these properties can be used to develop efficient domain-specific algorithms to rea-

son on a subset of the feature model. We also showed how these domain-specific

algorithms could be integrated with existing SAT algorithms into hybrid solutions

that could deliver improved performance for certain kinds of reasoning operations

on feature models. We showed empirically that some of the hybrid algorithms can

indeed be much more attractive than a pure SAT-based solution. For instance,

a hybrid algorithm was developed to count the number of solutions in a feature

model. Empirical experiments showed that the hybrid algorithm was able to ad-

dress models up to 5 times larger (150 features) than a pure SAT solution (30

features). Ultimately, our goal was to inspire other researchers to examine fur-

ther properties of feature models that can lead to the development of new efficient

domain-specific algorithms and eventually to the integration of these algorithms

with existing techniques such as SAT and BDDs.

In addition, we showed empirically that SAT instances derived from feature

models could be easily solved by any standard SAT solver. For this purpose, we

explored the correlation between hardness and phase transition for a class of feature

model SAT instances and showed that during the phase transition, i.e., when there

is an equal likelihood of a feature model to be satisfiable and unsatisfiable, no

significant changes in the performance of the SAT solver were observed. That

is, the solver remained extremely efficient even during the phase transition. This

suggests that SAT instances derived from feature models containing up to 10,000

features and 30% ECR can be easily solved by a typical SAT solver. Since we

expect realistic models to be much simpler than those used in the experiments we

are confident about the suitability of SAT solvers to handle SAT problems derived

from the feature modeling domain.

7.1 Addressing The Research Questions

In Chapter 1 we posed important research questions that shall now be answered.

1. Can the size of BDDs for realistic feature models ever become intractable? If

so, what are the current limits?

Answer: Yes. The best heuristic examined prior to developing our own heuristics,

i.e., a DFS of the feature model, was able to compile feature models with up to

1,000 features successfully. For larger models, the compilation process started to
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raise “memory overflow” errors consistently. For instance, only 30% of the mod-

els containing 2,000 could be compiled successfully by DFS. The other heuristics

examined performed even poorer than DFS on average.

2. Can these limits be improved? If so, how and by how much?

Answer: Yes. We proposed two new heuristics, i.e., Pre-CL-Size and Pre-CL-

MinSpan that were able to reduce significantly the size of BDDs compiled from

feature models. The heuristics explored several structural properties of feature

models and applied techniques such as clustering and sorting in the feature model

to reduce the distance of connected variables in the final ordering. As a result, an

average reduction of about 10 times in BDD size was observed for the new heuristics

for BDD compilations of real and generated feature models. This enabled feature

models twice as large (2,000 features) as those handled by previous heuristics (1,000

features) to be compiled. By using orders produced by heuristic Pre-CL-MinSpan

we were able to compile models containing up to 2,500 features in 70% of the cases.

3. Are SAT solvers always efficient in checking the satisfiability of feature models?

If so, can we provide some explanations for that?

Answer: Considering that we analyzed a class of models that in theory is harder

(i.e., larger, with more relations) than most of the realistic models coped with by a

SAT solver, we are confident that the answer is “yes”. We showed that a SAT solver

can check the satisfiability of feature trees in linear time in the number of features

in the tree. This suggested that it was the relations in the extra constraint that

could potentially make feature model SAT instances hard to solve. We explored

the correlation between the phase transition and the hardness of SAT instances for

a given class of feature models for which the extra constraints were represented by

random 3-SAT ensembles. We showed empirically for these instances that during

the phase transition the performance of the SAT solver remained stable, i.e., the

solver was still completing satisfiability checks very efficiently (i.e. in low millisec-

onds). The models considered in the experiments contained up to 10,000 and 30%

ECR. In addition, we showed that even when the extra constraint formula became

intractable in isolation, when this formula was conjoined to the feature tree the

resulting feature model formula was unsatisfiable and trivially solvable. We believe

that our evaluations increase substantially the level of confidence on the use of the

SAT technology to handle most of the feature models in practice.
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4. How can we take advantage of domain knowledge to improve the performance

of algorithms to reason on feature models?

Answer: In the feature model, the feature tree arranges the variables into hierarchi-

cal relations. This facilitates devising recursive algorithms to traverse the variables

and their relations and can greatly facilitate some kinds of computations. One

such example is the counting of the number of legal configurations in the feature

tree that can be computed in linear time in the size of the tree. Instead, a SAT

solver would have to traverse all of these configurations, which ultimately involves

an exponential number of steps in the size of the feature tree, in order to perform

the same operation. By integrating the linear algorithm for counting feature tree

configurations with a SAT algorithm to count configurations in the extra constraint

we were able to improve the overall performance of the algorithm for counting the

number of legal configurations in a feature model. We are confident that other

properties of feature models exist that can lead to improved hybrid algorithms to

reason on these models.

5. What kind of domain-specific algorithms can be developed and what are the

improvements in performance in comparison to pure SAT solutions?

Answer: We gave an example of an improved algorithm for counting the valid

configurations in a feature model. The algorithm was able to handle feature models

up to 5 times larger (150 features) than those addressed by a pure SAT solution

(30 features). Again, we are confident that many new efficient algorithms can be

developed by further examining properties of feature models.

7.2 Future Work

In the following, we discuss interesting research opportunities that naturally extend

the ideas proposed in our work.

New BDD variable ordering heuristics

We are optimistic that some improvements can be done to the two novel BDD

variable ordering heuristics proposed in Chapter 4. Currently, both heuristics im-

plement a pre-order traversal of the feature tree in order to produce variable orders.

However, our empirical experiments have shown that post-order can be as good as

pre-order in producing compact BDD patterns. Hence, we envision a new heuris-

tic that combines both pre- and post-order traversals depending on which strategy
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is more advantageous to minimize the distance of extra constraint variables at a

given branch of the feature tree. A possible implementation of this idea could be

to run a decision procedure at each cluster in the feature model to decide which

strategy should be followed to traverse the subtrees in the cluster. However, there

is a difficulty to overcome in this approach. That is, the fact that the feature tree

is a hierarchical structure can make a good traversal decision at a given cluster of

the tree a bad choice for other clusters at lower levels in the same branch of the

tree. Hence, the decision procedure would have to take into account factors such

as the number of clusters in a given branch of the feature tree and the density of

the relations within these clusters to decide for an overall advantageous traversal

strategy.

Another possible improvement to the heuristics could be to combine their ap-

proach to sort the nodes within a cluster into a single strategy. Currently, heuristic

Pre-CL-Size uses a sort-by-size strategy that can be very effective for sparsely-

connected clusters with large subtrees while heuristic Pre-CL-MinSpan handles

better highly-connected clusters by placing nodes connected to many others in cen-

tral positions in the cluster. These two approaches could be combined into a single

strategy that evaluates whether a given cluster is either sparsely or highly connected

and applies the most advantageous sorting procedure.

BDD constraint ordering heuristics

In this thesis, we did not discuss strategies for ordering constraints for BDD

construction. In fact, we assumed a pre-order traversal of the feature tree followed

by a natural-order traversal of the extra constraints to order the constraints. While

the order of the constraints has no influence on the final size of the BDD it can

have a great impact on the intermediate sizes the BDD structure reaches during

the BDD construction. Therefore, it is possible that the final size of a given BDD

is tractable but yet the BDD cannot be built because it reaches an infeasibly-large

size during construction.

In a preliminary experiment, we noticed that the size of the BDD remains

manageable as the relations in the feature tree are processed and only when the

extra constraints start to be taken into account the growth in size starts to be a

real problem. Therefore, we think that a promising approach could be to group and

process together related constraints in the feature tree and in the extra constraints

rather than postponing to the end the processing of the extra constraints. A possible

alternative to implement this approach could be to take advantage of the clustering

of child nodes in the feature tree to process the extra constraint relations associated
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with each cluster following the processing of the feature tree relations in the cluster.

By doing so, whenever the relations in the subtrees of a cluster are processed so are

the extra constraints associated with the cluster. This approach might lead to a

more manageable BDD size growth as a group of related constraints are processed

together. However, more detailed analysis and empirical experiments have to be

carried out to evaluate the real benefits of this approach.

Parallel algorithms for BDD construction

An alternative to speed up the BDD construction process could be to design

a parallel algorithm. A good parallel algorithm would quickly build and merge

intermediate BDD structures into a final consolidated structure. However, merging

intermediate BDDs efficiently can be a challenging task especially if these BDDs

share many variables. We think that the clustering procedure applied to the fea-

ture tree can give a good hint on how to split the building process into separate

concurrent tasks and yet merge the intermediate BDD structures produced by each

task efficiently. For instance, consider two clusters A and B of the same parent

node in the feature tree. Clearly, clusters A and B share no variables or relations

in their subtrees otherwise they would have been combined into a single cluster

by the clustering algorithm. Therefore, intermediate BDDs for clusters A and B

could be processed in parallel and merged cheaply afterwards. Since the feature

tree is a recursive structure this strategy could also be applied recursively by merg-

ing intermediate BDDs bottom-up until the root node is reached. We developed a

preliminary parallel algorithm based on these ideas and were very encouraged by

the results. The merging strategy seemed to work very well. However, the BDD

library we used, i.e., the JavaBDD, does not support concurrency as it does not

synchronize access to shared resources and uses a shared memory space for BDD

manipulation. Hence, we were forced to make use of locks to implement our parallel

algorithm and the final results were not as good as we expected. Despite this fact,

we are convinced that the clustering of the feature tree can indeed support the

development of parallel algorithms for BDD construction.

Domain-specific algorithms, SAT, and BDDs

In Chapter 5 we discussed several properties of feature trees that led to the

development of highly efficient algorithms to reason on those trees. We also showed

how these algorithms could be integrated with a SAT solver to form a hybrid

solution for reasoning on feature models. Our major goal was to provide as many

insights as possible to inspire the development of new algorithms in the future.

The strategy for building new algorithms can be as follows. First, feature tree
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properties must be identified that could be used to build an efficient reasoning

procedure. Second, the procedure is built by exploring the properties identified.

Third, the algorithm developed is integrated with a SAT solver (or another external

system such as a BDD) that will take care of the extra constraints to form a hybrid

reasoning procedure for the feature model. The integration is also based on feature

model properties such as those discussed in Chapter 5. The rationale is that the

feature tree algorithm developed will be efficient enough to improve the overall

performance of the hybrid algorithm. In this thesis, we gave an example of such

an algorithm that computes the number of legal configurations in a feature tree.

The algorithm was further integrated with a SAT solver to address feature models

and, as we showed empirically, can address models up to 5 times larger than those

handled by a pure SAT solution.

We believe that there are many opportunities for developing efficient domain-

specific algorithms for feature models if the “relevant” properties are identified.

For instance, there are quite a few properties that can encourage the development

of algorithms to detect “dead” features on feature models. For instance, it can

be proved that feature trees do not have “dead” features (proof is omitted here).

Hence, it is the extra constraint relations that can cause the feature model to contain

“dead” features. Second, if a given feature is “dead” in the feature tree so are all its

descendants. Therefore, computations of related “dead” features is usually cheap.

Most likely it is possible to build an algorithm that analyzes the extra constraints

to extract some facts, prunes the feature tree according to the facts found, checks

whether or not features are “dead” in the feature tree, and finds all related “dead”

features. We plan to sketch a preliminary version of this algorithm as a next step

in our research.
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Appendix A

Auxiliary Algorithms

Algorithm 23 Propagates a true assignment UP in the feature tree

Inputs:

f : propagation starting point; f is a feature assigned true

Function FT-prop-trueAS(f :feature)

1: if (f 6= nil) then

2: parent ← parent(f)

3: if (parent 6= nil and parent is NOT the root node and parent is uninstanti-

ated) then

4: FT-assign(parent,true)

5: if (f is NOT a grouped feature) then

6: FT-prop-trueDS(parent, f)

7: if (parent is a grouped feature ) then

8: FT-prop-trueGS(parent)

9: end if

10: end if

11: FT-prop-trueAS(parent) {recursive call}
12: end if

13: end if
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Algorithm 24 Propagates a true assignment DOWN in the feature tree

Inputs:

f : propagation starting point; f is a feature assigned true

v: child of f that will be excluded from propagation

Function FT-prop-trueDS(f :feature, v:boolean)

1: if (f 6= nil) then

2: if (f is a feature group) then

3: if (the sum of true and uninstantiated features in the group equals the

group lower bound) then

4: for (each uninstantiated feature G) do

5: if (FT-get-value(G) 6= v) then

6: FT-assign(G, true)

7: FT-prop-trueDS(G,v)

8: end if

9: end for

10: end if

11: else

12: for (each child feature C of f) do

13: if (FT-get-value(C) 6= v) then

14: if (C is a feature group w/ lower bound > 1 or a mandatory feature)

then

15: FT-assign(C, true)

16: FT-prop-trueDS(C,v)

17: end if

18: end if

19: end for

20: end if

21: end if
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Algorithm 25 Propagates a true assignment within a feature group

Inputs:

f : propagation starting point; f is a grouped feature assigned true

Function FT-prop-trueGS(f :feature)

1: if (f 6= nil and f is a grouped feature) then

2: if (number of grouped features assigned true is equal to group upper bound)

then

3: for (each uninstantiated grouped feature G in the group) do

4: FT-assign(G, false)

5: FT-prop-falseDS(G, nil)

6: end for

7: else if (the sum of true and uninstantiated grouped features is equal to the

group lower bound) then

8: for (each uninstantiated grouped feature G in the group) do

9: FT-assign(G, true)

10: FT-prop-trueDS(G, nil)

11: end for

12: end if

13: end if
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Algorithm 26 Propagates a false assignment UP in the feature tree

Inputs:

f : propagation starting point; f is a grouped feature assigned FALSE

Function FT-prop-falseAS(f :feature)

1: if (f 6= nil) then

2: parent ← parent(f)

3: if (parent 6= nil and parent is NOT the root node) then

4: if (f is mandatory feature or a feature group with lower bound > 0) then

5: FT-assign(parent,false)

6: FT-prop-falseDS(parent, f)

7: if (parent is a grouped feature) then

8: FT-prop-falseGS(parent)

9: end if

10: FT-prop-falseAS(parent) {recursive call}
11: end if

12: else if (f is a grouped feature) then

13: if (number of grouped features assigned false > (group size - lower bound))

then

14: FT-assign(parent, false)

15: FT-prop-falseAS(parent)

16: end if

17: end if

18: end if
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Algorithm 27 Propagates a false assignment DOWN in the feature tree

Inputs:

f : propagation starting point; f is a feature assigned false

v: child of f that will be excluded from propagation

Function FT-prop-falseDS(f :feature, v:boolean)

1: if (f 6= nil) then

2: for (each child feature C of f) do

3: if (FT-get-value(C 6= v and C is uninstantiated) then

4: FT-assign(C, false)

5: FT-prop-falseDS(C,v)

6: end if

7: end for

8: end if

Algorithm 28 Propagates a false assignment within a feature group

Inputs:

f : propagation starting point; f is a grouped feature assigned FALSE

Function FT-prop-falseGS(f :feature)

1: if (f 6= nil and f is a grouped feature) then

2: if (number of true and uninstantiated features is equal to group lower bound)

and (parent(f) is true) then

3: for (each uninstantiated grouped feature G in the group) do

4: FT-assign(G, true)

5: FT-prop-falseDS(G, nil)

6: end for

7: else if (number of FALSE-assigned features is greater than group upper

bound) then

8: for (each uninstantiated grouped feature G in the group) do

9: FT-assign(G, false)

10: FT-prop-trueDS(G, nil)

11: end for

12: end if

13: end if
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Algorithm 29 Prepares the child iterators of an iterator so that the next solution

can be found. Returns true if a solution can still be found or false otherwise.

Inputs:

child-iterator: the list of child iterator objects

Function FT-prepare-child-iterators(child-iterators:sol-iterator{})
: Boolean

1: child-iterator = get-last-iterator(child-iterators)

2: while (child-iterator <> NIL AND NOT has-next-sol(child-iterator)) do

3: reset-iterator(child-iterator)

4: child-iterator = get-previous-iterator(child-iterators)

5: end while

6: return (child-iterator <> NIL)

Algorithm 30 Get the next solution out of a list of child iterator objects

Inputs:

child-iterator: the list of child iterator objects

Function FT-get-child-iterators-sol(child-iterators:sol-iterator{})
: feature {}

1: sol = {}
2: child-iterator = get-first-iterator(child-iterators)

3: while (child-iterator <> get-last-iterator(child-iterators)) do

4: sol = sol ∪ FT-current-sol(child-iterator)

5: end while

6: sol = sol ∪ FT-next-sol(child-iterator)

7: return sol
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Algorithm 31 Create an initial set of clusters for a given feature F . Each of F ’s

children will form a cluster with a single relation {F}

Inputs:

F : a feature for which initial clusters will be created

Function create-initial-clusters-set(F :feature) : cluster{}
1: CS = new empty clusters set

2: for (each C child of F ) do

3: CL = new empty cluster

4: add node C to cluster CL

5: add cluster CL to clusters set CS

6: end for

7: attach clusters set CS to feature F

8: return CS

Algorithm 32 Merge clusters in clusters set CS that share elements in R. A

cluster NC representing the merge is returned.

Inputs:

CS: clusters set

R: features set used to merge clusters in CS

Function merge-clusters-sharing-elements(CS: cluster{}, R: features{}):
cluster

1: NC = new empty cluster

2: for (each CL cluster of CS) do

3: if (any node in R appears in CL) then

4: copy nodes of cluster CL to cluster NC

5: copy relations of cluster CL to cluster NC

6: remove cluster CL from clusters set CS

7: end if

8: end for

9: add cluster NC to clusters set CS

10: return NC
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