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Abstract

A homological algebra theory is developed in the category of operator spaces which
closely matches the theory developed in general algebra and its extension to the
Banach space setting. Using this category, we establish several results regarding
the question of classifying which ideals in the Fourier algebra of a locally compact
group are complemented. Furthermore we classify the groups for which the Fourier

algebra is operator biprojective.

Additionally, the notion of operator weak amenability for completely contrac-
tive Banach algebras is introduced. We then study the potential operator weak

amenability for the Fourier algebra and various sub-algebras of its second dual.
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Chapter 1

Introduction

The first major goal of this thesis is to construct a homological algebra theory for
completely contractive Banach algebras. For our purposes, this theory commenced
for general algebras by Hochschild in [43] [44] and [45], and by Johnson in [49] for
Banach algebras.

Taylor in [74] and Khelemskii in [53] and [54] continued this work where they
provide a complete homology theory for Banach algebras, paralleling that which
existed for general algebras. Chapter 3 of this thesis builds a homological algebra
theory in the category of operator spaces. We note that Paulsen in [66] presented
a cohomology theory in the category of operator spaces using the Haagerup tensor
product, however the presentation given here uses the operator space projective
tensor product. Indeed it is one of the major themes of this thesis to demonstrate
that this is the appropriate object for a homology theory in this new category, and
for studying the homology of the Fourier algebra.

Using this theory, we are able to study various properties of the Fourier algebra.

In fact, it is a second theme of this thesis to demonstrate that when considering
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questions regarding the Fourier algebra, the operator space category is most appro-
priate. We note that Ruan’s theorem that the Fourier algebra of a locally compact
group is operator amenable exactly when G is amenable is strong evidence for this

perspective.

This thesis is divided into eight chapters. In Chapter 2 we introduce the im-
portant ideas in harmonic analysis, operator spaces and homology. All the basic

notation and definitions can be found there.

Chapter 3 contains all the major results for the development of the homology and
cohomology theory. The functors ?®4? and CB4¢(?,?) are introduced, and their
connection between amenability, flatness, injectivity and projectivity is studied.
Additionally, we recognize the derived functors of the latter functor as equivalence
classes of certain extension sequences. Using this notion, we are able to provide
insight into the question of which ideals in A(G) are complemented. Furthermore,
we classify for which amenable groups we have that A(G) is operator biprojective.

In Chapter 4, we introduce the notion of operator weak amenability and we
demonstrate that for large classes of groups, including all [IN] groups and Hermi-
tian groups, A(G) is operator weak amenable. Furthermore we study the potential
operator weak amenability of several sub-algebras of the second dual of A(G).

We note that the category of operator spaces in indistinguishable from the
category of Banach spaces whenever it is known that every bounded map from our
algebra is automatically completely bounded. In Chapter 5 we classify for which
groups G, the Fourier algebra has this particular property. We move on to discuss
under what circumstances the Fourier algebra possesses the property that every

derivation is automatically completely bounded.

As discussed earlier, we are able to use the homology theory to investigate the
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question of which closed ideals in the Fourier algebra are complemented. We also
discuss the classification of ideals which possesses bounded approximate identities,
which is related to the complementation problem. These results can be found in

Chapter 6.

We complete this thesis with a summary of our results, and a discussion of open

problems, as well as problems for future research.



Chapter 2

Preliminaries and Notation

2.1 Introduction

This chapter is intended to be a reference to the basic terms and notation used
in this thesis. It is divided into four main sections. The first section presents the
primary notation that is used throughout the thesis. The second section introduces
abstract harmonic analysis and the Fourier algebra. The third section deals with

operator spaces and the fourth section contains material on homological algebra.

2.2 Basic Notation

We will use the following notation consistently throughout.

G will represent an abstract group. We will generally use multiplication for the
group operation, however if the group is known to be abelian, then addition will

often be used.
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Z,R and C denote the usual integer, real and complex groups under addition.
T refers to the circle group of C under multiplication i.e. T={z € C: |z|=1}

B(H) denotes the algebra of continuous linear operators on the Hilbert space
H, and L£(X) denotes the algebra of continuous linear operators on the Banach

space X, under the operator norm || - ||op-

C(X) denotes the algebra of continuous complex valued functions from the

topological space X, under the sup norm || - ||

Co(X) denotes the subalgebra of C(X) of functions which vanish at infinity,
and C.(X) shall denote the subalgebra of functions with compact support.

If (X, M, p) is a measure space, then for E € M, 1g shall denote the charac-

teristic function of E.

Where X is any Banach space, X~ will denote the Banach space of continuous
linear complex valued functionals, under the usual norm.

2.3 Harmonic Analysis

An abstract group G is called a locally compact group if it is endowed with a
locally compact Hausdorff topology such that the group operations are continuous.

Fundamental to our study is the fact that given a locally compact group G, there
exists a non-negative, non-zero regular Borel measure (called a Haar measure)

denoted by mg, which is left translation invariant. That is to say
mg(9™' E) = mg(E)

for every Borel set F and every g € G.
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Given a locally compact group G, and two Haar measures mg and mg, it is well
known that there exists a positive constant A such that mg = Amg. By convention
we shall assume that all compact groups have measure 1 and for all infinite discrete

groups, the measure of a single point set is assumed to be 1.

Now suppose that we are given a Haar measure mg, and for s € G we define a
new measure m, by m,(E) = mg(Es) for all Borel sets E. It is easy to see that
m, is left translation invariant, and hence that there exists a constant, which we
denote A(s), such that

m,(E) = A(s)me(E).
We call the function A : s — A(s) the modular function of G. It is an easy
calculation to see that A is a continuous group map from G onto the multiplicative
group R+,

A group such that A(s) =1 for all s € G is called unzmodular. Since the
continuous image of a compact group is compact, it follows that any compact group
is unimodular. It is also easy to see that a group is unimodular exactly when the
Haar measure is also right translation invariant (i.e. mg(Es) = mg(E)). Hence we

conclude that all abelian groups are unimodular. (See [42] for these facts).

The following classes of locally compact groups will be of interest

[A] = Abelian groups

[K] = Compact groups

[MAP] = Maximally almost periodic groups (groups for which the finite dimen-
sional representations separate points)

[Um| = Unimodular groups

[SIN] = Small Invariant Neighborhood groups (groups for which every neigh-

borhood of the identity contains a compact neighborhood which is invariant under
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all inner automorphisms)

(IN] = Invariant Neighborhood groups (groups having a compact neighborhood

of the identity which is invariant under all inner automorphisms.

{Her] = Hermitian (groups for which the group algebra (defined below) is her-
mitian

An excellent reference for the above groups including the relationships between

the classes is the survey article by Palmer [65].

Given the measure mg, we shall define the linear space L'(G) to be space of
equivalence classes of all measurable functions f : G +~ C such that the Lesbegue
integral

[ 15(2) | dm(z)
is finite, where f = g for f,g € L(G) whenever f = g almost everywhere. If we
provide L!(G) with the norm || - ||; defined by

ufn1=[G|f|de

L*(G) becomes a Banach space.

Since the Haar measure is essentially unique we will usually write [ f(z) dz

instead of [ f(z) dmg(z) when no confusion arises.

Given f € L*(G) we can define an involution on L!(G) by

f(z) = A=) (=),

For any two functions f,g € L*(G) we define their convolution, denoted by
f*gby
frol) = [ ForgEs) de
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It can be shown that f x ¢ € L'(G) and the inequality || f * gll. <||fll1llglh
holds for all f,g € L!(G). It follows that with convolution acting as multiplication,
L}(G) becomes an involutive Banach algebra called the group algebra of G. It
is well known that the group algebra is commutative exactly when the group is

commutative. In general L*(G) is not a C™-algebra.

We further define the Banach space L°°(G) to be the space of essentially bounded,

mg-measurable functions under the sup norm || - ||eo-

Given a topological group G, a positive linear functional M on L*°(G) such that

(1) M(le) =1
and (2) M|/ =1

is called a mean. A mean is called left translation invariantif M(f.) = M(f)
for all f € L*(G) and z € G where fz(s) = f(z!s). A locally compact group G
is called amenable if there exists a left translation invariant mean on L*(G). We
shall say that G is amenable as a discrete group if the group G, is amenable,

where Gy is the abstract group G endowed with the discrete topology.

If G is compact, then the normalized Haar measure is easily seen to be a trans-
lation invariant mean, hence all compact groups are amenable. It is an easy con-
sequence of the Markov-Kakutani fixed point theorem (see [42]) that each abelian
group is amenable. The classic example of a non-amenable group is F,, the free

group on two generators. See {39] and [67] for more on amenable groups.

Non-amenable groups can possess very interesting and sometimes pathological
properties in analysis. The most famous example of this arises in the Banach-Tarski
paradox (see [76]). It is important to note that a group may be amenable with

respect to one topology, while not with respect to another. For example SO(38) is
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compact hence amenable as a topological group. However it contains the subgroup

F, which implies that it is not amenable as a discrete group.

Let M(G) denote the Banach space of bounded regular Borel measures on G
with the total variation norm. It is well known that M(G) can be identified with
Co(G)~, the Banach space dual of Co(G), by the duality

(o f) = /G f(z)du(z).

Clearly L'(G) is a closed subspace of M(G). We can extend the convolution on
L}(G) to M(G) by the formula

wevt) = [ [ ha)du@)n)
for each pu,v € M(G) and A € Co(G). Furthermore we can extend the involution
to M(G) by
dp™(z) = du(z™Y).

under which M(G) becomes a involutive Banach algebra called the measure al-
gebra of G , containing L!(G) as a closed two sided ideal.

By a continuous unitary representation of G on the Hilbert space H (or

simply a representation when no confusion arises) we mean a group morphism

w: G U(H)

where U(H) denotes the group of unitary operators on H, such that for every
« € H, the map

s 7(s)a
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1s continuous. We call H the space of m and it is often denoted H,. Furthermore
we define the dimension of r (denoted dim =) to be equal to the dimension of
H.

Suppose we are given two representations n; and m; of the group G on the
Hilbert spaces H; and H, respectively. We say that m; and 7, are equivalent (and
write 7y ~ m) if there exists an isomorphism U : H, — H; which transforms m(g)

into wa(g) for all g € G. That is
U(mi(g)a) =72(g)U(a) Vg€G, a€ H.

Hence we obtain a class of representations. We usually do not distinguish be-
tween a representation and its class. We let ¥ denote the collection of equivalence

classes of representations of G.

By far and away the most important representation for our study is the left

regular representation denoted by A and given by

AM9)f(z) = f(g™'z)
for all f € L*(G).

Given a *-Banach algebra A, we define a *-representation to be an involutive

algebra morphism

w: A— B(H)

such that 7 is continuous in the weak operator topology on H. Similar to above we
can define equivalent *-representations and hence we let = 4 denote the collection

of equivalence classes of *-representations of .A.

It is well known that each # € Zg lifts to a *-representation of M(G) by the

formula
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(x(Wa,8) = [ (x(z)ax B)du(z)
G
for each p € M(G) and a,8 € H,. We call the functions of the form (r(z)c, 8)

the coefficient functions of «.

The restriction of = to L!(G) is given by the simpler formula

(x(f)ex, B) = /G f(z)(n(z)a, B)d(z).

This is a non-degenerate *-representation of L'(G) on H,. In fact all such rep-
resentations of L!(G) arise in this manner. Thus there shall be no ambiguity in
denoting the equivalence class of non-degenerate *-representations of L}(G) by Z¢.

We observe that the left regular representation, when lifted to L}(G) has the form

A(f)(g) =f=g
for all f € LY(G) and g € L*(G).

We define the norm [| - |[¢<(g) on L'(G) as follows

Ifllce =:gc e (F)lop-

The completion of L'(G) with respect to || - [|c+(¢) is a C*- algebra called the
group C~-algebra of G and is denoted C*(G). We can define another norm | - ||,
on L}(G) as follows

£l = NA(F)lop-
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The completion of L!(G) with respect to this norm is denoted C;(G) and is called
the reduced C*-algebra of G. It is well known that C*(G) = C;(G) if and only

if G is amenable.

We further define C;(G) to be the C* algebra generated by

{M(g) : g € G} C VN(G).

The dual of C*(G) is denoted by B(G). B(G) may be realized as the space of
coefficient functions of Xg. The duality is determined by the formula

(u, £ = [G w(z) f(z)ds

for w € B(G) and f € C*(G). We let || -||s(s) be the norm on B(G) induced by
this duality. With this norm and pointwise multiplication, B(G) becomes a commu-
tative, regular semisimple Banach algebra called the Fourter-Stieltjes algebra

of G .

Now let A(G) denote the closed subspace of B(G) generated by the coefficient
functions of A. Then A(G) is a closed two-sided ideal of B(G) called the Fourier
algebra of G. Alternatively, we can view A(G) as the subspace of Co(G) consisting
of functions of the form

wz) =D (fi* 5)(=)

where f;, g: € L*(G), §(z) = g(z~!) and where

>l fllzllgllz < oo

i=1
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The restriction of the norm || - ||g(¢) to A(G) is denoted || - ||a(c) and can be

given by the formula

u=Z(ﬁ*§)}-

=1

llulla = inf {Z Il fll2llg:ll2

=1

It is possible to remove the “infinite sum” in the above construction. Indeed
it is possible to show that A(G) consists of functions of the form u = f * § for
f,9 e L*(G).

As a third alternative, A(G) can be recognized as the closure in the B(G) norm
of the space B(G)[) C.(G) (which the author notes is the most transparent way to
observe that A(G) is both an algebra and an ideal of B(G)). The Fourier algebra
was first studied for non-abelian groups by Eymard in [28].

The Banach space dual of C5(G) can be identified with a closed ideal of B(G)
which we denote B,(G). B,(G) is the weak-* closure of A(G) and moreover A(G)
is also a closed ideal of both B,(G) and B(G).

The dual of C5(G) is denoted by Bs(G4). It is a weak-* closed subalgebra of
B(Ggq). In general, Bs(Gy) contains A(Gy) and hence B)(G4). Moreover Bs(Gq) =
B(Gy) if and only if G is amenable.[8]

ATl of the above facts can be found in [28] or [22].

Let G denote the subset! of Y@ consisting of irreducible representations of G.
If G is abelian, it is well known that each element of G is one-dimensional. In
this case it possible to recognize G as an abelian topological group called the dual
group of G. The Pontryagin duality theorem states that é is both isomorphic

!We note that ¢ is strictly not a set, however by restricting the size of the Hilbert spaces

upon which our representations act, we can avoid this set theoretic difficulty
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and homeomorphic to G. For general non-abelian groups G, we note that the set
G has no natural group structure, and hence we shall call this set simply the dual
of G.

If G is abelian and g € M(G), we define the Fourter Stieltjes transform i

by
f(r) =n(p) Vr e G

One of the fundamental results in abelian harmonic analysis is that the Fourier-
Stieltjes transform establishes an isometric isomorphism between M(G) and B(G)
and that the restriction to the L*(G) (called the Fourier transform) is an iso-
metric isomorphism onto A(G).

Note that in general A(G) = B(G) if and only if G is compact.

Let VN(G) denote the von-Neumann subalgebra of B(L?(G)) generated by
MLY(G)) or alternatively generated by A(G). We call VN(G) the group von-
Neumann algebra of G. It can be shown that A(G)* = VN(G) and that the
weak-* topology in VIN(G) coincides with the weak operator topology. Some au-
thors write L(G) for VN(G) to help differentiate between the von-Neumann alge-
bras generated by the left and right regular representations. However since we shall

make no use of this latter algebra, we need not make this distinction.

Given an element u € A(G) we define the zero set of u, denoted Z(u) by
Z(u) ={g € G:u(g) =0}.

Note that since u is continuous, Z(u) is closed. Also for a closed ideal J C A(G)
we define the hull of J denoted h(J) as follows

h(J)={z € G: f(z) = 0 Vf € J}.
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Given a closed set £ € G we define the closed ideal Z(E) by
I(E)={f € A(G): f(z) =0Vz € E}.

The coset ring of G denoted (@) is the smallest ring of sets, which is closed
under finite unions, intersections and translations containing all open subgroups,
and we define the closed coset ring of G, denoted 2.(G) to consist of all elements
of 2(G4) which are closed in G.

A closed set E C G is called a set of spectral synthesis (or simply an S-set)
if Z(E) is the only ideal whose hull is E. The classification of S-sets for general
groups (G seems impossibly difficult, however some partial results are known. In

particular, if F is a discrete subset of G then E is known to be an S-set.

2.4 Operator Spaces

An operator spaceis a vector space V together with a family || ||, of Banach space
norms (called operator space norms) on M, (V), the space of n x n matrices

with entries in V such that

0 B
n+m

for each A € M,(V), B € M, (V), and

(i) = max{||All» , [|Bllm}

(i) | ([a:s]) A([B:5DlIn < lilass]lIllAllwll (b1
for each [a;], [b;] € M.(C) and A € M, (V)



CHAPTER 2. PRELIMINARIES AND NOTATION 16

We note that given operator space norms || - ||, on an operator space V, there
is an induced norm on KX ® V where K denotes the compact operators. If we let
o denote the set of matrix norms, then we shall denote the closure of this tensor

product by L ®, V.

Let X and Y be operator spaces and let T': X — Y. For each n € N define
T : M, (X) — M, (Y)

by
T™ (2] = [Tz

The map T is said to be completely bounded (or simply c.b. for short) if
sup{|IT™||} < oo. In this case we let ||T|ls = sup{||T™||} . We say that T
is a complete isometry if each T(™ is an isometry and that T is a complete
contraction if each T is a contraction. We say that two operator spaces X
and Y are c.b. isomorphic if there exists a c.b. map T : X ~ Y such that
T-! is also completely bounded. Furthermore we shall say that X and Y are c.b.
tsometrically tsomorphic (or completely isometrically isomorphic) if the

map T can be chosen to be a complete isometry.

For the Hilbert space H, we let

HY"=He---0H.
N, s’

n

Since there is a canonical identification between M, (B(H)) and B(H™), it is easy

to show that B(H) (and hence any closed subspace) is an operator space.

It is a fundamental result in the theory that every operator space is completely
isometrically isomorphic to a norm closed subspace S of B(H), the algebra of
bounded operators on the Hilbert space H, where the operator space structure on
S is the structure inherited from B(H) ([24]).
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We note that M,, ® X = M,(X). As such we may recognize the map 7™ by
T =id, @T - M,(C® X —» M,(C) QY
where 2d,, represents the identity map on M, (C). Thus we can conclude that
ITlles = llede ® Tl

where idx is the identity map on the compact operators.

Given a general Banach space X, there exist two natural operator space struc-
tures called the mazimal operator space and minimal operator space struc-

tures denoted MAX(X) and MIN(X) respectively.

We define the M AX structure as follows: for [a;;] € M, (X) we let

l[a:;]llnarax = sup{||#([a:;])]| : for all ¢ : X — B(H) with ¢ contractive}.

It is easy to see that given any operator space Y and any bounded linear map

T:MAX(X) =Y

it follows that T is automatically completely bounded with ||T|| = ||T||-

The MIN operator space structure can be recognized in at least three ways:

first we can consider the natural embedding of X into its second dual X~ given by

T— T

where
2(¢) = ¢(z) Ve X~.

If we let X denote the (compact) unit ball in X* with the weak-* topology, then it
is easy to see that £ € C(XT), and hence X becomes identified with a subspace of a
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C=-algebra. The restriction of the natural operator space on C(X;) to X becomes
an operator space denoted MIN(X).

Alternatively, we may consider the matrix norms given by the Banach space
injective tensor norm (®.) and set M, (X) = X ®\ M, (C). The final alternative is
to set for [z:;] € M, (X),

i[5l = sup{ll[$(z:)]ll - 6 € X1}

It can be shown that given any operator space Y and any bounded linear map

S:Y — MIN(X),

we have that S is automatically completely bounded with ||S|le = ||S|| (see {12]
and [9]).

If we let CB(X,Y) denote the space of all completely bounded maps from X
to Y, then CB(X,Y) has a natural operator structure which can be obtained by
identifying M, (CB(X,Y)) with CB(X,M,(Y')). It is important to note that con-
tinuous linear functionals are automatically completely bounded. In fact, since we
can identify X* with C B(X,C), X~ is also an operator space called the standard
dual of X (see [10]).

For operator spaces X,Y and Z, we call a bilinear map T : X x Y — Z jointly
completely bounded, if for [z;;] € M, (X) and [yu] € M,(Y) we have that

T |56 = sup{ [T (z:5, yar)lllmn 2 [l[z35]lln < L, H[ym]llm < 1}

is finite. Now there is an operator space analogue of the projective tensor product

which we denote X®Y such that

JCB(X,Y;Z) = CB(X®Y, Z).
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That is to say each jointly completely bounded map extends to a unique map on this

operator space projective tensor product. In particular, there is a complete

isometry between (X®Y)* and CB(X,Y™).

We can define the norm of a typical element in the operator space projective
tensor product with the following. Let [z;;] € Mp(X) and [yu] € M, (Y'). We define
the tensor product z @ y to be the pg x pg matrix

Ty = [T ® yu] € Mp (X QY).
Given any element © € M,(X ® Y'), we can write
v=alz®y)B

for some a € M, ,,(C),z € M, (X),y € My(Y), and 8 € M, »(C). Now we have

that the operator space projective tensor norm is given by

llulln = inf{|lelflizllIt 1151}

where the infimum is taken over all such representations of u.

There is another tensor product which we will refer to called the Haagerup
tensor product denoted ®x. (See [27])

An associative algebra A which is also an operator space and is such that the
multiplication
m: ARA— A

is completely contractive is called a completely contractive Banach algebra.
If Ais a completely contractive Banach algebra and J is a closed ideal of A, it is
easy to see that both J and A/J are completely contractive Banach algebras with
respect to the operator space structure each inherits from A (see [25]).
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A Banach algebra A with an operator space structure such that the multiplica-
tion
m: AQrA— A
is completely contractive will be called an h-algebra. We note that if X is the
predual of a von Neumann algebra A, it inherits a natural operator space structure

as follows: for [z;;] € ML, (X) we set

I[z:5]lle = sup{ll[fus(z:)]llnm : [fur] € M (A), I [ fdllm < 1}

Thus both the Fourier and Fourier-Stieltjes algebras can be given natural operator
structures by virtue of their being preduals of von Neumann algebras. In each case,
this operator space structure results in a completely contractive Banach algebra
(see [68] and [10])

Given two operator spaces X and Y, we can consider the direct sum X @ Y to

be an operator space where

I[z:; ® yi;]lln = max{||{z:;]|ln, [{yss]lln}-

Unless otherwise noted, whenever we are given the direct sum of two operator

spaces, we shall consider it to be an operator space in this way.

2.5 Homology and Amenable algebras

We begin with some standard definitions from homological algebra as applied to
Banach spaces. The basic references are [63] and [14].

A left Banach A-module is a left A-module X that is itself a Banach space
and for which
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lezllx < |la]lallz|lx

for each a € A and each z € X. A right and two-stded Banach A module is
defined analogously. We call a two sided module a bsmodule. If X is a left Banach
A-module, then X~ becomes a right Banach .4-module with respect to the action

(¢a)(z) = 4(az).
We call X* a dual right Banach A-module. Naturally we can define dual left
and bimodules analogously.

In general, we will call an A-module X symmetric if az = za foreverya € A
and z € X. In particular, A" is symmetric if and only if A is commutative.

In the category of operator spaces there are two ways to define an operator
module. In this thesis we shall call an operator space X, which is a left Banach
A-module a left operator A-module if the module map is completely contractive

with respect to the projective tensor product, that is to say the module map
M:ARX — X

is completely contractive. Clearly we may define operator right and bimodules
analogously. Furthermore if X is a operator module, then X* becomes a dual

operator module with the dual actions defined above.

The second approach is to ask that the module action is completely contractive

from the Haagerup tensor product, that is
M:A®r X — X

is completely contractive. We shall call such a module X an h-operator module.
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Suppose X is a left operator A-module and Y an operator space. Then we may
consider XQ®Y as a left operator A module by

a-(zQy)=azQy

forac A,z € X and y € Y. It is clear that if Y is a right operator module, then
X®Y becomes a right operator module in the analogous way.

By a chain complex we mean a sequence of objects X, with n € Z and
morphisms d, : X, 1 — X, such that d,°d,; =0 for all n € Z. The objects could
be Banach spaces, Banach algebras, Banach modules etc. and the maps naturally
will be respectively Banach space maps, Banach algebra maps, Banach module

maps etc.

In Chapter 3 of this thesis we will investigate certain chain complexes of operator

spaces and completely bounded maps.

Typically, a chain complex is written as

E):... «Xn & Xpg1 ...

with the arrows “pointing left”. The condition that d,°d,,; = 0 is clearly equivalent
to imd,41 C kerd,. We define for n € Z the nth-homology group® of the chain
complex, denoted H,(Z) by

kerd,

imd,

H,(8) =

The elements of imd,,;; are called n-boundaries and the elements of ker d,, are

called n-cycles (so H,(Z) represents “cycles mod boundaries”).

?We use the term “group” out of historical consistency. Indeed we have no interest in the

algebraic structure of this object.
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By a cochain complez we shall mean a sequence

M:.. =+ Y 8, —...

with 6,41°0, = 0. Clearly there is no substantive difference between the two con-
cepts other than the direction of the arrows, however it is standard and sometimes
convenient in practice to have both concepts. It will often be the case that we will

have Y. = X and §, = d,, and hence the cochain is the dual of the chain complex.

Analogous to above, we define the nth-cohomology group of the cochain
complex, denoted H™(II) by

ker Jn-{-l

imé™

H(M) =

Again as above, we call the elements of imd™ n-coboundartes and we call
the elements of kerd™*t! n-cocycles . (Thus H™(II) represents “cocycles mod

coboundries). The elements d, (or 4, as the case may be) are called differentials.

Typically a sequence may be “bounded by zeros” either on the left or right. In

this case we will usually suppress these zeros. For example the sequence

02020 —-Y — ...

will usually be written simply

0—-Yo—>Y —....
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A chain complex is called ezact at X, if imd,, = kerd,—;, and the complex is
called ezact if it is exact at every term. The exactness at Y, and the exactness

of a cochain complex is defined analogously.

A linear map D from a Banach algebra A into a Banach A bimodule is called
a dertvation if

D(ab) = a - D(b) + D(a) - b

for all a,b € A. A derivation is called tnner if there exists an element z € X such
that

D@)=a-z—z-a.
We say that a Banach algebra is Banach algebra amenable if every bounded
derivation from A into any dual Banach A bimodule is automatically inner.

Finally if X is a space of any sort, we shall use the notation idx (or simply id

when no confusion arises) to denote the identity morphism.



Chapter 3

Homology in Operator Spaces

3.1 Introduction

In this chapter we present the homological algebra theory for completely contractive
Banach Algebras. We note that Paulsen in [66] developed a cohomology theory for
h-algebras which is similar to our development. However there appear to be several
limitations to that category. Most noteworthy is the absence of a homology theory
for which the cohomology theory is dual.

Our approach is to use the projective tensor product to develop a homology, and

thus to recognize the usual cohomology theory as simply the dual of the homology.

The translation of the algebraic homological ideas to the category of Banach
spaces is of course not new. See for example the work of Taylor [74], Kamowitz [51]
and Kadison and Ringrose [50]. Thus it is important to note that the translation
into our new category involves mainly an array of technical facts which allows us
to follow in the footsteps of the algebraists. Indeed Johnson in [49] and most
importantly Taylor and Khelemskii ([54] and [53]) did exactly this in the Banach

25
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space setting, generalizing the algebraic methods of Hochschild (see [43] and [44]).
A good reference for the algebraic presentation is Cartan and Eilenberg [14].

The presentation of Paulsen follows the so called relative Yoneda cohomology as
well as the derived functor presentation. In this sense he generalized the algebraic
approaches found in MacLane [63].

The approach presented here is to extend the ideas of Taylor, Kamowitz and
Khelemskii to the completely contractive algebra setting. This approach provides
a complete homology theory in this category, which both reflects the dual nature
of the cohomology, and explores the notion of split extensions — which for us will
ultimately be the most useful application.

3.2 Extension Sequences

One of the basic concepts and tools in homological algebra is that of a short exact
sequence. Recall that a short exact sequence of objects in an abelian category is a

complex of the form

0XHashy o

where f is injective, g is surjective and ker g = im f. We note the expected fact that
A/f(X) is isomorphic in the category to Y, and naturally we write A/f(X) = Y.
In this case we say that A is an extension of X by Y.

Unfortunately, this concept breaks down in the case of operator spaces. Consider

the following short exact sequence:

0—+0— MAX(X) 3 MIN(X) >0
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where id represents the identity map. If X is any infinite dimensional Banach space,
then MAX(X)/0 = MAX(X) is not isomorphic in the category of operator spaces
to MIN(X). In this sense, one of the basic objects of homology fails to “do what

we want” in our new category.

The basic way to repair this is to restrict the sequences under consideration. In
[69], the authors considered cases where f was a “complete isometry” and g was a
“complete quotient” map. In [79] the present author considered sequences where

both f and g had inverses which were completely bounded.
In this section, we will establish a broad class of short exact sequences which

avoids this isomorphism dilemma, and we will show that in some sense, this class

is as broad as possible.

DEFINITION 3.2.1: Given two operator spaces X and Y, we say a c.b. map
T : X — Y has the complete isomorphism property (c.i.p.) if the image
T(X) is closed and the induced map T : X/ker T — T'(X) is a c.b. isomorphism.

We note that any bounded map between Banach spaces satisfies the analogous

property. The leads to the following:
DEFINITION 3.2.2: A chain (or cochain) complex of operator spaces is called an
operator complexz if each of the differential maps has the complete isomorphism
property.

As discussed earlier, an important special case of a chain complex is of course

the short exact sequences. In this thesis, we call any short exact operator chain

complex an extension sequence or 1-exztension sequence.

This leads to the following proposition which suggests that operator complexes

are the correct tool for our category:

PROPOSITION 3.2.3:  Suppose X,Y and Z are operator spaces such that
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E):0+XLvSHz50
forms an eztension sequence.Then Y/ f(X) is c.b. isomorphic to Z.

Proof: Since (Z) is a short exact sequence, we have imf = kerg thus Y/ f(z) =
Y/ ker g. Since (Z) is an operator complex, the map g has the complete isomorphism
property and hence there is a c.b. isomorphism between Y/ kerg and img = Z (by
exactness). Thus Y/ f(X) is c.b. isomorphic to Z. ®

Conversely, we have the following:

ProPoOSITION 3.2.4:  Suppose X,Y and Z are operator spaces with X C Y such
that Y/X is c.b. isomorphic to Z. Then there is an extension sequence (Z) of the

form
E):0x5rv5z0

where 1 represents the inclusion mapt1: X — Y.

Proof: Consider the canonical quotient map ¢: Y — Y/X. By construction the

short exact sequence

0—-X->Y->Y/X—>0

is an extension sequence. Let T : Y/X ++ Z be a c.b. isomorphism. Then it is easy

to see that the following diagram commutes:
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X——syY 4

Hence the bottom sequence is an extension sequence.

In the obvious way we consider an n-eztension sequence. Given A operator

modules X and Y, any exact operator complex of the form

0-X3B,3B—...5B, 3Y =0
is called an n-extension of X by Y. Furthermore we call the above sequence an
n-extension sequence.

Unlike in algebra, it is usually necessary to consider further topological condi-
tions on our extension sequences. An additional condition is that we will require
im7 to be complemented. The importance of this latter condition will become

apparent a little later.

DEFINITION 3.2.5:  An exact operator complex of A-modules

The— x
...—}Xk_]_ k—)‘ ngxk.;.l = ces

is called admissible if there exist completely bounded maps (not necessarily A-

module maps) 6z : Xy — X such that o0k = idiecn, +1- An admissible complex
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is said to split if the maps §; can be chosen to be module maps. Thus a complex

<P

is admissible exactly when it splits as a complex of C-modules.

In the special case of n-extension sequences, we note that admissibility is equiv-

alent to the existence of a commutative diagram

B, - B,
1 T

X=Fg i E1®F1 L .- “EnQFn bl En+1=Y

where the maps 7 |p,: Fr + FEiq1 and the maps 7 : By — Ep @ Fj are c.b.
isomorphisms. For the case n = 1 the present author in [79] referred to this property

as completely admissible.

Finally, we call a map ¢ : X — Y admissible if there exists amap §: Y — X
such that ¢of = iding. Furthermore, we call this map 8 a right inverse for ¢.

We now have an analogue of Proposition 1.1 from [19]. See also the special case
of this in [69].

LEMMA 3.2.6: Let

0-X5hy5Sz50

be an eztension sequence of A-bimodules. Then there ezists a completely bounded
map F : Y — X such that Ff = idx if and only if there ezists amap G : Z — Y
such that gG = tdz. Furthermore F is a module map if and only if G is.

Proof: Suppose F exists. Then clearly the map fF is a completely bounded
projection onto imf C Y. Thus the following diagram
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X Ly Lz
f FFO(1—fF)
FX) ——f(X)®Q —~ Z

commutes, where @ is the complement of f(X) in Y and the map 7: f(X) — Y
is given by i#(z) = z @ 0. Since imf = f(X) = kerg and since g has the c.i.p., it
follows that the induced map

§g:Y/f(X)— Z

is a c.b. isomorphism. Since Y/f(X) = @Q it follows that g|g is a c.b. isomorphism.
Now let G(z) = (g|g)~!. The fact that gG = idz is now trivial.

Now assume that G exists. Similar to above, we see that Gg is a completely
bounded projection onto a subspace P of Y which is c.b. isomorphic to Z. Let Q
be the complement of P. Thus 1 — Gg is a completely bounded projection onto Q.
Note that

9(1—9gG)=g—gGg=g—g=0

thus @ C kerg = imf. Since g|p is an isomorphism, the reverse inclusion is obvious.
Hence Q = kerg = imf. Since f has the c.i.p., the map f~!: Q — X is completely
bounded. Thus we define

F:Y—Z
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by

F(y)= f(y — Gg(v))

Clearly F satisfies the desired properties. The fact that F is a module map if
and only if G is a module map is strictly algebraic. Suppose that G is a module
map. Note that

F(ay) = f~'(ay — Gg(ay)) = af (y — Gg(y)) = aF(y)

The right module action is similar. Conversely if F' is a module map, then the
subspace @ is a submodule, hence G |g is a module map. Thus G is a module map
also.

|
We note that the above Lemma fails for general short exact sequences. Consider
the MAX/MIN example at the beginning of this section, see also [79].

It will arise that we will be given a completely contractive Banach algebra A
and a left operator A-module X, and we will wish to know when the module map

T:ARX — X

has an inverse. Obviously this is impossible immediately whenever the map = is

not onto. We call a module neounital if
A-X={a-z:a€ A, z€ X} =X,

in which case 7 is clearly onto. If our completely contractive Banach algebra has

a bounded approximate identity {e.}, and if £ = lime,z for all £ € X, then
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we can use Cohen's Factorization theorem to guarantee X is neounital. Indeed
when studying L!(G) this can be a useful approach. Once again, in our setting
this method will fail us. In our primary example, A(G) does not have a bounded
approximate identity when G is not amenable, and indeed it is known that for

non-amenable groups G, A(G) is not even a neounital A(G) module! (see [61]).

We solve this problem the following way: Given a Banach algebra 4 we can

construct its unitization A, as follows:

Let Ay = A® C, and now define multiplication as follows:

(a,a) - (b,8) = (ab+ ab + Ba, af).

Now note that if X is a left (right,bi) .A-module, then X becomes a unital left
(right,bi) A4-module with respect to the action

(a,a)-z=a-z+az

(a right and bimodule structure is defined analogously). In [26] Effros and Ruan
showed that there is an operator space structure such that 4, is indeed a completely
contractive Banach algebra. Using the same techniques, we can show that any

operator A module X becomes a unital operator A, module.

For completeness, we recall their construction for A, then we extend this in

the obvious way to show X is an operator A, module.

Suppose we are given two operator spaces V and W. We construct the operator
space V"@W™. The induced operator space structure on the predual will be denoted

V @1 W. We have the following important fact concerning this structure:
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PROPOSITION 3.2.7:  Suppose X is an operator space and suppose that
¢: Ve X and vy - W X
are completely contractive. Then the map
po1Y: VoW X
given by
(¢ @1 %) (v &1 w) = ¢(v) + P(w)

is completely contractive.

Now we give A, the operator space structure A @; C. Using the previous
proposition Effros and Ruan have shown that if A is a completely contractive

Banach algebra then so is A, . Using the same technique, we have
LEMMA 3.2.8:  If X is a left (right, bi) operator A module, then X is an essential
left (right,bi) operator A, module.

Proof: The fact that X is essential is obvious. Now we simply note that the
module map (a,a) -z — a -z + az is the sum of two completely contractive maps
which, by Proposition 3.2.7 is clearly completely contractive. Thus X is a left
operator A, module (see [26]). The right and bimodule cases follow analogously.

3.3 Resolutions and Derived Functors

First we shall introduce the following notation

CBac(X,Z) ={T € CB(X,Z) | T(az) =aT(z) Yz € X,a € A}
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CBca(X,Z2)={T € CB(X,Z) | T(za) =T(z)a Vz € X,a € A}
CBaa(X,Z) = {T € CB(X, Z) | T(azb) = aT(2)b Vz € X, a,b € A}

Naturally, these sets define respectively the morphisms in the category of left,
right and two-sided operator modules.

Given X and Y left operator A modules, we can define a contravariant® functor
denoted CB4c(?, Z) as follows: for any c.b. module map
p: XY

we define

CBA‘(:((ﬁ, Z) = 45‘ : CBA,c(K Z) L CBA,(;(X, Z)

given by

¢-(T)(z) = T(¢(z))-

Clearly we can define the contravariant functors CBc(?, Z) and CB4 4(?, 2)
analogously. Furthermore, using the obvious changes, we can define covariant?

functors CBc(Z,?),CBca(Z,?) and CBaa(Z,?).

To see that ¢. is completely bounded, we have the following: for [zx;] € M, (X)

lcontravariant—=arrow reversing

2covariant—arrow preserving
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and [T3;] € M.(CBac(X, Z))

16PN = sup{ll6& ([T Uzl = N[ Tiilllm < 1, Ml [maa]llen < 1}
sup{ [[T:;(¢(zr)llnem * [ Tiillln < L, l[zad]llm < 1}

]

< sup{J|[T5]llnlil@(ze)lllm = [[Tiillle < L, [zl < 1}
< sup{|l[T]llallBllesll [zr]llem = [ Tisllla < 1, [l[zaallln < 1}
< liglles

A second functor of interest in homology theory is the tensor product functor.
Suppose we are given two operator A-bimodules X and Y. We define the tensor
product X ® 4 Y as follows:

Consider the operator subspace N of X®@Y given by the closed linear span of

elements of the form

za®@Yy —z Q@ ay

Now define X ® 4 Y by

X®4Y = X®Y/N

Similar to above, we can recognize ? ® 4 Z as a covariant functor as follows: for

any c.b. module map

p: XY

we have
PRUZ =¢.: X@uZ Y QuZ
given by
¢z ®42) = P(z) Q4 2.
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To see that ¢. is completely bounded we note that the map

¢Ridz : X@Z — YRZ

is completely bounded with ||¢@idz||s < |[Hlles (see [12])-

Also since the following diagram is commutative

xéz7—22% . vaz
q q2
X®4aZ Y ®4Z

where g; are the canonical quotients, it follows that ¢. is completely bounded. Using
identical arguments, it is now easy to see how to construct a covariant functor

X®47.

Suppose we are given an A-module X, a complex of the form

(‘B)IO('-PQ(-—P]_(—'Pz("‘...

and a map € : Py — X (called an augmentation) such that the resulting complex

0 XEPy P ...

is exact and admissible. Such a complex () together with the map e: P — X is

called a resolution over X.
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A major part of the theory, will be the study of the functors CB4¢c(?, Z) etc.

and ? ® 4 Z applied to various resolutions.

Those familiar with homological theory will recognize that for the most part we
will need to confine our interest to so called projective resolutions. Thus we begin
by introducing the notion of an injective and projective module in the operator

space category.

DEFINITION 3.3.1: A left operator A-module Y is called (left) tnjective if,
for any admissible complex =, the complex CB4¢(Z,Y) is exact. That is to say if

(B, Xng « X0 X1 ...

is admissible, then the complex

(CBAC(E,Y)) : ... = CBac(Xno1,Y) = CBac(Xn,Y) = CBac(Xns1,Y) = ...

is exact. If Y is a right module, we call Y (right) injective if CBc4(Z,Y) is
exact. Finally if Y is a bimodule, we shall say Y is bz-injective or injective as a
bimodule if CB4 4(Z,Y) is exact (or equivalently, as we shall see in Section 3.5,
if Y is injective as a left AQ®A® module). Of special note is that an object may be

injective in one category, while not in another.

REMARK:  This definition of injective is somewhat problematic. To see this, note
that an operator space J is called injective, if whenever we have an operator space
Y sitting as a closed subspace of Z, then any c.b. map 8 : Y +— J has an extension
to 8 : Z — J such that |[§]|s = [|8]|c. It is an important theorem of Wittstock (See
[77] and [78]) that B(H) is injective as an operator space. (There appears to be an
array of different proofs of this result).
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We note that any operator space can be considered as a C-module. The condi-
tion of admissibility in the definition ensures that every C-module is automatically
an injective module. Since there exist non-injective operator spaces, it follows that
our definition of injectivity as a C-module does not correspond to the definition of
an injective operator space. Note condition (4) of the following theorem and our

definition of projectivity to follow.

The following theorem is the analogue of the situation in general algebra as well

as Banach space theory.

THEOREM 3.3.2: Let X be a left operator A module. Then the following are

equivalent:
(1) X is injective,
(2) for any admissible eztension sequence (Z), CB4c(ZE,X) is ezact,

(3) for any admissible c.b. module map injection ¢ : Y — Z and any c.b.
module map 6 : Y — X, there is a c.b. module map 3 : Z — X such that the

following commutes

(4) if Y is a complemented submodule of Z and § € CBsc(Y,X) then 8 has an
extension to CBac(Z,X).

Proof: (1) = (2) is immediate.
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For (2) = (3) consider the extension sequence

0Y323%2/Yy >0

where ¢ is the canonical quotient. By (2) the sequence

0 = CBuc(Z/Y,X) % CBAuc(Z.X) 3 CBac(Y,X) =0
is exact. Thus ¢. is onto. (i.e. for all module maps & : ¥ — X there exists a
module map ¢ : Z — X such that ¢.(¢) = 0 as required.)

For (3) = (2) suppose that

0-Y324Q0

is an admissible extension sequence. Consider the sequence

0 = CBac(Q,X) % CBac(Z,X) % CBAc(Y,X) = 0.

The sequence is automatically exact at CB4c(@, X) and CB4c(Z,X), and by (3)
the map ¢. is onto. Thus the sequence is exact at each term.
(3) = (4) is immediate.

For (4) = (3) we note that ¢(Y) is a complemented submodule of Z and
¢ :Y — ¢(Y) is a c.b. isomorphism. Thus the map fe¢~! has an extension to Z.
Thus by (4) there exists a module map 3 such that the following commutes:
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Y ——¢(Y) —2—7

The proof of (2) = (1) is from standard algebra (see for example [14, I1.4.1]) W

DEFINITION 3.3.3: A left operator A module X is (left) projective if for any
admissible complex =, the complex C B4 (X, E) is exact. We also have right and

biprojective modules just as in the injective case.
Now we have the analogue of the previous theorem.

THEOREM 3.3.4: Let X be a left operator A module. Then the following are

equivalent
(1) X is projective
(2) for any admissible extension sequence (), CB4c(X,E) is ezact

(3) for any c.b. admissible surjection ¢ : Y +— Z and any c.b. module map
8:X — Z, there is a c.b. module map ¥ : X — Y such that the following diagram

commutes




CHAPTER 3. HOMOLOGY IN OPERATOR SPACES 42

(4) if Z is a submodule of Y, then every 8 € CBsc(X,Y/Z) has an eztension
to CBac(X, Z).

Proof: The proofs of these equivalences are similar to the previous theorem. M

It is easy to see that any module is a projective and injective C module. As a
consequence we shall see that for any module E, the module of the form A, ®E, is

projective. We require the following reduction formula.

PROPOSITION 3.3.5:  CBy, (A4, X) s c.b. isometrically isomorphic to X and
CBu, c(A:®X,Y) is c.b. isometrically isomorphic to CB(X,Y) for all X and
Y. Similarly we have complete isometries CBca, (A4, X) = X and furthermore
CBc i, (X®A.,Y)=CB(X,Y).

Proof: Let T € CBy4, ¢(A+,X). Then T(a) = aT(e) for all a € A, where e is
the identity element. Let zp = T'(e). The map T + zr is clearly a bijection. Also
for [T:;] € M. (CBu, c(A+, X)) we have

Tl = sup{(ITij(aw)]ll : ll[audl] < 1}
= sup{Jlaw - [(z7):;]ll : llanl| < 1}

< (zr)isllln

but if we consider the element e € M| (A, ) we have

I T:50le = 1 T:(e)l = 1 (zz)isllln-

Thus the natural map is a c.b. isometric isomorphism. For the second identifica-

tion we proceed similarly. As before, it is easy to see that T' € CB4, c(A+®X,Y)
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is defined on elements of the form e ® z. Thus the map T — T is an isomor-
phism between CB(X,Y) and CB4, c(A+®X,Y), where T(z) = T(e® z). Note
that we can identify the space CB4, c(A+®X,Y) with JCB(A4, X;Y), the space
of maps which are jointly completely bounded from Ay x X to Y, such that
T(a,z) = aT(e,z). Thus we have

[ Tpellln = sup{||[Tpe(ais zur)ll = llasi]ll <1, {[zw]ll < 1}
= sup{||[aij - Tpe(e, zu)] : ll[asj]ll < 1, {[zu]ll < 1}
< sup{||{ai] il Tpe(ze)lll - llasi]ll < 1, lHzulll < 1}

[ Toalll

The reverse equality follows by taking a;; = e as before. The assertions con-
cerning C Bc,4, (A+, X) and CBcu, (X®A,,Y) are proved in a similar manner.

As a consequence of the above proposition, we have the following corollary.

COROLLARY 3.3.6:  We have CBac(A+, X) = X and CBac(AX,Y) =
CB(X,Y).

Proof: To prove the first equality, it suffices to show that CB4¢c(A,,X) =
CBa, c(A+,X), where A, and X are considered as A modules on the left and
A4 modules on the right. Let T' € CB4c(A+, X) and let (a,a) and (b,8) € A,.

Now
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T{(a,2)(5,8)] = T(ab+Pa+ ab,af)
= T[(ab+ Ba,0) + (ab,ap)]
= a-T(b,B) + oT(b,B)
= (a,e)-T(b,5)

A similar calculation shows CB4c(A+®X,Y) = CBa, c(A+8X,Y). Now we

simply apply the previous Proposition.

COROLLARY 3.3.7: Any module of the form A,®E for any A-module E is

projective as a left operator A-module.

Proof: In view of the above proposition, the complex CB4c(A+®E, Z) reduces
to CB(E,E). Since any module is a projective C module, it follows that the complex

is exact. Hence A, ®E is projective.

It is easy to see that the last four theorems have the obvious generalizations to

the category of right and bimodules. In particular we can conclude:

COROLLARY 3.3.8:  Any module of the form EQA, (resp. ALRE®A.) is a
projective right (resp. bi) module for any module E.

A module of the above form is usually called a free module.

We call the resolution over X projectiveif each of the P; are projective modules.
Let B be a projective resolution over X. If we apply any covariant functor F' to

the sequence, we get a new sequence:
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(F(P)): 0 & F(Po) « F(P)  F(P,)...

There is of course no reason to believe that the new sequence is exact, and hence

it may have non-trivial homology, which we denote

OH.(F(P))-

We call this the nth derived functor of F. If F is contravariant, we obtain the

sequence

O—)F(PQ)—PF(Pl)—}F(Pz)..

As before this may have non-trivial cohomology which is given by

OH™(F(B))-

Once again we call this the nth derived functor of F.2

As a result of the categorical properties of the resolutions, it is now an algebraic
exercise to show that any two projective resolutions generate the same derived

functor (up to natural isomorphism). See Appendix A.

In this thesis, we shall concentrate on the derived functors relating to CB(X,Y)
and ®.4.

3Some authors differentiate between derived functors and derived cofunctors, however we need

not make this distinction
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3.4 Standard Homology and Cohomology

The basic starting point for Johnson's work on amenability, is that of the standard
homology and standard cohomology (also called the Hochschild cohomology).
This was generalized by Ruan to operator spaces in [68].

In this section we will recall these complexes (as described by Ruan in [68]) and
study their homology and cohomology in our category.

Let A be a completely contractive Banach algebra and let X be an operator

A-bimodule. Consider the operator chain complex:

(6):08 x & 48X & AQASX & ...

where the differential maps are given by

dn(a1®a29---®a,Qz) = a®---Qa,Qza,

n-1

+3 (~1m® @1 @ ®an @z
1=1

+(-1)"a1 ® ... Gn-1 @ GnZ.

It is clear that each of the maps d,. are completely bounded and a straightfor-
ward, albeit messy, calculation shows that d,°d,;; = 0 for all n € N. We denote
the homology of this sequence by OH,(A, X). Often this set is referred to as the
ntP_homology of the completely contractive Banach algebra A with coefficients in
X.

If imd,4; is not closed, the space OH,(A, X) is not a Banach space, much less
an operator space. Fortunately this will not always be a major handicap for our
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purposes. QOur interest will lie mainly in the case that OH,(A, X) = 0, in which
case imd,4+; = kerd,, which is automatically closed. However, the situation imdy

not closed may present a problem for us. Thus we define the following:

DEFINITION 3.4.1:  An operator A-module will be called differentially closed
if the images of the differential maps dj. are closed (i.e. imdy is closed for all £ > 0.)

Later we shall see that if A4 is operator amenable, then every module is auto-

matically differentially closed.

If we take the dual of (&) we get the cochain complex:

(6%):0 - X 5 (4ex) & (1848x) & ..

Since there is a natural c.b. isomorphism from (A®X)* to CB(A, X~) the above

complex is isomorphic to:
- 4l &2 - 3
0=+ X" =+CB(A,X") > CB(ARA, X~) = ...
In this case the differential maps é® = d; have a particularly nice form. For

convenience we shall let A%" denote the n-fold projective tensor product of A. i.e.

én_ -~ -~
A = A®...QA

n

Then for T € CB(A®", X*) we have
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MTHar1®---®a,) = a1T(a;:® -+ ® an)
n-1
+D (~1)T(a1® - ® %:ai11 ® - -~ @ an)
=1

+(=1)"T(a1 ® - - ® @n-1)Gn.
We shall denote the cohomology of this complex by OH™(A, X~). This set is

often referred to as the nth cohomology group of A with coefficients in X~

Notice that if we replace X~ with any other operator A-bimodule Y, the se-
quence (G*) still makes sense, and still forms a cochain complex. In other words
we are able to make sense of OH"(A,Y) without Y being a dual of some other
module.

Of special interest is the space OH*(A,Y). Consider the following

6%(T)(a ® b) = aT'(b) — T(ab) + T(a)b

and hence T' € ker é? if and only if the following identity holds

T(ab) = aT'(b) + T(a)b.

These 1 cocycles are usually called derivations. Also note that the 1-coboundaries

are represented by the following:

lezz(a) = az — za

Such functions are usually called inner derivations. Thus the statement
OH'(A, X) =0 is equivalent to saying that each completely bounded derivation is

inner.
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We now have the following Lemma connecting the homology and cohomology

spaces:

LEMMA 3.4.2: Let X be an operator A-bimodule. Then X is differentially closed
and OH,(A,X) =0 for alln > 0 if and only if OH™(A,X*) =0 for alln > 0.

Proof: This Lemma is similar to [49, Corollary 1.3] or [54, Proposition 5.29].
Note that OH™(A, X*) = 0 is equivalent to the sequence G* being exact at every

term except possibly X*. Furthermore OH'(A, X*) = 0 implies imd; = kerd; and

hence imdj is closed. Thus imdy is closed and the sequence & is exact everywhere

except possible at X. In any event we have OH,(A,X) = 0. The converse is
similar.

LEMMA 3.4.3: OHYA,X~") = 0 for all dual modules if and only if OH™(A, X~) =

0 for all dual modules and n > 0.

Proof: In Section 3.6 we will consider derived functors, from which we could
provide an alternative proof to the above result. For now we provide the following

from [68], which is the operator space version of a result of Johnson.

Using the associativity of the operator projective tensor product, it is easy
to show OH™*(A, X*) = OH"(A,CB(A®",X")) from which the above follows
trivially. »

Combining the two previous Lemmas we have the following Corollary:

COROLLARY 3.4.4: IfOH'(A,X~) =0 for all operator bimodules X, then every

module is differentially closed.
We can now prove the analogue of Lemma 3.4.3 for the homology groups.

COROLLARY 3.4.5:  Suppose every module is differentially closed. then we have
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OH,(A,X) =0 for all operator bimodules X if and only if OH,(A,X) =0 for all

operator bimodules X and n > 0.

Proof: If OH;(A,X) =0 holds then OH'(A, X~) = 0 by [49, Proposition 1.2],
so by above OH™(A, X~) = 0. Now apply Lemma 3.4.2. [

As discussed earlier, we shall often need to consider the completely contractive
Banach algebra 4, and not just A. However as the next Lemma shows, this will

not be a restriction. See [51].

LEMMA 3.4.6: OH"(A,X~*) =0 for all dual modules and n > 0 if and only if
OH"(A4, X™) =0 for all dual modules and n > 0.

Proof: Suppose OH"(A,X*) = 0 then each derivation is inner. Let e be the
adjoined identity in A,. Note that

D(e) = D(e?®) = eD(e) + D(e)e = 2D(e)

hence D(e) = 0 for all derivations. Since the operator space structure on (A4,0) C
Ay is precisely the structure on A, it foliows that every derivation from A has a

unique completely bounded extension to A, and hence is inner. Thus
OH'(Ay,X™) =0.

Hence by the above Lemma 3.4.3 we have OH™( A4, X*) =0 for all n > 0.

Conversely any derivation from A is a derivation from A by restriction. Since
the first is inner, so must the second. Again by applying Lemma 3.4.3 we have
OH™*(A,X*)=0for all » > (.
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Lemma 3.4.6 shows that when studying algebras such that OHY(A,X~) = 0,
we may, if convenient, assume all of our completely contractive Banach algebras

are unital and all modules are unital modules.

Recall that Johnson called a Banach algebra amenable if each bounded deriva-
tion into a dual Banach module is inner. In an analogous way, Ruan defined

operator amenable by saying each completely bounded derivation into a dual

operator module is inner (i.e. OH'(A, X*) = 0 for all dual modules X*.)
Combining the results of this section, we have the following

THEOREM 3.4.7: The following are equivalent
(1) A is operator amenable (i.e. OH' (A, X*) = 0 for all dual modules X~)
(2) OH™(A,X™) =0 for all dual modules X*

(3) every module is differentially closed and OH,(A, X) = 0 for all modules X

andn >0

(4) every module is differentially closed and OH,(A, X) = 0 for all modules X

and n > 0.

Proof: (1) = (2): Use Lemma 3.4.3. (3) = (4): Use Corollary 3.4.5. (4) & (2):
This is Lemma 3.4.2. The rest is immediate. L

3.5 ®4 and Tor

In this section we shall investigate the functors ® 4 and Tor of homological algebra,

and we shall show that the standard results continue to hold in our new category.

Suppose we are given an extension sequence
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00X ->Y =220

of left operator .A-modules. We wish to know if the induced sequence

0+ X®@4uQ=YRAQ =>2Z234Q—0

is exact. That is to say “is the functor ? ® 4 ¢ exact?”. In this section we will
introduce the spaces Tor which will measure this exactness, and relate this to the

standard homology of the previous section.

To make this connection, we first introduce the bar or standard resolutions in

our category.

To motivate what we are eventually going to need, we first construct a simple

projective resolution, which illustrates what happens in the general case.

PROPOSITION 3.5.1:  LetY be a left A-module. Then the complez

0Y & ARY & A48 & A,84,8A4,8Y ...

with augmentation

ea®y) =ay

and where the differentials are given by the following formulas for n > 0:

dr(a1®a:® - e, QYY) = 18203830 ---®a,Qy
n-1
+3 ()@ @ ma1 ® - @y
=2

+(-1)"a;1 ®a; ®--- @ any
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s a projective resolution of the left module Y.

Proof: As remarked in Corollary 3.3.7, each module of the form A, ®Y is pro-
jective. Thus it suffices to show that the complex is exact and admissible.

We define maps 6, : Aj,éinéY — Aj*é;"“@Y by 6.(x) = e ® u. Also we let
o : Y — A,®Y be defined by 65(y) = e ® y. It is easy to see from the definition
of the matrix norms of a projective tensor product that each of these maps are

completely bounded.

Now we see that the complex is exact since we have the following. Let K =
kerd, ; and let £ € K. Then 6,(k) = e® k. Now d,(e® k) = (e-k) —(e®
dn—1(k)) = k. Hence d,.8,, = idg. Thus imd,, = kerd,,_; which implies the complex
is admissible. »

To construct our standard resolution, we first need to observe the following:
PROPOSITION 3.5.2:  Let A be a completely contractive Banach algebra and let
Ay be its unitization. If we let e denote the identity in A, , then we have a complete
isometry A = (A, /Ce).

Proof: For [(a;;,C)] € M, (A;/Ce) we have the following equalities for
(1] € M (A"), [Ta] € M (C), and = > 0
(a5, Ol = inf{ll[(asj, Aij)lllnas = [Ais] € Ma(C)}
= inf {max{|[$u(ai;)lnm, Tt(Aii) |l } : [[Brall < L, lf7ictllen < 1}

[rij]
= sup{||ut(as;)llnm : [|$ul] < 1}
= |lailln

Hence the natural map is a complete isomorphism. [ |
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For convenience we shall denote A, /Ce by A,. Now we consider the induced

sequence

- - -~ - -~

0Y & Ay & A, QALY & A, QA QAQY ...

Here the differential maps are similar but are defined on the cosets, i.e. for

n > 0 we have

de(01®d@2Q---®da®Y) = 2010 @GR ---Rd, QY

n—1
+) (-1 '@ -@TEI® QY
=2

+(-1)"a1 @ d2 @ - - - @ any.

To see that this expression is well defined, see for example [54] or [14]. The maps
0. are given by the formula

On(a1 ®dz...d, QYY) =e®d1® - - Qdn QY.

Proceeding in a manner similar to the proof of Proposition 3.5.1 it is easy to
show that the above also generates a projective resolution of Y. In view of the
isomorphism given in Proposition 3.5.2, we can identify A, with 4, and hence we

have a projective resolution

0Y & A,QY & A, 048Y & A, BASARY «....

Here the differentials are the same as before, except that now they are defined
on elements of A instead of cosets. This resolution will be called the standard
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resolution of Y (also called the non-normalized bar resolution). It is easy to see

that if X is a right module then the complex

0 X — XQA, « XQARA, + ...
is a projective resolution of the right module X. A similar complex is available for
bimodules.

We are now in a position to relate the derived functors of ® 4 with standard
homology. For a fixed left module Y we define Tor’y(X,Y) to be the n** derived
functor of 7® 4 Y applied to the right module X . Again we recall that the standard
resolution described above is projective, so for definiteness, to calculate Tor 4(X,Y")

we can apply the functor ? ® 4 Y to the complex

0 XA, & XOADA, & XRARARA, « ...

which results in the sequence

0 X®A ®4Y “E4 XQADA, @4 Y "B XGAQABAL @UY ...

Hence we have the nt® torsion product of X and Y given by

ker(d, ® 4 td)
im(dn+1 ®4 id) )

In particular we see that Tor"y(?,Y) is a functor from the category of right

Tor™y(X,Y) =

operator A modules to the category of linear spaces.

To connect the torsion product with the homology groups we require the en-

veloping algebra of a completely contractive Banach algebra.
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DEFINITION 3.5.3: Let Abe a completely contractive Banach algebra. Consider
the algebra .A°? which is the Banach space A with multiplication given by a”-b? =
ba. We call A% the opposite algebra.

If we give the opposite algebra the operator space structure given by

5 ]lln = llla:)lln for all [aF] € ML(A%)

then A° becomes a completely contractive Banach algebra. Now we define the
enveloping algebra A® of A to be the completely contractive Banach algebra
A+ ®AT. Note that if X is an operator A-bimodule, then X becomes a left A QAT

operator module where

(e ®@b%) -z = azd

and a right AP®A, operator module where

z-(a”® ® b) = azxb.

Since there is a canonical ¢.b. isomorphism AP®A, = A, ®AF, it follows that
X can be regarded as either a left or right .A® operator bimodule. It is standard
to consider any bimodule as a left A®* module and a bimodule map as a left A®
module map in this way. In particular we have CB . c(X,Y) = CB44(X,Y) for
operator bimodules X and Y.

There is a reduction property which will be useful in calculating the homology

of sequences such as = above. First we require the following additional technical

fact:
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PROPOSITION 3.5.4: (X®AY)" is c.b. tsometrically isomorphic to CBc4(X,Y ™).

Proof: Recall that the map ¢ — Ty given by

($,z ®y) = (Ty(z),v)

is a c.b. isometric isomorphism between (X®Y)" and CB(X,Y ™). Now
XQY\"~
(X®4Y) = (—?}—) ~ Nt

where N = Span {za @y —z Q ay}fora€ A,z€ X andye€ Y. Nowd € Nt if
and only if
Hza®y—z@ay) =0

Thus for ally € Y,
(To(za), y) = (Ty(z), ay) = (Ts(z)a, v)
Thus Ty € CBg4(X,Y ™). The reverse inclusion is clear. |

ProPoOsITION 3.5.5: We have the c.b. isometric isomorphism AL @4, X = X
and furthermore we have that AL@MO A, Q4 X = M®X, where M is any operator

space.

Proof: The map ¢: X — Ay ®4, X given by
#(z) =@z
is easily seen to be completely contractive. Furthermore the map

¢": (A ®ay X)" = X7
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is exactly the c.b. isomorphism of Proposition 3.3.5 and Proposition 3.5.4 from
(A4 ®4, X)" to X~. Thus (¢71)" is completely contractive, hence ¢~ is completely

contractive.

The fact that the map 7 : M®X = A, QMEA, ®4- X given by
TmM®z)=e®@m@e®=z
is a complete isometry follows similarly. |

COROLLARY 3.5.6: We have the c.b. isomorphism A, Q4 X = X

Proof: Forae A, A € C and z € X we have

(a,AN)Q4z = [(a,0)+(0,N)]Raz
= a-e@azc+Ae®4zT
= e®(az+ Az) =e® (a,A)z.

Hence in view of the previous proposition and Corollary 3.3.6, it follows that we

have a c.b. isometric isomorphism. |

For convenience, if © € A, ®4 X we shall denote the corresponding reduced
element in X by u’. Conversely, if u € X weshalllet ! =e @ u € A, @4 X. It
is easy to see that u" = u. Furthermore, if we have a map T : A, ®X — Y, we let
T* : X — Y denote the map given by T*(z) = T(z!) for all z € X.

Now we can connect the torsion product with the standard homology via the

following:

THEOREM 3.5.7:  Let X be an A-bimodule. Then considering X as a left A®
module and Ay as a right A® module, we have the following equality:
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Tor.(As, X) = OH,(A, X).
Furthermore the equality is a c.b. isomorphism whenever X is differentially closed.

Proof: Consider the complex

0 A, 04, & A, 6464, & ...

with € : A, ® A, — A, given by €(a ® b) = ab, and the differentials the same as in
Proposition 3.5.1. By earlier arguments, this is a resolution of the right A®-module
A,, and from Corollary 3.3.8, each of these spaces is projective as a bimodule
(hence as a right .A®* module)

So to calculate Tor’.( A4, X), we may apply 7 ® 4o X to the above resolution

to get

0 A, QA Qur X 222 A, QAGA, ®ue X €22 ...

In view of the Proposition 3.5.5, this complex reduces to

& s .
0 X+ ARX <+ ARARX ...

where
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4 (01®...4,0z) = (du(e®a1®...an @ €) Qe )’

= ([@®-®e+ S (~1)e® - @aan 8- - e

=1

+(~1)"e® -+ ® an] Que z)*

= az®---an®$a1+2(-1)"ar~®aea;+1®---an®z
=1

+(—1)"a1 ® - -+ @ Gn—1 ® anT

which is easily seen to be the standard homology complex. Since the complexes are

c.b. isomorphic, so are the homology groups whenever imd,’ is closed.

To connect this with the exactness of the tensor product functor, we begin with

the following definition:

DEFINITION 3.5.8: We call a left operator A module X operator flat if when-
ever we have an admissible complex =, then = ® 4 X is exact. Furthermore, we call
a completely contractive Banach algebra A operator biflat if A is a flat AQAP
module.

We can connect flatness with injectivity with the following (See [53]):
PROPOSITION 3.5.9: X is an operator flat A module if and only if the right

module X~ is (right) injective.

Proof: Suppose (Z) is an exact admissible sequence. Consider the sequences
Z ®4 X and its dual (E ®4 X)* = CBca(Z,X™). Clearly they are either both

exact or inexact. [
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We can relate flatness with the Tor functor using the following theorem from
homological algebra:

THEOREM 3.5.10: Let
0 X-=2Y—>2Z—0

be an admissible sequence of operator A modules, and let F be an additive con-
travariant functor from the category of operator A modules into the category of
algebraic A modules, and let F™ represent the various derived functors of F. Then

there ezists algebraic maps E, : F**1(X) — F"(Z) such that the long complez

0 « F°(X) « F°(Y) « F°(2) & FY{(X)...
is ezact. If F is covariaent, we have the same long ezact sequence but with arrows
reversed.

The maps E; are usually called connecting morphisms. The proof of this
theorem is essentially identical to the algebraic case. See [63, Chapter II1.4.1].

Since ® 4 is clearly an additive functor, we have for an admissible short exact

sequence 0 « Y} « Y; <+ Y; + 0, the sequence

0 « Tor’(Y;, X) « Tor%(Yz, X) « Tor%(Ys, X) € Tor (Y, X)...

is exact. In algebra, we have that Tor%(X,Y) = X ® 4 Y, however in our category
we have topological problems which will affect this equality.

Now we note the following:

LEMMA 3.5.11: For right and left operator A modules X and Y we have the
equality
Tory(X,Y) = OH.(A Y®X).
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Furthermore the equality is a c.b. isomorphism whenever Y®X is differentially

closed.

Proof: To compute the spaces Tor;(X,Y) we consider the complex

0 X@A, @AY "B XQABA, @4 Y B2 XQABARA, Q4Y « - ..

which reduces to

-~ b -~ - -~ -~ -
0 XOY & XQADY & XOARARY « ...

Using the c.b. isomorphism X®Y = Y&®X we see that the above complex is
isomorphic to the standard homology complex for the bimodule Y®X. The fact
that we have a c.b. isomorphism between the homology groups whenever Y ®X is
differentially closed is now clear. |

In view of this lemma, we can make the following observation. Note that we
could have considered the derived functors of X® 4?. However it will follow in the
same fashion as the previous lemma that these functors are naturally isomorphic
and the derived functors are equal to the standard homology complex for Y ®X.
(See [54, Chapter III))

To calculate Tor%(X,Y) we have the following:

LEMMA 3.5.12: LetT: XQAQY — XQY be given by

T(z®a®y)=za®@®y—z Q ay.

Then
XQY
Tor® = —_—.
OrA(X,Y) - .
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In particular we have Torgt(X ,Y) = XQ4Y whenever Y®X is differentially closed.

Proof: By Lemma 3.5.11 we can calculate Tor%(X,Y) as the homology of the

standard complex

(G): 0L YOX & ARYRX « ...

with

kerds  Y&X

0 — —_

Tor%(X,Y) = g = =

However, under the natural c.b. isomorphisms Y®X = X®Y and
$: AQY®X — XQAQY

we see that d; = 7°¢. Thus
XY
Tor%(X,Y) = .

imT

Clearly T is closed if and only if imd, is closed. In particular if Y®X is differentially
closed, then we have the c.b. isomorphism Tor%(X,Y)= X @,7Y.

COROLLARY 3.5.13:  For a left operator A module Y, the following are equivalent
(1) Y is operator flat
(2) Tork(X,Y) = 0 and XQY is differentially closed, for all operator A-
modules X

(3) Tor(X,Y) = 0 and XQ®Y is differentially closed, for all operator A-
modules X and n > 0.

Proof: (1) = (3): This follows by exactness. (3} = (2): This is immediate. (2)
= (1): Apply Theorem 3.5.10. and Lemma 3.5.12 to conclude that the functor
?7®4Y is exact. |
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REMARK: Note that in Theorem 3.5.5 and Lemma 3.5.11 we noted that the
c.b. isomorphism is not an isometric isomorphism. This may seem a surprise
given that all of our reduction formulas were isometric isomorphisms. However 1t
is important to note that the various derived functors are given relative to any
projective resolution. As a result the Tor functors are only defined up to c.b.
isomorphism. (See further discussion on this in Appendix A). We shall see the

same effect in the next section when we investigate the functor Ext.
Now we can relate flatness to amenability.

THEOREM 3.5.14: Let A be operator amenable. Then every left module is
operator flat. In particular the functors ? @4 Y and X®4? are ezact for all left

operator modules Y and right modules X.

Proof: Suppose A is operator amenable. Then by Theorem 3.4.7 we have that
OH,(A,Y®X) = 0 for all modules X and Y. By Lemma 3.5.11 we conclude that
Tor%(X,Y) = 0 and thus by Corollary 3.5.13 every left module Y is operator flat.

3.6 CBuc(X,Y) and Ext

In the previous section we investigated the exactness of the functor ® 4 and in this
section we shall investigate the exactness of the functor CB4c(?, Q). We shall
introduce spaces Ext which will measure this exactness, and we shall relate this
to both the standard cohomology as well as to the results of the previous section.

This is to say, if 0 & X « Y < Z ¢« 0 is an extension sequence, is

0 = CBAc(X,Q) = CBac(Y,Q) = CBac(Z,Q) =+ 0
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exact?

Now for the left module Y, we define Ext”;(X,Y’) to be the nth derived functor
of CB4c(?,Y) applied to the left module X.

As in the previous section we can consider the standard resolution

0 A,0X & A, 848X & A, BARASX « ...

Now we apply the functor CB4¢(?,Y) to it to obtain:

0 = CBac(A:8X,Y) (4 CBac(AL®ARX,Y) (da)e

We calculate Ext’(X,Y) by finding the cohomology of the above sequence.

Thus we have

Ext’(X,Y) = %'

Thus Ext’(?,Y) is an additive functor from the category of left operator A-modules

into the category of linear spaces. Now wa are able to note the following special

case:

THEOREM 3.6.1:  Let X be an operator A-bimodule. Then considering X as a

left operator A®-module we have the following equality
OH™(A,X) = Exth. (A4, X).
Furthermore the equality is a c.b. isomorphism whenever X is differentially closed.

Proof: As we did with the Tor functor, we consider the projective resolution
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0 A, QA & A, 6404, & ...

of the left A® module A;. Now we apply C B4, 4.(7,X) to get

0 — CBup oty (Ae® A, X) A CBA o, (AL 0ABA,, X) B ..

which reduces to

0+ X3 CB(A,X) B CBAGA,X). ..

Calculations similar to those in the proof of Theorem 3.5.6 show that this is

exactly the standard cohomology sequence.

REMARK : In the case of X = Y™ there is an alternative approach to the above
proof using the results of the previous section. Take the standard resolution of A,
and apply the functor 7 ® 4« X. The dual of this sequence, by Proposition 3.5.4
and 3.3.5 is exactly the last sequence in the above proof. However, we already
know that the dual of the standard homology complex, is the standard cohomology

complex.

We complete this section with two important theorems. Recall that whenever X
and Y are left A-modules, we can consider the space CB(X,Y) to be an operator
A-bimodule where

(a-T)(z) =a-T(z) and (T -a)(z) = T(az).

The following two theorems are the direct operator space analogue of [54, I11.4.12
and I11.4.13]
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THEOREM 3.6.2: Let X and Y be left operator A-modules, then we have the
equality
OH"(A,CB(X,Y)) = Ext}(X,Y),

which is a c.b. isomorphism whenever CB(X,Y) is differentially closed.

Proof: Once again we can calculate Ext”(X,Y’) through the standard resolution

0 A QX & A, 640X & ...

which yields

0= CBac(A 80X, Y)Y CBAc(A,848X,Y) — ...

This in turn reduces to

0= CB(X,Y) 5 CcB(48X,Y) 5 CB(A&AGX,Y). ..

Now using the c.b. isomorphism CB(A®X,Y) = CB(A,CB(X,Y)) this com-
plex is isomorphic to the standard cohomology complex for CB(X,Y). The fact
that we have a cb isomorphism when C B(X,Y) is differentially closed should now
be clear. n

Once we make a connection between the Ext groups and extension sequences,
we will use the above theorem to classify all such extensions (and hence address

the complemented ideal question).
We have the following additional useful result:

THEOREM 3.6.3:  Let X be a left operator A-module, and let Y be a right oper-
ator A-module, then ExtT(X,Y~) = Exth. (Y, X*).
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Proof: By the preceding theorem we have
Ext%(X,Y") = OH*(A,CB(X,Y")) = OH*(A,(X®Y)").
Similarly we have
Ext%., (Y, X*) = OH"(A®,CB(Y, X")) = OH"(A%?, (Y®X)").

Note the left module (X®Y')= can be identified with the right A®-module (Y ®X)".
By shuffling coefficients, we can see that

OH™A, (X®Y)") = OH™(A®, (YX)").
[ |

As indicated earlier one of the major reasons for studying the spaces Ext is that
they describe the “exactness” of the functors CB4¢c(?,Y) and CB4 (X, 7). Indeed
the same categorical properties hold here. As a result we are able to conclude the

following:

THEOREM 3.6.4: Let 0 - X; = X; = X3 — 0 be an admissible sequence of

A-modules. Then there ezist algebraic maps
Ef : Ext5 (X5, Z) — Exti (X, Z)

such that the sequence

0 — Ext% (X1, Z) — Ext%(Xz, Z) — Ext(Xs, Z) 2 Exti (X1, 2Z) — . ..
is ezact.

Proof: Since CB4¢(?,Z) is an additive functor, we may apply Theorem 3.5.9.
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In algebra we have that Ext%(X,Y’) equals the collection of left module mor-
phisms from X to Y, and we have the same result here for essentially the same

reason.

LEMMA 3.6.5: For left operator A modules X and Y, we have a natural c.b.
isomorphism

Ext%(X,Y) = CBac(X,Y).

Proof: As in the algebraic case, the functor CB4c(X,?) is left exact. In partic-

ular, we have the sequence
0 A,0X ¢+ A, QARX « ...
results in the complex
0= CBac(A,8X,Y) - CBoAc(A+RARX,Y) — ...
which reduces to

0 CB(X,Y) 3 CB(A®X.Y) = ....

Thus Ext%(X,Y) = ker d;. However
0 X & ARX ...
is exact. Hence
0 = CBAc(X,Y) S CB(X,Y) B CB(ARX,Y) —+ ...

is exact at the term CB(X,Y’). Thus kerd, = ime. = CB4¢(X,Y). |
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COROLLARY 3.6.6:  For a left module Y, the following are equivalent
(1) Y is injective,
(2) ExtL(X,Y) =0 for all left modules X,

(3) Ext™(X,Y) = 0 for all modules X and for alln > 0.

Proof: (1) = (3): This follows from the exactness of the functor CB4c(?,Y)-
(3) = (2): This is immediate. (2) = (1): Use Theorem 3.6.4 and Lemma 3.6.5.
and Theorem 3.3.2. »

THEOREM 3.6.7: Let A be operator amenable. Then for every left operator

module Y, we have that Y™ is injective.

Proof: We note that Theorem 3.6.3 and Corollary 3.6.6 will prove this assertion.
However we shall use the dual nature of the cohomology and the homological results
of the previous section to prove this fact. First note that Theorem 3.5.14 shows
that A operator amenable implies Y is flat and hence by Proposition 3.5.9 that Y™™
is injective. |

The previous theorem shows that if A is operator amenable then every dual

module is injective as a right module. However we can improve this to show that

every dual module is in fact injective as a bimodule with the following two facts:

COROLLARY 3.6.8: Let A be operator amenable. Then AQAP is operator

amenable.

Proof: We note that every derivation from A into any module X defines a deriva-
tion from A in the obvious way, and conversely. Thus if A is operator amenable,

so is A°P.
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ProrosITION 3.6.9: Let A be operator amenable. Then for every module Y,

we have that Y™ is bi-injective.

Proof: Applying the previous two Corollaries we have that for all operator bi-
modules X, Ext 45 40-(X,Y™) = 0. Thus by Corollary 3.6.6 we have that Y~ is
injective as a A®.A* module. Thus Y™ is bi-injective.

Combining the results of this chapter to this point we have the following theo-

rem:
THEOREM 3.6.10: The following are egquivalent

(1) A is operator amenable

(2) OH™*(A,X") =0 for all n > 0 and all dual operator A bimodules X~.

(3) OH.(A,X) = 0 for all bimodules X aend n > 0 and furthermore every
bimodule ts differentially closed

(4) ExtT. (A4, X") =0 for all n > 0 and all dual operator A bimodules X~

(5) Tor%.(X,Ay) = 0 for all bimodules X and n > 0 and furthermore every
bimodule is differentially closed

(6) A, is operator biflat.

Proof: The equivalences of (1),(2) and (3) are Theorem 3.4.7. The equivalence
(2) & (4) is Theorem 3.6.1 and (3) & (5) is Theorem 3.5.6. From theorem 3.6.3

we have

Ext?. (A4, X7) = Ext?. (X, A7)

Thus by Corollary 3.6.6, we conclude A} is injective as a .A® module. Hence we
have by Theorem 3.5.9 A, is a flat A® module. Conversely, if AJ is an injective
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A® module, then Ext’.(X, A7) = 0 by Corollary 3.6.6.

We note that Khelemskii defined amenability via the analogue of condition (6)

in the above Theorem.

3.7 Extension Sequences and Cohomology

First we recall what we mean by an n-extension sequence. Given A-modules X and

Y, suppose we have a exact admissible operator complex of the form

0—+X—-B—-...B,—-Y—=0.

for various modules B;. We call this sequence an n-extension of X by Y. Note that

in the case n = 1 we always have the l-extension

0 X—->XeY Y —=0

where the module action on X @ Y is the diagonal action. In the case n > 1, we

always have the sequence

0-Xx83x3%0.. 503y 8y 5o

Given two n-extensions

S:0X—->B—=...4B, =Y —=0.
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and

T:0-X—-Ci—~...5oCh—=Y 0.

we write § < T if there exist c.b. module maps 6; : Br — Cp such that the
resulting diagram commutes (with X 3 Xandy 2 Y). We shall say S and T are
equivalent (and write S ~ T') if there exists an n-extension sequence R such that
S < Rand T < R. (See McLean for the algebraic version of this or Paulsen for the

h-module version).

DEFINITION 3.7.1:  We let Ex;(X,Y) denote the set* of equivalence classes of
n-extensions of X by Y®.

The key fact for us is the following theorem:

THEOREM 3.7.2:  For any modules X and Y we have

Ex%(X,Y) = Ext}(X,Y).

The proof of this theorem involves several steps which use primarily the cat-
egorical properties of exactness, admissibility and projectiveness. Since we have
built up all the necessary categorical tools, we omit this proof. See also Paulsen’s
work [66].

However we have the following important case which we can prove from our

work in the previous Chapter:

“To avoid messy set theoretic problems, we usually restrict the “size” of the modules By to

avoid this use of “wild” set theory.
*Our notion is the reverse of the standard notation, however the author notes that either the

definition is backwards or the fundamental theorem to follow is.



CHAPTER 3. HOMOLOGY IN OPERATOR SPACES T4

COROLLARY 3.7.3: Let A be an operator amenable completely contractive Ba-
nach algebra and let
E):0-X"5>Q—->Y =0

be an admissible eztension sequence of A-bimodules. Then (=) splits.

Proof: From the above we have that Exi.(X*,Y) = Ext%.(Y,X"), which by
Theorem 3.6.2 equals OH' (A%, (Y®X)"). Since A is operator amenable, it follows
that A, is operator amenable (Lemnma 3.4.5). Hence so is A® by Corollary 3.6.8.
Thus Ex4.(X",Y) is equivalent to the trivial element. Thus (=) splits.

As an alternative, we can prove this result without appealing to the previous

theorem. By Proposition 3.6.9 we have that X~ is injective as a bimodule. Consider

the following diagram:

£

Since X~ is bi-injective, there exists a map ¢ € CB4 4(@, X~) such that fo¢ = idx-.

Hence by Lemma 3.2.6 the sequence splits. [ |

3.8 Operator Biprojectivity and Amenability

Let A be a completely contractable Banach algebra and let 7 : AR A — A be the

multiplication map, and let N = ker v. Now we consider the short complex
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(A):0H N> ARAD A0

and its dual complex

(A)":0 - A" 5 (4@ A)" 5 N= = 0.

In this section we shall investigate the splitting of these two sequences. We shall
see that the splitting of the first is related to the operator biprojectivity of A and
the second is related to the operator amenability of A.

We begin with the following lemma for modules:

LEMMA 3.8.1:  Suppose P is a left operator A- module, and let 7, : AL QP — P
be the module map onto P and N its kernel. Then the admissible sequence

(ML) :0 = N - AP 5 P =0
splits if and only if P is projective.

Proof: First note that the sequence is clearly short exact, and since the map
T: P+ A,QP given by 7(p) = e ® p is clearly a completely bounded inverse for
7z, by Lemma 3.2.6 (M) is admissible. Now suppose P is projective. Consider

the diagram
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By projectivity of P there exists a map 1 which extends id : P — P. In par-
ticular we have wz°3) = idp, hence by Lemma 3.2.6 the sequence splits. Conversely

if the sequence splits, we can consider the diagram

A QP —=p

91

3 /]

Since 4;®P is projective we conclude that the module map 6’ extends to ¥ :
A{®P — Y. Since the sequence splits, 77 has a right inverse which is a module
map, call it p. Thus the map ¥’ : P — Y defined by %'(p) = p°¢(p) is clearly an

extension of #. [ |

The last part of this proof actually proves the general result that if P is projective
and 6 : P — Q is a module map with a right inverse which is a module map, then
Q is also projective.

To discuss the splitting of the sequences mentioned at the beginning of this
section, we note that the sequence 2 is exact only when the module map is onto.
Hence we recall that if the module P is neounital, then the module map 7 : AQP —

P is onto. Thus we can consider the sequence

() : 0> N = ARP — P — 0.

which is clearly short exact. This leads to the following

PROPOSITION 3.8.2: A neounital module P is projective if and only if the se-

quence
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(MM):0 > N> AQP 5 P =0
splits.

Proof: If the sequence splits, then there exists a c.b. module map p: P —+ AQP
which is a right inverse for 7. Clearly p is also a right inverse for 7z : A, ®P. Thus
by the previous Lemma, P is projective. Conversely, if P is projective, then by the
previous lemma, there exists T : P — A, ®P which is a right inverse module map

for m;. However we note

T(Py=71(A-P)=A-1(P)C A-(AP) C ARP.
Thus 7 1s an inverse for . |

DEFINITION 3.8.3: A completely contractive Banach algebra is called operator

biprojective if it is projective as an operator .A° module.

To connect operator biprojectivity with splitting of certain sequences, we first

note the following lemma.

LEMMA 3.8.4:  Suppose A is neounital. Then A is operator biprojective if and

only if the sequence

0> N = (ARA) > A0
splits as A® modules.

Proof: Suppose A is neounital and biprojective. Then from the previous propo-

sition we have that the sequence
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0> N. 5> ALRATS A0

splits, where N, is the kernel of the module map =, : A°*® A — A. Note that we
have A°®A = A, QAR A,. Now let mg : ARA, — A be the “right” module map.
Ifp: A—~ A°®Ais an A° module map which is a right inverse for =, then it is
easy to see that in particular the induced map

prAR ALQARA,
is an A-bimodule map. Clearly the map
Wd®mr: ALLRARAL — AL BA
is also a bimodule map, and a simple calculation shows that
P = (id@rp)op : Ars A,BA

is a bimodule map which is an inverse for mz. Following the idea in Proposition

3.8.2 we have that
P(A=p(A-A)CA- (A+®A) = AQA

thus p’ is a bimodule map which is a right inverse for m. Since p, g and id are all

completely bounded, so is p’.

Conversely, if the sequence splits, it follows that A is both left projective and
right projective, by Proposition 3.8.2. Hence by standard arguments A® A is oper-
ator biprojective. Since the sequence splits as .A® modules, there exists a bimodule

map p : A+ AQA. Thus A is biprojective. |
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Since A(G) is neountial for all amenable groups G, we can use the previous
proposition to classify for which amenable groups G, A(G) is operator biprojective.
First note that C is a left operator A(G) module under the module action

- a = au(e).

THEOREM 3.8.5:  Let G be amenable. Then the following are equivalent
(1) A(G) is operator biprojective
(2) G is discrete

(3) the left operator A(G) module C s projective.

Proof: (3) = (2): Let Z, denote the ideal of functions v € A(G) which are equal
to zero at e. Since Z is cofinite dimensional, there exists a bounded projection P
onto Zy. Now 1 — P : A(G) — Q where @ is the complement of Z; is A(G). Clearly
Q= A(G)/Zy = C. Let v : A(G) — C be given by vy(u) = u(e). Certainly 7 is
completely bounded, and since there exists a c.b. map from C to Q@ C A(G), it
follows that - is admissible. Since C is projective, there is a right inverse module

map for v, call it 7.

Now for all v € A(G) we have that v -r(1) = 7(u - 1) = r(u(e)). Since for each
s € G such that s # e we can find an element u € A(G) such that z(s) = 0 and
u(e) = 1 it follows that [r(1)](s) = 0 for all s # e. Thus G is discrete.

(2) = (1): Since G is amenable, A(G) is neounital. Here we can use the
isomorphism A(G x G) = A(G)RA(G) given by (u @ v)(s,t) = u(s)v(t) (see
[25]). The map 7 : A(G) — A(G x G) given by 7(u)(s,t) = u(s)dt, where §
is the Kronecker delta function, is a right inverse for the multiplication map « :

A(G)®A(G) — A(G). It now suffices to show that this map 7 is completely
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bounded. Let Gp = {(s,s) : s € G}. Clearly 7(A(G)) C 1, (A(G x G)). But we
have

1, (A(G x G)) = A(Gp) = A(G)

by our future Theorem 5.2.3. Thus 7 is completely bounded. Now we may apply

the previous lemma to conclude that A(G) is biprojective.

(1) = (3): Since G is amenable, it follows that A(G) has a bounded approximate
identity and hence C is essential. Since C is an essential module over an operator

biprojective algebra, it is projective. (See for example [54]).

Now going back to the sequences at the start of this section, we easily see that
if the sequence () splits, then so does (). Historically, this question goes back
to Khelemskii, where in the category of Banach spaces he proved the following:

THEOREM 3.8.6: The following are eguivalent:
(1) The Banach algebra A is amenable as a Banach algebra

(2) A has a bounded approzimate identity, and the sequence

0= A = (A@, A" > N" =0
splits as Banach A bimodules.

The proof of this theorem uses the Banach space version of flatness and injec-

tivity in the same spirit of this Chapter.

Later Curtis and Loy provided an alternative proof of this same theorem using
more “traditional” Banach space methods. It is using these latter methods that

Ruan and Xu were able to prove the operator space version which is as follows.
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THEOREM 3.8.7: The following are equivalent
(1) A is operator amenable
(2) A has a bounded approzimate identity and the sequence (U)™ splits.

We note that we could provide an alternative proof to Ruan and Xu's using the

operator space versions of flatness and injectivity, however we will not do so.



Chapter 4

Operator weak Amenability

4.1 Introduction

In the previous chapter, we investigated completely contractive Banach algebras
which were operator amenable. Recall that this is the case exactly when each
completely bounded derivation into any dual operator module is inner. In some
sense, this can be considered a rather strong condition. In particular, we are free to
construct various “odd-ball” modules, into which each c.b. derivation is necessarily

inner.

We note of course that given a completely contractive Banach algebra A, its
dual space A* becomes a natural dual operator bimodule. In this Chapter we

investigate the special case that every c.b. derivation into A* is inner.

We begin with some special notation which is particular to this Chapter.

82
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4.2 Preliminaries and Notation

Let © represent the module action of A(G) acting on VN(G). Let U CB(G)
denote the closed linear span of A(G) ® VN(G). Then UCB(G) is a topolog-
ically introverted C=-subalgebra of VIN(G) (See [57]). Given ¢ € VN(G), let
Orb(¢) ={u® ¢ | v € A(G), ||u]| < 1}. ¢ is (weakly) almost periodic if Orb(@) is
relatively (weakly) compact. Let W AP(G) and AP(G) denote the spaces of weakly
almost periodic and almost periodic functionals on A(G) respectively. AP(G) and
W AP(Q) are also topologically introverted subspaces of VN(G). Moreover, each
of the spaces UC B(G), WAP(G), and AP(G) contain C;(G) as a closed subspace,
while UCB(G) and WAP(G) contain C(G).

When G is abelian, UCB(@®) is the Fourier transform of the C=-algebra of
uniformly continuous functions on G. WAP(G) and AP(C;T) are the Fourier trans-
forms of the C~-algebra of weakly almost periodic functions and almost periodic
functions of G respectively. In general it is not known if AP(G) or WAP(G) are
C=-algebras. Finally if G is compact, then UCB(G) = VN(G) and if G is discrete,
C;(G) = C;(G) = UCB(G). We refer the reader to [37] and [57] for these and

other properties of the above spaces.

Let ¢ be a continuous multiplicative functional on a Banach algebra A. A
point derivation of A at ¢ is a linear functional d : A ++ C such that d(ab) =

$(a)d(b) + ¢(b)d(e).

4.3 Operator Weak Amenability

One of the principal themes of this thesis is to show that when considering problems

of cohomology for A(G), the operator space setting is the most appropriate. Ruan’s
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result in [68] as well as our result on operator biprojectivity in Section 3.8 is certainly
strong evidence to support this point of view. In this section, we will introduce the
notion of operator weak amenability. We will then extend many of the fundamental
results from the Banach algebra setting to the operator space setting. These will
be used in the next Section to study operator weak amenability for A(G).

The following is adapted from the definition of weak amenability for Banach
algebras:

DEFINITION 4.3.1: We say that a completely contractive Banach algebra A is

operator weakly amenable if every completely bounded derivation D from A

into A" is inner. (i.e. OH(A, A™) = 0)

We begin with a few simple observations which are well known for weak amenabil-

ity (see [13] and [40] for analogous results).

LEMMA 4.3.2:  Let A be a completely contractive Banach algebra such that A?

s not dense in A. Then A is not operator weakly amenable.

Proof: Let¢ € A" be nonzero with ¢(.A?) = 0. Then D(a) = ¢(a)¢ is a derivation
from A into A*. Moreover, D is completely bounded since ¢ € A* .

Assume that D(a) = (a —a( for some { € A*. Let b € A be such that ¢(d) # 0.
Then D(b)(b) = ((b — b¢)(b) = 0, whereas D(b)(b) = ¢(b)¢(b) # 0. It follows that

D cannot be inner and hence that A is not weakly amenable. [ ]
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ProProsITION 4.3.3: Let A be a commutative completely contractive Banach
algebra. Then A is operator weakly amenable if and only if every completely bounded

derivation from A into a symmetric operator A-module X is trivial.

Proof: If A is commutative, A* is symmetric. Therefore the "if” direction is
trivial.

Assume that A is operator weakly amenable, and that X is a symmetric operator
A-module. Let D : A — X be a non-zero completely bounded derivation. We may
by Lemma 4.3.2 assume that A% is dense in A. Hence there exists a € A with
D(a?) # 0. Choose ¢ € X~ such that ¢(D(a?)) # 0. For each z € X, define
R, € A" by R.(a) = ¢(az). The map R : X — A~ with R(z) = R is completely
bounded. To see this observe that

IR™ = sup (IR ([zDIl : N[zl < 1, [2:5] € Ma(X)}

= sup{[[[Bz;;lll : lllz]ll <1, [zy] € M (X)}
sup{l|[R=;;(a)]ll : lllzi]ll < 1, [z55] € M (X) [awd]ll < 1}
sup{ll¢"™ ([awzss])l| : |zl < 1, [z45] € M (X) [[[aw]]l < 1}
< ldlles = ll4ll-

It is now straightforward to see that the map D : A — A~ given by D(a) = R(D(a))
is a completely bounded derivation. Finally,

D(a)(a) = Rp()(a) = ¢(aD(a)) = 1/2 ¢(D(a?)) # 0.

Since A is operator weakly amenable, this is impossible. |

PROPOSITION 4.3.4: Let A and B be commutative completely contractive Ba-

nach algebras. Let ¢ : A — B be a completely bounded homomorphism with dense
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range. If A is operator weakly amenable, then so is B.

Proof: Suppose that B is not operator weakly amenable. We may assume that

[|#llee = 1. Observe that B* becomes a symmetric operator A-module via the action:
(a,T) — ¢(a)-T =T - ¢(a)

for each a € A,T' € B~. Let D : B — B* be a nonzero completely bounded
derivation. Then D(a) = D(¢(a)) is a completely bounded derivation from A into
B*. Moreover D is non-zero since ¢ has dense range. Now apply Proposition 4.3.3

to conclude that A is not weakly amenable. |

REMARK: The analogue of Proposition 4.3.4 may fail for Banach algebras
without the assumption of commutativity (see [41]). We can show that this is
also true in our setting. Assume that we have a Banach algebra A which is weakly
amenable and a bounded homomorphism ¢ onto a dense sub-algebra of B where B is
not weakly amenable. Let D : B — B~ be bounded but not inner. If we provide both
A and B with the M AX operator space structure, then ¢ is completely bounded.
Moreover, the bounded derivation D : B — B~ is completely bounded but not
inner. This shows that B is not operator weakly amenable, while A, being weakly
amenable, will be operator weakly amenable. We conclude that Proposition 4.3.4

would fail without the assumption of commutativity.

PROPOSITION 4.3.5: Let A be a completely contractive Banach algebra. If A has

a nonzero point derivation, then A is not operator weakly amenable.

Proof: Let d:. A~ C be a nonzero point derivation at

¢. We may assume that A? is dense by Lemma 4.3.2. Let D(a) = d(a)¢$. Then
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it is routine to verify that D is a nonzero derivation of A into A*. Again, since d

is completely bounded, so is D.

Assume that D is inner with D(a) = (a — a{. Then d(a)¢(a) = D(a)(a) =
(Ca — al)(a) = 0 for every a € A. It follows that d(a?) = 2 d(a)¢(a) = 0 for all a.
Finally, since d is continuous and .A? is dense, we have d(b) = 0 for all b € A which

is impossible. u

Let A be a commutative completely contractive Banach algebra. Let X be a
symmetric operator A-module. With respect to its natural operator space structure
inherited from C B(A, X), and with respect to the action (bT')(e) = (T'b)(a) = T'(ab)
for each T' € CB4c(A, X), a,b € A, CB4c(A,X) becomes a symmetric operator
A-module.

Moreover, just as is indicated in [40], if Z is an ideal in the commutative com-
pletely contractive algebra A, then the above action with ¢ € A makes CB4c(Z, X)
into a symmetric operator A-module in such a way that the restriction to Z is
the natural action of Z on CB4¢c(Z,A). Again following [40], we define the map
j: X = CBuc(A X) by j(z)(a) = az. A routine calculation similar to that
in the proof of Proposition 4.3.3 shows that j is a completely bounded A-module
homomorphism. We are now able to establish the following useful analog of [40,
Corollary 1.3] with essentially the same proof:

PROPOSITION 4.3.6:  Let A be an operator weakly amenable commutative com-
pletely contractive Banach algebra. Let I be a closed ideal in A. Then T is operator
weakly amenable if and only if T2 = T.

Proof: The only if direction is clear from Lemma 4.3.2. Hence we shall assume
that Z2=7T. Let D: T+ X bea completely bounded derivation into a symmetric
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operator Z-module X. Let j : X +— CBac(Z, X) be as above. Then since j is a
completely bounded module map 7°D is a completely bounded derivation.

Define the bilinear map D : Tx.A — CBac(Z,X) by
D(m,a) = jeD(ma) — j(aD(m)).

Let m € I? . By [40, Theorem 1.1], the map a — D(m, a) is a derivation of A into
CBac(Z,X). Moreover, it is clear from its definition that this map is completely
bounded and thus since A is operator weakly amenable it is identically 0. Again
from [40, Theorem 1.1 (i)], we get that Z>*D(Z) C ker 7 and hence that Z°D(T) = 0.
However, Z? = T implies that D = 0. Hence it follows from Proposition 4.3.3 that

T is weakly amenable.

4.4 Operator Weak Amenability of the Fourier
Algebra

In [29], a link was established between weak amenability of A(G) and commuta-
tivity of the connected component of G. For example, it was shown that if G is a
[SIN] group, then A(G/K) is weakly amenable for each compact normal subgroup
K of G if and only if G has an abelian connected component. Moreover, John-
son [48] has shown the existence of compact groups for which A(G) is not weakly
amenable. In contrast, in this section, we will show that operator weak amenability

of A(G) holds for a large class of locally compact groups which included all [IN]

groups.
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The following lemma is related to our future Proposition 5.2.2.

LEMMA 4.4.1: Let H be a closed subgroup of G. Then the restriction map
R : A(G) — A(H) is a completely contractive homomorphism of A(G) onto A(H).

Proof: It is well known that R is a2 continuous homomorphism of A(G) onto
A(H). Let VNg(G) be the weak closure in VIN(G) of span {Ag(h) : h € H}.
Then VNg(G) is a von Neumann subalgebra of VN(G). Moreover, R* : VN(H) —
VN(G) is a *-isomorphism of VN(H) onto VNg(G) [28]. It follows that R* is

completely contractive and hence that R is also completely contractive. |

PROPOSITION 4.4.2: Let H be a closed subgroup of G. Assume that A(G) is

operator weakly amenable. Then A(H) is operator weakly amenable.

Proof: This follows immediately from Lemma 4.4.1 and Proposition 4.3.4.

Since A({e}) is always operator weakly amenable, the converse to Proposition
4.4.2 can only hold if A(G) is operator weakly amenable for each G. We can
however establish the converse if H is assumed to be open. We note that if H is
open, then the complement of H, denoted H¢, is given by

H¢ = U zH.
zgH

From which is immediately follows that all open subgroups are closed.

LEMMA 4.4.3:  Let H be an open subgroup of G. Then A(G) is operator weakly

amenable if and only if A(H) 13 operator weakly amenable.



CHAPTER 4. OPERATOR WEAK AMENABILITY 90

Proof: If A(G) is operator weakly amenable, then by Proposition 4.4.2, so is
A(H). Assume that A(H) is operator weakly amenable and that D : A(G) —
VN(G) is a completely bounded derivation. Let u € A(G) be such that supp =
is compact. We can find z,,,...,z, such that suppu C (Jz;H . Let u; = 1,,5u .
Then v = Y7, u;. If we let D; be the restriction of D to the algebra 1..gA(G),
then D; is a completely bounded derivation from the algebra 1..7A(G) into the
symmetric operator module VN(G). By our future Proposition 5.2.3 and Lemma
5.2.4, 1;;#A(G) is completely isometrically isomorphic to A(H). Since A(H) is
weakly operator amenable, Proposition 4.3.3 shows that D;(u;) = 0. Thus D(u) =0
since elements with compact support are dense in A(G). Hence A(G) is operator

weakly amenable.

THEOREM 4.4.4:  Let G be a locally compact group with an amenable connected

component Go. Then A(G) is operator weakly amenable.

Proof: Let m : G — G/Gq be the canonical projection. Since G/Gy is totally
disconnected, it has an open compact subgroup C. Then H = »~}(C) is an open
almost connected subgroup of G which is amenable if Gy is amenable. It follows
from [68] that A(H) is operator amenable and hence is clearly operator weakly
amenable. We now simply apply Lemma 4.4.3 to conclude that A(G) is operator
weakly amenable. [

This theorem provides us with a significant class of groups for which A(G) is
operator weakly amenable. Indeed, recall the following classes of locally compact
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[MAP] G is Maximally Almost Periodic if the finite dimensional representations

of G separate points.

[IN] G is an Invariant Neighborhood group if the identity has a compact neigh-

borhood which is invariant under all inner automorphisms.

[Her] G is Hermitian if L'(G), the group algebra of G, is a hermitian Banach
*-algebra.

[NF] G is in the class [NF] if G has no uniformly discrete free semigroup on two

generators.

COROLLARY 4.4.5: Let G be a locally compact group such that G belongs to
[MAP], [IN], [Her] or [NF]. Then A(G) is operator weakly amenable.

Proof: In each of the classes above the connected component must be amenable

(see [65]). It follows from Theorem 4.4.4 that A(G) is operator weakly amenable.

Remark: We do not know if for every locally compact group A(G) is operator
weakly amenable. However, if there is an example of a group for which A(G) is not
operator weakly amenable, our next result shows that there must be a connected

Lie group with this property.
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THEOREM 4.4.6:  If A(H) is operator weakly amenable for each connected Lie

group H, then A(G) ts operator weakly amenable for each locally compact group G.

Proof: Assume that A(H) is operator weakly amenable for each connected Lie
group H. Let G be a locally compact group for which A(G) is not operator weakly
amenable. Then G must contain an open almost connected subgroup G,. Lemma
4.4.3 shows that A(G,) must also fail to be operator weakly amenable. Hence there
exists a non-zero completely bounded derivation D : A(G,) — VIN(G;).

If K is a normal subgroup of G;, then A(G;/K) is completely isometrically
isomorphic to the subalgebra A(G; : K) of A(G1) consisting of functions which
are constant on left cosets of G. (This follows from the fact that pg * VIN(G,)
is *-isomorphic with VIN(G,/K) where px is the Haar measure on K). It follows
that if A(G/K) is operator weakly amenable, then so is A(G; : K). But VIN(G,)
is a symmetric A(G; : K) operator module. Therefore the restriction of D to
A (G : K) must be identically 0 whenever A (G, : K) is operator weakly amenable.

The almost connected group G is a projective limit of Lie groups [65]. Therefore
for any u € A(G) we can find a compact normal subgroup K, such that G;/K, isa
Lie group and such that there exists a function u, € A(G1 : Ki) with [[u,—u|lae) <
1/n ([30]). Let H, be the connected component of G, /K,. Then H, is a connected
Lie group, and hence by assumption A(H,) is operator weakly amenable. But H,
is open in G,;/K,, so by Lemma 4.4.3, A(G,/K,) = A(G, : K,) is also operator
weakly amenable. We can conclude as above that D(u,) = 0. However, since D is
continuous, we get that D(u) = 0 for each u € A(G) contradicting the assumption
that D was non-zero. Hence A(G;) must also have been operator weakly amenable

and in turn so was A(G). |



CHAPTER 4 OPERATOR WEAK AMENABILITY 93

4.5 Operator Amenability and Weak Operator
Amenability of the Second Dual of A(G)

Let A be a completely contractive Banach algebra. Then as always A™ can be
made into a Banach algebra with either of the two Arens multiplications. Observe
also that A™, the standard second dual of A, is an operator space under the dual
structure inherited from A* and hence from A. We claim that A is a completely
contractive Banach algebra with respect to either Arens product. To see this note
that M, (A™) = (ML(A))"" and the closed unit ball of M, (A) is weak-* dense in
M,. (A"™). As such, every contractive element in M, (A™") is the weak-* limit of a net
of contractive elements in M, (A). From this we deduce that with respect to either
Arens product, A™ is completely contractive. Finally, if X is a quotient of A™,
X also becomes a completely contractive Banach algebra. Therefore, A(G)*™ and

any of its quotients for which we are concerned below are completely contractive

Banach algebras.

THEOREM 4.5.1:  Let X be a topologically introverted subspace of VN(G) which
contains C5(G). If X* is operator weakly amenable, then every abelian subgroup H

of G is finite. Moreover, G is discrete.

Proof: It follows from the proof of [31, Theorem 3.2] that if G has an infinite
abelian subgroup, then X™ has a nonzero point derivation. Proposition 4.3.5 would
then imply that X™ could not be operator weakly amenable. We can therefore

assume that G has no such subgroups.

Let Gy denote the connected component of e. Then since G is periodic, so is

Go- Moreover, the same is true for any homomorphic image of Go. Let U be a
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neighborhood of e in Gy. Then there exists a compact normal subgroup N C U
such that Gy/N is a periodic, connected Lie group. Therefore Go/N is trivial.
Since this is true for all such U, Go must be trivial. In particular, G is totally

disconnected.

If G is nondiscrete and totally disconnected, then G contains an infinite compact
subgroup K. However, by [80, Theorem 2] the infinite compact group K contains
an infinite abelian subgroup which is impossible since G contains no such subgroup.

It follows that G is discrete.

COROLLARY 4.5.2  Let X be be any of the spaces AP(G), WAP(G), or UCB(G).

If X~ is operator amenable, then G is an amenable discrete group.

If X = VN(G), then X~ is operator amenable if and only if G is finite.

Proof: Assume X~ is operator amenable where X is any of the spaces above.
Then by Theorem 4.5.1 G is discrete. Moreover, since X~ is operator amenable it

has a bounded approximate identity [68].

If X = AP(G),WAP(G) or UCB(G), then B4(Gy) is a quotient of X~ [31].
However, since G is discrete, Bs(Ga) = Ba(G), the reduced Fourier-Stieltjes algebra
of G. In particular, B,(G) also has a bounded approximate identity. It is easy to
see that 1g is a weak-* cluster point of this approximate identity in B(G). Since
B\ (G) is weak-* closed we get 1¢ € B,(G). Moreover, since By(G) is an ideal in
B(G), BA(G) = B(G) and hence G is amenable.

If X = VN(G), then it follows from [56, Proposition 3.2 (b)] that G is compact
and thus finite. Conversely if G is finite, then VN(G)* = A(G), which is clearly

operator amenable. |
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For any of the spaces X = AP(G), WAP(G),UCB(G) or VN(G), we get from
Theorem 4.5.1 that if X is operator weakly amenable, then G is periodic with no
infinite abelian subgroups. This is a severe restriction of the nature of G. The
following two corollaries are obtained in the same manner as [31, Corollary 3.1 and

3.5]

COROLLARY 4.5.3:  Let G be a locally compact group which satisfies one of the
following conditions: i) G is locally finite; iz) G is an elementary group; i) G is
locally solvable; or iv) G is tsomorphic to a subgroup of GL(n,F) for some n and
any field F. If X is a topologically introverted subspace of VIN(G) which contains
C;(G4), then X is operator weakly amenable if and only if G is finite.

Recall that a discrete group G has polynomial growth if for every finite set
F C G there exists a2 p € N such that |F| = O(n?). It follows from the proof of [31,
Corollary 3.5] that if G is infinite, it must contain an infinite abelian subgroup H.
Theorem 4.5.1 implies:

COROLLARY 4.5.4:  Let G be a discrete group of polynomial growth. Let X be a
topologically introverted subspace of VN(G) which contains C5(Gy), and such that

X 1is operator weakly amenable, then G s finite.

The results of this section are natural analogs of earlier results obtained in
[31],(38] and [58] for the second dual of A(G) viewed as a Banach algebra. For
example, in Corollary 4.5.2 we showed that A (G)™ is operator amenable if and
only if G is finite. This was proved by Granirer in {38] for amenability in the
category of Banach algebras. We note however that it is known that for the second
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dual A™ to be amenable, A must itself be amenable [36]. Since we have already
stated that A(G) is in general not amenable even for compact groups, Granirer’s
result is quite natural. However, since A(G) is operator amenable for any amenable
group, one might expect that it would be more likely that A (G)™ would be operator
amenable. Corollary 4.5.2 shows that this is not the case. In fact the significance of
this section is that all the known results for amenability and weak amenability for
quotients of A(G)* hold in the new category. This shows that unlike the case of
A(G) itself, barriers for amenability and weak amenability of quotients of A(G)™
do not disappear with the addition of the operator space structure. Curiously,
the reason for this could be, as suggested by the proof of Theorem 4.5.1, that the
obstacles arise from the presence of abelian subgroups where our two notions of

amenability agree once again.

4.6 Amenability and Weak Amenability of Ideals
in A(G)

In this section, we will take a brief look at operator amenability and operator weak
amenability for ideals in A(G).

We know that if A(G) is operator amenable, then G must be amenable. We can
ask if there are any structural implications of the existence of a closed ideal in A(G)
which is operator amenable. Since the Fourier algebra of a discrete group always
contains such an ideal, namely the one-dimensional ideal of functions supported
on the identity, perhaps the best one could hope for would be to show that our
group must contain an open amenable subgroup. In fact, we shall show that this is

indeed the case. The key to our proof will be the fact that each operator amenable
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completely contractive Banach algebra contains a bounded approximate identity.

LEMMA 4.6.1:  Let G be a locally compact group. Assume that A(G) has a
nonzero ideal I with a bounded approzimate identity. Then G has an open amenable

subgroup.

Proof: Let G, be an open almost connected subgroup of G. Let F = Z(Z).
Since Z is non-zero, there exists an zq € G \ Z(Z). By translating if necessary,
we may assume that zo € G;. Then Z; = 15,7 can be viewed as a closed ideal in
A.(G;1) which is nonzero and has a bounded approximate identity. It follows from

(29, Proposition 3.5] that G; is amenable. |

THEOREM 4.6.2:  A(G) has a nonzero closed ideal which is operator amenable

if and only if G has an open amenable subgroup.

Proof: Assume that G, is open and amenable. Then Z(G\ G, ) is a closed ideal of
A(G) which is completely isometrically isomorphic to A(G;). Since G; is amenable,
Z(G \ G,) is operator amenable.

Conversely, assume that T is a non-zero closed ideal of A(G) which is operator
amenable. Then by [68], T has a bounded approximate identity. It follows from
Lemma 4.6.1 that G has an open amenable subgroup. |

COROLLARY 4.6.3:  If A(G) has a non-zero ideal T which is operator amenable,

then A(G) is operator weakly amenable.
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Proof: Since G has an open amenable subgroup, this follows immediately from

Theorem 4.4.4, and Theorem 4.6.2. |

It was observed in [29], that the Fourier algebra of SL(2,R) did not have any
amenable closed ideals. Theorem 4.6.2 allows us to extend this result to the category

of operator spaces.

COROLLARY 4.6.4: A(SL(2,R)) has no non-zero closed operator amenable ide-
als.

In [35], it was shown that if a closed ideal T in A (G) posses a bounded approx-
imate identity, then there exists some F € §.(G) such that T = Z(F). Clearly,
these are the only possible candidates for operator amenable ideals. To determine
whether or not these ideals are in fact operator amenable, we will need the following

analog of [49, Proposition 5.1]

THEOREM 4.6.5:  Let A be an operator amenable completely contractive Banach
algebra, Let I be a closed ideal of A. Then T is operator amenable if and only if T

has a bounded approzimate identity.

Proof: Let {e.} be a bounded approximate identity in 7 with ||e,|| < M for each

Q.

Let X be an operator Z-module. Since Z has a bounded approximate, in order
to show that each completely bounded derivation from A into X~ is inner, we may

assume just as in the bounded case that X is neounital. As such X* becomes
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an operator A module with respect to the induced action of A on X~. That is if
' = al';bwherea,b € Tand '} € X*, then for any u € A, ul’ = (ua)l'1b and T'u =
al'; (bu).

Let D : T — X* be a completely bounded derivation. Then D lifts to a
derivation D : A ~ X~, with D(x) = lim, D(equ) for each u € A [49]. Let
[ui;] € M(A). Then

I

ID™ ([u))lla = lim || D(eats;)]ln
Lm || D|les |l [€atssi]lln
< sup | Dlles Il €allll (25}l

< I Dlles M| {wis]lln

IA

It follows that D is a completely bounded extension of D to .A. However, since
A is operator amenable D is inner, and hence D is inner. Thus Z is also operator

amenable.

The converse is obvious since each operator amenable completely contractive

Banach algebra has a bounded approximate identity.

We close with the following complete characterization of those ideals in the

Fourier algebra of an amenable [SIN] group which are operator amenable.

THEOREM 4.6.6:  Let G be an amenable [SIN] group. Let T be a closed ideal in
A(G). Then T is operator amenable if and only if Z(T) € Q.(G)
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Proof: By Theorem 4.6.5, we know that T is operator amenable if and only if
it possesses a bounded approximate identity. However in [35] it was shown that

an ideal in a [SIN] group posses a bounded approximate identity if and only if
Z(T) € Q.(G).



Chapter 5

Automatic Complete

Boundedness of Maps

5.1 Introduction

In [68], Ruan showed that amenability for the Banach algebra L!(G) is equivalent
to operator amenability when L!(G) is given the operator space structure that it
inherits as the predual of the von Neumann algebra L**(G). This follows from the
fact that L'(G) has the M AX operator space structure and as such every bounded
map from L}(G) into an operator space X in completely bounded. Moreover, any
Banach L!(G)- module can be given the M AX operator space structure which will
make it into an operator L!(G)-module. As such any bounded derivation into a
dual L'(G)-module can be viewed as a completely bounded derivation into a dual
operator L'(G)-module. When considering the Fourier algebra of G the situation

can be quite different.

In this Chapter we discuss for which groups G, we have that every bounded

101
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map from A(G) into any operator space is automatically completely bounded.

5.2 Automatic c.b. of Maps on A(G) and B(G)

We begin with the following:

PROPOSITION 5.2.1  Let G be a locally compact group. Then A(G) = A(G)max
f and only if G is abelian.

Proof: The standard dual of A(G) is the von Neumann algebra VN(G) and
A(G) = A(G)max if and only if VN(G) = VIN(G)arin (see [10]). Since VN(G) is
a unital operator algebra, VN(G) = VN(G) 1w if and only if VN(G) is abelian
[11]. However VN(G) is abelian if and only if G is abelian. [ |

Clearly if G is abelian, then since A(G) = A(G)max and A(G) is completely
isometrically isomorphic with L*(G), there is little to be gained by looking at A(G)
as a completely contractive Banach algebra rather than simply as a Banach algebra.
We will now show however, that if G does not contain an abelian subgroup of finite
index, then the nature of A(G) when viewed as a completely contractive Banach
algebra is fundamentally different from that of A(G) viewed as a Banach algebra.
This we believe explains why it is necessary to retain the operator space structure

when studying the cohomology of the Fourier algebra.

Before providing the main result of this section, we require a few useful obser-

vations.

PROPOSITION 5.2.2:  Let H be a closed subgroup of G. Then A(G)/I(H) is
completely isometrically isomorphic with A(H).
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Proof: Let &2 € A(G)/I(H). Define I' : A(G)/I(H) — A(H) by I'(zw) = v |g
where v is chosen so that @(v) = % and @ : A(G) — A(G)/I(H) is the quotient
map. It is known that ' is an isometric isomorphism of A(G)/I(H) onto A(H)
[34]. To see that I is a complete isometry observe that I(H)* = VNg(G) ={T €
VN(G) :supp(T) C H}. Also VNg(G) is a von Neumann subalgebra of VIN(G)
which is *-isomorphic with VIN(H) [28]. It follows from [10] that (A(G)/I(H))"
is completely isometrically isomorphic to V Ngy(G) and hence to VIN(H). Thus
(A(G)/I(H)) is completely isometrically isomorphic to A(H). [ |

PROPOSITION 5.2.3:  Let H be an open subgroup. Then 1gA(G) is completely
isometrically isomorphic with A(H).

Proof: Let u € A(H). Let u € A(G) be such that u(z) = u(z) if ¢ € H and
u(z) = 0 otherwise. It is well known that ' : A(H) +— A(G) defined by I'(z) = »
is an isometric isomorphism of A(H) into 17 A(G) [28].

Let [u;;] € M. (A(H)) with |[[ui;]]|l= = 1. It follows from Proposition 5.2.2 that
|[Z:5]lln = 1. Let € > 0. We can find [v;;] € Mn(A(G)) such that (] = [ii] and
loij]ll <1+ e. Now

T (fasgDll = gl = 1P (fosi]) e

where P(v) = lgv. However 1y € B(G) and ||1x|| = 1. It follows that ||P||s = 1.
Hence

IT0 (fuss)lfn < L+ e

Therefore we can conclude that ||| < 1.

To complete the proof, observe that I'"! : 15A(G) — A(H) is simply the
restriction of the quotient map @ : A(G) — A(G)/I(H) composed with the com-
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plete isometry of Proposition 5.2.2. It follows that ||[['"!||; =1 and hence that I is

a complete isometry. |

LEMMA 5.2.4: Lett € G. The map L, : A(G) — A(G) defined by Lyu(z) =
u(tz) is a complete isometry of A(G).

Proof: Let L] : VN(G) — VN(G). Then L;(T) = é; T where x is the product
in VN(G). It follows that L; and hence L, is completely bounded with || L/ = 1.
Clearly we also have that ||L;!|l = ||[Le=t|jee = 1, and hence L. is a complete

isometry.

This leads to the major result of this section.
THEOREM 5.2.5  The following are equivalent
(i) Every bounded map from A(G) into any operator space is completely bounded.
(it) Every bounded map from A(G) into VN(G) is completely bounded.
(iii) G has an abelian subgroup of finite indez.
Proof: (i) = (ii) immediate.

(i1) = (iii): Recall that
CB(A(G), VN(G)) = (A(G)®A(G))"

and

B(A(G), VN(G)) = (A(G) &, A(G))"
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where @ and ®., denote the operator space tensor product and Banach space tensor

product respectively. Since from (ii) we have that
B(A(G), VN(G)) = CB(A(G), VN(G)),
we conclude from the open mapping theorem that there exists some number N € N
such that ||®]le < N||®| for each & € B(A(G), VN(G)) = CB(A(G), VN(G)).
Let v € A(G) ® A(G). Then
”u”A(G)éA(G) = sup{®(z) : & € CB(A(G),VN(G)), ||®]ls < 1}
> sup{®(u) : & € B(A(G), VN(G)), ||| < 1/N}

It

1/Nlullaie)e A
This shows that the natural injection
ing : (A(G) ® A(G), || - ll+) = (A(G) @ A(G), | - |Ia)

extends to an isomorphism of A(G) ®, A(G) onto A(G)®A(G). To complete the
proof, observe that the canonical injection of A(G)®A(G) into A(G x G) is known
to be surjective ([25]). It follows that the same will be true of the canonical injection
of A(G) ®, A(G) into A(G x G). Using a result of Losert [62], we conclude that
G has an abelian subgroup of finite index.

(1) = (i): Assume that G has an abelian subgroup H of finite index in G. Let
{z:H} be a complete set of cosets of G. Then 1y is a completely bounded projection
of A(G) onto a sub-algebra of A(G) which is completely isometrically isomorphic
to A(H). Since H is abelian, A(H) has the M AX operator structure. It follows
that every bounded linear map from A(H) into any operator space is completely
bounded. Thus if T is a bounded linear map from A(G) to any operator space,
the above argument and Lemma 5.2.4 shows that Tol, g is completely bounded.
However, since T = Y .., Tl it follows that T is also completely bounded. W
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We can extend this result to B(G) with the following:

COROLLARY 5.2.6:  Let G be a locally compact group. Then every bounded map
from B(G) into an arbitrary operator space X is completely bounded if and only if

G has an abelian subgroup of finite indez.

Proof: If H is abelian, we note that B(H) is again the predual of an abelian von
Neumann algebra and is hence a M AX operator space. We can proceed as before
to show that 1gB(G) is c.b. 1somorphic to B(H) when H is an open subgroup of
G. Thus when G has an abelian subgroup of finite index, that every bounded map
from B(G) into an arbitrary operator space is completely bounded follows in the

same manner as for A(G) above.

To prove the converse, first note that A(G) is a complemented ideal in B(G)
and the projection P is induced by the central projection in W=(G) corresponding
to the left regular representation ([5]). As such P is completely bounded. If G
does not have an abelian subgroup of finite index, then by Theorem 5.2.5 there is
an operator space X and a linear map I' : A(G) — X which is bounded but not
completely bounded. Then I'eP is the desired map.

It is worthwhile to shed further light on the previous two results. Let = be a
continuous unitary representation of G. Let A, denote the closed subspace of B(G)
generated by the coefficient functions of . Then A, inherits an operator space
structure from B(G). Moreover, the central projection P, in the von Neumann
algebra B(G)* = W*(QG) associated with = is such that A, = P,B(G) and A: =
VN, = P,W*(G) (see [5]). If = is irreducible, then VN, = B(H,) and hence
Ar = TC(H,), the trace class operators on the Hilbert space H,. Moreover,
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since the operator space structure on B(G) is the standard predual operator space
structure, the induced structure on A, agrees with the standard operator space

structure T'C (Hy) inherits from B(H,).

Let G be a locally compact group with an infinite dimensional irreducible
representation w. From the remark above, we see that A, = TC(H,). Let
I : B(H,) — B(H,) be the transpose map. Since I’ is weak-* to weak-* con-
tinuous and has norm 1 , the preadjoint map I'. : TC(H,) — T C(H,) also has
norm 1. However, since it is well known that ' is not completely bounded, neither
is I'. which we view as a bounded map from A, onto itself. It follows that the map
o P, is a bounded map from B(G) into B(G) which is not completely bounded.

Now let G be a locally compact group which has irreducible finite dimensional
representations of arbitrarily large degree. Then we can construct in a similar
manner as above a bounded map from B(G) into B(G) which is not completely
bounded. Let {m,} be a sequence of irreducible finite dimensional representations
with dim #, > dim =n,, whenever n > m. Let # = € m, be the direct sum of
the m,’s. Then by [5], the space Ar = @1 Ar, = @ TC(Hy,). It follows from
[10] that as an operator space A, is the operator predual of VN = @ VNq, =
D1 Miim .- If we define ' : A, — A, by I' = @B([n). where Ty : Myjy =, —
Mim «, is the transpose map and (T;). is its preadjoint, then once again T is a
map of norm one. However, since ||[s|[ > dim 7, ' is not completely bounded.
If we again let P, denote the central projection in W(G) associated with w, then
the I'* Py is once more a bounded map from B(G) onto A, which is not completely
bounded.

Finally, since G has finite dimensional irreducible representations of bounded
degree if and only if G has an abelian subgroup of finite index, we have established
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an alternate proof of Corollary 5.2.6. We have also provided a proof for the following

proposition:

PROPOSITION 5.2.7:  Let w be a continuous unitary representation of G. If either
T contains an infinite dimensional irreductble subrepresentation or if m contains
finite dimensional subrepresentations of arbifrarily large degree, then there exists a

contractive linear map ' : Ay — A, which is not completely bounded.

A locally compact group is said to belong to the class [AR] if the left regular
representation A is completely reducible. It is well known that for G € [AR], A(G)
has the Radon-Nikodym Property (in fact this characterizes the groups in [AR]
[75]) and hence that the unit ball of A(G) is the closed convex hull of its extreme
points. [AR] contains not only all compact groups but also a variety of noncompact
groups (see {7]). The az + b group is in [AR] as its left regular representation is the
direct sum of two infinite dimensional irreducible representations.

PROPOSITION 5.2.8: Let G be either a noncompact [AR] group or a compact

group which does not contain an open abelian subgroup. Then there ezists an isom-

etry from A(G) onto A(G) which is not completely bounded.

Proof: In either case, the map I’ constructed as in the remark preceding Propo-
sition 5.2.7 is an isometry of A(G) onto itself which is not completely bounded.

|
We can make a case for the significance of the results of this section for our
study if we recall what is currently known concerning the bounded cohomology of

A(G). At present, the only known groups for which A(G) is amenable are those
which contain an abelian subgroup of finite index. That the Fourier algebra of such
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a group is amenable was originally proved for compact groups by Johnson [48]. The
same result was later established for general locally compact groups by Lau, Loy
and Willis in [59] and independently by Forrest in [29]. However, Johnson showed
that for a finite group, the minimal norm for a virtual diagonal for A(G) is given

by
Efeé(dim w)3
2r€G“(dim 1r)2 i

This provided the first concrete evidence to suggest that in the presence of either
an infinite dimensional irreducible representation or of finite dimensional represen-
tations of arbitrarily large degree, (precisely the setting of Proposition 5.2.7) A(G)
would fail to be amenable. In [59], Johnson’s work was refined considerably and the
case for the link between amenability of A(G) and “approximate commutativity”
of G was strengthened.

Finally, note that the fact that A(G)®A(G), the operator space tensor prod-
uct of A(G) with itself, is completely isometrically isomorphic to A(G x G) is at
the heart of Ruan’s theorem that A(G) is operator amenable precisely when G is
amenable. Moreover, the failure of the corresponding result for the Banach algebra
projective tensor product in the absence of an abelian subgroup of finite index (as
demonstrated by Losert [62]) is the essence of our proof of Theorem 4.5. Indeed, one
might view Theorem 5.2.5 as a restatement within our current context of Losert’s
theorem. Once again, we are led to conclude that Banach algebra amenability for
A(G) is a commutative phenomenon, whereas the category of operator spaces with
its richer structure provides the appropriate setting for studying the cohomology of
the Fourier algebra of a typical locally compact group.
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5.3 Automatic Complete Boundedness and Deriva-

tions

In section 5.2 we showed that unless G contained an abelian subgroup of finite index,
there are bounded linear maps from A(G) into VIN(G) which are not completely
bounded. Conversely, if G does contain such a subgroup, then it is clear that each
bounded derivation from A(G) into VIN(G) is completely bounded. Moreover,
since any such group is amenable, every derivation from A.(G) into any Banach
A(G) module is automatically continuous [32] and hence is automatically com-

pletely bounded.

Since one of our main interests in this Chapter is to study the potential operator
weak amenability of A(G) as compared with the usual notion of weak amenabil-
ity of A(G), a natural question arises: For which locally compact groups are all
(bounded) derivations from A(G) into VIN(G) automatically completely bounded?
More generally, when is any derivation of A(G) into any arbitrary A(G)-module
automatically completely bounded?

Recall that in [29] Forrest showed that any locally compact group with an
abelian connected component is such that A(G) is weakly amenable. It follows
that in this case the only bounded derivation from A(G) to VN(G) is zero, which
is trivially completely bounded. We can speculate about the possibility that these
are the only such groups without bounded derivations into VIN(G) that are not
completely bounded.

We begin with a proposition which is somewhat analogous to {32, Theorem 1].
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PROPOSITION 5.3.1:  Let G be a locally compact group such that every derive-
tion from A(G) into a finite dimensional, symmetric operator A(G)-module is com-

pletely bounded, then G ts amenable.

Proof: Assume that G is not amenable. Then A(G)? is not closed in A(G) [61].
We follow the construction in [21]. In particular, we can find a closed cofinite ideal
Z in A(G) and another cofinite ideal K which is not closed and satisfies 7> C K C Z.
Let X be the radical of the finite dimensional algebra A(G)/K. Then X = I/K.
By Wedderburn’s Theorem there exists a subalgebra B of A(G)/K such that

AG)/)K=Ba X
with multiplication in B & X given by
(b1, 21) (b2, z2) = (b1d2, bizz + 21b2).

Let T' : A(G) — A(G)/K be the quotient map and define a symmetric A(G)-
module structure on X by

a-z=I(a)z=z-a

We wish to recognize X as an operator A(G)-module. First we fix any norm || -||x
on X. Now we define a new norm || - ||' on X by setting for all z € X

[z]" = sup{lla - =||x : l|all <1}.

Since the kernel of the map a + a -z is closed for each z € X, it is now easy to
see that the finite dimensional module X is a Banach A(G)-module with respect
to the norm || -||’ on X. Now we can give X the MIN operator structure. Since X
is finite dimensional, it is easy to see that the module action extends to a bounded

map

m: A(G)®MIN(X) — MIN(X)
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which is clearly completely bounded. The small difficulty is that this map is not
necessarily completely contractive. To correct this we define a new collection of

operator space norms || - || on M(X) by the formula

=351l = sup{lllexz:;]llnmpry : [au] € M (A(G)), |l[an]llm < 1}

It is now straightforward to verify that with this new structure, the module map is

completely contractive and hence X is a symmetric operator A(G) bimodule.

Finally, if IT is the projection of A(G)/K onto its second coordinate, then D =
IleT’ is a derivation from A(G) into X. Moreover, since (ker D) N J = K is not

closed, D is not continuous and hence is not completely bounded.

We can obtain a converse to the previous proposition for the class of locally

compact groups with an abelian subgroup of finite index.

PROPOSITION 5.3.2:  Let G be a locally compact group with an abelian subgroup
of finite indez. Then every derivation from A(G) into an operator A(G) module is
completely bounded.

Proof: Since G is amenable, every derivation from A(G) into any Banach A(G)
module is automatically bounded [32). It now follows from Theorem 5.2.5 that every

derivation into an operator A(G) module is automatically completely bounded.

While for amenable groups, derivations from A(G) into VIN(G) are automati-
cally bounded even for groups such as SO(3) it is not the case that they are always
completely bounded. In fact, it turns out that for compact Lie groups, Proposition
5.3.2 was the best we could do.
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COROLLARY 5.3.3:  Let G be a compact Lie group. Then every derivation from
A(G) into VN(G) is completely bounded if and only if G has an abelian subgroup
of finite indez.

Proof: The "if” direction follows immediately form the previous proposition.

Conversely, since G is amenable, A(G) is operator amenable, and hence clearly
operator weakly amenable. It follows that the only completely bounded derivation
from A(G) into VN(G) is the zero map. However, A(G) is not weakly amenable
[48]. This means there must exist a nonzero bounded derivation D from A(G) into

VN(G) which cannot be completely bounded. |

For noncompact Lie groups we have the following:

PROPOSITION 5.3.4: 1) Let G be a Lie group. Assume that every bounded deriva-
tion from A(G) into a symmetric operator A(G)-module is completely bounded.
Then every compact subgroup K of G has an abelian subgroup of finite indez.

i) Let G be a semisimple Lie group with a compact connected component K.
Then every bounded derivation from A(G) into VIN(G) is completely bounded if
and only if G is discrete.

i1z) Let G be a semisimple Lie group with a compact connected component. Then
every derivation from A(G) into a symmetric operator A(G)-module is completely

bounded if and only if G is amenable and discrete.

Proof: By Lemma 4.4.1 the restriction map R establishes a completely contrac-
tive homomorphism from A(G) onto A(K). This allows us to view VN(K) as a
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symmetric operator A(G)-module with respect to the action defined by v - T =
R(u) T = TO R(z) = T -u for each v € A(G),T € VN(K) (here ® de-
notes the usual action of A(K) on VN(K)). If K does not have an abelian
subgroup of finite index, then Corollary 5.3.3 shows that there exists a deriva-
tion D : A(K) — VN(K) which is bounded but not completely bounded. Let
D(u) = D(R(w)) for each u € A(G). Then it is easy to see that D defines a
bounded derivation from A(G) into VN(K). We claim that D is not completely
bounded.

Observe that R = I''Q where Q : A(G) — A(G)/I(K) is the quotient map and
C:A(G)/I(K) — A(K) is the map defined in Proposition 5.2.2. Let M > 0. Since
D is not completely bounded, there exists [u;] € ML (A(K)) with ||[ug]ll. < 1
but ||D([ui]lln > M. However since Q is a complete quotient map and I is a
complete isometry there exists [v;] € M, (A(G)) with ||[vij}|ln <2 and R ([vs]) =

(ToQ) ™ ([vs5]) = [ws;]. Thus [ D™ ([vi])|ln = 1D [us]]] > M. Hence D is not
completely bounded.

ii) Assume that K is not abelian. Then as before A(K) is not weakly amenable
and hence by [29, Lemma 2.1] A(G) cannot be weakly amenable. However K is
open since G is a Lie group. Furthermore A(K) is operator weakly amenable since
K is compact. Thus by Lemma 4.4.3, A(G) is operator weakly amenable. This
means there exists a nonzero bounded derivation from A(G) into VN(G) which is
not completely bounded. Since this is impossible, K must be abelian. However,

since G is semisimple, this means that K is trivial and hence that G is discrete.

For the converse, we observe that if G is discrete, then A(G) is weakly amenable
[32] and the only bounded derivation of A(G) into VIN(G) is the zero map which
is obviously completely bounded.
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iii) Assume that every derivation from A(G) into a symmetric operator A(G)-
module is completely bounded, then by (ii) G is discrete. Moreover, by Proposition
5.3.1, G must be amenable.

The converse follows trivially since, if G is discrete A(G) is operator weakly
amenable and if G is amenable then every derivation is bounded [32]. As such the
only derivation from A(G) into a symmetric operator A(G)-module is once again

the zero map.

We can apply the previous Corollary to the family R™ x, SO(n) of Euclidean

motion groups to conclude that:

COROLLARY 5.3.5: Let G be the semidirect product R™ x, SO(n) where the
action of SO(n) on R™ is the natural action. If n > 3, there ezists a bounded
derivation D : A(G) — VIN(G) which is not completely bounded.

The various types of amenability which we have mentioned have one major
structural flaw in common - they are not inherited by subalgebras. In particular, we
do not know if given a compact normal subgroup K, A(G) being (operator) weakly
amenable implies that A(G : K) =2 A(G/K) is also (operator) weakly amenable.
Were this the case, we would be able to make significant progress in classifying those
groups for which A(G) is (operator) weakly amenable. For example, if we knew
that A(G/K) always inherited weak amenability from A(G), we could conclude



CHAPTER 5. AUTOMATIC COMPLETE BOUNDEDNESS OF MAPS 116

that for G € [SIN], weak amenability of A(G) would be equivalent to G having
an abelian connected component [29, Theorem 2.7]. In this case, it would be true
that for any [SIN]-group with a nonabelian connected component there would be
a bounded derivation from A(G) into VN(G) which was not completely bounded.

At present the best we can do is the following related result:

PROPOSITION 5.3.6:  Let G be a [SIN] group for which Go ts not abelian. Then
for every neighborhood U of the identity, there ezists a compact normal Ky C U
and a bounded map I'y : A(G) — VN(G/Ky) which is such that the restriction of
Ty to A(G : Ky) is a derivation that is not completely bounded.

Proof: Let Gy be the connected component of G. Then Gy = VXK where V
is a vector group and K is a nonabelian compact connected group ( see [65]). Let
U be a neighborhood of e € G. Then, since G is a projective limit of Lie groups,
there exists a compact normal subgroup Ky C U such that G/Ky is a Lie group
and if ¢ : G — G/Ky is the quotient map, then ¢(K) is a nonabelian compact
connected subgroup of G. It follows from (48] and [29] that A(G/Ky) is not weakly
amenable. Hence there exists a nonzero bounded derivation Dy from A(G/Ky) into
VN(G/Ky).

Since A(G/Ky) is completely isometrically isomorphic to A(G : Ky), we may
assume that Dy maps A(G : Ky) into VN(G/Ky). Finally, let Pk, be the pro-
jection of A(G) onto A(G : Ky). Then 'y = Dy°Pg,, is the desired map. |



Chapter 6

Complemented Ideals in A(G)

6.1 Introduction

The contents of this Chapter investigates which closed ideals of the Fourier algebra
of a locally compact group are complemented. Indeed, it is this question which
served as the author’s original motivation for studying the homological properties

of completely contractive algebras.

To understand the history of this question, we consider the group algebra of the
circle group G = T. We recall the Hardy space H'(T) which is defined by

H(T) = {f e LY(T): f(r) =0 for all = <0}

Note that the function g(z) = 2™ satisfies §(k) = 0if ¥ # n and g(k) = 1 if
k = n. From this it is easy to see that H!(T) is simply the closure of the analytic
polynomials in the L'(G) norm. (see [23]).

117
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Note that f g(n) = f(n) - §(n) from which it is easy to see that H!(T) is a
closed two sided ideal of L*(T).

For some time it was questioned whether H!(T) was complemented in L*(T).
The answer to this question goes back to D.J. Newmans result [64], and more
generally Walter Rudin’s paper ([71]) in 1962, where he classified the complemented
ideals in L!(G) for compact abelian groups. To begin this chapter, we shall review

his construction, which will serve as our motivation for the general question.
For z € G we define the translation map
7z : LY G) = LY(G)
given by
m=(f(y)) = f(z"'y).

A subspace X of L!(G) is called trenslation invariantif .(f) € X forallz € G
and f € X.

It is well known (See (72, p. 157]) that Z is an ideal of L!(G) if and only if Z is

translation invariant.

Suppose Z is complemented, and let P : L'(G) — Z be a continuous projection

onto the ideal. Now let

Tf= / To-1 P(1-f)dz
G
then Tfe€Z, Tf=fVfe€Z, and T, = 7.T and thus we get
T(f=g)=f=T(g)

which implies T'f = f * p for some g € M(G). Since T is a projection, p is

idempotent and hence by Cohen's Idempotent Theorem we have

RI)={yeG: f(r) =0VfeI} e QE)
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where Q(G) represents the closed coset ring of &

Conversely if h(T) € Q(G), then there is an idempotent measure g with Z(p) =
h(Z). Therefore the projection defined by

P(fy=f*up
is a projection onto Z, whence it is complemented.

Thus we conclude that the ideal Z is complemented if and only if A(Z) € Q(G).
In particular, since Z~ ¢ Q(G) it follows that H? (T) is not complemented in L*(T).

We note that the idea in the proof was to “average away” the effects of the group
to produce a projection which commutes with translations, and hence commutes

with convolution.

If G is non-compact the previous construction does not work since m(G) = oco.
In [70] H. Rosenthal extended this result to the non-compact case by using the
amenability of the group in the same spirit as Rudin.

Consider 1 — P* : L®(G) — Z*. We can use the invariant mean on L*(G) to
get a map T : L®(G) — I such that T'(f x ¢) = f « T(¢) (i.e. T commutes with
the L!'(G)- module action). Thus Z* is invariantly complemented and hence Z has
a bounded approximate identity. From this it can be shown that h(T) € Q(Gy) the
coset ring of G with the discrete topology.

Unfortunately the converse to the above result is false. Indeed the question
of identifying sufficient conditions for an ideal to be complemented is extremely
difficult. For example see [2], for the case G = R, [1] for G = R? and the papers (3]
and [4] for further discussion on this question.
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To understand our current approach, we consider the following sequences of
L}(G)-modules
$:0= T LYG) S LYG)/T 0

and its dual sequence
70 I &5 L2(G) &5 T = 0,

where % is the inclusion map, v is the canonical quotient map, and :*, v~ are their

adjoints.

The essence of Rosenthal’s result was to show that if Z is complemented then

2" splits (i.e. <~ and v" have inverses which are module maps).

So in general we wish to consider sequences of A-modules
20X 5hYSze0

and determine when such sequences split. Presumably the reader can recognize the

homological flavour of this question.

6.2 Splitting of Exact Sequences

We begin with the following theorem, which follows from our work in Chapter 3.

(See [79] for an alternate proof).

THEOREM 6.2.1:  Let A be an operator amenable Banach algebra, and let
20X SySZeo0

be an admissible short ezact sequence of operator A-bimodules with X* a dual op-

erator A-bimodule. Then X splits.
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Proof: This is Corollary 3.7.3. |

Suppose A is an operator amenable Banach algebra, and let J be a closed ideal.

We wish to consider the sequence

T:0= T A AT 0
and its dual sequence

20 TS A S T e,

where 7 is the inclusion map, v is the canonical quotient map, and z*,v" are their
adjoints. Clearly z and v are completely bounded module maps and thus so are =

and v*. (Note that (4/7) = J1).

Now suppose that 7 is completely complemented by a projection P : 4 — J.
We define 2 map @ : 4/J — A by

Q(a+J)=a— P(a).
Note that @ is well defined sinceifa+J =b+ J thena—-b € J so
Qla—b+J)=a—-b—Pla—0b)=0.

Furthermore @ is completely bounded and a left inverse for v. Thus we conclude the
exact sequence X" is admissible. We shall say that a submodule Y of an A-module
X is called tnvariantly complemented if there exists a projection T onto X
which commutes with the module action, i.e. T : X — Y such that T'(ez) = aT'(z)
for all a € A and z € X. Applying Theorem 1 we have:

THEOREM 6.2.2: Let J be a closed ideal in an operator amenable Banach alge-

bra. If J is complemented, then J+ is invariantly complemented.
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Now we are ready to provide the connection between complete invariant com-

plementation and bounded approximate identities in the operator space category.

THEOREM 6.2.3: Let A be an operator amenable Banach algebra, and J a
closed ideal. Then J*+ is complemented if and only if J has a bounded approzimate

identity.

Proof: Assume J*' is complemented by a completely bounded projection. Then
by Theorem 6.2.1, X~ splits. In particular ¥* splits as Banach algebras , and hence
by standard Banach algebra arguments, 7 has a bounded approximate identity.
(See [19]).
For the converse we follow [19, Proposition 3.5]. If 7 has a bounded approximate

identity, let ® be a weak-* limit point in J*. Define S : J* — A~ by

(S5(¢),a) =(®,b-a) Ve T .
Clearly :*S = ids.. Now define an operator T on A" by

T(4) = ¢ — Si*(¢).

Routine calculations show that if z € J we have

(Te,z) =(¢,z) — (S, z) =0
and if ¢ € J* then T¢ = ¢. In particular we see that T is a projection onto JL.
It now suffices to show that S is completely bounded (whence T is). Now

1S = sup {|j[S(e:)]ll [d:s] € Mn(T*)}
l[#:5]lI<L
= sup sup {[[(S(ds),au)(} = sup sup {|I(®,¢:;-au)ll}
#5121 lilerd[l €1 lilesillI<t [[lordli<1

= sup sup [|@"™[g;-au]|}
gisll<t Masdli<t

< el
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To see the last inequality, note that & is a linear functional on J= and hence is
completely bounded with || @ ||;s=|| 2 || and we also have that the module action is

completely contractive. Hence S is completely bounded and the result is proven.

Remark: Notice that the operator amenability of the algebra was not necessary
in the construction of the map T. Since T is a module map we can conclude in
general that if J possesses a bounded approximate identity, then 7+ is invariantly

complemented by a c.b. map.
The next corollary now follows easily.

COROLLARY 6.2.4:  If J is complemented closed ideal in an operator amenable

Banach algebra, then J has a bounded approzimate identity.

6.3 Ideals in the Fourier Algebra

Applying the results of the last section, we are able to provide conditions for a
closed ideal in A(G) to be complemented by a completely bounded projection.

THEOREM 6.3.1: Let G be an amenable group. If J is a closed tdeal such
that T+ is complemented in A(G)*, then h(J) € Q(G). In particular if J is
complemented, then h(J) € Q.(G).

Proof: Since G is amenable, A(G) is operator amenable. Therefore by Corollary
6.2.4, J+ complemented by a completely bounded projection implies that J has
a bounded approximate identity {u.,}. It follows from [28] that u, € B(G4) and
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[ 2allB(ca =/l %alla(s)- Let v be a weak-* limit point of this bounded approximate
identity in B(Gy). It is routine to show that u is an idempotent in B(G,) with
Z(u) = h(J). By Host’s Idempotent Theorem [46] we can conclude that Z(u) €
2(G4) and hence h(J) € Q.(G). (See also [34]) o

Remark: We note that Rosenthal’s result ([70]) is for bounded projections, as
opposed to completely bounded projections. However if G is abelian then A(G) =
L!(G) which is known to have the M AX operator space structure. In this case it
follows that every bounded projection is automatically completely bounded, and
hence in particular we see that Theorem 6.3.1 is a true generalization of Rosenthal’s
result to the non-abelian case. Unfortunately, for the Fourier algebra to have the
M AX operator space structure its dual space VIN(G) will have the M IN operator
space structure, (see [10]), from which it follows that VIN(G) is a commutative
operator algebra and hence G is abelian (see [11]). Thus we cannot conclude that

every bounded projection is automatically completely bounded for arbitrary G.

Also note that as discussed earlier the converse of Theorem 6.3.1 is false in
general — even in the abelian case. (See [2] for the case G = R). However, in the
discrete case the converse does hold and we have the following characterization of

ideals complemented by completely bounded maps.

COROLLARY 6.3.2:  Let G be an amenable discrete group. Then J is comple-
mented if and only if h(J) € Q.(G).

Proof:(=>) This follows immediately from Theorem 6.3.1.
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(<) ER(T) = E C Q.(G) then the characteristic function of E, denoted 1g
is an element of B(G)([28]) . Thus the map P(u) = u - 1lg from A(G) onto J
is a completely bounded projection of A(G) onto Z(h(J)) - Since this is a set of
spectral synthesis it follows that Z(h(J)) = J. ®

The following example due to Leinert shows that the condition on the amenabil-
ity of the group is necessary for the previous corollary. Let F, be the free group on
{a,b}. It is well known that F; is not an amenable group. Let E = {a"b" : n =
1,2,...}, then the characteristic function 1g of E is completely bounded (see [60]
for details), however E is clearly not an element of the coset ring. In particular,
I(E) provides an example of a complemented ideal in A(F:) whose hull is not in

the coset ring.



Chapter 7

Summary and Open Problems

QUESTION 1: One of our main objectives in Chapter 3 was to show that ques-
tions and constructions relating to the homology and cohomology in operator spaces
are most naturally realized using the operator space projective tensor product as
the natural product. Many authors who studied the cohomology of operator spaces
and von Neumann algebras (see [66] and [73]) use the Haagerup tensor product as

the basic object. This of course leads to the question:
When do the tensor products ®; and & agree?

In the case that the operator spaces are indeed C=*-algebras, then Kumar and
Sinclair have shown in [55] that the tensor products (and hence the cohomology)
agree exactly when either one of the algebras is finite dimensional, or when both of
the algebras possess a collection of irreducible representations of bounded degree
(C~ algebras of this type are called subhomogeneous — note this corrects [47]).
However in the case of the Fourier algebra, the solution is not so clear. Should it
be the case that the tensor products agree when the group has irreducible repre-

sentations of bounded degree, then our results in Chapter 5 show that this is the
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case exactly when every map from A(G) into any operator space in automatically
completely bounded. In this case we have that the “operator space” homology

corresponds exactly to the “ Banach space” homology.

QUESTION 2: In Chapter 4 we discussed the weak operator amenability of A(G)
and showed that for a large class of groups the Fourier algebra is weak operator

amenable. This leads to the natural question:

Do there ezist groups G for which A(G) is not weak operator amenable?

QUESTION 3:  In Chapter 6 we gave a complete classification of the ideals in
the Fourier algebra of a discrete group which are complemented by a completely
bounded projection. Furthermore we gave necessary conditions for complementa-
tion for general amenable groups. We note that providing explicit sufficient con-
ditions for non discrete groups is extremely difficult and using present techniques
is out of reach. (See [52] for a discussion of the groups R® and R*). However for
non-amenable groups, we still lack any sort of necessary conditions. Our current
approach using the cohomology groups may provide more detailed insight. Since
the sets Ext! represent equivalence classes of extension sequences, perhaps we can
find conditions on the zero set of an ideal in A(G) to be complemented for all

groups with reference to the contents of Ext'. Thus we have the question:

Given an arbitrary non-amenable group G, are there reasonable necessary con-

ditions for an ideal in A(G) to be complemented?
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QUESTION 4:  Our major focus has been on the so called Hochschild cohomology
in the operator space category. However there is another cohomology called the
cyclic cohomology introduced by Connes (See [16]) in the algebraic category. A
Banach space version of this was developed by Christian and Sinclair in [15]. It is
possible to connect this new cohomology with the spaces H"(A, A™), and hence to
the notion of weak amenability. Connes has found interesting applications of this
cyclic cohomology in the study of differential geometry (see [18], [L7]). The ideas of
differential geometry are rather complex, but relate to the notion of replacing usual
“scalar” ideas with that of operators on a Hilbert space. Given that the morphisms
of completely bounded maps are somewhat natural for the category of operators
on Hilbert spaces, it may be interesting to develop a “completely bounded cyclic

cohomology”, which leads to the question

What connections ezist between operator weak amenability and the natural no-

tion of completely bounded cyclic cohomology?

Given the application of cyclic cohomology and noncommutative geometry to
quantum mechanics, (see for example [17]) it would be interesting to see if the

operator space category can find any applications there.

QUESTION 5:  Given a Banach algebra A, there is a natural .A-module structure
on A* which we exploited in our study of weak amenability. Using these same
ideas, it is easy to recognize the second dual A4~ of A as an .A- module, and so
forth. Let us denote the nth dual of A by AM. In [20] Dales, Ghahramani and
Grgnbaek defined the Banach algebra A to be n-weak amenable if each bounded
derivation from A into AM is inner. In [20] it was shown that L(G) is 2n + 1
weak amenable for all groups G. The classification of which groups G are 2n-weak
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amenable remains open. These notions appear to have natural generalizations to
the operator space category. Hence we shall say a completely contractive Banach
algebra A is n-operator weak amenable if OH'(A, A™) = 0. This leads us to

the question:

For which groups G is A(G) n-operator weak amenable.

QUESTION 6: Fundamental to this thesis is the observation that the Fourier
algebra has better “amenability properties” when considered in the operator space
category. In particular we note that the class of groups for which MAX(A(G))
is operator amenable is considerably smaller than the class of groups for which
A(G) with its natural structure is operator amenable. We wonder how altering
the operator space structure can affect the potential operator amenability of a

completely contractive Banach algebra. This leads to the following two questions:

Are MIN(A(G)) and MIN(L'(G)) completely contractive Banach algebras?

Assuming the answer to the above question is yes, then we have:

For what groups G are MIN(A(G)) and MIN(LYG)) operator amenable?



Chapter 8

Appendix A

In this appendix, we provide the equivalent of a Comparison Theorem in our cate-
gory. Perhaps we should first make a few observations. Note that in general we will
be given an additive functor from the category of operator spaces into the category
of operator spaces. The various derived functors of this functor become functors
from the category of operator spaces into the category of linear spaces. The key
1s that the various quotients are not necessarily Banach spaces, hence we cannot

guarantee that the “image” of our functor is inside the category of operator spaces.

The usual comparison theorem for resolutions now asserts that given an additive
functor F and two projective resolutions of X, the functors derived from the two
resolutions are naturally isomorphic (in the target category). However we wish
to show that in the instances that F™(X) are operator spaces, then the derived

functors are in fact c.b. isomorphic.

We begin with the following. Let

...(—Kn__]_ (—lKn ('il Kn+1 — ... (ﬁ)
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d’, dn
ek K E KL~ (R)

be two admissible operator complexes of A modules. A chain transformation

f: & R is a family of c.b. module maps f, : K, — K, such that the resulting
diagram

Kn—l = Kn Kn+1
dn dnt1
fn—l fn fn+l
4 (4 !
Kn—-l d Kn d’ Kn+1
2] n4l

commutes. Note that each function f, defines a function
(fa)e : OH,(R) — OH,. (&)
given by
(Fr)e(F + dni1(Bnt1)) = fa(k) + dryr (Krpy)-
This leads to the following:
PROPOSITION Al:  If Imd,,; and Imd,, are both closed, then (f.). is com-

pletely bounded.

Proof: Let s € N and [k;] € M, (K.), and [k;;] the corresponding element in
OH,(R). Now

IF)DEN = if (| Falhsy) + 15ll 2 35 € Imdl 1}
< inf{|[fa(kss) + fazijll : 225 € Imdnys}
< inf{||fallesllke; + z5ll = 2:5 € Imdnya}
= || fallesllRsll
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Thus (f,). is completely bounded. ]

If f,g: &8 — R are chain transformations, we call a family of c.b. module maps
Sn: Ko+ K, a chain homotopy and say f and g are chain equivalent (and

write s : f ~ g) if

:‘+13n + sn—ldn = fn. + In-
PROPOSITION A2: Ifs:f~g:8+— R then

(fa)e = (gn)« : OHL(R) — OH, ().

Proof: The proof of this claim is identical to the algebraic case. (See [63, p. 40].

We shall say that a chain transformation f : & — &' is a chain equivalence
if there exists a chain transformation k : & — & and chain homotopies s : hf ~ 14

and £ : fh ~ 1g.

COROLLARY A3: If f: R+~ & is a chain equivalence then
(fa)e : OHL(R) = OH, (&)

is an algebraic isomorphism. If OHn(R) and OH,.(R') are both operator spaces,

then (fa)x is a c.b. isomorphism.

Proof: Let h: & > R be a chain transformation such that there is a homotopy
such that s : hf ~ 14. Clearly we have that (f,°h,). = (f)«(fn).- Since (idx,). =
idog, it follows that (fn)«(hn)x = (Rn)<(fa). = id. Thus (f,). is an algebraic
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isomorphism. Now by Proposition Al, if Imd,; and I'md], are closed, then both
(fn)- and (h,). are completely bounded. Hence we conclude that (f,). is a c.b.
isomorphism.

Now we may turn our attention to projective resolutions.

THEOREM A4: Let
—-)P]_—‘)PQ—E-)X(‘.B)

be a projective resolution of X, and let

—+Y1—+Y01’>X:(LD)

be any resolution. Then there exists a chain transformation f, : P, — Y, such that
€°fo = €. Furthermore if g, : P, — Y, is another such chain transformation, then

f and g are chain homotopic.

Proof: The proof of this Theorem requires only categorical properties of projec-
tivity and exactness. See [63, p. 88] for the algebraic case. |

THEOREM A5: Let P and P’ be two projective resolutions of X. Let F be an ad-
ditive functor from the category of operator A-modules to operator A-modules. Then
there ezists a chain equivalence f : F(P) — F(P'). In particular, if OH,.(F(B))
and OH,(F(PB’)) are operator spaces, then they are c.b. isomorphic.

Proof: By Theorem A4, we can find a chain transformation f : f — P’ and
another chain transformation g : B’ — P8 such that there exists a chain homotopy
with s : gf ~ id. Since F is additive, it follows that F(f) and F(g) are chain
homotopic such that F(s) : F(g)F(f) ~ id. By applying Proposition A3, we
have that OH,(F(*B)) is c.b. isomorphic to OH,(F(B)) whenever they are both

operator spaces.
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We observe that this theorem asserts that any two projective resolutions define
the same derived functors up to c.b. isomorphism whenever they produce operator
spaces. However we note that we obtain only c.b. isomorphisms, not completely
isometric isomorphisms. The reason for this appears to be in our choice of operator

complexes and our definition of projectivity in this category.

As an alternative, we could study the operator space category under the follow-

ing assumptions:

(1) All maps in an admissible complex must be complete isometries or complete

quotients.

(2) A module P is projective only if whenever ¢ : P + X/Y is contractive, then

there exists a contractive extension ¢ : P — X.

One can now verify that under the above assumptions (along with the obvious
necessary changes to injectivity etc.) that our derived functors are defined up to
complete isometric isomorphism. There is however a difficulty in using this notion of
equivalence of operator spaces. The above definition of projectivity concentrates on
the problem of extension of maps, while our primary interest in projectivity relates
to the exactness of functors ~ which ignores the “norm preserving” properties of

the extension.
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