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Abstract 

A homological algebra theory is developed in the category of operator spaces which 

closely matches the theory developed in general algebra and its extension to the 

Banach space setting. Using this category, we establish several results regarding 

the question of classifying which ideals in the Fourier algebra of a locally compact 

group are complemented. Furthermore we classify the groups for which the Fourier 

algebra is operator bipro jective. 

Additionally, the notion of operator weak amenability for completely contrac- 

tive Banach algebras is introduced. We then study the potential operator weak 

amenability for the Fourier algebra and various sub-algebras of its second dual. 
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Chapter 1 

Introduction 

The first major goal of this thesis is to construct a homological algebra theory for 

completely contractive Banach algebras. For our purposes, this theory commenced 

for general algebras by Hochschild in [43] [44] and [45], and by Johnson in [49] for 

Banach algebras. 

Taylor in [74] and Khelemskii in [53] and [54] continued this work where they 

provide a complete homology theory for Banach algebras, pardeling that which 

existed for general algebras. Chapter 3 of this thesis builds a homological algebra 

theory in the category of operator spaces. We note that Paulsen in [66] presented 

a cohomology theory in the category of operator spaces using the Haagerup tensor 

product, however the presentation given here uses the operator space projective 

tensor product. Indeed it is one of the major themes of this thesis to demonstrate 

that this is the appropriate object for a homology theory in this new category, and 

for studying the homology of the Fourier algebra. 

Using this theory, we are able to study various properties of the Fourier algebra. 

In fact, it is a second theme of this thesis to demonstrate that when considering 
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questions regarding the Fourier algebra, the operator space category is most appro- 

priate. We note that Ruan's theorem that the Fourier algebra of a locally compact 

group is operator amenable exactly when G is amenable is strong evidence for this 

perspective. 

This thesis is divided into eight chapters. In Chapter 2 we introduce the im- 

portant ideas in harmonic analysis, operator spaces and homology. All the basic 

notation and definitions can be found there. 

Chapter 3 contains all the major results for the development of the homology and 

cohomology theory. The functors ?BA? and CB&?, ?) are introduced, and their 

connection between amenability, flatness, injectivity and projectivity is studied. 

Additionally, we recognize the derived functors of the latter functor as equivalence 

classes of certain extension sequences. Using this notion, we are able to provide 

insight into the question of which ideals in A(G) are complemented. Furthermore, 

we classify for which amenable groups we have that A(G) is operator biprojective. 

In Chapter 4, we introduce the notion of operator weak amenability and we 

demonstrate that for large classes of groups, including all [IN] groups and Hermi- 

tian groups, A(G) is operator weak amenable. Furthermore we study the potential 

operator weak amenability of several sub-algebras of the second dual of A(G). 

We note that the category of operator spaces in indistinguishable from the 

category of Banach spaces whenever it is known that every bounded map from our 

algebra is automatically completely bounded. In Chapter 5 we classify for which 

goups G, the Fourier algebra has this particular property. We move on to discuss 

under what circumstances the Fourier algebra possesses the property that every 

derivation is automatically completely bounded. 

As discussed earlier, we are able to use the homology theory to investigate the 



question of which dosed ideals in the Fourier algebra are complemented. We also 

discuss the classification of ideals which possesses bounded approximate identities, 

which is related to the complementation problem. These results can be found in 

Chapter 6. 

We complete this thesis with a summary of our results, and a discussion of open 

problems, as well as problems for future research. 



Chapter 2 

Preliminaries and Notation 

2.1 Introduction 

This chapter is intended to be a reference to the basic terms and notation used 

in this thesis. It is divided into four main sections. The first section presents the 

primary notation that is used throughout the thesis. The second section introduces 

abstract harmonic analysis and the Fourier algebra. The third section deals with 

operator spaces and the fourth section contains material on homological algebra. 

2.2 

W e  will 

Basic Notation 

use the following notation consistently throughout. 

G will represent an abstract group. We will generally use multiplication for the 

group operation, however if the group is known to be abelian, then addition will 

often be used. 



CHAPTER 2. P l ? , E L L M I N m S  AND NOTATION 5 

Z, B and cC denote the usual integer, real and complex groups under addition. 

T refers to the circle group of C under multiplication i e .  T = { a  E @ : I z I =  1) 

B ( H )  denotes the algebra of continuous linear operators on the Hilbert space 

H, and t ( X )  denotes the algebra of continuous linear operators on the Banach 

space X, under the operator norm 11 11,. 

C(X) denotes the algebra of continuous complex valued functions from the 

topological space X, under the sup norm 11 - 11,. 

Co(X) denotes the subalgebra of C ( X )  of functions which vanish at infinity, 

and C J X )  shall denote the subalgebra of functions with compact support. 

If (X, M, p)  is a measure space, then for E E M, lg shall denote the charac- 

teristic function of E, 

Where X is any Banach space, X' will denote the Banach space of continuous 

linear complex valued function*, under the usual norm. 

Harmonic Analysis 

An abstract group G is called a locally compact group if it is endowed with a 

locally compact Hausdorff topology such that the group operations are continuous. 

Fundamental to our study is the fact that given a locally compact group G, there 

exists a non-negative, non-zero regular Borel measure (called a Haar measure) 

denoted by mc, which is left translation invariant. That is to say 

for every B o d  set E and every g E G. 
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Given a locally compact group G, and two Haar measures r n ~  and n&, it is well 

known that there exists a positive constant X such that n o  = Am&. By convention 

we shall assume that all compact groups have measure 1 and for all infinite discrete 

groups, the measure of a single point set is assumed to be 1. 

Now suppose that we are given a Haar measure mo, and for s E G we define a 

new measure m, by rn.(E) = mc(Es) for all B o d  sets E. It is easy to see that 

m, is left translation invariant, and hence that there exis ts  a constant, which we 

denote A(s) , such that 

m.(E) = A(s)mc(E). 

We call the function A : s e A(s) the modular function of G. It is an easy 

calculation to see that A is a continuous group map from G onto the multiplicative 

group Bf. 

A group such that A(s) = 1 for all s E G is called unimodular. Since the 

continuous image of a compact group is compact, it follows that any compact group 

is unimodular. It is also easy to see that a group is unimodular exactly when the 

Haar measure is also right translation invariant (i-e. mc(Es) = mG(E) ). Hence we 

conclude that all abelian groups are unimodular. (See [42] for these facts). 

The following classes of locally compact groups will be of interest 

[A] = Abelian goups 

[K] = Compact groups 

[MAP] = Maximally almost periodic groups (groups for which the finite dimen- 

sional representations separate points) 

[Urn] = Unimodular groups 

[SIN1 = Small Invariant Neighborhood groups (groups for which every neigh- 

borhood of the identity contains a compact neighborhood which is invariant under 
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all inner automorphisms) 

[INl = Invariant Neighborhood groups (groups having a compact neighborhood 

of the identity which is invariant under all inner automorphisms. 

[Her] = Hermitian (groups for which the group algebra (defined below) is her- 

An excellent reference for the above groups including the relationships between 

the classes is the survey article by Palmer [65].  

Given the measure mc, we shall define the linear space L1(G) to be space of 

equivalence classes of all measurable functions f : G ct C such that the Lesbegue 

is finite, where f -= g for f ,  g E L1(G) whenever f = g almost everywhere. If we 

provide L1(G) with the norm 11 - 11 defined by 

L1(G) becomes a Banach space. 

Since the Haar measure is essentially unique we will usually write rG f(x) dx 
instead of lG f (x) d n c ( x )  when no c o h s i o n  arises. 

Given f E L1(G) we can define an involution on L1(G) by 

For any two functions f ,  g E L1(G) we define their convolution, denoted by 
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It can be shown that f r g E L'(G) and the inequality l l f  * gill lllf lllllglll 

holds for all f ,  g E L1(G). It follows that with convolution acting as multiplication, 

L1(G) becomes an invohtive Banach algebra called the group algebra of G. It 

is well known that the group algebra is commutative exactly when the group is 

commutative. In general L1(G) is not a C*-algebra. 

We fnrther define the Banach space Lm(G) to be the space of essentially bounded, 

mc-measurable functions under the sup norm 11 - 11,. 

Given a topological group G, a positive linear hct iona l  M on LOD(G) such that 

is called a mean. A mean is called left translation invariant if M( f,) = M ( f )  

for all f E L"(G) and x E G where f&) = f(x-Is). A locally compact group G 

is called amenable if there exists a left translation invariant mean on LCO (G). We 

shall say that G is amenable as a discrete group if the group Gd is amenable, 

where Gd is the abstract group G endowed with the discrete topology. 

If G is compact, then the normalized Haar measure is easily seen to be a trans- 

lation invariant mean, hence all compact groups are amenable. It is an easy con- 

sequence of the Markov-Kakutani k e d  point theorem (see [42]) that each abelian 

group is amenable. The classic example of a non-amenable group is IFz, the free 

group on two generators. See [39] and [67] for more on amenable groups. 

Non-amenable groups can possess very interesting and sometimes pathological 

properties in analysis. The most famous example of this arises in the Banach-Tarski 

paradox (see [76]). It is important to note that a group may be amenable with 

respect to one topology, while not with respect to another. For example SO(3) is 
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compact hence amenable as a topological group. However it contains the subgroup 

IF2 which implies that it is not amenabIe as a discrete group. 

Let M(G) denote the Banach space of bounded regular Bore1 measures on G 

with the total variation norm. It is well known that M(G) can be identified with 

Co(G)', the Banach space dual of Co(G), by the duality 

Clearly L1(G) is a dosed subspace of M(G). We can extend the convolution on 

L1(G) to M(G) by the formula 

for each p, v E M(G) and h E Co(G). Furthermore we can extend the involution 

to M(G) by 

under which M(G) becomes a involutive Banach algebra called the measure al- 

gebra of G , containing L1(G) as a closed two sided ideal. 

B y  a continuous unitary representation of G on the Hilbert space K (or 

simply a representation when no confusion arises) we mean a group morphisrn 

where U ( H )  denotes the group of unitary operators on H, such that for every 

a! E H ,  the map 

s ct rr(s)a 
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is continuous. We call H the space of ~r and it is often denoted H,. Furthermore 

we d e h e  the dimension of ?r (denoted dim ? r )  to be equal to the dimension of 

H* 

Suppose we are given two representations nl and ~2 of the group G on the 

Rilbert spaces Hl and Ha respectively. We say that KL and a2 are equivalent (and 

write ?rl - 7r2) if there exists an isomorphism U : HL H Hz which transforms ~l(g) 

into 7r2(9) for d g  E G. That is 

Hence we obtain a class of representations. We usually do not distinguish be- 

tween a representation and its class- We let CG denote the collection of equivalence 

classes of representations of G. 

By far and away the most important representation for our study is the left 

regular representation denoted by X and given by 

for all f E L2(G). 

Given a *-Banach algebra A, we define a *-representation to be an involutive 

algebra morp hism 

such that K is continuous in the weak operator topology on H. Similar to above we 

can define equivalent *-representations and hence we let EA denote the collection 

of equivalence classes of *-representations of A. 

It is well known that each ?r E Eo lifts to a *-representation of M(G) by the 

formula 
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for each p E M(G) and a,p E H,. We call the functions of the form (?r(z)a,p) 

the coeficient functions of T. 

The restriction of n to LL(G) is given by the simpier formula 

This is a non-degenerate *-representation of L1(G) on H,. In fact all such rep- 

resentations of L1(G) arise in this manner. Thus there shall be no ambiguity in 

denoting the equivalence class of non-degenerate *-representations of L1 (G)  by C G. 

We observe that the left regular representation, when lifted to L1(G) has the form 

for all f E LL(G) and g E 

We define the norm 11 

A(f)(s) = f * g  

L2 (G) . 

Ilc=(o) on L1 (G) as follows 

The completion of L1(G) with respect to 11 - ((ce(cl is a C*- algebra called the 

group C*-algebm of G and is denoted C*(G). We can define another norm 11 (I, 
on L1(G) as follows 
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The completion of L1(G) with respect to this norm is denoted CI(G) and is called 

the reduced Ca-algebra of G. I t  is well known that C'(G) = Ci(G) if and only 

if G is amenable. 

We further define C,'(G) to be the C' algebra generated by 

The dual of C'(G) is denoted by B(G). B(G) may be realized as the space of 

coefficient functions of Cc. The duality is determined by the formula 

for u E B(G) and f E CU(G). We let 11 Ile(c) be the norm on B(G) induced by 

this duality. With this norm and pointwise multiplication, B(G) becomes a commu- 

tative, regular semisimple Banach algebra called the Fourier-Stieltjes algebra 

o f G .  

Now let A(G) denote the closed subspace of B(G) generated by the coefficient 

functions of A. Then A(G) is a dosed two-sided ideal of B(G) called the Fourier 

algebra of G. Alternatively, we can view A(G) as the subspace of Co(G) consisting 

of fimctions of the form 

where f i ,gi  E L2(G), i j ( x )  = g(x-') and where 
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The restriction of the norm )I - I I B ( c )  to A(G) is denoted /I - I ( A ( c )  and can be 

given by the formula 

It is possible to remove the "infinite sum7' in the above construction. Indeed 

it is possible to show that A(G) consists of functions of the form u = f * ij for 

f 7 9  E L2(G). 

As a third alternative, A(G) can be recognized as the closure in the B(G) norm 

of the space B(G) n Cc(G) (which the author notes is the most transparent way to 

observe that A(G) is both an algebra and an ideal of B(G)). The Fourier algebra 

was first studied for non-abelian groups by Eymard in 1281. 

The Banach space dual of Ci(G) can be identified with a closed ideal of B(G) 

which we denote B@). BA(G) is the weak-* closure of A(G) and moreover A(G) 

is also a closed ideal of both BA(G) and B(G). 

The dual of C;(G) is denoted by Bs(Gd). It is a weak-* closed subalgebra of 

B (Ga). In general, Bs(Gd) contains A(Ga) and hence Bx(Gd) - Moreover Bs(Gd) = 

B(Gd) if and only if G is amenable. [8] 

All of the above facts can be found in [28] or [22]. 

Let G denote the subset1 of Eo consisting of irreducible representations of G. 

If G is abelian, it is well known that each element of G is one-dimensional. In 

this case it possible to recognize as an abelian topological group called the dual 

group of G. The Pontryagin duality theorem states that G is both isomorphic 

'We note that Co is strictly not a set, however by restricting the size of the Hilbert spaces 

upon which our representations act, we can avoid this set theoretic difliculty 
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and homeomorphic to G. For general non-abelian groups G, we note that the set 

G has no natural group structure, and hence we shall call  this set simply the dual 

of G. 

If G is abelian and p E M(G), we define the Fourier Stieltjes transfom ji 

by 

b( r )  = r ( p )  V T  € G. 

One of the fundamental results in abelian harmonic analysis is that the Fourier- 

Stieltjes transform establishes an isometric isomorphism between M(G) and B(G) 

and that the restriction to the L1(G) (called the Foun'er tmns fom)  is an is* 

metric isomorphism onto A@). 

Note that in general A(G) = B(G) if and only if G is compact. 

Let VN(G) denote the von-Neumann subalgebra of B(L2(G)) generated by 

X(L1(G)) or alternatively generated by X(G). We call VN(G) the group von- 

Neumann algebra of G. It can be shown that A(G)' = VN(G) and that the 

weak-* topology in VN(G) coincides with the weak operator topology. Some au- 

thors write L(G) for VN(G) to help differentiate between the von-Neumann alge- 

bras generated by the left and right regular representations. However since we shall 

make no use of this latter algebra, we need not make this distinction. 

Given an element u E A(G) we define the zero set of u, denoted Z(u) by 

Note that since u is continuous, Z(u) is closed. Also for a closed ideal J c A(G) 

we define the hull of J denoted h(J)  as follows 
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Given a closed set E E G we define the closed ideal Z(E)  by 

The coset r i n g  of G denoted n(G) is the smallest ring of sets, which is closed 

under finite unions, intersections and hansla?5ons containing all open subgroups, 

and we define the closed coset ring of G, denoted SZ,(G) to consist of all elements 

of n(Gd) which are closed in G. 

A closed set E c G is called a set of spectral synthesis (or simply an S-set) 

if Z(E) is the only ideal whose hull is E. The classification of S-sets for general 

groups G seems impossibly difFicult, however some partial results are known. In 

particular, if E is a discrete subset of G then E is known to be an S-set. 

2.4 Operator Spaces 

An operntor space is a vector space V together with a family 11 11, of Banach space 

norms (called opemtor space n o m s )  on m ( V ) ,  the space of n x n matrices 

with entries in V such that 

Il([aiil)A([~iil)lln I Il~aiilllllAIInII[~ijlll 

for each [a;j], [bij] € E ( C )  a d  A E W ( V )  
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We note that given operator space norms [I - 11, on an operator space V, there 

is an induced norm on K: @ V where K: denotes the compact operators. If we let 

CT denote the set of matrix norms, then we shall denote the closure of this tensor 

product by K: @, V. 

Let X and Y be operator spaces and let T : X ct Y. For each n E N define 

The map T is said to be completely bounded (or simply c.b. for short) if 

S U ~ { ~ ~ T ( " ) I ( )  < m. In this case we let llTllcb = S U ~ { I I T ( " ) I [ )  . We say that T 

is a complete isometry if each T(") is an isometry and that T is a complete 

contraction if each T(") is a contraction. We say that two operator spaces X 

and Y are c.b. isomorphic if there exists a c.b. map T : X ct Y such that 

T-' is also completely bounded. Furthermore we shall say that X and Y are c.6. 

isometrically isomorphic (or completely isometrically isomorphic) if the 

map T can be chosen to be a complete isometry. 

For the Hilbert space H, we let 

n 

Since there is a canonical identification between Vu, ( B ( H ) )  and B(H(")),  it is easy 

to show that B(H) (and hence any closed subspace) is an operator space. 

It is a fundamental result in the theory that every operator space is completely 

isometrically isomorphic to a norm dosed subspace S of B ( H ) ,  the algebra of 

bounded operators on the Hilbert space H, where the operator space structure on 

S is the structure inherited fkom B ( H )  ([XI).  
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We note that & @ X B&(X). As such we may recognize the map T(") by 

where id, represents the identity map on MI,&)). Thus we can conclude that 

where idc is the identity map on the compact operators. 

Given a general Banach space X, there exist two natural operator space struc- 

tures called the maximal operator space and minimal opemtor space struc- 

tures denoted MAX(X) and MI N ( X )  respectively. 

We defme the MAX structure as follows: for [aij] E & ( X )  we let 

It is easy to see that given any operator space Y and any bounded linear map 

it follows that T is automatically completely bounded with IITII* = IITII. 

The MIN operator space structure can be recognized in at least three ways: 

first we can consider the natural embedding of X into its second dual X** given by 

where 

5(4)  = 4(x) V 4  E X'. 

If we let X; denote the (compact) unit ball in X* with the weak-* topology, then it 

is easy to see that 9 E C(X;), and hence X becomes identified with a subspace of a 
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CS-algebra. The restriction of the natural operator space on C(X;) to X becomes 

an operator space denoted M I N ( X ) .  

Alternatively, we may consider the matrix norms given by the Banach space 

injective tensor norm (aA) and set h& (X) = X @ A  I& (C). The final alternative is 

to set for [xij]  E K ( X ) ,  

It can be shown that given any operator space Y and any bounded linear map 

we have that S is automatically completely bounded with llSllcb = llSll (see [12] 

and [91) - 

If we let CB(X, Y) denote the space of all completely bounded maps &om X 

to Y, then CB(X, Y) has a natural operator structure which can be obtained by 

identifying (CB(X,  Y)) with CB(X ,  (Y)). It is important to note that con- 

tinuous linear function& are automatically completely bounded. In fact, since we 

can identify X* with C B ( X ,  @) , X* is also an operator space called the standard 

dual of X (see [ l o ] ) .  

For operator spaces X, Y and 2, we call a bilinear map T : X x Y Z jointly 

completely bounded, if for [xi j ]  E m(X) and [yu] E &(Y) we have that 

is finite. Now there is an operator space analogue of the projective tensor product 

which we denote X&Y such that 
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That is to say each jointly completely bounded map extends to a unique map on this 

opera tor  space pnojective tensor pmduct. Zn particular, there is a complete 

isometry between ( x ~ Y ) '  and C B ( X ,  Y'). 

We can define the norm of a typical element in the operator space projective 

tensor product with the following. Let [x i j ]  E (X) and [yu] E B$ (Y). We define 

the tensor product x 8 y to be the pq x pp matrix 

Given any element u E &(X g Y), we can write 

for some a E W,m (C), x E M4 (X), y E 5 (Y), and ,O E %,,(@). Now we have 

that the operator space projective tensor norm is given by 

where the infimum is taken over all such representations of u. 

There is another tensor product which we will refer to called the Haogerup 

tensor product denoted @h. (See [27]) 

An associative algebra A which is also an operator space and is such that the 

multiplication 

is completely contractive is called a completely contractive Banach algebra. 

If A is a completely contractive Banach algebra and is a closed ideal of A, it is 

easy to see that both 3 and A/g are completely contractive Banach algebras with 

respect to the operator space structure each inherits &om A (see [25]). 
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A Banach algebra A with an operator space structure such that the multiplica- 

tion 

m : A @ h A e A  

is completely contractive will be called an h-algebra. We note that if X is the 

predual of a von Neumann algebra A, it inherits a natural operator space structure 

as follows: for [zG] E & (X) we set 

Thus both the Fourier and Fourier-Stieltjes algebras can be given natural operator 

structures by virtue of their being preduals of von Neumann algebras. In each case, 

this operator space structure results in a completely contractive Banach algebra 

(see [68] and [lo]) 

Given two operator spaces X and Y, we can consider the direct sum X $ Y to 

be an operator space where 

Unless otherwise noted, whenever we are given the direct sum of two operator 

spaces, we shall consider i t  to be an operator space in this way. 

2.5 Homology and Amenable algebras 

We begin with some standard definitions from homological algebra as applied to 

Banach spaces. The basic references are [63] and [14]. 

A left Banach A-module is a left A-module X that is itself a Banach space 

and for which 
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for each a E A and each x E X. A right  and two-sided Banach A module is 

defined analogously. We call a two sided module a bimodule. If X is a left Banach 

d-module, then X' becomes a right Banach d-module with respect to the action 

We call Xu a dual right Bonach A-module. Naturally we can define dual left 

and bimodules analogously. 

In general, we will call an A-module X symmetric if ax = xu for every a E A 

and x E X. In particular, A* is symmetric if and only if A is commntative. 

In the category of operator spaces there are two ways to define an operator 

module. In this thesis we shall call an operator space X, which is a left Banach 

d-module a left operator A-module if the module map is completely contractive 

with respect to the projective tensor product, that is to say the module map 

is completely contractive. Clearly we may define operator right and bimodules 

analogously. Furthermore if X is a operator modde, then X* becomes a dual 

operator module with the dual actions defined above. 

The second approach is to ask that the module action is completely contractive 

&om the Haagerup tensor product, that is 

is completely contractive. We shall call such a module X an h-operator module. 
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Suppose X is a left operator A-module and Y an operator space. Then we may 

consider X ~ Y  as a left operator A module by 

for a E A, x E X and y E Y. It is clear that if Y is a right operator module, then 

X&Y becomes a right operator module in the analogous way. 

By a chain complex we mean a sequence of objects X, with n E Z and 

morphisms d, : X,+l J+ Xn such that & o & + ~  = 0 for all n E Z. The objects could 

be Banach spaces, Banach algebras, Banach modules etc. and the maps naturally 

will be respectively Banach space maps, Banach algebra maps, Banach module 

maps etc- 

In Chapter 3 of this thesis we will investigate certain chain complexes of operator 

spaces and completely bonnded maps. 

Typically, a chain complex is written as 

with the arrows "pointing left". The condition that = 0 is clearly equivalent 

to &&+I C ker A. We define for n E Z the nth-homology gmup2 of the chain 

complex, denoted H'(E) by 

H,(Z) = ker cl, 
h&+l 

The elements of im&+l are called n-boundaries and the elements of kerh, are 

called n-cycles (so H,(B) represents "cycles mod boundaries"). 

'we use the term Ygroupn out of historical consistency. Indeed we have no interest in the 

algebraic structure of this object, 
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By a cochain complex we shall mean a sequence 

with 6n+1~6n = 0. Clearly there is no substantive digerence between the two con- 

cepts other than the direction of the arrows, however it is standard and sometimes 

convenient in practice to have both concepts. It will often be the case that we will 

have Y, = X: and 6, = 6,, and hence the cochain is the dual of the chain complex. 

Analogous to above, we define the nth-cohomology g m u p  of the cochain 

complex, denoted Hn(II) by 

Again as above, we call the elements of imbn n-coboundan'es and we c d  

the elements of kerbn+' n-cocycles . (Thus Xn(II) represents "cocycles mod 

coboundries). The elements d, (or 6, as the case may be) are called differentials. 

Typically a sequence may be "bounded by zeros" either on the left or right. In 

this case we wiU usually suppress these zeros. For example the sequence 

. . * O - t O + O  +Yo +Yl + ... 

will usually be written simply 



A chain complex is called ezact at X, if imd, = ker and the complex is 

cded ezact if it is exact at every term. The exactness at Y, and the exactness 

of a cochain complex is defined analogously. 

A linear map D from a Banach algebra A into a Banach A bimodule is called 

a derivation if 

for all a, b E A. A derivation is called inner if there exists an element x E X such 

that 

We say that a Banach algebra is Banach algebra amenable if every bounded 

derivation from A into any dual Banach A bimodule is automatically inner. 

Finally if X is a space of any sort, we shall use the notation idx (or simply id 

when no confusion arises) to denote the identity morphism. 



Chapter 3 

Homology in Operator Spaces 

Int ro duct ion 

In this chapter we present the homological algebra theory for completely contractive 

Banach Algebras. We note that Paulsen in [66] developed a cohomology theory for 

h-algebras which is similar to our development. However there appear to be several 

limitations to that category. Most noteworthy is the absence of a homology theory 

for which the cohomology theory is dual. 

Our approach is to use the projective tensor product to develop a homology, and 

thus to recognize the usual cohomology theory as simply the dual of the homology. 

The translation of the algebraic homological ideas to the category of Banach 

spaces is of course not new. See for example the work of Taylor [74], Kamowitz [51] 

and Kadison and Ringrose [50]. Thus it is important to note that the translation 

into our new category involves mainly an array of technical facts which allows us 

to follow in the footsteps of the algebraists. Indeed Johnson in [49] and most 

importantly Taylor and Khelemskii ([54] and [53]) did exactly this in the Banach 
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space setting, generalizing the algebraic methods of Hochschild (see [43] and [MI). 

A good reference for the algebraic presentation is Cartan and EiIenberg [l4]. 

The presentation of Paulsen follows the so called relative Yoneda cohomology as 

well as the derived functor presentation. In this sense he generalized the algebraic 

approaches found in MacLane [63]. 

The approach presented here is to extend the ideas of Taylor, Kamowitz and 

Khelemskii to the completely contractive algebra setting. This approach provides 

a complete homology theory in this category, which both reflects the dual nature 

of the cohomology, and explores the notion of split extensions - which for us will 

ultimately be the most usefid application. 

3.2 Extension Sequences 

One of the basic concepts and tools in homological algebra is that of a short exact 

sequence. Recall that a short exact sequence of objects in an abelian category is a 

complex of the form 

where f is injective, g is surjective and kexg = im f.  We note the expected fact that 

A/ f (X) is isomorphic in the category to Y, and naturally we write A/ f (X) Z Y. 

In this case we say that A is an extension of X by Y. 

Unfortunately, this concept breaks down in the case of operator spaces. Consider 

the following short exact sequence: 
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where id represents the identity map. If X is any infinite dimensional Banach space, 

then M A X ( X )  /O = M A X ( X )  is not isomorphic in the category of operator spaces 

to M I N ( X ) .  In this sense, one of the basic objects of homology 

we want" in our new category. 

The basic way to repair this is to restrict the sequences under 

fails to udo what 

consideration. In 

[69], the authors considered cases where f was a "complete isometry" and g was a 

"complete quotientn map. In [79] the present author considered sequences where 

both f and g had inverses which were completely bounded. 

In this section, we will establish a broad class of short exact sequences which 

avoids this isomorphism dilemma, and we will show that in some sense, this class 

is as broad as possible. 

DEFINITION 3.2.1: Given two operator spaces X and Y, we say a c.b. map 

T : X H Y has the complete isomorphism property (c.i.p.) if the image 

T ( X )  is closed and the induced map T : X/ ker T ct T ( X )  is a c-b. isomorphism. 

We note that any bounded map between Banach spaces satisfies the analogous 

property. The leads to the following: 

DEFINITION 3.2.2: A chain (or cochain) complex of operator spaces is called an 

opemtor complez if each of the differential maps has the complete isomorphism 

As discussed earlier, an important special case of a chain complex is of course 

the short exact sequences. In this thesis, we c d  any short exact operator chain 

complex an extension sequence or 1 -extension sequence. 

This leads to the following proposition which suggests that operator complexes 

are the correct tool for our category: 

PROPOSITION 3.2.3: Suppose X, Y and Z are operator  spaces such that 
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f o m  an  extension sequence. Then Y/ f ( X )  is c-b. isomorphic to 2. 

ProoE Since (2)  is a short exact sequence, we have imf = kerg thus Y / f  (x) = 

Y/ kerg. Since (Z) is an operator complex, the map g has the complete isomorphism 

property and hence there is a c-b. isomorphism between Y/ kerg and img = Z (by 

exactness). Thus Y/ f (X) is c.b. isomorphic to 2. 

Conversely, we have the following: 

PROPOSITION 3.2.4: Suppose X, Y and are operator spaces with X C Y such 

that Y/X is c.6. isomorphic to  2. Then there is a n  extension sequence (t) of the 

f o r m  

where i represents the  inclusion map i : X v Y. 

Proof: Consider the canonical quotient map q : Y I+ Y / X .  By construction the 

short exact sequence 

is an extension sequence. Let T : Y / X  Z be a c.b. isomorphism. Then it is easy 

to see that the following diagram commutes: 



CILAPTER 3. HOMOLOGY IN OPERATOR SPACES 

Hence the bottom sequence is an extension sequence. 

In the obvious way we consider an n-extension sequence. Given A operator 

modules X and Y, any exact operator complex of the form 

is called an n-extension of X by Y. Furthermore we c d  the above sequence an 

n-extension sequence. 

Unlike in algebra, it is usually necessary to consider further topological condi- 

tions on our extension sequences. An additional condition is that we will require 

im?rk to be complemented. The importance of this latter condition will become 

apparent a little later. 

DEFINITION 3.2.5: An exact operator complex of A-modules 

is called admissible if there exist completely bounded maps (not necessarily d- 

module maps) & : ct Xk such that i r k ~ &  = idke,,,, . An admissible complex 
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is said to split if the m ~ p s  Bi can be chosen to be module maps. Thus a complex 

is admissible exactly when it splits as a complex of Gmodules. 

In the special case of n-extension sequences, we note that admissibility is equiv- 

alent to the existence of a commutative diagram 

where the maps 7rk I F k :  Fk H and the maps sk : Bk + Ek $ f i  are c.b. 

isomorphisms. For the case n = 1 the present author in [79] referred to this property 

as completely adnaissible. 

Finally, we call a map # : X * Y admissible if there exists a map 8 : Y ct X 

such that @8 = i4,+ Furthermore, we call this map B a right inverse for 4. 

We now have an analogue of Proposition 1.1 from [19]. See also the special case 

of this in [69]. 

LEMMA 3.2.6: Let 

be an extension sequence of A-bimodules. Then there ezists a completely bounded 

map F : Y H X such that Pf = idX i f  and only i f  there exists a map G : Z Y 

such that gG = idz. Furthermore F b a module map i f  and only i f  G is. 

Proof: Suppose F exists. Then cleady the map f F is a completely bounded 

projection onto im f c Y. Thus the following diagram 
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commutes, where Q is the complement of f ( X )  in Y and the map i : j X) ct Y 

is given by i ( x )  = x 0. Since im f = f (X) = ker g and since g has the c-i-p., it 

follows that the induced map 

is a c.b. isomorphism. Since Y/ f (X) s Q it follows that g lQ is a c-b. isomorphism. 

Now let G(z) = (g The fact that g G  = idz is now trivial. 

Now assume that G exists. Similar to above, we see that Gg is a completely 

bounded projection onto a subspace P of Y which is c.b. isomorphic to 2. Let Q 

be the complement of P. Thus 1 - Gg is a completely bounded projection onto Q. 

Note that 

thus Q c ker g = im f. Since glp is an isomorphism, the reverse inclusion is obvious. 

Hence Q = kerg = imf. Since f has the tip., the map f-' : Q H X is completely 

bounded. Thus we define 
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by 

Clearly F satisfies the desired properties. The fact that F is a module map if 

and only if G is a module map is strictly algebraic. Suppose that G is a module 

map. Note that 

The right module action is similar. Conversely if F is a module map, then the 

subspace Q is a submodule, hence G l4 is a modde map. Thus G is a module map 

also. 

We note that the above Lemma fails for general short exact sequences. Consider 

the MAX/MIN example at the beginning of this section, see also [79]. 

It will arise that we will be given a completely contractive Banach algebra A 

and a left operator A-module X, and we will wish to know when the module map 

has an inverse. Obviously this is impossible immediately whenever the map n is 

not onto. We call a module neortnital if 

in which case ir is clearly onto. If our completely contractive Banach algebra has 

a bounded approximate identity {e,), and if x = l imeax  for dl x E X, then 
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we can use Cohen's Factorization theorem to guarantee X is neounital. Indeed 

when studying L1(G) this can be a useful approach. Once again, in our setting 

this method will fail us. In our primary example, A(G) does not have a bounded 

approximate identity when G is not amenable, and indeed it is known that for 

non-amenable groups G, A(G) is not even a neounital A(G) module! (see [6l]). 

We solve this problem the following way: Given a Banach algebra A we can 

construct its unitization d+ as follows: 

Let d+ = A @ @, and now define multiplication as follows: 

Now note that if X is a left (right ,bi) A-module, then X becomes a unital left 

(right,bi) &-module with respect to the action 

(a right and bimodule structure is defined analogously). In [26] Efbos and Ruan 

showed that there is an operator space structure such that d+ is indeed a completely 

contractive Banach algebra. Using the same techniques, we can show that any 

operator A module X becomes a unital operator A+ module. 

For completeness, we recall their constmction for A+, then we extend this in 

the obvious way to show X is an operator d+ module. 

Suppose we are given two operator spaces V and W. We construct the operator 

space V*@ W*. The induced operator space structure on the predual will be denoted 

V W. We have the following important fact concerning this structure: 
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PROPOSITION 3.2.7: Suppose X is an operator space and suppose that 

$ : V e x  and ~ : W e X  

are completely contractive* Then the map 

&I31+:V€31W*X 

given by 

is comp[etely contractive. 

Now we give A+ the operator space structure A @ Using the previous 

proposition Effios and Ruan have shown that if A is a completely contractive 

Banach algebra then so is 4. Using the same technique, we have 

LEMMA 3.2.8: If X is a left (right, bi) operator A module, then X is an essential 

left (right, bi) operator A+ module. 

Proof: The fact that X is essential is obvious. Now we simply note that the 

module map (a, a) - x I+ a - x + ax is the sum of two completely contractive maps 

which, by Proposition 3.2.7 is clearly completely contractive. Thus X is a left 

operator d+ module (see [26]). The right and bimodule cases follow analogously. 

3.3 Resolutions and Derived Functors 

First we shall introduce the following notation 

CB,,(X, 2) = {T E CB(X ,  2) I T ( a x )  = aT(x) Vx E X, a E A} 



CHAPTER 3. NOMOLOGYllV OPERATOR SPACES 

Naturally, these sets define respectively the morphisrns in the category of left, 

right and **sided operator modules. 

Given X and Y left operator A modules, we can define a contravariant' functor 

denoted CBAc(?, 2) as follows: for any cab. module map 

we define 

given by 

Clearly we can define the contravariant functors C BcA (?, 2) and CBAqA(?, 2) 

analogously. Furthermore, using the obvious changes, we can defme covariant2 

functors C B A ~ ( Z ,  ?), CBcA(Z, ?) and CBAVA(Z, ?). 

To see that 6. is completely bounded, we have the following: for [ x ~ ]  E W$n (X) 

'contravariant=arrow reversing 
2cova.riant=arrow preserving 
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A second functor of interest in homology theory is the tensor product functor. 

Suppose we are given two operator A-bimodules X and Y. We define the tensor 

product X @ A  Y as follows: 

Consider the operator subspace N of X ~ Y  given by the closed linear span of 

elements of the form 

Now define X @A Y by 

Similar to above, we can recognize ? @a Z as a covariant functor as follows: for 

any c.b. module map 

4 3 - Y  
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To see that 4. is completely bounded we note that the map 

is completely bounded with l14&dzllcb 5 Il4lld (see [12]). 

Also since the following diagram is commutative 

where q; are the canonical quotients, it follows that 4. is completely bounded. Using 

identical arguments, it is now easy to see how to construct a covariant functor 

XBA?. 

Suppose we are given an A-module X, a complex of the form 

( ! p ) : O t P , t P 1 t P 2  t... 

and a map E : Po H X (called an augmentation) such that the resulting complex 

is exact and admissible. Such a complex (73) together with the map E : Po ++ X is 

called a resolution over X. 
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A major part of the theory, will be the study of the functors CBAc(?, 2) etc. 

and ? @a 2 applied to various resolutions. 

Those familiar with homological theory will recognize that for the most part we 

will need to confine our interest to so called projective resolutions. Thus we begin 

by introducing the notion of an injective and projective module in the operator 

space category. 

DEFINITION 3.3.1: Aleftoperator A-moduleYis called (left) injectiveif, 

for any admissible complex Z, the complex CBAc(Z, Y) is exact. That is to say if 

is admissible, then the complex 

is exact. If Y is a right module, we call Y (right) injective if CBcA(E, Y) is 

exact. Finally if Y is a bimodule, we shall say Y is bi-injective or injective as a 

bimodule if CBATA(Z, Y) is exact (or equivalently, as we shall see in Section 3.5, 

if Y is injective as a left A h d ~  module). Of special note is that an object may be  

injective in one category, while not in another. 

REMARK: This definition of injective is somewhat problematic. To see this, note 

that an operator space J is called injective, if whenever we have an operator space 

Y sitting as a closed subspace of 2, then any c.b. map 6 : Y H J has an extension 

to # : Z H J such that llO1ld, = ~ l q ~ .  It is an important theorem of Wittstock (See 

[77] and [78]) that B(H) is injective as an operator space. (There appears to be an 

array of different proofs of this result). 
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We note that any operator space can be considered as a @-module. The condi- 

tion of admissibility in the definition ensures that every Cmodde is automatically 

an injective module. Since there exist non-injective operator spaces, it follows that 

our definition of injectivity as a Cmodule does not correspond to the definition of 

an injective operator space. Note condition (4) of the following theorem and our 

definition of pro jectivity to follow. 

The following theorem is the analogue of the situation in general algebra as well 

as Banach space theory. 

THEOREM 3.3.2: Let X be a left operator A module. Then the following are 

equivalent: 

(1 )  X is injective, 

(2) for any admissible extension sequence (E), CBAtC(Z, X )  is exact, 

(3) for any admissible c.b. module map  injection q5 : Y H 2 and any  c.6. 

module m a p  B : Y I+ X ,  there is a c.6. module map + : Z I+ X such that the 

following commutes 

(4) ifY Q a complemented submodule of Z and 6 E CBAc(Y, X )  then 0 has a n  

extensiot~ t o  CBAC (2, X )  . 

ProoE (1) + (2) is immediate. 
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For (2) =+ (3) consider the extension sequence 

O + Y $ Z ~ Z / Y + O  

where q is the canonical quotient. By (2) the sequence 

0 -+ CBAc(Z /x  X) %P CBAe(Z1 X) 3 CBAc(Y, X) -t 0 

is exact. Thus 4. is onto. (i.e. for all module maps 6 : Y X there exists a 

module map $ : Z ct X such that dm($) = 0 as required.) 

For (3) + (2) suppose that 

is an admissible extension sequence. Consider the sequence 

The sequence is automatically exact at CBA,e(Ql X) and CBnc(Zl X), and by (3) 

the map 4- is onto. Thus the sequence is exact at each term. 

(3) + (4) is immediate. 

For (4) (3) we note that 4(Y) is a complemented submodule of Z and 

4 : Y H +(Y) is a c.b. isomorphism. Thus the map B.4-' has an extension to 2. 

Thus by (4) there exists a module map $ such that the following commutes: 
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The proof of (2) + (1) is from standard algebra (see for example [14, 11-4-11) H 

DEFINITION 3.3.3: A left operator A module X is (left) projective if for any 

admissible complex Z, the complex C BA,p(X, 2) is exact. We also have right and 

biprojective modules just as in the injective case. 

N o w  we have the analogue of the previous theorem. 

THEOREM 3.3.4: Let X be a left operator A module. Then the following are 

equivalent 

(I) X is projective 

(2) for any admissible extension sequence (2 ) ,  CBAVc(X, 2)  is exact 

(3) for any c.6. admissible surjection q5 : Y H Z and any c.b. module map 

0 : X H 2, there is a c.6. module map + : X I+ Y such that the following diagram 

commutes 
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(4) if Z is a submodule of Y, then every 0 E CBAC(X, Y / Z )  has an extension 

to CBAc(X, 2). 

ProoE The proofs of these equivalences are similar to the previous theorem. I 

It is easy to see that any module is a projective and injective @ module. As a 

consequence we shall see that for any module E, the module of the form &&E, is 

projective. We require the following reduct ion formula. 

PROPOSITION 3.3.5: CBA+,e(d+, X) is c.6. isometrically isomorphic to X and 

C B A + ~ ( ~ + & X ,  Y) i s  c-b. isometrically i somorphic  to CB(X ,  Y )  for all X and 

Y. Similarly we have complete iiometn'es CBC4 (4, X) S X and f i r t h e n n o r e  

CBC4 (X&A+, Y) a C B ( X ,  Y). 

Proof: Let T E GB4,c(d+,X). Then T(a )  = aT(e)  for all a E d+ where e  is 

the identity element. Let XT = T ( e ) .  The map T H XT is clearly a bijection. Also 

for [Tij] E ELa(CB4c(d+,X)) we have 

but if we consider the element e E MI (4) we have 

Thus the natural map is a c.b. isometric isomorphism. For the second identifica- 

tion we proceed similarly. As before, it is easy to see that T E ~ l ? ~ , ~ ( d + & X ,  Y) 
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is defined on elements of the form e @ z. Thus the map T i+ is an isomor- 

phism between C B ( X ,  Y) and C B ~ , ~ ( A + & X ,  Y), where F(z) = T(e 8 z). Note 

that we can identify the space C B ~ , ~ ( ~ + & X ,  Y) with JCB(d+ ,  X; Y), the space 

of maps which are jointly completely bounded from d+ x X to Y, such that 

T ( a ,  x) = aT(e,  I). Thus we have 

The reverse equality follows by taking aij = e as before. The assertions con- 

cerning CBC4 (4, X) and CBc4 (~&d+, Y) are proved in a similar manner. 

As a consequence of the above proposition, we have the following corollary. 

COROLLARY 3.3.6: We have CBac(d+, X) Z X and CBA,@&X, Y) Z 

C B ( X ,  Y). 

ProoE To prove the first equality, it suffices to show that CBAc(d+,X)  = 

C Br, ,c(d+, X), where d+ and X are considered as A modules on the left and 

At modules on the right. Let T E CBac(d+, X) and let (a, a) and ( b J )  E A+. 
Now 
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A similar calculation shows C B A C ( d + & ~ ,  Y) = C B ~ , ~ ( ~ + & X ,  Y). Now we 

simply apply the previous Proposition. 

COROLLARY 3.3.7: Any  modde of the f o r m  &&E for any A-module E is 

projective as a lef t  operator A-module.  

Proof: In view of the above proposition, the complex C B ~ , ~ ( ~ + & I  E, 5) reduces 

to CB(E,  8). Since any module is a projective @ module, it follows that the complex 

is exact. Hence A+&E is projective. 

It is easy to see that the last four theorems have the obvious generalizations to 

the category of right and bimodules. In particular we can conclude: 

COROLLARY 3.3.8: Any  module  of the f o r m  E@A+ (resp.  d+&~&4+) is a 

projective right (resp. bi) module f o r  any module  E. 

A module of the above form is usually called a free module. 

We call the resolution over X projective if each of the Pi are projective modules. 

Let be a projective resolution over X. If we apply any covariant functor F to 

the sequence, we get a new sequence: 
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There is of course no reason to believe that the new sequence is exact, and hence 

it may have non-trivial homology, which we denote 

We call this the nth derived functor of F. If F is contravariant, we obtain the 

sequence 

As before this may have non-trivial cohomology which is given by 

Once again we call this the nth derived functor of F.3 

As a result of the categorical properties of the resolutions, it is now an algebraic 

exercise to show that any two projective resolutions generate the same derived 

h c t o r  (up to natural isomorphism). See Appendix A. 

In this thesis, we shall concentrate on the derived functors relating to C B ( X ,  Y) 

and @A- 

%one authors differentiate between derived functors and derived cofundors, however we need 

not make this distinction 
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3.4 Standard Homology and Cohomology 

The basic starting point for Johnson's work on amenability, is that of the standard 

homology and standard cohomology (also called the Hochschild cohomology). 

This was generalized by Ruan to operator spaces in [68]. 

In this section we will recall these complexes (as described by Ruan in [68]) and 

study their homology and cohomology in our category. 

Let A be a completely contractive Banach algebra and let X be an operator 

A-bimodule. Consider the operator chain complex: 

( ~ ) : o $ x $ A & x $ A & A & x ~  ... 

where the differential maps are given by 

It is clear that each of the maps d, are completely bounded and a straightfor- 

ward, albeit messy, calculation shows that & o & + ~  = 0 for all n E N. We denote 

the homology of this sequence by OH,(A, X). Often this set is referred to as the 

nth-homology of the completely contractive Banach algebra A with coefficients m 

is not closed, the space OH,(A, X) is not a Banach space, much less 

an operator space. Fortunately this wiU not always be a major handicap for our 
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purposes. Our interest will lie mainly in the case that O&(A,X) = 0, in which 

case = kerd, which is automatically dosed. However, the situation imdk 

not closed may present a problem for us. Thus we d e h e  the following: 

DEFINITION 3.4.1: An operator A-mod& will be called differentially closed 

if the images of the difkrential maps dk are closed (i-e. imdk is closed for all k > 0.) 

Later we shall see that if A is operator amenable, then every module is auto- 

matically differentially closed. 

If we take the dual of (6) we get the cochain complex: 

Since there is a natural c.b. isomorphism horn ( A ~ x ) '  to CB(A,  Xu) the above 

complex is isomorphic to: 

In this case the differential maps 6" = d: have a particularly nice form. For 

convenience we shall let A&" denote the n-fold projective tensor product of A. i.e. 

Then for T E c B (A&", X') we have 
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We shall denote the cohomology of this complex by OHn(A, X*). This set is 

often referred to as the nth cohomology group of A with coefin'ents in X' 

Notice that if we replace X* with any other operator A-bimodule Y, the se- 

quence ((5') still makes sense, and still forms a cochain complex. In other words 

we are able to make sense of OHn(A,  Y) without Y being a dual of some other 

module. 

Of special interest is the space O H1 (A, Y). Consider the following 

and hence T E ker S2 if and only if the following identity holds 

These 1 cocycles are usually called derivations. Also note that the 1-coboundaries 

are represented by the following: 

Such functions are usually called inner derivations. Thus the statement 

OH1(A,  X) = 0 is equivalent to saying that each completely bounded derivation is 

inner. 
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We now have the following Lemma connecting the homology and cohomology 

spaces: 

LEMMA 3.4.2 : Let  X Be an operator A-bimodule. T h e n  X is differentially closed 

and OH,(A, X )  = 0 for  all n > 0 i f  and  only i f  OHn(A,  X u )  = 0 for  all n > 0.  

Proof: This Lemma is similar to [49, Corollary 1.31 or [54, Proposition 5-29]. 

Note that OHn(A ,  X*) = 0 is equivalent to the sequence 6' being exact at every 

term except possibly X'. Furthermore O X 1 ( A ,  X') = 0 implies im6; = kerd; and 

hence imd; is closed. Thus im& is closed and the sequence G is exact everywhere 

except possible at X. In any event we have O H n ( A , X )  = 0. The converse is 

similar. 

LEMMA 3.4.3: OH1(A,  X') = 0 for  all dual modules i f  and only  i f  OXn(A, X') = 

0 for all dual modules and n > 0.  

Proof: In Section 3.6 we will consider derived functors, fkom which we could 

provide an alternative proof to the above result. For now we provide the following 

horn [68], which is the operator space version of a result of Johnson. 

Using the associativity of the operator projective tensor product, it is easy 

to show OH"+'(A, X*) = OHn(A,  CB(A&',X*)) &om which the above follows 

trivially. 

Combining the two previous Lemmas we have the following Corollary: 

COROLLARY 3.4.4: If O H 1 ( A ,  X*) = 0 for all operator bimodules X ,  t h e n  eveqj  

module is differentially closed. 

We can now prove the analogue of Lemma 3.4.3 for the homology groups. 

COROLLARY 3.4.5: Suppose every module ik differentially closed. then we have 



CHAPTER 3. HOMOLOGY IN OPERATOR SPACES 50 

O H l ( A ,  X) = 0 for all operator bimodules X if and only if OH,(A, X )  = 0 for all 

operator bimodules X and n > 0. 

Proof: I f  OHl(A ,  X )  = 0 holds then OH1 (A, X-) = 0 by [49, Proposition 1-21, 

so by above OHn(d ,  X') = 0. Now apply Lemma 3.4.2. I 

As discussed earlier, we shall often need to consider the completely contractive 

Banach algebra d+ and not just A. However as the next Lemma shows, this will 

not be a restriction. See [51]. 

LEMMA 3.4.6: OHn(A,  X* )  = 0 for aZl d a d  modules and n > 0 if and only i f  

OHn(&, X*)  = 0 for all dual modules and n > 0. 

Proof: Suppose OHn(d, X') = 0 then each derivation is inner. Let e be the 

adjoined identity in 4. Note that 

hence D(e)  = 0 for all derivations. Since the operator space structure on (A, 0) c 
A+ is precisely the structure on A, it follows that every derivation from A has a 

unique completely bounded extension to A+ and hence is inner. Thus 

Hence by the above Lemma 3.4.3 we have O P ( d + ,  X*) = 0 for al l  n > 0. 

Conversely any derivation from d+ is a derivation from A by restriction. Since 

the first is inner, so must the second. Again by applying Lemma 3.4.3 we have 

OHn(A,X*)  = 0 for all n > 0. 
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Lemma 3.4.6 shows that when studying algebras such that O H 1 ( A , X * )  = 0, 

we may, if convenient, assume all of our completely contractive Banach algebras 

are unital and aIl modules are unitd modules. 

Recall that Johnson called a Banach algebra amenable if each bounded deriva- 

tion into a dual Banach module is inner. In an analogous way, Ruan defined 

operntor amenable by saying each completely bounded derivation into a dual 

operator module is inner (i-e. OH'(A,  X*) = 0 for all dual modules X*.) 

Combining the results of this section, we have the following 

THEOREM 3.4.7: The following are equivalent 

(1)  A is operator amenable (i.e. OH1 (A, X*)  = 0 for all dual modules Xs) 

(2) OHn(A, X*) = 0 for all dual modules Xu 

(3) every module is differentially closed and O H l ( A ,  X )  = 0 for all nodules X 

and n > O 

(4) euery module is differentially closed and OH,(A, X )  = 0 for all modules X 

and n > 0.  

Proof: (1) + (2): Use Lemma 3.4.3. (3) + (4): Use Corollary 3.4.5. (4) H (2): 

This is Lemma 3.4.2, The rest is immediate, I 

3.5 @A and Tor 

In this section we shall investigate the functors and Tor of homological algebra, 

and we shall show that the standard results continue t o  hold in our new category. 

Suppose we are given an extension sequence 
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of left operator A-modules. We wish to know if the induced sequence 

is exact. That is to say ''is the h c t o r  ? @A Q exact?". In this section we will 

introduce the spaces Tor which will measure this exactness, and relate this to the 

standard homology of the previous section. 

To make this connection, we first introduce the bar or standard resolutions in 

our category. 

To motivate what we are eventually going to need, we first construct a simple 

projective resolution, which illustrates what happens in the general case. 

PROPOSITION 3.5.1: Let Y be a left A-module. T h e n  the complex 

with augmentation 

€(a €3) y )  = ay 

and where the diferentials are given by  the following formulas for n > 0: 
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is a projective resolution of the left module Y .  

Proof: As remarked in Corollary 3.3.7, each module of the form &&Y is pro- 

jective. Thus it suffices to show that the complex is exact and admissible. 

- n+l 
We define maps 0, : A$"&IY I+ A? &Y by Bn(u) = e @ u. Also we let 

00 : Y I+ d + & ~  be defined by &(y) = e 8 y. It is easy to see from the definition 

of the matrix norms of a projective tensor product that each of these maps are 

completely bounded. 

Now we see that the complex is exact since we have the following. Let K = 

ker&-l and let k E K. Then Bn(k) = e @ k. Now &(e @ k) = (e - k) - ( e @  

A&)) = E .  Hence &On = i d K .  Thus imd, = ker&-l which implies the complex 

is admissible. 

To construct our standard resolution, we first need to observe the following: 

PROPOSITION 3.5.2: Let A be a completely contractive Banach algebra and let 

A+ be its unitization. If we let e denote the  identity in A+, then  we have a complete 

isometry A E (A+/&). 

Proof: For [(aij, C)] E (A/&) we have the following equalities for 

[hi] E & (A*), [m] E (@) , and n > 0 

Hence the natural map is a complete isomorphism. 
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For convenience we shall denote A+/& by A. Now we consider the induced 

sequence 

Here the differential maps are similar but are defined on the cosets, i.e. for 

n > O we have 

To see that this expression is well defined, see for example (541 or 1141. The maps 

0, are given by the formula 

Proceeding in a manner similar to the proof of Proposition 3.5.1 it is easy to 

show that the above also generates a projective resolution of Y. In view of the 

isomorphism given in Proposition 3 -5.2, we can identlfy & with A, and hence we 

have a projective resolution 

Here the differentials are the same as before, except that now they are defined 

on elements of A instead of cosets. This resolution will be called the standard 
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resolution of Y (also called the non-normalized bar resolution). It is easy to see 

that if X is a right module then the complex 

is a projective resolution of the right module X. A similar complex is a d a b l e  for 

bimodules . 

We are now in a position to relate the derived functors of @A with standard 

homology. For a fixed left module Y we define Tor;(X, Y) to be the nth derived 

functor of ? @A Y applied to the right module X. Again we recall that the standard 

resolution described above is projective, so for definiteness, to calculate TorA(X, Y) 

we can apply the functor ? @A Y to the complex 

which results in the sequence 

Hence we have the nth torsion product of X and Y given by 

Tor>(X, Y) = 
ker(d, 84 id) 

im(&+~ @a id) * 

In particular we see that Tor;(?,Y) is a fnnctor from the category of right 

operator A modules to the category of linear spaces. 

To connect the torsion product with the homology groups we require the en- 

u e b p i n g  algebm of a completely contractive Banach algebra. 
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DEFINITION 3.5.3: Let d be a completely contractive Banach algebra. Consider 

the algebra AOP which is the Banach space A with multiplication given by a" - b q  = 

La. We call A- the opposite algebm. 

If we give the opposite algebra the operator space structure given by 

then A* becomes a completely contractive Banach algebra. Now we define the 

enveloping algebm de of A to be the completely contractive Banach algebra 

d+&dy. Note that if X is an operator A-birnodule, then X becomes a left &&A? 
operator module where 

(a@ b*) - x  = axb 

and a right operator module where 

x (a" 8 &) = axb. 

Since there is a canonical c.b. isomorphism d';P&d+ E &&AT, it follows that 

X can be regarded as either a left or right A' operator bimodule. It is standard 

to consider any bimodule as a left de module and a bimodule map as a left Ae 

module map in this way. In particular we have CB,&X, Y) = CBavA(X, Y) for 

operator bimodules X and Y. 

There is a reduction property which will be useful in calculating the homology 

of sequences such as B above. First we require the following additional technical 

fact: 
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PROPOSITION 3.5.4: (X@AY)' is c.b. isometrically isomorphic to CBcA(X, Y'). 

ProoE Recall that the map 4 I+ T ,  given by 

!6,x BY) = (T&),Y) 

is a c-b. isometric isomorphism between (x&Y)- and C B(X, Y') . Now 

where N = w { x a @  y - x @ a y ) f o r  a E d,x E X and y E Y. Now+€ NL if 

and only if 

d(za  @ y - z 8 ay) = 0 

Thus for all y E Y, 

Thus T, E CBCA (X, Y'). The reverse inclusion is clear. rn 

PROPOSITION 3.5.5: W e  have the c.b. isometric isomorphism & @A+ X S X 

and f i r t hemore  we have that ~ + & I M & I ~ + @ ~ . x  S M ~ X ,  where M is any operator 

space. 

Proof: The map q5 : X e A+ 8 4  X given by 

is easily seen to be completely contractive. Furthermore the map 
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is exactly the c.b. isomorphism of Proposition 3.3.5 and Proposition 3.5.4 from 

(d+ @At X)* to X'. Thus (#-I)* is completely contractive, hence 4 - I  is completely 

contractive. 

The fact that the map T : M ~ X  + &&M&A+ @r X given by 

is a complete isometry follows similady. 

COROLLARY 3.5.6: We have the c.6. isomorphism d+ @A X E X 

Proof: For a E A,X E @ and x E X  wehave 

Hence in view of the previous proposition and Corollary 3.3.6, it follows that we 

have a c.b. isometric isomorphism. 

For convenience, if u E d+ @ A  X we s h d  denote the corresponding reduced 

element in X by ub. Conversely, if u E X we shall let uu = e @ A  u E d+ @A X. It 

is easy to see that sbfl = u. Furthermore, if we have a map T : A,&X cr Y, we let 

T~ :X Y denote the map given byTb(x) = T(xn) for all x EX. 

Now we can connect the torsion product with the standard homology via the 

following: 

THEOREM 3.5.7: Let X be an A-bimodule. Then considering X as a le f t  Ae 

module and A+ as a right de module, we have t h e  following equality: 
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Tor> (d+ , X) = OH, (A, X) . 

F u r t h e m o ~ e  the equality is a c. 6. isomorphism whenever X is d i f e ~ e n t i a l l y  closed. 

Proofr Consider the complex 

with E : &&A+ ~f d+ given by €(a 8 b) = ab, and the differentials the same as in 

Proposition 3.5.1. By earlier arguments, this is a resolution of the right de-module 

A+, and &om Corollary 3.3.8, each of these spaces is projective as a bimodule 

(hence as a right Ae module) 

So to calculate Tor:. (4, X) , we may apply ? B r  X to the above resolution 

to get 

In view of the Proposition 3.5.5, this complex reduces to 

0 + X $ A & X * A ~ A & X  ... 

where 
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which is easily seen to be the standard homology complex. Since the complexes are 

c.b. isomorphic, so are the homology groups whenever is closed. 

To connect this with the exactness of the tensor product functor, we begin with 

the following definition: 

DEFINITION 3.5.8: We call a left operator A module X operator f i t  if when- 

ever we have an admissible complex 2, then E @A X is exact. Furthermore, we call 

a completely contractive Banach algebra A operator biflat if A is a flat d&dq 

module. 

We can connect flatness with injectivity with the following (See [53]) : 

PROPOSITION 3.5.9: X is a n  o p e ~ a t o r  flat A modde  if and only if the right 

module X* is (right) injective. 

Proof: Suppose (2) is an exact admissible sequence. Consider the sequences 

9 @ A  X and its dual (Z @A X)' = CBGA(Z, X*) .  Clearly they are either both 

exact or inexact. 
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We can relate flatness with the Tor fimctor using the following theorem from 

homological algebra: 

THEOREM 35-10: Let 

O + X + Y + Z - , O  

be an  admissible sequence of operator A modules, and let F be an additive con- 

travariant functor from the category of ope~ator A modules into the category of 

algebraic A modules, and let Fn represent the various derived functors of F .  Then 

there exists algebraic maps E, : Fnf'(X) + Fn(Z) such that the long complex 

is exact. If F is covan'ant, we have the same long exact sequence but with arrows 

reversed. 

The maps E; are usually called connecting rnorphisrns. The proof of this 

theorem is essentially identical to the algebraic case. See [63, Chapter 11.4.11. 

Since @A is clearly an additive functor, we have for an admissible short exact 

sequence 0 t Yl t Yz t Y3 t 0, the sequence 

is exact. In algebra, we have that ~ori(X, Y) = X @A Y, however in our category 

we have topological problems which will affect this equality. 

Now we note the following: 

LEMMA 3.5.11: For right and leff operator A modules X and Y we have the 

equality 

Tor;(X, Y) = OH,(A,  Y ~ x ) .  
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F u r t h e n o r e  the eqaality is a c.6. isomorphism whenever Y& X is differentially 

closed. 

ProoE To compute the spaces Tor>(X, Y) we consider the complex 

dl  id d2 o t xhd+ @A Y t X&A&A+ @A Y t X&A&A&A, @A Y t . . - 

which reduces to 

Using the c-b. isomorphism X ~ Y  Z Y & X  we see that the above complex is 

isomorphic to the standard homology complex for the bimodule Y & X .  The fact 

that we have a c-b. isomorphism between the homology groups whenever Y ~ X  is 

differentially closed is now clear. I 

In view of this lemma, we can make the following observation. Note that we 

could have considered the derived functors of XaA?.  However it will follow in the 

same fashion as the previous lemma that these functors are naturally isomorphic 

and the derived functors are equal to the standard homology complex for Y ~ X .  

(See [54, Chapter 1111) 

To calculate TO&(X, Y) we have the following: 

LEMMA 3.5.12: Let r : X ~ A ~ Y  I+ X&Y be given by 

Then 
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In particular we have TO~>(X, Y )  S XBAY whenever Y ~ x  is differentially closed. 

Proof: By Lemma 3.5.11 we can calculate TO~~(X, Y) as the homology of the 

standard complex 

with 

However, under the natural c.b. isomorphisms Y ~ X  2 X&Y and 

we see that dl = 704. Thus 

Clearly r is closed if and only ifimdl is closed. In particular if Y&X is differentially 

closed, then we have the c.b. isomorphism TO~~(X, Y) Z X @a Y. 

COROLLARY 3.5.13: For a left operator A module Y ,  the following are equivalent 

( I )  Y is operator flat 

(2) TO&(X, Y) = 0 and X&Y is differentially closed, for all operator A- 

modules X 

(3) Tor2(X, Y) = 0 and X&Y is differentially closed, for all operator A- 

modules X and n > 0. 

Proof: (1) + (3): This follows by exactness. (3) + (2): This is immediate. (2) 

=+ (1): Apply Theorem 3.5.10. and Lemma 3.5.12 to conclude that the functor 

? @A Y is exact. m 
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REMARK: Note that in Theorem 3-55 and Lemma 3.5.11 we noted that the 

c-b. isomorphism is not an isometric isomorphism. This may seem a surprise 

given that all of our reduction formulas were isometric isomorphisms. However it 

is important to note that the various derived functors are given relative to any 

projective resolution. As a result the Tor functors are only defined up to c.b. 

isomorphism. (See further discussion on this in Appendix A). We shall see the 

same effect in the next section when we investigate the functor Ext. 

Now we can relate flatness to amenability. 

THEOREM 3.5.14: Let A be operator amenable. Then every left module is 

operator fiat. In particular the finetors ? @A Y and X B ~ ?  are exact for all left 

operator modules Y and right modules X. 

Proof: Suppose A is operator amenable. Then by Theorem 3.4.7 we have that 

0 H l ( d , Y 6 X )  = 0 for aU modules X and Y. By Lemma 3.5.11 we conclude that 

TorL(X, Y) = 0 and thus by Corollary 3.5.13 every left module Y is operator flat. 

I 

and Ext 

In the previous section we investigated the exactness of the fimctor @A and in this 

section we shall investigate the exactness of the functor CB&?, Q). We shall 

introduce spaces Ext which will measure this exactness, and we shall relate this 

to both the standard cohomology as well as to the results of the previous section. 

This is to say, if 0 t X t Y t Z t 0 is an extension sequence, is 
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exact? 

Now for the left module Y, we define Ext;(X, Y) to be the nth derived functor 

of CBAc(?, Y) applied to the left module X. 

As in the previous section we can consider the standard resolution 

Now we apply the functor CBA,c(?, Y) to it to obtain: 

We calculate ExtgX, Y) by finding the cohomology of the above sequence. 

Thus we have 

Thus Ext;(?, Y) is an additive functor from the category of lee operator d-modules 

into the category of linear spaces. Now wa are able to note the following special 

case: 

THEOREM 3.6.1: Let X be an operator A-binaodule. Then considering X as a 

leff operator de-module we have the following equality 

Furthemore the equality is a c-b. isomorphism whenever X is differentially closed. 

Proof: As we did with the Tor functor, we consider the projective resolution 
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0 c d + ~ d + ~ A + & ~ 6 d + ~ - . .  

of the left Ae module A+. Now we apply CBA+ J+ (? , X) to get 

Calculations similar to those in the proof of Theorem 3.5.6 show that this is 

exactly the standard cohomology sequence. 

REMARK : In the case of X = Y* there is an alternative approach to the above 

proof using the results of the previous section. Take the standard resolution of d+ 

and apply the fimctor ? @a. X. The dual of this sequence, by Proposition 3.5.4 

and 3.3.5 is exactly the last sequence in the above proof. However, we already 

know that the dual of the standard homology complex, is the standard cohomology 

complex. 

We complete this section with two important theorems. Recall that whenever X 

and Y are left A-modules, we can consider the space C B ( X ,  Y) to be an operator 

A-bimodde where 

(a - T) (x) = a - T ( x )  and (T a) (z) = T(az) .  

The following two theorems are the direct operator space analogue of [54, m.4.12 

and III.4.131 
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THEOREM 3.6.2: Let X and Y be left operator A-modules, then we have the 

equality 

OH"(A, C B ( X ,  Y)) = Ext;(X, Y), 

which is a c-b. isomorphism whenever CB(X, Y )  is diferenttiully closed. 

Pro of: Once again we can calculate Ext;(X, Y) through the standard resolution 

which yields 

0 -t C B , ~ ( A + ~ X ,  Y) 3) CBar(d+&A&X, Y) + . - - - 

This in turn reduces to 

Now using the c.b. isomorphism CB(A&X, Y) S CB(A, C B ( X ,  Y)) this corn- 

plex is isomorphic to the standard cohomology complex for CB(X ,  y). The fact 

that we have a cb isomorphism when CB(X ,  Y) is differentially dosed should now 

be  clear. I 

Once we make a connection between the Ext groups and extension sequences, 

we will use the above theorem to  classify al l  such extensions (and hence address 

the complemented ideal question). 

We have the following additional useful result: 

THEOREM 3.6.3: Let X be a left operator A-module, and let Y be a right oper- 

ator A-module, then Ext;(X, Y') = Ext'&,, (Y, X*) . 
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ProoE By the preceding theorem we have 

Ext;(X, Y') = OH"(A, CB(X, Y)) = OH"(d, ( X h Y ) ' ) .  

Similarly we have 

Ext>,(Y, X') = OX"(dq, CB(Y,X*))  = OH"(dw, (Y&x)-). 

Note the left module (X&Y)* can be identified with the right doP-module (Y~X) ' .  

By shufEiing coefficients, we can see that 

As indicated earlier one of the major reasons for studying the spaces Ext is that 

they describe the "exactness" of the functors CBAvc(?, Y) and CBAc(X, ?). Indeed 

the same categorical properties hold here. As a result we are able to condude the 

following: 

THEOREM 3.6.4: Let 0 + Xl -t X2 --+ X3 -+ 0 be a n  admissible sequence of 

A-modules.  Then there exist algebraic maps 

such that the sequence 

0 + E X ~ % ( X ~ ,  2) + Ext;(&, 2) -t E x t i  ( ~ 3 ,  Z) 3 Exti(&, Z)  + . - . 

is exact. 

Pro of: Since C BAc(?, 2) is a n  additive functor, we may apply Theorem 3.5.9. 
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In algebra we have that EX~;(X, Y) equals the collection of left module mor- 

phisms from X to Y ,  and we have the same result here for essentially the same 

reason, 

LEMMA 3.6.5: For left operator A modules X and Y ,  we have a natural c-b. 

isomorphism 

Ex~%(x, Y) C BAVC(X, Y). 

Pro of: As in the algebraic case, the functor CBAc(X, ?) is left exact. In partic- 

ular, we have the sequence 

results in the complex 

0 -+ C B A ~ ( ~ + & X ,  Y) + C B ~ C ( ~ + ~ A ~ X ,  Y) + . . . 

which reduces to 

Thus E X ~ ~ ( X ,  Y) Y ker d l .  However 

o + x & A & x +  ... 

is exact. Hence 

O + CBnc(X, Y) 3 C B ( X ,  Y) 5 CB(A&X, Y) -t . . . 

is exact at the term C B ( X ,  Y). Thus kerdl = imr CBrrc(X, Y)- 
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COROLLARY 3.6.6: For a left module Y ,  the following are equivalent 

(1)  Y is injective, 

( 2 )  EX~:(X, Y )  = 0 for all left modules X ,  

(3) Exti(X, Y )  = 0 for all modules X and for all n > 0. 

Proof: (I) + (3): This follows &om the exactness of the functor CBAVc(?, Y). 

(3) + (2): This is immediate. (2) + (1): Use Theorem 3.6.4 and Lemma 3.6.5. 

and Theorem 3.3.2. 

THEOREM 3.6.7: Let A be operator amenable. Then for every left operator 

module Y ,  we have that Y' is injective. 

Proof: We note that Theorem 3.6.3 and Corollary 3.6.6 will prove this assertion. 

However we shall use the dual nature of the cohomology and the homological results 

of the previous section to prove this fact. First note that Theorem 3.5.14 shows 

that A operator amenable implies Y is flat and hence by Proposition 3.5.9 that Y= 

is injective. I 

The previous theorem shows that if A is operator amenable then every dual 

module is injective as a right module. However we can improve this to show that 

every dual module is in fact injective as a bimodule with the following two facts: 

COROLLARY 3.6.8: Let A be operator amenable. T h e n  d&A- is operator 

amenable. 

Proof: We note that every derivation from A into any module X defines a deriva- 

tion from dOP in the obvious way, and conversely. Thus if A is operator amenable, 

so is d-. 
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PROPOSITION 3.6.9: Let A be operator amenable. T h e n  for every module Y ,  

we have that  Y* is bi-injective. 

Proof: Applying the previous two Corollaries we have that for all operator bi- 

modules X, Ex~~*~O~(X, Yu) = 0. Thus by Corollary 3.6.6 we have that Y' is 

injective as a A&d' module. Thus Y* is bi-injective. 

m 

Combining the results of this chapter to this point we have the following theo- 

rem: 

THEOREM 3.6.10: The  following are equivalent 

(1) A is operator amenable 

(2) 0 Hn (A, X*) = 0 for all n > 0 and all dual operator A bimodules Xu. 

(3) OH,(A,X)  = 0 for all bimodules X and n > O and f i r thennore  every 

bimodule is dijfeerentially closed 

(4) Ext>.(d+, X*) = 0 for all n > 0 and all dual operator A Qimodules X* 

( 5 )  Tor2.(X, d+) = 0 for all bimodules X and n > 0 and f i r thennore  every 

bimodule is ddiffentially closed 

(6) d+ is operator bijlat. 

Proof: The equivalences of (I), (2) and (3) are Theorem 3.4.7. The equivalence 

(2) (4) is Theorem 3.6.1 and (3) (5) is Theorem 3.5.6. From theorem 3.6.3 

we have 

ExtL. (A,, Xu) = Ext", (X, A;). 

Thus by Corollary 3.6.6, we conclude A; is injective as a de module. Hence we 

have by Theorem 3.5.9 d+ is a flat de module. Conversely, if A; is an injective 
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A' module, then Ext'&(X, A;) = 0 by Corollary 3.6.6. 

We note that Khelemskii defined amenability via the analogue of condition (6) 

in the above Theorem. 

3.7 Extension Sequences and Cohomology 

First we recall what we mean by an n-extension sequence. Given A-modules X and 

Y, suppose we have a exact admissible operator complex of the form 

for various modules Bk. We call this sequence an n-extension of X by Y. Note that 

in the case n = 1 we always have the 1-extension 

where the module action on X @ Y is the diagonal action. In the case n > 1, we 

always have the sequence 

O + X ~ X - % O  ...+ O ~ Y ~ Y + O .  

Given two n-extensions 
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we write S < T if there exist c.b. modde maps Bk : Bk H Ck such that the 

resulting diagram commutes (with X 2 X and Y Y). We shall say S and T are 

equivalent (and write S - T) if there exists an n-extension sequence R such that 

S < R and T < R. (See McLean for the algebraic version of this or Padsen for the 

h-mo dtde version). 

DEFINITION 3.7.1: We let Ee (X ,  Y) denote the set4 of equivalence classes of 

n-extensions of X by Y '. 

The key fact for us is the following theorem: 

THEOREM 3.7.2: For any modules X and Y we have 

Ex",X, Y) = Ext",X, Y). 

The proof of this theorem involves several steps which use primarily the cat- 

egorical properties of exactness, admissibility and pro jectiveness . Since we have 

built up d the necessary categorical tools, we omit this proof. See also Paulsen's 

work [66]. 

However we have the following important case which we can prove horn our 

work in the previous Chapter: 

'To avoid messy set theoretic problems, we usually restrict the %izeV of the modules Bk to 

avoid this use of "wildn set theory. 
'Our notion is the reverse of the standard notation, however the author notes that either the 

definition is backwards or the fundamental theorem to follow is. 
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COROLLARY 3.7.3: Let  A be a n  operator amenable completely contractive Ba- 

nach algebra and let 

( t ) : O + X ' + Q + Y + O  

be a n  admissible extension sequence of  A-bimodules. Then (S) splits. 

Proof: From the above we have that EX:.(X*, Y) = Ext;.(Y,X'), which by 

Theorem 3.6.2 equals OH' (Ae, (Y&x)* ) . Since A is operator amenable, it follows 

that d+ is operator amenable (Lemma 3.4.5). Hence so is de by Corollary 3.6.8. 

Thus EdA. (X*, Y) is equivalent to the trivial element. Thus (2) splits. 

As an alternative, we can prove this result without appealing to the previous 

theorem. By Proposition 3.6.9 we have that X* is injective as a bimodule. Consider 

the following diagram: 

Since X' is bi-injective, there exists a map # E CBA,a(Q, X') such that fo# = idx* .  

Hence by Lemma 3.2.6 the sequence splits. 

3.8 Operator Biprojectivity and Amenability 

Let A be a completely contractable Baaach algebra and let x : A&A -t A be the 

multiplication map, and let N = k e r ~ .  Now we consider the short complex 
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and its dud complex 

In this section we shall investigate the splitting of these two sequences. We shall 

see that the splitting of the f is t  is related t o  the operator biprojectivity of A and 

the second is related to the operator amenability of A. 

We begin with the following lemma for modules: 

LEMMA 3.8.1: Suppose P is a left operator A- module, and  let ? r ~  : A+&P -+ P 

be the  module map onto P and N its kernel. T h e n  the  admissible sequence 

splits if and only i f  P is projective. 

Proof: First note that the sequence is clearly short exact, and since the map 

T : P H &&P given by ~ ( p )  = e @ p is clearly a completely bounded inverse for 

XL, by Lemma 3.2.6 (!DlL) is admissible. Now suppose P is projective. Consider 

the diagram 
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By projectivity of P there exists a map + which extends i d  : P H P. In par- 

ticular we have n L o $  = idp, hence by Lemma 3.2.6 the sequence splits. Conversely 

if the sequence splits, we can consider the diagram 

Since A+&P is projective we condude that the module map 8' extends to ?,6 : 

d + & ~  -+ Y. Since the sequence splits, irr, has a right inverse which is a module 

map, call it p.  Thus the map $' : P + Y defined by +'(p) = p + ( p )  is clearly an 

extension of 8. U 

The last part of this proof actually proves the general result that if P is projective 

and 0 : P I+ Q is a module map with a right inverse which is a module map, then 

Q is also projective. 

To discuss the splitting of the sequences mentioned at the beginning of this 

section, we note that the sequence is exact only when the module map is onto. 

Hence we recall that if the module P is neounital, then the module map x : A@ + 
P is onto. Thus we can consider the sequence 

which is clearly short exact. This leads to the following 

PROPOSITION 3.8.2: A neounital module P is projective i f  and only if the se- 

quence 
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( D ~ ) : o + N + A & P ~ P + o  

splits. 

Proof: If the sequence splits, then there exists a c.b. module map p : P i AhP 

which is a right inverse for T .  Clearly p is also a right inverse for TL : A+&P. Thus 

by the previous Lemma, P is projective. Conversely, if P is projective, then by the 

previous lemma, there exists r : P c+ d + & ~  which is a right inverse module map 

for TL. However we note 

Thus T is an inverse for r. I 

DEFINITION 3.8 -3: A completely contractive Banach algebra is called opemtor 

biprwjective if i t  is projective as an operator de module. 

To connect operator biprojectivity with splitting of certain sequences, we first 

note the following lemma. 

LEMMA 3.8.4: Suppose A is neounital. Then A is operator biprojective i f  and 

only if the sequence 

spli ts  as de modules. 

Pro of: Suppose A is neounital and biprojective. Then from the previous propo- 

sition we have that the sequence 
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splits, where N. is the kernel of the module map rr. : de&A e A. Note that we 

have de@d S &&A&&. Now let Q : d&d+ ct A be the 'kight" module map. 

If p : A ct de&A is an de module map which is a right inverse for ?re, then it is 

easy to see that in particular the induced map 

is an A-bimodule map. Clearly the map 

is also a bimodule map, and a simple calculation shows that 

is a bimodule map which is an inverse for ir~. Following the idea in Proposition 

3.8.2 we have that 

thus p' is a bimodule map which is a right inverse for n. Since p, TR and id are alI 

completely bounded, so is p'. 

Conversely, if the sequence splits, it follows that A is both left projective and 

right projective, by Proposition 3.8.2. Hence by standard arguments A&A is oper- 

ator biprojective. Since the sequence splits as de modules, there ex is ts  a bimodule 

map p : A I+ d6A. Thus A is biprojective. 
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Since A(G) is neountial for all amenable groups G, we can use the previous 

proposition to classify for which amenable groups G, A(G) is operator biprojective. 

First note that @ is a left operator A(G) module under the module action 

THEOREM 3.8.5: Let G be amenable. Then the following are equivalent 

(1)  A(G) is operator biprojective 

( 2 )  G is discrete 

(3) the left operator A(G) module @ is projective. 

ProoE (3) + (2): Let denote the ideal of functions u E A(G) which are equal 

to zero at e. Since Z is cofbite dimensional, there exists a bounded projection P 

onto lo. Now 1 - P : A(G) + Q where Q is the complement of & is A(G). Clearly 

Q S A(G)/& ?&' C Let 7 : A(G) t C be given by 7(u) = u(e). Certainly 7 is 

completely bounded, and since there exists a c.b. map from @ to Q c A(G), it 

follows that 7 is admissible. Since @ is projective, there is a right inverse module 

map for 7, call it T .  

Now for all u E A(G) we have that u - ~ ( 1 )  = T(U - 1) = r(u(e)).  Since for each 

s E G such that s # e we can find an element a E A(G) such that u(s) = 0 and 

ua(e) = 1 it follows that [ r ( l ) ] ( s )  = 0 for all s # e. Thus G is discrete. 

(2) + (1): Since G is amenable, A(G) is neounital. Here we can use the 

isomorphism A(G x G) A(G)&A(G) given by (u @ v)(s,t)  = n(s)v ( t )  (see 

[25]). The map r : A(G) H A(G x G) given by r ( u ) ( s ,  t )  = u(s)& where b 

is the Kronecker delta function, is a right inverse for the multiplication map R : 

A(G)&A(G) r-t A(G). It now suffices to show that this map 7 is completely 
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bounded. Let GD = {(s, s) : s E G). Clearly r ( A ( G ) )  c lo, (A(G x G)). But we 

have 

lc, (A(G x G ) )  2 A(GD) 2 A(G) 

by our future Theorem 5.2.3. Thus T is completely bounded. Now we may apply 

the previous lemma to conclude that A(G) is biprojective. 

(1) =+ (3): Since G is amenable, it follows that A(G) has a bounded approximate 

identity and hence C is essential. Since C is an essential module over an operator 

biprojective algebra, it is projective. (See for example [54]). 

Now going back to the sequences at the start of this section, we easily see that 

if the sequence (TU) splits, then so does (a)'. Historically, this question goes back 

to Khelemskii, where in the category of Banach spaces he proved the following: 

THEOREM 3.8.6: T h e  following are equivalent: 

(1)  T h e  Banach algebra A is amenable as a Banach algebra 

(2) A has a bounded approximate identity,  and the sequence 

splits as Banach  A bimodules- 

The proof of this theorem uses the Banach space version of flatness and injec- 

tivity in the same spirit of this Chapter. 

Later Curtis and Loy provided an alternative proof of this same theorem using 

more "traditional" Banach space methods. It is using these latter methods that 

Ruan and Xu were able to prove the operator space version which is as follows. 
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THEOREM 3.8.7: The following are equivalent 

(1)  A is operator amenable 

(2) A has a bounded approximate identity and the sequence (a)' splits. 

We note that we could provide an alternative proof to Ruan and Xu's using the 

operator space versions of flatness and injectivity, however we will not do so. 



Chapter 4 

Operat or weak Amenability 

4.1 Introduction 

In the previous chapter, we investigated completely contractive Banach algebras 

which were operator amenable. Recall that this is the case exactly when each 

completely bounded derivation into any dual operator module is inner. In some 

sense, this can be considered a rather strong condition. In particular, we are fiee to 

construct various "odd-ball" modules, into which each c.b. derivation is necessarily 

inner. 

We note of course that given a completely contractive Banach algebra A, its 

dual space A' becomes a natural dual operator bimodule. In this Chapter we 

investigate the special case that every e.b. derivation into A* is inner. 

We begin with some special notation which is particular to this Chapter. 
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4.2 Preliminaries and Notation 

Let @ represent the module action of A(G) acting on VN(G). Let UCB(G) 

denote the closed linear span of A(G) @ VN(G). Then UCB(G) is a topolog- 

ically introverted C*-subalgebra of VN(G) (See [57]). Given 4 E VN(G), let 

Orb(4) = {U @ 4 I u E A(G), llull 5 1). q5 is (weakly) almost periodic if Orb(4) is 

relatively (weakly) compact. Let WAP(G) and AP(G) denote the spaces of weakly 

almost periodic and almost periodic functionals on A(G) respectively. AP(G) and 

WAP(G) are also topologically introverted subspaces of VN(G). Moreover, each 

of the spaces UCB(G), WAP(&) ,  and AP(G) contain C;(G) as a dosed subspace, 

while UCB(G) and WAP(G) contain c~(G) .  

When G is abelian, UCB(G) is the Fourier transform of the C'-algebra of 

uniformly continuous functions on G. WAP(G) and AP(G) are the Fourier trans- 

forms of the C'-algebra of weakly almost periodic functions and almost periodic 

functions of G respectively. ~n general it is not known if AP(G) or WAP(G) are 

C'-algebras. Finally if G is compact, then uc B(G) = VN(G) and if G is discrete, 

- C,'(G) = Ci(G) = UCB(G). We refer the reader to [37] and [57] for these and 

other properties of the above spaces. 

Let # be a continuous multiplicative functional on a Banach algebra A. A 

point derivation of A at 4 is a linear functional d : A H @ such that d(ab) = 

WW + +(b)d(a) 

4.3 Operator Weak Amenability 

One of the principal themes of this thesis is to show that when considering problems 

of cohomology for A(G), the operator space setting is the most appropriate. Ruan's 
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result in [68] as well as our result on operator biprojectivity in Section 3.8 is certainly 

strong evidence to support this point of view. In this section, we will introduce the 

notion of operator weak amenability. We will then extend many of the fimdamental 

results &om the Banach algebra setting to the operator space setting. These will 

be used in the next Section to study operator weak amenability for A(G). 

The foUowing is adapted from the definition of weak amenability for Banach 

algebras: 

DEFINITION 4.3.1: We say that a completely contractive Banach algebra A is 

operator weakly amenable if every completely bounded derivation D from A 

into A' is inner. (i.e. O H 1 ( A ,  k )  = 0) 

We begin with a few simple observations which are well known for weak amenabil- 

ity (see [I31 and [40] for analogous results). 

LEMMA 4.3.2: Let A be a completely contractive Banach algebra such that d2 

is not dense in A. Then A is not operator weakly amenable. 

Proof: Let 4 E A' be nonzero with d(d2) = 0. Then D(a)  = $(a)# is a derivation 

from A into A*. Moreover, D is completely bounded since # E A* . 

Assume that D(a)  = (a -a< for some C E A*. Let b E A be such that +(b) # 0. 

Then D(b) (b )  = (('b - bC)(b) = 0, whereas D(b) (b )  = +(b)$(b) # 0. I t  follows that 

D cannot be inner and hence that A is not weakly amenable. 
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PROPOSITION 4.3.3: Let A be a commutative completely cont~active Banach 

algebra. Then A is operator weakly amenable i f  and only i f  every completely bounded 

derivation from A into a symmetric operator A-module X is trivial. 

Proof: If A is commutative, A* is symmetric. Therefore the "if direction is 

trivial, 

Assume that A is operator weakly amenable, and that X is a symmetric operator 

A-module. Let D : A ct X be a non-zero completely bounded derivation. We may 

by L e m m a  4.3.2 assume that d2 is dense in A. Hence there exists a f A with 

D(a2)  # 0. Choose 4 E X' such that q5(D(a2)) # 0. For each x E X, define 

R, E Ax by &(a) = 4(ax) .  The map R : X I+ As with R ( x )  = R, is completely 

bounded- To see this observe that 

It is now straightforward to see that the map b : A H A* given by &a) = R ( D ( a ) )  

is a completely bounded derivation. Finally? 

Since A is operator weakly amenable, this is impossible. 

PROPOSITION 4.3.4: Let d and B be commutative completely contractive Ba- 

nach algebras. Let $ : A H I3 be a completely bounded homomorphism with dense 
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range. If A is operator weakly amenable, then so ts B. 

Proot: Suppose that 23 is not operator weakly amenable. We may assume that 

l l # l l c b  = 1- Observe that B* becomes a symmetricoperator A-module via the action: 

for each a E A,r E B'. Let D : B ct B' be a nonzero completely bounded 

derivation. Then B(a)  = D(#(a))  is a completely bounded derivation from A into 

B'. Moreover b is non-zero since q5 has dense range. Now apply Proposition 4.3.3 

to conclude that A is not weakly amenable. 

REMARK: The analogue of Proposition 4.3.4 may fail for Banach algebras 

without the assumption of commutativity (see [41]). We can show that this is 

also true in our setting. Assume that we have a Banach algebra A which is weakly 

amenable and a bounded homomorphism # onto a dense sub-algebra of B where B is 

not weakly amenable. Let D : B ct B' be bounded but not inner. If we provide both 

A and B with the MAX operator space structure, then 4 is completely bounded. 

Moreover, the bounded derivation D : B B' is completely bounded but not 

inner. This shows that 23 is not operator weakly amenable, while A, being weakly 

amenable, will be operator weakly amenable. We conclude that Proposition 4.3.4 

would fail without the assumption of commutativity. 

PROPOSITION 4.3.5: Let A be a completely contractive Banach algebra. If d hus 

a nonzero point derivation, then A is not operator weakly amenable. 

Proof: Let d : A I+ @ be a nonzero point derivation at 

4. We may assume that d2 is dense by Lemma 4.3.2. Let D(a)  = d(a)#. Then 



CHAPTER 4. OPERATOR WEAK AMZNABILITY 87 

it is routine to verify that D is a nonzero derivation of A into A*. Again, since d 

is completely bounded, so is D. 

Assume that D is inner with D(a) = Ca - aC. Then d(a)d(a)  = D(a)(a) = 

(Ca - aC)(a) = 0 for every a E A. It follows that d(a2) = 2 d(a)4(a)  = 0 for all a. 

Finally, since d is continuous and d2 is dense, we have d(b)  = 0 for all b E A which 

is impossible. H 

Let A be a commutative completely contractive Banach algebra. Let X be a 

symmetric operator A-module. With respect to its natural operator space structure 

inherited from C B(A,  X), and with respect to the action (bT) (a) = (Tb) ( a )  = T(ab) 

for each T E CBhc(A,X),  a, b E A, CBa,c(A, X )  becomes a symmetric operator 

A-module. 

Moreover, just as is indicated in [40], if I is an ideal in the commutative com- 

pletely contractive algebra A, then the above action with a E A makes CBAc(Z, X) 

into a symmetric operator A-module in such a way that the restriction to Z is 

the natural action of Z on C Bac(Z, A). Again following (401, we define the map 

j : X w CBA,g(A,X) by j(x)(a) = ax. A routine calculation similar to that 

in the proof of Proposition 4.3.3 shows that j is a completely bounded A-module 

homomorphism. We are now able to establish the following usefal analog of [40, 

Corollary 1-31 with essentially the same proof: 

PROPOSITION 4.3.6: Let A be an  operator weakly amenable wmmutative com- 

~ l e t e l y  contractive Banach algebra. Let Z be a closed ideal in  A. Then Z is operator 

weakly amenable i f  and only ifF = 1. 

Proof: The only if direction is clear fiom Lemma 4.3.2. Hence we shall assume 

that F = 2. Let D : Z X be a completely bounded derivation into a symmetric 
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operator Z-module X. Let j : X H GBAf(Z,  X) be as above. Then since j is a 

completely bounded module map joD is a completely bounded derivation. 

Define the bilinear map : Z x  A ct CBA,c(I, X) by 

Let n E . By [40, Theorem 1.11, the map a ct B(m, a) is a derivation of A into 

CBAqC(Z, X). Moreover, it is clear from its definition that this map is completely 

bounded and thus since A is operator weakly amenable it is identically 0. Again 

&om [40, Theorem 1.1 (i)], we get that 22 D ( 1 )  c kker j and hence that Z?D(Z) = 0. 

However, F = Z implies that D = 0. Hence it follows from Proposition 4.3.3 that 

Z is weakly amenable. 

4.4 Operator Weak Amenability of the Fourier 

Algebra 

In 1291, a link was established between weak amenability of A(G) and commuta- 

tivity of the connected component of G. For example, it was shokn that if G is a 

[SIN] group, then A ( G / K )  is weakly amenable for each compact normal subgroup 

K of G if and only if G has an abelian connected component. Moreover, John- 

son [48] has shown the existence of compact groups for which A(G) is not weakly 

amenable. In contrast, in this section, we will show that operator weak amenability 

of A(G) holds for a large class of locally compact groups which included all [ I N ]  

groups. 
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The following lemma is related to our future Proposition 5.2.2. 

LEMMA 4.4.1: Let H be a closed subgroup of G. Then the restriction map 

R : A(G) H A ( H )  is a completely contractive homomorphism o f A ( G )  onto A ( H ) .  

ProoE It is well known that R is a continuous homomorphism of A(G) onto 

A ( H ) .  Let VNH(G) be the weak closure in VN(G) of span {Xc(h) : h E H). 

Then VNH(G) is a von Neumann subalgebra of VN(G) . Moreover, R* : VN(H) H 

VN(G) is a *-isomorphism of VN(H) onto VNH(G) [28]. It follows that R' is 

completely contractive and hence that R is also completely contractive. 

PROPOSITION 4.4.2: Let H be a closed subgroup of G. Assume that A(G) is 

operator weakly amenable. Then A(H) is operator weakly amenable. 

ProoE This follows immediately fiom Lemma 4.4.1 and Proposition 4.3.4. 

Since A ({e)) is always operator weakly amenable, the converse to Proposition 

4.4.2 can only hold if A(G) is operator weakly amenable for each G. We can 

however establish the converse if K is assumed to be open. We note that if H is 

open, then the complement of X, denoted Hc, is given by 

From which is immediately follows that all open subgroups are closed. 

LEMMA 4.4.3: Let H be an open subgroup of G. Then A(G) is operator weakly 

amenable if and only i f A ( H )  is operator weakly amenable. 
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Proof: If A(G) is operator weakly amenable, then by Proposition 4.4.2, so is 

A ( H ) .  Assume that A ( H )  is operator weakly amenable and that D : A(G) * 
VN(G) is a completely bounded derivation. Let u E A(G) be such that supp u 

is compact. We can find XI,, ..., x, such that suppu c U xiH . Let ui = lGHu - 

Then u = xi=, ui. If we let D; be the restriction of D to the algebra lZirrA(G), 

then Di is a completely bounded derivation &om the algebra lZiHA(G) into the 

symmetric operator module VN(G). By our future Proposition 5.2.3 and Lemma 

5.2.4, lZiHA(G) is completely isometrically isomorphic to A ( H ) .  Since A ( H )  is 

weakly operator amenable, Proposition 4.3.3 shows that Di(ui) = 0. Thus D(u)  = 0 

since elements with compact support are dense in A(G). Hence A(G) is operator 

weakly amenable. 

THEOREM 4.4.4: Let G be a locally compact group with a n  amenable connected 

component Go. Then A(G) is operator weakly amenable. 

Proof: Let a : G H GIGo be the canonical projection. Since GIGo is totally 

disconnected, it has an open compact subgroup c. Then H = ~-'(c) is an open 

almost connected subgroup of G which is amenable if Go is amenable. It follows 

from [68] that A ( H )  is operator amenable and hence is clearly operator weakly 

amenable. We now simply apply Lemma 4.4.3 to conclude that A(G) is operator 

weakly amenable. 

This theorem provides us with a significant class of groups for which A(G) is 

operator weakly amenabIe. Indeed, recall the following dasses of locally compact 
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groups : 

[MAP] G is Maximally Ahnost Periodic if the finite dimensional representations 

of G separate points. 

[IN] G is an Invariant Neighborhood group if the identity has a compact neigh- 

borhood which is invariant under all inner automorphisms. 

[Her] G is Hermitian if L1(G), the group algebra of G, is a hermitian Banach 

*-algebra. 

[NF] G is in the class [W] if G has no uniformly discrete free semigroup on two 

generators. 

COROLLARY 4.4.5: Let G be a locally compact group such that G belongs t o  

[MAP], [IN], [Her] or [NF]. Then A(G) is operator weakly amenable. 

ProoE In each of the classes above the connected component must be amenable 

(see [65]). It follows &om Theorem 4.4.4 that A(G) is operator weakly amenable. 

Remark: We do not know if for every locally compact group A(G) is operator 

weakly amenable. However, if there is an example of a group for which A(G) is not 

operator weakly amenable, our next result shows that there must be a connected 

Lie group with this property. 
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THEOREM 4.4.6: If A ( H )  ii operator weakly amenable for each connected Lie 

group H ,  then A(G) is operator weakly amenable for each locally compact group G. 

Proof: Assume that A ( H )  is operator weakly amenable for each connected Lie 

group H. Let G be a locally compact group for which A(G) is not operator weakly 

amenable. Then G must contain an open almost connected subgroup GI- Lemma 

4.4.3 shows that A(Gr) must also fail to be operator weakly amenable. Hence there 

exists a non-zero completely bounded derivation D : A(G1) ct VN(G1). 

If  K is a normal subgroup of GI, then A(G1/K) is completely isometrically 

isomorphic to the subalgebra A(G1 : K) of A(Gl) consisting of functions which 

are constant on left cosets of G. (This follows fiom the fact that p~ * VN(GI)  

is *-isomorphic with VN(Gl/K) where pK is the Haas measure on K). It follows 

that if A(GJK) is operator weakly amenable, then so is A(Gl : K). But VN(Gl)  

is a symmetric A(Gl : K) operator module. Therefore the restriction of D to 

A(G1 : K) must b e  identically 0 whenever A(G1 : K) is operator weakly amenable. 

The almost connected group GI is a projective limit of Lie groups [65]. Therefore 

for any u E A(G) we can find a compact normal subgroup K, such that Gl/Kn is a 

Lie group and such that there exists a function u, E A(G1 : K,) with I I u ~ - u I I ~ ( ~ )  5 

l /n  ([30]). Let H .  be the connected component of G1/K,. Then Hn is a connected 

Lie group, and hence by assumption A(H,)  is operator weakly amenable. But Hn 

is open in GI/ K,, so by Lemma 4.4.3, A(G1/Kn) A(Gl : K,) is also operator 

weakly amenable. We can conclude as above that D(zL*) = 0. However, since D is 

continuous, we get that D(u) = 0 for each u E A(G) contradicting the assumption 

that D was non-zero. Hence A(G1) must also have been operator weakly amenable 

and in turn so was A(G). I 
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4.5 Operator Amenability and Weak Operator 

Amenability of the Second Dual of A(G) 

Let A be a completely contractive Banach algebra. Then as always A" can be 

made into a Banach algebra with either of the two Arens multiplications. Observe 

also that A", the standard second dud  of A, is an operator space under the dual 

structure inherited &om A= and hence from A- We claim that k' is a completely 

contractive Banach algebra with respect to either Arens product. To see this note 

that R&(A") = (%(A))" and the closed unit ball of &(A) is weak-* dense in 

(A"). As such, every contractive element in (A") is the weak-* limit of a net 

of contractive elements in (A). From this we deduce that with respect to either 

Arens product, A" is completely contractive. Finally, if X is a quotient of dm', 

X also becomes a completely contractive Banach algebra. Therefore, A(G)" and 

any of its quotients for which we are concerned below are completely contractive 

Banach algebras. 

THEOREM 4.5.1: Let X be a topologically introverted subspace of  W ( G )  which 

contains Ci(G). If X* is operator weakly amenable, then every abelian subgroup X 

of G is finite. Moreover, G is discrete. 

ProoE It follows fiom the proof of [31, Theorem 3-21 that if G has an infinite 

abeIian subgroup, then X* has a nonzero point derivation. Proposition 4.3.5 would 

then imply that X* could not be operator weakly amenable. We can therefore 

assume that G has no such subgroups. 

Let Go denote the connected component of e. Then since G is periodic, so is 

Go. Moreover, the same is true for any homomorphic image of Go. Let U be a 
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neighborhood of e in Go. Then there exists a compact normal subgroup N C U 

such that Go/N is a periodic, connected Lie group. Therefore Go/N is trivial. 

Since this is true for all such U, Go must be trivial. In particular, G is totally 

disconnected. 

If G is nondiscrete and totally disconnected, then G contains an infinite compact 

subgronp K. However, by [80, Theorem 21 the infinite compact group K contains 

an infinite abelian subgroup which is impossible since G contains no such subgroup. 

It follows that G is discrete. 

COROLLARY 4.5.2 Let X be be any of the spaces AP(G),  WAP(G) ,  UCB(G).  

If X* is operator amenable, t h e n  G is an amenable discrete group. 

I f X  = VN(G), then X' is operator amenable i f  and only if G is finite. 

ProoE Assume X' is operator amenable where X is any of the spaces above. 

Then by Theorem 4.5.1 G is discrete. Moreover, since X* is operator amenable it 

has a bounded approximate identity [68]. 

If X = AP(G) ,  WAP(G) or UCB(G),  then Bs(Gd) is a quotient of X* 1311. 

However, since G is discrete, Bs(Gd) = BA (G), the reduced Fourier-Stieltjes algebra 

of G. In particular, BA(G) also has a bounded approximate identity. It is easy to 

see that IG is a weak-* cluster point of this approximate identity in B(G). Since 

B A (G) is weak-* closed we get 1~ E BA (G) . Moreover, since B *(G) is an ideal in 

B(G) , BA(G) = B(G) and hence G is amenable. 

If X = VN(G), then it follows &om [56, Proposition 3.2 (b)] that G is compact 

and thus finite. Conversely if G is finite, then VN(G)* = A(G), which is clearly 

operator amenable. I 
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For any of the spaces X = AP(G), WAP(G), UCB(G) or VN(G), we get from 

Theorem 4.5.1 that if Xu is operator weakly amenable, then G is periodic with no 

infinite abelian subgroups. This is a severe restriction of the nature of G. The 

following two corollaries are obtained in the same manner as [31, Corollary 3.1 and 

3.51 

COROLLARY 4.5.3: Let G be a locally compact group which satisfies one of the 

following conditions: i )  G is locally finite; i i )  G is an  elementary group; iii) G is 

locally solvable; or iv) G is isomorphic to a subgroup of GL(n, Il?) for some n and 

any field P. If X is a topologically introverted sudspace of VN(G) which contains 

Ci(Gd), then X is operator weakly amenable if and only i f  G is finite. 

Recall that a discrete group G has polynomial growth if for every finite set 

F c G there exists a p E N such that IF1 = O(nP). It follows from the proof of [31, 

Corollary 3-51 that if G is infinite, it must contain an infinite abelian subgroup H. 

Theorem 4.5.1 implies: 

COROLLARY 4.5.4: Let G be a discrete group of polynomial growth. Let X be a 

topologically introverted subspace of VN(G) which contains Cc(Gd), and such that 

X is operator weakly amenable, then G is finite. 

The results of this section are natural analogs of earlier results obtained in 

[31] ,[38] and [58] for the second dual of A(G) viewed as a Banach algebra. For 

example, in Corollary 4.5.2 we showed that A(G)" is operator amenable if and 

only if G is finite. This was proved by Granirer in [38] for amenability in the 

category of Banach algebras. We note however that i t  is known that for the second 
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dual A" to be amenable, A must itself be amenable [36]. Since we have already 

stated that A(G) is in general not amenable even for compact groups, Chmirer's 

result is quite natural. However, since A(G) is operator amenable for any amenable 

group, one might expect that it would be more likely that A(G)" would be operator 

amenable. Corollary 4.5.2 shows that this is not the case. ln fact the significance of 

this section is that all the known results for amenability and weak amenability for 

quotients of A(G)" hold in the new category. This shows that unlike the case of 

A(G) itself, barriers for amenability and weak amenability of quotients of A(G)** 

do not disappear with the addition of the operator space structure. Curiously, 

the reason for this could be, as suggested by the proof of Theorem 4.5.1, that the 

obstacles arise from the presence of abelian subgroups where our two notions of 

amenability agree once again. 

4.6 Amenability and Weak Amenability of Ideals 

In this section, we will take a brief look at operator amenability and operator weak 

amenability for ideals in A(G). 

We know that if A(G) is operator amenable, then G must be amenable. We can 

ask if there are any structural implications of the existence of a closed ideal in A(G) 

which is operator amenable. Since the Fourier algebra of a discrete group always 

contains such an ideal, namely the one-dimensional ideal of hc t ions  supported 

on the identity, perhaps the best one could hope for would be to show that our 

group must contain an open amenable subgroup. IR fact, we shall show that this is 

indeed the case. The key to our proof will be the fact that each operator amenable 
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completely contractive Banach algebra contains a bounded approximate identity. 

LEMMA 4.6.1: Let G be a locally compact group. Assume that  A(G) has a 

nonzero i d e a l 1  with a bounded approximate identity. Then G has an open amenable 

subgroup. 

ProoE Let G1 be an open almost connected subgroup of G. Let F = 2(Q. 

Since Z is non-zero, there exists an xo E G \ Z(1) ) .  By translating if necessary, 

we may assume that t o  E GI. Then 1- = lo,Z can be viewed as a dosed ideal in 

A(GI) which is nonzero and has a bounded approximate identity. It follows from 

[29, Proposition 3-51 that GI is amenable. II 

THEOREM 4.6.2: A ( G )  has a nonzero closed ideal which is operator amenable 

if and only if G has en open amenable subgroup. 

Proof: Assume that G1 is open and amenable. Then l(G\G1) is a closed ideal of 

A ( G )  which is completely isometrically isomorphic to A(G1). Since G1 is amenable, 

Z(G \ GI) is operator amenable. 

Conversely, assume that Z is a non-zero closed ideal of A(G) which is operator 

amenable. Then by [68], 1 has a bounded approximate identity. It follows from 

Lemma 4.6.1 that G has an open amenable subgroup. rn 

COROLLARY 4.6.3: If A(G) has a non-zero idealZ which is operator amenable, 

then A(G) is operator weakly amenable. 
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Proof: Since G has an open amenable subgroup, this follows immediately &om 

Theorem 4.4.4, and Theorem 4.6.2. i 

It was observed in [29], that the Fouder algebra of SL(2,  R) did not have any 

amenable closed ideals. Theorem 4.6.2 allows us to extend this result to the category 

of operator spaces. 

COROLLARY 4.6.4: A(SL(2 ,  It)) has no non-zero closed operator amenable ide- 

als. 

In [35], it was shown that if a closed ideal 1 in A(G) posses a bounded approx- 

imate identity, then there exists some F E fl,(G) such that Z = Z(F) .  Clearly, 

these are the only possible candidates for operator amenable ideals. To determine 

whether or not these ideals are in fact operator amenable, we will need the following 

analog of [49, Proposition 5-11 

THEOREM 4.6.5: Let A be an  operator amenable completely contractive Banach 

algebra, Let I be a closed ideal o f d .  Then 1 is operator amenable i f  and only ifZ 

has a bounded approximate identity. 

Proof: Let {e,) be a bounded approximate identity in Z with lleall < M for each 

a. 

Let X be an operator Z-module. Since Z has a bounded approximate, in order 

to show that each completely bounded derivation from A into X* is inner, we may 

assume just as in the bounded case that X is neounital. As such X* becomes 
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an operator A module with respect to the induced action of A on X* . That is if 

I? = arlB where a, b E I a n d  E X*,  then for any u E A, uI' = (ua)I'& and ru = 

ar1 (W - 

Let D : Z ct X' be a completely bounded derivation. Then D lifts to a 

derivation D : A ct X', with ~ ( u )  

[uij] E (A) Then 

= 1Ln, D(e,u) for each u E A [49]. Let 

It follows that i) is a completely bounded extension of D to A. However, since 

A is operator amenable is inner, and hence D is inner. Thus I is also operator 

amenable. 

The converse is obvious since each operator amenable completely contractive 

Banach algebra has a bounded approximate identity. 

We close with the following complete characterization of those ideals in the 

Fourier algebra of an amenable [SIN] group which are operator amenable. 

THEOREM 4.6.6: Let G be an amenable [SIN] group. Let Z be a closed ideal in 

A(G). Then  I is operator amenable if and only i f  Z(Z) E Q.(G) 
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Proof: By Theorem 4.6.5, we know that Z is operator amenable if and only if 

it possesses a bounded approximate identity. However in [35] it was shown that 

an ideal in a [SIN] group posses a bounded approximate identity if and only if 

W )  E a m -  



Chapter 5 

Automatic Complete 

Boundedness of Maps 

5.1 Introduction 

In [68], Ruan showed that amenability for the Banach algebra L1(G) is equivalent 

to operator amenability when L1(G) is given the operator space structure that it 

inherits as the predual of the von Neumann algebra LCO(G). This follows from the 

fact that L1(G) has the MAX operator space structure and as such every bounded 

map from L1(G) into an operator space X in completely bounded. Moreover, any 

Banach L1(G)- module can be given the MAX operator space structure which will 

make it into an operator L1(G)-module. As such any bounded derivation into a 

dual L1(G)-module can be viewed as a completely bounded derivation into a dual 

operator L1(G)-module. When considering the Fourier algebra of G the situation 

can be quite different. 

In this Chapter we discuss for which groups G, we have that every bounded 
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map from A(G) into any operator space is automatically completely bounded. 

5.2 Automatic c.b. of Maps on A(G) and B(G) 

We begin with the following: 

PROPOSITION 5.2.1 Let G be a locally compact group. Then A(G) = A(G)MM 

i f  and only i f  G is abelian. 

Proof: The standard dual of A(G) is the von Neumann algebra m ( G )  and 

A(G) = A(G)MAX if and only if VN(G) = VN(G)MIN (see [lo]). Since VN(G) is 

a unital operator algebra, VN(G) = V N ( G ) M ~ ~  if and only if VN(G) is abelian 

[11]. However VN(G) is abelian if and only if G is abelian. H 

Clearly if G is abelian, then since A(G) = A(G)MH and A(G) is completely 

isometrically isomorphic with L'( G) , there is little to be gained by looking at A (  G) 

as a completely contractive Banach algebra rather than simply as a Banach algebra. 

We will now show however, that if G does not contain an abelian subgroup of finite 

index, then the nature of A(G) when viewed as a completely contractive Banach 

algebra is fundamentally Merent from that of A(G) viewed as a Banach algebra. 

This we believe explains why it is necessary to retain the operator space structure 

when studying the cohomology of the Fourier algebra. 

Before providing the main result of this section, we require a few useful obser- 

vations. 

PROPOSITION 5.2.2: Let H be a closed subgroup of G. T h e n  A ( G ) / I ( H )  is 

completely isometrically isomorphic with A ( H )  . 



ProoE Let ii E A ( G ) / I ( H ) .  Define r : A ( G ) / I ( H )  * A(H) by I ' ( t )  = v i H  
where v is chosen so that Q(v) = 5 and Q : A(G) A ( G ) / I ( H )  is the quotient 

map. It is known that I' is an isometric isomorphism of A(G)/I(H) onto A(X) 

[34]. To see that r is a complete isometry observe that I ( H ) L  = VNx(G) = {T E 

VN(G) : supp(T) c H). Also VNH(G)  is a von Neumann subalgebra of VN(G) 

which is *-isomorphic with VN(H) [28]. It follows from [lo] that (A(G)/I(H))' 

is completely isometrically isomorphic to VN'(G) and hence to VN(H). Thus 

( A(G) / I ( H )  ) is completely isometrically isomorphic to A(H). 

PROPOSITION 5.2.3: Let X be an open subgroup. Then lrrA(G) is completely 

isometrically isomorphic with A(H). 

Proof: Let u E A ( H ) .  Let 9 E A(G) be such that g(x) = u ( x )  if x E H and 

g ( x )  = 0 otherwise. It is well known that r : A ( H )  A(G) defined by r(u) = g 

is an isometric isomorphism of A ( H )  into lHA(G) [28]. 

Let [ ~ i j ]  E & ( A ( H ) )  with 11 [uij] I[,, = 1. It follows from Proposition 5.2.2 that 

I l [s ] l lR  = 1. Let a > 0. We can find [vij] E W(A(G)) such that [Gel = [Gij] and - 
l l ~ i j ] l l  5 1 + 6- NOW 

where P(u)  = l ~ w .  However 1~ E B(G) and 11 lHll = 1. It follows that J J  = 1. 

Hence 

l lr(n)([~ij]) l \n 5 1 + 
Therefore we can conclude that llI'll.b 5 1. 

To complete the proof, observe that I'-' : lHA(G) I+ A(H) is simply the 

restriction of the quotient map Q : A(G) H A ( G ) / I ( H )  composed with the corn- 
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plete isometry of Proposition 5.2.2. It follows that llr-lllA =1 and hence that I' is 

a complete isometry. 

LEMMA 5.2.4: Let t E G. The map Lt : A(G) e A(G) defined by Ltu(r) = 

u ( t x )  i s  a complete isometry of A(G). 

ProoE Let L; : VN(G) H VN(G). Then L;(T) = bt * T where * is the product 

in VN(G). It follows that L; and hence Lt is completely bounded with llLtllcb = 1. 

Clearly we also have that (1 4;' II* = 11 Lt-1 llcb = 1, and hence Lt is a complete 

isometry. 

This leads to the major result of this section. 

THEOREM 5.2.5 The following are equivalent 

(iJ Every bounded map from A(G) into any operator space is completely bounded. 

(ii) Every bounded map from A(G) into VN(G) is completely bounded. 

(iii) G has a n  abelian subgroup of finite index. 

ProoE (i) + (2) immediate. 

(ii) + (iii): Recall that 

CB(A(G),  VN(G)) = (A(G)&A(G))* 

and 
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where 6 and 8, denote the operator space tensor product and Banach space tensor 

product respectively. Since from (ii) we have that 

we conclude fkom the open mapping theorem that there exists some number N E N 

such that 11011.6 < NllGll for each @ E B(A(G), VN(G)) = CB(A(G), VN(G)). 

Let u E A(G) 8 A(G). Then 

This shows that the natural injection 

extends to an isomorphism of A(G) @, A(G) onto A ( G ) ~ A ( G ) .  To complete the 

proof, observe that the canonical injection of A(G)&A(G) into A(G x G) is known 

to be surjective ( [25] ) .  It follows that the same will be true of the canonical injection 

of A(G) @, A(G) into A(G x G). Using a result of Losert [62], we conclude that 

G has an abelian subgroup of finite index. 

(iii) + (i): Assume that G has an abelian subgroup H of finite index in G. Let 

{ x ; H )  be a complete set of cosets of G. Then ix is a completely bounded projection 

of A(G) onto a sub-algebra of A(G) which is completely isometrically isomorphic 

to A(X). Since H is abelian, A ( H )  has the MAX operator structure. It follows 

that every bounded linear map from A(H) into any operator space is completely 

bounded. Thus if T is a bounded linear map from A(G) to any operator space, 

the above argument and Lemma 5.2.4 shows that TolZix is completely bounded. 

However, since T = z:=l T o l Z i ~  it follows that T is also completely bounded. H 
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We can extend this result to B(G) with the following: 

COROLLARY 5.2.6: Let G be a locally compact group- Then every bounded map 

from B(G) into an arbitrary operator space X is completely bounded i f  and only if 

G has an abelian subgroup of finite index. 

ProoE If H is abelian, we note that B(H) is again the predual of an abelian von 

Neumann algebra and is hence a MAX operator space. We can proceed as before 

to show that lHB(G) is c.b. isomorphic to B(H) when H is an open subgroup of 

G. T h s  when G has an abelian subgroup of finite index, that every bounded map 

from B(G) into an arbitrary operator space is completely bounded follows in the 

same manner as for A(G) above. 

To prove the converse, first note that A(G) is a complemented ideal in B(G) 

and the projection P is induced by the central projection in W' (G) corresponding 

to the left regular representation ([5]). As such P is completely bounded. If G 

does not have an abelian subgroup of finite index, then by Theorem 5.2.5 there is 

an operator space X and a linear map : A(G) ct X which is bounded but not 

completely bounded. Then roP is the desired map. 

It is worthwhile to shed further light on the previous two results. Let K be a 

continuous unitary representation of G. Let & denote the dosed subspace of B(G) 

generated by the coefficient functions of ?r. Then A, inherits an operator space 

structure from B(G). Moreover, the central projection P, in the von Neumann 

algebra B(G)' = W*(G) associated with n is such that & = P,B(G) and 4 = 

VN, = P,W*(G) (see [ti]). If n is irreducible, then VN, = B(&) and hence 

A, = TC(H,), the trace class operators on the Hilbert space H,. Moreover, 
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since the operator space structure on B(G) is the standard predual operator space 

structure, the induced structure on A, agrees with the standard operator space 

structure T C (X,) inherits &om B(H,) . 

Let G be a locally compact group with an infinite dimensional irreducible 

representation T. From the remark above, we see that & = TC(H,). Let 

r : B(X,) ct B(H=) be the transpose map. Since I' is weak-* to weak-* con- 

tinuous and has norm 1 , the preadjoint map I'. : TC(K,) ct TC(H,) also has 

norm 1. However, since it is well known that I' is not completely bounded, neither 

is I', which we view as a bounded map from A, onto itself. It follows that the map 

FOP, is a bounded map from B(G) into B(G) which is not completely bounded. 

Now let G be a locally compact group which has irreducible finite dimensional 

representations of arbitrarily large degree. Then we can construct in a similar 

manner as above a bounded map &om B(G) into B(G) which is not completely 

bounded. Let {T,) be a sequence of irreducible finite dimensional representations 

with dim 7rn > dim ir, whenever n > m. Let R = @% be the direct s u m  of 

the ?r,'s. Then by [5] ,  the space & = &n = eLI TC(H,,). It follows from 

[lo] that as an operator space & is the operator predual of VN,  = eLW VN,, = 

eL,wim,. E w e  define r : A, * & by I' = @(rn). where rn : mi,, * 
mmrrn is the transpose map and (I?,). is its preadjoint, then once again r is a 

map of norm one. However, since llrnlleb 2 dim ir,, r is not completely bounded. 

If we again let P, denote the central projection in W(G) associated with R, then 

the PP, is once more a bounded map &om B(G) onto which is not completely 

bounded. 

Finally, since G has finite dimensional irreducible representations of bounded 

degree if and only if G has an abelian subgroup of finite index, we have established 
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an alternate proof of Corollary 5.2.6. We have also provided a proof for the following 

proposition: 

PROPOSITION 5.2.7: Let r be a continuous unitary representation of G. If either 

K contains an infinite dimensional irreducible subrepresentation or i f  n contains 

finite dimensional sub representations of arbitrarily large degree, then there exists a 

contractive linear map r : A, I+ & which is not completely bounded. 

A locally compact goup is said to belong to the dass [AR] if the left regular 

representation X is completely reducible. It is well known that for G E [AR], A(G) 

has the Radon-Nikodym Property (in fact this characterizes the groups in [AR] 

[75]) and hence that the unit ball of A(G) is the closed convex hull of its extreme 

points. [AR] contains not only all compact groups but also a variety of noncompact 

groups (see [?I). The ax + b group is in [AR] as its left regular representation is the 

direct s u m  of two infinite dimensional irreducible representations. 

PROPOSITION 5.2.8: Let G be either a noncompact [AR] group o r  a compact 

group which does not contain an open abelian subgroup. Then there exists a n  isom- 

etry from A(G) onto A(G) which is not completely bounded. 

Proof: In either case, the map I' constructed as in the remark preceding Propo- 

sition 5.2.7 is an isometry of A(G) onto itself which is not completely bounded. 

We can make a case for the significance of the results of this section for our 

study if we recall what is currently known concerning the bounded cohomology of 

A(G). At present, the only known groups for which A(G) is amenable are those 

which contain an abelian subgroup of finite index. That the Fourier algebra of such 
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a group is amenable was originally proved for compact groups by Johnson [48]. The 

same result was later established for general locally compact groups by Lau, Loy 

and Willis in [59] and independently by Forrest in [29]. However, Johnson showed 

that for a finite group, the minimal norm for a virtual diagonal for A(G) is given 

This provided the first concrete evidence to suggest that in the presence of either 

an infinite dimensional irreducible representation or of finite dimensional represen- 

tations of arbitrarily large degree, (precisely the setting of Proposition 5.2.7) A(G) 

would fail to be amenable. In [59], Johnson's work was refined considerably and the 

case for the link between amenability of A(G) and "approximate commutativity" 

of G was strengthened. 

Findy, note that the fact that A(G)&A(G), the operator space tensor prod- 

uct of A(G) with itself, is completely isometrically isomorphic to A(G x G) is at 

the heart of Ruan's theorem that A(G) is operator amenable precisely when G is 

amenable. Moreover, the failure of the corresponding resdt for the Banach algebra 

projective tensor product in the absence of an abelian subgroup of finite index (as 

demonstrated by Losert [62]) is the essence of our proof of Theorem 4.5. Indeed, one 

might view Theorem 5.2.5 as a restatement within our current context of Losert's 

theorem. Once again, we are led to conclude that Banach algebra amenability for 

A(G) is a commutative phenomenon, whereas the category of operator spaces with 

its richer structure provides the appropriate setting for studying the cohomology of 

the Fourier algebra of a typical locally compact group. 
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5.3 Automatic Complete Boundedness and Deriva- 

tions 

In section 5.2 we showed that unless G contained an abelian subgroup of finite index, 

there are bounded linear maps from A(G) into VN(G) which are not completely 

bounded. Conversely, if G does contain such a subgroup, then it is clear that each 

bounded derivation from A(G) into VN(G) is completely bounded. Moreover, 

since any such group is amenable, every derivation &om A(G) into any Banach 

A(G) module is automatically continuous [32] and hence is automatically com- 

pletely bounded. 

Since one of our main interests in this Chapter is to study the potential operator 

weak amenability of A(G) as compared with the usual notion of weak amenabil- 

ity of A(G), a natural question arises: For which locdy compact groups are all 

(bounded) derivations from A(G) into VN(G) automatically completely bounded? 

More generally, when is any derivation of A(G) into any arbitrary A(G)-module 

automaticdy completely bounded? 

Recall that in [29] Forrest showed that any locally compact group with an 

abelian connected component is such that A(G) is weakly amenable. It follows 

that in this  case the only bounded derivation &om A(G) to VN(G) is zero, which 

is trivially completely bounded. We can speculate about the possibility that these 

are the only such groups without bounded derivations into VN(G) that are not 

completely bounded. 

We begin with a proposition which is somewhat analogous to [32, Theorem 11. 
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PROPOSITION 5.3.1: Let G be a locally compact group such that every  deriua- 

t ion from A(G) into a finite dimemiional, symmetric operator A(G)-module is com- 

pletely bounded, then G is amenable. 

Proof: Assume that G is not amenable. Then A(G)* is not closed in A(G) [6l]. 

We follow the construction in [21]. In particular, we can fmd a closed cofinite ideal 

l in A(G) and another cofinite ideal K: which is not closed and satisfies F c K: c Z. 

Let X be the radical of the f inite dimensional algebra A(G) /K. Then X = If XC. 

By Wedderburn's Theorem there exists a subalgebra B of A(G)/K: such that 

with multiplication in B @ X given by 

Let F : A(G) H A(G)/K: be the quotient map and define a symmetric A(G)- 

module structure on X by 

a x = l?(a)x = x - a 

We wish to recognize X as an operator A(G)-module. First we fix any norm 11 Ilx 
on X. Now we define a new norm I( - 11' on X by setting for all x E X 

Since the kernel of the map a F+ a x is closed for each x E X, it is now easy to 

see that the finite dimensional module X is a Banach A(G)-module with respect 

to the norm 11 11' on X. Now we can give X the MIN operator structure. Since X 

is fmite dimensional, it is easy to see that the module action extends to a bounded 

I==P 

m : A(G)&MIN(X) H M I N ( X )  



CHAPTBR 5. AUTOMATIC COMPLETE BOUNDEDNESS OF M A P S  112 

which is clearly completely bounded. The s m d  difficulty is that this map is not 

necessarily completely contractive. To correct this we define a new collection of 

operator space norms 11 - 11:: on M(X) by the f o d a  

It is now straightforward to verify that with this new structure, the module map is 

completely contractive and hence X is a symmetric operator A(G) bimodule. 

Finally, if II is the projection of A(G)/K onto its second coordinate, then D = 

nor is a derivation from A(G) into X. Moreover, since (ker D) n 9 = X: is not 

dosed, D is not continuous and hence is not completely bounded. 

We can obtain a converse to the previous proposition for the dass of locally 

compact groups with an abelian subgroup of finite index. 

PROPOSITION 5.3.2: Let G be a locally compact group with a n  abelian subgroup 

of finite index. Then every derivation from A(G) into a n  operator A(G) module is 

completely bounded. 

Proof: Since G is amenable, every derivation from A(G) into any Banach A(G) 

module is automatically bounded [32]. It  now follows from Theorem 5.2.5 that every 

derivation into an operator A(G) modde is automatically completely bounded. 

While for amenable groups, derivations from A(G) into VN(G) are automati- 

cally bounded even for groups such as SO(3) it is not the case that they are always 

completely bounded. In fact, it turns out that for compact Lie groups, Proposition 

5.3-2 was the best we could do. 
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COROLLARY 5.3.3: Let G be a compact Lie group. T h e n  every derivation from 

A(G) into W ( G )  is completely bounded i f  and only i f  G has an abelian subgroup 

of finite index. 

Pro of: The "if' direction follows immediately form the previous proposition. 

Conversely, since G is amenable, A(G) is operator amenable, and hence clearly 

operator weakly amenable. It follows that the only completely bounded derivation 

from A(G) into VN(G) is the zero map. However, A(G) is not weakly amenable 

[48]. This means there must ex is t  a nonzero bounded derivation D from A(G)  into 

VN(G) which cannot be completely bounded. I 

For noncompact Lie groups we have the following: 

PROPOSITION 5.3.4: i)  Let G be u Lie group. Assume  that every bounded deriua- 

t ion  from A(G) into a symmetric  operator A(G)-module  is completely bounded. 

Then every compact subgroup K of G has an abelian subgroup of finite index. 

ii) Let G be a semisimple Lie group with a compact connected component K .  

Then every bounded derivation f i o m  A(G) into VN(G) is completely Bounded if 

and only if G is discrete. 

iii) Let G be a semisimple L ie  group with e compact connected component. T h e n  

every derivation from A(G) in to  a symmetric operator A(G)-module is completely 

bounded if and only ifG is amenable and discrete. 

Proof: By Lemma 4.4.1 the restriction map R establishes a completely contrac- 

tive homomorphism from A(G) onto A(K) .  This dows  us to view V N ( K )  as a 
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symmetric operator A(G)-module with respect to the action defined by u - T = 

R(u) 0 T = T @ R(u) = T zl for each tl E A(G),T E VN(K) (here @ de- 

notes the usual action of A(K) on VN(K)). If K does not have an abelian 

subgroup of finite index, then Corollary 5.3.3 shows that there exists a deriva- 

tion D : A(K) I+ VN(K) which is bounded but not completely bounded. Let 

b(u)  = D(R(u)) for each u E A(G). Then it is easy to see that D defines a 

bounded derivation &om A(G) into VN(K). We claim that is not completely 

bounded. 

Observe that R = P Q  where Q : A(G) e A ( G ) / I ( K )  is the quotient map and 

r : A(G) / I (K)  ct A(K) is the map defined in Proposition 5.2.2. Let M > 0. Since 

D is not completely bounded, there exists [uij] E &(A(K)) with 11 [ ~ j ]  4 1 

but 11 D([uij] l l n  > M. However since Q is a complete quotient map and I' is a 

complete isometry there exists [vij] E (A(G)) with 11 [~)ii] lln 5 2 and R(n) ( [ v ~ ] )  = 

(r0Q)(")([vij]) = [uii]- Thus 1[Bn)([vii])lln = lI~(")[~;j]ll > M. Hence B is not 

completely bounded. 

ii) Assume that K is not abelian. Then as before A(K) is not weakly amenable 

and hence by [29, Lemma 2-11 A(G) cannot be weakly amenable. However K is 

open since G is a Lie group. Furthermore A(K) is operator weakly amenable since 

K is compact. Thus by Lemma 4.4.3, A(G) is operator weakly amenable. This 

means there exists a nonzero bounded derivation from A(G) into VN(G) which is 

not completely bounded. Since this is impossible, K must be abelian. However, 

since G is semisimple, this means that K is trivial and hence that G is discrete. 

For the converse, we observe that if G is discrete, then A(G) is weakly amenable 

[32] and the only bounded derivation of A(G) into VN(G) is the zero map which 

is obviously completely bounded. 
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iii) Assume that every derivation &om A(G) into a symmetric operator A(G)- 

module is completely bounded, then by (ii) G is discrete. Moreover, by Proposition 

5.3.1, G must be amenable. 

The converse follows trivially since, if G is discrete A(G) is operator weakly 

amenable and if G is amenable then every derivation is bounded [32]. As such the 

only derivation horn A(G) into a symmetric operator A(G)-module is once again 

the zero map. 

W e  can apply the previous Corollary to the family Wn K p  SO (n) of Euclidean 

motion groups to conclude that: 

COROLLARY 5.3.5: Let G be the semidirect product Rn K~ SO(n) where the 

action of SO(n) o n  Rn is the natural action. I f  n 2 3, there ezists a bounded 

derivation D : A(G) ct VN(G) which is not completely bounded. 

The various types of amenability which we have mentioned have one major 

structural flaw in common - they are not inherited by subdgebras. In particular, we 

do not know if given a compact normal subgroup K, A(G) being (operator) weakly 

amenable implies that A(G : K) n A(G/K) is also (operator) weakly amenable. 

Were this the case, we would be able to make significant progress in classifying those 

groups for which A(G) is (operator) weakly amenable. For example, if we knew 

that A(G/K)  always inherited weak amenability from A(G), we could conclude 



that for G E [SIN], weak amenability of A(G) would be equivalent to G having 

an abelian connected component [29, Theorem 2.71. In this case, it would be true 

that for any [SIN]-group with a nonabelian connected component there would be 

a bounded derivation &om A(G) into VN(G) which was not completely bounded. 

At present the best we can do is the following related result: 

PROPOSITION 5.3.6: Let G be a [SIN] group for which Go is not abelian. Then 

for every neighborhood U of the identity, there exists a compact normal Ku C U 

and a bounded map rU : A(G) tt VN(G/KV) which is such that  the restriction of 

ru to  A(G : Kv) is a derivation that is not completely bounded. 

Proof: Let Go be the connected component of G. Then Go = V X K  where V 

is a vector group and K is a nonabelian compact connected group ( see [65]) .  Let 

U be a neighborhood of e E G. Then, since G is a projective limit of Lie groups, 

there exists a compact normal subgroup Ku c U such that G/KU is a Lie group 

and if # : G ct G/KU is the quotient map, then d ( K )  is a nonabelian compact 

connected subgroup of G. It follows &om [48] and [29] that A(G/ KV) is not weakly 

amenable. Hence there exists a nonzero bounded derivation Dv from A(G/Ku) into 

~ ~ ( G I K u ) .  

Since A(G/Krr) is completely isometrically isomorphic to A(G : Ktr), we may 

assume that Du maps A(G : Kv) into VN(G/KV). Finally, let PKu be the pro- 

jection of A(G) onto A(G : Ku). Then ro = DuoPKu is the desired map. I 



Chapter 6 

Complemented Ideals in A(G) 

6.1 Introduction 

The contents of this Chapter investigates which closed ideals of the Fourier algebra 

of a locdy compact group are complemented. Indeed, it is this question which 

served as the author's original motivation for studying the homological proper ties 

of completely contractive algebras. 

To understand the history of this question, we consider the group algebra of the 

circle group G = T. We recall the Hardy space 3C1(T) which is defined by 

H'(T) = {f E L1(T) : f(n) = O for all n < 0) 

Note that the function g(z) = zn satisfies G(k) = 0 if k # R and @(k) = 1 if 

k = n. Aom this it is easy to see that H1(T) is simply the closure of the analytic 

polynomials in the L1(G) norm. (see [23]). 
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- 
Note that f *g(n) = f(n) .ij(n) &om which it is easy to see that x'(T) is a 

closed two sided ideal of L1 (T). 

For some time it was questioned whether 3L1(T) was complemented in L1(T). 

The answer to this question goes back to D.J. Newmans result [64], and more 

generally Walter Rudin's paper ([71]) in 1962, where he classified the complemented 

ideals in L1(G) for compact abelian groups. To begin this chapter, we shall review 

his construction, which wiU serve as our motivation for the general question. 

For x E G we define the translation map 

rX : L1(G) H L1(G) 

given by 

~ x ( f  (Y)) = f (x-ly)- 

A subspace X of L1(G) is called translation invariant ifrZ( f )  E X for all x E G 

and f EX. 

It is well known (See [72, p. 1571) that Z is an ideal of L1(G) if and only if Z is 

translation invariant. 

Suppose Z is complemented, and let P : L1(G) H Z be a continuous projection 

onto the ideal. Now let 

then Tf €1, Tf = f Vf €1, and TT= =T,T and thus weget 

which implies Tf = f * p for some p E M(G). Since T is a projection, p is 

idempotent and hence by Cohen's Idempotent Theorem we have 
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where Q(G) represents the closed coset ring of (G) 

Conversely if h(Z) E n ( ~ ) ,  then there is an idempotent measure p with Z ( p )  = 

h(Z). Therefore the projection defined by 

is a projection onto 2, whence it is complemented. 

Thus we conclude that the ideal 1 is complemented if and only if h(Z) E Q(G)- 

In particular, since Z- @ Q(G) it follows that 3C1(T) is not complemented in L1(T). 

We note that the idea in the proof was to "average away" the effects of the group 

to produce a projection which commutes with translations, and hence commutes 

with convolution. 

If G is non-compact the previous construction does not work since m(G) = m. 

In [70] H. Rosenthal extended this result to the non-compact case by using the 

amenability of the group in the same spirit as Rudin. 

Consider 1 - P' : Lm(G) + ZL. We can use the invariant mean on Lm(G) to 

get a map T : Lm(G) + ZL such that T(f * 4)  = f * T(#) (i-e. T commutes with 

the L1(G)- module action). Thus ZL is invariantly complemented and hence Z has 

a bounded approximate identity. From this it can be shown that h(T) E Q(G~) the 

coset ring of G with the discrete topology. 

Unfortunately the converse to the above result is false. Indeed the question 

of identifying sdEcient conditions for an ided to be complemented is extremely 

difEcult. For example see [2], for the case G = 8, [I] for G = R2 and the papers [3] 

and [4] for further discussion on this question. 
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To understand our current approach, we consider the following sequences of 

L' (G)-modules 

c : O  ++Z&L'(G) A L ~ ( G ) I I H O  

and its dual sequence 

where i is the inclusion map, v is the canonical quotient map, and i',vs are their 

adjoints. 

The essence of Rosenthal's result was to show that if Z is complemented then 

C* splits (ie. i* and v* have inverses which are module maps). 

So in general we wish to consider sequences of d-modules 

and determine when such sequences split. Presumably the reader can recognize the 

homological flavour of this question. 

6.2 Splitting of Exact Sequences 

We begin with the following theorem, which follows &om our work in Chapter 3. 

(See [79] for an alternate proof). 

THEOREM 6.2.1: Let A be an operator amenable Banach algebra, and let  

C : O C , X * A Y A Z + + O  

be an admissible short exact sequence of operator d-bimodules with X* a dual op- 

erator d-bimodule. Then C splits. 
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Proof: This is CorolIary 3.7.3. W 

Suppose A is an operator amenable Banach algebra, and let J be a closed ideal. 

We wish to consider the sequence 

and its dual sequence 

where i is the inclusion map, v is the canonical quotient map, and i', v* are their 

adjoints. Clearly i and v are completely bounded module maps and thus so are i' 

and v'. (Note that (A/J)* ES JL). 

Now suppose that J is completely complemented by a projection P : A r-t 9. 

We define a map Q : dl3 H A by 

Note that Q is well defined since if a + J = b + J then a - b E J so 

Furthermore Q is completely bounded and a I& inverse for v. Thus we conclude the 

exact sequence C' is admissible. We shall say that a submodule Y of an A-module 

X is called invariantly complemented if there exists a projection T onto X 

which commutes with the module action, i-e. T : X t+ Y such that T(ax)  = aT(x) 

for all a E A and x E X. Applying Theorem 1 we have: 

THEOREM 6.2.2: Let 3 be a closed ideal in an operator amenable Banach alge- 

bra. If 3 is complemented, then gL is inuariantly complemented. 
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Now we are ready to provide the connection between complete invariant com- 

plementation and bounded approximate identities in the operator space category. 

THEOREM 6.2.3: Let A be a n  operator amenable Bunuch algebra, and 3 a 

closed ideal. Then  9'- is complemented if and only i f 3  has a bounded approximate 

identity. 

ProoE Assume gL is complemented by a completely bounded projection. Then 

by Theorem 6.2.1, C' splits. In particular C' splits as Banach algebras , and hence 

by standard Banach algebra arguments, 3 has a bounded approximate identity. 

(See [19]). 

For the converse we follow [19, Proposition 3-51. If 3 has a bounded approximate 

identity, let Q be a weak-* limit point in r7"- D e h e  S : 3' ct A= by 

( S ( 4 )  , 4 = (@, 4 4 Q4 € 3*- 

Clearly i'S = id3=. Now define an operator T on A' by 

T ( 4 )  = 4 - Si*(#)- 

Routine calculations show that if x E 3 we have 

(T4, z) = (4 ,  X) - (Si*#, 2) = 0 

and if q5 E JL then T# = 4. In particular we see that T is a projection onto 

It now s&ces to show that S is completely bounded (whence T is). Now 
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To see the last inequality, note that Q is a linear functional on J* and hence is 

completely bounded with (1 Q ( I&= 11 Q 11 and we also have that the module action is 

completely contractive. Hence S is completely bounded and the result is proven. 

H 

Remark: Notice that the operator amenability of the algebra was not necessary 

in the construction of the map T. Since T is a module map we can conclude in 

general that if 3 possesses a bounded approximate identity, then JL is invariantly 

complemented by a c-b. map. 

The next corollary now follows easily. 

COROLLARY 6.2.4: If 3 is complemented closed ideal in an operator amenable 

Banach  algebra, then 3 has a bounded approximate identity. 

6.3 Ideals in the Fourier Algebra 

Applying the results of the last section, we are able to provide conditions for a 

closed ideal in A(G) to be complemented by a completely bounded projection. 

THEOREM 6.3.1: Le t  G be a n  amenable groGp. If 3 is a closed ideal such 

that zL is complemented in A(G)*, then h ( J )  E Qc(G)- In particular if J is 

complemented, t h e n  h ( 3 )  E aC(G). 

Proof: Since G is amenable, A(G) is operator amenable. Therefore by Corollary 

6.2.4, zL complemented by a completely bounded projection implies that 3 has 

a bounded approximate identity (ua). It follows fkom [28] that u, E B(Gd) and 
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I(up l l B ( G d l = I l  uo IIA(G) .  Let u be a weak-* limit point of this bounded approximate 

identity in B(Ga).  It is routine to show that u is an idempotent in B(Gd) with 

Z(=) = h ( 3 ) .  By Host's Idempotent Theorem [46] we can conclude that Z(u)  E 

n(Gd) and hence h ( J )  E &(G). (See also [34]) U 

Remark: We note that Rosenthal's result ([70]) is for bounded projections, as 

opposed to completely bounded projections. However if G is abelian then A(G) 

V(G) which is k n o m  to have the MAX operator space structure. In this case it 

follows that every bounded projection is automatically completely bounded, and 

hence in particular we see that Theorem 6.3.1 is a true generalization of Rosenthal's 

result to the non-abelian case. Unfortunately, for the Fourier algebra to have the 

MAX operator space structure its dual space VN(G) will have the M I N  operator 

space structure, (see [lo]), from which it follows that VN(G) is a commutative 

operator algebra and hence G is abelian (see [Ill). Thus we cannot conclude that 

every bounded projection is automatically completely bounded for arbitrary G. 

Also note that as discussed earlier the converse of Theorem 6.3-1 is false in 

general - even in the abelian case. (See [2] for the case G = W). However, in the 

discrete case the converse does hold and we have the following characterization of 

ideals complemented by completely bounded maps. 

COROLLARY 6.3.2: Let G be an amenable discrete group. Then 3 is comple- 

mented if and only if h ( 3 )  E n,(G). 

Proofr(+) This follows immediately &om Theorem 6 -3.1. 
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(+=) If h ( 3 )  = E c R,(G) then the characteristic function of E, denoted 1~ 

is an element of B(G)([28]) . Thus the map P(u )  = u - Is from A(G) onto 3 

is a completely bounded projection of A(G) onto Z ( h ( 3 ) )  - Since this is a set of 

spectral synthesis it follows that Z ( h ( 3 ) )  = 3. 

The following example due to Leinest shows that the condition on the amenabil- 

ity of the group is necessary for the previous corollary. Let F2 be the fkee group on 

{a, b) .  It is well known that F2 is not an amenable group. Let E = {anbn : n = 

1,2, ...), then the characteristic function of E is completely bounded (see [60] 

for details), however E is clearly not an element of the coset ring. In particular, 

I ( E )  provides an example of a complemented ideal in A(F2 ) whose hull is not in 

the coset ring. 



Chapter 7 

Summary and Open Problems 

QUESTION 1: One of our main objectives in Chapter 3 was to show that ques- 

tions and constructions relating to the homoiogy and cohomology in operator spaces 

are most naturally realized using the operator space projective tensor product as 

the natural product. Many authors who studied the cohomology of operator spaces 

and von Neumann algebras (see [66] and [73]) use the Haagerup tensor product as 

the basic object. This of course leads to the question: 

When do t h e  tensor products @r, and agree? 

In the case that the operator spaces are indeed C'dgebras, then Kumar and 

SincIaL have shown in [55] that the tensor products (and hence the cohomology) 

agree exactly when either one of the algebras is finite dimensional, or when both of 

the algebras possess a collection of irreducible representations of bounded degree 

(C* algebras of this type are called subhomogeneous - note this corrects (471). 

However in the case of the Fourier algebra, the solution is not so clear. Should it 

be the case that the tensor products agree when the group has irreducible repre- 

sentations of bounded degree, then our results in Chapter 5 show that this is the 
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case exactly when every map from A(G) into any operator space in automatically 

completely bounded. In this case we have that the Uoperator spacen homology 

corresponds exactly to the " Banach space" homology. 

QUESTION 2: In Chapter 4 we discussed the weak operator amenability of A(G) 

and showed that for a large dass of groups the Fourier algebra is weak operator 

amenable. This leads to the natural question: 

Do there  exist groups G for which A(G) is not weak operator amenable? 

QUESTION 3: In Chapter 6 we gave a complete classification of the ideals in 

the Fourier algebra of a discrete group which are complemented by a completely 

bounded projection. Furthermore we gave necessary conditions for complementa- 

tion for general amenable groups. We note that providing explicit sufficient con- 

ditions for non discrete groups is extremely difEcdt and using present techniques 

is out of reach. (See [52] for a discussion of the groups R3 and B4). However for 

non-amenable groups, we stiU lack any sort of necessaxy conditions. Our current 

approach using the cohomology groups may provide more detailed insight. Since 

the sets ~ x t '  represent equivalence classes of extension sequences, perhaps we can 

find conditions on the zero set of an ideal in A(G) to be complemented for all 

groups with reference to the contents of EX& Thus we have the question: 

Given a n  arbitrary non-amenable group G, are there reasonable necessary con- 

ditions f o r  an  ideal in A(G) t o  be complemented? 
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QUESTION 4: Our major focus has been on the so called Hochschild cohomology 

in the operator space category. However there is another cohomology called the 

cyclic cohomology introduced by Comes (See [16]) in the algebraic category. A 

Banach space version of this was developed by Christian and Sinclair in [15]. It is 

possible to connect this new cohomology with the spaces Hn(d, A'), and hence to 

the notion of weak amenability. Comes has found interesting applications of this 

cyclic cohomology in the study of differential geometry (see [MI, [17]). The ideas of 

differential geometry are rather complex, but relate to the notion of replacing usual 

"scalar" ideas with that of operators on a Ailbert space. Given that the morphisms 

of completely bounded maps are somewhat natural for the category of operators 

on Hilbert spaces, it may be interesting to develop a Ucompletely bounded cyclic 

cohomolog~" , which leads to the question 

What  connections exist between operator weak amenability and the natural no- 

t ion of completely bounded cyclic cohomology? 

Given the application of cyclic eohomology and noncommutative geometry to 

quantum mechanics, (see for example [17]) it would be interesting to see if the 

operator space category can find any applications there. 

QUESTION 5 :  Given a Banach algebra A, there is a natural A-module structure 

on A' which we exploited in our study of weak amenability. Using these same 

ideas, it is easy to recognize the second dual d?= of A as an A- module, and so 

forth. Let us denote the nth dual of A by In [20] Dales, Ghahramani and 

Grgnbrek defined the Banach algebra A to be n-weak amenable if each bounded 

derivation &om A into A["] is inner. In [20] it was shown that L1(G) is 272 + 1 
weak amenable for all groups G. The classification of which groups G are 2n-weak 
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amenable remains open. These notions appear to have natural generalizations to 

the operator space category. Hence we shall say a completely contractive Banach 

algebra A is n-operator weak amenable if O H 1 ( A ,  A["]) = 0. This leads us to 

the question: 

For which groups G is A(G) n-operator weak amenable. 

QUESTION 6: Fundamental to this thesis is the observation that the Fourier 

algebra has better "amenability properties" when considered in the operator space 

category. In particular we note that the class of groups for which M A X ( A ( G ) )  

is operator amenable is considerably smaller than the class of groups for which 

A(G) with its natural structure is operator amenable. We wonder how altering 

the operator space structure can affect the potential operator amenability of a 

completely contractive Banach algebra. This leads to the following two questions: 

Are M I N ( A ( G ) )  and MIN(L1(G) )  completely contractive Banach algebras? 

Assuming the answer to the above question is yes, then we have: 

For what groups G are M I N ( A ( G ) )  and MIN(L1(G) )  operator amenable? 



Chapter 8 

Appendix A 

In this appendix, we provide the equivalent of a Compa+on Theorem in our cate- 

gory. Perhaps we should first make a few observations. Note that in general we will 

be given an additive functor from the category of operator spaces into the category 

of operator spaces. The various derived functors of this functor become functors 

fiom the category of operator spaces into the category of h e a r  spaces. The key 

is that the various quotients are not necessarily Banach spaces, hence we cannot 

guarantee that the "image" of our functor is inside the category of operator spaces. 

The usual comparison theorem for resolutions now asserts that given an additive 

functor F and two projective resolutions of X, the functors derived fiom the two 

resolutions are naturally isomorphic (in the target category). However we wish 

to show that in the instances that Fn(X) are operator spaces, then the derived 

functors are in fact c-b. isomorphic. 

W e  begin with the following. Let 

d"+l . .. t K& * K* t K*+l +- - - -  (R) 



CHAPTER 8. APPENDIX A 

be two admissible operator complexes of A modules. A chain transformation 

f : W I+ 42' is a family of c.b. module maps f, : K, H KA such that the resulting 

diagram 

commutes. Note that each function fn defmes a h c t i o n  

given by 

(fn)*(k + &+I (Kn+l)) = fn(k) + dL+l (K;+,). 

This leads to the following: 

P R ~ P ~ ~ ~ T I ~ N  Al: If lm&+l and Imdko a m  both closed, then (f,). is com- 

pletely bounded. 

ProoE Let s E W and [b] E b& (K,), and [kj] the corresponding element in 

OH,(R). Now 
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Thus (fn)* is completely bounded. I 

If f ,  g : R H R' are chain transformations, we call a family of c.b. module maps 

s, : K, ct KA+, a chain homotopy and say f and g are chain equivalent (and 

writes: f -9) if 

+ 8,-I& = fn + 9,- 
PROPOSITION A2: l f s  : f - g : 42 -tf then 

(fn)= = (gn)= O H n ( R )  * OHn(-@)- 

Proof: The proof of this d a b  is identical to the algebraic case. (See [63, p. 401. 

m 

We shall say that a chain transformation f : E ct R' is a chain equivalence 

if there exists a chain transformation h : Rf ct A and chain homotopies s : h f  .- 

a n d t :  fh-lJil. 

COROLLARY A3: If f : R H Rf is a chain equivalence then 

is an algebraic isomorphism. If OH,(R) and OH,(R') are both operator spaces, 

then (f,). is a c.6. isomorphism. 

Proof: Let h : R' H 52 be a chain transformation such that there is a hornotopy 

such that s : h f .- la. Clearly w e  have that (f,0hn). = ( fn)*(hn)*- Since (idK,), = 

i d o ~ n  it follows that (fn)*(hn)* = (hn)*(fn). = id. Thus (f,). is an algebraic 
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isomorphism. Now by Proposition A l ,  if Im&+I and Imdk+, are closed, then both 

( fn ) -  and (hn)* are completely bounded. Hence we conclude that (f,). is a c.b. 

isornorp hism. 

Now we may turn our attention to projective resolutions. 

be a projective resolution of X ,  and let 

be any resolution. Then there exists a chain transformation fn : P, H Yn such that 

&ofo = a. Furthennore if gn : P, ci Y, is another such chain transfornation, then 

f and g are chain homotopic. 

Proof: The proof of this Theorem requires only categorical properties of projec- 

tivity and exactness. See [63, p. 881 for the algebraic case. I 

THEOREM A5: Let 73 and '4' be two projective resohtions of X. Let F be an ad- 

ditive functor from the category of operator d-modules to operator A-modules. Then 

there exists a chain equivalence f : F ( p )  ct F ( P f ) .  In particular, if OH,(F(P))  

and 0 H, ( F ( p f ) )  are operator spaces, then  they are c.6. isomorphic. 

Proof: By Theorem A4, we can find a chain transformation f : I+ and 

another chain transformation g : 9' 3' such that there exists a chain homotopy 

with s : gf - id. Since F is additive, it follows that F ( f )  and F(g)  are chain 

homotopic such that F(s )  : F(g )  F ( f )  - id. By applying Proposition A3, we 

have that O H n ( F ( v ) )  is c-b. isomorphic to OH,(F(P)) whenever they are both 

operator spaces. 
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We observe that this theorem asserts that any two projective resolutions define 

the same derived functors up to cab. isomorphism whenever they produce operator 

spaces. However we note that we obtain only c-b. isomorphisms, not completely 

isometric isomorphisms. The reason for this appears to be in our choice of operator 

complexes and our definition of projectivity in this category- 

As an alternative, we could study the operator space category under the follow- 

ing assumptions: 

(1) All maps in an admissible complex must be complete isometries or complete 

quotients. 

(2) A module P is projective only if whenever q5 : P I+ X / Y  is contractive, then 

there exists a contractive extension $ : P e X. 

One can now verify that under the above assumptions (along with the obvious 

necessary changes to injectivity etc.) that our derived functors are defined up to 

complete isometric isomorphism. There is however a difficulty in using this notion of 

equivalence of operator spaces. The above definition of projectivity concentrates on 

the problem of extension of maps, while our primary interest in projectivity relates 

to the exactness of functors - which ignores the "norm preserving" properties of 

the extension. 
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