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Abstract

This thesis investigates Häggkvist & Hell graphs. These graphs are an ex-
tension of the idea of Kneser graphs, and as such share many attributes with
them. A variety of original results on many different properties of these graphs
are given.

We begin with an examination of the transitivity and structural properties of
Häggkvist & Hell graphs. Capitalizing on the known results for Kneser graphs,
the exact values of girth, odd girth, and diameter are derived. We also discuss
subgraphs of Häggkvist & Hell graphs that are isomorphic to subgraphs of
Kneser graphs. We then give some background on graph homomorphisms before
giving some explicit homomorphisms of Häggkvist & Hell graphs that motivate
many of our results. Using the theory of equitable partitions we compute some
eigenvalues of these graphs. Moving on to independent sets we give several
bounds including the ratio bound, which is computed using the least eigenvalue.
A bound for the chromatic number is given using the homomorphism to the
Kneser graphs, as well as a recursive bound. We then introduce the concept
of fractional chromatic number and again give several bounds. Also included
are tables of the computed values of these parameters for some small cases. We
conclude with a discussion of the broader implications of our results, and give
some interesting open problems.
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Introduction

For any two positive integers n and r, we define the Häggkvist & Hell graph,
HHr(n), to be the graph whose vertices are the ordered pairs (h, T ), where
h ∈ {1, . . . , n} and T ⊆ {1, . . . , n} such that |T | = r and T does not contain h.
Vertices (hx, Tx) and (hy, Ty) are adjacent if and only if Tx ∩ Ty = ∅, hx ∈ Ty,
and hy ∈ Tx. For instance, (1, {2}) and (2, {1}) are the only two vertices of
HH1(2) and they are adjacent. For a given vertex v = (h, T ) of a Häggkvist &
Hell graph, we refer to h as the head of v, and T as the tail of v. Also, we use
[n] to refer to the set {1, . . . , n}. For some values of n and r, the graph HHr(n)
has no edges or no vertices. We take time now to remark on these degenerate
cases: when n < 2r no two subsets of [n] are disjoint, and so HHr(n) has no
edges; in the more degenerate case when n < r + 1 there are no vertices, and
thus HHr(n) is the null graph. With this in mind, we will assume throughout
this work that n ≥ 2r unless otherwise stated.

There are two other cases in which the structure of the Häggkvist & Hell
graphs can be easily discerned. If r = 1, then any vertex of HHr(n) has the
form (a, {b}), and its only neighbor is the vertex (b, {a}). Therefore, HH1(n) is
always a matching. Because of this, we will assume that r ≥ 2 unless otherwise
stated. In the case of n = 2r we see that the Häggkvist & Hell graphs are
bipartite. For any vertex, (h, T ), of HHr(2r), its tail will be disjoint from
exactly one other r-subset of [2r], say T . Since the head of any vertex with tail
T must be from T , and vice versa, it is apparent that any vertex having T as
its tail will be adjacent to any vertex with T as its tail. There are exactly r
vertices with T as their tail, and the same for T , so these vertices induce a Kr,r

subgraph in HHr(2r). There are 1
2

(

2r
r

)

such pairs of disjoint r-subsets, so we
have that

HHr(2r) =
1

2

(

2r

r

)

Kr,r.

These graphs extend the idea of Kneser graphs Kn:r, which have the r-
subsets of [n] as their vertices, two of them being adjacent if they are disjoint.
Though much is known about Kneser graphs (they have been studied heavily)
very little is known about Häggkvist & Hell graphs. For this reason there are
not a great many citations in this work, the subject being relatively new. The
only two previous references to graphs of this type that we know of are [3], where
they were first mentioned as a triangle-free universal graph for triangle-free cubic
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INTRODUCTION

graphs, and [1], which proves that their chromatic number is unbounded. In
both cases the authors dealt only with the r = 3 case, and only for very specific
results.

In this work we take a comprehensive look at several properties of the
Häggkvist & Hell graphs which are typically of interest to graph theorists. For
some of these properties, such as diameter and odd girth, these graphs closely
resemble those for the corresponding Kneser graphs. For other properties, such
as independence, chromatic, and fractional chromatic numbers, these graphs
seem to veer away from their natural similarity to Kneser graphs. But in ei-
ther case the results found for these graphs are interesting in their own right,
and this is part of the reason we studied them. Our study of them is also re-
lated to a larger work by Chris Godsil, Mike Newman, and Karen Meagher that
investigates independence numbers of different Kneser-like graphs, such as the
q-Kneser graphs. The q-Kneser graph qKn:r is a q-analog of the ordinary Kneser
graph Kn:r. Its vertices are the r-subspaces of a vector space of dimension n
over GF (q), where two r-subspaces are adjacent if their intersection is the zero
subspace.

It is interesting to know how well the ratio bound for independence number
works for graphs like this. The ratio bound is an upper bound for the size of
an independent set of a regular graph obtained using the least and greatest
eigenvalues of the graph. The result was originally proven by Delsarte and is as
follows:

0.0.1 Theorem (Delsarte). For a regular graph G with valency k and least

eigenvalue τ ,

α(G) ≤ |V (G)| −τ

k − τ

where α(G) is the size of the largest independent set of G.

Note that the largest eigenvalue of a regular graph is simply the valency. The
ratio bound is tight for all Kneser graphs, and so it is of interest to investigate
how accurate a bound it is for similar graphs.

When these graphs were first introduced by Roland Häggkvist and Pavol
Hell in [3] they proved the following theorem:

0.0.2 Theorem (Häggkvist & Hell). A cubic graph G admits a homomorphism

to HH3(22) if and only if G is triangle-free.

Proof. Since HH3(22) is triangle-free, it is clear that no graph containing a
triangle can admit a homomorphism to it. Conversely, assume that G is a
triangle-free cubic graph. We will give a homomorphism from G to HH3(22),
thus proving the result. For any graph H , let Hk denote the graph with the
same vertex set as H , with edge set equal to

E(Hk) = {xy : distH(x, y) ≤ k}.

Consider the graph G3. This has maximum degree 3 + 6 + 12 = 21, and thus
has chromatic number at most 22. So G3 admits a 22-coloring, say with the
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elements of {1, . . . , 22}. Since V (G) = V (G3), we can consider this as a coloring
of G as well. Now consider the mapping f that takes a vertex x of G to the
ordered pair (a, {b, c, d}), where a is the color assigned to x and b, c, & d are the
distinct colors of its three neighbors. Now if x and y are adjacent vertices in G,
then they will be mapped to (hx, Tx) and (hy, Ty) respectively, where hx ∈ Ty

and hy ∈ Tx since they are neighbors in G, and Tx and Ty must be disjoint since
all of their neighbors are within distance 3 of each other. Thus f(x) is adjacent
to f(y) in HH3(22), and therefore f : G → HH3(22) is a homomorphism since
it preserves adjacency.

Upon some reflection, it is not too difficult to see how this result could be
generalized to regular graphs of higher degree. Indeed, we have the following:

0.0.3 Theorem. An r-regular graph G is triangle-free if and only if it admits

a homomorphism to

HHr

(

r
(r − 1)3 − 1

r − 2
+ 1

)

.

Proof. We proceed as in the previous case, mutatis mutandis. First, let d =

r (r−1)3−1
r−2 . Since HHr(d+1) is triangle-free, it is clear that no graph containing

a triangle can admit a homomorphism to it. Conversely, assume that G is a
triangle-free r-regular graph. We will give a homomorphism from G to HHr(d+
1), thus proving the result. Consider the graph G3. This has maximum degree

r + r(r − 1) + r(r − 1)2 = r
(r − 1)3 − 1

r − 2
= d,

and thus has chromatic number at most d + 1. So G3 admits a d + 1-coloring,
say with the elements of {1, . . . , d + 1}. Since V (G) = V (G3), we can consider
this as a coloring of G as well. Now consider the mapping f that takes a vertex
x of G to the ordered pair (h, T ), where h is the color assigned to x and T is the
set containing the distinct colors of its r neighbors. Now if x and y are adjacent
vertices in G, then they will be mapped to (hx, Tx) and (hy, Ty) respectively,
where hx ∈ Ty and hy ∈ Tx since they are neighbors in G, and Tx and Ty must
be disjoint since all of their neighbors are within distance 3 of each other. Thus
f(x) is adjacent to f(y) in HHr(d + 1), and therefore f : G → HHr(d + 1) is a
homomorphism since it preserves adjacency.

These results concern homomorphisms into Häggkvist & Hell graphs, but
there are two important homomorphisms from HHr(n) that are used frequently
in our work. Specifically, they are homomorphisms to the complete graph Kn,
and the Kneser graph Kn:r. The first homomorphism maps vertices to their
heads, while the second maps vertices to their tails. These homomorphisms
are simple, but prove to be very useful. They help us find bounds for the
independence number and chromatic number of HHr(n), as well as greatly
aiding in understanding the overall structure of these graphs.

In this thesis we begin our investigation into the Häggkvist & Hell graphs
by discussing some results about their structure, such as diameter and odd
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INTRODUCTION

girth, whose proofs rely heavily on the known values of these parameters for
Kneser graphs. In particular, we show that the odd girth of HHr(n) and Kn:r

are equal whenever Kn:r contains no triangles, and otherwise HHr(n) has odd
girth five. A similar result is shown which proves that the diameters of these two
graphs are the same whenever Kn:r has diameter at least five, otherwise HHr(n)
has diameter five when n < 5

2r and four whenever n is larger. We also make
mention of the arc-transitivity of Häggkvist & Hell graphs, which again mimics
the Kneser graphs. This is followed by a chapter on graph homomorphisms
which includes some important homomorphisms of HHr(n).

Chapter 3 introduces the subject of equitable partitions, a powerful tool for
finding eigenvalues of a graph. We present two equitable partitions of HHr(n),
one with 3 cells from which it is computationally tractable to find three eigen-
values of HHr(n) for any n and r, and another with 5r + 2 cells which gives
every eigenvalue of HHr(n), but is computationally difficult even for quite small
r. Using this second partition, we compute all of the eigenvalues for the cases
r = 2 and r = 3, we also note that the least eigenvalue from the 3-cell parti-
tion is likely the least eigenvalue of the graph in every case, as it is in the two
known cases. Having the least eigenvalues for r = 2 and r = 3 we now are able
to compute the ratio bound for HHr(n) for these two cases, and we compute
the probable bound for all other cases, assuming that the least eigenvalue is
the one we suspect. We accompany this upper bound with a lower bound that
is tight in all computed cases. The value of the lower bound is r

(

n−1
r

)

when

2r ≤ n ≤ r2 + 1, and
(

n
r+1

)

+ r−1
r+1

(

r2

r

)

when n ≥ r2. These two values are equal

for n = r2 and r2 + 1. We also give the following recursive bound:

α(HHr(n − 1)) ≤ α(HHr(n)) ≤ α(HHr(n − 1)) +

(

n − 1

r

)

.

In Chapter 5 we investigate the chromatic number of the Häggkvist & Hell
graphs. Here we show that χ(HHr(n)) ≤ n − 2r + 2, which we derive from the
homomorphism to the Kneser graphs. We also give a recursive bound which
shows that with each increase in n, the chromatic number increases by either
zero or one. These bounds are complimented by some actual chromatic numbers
that we have computed using SAGE, and a proof that the chromatic number
of these graphs is unbounded for all r ≥ 2. Chapter 6 presents the notions of
fractional chromatic and clique numbers, which can be viewed as dual linear
optimization problems, and are therefore equal. For Häggkvist & Hell graphs
it is easy to show that this parameter is bounded above by r + 1. We give this
and a recursive bound as with the chromatic number, but here we also give
a probable lower bound using our probable upper bound on the independence
number of HHr(n). In our conclusion we give a summary of our results and list
some open problems about these graphs and discuss possible future research.
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Chapter 1

The Structure of HHr(n)

Häggkvist & Hell graphs have a very algebraic and symmetric structure, like the
Kneser graphs, and it is straightforward to unearth the following basic properties
of these graphs:

• HHr(n) has (r + 1)
(

n
r+1

)

= (n − r)
(

n
r

)

vertices.

• HHr(n) is regular with valency r
(

n−r−1
r−1

)

• HHr(n) is a subgraph of HHr(n
′) for n ≤ n′

• Since every neighbor of the vertex (h, T ) must contain h in its tail, all
Häggkvist & Hell graphs are triangle-free.

In this chapter we investigate some of the structural properties of Häggkvist
& Hell graphs such as connectedness, girth, odd girth, diameter, and transitivity.
In particular we determine that the diameter of HHr(n) is four when n ≥ 5

2r
and

max

{

5,

⌈

r − 1

n − 2r

⌉

+ 1

}

when 2r + 1 ≤ n <
5

2
r,

and the odd girth is

max

{

5, 2

⌈

r

n − 2r

⌉

+ 1

}

.

To our knowledge these properties have not been previously studied, though
much is known about them for the related Kneser graphs. We end the chapter by
showing that Häggkvist & Hell graphs contain subgraphs which are isomorphic
to some subgraphs of Kneser graphs.

1.1 Transitivity

The transitivity of a graph refers to the way in which its automorphism group
acts on it. The types of transitivity we consider for Häggkvist & Hell graphs are

5



1. THE STRUCTURE OF HHr(n)

edge, vertex, and arc transitivity. An arc in a graph is simply an ordered pair of
adjacent vertices. A graph X is edge/vertex/arc transitive when its automor-
phism group, denoted by Aut(X), acts transitively on its edges/vertices/arcs
respectively, meaning that for any two edges/vertices/arcs x1 and x2, there ex-
ists an automorphism f of X such that f(x1) = x2. Arc transitivity always
implies edge transitivity, it implies vertex transitivity unless the graph has iso-
lated vertices and an edge.

The transitivity properties of a graph can be a crucial factor in investigating
its further properties. In our case we can make the strongest transitivity claim
from above, that HHr(n) is always arc transitive. But before we prove this we
need to identify a subgroup of Aut(HHr(n)):

1.1.1 Lemma. The symmetric group on n elements, Sym(n), is a subgroup of

Aut(HHr(n)).

Proof. Since Sym(n) is a group, we only need to show that each of its elements is
an automorphism of HHr(n). Let σ ∈ Sym(n). Then for a vertex u = (hu, Tu)
in HHr(n) we have that σ(u) = (σ(h), σ(T )). Since any element of Sym(n) is
injective on elements and subsets of [n], they are also injective on vertices of
HHr(n). Now suppose u is adjacent to a vertex v = (hv, Tv). Then hu ∈ Tv,
hv ∈ Tu, and Tu∩Tv = ∅. From this we see that σ(hu) ∈ σ(Tv), σ(hv) ∈ σ(Tu),
and σ(Tu) ∩ σ(Tv) = ∅ which shows that σ(u) ∼ σ(v) and thus σ preserves
adjacency. Since σ preserves adjacency and is injective, it is an automorphism
of HHr(n), and so the result holds.

Now that we know that the elements of Sym(n) are automorphisms of
HHr(n), we have the tool we need to prove that HHr(n) is arc transitive.

1.1.2 Theorem. HHr(n) is arc transitive and Sym(n) acts arc transitively on

it.

Proof. Suppose we have two arcs, (u, v) and (u′, v′), of HHr(n). We must give
an automorphism that maps (u, v) to (u′, v′). Let σ be an element of Sym(n)
such that

σ(hu) = hu′ , σ(hv) = hv′ ,

and
σ(Tu \ {hv}) = Tu′ \ {hv′}, σ(Tv \ {hu}) = Tv′ \ {hu′}.

Then clearly σ takes (u, v) to (u′, v′) and we have proven the theorem.

1.1.3 Corollary. HHr(n) is both vertex and edge transitive.

The results of this section, though straightforward, are among the most
important, because we use them throughout this thesis, oftentimes without
giving them specific mention. However, some results do specifically require that
the graph in question possesses a certain type of transitivity. So it is key for
the reader to be very comfortable with the transitivty of the Häggkvist & Hell
graphs.
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1.2. CONNECTEDNESS

1.2 Connectedness

As we have seen, in the minimal case where n = 2r, the graph HHr(n) is not
connected, since 1

2

(

2r
r

)

≥ 3 for r ≥ 2. This is similarly true for Kneser graphs,
except for when r = 1 which we do not consider for Häggkvist & Hell graphs.
It is known that the Kneser graph Kn:r is connected for n ≥ 2r + 1, and in this
section we will prove the analogous result for HHr(n). The following lemma,
proven by Pabon and Vera in [6], gives the diameter of the Kneser graph Kn:r

for n ≥ 2r + 1, which implies that it must be connected.

1.2.1 Lemma (Pabon & Vera). For positive integers n and r, n ≥ 2r + 1, the

Kneser graph Kn:r has diameter
⌈

r−1
n−2r

⌉

+ 1.

1.2.2 Lemma. Any two vertices in HHr(n) with the same tail are joined by a

path.

Proof. Let x = (hx, T ) and y = (hy, T ). If hx = hy then x and y are joined by
a path of length zero. Otherwise hx 6= hy. Then, since n ≥ 2r and hx, hy /∈ T ,
there exists an r-subset of [n] \ T that contains both hx and hy. Let T ′ be such
a set, and let t ∈ T . Then x ∼ (t, T ′) and y ∼ (t, T ′), and the path x, (t′, T ), y
connects x and y.

Now we are able to prove that the Häggkvist & Hell graphs are connected
in all but the minimal case.

1.2.3 Theorem. For n ≥ 2r + 1, the graph HHr(n) is connected.

Proof. Let x = (hx, Tx) and y = (hy, Ty) be two vertices of HHr(n). Since
n ≥ 2r + 1, the graph Kn:r is connected by Lemma 1.2.1, and so there is some
path Tx = T0, T1, . . . , Tk = Ty in Kn:r. Now let hi,1 ∈ Ti−1 and hi,2 ∈ Ti+1

for all appropriate i. We see that (hi,2, Ti) ∼ (hi+1,1, Ti+1) for all i and by
Lemma 1.2.2 (hi,1, Ti) and (hi,2, Ti) are joined by a path for all i, therefore x
and y are joined by a path.

Now that we know when HHr(n) is connected, we know when it is interesting
to talk about its diameter, which is defined to be infinite for disconnected graphs.
This leads us to our next section.

1.3 Diameter

In order to define the diameter of a graph we must first define the distance
between two vertices of a graph. For a graph X , the distance between two
vertices x and y is denoted by distX(x, y), or sometimes simply dist(x, y), and
is equal to the length of the shortest path from x to y in X . The diameter of a
connected graph X is denoted by diam(X) and is equal to

max
x,y∈V (X)

distX(x, y).

7



1. THE STRUCTURE OF HHr(n)

In this section we assume that n ≥ 2r + 1 since otherwise HHr(n) is not con-
nected. The first thing we do is to prove a lower bound for the diameter of
HHr(n) by applying Lemma 1.2.1:

1.3.1 Lemma. For n ≥ 2r + 1, the diameter of HHr(n) is at least
⌈

r−1
n−2r

⌉

+ 1.

Proof. Let Tx, Ty ∈ V (Kn:r) be such that dist(Tx, Ty) = diam(Kn:r). Now
let P be a shortest path from (1, Tx) to (1, Ty) in HHr(n). Since the tails of
consecutive vertices of P must be disjoint, they represent a walk from Tx to Ty

in Kn:r of length equal to that of P . This implies that

diam(Kn:r) = distKn:r
(Tx, Ty) ≤ distHHr(n)((1, Tx), (1, Ty)) ≤ diam(HHr(n)).

Since diam(Kn:r) =
⌈

r−1
n−2r

⌉

+ 1 by Lemma 1.2.1, the result is proven.

1.3.2 Corollary. The diameter of HHr(n) can be arbitrarily large.

Proof. To achieve a diameter of at least M , take r = M and n = 2r + 1, then
⌈

r−1
n−2r

⌉

+ 1 = r = M .

Note that
⌈

r−1
n−2r

⌉

+1 can be as small as 2 for r ≥ 2, suggesting that perhaps

HHr(n) may have diameter as low as 2 for some values of r and n. However,
it turns out that this is not the case; diam(HHr(n)) is never this small for any
values of r and n.

1.3.3 Lemma. diam(HHr(n)) ≥ 4.

Proof. Consider the vertices x = (1, Tx) and y = (1, Ty) such that Tx ∩ Ty = ∅.
Note that two such vertices always exist for n ≥ 2r + 1. We will show that
dist(x, y) ≥ 4. Clearly x and y are not adjacent, since they have identical
heads, thus they are not at distance one from each other. Now suppose that x
and y share a common neighbor z = (hz , Tz). Then we have that hz ∈ Tx and
hz ∈ Ty, which is not possible since they are disjoint. Therefore x and y are at a
distance of at least 3 from each other. Suppose that dist(x, y) = 3. Then there
exists two vertices z1 = (h1, T1) and z2 = (h2, T2) such that P = x, z1, z2, y is a
path. However, we see that this implies that 1 ∈ T1 and 1 ∈ T2, and therefore
T1∩T2 6= ∅ and so z1 and z2 are not adjacent and P cannot be a path. Therefore
dist(x, y) ≥ 4.

Now that we have this constant lower bound we would like to find out if/when
it is ever achieved. Our next lemma sheds some light on just that.

1.3.4 Lemma. For n ≥ 5
2r the diameter of HHr(n) is four.

Proof. Suppose that n ≥ 5
2r. Observe that this implies n ≥

⌈

5
2r
⌉

since n is an
integer. We must show that dist(x, y) ≤ 4 for all vertices x, y ∈ V (HHr(n)).
Let x = (hx, Tx) and y = (hy, Ty). We have four main cases:

8
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1. hx = hy;

2. hx ∈ Ty and hy /∈ Tx;

3. hx ∈ Ty and hy ∈ Tx;

4. hx /∈ Ty, hy /∈ Tx, and hx 6= hy.

Let C = Tx ∩Ty and s = |C|. Note that we must consider s = 0 to s = r− 1 for
each of the above cases in order to prove our claim. If s = r, then either x = y
or dist(x, y) = 2 by Lemma 1.2.2, so we need not worry about these cases. We
will prove the claim for the first case and then assure the reader that the other
cases are similar.

Since hx = hy in this case, we will refer to both as simply h. Let

D = [n] \ (Tx ∪ Ty ∪ {h}) = {d1, . . . , dn−2r+s−1},

and ` =
⌊

r−s
2

⌋

. Note that

Tx = {x1, . . . , xr−s} ∪ C and Ty = {y1, . . . , yr−s} ∪ C

where xi 6= yj for any i, j, and r − s ≥ 1. Consider the vertices

zx = (xr−s, {h, y1, . . . , y`, d1, . . . , dr−1−`})

zy = (yr−s, {h, x1, . . . , x`, d1, . . . , dr−1−`})
w = (h, {xr−s, yr−s, x`+1, . . . , xr−s−1, y`+1, . . . , yr−s−1} ∪ C)

Note that the tail of w has exactly 2r−s−2` = 2r−s−2
⌊

r−s
2

⌋

elements, which
equals r if r − s is even and equals r + 1 if r − s is odd. But in the latter case
we can just remove one of the elements from the tail that is not xr−s or yr−s.
Now it is straightforward to see that P = x, zx, w, zy, y is a path from x to y as
long as all of the indices are valid. Upon investigation one can see that the only
thing we need to check is that dr−1−` exists, i.e. that n− 2r+ s− 1 ≥ r− 1− `.
However, this is equivalent to

n ≥ 3r − s − ` ≥ 3r − s − r − s

2
=

5

2
r − s

2
.

Therefore, if n ≥ 5
2r, then dist(x, y) ≤ 4. The other three cases are quite similar,

so we will spare you the tedium.

Now that we know a range of values of n for which the minimum diameter
is achieved, we would like to show that for values of n outside of this range, the
diameter of HHr(n) is strictly greater than four. To do this we must find two
vertices of HHr(n) that are always at a distance greater than four for values of
n outside of the range given in Lemma 1.3.4. The next lemma shows that we
are able to do just that.

1.3.5 Lemma. For n < 5
2r, the diameter of HHr(n) is strictly greater than

four.

9



1. THE STRUCTURE OF HHr(n)

Proof. Consider the vertices x = (h, Tx) and y = (h, Ty) where Tx ∩ Ty = ∅.
Note such a pair of vertices exists for n ≥ 2r + 1. Let

Tx = {x1, . . . , xr}, Ty = {y1, . . . , yr}, and [n] \ (Tx ∪ Ty) = D = {d1, . . . , dk−1}

where k = n − 2r. From the proof of Lemma 1.3.3 we see that dist(x, y) ≥ 4,
so we only need to show that there is no path of length four between x and y.
Suppose that P = x, zx, w, zy, y is a path. We will show that we need at least
5
2r elements of [n] for this path to exist. Immediately we see that h ∈ Tzx

and
h ∈ Tzy

, and WLOG we can say that zx = (xr , Tzx
) and zy = (yr, Tzy

).
We have two options for the head of w, either it is h, or it is some element

of D. As it turns out, this does not make a difference, but for now we will
assume that it is h. At the end of the proof we will show why the other case
works out to be the same. Suppose Tzx

and Tzy
contain i and j elements from

D respectively. WLOG i ≤ j.
Suppose that d ∈ Tzx

∩ D and d /∈ Tzy
. Since i ≤ j, there must exist

d′ ∈ Tzy
∩ D such that d′ /∈ Tzx

. Also, d, d′ /∈ Tw, but then we could simply
replace the d in Tzx

with d′, and this will still be a path from x to y and it will
use fewer elements from [n], so we may assume that (Tzx

∩D) ⊆ Tzy
. The other

r − i − 1 elements of Tzx
, and r − j − 1 elements of Tzy

come from Ty \ yr and
Tx \ xr respectively.

So far, we have used 2r + 1 + j elements of [n] in the vertices x, y, zx, and
zy. Now we are left with the elements to be used in the tail of w. We know
that xr, yr ∈ Tw, since these are the heads of zx and zy respectively. We are
also able to use any of the other elements of Tx ∪ Ty not already used in Tzx

or
Tzy

, of which there are exactly

2r − 2 − (r − i − 1) − (r − j − 1) = i + j.

This leaves r−2− i− j elements left in the tail of w, and these must come from
D \ Tzy

. Thus we use a total of

(2r + 1 + j) + (r − 2 − i − j) = 3r − 1 − i

elements of [n]. However, this does not take into account the possibility that
we were able to fill the tail of w without using any elements of D, i.e. when
r − 2− i− j ≤ 0. In this case 3r − 1− i ≤ 2r + 1 + j, but we still use 2r + 1 + j
elements of [n] in our path P . In order to take this into account we must take
the maximum of these two values. So the number of elements of [n] that we use
in the path P is

max{3r − 1 − i, 2r + 1 + j}.
It is easy to see that letting i = j can only reduce this maximum, and so we
need to find the value of i for which

max{3r − 1 − i, 2r + 1 + i}

is minimized. This will be minimized when 3r− 1− i = 2r+1+ i ⇔ i = 1
2r− 1.

Note that i must be an integer, but this can only increase the lower bound we

10
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get on n, and so we can ignore this. Plugging in this value of i we see that we
must use at least 5

2r elements of [n] for the path P , thus proving the result.
We see now that having an element of D as the head of w would have simply
forced us to use an element of Tzx

∩ D, which only would have precluded us
from having i = 0, and would not have reduced the number of elements of [n]
that we needed for the path.

This result along with Lemma 1.3.4 immediately gives us the following corol-
lary:

1.3.6 Corollary. The diameter of HHr(n) is four if and only if n ≥ 5
2r.

From the above result we see that the diameter of HHr(n) must be at least
5 for n < 5

2r, but we also know from Lemma 1.3.1 that the diameter must be

at least
⌈

r−1
n−2r

⌉

. Given these two lower bounds on the diameter, the best we

can hope to show is that for 2r + 1 ≤ n < 5
2r the diameter of HHr(n) is the

maximum of these two bounds. We are in fact able to do just this, but first we
need a tool from the proof of another result from [6], which we will reproduce
below only changing the notation in order to fit with ours.

1.3.7 Lemma (Vera & Pabon). Let X, Y ∈ [n](r) be two different vertices in

the Kneser graph Kn:r with 2r + 1 ≤ n ≤ 3r − 2, such that |X ∩ Y | = s. Then

dist(X, Y ) = min

{

2

⌈

r − s

n − 2r

⌉

, 2

⌈

s

n − 2r

⌉

+ 1

}

.

We only give the proof that this is an upper bound on dist(X, Y ), because
it is this portion that we will use for our proof of the diameter of the Häggkvist
& Hell graphs.

Proof. Let k = n − 2r, so that 1 ≤ k < n − 1. Also, let C = X ∩ Y , s = |C|,
and D = [n] \ (X ∪ Y ). Thus |D| = s + k. Assume that X = {a1, . . . , ar−s} ∪
C, and Y = {b1, . . . , br−s} ∪ C. Let ` = 2 d(r − s)/ke. Consider the path
X = T0, T1, . . . , T` = Y between X and Y , where for i < (r − s)/k,

T2i−1 = {a1, . . . , a(i−1)k, bik+1, . . . , br−s} ∪ D,

T2i = {b1, . . . , bik, aik+1, . . . , ar−s} ∪ C,

and

T`−1 = {a1, . . . , ar−s−k} ∪ D.

Also, let D′ ⊆ D with |D′| = s. Consider the vertex X ′ = (Y \C)∪D′. Note that
X∩X ′ = ∅, and s′ = |X ′∩Y | = r−s. Therefore, by the previous construction,
there is a path between X and Y with length equal to 2 d(r − s′)/ke = 2 ds/ke.
Thus, there is a path between X and Y with length equal to 2 ds/ke+ 1. So,

dist(X, Y ) ≤ min{2 d(r − s)/ke , 2 ds/ke + 1}.

We are now able to prove the following:

11



1. THE STRUCTURE OF HHr(n)

1.3.8 Theorem. For n ≥ 5
2r the diameter of HHr(n) is four. For 2r +1 ≤ n <

5
2r, the diameter of HHr(n) is equal to max

{

5,
⌈

r−1
n−2r

⌉

+ 1
}

.

Proof. The first statement has already been proven as Corollary 1.3.6. Also,
Lemma 1.3.5 and Lemma 1.3.1 give the lower bound direction of the second
statement. Thus we only have to show that we are able to achieve this bound
for n < 5

2r. We do this by showing that for any two vertices (hx, Tx) and
(hy, Ty) in HHr(n), there is either a path between them of the same length as
the shortest path between Tx and Ty in Kn:r, or there is a path between them
of length at most 5. As in Lemma 1.3.4, we have four main cases:

1. hx = hy;

2. hx ∈ Ty and hy /∈ Tx;

3. hx ∈ Ty and hy ∈ Tx;

4. hx /∈ Ty, hy /∈ Tx, and hx 6= hy.

We will use the same notation as in Lemma 1.3.7, so k = n − 2r, C = Tx ∩ Ty,
s = |C|, D = [n]\ (Tx ∪Ty), and |D| = s+k. Note that Lemma 1.2.2 takes care
of the cases in which the vertices have the same tail. So we can assume that
s ≤ r− 1. We can also immediately take care of the cases with disjoint tails, as
follows. Suppose that Tx ∩ Ty = ∅. Then we have the following four cases:

• If hx = h = hy, then let tx, t′x ∈ Tx and ty, t′y ∈ Ty. Then there is a path
of length five between x and y given by

(h, Tx), (tx, {h} ∪ (Ty \ t′y)), (ty, Tx), (tx, Ty), (ty, {h} ∪ (Tx \ t′x)), (h, Ty).

• If hx ∈ Ty and hy /∈ Tx, then let tx, t′x ∈ Tx and ty ∈ Ty. Then a path of
length three from x to y is given by

(hx, Tx), (tx, Ty), (ty, {hy} ∪ (Tx \ t′x)), (hy, Ty).

• If hx ∈ Ty and hy ∈ Tx, then x and y are simply neighbors.

• If hx /∈ Ty, hy /∈ Tx, and hx 6= hy, then let tx, t′x ∈ Tx and ty, t′y ∈ Ty.
Then a path of length three between x and y is given by

(hx, Tx), (tx, {hx} ∪ (Ty \ t′y)), (ty , {hy} ∪ (Tx \ t′x)), (hy , Ty).

Thus if the tails of two vertices are disjoint, then they are at a distance of
at most five. Now we consider the cases where r − k ≤ s ≤ r − 1. In this case
we have that |D| = s + k ≥ r.

1. If hx = h = hy, then let D′ ⊆ D be such that h ∈ D′ and |D′| = r, and
let t ∈ Tx ∩ Ty. Then a path of length two between x and y is given by

(h, Tx), (t, D′), (h, Ty).

12
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2. If hx ∈ Ty and hy /∈ Tx, then let D′ ⊆ D be such that hy ∈ D′ and
|D′| = r, and let d ∈ D′ \ hy and t ∈ Tx ∩ Ty. Then there is a path of
length four between x and y given by

(hx, Tx), (t, {hx} ∪ (D \ hy)), (d, Tx), (t, D′), (hy, Ty).

3. If hx ∈ Ty and hy ∈ Tx, let D′ ⊆ D be such that |D′| = r − 1, and let
d ∈ D′, e ∈ D \ D′, and t ∈ Tx ∩ Ty. Then a path of length four between
x and y is given by

(hx, Tx), (t, {hx} ∪ D′), (d, {e} ∪ (Tx \ hy)), (t, {hy} ∪ D′), (hy, Ty).

4. If hx /∈ Ty, hy /∈ Tx, and hx 6= hy, then let D′ ⊆ D be such that hx, hy ∈ D′

and |D′| = r, and let t ∈ Tx ∩ Ty. Then a path of length two between x
and y is given by

(h, Tx), (t, D′), (h, Ty).

So we have taken care of all cases in which s ≥ r − k. For the remaining
cases, we will be using the two paths between Tx and Ty given in the proof of
Lemma 1.3.7. We will use them to construct two paths between x and y of
lengths equal to those of the paths in the Kneser graph Kn:r. In order to do
this we treat each vertex in the path of the Kneser graph as a tail of a vertex
in HHr(n), and then we show that we are able to pick heads for each vertex in
the interior of the path such that the adjacencies are preserved. After this, all
that remains to show is that in each case we are able to choose the second and
second to last vertices in the paths in the Kneser graph such that they contain
the heads of x and y respectively.

For vertices in the interior of the paths this is trivial. Since n < 5
2r, we

have that if T1, T2, T3 are three consecutive vertices in the path in Kn:r, then
T1, T3 ⊆ [n]\T2 which has size less than 3

2r, thus there must exist some element
t ∈ T1 ∩ T3, and we can pick this as the head of T2 in HHr(n).

So all we need to show is that we are able to choose appropriate second and
second to last vertices in the paths in the Kneser graph. We have to deal with
each path separately:

Recall that Tx = {x1, . . . , xr−s}∪C and Ty = {y1, . . . , yr−s}∪C. For the first
path given in the proof of Lemma 1.3.7, we have that T1 = {yk+1, . . . , yr−s}∪D
and T`−1 = {x1, . . . , xr−s−k} ∪ D. Note that since 1 ≤ s ≤ r − k − 1, we have
that |D| = s + k ≤ r − 1. Now we go through the cases:

Case 1: hx = hy. In this case hx, hy ∈ D ⊆ T1, T`−1 and so we are done.

Case 2: hx ∈ Ty and hy /∈ Tx. Here hy ∈ D, and if we let yk+1 = hx, then
hx ∈ T1 and hy ∈ T`−1.

Case 3: hx ∈ Ty and hy ∈ Tx. Here if we let yk+1 = hx and x1 = hy, then
hx ∈ T1 and hy ∈ T`−1.

Case 4: hx /∈ Ty, hy /∈ Tx, and hx 6= hy. Here we have that hx, hy ∈ D ⊆
T1, T`−1, and so we are done.
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So we have shown that we can construct a path from x to y in HHr(n)
with the same length as the first path between Tx and Ty given in the proof of
Lemma 1.3.7. Now we must do the same for the second path.

The second vertex in the second path is T ′
x = (Ty \ C) ∪ D′ where D′ ⊆ D

such that |D′| = s ≥ 1. Then, using the same construction as for the first path,
let C′ = T ′

x ∩ Ty = Ty \ C, and E = [n] \ (T ′
x ∪ Ty) = [n] \ (Ty ∪ D′), and

|E| = r + k − s ≥ 2k + 1. So T ′
x = {d1, . . . , ds} ∪ C′ where {d1, . . . , ds} = D′.

Then the second to last vertex in the path is T ′
`′−1 = {d1, . . . , ds−k} ∪ E. Now

we go through the cases:

Case 1: hx = hy. In this case hx, hy ∈ D, so if we let hx ∈ D′ and hy /∈ D′

(possible since |D \ D′| = k ≥ 1), then hx ∈ T ′
x and hy ∈ E ⊆ T ′

`′−1 and so we
are done.

Case 2: hx ∈ Ty and hy /∈ Tx. Here hx ∈ Ty \ C = C′ ⊆ T ′
x, and we let

hy ∈ D \ D′ ⊆ E ⊆ T ′
`′−1. Thus we are done.

Case 3: hx ∈ Ty and hy ∈ Tx. Here hx ∈ Ty \ C = C′ ⊆ T ′
x, and hy /∈ Ty

and hy /∈ D ⊇ D′ and thus hy ∈ E ⊆ T ′
`′−1.

Case 4: hx /∈ Ty, hy /∈ Tx, and hx 6= hy. Here we have that hx, hy ∈ D and
we let hx ∈ D′ ⊆ T ′

x and hy /∈ D′. Thus hy ∈ E ⊆ T ′
`′−1.

Since one of these two paths must be a shortest path between Tx and Ty in
Kn:r, we have now shown that for n < 5

2r, any two vertices x = (hx, Tx) and
y = (hy, Ty) of HHr(n) are either at a distance of at most five, or

distHHr(n)(x, y) ≤ distKn:r
(Tx, Ty),

thus

diam(HHr(n)) ≤ max

{

5,

⌈

r − 1

n − 2r

⌉

+ 1

}

.

This completes the proof.

This theorem resolves the question of the diameter of the Häggkvist & Hell
graphs.

1.4 Girth and Odd Girth

The girth of a graph is the length of its shortest cycle, while the odd girth is
the length of its shortest odd cycle. In many cases these parameters can give us
valuable information about a graph. Such is the case of girth for planar graphs
which allows one to obtain a bound on the number of edges. Whereas odd
girth gives one restrictions on homomorphisms between graphs. For Häggkvist
& Hell graphs, odd girth is the more interesting parameter as the girth remains
constant for all values of n and r. Again, both of these values are known for
Kneser graphs. We settle the question of girth immediately.

1.4.1 Theorem. The girth of HHr(n) is four.
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Proof. Since n ≥ 2r, there exists two disjoint r-subsets T1 and T2 of [n]. Let
h1, h3 ∈ T2 and h1 6= h3, and let h2, h4 ∈ T1 and h2 6= h4. Then

C = (h1, T1), (h2, T2), (h3, T1), (h4, T2)

is a 4-cycle. As seen at the beginning of this chapter, HHr(n) is triangle-free.

This result is actually even more trivial than finding the girth of Kn:r, though
this seems to be the only case where this happens. The girth of Kn:r is not much
more difficult to work out though, and the reader is invited to do this. We have
provided the actual values below to help the reader along:

The girth of Kn:r for n ≥ 2r + 1 is three for n ≥ 3r, four for 2r + 2 ≤ n ≤
3r − 1, and six for 2r + 1 = n ≤ 3r − 1 except for when r = 2 which gives the
Petersen graph having girth equal to five. The exception for when n = 2r + 1
and r = 2 arises because this is the only case in which the odd girth of K2r+1:r

is less than six. Also, it is quite typical of the Petersen graph to take exception.
The odd girth of HHr(n) is closely connected to the odd girth of Kn:r which

is a result of Poljak and Tuza [5]:

1.4.2 Theorem (Poljak & Tuza). The odd girth of the Kneser graph Kn:r is

2
⌈

r
n−2r

⌉

+ 1 for n ≥ 2r + 1.

We use this to first prove a lower bound on the odd girth of the Häggkvist
& Hell graphs. There are two methods of proving this. One way is to simply
note that HHr(n) admits a homomorphism to Kn:r, and therefore must have
odd girth at least as great as it. However, we will not cover this material until
Chapter 2. Below we give a direct proof.

1.4.3 Lemma. For n ≥ 2r+1, the odd girth of HHr(n) is at least 2
⌈

r
n−2r

⌉

+1.

Proof. For n ≥ 5
2r, we have that 2

⌈

r
n−2r

⌉

+1 ≤ 5, but since HHr(n) is triangle-

free, its odd girth must always be at least 5, which takes care of that case. So
we can assume that n ≤ 5

2r. Suppose that C is a shortest odd cycle in HHr(n).
If no tail is repeated in C, then the tails correspond to a cycle in Kn:r and the
result is proven by Theorem 1.4.2.

Otherwise, suppose that x = (hx, T ) and y = (hy, T ) are two vertices in C
with the same tail. Let P be the path from x to y in C with odd length. Now let
Tx be the tail of the unique neighbor of x in P , and let Ty be defined similarly.
Since n ≤ 5

2r, and Tx, Ty ⊆ [n] \ T , there must be an element h of [n] such that
h ∈ Tx ∩ Ty. Let z = (h, T ), and let P ′ be the path P with the ends, x and
y, removed. The cycle C′ = z, P ′, z is a shorter odd cycle than C, which is a
contradiction.

Now we are able to give the exact value of the odd girth of the Häggkvist &
Hell graphs for all values of n and r.

1.4.4 Theorem. For n ≥ 2r + 1 the odd girth of HHr(n) is

max

{

5, 2

⌈

r

n − 2r

⌉

+ 1

}

.
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Proof. Lemma 1.4.3 shows that the stated number is a lower bound on the odd
girth of HHr(n), so we only need to show that it can be achieved. First we

consider the case where n < 3r. In this case 2
⌈

r
n−2r

⌉

+ 1 ≥ 5, so we will show

that we can obtain an odd cycle with this length.

Consider a shortest odd cycle C in Kn:r: this has length 2
⌈

r
n−2r

⌉

+ 1. We

will view the vertices of C as tails and show that we can pick a head for each
so that the adjacencies in C are preserved. Consider a vertex T in C, with
neighbors T1 and T2 in C. Since n < 3r, and T1, T2 ⊆ [n] \ T , we have that T1

and T2 cannot be disjoint. So let h ∈ T1 ∩ T2 and let this be the head of T . If
we do this for each tail then we will have a cycle C′ in HHr(n) with the same
length as C.

Now we still need to consider the case where n ≥ 3r. However, for 5
2r ≤ n ≤

3r − 1, we have that 2
⌈

r
n−2r

⌉

+ 1 = 5, and so for n = 3r − 1, the odd girth of

HHr(n) is five, which is as small as possible. Now for n ≥ 3r, HHr(n) contains
HHr(3r − 1) as a subgraph, which means that it has odd girth at most five.

But then it must have odd girth exactly five, and 2
⌈

r
n−2r

⌉

+ 1 = 3 for n ≥ 3r,

which proves the result.

Note that we actually need to be somewhat careful in the above proof when
saying that HHr(3r − 1) has odd girth five, since we need that 3r − 1 ≥ 5

2r.
But this is in fact always true for r ≥ 2.

1.5 Subgraphs

We conclude this chapter with a discussion of subgraphs of Kneser graphs that
are isomorphic to subgraphs of Häggkvist & Hell graphs. In both the section on
diameter and the section on girth and odd girth, we used subgraphs of Kn:r to
help us find isomorphic copies of these subgraphs in HHr(n). One such example
was in Theorem 1.4.4 where we exploited the fact that two r-subsets of a set
with size less than 2r must have an element in common. We now extend this
idea to bounded degree subgraphs of Kneser graphs.

1.5.1 Theorem. For any subgraph G of Kn:r with maximum degree strictly

less than n−r
n−2r

, there is a subgraph of HHr(n) isomorphic to G.

Proof. Let G be a subgraph of Kn:r, let ∆ be the maximum degree of G, and
suppose that ∆ < n−r

n−2r
. Now consider a vertex X of G. X is an r-subset of

[n] whose neighbors in G are also r-subsets of [n], and they are disjoint from
X . As in previous cases we will show that we can pick a head hX for X such
that hX is an element of every neighbor of X in G. Doing this for all vertices
in G completes the proof. So we must show that the neighbors of X all share
a common element, then we can pick that element and we are done. Let k be
the degree of X in G. Now since the neighbors of X are all disjoint from X ,
they must all draw their elements from the same set of size n − r. Let us call
this set S. Now suppose that no element of S is common to all of the neighbors
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of X . Then each element of S is in at most k − 1 neighbors of X . Viewing
this as a r-uniform hypergraph with S as the ground set and the k neighbors
of X as the hyperedges, we know that the degree sum of the vertices (at most
(k − 1)(n− r)) is equal to the degree sum of the hyperedges (kr), thus we have
the following string of inequalities:

(k − 1)(n − r) ≥ kr

kn − kr − n + r ≥ kr

kn − 2kr ≥ n − r

k(n − 2r) ≥ n − r

Therefore,

k ≥ n − r

n − 2r
> ∆

which is a contradiction. Therefore the neighbors of X must share a common
element, and so we can pick one such element for the head, hX , of X in HHr(n).
We can do this for every vertex in G and thus the proof is complete.

Note that in the case of the odd graphs, when n = 2r + 1, the condition we
get is ∆ < r + 1, i.e. ∆ ≤ r. However, in this case the valency of K2r+1:r is
r + 1, and since Kneser graphs are vertex transitive, they either have a perfect
matching or a matching missing exactly one vertex. Therefore, HHr(2r + 1)
contains a copy of K2r+1:r minus a perfect matching whenever

(

2r+1
r

)

is even,
and contains a copy of K2r+1:r minus a matching and one edge incident to the
single vertex the matching misses whenever

(

2r+1
r

)

is odd.
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Chapter 2

Homomorphisms

The study of homomorphisms is a rich area of graph theory. Graph homomor-
phisms are related to a wide range of other important topics in graph theory,
such as colorings, products, and cores. We will give a brief introduction to
graph homomorphisms before investigating some important homomorphisms of
Häggkvist & Hell graphs. Specifically, we give homomorphisms from HHr(n) to
Kn and Kn:r. All of the material in this chapter on homomorphisms in general
(Sections 2.1-2.4) comes from Godsil and Royle’s Algebraic Graph Theory [2].

2.1 Definitions

For two graphs, X and Y , a map f : V (X) → V (Y ) is a homomorphism from
X to Y if f(x) ∼ f(y) in Y whenever x and y are adjacent in X . Note that
in the case of graphs without loops, this definition implies that if f(x) = f(y),
then x and y are not adjacent in X . Thus the preimage f−1(y) of a vertex in Y
is necessarily an independent set in X . We often refer to the preimages f−1(y)
as the fibres of f . If there exists a homomorphism from X to Y , then we write
X → Y , or say that X admits a homomorphism into Y .

There are many different types of graph homomorphisms, and we will take
some time here to discuss some of the more important classes of them.

An isomorphism ϕ : V (X) → V (Y ) is a homomorphism that is a bijection
and preserves non-adjacency as well as adjacency. In other words, ϕ(x) ∼ ϕ(y)
in Y if and only if x ∼ y in X . An automorphism is an isomorphism from a
graph to itself.

An endomorphism is a homomorphism from a graph X into itself. A homo-
morphism that is both an endomorphism and an isomorphism is an automor-
phism.

A special type of endomorphism, known as a retraction, is defined as a
homomorphism f from a graph X to a subgraph Y of X such that the restriction
f |Y of f to V (Y ) is the identity map. We say that a subgraph Y of X is a
retract of X if there exists a retraction from X to Y .
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2. HOMOMORPHISMS

2.2 Basic Properties

Though homomorphisms are not as well-behaved as isomorphisms or automor-
phisms, they still share some of the same properties.

2.2.1 Lemma. If X , Y , and Z are graphs and f : X → Y and g : Y → Z are

homomorphisms, then the composition g ◦ f is a homomorphism from X to Z.

Proof. Consider two adjacent vertices x and y in X . We have that f(x) ∼ f(y)
in Y , and then g(f(x)) ∼ g(f(y)) in Z.

Now we turn our attention to the endomorphisms of a graph X . We claim
the set of endomorphisms of X form a monoid (a set that has an associative
binary multiplication defined on it and an identity element) which we call the
endomorphism monoid of X , and we denote End(X). It is easy to see that
End(X) is indeed a monoid, since the identity map on X is an endomorphism,
and Lemma 2.2.1 shows that the composition of any two endomorphisms is
again an endomorphism. We also note that Aut(X) ⊆ End(X) where Aut(X)
is the group of automorphisms of X .

2.3 Colorings

A proper coloring of a graph X is a mapping of V (X) into some finite set such
that no two adjacent vertices are mapped to the same element. We say that X
is n-colorable if it can be properly colored with a set of n elements. The least n
for which this is possible is known as the chromatic number of X and is denoted
by χ(X). The set of vertices assigned to a particular color is referred to as a
color class of the coloring, and is necessarily an independent set. An equivalent
formulation of an n coloring of a graph X is a homomorphism from X to Kn.
The following lemma establishes this equivalence.

2.3.1 Lemma. A graph X is n-colorable if and only if there exists a homomor-

phism from X to Kn.

Proof. Suppose that h is a homomorphism from X to Kn. From Section 2.1 we
know that the n fibres of h are independent sets, therefore they form the color
classes of an n-coloring of X . Conversely, if X can be properly colored with
the colors {1, . . . , n}, then the map that takes each vertex to its color must be
a homomorphism, since if two vertices are adjacent, they must be of different
colors, and so their images are adjacent.

This connection between colorings and homomorphisms allows us to prove
the following useful lemma.

2.3.2 Lemma. For two graphs, X and Y , if there exists a homomorpism

h : X → Y , then χ(X) ≤ χ(Y ).

Proof. Suppose there exists such a homomorphism h : X → Y . Let c =
χ(Y ). Then there exists a homomorphism g : Y → Kc. By the composition of
homomorphisms, g ◦ h : X → Kc, and thus χ(X) ≤ c = χ(Y ).
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This lemma can be used to obtain bounds on the chromatic numbers of
graphs, or, using the contrapositive, to disprove the existence of a homomor-
phism from a graph X to a graph Y with strictly smaller chromatic number.

2.4 Another Restriction

We saw in the previous section that the chromatic number can be used to
show that there is no homomorphism from one graph to another, a task that
is generally difficult. There is another graph parameter that we have already
encountered which also can be used for this purpose: odd girth.

2.4.1 Lemma. The homomorphic image of an odd cycle must contain an odd

cycle of no greater length.

Proof. Let C be an odd cycle and f a homomorphism of C with image Y . Since
the chromatic number of an odd cycle is three, by Lemma 2.3.2 the chromatic
number of Y must be at least three. This means that it cannot be bipartite
and thus must contain an odd cycle. But a homomorphism is a function, so the
number of vertices in Y cannot be more than that of C, thus the odd cycle in
its image must be of no greater length.

Now we can prove the desired result concerning odd girth.

2.4.2 Lemma. If the odd girth of X is strictly less than the odd girth of Y ,

then there does not exist any homomorphism from X to Y .

Proof. Suppose that f is a homomorphism from X to Y . Consider a shortest
odd cycle C in X . By Lemma 2.4.1 the image of C must contain an odd cycle
of no greater length than C. This is a contradiction because Y has odd girth
strictly greater than X .

These types of theorems concerning homomorphisms are nice because they
can be used to disprove the existence of a homomorphism, or to obtain bounds
on the parameters in question.

2.5 Homomorphisms of HHr(n)

Here we present two important homomorphisms of Häggkvist & Hell graphs
that will be referred to throughout this thesis.

2.5.1 Theorem. Let f : V (HHr(n)) → V (Kn) be defined by f(h, T ) = h.

Then f is a homomorphism from the Häggkvist & Hell graph HHr(n) to the

complete graph Kn.

Proof. Suppose that x = (hx, Tx) and y = (hy, Ty) are adjacent vertices in
HHr(n). Then hx ∈ Ty and hy /∈ Ty, therefore hx 6= hy, and thus f(x) = hx

and f(y) = hy are adjacent in Kn. Therefore f is a homomorphism.
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2. HOMOMORPHISMS

This homomorphism is of course equivalent to an n-coloring of HHr(n),
however in Chapter 5 we will see that we can do better than this.

2.5.2 Theorem. Let g : V (HHr(n)) → V (Kn:r) be defined by g(h, T ) = T .

Then g is a homomorphism from the Häggkvist & Hell graph HHr(n) to the

Kneser graph Kn:r.

Proof. Suppose that x = (hx, Tx) and y = (hy, Ty) are adjacent vertices in
HHr(n). Then Tx ∩ Ty = ∅, and therefore g(x) = Tx and g(y) = Ty are
adjacent in Kn:r. Therefore g is a homomorphism.

These two homomorphisms will come up in various forms frequently through-
out this work, so it is important to be comfortable with both of them. Also
important to us are the fibres of these homomorphisms, so we take some time
now to discuss them.

Consider the fibres of f , these are the sets of vertices in HHr(n) that all
have the same head, thus the fibres of f all have size

(

n−1
r

)

. The fibres of g on
the other hand are the sets of vertices in HHr(n) that all have the same tail,
therefore g has fibres all of size n − r.

Though there are other homomorphisms of HHr(n), these two are the ones
we most often employ in the proofs of our results.
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Chapter 3

Equitable Partitions

Equitable partitions are a useful and powerful tool for finding some, or all, of the
eigenvalues of a graph. We will describe two equitable partitions that are useful
in obtaining information about HHr(n). The first partition that we give has
three cells for any Häggkvist & Hell graph, which allows us to obtain closed form
expressions for three distinct eigenvalues of HHr(n). The second partition that
we give has 5r +2 cells and thus it becomes increasingly difficult to compute its
eigenvalues as r increases. Before we begin finding any particular partitions, we
must introduce the theory behind equitable partitions in order to understand
how we can use them. The background material for this chapter comes from
Godsil and Royle’s Algebraic Graph Theory [2]; please refer to this source for a
more in-depth look at equitable partitions.

3.1 Theory

We begin with a few basic definitions:

Definition: Let X be a graph and π a partition of V (X) with cells
C1, C2, . . . , Ck. We say that π is equitable if there is a constant cij such that for
any vertex u ∈ Ci, u has exactly cij neighbors in Cj , for all i, j ∈ {1, 2, . . . , k}.

One can see that this definition is equivalent to saying that each cell of π
induces a regular subgraph of X , and the edges between any two different cells
form a semiregular bipartite graph. The directed multigraph whose vertices are
the cells of π with cij arcs going from Ci to Cj is referred to as the quotient
of X over π. If we consider the adjacency matrix of this quotient, we see
that A(X/π)ij = cij . It is now useful to define the characeteristic matrix of a
partition.

Definition: If π is a partition of the vertex set V with k cells, then we
define its characteristic matrix P as the |V | × k matrix whose columns are the
characteristic vectors of π.
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3. EQUITABLE PARTITIONS

From this definition we see that PT P is the diagonal matrix with (PT P )ii =
|Ci|, and thus it is invertible, since the cells of π are nonempty. This allows us
to prove the following lemma.

3.1.1 Lemma. Let π be an equitable partition of the graph X , with character-

istic matrix P , and let B = A(X/π). Then AP = PB and B = (PT P )−1PT AP ,

where A is the adjacency matrix of X .

Proof. We proceed by showing that for any vertex u and any cell Cj , we have
(AP )uj = (PB)uj . The left hand side of this equality is the number of neighbors
of u in Cj , which is equal to cij where u ∈ Ci. Now the only 1 in row u of P is
in the ith column, since u ∈ Ci. So the right hand side must also be equal to cij .
Therefore we have that AP = PB, and multiplying on the left by (PT P )−1PT ,
we get that B = (PT P )−1PT AP .

The next lemma characterizes equitable partitions in terms of linear algebra.

3.1.2 Lemma. Let X be a graph with adjacency matrix A and π a partition

of V (X) with characteristic matrix P . Then π is equitable if and only if the

column space of P is A-invariant.

Proof. The column space of P is A-invariant if and only if there exists a matrix
B such that AP = PB. If π is equitable, then by the previous lemma we see
that such a matrix B exists, namely A(X/π). Conversely, if AP = PB for some
matrix B, then any vertex in Ci must have exactly Bij neighbors in Cj , and
thus π is equitable.

Now if AP = PB, then AkP = PBk for any nonnegative integer k, and
thus f(A)P = Pf(B) for any polynomial f . Since P has linearly independent
columns, if f(A) = 0, then f(A)P = Pf(B) implies that f(B) = 0. Therefore,
if π is an equitable partition of a graph X , then the minimum polynomial of
A(X/π) divides the minimum polynomial of A, and thus every eigenvalue of
A(X/π) is an eigenvalue of A. This is the key result that we make use of in
order to find some of the eigenvalues of HHr(n).

Before we move on to finding some eigenvalues, let me remark that the
orbits of any group of automorphisms of a graph X are the cells of an equitable
partition. For HHr(n), this implies that any subgroup of Sym(n) induces an
equitable partition. However, it is not known whether Aut(HHr(n)) = Sym(n).

3.2 A 3-Cell Partition

The first partition we consider is the coarser of the two. We will first give
the partition for HH3(n) only, for ease of comprehension. But this partition
is easy to generalize and we will present the generalization subsequently. Let
π3 be the partition of V (HH3(n)) such that for a vertex u = (a, {b, c, d}) of
HH3(n), we say u ∈ C1 iff n /∈ {a, b, c, d}, u ∈ C2 iff n ∈ {b, c, d}, and u ∈ C3 iff
a = n. Clearly, C1 induces an HH3(n− 1) subgraph, while C2 and C3 are both
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3.2. A 3-CELL PARTITION

independent sets. In fact C2 is the inverse image of a maximum independent
set in Kn:3 over the homomorphism (a, {b, c, d}) → {b, c, d}, and C3 is the
inverse image of a vertex (which is a maximum independent set) of Kn over the
homomorphism (a, {b, c, d}) → a.

Here is a diagram to aid in comprehension:

r
(

n−r−2
r−1

)

r
(

n−r−2
r−2

) (

n−r−1
r−1

)

r
(

n−r−1
r−1

)

(r − 1)
(

n−r−1
r−1

)

HHr(n − 1) n ∈ T n = h

C1 C2 C3

Figure 3.1: Diagram of 3-Cell Partition π3.

Note that this is also the partition corresponding to the orbits of the sub-
group of Sym(n) that fixes only n, and therefore we already know it must be
equitable, but we still need to compute the cij ’s in order to find the eigenval-
ues. Since C1 is an induced HH3(n − 1) subgraph, c11 is simply the valency of
HH3(n−1) which is 3

(

n−5
2

)

. Now c22 = c33 = 0 since C2 and C3 are indpendent
sets. Also note that c13 = c31 = 0 since there is not an n in the tail of any
vertex in C1 and n is the head of all the vertices in C3.

Now consider c12. For a vertex u1 = (a, {b, c, d}) ∈ C1, the neighbors of u1 in
C2 are those vertices (e, {f, n, a}) where e ∈ {b, c, d} and f ∈ [n] \ {a, b, c, d, n}.
From this it is easy to see that u1 has exactly c12 = 3(n−5) neighbors in C2. Now
if u2 = (a, {b, c, n}) ∈ C2, then it has neighbors in C1 of the form (e, {f, g, a})
where e ∈ {b, c}, and f, g ∈ [n−1]\ {a, b, c} and f 6= g. This characterization of
the neighbors of u2 in C1 makes it clear that c21 = 2

(

n−4
2

)

. Now the neighbors
of u2 in C3 all have the form (n, {f, g, a}) where f, g ∈ [n] \ {a, b, c, n} and
f 6= g. From this we see that c23 =

(

n−4
2

)

. Since any vertex of C3 has all of its

neighbors in C2, we know that c32 = val(HH3(n)) = 3
(

n−4
2

)

.

Putting this all together we arrive at the following quotient matrix:

A(HH3(n)/π3) =













3
(

n−5
2

)

3(n − 5) 0

2
(

n−4
2

)

0
(

n−4
2

)

0 3
(

n−4
2

)

0













In fact, doing this for arbitrary tail size is not really that much more difficult.
It is easy to work out that, analogously to the r = 3 case above,
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A(HHr(n)/π3) =













r
(

n−r−2
r−1

)

r
(

n−r−2
r−2

)

0

(r − 1)
(

n−r−1
r−1

)

0
(

n−r−1
r−1

)

0 r
(

n−r−1
r−1

)

0













=

(

n − r − 1

r − 1

)













r n−2r
n−r−1 r r−1

n−r−1 0

(r − 1) 0 1

0 r 0













The eigenvalues of this matrix are distinct and can be determined by ele-
mentary algebra. They are

val(HHr(n)) = r

(

n − r − 1

r − 1

)

and
1

2
r

(

n − r − 2

r − 2

)

[

−1 ± 1

r − 1

√

4n(n − 3r − 1) + r(r + 3)2

r

]

Which for r = 3, simplify to

3

(

n − 4

2

)

and
3

2
(n − 5)

(

−1 ± 1

3

√

3n2 − 30n + 81

)

.

So now we have a closed form expression for three eigenvalues of any Häggk-
vist & Hell graph. In the next section we will show how to compute all of the
eigenvalues for any HHr(n).

3.3 A (5r + 2)-Cell Partition

Before we move on to our next partition of interest, we need Theorem 9.4.1 from
[2]:

3.3.1 Theorem. Let X be a vertex transitive graph, and let π be the partition

of V (X) into the orbits of some subgroup G of Aut(X). If π has a singleton cell

{u}, then every eigenvalue of X is an eigenvalue of X/π.

In order to use the above theorem we need to find a group of automorphisms
that will fix a vertex of our graph, and hopefully have as few orbits as possible.
The only automorphisms of HHr(n) we know of are those from Sym(n), so we
will use these. If we want our group of automorphisms to fix the vertex u =
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3.3. A (5r + 2)-CELL PARTITION

(1, {2, 3, . . . , r+1}), then it must fix the number 1, and setwise fix {2, 3, . . . , r+
1}. So we simply take the largest subgroup of Sym(n) that does exactly that.
Clearly this group has {u} as one of its orbits in its action on V (HHr(n)) and
thus this group gives us an equitable partition that satisfies the requirements of
the theorem. We call this partition πu.

We will see that the number of cells of this partition does not depend on n,
which means that for a fixed r we can compute all of the eigenvalues of HHr(n)
in terms of n. Unfortunately, the number of cells does increase as r increases,
and in fact for r ≥ 4 it is computationally challenging to find the closed form of
the eigenvalues for HHr(n). However, for a particular value of n, it would not
be so difficult.

We can divide the cells of this partition up into five varieties. The following
is a description of each of these five varieties and the notation that we use for
each:

A: The vertices in cells of this variety all have 1 as their head. The different
cells of this variety, and of every variety in fact, are distinguished from one
another by the number of elements of {2, . . . , r + 1} that their vertices have in
their tails, in this case being any value from 0 to r. Therefore there are r + 1
cells of this type.

B: The vertices in these cells have the element 1 in their tail and their head
is one of the elements of {2, . . . , r+1}. Each of these vertices have r−1 elements
other than 1 in their tail and there are r−1 elements in {2, . . . , r+1} that aren’t
their head and thus they can have between 0 and r−1 elements of {2, . . . , r+1}
in their tail. Therefore there are r cells of this variety.

C: The vertices in the cells of this variety all have the element 1 in their tails
and they have neither 1 nor any element from {2, . . . , r+1} as their head. Since
all of these vertices must have 1 in their tail, they can only have up to r − 1
elements of {2, . . . , r + 1} in their tails. Thus there are only r of this variety of
cells.

D: The vertices in cells of this variety all have an element of {2, . . . , r + 1}
as their head, and their tail does not contain the element 1. These vertices have
between 0 and r − 1 elements of {2, . . . , r + 1} in their tails, since one element
of that set is already their head. Thus there are r cells of this type.

E : The vertices in the cells of this variety do not have 1 nor any element of
{2, . . . , r + 1} as their head, their heads come only from the set {r + 2, . . . , n}.
These vertices also do not have 1 in their tails. Their tails can have from 0 to
r elements in common with {2, . . . , r + 1}, thus there are r + 1 of these cells.

We refer to the cell of the A variety which contains vertices with i elements
of {2, . . . , r+1} in their tails by Ai, and similarly for cells of the other varieties.
We see that these five varieties of cells give rise to 5r+2 cells in this partition of
HHr(n). This number of cells is unfortunate, since it means that for a relatively
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small case, say r = 4, we must compute the eigenvalues of a 22×22 matrix with
variable entries if we want to know the eigenvalues as a function of n in closed
form. Comparatively, all of the eigenvalues of the Kneser graph Kn:r are known
in closed form for all values of n and r. However, even though there are many
cells in general, separating them into the above five varieties allows us to write
the quotient matrix as a 5×5 block matrix for any n and r, in a relatively simple
way. To illustrate how the entries for each block are found, we will consider the
case of counting the number of neighbors each vertex in the A variety of cells
has in the C variety of cells:

Let u be a vertex in Ai. Consider a hypothetical neighbor w, of u in Cj . Since
the head of w must be from the tail of u, but not from {2, . . . , r + 1} (because
of the cell it is in), there are r − i choices for it. Now there are j elements in
the tail of w that come from {2, . . . , r + 1}, but they cannot be the i elements
from this set that are in the tail of u (since tails must be disjoint for adjacency),
therefore there are r − i elements of {2, . . . , r + 1} to choose these j from, and
thus there are

(

r−i
j

)

possibilities for this part of the tail of w. Now since we
have chosen j elements of the tail of w already, and the head of u must be in
the tail of w by the adjacency condition, the only choice left for w is the choice
of the r− 1− j remaining elements of the tail of w. Now these elements cannot
be from anywhere in u (the tails are disjoint and we have already accounted for
the head) and they can’t be from {2, . . . , r + 1}, since we already chose our j
from there. Since the tail of u and {2, . . . , r+1} intersect in i elements, and the
head of u is not in {2, . . . , r + 1}, together these two restrictions keep us from
choosing 2r + 1 − i elements of [n]. Thus we have

(

n−2r−1+i
r−1−j

)

choices for the
remaining r − 1 − j elements in the tail of w. Together, all of this tells us that
the number of neighbors a vertex in Ai has in Cj is

(r − i)

(

r − i

j

)(

n − 2r − 1 + i

r − 1 − j

)

.

Now, letting i run from 0 to r, and j from 0 to r−1, we get all of the entries
in the block corresponding to the number of neighbors the vertices in each of
the cells of the A variety have in each of the cells of the C variety. The logic for
the other blocks is essentially the same, just with a few numbers shifted. Below
we present the whole matrix in block format. Keep in mind that the entries in
this matrix are meant to be 0 if any of the factors do not make sense, i.e., if
one of them is less than 0, or if one of the binomial coefficients’ top argument is
strictly less than its bottom argument, or if the bottom argument is less than
0. For example

(−1
1

)

= −1 algebraically, but here we take this to be 0. This
has to be taken into account if one wants to implement code to compute the
eigenvalues for particular values of n. Because of this the expressions in this
matrix have been purposefully left in the form that corresponds to the actual
counting arguments used to compute them.
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.
A

(5
r

+
2
)-C

E
L
L

P
A

R
T

IT
IO

N

A B C D E
(1, {2, . . . , r + 1}) (0 ≤ j ≤ r) (0 ≤ j ≤ r − 1) (0 ≤ j ≤ r − 1) (0 ≤ j ≤ r − 1) (0 ≤ j ≤ r)

A 0 i(r−i

j )(n−2r−1+i

r−1−j ) (r−i)(r−i

j )(n−2r−1+i

r−1−j ) 0 0
(0 ≤ i ≤ r)

B (r−1−i

j−1 )(n−2r+i

r−j ) 0 0 i(r−1−i

j−1 )(n−2r+i

r−j ) (r−1−i)(r−1−i

j−1 )(n−2r+i

r−j )
(0 ≤ i ≤ r − 1)

C (r−i

j )(n−2r−1+i

r−1−j ) 0 0 i(r−i

j )(n−2r−1+i

r−1−j ) (r−1−i)(r−i

j )(n−2r−1+i

r−1−j )
(0 ≤ i ≤ r − 1)

D 0 i(r−1−i

j−1 )(n−2r−1+i

r−1−j ) (r−i)(r−1−i

j−1 )(n−2r−1+i

r−1−j ) i(r−1−i

j−1 )(n−2r−1+i

r−j ) (r−i)(r−1−i

j−1 )(n−2r−1+i

r−j )
(0 ≤ i ≤ r − 1)

E 0 i(r−i

j )(n−2r−2+i

r−2−j ) (r−i)(r−i

j )(n−2r−2+i

r−2−j ) i(r−i

j )(n−2r−2+i

r−1−j ) (r−i)(r−i

j )(n−2r−2+i

r−1−j )
(0 ≤ i ≤ r)

Table 3.1: Adjacency matrix of the quotient HHr(n)/πu.
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3. EQUITABLE PARTITIONS

It is important to note that one of these cells, E0, is an induced HHr(n−r−1)
subgraph. Also, this is a strictly finer partition than π3 since if we combine all
of the cells of the A variety, we will get C3, all the cells of the B and C varieties,
and we get C2, and combining all of the cells of the D and E varieties and we
get C1, an HHr(n − 1) induced subgraph.

3.4 Eigenvalues of HH2(n) and HH3(n)

Using this block form it is easy to write code to construct the quotient matrix
A(HHr(n)/πu) for any value of r, and we have written such code, but we have
not been able to compute the eigenvalues for r ≥ 4. The eigenvalues for r = 2
are:

− 2

1

4 − n

1

2

(

n − 4 ±
√

n2 − 8n + 32
)

− 1 ±
√

2n2 − 14n + 25

2n − 6

Note that the last eigenvalue, 2n − 6, is equal to the valency of HH2(n). Now
for r = 3, the eigenvalues are:

− 1

3

n − 6

− 1

2
(n2 − 11n + 30)

1

4

(

n2 − 11n + 36 ±
√

n4 − 22n3 + 265n2 − 1584n + 3456
)

− n + 6 ±
√

n2 − 12n + 45

3

2
(n − 5)

(

−1 ± 1

3

√

3n2 − 30n + 81

)

3

2
(n2 − 9n + 20)

Again, the last eigenvalue here is equal to the valency.
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3.4. EIGENVALUES OF HH2(n) AND HH3(n)

The smallest eigenvalues for r = 2 and r = 3 are

−1 −
√

2n2 − 14n + 25, and

3

2
(n − 5)

(

−1 − 1

3

√

3n2 − 30n + 81

)

respectively. Notice that these are in fact the same as the smallest eigenvalues
obtained from the coarser partition π3. It is also easy to see that for n = 2r
(the least value of n for which HHr(n) is not the empty graph) the smallest
eigenvalue from π3 reduces to −r which is in fact the smallest eigenvalue since
HHr(2r) = 1

2

(

2r
r

)

Kr,r. Because of this we conjecture that this is in fact the
smallest eigenvalue for all r and n.

Equitable partitions can be very useful when trying to find the eigenvalues of
certain classes of graphs. In particular, using a method similar to what we have
done here, one can take the subgroup of Sym(n) that setwise fixes {1, 2, . . . , r}
and use the equitable partition this gives of the Kneser graph Kn:r with the
singleton cell {{1, 2, . . . , r}} to find all of its eigenvalues. Though this does
take a bit of algebraic trickery even after getting the quotient matrix from this
partition, and it is worth noting that the size of the matrix depends on r, as in
our case. Because of this we hold out some hope that perhaps we will be able
to explicitly find all of the eigenvalues for HHr(n) for any r and n.
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Chapter 4

Independence Number

The independence number of a graph G is the size of its largest independent set
and is denoted α(G). In general, determining this value is NP-Hard. However,
there are some classes of graphs that have enough usable structure or symmetry
to make this problem more tractable. In this chapter we will investigate the
value of α(HHr(n)) and give an upper and lower bound of the same order. The

value of the lower bound is r
(

n−1
r

)

when 2r ≤ n ≤ r2 + 1, and
(

n
r+1

)

+ r−1
r+1

(

r2

r

)

when n ≥ r2. This lower bound depends heavily on the three cell partition
given in Chapter 3. The upper bound we give is a direct application of the ratio
bound for regular graphs. We suspect that our lower bound is tight.

4.1 Kneser Homomorphism Bound

The Kneser graphs are one such class of graphs whose highly symmetric struc-
ture has allowed mathematicians to not only find the exact value of its indepen-
dence number, but also to characterize all of its maximum independent sets.

4.1.1 Theorem (Erdős-Ko-Rado). If n > 2r, then α(G) =
(

n−1
r−1

)

, and an

independent set of this size consists of the r-subsets of {1, . . . , n} that contain

a particular element.

Since the Häggkvist & Hell graphs are quite naturally related to the Kneser
graphs, it suggests that the maximum independent sets of the latter might
enlighten us as to those of the former. Indeed the first bound we discuss is one
obtained from this relationship. But first we need the following lemma.

4.1.2 Lemma. Suppose that X and Y are graphs and there exists a homo-

morphism ϕ : X → Y . If S is an independent set in Y , then ϕ−1(S) is an

independent set in X .

Proof. Suppose not. Then there exist two vertices u, w ∈ ϕ−1(S) such that
u ∼ w. Since ϕ is a homomorphism, ϕ must preserve adjacency, and therefore
ϕ(u) ∼ ϕ(w), but ϕ(u), ϕ(w) ∈ S which is a contradiction since S is an inde-
pendent set. Therefore ϕ−1(S) is an independent set in X .
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4. INDEPENDENCE NUMBER

The above lemma proves to be useful when one one is searching for a large
independent set in a graph that admits a homomorphism into a more well stud-
ied graph. This is in fact exactly the situation we are in with the Häggkvist &
Hell graphs.

Recall the homomorphism ϕ : HHr(n) → Kn:r given by ϕ(h, T ) = T . Using
this homomorphism and the above theorem and lemma, we can obtain a large
independent set of HHr(n).

4.1.3 Theorem. For n ≥ 2r,

α(HHr(n)) ≥ r

(

n − 1

r

)

= (n − r)

(

n − 1

r − 1

)

.

Proof. Note that all of the fibres of ϕ have size n− r, since for each possible tail
one can have the n − r other elements of {1, . . . , n} as the head. Now let S be
a maximum independent set in Kn:r, say the set of all r-subsets of {1, . . . , n}
that contain the element n. Then ϕ−1(S) is an independent set in HHr(n) of
size (n − r)

(

n−1
r−1

)

.

In fact this set is exactly the set of all vertices with n in their tail. Let us
refer to the set of all vertices of HHr(n) with i ∈ {1, . . . , n} in their tails as
Tn(i). Note that (n − r)

(

n−1
r−1

)

= r
(

n−1
r

)

illustrated by the fact that we can fix
the element k in the tail, and then pick the other r elements of {h} ∪ T from
the remaining n−1 elements of {1, . . . , n}, and then we can choose any of those
r elements to be the head. So for any i ∈ [n] we have

Tn(i) = r

(

n − 1

r

)

= (n − r)

(

n − 1

r − 1

)

.

In some respects, this is a quite large independent set, with

r

(

n − 1

r

)

=
r

n
|V (HHr(n))|,

where for random graphs the maximum independent set has size logarithmic in
the size of the graph with high probability. However, in our next section we will
see an independent set that has size proportional to |V (HHr(n))| given fixed r.

It is important to note that Tn(i) is maximal for n ≥ 2r. This is easily seen
from the partition π3, since the cell C2 is simply Tn(n) and c12 6= 0 6= c32, and
of course we can construct an equivalent partition where C2 is Tn(i) for any
i ∈ {1, . . . , n}.

4.2 Recursive Bound

In this section we will make particular use of the 3-cell partition π3 of HHr(n)
from the chapter on equitable partitions, so you may want to take a look at
its diagram again. Notice that one of the cells is an HHr(n − 1) induced sub-
graph. In fact there are many such subgraphs, at least one for each element
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4.2. RECURSIVE BOUND

of {1, . . . , n}, but we need only concern ourselves with the one for our next
theorem.

4.2.1 Theorem. For all r ≥ 2,

α(HHr(n)) ≥ α(HHr(n − 1)) +

(

n − 1

r

)

.

Proof. Note that the cell C3 of π3, the cell of vertices whose heads are n, is
both an independent set of HHr(n), and is independent from the HHr(n − 1)
subgraph of the same partition. So for any independent set S ⊆ C1 of HHr(n),
we have that S ∪ C3 is also an independent set of HHr(n). Now taking S to
be a maximum independent set of the HHr(n− 1) subgraph induced by C1, we
see that

α(HHr(n)) ≥ α(HHr(n − 1)) + |C3| = α(HHr(n − 1)) +

(

n − 1

r

)

.

This recursive bound begs the question of what happens when we continually
take independent sets like this until we no longer can. Is this independent set
larger or smaller than the set of all vertices with a particular element in the
tail? Let us refer to the set of vertices of HHr(i) with i as their head as Hi.
Then by the well-known Hockey Stick equality, we see that

α(HHr(n)) ≥
n
∑

i=r+1

|Hi| =

n
∑

i=r+1

(

i − 1

r

)

=

(

n

r + 1

)

=
1

r + 1
|V (HHr(n))|

So this set is larger than the above described set when 1
r+1 ≥ r

n
, that is, when

n ≥ r(r + 1).
This independent set can actually be described in a more concise manner; it

is simply the set of vertices whose head is larger than every element of its tail.
This is easily seen as at each step we are working in an HHr(i) subgraph and we
take all those vertices with the largest possible element, i, as their head, thus all
vertices in this set will have heads larger than any element in their tails. And if
a vertex has a head i that is larger than any element in its tail, then it must be
in Hi, and thus is in this independent set. Describing the set in this way makes
it quite a bit easier to compute its size, since for any (r+1)-subset of {1, . . . , n}
there are r + 1 vertices, there being r + 1 choices for the head, and exactly one
of these will be in the independent set, the one with the largest element as the
head, and thus there must be exactly 1

r+1 |V (HHr(n))| =
(

n
r+1

)

vertices in this
independent set. It is also straightforward to prove that this is an independent
set from this description, since if (h1, T1) ∼ (h2, T2), then h1 ∈ T2 and h2 ∈ T1,
and obviously it cannot be that the head of each of these is larger than anything
in their respective tails, since that would imply that both h1 > h2 and h2 > h1.

Note that Hn is a maximal independent set in HHr(n)−HHr(n−1), as can
be easily seen by examining π3. This implies that if S is a maximal independent
set in HHr(n − 1), then S ∪Hn is maximal in HHr(n).
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4. INDEPENDENCE NUMBER

4.3 How Big Can We Get?

We now have two types of large independent sets of HHr(n), and we know of
an independent set in HHr(n) that is independent of HHr(n − 1). We would
like to find the biggest independent set we can construct using these tools for
an arbitrary HHr(n). Beginning with a given HHr(n), in following with the
above recursive bound on α(HHr(n)), we can either take Tn(n) and stop, since
this is maximal, or we can take Hn and then take the largest independent set
we can find in HHr(n − 1). Let us make this procedure slightly more formal.
Recursively define α′ as follows:

α′(HHr(n)) = max{|Tn(n)|, |Hn| + α′(HHr(n − 1))}

= max{r
(

n − 1

r

)

,

(

n − 1

r

)

+ α′(HHr(n − 1))}

4.3.1 Theorem. For 2r ≤ n ≤ r2 + 1, α′(HHr(n)) = r
(

n−1
r

)

and Tn(n) is an

independent set of this size. For n ≥ r2, α′(HHr(n)) =
(

n
r+1

)

+ r−1
r+1

(

r2

r

)

and





n
⋃

i=r2+1

Hi



 ∪ Tr2(r2)

is an independent set of this size.

We take care of the 2r ≤ n ≤ r2 + 1 case first. To prove this we use a finite
induction. For n = 2r we have that HHr(n) = 1

2

(

2r
r

)

Kr,r and so clearly the
largest independent will simply be made up of sides of the different complete
bipartite subgraphs having size equal to 1

2 |V (HHr(n))|. However, the set Tn(n)

has size (r)
(

2r−1
r

)

= r
2r

((r + 1)
(

2r
r

)

) = 1
2 |V (HHr(n))|. So in fact Tn(n) is a

maximum independent set when n = 2r. Now suppose that 2r < n ≤ r2 + 1,
and that the largest independent set of HHr(i) we can construct using the
method described above has size r

(

i−1
r

)

for 2r ≤ i < n. Then our choices for
constructing a large independent set of HHr(n) are:

Choice 1: Choose Tn(n) which has size r
(

n−1
r

)

.

Choice 2: Take the set Hn with size
(

n−1
r

)

and then the largest independent

set we can construct in HHr(n − 1), which inductively has size r
(

n−2
r

)

, giving

us an independent set of total size equal to r
(

n−2
r

)

+
(

n−1
r

)

.

We must show that Choice 1 beats out Choice 2 for n ≤ r2 + 1. We prove
this by showing the ratio of the two sizes is less than unity:
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r
(

n−2
r

)

+
(

n−1
r

)

r
(

n−1
r

) =

(

n−2
r

)

(

n−1
r

) +
1

r

=
n − r − 1

n − 1
+

1

r

=
nr − r2 − r + n − 1

(n − 1)r

= 1 +
n − (r2 + 1)

(n − 1)r

≤ 1

for n ≤ r2 + 1.
Thus the largest set we can construct using this method is in fact of size

r
(

n−1
r

)

for n ≤ r2 + 1 = |Tn(n)|. Also note that when n = r2 + 1 the above
inequality becomes an equality, implying that for n = r2 + 1 either choice will
do.

We must now show that for n ≥ r2, the largest independent set of HHr(n)
that we can construct with this method has size

(

n

r + 1

)

+
r − 1

r + 1

(

r2

r

)

=

∣

∣

∣

∣

∣

∣





n
⋃

i=r2+1

Hi



 ∪ Tr2

(

r2
)

∣

∣

∣

∣

∣

∣

.

First we will show that this holds for n = r2 and n = r2 +1. From the above we
know that (

⋃n

i=r2+1 Hi) ∪ Tr2(r2) has size r
(

n−1
r

)

in both cases (the first union

being empty for n = r2). We will show that r
(

n−1
r

)

−
(

n
r+1

)

is equal to r−1
r+1

(

r2

r

)

for n = r2 and r2 + 1, thus proving the desired result:

r

(

n − 1

r

)

−
(

n

r + 1

)

= r

(

n − 1

r

)

− n

r + 1

(

n − 1

r

)

=

(

r − n

r + 1

)(

n − 1

r

)

=

(

r2 + r − n

r + 1

)(

n − 1

r

)

Plugging in n = r2 +1 we immediately see that this is equal to r−1
r+1

(

r2

r

)

, but for

n = r2 we have a bit more work to do. In this case the above quantity is equal
to

(

r

r + 1

)(

r2 − 1

r

)

=

(

r

r + 1

)

r2 − r

r2

(

r2

r

)

=

(

r

r + 1

)(

r − 1

r

)(

r2

r

)

=

(

r − 1

r + 1

)(

r2

r

)
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Thus for n = r2, Tn(n) is a largest independent set that we can construct using
this method, and for n = r2 + 1, both Tn(n) and Hn ∪ Tn−1(n − 1) are largest
independent sets that we can construct using this method, and in each case they

have size equal to r
(

n−1
r

)

=
(

n
r+1

)

+ r−1
r+1

(

r2

r

)

.

Now suppose that n > r2+1 and that the largest independent set of HHr(k)
that we can construct using this method has size equal to

(

k

r + 1

)

+
r − 1

r + 1

(

r2

r

)

=

∣

∣

∣

∣

∣

∣





k
⋃

i=r2+1

Hi



 ∪ Tr2(r2)

∣

∣

∣

∣

∣

∣

for r2 ≤ k < n.

Again, we have two choices:

Choice 1: Choose Tn(n) which has size r
(

n−1
r

)

.

Choice 2: Take the set Hn with size
(

n−1
r

)

and then the largest independent

set we can construct in HHr(n−1), which inductively has size
(

n−1
r+1

)

+ r−1
r+1

(

r2

r

)

,

giving us an independent set of total size equal to
(

n−1
r+1

)

+ r−1
r+1

(

r2

r

)

+
(

n−1
r

)

.

So we must show that
(

n−1
r+1

)

+ r−1
r+1

(

r2

r

)

+
(

n−1
r

)

≥ r
(

n−1
r

)

. However, by our

induction hypothesis we know that
(

n−1
r+1

)

+ r−1
r+1

(

r2

r

)

≥ r
(

n−2
r

)

, since otherwise
Tn−1(n − 1) would be a larger independent set than what we assumed was the
largest. So now we only have left to show that

(

n − 1

r

)

≥ r

(

n − 1

r

)

− r

(

n − 2

r

)

To do this we look at their ratio:

r
(

n−1
r

)

− r
(

n−2
r

)

(

n−1
r

) = r

(

1 − n − r − 1

n − 1

)

= r

(

n − 1 − (n − r − 1)

n − 1

)

=
r2

n − 1

< 1

for n > r2 + 1. This proves the result.

So we have now shown that if we want to find an independent set of HHr(n)
by either picking Tn(n) and stopping, or by taking Hn and then recursively
finding an independent set of HHr(n − 1) by the same method, then the best
we can do is

Tn(n) with size r

(

n − 1

r

)

for 2r ≤ n ≤ r2 + 1
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and




n
⋃

i=r2+1

Hi



 ∪ Tr2(r2)

with size

(

n

r + 1

)

+
r − 1

r + 1

(

r2

r

)

=
|V (HHr(n))|

r + 1
+

r − 1

r + 1

(

r2

r

)

for n ≥ r2.

4.3.2 Theorem. The sets Tn(n) and
(
⋃n

i=r2+1 Hi

)

∪ Tr2(r2) are maximal.

Proof. We have already seen that Tr2(r2) is maximal in HHr(r
2). Now we

can inductively assume that (
⋃n−1

i=r2+1 Hi) ∪ Tr2(r2) is maximal in HHr(n− 1),

then
(

(
⋃n−1

i=r2+1 Hi) ∪ Tr2(r2)
)

∪ Hn = (
⋃n

i=r2+1 Hi) ∪ Tr2(r2) is maximal in

HHr(n).

It is important to note that in fact we could use Tr2(j) for any j ∈ {1, . . . , r2}
instead of Tr2(r2), and nothing is lost. In fact we could of course have taken the
vertices with ` as their head and then discarded all elements with ` in their tail
and then acted recursively on the HHr(n−1) subgraph that uses only elements
from {1, . . . , n} \ `, for any ` ∈ {1, . . . , n}, and nothing would be lost. These
degrees of freedom will be put to use in the next section.

4.4 Two Large Independent Sets

Now that we have found such a large independent set of HHr(n), it is interesting
to ask what is the largest independent set we can find that is disjoint from this
one? It turns out that for n ≥ r2 + 1 we can actually find one of the same size.
We do this by essentially doing the same thing we did to get the first one, but
we do it backwards.

4.4.1 Theorem. For n ≥ r2 + 1, there exist two disjoint independent sets in

HHr(n), both having size
(

n
r+1

)

+ r−1
r+1

(

r2

r

)

.

Proof. First, we must make one change to the large independent set described
above. Instead of using Tr2(r2), we will use Tr2(1). Let us call this independent
set L−.

Now, to construct the second large independent set, we take the vertices
with 1 as their head and then consider the HHr(n− 1) subgraph that uses the
elements {2, . . . , n}. From this we take the elements with 2 as their head and
then consider the HHr(n − 2) subgraph that uses the elements {3, . . . , n}, and
we continue this until we get to the HHr(r

2) subgraph using only elements from
{n − r2 + 1, . . . , n}. Then, we take the set of all vertices in this subgraph with
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n in their tail. Let us call this set L+. Obviously both L− and L+ have size

equal to
(

n
r+1

)

+ r−1
r+1

(

r2

r

)

, it is only left to show that they are disjoint.

Of course these two sets can be described in a different manner; L− is the
set of vertices with heads from {r2 +1, . . . , n} that are greater than any element
in their tails, call this M−, along with the vertices using only elements from
{1, . . . , r2} with 1 in their tails, call this N−. L+ is the set of vertices with
heads from {1, . . . , n− r2} that are less than any element in their tails, call this
M+, along with the vertices using only elements from {n− r2 + 1, . . . , n} with
n in their tails, call this N+. Clearly M− and M+ are disjoint since the head
of a vertex cannot be both larger and smaller than everything in its tail. M−

and N+ are disjoint because if n is in the tail of a vertex, then its head cannot
be larger than everything in its tail. Similarly, M+ and N− are disjoint since
if 1 is in the tail of a vertex, then its head cannot be smaller than everything in
its tail. Now all that is left is to show that N− and N+ are disjoint. But the
vertices in N− only use elements from {1, . . . , r2}, and n ≥ r2 + 1, and so they
cannot have n in their tails. Therefore, M− t N− = L− and M+ t N+ = L+

are disjoint.

This implies that we are able to color 2
r+1 |V (HHr(n))| + 2 r−1

r+1

(

r2

r

)

vertices

of HHr(n) with just two colors for n ≥ r2 + 1. For r = 3 this is over half
of the graph, and for r = 2 it is more than two thirds of the graph, quite a
substantial portion. It is noteworthy that for any value of n we can find two
disjoint independent sets of size 1

r+1 |V (HHr(n))| each by taking one to be the
set of all vertices whose head is greater than every element of its tail and the
other to be the set of all vertices whose head is less than every element of its
tail.

In fact we can do slightly better than this for n ≤ r(r + 1) + 1, though we
only care about when n ≤ r2 < r(r +1)+1 since otherwise we can do better by
the first scheme given above. We let the first set be all of the vertices having
n in their tail, which is the largest independent set we know of for n ≤ r2 + 1.
Then let the second set be all of the vertices with n as their head (Hn), and
the vertices using only elements from {1, . . . , n−1} that have 1 in their tail, i.e.
Tn−1(1). The second set having size

(

n − 1

r

)

+ r

(

n − 2

r

)

=
r + 1

n

(

n

r + 1

)

+ r

(

n − 2

r

)

=

(

1 − n − r − 1

n

)(

n

r + 1

)

+ r

(

n − 2

r

)

=

(

n

r + 1

)

+

[

r

(

n − 2

r

)

− n − r − 1

n

(

n

r + 1

)]

=

(

n

r + 1

)

+

[

r

(

n − 2

r

)

−
(

n − 1

r

)]

=

(

n

r + 1

)

+

[

r − n − 1

r + 1

](

n − 2

r

)
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Which is at least
(

n
r+1

)

for n ≤ r(r + 1) + 1.

From the lower bounds on α(HHr(n)) given above we see that asymp-
totically the independence number of HHr(n) must grow at least as fast as
|V (HHr(n))|

r+1 . In the next section we will present an upper bound for the size of
the maximum independent set of HHr(n) and see how close this is to the lower
bounds that have been presented.

4.5 The Ratio Bound

The Ratio Bound is an upper bound on the independence number of a regular
graph that is derived algebraically from the least eigenvalue of the graph. For
some graphs, such as the Kneser graphs, the ratio bound is known to be tight.
Since the Häggkvist & Hell graphs are quite closely related to the Kneser graphs,
it is an interesting question as to whether the bound is tight for them.

In order to derive the ratio bound we will need to introduce some linear
algebra notions and theorems from [2]. For a real symmetric n × n matrix M ,
let θ1(M) ≥ θ2(M) ≥ . . . ≥ θn(M) denote its eigenvalues in nondecreasing
order.

Definition: For a real symmetric n×n matrix A and a real symmetric m×m
matrix B, m ≤ n, we say that the eigenvalues of B interlace the eigenvalues of
A if

θi+(n−m)(A) ≤ θi(B) ≤ θi(A).

We will need the following lemma to prove the ratio bound.

4.5.1 Lemma. If P is the characteristic matrix of a partition, not necessar-

ily equitable, of a graph X with adjacency matrix A, then the eigenvalues of

(PT P )−1PT AP interlace the eigenvalues of A.

We are now able to prove the ratio bound for the independence number of
a regular graph.

4.5.2 Theorem (Delsarte). Let X be a k-regular graph with v vertices and

least eigenvalue τ . Then

α(X) ≤ v
−τ

k − τ
.

Proof. Suppose that P is the characteristic matrix of a partition π of V (X).
Consider the ij-entry of PT AP . The ik-entry of PT A is the number of neighbors
of the vertex k in cell i of π. So the ij-entry of PT AP is the sum of this for
all vertices in cell j, i.e. the number of edges between cells i and j. Now since
PT P is a diagonal matrix with (PT P )ii equal to the size of the ith cell of π, the
ij-entry of (PT P )−1PT AP will be the average number of neighbors in cell j of
a vertex in cell i.
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Now consider a partition of V (X) into an independent set S and V (X) \ S.
There are |S|k edges between S and V (X) \S and so the vertices not in S have
an average of k|S|/(v − |S|) neighbors in S. So we have the following:

B = (PT P )−1PT AP =

(

0 k
k|S|

v−|S| k − k|S|
v−|S|

)

We see that k is an eigenvalue of B (with eigenvector 1). Also, since the sum of

the eigenvalues is equal to the trace, which is k − k|S|
v−|S| in this case, the other

eigenvalue of B must be −k|S|/(v − |S|). By Lemma 4.5.1 we know that the
eigenvalues of (PT P )−1PT AP interlace the eigenvalues of A, which implies that

τ ≤ k|S|
v − |S|

Now by simply letting S be a maximum independent set of X and rearranging
we get that

α(X) ≤ v
−τ

k − τ
.

4.6 An Upper Bound

We are now able to use the ratio bound to find an upper bound on the inde-
pendence number of the Häggkvist & Hell graphs for which we know the least
eigenvalue. We know the least eigenvalue for HHr(n) in the cases of r = 2 and
r = 3, so we present the bound for these two cases.

For r = 2, the least eigenvalue is

τ2 = −1 −
√

2n2 − 14n + 25

and the valency is 2n − 6, plugging these into the ratio bound we get the fol-
lowing:

4.6.1 Theorem.

α(HH2(n)) ≤ |V (HH2(n))|
√

2n2 − 14n + 25 − (n − 5)

n

Comparing this to the lower bound for r = 2,

α(HH2(n)) ≥ |V (HH2(n))|
3

+ 2

we see that the ratio bound is strictly larger than the lower bound for most
values of n, in fact as n → ∞ the ratio bound approaches (

√
2−1)|V (HH2(n))|,

whereas the lower bound only goes to 1
3 |V (HH2(n))|. That the ratio bound is
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4.6. AN UPPER BOUND

greater than our lower bound alone is of course not enough to show that it is not
achieved, perhaps there is some larger independent set that we have not found
yet. However, since the ratio bound has a radical in it, it cannot be achieved
exactly for most n, since the independence number must be an integer. But
perhaps for some large range of values of n the largest possible integer less than
the ratio bound is achieved, but this seems unlikely. For a few small cases we
have used the Cliquer program to find the exact values of of α(HH2(n)):

n α(HH2(n)) bRatio Boundc |V (HH2(n))|
4 6 6 12
5 12 13 30
6 22 26 60
7 37 45 105
8 58 71 168

Table 4.1: Independence numbers of HH2(n).

Note that α(HH2(n)) = 1
3 |V (HH2(n))| + 2 (our lower bound) for all values

of n for which the independence number is known.

For r = 3 the least eigenvalue is

τ3 =
3

2
(n − 5)(−1 − 1

3

√

3n2 − 30n + 81)

and the valency is 3
(

n−4
2

)

, plugging these into the ratio bound we get the fol-
lowing:

4.6.2 Theorem.

α(HH3(n)) ≤ |V (HH3(n))|
√

3(n2 − 10n + 27) − (n − 9)

2n

Comparing this to the lower bound for r = 3,

α(HH3(n)) ≥ |V (HH3(n))|
4

+ 42

we again see that the ratio bound is larger than our lower bound as it asymptoti-

cally approaches
√

3−1
2 |V (HH3(n))| ≈ 0.366|V (HH3(n))| while the lower bound

only approaches 1
4 |V (HH3(n))|. We can conclude essentially the same things

as the r = 2 case; the ratio bound cannot be reached exactly for most n since it
contains a radical. Perhaps for large enough n the largest integer less than the
bound is achieved, but that does not seem likely. The few small cases we were
able to compute using Cliquer are listed in Table 4.2.

Note that for all values of n for which the independence number of HH3(n)
is known α(HH3(n)) = 3

(

n−1
3

)

, which is our lower bound. In both the r = 2
and r = 3 for cases, though the bounds are disparate, they do have the same
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n α(HH3(n)) bRatio Boundc |V (HH3(n))|
6 30 30 60
7 60 62 140
8 105 118 280

Table 4.2: Independence numbers of HH3(n).

order of magnitude in terms of n, both being linear in the number of vertices. So
it seems that even though the ratio bound is probably too large in our opinion,
it is only too large by a constant factor.

Now even though we don’t know the least eigenvalue for general r, we have
a sneaking suspicion that it is the smallest eigenvalue of X/π3, and so it is of
interest to compute the ratio bound assuming that this is in fact the case. Recall
that the least eigenvalue of HHr(n)/π3 is

τ =
1

2
r

(

n − r − 2

r − 2

)

[

−1 − 1

r − 1

√

4n(n − 3r − 1) + r(r + 3)2

r

]

.

If we suppose that this is the least eigenvalue of HHr(n), which has valency
r
(

n−r−1
r−1

)

; then the ratio bound gives us the following:

4.6.3 Theorem. If the smallest eigenvalue of HHr(n) is

1

2
r

(

n − r − 2

r − 2

)

[

−1 − 1

r − 1

√

4n(n − 3r − 1) + r(r + 3)2

r

]

,

then

α(HHr(n)) ≤ |V (HHr(n))| r − 1 +
√

q
r

2n− r − 3 +
√

q
r

= |V (HHr(n))|
√

rq − (2n − r(r + 3))

2n(r − 1)

in which q = 4n(n − 3r − 1) + r(r + 3)2.

It is straightforward to see that as n → ∞, this approaches

1

1 +
√

r
|V (HHr(n))| >

1

1 + r
|V (HHr(n))|

for all values of r we are interested in (i.e. r ≥ 2). So, tentatively speaking,
the ratio bound is always asymptotically greater than our lower bound. But we
need not speak so tentatively, since −τ

k−τ
= 1− k

k−τ
increases as τ decreases. So

even if we are wrong about this being the lowest eigenvalue, the bound can only
be greater than this, and thus still greater than our lower bound.
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4.6. AN UPPER BOUND

Of course, there is always the possibility that for larger n there are larger
independent sets than our lower bound, but we don’t think that this is the case.
Even though we have only computed the actual independence numbers for a few
values of r and n, the values we have done it for are on both sides of the r2 to
r2 + 1 dividing line. It is also worth mentioning that in the slightly degenerate
case of r = 1, which is simply a matching, both our lower and upper bounds
given above simplify to 1

2 |V (HH1(n))| for all values of n, which is of course the
correct value of α(HH1(n)). This lends some credence to our guess that the
lowest eigenvalue of HHr(n)/π3 is always the lowest eigenvalue of HHr(n).

As with the Kneser graphs, there is a minimum value of n (dependent on
r) such that for any lesser value the graph is empty. This value is 2r for both
the Kneser graphs and the Häggkvist & Hell graphs. Crossing this dividing line
drastically changes the properties of the graphs, and thus changes basically all
of the interesting parameters of the graphs, including the independence number.
For the Kneser graphs the independence number is

(

n
r

)

(the number of vertices)

for n < 2r and
(

n−1
r−1

)

for n ≥ 2r.
Similarly the independence number for the Häggkvist & Hell graphs is (r +

1)
(

n
r+1

)

(the number of vertices) for n < 2r and it seems that it is r
(

n−1
r

)

for

2r ≤ n ≤ r2 + 1 with maximum independent sets that are inverse images of the
maximum independent sets of Kn:r. However, it seems that the Häggkvist &
Hell graphs have one more dividing line at n = r2 + 1 and from that point on

the maximum independent sets have size 1
r+1 |V (HHr(n))|+ r−1

r+1

(

r2

r

)

and are of
a different type than for smaller values of n. We strongly suspect that this is the
end of the story, and so we conjecture that these are the maximum independent
sets of HHr(n), and thus the n = r2 + 1 dividing line represents an interesting
“phase transition” for Häggkvist & Hell graphs.
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Chapter 5

Chromatic Number

As we saw earlier in Section 2.3, a proper coloring of a graph X is a function
f : V (X) → S, where S is a finite set, such that no two adjacent vertices have
the same image under f . An n-coloring is a coloring where S is an n element
set. We define the chromatic number of a graph X as the smallest n for which
there exists a proper n-coloring of X , and we denote this value as χ(X).

In this chapter we show that the chromatic number of HHr(n) is bounded
above by n − 2r + 2. We also show that for fixed r the chromatic number
increases by either zero or one for each increase in n by one. We give the
exact chromatic number of HH2(n) and HH3(n) for some values of n, and we
conclude by proving that for any fixed value of r greater than or equal to two,
χ(HHr(n)) is unbounded with respect to n.

5.1 Homomorphism Bound

Recall from Section 2.3 that another way of describing a coloring of a graph X is
as a homomorphism from X to a complete graph. This principle was expressed
in Lemma 2.3.1 which stated that X is n-colorable if and only if X → Kn. This
connection between colorings and homomorphisms to complete graphs allowed
us to prove Lemma 2.3.2 which tells us that if X → Y , then χ(X) ≤ χ(Y ).

This lemma enables us to obtain both lower and upper bounds on the chro-
matic number of a graph, and we will use it to achieve the latter. But first we
need the following theorem by Lovász.

5.1.1 Theorem (Lovász). The chromatic number of the Kneser graph Kn:r is

n − 2r + 2.

A proof of this is given in [2]. Now we are able to give an upper bound for
χ(HHr(n)):

5.1.2 Theorem. The chromatic number of HHr(n) is at most n − 2r + 2.
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Proof. By Theorem 2.5.2 there exists a homomorphism h : HHr(n) → Kn:r,
thus by Lemma 2.3.2 χ(HHr(n)) ≤ n − 2r + 2.

From this bound we see that the chromatic number of HHr(n) does not
grow too quickly, at most linearly with n. We would like to know if this bound
is always achieved, or if something more complicated occurs. The rest of this
chapter will shed some light on this question.

5.2 Recursive Bound

One particularly unsavory possibility is that χ(HHr(n)) and χ(HHr(n + 1))
differ by more than one for some choices of n, and are equal for others. In this
section we show that the chromatic number increases by at most one for each
increase in n. The equitable partition π3 from Section 3.2 plays an important
role in the proof of the following lemma, so we provide it below for the ease of
the reader:

r
(

n−r−2
r−1

)

r
(

n−r−2
r−2

) (

n−r−1
r−1

)

r
(

n−r−1
r−1

)

(r − 1)
(

n−r−1
r−1

)

HHr(n − 1) n ∈ T n = h

C1 C2 C3

Figure 5.1: Diagram of 3-Cell Partition π3.

5.2.1 Theorem. χ(HHr(n − 1)) ≤ χ(HHr(n)) ≤ χ(HHr(n − 1)) + 1.

Proof. The first inequality is trivially true since HHr(n − 1) is a subgraph of
HHr(n). For the upper bound, we color the cell C1 with the colors
{1, . . . , χ(HHr(n − 1))} since it is an HHr(n − 1) subgraph, then we color
all vertices in C2 with χ(HHr(n− 1)) + 1 since C2 is an independent set. Now
we only need to color the vertices of C3, but this is easy since they are an in-
dependent set and have no edges to C1, so we can color them with the color 1.
Thus we have colored HHr(n) with χ(HHr(n − 1)) + 1 colors.

So we are assured that the chromatic number of Häggkvist & Hell graphs
does not behave too erratically. Also, from this result we immediately obtain
the following corollary:

5.2.2 Corollary. χ(HHr(n − k)) ≤ χ(HHr(n)) ≤ χ(HHr(n − k)) + k.

Given the result of Theorem 5.2.1, a natural question to ask is whether or
not the chromatic number always increases by one, which is equivalent to asking
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if the n − 2r + 2 bound from Theorem 5.1.2 is always tight. If this is the case
one might hope for an inductive proof of it, or perhaps a proof by showing that
some graph with chromatic number n − 2r + 2 admits a homomorphism into
HHr(n). In the next section we will look at some computed results for small
values of r and n, and discuss their implications.

5.3 Some Chromatic Numbers

In order to get a rough idea of what may be going on with the chromatic numbers
of Häggkvist & Hell graphs, we have computed the exact value of χ(HHr(n))
for some small values of r and n using SAGE. We present our data below.

r n χ(HHr(n)) n − 2r + 2
2 4 2 2
2 5 3 3
2 6 4 4
2 7 4 5
3 6 2 2
3 7 3 3

Table 5.1: Chromatic numbers of HHr(n).

As one can see from the table, χ(HH2(7)) = 4 < 5 = n − 2r + 2. This
eliminates any hope of proving that the homomorphism bound of Theorem 5.1.2
is always achieved, in fact this implies that χ(HH2(n)) ≤ n− 2r + 1 for n ≥ 7.
So we know the bound is not achieved on a cofinite set of positive integers when
r = 2. Perhaps the bound is always achieved for some other choices of r, but
that would be an odd result. More likely is that the bound is achieved for some
small values of n for each choice of r. In fact we prove here that for any choice
of r, the bound is always achieved for the two smallest values of n.

5.3.1 Theorem. For r ≥ 2, χ(HHr(2r)) = 2 and χ(HHr(2r + 1)) = 3.

Proof. HHr(2r) is isomorphic to 1
2

(

2r
r

)

Kr,r, which has chromatic number 2. By
Theorem 1.4.4, HHr(2r + 1) has an odd cycle of length 2r + 1 and thus it has
chromatic number at least 3, and Theorem 5.1.2 gives that

χ(HHr(2r + 1)) ≤ 2r + 1 − 2r + 2 = 3,

which proves the result.

We take time here to remark that since HHr(2r − 1) is always empty, the
above homomorphism bound is trivially met in this case as well.

So far the bounds we have given have been mostly upper bounds, except
for the trivial lower bound given in Theorem 5.2.1, thus it is still an open
question as to whether χ(HHr(n)) is bounded in terms of n. This matter will
be investigated in this next section.

49



5. CHROMATIC NUMBER

5.4 Bounded or Unbounded?

Knowing that the chromatic number of HHr(n) does not increase with every
increase of n, it is natural to ask whether or not it is bounded by some finite
value which depends only on r. Recall that all triangle-free r-regular graphs

admit a homomorphism into HHr

(

r (r−1)3−1
r−2 + 1

)

, which implies that its chro-

matic number is at least r, since there exist triangle-free r-regular graphs with
chromatic number r. This means that we cannot hope to bound χ(HHr(n)) for
all values of r and n, but it may be possible to bound it for fixed r. However,
this turns out to not be the case.

We begin with a lemma that relates the chromatic numbers of Häggkvist &
Hell graphs with different tail sizes.

5.4.1 Lemma. For r ≥ 2, χ(HHr(n)) ≤ χ(HHr+1(χ(HHr(n)) + n)).

Proof. We prove this by showing that HHr(n) is isomorphic to a subgraph of
HHr+1(χ(HHr(n)) + n). Let

f : V (HHr(n)) → {n + 1, . . . , n + χ(HHr(n))}

be a proper coloring of HHr(n). Consider the map

g : HHr(n) → HHr+1(χ(HHr(n)) + n)

given by
g(hu, Tu) = (hu, Tu ∪ f(u)).

It is easy to see that this is an injective homomorphism which proves the
lemma.

This result immediately allows us to prove this next vital lemma.

5.4.2 Lemma. For a fixed r ≥ 2, if χ(HHr(n)) is unbounded with respect to

n, then χ(HHr′(n)) is unbounded with respect to n for all r′ ≥ r.

Proof. It will suffice to show that it holds for r′ = r + 1. We will prove the
contrapositve. Suppose that χ(HHr+1(n)) is bounded by Mr+1 with respect to
n. Then by Lemma 5.4.1, we have that

χ(HHr(n)) ≤ χ(HHr+1(χ(HHr(n)) + n)) ≤ Mr+1

for all n. Therefore χ(HHr(n)) is bounded with respect to n.

Lemma 5.4.2 is not difficult to prove, but it is very powerful, as it turns a
result for one value of r into a result for an infinite number of values of r. We
would like to be able to prove that χ(HH2(n)) is unbounded, since this would
take care of all possible values of r for which the chromatic number of HHr(n)
is not obviously bounded. This we proceed to do.

In 2000, Gallucio, Hell, and Nes̆etr̆il showed in [1] that the chromatic number
of HH3(n) could be arbitrarily large. We have reproduced their proof here
because it is related to the proof of our next result.
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5.4.3 Lemma. For every c there exists a number n such that the chromatic

number of HH3(n) is at least c.

Proof. Consider the following graph Sn: the vertices of Sn are all 3-element sets
of [n], and two such subsets, say {x1, x2, x3} with x1 < x2 < x3, and {y1, y2, y3}
with y1 < y2 < y3, are adjacent if x2 = y1 and x3 = y2. Note that Sn is
a directed graph, but we will also call Sn its underlying undirected graph. It
follows from Ramsey’s theorem for the partition of triples [4] that the chromatic
number of Sn may be arbitrarily large if n is large.

We now claim that Sn is isomorphic to a subgraph of some HH3(n
′) where

n′ ≥ n. Let f be a bijection from the set of all 3-element subsets of [n] to the
set {n + 1, . . . , n +

(

n
3

)

}, and let n′ = n +
(

n
3

)

. Now for {x1, x2, x3} ∈ V (Sn)
with x1 < x2 < x3, we let

g(x1, x2, x3) = (x2, {x1, x3, f(x1, x2, x3)}) ∈ V (HH3(n
′)).

It is easy to see that g is an injective homomorphism from V (Sn) to V (HH3(n
′)),

i.e., that Sn is isomorphic to a subgraph of HH3(n
′). Hence, the chromatic

number of HH3(n
′) is at least as large as the chromatic number of Sn. (In

fact, it is easy to see that g is an isomorphism onto an an induced subgraph of
HH3(n

′).)

Note that it was not necessary for f to be a bijection, it could have simply
been a proper coloring as in our proof of Lemma 5.4.1. Along with Lemma 5.4.2,
Lemma 5.4.3 immediately gives us the following corollary:

5.4.4 Corollary. For a fixed r ≥ 3, χ(HHr(n)) is unbounded with respect to

n.

It is worth noting that Gallucio et al. also gave a proof in [1] that HH3(n)
has chromatic number at least 4 for n ≥ 16. However, our computation of
χ(HH2(6)) = 4 along with Lemma 5.4.1 proves the same but for n ≥ 10.

With all of the r ≥ 3 cases taken care of, we are left with only the HH2(n)
case to resolve. Using what we learned from the chapter on the independence
number, we can reduce this problem somewhat. We know that the vertices of
HH2(n) whose head is greater than both elements in its tail is an independent
set, and we know the same is true for vertices whose head is less than both
elements of its tail. So we can always color these two sets with two colors. So
we only need to know if the subgraph of HH2(n) induced by the vertices not in
these two sets, i.e., the vertices with heads in between the two elements of their
tail, has bounded chromatic number or not.

As it turns out, this subgraph of HH2(n) and the graph Sn from the proof
of Lemma 5.4.3 are very closely related: so closely related, in fact, that they are
isomorphic to one another.

5.4.5 Lemma. χ(Sn) ≤ χ(HH2(n)) ≤ χ(Sn) + 2.
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Proof. For a vertex {x1, x2, x3} ∈ V (Sn) with x1 < x2 < x3, we let

f(x1, x2, x3) = (x2, {x1, x3}) ∈ V (HH2(n)).

Clearly, this is injective. We claim that it is an injective homomorphism.
Suppose that x = {x1, x2, x3} with x1 < x2 < x3 and y = {y1, y2, y3} with
y1 < y2 < y3 are adjacent in Sn. Then WLOG x2 = y1 and x3 = y2. Now
f(x) = (x2, {x1, x3}) and f(y) = (y2, {y1, y3}), and x2 ∈ {y1, y3}, y2 ∈ {y1, y3}
and {x1, x3}∩ {y1, y3} = ∅. Therefore f(x) and f(y) are adjacent. This proves
that Sn is isomorphic to a subgraph of HH2(n) which implies the first inequality.

Now we will show that it is isomorphic to an induced subgraph of HH2(n).
Suppose that (x2, {x1, x3}) with x1 < x2 < x3 and y = (y2, {y1, y3}) with
y1 < y2 < y3 are adjacent in HH2(n). Either x2 = y1 or x2 = y3. Suppose
that x2 = y1. Then y2 = x3 since y2 > y1 = x2, so we have that x2 = y1 and
x3 = y2. Therefore {x1, x2, x3} and {y1, y2, y3} are adjacent in Sn. Similarly,
if x2 = y3, we deduce that y2 = x1, and thus {x1, x2, x3} and {y1, y2, y3} are
again adjacent in Sn. Therefore, Sn is isomorphic to the subgraph of HH2(n)
induced by the vertices whose heads are in between the two elements in their
tails, and since we can color the rest of HH2(n) with two colors, we can color
HH2(n) with χ(Sn) + 2 colors.

This result of course implies that the chromatic number of HH2(n) is un-
bounded, since the chromatic number of Sn is unbounded [4]. This, along with
Lemma 5.4.2 imply the following theorem:

5.4.6 Theorem. For a fixed r ≥ 2, for any number c, there exists an integer n
such that the chromatic number of HHr(n) is at least c.

This theorem can be strengthened with the use of Lemma 5.2.1 to achieve
the following:

5.4.7 Theorem. For any r ≥ 2, for any positive integer k, there exists an

integer n such that χ(HHr(n)) = k.

Even though the χ(HHr(n)) ≤ χ(Kn:r) bound is probably not achieved
for every value of n for any fixed r, the chromatic number of the Häggkvist
& Hell graphs is unbounded for fixed r, much like the Kneser graphs. In the
next chapter we will investigate the fractional chromatic number of HHr(n)
and compare it to that of Kn:r. As for exactly how fast χ(HHr(n)) grows with
respect to n, this is still an open question, but intuitively we believe that it
most likely grows slower and slower as n increases.
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Chapter 6

Fractional Chromatic

Number

In this chapter we introduce the notions of fractional chromatic number and
fractional clique number , and give some background material on both. We give
several bounds for the fractional chromatic number of the Häggkvist & Hell
graphs including the following upper bound:

χ∗(HHr(n)) ≤ n

r
.

We also give a recursive upper bound and a probable lower bound using our
probable upper bound on α(HHr(n)).

6.1 Definitions and Theorems

The theorems in this section all come from Godsil and Royle’s Algebraic Graph
Theory [2], which we follow closely here. For a more complete discussion of
these concepts please refer to Chapter 7 of that reference.

We define I(X) to be the set of all independent sets of X , and I(X, u) to
be the set of all independent sets of X that contain u. A fractional coloring of
X is defined to be a non-negative real-valued function f on I(X) such that for
any vertex x of X ,

∑

S∈I(X,x)

f(S) ≥ 1.

The weight of a fractional coloring is the sum of all of its values, and the frac-
tional chromatic number of the graph X is defined to be the minimum possible
weight of a fractional coloring of X , and is denoted by χ∗(X). We call a frac-
tional coloring regular if, for each vertex x of X , we have

∑

S∈I(X,x)

f(S) = 1.
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For any proper k-coloring of a graph X , the color classes form a collection
of k pairwise disjoint independent sets V1, . . . , Vk whose union is V (X). If we
define a function f such that f(Vi) = 1 for all i, and f(S) = 0 for all other
S ∈ I(X), then f is a fractional coloring of X with weight k. This immediately
implies that

χ∗(X) ≤ χ(X).

Conversely, suppose that f is a 01-valued fractional coloring of X of weight
k. Then the support of f consists of k independent sets V1, . . . , Vk such that
∪k

i=1Vi = V (X). If we color each vertex x in X with the smallest i such that
x ∈ Vi, then we will obtain a k-coloring of X . Therefore, the chromatic number
of any graph X is equal to the minimum weight of a 01-valued fractional coloring.

A fractional clique of a graph X is a non-negative real-valued function on
V (X) such that the sum of the values of the function on the vertices of any
independent set is at most 1. The weight of a fractional clique is the sum of all
of its values. The fractional clique number of X is defined to be the maximum
weight of a fractional clique of X , and is denoted ω∗(X).

For any clique of size k, the characteristic vector of that clique is a fractional
clique of X of weight k. Thus

ω(X) ≤ ω∗(X).

Conversely, any 01-valued fractional clique of weight k corresponds to a clique
of size k, thus the clique number of a graph is equal to the maximum weight of
a 01-valued fractional clique.

6.1.1 Lemma. For any graph X ,

ω∗(X) ≥ |V (X)|
α(X)

.

Proof. Consider the function f on V (X) defined as f(x) = α(X)−1 for all
x ∈ X . Then for any independent set S ∈ I(X), we have

∑

x∈S

f(x) = α(X)−1|S| ≤ α(X)−1α(X) = 1.

Thus f is a fractional clique of X and it has weight |V (X)|/α(X), which proves
the result.

In fact, for vertex transitive graphs this bound is always met.

6.1.2 Lemma. For a vertex transitive graph X ,

ω∗(X) =
|V (X)|
α(X)

and α(X)−11 is a fractional clique with this weight.
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Proof. Suppose that g is a nonzero fractional clique of X . Then g is a function
on V (X). For γ ∈ Aut(X), define gγ by

gγ(x) = g(xγ).

So gγ is also a fractional clique of X with the same weight as g. Now consider

ĝ :=
1

|Aut(X)|
∑

γ∈Aut(X)

gγ .

This must also have the same weight as g. Also, it is easily seen that ĝ is
constant on V (X), since ĝγ = ĝ. Since c1 is a fractional clique of X if and only
if c ≤ α(X)−1, the result follows.

Note that we have not actually shown that χ∗(X) and ω∗(X) are well-
defined, i.e. that the respective minimums and maximums exist. We will not
give the proof of this here, but it is in [2] if the reader is interested.

In our study of homomorphisms, we have seen that both the chromatic
number and odd girth can be used to rule out the possibility of a homomorphism
from one graph to another. Now we would like to prove a similar result for the
fractional chromatic number.

First, consider a homomorphism ϕ : X → Y , and an independent set S of Y .
Then ϕ−1(S) is an independent set in X . Let T be another independent set in
Y such that S∩ϕ(X) = T ∩ϕ(X). Then ϕ−1(S) = ϕ−1(T ). Thus the preimage
of an independent set in Y is determined by its intersection with ϕ(X).

Now suppose that f is a fractional coloring of Y . Define the function f̂ on
I(X) by

f̂(S) =
∑

T :ϕ−1(T )=S

f(T ).

We say that f̂ is obtained by lifting f . If more than one independent set of Y
have the same intersection with ϕ(X), then they all have the same preimage

S ∈ I(X), and thus all contribute to f̂(S). Since every independent set T in Y

contributes f(T ) to f̂ , the weight of f̂ is equal to that of f . We now show that

f̂ is a fractional coloring of X .

6.1.3 Theorem. If there is a homomorphism from X to Y and f is a fractional

coloring of Y , then the lift f̂ of f is a fractional coloring of X with the same

weight as f . The support of f̂ consist of the preimages of independent sets in

the support of f .

Proof. If u ∈ V (X), then
∑

S∈I(X,u)

f̂(S) =
∑

u∈ϕ−1(T )

f(T )

=
∑

T∈I(Y,ϕ(u))

f(T ).

Thus f̂ is a fractional coloring of X .
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This theorem immediately gives us the desired result:

6.1.4 Corollary. If there is a homomorphism from X to Y , then χ∗(X) ≤
χ∗(Y ).

There are a few more theorems that we will need for the results of this
chapter, and we state them now without proof.

6.1.5 Theorem. For any vertex transitive graph X , we have

ω∗(X) =
V |(X)|
α(X)

= χ∗(X).

In fact, ω∗(X) = χ∗(X) is true for any graph X , not just vertex transitive
graphs. This can be proved using strong duality by reformulating fractional
colorings and fractional cliques as dual linear optimization problems.

6.1.6 Theorem. For any graph X we have

χ∗(X) = min{n/r : X → Kn:r}.

6.2 Upper Bound

We are now able to start proving results about the fractional chromatic num-
ber of HHr(n). The first such result that we prove is an upper bound on

χ∗(HHr(n)). By Theorem 6.1.5 we know that χ∗(HHr(n)) = |V (HHr(n))|
α(HHr(n)) ,

so we can use our lower bounds for α(HHr(n)) to obtain upper bounds for
χ∗(HHr(n)). Using Theorem 4.1.3 we obtain the following:

6.2.1 Theorem. χ∗(HHr(n)) ≤ n
r
.

Proof. By Theorem 4.1.3, α(HHr(n)) ≥ r
(

n−1
r

)

, thus

χ∗(HHr(n)) =
|V (HHr(n))|
α(HHr(n))

≤
(r + 1)

(

n
r+1

)

r
(

n−1
r

)

=
r + 1

r
·
(

n
r+1

)

(

n−1
r

)

=
r + 1

r
· n

r + 1

=
n

r
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Alternatively, we could have used the fact that HHr(n) → Kn:r, and Theo-
rem 6.1.6 to prove this result.

Recall that this was not our only lower bound on the independence number
of HHr(n). Theorem 4.3.1 states that for n ≥ r2,

α(HHr(n)) ≥ |V (HHr(n))|
r + 1

+
r − 1

r + 1

(

r2

r

)

.

Using this bound along with Theorem 6.1.5 we arrive at the following:

6.2.2 Theorem. For n ≥ r2,

χ∗(HHr(n)) ≤ (r + 1)

(

1 − (r − 1)
(

r2

r

)

(r + 1)
(

n
r+1

)

+ (r − 1)
(

r2

r

)

)

< r + 1

Proof.

χ∗(HHr(n)) =
|V (HHr(n))|
α(HHr(n))

≤ |V (HHr(n))|
|V (HHr(n))|

r+1 + r−1
r+1

(

r2

r

)

= (r + 1)

(

|V (HHr(n))|
|V (HHr(n))| + (r − 1)

(

r2

r

)

)

= (r + 1)

(

1 − (r − 1)
(

r2

r

)

|V (HHr(n))| + (r − 1)
(

r2

r

)

)

= (r + 1)

(

1 − (r − 1)
(

r2

r

)

(r + 1)
(

n
r+1

)

+ (r − 1)
(

r2

r

)

)

Note that this bound is smaller than the previous bound for n > r2 + 1,
because the bound for α(HHr(n)) we used to compute this bound is greater
than the other for these values of n.

So unlike the chromatic number of the Häggkvist & Hell graphs, the frac-
tional chromatic number is bounded for fixed r. This differs from the Kneser
graphs which have fractional chromatic number χ∗(Kn:r) = n/r which is of
course unbounded for fixed r.

6.3 Recursive Bound Using Fractional Cliques

In this section we find a recursive bound for χ∗(HHr(n)) using its equivalence
with ω∗(HHr(n)) from Theorem 6.1.5. The recursive bound given here is akin
to the recursive bound for the chromatic number in that they both rely heavily
on the 3-cell partition π3.
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6.3.1 Theorem. For r ≥ 2, n ≥ 2r, we have

ω∗(HHr(n − 1)) ≤ ω∗(HHr(n))

≤ n

n − r − 1

(

1 −
(

n−1
r

)

(

n−1
r

)

+ α(HHr(n − 1))

)

ω∗(HHr(n − 1)).

Proof. The first inequality is trivially true by Theorem 6.1.4 since the inclusion
map is a homomorphism. Recall the partition π3 and its three cells: C1 which
is an HHr(n − 1) subgraph, C2 which contains all vertices with n in their tail,
and C3 which contains all vertices that have n as their head. Now consider
a fractional clique f of HHr(n) with maximum weight ω∗(HHr(n)), that is
constant on the vertices. We will use f to construct a fractional clique f ′ of
HHr(n− 1). Note that for all independent sets S ⊆ C1, we have that S ∪C3 is
also independent. This implies that

∑

x∈S

f(x) +
∑

x∈C3

f(x) ≤ 1.

Since f is constant on the vertices, and |C3| =
(

n−1
r

)

, this gives

∑

x∈S

f(x) +
ω∗(HHr(n))

|V (HHr(n))|

(

n − 1

r

)

≤ 1.

Now consider the fractional clique of HHr(n − 1) given by

f ′(x) = f(x) +

(

n−1
r

)

(ω∗(HHr(n))/|V (HHr(n))|)
α(HHr(n − 1))

for all x ∈ V (HHr(n − 1)). For any S ∈ I(HHr(n − 1)), we have

∑

x∈S

f ′(x)

=
∑

x∈S

f(x) +

(

n−1
r

)

(ω∗(HHr(n))/|V (HHr(n))|)
α(HHr(n − 1))

≤
(

∑

x∈S

f(x)

)

+ α(HHr(n − 1))

[

(

n−1
r

)

(ω∗(HHr(n))/|V (HHr(n))|)
α(HHr(n − 1))

]

=

(

∑

x∈S

f(x)

)

+

(

n − 1

r

)

ω∗(HHr(n))

|V (HHr(n))|
≤ 1

by the above. Therefore f ′ is a fractional clique of HHr(n − 1), and it has
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weight equal to

f ′(x)|V (HHr(n − 1))|

=

(

f(x) +

(

n−1
r

)

(ω∗(HHr(n))/|V (HHr(n))|)
α(HHr(n − 1))

)

|V (HHr(n − 1))|

=

(

ω∗(HHr(n))

|V (HHr(n))| +

(

n−1
r

)

ω∗(HHr(n))

α(HHr(n − 1))|V (HHr(n))|

)

|V (HHr(n − 1))|

= ω∗(HHr(n))

( |V (HHr(n − 1))|
|V (HHr(n))|

)

(

1 +

(

n−1
r

)

α(HHr(n − 1))

)

= ω∗(HHr(n))

(

n − r − 1

n

)

(

1 +

(

n−1
r

)

α(HHr(n − 1))

)

.

Therefore

ω∗(HHr(n − 1)) ≥ ω∗(HHr(n))

(

n − r − 1

n

)

(

1 +

(

n−1
r

)

α(HHr(n − 1))

)

and upon rearranging we obtain the desired inequality.

It is worth noting that if we consider the outer inequality from above:

ω∗(HHr(n − 1)) ≤ n

n − r − 1

(

1 −
(

n−1
r

)

(

n−1
r

)

+ α(HHr(n − 1))

)

ω∗(HHr(n − 1))

we can solve for α(HHr(n − 1)) and we get the following:

α(HHr(n − 1)) ≥
(

n − 1

r

)

which is the size of the independent set we get by taking the set of vertices with
the greatest element as their head. In other words, by recursively using the
recursive bound from Theorem 4.2.1. This proof is more difficult, but still of
interest because it exemplifies the similarities between the proofs of these two
recursive bounds. Namely that both make particular use of the fact that C3 is
not just an independent set, but is also independent of C1.

As it turns out, the above recursive upper bound on ω∗(HHr(n)) can be
obtained from Theorem 4.2.1 algebraically with a shorter proof. However, this
proof is of interest because it gives the bound directly using only fractional
clique ideas.

6.4 Lower Bound

As we did in the case of the upper bound, we can use bounds for α(HHr(n))
to obtain bounds for χ∗(HHr(n)). However, this time we must use the upper
bounds on α(HHr(n)).
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Though we have only proven an upper bound for r = 2, 3, we will again as-
sume that the smallest eigenvalue of π3 is the smallest eigenvalue of HHr(n) for
all r, and use the upper bound obtained with that hypothesis. Again, applying
Theorem 6.1.5, we get the following:

6.4.1 Theorem. If the smallest eigenvalue of HHr(n) is

1

2
r

(

n − r − 2

r − 2

)

[

−1 − 1

r − 1

√

4n(n − 3r − 1) + r(r + 3)2

r

]

,

then

χ∗(HHr(n)) ≥ 2n − r − 3 +
√

q/r

r − 1 +
√

q/r

in which q = r(r + 3)2 + 4n(n − 3r − 1).

The proof is just simple algebra. Note that if the least eigenvalue is not the
one we suspect then the right hand side of the above inequality will get smaller.

We see that for fixed r, this upper bound tends to
√

r + 1 as n → ∞. So we
can tentatively say that for fixed r,

√
r + 1 ≤ lim

n→∞
χ∗(HHr(n)) ≤ r + 1.

We know this limit exists because χ∗(HHr(n)) is increasing (Theorem 6.3.1)
and bounded above (Theorem 6.2.2).

One of the more interesting consequences of these results is that for n >
r2 + 1, there is some other Kneser graph Kn′:r′ that HHr(n) must admit a
homomorphism to. This is because the bound we gave for χ∗(HHr(n)) for these
values of n is strictly less than n/r, so Kn:r cannot be the Kneser graph for which
the minimum in Theorem 6.1.6 is obtained. Which other Kneser graph HHr(n)
admits a homomorphism into is still an open, and very interesting, question.

To end this chapter, we will leave you with a table of fractional chromatic
numbers that we have computed.

r n χ∗(HHr(n)) Bound 6.2.1 Bound 6.2.2 Bound 6.4.1
2 4 2 2 2 2

2 5 5/2 5/2 5/2
√

5

2 6 30/11 3 30/11 1+
√

13
2

2 7 105/37 7/2 105/37 7/3

2 8 84/29 4 84/29 3+
√

41
4

3 6 2 2 N/A 2

3 7 7/3 7/3 N/A 3
√

2 − 2

3 8 8/3 8/3 N/A
√

33−1
2

Table 6.1: Fractional chromatic numbers of HH2(n) and HH3(n).
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Chapter 7

Conclusion

We summarize our results and give some interesting open problems.

7.1 Discussion of Results

Structurally speaking we have seen many similarities between Kneser graphs and
Häggkvist & Hell graphs. The three main structural parameters we investigated:
girth, odd girth, and diameter, are the same for Kn:r and HHr(n) for

2r + 2 ≤ n ≤ 3r − 1,

n <
7

3
r − 1

3
, and

n < 3r respectively.

The differences between the two graphs are explained by the heads of vertices in
HHr(n), which impose lower bounds on these parameters for the larger values
of n that the Kneser graphs are able to avoid. Below we have restated the
significant results concerning the structure of Häggkvist & Hell graphs:

• HHr(n) is connected for n ≥ 2r + 1.

• diam(HHr(n)) =











∞, if n ≤ 2r

max
{

5,
⌈

r−1
n−2r

⌉

+ 1
}

, if 2r + 1 ≤ n < 5
2r

4, if n ≥ 5
2r

• odd girth(HHr(n)) =

{

∞, if n ≤ 2r

max
{

5, 2
⌈

r
n−2r

⌉

+ 1
}

, if n ≥ 2r + 1

• girth(HHr(n)) = 4

• For any subgraph G of Kn:r with maximum degree strictly less than n−r
n−2r

,
there is a subgraph of HHr(n) isomorphic to G.
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With respect to the automorphism groups of Kn:r and HHr(n), both are
acted on arc transitively by Sym(n), and neither is distance transitive in general.

Perhaps the most significant connection between between the Kneser graphs
and the Häggkvist & Hell graphs is the homomorphism that takes vertices of
HHr(n) to their tails. This homomorphism gives rise to many of the results
of this thesis, both structural and algebraic. It is this relation that gives us
bounds on the algebraic properties of the Häggkvist & Hell graphs such as the
independence, chromatic, and fractional chromatic numbers. However, these
bounds do seem to drift away from the actual values of these parameters for
larger values of n, resembling the above mentioned structural results. Though
this specific homomorphism did not come up in the study of the structural
properties of the Häggkvist & Hell graphs, the more general analogy between
the vertices of Kn:r and the tails of vertices of HHr(n) was used extensively
here.

In general our results for the algebraic properties of the Häggkvist & Hell
graphs are inequalities rather than equalities. This is similar to known results
for other variations on Kneser graphs, such as the q-Kneser graphs, for which
bounds are known for many of their algebraic properties such as clique number,
chromatic number, and independence number, though there are few results that
give the exact values of these parameters. This state of things can likely be
ascribed to the increased complexity of these graphs, and the decreased amount
of research directed at them, as compared to the Kneser graphs.

One of the major differences between the Kneser graphs and Häggkvist &
Hell graphs is their clique numbers. For the Kneser graphs it is not hard to see
that ω(Kn:r) = bn/rc, whereas for the Häggkvist & Hell graphs ω(HHr(n)) = 2
for all n ≥ 2r. This implies that for n ≥ 3r, the clique number of Kn:r is
strictly greater than that for HHr(n). Another major difference between these
two classes of graphs is that for fixed r, the fractional chromatic number of
HHr(n) is bounded above by r + 1, while it is unbounded for Kn:r. Of course
this stems from the existence of an independent set of HHr(n) that is larger
than the one obtained from the preimage of a maximum independent set in Kn:r

via the aforementioned homomorphism. In particular, the independent set in
question has size

(

n

r + 1

)

+
r − 1

r + 1

(

r2

r

)

which is on the order of the size of the graph.

Despite these differences, there are also some striking similarities in the
algebraic properties of these graphs. One of the more notable ones being that
for any fixed r, the chromatic numbers of both the Kneser and Häggkvist &
Hell graphs are unbounded. Also, though the eigenvalues of these two graphs
do not appear to be closely related, it is interesting to note that the number
of distinct eigenvalues do not depend on n for either graph, but in fact depend
only on r.
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When we take a broad look at all of our results, it becomes clear that the
larger n gets, the stronger the differences in Kn:r and HHr(n) become. There
could be many reasons for this trend, but we believe an important factor to be
the sparsity of the graphs. We have that

|V (HHr(n))| = (n − r)|V (Kn:r)|

and
|E(HHr(n))| = r2|E(Kn:r)|.

From this we see that as n increases, HHr(n) gets more and more sparse in
comparison to Kn:r. Interestingly enough, the proportion of edges of the two
graphs is equal to the proportion of vertices of the two graphs at the point
n = r2+r, which is exactly the point when the independent set of vertices whose
head is larger than any element in their tail is the same size as the independent
set given by the homomorphism to the Kneser graph. Also interesting is that,
for the smallest value of n such that the edge proportion becomes smaller than
the vertex proportion, i.e. n = r2 + r + 1, the chromatic number of HHr(n)
did not increase from that of HHr(n − 1) for the first time in the one case
we computed (though this is hardly much to go on). In any case, we believe
that this decreasing trend in density of Häggkvist & Hell graphs relative to
Kneser graphs may be largely responsible for the decreasing similarity between
the two. This explanation is particularly satisfying since decreased density is
typically correlated with increased girth/odd girth, diameter, and independence
number, as well as with decreased chromatic and fractional chromatic number,
which coincides perfectly with the differences in these graphs for large n.

7.2 Open Problems

This research into Häggkvist & Hell graphs has produced many results, but also
left us with many interesting questions. We leave you with a discussion of some
such questions.

We have shown that subgraphs of Kn:r with maximum degree strictly less
than n−r

n−2r
are isomorphic to some subgraph of HHr(n); it would be interesting

to see which Häggkvist & Hell graphs contain subgraphs isomorphic to whole
Kneser graphs.

We know that HH3(n) contains isomorphic copies of the Petersen graph
K5:2 if and only if n ≥ 10. This is because no two vertices in such a subgraph
can have the same head, and we can construct such a subgraph by assigning a
different element of {1, . . . , 10} as the head of each vertex in the Petersen graph,
and then letting the tail of a vertex be the set of three elements that are the
heads of its neighbors. In fact this must be an induced subgraph since adding
any edge to the Petersen graph creates a triangle.

In fact, we can generalize this result somewhat; for any triangle-free Kneser
graph Kn:r (i.e. n < 3r), let s =

(

n−r
r

)

and m =
(

n
r

)

. We can construct
an isomorphic copy of Kn:r in HHs(m) by assigning a different element of
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{1, . . . ,
(

n
r

)

} as the head of each vertex, and then filling in the tail of each vertex
with the heads of its neighbors. In particular this implies that the odd graphs
K2r+1:r, with r ≥ 2, are isomorphic to subgraphs of HHr+1

((

2r+1
r

))

. However,
we don’t know if these are induced subgraphs in general, and we don’t know if
these are the only Häggkvist & Hell graphs that have subgraphs isomorphic to
these Kneser graphs. A more complete study of this would be interesting.

There are quite a few results regarding homomorphisms between different
Kneser graphs; we would be curious to see which of these are able to be extended
to Häggkvist & Hell graphs. In particular, it is quite easy to see that HHr(n)
is an induced subgraph of HHtr(tn) for any positive integer t, as is analogously
true for Kneser graphs. However, it is not so clear as to whether there is an
analogous homomorphism to the one from Kn:r to Kn−2:r−1 [2] for Häggkvist
& Hell graphs.

Of course we would like to know more eigenvalues of HHr(n)-all of them, if
possible. Perhaps there are some linear algebra techniques that can transform
the adjacency matrix of HHr(n)/πu into a matrix whose eigenvalues are easier
to compute, as is the case with Kneser graphs. This of course would allow us
to compute the correct ratio bound for all r.

Any improvement on bounds for the independence number, chromatic num-
ber, or fractional chromatic number, would be of interest, especially if one were
able to pin down the exact value of any of them. The independence number
seems likely to be the easiest candidate for the latter, though of course this
immediately gives us the fractional chromatic number.

One the most striking open questions is actually one we already mentioned.
Since the fractional chromatic number of HHr(n) is strictly less than that of
Kn:r for n ≥ r2 +2, there must be some other Kneser graph Kn′:r′ that HHr(n)
admits a homomorphism to. We have no idea what Kneser graph this may be, or
even if there is a nice form for the values of n′ and r′. Also, this homomorphism
may give us better bounds on the independence number or chromatic number
of HHr(n), so it is a very enticing question for future study.

Also of some interest is whether it may be possible to find exact values
for some of the algebraic parameters of HHr(2r + 1). These graphs are the
Häggkvist & Hell analogs of the odd graphs K2r+1:r, which have been studied
extensively. These graphs may be simpler to deal with since they are the mini-
mal nontrivial examples of Häggkvist & Hell graphs. We have already been able
to compute their chromatic number exactly, namely three. Perhaps the inde-
pendence number of these graphs is a more tractable problem than the general
case, and of course this would also give us the fractional chromatic number.

Though we did not go into the study of them, we are interested in whether
or not Häggkvist & Hell graphs are cores. Cores are graphs with no proper
endomorphisms, and they are the minimal elements of the equivalence classes of
homomorphic equivalence. Two graphs X and Y are homomorphically equiva-
lent if X → Y and Y → X . It is known that Kn:r is a core for n ≥ 2r + 1. We
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would like to see if the same is true for Häggkvist & Hell graphs. We suspect it
is.

Finally, there are some quite natural generalizations of Häggkvist & Hell
graphs that are of potential interest. The most obvious generalization is to let
the heads of vertices be of sizes other than one. In other words, the vertices are
all ordered pairs (α, β) of subsets of [n] where

|α| = r1, |β| = r2, α ∩ β = ∅.

Two vertices (α, β) and (α′, β′) are adjacent if

α ⊆ β′, α′ ⊆ β, β ∩ β′ = ∅.

We can also consider the q-analogs of these graphs, using subspaces as with the
q-Kneser graphs, but we may be getting ahead of ourselves here.
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