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Abstract

In pursuit of negatively associated measures, this thesis focuses on cer-

tain negative correlation properties in matroids. In particular, the results

presented contribute to the search for matroids which satisfy

P({X : e, f ∈ X}) ≤ P({X : e ∈ X})P({X : f ∈ X})

for certain measures, P, on the ground set.

LetM be a matroid. Let (yg : g ∈ E) be a weighting of the ground set

and let

Z = ∑
X

(

∏
x∈X

yx

)

be the polynomial which generates Z-sets, were Z ∈ {B, I, S}. For each

of these, the sum is over bases, independent sets and spanning sets, re-

spectively. Let e and f be distinct elements of E and let Ze indicate partial

derivative. Then M is Z-Rayleigh if ZeZ f − ZZe f ≥ 0 for every positive

evaluation of the ygs.

The known elementary results for the B, I and S-Rayleigh properties

and two special cases called negative correlation and balance are proved.

Furthermore, several new results are discussed. In particular, if a matroid

is binary on at most nine elements or paving or rank three, then it is

I-Rayleigh if it is B-Rayleigh. Sparse paving matroids are B-Rayleigh.

The I-Rayleigh difference for graphs on at most seven vertices is a sum

of monomials times squares of polynomials and this same special form

holds for all series parallel graphs.
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Chapter 1

Introduction

1.1 Positive and negative association

We present several results, some new, pertaining to the theory of negative

association. The questions that arise here stem from the study of positive

association which is more developed. To put the former into context, we

give a description of positive association from [11].

A set of subsets of a set X is called an event. An event A is increasing

if B ⊃ A ∈ A implies that B ∈ A . A measure is a non-negative function,

µ : 2X −→ [0, ∞) ⊂ R,

for which µ(A ) = ∑A∈A µ(A). If µ(A) ∈ {0, 1} for each A ⊆ X, then µ

is a counting measure. The probability that A occurs is

Pµ(A ) :=
µ(A )

µ(2X)
.

The subscript is omitted when µ is understood. The measure µ is positively

associated if every pair of increasing events (A , B) satisfies

P(A ∩B) ≥ P(A )P(B).

The FKG theorem, due to Fortuin, Kasteleyn, and Ginibre [2], pro-

vides a locally verifiable sufficient condition for positive association. A
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1. INTRODUCTION

simplified version is stated in the special case where the measure is over

2X and the partial order is containment.

Theorem 1.1.1 (FKG). Let X be a set and let µ be a measure on 2X. If

µ(A ∩ B)µ(A ∪ B) ≥ µ(A)µ(B)

for all A, B ⊆ X, then µ is positively associated.

Positive association has applications in a wide range of fields includ-

ing physics, combinatorics, statistics, statistical mechanics and computer

science, many of them surveyed in [11] and [20].

For the sake of symmetry, one might like to say that µ is negatively

associated when every pair of increasing events, (A , B), satisfies P(A ∩

B) ≤ P(A )P(B). However, this definition is not useful, for example,

when 0 < P(A ) < 1, since this gives P(A ∩A ) = P(A ) > P(A )P(A ).

To avoid this situation, we add the condition that no element of X ‘affects’

both A and B [11]. The element x ∈ X affects A if there exist sets A and

A′ whose symmetric difference is {x}, with A ∈ A and A′ 6∈ A .

Definition 1.1.2 ([11]). Let X be a set. A measure on 2X is negatively associated

if

P(A ∩B) ≤ P(A )P(B),

for every pair of increasing events, (A , B), which are not both affected by any

element x ∈ X.

Unfortunately, the analogue of the FKG condition is not sufficient in

the case of negative association. In fact, there is no broad sweeping suffi-

cient condition for negative association. Therefore it is interesting to find

large classes of examples.

The research discussed here pertains to three concepts related to neg-

ative association. Let

Z = Z(ω; y) = µ(A ), (1.1.1)

2



1.1. POSITIVE AND NEGATIVE ASSOCIATION

for an event A ⊆ 2X where

µ(A) = ω(A) ∏
x∈A

yx

for non-negative real yxs and a measure ω. Let e and f be distinct ele-

ments of X and denote the Rayleigh difference by

∆Z {e, f} = ZeZ f − ZZe f , (1.1.2)

where the subscripts indicate partial derivatives with respect to ye and

y f . Notice that ∆Z {e, f} ≥ 0 is equivalent to

Pµ({X : e, f ∈ X}) ≤ Pµ({X : f ∈ X})Pµ({X : e ∈ X}).

Let ω be a counting measure. If yx = 1 for all x ∈ X, then ω is negatively

correlated if ∆Z {e, f} ≥ 0 for every pair of distinct elements e, f ∈ X.

Suppose ω is negatively correlated and consider the Rayleigh difference,

∆Z {e, f}, as yx → ∞, yx → 0 or yx = 1 for each x ∈ X − {e, f}. If

∆Z {e, f} > 0 under these conditions, then ω is balanced. A general mea-

sure ω is Rayleigh if for every pair of distinct e, f ∈ X and every positive

evaluation of the yxs,

∆Z {e, f} ≥ 0.

This thesis focuses on these properties applied to the ground set of a

matroid. The properties defined above are prefixed with B, I and S when

ω is the counting measure for bases, independent sets and spanning sets,

respectively, of a matroid. For general measures the prefix Z is used.

When ω is a counting measure on X, the Rayleigh property implies

balance which in turn implies negative correlation. Feder and Mihail

[25] prove that a matroid is B-negatively correlated if and only if ω is

negatively associated. That is, to show that the counting measure for

bases of a matroid is negatively associated, it is enough to show that

Pω({X : e, f ∈ X}) ≤ Pω({X : f ∈ X})Pω({X : e ∈ X}),

3



1. INTRODUCTION

for each distinct pair of elements e, f ∈ X. This is conjectured for in-

dependent and spanning set counting measures but is not known to be

true.

An application of balance, also brought about by Feder and Mihail,

is that if a matroid is B-balanced, then there is a rapid convergence of

random walks on the basis exchange graph of a matroid, to an almost

uniform random sampling of the bases [25]. This can be used to estimate

the number of bases, which for many matroids is hard [12].

Negative correlation, balance and the Rayleigh property are an active

area of research. Thus far, the results on matroids focus mainly on bases.

Several significant classes of matroids have been found to be B-Rayleigh,

including regular matroids and binary matroids not containing a matroid

called S8 as a minor. Most of our work is towards finding sufficient

conditions for I-Rayleigh matroids. Before discussing the specifics of our

results, these properties are illustrated with a small example.

1.2 An example

Negative correlation and the Rayleigh property are slowly reintroduced

here, and formally in Chapter 2, as they apply to graphs and matroids.

First, in the context of the previous section and then with a simple exam-

ple. Recall that negative correlation applies only to counting measures.

Let G = (V, E) and let µ be the measure counting spanning trees of G

so that µ(A) = 1 if A is a spanning tree of G and µ(A) = 0 otherwise, for

A ⊆ E. The graph G is B-negatively correlated if for every pair of distinct

edges e and f ,

P({A : e, f ∈ A}) ≤ P({A : e ∈ A})P({A : f ∈ A}). (1.2.1)

Written in terms of µ this gives

µ({A : e, f ∈ A})

µ(2E)
≤

µ({A : e ∈ A})

µ(2E)

µ({A : f ∈ A})

µ(2E)
,

4



1.2. AN EXAMPLE

or equivalently,

µ({A : e ∈ A})µ({A : f ∈ A})− µ({A : e, f ∈ A})µ(2E) ≥ 0.

This is further clarified with an example. Here and elsewhere, curly

braces are dropped from small sets wherever possible. Consider the tri-

angle, K3, with edge labels e, f , g. Its spanning trees are f e, f g and eg, so

let

T = | { f e, f g, eg} | = 3

be the total number of spanning trees, and let

Tf = | { f e, f g} | = 2

be the number of spanning trees containing f , defining TS similarly for

any S ⊆ e f g. Notice that

2

3
=

Te

T
≥

Te f

Tf
=

1

2
.

This is B-negative correlation for the pair of edges e, f . By symmetry, K3

is B-negatively correlated for any two distinct edges.

Suppose we ask whether e and f are negatively correlated relative to

the counting measure on spanning forests. Let

F = | {∅, e, f , g, e f , eg, f g} | = 7

be the total number of spanning forests, and for S ⊆ E define FS similarly

to TS. The triangle is I-negatively correlated, by symmetry, since

3

7
=

Fe

F
≥

Fe f

Ff
=

1

3
. (1.2.2)

The Rayleigh property is a generalization of negative correlation. As-

sign weights y = (ye, y f , yg) to the edges e, f and g, respectively, and

let

T(y) = y f ye + y f yg + yeyg,

5



1. INTRODUCTION

be the generating polynomial for spanning trees of K3, and let

y f Tf (y) = y f
∂T(y)

∂y f
= y f (ye + yg),

generate those spanning trees containing f . The B-Rayleigh difference is

∆T(y) {e, f} =Te(y)Tf (y)− T(y)Te f (y)

=(y f + yg)(ye + yg)− (y f ye + y f yg + yeyg)(1) = (yg)
2,

which is non-negative for all positive evaluations of y. This proves that

K3 is B-Rayleigh, by symmetry.

Relative to the polynomial T(y), B-negative correlation for K3 only

required

Te(y)

T(y)
≥

Te f (y)

Tf (y)

for y = (1, 1, 1), however, the B-Rayleigh property requires this to be true

for all positive evaluations.

1.3 Overview

Basic definitions and notation are covered in the first two sections of

Chapter 2. We give formal definitions for generating polynomials, de-

fine duality and matroid sums as well as prove several useful relations.

Section 2.1.4 and Section 2.1.5 describe certain matroid constructions. The

focus is on series parallel matroids, excluded minor characterizations for

graphic matroids and constructions for regular and binary matriods. The

latter part of Chapter 2 discusses further negative correlation, balance

and the Rayleigh property as they relate to B, I and S counting measures

on matroids. In Section 2.2 we prove that Z-balance is equivalent to Z-

negative correlation for minors when Z ∈ {B, I, S}. Section 2.3 explains

the motivation for the term ‘Rayleigh’ and describes several equivalent

6



1.3. OVERVIEW

forms of the Rayleigh difference. Chapter 2 ends with an easy but useful

proof that the I-Rayleigh property implies the B-Rayleigh property.

Chapter 3 begins with known results on the behaviour of the Rayleigh

properties under minors, duality, direct sums and two-sums. Let M be

a Z-Rayleigh matroid with ground set E and let Z = Z(ω; y) be defined

as in (1.1.1) for an arbitrary measure ω on 2E. Then for distinct elements

e, f , g ∈ E,

Z
g
e Z

g
f − ZgZ

g
e f ≥ 0

and

ZgeZg f − ZgZge f ≥ 0,

where the superscript indicates that yg = 0. Equivalently, any minor of

M is Z-Rayleigh. We use the fact that bases are complement to dual bases

to show that a matroid is B-Rayleigh if and only if its dual is B-Rayleigh

and similarly, a matroid is I-Rayleigh if and only if its dual is S-Rayleigh.

These properties are used to show that if two matroids are Z-Rayleigh,

then so are their direct sum and any two-sum, where Z ∈ {B, I, S}. Some

but not all of these properties extend to negative correlation and balance.

In particular, neither of these are closed by taking two-sums and negative

correlation is not closed by taking minors.

Let M be a matroid with ground set E and distinct elements e, f ∈ E

so that {e, f} is either dependent or dependent in the dual. In Section 3.3

we prove that if yg > 0 for each g ∈ E− {e, f}, then

∆Z(ω) {e, f} ≥ 0,

whenever ω is the B, I or S counting measure. Furthermore, if ωB, ωI and

ωS are the B, I and S counting measures, respectively, then for dependent

or dual-dependent {e, f},

∆Z(ωI ) {e, f} − ∆Z(ωB) {e, f}

7



1. INTRODUCTION

and

∆Z(ωI) {e, f} − ∆Z(ωB) {e, f}

have positive coefficients when the ygs are taken as indeterminates for

g ∈ E− {e, f}.

Section 3.4 provides a comprehensive list of sufficient conditions for

Z-negatively correlated, Z-balanced and Z-Rayleigh matroids, where Z ∈

{B, I, S}. Among these, the sixth root of unity matroids are B-Rayleigh

([30], [31]), binary B-Rayleigh matroids are characterized by the exclu-

sion of a minor called S8 [31] and rank three matroids are B-Rayleigh

[27]. Matroids on at most nine elements are I-negatively correlated (Royle,

Wagner, private communication) and graphs on eight vertices or nine ver-

tices and eighteen edges are I-negatively correlated [7]. Jerrum has proved

that sparse paving matroids are balanced and that sparseness is necessary

[13]. The list is short and it is clear that any new ideas would make up a

significant proportion of the known results.

The first of these is the fact that rank three matroids are I-Rayleigh.

Note that while this was shown independently by Cocks [5], we prove

the stronger fact that

∆Z(ωI) {e, f} − ∆Z(ωB) {e, f} (1.3.1)

has positive coefficients, for distinct e, f and ωI , ωB defined as above.

Rank three matroids are B-Rayleigh ([31]) which says that ∆Z(ωB) {e, f} ≥

0 and together these imply that ∆Z(ωI ) {e, f} ≥ 0. Thus rank three ma-

troids satisfy the I-Rayleigh property.

Also new in Chapter 3, a binary matroid on at most nine elements is

I-Rayleigh if and only if it is B-Rayleigh. This follows partly from the

above result on rank three matroids and the fact, from Chapter 5, that all

graphs on at most seven vertices are I-Rayleigh. To complete the proof

we employ several decomposition lemmas from Section 2.1.5 and prove

that three particular matroids are I-Rayleigh. These three are the dual

8



1.3. OVERVIEW

of the Fano matroid, A G (3, 2) (affine geometry) and the dual matroid of

K3,3. As it turns out, there are only three more obstructions to proving the

result for binary matroids on ten elements. They are a regular matroid

on ten elements called R10 (see [22]), and the duals of K5 and K3,3 plus an

edge (not parallel to any other).

The chapter concludes with a discussion of two conjectures: regular

matroids are I-Rayleigh; a binary matroid is I-Rayleigh if and only if it

is B-Rayleigh. The former seems more plausible, however, we present a

new proof that they are equivalent. Crucial to a positive answer to both

of these is a proof of the conjecture that graphs are I-Rayleigh, in print

since the early 1990s [14] and still open.

Chapter 4 stems directly from a paper on paving matroids by Mark

Jerrum [13]. His results are presented, including the fact that sparse

paving matroids are B-balanced and there is a non B-balanced (non-

sparse) paving matroid. Jerrum’s example is constructed. This result

is of interest because the bases of sparse paving matroids can be hard to

count and having the negative correlation property enables faster approx-

imations of the number of bases. The main result of this chapter proves

that if a paving matroid is B-Rayleigh then it is also I-Rayleigh. Jerrum’s

proof that sparse paving matroids are B-balanced is used to prove the

new result that sparse paving matroids are indeed B-Rayleigh. As a re-

sult of the fact that B-Rayleigh paving matroids are I-Rayleigh, the proof

that rank three matroids are I-Rayleigh is re-derived. Furthermore, we

prove that sparse paving matroids are closed by taking duals, implying

that some rank three matroids are also S-Rayleigh. This answers more

than half of a conjecture by Semple and Welsh: rank three matroids are

I and S-Rayleigh [4].

Since it is known that graphs are B-Rayleigh (and equivalently, B-

negatively correlated [31]), it is natural to ask whether graphs are I-

Rayleigh. The question appears in several papers ([20], [7], [4], [28], [14])

and in the last decade considerable evidence has been found to support a

9



1. INTRODUCTION

positive answer; however, little progress has been made on a proof. The

efforts in [7], [4] and work by Wagner, including [28], essentially amount

to proving the result for series parallel graphs and proving that graphs

on at most eight vertices and nine vertices with at most 18 edges are

I-negatively correlated. Chapter 5 begins with a proof, which does not

appear in print, that if all graphs are I-negatively correlated, then they

are all I-Rayleigh as well (published independently by Cocks [5]).

Although the work in this thesis also focuses on series parallel and

small graphs, we show that for some of these graphs, the I-Rayleigh dif-

ference can be written as a sum of monomials times squares of polyno-

mials, which proves its non-negativity. Let G = (V, E) be a graph with

distinct edges e and f . Then for S ⊆ E, let yS = ∏g∈S yg. Wagner conjec-

tures that if ωI is the counting measure for (edge sets of) spanning forests

of G, then

∆Z(ωI ) {e, f} = ∑
S⊆E

yS A(S)2 ,

where the sum is over sets S which are contained in cycles through both

e and f and for each S, A(S) is a polynomial. The I-Rayleigh property

follows immediately from this, since it is non-negative for every positive

evaluation of the ygs. The polynomials A(S) are sums of a certain form

with signs which have not yet been determined. A computer program

and some educated guesses for the signs shows that Wagner’s conjecture

holds for graphs on at most seven vertices. The conjecture is further

supported by somewhat technical proofs that the special form satisfies

most of the necessary conditions covered in Chapter 3. In particular, it

behaves properly for minors, direct sums and series parallel graphs. The

chapter concludes with considerable evidence that it holds for two-sums

as well.

Summarizing the main new results presented in this thesis, if a ma-

troid is binary on at most nine elements or paving or rank three, then it

is I-Rayleigh if it is B-Rayleigh. Sparse paving matroids are B-Rayleigh.

10



1.3. OVERVIEW

The I-Rayleigh difference for graphs on at most seven vertices is a sum

of monomials times squares of polynomials and this same special form

holds for all series parallel graphs.

11



Chapter 2

Preliminaries

2.1 Matroid theory

For an introduction to matroid theory one may consult Oxley [17]. The

reader restricted to graph theory should note that graphs are, for our

purposes, a subclass of regular matroids which are a subclass of binary

matroids. Chapter 4, on the other hand, is not graph theoretic.

The reader who is familiar with matroid theory and generating poly-

nomials may go directly to Section 2.1.5 where we give several matroid

constructions that are used in Chapter 3.

2.1.1 Basic definitions and notation

We summarize the notation for a matroid, M, as follows, dropping the

M whenever it is understood from the context.

12



2.1. MATROID THEORY

ground set E(M)

rank of X ⊆ E(M) rM(X)

bases B(M)

independent sets I (M)

spanning sets S (M)

circuits C (M)

M contract C ⊆ E(M) M/C

M delete D ⊆ E(M) M\D

dual M∗

isomorphic matroids M∼= N
Let y = (ye : e ∈ E) be a weighting of the ground set and let

yX = ∏
e∈X

ye,

where X ⊆ E. Write ty = (tye : e ∈ E) for any scalar t and y−1 = (1/ye :

e ∈ E). We frequently employ three generating polynomials which gen-

erate independent sets,

I = I(M; y) = ∑
X∈I

yX ,

bases,

B = B(M; y) = ∑
X∈B

yX ,

and spanning sets,

S = S(M; y) = ∑
X∈S

yX.

These are each special cases of the general weighted generating polyno-

mial

Z = Z(ω; y) = ∑
X⊆E

ω(X)yX ,

13



2. PRELIMINARIES

where ω : 2E −→ [0, ∞) is a weighting of the subsets of E. Here, E may

not be the ground set of a matroid, however, it is convenient to confuse

the notation. Again, we drop y and ω when they are understood.

Define

Ze =
∂Z

∂ye
,

and

Ze = Z|ye=0,

for any element e ∈ E. This notation extends naturally to subsets of

E. Note that Z is multi-affine, since ye occurs at most to the first power.

Therefore, yeZe and Ze are the terms of Z containing and not containing

ye, respectively, and we can write

Z = Ze + yeZe.

Some set theoretic notation and notational abuses are tabulated. Let

X and Y be sets,

symmetric difference X△Y

disjoint union X∪̇Y (X, Y disjoint)

set minus X− Y X\Y is reserved for matroid deletion

{x1, x2, . . . , xk} for small k x1x2 · · · xk whenever this is unambiguous.

For disjoint subsets C, D ⊆ X and A ⊆ 2X, use

A
D

C = {A ∈ A : C ⊆ A, D ⊆ X − A} .

For A , B ⊆ 2X, write

A ∨B = {A ∪ B : A ∈ A , B ∈ B} .

Let P and Q be polynomials. If P−Q has positive coefficients, write

P≫ Q.
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2.1. MATROID THEORY

Lastly, let V, W be generating polynomials for certain collections of

subsets of E. Define (v, w) to be a pair of type VW if yv∪̇w = yα, v is

generated by V and w is generated by W.

As a rule of thumb, expect to see M,N ,L,G,H,K for graphs and

matroids, B, I , S , F , T for subsets of 2E, B, I, S, F, T for polynomials

generating these, e, f , g, h, k for elements of the ground set and various

other non-script letters for subsets of E.

2.1.2 Minors and duality

The dual ofM, denotedM∗, is the matroid whose bases are the comple-

ments of bases ofM. Its basis generating polynomial is

B(M∗; y) = yEB(M; y−1). (2.1.1)

Similarily, independent sets and spanning sets are dual to each other so

that

I(M∗; y) = yES(M; y−1). (2.1.2)

Properties pertaining to the dual are prefixed with co-. It is useful to know

that (M∗)∗ =M and that (M\D/C)∗ = M∗/D\C, for C ∩ D = ∅.

Shifting our attention to minors, the proof of the following is trivial

but the fact is referred to often.

Lemma 2.1.1. LetM be a matroid with g ∈ E, then

I(M\ g)≫ I(M/g).

Denote the top degree terms of Z(ω; y) by

ZT := lim
limt−→∞

t− deg(Z)Z(ty).

Since B consists of the top degree terms of I,

B(M; y) = lim
limt−→∞

t−r I(M; ty) = I(M; ty)T.
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Let C, D ⊆ E with C ∩ D = ∅. Then C is dependent if and only if

yC does not appear as a factor in any term of B, and D is co-dependent

if and only if yD does not appear in any term of B(M∗; y). If D is co-

dependent, by (2.1.1) every term of B contains some ye with e ∈ D. Thus if

C is dependent or D is co-dependent then BD
C = 0. Otherwise BD

C = (IT)D
C

but also BD
C = B(M/C\D) = I(M/C\D)T = (ID

C )T, so in general

BD
C = lim

limt−→∞

t−(r−|C|)ID
C (M; ty). (2.1.3)

It is useful to have an interpretation of ZD
C in terms of minors when Z

is one of B, I, or S. Consider the situations where e is a loop, co-loop and

otherwise.

(i) If e is a loop then

Be = B = B(M\ e; y) Be = 0 6= B(M/e; y)

Ie = I = I(M\ e; y) Ie = 0 6= B(M/e; y)

Se = Se = S(M\ e; y) = S(M/e; y)

(2.1.4)

(ii) If e is a co-loop then

Be = 0 6= B(M\ e; y) yeBe = B = yeB(M/e; y)

Ie = Ie = I(M/e; y) = I(M\ e; y)

Se = 0 6= S(M\ e; y) Se = S(M/e; y).

(2.1.5)

(iii) If C, D ⊆ E with C ∩ D = ∅ and they are neither dependent nor

co-dependent then

ZD
C = Z(M\D/C; y).

While the identities for B and I are fairly obvious, one can use the fol-

lowing to make the case for S. If e is a loop, then it is a co-loop ofM∗ so

(I∗)e = (I∗)e. Therefore

Se = (yE I∗(y−1))e = (yE I∗(y−1))e = Se.

16



2.1. MATROID THEORY

If e is a co-loop then it appears in every basis. A set is spanning if and

only if it contains a basis, so clearly Se = 0. On the other hand Be =

B(M/e; y) and yα is a term of Se if and only if it contains a term of Be, so

Se = S(M/e; y).

Analogous statements can be made about dependent and co-dependent

sets.

(a) Let X ⊆ E be a dependent set. Consider a maximal independent

subset X′ ⊂ X and notice that every element of X − X′ is a loop in

the matroid M/X′ . Using (i), since X′ 6= X,

BX = B(M\X; y) BX = (BX′)X−X′ = 0

IX = I(M\X; y) IX = (IX′)X−X′ = 0

SX = (SX′ )X−X′ = S(M\X; y) SX = (SX′ )X−X′ = S(M/X; y).

(b) Let X ⊆ E be a co-dependent set and let X′ ⊂ X be a maximal co-

independent subset. Notice that every element of X − X′ is a co-loop

in the matroid M\X′. Using (ii), since X′ 6= X,

BX = (BX′)X−X′ = 0 BX = B(M/X; y)

IX = (IX′)X−X′ = I(M\X; y) IX = (IX′)X−X′ = I(M/X; y)

SX = (SX′)X−X′ = 0 SX = (SX′)X−X′ = S(M/X; y).

2.1.3 Matroid sums and connectivity

The direct sum of matroids N and L on disjoint ground sets, is the matroid

whose bases are B(N ) ∨B(L).

Let N and L be matroids, each on at least three elements, with exactly

one element, g, in common which is neither a loop nor a co-loop in either

of them. The two-sum of N and L, denoted

M = N ⊕g L,

is the matroid on the set E(M) = E(N ) ∪ E(L) − g, whose circuits are

the elements of the set

C (M) = C (N \ g)∪̇C (L \ g)∪̇(CN ∨ CL),
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in which CN are circuits of N through g, minus g, and similarly for CL.

The matroids N and L are called the factors of the two-sum. This extends

to graphs with one caveat . If the edge g = uv in one factor and g = u′v′

in the other, the factors can be two-summed either by identifying u with

u′ and v with v′ or u with v′ and v with u′. Matroids do not make this

distinction; however, it does not affect the edge sets of spanning trees. The

notation N ⊕g L implies that N , L and g satisfy the necessary conditions

for forming a two-sum of matroids.

Let A ⊆ E(M) with e ∈ E(M)− A. The element e is in the closure of

A, denoted by cl(A), if A∪ e contains a circuit containing e. Equivalently,

e is in the closure of A if r(A ∪ e) = r(A).

In the next two lemmas B(M; y) and I(M; y) are characterized in

terms of the generating polynomials of the factors of M. These are par-

ticularly useful when studying the behaviour of the Rayleigh difference

under two-sums.

Lemma 2.1.2. Let N and L be matroids and let M = N ⊕g L. If M =

B(M; y), N = B(N ; y), and L = B(L; y), then

M = NgLg + NgLg. (2.1.6)

Proof. A set X inM is a basis ofM if and only if X partitions into a basis

of N \ g and a basis of L\ g, so that g is in the closure of exactly one of

these. Such sets are generated by NgLg + NgLg.

Lemma 2.1.3. Let N and L be matroids and let M = N ⊕g L. If M =

I(M; y), N = I(N ; y), and L = I(L; y), then

M = NgLg + NgLg − NgLg. (2.1.7)

Proof. A set X in M is independent if and only if X partitions into an

independent set of N \g and an independent set of L\g, so that g is in at

most one of their closures. These sets appear in the terms of NgLg + NgLg,

however, since Ng is termwise greater than Ng, and similarly for L, then

NgLg is generated twice and must be subtracted.
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2.1. MATROID THEORY

Lemma 2.1.2 can be used to show that the dual of a two-sum is the

two-sum of the duals of the factors.

Lemma 2.1.4. IfM = N ⊕g L, then

M∗ = N ∗ ⊕g L
∗. (2.1.8)

Proof. Let M∗ = B(M∗; y), N∗ = B(N ∗; y), L∗ = B(L∗; y) and M, N, L

as in Lemma 2.1.2 and let E = E(M). Since g is neither a loop nor a

co-loop, Ng = B(N \g; y) and Ng = B(N/g; y). Deletion and contraction

are duals of each other, (Ng)∗ = (N∗)g and (Ng)∗ = (N∗)g; thus

M∗ =yE M(y−1)

=yE(NgLg + NgLg)(y−1)

=(Ng)
∗(Lg)∗ + (Ng)∗(Lg)

∗

=(N∗)g(L∗)g + (N∗)g(L∗)g.

So the bases ofM∗ are exactly those of N ∗ ⊕g L∗, as required.

The definitions of two and three-connectedness are given in terms of

sums of matroids. A matroid has a one-separation if and only if it is the

direct sum of two matroids. Seymour proves in [22] that a matroid has

a two-separation if and only if it is expressible as a two-sum of proper

minors. A matroid is two-connected if and only if it contains no one-

separation and it is three-connected if and only if it contains neither a one-

separation nor a two-separation.

A characterization of the behaviour of the Rayleigh properties over

three-sums would allow the use of Seymour’s decomposition of regular

matroids [22] in a proof (or disproof) that regular matroids are I-Rayleigh.

Unfortunately this has not yet been found.

A brief definition of three-sums is given, however, some details are

overlooked. LetM be a binary matroid. Define the cycles ofM to be the

disjoint unions of circuits. It is not difficult to show that if C and C′ are

cycles, then C△C′ is a cycle. Furthermore, a binary matroid is uniquely
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determined by its cycles. Let N and L be binary matroids whose ground

sets intersect in a three-circuit, K, which does not contain a co-circuit of

either of them. Require furthermore that their ground sets have at least

seven elements. The three-sum of N and L is the matroid on ground

set E(N )△E(L), whose cycles are the symmetric differences of cycles in

E(N ) − K and E(L) − K. In a graphic matroid, the cycles are the even

subgraphs of the underlying graph. To visualize this for graphs, let H

and K be graphs both containing K3 as a subgraph such that it does not

contain an edge cut of either H or K. The graph obtained by identifying

H and K on this triangle and deleting the edges of the triangle is a three-

sum of H and K.

2.1.4 Series parallel

LetM be a matroid with g ∈ E and let N be a matroid with ground set

E(N ) = E(M\ g) ∪ {e, f}. If e and f are parallel elements of N and both

N \ e and N \ f are isomorphic to M, then N is the parallel extension of

M along g. If e and f are a series pair of N and both N/e and N/ f

are isomorphic to M, then N is the series extension of M along g. A

series-parallel matroid is one constructed via repeated series and parallel

extensions of the free matroid on one element. Series parallel matroids

are graphic.

Series and parallel extensions ofM along g are equivalent to

M⊕g U1,3

and

M⊕g U2,3,

respectively, where Ur,n is the uniform matroid of rank r on n elements.

Note that with the given definition of two-sums, not all series parallel

graphs are obtained this way (for example, various free matroids). On

the other hand, the remaining ones are minors of those obtained via series

and parallel extensions of M(K3) and M(K3)
∗.
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2.1.5 Matroid decompositions

We use these constructions to make claims about the I-Rayleigh condition

on small graphic, regular and binary matroids in Section 3.6. They are

well known and their proofs are outside of the scope of this thesis.

Let A be a matrix over a field, F, and let M(A) be the matroid whose

elements are the columns of A and whose independent sets are those

which are linearly independent over F. We call A a representation of

M(A), and M is F-representable if there is a matrix, A, over F such that

M = M(A). It follows from elementary matrix manipulations that the

class of F-representable matroids is closed under duals, minors, direct

sums and two-sums.

A matroid is binary if it is GF(2)-representable. This important class

of matroids has the following excluded minor characterization.

Proposition 2.1.5 (Tutte (1958), [26]). A matroid is binary if and only if it does

not contain U2,4 as a minor.

Let G be a graph and write M(G) for the matroid whose elements are

the edges of G and whose circuits are the (edge sets of) cycles of G. The

matroid M is called graphic if there is a graph G such that M = M(G).

Graphic matroids can also be characterized by the exclusion of certain

minors. Two of these are the Fano matroid and its dual, denoted F7 and

(F7)
∗. The bases of F7 are illustrated in Figure 2.1.

The Fano matroid is represented over GF(2) by






1 0 0 1 0 1 1

0 1 0 1 1 0 1

0 0 1 1 1 1 0






,

and its dual by










1 0 0 0 1 1 1

0 1 0 0 0 1 1

0 0 1 0 1 0 1

0 0 0 1 1 1 0











.
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Figure 2.1: This is the Fano plane. The elements are the points in the

diagram. Any three of these which do not appear together on a line form

a basis.

Proposition 2.1.6. A matroid is graphic if and only if it does not contain any of

U2,4, F7, (F7)
∗, (M(K5))

∗, (M(K3,3))
∗

as a minor.

The set of graphic matroids is not closed under duality. Instead, the

dual of a graphic matroid is called co-graphic. The matroids which are

both graphic and co-graphic are the graphic matroids of planar graphs

and thus M(K5) and M(K3,3) are also excluded minors for these.

A matroid that is representable over every field is called regular. Sey-

mour proves in his paper, ‘Decomposition of Regular Matroids’ [22], that

a regular matroid can be constructed from direct sums, two-sums and

three-sums of graphic and co-graphic matroids and a ten element ma-

troid called R10. A binary representation for R10 is
















1 0 0 0 0 1 1 0 0 1

0 1 0 0 0 1 1 1 0 0

0 0 1 0 0 0 1 1 1 0

0 0 0 1 0 0 0 1 1 1

0 0 0 0 1 1 0 0 1 1

















.
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Note that graphic and co-graphic matroids are a subclass of regular ma-

troids which are in turn contained in the class of binary matroids.

Proposition 2.1.7. A binary matroid is regular if and only if it does not contain

F7 or (F7)
∗ as a minor.

Regular and graphic matroids are a subclass of sixth root of unity

matroids. For our purposes these are best characterized by Whittle.

Lemma 2.1.8 ([29]). A matroid is a sixth root of unity matroid if and only if it

is representable over GF(3) and GF(4).

To speak of the decomposition of binary matroids over two-sums we

introduce two matroids on eight elements. The matroids S8 and A G (3, 2)

have binary representations











1 1 1 1 1 1 1 b

0 1 0 0 0 1 1 1

0 0 1 0 1 0 1 1

0 0 0 1 1 1 0 1











, (2.1.9)

where b = 0 for S8 and b = 1 for A G (3, 2).

A matroid, N , is a splitter for a class of matroids if no three-connected

matroid of the class has N as a proper minor.

Lemma 2.1.9 (Seymour, unpublished. Appendix D [16]). The matroid A G (3, 2)

is a splitter for the class of binary matroids not containing S8 as a minor.

From this it follows that if a binary matroid, M, not containing S8

as a minor, does contain A G (3, 2) as a proper minor, then M is not

three-connected. Furthermore, in the case that neither of these are proper

minors of M, then M can be decomposed into F7, (F7)
∗ and regular

matroids.

Lemma 2.1.10 ([23]). If a binary matroid,M, contains neither S8 nor A G (3, 2)

as a minor, then it can be constructed from direct sums and two-sums of regular

matroids, F7 and (F7)
∗.
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This is enough information for a useful reduction.

Corollary 2.1.11. A binary, three-connected matroid with no S8 minor is regu-

lar or isomorphic to F7, (F7)
∗ or A G (3, 2).

Proof. Let M be a three-connected matroid with no S8 minor. Since

A G (3, 2) is a splitter for binary matroids with no S8 minor, either M ∼=

A G (3, 2) or it contains no A G (3, 2) minor. If it does not contain A G (3, 2)

as a minor, by Lemma 2.1.10, it is either F7, (F7)
∗ or regular, since M is

neither a direct sum nor a two-sum of proper minors.

In the following fact from [22], R12 is a certain regular matroid on

twelve elements. A precise definition of R12 is not needed.

Lemma 2.1.12. Let M be a three-connected regular matroid which is neither

graphic nor co-graphic. ThenM contains either R10 or R12 as a minor.

Lastly, we state the main result of [22].

Lemma 2.1.13. Let M be a regular matroid. Then M decomposes over direct

sums, two-sums and three-sums into graphic and co-graphic matroids, and R10.

2.2 Negative correlation and balance

Negative correlation and balance are restated in the context of this thesis.

Definition 2.2.1. LetM be a matroid with distinct e, f ∈ E and let Z ∈ {B, I,

S}. ThenM is Z-negatively correlated provided that

Ze(1)Z f (1)− Z(1)Ze f (1) ≥ 0,

where 1 is the all ones vector.

A stronger property, due to Feder and Mihail [25], is balance.

Definition 2.2.2. Let M be a matroid and let Z ∈ {B, I, S}. Then M is

Z-balanced if all of its minors are Z-negatively correlated.
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To see that this is equivalent to the definition given in Section 1.1, let

C, D ⊆ E− {e, f} with C ∩ D = ∅ and consider

Ze(y)Z f (y)− Z(y)Ze f (y) ≥ 0,

where yg → ∞ for g ∈ C, yg = 0 for g ∈ D and otherwise yg = 1.

Equivalently

(yC)−2
(

ZD
e (y)ZD

f (y)− ZD(y)ZD
e f (y)

)

≥ 0,

in which every term without (yC)2 disappears so that we are left with

(ZD
C )e(ZD

C ) f − ZD
C (ZD

C )e f ≥ 0.

If C is dependent or D is co-dependent, then ZD′

C′ = Z(M/C′ \D′), for

maximal independent and co-independent sets C′ ⊆ C and D′ ⊆ D, re-

spectively. The elements of C − C′ are loops and those of D − D′ are

co-loops of M/C′ \D′. Their presence in ∆ZD
C {e, f} can be dealt with

trivially so that

∆Z(M/C\D) {e, f} ≥ 0.

Example 2.2.3. Recall the example in Chapter 1 showing that K3 is I-

negatively correlated. To show that the triangle is I-balanced we check

that its minors are I-negatively correlated. The ones which must be veri-

fied are the series pair U2,2 and the parallel pair U1,2. The spanning forests

of U2,2 are ∅, e, f , e f , so that

| {e, e f} |

| {∅, e, f , e f} |
=

2

4
≥

1

2
=
| {e f} |

| { f , e f} |
.

Those of U1,2 are ∅, e, f , so that

| {e} |

| {∅, e, f} |
=

1

3
≥

0

1
=
|∅|

| { f} |
.

Thus the series pair and parallel pair are I-negatively correlated. Minors

with fewer than two edges are vacuously I-negatively correlated. There-

fore K3 is I-balanced.
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Example 2.2.4 ([18]). To verify that S8 is not B-negatively correlated, con-

sider the elements represented by columns 1 and 8 of the matrix repre-

sentation given in (2.1.9). Let S be the number of bases of S8. Then from

[18] we have S = 48, S1 = 28, S8 = 20, S18 = 12 so that S1S8 − SS18 =

−16 < 0. In fact, S8 is a minor-minimal B-unbalanced matroid, since its

proper minors are binary matroids not containing S8 as a minor and are

therefore B-balanced [31].

Jerrum gives an example of a B-unbalanced paving matroid [13] which

is constructed in Chapter 4.

2.3 The Rayleigh condition

2.3.1 Electrical networks

Consider an electrical network represented by a connected graph G =

(V, E), where a wire represented by the edge e, has conductance ye. Let

Yab be the effective conductance of the graph between distinct vertices a

and b. Let T be the collection of spanning trees of H = G ∪ { f}, in which

f is an edge joining vertices a and b. Let T be the generating polynomial

for the spanning trees of H so that

T = ∑
X∈T

yX . (2.3.1)

Note that unless g is a cut edge (co-loop), Tg is the generating polynomial

for the spanning trees of H \ g and unless g is a loop, Tg is the generating

polynomial for the spanning trees of H/g.

Since a and b are distinct and G is connected, f is neither a loop nor a

cut edge. Kirchhoff proved in [15], that

Yab =
T f

Tf
, (2.3.2)

The term Rayleigh matroid is named after Lord Rayleigh (1842-1919)

and is motivated by Rayleigh’s Monotonicity Law, which says that if the
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electrical conductance of any edge is increased, then the conductance of

the graph between any two vertices does not decrease ([24], [31], [4], [15],

[19]). In other words, the function Yab is an increasing function of ye, for

any edge e. Applying the quotient rule for derivatives gives

∂Yab

∂ye
=

T
f

e Tf − T f Te f

T2
f

≥ 0.

This has several equivalent forms which are presented following the for-

mal definition of the Rayleigh condition.

There are several proofs of Rayleigh Monotonicity for graphs. Its ‘clas-

sical’ proof in the context of electrical networks appears in Section 1.3 of

Grimmett’s book [8]. In [31] it is a corollary of the fact, due to Wagner

and Choe, that sixth root of unity matroids are B-Rayleigh. Possibly, the

most often cited proof is due to Brooks, Smith, Stone and Tutte (BSST)

[21]. They show that T
f

e Tf − T f Te f is the square of a polynomial, from

which the B-Rayleigh property for graphs follows immediately. A more

recent, unpublished proof by Cibulka, Hladký, LaCroix, and Wagner [10],

uses a combinatorial construction to prove the BSST identity.

The Rayleigh condition is defined for matroids in terms of Z(M; ω; y),

keeping in mind that the basis, independent and spanning set generating

polynomials are the special cases we are interested in.

Definition 2.3.1 (The Rayleigh condition). With the above notation, a ma-

troidM satisfies the Z-Rayleigh condition (ω fixed) if for every pair of distinct

elements e and f ,

Z
f
e Ze

f − Ze f Ze f ≥ 0,

for every evaluation of y such that yg > 0 for each g ∈ E.

Denote the Z-Rayleigh difference with respect to edges e and f by

∆Z{e, f} = Z
f
e Ze

f − Ze f Ze f .
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Lemma 2.3.2. Let y = (yg : g ∈ E) and let Z(y) be a multi-affine polynomial.

For distinct e, f ∈ E,

ZeZ f − ZZe f = Z
f
e Z f − Z f Ze f = Z

f
e Ze

f − Ze f Ze f . (2.3.3)

Proof. Using the fact that Z = Zg + ygZg for any g ∈ E,

ZeZ f − ZZe f =(Z
f
e + y f Ze f )Z f −

(

Z f + y f Z f

)

Ze f

=Z
f
e Z f − Z f Ze f

=Z
f
e (Ze

f + yeZe f )− (Ze f + yeZ
f
e )Ze f = Z

f
e Ze

f − Ze f Ze f .

2.3.2 I-Rayleigh implies B-Rayleigh

In general, B-Rayleigh is weaker than I-Rayleigh; however, for some classes

of matroids they have been shown to be equivalent.

Proposition 2.3.3. If a matriod is I-Rayleigh, then it is also B-Rayleigh.

Proof. Let M be an I-Rayleigh matroid of rank r with distinct elements

e, f ∈ E. Then

∆I(y){e, f} = I
f
e (y)Ie

f (y)− Ie f (y)Ie f (y) ≥ 0,

whenever yg > 0 for each g ∈ E− {e, f}. Therefore, by (2.1.3),

∆B(y){e, f} = lim
t−→∞

t−(2r−2)∆I(ty){e, f} ≥ 0, (2.3.4)

for y > 0.

By considering the dual, we have the following.

Corollary 2.3.4. If a matroid is S-Rayleigh, then it is also B-Rayleigh.

The analogues of Proposition 2.3.3 for negative correlation and balance

are not true. In Section 3.6 we show that S8 is a counterexample.
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Chapter 3

Rayleigh Matroids

3.1 Minors and duality

The following useful formula holds for any measure. It implies that the

minors of a Z-Rayleigh matroid are Z-Rayleigh when Z ∈ {B, I, S}.

Proposition 3.1.1 ([28]). Let ω be a measure on a set E. If e, f and g are distinct

elements of E, then

∆Z{e, f} = ∆Zg{e, f}+ ygΘZ{e, f |g} + y2
g∆Zg{e, f}, (3.1.1)

where,

ΘZ{e, f |g} = Z
f g
e Ze

f g + Z
eg
f Z

f
eg − Z

e f
g Z

g
e f − Ze f gZe f g (3.1.2)

Proof. The fact that Z = Zg + ygZg, for any multi-affine polynomial, yields

∆Z{e, f} = (Z
f g
e + ygZ

f
eg)(Z

eg
f + ygZe

f g)− (Z
g
e f + ygZe f g)(Ze f g + ygZ

e f
g ),

which can be expanded to get equation (3.1.1).

The Z-Rayleigh property for minors ofM follows easily from this by

taking limits.
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3. RAYLEIGH MATROIDS

Proposition 3.1.2. Let ω be a measure on a set E. Then for distinct e, f , g ∈ E,

∆Zg{e, f} = lim
yg−→0

∆Z{e, f},

and

∆Zg{e, f} = lim
yg−→∞

y−2
g ∆Z{e, f}.

Proof. This follows from Proposition 3.1.1.

Therefore, whenever Z ∈ {B, I, S}, ifM is Z-Rayleigh, then so are its

minors. These special cases are proved in Proposition 3.2 of [31], Section

4.4 of [28], and Proposition 3.5 of [4].

Corollary 3.1.3. For Z ∈ {B, I, S}, if a matroid is Z-Rayleigh it is also Z-

balanced .

The three basis properties are closed under taking duals.

Proposition 3.1.4 (Proposition 3.1 of [31]). LetM be a matroid.

(a) IfM is B-Rayleigh, then its dual is also B-Rayleigh.

(b) IfM is B-negatively correlated, then its dual is also B-negatively correlated.

(c) IfM is B-balanced, then its dual is also B-balanced.

Proof. Denote the basis generating polynomial of the dual by B∗(y). For

each g ∈ E, B and B∗ are related by

B∗(y) =yEB(y−1),

yg(B∗)g(y) =yEBg(y−1), and

yg(B∗)g(y) =yEBg(y−1).

Therefore

(yey f )
2∆B∗(y){e, f} = (yE)2∆B(y−1){e, f}, (3.1.3)
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3.2. TWO-SUMS

and whenever y > 0, ∆B∗(y){e, f} ≥ 0 is equivalent to ∆B(y){e, f} ≥ 0

for all pairs of distinct elements, e and f . Setting y = 1 proves (b). Sup-

poseM is B-balanced. Then all of its minors are B-negatively correlated

and by (b), the duals of these are B-negatively correlated, as required.

A similar proposition relates the independent and spanning set prop-

erties.

Proposition 3.1.5 (Proposition 3.3 of [4]).

(a) A matroidM is I-Rayleigh, if and only if its dual is S-Rayleigh.

(b) A matroidM is I-negatively correlated, if and only if its dual is S-negatively

correlated.

(c) A matroidM is I-balanced, if and only if its dual is S-balanced.

Proof. The proof of (a) mimics that of Proposition 3.1.4 with B and B∗

replaced by I and S∗, respectively. Thus, whenever y > 0, ∆S∗(y){e, f} ≥

0 is equivalent to ∆I(y){e, f} ≥ 0. Once again, setting y = 1 proves (b).

SupposeM is I-balanced, then all of its minors are I-negatively correlated

and by (b), this is true if and only if the duals of these are S-negatively

correlated, as required.

Taken together, these facts about minors and duals can be used to

prove that the Z-Rayleigh property holds over two-sum for Z ∈ {B, I, S}.

3.2 Two-sums

The reader may note that these results hold in the more general case

of the Potts model which is proved in [28]. It follows from this section

that series and parallel extensions of Z-Rayleigh matroids are Z-Rayleigh,

whenever Z ∈ {B, I, S}. The proof for two-sums is postponed while the

case is made for direct sums.

Lemma 3.2.1. LetM be the direct sum of matroids N and L and let Z ∈ {B,

I, S}.
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3. RAYLEIGH MATROIDS

(a) If N and L are Z-Rayleigh, thenM is Z-Rayleigh.

(b) If N and L are Z-negatively correlated, thenM is Z-negatively correlated.

(c) If N and L are Z-balanced, thenM is Z-balanced.

Proof. Let M = Z(M), N = Z(N ) and L = Z(L). Since M is the direct

sum of L and N , then M = NL. If e, f ∈ E(N ) are distinct elements, then

∆M {e, f} = L2∆N {e, f} . (3.2.1)

Non-negativity of ∆M {e, f} follows from non-negativity of ∆N {e, f}. If

e ∈ E(N ) and f ∈ E(L) then

∆M {e, f} = NeL f NeL f − NeL f NeL f = 0, (3.2.2)

which is clearly non-negative. These two cases hold when yg = 1, yg −→

0 or yg −→ ∞ for each g ∈ E− {e, f}. Therefore Z-negative correlation

and Z-balance are also preserved by direct sums.

For the sake of simplifying the statement of the theorem, specific for-

mulas for the Rayleigh differences of M = N ⊕g L are reserved for the

body of the proof.

Theorem 3.2.2 (Theorem 5.8 of [28]). For Z ∈ {B, I, S}, two-sums of Z-

Rayleigh matroids are Z-Rayleigh.

Proof. The theorem is proved directly for two-sums of I-Rayleigh matroids

and limits and duality are used to do so for B and S-Rayleigh matroids.

It can be proved directly, however, for all three properties.

Let M = N ⊕g L and suppose that N and L are I-Rayleigh. Let

M = I(M; y), N = I(N ; y), and L = I(L; y). From Lemma 2.1.3 we have

M = NgLg + NgLg − NgLg.

Considering ∆M {e, f}, by symmetry there are two cases: when e ∈ E(N )

and f ∈ E(L) or e, f ∈ E(N ).
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3.2. TWO-SUMS

Suppose e ∈ E(N ) and f ∈ E(L). Notice that Me = Ne
gLg + NgeLg −

Ne
gLg and similarly for Me, M f and M f . We use these to expand the

expression

M
f
e Me

f −Me f Me f

=
(

NegLg f + N
g
e L

f
g − NegL

f
g

) (

Ne
gL

g
f + NegLg f − Ne

gLg f

)

−
(

NegL
g
f + N

g
e Lg f − NegLg f

) (

Ne
gLg f + NegL

f
g − Ne

gL
f
g

)

,

and find that it is equal to

∆N{e, g}∆L{g, f} =
(

N
g
e Ne

g − NegNeg
) (

L
f
g L

g
f − Lg f Lg f

)

=N
g
e Ne

gL
f
gL

g
f + NegNegLg f Lg f − N

g
e Ne

gLg f Lg f − NegNegL
f
gL

g
f .

Thus, for independent sets, when e ∈ E(N ) and f ∈ E(L),

∆M{e, f} = ∆N{e, g}∆L{g, f}. (3.2.3)

Since ∆N{e, g} ≥ 0 and ∆L{g, f} ≥ 0, whenever y > 0, ∆M{e, f} ≥ 0 for

all y > 0.

If e, f ∈ E(N ) we have the following from [28]. Since g is not a loop,

Lg 6= 0, so Lg factors out of (2.1.7) and

M = Lg(Ng + (Lg/Lg − 1)Ng).

Since L is the generating polynomial for independent sets in a matroid,

Lg ≫ Lg by Lemma 2.1.1. We assume that yx > 0 for all x ∈ E(M), so

that Lg/Lg − 1 ≥ 0. Defining yg := Lg/Lg − 1 in the following expansion,

M
f
e Me

f −Me f Me f

= (Lg)
2
((

N
g f
e + ygN

f
ge

) (

N
ge
f + ygNe

g f

)

−
(

N
g
e f + ygNge f

) (

Nge f + ygN
e f
g

))

yields

(

Lg

)2
(

∆Ng{e, f}+ ygΘN{e, f |g}+ y2
g∆Ng{e, f}

)

,
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3. RAYLEIGH MATROIDS

by Proposition 3.1.1.

So, for independent sets, in the case that e, f ∈ E(N ),

∆M{e, f} = (Lg)
2∆N{e, f}, (3.2.4)

where yg = Lg/Lg− 1. Since ∆N{e, f} ≥ 0 and (Lg)
2 > 0, then ∆M{e, f} ≥

0, which proves the theorem for two-sums of I-Rayleigh matroids.

Let the ranks of M,N and L be r, n and l, respectively, so that r =

l + n− 1 and 2(r− 1) = 2(l − 1) + 2(n− 1). We first prove that if N and

L are B-Rayleigh, then ∆B(M){e, f} ≥ 0 for e, f ∈ E(N ) and y > 0.

Using (3.1.1) to expand ∆N{e, f} and redistributing (Lg)2,

(Lg)
2∆Ng{e, f}+ (LgLg − (Lg)

2)ΘN{e, f |g} + (Lg − Lg)
2∆Ng{e, f}.

(3.2.5)

Let P, Q and R be polynomials. If P = QR, then PT = QTRT and if

P = Q + R then P = QT whenever deg Q > deg R.

The limit

∆B(M; y) {e, f} = lim
t−→∞

t−2(r−1)∆I(M; ty) {e, f}

is not always equal to (∆I(M; y) {e, f})T; however,

∆B(M; y) {e, f} = lim
t−→∞

t−2(r−1)(∆I(M; ty) {e, f})T.

Recall equation (2.1.3) which says that

BD
C (y) = lim

limt−→∞

t−(r−|C|)ID
C (ty), (3.2.6)

for disjoint C, D ⊆ E. This formula is used to attack the summands of

(3.2.5) one at a time. The first term contains no surprises,

(Bg(L))2∆Bg(N ){e, f} = lim
t−→∞

t−2(r−1)(Lg(ty))2∆Ng(ty){e, f}.
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3.2. TWO-SUMS

Note that deg(Lg) > deg(Lg), since g is not a co-loop of L. For the second

term we use (LgLg − (Lg)2)T = (LgLg)T. Therefore

Bg(L)Bg(L)ΘB(N ){e, f |g}

= lim
t−→∞

t−(2l−1)Lg(ty)Lg(ty)t−(2n−3)ΘN(ty){e, f |g}

= lim
t−→∞

t−2(r−1)Lg(ty)Lg(ty)ΘN(ty){e, f |g}.

In the last term we use
(

(Lg − Lg)
T
)2

= ((Lg)2)T. Again, taking the

limit as t −→ ∞,

(Bg(L))2∆Bg(N ){e, f}

= lim
t−→∞

t−2l(Lg(ty))2t−(2n−4)∆Ng(ty){e, f}

= lim
t−→∞

t−2(r−1)(Lg(ty))2∆Ng(ty){e, f}.

Therefore, when e, f ∈ E(N ),

∆B(M){e, f} = (Bg(L))2∆B(N ){e, f}, (3.2.7)

where yg is defined by yg := Bg(L)/Bg(L). Notice that yg > 0 for all

evaluations positive evaluations of y = (yx : x ∈ E− {e, f , g}). Since N

is B-Rayleigh, ∆B(N ){e, f} ≥ 0 for all y > 0, and thus ∆B(M){e, f} ≥ 0

for all y > 0.

If e ∈ N and f ∈ L then, again using equation (2.1.3),

lim
t−→∞

t−2(r−1)∆M(ty){e, f}

= lim
t−→∞

(

t−2(n−1)∆N(ty){e, g}
) (

t−2(l−1)∆L(ty){g, f}
)

.

This is equivalent to

∆B(M){e, f} = ∆B(N ){e, g}∆B(L){g, f}. (3.2.8)

Since N and L are both B-Rayleigh, ∆B(N ){e, g} and ∆B(L){g, f} are

non-negative for positive evaluations of y and thus, so is ∆B(M){e, f}.
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3. RAYLEIGH MATROIDS

If N and L are B-Rayleigh, then because of the above two cases,M is

also B-Rayleigh.

The S-Rayleigh property holds under two-sums by duality. Suppose

that N and L are S-Rayleigh. Then their duals N ∗ and L∗ are I-Rayleigh.

By Lemma 2.1.4, the dual of M is equal to M∗ = N ∗ ⊕g L∗, so M∗ is

I-Rayleigh and thereforeM is S-Rayleigh.

Corollary 3.2.3. Let Z ∈ {B, I, S} and let M be a minor-minimal, non Z-

Rayleigh matroid. ThenM is three-connected.

The following corollary is used to prove some special cases of the

Rayleigh properties in the next section.

Corollary 3.2.4. Let N and L be matroids and let M = N ⊕g L. If e, f ∈

E(N )− g and N is Z-Rayleigh, then,

∆Z(M) {e, f} ≥ 0 (3.2.9)

whenever y > 0 and Z ∈ {B, I, S}.

Proof. This follows directly from the formulas for the B and I-Rayleigh

differences. In the spanning set case observe that N ∗ is I-Rayleigh in

which caseM∗ satisfies the corollary when Z=I, so by Proposition 3.1.5,

∆S(M) {e, f} ≥ 0.

A lemma similar to the following can be proved for the I and S-

Rayleigh differences. Instead, this is only done for the B-Rayleigh dif-

ference and used in Chapter 4.

Lemma 3.2.5. Let N and L be matroids and let N = B(N ), L = B(L) and

M = B(M). If ∆N {e, f} and ∆L {e, f} have positive coefficients for all pairs

of distinct elements e and f of their ground sets, then ∆M {e, f} has positive

coefficients whenM is either the direct sum or two-sum of N and L.
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3.3. SPECIAL CASES

Proof. The only case where this is not obvious from the formulas is when

M = N ⊕g L and e, f ∈ E(N ). By (3.2.7) this gives

∆M {e, f} = (Lg)
2∆N {e, f}

in which yg = Lg/Lg. This also has positive coefficients, since instances of

yg to the second degree are replaced with (Lg)2 and yg to the first degree

with LgLg, both of which are polynomials with positive coefficients.

We prove in Section 3.3 that as a result of Corollary 3.2.4 we need not

worry about cases where e and f are dependent or co-dependent.

3.3 Special cases

The results of Section 3.2 are used to make some simple observations that

take care of several special cases. If e and f are in parallel or in series,

then parts of the proof of Theorem 3.2.2 and two easy facts about K3 and

K∗3 imply that ∆Z {e, f} has positive coefficients for Z ∈ {B, I, S}.

Lemma 3.3.1. Let the edge set of K3 be {e, f , g}. Then

∆I(K3; y) {e, f} = (yg + 1)2 − (yg + 1) = (yg + 1)yg

and

∆I((K3)
∗; y) {e, f} = 1− 0 = 1

Proof. Use I(K3; y) = 1 + ye + y f + yg + yey f + yeyg + y f yg and I((K3)
∗; y) =

1 + ye + y f + yg.

Proposition 3.3.2. LetM be a matroid with distinct elements e, f . If {e, f} is

dependent or co-dependent, then

Z
f
e Ze

f − Ze f Ze f ≫ 0 (3.3.1)

for Z ∈ {B, I, S}.
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3. RAYLEIGH MATROIDS

Proof. If e is a loop, then by (2.1.4), Be = Ie = 0 and Se = Se, so the

proposition obviously holds in this case. If e is a co-loop then by (2.1.5),

Be = Se = 0 and Ie = Ie and again the proposition holds. If {e, f} is a

parallel pair then Be f = Ie f = 0 and if they are in series then Be f = Se f =

0.

It remains for us to show that if {e, f} is a parallel pair, then ∆S {e, f} ≫

0 and that if {e, f} is a series pair, then ∆I {e, f} ≫ 0. We use two-sums

and duality for this.

Let the edge set of K3 be {e, f , g}. Suppose {e, f} are a series pair, then

let N be the matroid such that

M = N ⊕g K3.

By (3.2.4) and Lemma 3.3.1

∆I(M; y) {e, f} = (Ng)
2((yg + 1)yg),

where yg = Ng/Ng − 1. This gives

∆I(M; y) {e, f} = (Ng)(Ng − Ng)≫ 0,

since Ng ≫ Ng by Lemma 2.1.1. If {e, f} is a parallel pair then

M = N ⊕g (K3)
∗,

so that

M∗ = N ∗ ⊕g K3.

Since ∆I(M∗; y) {e, f} ≫ 0, then ∆S(M; y) {e, f} ≫ 0 by Proposition 3.1.5.

Corollary 3.3.3. Let M be a matroid with distinct elements e, f . If {e, f} is

dependent or co-dependent, then

∆I {e, f} − ∆B {e, f} ≫ 0 and

∆S {e, f} − ∆B {e, f} ≫ 0

38



3.4. SUFFICIENT CONDITIONS

Proof. Notice that if {e, f} is a parallel pair, then B
f
e = 0 since f is a loop

ofM/e. Similarly, if {e, f} is a series pair, then B
f
e = 0. Since in all cases,

∆I {e, f} ≫ 0, ∆S {e, f} ≫ 0 and ∆B {e, f} = 0, the result follows.

This concludes our discussion of the more elementary facts regarding

these polynomials. The results that follow, build on these and are more

advanced.

3.4 Sufficient conditions

Considerable research has been done to classify matroids according to

whether or not they have the Rayleigh properties. The known sufficient

conditions for the Rayleigh properties are consolidated here; however, not

all the methods which give these results are mentioned. The corollaries

that follow from results of previous sections are also left out.

Theorem 3.4.1 (Cor 8.2(a) and Thm 8.9 of [30]. Cor 4.7 and Prop 5.1 of

[31]). Sixth root of unity matroids are B-Rayleigh.

By Lemma 2.1.8, this includes all graphic and regular matroids.

Wagner [27] proves that rank three matroids are B-Rayleigh which is

used to prove in the next section that they are in fact I-Rayleigh.

Theorem 3.4.2. Every matroid of at most rank three is B-Rayleigh.

Interestingly enough, the B-Rayleigh condition for binary matroids is

characterized by the exclusion of S8 as a minor. The first correct proof of

this appears in [31].

Theorem 3.4.3 (Theorem 3.8 of [31]). A binary matroid is B-Rayleigh if and

only if it does not contain S8 as a minor.

New in this thesis are the following facts.

(i) All graphs on seven vertices are I-Rayleigh.
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3. RAYLEIGH MATROIDS

(ii) A binary matroid on at most nine elements is I-Rayleigh if and only

if it contains no S8 minor.

(iii) Rank three matroids are I-Rayleigh (independently by Cocks [5]).

(iv) Sparse paving matroids are B-Rayleigh

(v) A paving matroid is I-Rayleigh if and only if it is B-Rayleigh.

Previously, Wagner showed that all graphs with at most six vertices

are I-Rayleigh (personal communication).

With regards to negatively correlated matroids which are possibly not

Rayleigh, we have the following. By direct computation, Royle has shown

that all matroids on at most nine elements are I-negatively correlated (per-

sonal communication). Grimmett and Winkler [7] show that all graphs on

at most eight vertices or nine vertices and 18 edges are I-negatively corre-

lated.

There are balanced matroids which are not known to be Rayleigh.

Sparse paving matroids are B-balanced; however, there exists a B-unbalanced

non-sparse paving matroid [13].

Evidently our ignorance on this subject is vast and much work needs

to be done.

3.5 Rank three matroids are I-Rayleigh

Theorem 3.5.1 (E.). LetM be a matroid of rank at most three. Then

∆I{e, f} ≫ ∆B{e, f}. (3.5.1)

Proof. We may assume that {e, f} is neither dependent nor co-dependent

by Corollary 3.3.3. This also takes care of the cases where M has rank

zero or one, so we assumeM has rank at least two.

Suppose, for an inductive proof, that ∆I{e, f} ≫ ∆B{e, f} for all

proper minors of M. Let yα be one of the monomials appearing in
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3.5. RANK THREE MATROIDS ARE I-RAYLEIGH

∆I{e, f} − ∆B{e, f}. It is enough to show that

[yα]∆I{e, f} ≥ [yα]∆B{e, f}.

If α(g) = 2 for some g ∈ E − {e, f}, then we contract g and apply the

induction hypothesis to conclude that

[yα] (∆I(M){e, f} − ∆B(M){e, f})

=
[

yαy−2
g

]

(∆I(M/g){e, f} − ∆B(M/g){e, f}) ≥ 0.

If α(g) = 0 for some g ∈ E−{e, f} then we delete this element and apply

the induction hypothesis to conclude that

[yα] (∆I(M){e, f} − ∆B(M){e, f})

= [yα] (∆I(M\ g){e, f} − ∆B(M\ g){e, f}) ≥ 0.

Therefore we only need to prove (3.5.1) for the unique monomial yα

such that α(g) = 1 for all g ∈ E− e f .

Let U = I − B and note that

∆I{e, f} − ∆B{e, f}

=
(

B
f
e Ue

f + Be
f U

f
e + ∆U{e, f}

)

−
(

Be f U
e f + Be f Ue f

)

.

If M has rank two, then deg(B) = 2 and deg(U) = 1. By the above

reductions we may assume that |E| = 3. Furthermore Be f Ue f = 0 and

∆U {e, f} = 1 so it is enough to prove that yg appears at least once on the

left hand side of

B
f
e Ue

f + Be
f U

f
e ≫ Be f U

e f ,

for g ∈ E− {e, f}. The element g is not parallel to both e and f , since e

and f are not parallel. Therefore yg appears in one of B
f
e Ue

f or Be
f U

f
e , as

required.
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3. RAYLEIGH MATROIDS

Now suppose M has rank three. If M has exactly three elements,

then {e, f} is a series pair. If it has four elements, then either it contains

a co-loop or it is the uniform matroid U3,4 for which the result is easy to

verify.

Since the degree of ∆I{e, f} − ∆B{e, f} is at most three, we may as-

sume that E = {e, f , g, h, k} and we need only only show that

[yα]
(

B
f
e Ue

f + Be
f U

f
e

)

≥ [yα]
(

Be f U
e f + Be f

)

, (3.5.2)

where yα = ygyhyk. The ∆U {e, f} term can be left out because deg(Ue
f ) =

deg(U
f
e ) = 1 and deg(Ue f ) = 2. Notice that, since {e, f} is neither de-

pendent nor co-dependent, deg(B
f
e ) = deg(Be

f ) = 2 and that U
f
e and

Ue
f generate the proper subsets of B

f
e and Be

f , respectively. The fact that

{e, f} is not co-dependent also implies that ghk is a basis, so Be f = ygyhyk.

Therefore we prove that

[yα]
(

B
f
e Ue

f + Be
f U

f
e

)

> [yα]
(

Be f U
e f
)

. (3.5.3)

Let (A, R) be a pair of type Be f U
e f . That is, A∪̇R = E − e f , A is a

basis of M/e f and R is a 2-subset of ghk. Let (F, Q) be a pair of type

B
f
e Ue

f . That is, F∪̇Q = E− e f , F is a basis of M/e\ f and Q contains a

single element contained in a basis ofM/ f \ e.

Recall the strong basis exchange axiom which states that if X and Y

are bases, then for each x ∈ X−Y, there is y ∈ Y−X such that (X∪ y)− x

is a basis. Since ghk is a basis, if ge f is a basis, then at least one of gh f

and gk f is a basis and also, at least one of ghe and gke is a basis. Clearly

this holds for all permutations of the labels g, h, k.

Therefore each pair (A, R), of type Be f U
e f maps to at least one pair

of type B
f
e Ue

f and one of type Be
f U

f
e . Furthermore, no two distinct pairs

(A, R) and (A′, R′) of type Be f U
e f map to the same pairs of type B

f
e Ue

f

and Be
f U

f
e . Assume that there are exactly three pairs of type Be f U

e f (there

can be no more). Then by the pigeon hole principle, there are more than
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3.6. SMALL BINARY MATROIDS

three pairs of type B
f
e Ue

f and Be
f U

f
e put together. There can be at most

three pairs of type Be f U
e f , thus

[yα]
(

B
f
e Ue

f + Be
f U

f
e

)

≥ [yα]
(

Be f U
e f + Be f

)

,

in all cases, as desired.

The above theorem provides one of two ways presented in this thesis,

to arrive at the following corollary.

Corollary 3.5.2. Rank three matroids are I-Rayleigh

Proof. This follows directly from Theorem 3.4.2 together with Theorem 3.5.1.

In Chapter 4, Theorem 3.5.1 is re-derived as a special case of Theo-

rem 4.4.1.

3.6 Small binary matroids

We show that a binary matroid on at most nine elements is I-Rayleigh

if and only if it does not contain S8 as a minor. Furthermore, if three

particular regular matroids on ten elements turn out to be I-Rayleigh, then

the result can be strengthened to at most ten elements. The arguments

draw heavily on the matroid decompositions reviewed in Section 2.1.5.

We also use a result from Chapter 5, namely, that graphs on at most

seven vertices are I-Rayleigh (Chapter 5 does not rely on results of this

section).

The story of this section has a subplot. In Proposition 2.3.3 we showed

that I-Rayleigh implies B-Rayleigh. When it comes to balance or nega-

tive correlation, however, the argument breaks down. The binary ma-

troid S8 is an interesting counterexample because it is the only binary

minor-minimal non B-Rayleigh matroid. Example 2.2.4 shows that it is

B-unbalanced and the results in this section prove that its minors are

B-balanced.
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3. RAYLEIGH MATROIDS

Proposition 3.6.1. The matroid S8 is I-balanced but not B-balanced.

The proofs we will see help show that S8 is I-balanced without manu-

ally checking that its proper minors are I-negatively correlated. In partic-

ular, we use the fact that its minors of at most rank three are I-Rayleigh, by

Corollary 3.5.2, and that all binary matroids on 7 elements are I-Rayleigh.

Verification of this depends on results from Chapter 5, the fact that most

binary matroids on seven elements are graphic, and a quick check that

the other ones are I-Rayleigh as well.

Lemma 3.6.2. Every graph with at most eleven edges is I-Rayleigh.

Proof. By Theorem 5.3.1, every graph on at most seven vertices is I-

Rayleigh. On the other hand let G be a connected graph on eight ver-

tices with 8 ≤ |E| ≤ 11. Such a graph has a vertex of degree at most

two, since 2 · |E| ≥ 8δ ⇒ 3 > δ, where δ is the minimum degree of G.

Therefore G is not three-connected and its minors are I-Rayleigh. Thus

G is I-Rayleigh by Corollary 3.2.3. By Lemma 3.2.1 and Theorem 3.2.2, G

is I-Rayleigh. Similarly, if |V(G)| = 9 and 9 ≤ |E| ≤ 11 it is again not

three-connected and thus I-Rayleigh. The same argument works for ten

and eleven vertices and beyond that, the result is trivial.

We use a computer program in Maple in the next lemma. It is available

at http://www.math.uwaterloo.ca/∼atericks/

Lemma 3.6.3. The matroids F7, (F7)
∗ and A G (3, 2) are I-Rayleigh

Proof. The Fano matroid has rank three so it is I-Rayleigh by Corol-

lary 3.5.2. Since (F7)
∗ has co-rank three, it is B-Rayleigh by Theorem 3.4.2

together with Proposition 3.1.4. An easy computer test shows that

I((F7)
∗)− B((F7)

∗)≫ 0,

from which it follows that (F7)
∗ is I-Rayleigh. The matroid A G (3, 2) does

not contain S8 as a minor so by Theorem 3.4.3 it is B-Rayleigh and a
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3.6. SMALL BINARY MATROIDS

similar computer test shows that

I(A G (3, 2))− B(A G (3, 2))≫ 0.

Note that F7 and (F7)
∗ are both minors of A G (3, 2), so by Proposition 3.1

it suffices to show that A G (3, 2) is I-Rayleigh. On the other hand we have

proved something slightly stronger.

Returning to the subplot around S8, the matroids F7 and (F7)
∗ are the

only non-graphic binary matroids on at most seven elements. Therefore,

it remains only to show that S8 is I-negatively correlated which we check

with a straightforward calculation in Maple.

We are able to show that ∆I((M(K3,3))
∗) {e, f}−∆B((M(K3,3))

∗) {e, f} ≥

0 by an easy algebraic manipulation.

Lemma 3.6.4. The matroid (M(K3,3))
∗ is I-Rayleigh.

Proof. Since (M(K3,3))
∗ is co-graphic, it is B-Rayleigh by Proposition 3.1.4.

Therefore it is enough to show that for distinct e and f ,

∆I((M(K3,3))
∗) {e, f} − ∆B((M(K3,3))

∗) {e, f} ≥ 0.

By (2.1.1) and (2.1.2), this is equivalent to

(yE−{e, f })2
(

∆S(K3,3; y−1) {e, f} − ∆B(K3,3; y−1)
)

{e, f} ≥ 0,

which enables the use of the edge-symmetry of K3,3. That is, either e and

f are adjacent in K3,3 or they are not. The calculations were done using

Maple. When e and f are adjacent,

∆I((M(K3,3))
∗) {e, f} − ∆B((M(K3,3))

∗) {e, f} ≫ 0.

Otherwise, if e and f are not adjacent in K3,3 and

∆I((M(K3,3))
∗) {e, f} − ∆B((M(K3,3))

∗) {e, f}
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3. RAYLEIGH MATROIDS

contains four negative terms. Taking these, along with some positive

terms we use the fact that

ca2b2 − 2abcdx + cd2x2

and

ca2b2 − 2abcdx− 2abcyz + 2dxcyz + cd2x2 + cy2z2

are each a monomial times the square of a polynomial to show that

∆I((M(K3,3))
∗) {e, f} − ∆B((M(K3,3))

∗) {e, f} ≥ 0

for every positive evaluation of y.

Theorem 3.6.5. [E.] Every binary matroid on at most nine elements is I-Rayleigh

if and only if it does not contain S8 as a minor.

Proof. Let M be a minor-minimal counterexample. If M contains S8

as a minor, then it is not B-Rayleigh by Theorem 3.4.3, and hence not I-

Rayleigh, by Proposition 2.3.3. We may assumeM is a binary matroid on

at most nine elements with no S8 minor and is not I-Rayleigh. By Corol-

lary 3.2.3, M is three-connected and by Corollary 2.1.11 it is regular or

isomorphic to one of F7, (F7)
∗ or A G (3, 2). The only non-graphic regular

matroid on at most nine elements is (M(K3,3))
∗ by Proposition 2.1.6. By

Lemma 3.6.2, Lemma 3.6.3 and Lemma 3.6.4, all of these possibilities are

I-Rayleigh which contradicts the fact that M is a minimal counterexam-

ple.

Most matroids do not have the nice property of A G (3, 2), F7 and (F7)
∗,

that

∆I {e, f} ≫ ∆B {e, f} .

Unfortunately, among these are (M(K3,3))
∗, R10, (M(K5))

∗ and the dual

of K3,3 plus an edge, not parallel to an existing edge. This is denoted by
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3.6. SMALL BINARY MATROIDS

(M(K+
3,3))

∗. On the other hand an ad-hoc method shows that (M(K3,3))
∗

is I-Rayleigh. If the last three of these regular matroids are I-Rayleigh the

main result of this section can be strengthened. Note that in [4], Semple

and Welsh mention that (M(K5))
∗ is I-Rayleigh.

Proposition 3.6.6. If R10, (M(K5))
∗ and (M(K+

3,3))
∗ are I-Rayleigh, then every

binary matroid on ten elements is I-Rayleigh if and only if it does not contain S8

as a minor.

Proof. Let M be a binary, non I-Rayleigh matroid on ten elements with

no S8 minor. We may assume by the argument of Theorem 3.6.5, that

M is regular, three-connected, and not one of the matroids mentioned in

the above statement. If it is co-graphic, then it is the dual of M(G) for

a graph, G, containing K3,3 as a minor. The graph G cannot be a series

or parallel extension of K3,3 since (M(G))∗ would not be three-connected

and G 6∼= K+
3,3. Thus we may assume G is not co-graphic. By Lemma 2.1.12

every three-connected regular matroid which is neither graphic nor co-

graphic has an R10 or R12 minor. Since M is not R10 and does not have

twelve elements there is no such matroid, as required.

One might be more convinced that this last proposition is useful by

knowing that the matroids mentioned possess some of the necessary con-

ditions for being I-Rayleigh. We are particularly interested in I-balance.

Proposition 3.6.7. The matroids (M(K+
3,3))

∗, (M(K5))
∗ and R10 are I-balanced.

Proof. The matroid S8 is not regular, since regular matroids are B-Rayleigh,

so none of the matroids in question contain it as a minor. By Theo-

rem 3.6.5 we need only check I-negative correlation for R10, (M(K5))
∗

and (M(K+
3,3))

∗ which is done in Maple.

We also proved in this chapter, that S8 is I-balanced but not I-Rayleigh,

casting a shadow on the above piece of evidence. However, one should

consider that S8 is not regular and that no regular matroid is known not

to be I-Rayleigh. The temptation to conjecture that a binary matroid is
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3. RAYLEIGH MATROIDS

I-Rayleigh if and only if it is B-Rayleigh is irresistible and indeed we do

so in the next section.

3.7 Conjecture: Regular matroids are I-Rayleigh

Of the countless outstanding questions regarding the classification of ma-

troids with the Rayleigh properties, we list a few interesting ones that

might be answerable.

By Lemma 2.1.12, regular matroids decompose over direct sums, two

and three-sums into graphic and co-graphic matroids and R10. In turn,

binary matroids decompose into those containing S8 or A G (3, 2) mi-

nors and otherwise, a three-connected binary matroid with at least eight

elements is regular. Despite the fact that we know exactly when these

classes are B-Rayleigh, virtually nothing is known about which ones are

I-Rayleigh. By their constructions, significant progress would be made if

graphs were known to be I-Rayleigh, which is the central topic of Chap-

ter 5. There are two more significant obstacles which will be discussed

momentarily. The following theorem looks surprising but can be derived

easily from the theory in Section 2.1.5.

Recall that by Corollary 2.1.11, a binary, three-connected matroid with

no S8 minor is regular or isomorphic to (F7), (F7)
∗ or A G (3, 2). This

motivates the following theorem.

Theorem 3.7.1. [E.] The following are equivalent.

(i) Regular matroids are I-Rayleigh.

(ii) A binary matroid is I-Rayleigh if and only if it is B-Rayleigh.

Proof. Assume (ii). By (ii) and Theorem 3.4.3, a binary matroid is I-

Rayleigh if and only if it does not contain S8 as a minor. By Lemma 2.1.10,

the class of regular matroids is contained in the class of binary matroids

not containing S8 as a minor. This proves (i).
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3.7. CONJECTURE: REGULAR MATROIDS ARE I-RAYLEIGH

Conversely, let M be a minimal counterexample to (ii). By the argu-

ment in Theorem 3.6.5, we may assume that M is not I-Rayleigh, does

not contain S8 as a minor and |E| > 9. By Corollary 3.2.3, M is three-

connected and by Corollary 2.1.11 and the fact that |E| > 9,M is regular.

Therefore it is regular and not I-Rayleigh, as required.

It would seem more plausible that regular matroids are I-Rayleigh.

However, Theorem 3.7.1 allows a bolder statement.

Conjecture 3.7.2. A binary matroid is I-Rayleigh if and only if it is B-Rayleigh.

The difficulties on the path to a proof of this lie in the decomposition of

regular matroids. It is not known whether graphs are I and S-negatively

correlated and the Rayleigh properties do not seem to behave nicely by

taking three-sums (as they do for two-sums).
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Chapter 4

Paving Matroids

A rank r matroid is paving if all of its circuits have at least r elements.

A paving matroid is sparse if no two circuits of size r have a symmetric

difference of exactly two elements – in some sense they are “sparse” in

their circuits. In [13], Jerrum proves that sparse paving matroids are B-

balanced. On the other hand, Jerrum also gives an example of a non

B-balanced paving matroid. Both of Jerrum’s results are presented as

well as two new results, that the B-Rayleigh and I-Rayleigh conditions

are equivalent for paving matroids and that sparse paving matroids are

indeed B-Rayleigh.

Throughout this chapter, M is a paving matroid of rank r. A few

preliminary facts are given, the first three of which apply to paving ma-

troids in general. Oxley characterizes paving matroids with the following

lemma.

Lemma 4.0.3 (Proposition 1.3.10, [17]). Let C be a set of r-element subsets of

a finite set E. The following are equivalent.

(a) The set C is the set of circuits of size r of a rank r paving matroid on ground

set E.

(b) For every C, C′ ∈ C , if |C△C′| = 2, then every r-subset of C ∪ C′ is con-

tained in C .
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Proof. Briefly, the axioms that the circuits of a matroid must satisfy are:

(i) The empty set is not a circuit.

(ii) No circuit properly contains another circuit.

(iii) Given circuits C and C′ with e ∈ C ∩ C′, there is a circuit contained

in (C ∪ C′)− e.

If (a) is assumed, then (b) follows from (iii). Conversely, let C satisfy (b)

and let C ′ be the collection of (r + 1)-sets not containing members of C .

Clearly, the members of C ∪̇C ′ satisfy (i) and (ii).

Let C, C′ ∈ C ∪ C ′. Since no circuit contains another, |C△C′| > 1, and

therefore |C∪C′| ≥ r + 2. By (b), any set of size r + 1 contains an element

of C ∪ C ′. Thus (C ∪ C′) − e contains contains an element of C ∪ C ′,

satisfying (iii), as desired.

The proofs in Section 4.1 and Section 4.2 use the fact that sparse paving

matroids are a minor closed class. The proof of Theorem 4.4.1 requires

that paving matroids be minor closed to apply induction.

Proposition 4.0.4.

(a) The class of paving matroids is closed by taking minors.

(b) The class of sparse paving matroids is closed by taking minors.

Proof. Let M be a paving matroid of rank r. The proof is divided into

the cases where g is a loop, co-loop or otherwise. In each caseM/g and

M\ g are shown to be paving and furthermore, if either of these is not

sparse, thenM must not be sparse.

If g is a loop, then r ≤ 1 so M\ g and M/g are paving. Notice that

M\ g ∼=M/g, so if M\ g is not sparse, it contains two loops which are

loops ofM. ThusM is also not sparse, proving (b) for this case.

If g is a co-loop, then it appears in every basis andM\g ∼=M/g. Let

I ⊆ E(M)− g be such that |I| = r− 1. Then I is independent and I ∪ g is
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4. PAVING MATROIDS

a basis, soM\ g andM/g are uniform matroids of rank r− 1. Uniform

matroids are sparse paving, so this also satisfies (b).

If g is neither a loop nor a co-loop, then M\ g is of rank r and if C′

is a circuit of M\ g then C′ ∈ C , implying that |C′| ≥ r. Thus M\ g is

paving. Suppose M\ g is not sparse and let C, C′ ∈ C (M\ g) be such

that |C| = |C′| = r and |C△C′| = 2. Then C and C′ are circuits of M

with the same properties so that M is not sparse. Thus (b) is proved for

this case.

Let C′ be a circuit ofM/g. Then C′ ∪ g contains a circuit ofM so that

|C′| ≥ r− 1, as required forM/g to be paving. SupposeM/g is paving

but not sparse and let C, C′ ∈ C (M/g) be such that |C| = |C′| = r − 1

and |C△C′| = 2. SinceM is paving, C ∪ g and C′ ∪ g are r-circuits ofM

and |(C ∪ g)△(C′ ∪ g)| = 2, soM is not sparse, proving (b) for this final

case.

The following is an application of Lemma 4.0.3 which is used in the

last two steps of Theorem 4.4.1. Note that in Lemma 4.0.5 and Lemma 4.0.6,

B is used to denote a basis. This should not be confused with the gener-

ating series it usually denotes.

Lemma 4.0.5. Let M be a paving matroid. If B is a basis, then for any g ∈

E− B, there is at most one element h ∈ B such that (B ∪ g)− h 6∈ B.

Proof. Suppose that there are distinct h, h′ ∈ B such that for some g ∈ E−

B, both C = (B ∪ g)− h and C′ = (B ∪ g)− h′ are dependent and, since

M is paving, therefore circuits. Since |C△C′| = 2, Lemma 4.0.3 implies

that every r-subset of C ∪ C′ is a circuit, which is impossible because

B ⊆ C ∪ C′.

The following lemmas make essential use of sparseness.

Lemma 4.0.6. LetM be a sparse paving matroid and let B be a basis with g ∈ B.

There is at most one h ∈ E− B such that (B− g) ∪ h is not a basis.

Proof. If (B− g) ∪ h and (B− g) ∪ h′ were circuits for distinct h, h′, then

this would violate the definition of sparseness.
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Duality helps us deduce an extra corollary from the main theorem of

Section 4.4.

Lemma 4.0.7. The class of sparse paving matroids is closed by taking duals.

Proof. LetM be a rank r sparse paving matroid on n elements. We prove

that the dual ofM is paving and then that it is sparse paving.

Recall that a set X ⊆ E is independent if and only if E − X is co-

spanning. Suppose that M∗ is not paving. Then there is some M∗-

dependent set, E− D, with |E− D| < n− r. Therefore D, which has at

least r + 1 elements, is not M-spanning and thus contains no M-basis.

Since M is sparse paving, any r + 1 element set contains at most one

circuit and at least one basis. Thus D contains a basis, contradicting the

fact that it is not spanning. ThereforeM∗ is paving.

Suppose M∗ is not sparse. Then it has (n − r)-circuits, E − C and

E−C′ such that (E− C)− (E− C′) = {x} and (E− C′)− (E− C) = {x′}

where x 6= x′, violating sparseness.

Claim: If |D| = r, then D is an M-circuit if and only if E− D is an

M∗-circuit. Consider the fact that B is an M-basis if and only if E − B

is an M∗-basis. Let D ⊆ E(M) with |D| = r and D 6∈ B(M). Then

D is dependent, and since M is paving, it is a circuit. Since D is not

an M-basis, then E − D is not an M∗-basis and similarly, E − D is an

M∗-circuit, which proves the claim.

By this fact, C and C′ are circuits of M. Since C − C′ = {x′} and

C′ − C = {x}, M is not sparse, contrary to our assumption. Therefore

M∗ is a sparse paving matroid.

Paving matroids in general are not closed under duality. Consider a

matroid of rank one on three elements, with exactly two loops. If g is

the non-loop, then it appears in every basis and is thus a co-loop. The

dual has rank two, so it is not paving. This generalizes to the duals of all

non-sparse paving matroids.

Proposition 4.0.8. The dual of a non-sparse paving matroid is not paving.
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4. PAVING MATROIDS

Proof. Let M be a non-sparse paving matroid of rank r on n elements.

Let C and C′ be r-circuits ofM with |C△C′| = 2. By Lemma 4.0.3, C∪ C′

contains no basis and is therefore not spanning. Thus, E − (C ∪ C′) is

M∗-dependent and |E− (C ∪ C′)| = n− r− 1, soM∗ is not paving.

4.1 Sparse paving matroids are B-balanced

This result of Jerrum [13] is of interest because it enables polynomial time

approximation of the number of bases in a class of matroids for which

the bases are often hard to count exactly. Referring to [13] for details on

computational complexity, we give an intuition of how the property of

being B-balanced can be used to approximate the number of bases. The

argument rests on two facts whose proofs are outside of the scope of this

thesis.

Lemma 4.1.1 (simplified from [12], Ch. 3). If the set of combinatorial objects,

X, can be sampled almost uniformly at random in polynomial time, then |X| can

be approximated in polynomial time.

Let M be a matroid. Let the basis exchange graph, G = G(M), be the

graph whose vertices are members of B. Connect B, B′ ∈ B with an edge

if |B△B′| = 2. The idea is to sample B using random walks in G. To get

an almost uniformly random sample in polynomial time, the walk must

diffuse rapidly throughout the graph. One way to ensure this is for G to

have high expansion, which is defined as

α(G) = min

{

|[A, E(G) − A]|

|A|
: A ⊆ V(G), |A| ≤

|V(G)|

2

}

,

in which [A, E(G) − A] is the set of edges with exactly one end in A. In

other words, high expansion means that every proper subset of vertices

has a large number of edges leaving it. Feder and Mihail prove that the

basis exchange graph of a balanced matroid has expansion α ≥ 1 [25].
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4.1. SPARSE PAVING MATROIDS ARE B-BALANCED

Feder and Mihail have this application in mind. However, the exam-

ples they show to be B-balanced are regular. Jerrum points out that linear

algebra can be used to count the bases of a regular matroid exactly with

little trouble. Usually this is not possible for a sparse paving matroid. We

present Jerrum’s proof that sparse paving matroids are B-balanced.

Theorem 4.1.2. Sparse paving matroids are B-balanced.

Proof. Let e and f be distinct elements of a rank r sparse paving matroid,

M, on m elements. By Proposition 3.3.2 we may assume that {e, f} is

independent and co-independent. For disjoint sets C, D ⊆ E, recall that

BD
C is the set of bases containing C but not D.

To prove Theorem 4.1.2 we show that there exist positive integers p

and q such that

pB
f
e (1) ≥ qBe f (1) (4.1.1)

and

qBe
f (1) ≥ pBe f (1). (4.1.2)

Let G = (B
f
e ∪̇Be f , E) be the bipartite graph with bipartition (B

f
e , Be f )

such that M-bases, b
f
e ∈ B

f
e and be f ∈ Be f , are adjacent if and only if

their symmetric difference has size two. Note that G is a subgraph of

the basis exchange graph. There are at most r − 1 elements in b
f
e that

can be exchanged to give an element of Be f (since e must stay) so the

vertex b
f
e has degree at most r− 1. By Lemma 4.0.6 (in which we require

sparseness) there is at most one h 6∈ be f such that (be f − f ) + h is not a

basis. Thus, the vertex be f has degree at least m− (r + 1). Let p = r− 1

and q = m− r− 1. Counting the edges of G, we see that

(r− 1)|B
f
e | ≥ (m− r− 1)|Be f |.

Similarly, let H = (Be
f ∪̇Be f , F) be the bipartite graph with bipartition

(Be
f , Be f ), such that the M-bases, be

f ∈ Be
f and be f ∈ Be f , are adjacent
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if their symmetric difference has size two. There are at most m− (r + 1)

elements h 6∈ be
f which can replace f in (be

f − f ) ∪ h, since e is not one

of them. Thus the vertex be
f has degree at most m− r − 1. On the other

hand, by Lemma 4.0.5, there is at most one element g ∈ be f such that

(be f − g) ∪ f is a circuit, so the vertex be f has degree at least r − 1 in H.

Counting the edges of H, we see that

(m− r− 1)|Be
f | ≥ (r− 1)|Be f |.

Multiplying (4.1.1) and (4.1.2) yields

qpB
f
e (1)Be

f (1) ≥ qpBe f (1)Be f (1),

so that

B
f
e (1)Be

f (1)− Be f (1)Be f ≥ 0.

This shows that M is B-negatively correlated. By Proposition 4.0.4, the

class of sparse paving matroids is closed by taking minors. It follows that

sparse paving matroids are B-balanced.

4.2 Sparse paving matroids are B-Rayleigh

Jerrum’s argument can be applied in a different way to prove that sparse

paving matroids are B-Rayleigh. In fact, the B-Rayleigh difference has

positive coefficients, from which the B-Rayleigh condition follows imme-

diately.

Theorem 4.2.1 (E.). IfM is a sparse paving matroid, then

B
f
e Be

f ≫ Be f Be f . (4.2.1)

Proof. Let M be a sparse paving matroid of rank r on m elements and

suppose the theorem holds for all proper minors ofM. By Lemma 4.0.7
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and the proof of Proposition 3.1.4, the classes of sparse paving matroids

and matroids satisfying (4.2.1) are closed by taking duals. Hence M is

assumed to be simple and co-simple, by Lemma 3.2.5 and Lemma 3.3.1.

By this, if r = 2 or r = m− 2, then M is a uniform matroid, so we also

assume that m− 2 > r > 2.

Suppose (4.2.1) holds for all minors ofM and let yα be a monomial of

(4.2.1). If α(g) = 0 for some g ∈ E− {e, f}, then

[yα]B
f
e Be

f = [yα]B
g f
e B

ge
f = [yα]B

f
e (M\ g)Be

f (M\ g)

and

[yα]Be f Be f = [yα]B
g
e f Bge f = [yα]Be f (M\ g)Be f (M\ g).

By induction, (4.2.1) holds for this monomial. If α(g) = 2 for some g ∈

E− {e, f}, then

[yα]B
f
e Be

f = [yαy−2
g ]B

f
geBe

g f = [yαy−2
g ]B

f
e (M/g)Be

f (M/g)

and

[yα]Be f Be f = [yαy−2
g ]Bge f B

e f
g = [yαy−2

g ]Be f (M/g)Be f (M/g).

Again, by the induction hypothesis, (4.2.1) holds for this monomial. Thus,

we only need to prove

[yα]B
f
e Be

f ≫ [yα]Be f Be f

when yα is the unique monomial such that α(g) = 1 for all g ∈ E−{e, f}.

Let (b
f
e , be

f ) be a pair of type B
f
e Be

f . That is, b
f
e ∪̇be

f = E− {e, f}, b
f
e is

a basis of M/e \ f and be
f is a basis of M/ f \ e. Let (be f , be f ) be a pair

of type Be f Be f . That is, be f ∪̇be f = E− {e, f}, be f is a basis of M/e f and

be f is a basis ofM\ e f . Let (X∪̇Y, E) be the bipartite graph with pairs of

type B
f
e Be

f in the X partition and pairs of type Be f Be f in the Y partition.

We show that |X| ≥ |Y|. Put an edge from (b
f
e , be

f ) to (be f , be f ) if these

pairs satisfy one of the following
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(a) There is g ∈ b
f
e such that b

f
e − g = be f .

(b) There is g ∈ be f such that be f − g = be
f .

Note that this may give parallel edges. Let the a-degree of a vertex be the

number of neighbours it has satisfying rule (a). Define b-degree similarly.

The rest of the argument is similar to Jerrum’s for proving that sparse

paving matroids are B-balanced. The vertices in the X partition have

a-degree at most p and b-degree at most q, while the vertices in the Y

partition have a-degree at least q and b-degree at least p, for some integers

p and q.

Since |b
f
e | = r− 1, there at most r− 1 elements g ∈ b

f
e such that b

f
e − g

is a basis of M/e f . Thus, the a-degree of a pair (b
f
e , be

f ) is at most r− 1.

Now, m − |b
f
e | − | {e, f} | = m − r − 1, so there are at most m − r − 1

elements g 6∈ be
f such that be

f ∪ g is a basis of M\ e f . As a result of

this, the pair (b
f
e , be

f ) has b-degree at most m− r− 1, so vertices in the X

partition have degree at most m− 2.

The arguments on the Y partition use lemmas Lemma 4.0.5 and Lemma

(4.0.6). In Lemma 4.0.5, if b is a basis and some fixed f must be added,

then at most one of (b− g)∪ f is a circuit, for g ∈ b. In Lemma 4.0.6 some

fixed f is being removed and at most one of (b − f ) ∪ g is a circuit, for

each g 6∈ b. Only the latter requires sparseness.

Notice that be f ∪ e f is a basis of M, and consider ((be f ∪ e f )− f ) ∪ g

for g 6∈ (be f ∪ e f ). By Lemma 4.0.6, at most one of these is not a circuit, so

there are at least m− |be f | − | {e, f} |− 1 = m− (r− 2)− 2− 1 = m− r− 1

elements g 6∈ be f such that be f ∪ g = b
f
e . If g is not in any set generated

by B
f
e , then g is parallel to e, but we assumed that M was simple, so

this is not the case. Thus, a vertex in the Y partition has a-degree at least

m− r− 1. Finally, the b-degree of a Y partition vertex is at least r− 1 for

the following reason. There are r elements in be f and there is at most one

g ∈ be f such that (be f ∪ f )− g is a circuit. Therefore the b-degree of this

vertex is at least r− 1. Again, (m− r− 1 + (r − 1)) = m− 2 = 2(r− 1)
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From this, the number of edges is

(m− 2)|X| ≥ |E| ≥ (m− 2)|Y|.

Since m > 4, the theorem holds.

4.3 A B-unbalanced paving matroid

Jerrum constructs a paving matroid which is not B-negatively correlated

(and thus not B-balanced). We build the r-cycles of this matroid so that

they satisfy Lemma 4.0.3.

Let E be a set of 24 elements and let V ⊂ 2E be a set of ‘blocks’ of E

of size 8 such that each 5-subset of E is contained in exactly one block,

V ∈ V (this is the Steiner system S(5, 8, 24)). Jerrum uses this to define

the circuits of size 6 of a paving matroid of rank 6. Let e, f ∈ E be distinct

elements and if V ∈ V contains exactly one of e or f , then all its 6 element

subsets are cycles. Since each 5-subset is contained in exactly one block,

no two blocks intersect in more than four elements and since |C| = 6 > 5,

it must be contained in a unique block. Thus, if C, C′ ⊂ V, then every

6-subset of C ∪ C′ is also in V and otherwise C ∩ C′ ≤ 4, so these circuits

satisfy Lemma 4.0.3.

LetM be the paving matroid defined above. It remains for us to count

B
f
e (1), Be

f (1), Be f (1) and Be f (1). Again, for disjoint sets C, D ⊆ E, let BD
C

be the bases containing C but disjoint from D and similarly for VD
C . In

other words, BD
C is the collection of sets generated by yCBD

C .

Let ae f be a 6-subset of E that contains both e and f . Then it is con-

tained in a unique block containing both e and f . Thus all such sets are

bases so

|Be f (1)| =

(

22

4

)

= 7315.

To find |B
f
e | we count the sets containing e and not f and subtract the

cycles contained in blocks, V
f
e . To count these we count Ve and subtract
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Ve f . There are (23
4 ) 5-subsets containing e and each block V ∈ Ve contains

(7
4) of these, so

Ve =

(

23

4

)

/

(

7

4

)

= 253.

Similarly, there are (22
3 ) 5-subsets containing e and f and each block V ∈

Ve f contains (6
3) of these, so

Ve f =

(

22

3

)

/

(

6

3

)

= 77,

so that

V
f
e = Ve − Ve f = 253− 77 = 176.

Every one of the (7
5) 6-subsets containing e of a block of V

f
e is a circuit

by definition and they are each contained in a unique block, so there

176(7
5) = 3696 of these. The total number of sets containing e and not f is

(22
5 ) and by symmetry |B

f
e | = |B

e
f |, so

|B
f
e | = |B

e
f | =

(

22

5

)

− 3696 = 22638.

Finally, every 6-subset not containing e or f is a basis unless it is con-

tained in a block of V
f
e or V e

f . In each V ∈ V
f
e ∪̇V e

f there are (7
6) such

circuits and previously we showed that |V
f
e | = |V

e
f | = 176, so

|Be f | =

(

22

6

)

− 2 · 176

(

7

6

)

= 72149.

Evaluating the Rayleigh difference,

∆B(1) {e, f}

=B
f
e (1)Be

f (1)− Be f (1)Be f (1)

=226382− 7315 · 72149 = −15290891 < 0.

Thus, this paving matroid is not B-negatively correlated and hence not

B-balanced.
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4.4 B-Rayleigh paving matroids are I-Rayleigh

Theorem 4.4.1. IfM is a paving matroid then

∆I{e, f} ≫ ∆B{e, f}. (4.4.1)

Proof. We may assume by Proposition 3.3.2 that {e, f} is independent and

co-independent. Let r be the rank of M and let U = I − B. Since M is

paving, U generates all subsets of E with up to r− 1 elements. Let

Un = e1 + e2 + · · ·+ en,

in which

ei = ∑
X

yX ,

summing over all subsets X of size i of E−{e, f}. Thus, U
f
e = Ue

f = Ur−2,

Ue f = Ur−3 and Ue f = Ur−1.

Rewriting (4.4.1) gives

∆I{e, f} − ∆B{e, f}

= (B
f
e + Ur−2)(Be

f + Ur−2)− (Be f + Ur−3)(Be f + Ur−1)− (B
f
e Be

f − Be f Be f )

=
(

B
f
e Ur−2 + Be

f Ur−2 + ∆U{e, f}
)

−
(

Be f Ur−1 + Be f Ur−3

)

,

(4.4.2)

in which ∆U {e, f} = (Ur−2)
2 −Ur−1Ur−3.

Lemma 4.4.2. ∆U {e, f} = er−2Ur−1−Ur−2er−1
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Proof. (of Lemma 4.4.2)

∆U {e, f} =(Ur−2)
2 −Ur−1Ur−3

=(er−2 + Ur−3)Ur−2 − (er−1 + Ur−2)Ur−3

=er−2Ur−2 + Ur−3Ur−2− er−1Ur−3−Ur−2Ur−3

=er−2Ur−2− er−1Ur−3

=er−2Ur−2− er−1Ur−3 + (er−2er−1− er−2er−1)

=er−2(Ur−2 + er−1)− er−1(Ur−3 + er−2)

=er−2Ur−1− er−1Ur−2

Let yX be a monomial of B
f
e + Be

f . Then at most one of X ∪ e and X ∪ f

are circuits (in particular, if its coefficient is 2 then both X ∪ e and X ∪ f

are bases). Let Ar−1 be the generating polynomial for the sets X and let

Dr−1 generate the (r − 1)-sets, Y, such that Y ∪ e and Y ∪ f are circuits.

Thus,

B
f
e + Be

f = Ar−1− Dr−1 + er−1.

Substituting into (4.4.2) and rearranging, we wish to show that

Ar−1Ur−2− Dr−1Ur−2 + er−1Ur−2 + ∆U{e, f} ≫ Be f Ur−1 + Be f Ur−3,

(4.4.3)

By Lemma 4.4.2 this simplifies to

Ar−1Ur−2−Dr−1Ur−2 + er−2Ur−1 ≫ Be f Ur−1 + Be f Ur−3.

Let yα be one of the monomials appearing in (4.4.2). It is enough to

show that

[yα]
(

B
f
e Ur−2 + Be

f Ur−2 + ∆U{e, f}
)

≥ [yα]
(

Be f Ur−1 + Be f Ur−3

)

.

(4.4.4)
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Suppose that α(g) = 2 for some g ∈ E− {e, f}. We contract this element

and apply the induction hypothesis to conclude that,

[yα] (∆I(M){e, f} − ∆B(M){e, f})

=
[

yαy−2
g

]

(∆I(M/g){e, f} − ∆B(M/g){e, f}) ≥ 0.

If α(g) = 0 for some g ∈ E−{e, f} then we delete this element and apply

the induction hypothesis to conclude that

[yα] (∆I(M){e, f} − ∆B(M){e, f})

= [yα] (∆I(M\ g){e, f} − ∆B(M\ g){e, f}) ≥ 0.

Thus we only need to prove (4.4.4) for the unique monomial yα such that

α(g) = 1 for all g ∈ E− {e, f}.

It suffices to show that

(er−2 − Be f )Ur−1 ≫ Dr−1Ur−2 (4.4.5)

and

Ar−1Ur−2 ≫ Be f Ur−3. (4.4.6)

Consider yα in (4.4.5). Let (D, Q) be a pair of type Dr−1Ur−2. That is,

D∪̇Q = E− {e, f}, D ∪ e and D ∪ f are circuits of size r and |Q| ≤ r− 2.

Similarly, let (C, R) be a pair of type (er−2 − Be f )Ur−1. That is C∪̇R =

E− {e, f}, C ∪ {e, f} is a circuit of size r and |R| ≤ r− 1.

Let (X∪̇Y, E) be a bipartite graph with pairs of type Dr−1Ur−2 in the

set X and pairs of type (er−2 − Be f )Ur−1 in the set Y. Put an edge from

(D, Q) to (C, R) if there exists g ∈ D so that (C, R) = (D − g, Q ∪ g).

Suppose that D− g is a basis ofM/e f . Then (D− g)∪ e f is a basis ofM.

Since D∪ e and D∪ f are circuits, Lemma 4.0.5 implies that every r-subset

of D ∪ e f is a circuit. This contradicts (D− g)∪ e f being a basis, so D− g

is always a circuit of M/e f . So the degree of (D, Q) must be r − 1. On
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the other hand |R| ≤ r− 1 and so there at most r − 1 edges from (C, R).

Now the number of edges in (X∪̇Y, E) is (r− 1)|X| = |E| ≤ (r− 1)|Y|, so

[yα](er−2 − Be f )Ur−1 ≥ [yα]Dr−1Ur−2,

as required for (4.4.5).

X = Dr−1Ur−2

(D, Q)

= r− 1
Y = (er−2 − Be f )Ur−1

r− 1 ≥

(C, R)
= (D− g, Q + g)

Figure 4.1: A visualization of the proof of (4.4.5)

Similarly, consider the monomial yα in (4.4.6). Let (J, Q) be a pair of

type Be f Ur−3. That is, J∪̇Q = E− {e, f}, J is a basis ofM\ e f and |Q| ≤

r− 3. Let (A, R) be a pair of type Ar−1Ur−2. That is, A∪̇R = E− {e, f},

A ∪ e and A ∪ f are bases and |R| ≤ r− 2.

As before, let (X∪̇Y, E) be the bipartite graph with pairs of type

Be f Ur−3 in the set X and pairs of type Ar−1Ur−2 in the set Y. Put an edge

from (J, Q) to (A, R) if there exists g ∈ J so that (A, R) = (J − g, Q ∪ g).

By Lemma 4.0.5, there is at most one g ∈ J, such that (J − g) ∪ e is a

circuit and similarly for f . Therefore there are at least r − 2 elements of

J whose removal yields a set of type Ar−1. On the other hand (A, R) is

adjacent to at most |R| ≤ r− 2 pairs of type Be f Ur−3. Thus (X, Y) has at

least (r− 2)|X| edges but at most (r− 2)|Y| edges. If r > 2 then

[yα]Ar−1Ur−2 ≥ [yα]Be f Ur−3,

and if r ≤ 2, then (4.4.6) is trivial.

Notice that in Theorem 4.4.1, no assumptions were made on the values

of the ygs. For this reason there are corollaries for B and I-balance.
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X = Be f Ur−3

(J, Q)

≥ r− 2
Y = Ar−1Ur−2

r− 2 ≥

(A, R)
= (J − g, Q + g)

Figure 4.2: A visualization of the proof of (4.4.6)

Corollary 4.4.3. LetM be a paving matroid.

(a) The matroidM is I-Rayleigh if and only if it is B-Rayleigh

(b) IfM is B-balanced, then it is I-balanced

(c) IfM is B-negatively correlated, then it is I-negatively correlated

Proof. By Proposition 2.3.3 I-Rayleigh implies B-Rayleigh. For (a), (b) and

(c), the other direction follows from Theorem 4.4.1.

Theorem 4.4.1 and Theorem 4.2.1 combined with Lemma 4.0.7 and

Proposition 3.1.5 yield the following.

Corollary 4.4.4. Let M be a sparse paving matroid. Then M is B, I and S-

Rayleigh.

Proof. Proposition 3.1.4 implies that M is B-Rayleigh if and only if M∗

is B-Rayleigh. By Lemma 4.0.7, M∗ is sparse paving so that we can

apply Corollary 4.4.3. Thus, M∗ is B-Rayleigh if and only if M∗ is I-

Rayleigh. Proposition 3.1.5 implies that M∗ is I-Rayleigh if and only if

M is S-Rayleigh. Finally, M is indeed B-Rayleigh, by Theorem 4.2.1,

and the three Rayleigh properties have been shown to be equivalent, as

required.

Again, Theorem 4.4.1 and Theorem 4.2.1 are combined, now to show

that the I-Rayleigh difference for a sparse paving matroid has positive

coefficients.
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Corollary 4.4.5. LetM be a sparse paving matroid. Then ∆I {e, f} has positive

coefficients.

Proof. By Theorem 4.2.1, ∆B {e, f} has positive coefficients and by Theo-

rem 4.4.1, ∆I {e, f} − ∆B {e, f} does as well, as desired.

The results of this section are used to further progress on a conjecture

of Semple and Welsh addressed in the next section.

4.5 Rank three matroids revisited

Semple and Welsh [4] ask a number of questions, some of which have

been answered. The last of these has been partially addressed as a result

of Section 4.4.

Conjecture 4.5.1 (Semple and Welsh [4]). Rank three matroids are I and S-

negatively correlated.

By Theorem 3.5.1, they are I-Rayleigh, so only half the question re-

mains. The following observation enables us to count the results of this

chapter as further progress on Semple and Welsh’s question.

Firstly, Corollary 3.5.2 can be re-derived from Corollary 4.4.3 whilst

Theorem 3.5.1 is completely avoided.

Proposition 4.5.2. Rank three matroids are I-Rayleigh.

Proof. Let M be a matroid of rank at most three and suppose all proper

minors of the matroidM are I-Rayleigh. By Corollary 3.2.3,M is simple,

so it has rank at least two. IfM is rank two then it is uniform and there-

fore I-Rayleigh. If M is rank three then it is paving. By Theorem 3.4.2 it

is B-Rayleigh and by Corollary 4.4.3 it is I-Rayleigh.

It is not yet known whether or not matroids of at most rank three are

S-Rayleigh; however, by the same argument as Proposition 4.5.2, matroids

of rank at most two are S-Rayleigh and otherwise, we are only concerned
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with simple rank three matroids. If M is sparse, this combined with

Corollary 4.4.5 implies that M is also S-Rayleigh. This raises the ques-

tion, when is a paving matroid not sparse? Proposition 4.5.3 provides

an answer for simple rank three matroids. Note that in general, a rank r

paving matroid is not sparse if and only if it contains a Ur−1,r+1 restriction

minor.

Proposition 4.5.3. A simple rank three matroid is not sparse paving if and only

if it contains a U2,4 restriction minor.

Proof. Clearly a rank three matroid is simple if and only if it is paving. Let

M be a non-sparse, rank three paving matroid with 3-circuits C and C′

such that |C∆C′| = 2. By Lemma 4.0.3, every 3-subset of the four element

set, C ∪ C′, is a circuit, thusM\ (E− (C ∪ C′)) is U2,4.

The converse clearly holds since the three element subsets of a U2,4

submatroid violate the sparseness condition.

By Proposition 4.5.2 and Corollary 4.4.5, a simple rank three matroid

with no U2,4 restriction minor is sparse paving and thus it is both I and

S-Rayleigh. The following conjecture implies a positive answer to Con-

jecture 4.5.1.

Conjecture 4.5.4. LetM be a simple rank three matroid containing a restriction

isomorphic to U2,4. ThenM is S-Rayleigh.

67



Chapter 5

The I-Rayleigh conjecture for

graphs

5.1 Graph theory

For our purposes, most properties of graphs are inherited from their ma-

troid superclass; however, there are one or two definitions and a small

amount of notation that is specific to graphs.

Let G = (V(G), E(G)) be a connected graph with no loops. Let the

spanning forests be F (G) = I (M(G)) and their generating polynomial

be F(G; y) = I(M(G); y). Similarly, we replace B and B by T and T,

respectively. An edge, e ∈ E, is written uev or veu where u, v ∈ V are the

ends of e. As usual, the G is dropped whenever possible. We may also

write G = F(G; y).

Let a cycle containing a set X be called an X-cycle.

In this chapter we make use of edge orientation, which is a property

that the graphic matroid M(G) does not retain.

Definition 5.1.1 (orientation). Let G be a graph with an edge, uv. An orien-

tation of uev designates u to be the tail and v to be the head of e (to orient the

other way, write veu). A graph is oriented if all of its edges are oriented. Let D
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be the signed incidence matrix of G. Then for an edge e incident with vertex v,

Dve =

{

1, v is the head of e

−1, v is the tail of e
.

5.2 The conjecture

Conjecture 5.2.1. Graphs are I-Rayleigh.

This conjecture was written down as early as 1993 by Kahn [14] and

published in 2000 [11]. Neither of these papers make a direct attempt to

solve the conjecture. Wagner [28], and Semple and Welsh [4] published

similar material circa 2008 where they prove the result for two-sums as in

Section 3.2.

In its weaker form – graphs are I-negatively correlated – it has been

mentioned in Pemantle’s survey (credited as a personal communication

from Winkler) [20], and Grimmett and Winkler [7]. In [7], small exam-

ples are tested for I-negative correlation. All graphs on up to eight ver-

tices or nine vertices and 18 edges do indeed satisfy the condition. More

generally, in 2008 Gordon Royle verified that all matroids on up to nine

elements are I-negatively correlated (Wagner, personal communication).

Although these results provide some evidence for a positive answer

to Conjecture 5.2.1, one should consider that the same things hold for

matroids – two-sums of I-Rayleigh matroids are I-Rayleigh, small ma-

troids are I-negatively correlated. It can be shown, in fact, that if Con-

jecture 5.2.1 is true, then I-negative correlation for graphs is not weaker

than the I-Rayleigh property. This is proved for the spanning tree case

by Wagner and Choe [31] and Kahn and Neiman mention that it holds

for spanning forests. We present a proof of this, similar to the one in

[31] (partly from conversations with Mathieu Guay-Paquet and Wagner.

Also independently by Cocks [5]).

More generally, let M be a member of a class of matroids where I-

negative correlation and the I-Rayleigh property are equivalent. The idea
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u

v

gM

Q

← k→
↑
a
↓

Figure 5.1: The graphsM and Q to be two-summed along g. The graph

Q consists of the edge ugv and k edge-disjoint u, v-paths, each of length

a.

is to construct a matroid M [y] of the same class, with the property that

if M [y] is not I-negatively correlated, then M is not I-Rayleigh. This is

done before the proof.

Let Q =
{

q : q = k
2a−1 , k ≥ 0, a ≥ 1, k, a ∈ Z

}

and for q = k
2a−1 ∈ Q,

let Q be the graphic matroid of k edge-disjoint uv-paths (u, v distinct

vertices), each of length a plus the edge g = ugv, see Figure 5.1. Notice

that, by removing edges, there are 2a − 1 ways of disconnecting each uv-

path. The element g is in the closure of any spanning forest of Q\ g such

that exactly one uv-path is intact. There are k(2a − 1)k−1 of these. On

the other hand, there are (2a − 1)k spanning forests of Q\ g that do not

contain g in their closure. Therefore I(Q\ g) has k(2a − 1)k−1 + (2a − 1)k

terms and I(Q/g) has (2a − 1)k terms. Let Q = I(Q). Then

q =
k

2a − 1
=

k(2a − 1)k−1

(2a − 1)k
=

Qg(1)−Qg(1)

Qg(1)

=
| {F : F is a spanning forest of Q\ g, g 6∈ cl(F)} |

| {F : F is a spanning forest of Q\ g, g ∈ cl(F)} |
.

Consider an element g ofM. We assumeM has neither loops nor co-

loops. LetM [Q] =M⊕g Q. Put M = I(M; y) so that by Lemma 2.1.3,
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we can define

M [Q] = I(M [Q]) =QgMg + QgMg −QgMg

=QgMg + (Qg −Qg)Mg

=Qg(Mg + ygMg),

setting yg =
Qg−Qg

Qg
. Thus, for this choice of yg, M [Q] = QgM.

For X = {g1, g2, . . . , gn} ⊆ E, and corresponding qis and Qis, define

M
[

QX
]

=M⊕g1
Q1 ⊕g2 · · · ⊕gn Qn.

Setting yg =
Qg−Qg

Qg
for each g,Q pair from X, let

M
[

QX
]

= I
(

M
[

QX
])

=

(

∏
g,Q

Qg

)

M,

in which the product is over the pairs g, Q for each g ∈ X. Evidently, qs

and Qs can be chosen according to the choices for ygs (assuming yg ∈ Q)

or vice versa.

Hence, if y = q for some q ∈ QE−{e, f } and corresponding matroids,

Q, then


 ∏
g,Q:g∈E−{e, f }

Qg(1)





2

∆M(y = q) {e, f} = ∆M
[

QE−{e, f }
]

(1) {e, f} .

Proposition 5.2.2. With the above notation, if every matroid of the formM
[

QE−{e, f }
]

is I-negatively correlated, thenM is I-Rayleigh.

Proof. Suppose M is not I-Rayleigh. Then there exists a real evaluation

ỹ and distinct elements e and f such that ∆M(ỹ) {e, f} < 0. Since Q is

dense in the positive reals, there exists q ∈ QE such that ∆M(q) {e, f} <

0. We also have

∆M
[

QE−{e, f }
]

(1) {e, f} =

(

∏
g,Q

Qg(1)

)2

∆M(q) {e, f} < 0,

so thatM
[

QE−{e, f }
]

is not I-negatively correlated, as desired.
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Corollary 5.2.3. Graphs are all I-negatively correlated if and only if they are all

I-Rayleigh.

Proof. Let M be a graphic matroid. For distinct e, f ∈ E(M), and

q ∈ QE−{e, f }, the matroids Q corresponding to each q are graphic and

thus M
[

QE−{e, f }
]

is graphic. Therefore, if for each choice of e and f ,

M
[

QE−{e, f }
]

is I-negatively correlated for all q ∈ QE−{e, f }, then M is

I-Rayleigh by Proposition 5.2.2.

Further evidence for Conjecture 5.2.1 is found by Wagner. He shows

(personal communication) that the I-Rayleigh difference has a special

form for small graphs, which, if true for all graphs, would imply Conjec-

ture 5.2.1. In this chapter we show that the form holds for more graphs

and also for series parallel graphs.

The fact that graphs are B-Rayleigh, goes back to Kirchhoff’s law for

electrical networks and Rayleigh monotonicity, as described in Section 2.3.

Proofs of this have been published several times. Brooks, Smith, Stone

and Tutte (BSST) [21] prove that ∆T {e, f} is the square of a polynomial.

Wagner et. al [10] prove the same identity using elementary combina-

torics. As a result, ∆T {e, f} ≥ 0 whenever the ygs are real, implying that

graphs are B-Rayleigh.

Notation is introduced in order to describe the BSST identity. Let the

graph G have an arbitrary orientation and let e and f be distinct edges of

G. Let χ ⊆ F (G \{e, f}) be the collection of sets A, such that A ∪ e and

A ∪ f are both spanning trees. Define

χ+ = ∑
A

yA,

summing over members of χ where e and f have the same orientation

around the unique cycle of A ∪ e f . Define

χ− = ∑
A

yA,

72



5.2. THE CONJECTURE

summing over members of χ where e and f have different orientations

around the unique cycle of A ∪ e f .

Theorem 5.2.4. With the above notation,

∆T{e, f} = (χ+ − χ−)2.

Of course, since ∆T{e, f} is the square of a polynomial, then ∆T{e, f} ≥

0 for any (real) evaluation of the ygs.

Wagner’s conjecture is that for any graph G,

∆F{e, f} = ∑
S⊆E

yS A(S)2,

in which A(S) is some polynomial depending on S. We give some nota-

tion to define this formally.

Definition 5.2.5 (S-sets, A-sets and the signs c(S, C)). Let G be a graph.

Let S ⊆ 2E−e f be the collection of those sets S ⊆ E − e f such that S ∪ e f is

contained in some cycle of G. For S ∈ S , let A(S) ⊆ 2E−e f be the collection

of those spanning forests A ⊆ E − e f , such that S ∪ e f ⊆ C ⊆ A ∪ e f for a

unique cycle, C. Let c(S, e, f , C) = ±1, depending on S ∈ S and some cycle C

containing S ∪ e f . We write c(S, C) when e and f are understood and we use a

subscripted G wherever the graph G needs to be specified, as in AG(S).

We refer to the elements of S and A(S) as S-sets and A-sets, respec-

tively. Throughout the rest of this chapter, given an S ∈ S and A ∈ A(S),

C is the unique cycle such that S ∪ e f ⊆ C ⊆ A ∪ e f unless otherwise

noted.

Conjecture 5.2.6 (Wagner (personal communication), Sum of Squares).

Let G be a graph with distinct edges e and f . Then for some choice of the signs

c(S, C),

∆F{e, f} = ∑
S∈S

yS



 ∑
A∈A(S)

c(S, C)yA−S





2

. (5.2.1)
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If G satisfies Conjecture 5.2.6 we say G (or F, or ∆F) is SOS (or ∆-SOS).

Recall from Proposition 3.1.1, the formula

∆F{e, f} = ∆Fg{e, f}+ ygΘF{e, f |g} + y2
g∆Fg{e, f}. (5.2.2)

This is used again, to show that if G is SOS then so are its minors.

Proposition 5.2.7. Let G be a graph with distinct edges e, f and g. If ∆F{e, f}

satisfies Conjecture 5.2.6 then so do ∆Fg{e, f} and ∆Fg{e, f}.

Proof. We may assume that g is not a loop. By equation (5.2.2), ∆Fg{e, f} =

limyg→0 ∆F{e, f}. To show that this satisfies the SOS form for ∆Fg use

lim
yg−→0

∆F{e, f} = ∑
S∈SG
g 6∈S

yS









∑
A∈AG(S)

g 6∈A

c(S, C)yA−S









2

. (5.2.3)

An S-set of G \ g is contained in an e f -cycle of G \ g. Clearly SG\g ⊆ {S :

S ∈ SG, g 6∈ S}, the set indexing the outer sum of (5.2.3). On the other

hand, given a set S̃ ∈ {S : S ∈ SG, g 6∈ S} − SG\g, there are no e f -cycles

containing S̃ and not g. Thus, the set
{

A ∈ AG(S̃) : g 6∈ A
}

is empty.

Therefore, together, the sets indexing the sums in (5.2.3) are equivalent to

S-sets and A-sets of G \ g.

The proof for ∆Fg is slightly trickier due to the fact that when g is

contracted, two cycles may be created from one. By equation (5.2.2),

limyg→∞ y−2
g ∆F{e, f} = ∆Fg{e, f} and we show that this satisfies the SOS

form for ∆Fg. Since any term of the SOS form of ∆F which does not

contain y2
g disappears, we are left with

lim
yg−→∞

y−2
g ∆F{e, f} = ∑

S∈SG
g 6∈S

yS









∑
A∈AG(S)

g∈A

c(S, C)yA−(S∪g)









2

. (5.2.4)

Sets S ∈ SG such that g is a chord of every cycle containing S ∪ e f are

ignored. No set A ∈ AG(S) can contain g, since otherwise A ∪ e f would
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not have a unique cycle. Thus, the set indexing the outer sum of (5.2.4)

can be replaced by

{S ∈ SG : g 6∈ S, ∃C ⊇ S ∪ e f such that g is not a chord of C}

which is equal to SG/g. It remains to be shown that for S′ ∈ SG/g,

AG/g(S′) =
{

A ∈ AG(S′) : g ∈ A
}

. (5.2.5)

Let S′ ∈ SG/g and A′ ∈ AG/g(S′) and let A = A′ ∪ g. Since A′ ∪ e

and A′ ∪ f are independent in G/g, A ∪ e and A ∪ f are independent

in G. Furthermore there is a unique cycle C ⊆ A ∪ e f containing S′, so

A ∈ AG(S′) and g ∈ A.

Conversely, let A ∈ AG(S′) with g ∈ A. Clearly A− g ∈ AG/g(S′),

since g cannot be a chord of C ⊆ A ∪ e f . Therefore SG/g and AG/g(S′)

for S′ ∈ SG/g are exactly those sets indexed by (5.2.4).

The SOS form also holds by taking direct sums.

Lemma 5.2.8. Let H and K be graphs for which the SOS form holds and let G

be their direct sum. Then G is SOS for some choice of signs.

Proof. If e ∈ E(H) and f ∈ E(K), then ∆F(G) {e, f} = 0, by Lemma 3.2.1.

This is consistent with the fact that there are no cycles through e and f and

hence no S-sets. Let G = I(G), H = I(H) and K = I(K). If e, f ∈ E(H)

then by Lemma 3.2.1

∆G {e, f} =K2∆H {e, f}

= ∑
S∈SH

yS



 ∑
A∈AH(S)

c(S, C)yA−SK





2

. (5.2.6)

Since an e f -cycle of G cannot contain an edge of K, the S-sets of G are

contained in H, which is consistent with (5.2.6). Given an S-set of G,

AG(S) = AH(S) ∨F (K),

as required.
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5. THE I-RAYLEIGH CONJECTURE FOR GRAPHS

Much of the evidence for Conjecture 5.2.6 comes from making edu-

cated guesses for the signs and testing the SOS form on small examples

using Maple. So far we have shown that all graphs on up to seven ver-

tices satisfy the SOS form for all distinct pairs of edges. Ad hoc modifi-

cations to the signs have enabled us to prove it for the cube ((K2)
3) and

the Möbius ladder (V8) (personal communication from Wagner). Other

graphs of that size for which we have not yet found signs exhibit discrep-

ancies between the SOS form and the I-Rayleigh difference of only a few

terms, on the order of tens out of tens of thousands.

Example 5.2.9. Let G = ({a, b, c, d}, {1, 2, 3, 4, 5, 6}) so that G (Figure 5.2) is

isomorphic to K4 and has incidence matrix

1 2 3 4 5 6

a 1 1 1 0 0 0

b 1 0 0 1 1 0

c 0 1 0 1 0 1

d 0 0 1 0 1 1

where we have indicated vertex and edge labels for rows and columns.

Figure 5.2: K4 in Example 5.2.9
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For the sake of brevity, commas and curly brackets are dropped for

edge sets. The two cycles through edges 1 and 2 are Cα := 124 and Cβ :=

1256 which means that the S-sets are the subsets of these not containing

1, 2. That is

S = {∅, 4, 5, 6, 56} . (5.2.7)

The A-sets depend on the cycles through 12 as well, so for the cycle

Cα they are

4, 43, 45, 46,

and the A-set for the cycle Cβ, is simply 56. Let A(Cα) = y4(y1 + y3 +

y5 + y6) and let A(Cβ) = y5y6. Now the SOS form for ∆F{1, 2} is

(

c(∅, Cα)A(Cα) + c(∅, Cβ)A(Cβ)
)2

+y4

(

c(4, Cα)y−1
4 A(Cα)

)2

+y5

(

c(5, Cβ)y−1
5 A(Cβ)

)2

+y6

(

c(6, Cβ)y−1
6 A(Cβ)

)2

+y5y6

(

c(56, Cβ)(y5y6)
−1A(Cβ)

)2
.

As it turns out, if we let c(S, C) = 1 for all S, C ⊆ E, this is indeed equal

to ∆F{1, 2}. Unfortunately, it is not usually so easy.

5.3 Testing small examples

Maple was used to test Conjecture 5.2.6 by constructing the sum of squares,

making an educated guess for the signs and subtracting it from the I-

Rayleigh difference. To do this we produced the spanning forest generat-

ing polynomial, generated all cycles through our choice of edges e and f ,

and used these to find S-sets and A-sets, similar to Example 5.2.9.
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5. THE I-RAYLEIGH CONJECTURE FOR GRAPHS

The spanning forest generating polynomial must be found for not only

the original graph G, but also G/C, for each cycle C containing e and f .

The quickest way was to use a recursive algorithm employing the formula

F(G) = F(G \ g) + ygF(G/g), (5.3.1)

where g is not a loop and if all edges of G are loops then F(G) = 1.

To find the cycles containing e and f we used Maple’s GraphTheory:-

CycleBasis command to find a basis for the cycle space which is used to

generate all even subgraphs of G. From these we extracted the cycles and

eliminated any which did not contain e and f . This method is adequate

for K7, but K8 has too large a cycle space.

With these tools, finding the A-sets and S-sets is simple. The generat-

ing polynomial for all sets containing a unique cycle, C, is yCF(G/C), so

the A-sets with C ⊆ A ∪ e f are

yCF(G/C).

The S-sets are simply the subsets of these cycles minus e and f .

A current version of the code and the best guess for the signs is avail-

able at http://www.math.uwaterloo.ca/∼atericks/ . As a result of these

tests we have the following theorem.

Theorem 5.3.1. Every simple graph on at most seven vertices satisfies Conjec-

ture 5.2.6

Using Theorem 3.2.2 on two-sums we get an easy corollary.

Corollary 5.3.2. Every graph on at most seven vertices is I-Rayleigh

5.3.1 Signs c(S, C)

Wagner’s signs are described here with a somewhat accidental modifica-

tion which causes them to satisfy ∆K7 {e, f} both for adjacent and non-

adjacent pairs of edges e, f . Let G be a graph on n vertices and let M be its
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signed incidence matrix in the following canonical form. Given some or-

dered labeling of the vertices, V = v1, v2, . . . , vn, orient the edge g = vigvj

with i < j, vi as the tail and vj as the head of g. M is the incidence matrix

such that its rows and columns are in lexicographic order.

Example 5.3.3. Let G = ({a, b, c, d}, {ab, ac, ad, bc, bd, cd}), then its signed

and labelled incidence matrix is

ab ac ad bc bd cd

a −1 −1 −1 0 0 0

b 1 0 0 −1 −1 0

c 0 1 0 1 0 −1

d 0 0 1 0 1 1

If S is an S-set and C is a cycle containing S ∪ e f , the sign c(S, C)

is built in two steps (see Example 5.3.4 for an illustrated example). Let

R ⊆ S be the set of edges of a connected component of S. Let g ∈ R be

the unique representative of R, chosen with the following priority: first e,

then f and followed by lexicographic order. Let

s = ∏
g∈R

o(g), (5.3.2)

where o(g) = 1 if g and e have the same orientation around C and other-

wise o(g) = −1.

Next, we consider the sign of a permutation, p, of the representatives

chosen above, where the ordering (e, f , lex) is the identity. The permu-

tation p is given by the order of the components of S around C in the

direction of the orientation of e. Its sign is t = (−1)i(p) where i(p) is the

number of inversions of p according to the order imposed by the identity.

Put c(S, C) = st.

Remark. In Proposition 5.2.7 we showed that if ∆F is SOS, then ∆Fg and

∆Fg are also SOS, by making an implicit choice about the signs. Notice

that in (5.2.3) and (5.2.4), the signs for c(S, C) when g ∈ S do not appear.

Thus, the signs we use in our experiment satisfy this choice of signs.
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Example 5.3.4. Let S be an S-set contained in the cycle C so that the compo-

nents of S as they appear around C in the direction of e are e f 15, 78, 29, 4.

They are illustrated in Figure 5.3, and listed so that the edges of each

component are in the (e, f , lex)-order. The component representatives are

e, 7, 2, 4 and their signs are 1,−1,−1, 1, respectively. They form the per-

mutation p = (e724) with respect to the identity, (e247). The number of

inversions is 2, so in this example

c(S, C) = (1)(−1)(−1)(1)(−1)2 = 1.

Figure 5.3: Dotted lines represent edges of C− S, and solid lines are edges

of S. Bold lines are representative edges of connected components of S.

5.4 Series Parallel Graphs

Recall the definition of a series parallel matroid from Section 2.1.4 and

note that series parallel matroids are graphic. Throughout this section let

G = F(G; y), H = F(H; y), K = F(K; y), and G = H⊕gK. The rest of our

labour is dedicated to proving the following theorem.
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Theorem 5.4.1. [E.] Every series parallel graph is SOS.

The proof contains several parts and a couple of tricky calculations.

To make it more readable it is split into several lemmas which are tied

together at the end. Briefly, we prove that if H and K satisfy Conjec-

ture 5.2.6 plus a similar SOS form for (Hg − Hg)Hg and (Kg − Kg)Kg,

then G satisfies both of these SOS forms. This second form is also proved

for series parallel graphs.

Let H and K be SOS graphs such that G = H⊕g K. To prove the SOS

form for ∆G {e, f} there are two cases: either e ∈ E(H) and f ∈ E(K), or

both e, f ∈ E(H). The former is easier to prove and holds for two-sums

in general without any assumptions on (Hg − Hg)Hg or (Kg − Kg)Kg.

Lemma 5.4.2. Let G be as defined above. Then G satisfies the SOS form when

e ∈ E(H) and f ∈ E(K) are edges distinct from g.

Proof. By (3.2.3) from Theorem 3.2.2,

∆G{e, f} = ∆H{e, g}∆K{g, f}. (5.4.1)

We assume that

∆H{e, g} = ∑
SH∈SH

ySH



 ∑
AH∈AH(SH)

c(SH , CH)yAH−SH





2

,

and

∆K{g, f} = ∑
SK∈SK

ySK



 ∑
AK∈AK(SK)

c(SK , CK)yAK−SK





2

,

in which CH is the unique cycle in AH ∪ eg containing SH ∪ eg and simi-

larly for CK.

The product of these is

∑
(SH ,SK)∈
SH×SK

ySH∪SK









∑
(AH ,AK)∈

AH(SH)×AK(SK)

c(SG, CG)y(AH∪AK)−(SH∪SK)









2

, (5.4.2)
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where

c(SG, CG) = c(SH ∪ SK, (CH ∪ CK)− g) := c(SH , CH)c(SK , CK).

It remains for us to convince ourselves that (5.4.2) is the sum of squares

we are expecting, by showing that the outer and inner sums index the S-

sets and A-sets of G. A cycle is an e f -cycle of G if and only if it is the

symmetric difference of an eg-cycle in H and an g f -cycle in K.

We begin by convincing ourselves that the outer sum of (5.4.2) indexes

exactly the S-sets of G. Let SG be an S-set of G, and let SH = SG ∩ E(H)

and SK = SG ∩ E(K). Since SG is contained in an e f -cycle of G, then

SH is contained in an eg-cycle of H and SK is contained in a g f -cycle of

K. Therefore SG = SH ∪ SK is indexed by SH × SK and the outer sum of

(5.4.2) contains at least all of the S-sets of G. On the other hand, suppose

SH ∈ SH and SK ∈ SK. Then clearly SH ∪ SK is contained in an e f -cycle

of G and is thus an S-set of G.

Given (SH , SK) ∈ SH × SK, let (AH , AK) ∈ AH(SH) × AK(SK). We

claim that the A-sets of G are exactly those of the form AH ∪ AK. Notice

that (AH ∪ eg)△(AK ∪ g f ) = (AH ∪ AK) ∪ e f , which by our earlier ob-

servation of e f -cycles, contains a unique e f -cycle containing SH ∪ SK, as

required. The reverse argument holds, so the inner sum indexes exactly

the A-sets of G for each S-set.

The proof of the case in which e, f ∈ E(H) reduces to proving a sum

of squares form for (Kg − Kg)Kg similar to the one in Conjecture 5.2.6.

For any graph G and an edge e let

ΦG{e} = (Ge − Ge)Ge.

Recall equation (3.1.1), relating G with its minors,

∆G{e, f} = ∆Gg{e, f}+ ygΘG{e, f |g}+ y2
g∆Gg{e, f},

where e, f and g are distinct and

ΘG{e, f |g} = G
f g
e Ge

f g + G
eg
f G

f
eg − G

e f
g G

g
e f − Ge f gGe f g.
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It will be necessary to derive an analogous version for ΦG {e} and a

formula relating ΦG to ΦH and ΦK.

Lemma 5.4.3. Let G be a graph with distinct edges e and f .

(a) Then

ΦG{e} = ΦG f {e}+ y f ΨG{e| f} + y2
f ΦG f {e}, (5.4.3)

where

ΨG{e| f} = Ge
f G

f
e + Ge f Ge f − 2G

f
e Ge f . (5.4.4)

(b) If G = H⊕g K with e ∈ E(H), then, by setting yg = Kg/Kg − 1,

ΦG{e} = (Kg)
2ΦH{e}. (5.4.5)

Proof. For part (a) we have Ge = Ge f + y f Ge
f and Ge = G

f
e + y f Ge f so

ΦG{e} =(Ge − Ge)Ge

=(Ge f + y f Ge
f )(G

f
e + y f Ge f )− (G

f
e + y f Ge f )

2

=(Ge f G
f
e − (G

f
e )2)

+ y f (Ge
f G

f
e + Ge f Ge f − 2G

f
e Ge f )

+ y2
f (Ge

f Ge f − (Ge f )
2)

=ΦG f {e}+ y f ΨG{e| f}+ y2
f ΦG f {e},

(5.4.6)

which proves (5.4.3).

For part (b), factoring Kg out of (2.1.7), we have

G =KgHg + KgHg − KgHg

=KgHg + (Kg − Kg)Hg

=Kg(Hg + ygHg),
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in which yg = Kg/Kg − 1. So by (5.4.6)

ΦG{e} =GeGe − (Ge)
2

=Kg(Heg + ygHe
g)Kg(H

g
e + ygHeg)− (Kg(H

g
e + ygHeg))

2

=(Kg)
2
(

ΦHg{e}+ ygΨH{e|g}+ y2
gΦHg{e}

)

=(Kg)
2ΦH{e}.

To express the SOS form for ΦG{e} we need some notation similar to

that defined for Conjecture 5.2.6. Note, however, that Q-sets are required

to be non-empty, unlike S-sets. The significance of this becomes clear

later because the proof of the Φ-SOS form splits into the case where the

Q-sets of G are contained in one factor and when they are not. The latter

requires that Q-sets of each factor combine to make Q-sets of G. The Q-

sets must be non-empty because these cases are disjoint. Similarly for the

Q-sets in the ∆-SOS proof.

Definition 5.4.4 (Q-sets, B-sets, signs d(Q, D)). Let Q ⊆ 2E−e be the collec-

tion of sets Q ⊆ E− e such that Q ∪ e is contained in a cycle of G and Q 6= ∅.

For some Q ∈ Q, let B(Q) ⊆ 2E−e be the collection of those spanning forests

B ⊆ E − e such that B ∪ e contains a unique cycle, D, containing Q ∪ e. Let

d(Q, e, D) = ±1, depending on Q ∈ Q and some cycle D, containing Q. We

write d(Q, D) when e is understood and use a subscripted G wherever the graph

G needs to be specified, as in BG(Q).

We refer to elements of Q and B(Q) as Q-sets and B-sets, respec-

tively, and throughout the rest of this chapter, given a Q-set Q and a B-set

B ∈ B(Q), D is a cycle such that Q ∪ e ⊆ D ⊆ B ∪ e unless otherwise

noted. Henceforth, a graph (or its generating polynomial or I-Rayleigh

difference) satisfying Conjecture 5.2.6 is called ∆-SOS and one satisfying

the conclusion of the following lemma is Φ-SOS.

Lemma 5.4.5. Let G be a series parallel graph with an edge, e. Then with the
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above notation

ΦG{e} = ∑
Q∈Q

yQ



 ∑
B∈B(Q)

d(Q, D)yB−Q





2

. (5.4.7)

Proof. Series parallel graphs are constructed from iterated two-sums of K3

and (K3)
∗ and taking minors of these.

In the case of K3, let the edges be e, f , g so that

ΦK3{e} = (1 + y f + yg + y f yg)(1 + y f + yg)− (1 + y f + yg)
2 =

y f (yg)
2 + yg(y f )

2 + y f yg.

In the case of (K3)
∗,

Φ(K3)
∗ {e} = (1 + y f + yg)(1)− (1)2 = y f + yg.

Both K3 and (K3)
∗ are Φ-SOS. The case for minors is very similar to

Proposition 5.2.7. Assume that G is Φ-SOS. From equation (5.4.3) we have

lim
yg−→0

ΦF {e} = ∑
Q∈QG
g 6∈Q

yQ









∑
B∈BG(Q)

g 6∈B

d(Q, D)yB−Q









2

, (5.4.8)

and

lim
yg−→∞

y−2
g ∆F {e} = ∑

Q∈QG
g 6∈Q

yQ









∑
B∈BG(Q)

g∈B

d(Q, D)yB−(Q∪g)









2

. (5.4.9)

The rest of the argument is almost identical to Proposition 5.2.7 and is

not repeated here. Thus, it is enough to show that the result is preserved

by taking two-sums.
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LetH andK be graphs which are Φ-SOS with e ∈ E(H). By Lemma 5.4.3

we have

ΦG{e} =(Kg)
2
(

HeHe − (He)
2
)

=(Kg)
2 ∑

Q∈QH

yQ



 ∑
B∈BH(Q)

d(Q, D)yB−Q





2

. (5.4.10)

Using the fact that Q = {Q ∈ QH : g ∈ Q} ∪̇ {Q ∈ QH : g 6∈ Q}, we split

this as

(Kg)
2 ∑

Q∈QH
g∈Q

yQ−gyg



 ∑
B∈BH(Q)

d(Q, D)yB−Q





2

(5.4.11)

+(Kg)
2 ∑

Q∈QH
g 6∈Q

yQ



 ∑
B∈BH(Q)

d(Q, D)yB−Q





2

, (5.4.12)

in which yg = Kg/Kg − 1. We want to show that for some choice of the

signs d(Q, D), for Q ∈ QG, that (5.4.10) is the Φ-SOS form for G.

Recall that the closure of a set X ⊆ E is written cl(X). Consider the

terms in (5.4.12) and notice that given Q ∈ QH such that g 6∈ Q,

B(Q) = {B ∈ BH(Q) : g ∈ D}

∪̇ {B ∈ BH(Q) : g ∈ B−D} (5.4.13)

∪̇ {B ∈ BH(Q) : g 6∈ B, g ∈ cl(B)}

∪̇ {B ∈ BH(Q) : g 6∈ B, g 6∈ cl(B)} (5.4.14)

and that the map B 7→ B− g is a bijection from (5.4.13), {B ∈ BH(Q) : g ∈ B− D},

to (5.4.14), {B ∈ BH(Q) : g 6∈ B, g 6∈ cl(B)}. To avoid confusion we make

small steps and write

(Kg)
2 ∑

Q∈QH
g 6∈Q

yQ

(

∑
B:g∈D

℘(B)yg + ∑
B:g∈B−D

℘(B)yg + ∑
B:g 6∈B

℘(B)

)2

, (5.4.15)
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where ℘(B) stands for d(Q, D)yB−(Q∪g), to simplify notation. Making

the substitution for yg and distributing in (Kg)2, the inner sum of (5.4.15)

becomes

∑
B:g∈D

℘(B)(Kg − Kg) + ∑
B:g∈B−D

℘(B)(Kg − Kg)

+ ∑
B:g 6∈B,
g∈cl(B)

℘(B)Kg + ∑
B:g 6∈B

g 6∈cl(B)

℘(B)Kg . (5.4.16)

Since d(Q, D) does not depend on edges in B−D,

∑
B:g 6∈B

g 6∈cl(B)

℘(B) = ∑
B:g∈B−D

℘(B),

and these terms are combined, so (5.4.12) becomes

∑
Q∈QH

g 6∈Q

yQ









∑
B:g∈D

℘(B)(Kg − Kg) + ∑
B:g∈B−D

℘(B)Kg + ∑
B:g 6∈B,
g∈cl(B)

℘(B)Kg









2

.

(5.4.17)

Since

{Q ∈ QG : Q ∩ E(K) = ∅} = {Q ∈ QH : g 6∈ Q},

we want to show that (5.4.17) is equal to

∑
Q∈QG

Q∩E(K)=∅

yQ



 ∑
B∈BG(Q)

d(Q, D)yB−Q





2

, (5.4.18)

for some choice of signs, by showing that their inner sums are equal.

Recall from Section 2.1 that for collections of sets of edges R, S ∈ 2E,

we define

R ∨S = {R ∪ S : R ∈ R, S ∈ S } .
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The inner sum of (5.4.18) breaks up similarly to (5.4.17). Let Q ∈ QG be

such that Q∩ E(K) = ∅. Then any set B ∈ BG(Q) is in exactly one of the

following cases:

(i) B1 = {B− g : B ∈ BH(Q), g ∈ D} ∨ (F (K\ g)−F (K/g)); or

(ii) B2 = {B ∈ BH(Q) : g 6∈ B, g 6∈ cl(B)} ∨F (K\ g); or

(iii) B3 = {B ∈ BH(Q) : g 6∈ B, g ∈ cl(B)} ∨F (K/g).

That is, BG(Q) = B1∪̇B2∪̇B3. Figure 5.4 is an illustration of what mem-

bers of these three sets might look like.

So the inner sum of (5.4.18) is equal to

∑
B∈B1

d(Q, D)yB−Q + ∑
B∈B2

d(Q, D)yB−Q + ∑
B∈B3

d(Q, D)yB−Q.

Clearly, if Q ∈ {Q ∈ QH : g 6∈ Q}, then

∑
BH∈BH(Q)

g∈DH

d(Q, DH)yBH−(Q∪g)(Kg − Kg) = ∑
BG∈B1

d(Q, DG)yBG−Q

and

∑
BH∈BH(Q)
g∈BH−DH

d(Q, DH)yBH−(Q∪g)Kg = ∑
BG∈B2

d(Q, DG)yBG−Q

and

∑
BH∈BH(Q)

g 6∈BH ,
g∈cl(BH)

d(Q, DH)yBH−QKg = ∑
BG∈B3

d(Q, DG)yBG−Q.

We have proved the case in which Q ∈ QG is entirely contained in H.

That is, (5.4.18) is equal to (5.4.12).

88



5.4. SERIES PARALLEL GRAPHS

H K

e g Kg − Kg

(a) B1 = {B− g : B ∈ BH(Q), g ∈ D} ∨

(F (K\ g)−F (K/g))

H K

e g Kg

(b) B2 = {B ∈ BH(Q) : g 6∈ B, g 6∈ cl(B)} ∨

F (K\ g)

H K

e g Kg

(c) B3 = {B ∈ BH(Q) : g 6∈ B, g ∈ cl(B)} ∨

F (K/g)

Figure 5.4: The sets B1,B2,B3
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Turning our attention now to (5.4.11), it remains for us to show that

∑
QG∈QG

QG∩E(K) 6=∅

yQG



 ∑
BG∈BG(QG)

d(QG, DG)yBG−QG





2

=(Kg)
2 ∑

QH∈QH
g∈QH

yQH−gyg



 ∑
BH∈BH(QH)

d(QH , DH)yBH−QH





2

,

for some choice of signs, d(QG, DG). To help remember that Q-sets of

ΦK {g} are non-empty sets contained in g-cycles, rather than e-cycles,

we write QK(g). Factoring yg from the right hand side and noting that

yg(Kg)2 = (Kg/Kg − 1)(Kg)2 = ΦK{g}, we have

ΦK{g} ∑
QH∈QH

g∈QH

yQH−g



 ∑
BH∈BH(QH)

d(QH , DH)yBH−DH





2

= ∑
QK∈QK(g)

yQK



 ∑
BK∈BK(QK)

d(QK , DK)yBK−DK





2

× ∑
QH∈QH

g∈QH

yQH−g



 ∑
BH∈BH(QH)

d(QH , DH)yBH−DH





2

.

Now it is a simple question of grouping index sets and seeing their equal-

ity, namely that

{QG ∈ QG : QG ∩ E(K) 6= ∅} = {QH − g : g ∈ QH ∈ QH} ∨QK(g)

and given QG = (QH − g) ∪QK from the sets above,

BG(QG) = BH(QH) ∨ BK(QK).

This is clear when one follows the argument closely but is made clearer

still by Figure 5.5 and the fact that ∅ 6∈ QK(g).
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Summarizing the two cases we have

∑
QG∈QG

QG∩E(K)=∅

yQG



 ∑
B∈BG(QG)

d(QG, DG)yB−QG





2

,

=(Kg)
2 ∑

QH∈QH
g 6∈QH

yQH−g



 ∑
B∈BH(QH)

d(QH , DH)yB−QH





2

,

when d(QG, DG) = d(QH , DH) for QG = QH and DG = DH. Let d(QK, g, DK)

be the signs for ΦK {g}, then from the second case,

∑
QG∈QG

QG∩E(K) 6=∅

yQG



 ∑
BG∈BG(QG)

d(QG, DG)yBG−QG





2

=ΦK {g} ∑
QH∈QH

g∈QH

yQH−g



 ∑
B∈BH(QH)

d(QH , DH)yB−QH





2

,

where the signs d(QG, DG) = d(QK, g, DK)d(QH , DH) for QG = QK ∪

(QH − g) and DG = (DK ∪ DH)− g.

We use Lemma 5.4.5 to prove that the SOS conjecture holds over two-

sums when both e, f ∈ E(H). It resembles the proof of Lemma 5.4.5 and

it is recommended that the reader understand that one first.

Lemma 5.4.6. Let H and K be graphs which are both Φ-SOS and ∆-SOS with

e, f ∈ E(H), distinct from g. Then H⊕g K is ∆-SOS.

Proof. Let e, f ∈ E(H). By (3.2.4) in Theorem 3.2.2,

∆G{e, f} = (Kg)
2∆H{e, f},

where yg = Kg/Kg − 1.
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e g

H K

Figure 5.5: An element of BG(QG) may look like this. Thin dotted lines

represent edges of QG = (QH− g)∪QK, thick solid lines complete a cycle

DG ⊇ QG + e.

Recall the notation given in Definition 5.2.5 for S-sets, A-sets, the cy-

cles C, and the signs c(S, C). Note that wherever necessary, sets pertain-

ing to a graph are marked by a subscript, for example SH for the S-sets

of H. By the induction hypothesis, we have

∆G{e, f} =(Kg)
2∆H{e, f}

= (Kg)
2 ∑

S∈SH

yS



 ∑
A∈AH(S)

c(S, C)yA−S





2

. (5.4.19)

Using the fact that SH = {S ∈ SH : g ∈ S} ∪̇ {S ∈ SH : g 6∈ S}, (5.4.19)

splits as follows,

=(Kg)
2 ∑

S∈SH
g∈S

yS



 ∑
A∈AH(S)

c(S, C)yA−S





2

(5.4.20)

+(Kg)
2 ∑

S∈SH
g 6∈S

yS



 ∑
A∈AH(S)

c(S, C)yA−S





2

. (5.4.21)
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The goal of this is to show that for some choice of signs, c(S, D), where

S ∈ SG, that (5.4.19) is the ∆-SOS form for G. Similarly to the argument

in Lemma 5.4.5, we develop the inner sum (5.4.21), which is indexed by

S-sets not containing g. Given S ∈ {S ∈ SH : g 6∈ S},

AH(S) = {A ∈ AH(S) : g ∈ C}

∪̇ {A ∈ AH(S) : g ∈ A− C} (5.4.22)

∪̇ {A ∈ AH(S) : g 6∈ A, g ∈ cl(A)}

∪̇ {A ∈ AH(S) : g 6∈ A, g 6∈ cl(A)} , (5.4.23)

and A 7→ A− g is a bijection from (5.4.22), {A ∈ A(S) : g ∈ A− C}, to

(5.4.23), {A ∈ A(S) : g 6∈ A, g 6∈ cl(A)}. Since the signs, c(S, C), do not

depend on edges not in C, we can combine these terms in the sum. First,

split (5.4.21) into

(Kg)
2 ∑

S∈SH
g 6∈S

yS

(

∑
A:g∈C

℘(A)yg + ∑
A:g∈A−C

℘(A)yg + ∑
A:g 6∈C

℘(A)

)2

.

(5.4.24)

where ℘(A) stands for c(S, C)yA−(S∪g). Making the substitution for yg

and distributing (Kg)2, the inner sum of (5.4.24) becomes

∑
A:g∈C

℘(A)(Kg − Kg) + ∑
A:g∈A−C

℘(A)(Kg − Kg)

+ ∑
A:g 6∈A,
g∈cl(A)

℘(A)Kg + ∑
A:g 6∈A

g 6∈cl(A)

℘(A)Kg . (5.4.25)

Since c(S, C) does not depend on edges of A− C,

∑
A:g∈A−C

℘(A) = ∑
A:g 6∈A

g 6∈cl(A)

℘(A), (5.4.26)
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and we combine these terms so that (5.4.21) becomes

∑
S∈SH
g 6∈S

yS









∑
A:g∈C

℘(A)(Kg − Kg) + ∑
A:g∈A−C

℘(A)Kg + ∑
A:g 6∈A,
g∈cl(A)

℘(A)Kg









2

.

(5.4.27)

Now we use the fact that

{S ∈ SG : S ∩ E(K) = ∅} = {S ∈ SH : g 6∈ S}

to show that (5.4.27) is equal to

∑
S∈SG

S∩E(K)=∅

yS



 ∑
A∈AG(S)

c(S, C)yA−S





2

, (5.4.28)

by showing equality of their inner sums, for a certain choice of signs.

Given S ∈ {S ∈ SH : g 6∈ S}, AG(S) = A1∪̇A2∪̇A3, where

A1 = {A− g : A ∈ AH(S), g ∈ C} ∨ (F (K\ g)−F (K/g)) ,

A2 = {A ∈ AH(S) : g 6∈ A, g 6∈ cl(A)} ∨F (K\ g),

A3 = {A ∈ AH(S) : g 6∈ A, g ∈ cl(A)} ∨F (K/g).

Notice that up to labeling, Figure 5.4 is useful here.

So the inner sum of (5.4.28) is equal to

∑
A∈A1

c(S, C)yA−S + ∑
A∈A2

c(S, C)yA−S + ∑
A∈A3

c(S, C)yA−S. (5.4.29)

Clearly, if S ∈ {S ∈ SH : g 6∈ S},

∑
AH∈AH(S)

g∈CH

c(S, CH)yAH−(S∪g)(Kg − Kg) = ∑
AG∈A1

c(S, CG)yAG−S,
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and

∑
AH∈AH(S)
g∈AH−CH

c(S, CH)yAH−(S∪g)Kg = ∑
AG∈A2

c(S, CG)yAG−S, (5.4.30)

and

∑
AH∈AH(S)

g 6∈AH

g∈cl(AH)

c(S, CH)yAH−SKg = ∑
AG∈A1

c(S, CG)yAG−S, (5.4.31)

whenever c(S, CG) = c(S, CH) for CG ∩ E(H) = CH − g. This proves the

case in which S ∈ SG is entirely contained in H. That is, (5.4.28) is equal

to (5.4.21).

The terms indexed by S-sets which contain edges of K, (5.4.20), remain

and we wish to show that

∑
SG∈SG

SG∩E(K) 6=∅

ySG



 ∑
AG∈AG(SG)

c(SG, CG)yAG−SG





2

=(Kg)
2 ∑

SH∈SH
g∈SH

ySH−gyg



 ∑
AH∈AH(SH)

c(SH , CH)yAH−SH





2

,

for some choice of the signs, c(SG , CG).

Factoring yg from the right hand side and noting that yg(Kg)2 =
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(Kg/Kg − 1)(Kg)2 = ΦK{g}, we have

ΦK{g} ∑
SH∈SH
g∈SH

ySH−g



 ∑
AH∈AH(SH)

c(SH , CH)yAH−CH





2

= ∑
Q∈QK

yQ



 ∑
B∈BK(Q)

d(Q, D)yB−D





2

× ∑
SH∈SH
g∈SH

ySH−g



 ∑
AH∈AH(SH)

c(SH , CH)yAH−CH





2

.

Once again, we look at the index sets. Clearly

{SG ∈ SG : SG ∩ E(K) 6= ∅} = {SH − g : g ∈ SH ∈ SH} ∨QK(g).

As for the inner sum, given SG = (SH − g) ∪ Q from the above sets and

recalling that Q 6= ∅,

AG(SG) = {A− g : A ∈ AH(SH)} ∨ BK(Q).

Summarizing the two cases we have

∑
S∈SG

S∩E(K)=∅

yS



 ∑
A∈AG(S)

cG(S, CG)yA−S





2

=(Kg)
2 ∑

S∈SH
g 6∈S

yS



 ∑
A∈AH(S)

cH(S, CH)yA−S





2

,

when cG(S, CG) = cH(S, CH) for CG ∩ E(H) = CH. Let d(Q, g, D) be the
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signs for ΦK {g}. From the second case,

∑
SG∈SG

SG∩E(K) 6=∅

ySG



 ∑
AG∈AG(SG)

cG(SG, CG)yAG−SG





2

=ΦK {g} ∑
SH∈SH
g∈SH

ySH−g



 ∑
AH∈AH(SH)

cH(SH , CH)yAH−SH





2

,

in which the signs cG(SG, CG) = d(Q, g, D)cH(SH , CH) for SG = (SH −

g) ∪Q and CG = (CH ∪ D)− g.

We are finally in a position to prove Theorem 5.4.1 which states that

series parallel graphs satisfy the ∆-SOS form.

Proof. (of Theorem 5.4.1) Let G be a series parallel graph. Then either

there is a series parallel graph H which is a proper minor of G such that

G = H⊕g K where K = K3 or (K3)
∗, or G is a minor of a series parallel

graph obtained this way. By Proposition 5.2.7 we need only prove the

theorem for the first case. By Theorem 5.3.1 the base cases are ∆-SOS.

Suppose that all series parallel graphs which are minors of G are ∆-SOS.

If e ∈ E(H) and f ∈ E(K) then by Lemma 5.4.2, ∆G {e, f} is SOS. If

e, f ∈ E(H) or e, f ∈ E(K) then Lemma 5.4.6 is applicable, since H and

K are Φ-SOS by Lemma 5.4.5. Thus, ∆G {e, f} is SOS.

5.4.1 Two-sums of ∆-SOS graphs

One might have hoped to prove, more generally, that if H and K satisfy

Conjecture 5.2.6, that G = H⊕g K does as well. The problem lies in the

fact that we are not assuming H and K are Φ-SOS. To get around this we

might try to bootstrap this assumption by showing that it follows from

the induction hypothesis. In fact, this looks promising and it is given as

the following conjecture.

Conjecture 5.4.7 (E.). If G is ∆-SOS, then G is Φ-SOS.

97



5. THE I-RAYLEIGH CONJECTURE FOR GRAPHS

Let G be a ∆-SOS graph and suppose that its proper minors are also

Φ-SOS. By (5.4.3) we have

ΦG{e} = ΦG f {e}+ y f ΨG{e| f}+ y2
f ΦG f {e},

where

ΨG {e| f} =Ge
f G

f
e + Ge f Ge f − 2G

f
e Ge f + (Ge f Ge f − Ge f Ge f )

=∆G {e, f}+ 2(Ge f Ge f − G
f
e Ge f ). (5.4.32)

Just as in Lemma 5.4.5, we want to show that

ΦG{e} = ∑
Q∈Q

yQ



 ∑
B∈B(Q)

d(Q, D)yB−Q





2

, (5.4.33)

using slightly different assumptions. They are that

(i)

ΦG f {e} = ∑
Q∈QG\f

yQ



 ∑
B∈BG\f (Q)

d(Q, D)yB−Q





2

,

(ii)

ΦG f {e} = ∑
Q∈QG/ f

yQ



 ∑
B∈BG/ f (Q)

d(Q, D)yB−Q





2

, (5.4.34)

and

(iii)

∆G {e, f} = ∑
S∈SG

yS



 ∑
A∈AG(S)

c(S, C)yA−S





2

.
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We divide (5.4.33) into two cases where Q-sets contain and do not contain

f . In the latter case (5.4.33) becomes

∑
Q∈QG

f 6∈Q

yQ









y f

(

∑
B: f∈D

℘(B) + ∑
B: f∈B−D

℘(B)

)

+ ∑
B: f 6∈B
f 6∈cl(B)

℘(B) + ∑
B: f 6∈B
f∈cl(B)

℘(B)









2

,

(5.4.35)

where ℘(B) stands for d(Q, D)yB−(Q∪ f ). The Q-sets with f give

y f









∑
Q∈Q
f∈Q

yQ− f



 ∑
B∈B(Q)

d(Q, D)yB−Q





2








. (5.4.36)

We are left with comparing the coefficients of two polynomials in y f . The

degree 0 and 2 terms come from (5.4.35), for y0
f ,

∑
Q∈QG

f 6∈Q

yQ









∑
B: f 6∈B
f 6∈cl(B)

℘(B) + ∑
B: f 6∈B
f∈cl(B)

℘(B)









2

,

for y2
f ,

y2
f









∑
Q∈QG

f 6∈Q

yQ

(

∑
B: f∈D

℘(B) + ∑
B: f∈B−D

℘(B)

)2









.

The degree 1 terms are a little more tricky because they involve both
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(5.4.36) and the cross terms of (5.4.35),

y f









∑
Q∈Q
f∈Q

yQ− f



 ∑
B∈B(Q)

d(Q, D)yB−Q





2








+y f









2 ∑
Q∈QG

f 6∈Q

yQ

(

∑
B: f∈D

℘(B) + ∑
B: f∈B−D

℘(B)

)









∑
B: f 6∈B
f 6∈cl(B)

℘(B) + ∑
B: f 6∈B
f∈cl(B)

℘(B)

















(5.4.37)

Having read the SP proofs of the previous section, this probably already

looks promising. It can be shown in a similar manner to the proofs of the

last section that the degree 0 and 2 terms are the SOS forms of ΦG f and

ΦG f , and that the first term of (5.4.37) is the SOS form of ∆G, which ac-

counts for the first part of (5.4.32). What is less fortunate, however, is that

we have a seemingly new generating polynomial identity to prove. The

proof of the following proposition draws on the arguments of this section

and is very similar to several cumbersome proofs already explained in

detail. Thus it is omitted.

Proposition 5.4.8. If

Ge f Ge f − G
f
e Ge f

= ∑
Q∈QG

f 6∈Q

yQ

(

∑
B: f∈D

℘(B) + ∑
B: f∈B−D

℘(B)

)









∑
B: f 6∈B
f 6∈cl(B)

℘(B) + ∑
B: f 6∈B
f∈cl(B)

℘(B)









,

for a certain choice of signs, then Conjecture 5.4.7 is true.
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Index

A-sets, 73

A G (3, 2), 23, 44

B, see bases, counting, measure

B-sets, 84

balance, 3, 40

minors, 24

bases, 13

basis exchange graph, 54

binary, 21

cycles, 19

BSST, 72

circuits, 13

closure, 18

co-graphic, 22

contraction, 13

X-cycle, 68

decomposition, 23

deletion, 13

direct sum, 17

disjoint union, 14

dual, 13, 15

electrical network, 26

event, 1

affects, 2

increasing, 1

F7, see Fano matroid

Fano matroid, 21, 44

FKG, 2

generating polynomials, 13

bases, 13

independent sets, 13

spanning sets, 13

weighted, 13

graph theory, 68

graphic, 21, 39

ground set, 13

I, see independent sets, counting, mea-

sure

independent sets, 13

isomorphism, 13

K3, 37

K∗3 , 37

K4, 76

Maple, 44
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INDEX

measure, 1

counting, 1, 3

bases, 3

independent sets, 3

spanning sets, 3

general, 3

minor

co-dependent, 16

co-loop, 16

dependent, 16

loop, 16

µ, see measure

multi-affine, 14, 28

negative association, 2

negative correlation, 3–5, 24

notation, 12, 14

ω, see measure

one-separation, 19

orientation, 68

pair of type, 15

parallel extension, 20

paving, 40, 50

minors, 51

sparse, 40, 50

dual, 53

positive association, 1

positive coefficients, 14

Q-sets, 84

R10, 22

random sampling, 4, 54

rank, 13

rank three, 39, 43, 66

Rayleigh, 3

condition, see property, Rayleigh,

27

difference, 3, 6

direct sums, 31

duals, 30

matroid, 26

minor-minimal, 36

minors, 29

Monotonicity Law, 26

property, 6

two-sums, 32

regular, 22, 39

representable, 21

S, see spanning sets, counting, mea-

sure

S-sets, 73

S8, 23, 39

series extension, 20

series-parallel, 20

set minus, 14

signed incidence matrix, 69

signs c(S, C), 73, 78

signs d(Q, D), 84

singed incidence matrix, 79

sixth root of unity matroids, 23, 39

SOS

∆, 73
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INDEX

direct sum, 75

minors, 74

Φ, 84

series parallel, 81

testing examples, 77

two-sums, 97

spanning sets, 13

sparse paving, see sparse, paving

special cases

co-dependent, 37

dependent, 37

splitter, 23

sufficient conditions, 39

symmetric difference, 14

three-connected, 19, 36

three-sum, 20

two-connected, 19

two-separation, 19

two-sum, 17

factor, 18

graph, 18

∨, 14

weighting, 13

Ze, 14

Ze, 14
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