
Security in Key Agreement:
Two-Party Certificateless Schemes

by

Colleen Marie Swanson

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2008

c© Colleen Marie Swanson 2008

I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

The main goal of cryptography is to enable secure communication over a public
channel; often a secret shared among the communicating parties is used to achieve
this. The process by which these parties agree on such a shared secret is called key
agreement. In this thesis, we focus on two-party key agreement protocols in the
public-key setting and study the various methods used to establish and validate
public keys. We pay particular attention to certificateless key agreement schemes
and attempt to formalize a relevant notion of security. To that end, we give a possi-
ble extension of the existing extended Canetti-Krawzcyk security model applicable
to the certificateless setting. We observe that none of the certificateless protocols we
have seen in the literature are secure in this model; it is an open question whether
such schemes exist. We analyze several published certificateless key agreement pro-
tocols, demonstrating the existence of key compromise impersonation attacks and
even a man-in-the-middle attack in one case, contrary to the claims of the authors.
We also briefly describe weaknesses exhibited by these protocols in the context of
our suggested security model.

iii

Acknowledgements

I would like to acknowledge my advisor, David Jao, without whom this thesis
would certainly not exist, and my readers, Alfred Menezes and Edlyn Teske, for all
the helpful comments and discussions.

To my friends and family, scattered about the globe as you might be, I would
like to extend my gratitude for your help and support. A very special thanks to
Farshid Hajir—your friendship and your mastery of witty instant messaging has
not gone unappreciated.

iv

For Jason,
who has been a driving force of my life

and without whom
I would never have begun my studies in cryptography.

v

Contents

List of Figures ix

1 Introduction 1

1.1 Thesis Outline . 1

1.2 Notation . 1

1.3 Cryptographic Primitives . 1

1.4 Functions . 2

1.4.1 Hash Functions . 3

1.4.2 Pairings . 4

1.5 Number Theoretic Assumptions . 5

1.5.1 RSA and Factoring . 5

1.5.2 Diffie-Hellman and Related Problems 6

2 Public-Key Cryptography 8

2.1 Public-Key Infrastructure . 8

2.2 Identity-based Cryptography . 10

2.3 Self-Certified Public-Key Cryptography 11

2.4 Certificate-based Cryptography . 12

2.5 Certificateless Public-Key Cryptography 12

2.6 Use of Trusted Third Parties . 13

3 Key Agreement Protocols 15

3.1 Basic Example: Diffie-Hellman . 16

3.2 Objectives . 16

3.3 Performance Considerations . 17

3.4 Security Attributes . 17

vi

3.5 Summary of Attacks . 19

3.6 Examples . 21

3.6.1 Traditional PKI: Unified Model KAP 21

3.6.2 ID-based PKC: Smart’s KAP 23

3.6.3 Certificate-based PKC: Wang-Cao KAP 24

3.6.4 Certificateless PKC: Al-Riyami Paterson KAP 25

3.6.5 Self-certified PKC: Girault KAP 27

4 Provable Security 29

4.1 Bellare-Rogaway (BR) Model . 30

4.2 Canetti-Krawczyk (CK01) Model 32

4.3 Extended Canetti-Krawczyk (eCK) Model 34

4.4 Extending eCK . 36

5 Related Work 39

6 Cryptanalysis of Protocols 41

6.1 Attack Model . 41

6.2 Notation . 42

6.3 Al-Riyami Paterson KAP Revisited 42

6.4 Mandt KAP . 43

6.4.1 Protocol Summary . 43

6.4.2 Analysis and Attack . 44

6.5 Wang-Cao-Wang KAP . 46

6.5.1 Protocol Summary . 46

6.5.2 Analysis and Attack . 47

6.6 Shao KAP . 47

6.6.1 Protocol Summary . 47

6.6.2 Analysis and Attack . 49

6.7 Shi-Li KAP . 50

6.7.1 Protocol Summary . 50

6.7.2 Analysis and Attack . 51

7 Conclusions and Future Work 53

vii

Appendix A 54

References 55

viii

List of Figures

3.1 Diffie-Hellman KAP . 16

3.2 UM AKC protocol . 22

3.3 Smart KAP . 23

3.4 Wang-Cao KAP . 24

3.5 Al-Riyami and Paterson KAP . 26

6.1 Mandt KAP . 43

6.2 Wang-Cao-Wang KAP . 46

6.3 Shao KAP . 48

6.4 Shi-Li KAP . 50

ix

Chapter 1

Introduction

1.1 Thesis Outline

The structure of this thesis is as follows. In the remainder of Chapter 1, we estab-
lish notation, introduce common cryptographic primitives, including hash functions
and pairings, and discuss standard number theoretic assumptions. Chapter 2 dis-
cusses public-key cryptography and reviews the various methods used to produce
and verify public keys. Chapter 3 presents a summary of key agreement protocols
and common attacks and concludes with representative examples from the different
public-key settings. We discuss the notion of provable security and suggest a possi-
ble extension of the eCK model relevant to certificateless key agreement protocols in
Chapter 4. Chapter 5 mentions related work on the subject of key compromise im-
personation attacks and Chapter 6 gives an attack analysis of several certificateless
key agreement protocols from the literature. Lastly, we conclude in Chapter 7.

1.2 Notation

We use {0, 1}∗ to denote the set of finite binary strings and {0, 1}≤L (where L ∈ N)
to denote the set of binary strings of length at most L. The symbol “∈R” means
“selected uniformly at random from.” We write G∗ for the set of non-identity
elements of a group G. By 1G, we mean the identity element of the group G.

1.3 Cryptographic Primitives

The main goal of cryptography is to achieve secure communication over an insecure
channel. A cryptosystem, in particular, provides a method by which two parties,
Alice and Bob, can send private messages to each other over a public channel. Say
Alice wishes to send Bob some kind of message m, which we call the plaintext ; she

1

does so by disguising, or encrypting, m using some predetermined key and sending
the resulting ciphertext over the channel. Bob can then decrypt (using either the
same or a different key) and read the plaintext, but any eavesdroppers to the
conversation will not have the decryption key and so will be unable to understand
the message. We give the formal definition below.

Definition 1.3.1. A cryptosystem is a 5-tuple (P , C,K, E ,D), where

1. P is a set of possible plaintexts ;

2. C is a set of possible ciphertexts ;

3. K is the keyspace, a finite set of possible keys;

4. For each k ∈ K there is a corresponding encryption function Ek : P → C ∈ E
and decryption function Dk : C → P ∈ D, such that for x ∈ P , we have
Dk(Ek(x)) = x.

The encryption and decryption functions Ek and Dk might be the same, or
perhaps easy to derive from each other, as in the case of symmetric cryptosystems,
or it could be that information about Ek does not reveal Dk, as in asymmetric or
public-key cryptosystems. We discuss these notions further in Chapter 2, focusing
on current key generation methods used in public-key cryptography.

Other important cryptographic primitives include signature schemes, in which
a party can electronically sign a document, a special type of function called a hash
function, and key agreement protocols, in which two parties agree on a shared secret.
We introduce the notion of hash functions in Section 1.4 and devote Chapter 3 to
key agreement protocols. We will treat digital signatures only informally, observing
that these signatures serve much the same function as ordinary signatures on paper.
Digital signatures “bind” the signer to the given message and can be verified as valid
and not forged. A standard example of a digital signature is the RSA signature;
we give a sketch of this scheme in Section 1.5.1 and refer the reader to [30, 41] for
more on the subject of signature schemes.

1.4 Functions

We require the following general definitions concerning functions.

Definition 1.4.1. We say that a real-valued function ε(k) is negligible in k if for
all c > 0, there exists kc > 0 such that k > kc implies ε(k) < 1

kc . We say a function
that is not negligible is non-negligible.

We now turn to the question of how easy it is to compute a given function.
In general (and unless otherwise specified), we classify computational problems
as “easy” (or “hard”) based on the existence (or non-existence, respectively) of a

2

polynomially bounded algorithm that solves an arbitrary instance of the problem
with high probability, and refer to “hard” problems as computationally infeasible.
By high probability, we mean that the probability the algorithm succeeds is non-
negligibly greater than the corresponding probability of success of a random func-
tion; if the codomain is infinite, the probability of success must be non-negligibly
greater than zero. In the context of computing functions, this gives the following
definition.

Definition 1.4.2. We say that a function f is efficiently computable if there exists
a polynomially bounded algorithm that computes f with high probability.

1.4.1 Hash Functions

Hash functions are a core component of many other primitives in cryptography.
Such functions are often used to provide a short “fingerprint” of data—by recalcu-
lating the hash value of a piece of data and seeing if it has changed, we can check
whether the data has been altered. We will use hash functions in key agreement
protocols both as a final measure to increase the security of the resulting key and
to uniquely identify an entity with an element of a given group. That is, we will
map an identifying binary string of arbitrary length to an appropriate group in a
way that preserves uniqueness, i.e., we do not want this hashed “identity” to be
used for more than one entity. We give the formal definition of a hash function
below.

Definition 1.4.3. A hash function h is an efficiently computable function of the
form h : X → Y , where Y is a finite set such that |X | ≥ |Y|.

We note that the domain X may or may not be finite; in the finite case, h is
sometimes referred to as a compression function. If we use the output of a hash
function h as some kind of key, we will often refer to h as a key derivation function
(kdf). There is also the notion of a keyed hash function, which is essentially an
element of a family of hash functions parametrized by some key k. Hash functions
that are not parametrized by a given key (such as in the most general definition
above) are referred to as unkeyed hash functions.

Definition 1.4.4. A keyed hash family H with parameters (X ,Y ,K) is a family of
hash functions, where

1. K is the keyspace;

2. For each k ∈ K, there is a hash function hk ∈ H of the form hk : X → Y ,
which we refer to as a keyed hash function.

Definition 1.4.5. A message authentication code (MAC) is a keyed hash family
H with corresponding parameters (X ,Y ,K) that satisfies the following property,
known as computation-resistance:

3

• Given zero or more pairs of the form (xi, hk(xi)) ∈ X×Y , it is computationally
infeasible to compute any pair (x, hk(x)) for any x 6= xi for all i.

We now list desirable security attributes of a hash function h : X → Y . Hash
functions suitable for use in key agreement protocols and data integrity applications
(as mentioned in the beginning of this section) will generally satisfy these properties.
As no formal definitions for these properties exist, our descriptions are necessarily
vague. In particular, we do not make our use of the word “difficult” precise; we
intend to convey that an adversary with reasonable abilities (for instance, with
regard to time or space requirements) should be unable to successfully solve the
given problem.

• Preimage resistance: We say h is preimage resistant or one-way if given
y ∈R Y it is difficult to find x ∈ X such that h(x) = y.

• Second preimage resistance: We say h is second preimage resistant if given
x ∈R X , it is difficult to find x′ ∈ X such that x′ 6= x and h(x′) = h(x).

• Collision resistance: We say h is collision resistant if it is difficult to find
x, x′ ∈ X such that x′ 6= x and h(x′) = h(x). We note that collision resistance
implies second preimage resistance, but not necessarily preimage resistance.

Security proofs for cryptographic primitives, which we discuss in Chapter 4,
often require that any hash functions used be modeled by random oracles, or ideal-
ized hash functions, which essentially serve to prevent an adversary from using the
underlying structure of the hash function to his advantage. The random oracle will,
given an arbitrary input, either produce an output selected uniformly at random
or if it has seen the input before, output the same value as it did previously. More
precisely, a random oracle h : X → Y has the property that for each new x ∈ X ,
the output h(x) is independently and uniformly selected at random from Y , so any
element of Y is equally likely. The random oracle behaves like a hash function in
the sense that if y = h(x) has already been computed, h will output y whenever
x is given as the input. The use of random oracles is somewhat controversial in
the cryptographic community—as no random oracles exist, the real-world security
implications of proofs using them (said to be in the random oracle model) are not
necessarily clear [10].

1.4.2 Pairings

We note that pairings come in two flavors, the first of the form e : G1 × G1 →
GT where G1 and GT are groups of prime order q, and the second of the form
e : G1 ×G2 → GT , where G1, G2, and GT are groups of prime order q. The group
GT is often referred to as the “target” group, hence the use of the subscript “T.”
Pairings of the first form are a special case of the latter; we choose to address only

4

this type in detail as the protocols we analyze all assume a pairing of this form.
In practice, G1 and G2 are groups of points on an elliptic curve over a finite field,
and GT is a subgroup of a multiplicative group of a related finite field. Pairings
are generally based on the Weil and Tate pairings and those of the first form are
implemented using supersingular curves. We refer the reader to [17, 39] for details
on elliptic curves and the use of pairings in cryptography.

We formally define a pairing as follows.

Definition 1.4.6. Let G1 be a cyclic additive group of prime order q and GT

be a cyclic multiplicative group also of order q. An admissible pairing is a map
e : G1 ×G1 → GT with the following properties.

1. Bilinearity : ∀P,Q,R ∈ G1 we have e(P+Q,R) = e(P,R)e(Q,R) and e(P,Q+
R) = e(P,Q)e(P,R).

2. Non-degeneracy : For all P 6= 1G1 , we have e(P, P) 6= 1GT
.

3. The pairing is efficiently computable.

The bilinearity property implies for any a, b ∈ Zq and P,Q ∈ G1, we have

e(aP, bQ) = e(abP,Q) = e(P, abQ) = e(P,Q)ab

and remembering G is cyclic, e(P,Q) = e(Q,P). Also worth noting is that if P is
a generator of G1, e(P, P) is a generator of GT .

1.5 Number Theoretic Assumptions

In this section we introduce some standard hard problems in cryptography, par-
ticularly those which are used in Diffie-Hellman style key agreement schemes (Sec-
tion 3.1). As before, we say a computational problem is hard, or computationally
infeasible, if there exists no polynomially bounded algorithm that solves an arbi-
trary instance of the problem. We say a computational problem π reduces to a
problem π′ if there exists a polynomially bounded algorithm solving π that uses an
oracle (or hypothetical subroutine) that solves π′. If π reduces to π′ and π′ reduces
to π, we say the two problems are computationally equivalent.

1.5.1 RSA and Factoring

We first briefly describe the RSA encryption and signature schemes; for more details
we refer the reader to [41, 30]. An RSA modulus is a number n = pq for large,
distinct primes p and q. In the RSA cryptosystem, the public encryption key e and
private decryption key d satisfy ed ≡ 1 (mod φ(n)). Here φ(n) = (p−1)(q−1) is the
number of positive integers less than and relatively prime to n. Given a plaintext

5

message m ∈ Zn, the corresponding ciphertext is c = me (mod n). Decryption
works by taking cd (mod n), which is equivalent to m. Alternatively, we can sign a
piece of data x ∈ Zn by computing the signature as σ = xd (mod n), which can be
verified by checking σe = x; this signature scheme is often referred to as textbook
RSA [31]. In practice, we improve the security of the system by either hashing m,
as in RSA with appendix, or ensuring that m has a lot of redundancy, as in RSA
with message recovery [8].

A standard assumption is that factoring is a hard problem. That is, given
n = pq for large primes p and q, it is computationally infeasible to find p and q.
This problem has been shown to be computationally equivalent to the problem of
finding the decryption key d, given an RSA modulus n and encryption key e. The
RSA problem is the problem of finding md (mod n) given n, e, and m; it is an open
problem whether or not this is equivalent to factoring. The corresponding RSA
assumption is that there exists no polynomially bounded algorithm solving the
RSA problem. This is the assumption used in Girault’s self-certified key agreement
scheme, described in Section 3.6.5.

1.5.2 Diffie-Hellman and Related Problems

Let G denote a multiplicatively-written cyclic group of order n. We write G = 〈g〉
to specify that G is generated by g. We can define discrete logarithms over general
cyclic groups as follows.

Definition 1.5.1. For any h ∈ G, the discrete logarithm of h with respect to the
generator g, denoted logg h, is the unique x ∈ Zn satisfying h = gx. The problem
of finding logg h is called the discrete logarithm problem (DLP).

Groups in which the discrete logarithm problem is hard will be of particular in-
terest to us. More precisely, we say that the discrete logarithm assumption holds in
G if there exists no polynomially bounded algorithm that can solve an arbitrary in-
stance of the DLP. We have the following list of related problems and corresponding
assumptions.

Definition 1.5.2. Given h1 = gx ∈ G and h2 = gy ∈ G, the computational Diffie-
Hellman problem (CDH) is the problem of computing h3 = gxy ∈ G. The CDH
assumption holds in G if there exists no polynomially bounded algorithm that can
solve an arbitrary instance of the CDH problem.

Definition 1.5.3. Given a triple (gx, gy, gz) ∈ G3, the decisional Diffie-Hellman
problem (DDH) is the problem of deciding if gz = gxy. If this condition holds, we
say the triple is a DDH triple. The group G satisfies the DDH assumption if there
exists no polynomially bounded algorithm that can solve an arbitrary instance of
the DDH problem.

6

We observe that the DDH problem reduces to the CDH problem, since if we
can compute gxy given gx and gy, we can obviously decide whether (gx, gy, gz) is a
DDH triple. Similarly, the CDH problem reduces to the DLP, since if we can find
x given gx and y given gy, we can easily computer gxy.

We have a special variant of the computational Diffie-Hellman problem for pair-
ings on elliptic curves, namely the Bilinear Diffie-Hellman problem, defined below.
As before, we assume e : G1×G1 → GT is an admissible pairing, where G1 is an ad-
ditive cyclic group and GT is a multiplicative cyclic group. For practical purposes,
we will generally assume the DLP is hard in both G1 and GT . We point out that
the DLP in G1 reduces to the DLP in GT , since if we have x = loge(P,P) e(Q,P) in
GT , then x = logP Q in G1, where P,Q ∈ G1.

Definition 1.5.4. Given P, aP, bP, cP ∈ G1 for a, b, c ∈ Z∗q, the bilinear Diffie-
Hellman problem (BDH) is the problem of computing e(P, P)abc ∈ GT . The BDH
assumption holds if there exists no polynomially bounded algorithm that can solve
an arbitrary instance of the BDH problem.

Definition 1.5.5. Given P, aP, bP, cP ∈ G1 for a, b, c ∈ Z∗q and z ∈ GT , the
decisional Bilinear Diffie-Hellman problem (DBDH) is the problem of deciding
whether z = e(P, P)abc. The DBDH assumption holds if there exists no poly-
nomially bounded algorithm that can solve an arbitrary instance of the DBDH
problem.

7

Chapter 2

Public-Key Cryptography

We distinguish between symmetric cryptography, which involves a single private
key shared among participants, and asymmetric or public-key cryptography (PKC),
in which each party has a unique public-key pair. Rather than using the same
key for encryption and decryption, in asymmetric cryptosystems the public key is
used for encryption and the private key for decryption. The obvious advantage of
the latter system is that participants do not need a previously established secret
in order to interact. Often public/private key pairs can remain the same for long
periods of time, whereas symmetric keys should be changed frequently in order to
stave off attacks. In practice, however, symmetric cryptosystems tend to be much
more efficient, both in terms of throughput rates and key sizes. That being said,
cryptosystems are frequently designed to take advantage of the positive aspects of
both, by using public-key cryptography to establish a shared secret for use in a
symmetric scheme.

A significant problem in public-key cryptography is verification of the authentic-
ity of public keys. For obvious reasons, the security of any public-key cryptosystem
rests heavily on users being assured that they cannot be fooled into using a false
public key. We spend the remainder of the chapter discussing various methods to
accomplish this, namely the traditional public-key infrastructure, identity-based,
certificate-based, certificateless, and self-certified public keys.

2.1 Public-Key Infrastructure

The traditional method of authenticating public keys is through a public-key infras-
tructure (PKI). A certification authority (CA) is a trusted third party responsible
for establishment and verification of the authenticity of public keys. In a PKI
system, users acquire (via a secure channel) the public key of the CA. The CA
distributes certificates, which consist of a data part and a signature part. The data
part generally contains a string identifying a particular user as well as that user’s
public key, and might contain additional information. The signature part is the

8

CA’s digital signature on the data part. In this way, the certificate binds a user to
his public key, as any user can simply check (by using the CA’s public key) that
the signature part is a valid signature on the associated data part.

In addition to creating certificates, the CA might be responsible for creating a
public-key pair and sending a copy of this information to the specified user over
a secure channel. Alternatively, users can create their own public-key pair and
transfer their public keys to the CA in a secure manner, who then creates the
necessary certificates. In both cases it is necessary for the CA to verify the identity
of the user before granting the corresponding public-key certificates. If the CA does
not know the private key corresponding to a given public key, it must verify that
the associated user does know this information, as otherwise a dishonest user might
claim someone else’s public key as their own.

It is clear that a great deal of trust is invested in the CA. Users take on faith
that the CA behaves honestly, i.e., that the CA does not create false certificates
and verifies the identity of a given user before granting a certificate. We emphasize
that the CA is the only entity capable of producing certificates, so the existence of
two valid certificates for the same identity implies that the CA issued both. Since
we generally assume that users have unique public keys for a particular application,
this scenario implies the CA behaved dishonestly. In any case, there is no possi-
bility of other users creating false or multiple public keys (either for themselves or
others) without the involvement of the CA. By construction, we give the CA the
responsibility of checking that these public keys should be certified, and we can
therefore blame the CA if false certificates are issued. However, we observe that it
is possible for the CA to temporarily replace public keys (and forge a corresponding
certificate) in order to impersonate a user, and then reset the value afterward to
avoid detection. The success of this attack depends heavily on timing. For instance,
suppose Bob wishes to send a message to Alice for the first time. Assuming he has
never looked up Alice’s public key and the corresponding certificate, he will not
suspect anything amiss if the CA replaces Alice’s public information, and the CA
will then be able to distinguish any ciphertext Bob produces. While the CA could
be caught immediately if Alice herself happens to check her public information
during the duration of the attack, or later if Bob rechecks the public-key directory
and suspects foul play rather than a legitimate key change, the CA’s bad behavior
could very well remain undetected.

Several problems have been identified with PKI, perhaps the most obvious of
which are the enormous storage and upkeep requirements (both for publishing
public-key directories and certificates). It is necessary for the CA to have the
ability to revoke certificates, for reasons including, but not limited to, a compro-
mise of the user’s private data. One option for this is the distribution of lists of
revoked certificates, called certificate revocation lists (CRLs), which of course in-
creases the system management burden. Another issue with CRLs is time—the
CA must distribute the CRLs to all parties, who are then responsible for checking
whether a given certificate has expired. This distribution is expensive (especially
if the CRL and/or number of users is large), and may not occur often enough to

9

adequately warn users of compromised public keys. Denial-of-service (DoS) attacks
are easy to launch by repeatedly requesting CRLs, and even if this does not occur,
honest CRL requests are frequently enough to cause network congestion. Another
option, the online certificate status protocol (OCSP), requires the CA to respond
to status queries by the online signing of the certificate’s current status. Although
this reduces communication costs to one signature per query (rather than an entire
list of revoked certificates), computation costs go up accordingly. This solution
also leaves the system vulnerable to denial-of-service attacks, particularly if the
CA is centralized, whereas a decentralized CA is only as secure as its individual
servers [18].

Other problems include PKIs with multiple CAs, which are generally arranged in
a hierarchical trust model. CAs lower in the trust model are issued signer certificates
by higher CAs, and in turn these CAs can issue certificates at will. Users create
certificate chains to detect forgery, whereby in addition to checking the validity of
a certificate issued by a particular CA, the user must check the signer certificates
of all the CAs above until a trusted (root) CA is reached. Needless to say, this
can become quite complicated, especially if multiple hierarchies are involved, and
a user authenticated by a CA in one hierarchy wishes to check the public key of a
user authenticated by a CA in another. These CAs can cross-certify each other by
signing each other’s certificates, but this leads to multiple possible authentication
paths to a trusted CA. In addition to this structural question, it seems that X.509
certificates, which are commonly used in practice, suffer from several problems,
among them the possibility of multiple certificates with the same name and little
flexibility. We refer the reader to [21, 30] for more details on problems associated
with public-key certificates and PKI.

2.2 Identity-based Cryptography

The concept of identity-based public-key cryptography (ID-PKC) was first defined
by Shamir [36] in 1984. The basic idea is to generate public keys from strings
of information that uniquely identify the intended holder, for example the user’s
email, name, or physical address; this is generally done via hash functions. Once a
public key has been created, the associated user can go to a Key Generation Center
(KGC), whose responsibility (similar to that of a CA) is to send the corresponding
private key to the user via a secure channel. In this way, a recipient of an encrypted
message doesn’t even have to be registered with the KGC beforehand; he can simply
go to the KGC to get the needed private key and then decrypt his message. This
makes it very easy to send messages, and greatly simplifies key management, as
the need for certificates is completely removed. Indeed, the KGC is only needed
to issue new private keys and can even be closed for indefinite periods without
affecting the normal workings of the network. The main fault, however, is that the
KGC by definition has key escrow, or access to all users’ private keys, so users must
necessarily place a high level of trust in the KGC. In addition, the system requires

10

the KGC to have access to a secure channel over which it distributes private keys.

The notion of ID-based systems gained popularity after 2001, when Boneh and
Franklin constructed efficient, provably secure ID-based primitives relying on the
Bilinear Diffie-Hellman problem over elliptic curve pairings [7]. There are myriad
examples of ID-based primitives—we shall see a key agreement protocol in Sec-
tion 3.6.2. Other examples may be found in [40, 14, 32]. Several suggestions exist
for removing the escrow property, but (as we shall see in an example) these have
limited success against an active KGC and add to the computational and commu-
nication complexity. We also note that the KGC’s access to private keys implies
that signature schemes in the ID-based setting do not offer non-repudiation. Since
the KGC is always capable of forgery, a valid signature does not guarantee the user
actually signed the given data.

2.3 Self-Certified Public-Key Cryptography

Self-certified public keys were introduced by Girault [19] in the hopes of reducing
the amount of storage and computation by third parties. Both of his presented
schemes require less of the CA—there is no key escrow, no need for hash functions
in computing public keys, and no need for a secure channel between the CA and
user. As usual, users are associated with a 3-tuple (ID, s, P), where ID is the user’s
identity, s the user-chosen private key, and P the public key. The public key is
self-certifying in the sense that it doubles as a certificate; that is, the CA issues a
certificate on a user’s identity, which is then used as the public key. This is unlike
traditional PKI, where users must have separate certificates validating their public
keys. As this public key cannot be immediately derived from the user’s identity,
we note that this idea varies from ID-based systems as well.

Girault presents two possibilities, one of which relies on the hardness of factoring
large integers and the discrete logarithm problem, and the other relying only on the
latter. The first we explore in detail in Section 3.6.5. In the second, the pair (s, P) is
the CA’s ElGamal signature on the user’s identity ID, with the interesting property
that s remains unknown to the CA; we refer the reader to the original paper [19]
for details. Related work has been done by Saeednia [34, 33], who has invented
several self-certified schemes. His version of self-certified keys does not require the
public key to actually be the certificate issued by the CA. Rather, the CA issues
a certificate w, called a witness, on the user’s identity and user-chosen public key
(ID, P). The public key P must be easily computable from w, ID, and the CA’s
public key, while w must of course be difficult to compute without knowledge of
the CA’s secret information.

11

2.4 Certificate-based Cryptography

Certificate-based public-key cryptography (CB-PKC) was introduced by Gentry [18]
in 2003, a bit before the similar concept of certificateless cryptography, which we
discuss in the next section. The basic notion behind certificate-based encryption
(CBE) is that, in order to decrypt, users need an up-to-date certificate as well as
a secret key. The cryptosystem is designed to combine traditional PKI and ID-
based schemes, in that it has no key escrow and allows implicit certification. By
implicit certification in the encryption setting, we mean that a user should be able
to (securely) encrypt a message for another merely by knowing the user’s public key
and the CA’s public parameters. The recipient should only be able to decrypt said
message if his certificate is fresh. Thus, the CA can simply stop sending certificates
to revoked users, with no need for a complicated infrastructure to deal with, for
example, CRLs.

As in PKI, users choose their own public-key pair and request a certificate
from the CA validating the public key. The CA obliges as usual, but the provided
certificate works as a partial private key as well as proof of current certification.
Moreover, the CA uses an ID-based scheme to generate the certificate, so the cer-
tificate is bound to the associated user’s ID. We emphasize that these certificates
need not be confidential, even though they are needed for decryption. In this way,
this model avoids the key-escrow problem, does not require secure channels for key
distribution, and eliminates third-party queries to the CA on a particular user’s
certificate status.

2.5 Certificateless Public-Key Cryptography

We now discuss certificateless public-key cryptography (CL-PKC), which was in-
troduced by Al-Riyami and Paterson [1, 2] in 2003. As with the certificate-based
variety, the idea of certificateless cryptography is to combine traditional PKI and
ID-based systems in a way that preserves the advantages of each. That is, cer-
tificateless schemes also avoid the key escrow problem and the high management
costs of certificate distribution, storage, verification, and revocation present in PKI.
CL-PKC and CB-PKC, while differing in their treatment of KGC-provided infor-
mation, appear to be closely related, although the exact nature of the connection
is unclear [2, 51, 22]. We give an informal description of CL-PKC below; since
certificateless schemes receive particular attention in later chapters of this thesis,
we give a formal definition of certificateless encryption (CL-PKE) in Appendix A.

In CL-PKC, a user generates his private key by combining a secret value with a
partial private key provided by the Key Generation Center. In this way, the KGC
has no access to users’ private keys. Similarly, to generate a public key, the user
combines his secret value with public information from the KGC. Of course, this
implies that public keys are no longer easily computable by third parties, as in

12

ID-PKC. Public keys must be made available in some other way, such as including
them in flows as part of the protocol run or storing them in a public directory.
However, this system has the added advantage of flexibility—the user can generate
his public key before or after receiving his partial private key. For instance, a
user Bob might conceivably use Alice’s public key combined with some string x,
where x is some requirement that needs to be checked before the KGC releases the
corresponding private key. For example, x might say that “Alice must be at least
18 years of age.”

Since public keys are not validated as in ID-based schemes or traditional PKI, we
must assume that an adversary can replace public keys at will, and this attack must
be incorporated into the security model. Now, if a KGC replaces public keys, it
will be able to impersonate any user, since it can easily compute the corresponding
private key. Thus, for all certificateless schemes, the KGC can launch a man-in-
the-middle attack (Section 3.5). For this reason, security models for certificateless
schemes generally assume that the KGC never replaces public keys. Al-Riyami and
Paterson [2] argue that this amounts to roughly the same amount of trust that
is invested in a CA in a traditional PKI. They make the point that, while often
not stated explicitly, we usually trust that CAs do not produce certificates binding
arbitrary public keys to a given identity. In any case, CL-PKC amounts to less
trust than in an ID-based scheme, where the KGC has access to users’ private keys
by definition.

One way to avoid the issue of the KGC replacing public keys is to bind a user’s
public and private keys, a method from [1] we describe in Section 3.6.4. This
technique requires the user to send his fixed public key to the KGC, which is then
incorporated into the partial private key. The result is that there can be only one
working public key per user, so the existence of more than one implies that the KGC
created more than one partial private key binding the user to different public keys.
In fact, with this binding technique, there should be no need for partial private
keys to be kept secret. The corresponding unique public key was computed with
the user’s secret value—this value is necessary to compute the full private key and
cannot be determined from the exposed partial private key. We note the similarity
between CL-PKC with binding and CB-PKC above.

2.6 Use of Trusted Third Parties

We have seen trusted third parties at work in all of the above types of public-key
cryptography, whether we have referred to this party as a certification authority
(CA) or key generation center (KGC). For the purposes of this section we use the
term KGC. We formalize the level of trust we place in this entity below, according
to Girault’s trust model [19].

Definition 2.6.1. We say that a cryptographic primitive achieves trust level 1 if
the KGC knows (or can trivially compute) users’ private keys and can thereby
impersonate users without fear of discovery.

13

Definition 2.6.2. We say that a cryptographic primitive achieves trust level 2 if
the KGC does not know (and cannot trivially compute) users’ private keys, but
can impersonate users by creating false public keys and/or certificates.

Definition 2.6.3. We say that a cryptographic primitive achieves trust level 3 if
the KGC does not know (and cannot trivially compute) users’ private keys and is
incapable of impersonating users by creating false public keys and/or certificates
without detection.

Using this model, we see that ID-based schemes by definition can achieve at most
trust level 1. Given the most general definition for certificateless cryptography, we
see that these schemes generally achieve trust level 2, unless care is taken to bind
users to their public keys. This follows, as without such a binding scheme, the
KGC will be able to replace public keys without detection. Similarly, well-designed
CB-PKC and self-certified PKC should achieve trust level 3.

14

Chapter 3

Key Agreement Protocols

A key establishment protocol is a protocol in which two or more parties gain access
to a shared secret. Depending on the number of parties gaining access, we refer
to the protocol as a two-party, tripartite, or (if there are more than three parties)
group or conference key establishment protocol. We distinguish between interactive
and non-interactive protocols, i.e., those protocols in which information is passed
between participants and those which involve no communication.

If only one party is involved in choosing and/or obtaining the secret and se-
curely transports this value to the other(s), we say the protocol is a key transport
or key distribution protocol. If the shared secret is a function of information pro-
vided by and/or associated with each party, we say the protocol is a key agreement
(KAP) protocol. We concern ourselves mainly with the latter, especially the two-
party dynamic key agreement setting, wherein the established key varies with each
execution.

We introduce some terminology common to these protocols. We refer to a
protocol run as a session, and each message transmitted from one party to another
as a flow. The shared secret resulting from a session is generally called (or used to
determine) a session key. Protocols generally assume users (or pairs of users) have
long-lived keys (LL-keys), which are static secrets that are usually precomputed
and stored securely. These are often used in conjunction with randomized secret
input, which we refer to as ephemeral or short-term keys. Many key agreement
protocols also assume the existence of a centralized server, often referred to as
a trusted authority (TA), certification authority (CA), or Key Generation Center
(KGC), depending on the role played. We refer to this entity’s secret information
as the master secret key. We assume that the KGC communicates with users via
a secure channel, whereas protocol flows are sent via an open channel. That is,
eavesdroppers have no access to KGC/user communication, but can easily read
anything sent between protocol participants.

There are two flavors of key agreement protocols, namely secret-key based and
public-key based. These are, as one might expect, analogous to symmetric and
public-key cryptosystems, respectively. That is, the former type of scheme requires

15

each pair of users to have access to a shared LL-key, and in the latter, each user
has his own LL-key pair.

3.1 Basic Example: Diffie-Hellman

The classic example of a two-party key agreement protocol is the Diffie-Hellman
protocol [15], which we present below. We have two parties, Alice and Bob, whom
we denote by A and B, respectively.

Let G be a cyclic group of prime order q with generator g. Alice chooses a
number a ∈R Z∗q and sends TA = ga to Bob. Similarly, Bob chooses a number
b ∈R Z∗q and sends TB = gb to Alice. Alice computes KA = T a

B and Bob computes
KB = T b

A. The session key is KA = KB = gab. (See Figure 3.1 below.)

A B
a ∈R Z∗q; TA = ga b ∈R Z∗q; TB = gb

TA−−−−→
TB←−−−−

KA = T a
B KB = T b

A.

Figure 3.1: Diffie-Hellman KAP

Now that we have seen an example, we should consider the basic goals of a key
agreement protocol. For instance, in the Diffie-Hellman key agreement scheme, do
Alice and Bob know who has access to the session key? Are Alice and Bob even
sure they are communicating with each other?

Suppose there is a curious third party Eve who wishes to eavesdrop on all
communications between Alice and Bob. What can she learn? Ostensibly she
has access to both ga and gb and wishes to compute gab. This is exactly the
computational Diffie-Hellman problem discussed in Chapter 1, which is believed to
be infeasible, so in this case Eve cannot compute the session key. However, what
if Eve not only listens passively, but also substitutes her own messages for those of
Alice and Bob? If she does so, Eve can establish (different) keys with both Alice
and Bob, with Alice and Bob none the wiser. We formalize these notions in the
next session.

3.2 Objectives

There are several properties that key agreement protocols might, and depending
on the application, should possess:

16

Definition 3.2.1. In a protocol with (implicit) key authentication, one party is
certain that only an intended, specifically identified second party has the ability to
access the session key.

Definition 3.2.2. In a protocol with key confirmation, one party may be certain
that the second (perhaps unidentified) party actually possesses the session key.

Definition 3.2.3. A protocol in which both the implicit key authentication and
key confirmation properties hold is said to provide explicit key authentication.

We also refer to a key agreement protocol with key authentication as an au-
thenticated key agreement (AK) protocol. We emphasize that in such a protocol,
neither party is sure that the other has actually computed the session key. A key
agreement protocol that provides explicit key authentication is called an authenti-
cated key agreement protocol with key confirmation (AKC). As noted in [30], when
combining entity authentication and key agreement, it is important to ensure that
the identified party is also the party involved in the key agreement phase. Other-
wise, the adversary might remain passive while the two parties successfully identify
each other, i.e., achieve mutual authentication, but launch an active attack during
key establishment.

3.3 Performance Considerations

In designing a protocol, it is necessary to try to achieve low communication and
computation overhead. With this in mind, it is desirable for a protocol to use the
minimal number of flows, which is (for obvious reasons) two for an AK protocol
and three for an AKC protocol. Although we want computation complexity to be
low for efficiency reasons, costly computations also leave protocols vulnerable to
denial-of-service attacks, i.e., an attacker could flood the target with requests that
require heavy computation, thereby leaving it incapable of participating in valid
sessions. Many protocols attempt to satisfy this requirement by using as much
precomputation, or offline computation, as possible, in order to reduce the amount
required for online scenarios.

3.4 Security Attributes

We have the following desirable security attributes.

• Key-compromise impersonation (KCI) security : If the LL-key of user A is
compromised, the attacker should not be able to impersonate another user B
to A. Obviously, if an LL-key of A is compromised, we wish to replace this key
as soon as possible, as the attacker can certainly impersonate A to any other

17

user. This property of KCI security, also called the KCI resilience property,
is nevertheless important in the sense that it minimizes the damage until the
user can detect that his key has been compromised. A standard example of
a KCI attack is if A is a customer of a bank B. If a third party armed with
A’s LL-key can successfully impersonate B to A, he can potentially get A to
release information one would normally only give to one’s bank, for example
a PIN number or other sensitive account information.

Any protocol that uses static shared secrets computable without any user
interaction, such as that provided by Sakai, Ohgishi, and Kasahara [35], is
open to this type of attack. This is because an attacker armed with A’s LL-key
has the same ability as A to compute the static shared secret. An example of
a protocol by Ryu et al. exhibiting this vulnerability can be found in [32] and
a corresponding attack in [47]. Wang, Cao, and Wang’s protocol [49] suffers
from the same weakness, as we show in Section 6.5. To avoid this attack, the
use of ephemeral keys and validity checks must be carefully considered.

• Known session-specific temporary information security : If the attacker has
access to the ephemeral keys of a given protocol run, he should be unable to
determine the corresponding session key. For weak known session-specific tem-
porary information security, it is further assumed that the TA/KGC cannot
access the ephemeral keys. As argued by Mandt [27], practical implementa-
tions of protocols often involve precomputing and/or storing ephemeral keys
insecurely, so the secrecy of the established session key should not rely solely
on the choice of these short-term keys.

• Known session key security : Key agreement protocols should be dynamic:
each protocol run should result in a unique session key. An attacker who
learns a given number of session keys should not be able to discover other
session keys.

• Forward secrecy : Given the LL-keys of one or more users, it is clearly desirable
that an attacker not be able to determine previously established session keys.
Perfect forward secrecy implies an attacker, even armed with all participants’
LL-keys, cannot determine old session keys. Partial forward secrecy implies an
attacker armed with some, but not all, participants’ LL-keys cannot determine
old session keys. Similarly, TA or KGC forward secrecy deals with the case
in which the attacker has the master secret key. We also define weak perfect
forward secrecy, in which it is assumed that all LL-keys are known, but the
attacker was not actively involved in choosing ephemeral keys during the
sessions of interest. It has been shown by Krawczyk [23] that no 2-flow AK
protocol can do better than this weaker version of forward secrecy.

• Unknown key-share: It should be impossible to coerce A into thinking he is
sharing a key with B, when he is actually sharing a key with another (honest)
user C. That is, it should not be possible for A to believe he is sharing a key

18

with B 6= C, while C correctly thinks the key is shared with A. The stan-
dard real-world example of an unknown key-share attack (first mentioned by
Diffie, Oorschot, and Wiener [16]) is the following. Suppose A is a bank and
C and B are customers, and customer certificates (issues by bank headquar-
ters) contain the holder’s account information. Suppose electronic deposits
work by exchanging a key with the bank via an authenticated key agreement
protocol. That is, as soon as the bank authenticates B, encrypted funds are
deposited according to the account number provided in the associated certifi-
cate. If there is no separate authentication of the encrypted deposit message,
the above unknown key share attack will result in the bank believing he is
communicating with B instead of C, so the funds (belonging to C) will be
deposited to B’s account. A standard method to prevent this attack is to
include the identities of the parties in the key derivation function.

• Key control : Participants should have the same amount of control in deter-
mining the session key. In practice it is difficult to achieve perfect key control,
since it is necessary for one party to initiate the protocol run and choose his
ephemeral key first, so the responding party has the ability to estimate some
of the bits of the session key through different choices of ephemeral keys. How-
ever, we desire this trial-and-error method to be the best available technique
for one party to have influence over the key choice.

• Deniability : In some applications, it is desirable for protocol participants to
be able to deny taking part in a given protocol run.

• Message independence: Flows of a protocol run should be unrelated. Of
course, this property makes the most sense in the context of an AK protocol,
as key confirmation inherently involves some sort of message dependence.

3.5 Summary of Attacks

Generic protocol attacks fall into two categories: passive attacks, in which the
adversary merely eavesdrops, or observes flows between honest entities, and active
attacks, in which the adversary deletes, inserts, replays, or otherwise alters flows.
We have already mentioned key compromise impersonation attacks, unknown key
share attacks, and some types of known key attacks in the discussion of desirable
security attributes in Section 3.4. We provide a list of general protocol attacks
below, with the caveat that given any particular protocol (and implementation
of said protocol), the following list is likely not complete (and in some cases not
applicable). We also wish to make the point that listing these attacks separately is
somewhat misleading. In reality adversaries can (and will) combine various methods
of attack. In this way, it is possible for a protocol to withstand any given subset
of attacks separately, yet not be able to protect against some combination of them.
This leads to the notion of provable security, which we discuss in Chapter 4.

19

• Source substitution attack : In this type of attack, the adversary claims the
public key of the user A as his own. This is possible if protocol participants
do not have any way to check that the other user actually has the private key
corresponding to the claimed public key. A typical example of this attack can
be found in [30] relating to the MTI/AO key agreement protocol, in which
the adversary is unable to compute the session key, but fools B into believing
he has shared a key with the adversary rather than with A.

• Time-memory trade-off attack : If the protocol involves a flow containing the
hash of the session key K, the adversary can try to determine the key by
precomputing a given number of hash values, say 2r for some r, and compare
these to the hash provided in the protocol run. If K is k bits long, then the
probability of success is 2r−k.

• Known key attacks : This class of attacks involves the adversary having access
to one or more pieces of secret information and using this to obtain the session
key of another protocol run.

– key reveal attack : In this type of attack, the adversary takes advantage of
any algebraic relationship between session keys. Formally, the adversary
is armed with a key reveal oracle that outputs old session keys, and uses
this to gain information about the unknown session key.

– key-replication attack : In this scenario, the adversary finds another ses-
sion that generates a key identical to that of the desired session and uses
this to try to determine the session key.

• Known session-specific temporary information attack : The adversary is armed
with the ephemeral keys of a particular session and tries to determine the
session key.

• Known LL-key attack : The adversary knows the LL-key of a protocol partic-
ipant and uses this to gain information about previous or future session keys.
(Note that this attack addresses key compromise impersonation as well as the
issue of forward secrecy.)

• Forgery attack : The adversary attempts to forge a session key by observ-
ing flows and using the public parameters of the protocol. This attack is
not necessarily thwarted by the use of a collision-free hash function for key
derivation.

• Degenerate message attack : Care should be taken to verify that ephemeral
and public keys do not result in a key that is trivial to compute. For instance,
it is generally wise to check that ephemeral and public keys are not the identity
element in their respective groups, as this often makes the key itself trivial.
We will see examples of protocols which do not have sufficient validity checks
on ephemeral/public keys in Chapter 6.

20

• Interleaving attack : The adversary uses flows from previous and/or ongoing
sessions in another protocol run in order to impersonate/deceive another user.
Examples of this type of attack include:

– replay attack : The adversary modifies a protocol run by inserting all or
part of a message from a previous and/or ongoing protocol run. This
type of attack is often used in conjunction with other attack elements.

– reflection attack : In the basic reflection attack, the adversary observes
an ongoing protocol run π between A and B (where A is the initiator),
and initiates another session π′ with A in which he replays A’s messages
from π. He uses A’s responses in π′ to impersonate B in π.

• Man-in-the-middle attack : The adversary intercepts session messages between
A and B, and replaces them with messages of his own choice in order to estab-
lish separate keys KA and KB with A and B, respectively, while they believe
they have established a joint key with each other. The adversary can then
use these keys to spy on all communication between A and B by decrypting
and re-encrypting appropriately. For example, if A sends a message to B, the
adversary will use KA to decrypt, re-encrypt under KB, and send the message
on to B, with A and B none the wiser. This attack must by definition be
impossible in an AK protocol. KGCs in certificateless protocols, as noted in
Section 2.5, can always mount man-in-the-middle attacks by replacing public
keys, so in this case we must trust the KGC to not replace any public keys.

3.6 Examples

We provide representative examples of key agreement protocols from traditional
PKI, identity-based, certificateless, and self-certified cryptography. We discuss the
main features of each, paying particular attention to the level of trust invested in
the KGC.

3.6.1 Traditional PKI: Unified Model KAP

We present the Unified Model (UM) with key confirmation, which was introduced
by Blake-Wilson, Johnson, and Menezes [6], as an example of an AKC scheme in
the traditional PKI setting. There are several variants of the unified model; we
have chosen to provide the 3-pass version that is included in the NIST SP 800-56A
standard, the security of which Menezes and Ustaoğlu [29] consider in detail. We
feel this protocol is illustrative of key agreement supported by traditional PKI.
Moreover, the UM protocol is an authenticated key agreement protocol that is
believed to possess forward secrecy as well as resistance to unknown key-share,
known-session key, and known session-specific temporary information attacks. It

21

has been shown, however, to be vulnerable to KCI attacks, which is evident from
the protocol specification.

We describe the protocol below. (Refer to Figure 3.2.) To make the protocol
more readable, we omit certain details, such as the inclusion of session identifiers,
which are needed to achieve full security and thwart more complicated interleaving
attacks, but are not essential to understanding the protocol structure. As usual in
the traditional PKI setting, we assume that our two parties, Alice (A) and Bob (B),
have access to authentic copies of each other’s public keys through the exchange of
certificates issued by a certification authority.

Assume G = 〈g〉, |G| = q, where q is prime, and the discrete logarithm problem
is hard in G. We identify each user i by the string IDi, with associated private key
xi ∈R Z∗q and public key Pi = gxi . We make use of key derivation functions H and
H ′, as well as a message authentication code algorithm, MAC; R denotes the fixed
string “KC 2 U” and I the fixed string “KC 2 V”.

1. Alice picks a ∈R Z∗q and computes TA = ga. She then sends 〈IDB, IDA, TA〉 to
Bob.

2. Bob checks that TA ∈ G∗. If this is the case, he picks b ∈R Z∗q and computes
TB = gb. He sets σe = T b

A, σs = P xB
A , and k′ = H ′(σe, σs, IDA, IDB). He then

destroys σe, σs, and b, and sets tB = MACk′(R, IDB, IDA, TB, TA). He then
sends 〈IDA, IDB, TA, TB, tB〉 to Alice.

3. Alice checks that TB ∈ G∗. If this is the case, she sets σe = T a
B and

σs = P xA
B . She computes k′ = H ′(σe, σs, IDA, IDB) and verifies that tB =

MACk′(R, IDB, IDA, TB, TA). She computes tA = MACk′(I, IDA, IDB, TA, TB)
and destroys k′. She then sends 〈IDB, IDA, TA, TB, tB, tA〉 to Bob.

4. Bob verifies that tA = MACk′(I, IDA, IDB, TA, TB) and destroys k′.

5. Alice and Bob both accept k = H(σe, σs, IDA, IDB) as the session key.

A B
a ∈R Z∗q; TA = ga b ∈R Z∗q; TB = gb

〈IDB, IDA, TA〉−−−−−−−−−−−−−−−−−→
〈IDA, IDB, TA, TB, tB〉←−−−−−−−−−−−−−−−−
〈IDB, IDA, TA, TB, tB, tA〉−−−−−−−−−−−−−−−−−−→

H(T a
B, P

xA
B , IDA, IDB) H(T b

A, P
xB
A , IDA, IDB)

Figure 3.2: UM AKC protocol

An attacker Eve armed with Alice’s private key xA can clearly launch a successful
KCI attack. She merely intercepts Alice’s messages to Bob, picks her own ephemeral

22

key b′ ∈R Z∗q, and follows the protocol in Bob’s stead. We also comment on the
use of message authentication code algorithms in this protocol—their primary use
is to provide key confirmation. A user’s ability to use the correct key in the MAC
assures the other party that k′ has been computed, thereby providing evidence of
the user’s ability to compute the session key k.

3.6.2 ID-based PKC: Smart’s KAP

We give one of the first ID-based key agreement schemes, introduced by Smart [40].

Let q be a prime, G1 be a cyclic additive group of order q generated by P ,
and GT a multiplicative group of order q. Let e : G1 ×G1 → GT be an admissible
pairing and h a hash function satisfying h : {0, 1}∗ → G∗1. We assume the discrete
logarithm problem (DLP) is hard in both G1 and GT . The KGC chooses a master
secret key s ∈R Z∗q, sets PKGC = sP as its public key, and publishes the system
parameters 〈G1, GT , e, q, P, PKGC, h〉. Each user i has public key Qi = h(IDi) and
private key Si = sQi, which is distributed securely by the KGC.

Alice (A) and Bob (B) agree on a session key as follows. (See Figure 3.3.) Alice
picks a ∈R Z∗q and computes TA = aP . She sends TA to Bob. Similarly, Bob picks
b ∈R Z∗q and computes TB = bP . He sends TB to Alice. Alice computes KA =
e(QB, PKGC)ae(SA, TB) and Bob computes KB = e(SB, TA)e(QA, PKGC)b. They use
KA = e(QB, PKGC)ae(SA, TB) = e(sQB, aP)e(sQA, bP) = e(SB, TA)e(QA, PKGC)b =
KB, which we denote by K, as the session key.

A B
a ∈R Z∗q; TA = aP b ∈R Z∗q; TB = bP

TA−−−−−→
TB←−−−−−−

KA = e(QB, PKGC)ae(SA, TB) KB = e(SB, TA)e(QA, PKGC)b

Figure 3.3: Smart KAP

In its original form, the CA can easily compute all session keys, as the session
key is K = e(SB, TA)e(SA, TB). By the same argument, the protocol fails to have
(weak) perfect forward secrecy. Chen and Kudla [14] modify the protocol by making
use of a hash function H : GT ×G1 → {0, 1}k for some k ∈ N, and using H(K||abP)
as the session key. This version achieves weak perfect forward secrecy—so long as
the attacker was not actively involved in the session, knowledge of the participants’
LL-keys is not sufficient to compute the session key. Note that this implies that the
KGC, so long as it remained passive during the session, is also unable to compute
the key, i.e., this scheme is escrowless. However, we do want to emphasize that
even in escrowless variants of ID-based schemes, the KGC can mount a man-in-
the-middle attack undetected. It is easy to see that both versions are vulnerable to
a known session-specific temporary information attack.

23

3.6.3 Certificate-based PKC: Wang-Cao KAP

Although it seems that not much attention has been paid to certificate-based
primitives, especially key agreement protocols, we provide a scheme by Wang and
Cao [46] that is based on Gentry’s certificate-based encryption scheme (Section 2.4)
and Smart’s AK protocol (Section 3.6.2). We do not believe this protocol has re-
ceived much attention from the cryptographic community, but as it is closely related
to Mandt’s scheme, which we cryptanalyze in Chapter 6, we provide it below.

Let q be a prime, G1 be a cyclic additive group of order q generated by P ,
and GT a multiplicative group of order q. Let e : G1 ×G1 → GT be an admissible
pairing. We assume the discrete logarithm problem (DLP) is hard in both G1 and
GT . We also make use of hash functions H : {0, 1}∗ → G∗1, and a key derivation
function, denoted kdf.

The KGC chooses a master secret key s ∈R Z∗q, sets PKGC = sP as its public
key, and publishes the system parameters 〈G1, GT , e, q, P, PKGC, H〉.

The user i chooses xi ∈R Z∗q as his secret value and sets Pi = xiP as his
public key. He requests a certificate from the CA by sending a data string datai,
which includes his public key Pi and his identifying information IDi. The CA
computes Qi = H(PKGC, datai) ∈ G1 and sends the certificate Certi = sQi to the
user. The user will then use this certificate as a partial private key, computing
Si = Certi +xiQi = (s+ xi)Qi for his full private key.

Alice (A) and Bob (B) agree on a session key as follows. (Refer to Figure 3.4.)

A B
a ∈R Z∗q; TA = aP b ∈R Z∗q; TB = bP

TA−−−−−−−−→
TB←−−−−−−−−

KA = e(PKGC + PB, QB)a KB = e(TA, SB)
K ′A = e(TB, SA) K ′B = e(PKGC + PA, QA)b

kdf(IDA || IDB ||KA||K ′A||aTB) kdf(IDA || IDB ||KB||K ′B||bTA).

Figure 3.4: Wang-Cao KAP

1. Alice picks a ∈R Z∗q and sends TA = aP to Bob.

2. Bob picks b ∈R Z∗q and sends TB = bP and PB to Alice.

3. Alice computes QB = H(PKGC, dataB) ∈ G1, KA = e(PKGC + PB, QB)a, and
K ′A = e(TB, SA). She uses kdf(IDA || IDB ||KA||K ′A||aTB) as the session key.

4. Bob computes QA = H(PKGC, dataA) ∈ G1, KB = e(TA, SB), and K ′B =
e(PKGC +PA, QA)b. He uses kdf(IDA || IDB ||KB||K ′B||bTA) as the session key.

24

We note that this protocol is consistent, since KA = e(PKGC + PB, QB)a =
e(sP + xBP,QB)a = e(aP, (s + xB)QB) = e(TA, SB) = KB and similarly K ′A =
e(TB, SA) = e(PKGC + PA, QA)b = K ′B.

The authors do not specify how protocol participants obtain the public keys
of other parties, so we suggest that these be sent as part of the flows. There
are no checks specified on Alice and Bob’s public keys; Alice and Bob do not even
ensure that the public keys are elements of G∗1, which potentially leaves the protocol
open to the small subgroup attack mentioned by Lim and Lee [25]. Also, while the
authors do mention that the KGC’s certificates need not be kept secret, they do not
use the certificates in a useful way. If the certificates are not public information,
or if users do not check that the certificates are valid, then we can assume an
attacker has the freedom to replace public keys undetected. However, with the
appropriate checks in place, it appears this scheme achieves trust level 3 and has
most desirable security attributes. We note, though, that the scheme evidently does
not have known session-specific temporary information security, which can be fixed
by adding xAxBP to the key derivation function and modifying kdf as appropriate.

3.6.4 Certificateless PKC: Al-Riyami Paterson KAP

The first certificateless key agreement scheme was introduced by Al-Riyami and
Paterson [1]. We present this protocol below.

Let q be a prime, G1 be a cyclic additive group of order q generated by P ,
and GT a multiplicative group of order q. Let e : G1 ×G1 → GT be an admissible
pairing. We assume the discrete logarithm problem (DLP) is hard in both G1 and
GT . We also make use of hash functions h : {0, 1}∗ → G∗1 and h′ : GT×G1 → {0, 1}k
for some k ∈ N.

The KGC picks s ∈R Z∗q as its master secret key, sets PKGC = sP as its master
public key, and makes the parameters 〈G1, GT , e, q, P, PKGC, h, h

′〉 public. The KGC
provides each user i with a partial private key Di = sQi ∈ G1, where Qi = h(IDi).
The user verifies that e(Di, P) = e(Qi, PKGC) before using Di.

The user i also picks xi ∈R Z∗q as his secret value (which acts as an additional
partial private key) and computes his full private key as Si = xiDi = xisQi. He
sets his public key as Pi = 〈Xi, Yi〉, where Xi = xiP and Yi = xiPKGC = xisP .

Users Alice (A) and Bob (B) agree on a session key as follows. (Refer to
Figure 3.5.) Alice picks a ∈R Z∗q and computes TA = aP . She sends TA and PA =
〈XA, YA〉 to Bob. Similarly, Bob picks b ∈R Z∗q and computes TB = bP . He sends TB

and PB = 〈XB, YB〉 to Alice. Alice then checks that e(XB, PKGC) = e(YB, P) and
computes KA = e(QB, YB)ae(SA, TB). Bob checks that e(XA, PKGC) = e(YA, P)
and computes KB = e(SB, TA)e(QA, YA)b. Alice uses h′(KA||aTB) as the session
key, and Bob uses h′(KB||bTA).

25

A B
a ∈R Z∗q; TA = aP b ∈R Z∗q; TB = bP

TA, PA−−−−−−−−→
TB, PB←−−−−−−−−−

e(XB, PKGC)
?
= e(YB, P) e(XA, PKGC)

?
= e(YA, P)

KA = e(QB, YB)ae(SA, TB) KB = e(SB, TA)e(QA, YA)b

h′(KA||aTB) h′(KB||bTA).

Figure 3.5: Al-Riyami and Paterson KAP

Since

KA = e(QB, YB)ae(SA, TB)

= e(QB, xBsP)ae(xAsQA, bP)

= e(xBsQB, aP)e(QA, xAsP)b

= e(SB, TA)e(QA, YA)b

= KB,

we see that, as desired, Alice and Bob agree on the same session key, namely
h′(e(QB, YB)ae(QA, YA)b||abP).

This scheme clearly does not have the known session-specific temporary infor-
mation security property, as pointed out by Mandt [27]. However, we comment that
this is easy to fix by making the session key h′(e(QB, YB)ae(QA, YA)b||abP ||xAxBP)
and modifying h′ as necessary (so Alice computes xAXB = xAxBP and Bob com-
putes xBXA = xAxBP).

This scheme has the nice property associated with certificateless public-key
systems in that there is no key escrow. While the KGC cannot compute users’
secret keys, it can nevertheless impersonate users (in a man-in-the-middle attack
scenario) by creating false public keys, and so we say that this scheme reaches
trust level 2. However, we emphasize that the KGC cannot perform a man-in-the-
middle attack without both replacing ephemeral values and public keys, whereas
in ID-based systems modified to eliminate key escrow, the KGC need only replace
ephemeral values. The binding technique mentioned in [1] ensures users have only
one public key for which they have the associated private key. To accomplish this,
a user i must first fix his public key Pi = 〈Xi, Yi〉 and send this to the KGC. We
redefine Qi = h(IDi||Pi) and continue the protocol as normal. In this way, the
user’s partial private key is bound to his choice of public key. The existence of
two working public keys exposes a cheating KGC, as it implies the existence of two
partial private keys for the same user, which are only computable by the KGC.
Thus we say that with this added binding technique, the scheme achieves trust
level 3.

26

As noted by Al-Riyami and Paterson, it is still possible for the KGC to tem-
porarily replace public keys. That is, the KGC could mount a man-in-the-middle
attack by replacing both ephemeral values and public keys, and then reset the
public keys. In this way, the KGC might obtain access to some session keys or to
the plaintext versions of some ciphertexts without being detected. There seems to
be no way to prevent this type of attack, but we remind the reader that a CA in
traditional PKI can always launch such an attack without fear of discovery.

3.6.5 Self-certified PKC: Girault KAP

We give the first self-certified key agreement scheme of Girault [19], the security of
which depends on the hardness of factoring large integers and the DLP assumption.
The CA chooses an RSA modulus n = pq (so p and q are large distinct primes) with
corresponding encryption key e and decryption key d satisfying ed ≡ 1 (mod φ(n)).
We let g be an integer of maximal order in Z∗n. To each user i there is an associated
3-tuple (IDi, xi, Pi), where IDi, which we assume to have built-in redundancy and/or
structure, identifies i, xi ∈R Zn is the user’s private key, and Pi = (g−xi − IDi)

d

(mod n) is the user’s public key (which doubles as a certificate). That is, the public
key of a user is essentially the CA’s RSA signature on g−xi − IDi.

In order to receive a public key, the user i sends νi = g−xi (mod n) to the CA
and proves that he knows xi. For details on this identification protocol see [19].
This identification protocol also serves as the method by which users certify that
they have the correct public key for the other party. Public keys are self-certified
in the sense that only a CA could produce a key Pi satisfying P e

i + IDi = νi = g−xi

(mod n). We observe that the redundancy/structure of IDi plays an important
role in the self-certification process, as this prevents an attacker from selecting
arbitrary xi, Pi ∈ Zn and claiming IDi = g−xi − P e

i as his identity. If Bob wishes
to authenticate Alice’s public key, he computes νA and initiates the identification
protocol, in which Alice proves she knows the discrete logarithm of νA with respect
to g in Z∗n. Note that, provided the DLP assumption holds in Z∗n, neither the CA
nor another user is capable of computing xi from νi.

Two users Alice (A) and Bob (B) can easily establish a shared secret g−xAxB

(mod n). To see this, note that Alice can compute (P e
B + IDB)xA = ((g−xB −

IDB)ed +IDB)xA = (g−xB − IDB + IDB)xA = g−xAxB and similarly Bob can compute
(P e

A +IDA)xB . Of course, since this is a static key agreement scheme (involving only
the users’ long-term secret keys), it is automatically vulnerable to a KCI attack,
and is completely insecure if any private information is leaked.

Girault claims that this scheme reaches trust level 3, in that the CA not only
does not have access to users’ secret keys, but is incapable of publishing false public
keys without being detected. While the CA can certainly use knowledge of d to
create a false public key for any given user, given the security of the RSA signature
scheme, the CA is also the only party able to do so. That is, the existence of
two or more public keys for the same user automatically implies that the CA has

27

misbehaved. Saeednia [34] comments that this scheme actually only achieves trust
level 1, in the sense that there is no guarantee (or verification) that the CA will
pick an appropriate RSA modulus n. The CA could potentially pick n in such a
way that computing discrete logarithms is feasible. For instance, if p and q are are
relatively small primes, or if p− 1 and and q− 1 both have small prime factors, the
CA can use the Pohlig-Hellman algorithm to solve the DLP (see [30] for details).

28

Chapter 4

Provable Security

We now turn to the notion of provable security, which originated with Goldwasser
and Micali [20]. Before this, there was no formal analysis of the security of cryp-
tographic primitives. New primitives were given the test of time: people tried to
break them and the longer they lasted, the more secure they were thought to be.
Of course, numerous primitives have been broken, sometimes years after they were
initially presented, and so the idea of trying to prove security was born. The basic
outline of “proving” a cryptographic primitive secure involves carefully defining the
goals of the primitive (including the capabilities of the adversary) and then showing
the primitive meets these goals. Usually these proofs are subject to some standard
number-theoretic assumption, for example the hardness of the DH or RSA problem.

We have already mentioned the limitations of testing the security of a given
protocol by using a checklist of attacks—while useful in determining whether the
protocol is immediately vulnerable to a particular attack, it does not show the
protocol to be resilient to some combination of attacks. This problem prompted
designers of key establishment protocols to turn to provable security as an analytical
tool. In the remainder of the chapter we present the major security models in
the area of key agreement, starting with the original Bellare-Rogaway model and
Blake-Wilson, Johnson, Menezes model in Section 4.1. We then present the Canetti-
Krawczyk model in Section 4.2 and finally, in Section 4.3, the extended Canetti-
Krawczyk model, which appears to be the favored model in the literature today. We
observe that all of these models, if designed to address PKC rather than symmetric
systems, are considered from the viewpoint of traditional PKI. They can be readily
adapted to the ID-based setting [13, 9], but it seems that settings in which the
secret keys of users involve two pieces of information, such as certificateless, require
giving the adversary new powers. We consider how the eCK model, in particular,
might be adapted for certificateless key agreement protocols.

29

4.1 Bellare-Rogaway (BR) Model

We present the Bellare-Rogaway (BR) model [4, 5] and the Blake-Wilson, Johnson,
Menezes (BJM) model [6], as these provide the framework for the more current
Canetti-Krawczyk models [11]. The only fundamental difference between the BR
model and the BJM model is that the first addresses the setting of symmetric key
cryptography, and the latter that of public-key cryptography. The underlying idea
is that a protocol is considered secure if the adversary cannot distinguish between
a valid session key and a randomly generated value; this idea of provable security
based on indistinguishability originated with Goldwasser and Micali [20]. These
models assume that all parties behave honestly in the key registration phase; that
is, parties form their public keys correctly and register them with the CA.

In the Bellare-Rogaway model, all communication is controlled by the adversary.
That is, the adversary is allowed to intercept, modify, delete, and create messages
of his choosing, as well as deliver messages out of order or to unintended recipients.
Moreover, the adversary can control the number of sessions occurring at any given
time, as well as the identities of the parties involved. Informally, the adversary
plays a “game.” He simulates protocol runs, subject to a certain set of constraints,
and eventually tries to win the game by guessing whether a given output is a valid
session key or a randomly generated value.

Formally, we call the set of possible entities I and model the adversary E by a
probabilistic polynomial time Turing machine. (We note that E is not a member
of I.) The protocol is viewed as a function Π that specifies the behavior of parties
in an honest protocol run; we assume Π is efficiently computable in a given security
parameter k. (In the BJM model, we also have an efficiently computable function
G, which generates key pairs.) The adversary has access to a collection of oracles

{Πs
i,j|i, j ∈ I, s ∈ N}, where Πs

i,j denotes the sth protocol run initiated by entity i in
an attempt to establish a session key with entity j. Oracles can either “accept” or
“reject” protocol runs, according to the rules of the protocol. Rejection can occur
at any time, whereas acceptance is generally at the end of the run and indicates
the run was successful. We assume the session key is an element of {0, 1}k.

We say a conversation for a given oracle is the ordered concatenation of all
messages (both incoming and outgoing). Moreover, two oracles Πs

i,j and Πt
j,i have

matching conversations if the outgoing messages of one are the incoming messages of
the other, and vice versa. That is, the initiator oracle Πs

i,j must have a conversation
matching to the responder oracle Πt

j,i: each message the responder received was
generated first by the initiator oracle, the response to this message was the next
message of the initiator’s conversation, and the initiator’s subsequent response was
the next message of the responder oracle. (We remark that a responder oracle’s
conversation matching that of an initiator oracle is a slightly different concept, in
that the last message of the initiator might not be delivered correctly.) Informally,
two oracles having a matching conversation when the adversary delivers all messages
faithfully, in which case we call the adversary benign. We wish the oracles involved

30

in a given protocol run to accept only if they have matching conversations. This
leads to the following definition.

Definition 4.1.1. We say Π is a secure mutual authentication protocol if for any
polynomial time adversary E:

1. If oracles Πs
i,j and Πt

j,i have matching conversations, then both accept;

2. The probability of Πs
i,j accepting is negligible when there is no oracle with a

matching conversation.

The power of the adversary E is modeled by three queries, namely Send, Reveal,
and Corrupt. The Send(Πs

i,j, x) query translates to the adversary E sending the

message x to the oracle Πs
i,j. For example, E can tell entity i to initiate the sth

protocol run with entity j by setting x = λ, the empty string. The Reveal(Πs
i,j)

query tells the given oracle to reveal the session key it currently holds (if any). The
Corrupt(i) query allows E to take over entity i. (In the BJM model, the Corrupt
query also allows the adversary to replace i’s key pair with a valid key pair of E’s
choice. This essentially allows the adversary to have access to i’s LL-key.) To
distinguish among oracles the adversary may have influenced in some way, we say
that an oracle Πs

i,j is fresh if the oracle computes and accepts a session key, the
adversary does not use the Reveal(Πs

i,j) query or the Reveal query on the oracle
matching to Πs

i,j, and the adversary does not use the Corrupt query on either i or j.

Once E has finished interacting with the oracles, it picks a fresh oracle to be the
test oracle. A bit b is then picked at random. If b = 0, the test oracle reveals the
session key, and if b = 1, it generates a random value in {0, 1}k. The adversary then
attempts to guess b. We define GoodGuessE(k) to be the event that E correctly
guesses b, and

AdvantageE(k) = max

{
0,

∣∣∣∣Pr[GoodGuessE(k)]− 1

2

∣∣∣∣} .

This leads us the following formal security definitions:

Definition 4.1.2. We say that a key exchange protocol Π in security parameter k
is a BR-secure AK protocol if the following hold for any polynomial time adversary
E:

1. If E is a benign adversary on Πs
i,j and Πt

j,i, both oracles accept and hold the
same session key, where this key is distributed uniformly at random on the
key space;

2. If oracles Πs
i,j and Πt

j,i have matching conversations and both i and j are
uncorrupted, both oracles accept and hold the same session key;

3. AdvantageE(k) is negligible.

31

Definition 4.1.3. We say that a key exchange protocol Π in security parameter k is
a BR-secure AKC protocol if the following hold for any polynomial time adversary
E:

1. If E is a benign adversary on Πs
i,j and Πt

j,i, both oracles accept and hold the
same session key, where this key is distributed uniformly at random on the
key space;

2. If oracles Πs
i,j and Πt

j,i have matching conversations and both i and j are
uncorrupted, both oracles accept and hold the same session key;

3. AdvantageE(k) is negligible;

4. The probability of Πs
i,j accepting is negligible when there is no oracle with a

matching conversation.

Note that the latter definition is equivalent to saying that Π is a BR-secure
AKC protocol if Π is a secure mutual authentication protocol and a BR-secure AK
protocol.

4.2 Canetti-Krawczyk (CK01) Model

The Canetti-Krawczyk (CK01) Model [11] was designed to analyze the use of
key establishment protocols in combination with symmetric encryption systems
and authentication functions, something which the BR model does not consider. In
particular, protocols secure under the CK01 model can be used to create “secure
channels.” Roughly speaking, session keys produced by CK01-secure key agreement
protocols can be used in a symmetric key encryption scheme to provide “secret”
and authenticated data transmission. The CK01 model uses the notion of indistin-
guishability from the BR model and is designed in the public-key setting.

Formally, in the CK01 model, we have a (finite) set of polynomial time machines
Pi called parties. By a message-driven protocol, we refer to a collection of interactive
processes run concurrently by the parties, which specify what to do with incoming
messages and what to send as outgoing messages. These protocols can be initiated
via an action request or an incoming message to a party. Activated parties create or
update (one or more) copies of protocol runs, called sessions, which are technically
interactive subroutines within each party. Key exchange protocols are understood
in this context to be message-driven protocols in which two parties communicate
and return a session key once finished. The sessions of the CK01 model are similar
to the oracles of the BR model from the previous section.

The input to a key exchange protocol within party Pi, i.e., a session s within
the owner Pi, is of the form s = (Pi, Pj,Φ, role), where Pj is the identity of another

32

party, called the session peer, Φ is a session identifier, and role is either I, for
initiator, or R, for responder. By session identifier, we mean some unique string
within Pi that identifies the given session. Parties Pi and Pj of a given session s
are referred to as partners. After receiving an activation request for a particular
session, Pi will check to see that the session identifier Φ has not been used before,
and only creates the session if this is the case. A party’s local information specific
to a particular session is stored in the session state, some of which is designated
secret. The session s outputs (Pi, Pj,Φ, κ), where κ is either the session key or, if
the session was aborted, a null value. We assume that a completed session erases
everything in its session state except the output. Also, a session can at any point
receive the Expire command, which causes the session to delete its session key and
corresponding session state. We say that two sessions of the form (Pi, Pj,Φ, role)
and (Pj, Pi,Φ, role′) are matching, whether or not the roles are different. We note
that if s is expired, its matching session may or may not be expired. Moreover, the
matching session of a completed session s may or may not be completed.

As in the BR model, the CK01-adversary E has complete control of commu-
nications. Messages are sent directly to the adversary, who is in control of their
delivery. E controls the creation of sessions and is free to delete, modify, cre-
ate, inject, and deliver messages to the party of its choosing. The adversary is also
allowed the queries SessionStateReveal, SessionKeyReveal, and Corrupt. Upon receiv-
ing SessionStateReveal(s), E knows all the contents of the session state, including
any secret information. The query is noted and s produces no further output. The
SessionKeyReveal(s) query enables the adversary to obtain the session key, provided
s actually has a session key. The Corrupt(Pi) query allows E to take over the party
Pi, i.e., the adversary has access to all information in Pi’s memory, including LL-
keys and any session-specific information still stored. A corrupted party produces
no further output. We say a session s with owner Pi is locally exposed if the ad-
versary has issued SessionKeyReveal(s), SessionStateReveal(s), or Corrupt(Pi) before
s is expired. We say s is exposed if s or its matching session have been locally
exposed, and otherwise we say s is fresh.

We also allow the adversary E a single Test(s) query, which can be issued at any
stage to a completed, fresh, unexpired session s. A bit b is then picked at random.
If b = 0, the test oracle reveals the session key, and if b = 1, it generates a random
value in the key space. Unlike in the BR model, E can continue to issue queries
as desired, with the exception that it cannot expose the test session. At any point,
the adversary can try to guess b. As before, we define GoodGuessE(k) to be the
event that E correctly guesses b, and

AdvantageE(k) = max

{
0,

∣∣∣∣Pr[GoodGuessE(k)]− 1

2

∣∣∣∣} ,

where k is a security parameter.

This motivates the following definition of security:

Definition 4.2.1. A key exchange protocol Π in security parameter k is said to be
CK01-secure if for any CK01-adversary E,

33

1. If two uncorrupted parties have completed matching sessions, these sessions
produce the same key as output;

2. AdvantageE(k) is negligible.

We refer the reader to [45] for a more detailed description and critique of the
properties of the CK01 model, but we summarize them here. The CK01 model
incorporates many of the basic security attributes and attacks discussed in Sec-
tions 3.4 and 3.5, and a CK01-secure KAP provides mutual authentication. Pas-
sive adversaries, man-in-the-middle attacks, forward secrecy, known key attacks,
and unknown key share attacks are all covered by the adversarial model. Adver-
saries can access session-specific temporary information for a given session, and in
a secure protocol, this will have no effect on the security of other sessions. How-
ever, the model does not allow adversaries to gain the ephemeral secrets of the
test session, and so secure protocols do not necessarily have known session-specific
temporary information security. Ideally, a protocol should remain secure as long as
both the ephemeral and LL-keys of a given party are not compromised.

In addition, the model does not allow for key compromise impersonation attacks,
since after the adversary gains the LL-key of a party through the corruption query,
that party is assumed to produce no further output. Reflection attacks are also
ignored, since parties cannot be both the owner and peer of a session with given
identifier Φ. As adversaries are assumed not to be parties, this approach neglects
malicious insiders. This implies that attackers cannot, for example, have access to
a valid public key and associated certificate of their own.

4.3 Extended Canetti-Krawczyk (eCK) Model

The extended Canetti-Krawczyk (eCK) model [24] captures all of the security prop-
erties of the CK01 model, as well as resilience to KCI attacks, malicious insiders,
and known session-specific temporary information attacks. The eCK model in a
sense builds on the CK01 definition, but replaces the notion of matching sessions
with that of matching conversations from the BR model. In addition, registration
of public keys is arbitrary: there are no validity checks on the public keys (other
than checking whether the public key is a non-identity element of the given group)
and adversaries can register public keys on behalf of entities at any time.

As in the CK01 model, we have a finite set of parties P1, . . . , Pn modeled by
probabilistic Turing machines. The adversary, also modeled by a probabilistic Tur-
ing machine, controls all communication—parties give outgoing messages to the
adversary, who has control over their delivery via the Send query. Parties are ac-
tivated by Send queries, so the adversary has control over the creation of protocol
runs, once again called sessions, which take place within each party. As before, we
call the initiator of a session the owner, the responder the peer, and say both are
partners of the given session. Rather than view sessions as matching according to

34

session identifiers as in CK01, we say two sessions are matching if they have match-
ing conversations in the sense of the BR model. Parties choose ephemeral keys
randomly on a per-session basis, so a session’s (perhaps incomplete) conversation is
essentially a unique identifier, given that the probability parties will use the same
ephemeral keys twice is negligible.

In addition to the Send query, the powers of the adversary are formalized through
EphemeralKeyReveal, SessionKeyReveal, StaticKeyReveal, and Establish queries. The
secret information of protocols is divided into two types, ephemeral and static.
Ephemeral information includes any session-specific secret information, whereas
static information is compromised of the long-term secret key of the party. The
query EphemeralKeyReveal(s) allows the adversary to obtain the ephemeral private
key of the session s; this is not equivalent to issuing the query EphemeralKeyReveal
on the session matching to s (if it exists), as only the ephemeral information cho-
sen by the session owner is revealed. The SessionKeyReveal(s) query allows the
adversary to obtain the session key for the specified session s (so long as s holds
a session key). The StaticKeyReveal(party) query gives the adversary access to the
LL-key of the identified party. The ability of the adversary to register a public key
on behalf of a given party is modeled by Establish(party); these parties are then
adversary-controlled. If the adversary has not issued an Establish query against a
given party, we say that party is honest.

We also have the notion of a fresh session, which is considerably more compli-
cated than in the CK01 model, in order to more appropriately describe the possible
leakage of secret information to the adversary. The underlying idea is that as long
as the adversary has not compromised both the LL-key and ephemeral secrets of a
given involved party, the session should be secure. We provide the formal definition
of a fresh session below.

Definition 4.3.1. Let s be a completed session owned by party Pi with peer Pj,
both of whom are honest. Let s∗ denote the matching session (if such a session
exists). We say s is fresh if none of the following conditions are true, where E
denotes the adversary:

1. E issues a SessionKeyReveal(s) or SessionKeyReveal(s∗) query (provided s∗

exists);

2. s∗ exists and E either makes queries:

(a) both StaticKeyReveal(Pi) and EphemeralKeyReveal(s) or

(b) both StaticKeyReveal(Pj) and EphemeralKeyReveal(s∗);

3. No matching session s∗ exists and E either makes queries:

(a) both StaticKeyReveal(Pi) and EphemeralKeyReveal(s) or

(b) StaticKeyReveal(Pj).

35

We also allow the adversary E a single Test(s) query, which can be issued at any
stage to a completed, fresh session s. A bit b is then picked at random. If b = 0,
the test oracle reveals the session key, and if b = 1, it generates a random value
in the key space. E can continue to issue queries as desired, with the requirement
that the test session remain fresh. At any point, the adversary can try to guess b.
Using the same notation as before, GoodGuessE(k) is the event that E correctly
guesses b, and

AdvantageE(k) = max

{
0,

∣∣∣∣Pr[GoodGuessE(k)]− 1

2

∣∣∣∣} ,

where k is a security parameter.

Finally, we are ready to formalize the notion of eCK security:

Definition 4.3.2. We say a key establishment protocol is eCK-secure if the fol-
lowing conditions hold:

1. If honest parties have matching sessions, these sessions output the same ses-
sion key (except with negligible probability);

2. For any polynomial time adversary E, AdvantageE(k) is negligible.

4.4 Extending eCK

In this section, we attempt to give a framework for an eCK variant appropriate to
the certificateless setting. We note that Al-Riyami and Paterson give a security
definition relevant to certificateless encryption in [1, 2], but our key agreement
model is based on the eCK model and is not the natural extension of their definition
to key establishment protocols. We note that the treatment of the longterm secret
information of the user is different in Al-Riyami and Paterson’s definition, as their
adversary is not allowed to know only part of a user’s private key, an issue which
restricts the treatment of leakage of ephemeral information. Nevertheless there
are some similarities, and we owe the general adversarial model to Al-Riyami and
Paterson: we consider two possible types of adversaries, namely those without the
master secret key, who can replace public keys at will, and those with the master
secret key, who are not allowed to replace public keys at any time. To model these,
we add the following set of queries to the original eCK model:

• RevealMasterKey: The adversary gains access to the master secret key.

• ReplacePublicKey(party): The adversary replaces the public key of the given
party. Unlike in the eCK model, this does not mean the adversary has control
over the party. Instead, it implies that all other parties will use the adversary’s
version of the party’s public key, while the given party will continue to use
the correct public key in any calculations.

36

• RevealPartialPrivateKey(party): The adversary gains access to the given party’s
partial private key, which is generated from the master secret key. Note that
this command is redundant if the RevealMasterKey query has been issued.

• RevealSecretValue(party): The adversary gains access to the party’s chosen
secret value (which is used to generate the party’s public key). We assume
that an adversary cannot issue a RevealSecretValue query against a party
which has already received the ReplacePublicKey query.

We also remove the queries Establish and StaticKeyReveal. In the original eCK
model, adversary-controlled parties are those against which the adversary issued the
Establish query, and we assume that all future behavior of these parties is determined
by the adversary. In the certificateless setting, we consider an adversary-controlled
party to be one against which the adversary has issued both the ReplacePublicKey
and RevealPartialPrivateKey queries. If the RevealMasterKey query has been is-
sued, any party issued the ReplacePublicKey query is considered to be adversary-
controlled; in this way, we capture the intent of the requirement that adversaries
holding the master key should not be allowed to replace public keys. As before, we
say a party that is not adversary-controlled is honest. We have essentially replaced
the StaticKeyReveal query by the RevealSecreatValue and RevealPartialPrivateKey
queries. The EphemeralKeyReveal, SessionKeyReveal, Send, and Test queries remain
as before.

Our notion of matching sessions is also slightly different. Since in general,
certificateless protocols may involve participants sending their public keys as part
of the message flows or publishing them to some insecure directory, we ignore any
ReplacePublicKey queries in determining whether a conversation between two parties
is matching. That is, a conversation is defined to be matching if it is matching once
public keys, if any, have been removed from the messages.

We then modify the definition of a fresh session as follows:

Definition 4.4.1. Let s be a completed session owned by party Pi with peer Pj,
both of whom are honest. Let s∗ denote the matching session (if such a session
exists). We say s is fresh if none of the following conditions are true, where E
denotes the adversary:

1. E issues a SessionKeyReveal(s) or SessionKeyReveal(s∗) query (provided s∗

exists);

2. s∗ exists and E either makes queries:

(a) both RevealPartialPrivateKey(Pi) and RevealSecretValue(Pi) as well as
EphemeralKeyReveal(s) or

(b) both RevealPartialPrivateKey(Pj) and RevealSecretValue(Pj) as well as
EphemeralKeyReveal(s∗);

37

3. No matching session s∗ exists and E either makes queries:

(a) both RevealPartialPrivateKey(Pi) and RevealSecretValue(Pi) as well as
EphemeralKeyReveal(s) or

(b) both RevealPartialPrivateKey(Pj) and RevealSecretValue(Pj).

This definition encompasses both types of adversaries. In the case where the
adversary has issued the RevealMasterKey query, he cannot issue replace public key
queries without making the involved parties dishonest. Moreover, as this adver-
sary automatically has access to the partial private keys of users, he is assumed
unable to issue both the RevealSecretValue(Pi) and EphemeralKeyReveal(s) or the
RevealSecretValue(Pj) and EphemeralKeyReveal(s∗) queries (provided s∗ exists). Us-
ing the same notation as in Definition 4.3.2, we have:

Definition 4.4.2. We say a certificateless key establishment protocol is secure if
the following conditions hold:

1. If honest parties have matching sessions and no ReplacePublicKey queries have
been issued, these sessions output the same session key (except with negligible
probability).

2. For any polynomial time adversary E, AdvantageE(k) is negligible.

This definition raises the question of whether such secure protocols even ex-
ist. We have not seen any examples in the literature, which may imply that, as
defined, our adversary is too strong. We have already noted that the Al-Riyami
Paterson KAP is vulnerable to an adversary who issues EphemeralKeyReveal queries
on matching sessions, and we will see that even our proposed fix is not as secure
as we would like. The ability to replace public keys affords enormous power, and
as we show in Chapter 6, opens certificateless protocols to various types of attack.
It seems that certificateless protocols that use the binding technique to defeat re-
placement of public keys enjoy more security, but of course lose the flexibility of
the general certificateless scheme. In the most general setting, public keys can be
generated before or after partial private keys, but once the binding technique is
utilized, public keys must be fixed beforehand. This restriction is not particularly
desirable, especially since users who wish to update their public keys are no longer
free to do so at will.

38

Chapter 5

Related Work

The next chapter focuses heavily on the existence of key compromise impersonation
attacks in key agreement, and for the purposes of our discussion it is helpful to ex-
amine relevant prior results. In particular, Strangio [42] demonstrates KCI attacks
on several protocols previously thought to be resilient. His technique is similar to
ours, in that he notices that it is possible to pick messages of a clever form, which,
when used in place of honest messages, allow the attacker to compute the session
key. The general idea is to try pick a message which will “cancel” certain terms
containing the unknown ephemeral key, leaving only terms which use information
gained from the target’s messages and LL-key. Strangio does not consider certifi-
cateless key agreement protocols, so his attacks never involve the replacement of
public keys.

Yet another example of a protocol susceptible to a clever KCI attack is the
ECKE-1 protocol, introduced by Strangio [43]. The attack and proposed modifica-
tions can be found in [48] and [44]. Other work includes [47], in which a protocol
of Ryu et al. provided in [32] is attacked. Ryu’s protocol is vulnerable because it
essentially combines a static shared secret with a Diffie-Hellman exchange, so in
this example the attack is not particularly surprising. The same attack on Ryu’s
protocol is discussed in [50] and a revised (albeit more computationally intensive)
protocol is presented. The new protocol uses asymmetry to its advantage, depart-
ing from the use of a static shared secret. In a recent publication, Lim and Lee [26]
present a progression of revised versions of a deniable authentication protocol by
Chou et al. Their first attempt defeats a basic KCI attack on the original protocol,
but neglects to consider an insider KCI attack. The final version combats this by
adding checks to ensure the correct public keys are used in computing messages
and using a key derivation function (on inputs relevant to both the ephemeral and
private keys) to compute the session key.

An interesting variation on the KCI attack theme in the setting of certificateless
public-key cryptography is presented by Au et al [3]. In this paper, the authors
remove the assumption that the KGC behaves honestly during the establishment of
its own public-key pair, and thus the authors distinguish between a malicious-but-

39

passive KGC, which can be trusted to honestly generate both its own public-key
pair and the partial private keys of the users and to not replace user public keys,
and a more active KGC. Of course, as discussed previously, in the certificateless
setting we must always rely on the KGC to not actively replace user public keys,
so the authors challenge the assumption that the KGC chooses its public-key pair
honestly. They analyze several types of certificateless primitives and conclude that
schemes using the classic key generation techniques of Al-Riyami and Paterson
are more vulnerable. They demonstrate how the KGC can target a potential user
during the set-up phase of the Al-Riyami Paterson scheme (Section 3.6.4). In par-
ticular, this attack allows the KGC to determine the targeted user’s secret key once
the corresponding public key has been published. The attack is undetectable in the
sense that the master public key of this scenario is computationally indistinguish-
able from an honest master public key. We present this attack in detail as it applies
to the Al-Riyami Paterson key agreement protocol in Section 6.3 and suggest a fix.

We also note that work has been done on key compromise impersonation in
one-pass key agreement protocols by Chalkias et al. [12], which fall somewhere be-
tween key transport and regular key agreement schemes, in that one party transfers
information used to establish the session key (but does not transfer the session key
itself). Since we have been concerned primarily with 2-pass key agreement proto-
cols, we shall not concern ourselves with the details, but mention that the authors
establish two classes of KCI attacks against which many one-pass protocols are
vulnerable. The first, which is somewhat preventable through the use of sender
verification methods, is the traditional KCI attack without eavesdropping. The sec-
ond type of attack, for which no good solution seems to exist, involves the attacker
(say, with Bob’s private key) eavesdropping on a session between Alice and Bob.
In this way, the attacker can either cut communications between Alice and Bob
and impersonate Alice, or simply have access to the information encrypted with
the given session key.

40

Chapter 6

Cryptanalysis of Protocols

In this chapter we explore several certificateless authenticated key agreement pro-
tocols from the literature, as well as one “self-certified” protocol (which on closer
analysis actually appears to be certificateless). We analyze the security attributes of
the given protocols, paying particular attention to the existence of key compromise
impersonation attacks and whether or not the protocols have known temporary
session-specific information security. Where possible, we demonstrate the failure of
these protocols to prevent such attacks, and in one case we show the protocol to
be entirely insecure.

6.1 Attack Model

We define the adversaries used in our analysis; our definitions are consistent with the
adversaries the protocol designers considered in the original papers. Where possible,
we also include how these attacks might be formally modeled in the suggested
extension to eCK of Section 4.4.

Definition 6.1.1. We say an adversary is an outside attacker if the adversary does
not have the master secret key. We assume an outside attacker is able to replace
public keys of users.

Definition 6.1.2. We say an adversary is an inside attacker if the adversary has
access to the master secret key. We assume an inside attacker cannot replace public
keys of users.

We also consider the case of the malicious KGC mentioned in Chapter 5 and
take a brief look at the related attack on the Al-Riyami Paterson KAP. We remind
the reader of the definition below:

Definition 6.1.3. We say that the KGC is a malicious KGC if the KGC is not
trusted to establish its public-key pair honestly. As with inside attackers, we assume
malicious KGCs do not replace public keys of users.

41

6.2 Notation

We establish notation used in the following protocols.

Let q be a prime, G1 a cyclic additive group of order q generated by P , and GT a
multiplicative group of order q. Let e : G1×G1 → GT be an admissible pairing. We
assume the discrete logarithm problem (DLP) is hard in both G1 and GT . We use
various hash functions, namely H : {0, 1}∗ → Z∗q, H ′ : GT → Z∗q, h : {0, 1}∗ → G1,
and h′ : {0, 1}∗ × G1 → G1, as well as an (appropriately defined) key derivation
function, denoted kdf.

In the following protocols, we refer to the trusted third party as a KGC, with as-
sociated master secret key s ∈ Z∗q and master public key PKGC = sP . This notation
varies somewhat from that of the original papers. In particular, we have replaced
the terms ‘trusted authority’ and ‘certification authority’ in order to standardize
notation.

The system parameters 〈q,G1, GT , e, P, PKGC, H,H
′, h, h′〉 are made public. If

the protocol flows do not include the participants’ public keys, we assume the
existence of a public directory for this purpose.

6.3 Al-Riyami Paterson KAP Revisited

We present the malicious KGC attack described in [3] as it applies to the Al-Riyami
Paterson KAP; we refer the reader to Section 3.6.4 for the protocol specifications.
This method of attack targets a specific user i before the system parameters have
been established—the authors had an important personage in mind as the potential
target. As usual, we assume Alice (A) is trying to agree on a key with Bob (B).

Let’s say the KGC chooses to target user A. To do so, the KGC sets P =
αQA = αh(IDA) ∈ G1 where α ∈R Z∗q, rather than picking P to be an arbitrary
generator of G1. When A publishes his public key 〈XA, YA〉, the KGC can compute
SA, the user’s secret key, by the formula SA = α−1YA. It is easy to see that this
formula is correct, since α−1YA = α−1sxAP = α−1sxAαh(IDA) = sxAQA = SA, as
desired. Thus, in this special case, the Al-Riyami Paterson KAP has key escrow.

However, our suggestion to incorporate xAxBP into the session key appears
to thwart this attack, in addition to providing known session-specific temporary
information security. The KGC knows SA, but not xA, and so cannot compute
xAxBP unless it is allowed to replace public keys. Thus, at least in terms of key
agreement protocols, the malicious KGC attack does not seem particularly strong.

Our fix is not quite as strong as we would like, however. In the context of
our formal model from Section 4.4, an outside adversary (one who has not issued
the RevealMasterKey query) can still mount an attack on A. He simply issues the
ReplacePublicKey query on B and uses the EphemeralKeyReveal query on both the
test session and its matching session. The initial vulnerability of the protocol to

42

the leakage of ephemeral information allows the attacker to compute KA. He can
compute A’s version of xAxBP by using his knowledge of the replaced public key.
Specifically, suppose he chooses to replace B’s public key with 〈x′BP, x′BsP 〉 for
some x′B ∈R Z∗q. Then A will compute xAxBP as xA(x′BP) = x′BXA. It is clear that
the adversary will be able to distinguish the session key held by A from a randomly
chosen element of the keyspace.

6.4 Mandt KAP

6.4.1 Protocol Summary

We outline the basic certificateless key agreement protocol presented by Mandt [27],
which relies on the difficulty of the bilinear Diffie-Hellman problem (BDH).

Each user i chooses a partial public-key pair (xi, Pi), where xi ∈R Z∗q is the user’s
secret value and Pi = xiP is his public key. Each user also has Qi = h(IDi) ∈ G1

as an additional partial public key and associated partial private key sQi, which
is distributed by the KGC. The user’s full private key, denoted by Si, is Si =
sQi + xiQi = (s + xi)Qi. For ease of notation, we let Di = PKGC + Pi. For this
protocol, our key derivation function is of the form kdf : GT × G1 × G1 → {0, 1}k
for some k ∈ Z.

Alice (A) and Bob (B) agree on a session key as follows. (Refer to Figure 6.1.)

A B
a ∈R Z∗q; TA = aP b ∈R Z∗q; TB = bP

TA, PA−−−−−−−−→
TB, PB←−−−−−−−−−

KA = e(QB, DB)ae(SA, TB) KB = e(SB, TA)e(QA, DA)b

kdf(KA||aTB||xAPB) kdf(KB||bTA||xBPA).

Figure 6.1: Mandt KAP

1. Alice picks a ∈R Z∗q and sends TA = aP and PA to Bob.

2. Bob picks b ∈R Z∗q and sends TB = bP and PB to Alice.

3. Alice checks that PB ∈ G∗1. She terminates the protocol run if this check
fails, and otherwise computes KA = e(QB, DB)ae(SA, TB). She computes the
session key as kdf(KA||aTB||xAPB).

4. Bob checks PA ∈ G∗1. He terminates the protocol run if this check fails, and
otherwise computes KB = e(SB, TA)e(QA, DA)b. He uses kdf(KB||bTA||xBPA)
as the session key.

43

We note that

KA = e(QB, DB)ae(SA, TB)

= e(QB, PKGC + PB)ae(SA, TB)

= e(QB, (s+ xB)P)ae((s+ xA)QA, bP)

= e((s+ xB)QB, aP)e(QA, (s+ xA)P)b

= e(SB, TA)e(QA, PKGC + PA)b

= e(SB, TA)e(QA, DA)b

= KB,

so the protocol is consistent.

Mandt designed this protocol with the goal of improving the Al-Riyami Pater-
son KAP. His paper [27] places considerable emphasis on the importance of known
session-specific temporary information security, which as we have discussed is not
possessed by the Al-Riyami Paterson KAP. Mandt [27] argues heuristically that his
KAP has this property, as well as known session key security, weak forward secrecy,
and resistance to key compromise impersonation, unknown key share, and key con-
trol attacks. We show in the next section that the protocol actually admits both a
key compromise impersonation and a known session-specific temporary information
security attack.

In addition to the basic protocol, Mandt provides two variations, one in which
the protocol participants use separate KGCs and one which provides key confirma-
tion. The former is almost identical to the basic protocol, with the substitution of
the different master keys where appropriate. The latter uses a MAC keyed under a
value related to that of the session key, i.e., derived using a different key derivation
function on the same inputs. Both versions are vulnerable to the attacks outlined
below.

6.4.2 Analysis and Attack

We first show the protocol is vulnerable to a key compromise impersonation attack
from an outside attacker. In fact, it suffices for the adversary Eve (E) to know a
user’s secret value xi; she does not need the partial private key provided by the
KGC. As the flows in the protocol are symmetric, it does not matter whether we
attempt to impersonate the initiator or responder of the protocol run. Formally,
we describe this attack sequence on a session held by Alice as RevealSecretValue(A)
and ReplacePublicKey(B) where no matching session exists, i.e., the adversary uses
the Send query to send messages purportedly from B to A.

Assume Eve has access to xA. She impersonates Bob to Alice by selecting
β, b ∈ Z∗q and sending P ∗B = −PKGC + βP for B’s public key and TB = bP as usual.
Since P ∗B ∈ G∗1, Alice computes

44

KA = e(QB, PKGC + PB)ae(SA, TB)

= e(QB, PKGC − PKGC + βP)ae((s+ xA)QA, bP)

= e(QB, βP)ae(bQA, (s+ xA)P)

= e(βQB, aP)e(bQA, PKGC + PA).

Alice then derives the session key from kdf(KA||aTB||xAPB).

As Eve chooses both β and b, she can compute KA and aTB = bTA. Note that we
have not needed knowledge of xA up to this point. The only reason we need xA is to
compute xAPB to input into the kdf, so this term is the only preventative measure
against a man-in-the-middle attack similar to the KCI attack above. We see no
clever substitution for PB which allows for both the calculation of e(QB, PKGC+PB)a

and xAPB, however. The heuristic argument against KCI attacks given in [27] fails
to consider the scenario where the public key for B is replaced. A subsequent
paper [28] on the same protocol recognizes the possibility of replacing public keys,
but still fails to account for the above attack.

Mandt also claims the protocol has the property of known session-specific tem-
porary information security. However, it is an easy matter to mount an outsider
man-in-the-middle attack if armed with a and b. Suppose Eve substitutes P ∗A = αP
for PA and P ∗B = βP for PB in the protocol run, where α, β ∈R Z∗q. From above
we have that A and B will compute KA = e(QB, PKGC + P ∗B)ae(QA, PKGC + PA)b

and KB = e(QB, PKGC + PB)ae(QA, PKGC + P ∗A)b, respectively, so Eve will have no
problem calculating KA and KB if she knows a and b.

Moreover, we have xAP
∗
B = xAβP = βPA, so Eve will establish the session

key kdf(KA||aTB||xAP
∗
B) = kdf(KA||abP ||βPA) with A. Similarly she will establish

kdf(KB||abP ||αPB) as the session key with B. Thus the protocol fails to satisfy
the known session-specific temporary information security property against outside
attackers. If, on the other hand, the attacker is passive or cannot replace public
keys, the protocol remains secure. The variants of the protocol are similarly vul-
nerable. Note that this is essentially the same attack mentioned in Section 6.3 on
the improved version of the Al-Riyami Paterson KAP.

Interestingly, the Mandt protocol is almost identical to the Wang-Cao KAP
presented in Section 3.6.3. The main difference between the protocols is that in
the latter, the private keys are bound to the public keys, so the attacks presented
above are not possible in an ideal protocol specification of the Wang-Cao KAP,
whereas Mandt’s protocol allows adversaries to easily replace public keys. We
achieve the same scheme if we apply the binding technique of Al-Riyami and Pa-
terson to Mandt’s protocol, although for cheating to be evident, we must again
require the partial private keys (or users’ certificates) to be public.

45

6.5 Wang-Cao-Wang KAP

6.5.1 Protocol Summary

We outline the certificateless key agreement protocol provided by Wang, Cao, and
Wang [49].

Each user i chooses a partial public-key pair (xi, Pi), where xi ∈R Z∗q is the user’s
secret value and Pi = xiP is his public key. Each user also has Qi = h(IDi) ∈ G1

as an additional partial public key, and an associated partial private key Si = sQi

which is distributed by the KGC. The user’s full private key is the pair (xi, Si).

Alice (A) and Bob (B) agree on a session key as follows. (Refer to Figure 6.2.)

A B
a ∈R Z∗q; TA = aP b ∈R Z∗q; TB = bP

TA−−−−−→
TB←−−−−−−

VA = e(SA, QB) VB = e(SB, QA)
KA = kdf(A,B, VA, aPB, xATB) KB = kdf(A,B, VB, xBTA, bPA)

Figure 6.2: Wang-Cao-Wang KAP

1. Alice picks a ∈R Z∗q and sends TA = aP to Bob.

2. Bob picks b ∈R Z∗q and sends TB = bP to Alice.

3. Alice computes VA = e(SA, QB).

4. Bob computes VB = e(SB, QA).

5. Alice checks that TB ∈ G∗1. She terminates the protocol run if this check fails,
and otherwise computes the session key KA = kdf(A,B, VA, aPB, xATB).

6. Bob checks that TA ∈ G∗1. He terminates the protocol run if this check fails,
and otherwise computes the session key KB = kdf(A,B, VB, xBTA, bPA).

Note that VA = e(SA, QB) = e(sQA, QB) = e(QA, sQB) = e(QA, SB) = VB.
Moreover, aPB = axBP = xB(aP) = xBTA and similarly bPA = xATB, so KA = KB

as desired.

The authors claim their protocol is secure against both man-in-the-middle at-
tacks mounted by the KGC and KCI attacks. Since, as discussed in Section 3.5,
all certificateless key agreement protocols are vulnerable to a KGC man-in-the-
middle attack, the first claim is certainly false. We challenge the second claim in
the following section.

We mention that the authors also claim their protocol has known-key security,
forward secrecy, unknown key-share resistance, and key control.

46

6.5.2 Analysis and Attack

We first observe that use of the static shared secret VA = VB prevents the for-
mal attack outlined in Section 6.3, where knowledge of the matching sessions’
ephemeral keys and one public key replacement allows a successful attack. This
term implies a successful attacker must have access to at least one of the par-
ticipating party’s partial private keys. However, the protocol does not guard
against an adversary who, for a test session s with owner A and matching ses-
sion s∗, issues the queries RevealPartialPrivateKey(A), EphemeralKeyReveal(s), and
EphemeralKeyReveal(s∗). The adversary will be able to compute the session key
kdf(A,B, VA, aPB, bPA).

We mount an outsider KCI attack as follows. As with the KCI attack on the
Mandt protocol, we can express this attack using the formal terminology of Sec-
tion 4.4. The adversary chooses a test session owned by B and takes advantage of
the Send, RevealPartialPrivateKey(B) and ReplacePublicKey(A) queries. The (infor-
mal) details follow.

Given that the users’ public keys are published in a directory, we assume that a
user initiating the key agreement protocol may have already looked up the public
key of the other party. In this case, our attacker might not be able to modify
the public key of the responder while remaining undetected, thereby thwarting the
following attack. Thus we assume that Eve is attempting to impersonate Alice to
Bob, where Alice is the initiator and Bob is the responder.

For a KCI attack on Bob, we would generally assume our attacker Eve has
access to all of B’s private key, that is, both xB and SB. Here we show that it is
sufficient for Eve to have SB.

Eve proceeds by sending TA = aP as usual (for her own choice of a ∈R Z∗q).
She completes the attack by replacing A’s public key entry with P ∗A = αP for some
α ∈R Z∗q.

Note that Eve can easily compute VB = e(SB, QA), as she has access to SB.
Recall that B will use xBTA and bP ∗A in his computation of the secret key. Since
xBTA = aPB and bP ∗A = bαP = αTB, Eve can compute these as well. (She has
chosen a and α, PB is public, and B sends TB to A during the protocol run.)
Thus Eve can compute KB = kdf(A,B, VB, xBTA, bP

∗
A), as desired. It is worth

stressing that Eve cannot succeed without knowledge of SB, as without it she
cannot compute VB.

6.6 Shao KAP

6.6.1 Protocol Summary

We outline the key agreement protocol provided by Shao [37]. Shao claims his pro-
tocol is self-certified, but we disagree. The scheme is much closer to a certificateless

47

protocol than Girault’s idea of a self-certified key agreement protocol.

Each user i chooses a partial public-key pair (xi, Pi), where xi ∈R Z∗q is the user’s
secret value and Pi = xiP is his public key. Each user also has Qi = h′(IDi, Pi) ∈ G1

as an additional partial public key, and an associated partial private key Si = sQi

which is distributed securely by the KGC. In this scheme the user i checks that
Qi = h′(IDi, Pi) and e(Si, P) = e(Qi, PKGC) before participating in any protocol
runs. This property seems to be Shao’s motivation for claiming the public keys are
self-certified. However, unlike in Girault’s model, the KGC has partial key escrow
(in that it computes the partial private keys) and requires a secure channel between
itself and the users. Also, users cannot be sure that they have the correct public key
of another party, and so the adversarial model is equivalent to that of certificateless
schemes.

Alice (A) and Bob (B) agree on a session key as follows. (Refer to Figure 6.3.)

A B
a ∈R Z∗q; TA = aPB b ∈R Z∗q; TB = bPA

TA, IDA−−−−−→
TB, IDB←−−−−−

QB = h′(IDB, PB) QA = h′(IDA, PA)
eA = H ′(e(SA, QB))ax−1

A (mod q) eB = H ′(e(QA, SB))bx−1
B (mod q)

KA = eATB KB = eBTA

kdf(KA|| IDA || IDB) kdf(KB|| IDA || IDB)

Figure 6.3: Shao KAP

1. Alice picks a ∈R Z∗q and sends IDA and TA = aPB to Bob.

2. Bob picks b ∈R Z∗q and sends IDB and TB = bPA to Alice.

3. Alice checks that TB ∈ G∗1. She terminates the protocol run if this check
fails, and otherwise computes QB = h′(IDB, PB), eA = H ′(e(SA, QB))ax−1

A

(mod q), and KA = eATB. She uses kdf(KA|| IDA || IDB) as the session key.

4. Bob checks that TA ∈ G∗1. He terminates the protocol run if this check
fails, and otherwise computes QA = h′(IDA, PA) and eB = H ′(e(QA, SB))bx−1

B

(mod q). He sets KB = eBTA and uses kdf(KB|| IDA || IDB) as the session key.

48

We note that

KA = eATB

= H ′(e(SA, QB))ax−1
A bPA

= H ′(e(SA, QB))ax−1
A bxAP

= H ′(e(SA, QB))abP

= H ′(e(SA, QB))bx−1
b axBP

= eBTA = KB,

so the protocol is correct.

Shao claims that the protocol provides forward secrecy, known-key security, and
resilience to a “masquerade attack,” which refers to KCI attacks where not all of
the user’s private key is compromised. We launch a KCI attack in the next section
and note that the author should have claimed weak forward secrecy, as discussed
in Section 3.4. Moreover, although at first glance it seems that Shao’s protocol has
applied the binding technique of Al-Riyami and Paterson mentioned in Section 2.5,
given his definition of Qi for user i, this is not quite the case. Shao’s protocol relies
in an essential way on the secrecy of the partial private keys; if we make these keys
public, the scheme reduces to the basic Diffie-Hellman KAP (with the extra term
H ′(e(SA, QB)) that anyone can compute).

6.6.2 Analysis and Attack

We first observe that this protocol, like that of Section 6.5, does not hold up to the
following formal attack. Letting s denote the test session with owner A and match-
ing session s∗, suppose the adversary issues the queries RevealPartialPrivateKey(A),
EphemeralKeyReveal(s), and EphemeralKeyReveal(s∗). The adversary will be able to
compute H ′(e(SA, QB))abP , and hence the session key as well.

Let us now consider Shao’s claim that the protocol is secure provided not all
of the user’s private key (xi, Si) is compromised. We show the protocol is in fact
vulnerable in the scenario where Si is known, but xi and s remain secure.

We launch an outsider key compromise impersonation attack on Alice with the
knowledge of SA, but not xA, as follows. Since knowing SA = sQA = sH ′(IDA, xAP)
is not the same as knowing s, replacing public keys is permissible in this scenario.
As the protocol messages are symmetric, there is a corresponding attack on Bob,
and thus it does not matter whether or not the attacker initiates the protocol run.
The formal queries needed for this attack are similar to the KCI attack outlined in
Section 6.5, so we do not mention them here.

Our attacker Eve replaces Bob’s public key with P ∗B = βP for β ∈R Z∗q of her
choosing. She then follows the protocol and sends IDB and TB = bPA for some
b ∈R Z∗q. Alice will then compute Q∗B = h′(IDB, P

∗
B) and e∗A = H ′(e(SA, Q

∗
B))ax−1

A

(mod q).

49

Alice calculates the session secret as

KA = e∗ATB

= H ′(e(SA, Q
∗
B))ax−1

A bPA

= H ′(e(SA, Q
∗
B))bax−1

A xAP

= H ′(e(SA, Q
∗
B))baP.

We see that Eve can compute H ′(e(SA, Q
∗
B))b, as she possesses SA and chooses

b herself. Moreover, since A sends TA = aβP in the first round (and Eve knows β),
Eve can compute aP and thus KA.

6.7 Shi-Li KAP

6.7.1 Protocol Summary

We outline Shi and Li’s [38] certificateless key agreement protocol.

We set g = e(P, P) and assume our key derivation function is of the form
kdf : GT → {0, 1}k for some k ∈ Z.

Each user i chooses a partial public-key pair (xi, Pi), where xi ∈R Z∗q is the user’s
secret value and Pi = gxi is his public key. Each user also has Qi = 1

H(IDi)+s
P as

an additional partial private key, which is distributed securely by the KGC, and
an associated partial private key Si = xiQi computed by the user. Here, by Qi =

1
H(IDi)+s

P , we mean that Qi is a fixed element of G1 satisfying (H(IDi) +s)Qi = P .

Alice (A) and Bob (B) agree on a session key as follows. (Refer to Figure 6.4.)

A B
a ∈R Z∗q b ∈R Z∗q

TA = a(H(IDB)P + PKGC) TB = b(H(IDA)P + PKGC)
TA, PA−−−−−−−−→
TB, PB←−−−−−−−−−

KA = e(TB, SA)P a
B KB = e(TA, SB)P b

A

kdf(KA) kdf(KB)

Figure 6.4: Shi-Li KAP

1. Alice picks a ∈R Z∗q and sends PA and TA = a(H(IDB)P + PKGC) to Bob.

2. Bob picks b ∈R Z∗q and sends PB and TB = b(H(IDA)P + PKGC) to Alice.

50

3. Alice checks that PB ∈ GT . She terminates the protocol run if this check
fails, and otherwise computes KA = e(TB, SA)P a

B. She uses kdf(KA) as the
session key.

4. Bob checks that PB ∈ GT . He terminates the protocol run if this check fails,
and otherwise computes KB = e(TA, SB)P b

A. He uses kdf(KB) as the session
key.

We note that

KA = e(TB, SA)P a
B

= e(b(H(IDA)P + PKGC), xAQA)P a
B

= e

(
b(H(IDA)P + sP),

xA

H(IDA) + s
P

)
P a

B

= e(bP, xAP)P a
B

= e(P, P)bxAgaxB

= gbxAgaxB

= P b
Ae(aP, xBP)

= P b
Ae

(
a(H(IDB)P + PKGC),

xB

H(IDB) + s
P

)
= P b

Ae(TA, SB)

= KB,

so the protocol is correct.

We emphasize that the session key is derived directly from gbxAgaxB = P b
AP

a
B, so

this protocol does not have known session-specific temporary information security.
We argue that, given the key relies only on poorly-verified public information and
the ephemeral keys chosen by A and B, the protocol design does not efficiently
make use of the users’ longterm secret keys and therefore opens itself to attack.

The authors claim this protocol provides implicit key authentication, known
session key security, partial forward secrecy, key compromise impersonation resis-
tance, and unknown key share resistance. We demonstrate that the protocol is
entirely insecure by mounting a man-in-the-middle attack.

6.7.2 Analysis and Attack

We show the protocol fails to provide implicit key authentication by demonstrating
a man-in-the-middle attack by an outside attacker. Our attacker Eve intercepts
Alice’s 〈TA, PA〉 and instead sends 〈T ∗A, P ∗A〉 to Bob. Here T ∗A = a∗(H(IDB)P+PKGC)
and P ∗A = e(α(H(IDA)P + PKGC), P) for a∗, α ∈R Z∗q of Eve’s choosing.

51

Similarly Eve replaces Bob’s message 〈TB, PB〉 with 〈T ∗B, P ∗B〉, where T ∗B =
b∗(H(IDA)P + PKGC) and P ∗B = e(β(H(IDA)P + PKGC), P) for b∗, β ∈R Z∗q of
her choosing.

Notice that P ∗A ∈ GT , so Bob will compute

KB = e(T ∗A, SB)(P ∗A)b

= e(a∗(H(IDB)P + PKGC),
xB

H(IDB) + s
P)e(α(H(IDA)P + PKGC), P)b

= e(a∗P, xBP)e(b(H(IDA)P + PKGC), αP)

= gxBa∗e(TB, αP)

= P a∗

B e(TB, αP).

As Eve chooses both a∗ and α, she can compute KB. Similarly, Eve will be able
to compute Alice’s key KA = P b∗

A e(TA, βP). We have therefore shown the protocol
to be insecure. The corresponding formal attack on the protocol is modeled by
picking a test session with owner A and using the ReplacePublicKey(B) and Send
queries to alter the messages sent by B to A. As shown above, the adversary will
be able to compute the session key.

If we transform this protocol into a certificate-based protocol, whereby the pub-
lic keys of users are bound to the corresponding partial private keys and the latter
are used as public certificates, the scheme appears to be secure. The Shi-Li KAP
provides a compelling example of the problems associated with avoiding public-key
certification altogether—an adversary able to replace public keys is devastating to
the security of the scheme.

52

Chapter 7

Conclusions and Future Work

This thesis has presented the current methods used to generate and validate public
keys and issues relating to the security of key agreement protocols based on these
techniques, particularly with respect to the amount of trust invested in the KGC.
We have focused on certificateless key agreement schemes, as these were designed
to maintain the advantages of ID-based systems while minimizing user trust in the
KGC.

We have given a possible security model for certificateless key agreement pro-
tocols based on the eCK model in Chapter 4, and noted in Chapter 6 that none
of the schemes we have found in the literature meet this security definition. This
leads to several questions, among them:

• Is it possible to design a certificateless key agreement scheme that meets the
requirements of Definition 4.4.2 or is our security definition too strict? How
can we strengthen the security of the protocols mentioned in Chapter 6?

• Given that our security definition is a natural extension of the eCK model,
how practical are current certificateless protocols? Most of the protocols
we have analyzed falsely claim KCI resilience, which (if true) would be an
improvement in comparison to, for example, the security of the commonly-
used Unified Model KAP. The only scheme that appears to have KCI resilience
is the Al-Riyami Paterson KAP, the original version of which fails to have
known session-specific temporary-information security. Even with our fix,
this protocol does not hold up against an adversary able to reveal ephemeral
information and replace public keys. Overall, is the avoidance of traditional
PKI worth the weakened security of these schemes?

• Is the user flexibility of certificateless schemes worth the corresponding vul-
nerabilities brought on by an adversary’s ability to replace public keys, or is
the use of Al-Riyami and Paterson’s binding technique and certificate-based
schemes a more promising approach to protocol design?

53

Appendix A

CL-PKE Algorithms

For completeness, we provide the formal definition of a CL-PKE system below [1, 2].

Definition. A CL-PKE scheme is specified by the following algorithms:

• Setup: A probabilistic algorithm that takes as input the security parameter k
and generates the system parameters params and the master public/secret key
pair (mpk,msk). The system parameters specify the set of possible plaintexts
P and ciphertexts C.

• PartialPrivateKeyExtract: A deterministic algorithm that takes as inputs an
entity i’s identity IDi ∈ {0, 1}∗, params, (mpk,msk), and outputs a user’s
partial private key Di.

• SetSecretValue: A probabilistic algorithm that takes params as inputs and
generates a user i’s secret value xi.

• SetPrivateKey: A deterministic algorithm that takes params, Di, and xi as
input and outputs user i’s full private key Si.

• SetPublicKey: A deterministic algorithm that takes params and xi as input
and outputs user i’s public key Pi.

• Encrypt: A probabilistic algorithm that takes params, Pi, IDi, and m ∈ P as
inputs and outputs c ∈ C or a null value, indicating failure.

• Decrypt: A deterministic algorithm that takes params, Si, and c ∈ C, and
outputs a message m ∈ P or a null value, indicating failure.

As usual, we require Decrypt(params, Si,Encrypt(params, Pi IDi,m)) = m. Nor-
mally the algorithms Setup and PartialPrivateKeyExtract are run by the KGC. The
entity i usually runs SetSecretValue, SetPrivateKey, and SetPublicKey for himself;
xi and Si are generally known only to entity i.

54

We note that the algorithms Setup, PartialPrivateKeyExtract, SetSecretValue,
SetPrivateKey, and SetPublicKey are not specific to encryption schemes, but are
applicable to all certificateless primitives. We have made the inputs and outputs of
these algorithms clear in our descriptions of certificateless protocols, although we
do not preserve the exact notation given above, except for the original Al-Riyami
Paterson KAP presented in Section 3.6.4.

55

References

[1] Sattam S. Al-Riyami and Kenneth G. Paterson. Certificateless public key cryp-
tography. In C. S. Laih, editor, Advances in Cryptology - ASIACRYPT 2003,
volume 2894 of Lecture Notes in Computer Science, pages 452–473. Springer
Berlin / Heidelberg, 2003. Full version available at http://eprint.iacr.org/
2003/126. 12, 13, 25, 26, 36, 54

[2] Sattam S. Al-Riyami and Kenneth G. Paterson. CBE from CLE-PKE: A
generic construction and efficient schemes. In Public Key Cryptography -
PKC 2005, volume 3386 of Lecture Notes in Computer Science, pages 398–
415. Springer Berlin / Heidelberg, 2005. 12, 13, 36, 54

[3] Man Ho Au, Yi Mu, Jing Chen, Duncan S. Wong, Joseph K. Liu, and Guomin
Yang. Malicious KGC attacks in certificateless cryptography. In ASIACCS
’07: Proceedings of the 2nd ACM symposium on Information, Computer and
Communications security, pages 302–311. ACM Press, 2007. 39, 42

[4] M. Bellare and P. Rogaway. Entity authentication and key distribution. In Ad-
vances in Cryptology - CRYPTO ’93, volume 773 of Lecture Notes in Computer
Science, pages 232–249. Springer Berlin / Heidelberg, 1993. 30

[5] Mihir Bellare and Phillip Rogaway. Provably secure session key distribution:
the three party case. In STOC ’95: Proceedings of the 27th annual ACM
Symposium on Theory of Computing, pages 57–66. ACM Press, 1995. 30

[6] Simon Blake-Wilson, Don Johnson, and Alfred Menezes. Key agreement pro-
tocols and their security analysis. In Cryptography and Coding, volume 1355 of
Lecture Notes in Computer Science, pages 30–45. Springer Berlin / Heidelberg,
1997. 21, 30

[7] Dan Boneh and Matthew Franklin. Identity-based encryption from the Weil
pairing. In Advances in Cryptology - CRYPTO 2001, volume 2139 of Lecture
Notes in Computer Science, pages 213–229. Springer Berlin / Heidelberg, 2001.
11

[8] Dan Boneh, Antoine Joux, and Phong Q. Nguyen. Why textbook ElGamal and
RSA encryption are insecure. In Advances in Cryptology - ASIACRYPT 2000,
Lecture Notes in Computer Science, pages 30–43. Springer Berlin / Heidelberg,
2000. 6

56

http://eprint.iacr.org/2003/126
http://eprint.iacr.org/2003/126

[9] Colin Boyd, Yvonne Cliff, Juan Gonzalez Nieto, and Kenneth G. Paterson.
Efficient one-round key exchange in the standard model. In Information Se-
curity and Privacy, volume 5107 of Lecture Notes in Computer Science, pages
71–84. Springer Berlin / Heidelberg, 2008. 29

[10] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodol-
ogy, revisited. J. ACM, 51(4):557–594, 2004. 4

[11] Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their
use for building secure channels. Cryptology ePrint Archive, Report 2001/040,
2001. http://eprint.iacr.org/. 30, 32

[12] Konstantinos Chalkias, Foteini Mpaldimtsi, Dimitrios Hristu-Varsakelis, and
George Stephanides. On the key-compromise impersonation vulnerability of
one-pass key establishment protocols. In International Conference on Security
and Cryptography (SECRYPT 2007), 2007. 40

[13] L. Chen, Z. Cheng, and N.P. Smart. Identity-based key agreement protocols
from pairings. Cryptology ePrint Archive, Report 2006/199, 2006. http:

//eprint.iacr.org/. 29

[14] Liqun Chen and Caroline Kudla. Identity-based authenticated key agreement
protocols from pairings. In Proc. 16th IEEE Security Foundations Workshop,
pages 219–233. IEEE Computer Society Press, 2003. 11, 23

[15] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, IT-22(6):644–654, 1976. 16

[16] Whitfield Diffie, Paul C. Van Oorschot, and Michael J. Wiener. Authentication
and authenticated key exchanges. Designs, Codes and Cryptography, 2(2):107–
125, 1992. 19

[17] Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. Pairings for
cryptographers. Discrete Appl. Math., 156(16):3113–3121, 2008. 5

[18] Craig Gentry. Certificate-based encryption and the certificate revocation prob-
lem. In Advances in Cryptology - EUROCRYPT 2003, volume 2653 of Lecture
Notes in Computer Science, pages 272–293. Springer Berlin / Heidelberg, 2003.
10, 12

[19] Marc Girault. Self-certified public keys. In Advances in Cryptology - EURO-
CRYPT ’91, volume 547 of Lecture Notes in Computer Science, pages 490–497.
Springer Berlin / Heidelberg, 1991. 11, 13, 27

[20] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput.
System Sci., 28(2):270–299, 1984. 29, 30

[21] P. Gutmann. PKI: It’s not dead, just resting. IEEE Computer, 35(8):41–49,
2002. 10

57

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

[22] Bo Gyeong Kang and Je Hong Park. Is it possible to have CBE from CL-
PKE? Cryptology ePrint Archive, Report 2005/431, 2005. http://eprint.

iacr.org/. 12

[23] Hugo Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol.
In Advances in Cryptology - CRYPTO 2005, volume 3621 of Lecture Notes in
Computer Science, pages 546–566. Springer Berlin / Heidelberg, 2005. 18

[24] Brian LaMacchia, Kristin Lauter, and Anton Mityagin. Stronger security of
authenticated key exchange. In Provable Security, volume 4784 of Lecture
Notes in Computer Science, pages 1–16. Springer Berlin / Heidelberg, 2007.
34

[25] Chae Hoon Lim and Pil Joon Lee. A key recovery attack on discrete log-
based schemes using a prime order subgroup. In Advances in Cryptology -
CRYPTO ’97, volume 1294 of Lecture Notes in Computer Science, pages 249–
263. Springer Berlin / Heidelberg, 1997. 25

[26] Meng-Hui Lim, Sanggon Lee, and Hoonjae Lee. Cryptanalysis on improved
Chou et al.’s ID-based deniable authentication protocol. In ICISS ’08: Pro-
ceedings of the 2008 International Conference on Information Science and Se-
curity, pages 87–93, Washington, DC, USA, 2008. IEEE Computer Society.
39

[27] Tarjei K. Mandt. Certificateless authenticated two-party key agreement pro-
tocols. Master’s thesis, Gjøvik University College, Department of Computer
Science and Media Technology, 2006. 18, 26, 43, 44, 45

[28] Tarjei K. Mandt and Chik How Tan. Certificateless authenticated two-party
key agreement protocols. In Advances in Computer Science - ASIAN 2006.
Secure Software and Related Issues, volume 4435 of Lecture Notes in Computer
Science, pages 37–44. Springer Berlin / Heidelberg, 2008. 45

[29] Alfred Menezes and Berkant Ustaoğlu. Security arguments for the UM key
agreement protocol in the NIST SP 800-56A standard. In ASIACCS ’08: Pro-
ceedings of the 2008 ACM symposium on Information, Computer and Com-
munications security, pages 261–270, New York, NY, USA, 2008. ACM. 21

[30] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook
of Applied Cryptography. CRC Press, Boca Raton, 1997. 2, 5, 10, 17, 20, 28

[31] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signa-
tures and public-key cryptosystems. Communications of the ACM, 21:120–126,
1978. 6

[32] E. K. Ryu, E. J. Yoon, and K. Y. Yoo. An efficient ID-based authenticated
key agreement protocol from pairings. In NETWORKING 2004, Networking

58

http://eprint.iacr.org/
http://eprint.iacr.org/

Technologies, Services, and Protocols; Performance of Computer and Com-
munication Networks; Mobile and Wireless Communications, volume 3042 of
Lecture Notes in Computer Science, pages 1458–1463. Springer Berlin / Hei-
delberg, 2004. 11, 18, 39

[33] Shahrokh Saeednia. Identity-based and self-certified key-exchange protocols. In
Information Security and Privacy, volume 1270 of Lecture Notes in Computer
Science, pages 303–313. Springer Berlin / Heidelberg, 1997. 11

[34] Shahrokh Saeednia. A note on Girault’s self-certified model. Inf. Process.
Lett., 86(6):323–327, 2003. 11, 28

[35] R. Sakai, K. Ohgishi, and M. Kasahara. Cryptosystems based on pairings.
In Proceedings of the Symposium on Cryptography and Information Security -
SCIS, 2000. 18

[36] Adi Shamir. Identity-based cryptosystems and signature schemes. In Advances
in Cryptology, volume 196 of Lecture Notes in Computer Science, pages 47–53.
Springer Berlin / Heidelberg, 1985. 10

[37] Zu-hua Shao. Efficient authenticated key agreement protocol using self-
certified public keys from pairings. Wuhan University Journal of Natural Sci-
ences, 10(1):267–270, 2005. 47

[38] Yijuan Shi and Jianhua Li. Two-party authenticated key agreement in cer-
tificateless public key cryptography. Wuhan University Journal of Natural
Sciences, 12(1):71–74, 2007. 50

[39] Joseph H. Silverman. The Arithmetic of Elliptic Curves. Springer Science +
Business Media, New York, NY, USA, 1986. 5

[40] N. P. Smart. An identity based authenticated key agreement protocol based
on the Weil pairing. Electronics Letters, 38:630–632, 2002. 11, 23

[41] Douglas R. Stinson. Cryptography: Theory and Practice. Chapman and
Hall/CRC, Boca Raton, 3 edition, 2006. 2, 5

[42] Maurizio A. Strangio. On the resilience of key agreement protocols to key com-
promise impersonation. Cryptology ePrint Archive, Report 2006/252, 2006.
http://eprint.iacr.org/. 39

[43] Maurizio Adriano Strangio. Efficient Diffie-Hellmann two-party key agreement
protocols based on elliptic curves. In Proceedings of the 20th ACM Symposium
of Applied Computing (SAC), pages 324–331, 2005. 39

[44] Maurizio Adriano Strangio. Revisiting an efficient elliptic curve key agreement
protocol. Cryptology ePrint Archive, Report 2007/081, 2007. http://eprint.
iacr.org/. 39

59

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

[45] Berkant Ustaoğlu. Key Establishment—Security Models, Protocols, and Us-
age. PhD thesis, University of Waterloo, Department of Combinatorics and
Optimization, 2008. 34

[46] Shengbao Wang and Zhenfu Cao. Escrow-free certificate-based authenticated
key agreement protocol from pairings. Wuhan University Journal of Natural
Sciences, 12(1):63–66, 2007. 24

[47] Shengbao Wang, Zhenfu Cao, and Haiyong Bao. Security of an efficient ID-
based authenticated key agreement protocol from pairings. In Parallel and
Distributed Processing and Applications - ISPA Workshops 2005, volume 3759
of Lecture Notes in Computer Science, pages 342–349. Springer Berlin / Hei-
delberg, 2005. 18, 39

[48] Shengbao Wang, Zhenfu Cao, Maurizio Adriano Strangio, and Lihua Wang.
Cryptanalysis and improvement of an elliptic curve Diffie-Hellman key agree-
ment protocol. Cryptology ePrint Archive, Report 2007/026, 2007. http:

//eprint.iacr.org/. 39

[49] Shengbao Wang, Zhenfu Cao, and Licheng Wang. Efficient certificateless au-
thenticated key agreement protocol from pairings. Wuhan University Journal
of Natural Sciences, 11(5):1278–1282, 2006. 18, 46

[50] Quan Yuan and Songping Li. A new efficient ID-based authenticated key
agreement protocol. Cryptology ePrint Archive, Report 2005/309, 2005. http:
//eprint.iacr.org/. 39

[51] Dae Hyun Yum and Pil Joong Lee. Identity-based cryptography in public key
management. In Public Key Infrastructure, volume 3093 of Lecture Notes in
Computer Science, pages 71–84. Springer Berlin / Heidelberg, 2004. 12

60

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

	List of Figures
	Introduction
	Thesis Outline
	Notation
	Cryptographic Primitives
	Functions
	Hash Functions
	Pairings

	Number Theoretic Assumptions
	RSA and Factoring
	Diffie-Hellman and Related Problems

	Public-Key Cryptography
	Public-Key Infrastructure
	Identity-based Cryptography
	Self-Certified Public-Key Cryptography
	Certificate-based Cryptography
	Certificateless Public-Key Cryptography
	Use of Trusted Third Parties

	Key Agreement Protocols
	Basic Example: Diffie-Hellman
	Objectives
	Performance Considerations
	Security Attributes
	Summary of Attacks
	Examples
	Traditional PKI: Unified Model KAP
	ID-based PKC: Smart's KAP
	Certificate-based PKC: Wang-Cao KAP
	Certificateless PKC: Al-Riyami Paterson KAP
	Self-certified PKC: Girault KAP

	Provable Security
	Bellare-Rogaway (BR) Model
	Canetti-Krawczyk (CK01) Model
	Extended Canetti-Krawczyk (eCK) Model
	Extending eCK

	Related Work
	Cryptanalysis of Protocols
	Attack Model
	Notation
	Al-Riyami Paterson KAP Revisited
	Mandt KAP
	Protocol Summary
	Analysis and Attack

	Wang-Cao-Wang KAP
	Protocol Summary
	Analysis and Attack

	Shao KAP
	Protocol Summary
	Analysis and Attack

	Shi-Li KAP
	Protocol Summary
	Analysis and Attack

	Conclusions and Future Work
	Appendix A
	References

