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Abstract

This thesis focuses on spatial resolution enhancement of magnetic resonance imaging
(MRI). In particular, it addresses methods of performing such enhancement in the Fourier
domain.

After a brief review of Fourier theory, the thesis reviews the physics of the MRI
acquisition process in order to introduce a mathematical model of the measured data.
This model is later used to develop and analyze methods for resolution enhancement, or
“super-resolution”, in MRI.

We then examine strategies of performing super-resolution MRI (SRMRI). We begin
by exploring strategies that use multiple data sets produced by spatial translations of
the object being imaged, to add new information to the reconstruction process. This
represents a more detailed mathematical examination of the author’s Master’s work at
the University of Calgary. Using our model of the measured data developed earlier in the
thesis, we describe how the acquisition strategy determines the efficacy of the SRMRI
process that employs multiple data sets.

The author then explores the self-similarity properties of MRI data in the Fourier
domain as a means of performing spatial resolution enhancement. To this end, a fractal-
based method over (complex-valued) Fourier Transforms of functions with compact spa-
tial support, derived from a fractal transform in the spatial domain, is explored. It is
shown that this method of “Iterated Fourier Transform Systems” (IFTS) can be tailored
to perform frequency extrapolation, hence spatial resolution enhancement.

The IFTS method, however, is limited in scope, as it assumes that a spatial function
f(x) may be approximated by linear combinations of spatially-contracted and range-
modified copies of the entire function. In order to improve the approximation, we borrow
from traditional fractal image coding in the spatial domain, where subblocks of an image
are approximated by other subblocks, and employ such a block-based strategy in the
Fourier domain. An examination of the statistical properties of subblock approximation
errors shows that, in general, Fourier data can be locally self-similar. Furthermore, we
show that such a block-based self-similarity method is actually equivalent to a special
case of the auto-regressive moving average (ARMA) modeling method.

The thesis concludes with a chapter on possible future research directions in SRMRI.
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Chapter 1

Introduction

1.1 Motivation

Magnetic resonance imaging1 (MRI) is a powerful, noninvasive imaging modality capable
of extracting a wide variety of information for clinical studies and scientific research.
However, the efficacy of MRI in any application is limited by the image quality the
machine hardware can produce. One measure of image quality is the spatial resolution2,
∆x, which quantifies the extent to which different features of an imaged object can be
distinguished. The focus of the research presented throughout this thesis is to investigate
new ways of improving the spatial resolution in MRI, thereby enhancing the versatility
of this prevalent imaging modality.

Basic MRI Theory

To facilitate a discussion on MRI and its limitations, it will be helpful to first provide a
brief description of how a typical MR image would be obtained. Chapter 3 will provide
a more thorough description of the image acquisition process.

Typically in MRI, a set of magnetic fields is applied to a given object and the object’s
response to these fields is measured to generate data. Three different sets of fields are
applied. A main magnetic field is used to produce a net magnetization that may be
manipulated to produce the MR signal. A set of linear magnetic field gradients are also
applied to the object. These gradients can provide a mechanism for encoding spatial
information of proton concentrations in the sample. The gradients do this by creating a
linear relationship between magnetic field strength and spatial position. Finally, another
applied field, the radiofrequency (RF) field, applies RF energy that the object absorbs,

1A partial list of abbreviations used in this thesis is provided for the reader in Appendix C.
2A partial list of mathematical symbols used in this thesis is provided for the reader in Appendix D.
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tipping the net magnetization away from its equilibrium position. The RF field is applied
for a brief period of time, and the magnetization relaxes back to its equilibrium position
after it is turned off. The hardware that applies the RF pulse is also responsible for
measuring the MR signal. The RF coil then measures the signal as a continuous entity,
which is subsequently digitized and stored on a computer.

Typically, the RF filed is designed to excite and be sensitive to a thin slice (or volume)
of the object being imaged (see Fig. 1.1a). This allows the MR scanner to measure infor-
mation from this thin volume, reducing the data acquisition and reconstruction process to
a two-dimensional problem. Data in the remaining two coordinate directions are acquired
in the Fourier domain3, or k-space. Samples are (often) acquired along straight lines,
parallel to one of the coordinate axes referred to as the frequency encoding (FE) axis, and
subsequently sampled. In Fig. 1.1b, the FE direction coincides with the kx-axis. The ky
direction is referred to as the phase encoding (PE) direction. After a sufficient number of
data samples have been recorded, the image is obtained using an inverse discrete Fourier
Transform4 (see Fig. 1.1c).

Figure 1.1: An object (the blue cylinder) being imaged and the region that the RF coil excites
and is sensitive to (the grey volume) is shown in (a). Fig. (b) displays a schematic of how raw
MR data is often acquired. Fig. (c) shows a schematic of the image obtained by taking a 2D
inverse Fourier Transform of the raw MR k-space data.

Scan Time and SNR in MRI

Physical processes such as noise and T2 decay as well as the scan time limit the spatial
resolution in MRI. Each of these factors determines the particular acquisition strategy
employed by the scanner operator.

Noise in MRI arises from thermal fluctuations in the sample, and electronic noise
3Fourier theory is briefly reviewed in Chapter 2. The interested reader may wish to refer to [8, 9], or

[76] for a more thorough review of Fourier theory.
4The inverse discrete Fourier Transform is introduced in Section 2.2.
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in the radiofrequency coil5. The amount of noise present in a given data set is often
characterized via the signal-to-noise-ratio (SNR). In MRI, we often consider how much
noise is present per voxel, which may be defined as the signal amplitude of a particular
voxel divided by the noise standard deviation ([74] page 163):

SNR per voxel =
signal amplitude of a given voxel

noise standard deviation
. (1.1)

In MRI, SNR and the spatial resolution depend upon several acquisition parameters. For
example, the spatial resolution is connected to SNR in such a way that increasing the
k-space extent (thereby increasing the spatial resolution) can decrease the SNR per voxel.
Super-resolution MRI (SRMRI), which is the focus of this thesis, approaches attempt to
circumvent this difficulty by improving resolution without increasing the SNR.

The SNR per voxel depends upon several acquisition parameters. To highlight the
dependencies upon these parameters in conventional imaging, we use the following ex-
pression for the SNR (see [34], page 340)6

SNR per voxel ∝
∆x∆y∆z

√
NxNyNz√

BWread

√
Nacq. (1.2)

Nacq is the number of averaged acquisitions. For example, imaging the same object twice
and averaging the result would yield a

√
2 improvement in SNR. Nx, Ny, and Nz are

the number of samples in the respective x, y and z directions. BWread is the readout
bandwidth,

BWread = 1/∆t, (1.3)

and ∆t is the sample spacing in the kx direction. BWread is ultimately bounded below
by the spatial extent of the object being imaged. This parameter is introduced here,
as it will play an important role in our discussion of multiple-acquisition SRMRI in the
frequency encoding direction in Chapter 5.

The total scan time, Tscan, is given by

Tscan = NyNacqTR. (1.4)

The parameter TE is the echo time, and is the amount of time required to measure one
line in k-space.

There are several ways of increasing the spatial resolution in MRI through adjusting
the acquisition parameters. For example, from Eq. 1.2, decreasing the voxel volume
(∆x∆y∆z) by a factor of two would decrease the SNR by a factor of two. To compensate,

5Noise in the raw k-space MR data comes from a standard normal distribution. Noise in the spatial

domain magnitude image is Rayleigh distributed (see [34], page 876).
6This equation assumes that frequency, phase, and slice encoding schemes are used in the x, y, and z

directions, respectively.
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one could increase the SNR by increasing Nacq by a factor of 4, but this would also increase
the total scan time by a factor of four!

Indeed, the spatial resolution, Tscan, and the SNR are interconnected in MRI in
such a way that increasing one implies a decrease in one or both of the others. This
relationship is demonstrated by Eqs. 1.2 and 1.4, which play an important role in defining
parameters that determine the obtainable resolution for a given amount of time and
SNR. The motivation behind the research presented in this thesis is to explore multiple
acquisitions and post processing strategies as an alternate means of enhancing the spatial
resolution.

1.2 Problem Statement

Data in MRI is typically acquired in the Fourier domain over a finite region centered about
the k-space origin. SRMRI techniques attempt to decrease ∆x by increasing the frequency
extent, 2kmax. Specifically, the spatial resolution in a one-dimensional experiment is given
by

∆x =
1

2kmax
. (1.5)

This formula demonstrates the fundamental relationship between the spectral extent and
the capacity of the image to represent features of the object over different spatial scales.
This thesis explores methods of improving the spatial resolution by estimating frequencies
beyond |kmax|.

The extrapolation problem is fundamentally tied to the constrained reconstruction
problem through Eq. 1.5. Given that the achievable spatial resolution for a given SNR
and scan time is limited, accurate estimation of higher frequencies can yield an improved
resolution without an increase in scan time. Indeed, extrapolation techniques have been
successfully used to provide a more effective means of producing an image in MRI [53, 55].

In the signal processing literature, extrapolation has normally been studied with sig-
nals that are functions of time. Although in this thesis we are interested in functions
of frequency, the ideas that were developed for time dependent functions can easily be
extended to k-space functions7.

Signal extrapolation has been explored in the literature using continuous or discrete
signals which may or may not be spatially limited. To distinguish between these different
situations, we consider three extrapolation problems which are relevant to MRI.

Problem 1 - Continuous Signal Extrapolation: Consider a function strue(k) ∈
L2(R) measured over a single, finite interval of length 2kmax, centered at the origin, to

7The MR signal can actually be viewed as a function of time with the appropriate change of variables

(see Eq. 3.51).
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produce skmax(k), k ∈ [−kmax,+kmax]:

skmax(k) = Π(
k

2kmax
)strue(k), Π(u) =

{
0 |u| > 1

2

1 |u| ≤ 1
2

. (1.6)

Given skmax(k), the general continuous extrapolation problem is to estimate strue(k) for
|k| > kmax.

Problem 2 - Continuous Spatially Limited Signal Extrapolation: Now con-
sider Problem 1 with the additional constraint that strue(k) is spatially limited with
spatial extent R. Thus, given skmax(k), the spatially limited continuous extrapolation
problem is to estimate strue(k) for |k| > kmax. In MRI, R is the spatial extent of the
object being imaged, and therefore may always be estimated.

Problem 3 - Discrete Spatially Limited Extrapolation: Consider Problem 2,
with the added constraint that skmax is sampled Nx times at regularly spaced intervals
of length ∆k, to produce sd,Nx(n). Given sd,Nx(n), we wish to estimate values of strue(k)
at a set of points outside of the measured interval.

The solution to Problem 1 is non-unique, and without additional constraints on what
values sm(k) should take, estimating s(k) beyond |kmax| represents an ill-posed problem.
Additional information to constrain the set of possible solutions is invaluable. Such
information may be that the inverse Fourier Transform of the underlying function that we
wish to estimate has finite spatial support, which describes Problem 2 (in the continuous
case). Several approaches to Problem 2 have been addressed that implement the use
of this additional constraint, including the Prolate Spheroidal Wave Function (PSWF)
algorithm [91], and the Papoulis Gerchberg (PG) algorithm [77]. For Problem 2, these
algorithms have been shown to converge to a unique solution.

Problem 3 is a closer representation of an extrapolation problem found in MRI. There
are widely studied techniques in MRI which solve the two-dimensional discrete extrap-
olation problem by using a series of such one-dimensional discrete extrapolations (see
for example [4, 35, 68, 92]). Unfortunately however, the solution to Problem 3 is also
non-unique. Appendix A.1 provides a brief mathematical analysis of this case.

Problem 4 - Two-Dimensional Discrete Extrapolation: Consider a continu-
ous, complex valued function, strue(kx, ky) ∈ L2(R2), defined for all values of the real
variables kx and ky, and which has compact support in the spatial domain. strue(kx, ky)
is measured over a finite set of values to produce

sd(mx∆kx,my∆ky) = strue(mx∆kx,my∆ky)

mx = −Nx/2 + 1, . . . , Nx/2− 1

my = −Ny/2 + 1, . . . , Ny/2− 1, (1.7)
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for Nx and Ny even. Given sd, the two-dimensional extrapolation problem attempts to
determine the values outside of the measured domain. In MRI, we may wish to only
extrapolate in the kx or ky direction, depending on which acquisition scheme is used and
how the data is acquired.

1.3 Methodology

An enormous amount of literature can be found on the use of a priori knowledge in
constrained reconstruction, or super-resolution (SR) algorithms in MRI to decrease ∆x
through a variety of post-processing strategies (see [53, 55] for literature reviews of re-
search on these algorithms). This thesis explores both algorithms that employ multiple
images and algorithms that employ only a single image to perform resolution enhance-
ment.

1.3.1 Multiple Image SRMRI

A relatively recent approach to enhancing the spatial domain resolution in MRI utilizes
multiple low-resolution images of the object, thereby introducing new a priori conditions
to the reconstruction [11, 30, 31, 32, 33, 46, 47, 62, 66, 70, 71, 72, 75, 79, 80, 81, 82, 86, 90].
The underlying concepts behind multiple acquisition SRMRI (MASRMRI) was presented
earlier outside of the MRI literature, in the area of super-resolution image processing. In
this area of research, the input data are images of a moving scene, possibly taken with a
moving imaging apparatus [7, 13].

Another related approach to SRMRI is applied to computed tomogrophy (CT). Spiral
CT [43] uses a continuously rotating scanner during a single “breath hold” while the object
is shifted at a constant rate through the gantry. Depending upon the rate at which the
object is translated, the object may be imaged multiple times. This redundancy reduces
noise and motion artifacts in the image in the data.

The earliest published results of SR applied to MRI (to the best of the author’s
knowledge) can be found in a year 2000 conference proceedings [86]. In the algorithms
that have so far been proposed, repeated imaging of an object with known spatial shifts is
employed. After Nimg images, or channels, have been acquired, a deconvolution algorithm
is used to produce a synthesized image with higher resolution than that of the low-
resolution images. To implement the deconvolution algorithm, a point-spread function
(PSF) is required that models the relationship between the low-resolution data and a
desired high-resolution image. By incorporating information from multiple channels and
the PSF, these approaches attempt to produce an image of higher image quality than
that obtained with a conventional IDFT of the measured frequency data. A potential
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drawback however, is an increase in the total scan time, Tscan, by requiring multiple
images to be acquired.

Indeed, we would expect (or hope) that under sufficient conditions, using more data
would imply that more information would be incorporated in the reconstruction algo-
rithm. If this were always true, then MASRMRI may have a significant edge over single
acquisition techniques. Otherwise, there would be no adequate justification to incur a
scan time penalty by acquiring more data. The conditions under which collecting more
data sets yields more information are therefore of importance.

Controversy over the validity of implementing a MASRMRI approach recently ap-
peared in the MRI literature [82, 90]. Verifying that acquiring multiple acquisitions
even constitutes a viable approach to enhance spatial resolution in MRI had not been
investigated8, and rests on the following three issues.

1. How the spatial shift is produced: In the FE and PE directions, this shift has only
been produced by multiplying phase ramps to the measured data. The order in
which this processing step is added to other processing steps (such as sampling and
filtering) affects the efficacy of SRMRI.

2. The extent to which the PSF can be determined: Most SRMRI research assumes
a Gaussian or boxcar, Π(x), form for the PSF without basing this choice on the
underlying physics or mathematical properties of the acquisition process.

3. Most importantly, the nature of the new information present in each acquisition:
If a significant amount of new information is present in each acquisition after the
first, exactly what new information about the object being imaged is obtained.

These points are explored in Chapter 5 to consider the validity of using multiple
acquisitions to enhance spatial resolution in MRI.

Sensitivity Encoding (SENSE)

An altogether different approach that yields high spatial resolution data in MRI incorpo-
rates an array of RF coils [84]. Sensitivity encoding (SENSE) is based on the fact that
receiver sensitivity generally has an encoding effect that can be exploited to dramatically
reduce the total scan time while maintaining a high spatial resolution9. This research
area requires specialized hardware, and as such, was not explored in this thesis. A specific
reconstruction strategy that use a superreceiver array is mentioned Chapter 10 that may
be of interest for future research.

8Prior to the start of the author’s PhD programme in January 2004.
9This reduction in scan time is achieved by reducing of the number of Fourier encoding steps (by

increasing the space between sample positions in k-space). The local coil sensitivity profiles provide a

means of combining information from multiple acquisitions from individual receiver coils.
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Figure 1.2: The classic SR algorithm involves the acquisition of Nimg images, with a field-of-view
that translates between each acquisition. The pixels of each acquisition are interleaved to create
the merged data, which is used as an input to a deconvolution algorithm that calculates a high
resolution image.

1.3.2 Single Image SRMRI

One such SRMRI technique that has been studied by a number of research groups is
the projection over convex sets (POCS) algorithm [37, 36, 53, 55, 60, 68]. POCS pro-
vides a very flexible approach to SRMRI by allowing the incorporation of many a priori
conditions into the reconstruction10.

Another approach to MRI resolution enhancement that has been extensively studied
implements the auto-regressive moving average (ARMA) technique (see for example [4,
35, 68, 92]). A special case of the ARMA technique is the linear prediction model,
discussed in Section 4.1.3, and Chapters 8 and 9.

Iterated Fourier Transform Systems

New approaches to MRI spatial resolution enhancement using only a single acquisition
are considered in Chapters 7, 8, and 9. Chapter 7 introduces a new iterative fractal-
based operator that operates directly on Fourier domain data, and explores some of its
mathematical properties. This operator naturally exhibits an extrapolation relationship,
suggesting that it can be used for spatial resolution enhancement. Experiments on sim-
ulated data suggest the operator can be used to perform extrapolation. This operator
however is not yet connected to to a physical model of the MRI data, and unlike the meth-
ods discussed in Chapters 8 and 9, there is currently no physical basis for this approach
for SRMRI.

10Research has focused on the use of a very limited amount of the available a priori information, based

on the constraints listed in Eq. 3.41. More research is needed to further the effectiveness and better

understand this already successful approach to SRMRI.
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Self-Similar and Linear Prediction Methods

Spatial domain images can possess a property known as self-similarity. Intuitively, for a
two-dimensional discrete image u(m,n) to possess self-similarity, we mean that a given
subblock, r, of u is well approximated by a linear combination of NDB subblocks, dn, n =
1, 2, 3, . . . , NDB, found elsewhere in the data set. Affine mappings on the subblocks may
be allowed, so that:

r = β +
NDB∑
n=1

γndn, (1.8)

where parameters β and γ are real numbers, that may be determined, for example, by
using a least-squares procedure. Eq. 1.8 describes a multi-parent transform. If a sufficient
approximation to r can be found using only a set of subblocks dn taken only from a local
neighbourhood of r, then the image possess a certain degree of local self-similarity. A
more thorough description of self-similarity is provided in Section 6.2.

In Chapter 8, we show that one-dimensional discrete functions of the form11

s(m) =
Nc∑
n=1

cne
νnm, m = 0, 1, 2, . . . , Ns − 1, cn, νn ∈ C, (1.9)

are locally self-similar. This connection is made by making use of the fact that signals of
the form 1.9, are linearly predictable, so that

s(m) =
Nc∑
n=1

ans(m− n), m = Nc, Nc + 1, Nc + 2, . . . Ns − 1, an ∈ C. (1.10)

This connection establishes a physical basis for the use of self-similar techniques in MRI
data extrapolation and resolution ehnahcement. These theoretical results are derived for
the one-dimensional case, and a two-dimensional analysis is presented in Chapter 9.

Empirical results in Chapter 8 provide further evidence of the self-similarity of fre-
quency domain data. Collage error histograms are used to study the self-similarity of
measured data, derived from both phantom and human brain MRI data.

1.4 Thesis Organization

The organization of this thesis is as follows. Chapters 2 to 4 provide a background of
MRI physics and review basic approaches found in the literature that perform SRMRI.
Chapter 2 introduces the necessary background on one and two-dimensional Fourier the-
ory required for the remaining chapters in this thesis. The treatment is brief, and the

11Eq. 1.9 has been used to model the measured MR data in order to improve the image reconstruction

process and to reduce artifacts [34].
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interested reader may wish to consult [8, 9], or [76] for a more thorough review of Fourier
theory.

Chapter 3 provides a literature review of MR physics. Section 3.1 provides a derivation
of the Bloch equations from quantum mechanical relationships. These equations are
used to model the MRI signal. Section 3.2 provides a mathematical model of the image
acquisition process, used in later sections of the thesis.

Chapter 4 is a literature review of SRMRI methodologies. Section 4.1 explores single
acquisition image reconstruction techniques, and Section 4.2 explores multiple acquisition
reconstruction techniques found in the MRI literature.

Chapter 5 first discusses the use of multiple acquisitions in SRMRI in the frequency
encoding direction12. This chapter introduces new methods to ascertain the amount of
new information in each acquisition after the first.

Section 6.1 provides a literature review of iterated function systems, necessary for
Chapter 7, which introduces a fractal-based method over (complex-valued) Fourier data13.
This chapter describes the method of iterated Fourier Transform systems, which has
a natural mathematical connection with the fractal-based method of iterated function
systems with greyscale maps (IFSM) in the spatial domain.

Chapter 8 presents a theoretical basis for the author’s work on the self-similarity of
MRI data by developing a model of the measured signal in one dimension. This chapter
shows that discrete functions of this form are locally self-similar. Section 8.3 presents a
statistical analysis of the local, two-dimensional self-similarity of human volunteer and
phantom MRI frequency data14. Self-similarity of these MR images is described with
collage error histograms [1]. Our results suggest that complex MRI data can be locally
self-similar using multi-parent transforms.

Chapter 9 presents recent, unpublished work that expands on the ideas in Chapter 8.
This chapter provides a basis for future work on the self-similarity of Fourier domain MRI
data (i.e. - complex and discrete trigonometric polynomials). A partial list of potential
research projects is provided in Section 10.3.2.

12Results presented in Chapter 5 are based on the author’s published research [63, 64, 66].
13Results presented in Chapter 7 are based on the author’s published research [65].
14Results presented in Chapter 8 is an overview of the author’s published research [67].
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Chapter 2

Fourier Theory

This chapter is a review of material present in the literature on one and two-dimensional
Fourier Transforms. As such, the notation and concepts used in this chapter are also
presented in well-known texts on Fourier theory (for example, see [8, 61, 59, 76]). The
purpose of this chapter is to introduce concepts relevant to later chapters of this thesis.

2.1 The One-Dimensional Fourier Transform

Throughout this thesis we will be working with the Lp function spaces, i.e., Lp(X),
p = 1, 2, · · · , where

Lp(X) =

{
u : X → R | ‖ u ‖p=

[∫
X
|u(x)|p

]1/p

dx < ∞

}
. (2.1)

We will also work with complex functions that operate on real numbers, f(x) : R → C,
and are in L2(R), the space of square integrable complex valued functions:∫ ∞

−∞

∣∣f(x)
∣∣2dx < +∞. (2.2)

Any function f ∈ L2(R) has a Fourier Transform, F (k) : R→ C, defined as

F{f} = F (k) =
∫ ∞
−∞

f(x)e−2πixkdx, x, k ∈ R. (2.3)

For the purposes of this thesis, variables x and k are spatial and spatial-frequency variables
respectively.

Functions f(x) and F (k) constitute a Fourier Transform pair. Several Fourier Trans-
form pairs used throughout this thesis are provided in Table 2.1. Proofs of the results in
this table can be found in the literature [8, 38, 59]. Variables in this table are dimension-
less; many signal processing textbooks, including Bracewell [8], consider dimensionless
variables. Elsewhere in this thesis, however, variables may or may not have units.
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f(u) =
∫∞
−∞ F (v)e+2πiuvdv F (v) =

∫∞
−∞ f(u)e−2πiuvdu

δ(u− u0) e−i2πu0

III(u) =
∑∞

n=−∞ δ(u− n) III(v) =
∑∞

n=−∞ δ(v − n)

Π(u) =


0 |u| > 1

2
1
2 |u| = 1

2

1 |u| < 1
2

sinc(v) = sin(πv)
πv

Λ(u) =


1 + u, 1 < u < 0
1− u, 0 ≤ u < 1
0, otherwise

(
sinc(v)

)2 = sin2(πv)
(πv)2

e−πu
2

e−πv
2

Table 2.1: One-dimensional Fourier Transform pairs of univariate functions used throughout this
thesis. Variables in this table are dimensionless.

Several well-known Fourier theorems that are used throughout this thesis are provided
in Table 2.2. Proofs of these theorems may be found throughout the literature [8, 38, 59].

f(u) =
∫∞
−∞ F (v)e+2πiuvdv F (v) =

∫∞
−∞ f(u)e−2πiuvdu Theorem

df
du +2πivF (v) Derivative Theorem∫∞

−∞ f1(u)f∗2 (u0 − u)du F1(v)F2(v) Convolution Theorem
f(u− u0) e−2πivu0F (v) Shifting Theorem

Table 2.2: One-dimensional Fourier Transform theorems used throughout this thesis. f(u), f1(u),
f(u), and F (v) are complex functions in L2(R). Variables in this table are dimensionless.

The inverse Fourier Transform, defined as follows, returns the original function f(x)
from F (k)

f(x) =
∫ ∞
−∞

F (k)e+2πixkdk, x ∈ R. (2.4)

Thus, if F (k) for all k ∈ R were known, f(x) could be obtained for all x using Eq. 2.4. In
MRI, it is unrealistic to obtain measurements over the entire real line, and F (k) is only
measured over a bounded subset of R. One of the objectives of the research presented
in this thesis is to estimate F (k) over an interval larger than that which is measured in
order to better estimate its inverse Fourier Transform, f(x).

The definition used for the Fourier Transform (Eq. 2.3) follows from what is conven-
tional in the MRI literature. Different definitions of the Fourier Transform and its inverse
can be found in other areas of research. For example, one such alternative definition uses
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angular frequency in place of frequency, with the substitution ω = 2πk in Eq. 2.3. This
substitution would require a different definition for the inverse transform, alternative re-
sults for the transform pairs in Table 2.1, and so forth. This thesis, without exception,
uses the definition stated in Eq. 2.3 to avoid unnecessary confusion.

It will be useful to consider sets of functions that are band-limited1 and spatially-
limited. A band-limited function f(x) is one for which its Fourier Transform F (k) has
compact support over k ∈ [a, b], for finite a, b ∈ R. For convenience, the interval of
support of F (k) is often chosen to be the symmetric interval K = [−K/2,K/2], for an
appropriate value of K > 0. Consequently, a band-limited function f(x) satisfies, for
some constant K ∈ R,

f(x) =
∫ +K

2

−K
2

F (k)e+2πixkdk, (2.5)

so that

F (k) = Π(
k

K
)F (k). (2.6)

The function Π(k) is defined in Table 2.1.

In MRI, we measure signals in the Fourier domain that come from objects that have
finite size in the spatial domain. As such, throughout this thesis, we will be working
with k-space functions whose inverse Fourier Transforms have compact support. It will
be convenient therefore to introduce the set of all spatially-limited functions, RR, as the
space that contains frequency domain functions whose inverse Fourier Transforms have
compact support:

RR =
{
F (k) ∈ L2(C) | F (k) =

∫ +R
2

−R
2

f(x)e−2πixkdx, x ∈ R
}
, (2.7)

for some appropriate value of R ∈ R+. This space is used in MR constrained reconstruc-
tion algorithms discussed in Chapter 4.12.

2.2 Mathematical Definition of the MRI Spatial Sample

Spacing

The central point of this section is the derivation of the equation for the spatial sample
spacing in MRI (Eq. 2.13, also Eq. 1.5) in terms of only two data acquisition parameters,

1Interestingly, the signal and image processing literature uses different spellings for this term; some

authors [61, 91, 42] use “bandlimited”, while others [42, 77, 88, 10, 94, 9] prefer to use “band-limited”.

The latter was arbitrarily chosen for this thesis.
2The primary example of the use of this space in MR reconstruction is the Papoulis-Gerchberg algo-

rithm and its generalizations.
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the number of measurements, N , and the frequency sample spacing, ∆k. This funda-
mental equation provides the central mechanism for performing resolution enhancement:
frequency extrapolation.

In MRI, spatial representations of the data are derived from measurements acquired in
the frequency domain. The acquired data are continuous (along a prescribed trajectory),
complex, and in the frequency domain. Furthermore, before the continuous data are
transformed, they must be sampled. Thus, the conventional process of transforming the
sampled frequency data into a spatial representation must be understood to define the
spatial sample spacing.

2.2.1 The Sampling Theorem for MR Data

One of the strengths of MRI is its enormous flexibility over how the frequency data may
be measured. There are however, particular conditions that must be observed when MR
data are being sampled to reduce the degree to which inevitable artifacts distort the data.
To describe these conditions, let us consider a function, F (k) ∈ RR, which represents a
hypothetical MRI signal measured for all k ∈ R. As such, its inverse Fourier Transform is
spatially limited (or has compact support). Sampling of this function at regular intervals
of length ∆k may be modeled as a multiplication of F (k) with the comb function, III( k

∆k ),
defined in Table 2.1. Thus, the sampled signal can be expressed as, for all k ∈ R (see
Appendix A.2 for a complete derivation):

F̂ (k) = F (k)III(
k

∆k
) = ∆k

∞∑
n=−∞

F (k)δ(k − n∆k) (2.8)

An inverse Fourier Transform may be employed to obtain f̂(x), which is the inverse
Fourier Transform of F̂ (k). By using the convolution theorem, we know that f̂(x) will
be periodic with unit period.

Under sufficient conditions described by the well-known Sampling Theorem, it is pos-
sible to recover F (k) for all k from knowledge of its samples. The Sampling Theorem is
usually described in textbooks for either the spatial or time domain [8, 61, 59]. However,
the same principles can be applied to the frequency space case [34, 76] which, for obvious
reasons, is of more interest to us.

Let F (k) ∈ RR be a spatially-limited signal with spatial extent R, that is sampled
with a frequency sample spacing of ∆k. If ∆k < R−1, then the signal F (k) may be
expressed with knowledge of its samples using the cardinal series [61]:

F (k) =
∞∑

n=−∞
F̂ (n∆k)sinc(Rk − n), ∀ k ∈ R. (2.9)
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If, however, the sample spacing is increased beyond R−1, it may not be possible to recon-
struct F (k), and aliasing errors may be present in f(x). In MRI, we are not interested
in obtaining F (k) for all k ∈ R. However, the sampling theorem also provides us with
information on the aliasing errors that we would like to minimize3.

Many other sampling theorems have been derived that allow the sample spacing to
be increased above R−1 if other criteria are met or if additional information is supplied.
For example, a multi-channel sampling theorem has been derived that provides conditions
under which F (k) may be recovered from its samples when multiple data sets are obtained
[61].

2.2.2 The Spatial Sample Spacing

Thus far we have assumed that an infinite number of samples have been measured, which
is not obtainable in practice. We must also consider the effect of using a finite number
of measurements to form the spatial domain signal.

Consider a frequency domain signal measured over a finite interval [−kmax, kmax], and
uniformly sampled N = 2kmax

∆k times with a frequency sample spacing ∆k:

F̃ (k) = Π
( k

2kmax

)
III
( k

∆k

)
F (k), ∀ k ∈ R. (2.10)

Eq. 2.10 represents a finite set of uniformly spaced measurements approximating the
continuous signal, F (k), over the interval [−kmax, kmax]. Using the measurements F̃ (k),
an approximation to f(x) is desired.

To approximate f(x), we perform the inverse Fourier Transform of Eq. 2.10 [34] (see
Appendix A.3 for a complete derivation of Eq. 2.11) to obtain

f̃(x) =
∫ ∞
−∞

F̃ (k)ei2πkxdk, ∀ x ∈ R

=
∫ ∞
−∞

III
( k

∆k
)
Π
( k

2kmax

)
F (k)ei2πkxdk

= ∆k

N
2
−1∑

n=−N
2

F (n∆k)ei2πn∆kx. (2.11)

This inverse Fourier Transform converges because, by assumption, F (k) ∈ L2(R). We
have not yet assumed that F̃ (k) is periodic, although it can be shown that f̂(x) is periodic
with period 1

∆k .

Due to the nature of the inverse Fourier Transform, Eq. 2.11 is valid for all x, but
in practice, it is feasible to perform reconstructions for only a finite number of x values.

3Aliasing errors may be reduced with the application of an anti-aliasing filter. This process will be of

importance in Chapter 5.
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Hence, a discretization over spatial steps, of uniform length ∆x must be introduced. To
arrive at a sampled set of spatial coordinates, consider the effect of making F̃ (k) periodic,
with period 2kmax:

F̃p(k) = III(
k

2kmax
) ∗ F̃ (k).

With this new periodic signal, we cannot implement the inverse Fourier Transform to
obtain a spatial representation because F̂p(k) /∈ L2(R). Reconstruction is instead carried
out using an inverse discrete Fourier Transform (IDFT):

f̃p(n∆x) =

N
2
−1∑

p=−N
2

F̃p(p∆k)ei2π(p∆k)(n∆x), n = 0, 1, 2, · · · , N − 1. (2.12)

The reconstructed signal is periodic: f̃p(n∆x) = f̃p(n∆x+ 1
∆k ). Since the spatial sample

spacing is equal to the period length divided by the number of measurements, it follows
that:

∆x =
1

N∆k
. (2.13)

This fundamental relationship provides an important concept behind this project. Since,
by Eq. 2.13, the sample spacing is inversely related to the spectral extent, we can reduce
the sample spacing by incorporating higher frequencies in the partial sum in Eq. 2.12. SR
methods attempt to estimate higher frequencies given a set of low frequency measurements
thereby enhancing the spatial resolution. This project investigates methods of increasing
the spectral extent by incorporating a priori knowledge of the object being imaged and
the acquisition sequence employed.

2.3 The Two-Dimensional Fourier Transform

The two-dimensional Fourier Transform is a straightforward extension of its one-dimensional
analogue4, and is reviewed because of its extensive use throughout this thesis. The Fourier
Transform of a two-dimensional function f ∈ L2(R2) is:

F (kx, ky) =
∫ ∞
−∞

∫ ∞
−∞

f(x, y)e−2πixkxe−2πiykydxdy.

The inverse of the above two-dimensional Fourier Transform is given by

f(x, y) =
∫ ∞
−∞

∫ ∞
−∞

F (kx, ky)e+2πixkxe+2πiykydkxdky.

This equation bears a fundamental importance for this thesis, as raw MR data is given in
terms of a two-dimensional Fourier Transform. An approximation to its inverse is used
to construct a spatial domain image.

4Higher dimensional generalizations of the Fourier Transform can easily be made, but will not be

needed for this thesis.
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The following sections list properties of the two-dimensional Fourier Transform, fre-
quently used throughout this thesis. For other well known Fourier theorems (such as the
convolution theorem, the Parseval theorem, and so forth), the interested reader will be
referred to relevant areas of the image processing literature.

Shift Theorem

The shifted image
f(x− x0, y − y0),

has the Fourier Transform
e−2πi(x0kx+y0ky)F (kx, ky).

The shift theorem bears a key importance in our discussion of super-resolution meth-
ods that use multiple images related by spatial translations. We use this shift theorem
throughout Chapter 5.

Rotation Theorem

We use the rotation theorem in our discussion of the projection slice theorem. It will be
convenient to first define the following rotation operator:

g(x̂, ŷ) = Rθ

{
f(x, y)

}
= f(x cos θ − y sin θ, x sin θ + y cos θ)

where :
x̂ = x cos θ − y sin θ
ŷ = x sin θ + y cos θ

.

The operator Rθ

{
f(x, y)

}
rotates f(x, y) by an angle θ. Here, we measure θ in radians,

in a counter clockwise direction from the x-axis5.

The rotation theorem for the two-dimensional Fourier Transform states that a rotation
of f(x, y) by an angle θ, rotates F (kx, ky) by an angle θ. The two-dimensional Fourier
Transform of Rθ

{
f(x, y)

}
is simply:

F (kx cos θ − ky sin θ, kx sin θ + ky cos θ).

In other words, the counterclockwise rotation of f(x, y) results in a counterclockwise ro-
tation of F (kx, ky). A proof of this theorem is provided in the image processing literature
[98].

5Naturally, in k-space we measure θ in a counter clockwise direction from the kx-axis.
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The Projection Slice Theorem

The projection slice theorem (see [9], Chapter 14) is used in our discussion of phase
encoding (Section 3.2.5). This section provides a description of this theorem, which first
requires a definition of a particular projection operator.

We define the projection of an image onto the straight line, S, that passes through
the origin at angle θ, with the following line integral:

g(x̂) = Pθ

{
f(x, y)

}
=
∫ ∞
−∞

R−θ
{
f(x, y)

}
dŷ.

The projection slice theorem states that Pθ

{
f(x, y)

}
is the inverse Fourier Transform of

F (kx, ky) along the line passing through the k-space origin at angle θ. To see this, let us
first consider the two-dimensional Fourier Transform:

F (kx, ky) =
∫ ∞
−∞

∫ ∞
−∞

f(x, y)e−2πixkxe−2πiykydxdy.

We see that setting ky = 0, yields:

F (kx, 0) =
∫ ∞
−∞

{∫ ∞
−∞

f(x, y)dy
}
e−2πixkxdx

=
∫ ∞
−∞

{
Pθ=0

{
f(x, y)

}}
e−2πixkxdx.

This demonstrates that F (kx, 0) is the one-dimensional transform of P0

{
f(x, y)

}
(the

projection of f(x, y) onto the x-axis).

A more general situation can be described for any straight line, S, passing through
the k-space origin at an angle θ. A straight line path, S, through Fourier data F (kx, ky),
is equal to the one-dimensional Fourier Transform of the projection of f(x, y) onto that
same line:

G(k̂x) = F (kx, ky)
∣∣
S

=
∫ ∞
−∞

Pθ

{
f(x, y)

}
e−2πi(x̂k̂x)dx̂, k̂x ∈ R. (2.14)

As before, the line S travels through the k-space origin at angle θ. We may interpret the
right hand side of Eq. 2.14 as a rotation of f(x, y), a projection of the rotated function
onto the x̂-axis, and finally a transform of the projected function into the Fourier domain.
Although this equation is valid for any θ ∈ R, in subsequent chapters, we only consider
projections onto lines parallel to one of the coordinate axes.
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Chapter 3

MR Physics and Data Acquisition

This chapter is a literature review of material needed for results presented in later chapters
of this thesis. Section 3.1 provides a derivation of the Bloch equations, which are used to
model the process by which the MR signal is generated and detected. A mathematical
model of typical MR data acquisition and processing steps is provided in Section 3.2.
This model will be used for example, in Chapter 5, to describe the efficacy of SRMRI
methods in the literature.

3.1 The Bloch Equations

In this section, fundamental concepts behind nuclear magnetic resonance (NMR) are
introduced by illustrating how manipulations of the proton spin orientations within a
sample are induced by a collection of applied magnetic fields. The classic NMR exper-
iment employs a main magnetic field ~B = B0k̂ to produce a net magnetization vector
~M = [Mx,My,Mz]T within an object of interest. Manipulations of this vector through

applied radiofrequency (RF) fields produces an NMR signal containing information about
the object.

This section also discusses the nature of the Bloch equations. These equations and
their solutions are not used explicitly in other chapters of this thesis. However, the Bloch
equations are a fundamental concept for the understanding of how data is acquired in
MRI. The discussion in this chapter follows that presented in [34].

3.1.1 Quantization of Angular Momentum

Throughout this chapter1 we describe the quantization of angular momentum for the
hydrogen proton. Many quantum particles (electrons, protons, neutrons, etc) possess an

1A more detailed discussion of the material in this chapter may be found in Chapters 5 and 6 of [34].
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intrinsic angular momentum or spin (analogous to how a spinning top precessing about
the gravity axis possesses an angular momentum). We let ~S denote the spin angular
momentum of the proton. As the proton has a non-zero spin, it also has an angular
momentum, ~µ, proportional to its spin.

A measurement of the z-component of any atomic or nuclear angular momentum, ~J ,
yields integer (or half-integer) multiples of2 ~

Jz = mj~, (3.1)

mj is called the magnetic quantum number, and the 2j + 1 values of mj are

mj = −j,−j + 1,−j + 2, . . . , j − 1, j. (3.2)

The number j ∈ Z or j ∈ Z/2 holds a relation to the total angular momentum, ~J ,
according to

J2 = j(j + 1)~2, (3.3)

where j = 0, 1
2 , 1,

3
2 , . . . , and J = || ~J ||. The total angular momentum for an atomic or

nuclear system has a contribution from orbital motion ~L and a contribution from its
intrinsic spin ~S:

~J = ~L+ ~S. (3.4)

The intrinsic spin, ~S, has a magnitude S = ||~S|| that satisfies

S2 = s(s+ 1)~2, s = 0,
1
2
, 1,

3
2
, . . . (3.5)

The z-component Sz of ~S is given by Sz = ms~. For this thesis, we are mainly concerned
with the hydrogen proton. We assume this nuclear species has no orbital motion, implying
that ~J = ~S, j = s, and mj = ms.

The quantum mechanical spin angular momentum, ~S, is an operator that can be
represented by finite matrices. The matrix representation for the spin one-half vector
operator is given by

~S =
~
2
~σ, (3.6)

where the three linearly independent Pauli spin matrices are

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (3.7)

It has been shown experimentally that the proton has spin one-half, so that s = 1
2 and

ms = ±1
2 .

2~ is Planck’s constant divided by 2π. Planck’s constant is approximately 6.626 ×10−34 J s.
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3.1.2 Precession Frequency

In this section, the relationship between precession and quantum energy differences is
made, which will be needed for the quantum analysis of proton spin. A hydrogen proton,
in the presence of a static magnetic field, ~B = B0k̂, has a potential energy3 U , given by

U = −~µ · ~B = −µzB0 = −γJzB0 = −γms~B0. (3.8)

Here, ~µ is the magnetic moment vector for an individual spin, and γ is the gyromagnetic
(or magnetogyric) ratio4. The empirical relation ~µ = γ ~J , and Eq. 3.1 has been used to
derive Eq. 3.8. The magnitude of the energy absorbed or released by the proton spin
system upon a transition between higher (ms = −1/2) and lower energy (ms = 1/2)
states is found to be

∆E = Ems=− 1
2
− Ems=+ 1

2

=
1
2
γ~B0 − (−1

2
γ~B0)

= ~ω0. (3.9)

Here, ω0 is the Larmor precession frequency, given by:

ω0 = γB0. (3.10)

This is an example of the Larmor equation5, a particularly important relation in MRI
that is used throughout the remainder of this chapter.

3.1.3 Spin Solutions for Constant Fields

Consider the magnetic-moment interaction of a proton at rest and immersed in the con-
stant external field, ~B = B0k̂. We are assuming that no orbital motion is present. Let us
show how the solution of the Schrödinger equation (for zero kinetic energy) leads to the
quantum numbers and matrix elements introduced above.

The potential energy of this system, U , is then given by

U = −µ · ~B = −γJzB0 = ω0Jz = −ω0Sz =
−ω0~

2
σz. (3.11)

The matrix representation for the Hamiltonian, H, becomes

H = U =
−ω0~

2
σz =

(
−1

2~ω0 0
0 +1

2~ω0

)
. (3.12)

3This is an example of the general Zeeman effect, where atomic moments in the presence of a magnetic

field produce splittings in the atomic energy levels.
4The gyromagnetic ratio is different for each nuclear species. For hydrogen, γ/2π is roughly 42.58

MHz/T.
5Named after Sir Joseph Larmor, who was first to demonstrate the precession of charged particles in

1897 [69].
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Clearly, the Pauli representation for σz leads to a diagonal Hamiltonian, whose eigenvec-
tors are (by inspection):

ψ+ :=

(
1
0

)
, ψ− :=

(
0
1

)
. (3.13)

Indeed, the use of a 2-by-2 matrix representation for Jz in Eq. 3.11, implies that the wave
function ψ on which it operates is a column matrix with two entries. The eigenvalues of
H = −γB0Sz, that satisfy Hψ± = E±ψ±, are given by:

E± = ∓1
2

~ω0. (3.14)

Note also that ψ+ and ψ− are also eigenfunctions of Sz,

Szψ± = ±1
2

~ψ±. (3.15)

The eigenvalues are then ms = ±1
2 . Using these eigenvalues and associated eigenfunctions

the general solution to the time-dependent Schrödinger differential equation

HΨ = i~
∂Ψ
∂t
, (3.16)

has the form
Ψ(t) = C 1

2
ψ 1

2
e

1
i~E 1

2
t
+ C− 1

2
ψ− 1

2
e

1
i~E− 1

2
t
. (3.17)

Here, and throughout this thesis, t refers to time. In Eq. 3.17, we assumed that the wave
function has no spatial dependence since we are neglecting any motion by the proton.

3.1.4 Derivation of Quantum Precession

In this section, we use quantum mechanics to derive the dynamics of the magnetic moment
for a proton at rest in a static field. This leads to a precession of the quantum expectation
value of the magnetic moment that is an important concept of nuclear magnetic resonance.

It can be shown that the expectation values of the magnetic moment vectors are given
by (see [34], page 75):

< µx(t) > =
γ~
2

sin 2θ cos(φ0 − ω0t) (3.18)

< µy(t) > =
γ~
2

sin 2θ sin(φ0 − ω0t) (3.19)

< µz(t) > =
γ~
2

cos 2θ (3.20)

Definitions of constants φ0 and θ, and a complete derivation of Eq. 3.19 can be found
in Appendix A.4. The expectation values for the magnetic moment components describe
the behaviour of a vector with magnitude γ~/2. This vector rotates about the z-axis at
a fixed polar angle 2θ (Fig. 3.1). Further manipulations of the magnetic moment are
obtained with additional magnetic fields, described in the following section.
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Figure 3.1: Precession of the quantum expectation value of the magnetic moment operator in the
presence of a constant external field pointed in the z-direction.

3.1.5 RF Spin Tipping

This subsection introduces a time varying RF field, ~B1(t), which plays an important role
in NMR studies. Applying energy that the object absorbs, the RF field tips ~M(t) away
from its equilibrium position by applying a torque to rotate the net magnetization by a
desired angle6. The rotating magnetization vector (oscillating at the Larmor frequency of
the sample) then produces an electromotive force in an RF coil that can detect changes
in the magnetization in the transverse plane. This produces the signal that is measured
for NMR studies.

Specifically, we are interested in obtaining the nuclear magnetic moment expectation
value, in the presence of a combined static and circularly polarized field:

~B(t) = B0k̂ +B1 [̂i cos(ωrf t)− ĵ sin(ωrf t)]. (3.21)

B1 is the (constant) magnitude of the time-varying component of the RF field, rotating at
frequency ωrf . This particular set of applied fields is interesting, because of its relevance
to our discussion of signal excitation and slice encoding, which we discuss in Section
3.2.3. In this section, we discuss the magnetic moment operator expectations under the
presence of ~B(t).

6The RF pulse can rotate ~M(t) by a desired amount that depends upon the strength and duration of

the pulse. For example, if the excitation is set to rotate ~M(t) by 90 degrees, ~M(t) will be in the transverse

plane after the RF pulse is turned off.
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It is convenient to replace the conventional Cartesian basis with a rotating basis:

îrot = î cosωrf t+ ĵ sinωrf t

ĵrot = ĵ sinωrf t− î cosωrf t

k̂rot = k̂, (3.22)

so that the applied magnetic field becomes:

~B(t) = B0k̂ +B1îrot. (3.23)

With this rotating coordinate system, it can be shown that the expectation values are
given by ([34], page 80):

< µx(t) > =
γ~
2

sin Θ cos Φ (3.24)

< µy(t) > =
γ~
2

[
cos Θ sin(ω1t) + sin Θ sin Φ cos(ω1t)

]
(3.25)

< µz(t) > =
γ~
2

[
cos Θ cos(ω1t)− sin Θ cos Φ sin(ω1t)

]
(3.26)

A complete derivation of < µz(t) > and definitions of Θ and Φ can be found in Appendix
A.5. In the rotating coordinate system, the expectation at t = 0 has a polar angle Θ
and an azimuthal angle Φ about the axis of rotation, k̂. We also see that in the rotating
frame, < µx(t) > is time-independent. Specifically, these solutions describe the rotation
of the angular momentum vector, with fixed magnitude, rotating about the îrot axis, in
the rotating reference frame.

3.1.6 Net Magnetization and the Bloch Equations

In this section, we introduce the Bloch equations, which characterize the trajectory of a
net magnetization vector, ~M(t), important to the modeling of the MRI signal. In MRI
studies, the measurable signal is created by manipulating ~M(t) with a carefully selected
set of applied magnetic fields. For the time being, we assume ~M is spatially invariant,
but we will consider its spatial dependence in subsequent sections of Chapter 3.

Consider a tiny volume V in a given object. Assume that the object is placed in
a uniform magnetic field, ~B = B0k̂, and that in V there are to be found Np protons.
Furthermore, let the nth proton have magnetic moment ~µn. The net magnetization
produced within V is defined as

~M(x, y) =
1
V

Np∑
i=1

~µn , (3.27)

where Np is the number of protons in V (the sum is performed over all hydrogen protons
in the volume). Classically, a moment vector ~µ in a uniform magnetic field ~B would
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satisfy (see [34], Chapter 2)

d

dt
~µ =

d

dt
γ ~J = γ

d

dt
~J = γ ~N = γ~µ× ~B . (3.28)

~J is the total angular momentum vector (as in Eq. 3.4), and ~N is the torque exerted
on the magnetic moment by the external field. Thus, combining Eqs. 3.27 and 3.28 we
obtain

d

dt
~M = γ ~M × ~B . (3.29)

This equation is a simplified form of the Bloch equation7. If ~B = B0k̂, then Eq. 3.29 can
be expressed as 

dMx
dt
dMy

dt
dMz
dt

 =

 0 γB0 0
−γB0 0 0

0 0 0


 Mx(t)

My(t)
Mz(t)

 . (3.30)

The solution to this system of differential equations is Mx(t)
My(t)
Mz(t)

 =

 cosω0t sinω0t 0
− sinω0t cosω0t 0

0 0 1


 Mx(0)

My(0)
Mz(0)

 . (3.31)

The solutions to the simplified form of the Bloch equations are similar to those derived
earlier using quantum mechanics (see Eqs. 3.18 to 3.20). Note that our quantum me-
chanical description contains an angle θ between the axis of rotation and the expectation
of the momentum operator, that is not present in Eq. 3.31. In taking an average (Eq.
3.27) over Np magnetic moment vectors in the given volume V , the transverse component
of the net magnetization vector has vanished.

3.1.7 Boltzmann Equilibrium Values

In magnetic resonance studies, an equilibrium magnetization is generated in a magnetic
field. To describe the mechanics of this process, the equilibrium magnetization M0 for a
system of particles with spin at temperature T in the presence of a static magnetic field
~B = B0k̂ will be derived.

Consider a system consisting of Nspins spins that are in thermal contact with each
other at a temperature T (Nspins is taken to be very large). The z-component of the
thermal equilibrium value of Mz for a magnetic number ms is given by ([34], Chapter 6)

M0 = ρ
s∑

ms=−s
P (ε(ms))µz(ms), (3.32)

7The full Bloch equation also includes relaxation terms related to T1 and T2 processes, that we have

ignored in Eq. 3.29.
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where ρ is the density of spins per unit volume in the homogeneous isochromat volume
V . P (ε) is the probability of finding a system with energy ε, while in contact with a much
larger system at temperature T , and is given by

P (ε) =
e−ε/kT

Z
, Z =

∑
ε

e−ε/kT . (3.33)

In Section 3.1 the constant k is the Boltzmann constant8, k = 1.381× 10−23 J K−1.

It can be shown that the equilibrium magnetization is (see Appendix A.6 for deriva-
tion)

M0 ≈ ρ
s(s+ 1)γ2~2

3kT
B0. (3.34)

For a proton, with spin s = 1/2, this expression is simply

M0 ≈ ρ
γ2~2

4kT
B0. (3.35)

This expression provides a relationship between the equilibrium magnetization, M0, and
the proton density. We shall use this relationship in our discussion of the mathematical
model of the MRI signal, in Section 3.2.1 (see Eq. 3.41). As we shall see, intensities in
an MR image are proportional to the proton density of the object being imaged9, via Eq.
3.35.

3.1.8 Proton Spin Excess

The tendency for protons in a magnetic field to align themselves with the field and
thus drop to the lowest energy level is opposed by thermal interactions. These thermal
motions distribute the populations in the two energy levels, and the resultant equilibrium
distribution can be predicted.

Consider an s = 1
2 (proton) system whose total number of spins per unit volume,

Nspins is given by Nspins = n+ + n−, where n+ and n− represent the respective number
of spins parallel and anti-parallel to the magnetic field. From the normalized Boltzmann
probability (Eq. 3.33), the probability for each state is given by:

P± =
n±

Nspins
=

e±u/2

e+u/2 + e−u/2
, u =

~ω0

kT
. (3.36)

It follows that the ratio of the two populations is given by:

n−
n+

=
e−u/2

e+u/2
= e−u = e−

~ω0
kT (3.37)

8Elsewhere in this thesis, k denotes a spatial frequency variable.
9It is also interesting to note that intensities in the MR image are also proportional to the field strength

through Eq. 3.35. Increasing B0 by improving machine hardware increases the SNR of the data it can

produce.
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For T = 300 K and B0 = 1.5 T, u ≈ 1.0214×10−5. It can be easily shown that the number
of parallel spins, n+, in a volume containing one million spins (so that Nspins = 106), is
given by:

n+ =
106

1 + n−
n+

≈ 500002.5 (3.38)

Thus, for the above conditions, a difference of roughly 5 spins is found between the parallel
and the anti-parallel spin populations10. Since the spin excess of 5 spins is a million times
smaller than the total number of protons, it might be guessed that no significant signal
could be detected at room temperature and 1.5 T! However, in MR experiments there are
often large enough proton densities in the sample being studied to permit a measurable
signal.

3.2 MRI Data Acquisiton

Implementation of image reconstruction algorithms in MRI requires knowledge of the
data acquisition process. Many of the processing steps and physical constraints on the
MRI hardware not only affect the performance of reconstruction algorithms, they provide
information that has been used to enhance image quality when incorporated into recon-
struction algorithms [53, 55]. A description of the most pertinent concepts of MRI data
acquisition is therefore a necessity for later discussion.

The equations that model the measured MRI signal and the basic operations that
are used to process it are important relations for Chapter 5. The MR signal equation is
carefully derived in many references, including Liang and Lauterbur’s book [55], a well-
known article by Hinshaw and Lent [40], and the book by Haacke, et al. [34], which
devotes several chapters to its origins. The signal equation provides a means of modeling
the measured data using physical parameters, many of which are known a priori, or have
various constraints imposed upon them. Later chapters of this thesis investigate new
means of using these constraints to improve the reconstructed image.

3.2.1 The Signal Equation

Let the measured signal produced by the set of applied fields be represented by sm(t) ∈
L2(R), t ≥ 0. This signal may be modeled as11 (see [34], page 101):

sm(t) ∝
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
M⊥(x, y, z, 0)sin(φ(x, y, z, t))dxdydz. (3.39)

10This simple example is based on an example exercise on page 87 of [34].
11Here we have ignored T2 relaxation effects, noise, and inhomogeneities in the receive field.
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The function M⊥(x, y, z, t) is the magnitude of the transverse component of the net
magnetization vector, ~M(x, y, z, t) = [Mx,My,Mz], so that: M⊥(x, y, z, t) =

√
M2
x +M2

y .
~M(x, y, z, t) is produced by, and interacts with, the applied magnetic fields used to create

and spatially encode an MR signal.

The phase φ(x, y, z, t) in Eq. 3.39 may be modeled as a sum of two terms:

φ(x, y, z, t) = ω0t+ φG(x, y, z, t)

= γB0t+ φG(x, y, z, t). (3.40)

The constant γ is the gyromagnetic ratio. B0 is the magnitude of the applied magnetic
field. The function φG(x, y, z, t) is the local phase at time t of the proton spin that is
determined by a set of applied magnetic gradient fields.

A derivation of the signal equation is well beyond the scope of this thesis. A thorough
derivation of this equation from fundamental quantum and electromagnetic concepts can
be found in the literature (for example, see [34], Chapter 7).

It is useful to draw a connection between M⊥(x, y, z, 0) and the proton density
ρ(x, y, z) ∈ L2(R), of the object being imaged. The function, M⊥(x, y, z, 0), is approx-
imately linearly proportional to ρ(x, y, z) (see Eq. 3.34, or [34] page 86). The proton
density, ρ(x, y, z), satisfies the following constraints:

1. ρ(x, y, z) is real ∀ (x, y, z),

2. ρ(x, y, z) ≥ 0 ∀ (x, y, z), (3.41)

3. ρ(x, y, z) = Π(
x

Rx
)Π(

y

Ry
)Π(

z

Rz
)ρ(x, y, z) for some Rx, Ry, and Rz.

In later chapters, we will use ρ in place ofM⊥. The above constrains are used, for example,
in SRMRI algorithms based on projection techniques for frequency extrapolation, and will
be discussed in Section 4.1. Namely, the first and second contraints are used in the phase
constrained algorithms, while the third is used in the Papoulis-Gerchberg algorithm.

3.2.2 Demodulation

After the continuous signal is measured, a number of processing steps must be carried
out to create a signal that can be stored on a computer. The precise set of processing
steps used varies between MRI scanners, but the standard processing steps, as described
in standard MRI texts [34, 40, 55], that are most relevant to subsequent chapters of this
thesis will now be outlined. Namely, we discuss in this section mathematical models for
demodulation (which includes analog filtering) and sampling.
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The measured data must be demodulated12. The demodulation process is also referred
to as phase-sensitive detection (PSD) [55], and is outlined in Fig. 3.2. Although the raw
signal, sm(t) is real, this function is converted into a complex entity through the process
of demodulation. Furthermore, high frequency oscillations present in the signal that stem
from the ω0t term in Eq. 3.40, must be removed. Demodulation simultaneously creates
a complex signal and removes this high frequency component.

Figure 3.2: Elementary modeling of the MR signal. The data is split into two channels, multiplied
by either a cosine or sine function, passed through a low pass filter, and then converted to a discrete
signal.

PSD is carried out in a series of steps, demonstrated in Fig. 3.2. The signal is split
into two channels, each channel is multiplied by either a sine or cosine function, and
finally, a low-pass filter is applied to each channel. The channels are summed together,
forming a complex demodulated signal, sd(t) (for derivation see Appendix A.7):

sd(t) ≈
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
M⊥(x, y, z, 0)eiφG(x,y,z,t)dxdydz. (3.42)

Comparing this equation with Eq. 3.39, we see that the measured signal, sd, is now a
complex function, and the high frequency term has been removed.

3.2.3 Slice Encoding

This section briefly discusses the mechanics of slice encoding (SE). How SE relates to SR
methods will be discussed in Section 4.2.5. Research on SRMRI presented in this thesis
focuses on resolution enhancement in the frequency and phase encoding directions, and
does not extend to SE methods. Nonetheless, SRMRI in the SE direction (currently)
remains a promising direction for research for MR resolution enhancement with multiple
MR images. In fact, we argue in Chapter 5 that for research dealing with multiple
acquisitions, spatial resolution enhancement in the SE direction currently appears to be
the most promising direction for future research in SRMRI 13.

12The process of demodulation is actually carried out after the slice and phase encoding processes are

carried out. We place this discussion of demodulation prior to our discussion of these encoding schemes to

simplify our derivations. Namely, demodulation removes the eiω0t term from our model of the measured

signal.
13Recent work [75] has introduced SRMRI with multiple RF coils. We briefly discuss this possible

research direction in Chapter 10.
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SE is fundamentally different from other encoding schemes. While frequency (Sec-
tion 3.2.4) and phase (Section 3.2.5) encoding methods collect information in the Fourier
domain, SE is a spatial encoding scheme. SE isolates information along the z-axis ac-
cording to a prescribed distribution, determined by a chosen RF pulse and magnetic field
gradient. Also, because the acquisition procedures related to SE are applied before those
associated with frequency and phase encoding, our discussion of SE in this thesis is placed
before our discussion of these other encoding methods.

For a typical MR experiment, the measured signal at a given (x, y, z) coordinate
can be found through solving a system of differential equations derived from the Bloch
equations. The process of SE is carried out with the application of two magnetic fields:
an applied linear (in z) gradient field, and an RF field that produces signal excitation.
The gradient field, ~G(z, t) = γGz(t)zk̂, exhibits a linear dependence between the gradient
magnitude and z. This field enables the required spatial localization needed to isolate
information from a desired region of the object being imaged. The RF field, ~B1(t), excites
the object, so that a signal can be measured. The shape of this function also determines
the slice profile, or the distribution of spins along the z-axis that will contribute to the
signal.

The Bloch Equation in the Rotating Frame

This subsection discusses the mathematical model for slice encoding. It is convenient to
convert the coordinate system into one rotating about the z-axis with frequency ωrf . To
this end, we relate the laboratory frame coordinates to the rotating frame coordinates, by
choosing rotating unit vectors, îrot, ĵrot, and k̂rot, such that:

îrot = cos(ωrf t)̂i− sin(ωrf t)ĵ

ĵrot = sin(ωrf t)̂i+ cos(ωrf t)ĵ

k̂rot = k̂.

Now let us define vectors ~Mrot = [Mx,rot,My,rot,Mz,rot] and ~Brot = [Bx,rot, By,rot, Bz,rot],
which represent vectors ~M and ~B in the rotating frame:

~M(x, y, z, t) = Mxî+My ĵ +Mzk̂

= Mx,rotîrot +My,rotĵrot +Mz,rotk̂rot

= ~Mrot, (3.43)

and

~B(x, y, z, t) = Bxî+By ĵ +Bzk̂

= Bx,rotîrot +By,rotĵrot +Bz,rotk̂rot

= ~Brot. (3.44)
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In the rotating frame, for a given (x, y) coordinate, the magnetization vector ~Mrot, for
any time, t, and z position is found by solving the following system of equations (derived
from the Bloch equations in Appendix A.8):

∂ ~Mrot(z, t)
∂t

=

 0 γGz(t)z 0
−γGz(t)z 0 ω1(t)

0 −ω1(t) 0


 Mx,rot(z, t)

My,rot(z, t)
Mz,rot(z, t)

 (3.45)

The function ω1(t) represents the oscillation frequency of the RF field, and ω1(t) = γB1(t).
To arrive at Eq. 3.45, a number of assumptions were made in Appendix A.8:

1. The general form of the applied RF field is:

~B1(t) =
ω1(t)
γ

[cos(ωrf t)̂i− sin(ωrf t)ĵ] = B1(t)̂irot

The acquisition parameter ωrf is a constant and is set by the MR scanner operator.
This parameter is the carrier frequency of the RF field.

2. The carrier frequency, ωrf , is assumed to be set (or tuned) to the natural frequency
of the object being excited, so that ωrf = ω0.

3. We are further assuming that the main magnetic field, ~B0 is spatially invariant. In
practice, there are small spatial variations14 in ~B0.

4. Relaxation terms (due to T1 and T2 relaxation) were ignored, meaning that the B1

field is assumed to be a pulse of short duration compared to T1 and T2. This is an
accurate assumption in most situations.

The solution to Eq. 3.45 yields the distribution of spins along the z-direction that will
contribute to the measured signal. However, this system does not, in general, permit an
analytical solution. Approximate solutions can be obtained, for example, with numerical
techniques [56], perturbation analysis [41], or Fourier methods [78].

The Signal Equation in Two Spatial Dimensions

This subsection describes two simplifications to Eq. 3.42. Firstly, the desired effect of SE
is to create a spatial localization in z. Suppose that we seek to have spatial information
localized about a z coordinate, z0, with slice width ∆z. Assuming that information about
M⊥(x, y, z, 0) is acquired uniformly across the slice, and that no information outside of

14See [34], Chapters 20 and 27, for discussion of magnetic field inhomogeneities and main magnet coil

design.
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the slice is recorded, we may simplify Eq. 3.42 so that it no longer is a function of z, by
introducing the following function15:

Mz0(x, y) =
∫ ∞
−∞

Π(
z − z0

∆z
)M⊥(x, y, z, 0)dz =

∫ z0+∆z/2

z0−∆z/2
M⊥(x, y, z, 0)dz. (3.46)

Furthermore, as spatial information in the z direction has now been encoded, it is no
longer necessary to use gradients along this direction to encode spatial information. As
such, φG is no longer a function of z, and φG = φG(x, y, t). We will maintain a dependence
in φG on x and y, as we still must implement spatial encoding in the x and y directions.
The following sections of this chapter discuss spatial encoding in these other directions.

Using these simplifications, Eq. 3.42 becomes

sd(t) =
∫∫∫

M⊥(x, y, z, 0)eiφG(x,y,z,t)dxdydz

=
∫∫

Mz0(x, y)eiφG(x,y,t)dxdy. (3.47)

This equation will be modified to represent a two-dimensional Fourier Transform of
Mz0(x, y) in the following sections of this chapter.

3.2.4 Frequency Encoding

Discussions in previous sections of this chapter described basic physics required to acquire
an MR signal and how to isolate information from a slice. After a slice has been selected,
the next step in the acquisition process is to create a linear relationship between frequency
and position in the object being scanned. This is the process of frequency encoding (FE).

Eq. 3.47 provides an expression for the demodulated signal, sd(t), for two spatial
coordinates. We now require an explicit expression for the phase, φ(x, y, t), in terms of
the magnetic field gradients. The function φG(x, y, t) represents the local phase due to
applied magnetic gradient fields. Linear gradients are often used, so that the time-varying
magnitude of the fields changes linearly in space

BG(x, y, t) = Gx(t)x+Gy(t)y = ~r · ~G(t). (3.48)

The spatially invariant magnetic field vector ~G(t) is the magnetic field gradient

~G(t) =
[∂Bx(t)

∂x
,
∂By(t)
∂y

]
. (3.49)

15Some information from outside the slice is always measured, and information across the slice is not

uniformly weighted. More thorough discussions of slice encoding can be found in the literature (see, for

example, [34], Chapter 16).
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With this magnetic field gradient, the signal Eq. 3.47 becomes (see Appendix A.10 for
derivation)

sd(t) = sd(kx, ky) =
∫∫

Mz0(x, y)exp[−i2π~k(t) · ~r]dxdy, (3.50)

where

~k(t) =
[
kx(t), ky(t)

]
,

kx(t) =
γ

2π

∫ t

0
Gx(t′)dt′,

ky(t) =
γ

2π

∫ t

0
Gy(t′)dt′. (3.51)

The temporal functions in Eq. 3.51 represent a change of variables that introduces the
concept of k-space. Eq. 3.50 demonstrates that the demodulated signal is the two-
dimensional Fourier Transform of Mz0(x, y). As noted in Chapter 2.1, kx and ky are both
expressed in units of 1/cm.

The MRI raw k-space data is often thought of as a 2D Fourier Transform of a proton
density function. A combination of Eqs. 3.50 and 3.35 yields16

sd(kx, ky) =
∫∫

ρ(x, y)e−i2π(kxx+kyy)dxdy. (3.52)

This relation is used in later sections of this thesis (see for example Eqs. 7.1, 8.2).

Eq. 3.51 suggests that the data is only measured along trajectories in frequency
space. Indeed, careful selection of these trajectories is an integral part of MRI data
acquisition, and the gradient amplitudes (which are functions of time) determine the
paths in frequency space along which the data is measured. These trajectories always
begin at the origin of k-space, which can be verified by setting t = 0 in Eq. 3.50. The
direction along which these paths run is referred to as the frequency encode, or readout
direction.

In theory, these trajectories may take any desired path that starts at the k-space
origin. From Eq. 3.52, the Gx and Gy gradients will determine these trajectories, and are
often modeled as piecewise constant, or piecewise linear functions. Consider the sequence
diagram in Fig. 3.3a. As the Gx and Gy gradients are both turned on at time t1 for a
time T , then reversed in polarity and left on for a time 2T , the gradients produce the
linear trajectory, shown in Fig. 3.3b. If this sequence were repeated many times, each
time with different Gx and Gy magnitudes, the k-space trajectories would describe a set
of radial lines emanating from the origin of k-space, one from each acquisition. Each line
starts at the origin and moves out at an angle θ where θ = tan−1

(
Gy/Gx

)
.

16To arrive at this equation, we ignored constants found in Eq. 3.35, and assumed that the object being

imaged has two spatial dimensions.
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Figure 3.3: Fig. a) displays a timing diagram, showing an elementary pulse sequence to model
the MRI data acquisition process. The Gx(t) and Gy(t) gradients are used to navigate through
k-space, and the corresponding path is shown in b). The particular choice of gradients leads to a
linear trajectory making an angle θ from the kx-axis.

3.2.5 Phase Encoding

Frequency space is often measured inside a rectangular domain along a set of lines that
run parallel to one of the coordinate axes17. This data acquisition model is described
in the timing diagram in Fig. 3.4a. A gradient Gy(t) is applied in the y direction for a
prescribed time, TPE , before recording the signal. During the time that the y gradient is
being applied, the spins experience a field strength that increases linearly along y. This
creates a linearly varying phase offset that is a function of y, thereby encoding information
in this coordinate direction.

While the Gx gradient is turned on (from times t2 to t3), the MR signal may be
“read out”, or measured, and as such, Gx(t) is often referred to as the readout gradient.
The continuous signal must be sampled while Gx(t) is being recorded (see Section 3.2.6).
Successive repetitions of the scheme in Fig. 3.4 may be made by varying the magnitude
of Gy to collect samples on a Cartesian lattice centered about the origin of k-space. The
end result is a 2D discrete approximation to the Fourier transform of ρ(x, y).

To be more precise, in the laboratory frame, spins oscillating with frequency

ω(y) = ω0 + γyGy ,

after time interval TPE , have accumulated a phase, φ(y) of:

φ(y) = ω0TPE + γGyyTPE . (3.53)

17Other well-known approaches include spiral and radial k-space trajectories, which may be suited for

particular applications. Different acquisition schemes are often preferred over one another to reduce relax-

ation artifacts, optimize the signal-to-noise ratio (SNR), scan time, or resolution for a given application.
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Figure 3.4: Fig. a) displays a timing diagram, showing an elementary pulse sequence to model
the MRI data acquisition process. The Gx(t) and Gy(t) gradients are used to navigate through
k-space, and the corresponding path is shown in b). The gradients in this example create a
trajectory that travels along a line parallel to the kx axis between times t2 and t3.

In the rotating frame, we may ignore the ω0 term, so that the phase is simply γGyyTPE .
Essentially, spins are spatially phase-encoded before the signal is recorded. The amount
of phase-encoding is dependent on the amplitude Gy and on the time interval TPE .

An additional perspective of phase encoding provides further insight into how spatial
information is encoded into the measured signal. We may rewrite the signal Eq. 3.47 as
follows:

sd(t) =
∫∫

Mz0(x, y)exp[−i2π(kx(t)x+ ky(t)y)]dxdy

=
∫ {∫

Mz0(x, y)e−i2πkyydy
}
e−i2πkxxdx

=
∫ {∫

Mz0(x, y)e−i2πyGyTPEdy
}
e−i2πkxxdx

=
∫ [

P0

{
Mz0(x, y)e−i2πyGyTPE

}]
e−i2πkxxdx. (3.54)

The function in the square brackets represents a projection18 P of Mz0(x, y) multiplied by
a complex weighting factor. Because this phase weighting factor warps the phase of the
spins prior to the signal readout, this method of acquiring the data is sometimes referred
to as spin-warp imaging.

Each ky line measurement is based on a different yGyTPE product, which produces
the phase encoding19 of the data. Thus, because of the role that the y gradient plays, it
is commonly referred to as the phase-encoding gradient. The process of phase encoding
is essentially equivalent to that of frequency encoding. The only minor difference is that

18The specific projection operator we are using was introduced in Section 2.3.
19Typically, TPE is fixed and Gy is varied.
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the signal is often being recorded while the Gx gradient is on, whereas the Gy gradient
is only briefly applied between successive applications of the readout gradient.

It should be emphasized, however, that although spin-warp imaging is the most preva-
lent strategy for acquiring data in MRI, it is only one of many different methods that may
be considered. Indeed, many other acquisition strategies generated via particular com-
binations of Gx(t) and Gy(t) gradients may be implemented. However, throughout the
remainder of this thesis, unless otherwise indicated, we assume that a spin-warp imaging
sequence is employed.

3.2.6 Sampling the MR Signal

The demodulated signal is however still continuous and must be sampled. From Section
3.2.4, the measured, demodulated signal in raw analog form is (Eq. 3.50)

sd(t) =
∫∫

Mz0(x, y)e−i2π[kx(t)x+ky(t)y]dxdy.

Recall that although data is being acquired in the time domain, the measured data has
a specific two-dimensional k-space interpretation, and is acquired along trajectories that
lie parallel to the kx-axis. Along these lines, ky is equal to the constant G0,yTPE

sd(t) = sd(kx(t))

=
∫∫

Mz0(x, y)e−i2π[kx(t)x+G0,yTPEy]dxdy. (3.55)

Prior to sampling this data, a second low-pass filter, A(t), is applied to reduce aliasing
artifacts. The anti-aliasing filter is modeled by a convolution in the frequency (or time)
domain:

sd(kx(t)) ∗A(kx(t)) =
∫ δk

−δk
sd(kx − κ)A(BWAkx)dκ. (3.56)

From the convolution theorem [8], it is possible to model this operation as a multiplication
in the spatial domain. Conceptually, the filter attempts to null out the signal in the spatial
domain that comes from outside the field-of-view. The width of the field-of-view will be
determined by the chosen sample spacing in the frequency (or time) domain.

Following the application of the anti-aliasing filter, the data are discretized. Sampling
the filtered signal yields ŝd(kx,m):

ŝd(kx,m) = III(
kx

∆kx
)
[
sd(kx(t)) ∗A(kx(t))

]
= III(

kx
∆kx

)
[ ∫ δk

−δk
sd(kx − κ)A(BWAkx)dκ

]
=

M/2∑
m=−M/2

∫ δk

−δk
sd(kx,m − κ)A(BWAkx,m)dκ, (3.57)
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where kx,m = m∆kx. Sampling is often modeled with the use of the comb function in
this manner. In practice, however, the measurements ŝd(t) represent local averages of
sd(t). For some MRI applications, the duration over which the analog signal is averaged
(typically on the order of a few microseconds) is usually regarded as negligible, and Eq.
3.57 is used for mathematical models of the MR signal.

Data is naturally discretized in the z and y directions. Unlike the FE direction, it is
not possible to apply an anti-aliasing filter in the PE and SE directions. In Chapter 5,
the nature of the data acquisition process, and in particular, the anti-aliasing filter, will
play an important role in the efficacy of SRMRI algorithms.
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Chapter 4

MR Image Reconstruction

There are many methods presented in the MR literature that obtain the spatial domain
image from raw k-space data. Although the most frequently used method is the 2D inverse
discrete Fourier Transform (IDFT), many other methods have been proposed, many of
which attempt to implement SR. This chapter presents a review of single acquisition
methods for SRMRI (Section 4.1). Section 4.2 describes material related to resolution
enhancement with multiple acquisitions. The chapter as a whole is a literature review of
material needed for results presented in later chapters of this thesis.

4.1 Constrained Reconstruction MRI with One Image

Surpassing the limitations posed by the SNR equation (Eq. 1.2) was a highly active area
of research in the 1980’s and early 1990’s, summarized by a comprehensive review article
[53], and in Chapter 10 of Liang and Lauterbur’s book [55]. Limitations posed by Eq.
1.2 are due in part to the reconstruction algorithm most commonly used: the IDFT.
Constrained reconstruction algorithms offer new alternatives by incorporating additional
a priori knowledge in the reconstruction process. It has been found that these algorithms
can improve the quality of the image over the IDFT alone.

Constrained reconstruction algorithms often attempt to directly extrapolate the dis-
crete measured data. If a sufficiently stable and accurate extrapolation technique can be
employed, higher frequencies than those that are measured can be estimated, thereby im-
proving the spatial resolution. Extrapolation algorithms that utilize a priori knowledge
of the object being imaged are the focus of this section.

4.1.1 Extrapolation via Prolate Spheroidal Wave Functions

Extrapolation using prolate spheroidal wave functions (PSWF’s) [21] was originally re-
ported in a classic signal processing paper by Slepian and Pollak [91]. This technique
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provides the unexpected result that under sufficient conditions, a unique solution to the
spatially limited continuous extrapolation problem can be found.

To perform extrapolation with PSWF’s, one evaluates

s(k) =
∞∑
n=0

anψn(k), ∀ k ∈ R, (4.1)

where the complex coefficients, an, are found with the following equation:

an =
1
λn

∫ +kmax

−kmax
ψm(k)s(k)dk. (4.2)

The known functions ψn(k) are the PSWF’s, and λn ∈ R are their eigenvalues. For
the interested reader, further details on PSWF’s, and how they may be used to perform
extrapolation is provided in Appendix B.1.

Although PSWF’s provide some insight into the extrapolation problem, and are use-
ful from an analysis perspective, they are too sensitive to noise to be directly used for
extrapolation.

4.1.2 The Papoulis-Gerchberg Algorithm

The Papoulis-Gerchberg (PG) algorithm1 is another technique that has been used for
extrapolation problems [27, 77]. This technique achieves extrapolation via an iterative
procedure which converges to the unique solution of the continuous extrapolation prob-
lem2!

Several authors later adapted the algorithm to address discrete extrapolation problems
[10, 42, 87, 88, 89, 93]. The discrete PGA provides further insight into the extrapolation
problem, but like extrapolation with PSWF’s, this approach is also too sensitive to noise
to be directly used for extrapolation. Our discussion here is included to help provide a
basis for discussion of current iterative projection algorithms.

The Continuous PGA

Assume that a continuous frequency domain signal with finite spatial extent3, s(k) ∈ RR.
The signal s(k) is only measured over the interval [−kmax,+kmax] to produce sm(k):

sm(k) = Π(
k

2kmax
)s(k). (4.3)

1The PG algorithm was first discovered by Papoulis, but first published, independently, by Gerchberg

(see [61], page 260). Some authors refer to this technique as the Gerchberg-Papoulis algorithm.
2See Section 1.2 for a description of the continuous extrapolation problem, and reference [77] for a

proof of this convergence.
3Recall that RR, defined in Eq. 2.7, is the space of frequency domain functions that have a finite

spatial extent of R.
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Given sm and R (which yields the continuous extrapolation problem, Section 1.2), the
continuous PG algorithm may be used to calculate s(k) for all k, using the following
iteration, for n ≥ 0:

se,n+1(k) = sm(k) +
[
1 + Π(

k

2kmax
)
]
Rsinc(Rk) ∗ se,n(k). (4.4)

The function se,n(k) is the extrapolation of sm(k) at iteration n. Typically, the initial
condition se,0 = sm(k) is used to calculate se,1. The first two iterations in this sequence
are shown schematically in Fig. 4.1.

Using PSWF’s it has been shown that [77]:∫ +∞

−∞
|se,n(k)− s(k)|2dk → 0, as n→∞. (4.5)

The sequence therefore converges in L2 to the unique solution, s(k). Although this
may seem impossible, an insightful diagram (Fig. 4.2), originally presented by Youla
[99], illustrates the convergence of the PG algorithm. Like the extrapolation approach
using PSWFs, the PG algorithm converges to s(k) for all k with knowledge of only
s(k), k ∈ [−kmax,+kmax], and the spatial extent, R, of s(k).

Figure 4.1: The continuous PG algorithm. Initially, the measured data, s(k), is set equal to
s0(k). To carry out step 1, s0 is convolved with a sinc function with a spatial extent of L, to
produce s̄0(k). Step 2 consists of replacing s̄0(k) with s(k) over [−kmax,+kmax]. Steps 1 and 2
are repeated iteratively until a chosen convergence criterion is met.

The Discrete PGA

Practical implementation of the PG algorithm necessitates the use of discrete sequences
with a finite number of samples. It has been shown that the discrete PG algorithm
(DPGA) may not converge to a unique solution [42].

The literature has many slightly different formulas that are based on Eq. 4.4 for
performing the DPGA. Approximating the convolution integral in Eq. 4.4 with a discrete
sum with a finite number of terms can be problematic, as truncation errors must be
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Figure 4.2: Youla’s illustration [99] of the continuous PG algorithm’s convergence. The algo-
rithm consists of iteratively summing projections onto two spaces: the space of spatially limited
functions, and the space of functions that are zero over [−kmax,+kmax].

accepted in order to handle vectors with a finite number of elements. Alternatively,
several improved iterative approaches have been proposed that circumvent this problem
[10, 42, 87, 88, 89, 93].

A description of several experiments carried out using the DPGA on simulated data
are provided in Appendix B.2 for the interested reader.

The original Papoulis-Gerchberg algorithm [27, 77] suffers from a slow convergence
rate. Motivated by this problem, a non-iterative technique was explored for discrete signal
extrapolation [87], and was later considered by several other authors [10, 42, 88, 89].
These approaches are often based on transforming the extrapolation problem into solving
an integral equation that may be very difficult to solve. In fact, these non-iterative
techniques are not generally recommended [53], as they often involve inverting a matrix,
the extrapolation matrix [87], which is usually ill-conditioned. Typically, regularization
methods are employed to provide a stable algorithm.

However, one interesting observation was obtained from this non-iterative approach.
Paradoxically, in the discrete case, as the sample spacing ∆k is decreased, the more ill-
conditioned the extrapolation matrix becomes [10, 42, 53, 88, 89]. While the stability
of many other extrapolation methods as a function of ∆k has not been reported, this
subject may be of interest when investigating other extrapolation techniques, especially
when considering multiple-acquisition super-resolution.

4.1.3 Linear Prediction and Autoregressive Moving Average Modeling

The linear predictive (LP) extrapolation is based on the idea that each sample of a
noiseless discrete complex trigonometric polynomial in RR can be expressed as a linear
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combination of its past samples. In order to use this property for data extrapolation
in MRI, we must first introduce a model of the measured data. Several approaches to
modeling MR data based on a priori knowledge of the acquisition process have been
proposed to this end. In the boxcar model [35, 54], ρ(x) is represented as a sum of NC

indicator functions:

ρNC (x) =
NC∑
m=1

cmΠ
(x− xm

∆x

)
. (4.6)

For simplicity, each of the indicator functions has width ∆x (we may also consider indica-
tor functions whose widths vary with m). Performing a Fourier Transform of this signal
yields

PNC (k) =
1
πk

NC∑
m=1

cm sin(π∆xk)e−2πikxm . (4.7)

Multiplication by −2πik and sampling converts PNC (k) into a complex trigonometric
polynomial4:

ŝNC (n) = −2πikPNC (n) =
2NC∑
m=1

dme
−2πinξm , n = 0, 1, 2, . . . , NS − 1. (4.8)

where the number of samples is NS , and

ξm =

{
xm −∆x/2, m = 1, 2, . . . , NC

xm + ∆x/2, m = NC + 1, NC + 2, . . . , 2NC

dm =

{
cm, m = 1, 2, . . . , NC

cm−NC , m = NC + 1, NC + 2, . . . , 2NC

It has been shown that discrete signals in the form of Eq. 4.8 obey [83, 97]:

ŝNC (n) = −
2NC∑
m=1

amŝNC (n−m), n = 2NC , 2NC + 1, . . . , Ns − 1. (4.9)

This result is a consequence of Prony’s method [97], and the coefficients am ∈ C are
known as the autoregressive (AR) coefficients [58]. This model of the MR data provides
us with relations for self-similar parameters discussed in Chapter 8.

Eq. 4.9 provides the basis for an LP approach for 1D extrapolation of k-space MR
data, and is a special case of the autoregressive moving average (ARMA) technique.
ARMA is a more general approach that has been extensively studied in MRI for resolution
enhancement and artifact reduction (see [53, 55, 68, 92]).

4We see that this signal is now in the form of Eq. 1.9, and will show in Chapter 8 that signals of this

form possess a type of self-similarity.
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4.1.4 Conclusions

Constrained reconstruction in MRI has received much attention since the first papers
started appearing in 1986. Many other reconstruction techniques that were not men-
tioned here have been proposed in the MRI literature. Namely, the generalized series
technique and maximum entropy reconstructions have been found to yield promising re-
sults. One of the techniques that has been extensively studied by many authors is the
phase constrained projection onto convex sets (POCS) technique. Descriptions of phase
constrained techniques are provided in appendicies B.3 and B.4. Comparisons between
these techniques and others can be found in the 1992 constrained reconstruction review
article [53], as well as Liang and Lauterbur’s book [55].

4.2 Super-Resolution MRI with Multiple Acquisitions

This section provides a review of SRMRI techniques published in the literature. Research
on SRMRI with multiple acquisitions for medical imaging was recently reviewed in The
Computer Journal [30].

4.2.1 Mathematical Modeling of MASRMRI

To describe the basic multiple acquisition (MA) SRMRI algorithm, consider the acqui-
sition of two low-resolution, one-dimensional data sets, l1(2nl∆x) and l2(2nl∆x + ∆x),
nl = 0, 1, 2, · · · , Nl − 1. These two signals, or channels, which have a uniform sample
spacing of 2∆x, are vectors in RNl . The channels l1 and l2 represent spatial domain data.

The discrete merged signal, g(n∆x) ∈ RNh , n = 0, 1, 2, · · · , Nh − 1, where Nh = 2Nl,
is derived from the low-resolution channels as follows,

g(n∆x) =

{
l1(n∆x) n even
l2(n∆x) n odd

. (4.10)

The samples of the low resolution data sets are simply interleaved to form the merged
data set.

A convolution model is then used to describe the relationship between g(n∆x) and
the desired high resolution data set, h(n∆x) ∈ RNh :

g(n∆x) =
Nh−1∑
n′=0

h(n′∆x)ι((n− n′)∆x), n = 0, 1, 2, · · · , Nh − 1. (4.11)

The vector ι(n∆x) is a point spread function5 estimated using information about the
acquisition sequence and/or the object being imaged. After ι(n∆x) has been estimated
and g(n∆x) has been formed, h(n∆x) is found using a chosen deconvolution algorithm.

5ι is the greek letter iota.
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The MASRMRI algorithm may be described in the Fourier domain using the DFT’s
of the discrete signals, g, h, and ι. Using the DFT and the Fourier convolution theorem
for discrete sequences, Eq. 4.11 becomes

G(n∆k) = H(n∆k)I(n∆k), n = 0, 1, 2, · · ·Nh − 1. (4.12)

Vectors G(n∆k), H(n∆k), and I(n∆k) are the respective DFT’s of g, h, and ι, and the
frequency sample spacing is ∆k = 1

Nh∆x . We may calculate the high resolution data set
with

H(n∆k) =
G(n∆k)
I(n∆k)

, I(n∆k) 6= 0 for 0 ≤ n ≤ Nh − 1. (4.13)

Since I(n∆k) may be zero for some values of n, the calculation of H(n∆k) may not be
straightforward. However, before we concern ourselves with the deconvolution problem,
there are a number of other more relevant problems at hand. As mentioned in Chapter
1, the nature of the additional information in each acquisition after the first is an issue
that should be addressed.

4.2.2 Controversy on MASRMRI Research

One of the first SRMRI papers [81] that incorporated multiple acquisitions related by
spatial translations was received with controversy [82, 90]. When applying SRMRI in
the frequency encoding (FE) and phase encoding (PE) directions, it was claimed that
there could be no new information present beyond the first image acquired. Later scien-
tific contributions agreed with this proposal, and attention was then turned to applying
SRMRI to the slice encoding direction [31, 33, 46, 47, 72, 79]. This new course appeared
to be more encouraging; the physical basis for this approach was unchallenged and initial
results seemed to be more promising. As a result, SRMRI in the FE direction did not
appear to be - for a brief period - an effective technique for resolution enhancement in
MRI.

However, a recent paper [11] published in the journal Magnetic Resonance Imaging,
proposed that new information can be present in each new acquisition in the FE direction.
Similar ideas were presented earlier [62, 70], using an alternative approach formulated in
the frequency domain. The order of the processing steps carried out on the measured
data, including the spatial shift, is significant. If the object is shifted prior to imaging,
new information can in fact be present for FE data [11, 62, 63, 70]. This observation
suggested that FESRMRI may still be a viable method for resolution and image quality
enhancement.

The recent article [11] in Magnetic Resonance Imaging, presented encouraging results.
Although the algorithm described in the article was not implemented, another algorithm
- algebraic least-squares - yielded promising results when applied to noisy simulated data.
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However, the authors found that this approach was not as successful in enhancing the
spatial resolution of phantom data [11]:

The results of the algorithm on the MRI data were nondecisive. The algorithm
clearly shows resolution enhancement. Nevertheless, no clear advantage to
the algorithm reconstruction is observed over the zero-padding interpolation
as observed on the model results.

Several possible explanations for these results were provided, but it remains unclear as to
why these results were nondecisive, despite their claim that new information is present
in each image. Whilst we agree that new information about the object being imaged
can be added in each acquisition, our contention is that the question of how much new
information each image contains must be, and to this point has not been, addressed.

One of the conclusions we reach in Chapter 5 is that there is indeed new informa-
tion in each acquisition when the object is shifted in the FE direction prior to imaging,
as proposed earlier [11, 62, 63, 70]. The caveat is that the amount of new information
present in each acquisition after the first is relatively small and may be difficult to detect
in the presence of noise. Therefore, there may be no reasonable justification for acquiring
more than one data set. Ultimately, any attempt to enhance the spatial resolution with
multiple images related by a small, but known translation in the FE direction may not
yield a significant advantage over more standard reconstruction approaches [53, 55, 68]
that employ only a single image.

4.2.3 MASRMRI in the Frequency Encoding Direction

The discussion in this subsection appears in the author’s M.Sc. thesis [62], and is sum-
marized here for convenience. The series of processing steps that are carried out on the
measured data and how the spatial shift is created are significant for MASRMRI. Fol-
lowing the discussion in Section 3.2.4, the expression for the unshifted, sampled signal
before it is quantized in k-space is:

L1(k) = III(
k

∆k
)
∫ +kmax

−kmax
sm(k′)A(k − k′)dk′, k ∈ [−kmax,+kmax]. (4.14)

Note that the time dependence has been dropped for notational convience. The function
A(k) ∈ L2(R) is an analogue, low pass filter (LPF) with inverse Fourier Transform a(x).
The LPF operates on the measured data sm(k) ∈ L2(K), K = {k ∈ [−kmax,+kmax]}, as
a convolution in the frequency domain.
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The second signal, L2(k), needs to be shifted in the spatial domain in the positive x
direction by half a pixel, 1

2∆x . By the Fourier shift theorem, we may obtain L2(k) from
L1(k) by multiplying L1(k) with a phase ramp6, exp(−i2πk 1

2∆x). As we will see, whether
the phase ramp is applied before or after sm(k) is convolved with A(k), and the nature
of A(k), can have different effects.

Consider an object with proton density ρ(x) with spatial extent R:

ρ(x) = Π(
x

R
)ρ(x),

so that its Fourier Transform is a function in RR. The object is placed in an MRI
scanner, and two low-resolution data sets are produced, L1(k) and L2(k). A half pixel
spatial shift is applied to the second data set by applying a phase ramp in the frequency
domain. However, applying the phase ramp before or after the LPF will have different
effects on L2(k). To explore how the LPF plays a role in MA SRMRI, we will consider
two possibilities for how the phase ramp may be applied in the FE direction.

1. Case I: Phase Ramp Applied After LPF

If the phase ramp is applied after the LPF, we have:

L1(k) = III(
k

∆k
)
∫ +kmax

−kmax
sm(k′)A(k − k′)dk′

L2(k) = e−iπk∆xIII(
k

∆k
)
∫ +kmax

−kmax
sm(k′)A(k − k′)dk′. (4.15)

We can obtain L2(k) from L1(k) by multiplying L1(k) with another phase ramp
after III( k

∆k ) is applied! Therefore, there is no new information obtained through
acquiring L2(k). Using this approach, it is not apparent that acquiring multiple
data sets adds anything new.

2. Case II: Phase Ramp Applied Before LPF

Contrary to what has been claimed in the literature [82, 90], if the phase ramp
is applied before the LPF is applied, new information can be introduced into the
second acquisition. For k ∈ [−kmax,+kmax]:

L1(k) = III(
k

∆k
)
∫ +kmax

−kmax
sm(k′)A(k − k′)dk′

L2(k) = III(
k

∆k
)
∫ +kmax

−kmax
sm(k′)e−iπk

′∆xA(k − k′)dk′ (4.16)

Unlike Case I, we cannot, in general, obtain L2(k) from L1(k) by multiplying L1(k)
with a phase ramp. It seems that some new information may be present in L2(k).

6It is also possible to perform the spatial shift by physically moving the object. However, the advantage

to this approach, over applying a phase ramp, is not clear. The accuracy of the spatial shift would also

become an immediate concern.
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We may also interpret Eq. 4.16 in the spatial domain. Because sm(k), which
is the Fourier Transform of ρ(x), was only acquired over [−kmax,+kmax], ρ(x) is
convolved with a sinc function. After ρ(x) is convolved with the sinc function it
may no longer be spatially limited, and therefore the LPF may attenuate non-zero
signal intensities in the spatial domain.

A priori knowledge about the object being imaged can improve the quality of the
reconstruction, but how much information the second acquisition adds is not yet
clear from this equation. The exploration of this subject is a major contribution of
my thesis, and is explored in the next chapter.

4.2.4 MASRMRI in the Phase Encoding Direction

Initial work on MASRMRI presented in the literature attempted to enhance the spatial
resolution in the phase encoding direction [33, 71, 80]. This strategy to enhance resolution
has been found to be futile, because the data in this encoding direction is inherently
discrete. Consider our model for MRI data (Eq. 3.54):

sd(t) = sd(kx(t), ky) =
∫∫

Mz0(x, y)e−i2π(kx(t)x+yGyTPE)dxdy.

Along the PE, or ky direction, kx is constant. The measured data, sd, is discrete along ky,
because ky = GyTPE is discrete7. Therefore, a phase ramp (applied before or after the
data is sampled along the kx direction), adds no new information to the data because the
phase ramp can be easily undone with a second phase ramp of opposite slope. In other
words: the use of multiple acquisitions related by spatial translations in the PE direction
to enhance the spatial resolution is futile (see for example [90]).

4.2.5 MASRMRI in the Slice Encoding Direction

While approaches to SRMRI in the FE and PE directions have received little success,
approaches to SR applied in the SE direction have encountered more promising results
(and no controversy thus far).

In many applications of MRI, high resolution, three-dimensional isotropic resolution
is desired. Acquisition strategies that do not employ slice encoding methods that can
obtain isotropic resolution are often impractical (by increasing the acquisition time). On
the other hand, acquisition techniques that employ SE methods reduce the acquisition
time, but the resolution in the slice (or z) direction is often lower than the in-plane (x−y)
resolution. It is common for example, to find reconstructed MR images with resolution
1× 1× 3 mm3, so that although the in-plane resolution is isotropic, the resolution in the
SE direction is relatively poor.

7In practice, a discrete set of values are chosen for Gy.
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SR methods have been investigated as a means to improve the spatial resolution in
the SE direction. Essentially, the imaging volume may be acquired two or more times,
with spatial shifts in the z direction between acquisitions so that the slices overlap. The
slices are combined to create a merged volume, and a super-resolution algorithm is used
to improve the spatial resolution in the slice-select direction.

Recent experiments in the literature (obtained from MR phantom, fruit (papaya and
apple), human brain, and fMRI data) show promising results. A variety of SR algorithms
have been employed, including the iterative back-projection algorithm [31, 32, 33, 47, 71,
80], regularized deconvolution [46, 47, 79], and POCS [18]. Quantitative comparisons to
other approaches to resolution enhancement are often made by performing a least-squares
fit of an edge within the image to a sigmoid function of the form [31, 79]

y(x) =
1

1 + exp(−a(x− c))
. (4.17)

Results obtained with SR algorithms are often compared to zero padded data sets. When
SRMRI is applied to functional MRI (fMRI) data, comparisons between the activation
volume in different data sets have also been used to validate results. In several studies,
the SNR of the data sets improves through the use of SR techniques.

Although this area of research was not explored in the author’s work on MASRMRI,
this topic presents a current and viable area for research in SRMRI. Possible avenues for
further investigation are discussed in Section 10.1.
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Chapter 5

Frequency Encoded

Super-Resolution MRI

5.1 Characterizing Information Gain

One of the main contributions of this thesis is the conclusion that SRMRI methods
integrating multiple data sets related by spatial translations in the frequency encoding
(FE) direction are generally not practical. These methods were initially proposed for
resolution enhancement in MRI [81], but were initially received with controversy [90]. It
was suggested that when spatial shifts are applied in the FE direction, no new information
was acquired after the first image. Recent developments suggest however that shifting
the object prior to imaging can add new information to each data set. For this reason, it
was believed that SRMRI may be possible in the FE direction.

In this section, we point out that the presence of new information in each acquisition
is not sufficient for an SR algorithm to be practical ! Indeed, there are situations where the
amount of new information is relatively small and may not be detectable in the presence
of noise. We explore the question of how much new information can be present in each
acquisition for FE SRMRI. In particular, this section investigates the extent to which
the effect of the spatial shift - applied before the object is imaged - can be undone using
simple image processing techniques.

Several measures are introduced in this chapter to quantify the amount of new infor-
mation acquired in each data set. It is shown that when the amount of new information
is relatively small, each image can be approximated by applying simple signal processing
techniques to a single data set. Ultimately, our research suggests that little progress may
be possible by MASRMRI to perform resolution enhancement in the FE direction.

The contents of this section have been published in the LNCS series [63], the European
Society for Magnetic Resonance in Medicine and Biology 2006 Conference proceedings
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[64], and in the journal Magnetic Resonance Imaging [66].

5.1.1 Modeling SRMRI

In order to describe how SRMRI could be performed in the FE direction and to permit
an analysis of this technique, we use a model of the data acquisition process that assumes
a one-dimensional FE acquisition. The scanner measures a k-space signal, s(k), k ∈
[−kmax,+kmax], that is convolved with a low-pass (anti-aliasing) filter A(BWreadk). Here,
BWread denotes the bandwidth of A(k).

In a classical SR imaging technique, multiple images, or channels, are acquired. Each
image is related by a known translation, rn ∈ R, in the spatial domain. If Nimg channels
are acquired, the expression for the noiseless, demodulated, sampled MRI data L(km, rn)
in an SR experiment is (Fig. 5.1):

L(km, rn) =
∫ δk

−δk
s(km − κ)R(km − κ, rn)A(BWreadκ)dκ, (5.1)

where ∆k is the frequency sample spacing, k−Nl/2 = −kmax, and

km = m∆k,

m = −Nl/2,−Nl/2 + 1, · · · , Nl/2− 1, Nl even

n = 0, 1, 2, · · · , Nimg − 1,

R(km, rn) = exp(−2πirnkm),

|rn| < ∆x.

The parameter δk determines the length of the filter, A(k), used to attenuate the signal.
This low pass (anti-aliasing) filter attenuates the signal outside the chosen bandwidth
BWread.

From Eq. 5.1, the application of the filter A(k) is modeled as a convolution in k-
space. Mathematically, from the Fourier convolution theorem, this is equivalent to the
multiplcation of the inverse Fourier Transforms of A(k) and s(k) [14, 29, 34, 40]. In order
to reduce the amount of aliasing in the measured signal, the bandwidth of the anti-aliasing
filter should be equal to or less than the bandwidth of the analogue-to-digital converter
(ADC), which is 1/∆k. Therefore, BWread ≤ 1/∆k. In this chapter, we will assume that
BWread is constant, and set it to its maximum value, 1/∆k.

As a brief aside, the fact that the sampled signal values L(km, rn) are continuous
functions of the spatial shift parameter rn does not seem to have been mentioned elsewhere
in the SRMRI literature. In particular,

L(km, rn)→ L(km, 0) = L1(km) as rn → 0, (5.2)
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Figure 5.1: Simple schematic describing two steps in the processing of FE signals in the frequency
and spatial domains. F denotes Fourier Transform. A) The frequency domain signal s(k) is
measured over only a finite range of frequencies. Before it is sampled, the signal is filtered by
convolving s(k) with an anti-aliasing filter, A(k). B) The true object for this figure is a simple
box car function. Measuring s(k) over a finite interval spreads the spatial domain signal over the
whole real line. This effect can be modeled as a convolution of the object with a sinc function.
Multiplication of the result with the inverse Fourier Transform of A(k) attenuates intensities in
the object outside of BWread.

where

L1(km) =
∫ δk

−δk
s(km − κ)A(BWreadκ)dκ. (5.3)

In fact, the function L(km, rn), and hence each component of the sampled signal, admits
a Taylor series expansion in rn which can be generated by formal expansion of the expo-
nential in Eq. 5.1 followed by termwise integration1. The resulting complex-valued series
will be written as

L(km, rn) =
∞∑
p=0

cpr
p
n , (5.4)

where (using the expression for the Taylor expansion of ex)

cp =
(−2iπ)p

p!

∫ δk

−δk
s(km − κ)(km − κ)pA(BWreadκ)dκ. (5.5)

This result would then imply that one could construct the phase ramped signal
L(km, rn) for nonzero values of rn from the Taylor series to arbitrary accuracy. But
– and this is the important point – one would have to know the coefficients cm, which

1The boundedness of the integration interval k ∈ [−kmax, kmax] and the uniform convergence of the

Taylor expansion of the exponential over this interval guarantees the convergence of the Taylor expansion

for L(km, rn).
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means having access to the continuous frequency signal s(k). The recorded signal is al-
ways discrete, but given L2(km, 0), L2(km, rn) could be approximated using Eqs. 5.4 and
5.5 for small |rn|.

5.1.2 Application of the Phase Ramp

The application of the phase ramp, R(km, rn), to the k-space data translates the position
of the object by a distance |rn| [8, 48]. There are different methods of applying the phase
ramp, which will affect the nature of the information in the measured data. We consider
two cases: the phase ramp may be applied before, or after, the application of the filter
A(k). In each case, we will consider the acquisition of only two images, each related by
a half-pixel shift relative to one another.

• Case I: Phase ramp applied after application of A(k)

The process is illustrated schematically in Fig. 5.2. Using Eq. 5.1, we have the
following two series,

L1(km) = L(km, 0) (5.6a)

L2(km) = R(km,∆x/2)L(km, 0) = e−iπkm∆xL(km, 0). (5.6b)

Clearly, one can obtain L2(k) from L1(k) by multiplying L1(k) with a simple phase
ramp after both data sets are measured. Although this method of shifting the spatial
domain image has been used in the MRI literature [71, 80, 81], no new information
is obtained by constructing L2(km), that is not already in L1(km). This point has
been recognized by several authors in the SRMRI literature [31, 62, 82, 90].

• Case II: Phase ramp applied before application of A(k)

The process is illustrated schematically in Fig. 5.3. In this case, we have the
following series,

L1(km) = L(km, 0), (5.7a)

L2(km,∆x/2) = L(km,∆x/2). (5.7b)

Note that the L2(km) series corresponds to the sampled and filtered data that
would be obtained if the object being imaged were physically shifted by ∆x/2 [62].
Unlike Case I, we cannot, in general, obtain L2(km) from L1(k) because of the
noninvertibility of the operations behind the processing of the signal s(k), namely,
convolution, as well as the “degradation” that is produced by the limited range of
integration. It would then seem that at least some new information is present in
L2(km), which is contrary to what has been claimed in the literature [90]. The
question of how much information is added by the second acquisition is explored in
the following section of this chapter.
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Figure 5.2: Phase ramp applied after filtering of raw frequency signal s(k).

Figure 5.3: Phase ramp applied before filtering of raw frequency signal s(k).

Indeed, the ramp must be applied prior to the application of the anti-aliasing filter
for the acquisitions to yield independent information [11, 62, 63, 70]. To be more precise,
we cannot undo the effect of the phase ramp because multiplication and integration do
not commute in general:

R(km,−rn)L(km, rn) = R(km,−rn)
∫ δk

−δk
s(km − κ)R(km − κ, rn)A(κ)dκ

6=
∫ δk

−δk
s(km − κ)R(km − κ,−rn)R(km − κ, rn)A(κ)dκ

= L(km, 0). (5.8)

Although it is clear that L(km, 0) and R(km,−rn)L(km, rn) are not equal for general rn,
the extent to which they are different has not been studied extensively in the SRMRI
literature. In the following section, we consider methods of quantifying their relative
information, thereby determining how much new information is present in one signal
relative to the other.

5.1.3 Measures of Information for Analysis of SR Data

We consider two measures that characterize the information contained in the k-space data
R(km,−rn)L(km,+rn) ∈ CM×Nimg for a given rn in relation to the information contained
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in L(km, 0). An additional method is used that measures the difference between their
spatial domain counterparts.

1. First, we calculate the cosine of the angle between L(km, 0) andR(km,−rn)L(km,+rn),
which we denote by C(rn) [63]:

C(rn) =
∑

m L
∗(km, 0)

[
R(km,−rn)L(km, rn)

]∑
m |L(km, 0)|2

∑
m |L(km, rn)|2

, (5.9)

where ∗ denotes complex conjugation. When L(km, 0) and R(km,−rn)L(km, rn)
are approximately equal, C(rn) ≈ 1. In this case, the two signals are “highly
correlated”.

2. The difference, dL, between L(km, 0) and R(km,−rn)L(km, rn),

dL(km, rn) = L(km, 0)−R(km,−rn)L2(km, rn), (5.10)

provides an estimate of the new information contained in channel n relative to the
rn = 0 channel. The “energy” of dL,

EdL(rn) =
∑
m

|dL(km, rn)|2, (5.11)

is a measure of the (squared) l2 distance between the two signals. The magnitude of
EdL(rn) estimates the error in approximating L(km, 0) with R(km,−rn)L(km, rn).

3. The relative information of the two signals can also be characterized in the spa-
tial domain. The inverse discrete Fourier Transforms (IDFT) of L(km, rn) and
R(km,−rn)L(km, rn) yield the respective vectors l(j∆x, 0) and l(j∆x − rn, rn),
j = 0, 1, 2, 3, · · · , J/2 − 1, J = 2M . Our analysis will use only the magnitudes
of these signals. Although this ignores the phase information in the spatial domain,
MRI applications almost always use only the magnitude data.

A straightforward method of characterizing the information between them is to
calculate their joint probability histogram, pi,j(rn, Nbin) [15]. The calculation of
pi,j requires that a number of bins, Nbin be chosen. In our experiments, we have
chosen and compared results obtained when using a range of values for Nbin. The
joint probability histogram, pi,j(rn, Nbin), can tell us how similar l(j∆x, 0) and
l(j∆x − rn, rn) are. Intuitively, if the two vectors are approximately equal for a
given rn, the intensities of pi,j will only occur on or near the main diagonal.

5.1.4 Analysis of the Merged Data

In the simplest FE SRMRI experiment, two data sets are acquired and r0 = 0, r1 = ∆x/2.
In this case, the data is “merged” in the spatial domain by interleaving pixels (as in Eq.
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4.10)

g(j∆x/2) =

{
l(j∆x/2, 0) j = 0, 2, 4, · · · , J − 2
l((j − 1)∆x/2,∆x/2) j = 1, 3, 4, · · · , J − 1

, (5.12)

where J = 2M . The discrete Fourier Transform (DFT) of g is given by (see Appendix
A.11 for derivation)

G(km) =


dL(km +Nl∆k,∆x/2), m ∈ [−Nl,−Nl/2− 1]
2L(km, 0)− dL(km,∆x/2), m ∈ [−Nl/2, Nl/2− 1]
dL(km −Nl∆k,∆x/2), m ∈ [Nl/2, Nl − 1]

. (5.13)

This expression for the merged data in the frequency domain gives us another perspective
on how much information is present in each acquisition. Since dL(km, rn) is in general
nonzero for general rn, some information may be present for m ∈ [−Nl,−Nl/2 − 1] and
m ∈ [Nl/2, Nl − 1]. However, if dL(km, rn) is sufficiently small relative to 2L(km, 0), the
merged data may be approximated by zero padding 2L(km, 0). In the presence of noise,
the difference between this zero padded data set and G(km) may not be significant. Once
again, there would be no need to acquire any more than one data set, L(km, 0).

5.1.5 Methods

In this section, we present results from numerical calculations over a range of rn values
for two cases: (i) a simulated object, and (ii) phantom MRI data. In both cases, we
ignore T1 and T2 relaxation.

Simulated Object

Our simulated object2 is modeled as a sum of triangle functions3 with unit height,

ρ(x) =
10∑
m=1

Λ
(

(x− xm)/w
)
, (5.14)

so that s(k) was represented by a sum of 10 sinc2(k) functions modulated by phase ramps.
The ten triangle functions are located at positions xm, where xm = (−0.5 + m4/9) cm,
m = 0, 1, 2, · · · , 9. The parameter w controls the width of the triangle functions, and was
set to 0.1 cm. The Fourier Transform of this function, shown in Fig. 5.4, is given by

s
(
km
)

= w
sin2(wπkm)

(wπkm)2

10∑
n=1

exp(−2πikmxn). (5.15)

Eq. 5.8 was used to generate the low-resolution data sets, L(km, rn). For computational
tractability, the filter A( k

∆k ) is represented by a sinc function. Other filters [14, 29, 44]

2Simulations generated with MATLAB, version 7.0.1, R14; Mathworks, Natick, MA, USA.
3See Table 2.1 for the definition of Λ.
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would require a significant amount of additional computational labour. The values of k
that were used in our simulations were determined using typical parameters in an MR
experiment. The frequency was set to km = m∆k = γGx(m−Nl/2)∆t, where γ = 42.58
MHz/T, Gx = 0.01 T/cm, m = 0, 1, 2, · · · , Nl − 1, Nl = 100000, and ∆t = 10 µs.

Figure 5.4: A close-up view of the real component of the k-space simulated data, L(km, 0), near
the origin. The signal is a sum of sinc2 functions convolved with an anti-aliasing filter.

To approximate the convolution operation (Eq. 5.1), numerical integration was per-
formed using a NGQ-term Gaussian quadrature scheme [26, 57, 101]. The parameter
δk in Eq. 5.1 was set to 100∆k. To study the accuracy of the integration method, we
compared results obtained using NGQ = 8, 16, 32, and 64.

After the low resolution data sets were generated, a merged data set was calculated
by performing the IDFTs of L(km, 0) and L(km,∆x/2). These two data sets were then
interleaved according to Eq. 5.12. The DFT of the merged data set was calculated to
obtain G(km). Additionally, C(rn) and EdL(rn) were calculated for rn ∈ [0,∆x].

The histogram p(rn, Nbin) was calculated by first performing the IDFT on L(km, 0)
and L(km,∆x/2). These two signals were normalized prior to calculating the histogram,
so that their intensities ranged from zero to one.

Phantom Data

We also investigated the information contained in MR images of a resolution phantom
(Fig. 5.5a), which consists of a series of plastic slats arranged on a 2 cm diameter teflon
base. The phantom was submerged in water and imaged with a standard acquisition
sequence (gradient echo, TR/TE=800/5 ms, FOV=3 cm). We acquired two k-space data
sets and applied a phase ramp, R(km,∆x/2) to the second data set prior to applying the
anti-alaising filter. A third, unshifted image was acquired, for which the spectral extent in
the FE direction was doubled. This third image corresponds to a “high-resolution image”.
The amplitude spectrum of the merged data set was calculated. We also computed the
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difference between the merged data set and a data set obtained by simply zero padding
L(km, 0).

Figure 5.5: A) A photograph of the phantom consisting of plastic slats mounted on a 2 cm
diameter base. B) MR image of the unshifted phantom immersed in water. C) The amplitude
spectrum of the measured signal, and D) the amplitude spectrum on a logarithmic (base 10) scale.

5.1.6 Results

Simulated Object

Fig. 5.4 shows the simulated data, which is a frequency domain signal that was produced
using Eq. 5.1. Simulations were carried out using a NGQ term Gaussian quadrature
scheme [26, 57], for Nl = 100000 discrete values of km, and Nimg = 11 values of rn. The
maximum absolute value of the difference between L(km, rn) obtained for the cases i)
NGQ = 8 and NGQ = 64, ii) NGQ = 16 and NGQ = 64, and iii) NGQ = 32 and NGQ = 64,
was 0.2388, 5.7694× 10−8, and 1.4211× 10−14 respectively. All of the simulation results
presented in this chapter were obtained using a 64 term Gaussian quadrature scheme.

Fig. 5.6a shows the log10 of the amplitude spectrum of the merged data obtained
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from the simulation experiment. The amplitude spectrum exhibits a sharp drop at |kmax|.
Fig. 5.6b shows the ratio of EdL to EL(km,0), which was monotonically increasing with
increasing rn. The maximum value was however less than 10−10 for the values of rn that
were used. L(km, 0) and R(km,−∆x/2)L(km,∆x/2) were found to be approximately
equal. Also shown in Fig. 5.6b is a plot of 1 − C(rn), which also increased with in-
creasing rn, but remained less than 10−10. Since C(rn) ≈ 1, the vectors L(km, 0) and
R(km,−∆x/2)L(km,∆x/2) were found to be highly correlated.

Fig. 5.7 shows the joint histograms that were calculated using |l(j∆x, 0)| and |l(j∆x−
rn,∆x/2)| for Nbin = 50, 100, and 1000. The signals were normalized so that their
intensities ranged from zero to one prior to calculating the histograms, so that the bin
sizes that were used were 0.05, 0.01, and 0.001. Most of the elements were found on
the main diagonal in each case. The remaining mass was found on the sub-diagonals
immediately adjacent to the main diagonal. More values can of course be found on off-
diagonal elements when smaller bin sizes are chosen, but when the bin size was 0.05, 0.01,
or 0.001, very little difference could be detected between the two signals using the joint
probability histogram.

Figure 5.6: A) The log10 of the amplitude spectrum of the merged data from the simulation
experiment. B) The log10 of 1−C(rn) and EdL(rn)/EL(k,0) for eleven values of rn between 0 and
∆x. Results in B) were also calculated from simulated data.

Phantom Data

Fig. 5.5b displays the magnitude of the measured k-space data. Fig. 5.5c is the MR
image of the phantom immersed in water, obtained by using the IDFT.

Figs. 5.8a, 5.8b, and 5.8c all used the same log10 scale for comparison purposes.
Fig. 5.8a shows the log10 of the magnitude of the high-resolution spectrum. This can
be compared to the spectrum of the merged data, G(kx, ky), shown in Fig. 5.8b. For
|ky/ky,max| > 1, G(kx, ky) appears to be mostly noise. Fig. 5.8c displays the differ-
ence between G(kx, ky) and a zero padded version of 2L(kx, ky, 0). For |ky/ky,max| < 1,
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G(kx, ky) ≈ 2L(kx, ky, 0). These observations agree with our mathematical model (Eq.
5.13) for the merged data.

Figure 5.7: log10 of the joint probability histograms of spatial domain simulation data. Histograms
were calculated using l(xm, 0) and l(xm −∆x/2). log100 was defined to be 10−16. No elements
were found in these plots that were not on the main or sub-diagonals. The number of bins used
were A) 50, B) 100, C) 1000.

Figure 5.8: A) The log10 of the amplitude spectrum of the measured high resolution data set
obtained by doubling the ky extent. B) The log10 of the amplitude spectrum of the merged data.
C) The log10 of the difference between a zero padded version of L(kx, ky, 0) and the merged data.

5.1.7 Discussion

All results of our simulation experiments lead to the same conclusion for FE SRMRI: new
information can be present in each acquisition. Although this result seems promising, the
amount of new information is relatively small for |rn| < ∆x; 1−C(rn) and EdL/EL(km,0)

was less than 10−10 (5.6b). These quantities were nonzero - suggesting that some amount
of new information may be present - but their magnitudes do not suggest that very much
new information is present.
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Similar results were obtained when investigating the joint probability histogram be-
tween |l(j∆x, 0)| and |l(j∆x− rn, rn)| (Fig. 5.7). Differences between these two normal-
ized signals are at least as small as 0.002. The new information present in each channel
is relatively small.

We offer two interpretations (one in the spatial domain, the other in k-space) for why
EdL(km,rn) is small relative to EL(km,0). The bandwidth of the ADC is typically larger
than that of s(k), because oversampling is often used in MRI to increase the SNR of the
measured data [29, 44]. Since the bandwidth of A(k) is set to that of the ADC, we also
expect BWread to be much greater than the bandwidth of s. Under these conditions, it
is relatively easy to show (Appendix A.13) that dL(km, rn) ≈ 0, which is a result of the
convolution integral in Eq. 5.1 having little effect on the measured signal.

There is an alternative interpretation for why EdL(km,rn) is small relative to EL(km,0).
Assume for a moment that k is a continuous parameter in Eq. 5.1 (we will later take into
account the effects of sampling), and consider Eq. 5.11 in the limit as δk goes to infinity.
If we again use A(k) = sinc

(
k

∆k

)
it can be shown that (Appendix A.14):

EdL(rn) = ∆k
∫ −xmax+rn

−xmax
|ρ̂(x)|2dx−∆k

∫ xmax+rn

xmax

|ρ̂(x)|2dx, (5.16a)

ρ̂(x) = 2kmax
∫ ∞
−∞

ρ(x′)sinc
(
2kmax(x− x′)

)
dx′. (5.16b)

The function ρ(x) is the one-dimensional proton density of the object, and the variable
xmax is half the field-of-view in the FE direction, which is typically much larger than the
spatial displacement used to implement an SR procedure. For example, if there are 256
data points in the FE direction, rn is at least 256 times smaller than 2xmax.

The first integral in Eq. 5.16a is the energy of the signal that was measured in the
rn = 0 channel but filtered out when rn 6= 0. Similarly, the second integral in Eq. 5.16a
is the information that was not present in the first acquisition but present in the second
acquisition. The difference between the two integrals is the change in the information
content in the second acquisition. Essentially, the energy of dL(km, rn) is the amount of
information from the first acquisition that was lost by shifting the field-of-view, minus
the amount of information that was added by shifting the field-of-view.

We expect EdL(rn) to be small relative to the energy of L(k, 0). The energy of L(k, 0)
is calculated by integrating over the entire real line (in either the spatial domain, or
k-space, using Parseval’s theorem). However, the domain of integration in Eq. 5.16a is
finite and small if |rn| � xmax. A graphical interpretation of these concepts is presented
in Fig. 5.9.

The following observations from our simple experiments with real MRI data support
our model (Eq. 5.13) for the merged data set:
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1. When comparing Figs. 5.8a and 5.8b, we see a very obvious drop in the amplitudes
in G(km) for |ky| ≥ ky,max that is not present in the high resolution data set (Fig.
5.8a). This suggests that very little information about the object is present in
frequencies beyond |ky,max| in the merged data set, Fig.5.8b.

2. Fig. 5.8c is the difference between a zero padded version of L(kx, ky, 0) andG(kx, ky).
The difference appears to be mostly noise. However, a small signal is detected above
the noise near |ky/ky,max| = 2, agreeing with our simulation results (Fig. 5.6a).

These observations not only confirmed our mathematical model of the merged data set
and agreed with our simulation experiments, but also verified our hypothesis that the
relative amount of new information obtained in the second acquisition was difficult to
detect in the presence of noise.

Thus far, research on SRMRI employing multiple acquisitions has only considered
translations with magnitude |rn| less than the spatial sample spacing, ∆x. Our simulation
experiments suggest that the amount of new information can increase as |rn| increases.
This is because the passband of any practical filter is not perfectly flat, and the amount
of signal being pushed out of the filter bandwidth increases with increasing |rn|. Clearly,
the multiple data sets will contain a significant amount of information when all or part
of the object is shifted out of the field-of-view. However, it still remains to be shown how
this added knowledge will aid in the extrapolation of frequencies beyond kmax. While
this approach could be used to extend the field-of-view, it does not necessarily aid in
improving the spatial resolution.

Indeed, the set of N channels could still perhaps be used to improve the overall image
quality of the data. The new information that is measured could be used to overcome
small artifacts introduced by the anti-aliasing filter, or to increase the field-of-view, as
suggested in Fig. 5.9. However, it is not yet clear how a FE SRMRI algorithm can achieve
its intended purpose, which was to enhance the spatial resolution in a way that could
compete with more established strategies that only require a single image [53, 55, 68].

Moreover, our work provides an explanation for some of the results obtained in the
recent Magnetic Resonance Imaging article [11]. Results obtained when applying a FE
SRMRI algorithm to real phantom MRI data [11] did not appear to surpass results
obtained via zero padding, agreeing with the observations reported in this chapter (Figs.
5.6, 5.7, 5.8).

Ultimately, our research illuminates some of the difficulties in performing SRMRI in
the FE direction and suggests why greater success has been encountered when applying
MASRMRI in the SE direction.
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Figure 5.9: Spatial domain interpretation of dL(k, rn). A) The spatial domain data is distorted
when its k-space data is scanned over a finite frequency range. The distortion can be modeled as
a convolution with a sinc kernel (as shown in Fig. 5.1). After applying an anti-aliasing filter, the
spatial domain data has a finite spatial extent. B) The same procedure is repeated except that
the object has been shifted prior to imaging, and the object is translated again after the filter is
applied. Finally, the difference between 1 and 2 is the inverse Fourier Transform of dL(k, rn).
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Chapter 6

Self-Similar and Fractal Based

Methods in Image Processing

6.1 Iterated Function Systems

This chapter reviews fractal-based techniques for image processing, needed for Chapters
7 and 8. One of the fundamental characteristics of fractals is their self-similarity, which
arises when they are derived from an iterated function system (IFS). An IFS is a term that
describes a multivariable discrete dynamical system. Under reasonable hypotheses, these
systems have a unique compact invariant set. These sets exhibit certain self-similarity
properties and have become known as fractals.

The following section describes the nature of IFS, which have applications in describ-
ing fractals and self-similar objects. This section will also introduce the inverse problem
of approximation with IFS.

6.1.1 Contraction Mappings on a Metric Space

To facilitate a more precise understanding of IFS theory, several key definitions will
be introduced. Much of IFS theory is based on contraction mappings and the Banach
contraction mapping principle.

Definition 1 (Contraction Mappings) Let (X, d) be a complete metric space. Then,
a mapping f : x→ x is said to be contractive if there exists a constant c ∈ [0, 1) such that

d(f(x), f(y)) 6 cd(x, y), ∀ x, y ∈ X.

The constant
cf = inf

0≤c<1
c

is referred to as the contraction factor of f .
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Another useful definition for this thesis is the set of all contraction maps on the complete
metric space X.

Definition 2 (The Space of Contraction Maps) The set of all contraction maps on
a given complete metric space, X, is given by:

Con(X) = {f : x→ x | ∃ a cf ∈ [0, 1) s.t. d(f(x), f(y)) 6 cfd(x, y), ∀ x, y ∈ X} .

This leads us to the famous Banach contraction (or fixed point) theorem [5]:

Theorem 1 (Banach Fixed Point Theorem) Let (X, d) be a complete metric space,
and let f ∈ Con(X) with contraction factor cf ∈ [0, 1). Let the nth composition of the
contractive map f be denoted by fn(x). There exists a unique x̄ ∈ X s.t. f(x̄) = x̄.
Furthermore,

d(fn(x), x̄)→ 0 as n→∞, ∀ x ∈ X.

The proof of this theorem may be found throughout the literature (see for example [17],
page 338). The result of the Banach Contraction Theorem is that the iteration of a
contraction mapping f on a complete metric space (X, d) converges to a fixed point.
Given a contraction map, a metric space, and any point in that space, we can generate x̄
via iteration.

6.1.2 Continuity of Contraction Maps

Suppose that we have two contraction maps, f1 and f2 ∈ Con(X) that are very close to
each other, so that they differ only by a slight perturbation, ε:

f1(x) =
1
2
x, f2(x) =

1
2
x+ ε.

We would guess that the respective fixed points of these maps would be close to each
other. By inspection, the respective fixed points, x̄1 and x̄2, of f1 and f2 are:

x̄1 = 0, x̄2 = 2ε.

Indeed, for small epsilon, the fixed points of the two maps are close to each other.

Fixed points of contractive maps vary continuously with respect to variations in the
maps, as established by [12]. But because continuity requires the notion of a distance,
we will first establish a distance function for contraction maps. To this end, for any
f, g ∈ Con(X), let us define the metric:

dCon(X)(f(y), g(y)) = sup
x∈X

dX(f(x), g(x)),

where dX is the metric for space (X, dX). The metric dCon(X) measures the distance
between two maps f, g ∈ Con(X) as being the farthest distance apart that a point x can
be carried by maps f and g.
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Theorem 2 Let (X, d) be a metric space, and f , g ∈ Con(X), with respective fixed points
x̄f and x̄g. If cf is the contractivity factor of f , then [12]

dX(x̄f , x̄g) 6
1

1− cf
dCon(X)(f(x), g(x)), ∀ x ∈ X.

A proof of this inequality is provided in Appendix A.15. Theorem 2 states that if f
and g are close, then their respective fixed points are also close. This establishes that
continuous variations in contraction maps produces continuous variations in their fixed
points. This suggests that, under sufficient conditions that will be discussed shortly, a
contraction map may be adjusted in a controlled manner about its fixed point.

6.1.3 The Collage Theorem

A related problem to that described above is as follows. Rather than searching for
fixed points with a given map f ∈ Con(X), we are given a point x ∈ X, and look for a
contraction map f for which x is the fixed point. In general, it is not possible to construct
a contraction map f whose fixed point is equal to a given x. Perhaps however, we can
construct a map f ∈ Con(X) with fixed point x̄ that provides a close approximation to
the given point, x. One question we need to ask is how close can the approximation x̄

get to x. Mathematically, this can be expressed as the following inverse problem.

The Inverse Problem of Approximation by Fixed Points Given an x ∈ X and
an ε > 0, can we find an fε ∈ Con(X) whose fixed point x̄ε satisfies the inequality [24]

dX(x, x̄ε) < ε ?

This problem is the focus of Chapter 7, where we explore the possibility of constructing
contraction maps with fixed points that approximate a measured signal, for the purpose
of extrapolating frequency data.

Suppose that x ∈ X is our target element, and that we have constructed a function,
f ∈ Con(X), with fixed point x̄, to approximate x. The distance dX(x, x̄) is the error of
approximating x with x̄ (for the moment, we do not demand that dX(x, x̄) be small). By
the triangle inequality,

dX(x, x̄) 6 dX(x, f(x)) + dX(f(x), x̄)

= dX(x, f(x)) + dX(f(x), f(x̄))

6 dX(x, f(x)) + cfdX(x, x̄).

Then:
dX(x, x̄) 6

1
1− cf

dX(x, f(x)).
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The above result is referred to as the Collage Theorem [5], which states that if dX(x, f(x))
is small, the approximation error is small, provided that we can keep cf away from 1.

The Collage Theorem presents an upper bound on the distance between a given fixed
point, y ∈ Y and another point ȳ that is a fixed point to the mapping f , f(ȳ) = ȳ ∈ Y ,
where Y is a complete metric space. Although this suggests that f may be found that
sends an element in Y close to the given element y, there is no indication from the above
discussion on how to proceed to solve the inverse problem. It would seem that one way to
solve the inverse problem would be to choose a set of N contraction maps wi ∈ Con(X), a
contraction operator ŵ from the wi, a starting element s0, and form an iteration sequence
sn+1 = ŵ(sn). After a sufficient number of iterations, one could compute the distance
between sn and the attractor of ŵ. However, at this point, it becomes less obvious as to
what direction to proceed in next; several questions arise. What if our approximation is
not good enough? Do we choose another set of contraction maps, and if so, how? The
Collage theorem by itself does not provide answers to these questions.

To be able to find a tractable solution to the inverse problem, one must use a more
sophisticated approach to determining the contraction maps that define ŵ(S). It has
been found that by searching for a set of affine maps on the set S that are contractive, a
solution to the inverse problem is possible. Namely, by looking at S as a union of smaller
copies of itself that when mapped under a set of affine transforms, an approximation to
the given point y can be found under appropriate conditions.

6.1.4 Iterated Function Systems with Greyscale Maps

In this section we outline the basic ideas of a special class of iterated function systems
with greyscale maps (IFSM), a fractal-based method over functions. The treatment is
brief1 and quite specific to our applications discussed in Chapter 7.

In what follows, (X, d) denotes a compact metric space, the spatial support of our
signal or image. This space is sometimes referred to as a base space for the given ap-
plication. For this subsection, our applications will be one-dimensional real signals. We
also let B(X) denote a suitable Banach space of functions u : X → R. In practice, these
functions will be bounded, in which case we may also wish to specify their range2 Rg, so
that u : X → Rg, where Rg ⊂ R.

An N -map affine IFSM in x is defined by the following (for convenience, we consider
the one-dimensional case, where x ∈ R):

1For more generality and details, the interested reader is referred to [24].
2In the case of MRI, we may wish Rg to be [0, 1] to not allow negative values to be present in the

image.
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1. The spatial IFS component: w = {w1, · · · , wN}, a set of affine contraction
maps wm : X → X having the form

wm(x) = smx+ am, |sm| < 1, m = 1, 2, · · · , N. (6.1)

We shall denote Xm = wm(X) = {wm(x) | x ∈ X}.

2. The greyscale component: Φ = {φ1, · · · , φN}, a set of associated affine greyscale
maps φm : Rg → Rg having the form

φm(t) = αmt+ βm, m = 1, 2, · · · , N. (6.2)

Associated with the above N -map affine IFSM is the fractal transform operator T̂ :
B(X)→ B(X). Given a function u ∈ B(X), its image v = T̂ u is defined as

(T̂ u)(x) =
N∑
m=1

fm(x) =
N∑
m=1

[
αmu(w−1

m (x)) + βm
]
IXm(x). (6.3)

Here IA(x) denotes the indicator or characteristic function of a set A ⊆ X: IA(x) = 1 if
x ∈ A and IA(x) = 0 otherwise. Each fractal component fm is supported on the subset
Xm.

Geometrically, the action of the fractal transform T̂ may be viewed in terms of its
action on the graph of u which is supported on X. Each term u(w−1

m (x)) represents
a spatially-contracted copy of the graph of u which is supported on the subset Xm =
wm(X). The greyscale map φi then distorts this copy in the greyscale direction Rg to
produce the fractal component fi(x). The fractal transform T̂ then adds up these fractal
components to produce (T̂ u)(x).

We now consider the Lp function spaces, i.e., B(X) = Lp(X), p = 1, 2, · · · , where

Lp(X) =

{
u : X → R | ‖ u ‖p=

[∫
X
|u(x)|p

]1/p

dx < ∞

}
. (6.4)

Consider a fixed integer p ≥ 1. Then for any u, v ∈ B(X) [24],

‖ Tu− Tv ‖p ≤ Cp ‖ u− v ‖p, Cp =
N∑
m=1

|sm|1/p|αm|. (6.5)

A derivation of this inequality is provided in Appendix A.16. If Cp < 1, then T̂ is a
contraction over the space Lp(X). From Banach’s Fixed Point Theorem (Theorem 1),
there exists a unique fixed point function ū ∈ Lp(X) such that ū = T ū. Moreover,
consider any “seed” function u0 ∈ Lp(X). If we construct the sequence of functions
un ∈ Lp(X) according to the iteration scheme

un+1 = T̂ un, n = 0, 1, 2, · · · , (6.6)
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then the sequence un converges to ū, i.e., limn→∞ ‖ un − ū ‖p= 0.

From Eq. 6.3, the relation ū = T̂ ū implies that the fixed point ū exhibits self-
similarity, as it may be expressed as a sum of spatially-contracted and greyscale-modified
copies of itself.

6.2 Local IFS and Self-Similar Methods

There are certain limitations to the IFSM method described in Section 6.1.4. The fractal
operator (Eq. 6.3), approximates a given target function with a linear combination of
fractal components. Each of these components is a scaled and spatially contracted copy
of the original target function over the base space X. However, most natural signals and
images do not exhibit self-similarity in this sense.

A more practical method is based on ideas developed in the fractal coding literature
[20]. Developing an approach which takes subblocks of the image and approximates them
with linear combinations of subblocks of u, we construct a model of the given data that
possesses a kind of self-similarity. To describe this model, let us consider normalized
images, so that u : X → Rg, where Rg = [0, 1], and the support X of the image function
u to be an nu × nu index matrix. The components of our model are as follows3:

1. A set R of NR range blocks, Rm ∈ RnR×nR . Each range block is supported on
Rm, m = 1, 2, 3, . . . , NR, so that Rm = u(Rm). The range blocks are nonoverlapping
and cover X, so that

⋃
nRn = X.

2. A set D of ND domain blocks, Dm ∈ RnD×nD . Each domain block is supported on
Dm, m = 1, 2, 3, . . . , ND, so that Dm = u(Dm). The set of domain blocks should
cover X, so that

⋃
mDm = X. This set may or may not be overlapping.

3. A set of ND one-to-one geometric transformations, wmd,mr,mg(t), that operate on
Dm, m = 1, 2, 3, . . . , ND. For simplicity, we consider only affine transformations.
There are eight possible mappings (flips and rotations) that may be accommodated.
In the case that nR < nD, so that the domain blocks contain more pixels than
the range blocks, it is also assumed that the contractive map w includes a pixel
decimation operation. For notational convenience, let λ = (md,mr,mg), and D̄λ =
D̄md,mr,mg = u(wmd,mr,mg(Dm)).

4. A set of greyscale maps of the form φn(t) = αnt + βn. The parameters αn and βn

may or may not be constrained.
3The discussion in this section is based on [2].

68



Given an image function u, we examine how well the subimages Rm = u(Rm) are
approximated by subimages D̄λ, written as

u(Rmr) ≈ φλ
(
D̄λ

)
= αλD̄λ + βλ, (6.7)

where λ = (md,mr,mg), 1 ≤ mr ≤ NR, 1 ≤ md ≤ ND, mg = 1, 2, 3, . . . , 8. The error
associated with each domain and range pairing is given by:

∆λ = min
αλ, βλ

||Rmr − φλ
(
D̄λ

)
||. (6.8)

Often the L2 (or squared L2) norm is used to calculate ∆λ. To minimize the collage
distance for a given range block, we may perform an exhaustive search over all possi-
ble values md and mg. This optimization may or may not be constrained, and in the
unrestricted case, expressions for the optimal α and β yield standard regression formulas.

For the purposes of this thesis, we will focus on the following two cases of the above
procedure:

1. Same-scale similarity: in this case, the domain and range blocks have the same size,
so that nR = nD. In this case, the collage-error measures the similarity between
domain and range blocks (or “approximability” of each range block with the set
D of domain blocks). The statistics of same-scale approximations within an image
have recently been investigated [2, 96].

2. Cross-scale similarity: in this case, the domain blocks are larger than the range
blocks, so that nR < nD. This case has been explored extensively in fractal coding
and compression methods [20].

The same-scale case has been explored recently for non-local means denoising. Here,
the use of a linear combination of blocks can be used that may improve the collage error:

∆λ = min
αλ, βλ

||Rmr −
∑
d∈Θ

φλ
(
D̄λ

)
||. (6.9)

Some suitable choice of domain blocks in Θ ⊂ D is made. This case is explored in
Chapters 8 and 9, in both one and two dimensions, with MRI data.

The cross-scale case has been explored extensively in the fractal coding literature.
Under appropriate conditions [24], the transform

T̂ = φλ
(
D̄λ

)
= αλD̄λ + βλ (6.10)

is a contractive operator in L2(X). By the Banach Contraction Mapping Theorem (page
64), a unique fixed point exists that may be generated via iteration. Starting from any
seed image, u0, the sequence un+1 = T̂ un converges to a fixed point, ū as n → ∞. This
case is explored further in the following chapter, for one-dimensional k-space data.
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Chapter 7

Iterated Fourier Transform

Systems

In this chapter we introduce a fractal-based method over (complex-valued) Fourier Trans-
forms of functions with compact support X ⊂ R. This method of “iterated Fourier
Transform systems” (IFTS) has a natural mathematical connection with the fractal-
based method of “iterated function systems with greyscale maps” (IFSM) in the spatial
domain, discussed in Section 6.1.4.

A major motivation for our formulation is the problem of resolution enhancement of
magnetic resonance images, the main theme of this thesis. In an attempt to minimize
sampling and transform artifacts, it is our desire to work directly with the raw frequency
data provided by an MR imager as much as possible before image reconstruction. In
this chapter, we show that our fractal-based IFTS method can be tailored to perform
frequency extrapolation.

Work presented in this chapter is based on research the author has published in the
LNCS series [65]. For simplicity of notation and presentation, we consider only one-
dimensional MRI procedures in this chapter.

7.1 Frequency Domain Extrapolation

As we showed in Chapter 3, we assume that the object being imaged is spatially limited,
and located within an interval X = [−xmax, xmax] on the x-axis. It is the proton density
of the object, to be denoted as ρ(x) for x ∈ X. The (spatially) linearly varying magnetic
field in the magnetic resonance spectrometer produces a complex-valued signal s(k) of
the real-valued frequency parameter k. The relation between s(k) and the proton density
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function ρ(x) may be expressed as follows1:

s(k) =
∫ +∞

−∞
ρ(x)exp(−i2πkx)dx, k ∈ R, (7.1)

so that s(k) is related to ρ(x) via the Fourier Transform (Chapter 2).

Because the object being imaged has a finite size (see Eq. 3.41), its Fourier spectrum
necessarily has infinite support. But the data can only be collected over a finite interval,
limiting the maximum obtainable spatial resolution. In MRI, the target function U(k) is
known only over a finite interval, Ω = [−kmax,+kmax], so that2

U0(k) = Π(
k

2kmax
)U(k). (7.2)

The IFTS inverse problem (Section 7.3.1) can be solved to use U0(k) to estimate higher
frequency components of U(k), thereby achieving higher resolution in the spatial domain.
In this chapter, we show that our fractal-based method of “iterated Fourier Transform
systems” (IFTS) can be tailored to perform frequency extrapolation.

In order to understand the IFTS method, however, it is necessary to briefly review
the method of fractal transforms in the spatial domain (see Section 6.1.4). As we will
soon see, the IFTS method developed here is derived from the spatial domain fractal
transform (Eq. 6.3).

7.2 From Fractal Transforms to IFTS

Our goal is now to formulate an IFS-type method over Fourier Transforms. Because
our primary application (for this chapter) is signal processing, the following discussion
is framed in the space L2(X) of square integrable functions on X. In the analysis that
follows, we assume that our measured data comes from a spatially limited function u ∈
L2(X), such that

u(x) = u(x)Π
( x

2xmax

)
=

{
u(x), |x| ≤ xmax
0, |x| > xmax

(7.3)

Now consider its complex-valued Fourier Transform U = F [u], defined as follows,

F [u] = U(k) =
∫ ∞
−∞

e−i2πkxu(x) dx, (7.4)

1The raw signal is actually related to the transverse magnetization (Eq. 3.50), which in turn is related

to the proton density (Eq. 3.35).
2In other words, we shall assume that the k-space data is acquired over a finite interval centered over

the origin: k ∈ Ω = [−kmax, kmax].

71



where k ∈ R. Now suppose that v = T̂ u, where T̂ is the fractal transform in Eq. 6.3. Let
the Fourier Transform of v be denoted by

F [v] = V (k) =
∫ ∞
−∞

e−i2πkxv(x) dx. (7.5)

A relationship between U and V may be derived by taking the Fourier Transform of the
spatial domain fractal transform (Eq. 6.3). It can be shown that3:

V (k) = M̂U(k)

= M̂F [u(x)]

=
NM∑
m=1

e−2πiamk
[
αmsmU(smk) + βmσmsinc(σmk)

]
, (7.6)

where

σm = 2xmaxsm.

Eq. 7.6 defines the action of the operator M̂ that is induced by the fractal transform T̂ .
The relation v = T̂ u implies that V = M̂U , where U = F [u] and V = F [v]. Technically,
M̂ is a mapping from the space of functions that are Fourier Transforms of functions in
B(X) to itself – let us call this space BFT (X). We shall refer to M̂ as an IFTS operator,
for iterated function systems on Fourier Transforms.

Let us compare the frequency-space result in Eq. 7.6 with its spatial counterpart
in Eq. 6.3. Here, V (k) is a sum of distorted, frequency-expanded copies of U(k) along
with various modified copies of sinc functions. Note that the value of U(k) is determined
by values of U at lower frequencies smk. This can provide a mechanism for frequency
extrapolation.

The following properties of the IFTS operator are derived (where necessary) in the
appendices:

1. The IFTS operator, M̂ , maps functions L2(X) to itself (see Appendix A.18)

2. Let U, V ∈ L2(X). Then using the L2 norm,

‖ M̂U − M̂V ‖2 ≤ CIFTS,2 ‖ U − V ‖2, (7.7)

where CIFTS,2 is given by (see Appendix A.19)

CIFTS,2 =
NM∑
m=1

|sm|1/2|αm|.

The IFSM operator T̂ and the IFTS operator M̂ have the same Lipschitz constant
in the L2 norm4.

3See Appendix A.17 for derivation.
4This is not the case for the Lp norm, as we show in Appendix A.19.
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3. By the definition of contractivity, if the magnitude of the Lipschitz constant of the
IFTS operator is less than one, then M̂ is contractive over L2 (and T̂ will also be
contractive).

4. As the IFSM and IFTS operators are one-to-one, their respective fixed points,
ū ∈ L2 and Ū ∈ L2, will be related as Ū = F [ū] (Fig. 7.1).

Figure 7.1: Relationship between the IFTS and IFSM operators.

Examples:

1. The following NM = 2-map affine IFSM on X = [−1, 1]:

w1(x) =
1
2
x− 1

2
, φ1(t) =

1
2
t+

1
2
,

w2(x) =
1
2
x+

1
2
, φ2(t) =

1
2
t+

1
2
.

Note that X1 = w1(X) = [−1, 0] and X2 = w2(X) = [0, 1]: The two sets are
nonoverlapping in the L2 sense, even though they “touch” at x = 0. The fixed
point for the associated IFSM operator T̂ , using Eq. 6.3, is ū(x) = 1 for x ∈ X.
The fixed point for the corresponding IFTS operator M̂ , using Eq. 6.3 is the real-
valued function Ū(k) = 2 sinπk

πk = F(ū).

2. A perturbation of the above system:

w1(x) =
3
5
x− 2

5
, φ1(t) =

3
10
t+

1
2
,

w2(x) =
3
5
x+

2
5
, φ2(t) =

1
2
t+

1
2
.

Here X1 = w1(X) = [−1, 2
5 ] and X2 = w2(X) = [−2

5 , 1]: The two sets overlap over
the interval [−2

5 ,
2
5 ]. The fixed points, ū and Ū for, respectively, the IFSM operator

T̂ and the IFTS operator Û are shown in Fig. 7.2 below. Note that the attractor
ū possesses a self-similarity – the “piling up” of function values over the overlap
region is repeated over the entire interval X under the action of the IFS maps wi.
On the other hand, the Fourier Transform Ū is a mild perturbation of the transform
of Example 1, most notably in the non-zero imaginary part. The attractors were
computed by means of iteration of the operators, T̂ and Û in their respective spatial
and frequency domains.
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Figure 7.2: Fixed point attractors (a) ū and (b) Ū (real and imaginary parts) for the IFSM/IFTS
of Example 2 above. (c) is the IDFT of the fixed point Ū in (b).

7.3 IFTS and Frequency Extrapolation

We now have the ingredients to perform the following inverse problem of Fourier Trans-
form approximation: Given a “target” Fourier Transform U ∈ BFT (X), find an IFTS
operator M̂ with fixed point Ū that approximates U to an acceptable accuracy.

We adopt a collage coding strategy, and look for an operator M̂ that minimizes the
collage distance ∆ = dFT (U, M̂U), where dFT denotes a suitable metric on the space of
functions BFT (X).

7.3.1 Solving the IFTS Inverse Problem

Our procedure will mimic the usual procedure of IFSM fractal coding: We shall fix NM ,
the number of components in the IFTS operator M̂ in Eq. 6.3, as well as the affine spatial
contraction maps wi in Eq. 6.1, 1 ≤ m ≤ NM . The optimal values of the real greyscale
coefficients αi and βi in Eq. 6.2 will then be given by

(α∗, β∗) = arg min
(α,β)∈Π

dFT (U, M̂(s,a, α, β)U). (7.8)

Here, Π ∈ R2NM denotes a feasible parameter space that ensures contractivity of the IFTS
operator M̂ .

As in traditional fractal image coding, it is convenient to use the L2 metric. The
squared L2 collage distance between U and M̂U is

∆2(α, β) =‖ U − M̂U ‖22

=
∫

R

∣∣∣U(k)−
NM∑
m=1

e−2πiamk
[
αmsmU(smk) + βmσmsinc(σmk)

]∣∣∣2 dk. (7.9)

Note that ∆2 may also be rewritten as a quadratic form,

∆2(x) =‖ U ‖2 +xTAx + bx, (7.10)
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where xT = (α1, · · · , αNM , β1, · · · , βNM ). Here, A may be expressed as a 2NM × 2NM

symmetric real matrix and b a real 2NM -vector. The minimization of ∆2 may now be
accomplished with quadratic programming algorithms, generally at a fraction of the time
required for gradient descent methods.

Of course, the minimization must be performed with constraints. The contractivity
constraint CIFTS,2 < 1 from Eq. 6.5 is a very strict condition, having been obtained by a
simple application of the triangle inequality. From a knowledge of the maps wi involved
and the overlapping/nonoverlapping properties of the associated sets Xi, one may be
able impose more relaxed conditions. Additional constraints may be imposed from the
requirement that the associated spatial fixed point function ū(x) be nonnegative over X,
e.g., αm, βm ≥ 0 (see condition 2, page 28).

Another concern is to make the collage distance “suitably small.” Theoretically, the
collage distance can be made arbitrarily small by suitably increasing the refinement of
the partition produced by the spatial IFS maps over the interval X. (The “proof” is
basically the same as presented in [23].) A systematic and quite effective refinement is
produced by using NM -map truncations wNM of the infinite set w = {w11, w12, w21, · · · }
of spatial IFS maps on X = [−1, 1] given by

wnj =
1
2n

(x+ 2j − 1− 2n), n = 1, 2, · · · , 1 ≤ j ≤ 2n. (7.11)

This system of maps produces a decomposition of X into dyadic subintervals. The natural
choices for NM are 2, 2 + 4 = 6, 2 + 4 + 8 = 14, ..., 2 + · · ·+ 2p = 2p+1 − 2, p = 1, 2, · · · ,
which produce complete dyadic refinements of [−1, 1] down to ∆x = 2−(p−1). This system
also permits “mixing” between overlapping intervals of varying size. Such a strategy was
adopted successfully in [22].

Example 3: We consider a complex-valued function5 U(k) ∈ RR, R = 1, the real and
imaginary components of which are plotted in 7.3(a) and 7.3(b), respectively (solid line
plot). Its inverse Fourier Transform, the spatial function u(x), is plotted in 7.4(a) (apart
from ringing artifacts outside the interval X = [−1, 1] due to the finiteness of Ω).

With U(k) as our target function, we applied L2 collage coding, using the system of
“dyadic” IFS maps given in Eq. 7.11. For NM = 2, 6 and 14, the minimal collage errors
∆ obtained were 2.13, 1.70 and 1.08, respectively. The Harwell HSL Archive FORTRAN
subroutine VE17AD was used to solve the associated quadratic programming problems.
In all cases, the solution was provided in a fraction of a second (in contrast, gradient
search methods required on the order of an hour of computer time to solve the 14-map
problem). Figs. 7.3(a) and 7.3(b) display the real and imaginary components of the fixed
point Ū(k) of the 14-map IFTS. Note that the relatively well-behaved real part of the
target U(k) is very well approximated over the interval [−kmax,+kmax].

5Recall that RR, defined in Eq. 2.7, is the space of frequency domain functions that have a finite

spatial extent of R.
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Figure 7.3: Figures (a) through (d) show the target U(k) (solid plot) and fixed point approximation
Ū(k) (dotted plot) yielded by a 14-IFS map IFTS described in Example 3. Shown in (a) and (c)
are the real components. Shown in (b) and (d) are the imaginary components. Note that Figures
(c) and (d) are vertically expanded versions of (a) and (b), respectively, in order to see better the
details of the functions, especially the imaginary part. In (e) and (f) are shown the residuals of,
respectively, the real and imaginary components, using the same scale as in (c) and (d).
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7.3.2 Frequency Extrapolation

The use of IFTS to perform frequency extrapolation is motivated by the action of the IFTS
operator M̂ in Eq. 6.3 and noted earlier: The value of V (k) = (M̂U)(k) is determined by
values of U(k) at lower frequencies smk. Consider any U0 with support Ω0 = [−k0, k0].
Now let U1(k) = M̂U0(k). It follows that the support of U1(k) is the interval Ω1 =
[−Ak0, Ak0], where A = [maxk |sm|]−1. In general, the support of Un = M̂nU0 is Ωn =
[−Ank0, A

nkn]. In this way, lower frequency information makes its way outward, implying
frequency extrapolation.

Working with the truncated transform U0, however, introduces an additional approx-
imation error into the collage coding procedure. The following result is a straightforward
consequence of the Collage Theorem and the triangle inequality:

Given a target transform U ∈ L2(X) and an approximation U0 to U , with
dFT (U,U0) = ε1. Now suppose that we perform collage coding on U0, that is,
we find an NM -map affine IFTS M̂0 with contraction factor c0 ∈ [0, 1) such
that dFT (U0, M̂0U0) ≤ ε2, where ε2 > 0. Then

dFT (U, Ū0) ≤ 1
1− c0

ε2 + ε1, (7.12)

where Ū0 is the fixed point of M0.

In the limit δ → 0, we retrieve the Collage Theorem (Section 6.1.3).

No matter how small we may force the collage error ε by suitable refinement, the error
δ > 0 serves as a barrier toward the approximation of our (unknown) target U with the
fixed point Ū , as will be seen below.

Example 3 revisited: Let us return to the target transform U(k) presented in Fig. 7.3,
with support Ω = [−100, 100]. When inverted, it yields the spatial profile u(x) in Fig.
7.4(a). Now suppose that we are given only one-half of this data, i.e. U0 = U |[−50,50],
with support Ω0 = [−50, 50]. Inversion of U0 yields the lower-resolution profile u0(x)
pictured in Fig. 7.4(b). The L2 error of approximation is δ =‖ u− u0 ‖2= 0.066. In this
example, all spatial functions on [−1, 1] have been normalized in the L2 norm.

Collage coding of U0 with a 14-map IFTS, using the wij maps in Eq. 7.11, produces
a fixed point Ū0, the inversion of which is shown in Fig. 7.4(c). Even though ū0 has
much more spatial resolution, it is a poorer approximation to u than u0, with an L2 error
δ = 0.100. One possible reason for this observation: It is not guaranteed that the given
low frequency component of U – namely, U0 – is well approximated by Ū0. In order to
bypass this problem – and in the spirit of the Papoulis-Gerchberg algorithm for frequency
extrapolation – we simply replace the frequency components Ū0|Ω0 with the original data
U0, so that

ŪP0
0 (k) = [1− IΩ0(k)]Ū0(k) + U0(k), k ∈ Ω. (7.13)
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Mathematically, ŪP0
0 is the projection of Ū0 onto the subspace P0 of transforms with

frequency subspectrum U0 on Ω0.

Inversion of ŪP0
0 over [−100, 100] yields the spatial profile pictured in Fig. 7.4(d).

Visually, it appears to be a much better higher-resolution approximation to u than ū0.
Quantitatively, its L2 error of δ = 0.052 is also smaller. This L2 error is also lower than
that of u0, which achieves one of the main goals of this entire exercise.

Another strategy is to consider the fact that collage coding minimizes the distance
between a target U and its image M̂U . For this reason, we also consider the following
construction,

UP0
1 (k) = [1− IΩ0(k)](M̂U0)(k) + U0(k). (7.14)

In other words, we collage code the original data U0, construct the first iterate U1 = M̂0U0

and once again project onto the subspace P0. The resulting spatial profile is shown in
Fig. 7.4(e). It also provides a very good higher-resolution approximation to the target
spatial profile u(x), both numerically (L2 approximation error is δ = 0.056) as well as
visually.

7.4 Conclusions

Approaches in quantifying the relative quality of our reconstructions obtained using tech-
niques presented in this chapter is consistent with what is commonly used in the MRI
literature. Measures of error based on the L2 metric, and “observer measures” are both
commonly used strategies to compare results obtained from different post-processing al-
gorithms (see for example [53, 68]).

Finally, the computations described in this chapter represent only a preliminary study
of self-similar methods for frequency extrapolation. We see that because the IFTS oper-
ator is derived from the IFSM operator, it constructs fractal components from the entire
function. However, as there is no connection between this approach to a physical model
of the MR data, there is no reason why we would expect this approach for frequency
extrapolation to be effective.

A more practical approach, used in fractal compression literature, is to first partition
the data into subblocks and to then construct components based on these subblocks. In
fact, we find in the following chapter that this procedure has several advantages over the
methods presented in Chapter 7. The most important of which is the connection between
linear combinations of these blocks in k-space, and a physical model for the MR signal.
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Figure 7.4: (a): The target spatial function u(x) = F−1(U)(k) corresponding to the Fourier
Transform U(k) plotted in Fig. 7.3. Figs. 7.4(b)-(e): Approximations yielded by the bandlimited
data U0 and various frequency extrapolation methods applied to U0, as described in text. L2

approximation errors are also given. All functions have been normalized in L2 on X = [−1, 1].
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Chapter 8

Local Self-similarity of Fourier

Domain MRI Data

8.1 Introduction

Results presented in this chapter represent an extension of the research presented in
Chapter 7 on the use of self-similarity for the resolution enhancement of MRI data. In
the previous chapter, we showed how resolution enhancement could be accomplished by
means of a fractal-based method over complex-valued Fourier Transforms with compact
support X ⊂ R. Our method of “iterated Fourier Transform systems” (IFTS) is the
Fourier domain counterpart of the fractal-based method of “iterated function systems
with greyscale maps” (IFSM) in the spatial domain [24]. The action of an IFTS operator
M̂ on a Fourier Transform U(k) is to produce frequency-expanded and phase-ramped,
range-distorted copies of U(k). With this method, higher frequency components of U(k)
outside the interval Ω0 are estimated, thereby achieving higher spatial domain resolution.

The IFTS method described in the previous chapter, does not yet have a connection
to physical parameters of the object being imaged. In this chapter, we explore the use
of other self-similarity methods that may aid in frequency extrapolation, motivated by
a connection we present here to ARMA methods and a mathematical model of the MRI
data. A further major motivation is provided by recent work [2], showing that images are,
in general, affinely self-similar locally: Given a “range block” u(Ri) of an image, there are
generally a good number of “domain blocks” u(Dj) that can approximate it well under
the action of affine greyscale transforms. This self-similarity in the spatial domain is
dramatically demonstrated when we plot errors of approximation for all domain-range
pairings.

Here we demonstrate that such self-similarity is also exhibited by subblocks of Fourier
data. The underlying explanation for this block-based self-similarity is that a connection
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can be made between the well-known result of autoregressive (AR) correlation coefficients
and block-based model parameters. This justifies block-based coding in the complex
Fourier domain, which we then employ for the purpose of frequency extrapolation.

To this end, we show that discrete functions of the form,

s(m) =
N∑
n=1

c(n)eσnm, m ∈ Z, cn, σn ∈ C (8.1)

are locally self-similar. Functions of this form are found in many applications, but here
we consider their use in MRI. Eq. 1.9 has been used to model the measured MR data in
order to improve the image reconstruction process and to reduce artifacts [35].

Block-based fractal coding in the wavelet domain is a rather standard procedure [95].
To the best of our knowledge, however, there has been little analysis to date on the use
of block-based methods to analyze or process Fourier data. This research presented in
this chapter (and the previous chapter, based on [65]) represents work in this direction,
and is based on research presented in [67].

8.2 One-Dimensional MRI Data Models

Here, we outline general spatial and frequency domain models for MRI data, where the
raw data is a Fourier spectrum of the desired image. For simplicity of notation and
presentation, we first consider one-dimensional MRI procedures.

As discussed in Chapter 3, the MR scanner responds to the proton density of the
object, ρ(x), and produces a complex-valued signal s(k) of the real-valued frequency
parameter k. The relation between s(k) and the proton density function ρ(x) may be
expressed as (Eq. 3.52):

s(k) =
∫ +∞

−∞
ρ(x)exp(−i2πkx)dx, k ∈ R. (8.2)

In other words, s(k) is related to ρ(x) via the Fourier Transform (Chapter 2). If s(k) is
known ∀ k ∈ R, then ρ(x) may be found by using the inverse Fourier Transform of s(k).
In practice, however, the true proton density, ρ(x), cannot be obtained exactly, and must
be estimated. One reason is that s(k) is determined over a finite interval. Ultimately,
reconstruction yields only approximations to ρ(x) with finite spatial resolution.

8.2.1 Self-Similarity of the One-Dimensional MR Signal

Many of the self-similar based methods developed in the literature utilize local self-
similarities between different regions of real spatial domain images. For these methods to
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be effective on complex Fourier domain data we require that the data exhibit some de-
gree of self-similarity. By self-similar, we mean that subblocks may be well approximated
by other subblocks. This procedure has been examined for maps in the spatial domain
[2]. The extent to which MRI Fourier data is locally self-similar has, to the best of the
author’s knowledge, only been explored in [67].

In order to initiate a discussion of the self-similarity of Fourier data, we first consider
the complex, discrete signal, s(n) ∈ l2(R), n = 0, 1, 2, . . . , NS − 1. Then define a
partitioning of s(n) into domain and range vectors (or blocks) and affine transforms that
operate on these blocks. The last NP values of s(n) will constitute the range block, r:

r = [s(NS −NP ), s(NS −NP + 1), . . . , s(NS − 1)]. (8.3)

The domain vectors are constructed by partitioning s(n) into NDB = NS−NP overlapping
domain blocks:

dm = [s(p), s(p+ 1), s(p+ 2), . . . , s(p+NP − 1)],

p = NS −NP −m,

m = 1, 2, . . . , NDB.

The set of all domain blocks, D = {dm ∈ CNP |m = 1, 2, . . . , NDB}, comprises the domain
pool .

Affine transforms can be used to search for similarities between the intensities of range
and domain blocks. If for a given range block, we can find an affine transform T , and
domain block dm, such that r ≈ Tdm, then the given data possesses some degree of
self-similarity.

The simplest such affine transform assumes the form

r ≈ T1(dm) = αmdm + βm, (8.4)

where αm, βm ∈ C. The subscript “1” of the operator T denotes that a single domain
block is being used to approximate r. The complex parameters αm and βm may be
chosen by minimizing the l2 (vector) norm, ∆m of the difference between r ∈ CNP and
each affinely-transformed domain vector1:

∆m =

√√√√ 1
NP

NP∑
n=1

∣∣r(n)− [αmdm(n) + βm]
∣∣2. (8.5)

We may generalize this operator to one that uses a set of NPB domain (or parent)
blocks instead of a single dm to approximate r [2], as given by

r ≈ TNPB (DZ) = β +
∑
m∈Z

γmdm. (8.6)

1The quantity ∆ is simply the root mean squared error between r(n) and its approximation, and is

referred to in the fractal literature as the collage error.
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The vector set DZ ⊂ D denotes a set of NPB parents2 chosen from the domain pool, D.
With a multi-parent approach, the parameters γm may be chosen to combine the domain
blocks in a number of ways [1, 6, 16].

Relationship to autoregressive based methods

In this section, we make a connection between self-similar and AR equations to demon-
strate certain properties of one-dimensional MR data. Combining Eq. 8.3 for range block
r with Eq. 4.9, we obtain (see Appendix A.20 for derivation):

r = −
2NC∑
m=1

amdm. (8.7)

Comparing Eqs. 8.6 and 8.7, several key observations can be made. First, by allowing
β = 0 and using an appropriate set for DZ , we obtain

αm = −am, m = 1, 2, 3, . . . , 2NC ,

so that the approximation in Eq. 8.6 becomes an equality. That is, multi-parent operators
acting on signals of the form Eq. 1.9 can produce r exactly without the need for a β

term3. Thus, using the boxcar model [35], one-dimensional MR signals are self similar
upon multiplication of the signal by −2πik.

Having established a connection between self-similar model parameters and AR mod-
eling, new results could be explored with AR modeling that describe mathematical and
physical properties of the parameters α and β. This connection enables a relationship
between, for example, α and physical parameters (in this case, xm and ∆x of Eq. 4.6)
through Prony or AR modeling [50]. Deriving such connections is, however, beyond the
scope of this chapter.

Eq. 8.7 represents a theoretical derivation for one-dimensional complex signals. Al-
though mathematical extensions of Prony and AR methods to two dimensions have been
made (see for example [3, 85]), our research into the extension of the mathematical con-
nection between self-similar and AR theory to two dimensions is presented in the next
chapter. The next section explores the empirical evidence that two-dimensional complex
MRI Fourier data can demonstrate self-similarity.

2For example, the NPB parents that have the lowest collage errors, according to Eq. 8.5 may be

chosen.
3Admittedly, we have considered the noiseless case, and would not expect that the collage error would

remain zero in the presence of noise
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8.3 Two-Dimensional Self Similarity of MRI Data

In this section, we present a preliminary analysis of the self-similar properties of two-
dimensional MRI data. We explore the self-similarity of MR data, using two-dimensional
blocks, in the Fourier domain, employing single and multiple parent transforms, with
MRI data taken from two different MR imaging systems.

Photographs of MR “phantoms”, constructed with plexiglass sheets mounted on 2
cm diameter cylindrical Teflon bases are shown in Figs. 8.1(a) and 8.1(b). Figs. 8.1(c)
and 8.1(d) show MR images4 of these phantoms immersed in water. Fig 8.1(c) has
dimensions 256 × 256, Fig. 8.1(d) has dimensions 512 × 512. Figs. 8.1(e), (f) display
the respective k-space real components between [-2.5e-4,+2.5e-4]. Figs. 8.1(g) and (h)
display the respective k-space magnitudes and the relative amplitudes at the origin and
at high frequencies.

Figure 8.1: Photographs of the (a) “bar” and (b) “grid” phantoms. (c) and (d) display spatial
domain magnitudes. (e) and (f) show the corresponding k-space real component between [-2.5e-4,
2.5e-4], and (g) and (h) show the k-space magnitude data. Data sets were normalized in l2.

Fig. 8.2 shows data5 from a 30 slice data set of a human volunteer. Each slice is a
complex k-space data set with dimensions 128× 128. The (a) spatial domain magnitude,
(b) k-space real component, and (c) k-space magnitude are displayed. Each image was
individually normalized by its respective l2 norm.

Collage error probability histograms (CEPH) were constructed from the phantom
411.7 T MRI system (Bruker), using a gradient echo sequence, TR/TE 800/5 ms, FOV 3 cm.
53.0 T MRI system (General Electric Medical Systems; Waukesha, WI), using a multislice spoiled

gradient-recalled echo sequence, FOV 24 cm, slick thickness 4 mm, TR/TE 200/3.1 ms, flip angle 18◦.
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Figure 8.2: One slice from the 30 slice human volunteer data. (a) displays the magnitude of the
spatial domain data, (b) the corresponding k-space real component intensities between -0.01 and
+0.01, and (c) shows the k-space data magnitude.

data. The histograms were made by partitioning the k-space data sets into NDB non-
overlapping NP ×NP domain and range blocks. The domain and range block sets were
exactly the same. For each range block, all possible domain blocks were compared (with
the exception of the domain block that was equal to the range block), using the 2D analog
of Eq. 8.5, or collage error :

∆p,q =

√√√√ 1
N2
P

NP∑
m,n=1

|rp(m,n)− αqdq(m,n)− βq|2, p, q = 1, 2, . . . , NDB, p 6= q. (8.8)

A total of NDB×(NDB−1) comparisons are made to construct a CEPH. The parameters
αq and βq are determined using a least-squares fit to rp. CEPHs calculated using Eq. 8.8
from the phantom data are shown in Fig. 8.3 using NP = 8.

To study the effect of noise on the distributions in our CEPHs, complex noise taken
from a normal distribution with zero mean and SD 0.005 was added to the normalized
phantom data. The corresponding CEPHs and SD histograms from the phantom data
are displayed in Fig. 8.4

Figure 8.3: CEPHs from phantom data using 8× 8 blocks.

CEPHs calculated using Eq. 8.8 from the human volunteer data are shown in Fig.
8.5 using NP = 4. CEPHs with added noise and SD histograms are also presented in this
figure.
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Figure 8.4: CEPHs from phantom data using 8 × 8 blocks (green), and the corresponding his-
tograms with added complex zero mean noise with SD 0.005 (orange).

In all of the CEPHs (Figs. 8.4, 8.5, 8.6), the additive noise moved the distributions
away from zero to a new distribution centered near 0.005. This effect is not surprising.
Intuitively, it is generally more difficult to approximate noisy blocks, and we expect the
collage errors to increase with increasing noise. We know that the CEPHs of pure noise
is centered on its SD (see [28], page 5). We also see that the pure k-space data is more
self-similar than the data obtained after adding noise, providing us with evidence that
two-dimensional k-space data may be self-similar, or at least can be more self-similar
with less noise.

The collage errors in Fig 8.5 were closer to the origin than the SDs. The SDs are
simply the collage errors, using Eq. 8.8, with αq = 0. Including the αq term reduces ∆,
further suggesting that k-space data can be self-similar.

Figure 8.5: (a) to (c) human volunteer CEPHs (green) using 4 × 4 blocks and corresponding
CEPHs after noise was added (orange). CEPHs in (d) were calculated from all 30 slices.

Figure 8.6: (a) and (b) human volunteer CEPHs (green) from all 30 slices using different block
sizes, and the corresponding CEPHs after noise was added (orange). Green and orange lines
correspond to range block SD histograms.
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NPB Bar, NP = 8 Grid, NP = 16 Human Volunteer, NP = 8

1 0.6179 0.8505 0.8300

30 0.2234 0.6221 0.3955

60 0.0435 0.5299 0.1028

Table 8.1: Mean normalized multi-parent collage errors using NPB = 1, 30, and 60, from various
data sets. Collage errors are normalized by the SD of rp. Only the NPB blocks for each rp with
the lowest collage errors were used to calculate the least squares projection onto the NPB blocks.
Means are calculated across all range blocks.

CEPHs were also calculated using a multi-parent transform. The collage error between
the range blocks and the least-squares projection of each range block onto the space
spanned by the NPB transformed domain blocks with the lowest collage errors for each
range block was calculated. The CEPHs for NPB = 1, 30, and 60 are shown in Fig. 8.7.
The collage errors were normalized by the SDs of the range blocks, and the errors were
plotted on a logarithmic scale. Table 1 shows the means of collage errors plotted in Fig.
8.7. As expected, the collage errors become smaller as more parents are used.

Figure 8.7: Normalized multi-parent CEPHs using NPB = 1, 30, and 60, from various data sets.
Errors are plotted on a log10 scale, and collage errors are normalized by the SD of rp. Only the
NPB blocks for each rp with the lowest collage errors were used to calculate the least squares
projection onto the NPB blocks.

8.4 Conclusions

This chapter represents an important step in our research programme for frequency ex-
trapolation of Fourier domain data using self-similar based methods. The author investi-
gated the local self-similarity of two classes of data: 1D signals of the form Eq. 1.9, and
2D complex MRI k-space data.

Section 8.2 provided a mathematical investigation of the local self-similarity of signals
of the form Eq. 1.9. Signals of this form were found to be self-similar, and partitioned
blocks of the signal may be predicted exactly with multi-parent transforms; a consequence
of Prony’s method and AR modeling. One-dimensional noiseless MRI k-space signals can
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be put into this form by using the boxcar model, thereby allowing the data to possess
local self-similarity.

Section 8.3 provided an empirical study of the self-similarity of 2D complex Fourier
data. Single and multi-parent transforms with complex model parameters were used to
approximate Fourier domain blocks. Added noise decreased the self-similarity of the data,
suggesting that self-similar methods can find and utilize self-similar structures present in
raw Fourier data. Use of an α term and multi-parent transforms improved the collage
error, suggesting that multi-parent based techniques are able to uncover k-space self-
similarity. The use of domain block isometries (or geometric maps), overlapping domain
blocks, and other standard fractal techniques [20] (modified for a same-scale affine trans-
form) should further improve our results.

Establishing connections between self-similar and AR modeling theory provides new
avenues for future investigation. Further relationships between self-similar, AR, and
physical parameters can be made. Ultimately however, concepts established in this chap-
ter are part of an overall research programme to use self-similarity to perform k-space
extrapolation. Extension of mathematical results from Section 8.2 into two dimensions
and use of multi-parent self-similar techniques explored in Section 8.3 may enable new
approaches to the extrapolation of Fourier data, thereby providing a means of spatial
domain resolution enhancement.
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Chapter 9

Further Developments on the AR

Modeling and Self-Similarity of

MR Fourier Data

Results presented in the previous chapter represented original research the author recently
published [67]. A number of recent experiments and extensions that have been made on
the work presented in that chapter and are presented here. The work in this chapter
represents preliminary research. It is hoped, however, that these developments will be
useful for future researchers who may be interested in making further contributions to
this area.

9.1 Prony’s Method and the Separation of Exponentials

Problem

This section provides a more detailed review of Prony’s method than that provided in
Section 4.1.3. The discussion here provides a basis for the material presented later in this
chapter.

Let s(n) represent a measured signal consisting of Ns evenly spaced samples, of the
form

s(n) =
2N̂c∑
m=1

ĥme
−σ̂mn, ĥm, σ̂m ∈ C, n = 0, 1, 2, . . . , Ns − 1. (9.1)

We assume the parameters σ̂m are distinct, and that ĥm 6= 0 ∀ m ∈ [1, 2N̂c]. Prony’s
method [83] attempts to estimate the unknown parameters ĥm, σ̂m, and N̂c. The method
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fits a discrete model1

sNc(n) =
2Nc∑
m=1

hme
−σmn, hm, σm ∈ C, n = 0, 1, 2, . . . , Ns − 1, (9.2)

to the observed s(n) to find parameters Nc, hm and σm that best describe the measured
data, and so that s(n) = sNc(n).

Prony’s method first derives a linear prediction equation,

s(n) = −
2Nc∑
l=1

als(n− l), n = 2Nc, 2Nc + 1, 2Nc + 2, . . . , Ns − 1, (9.3)

based on Eq. 9.2 (see Appendix A.21 for derivation). The variables {al} are referred to
as the auto-regressive (AR) parameters, and are estimated by solving

r =


s(2Nc)

s(2Nc + 1)
...

s(2Nc +NP − 1)



=


s(2Nc − 1) s(2Nc − 2) . . . s(0)
s(2Nc) s(2Nc − 1) . . . s(1)

...
...

. . .
...

s(2Nc +NP − 2) s(2Nc +NP − 3) . . . s(NP − 1)



−a1

−a2

...
−a2Nc


= Da, (9.4)

which follows directly from Eq. 9.3. The parameter NP can be chosen so that 1 ≤ NP ≤
Ns − 1, and we see that D ∈ CNP×2Nc

It can be shown [49] that the row rank of D is 2Nc, so long as D has at least 2Nc

rows. Otherwise, D will have rank NP . Therefore, choosing NP < 2Nc, the above system
does not have a unique solution. If we choose NP = 2Nc, D will have full rank, and there
will be a unique solution to Eq. 9.4. Choosing 2Nc < NP ≤ Ns − 1, the system will be
overdetermined, but a minimum norm least squares solution may be found.

Once the parameters am have been estimated, σm may be found by finding the zeros,
zm ∈ C, of the polynomial (see Eq. A.69):

p(z) =
2Nc∑
m=0

amz
m, z ∈ C, a0 = 1. (9.5)

The zeros, zm ∈ C, provide the exponential parameters via zm = e−σm , so that

σm = − ln zm, m = 1, 2, 3, . . . , 2Nc − 1. (9.6)
1The negative signs in the exponents of Eq. 9.1 and 9.2 are simply included as a matter of convenience

for our derivations in the appendices.

90



Finally, the parameters hm are found by solving

s(NS − 1)
s(NS − 2)

...
s(1)
s(0)


=



z2NS−1
1 z2NS−1

2 . . . z2NS−1
2Nc

z2NS−2
1 z2NS−2

2 . . . z2NS−2
2Nc

...
...

. . .
...

z1 z2 . . . z2Nc

1 1 . . . 1





h1

h2

...
h2Nc−1

h2Nc


. (9.7)

This system follows from Eq. 9.2, and the change of variable zm = e−σm .

A one-dimensional frequency extrapolation method could use the linear prediction
equation (Eq. 9.3). The remaining steps of the Prony method (Eqs. 9.5 to 9.7), which
are useful for parameter identification problems, are (thus far) not needed for the analysis
in this chapter. These steps were merely included to provide a more complete review of
the Prony method.

Before developing connections between this method and MRI reconstruction, it should
also be noted that the separation of exponentials problem remains an open ended research
area, and has relevance in the NMR and MRI literature (see for example [4, 25]). The
interested reader is also referred to a beautifully written thesis [52] recently completed
at the University of Waterloo on the separation of exponential problems related to NMR
data. Prony’s method for solving separation of exponential problems is well described in
[97], page 1404 of [45], and in a textbook by Lanczos [51].

9.2 Further Developments of Prony Modeling of MR Data

This section provides recent results on the Prony modeling of MR data. Section 4.1.3
developed a one-dimensional piecewise constant (boxcar) model for the proton density of
the object being imaged. We first provide two extensions of this model: a one-dimensional
piecewise linear model, and a two-dimensional piecewise constant model.

9.2.1 1D Piecewise Linear Model

In the piecewise linear model the proton density can be expressed as:

ρNc(x) =
Nc∑
m=1

cmΛ
(
x− xm

∆x

)
, Λ(x) =


1 + x, −1 ≤ x ≤ 0
1− x, 0 ≤ x ≤ 1
0, else

, (9.8)

and xm = (m − 1 − Nc/2)∆x, m = 1, 2, 3, . . . , Nc. The proton density, ρNc(x), in this
case is represented by a sum of overlapping triangle functions, each centered at xm, with
base width 2∆x (Fig. 9.1).
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Figure 9.1: The proton density in Eq. 9.8 is expressed as a sum of Nc triangle functions, each
centred at xm = (m− 1−Nc/2)∆x.

Fourier Transformation of the 1D piecewise linear model leads to2:

PNc(kx) =
∫
ρNc(x)e−2πikxxdx

=
∫ Nc∑

m=1

cmΛ
(
x− xm

∆x

)
e−2πikxxdx

=
Nc∑
m=1

cme
−2πixmkx

∫
Λ
(
x

∆x

)
e−2πikxxdx

= sinc2(∆xkx)∆x
Nc∑
m=1

cme
−2πixmkx . (9.9)

This expression may be put in the form (see Appendix A.22):

PNc(kx) =
−1

4∆xπ2k2
x

3Nc∑
m=1

dme
iφmkx , dm ∈ C, φm ∈ R. (9.10)

Multiplication by −4∆xπ2k2
x, and sampling this function NS times with a regular sample

spacing yields

s
(1)
Nc

(n) = −4∆xπ2n2PNc(n)

=
3Nc∑
m=1

dme
iφmn, n = 0, 1, 2, . . . , NS − 1. (9.11)

The superscript (1) is used to distinguish this signal from sNc , which was derived with a
piecewise constant model in Section 4.1.3. Parameter sets {dm} and {φm} are defined in
Appendix A.22.

It can be shown (with a similar derivation as that provided in Appendix A.21) that

s
(1)
Nc

(n) = −
3Nc∑
l=1

als
(1)
Nc

(n− l), n = 2Nc, 2Nc + 1, 2Nc + 2, . . . , Ns − 1. (9.12)

Comparing this equation to Eq. 4.9, which was derived using a piecewise constant model,
two immediate observations can be made. We see that an additional Nc prediction

2The Fourier Transform of Λ(x) = Π(x) ∗Π(x), is sinc2(kx), by the convolution theorem.
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coefficients are needed to construct the linear prediction relation. Additionally, to put this
equation into a discrete, complex trigonometric polynomial form, we multiplied PNc(n)
by a quadratic function, instead of a linear function. As the SNR of MRI Fourier data
decreases at higher frequencies, we expect this piecewise linear model to be more sensitive
to noise. As simple as this analysis is, it has, to the author’s best knowledge, not been
presented in the MRI literature.

9.2.2 2D Piecewise Constant Model

The two-dimensional piecewise constant model, expresses the proton density of the data
as a sum of piecewise constant functions3:

ρNc(x, y) =
Nc∑

m1=1

Nc∑
m2=1

cm1,m2Π
(
x− xm1

∆x

)
Π
(
y − ym2

∆y

)
. (9.13)

For simplicity, we assume xm1 = (m1 − Nc/2)∆x, and ym2 = (m2 − Nc/2)∆y. The 2D
Fourier Transform of this model yields:

PNc(kx, ky) =
∫ ∫ Nc∑

m1,m2=1

cm1,m2Π
(
x− xm1

∆x

)
Π
(
y − ym2

∆y

)
e−2πi(kxx+kyy)dxdy

=
Nc∑

m1,m2=1

cm1,m2

∫
Π
(
x− xm1

∆x

)
e−2πikxxdx

∫
Π
(
y − ym2

∆y

)
e−2πikyydy

= ∆x∆ysinc(∆xkx)sinc(∆yky)
Nc∑

m1=1

Nc∑
m2=1

cm1,m2e
−2πi(xm1kx+ym2ky).

Using the definition of the sinc function, this equation becomes

PNc(kx, ky) =
sin(∆xπkx) sin(∆yπky)

π2kxky

Nc∑
m1=1

Nc∑
m2=1

cm1,m2e
−2πi(xm1kx+ym2ky). (9.14)

Multiplication by −4π2kxky yields

sNc(kx, ky) = −4π2kxkyPNc(kx, ky)

= −4 sin(∆xπkx) sin(∆yπky)
Nc∑

m1=1

Nc∑
m2=1

cm1,m2e
−2πi(xm1kx+ym2ky). (9.15)

The factor of −4 is removed in the following step, where sNc(kx, ky) is expressed as a sum
of complex exponentials (see Appendix A.23 for derivation):

sNc(kx, ky) =
2Nc∑
m1=1

2Nc∑
m2=1

dm1,m2e
iζm1kxeiξm2ky . (9.16)

3This is a two-dimensional version of Eq. 4.6.
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Sampling this function NS times along the kx and NS times along the ky direction yields

sNc(m,n) = −4π2mnPNc(m,n)

=
2Nc∑
m1=1

2Nc∑
m2=1

dm1,m2e
iζm1meiξm2n, (9.17)

where m,n = 0, 1, 2, . . . , NS − 1. It has been shown [3] that signals of this form have a
two-dimensional linear prediction equation4:

sNc(m,n) = −
p1∑
p=1

q1∑
q=1

ap,qsNc(m− p, n− q). (9.18)

This equation is valid for m = p1, p1 + 1, . . . , NS , and n = q1, q1 + 1, . . . , NS .

Eq. 9.18 suggests that a two-dimensional linear prediction equation may be used to
extrapolate MRI data. Previous works on data extrapolation and reconstruction in MRI
that use ARMA models have only used one-dimensional models which are applied on
each row (or column) of the frequency data matrix separately. We may find that a fully
2D approach would perform better than methods that have been previously implemented
in the literature. Eq. 9.18 also suggests that, as we had for the one-dimensional case, the
frequency data possess a natural self-similarity that may be used for image processing
procedures. Indeed, a number of future research directions are suggested by Eq. 9.18, a
partial list of which is provided in Section 10.3.2.

4The proof of this result presented in [3] essentially follows that presented in [97] and Appendix A.21

for the one-dimensional case.
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Chapter 10

Conclusions

This thesis has investigated three broad research areas under the common underlying
theme of spatial resolution enhancement in MRI in the Fourier domain. This chapter
simply reviews the contributions made to each of these areas and offers possible directions
for future research.

10.1 MASRMRI

Chapter 5 explored the use of SRMRI with multiple acquisitions related by spatial trans-
lations in the frequency encoding (FE) direction. Prior to the author’s publication [66] of
the research presented in Chapter 5, there existed some debate in the literature as to the
efficacy of this approach. This thesis does not claim that SR with multiple acquisitions
related by spatial translations in this specific encoding direction is impossible. However,
conclusions reached in Chapter 5 state that the amount of new information after the first
is relatively small, and can be difficult to detect in the presence of noise. Furthermore,
most of the new information can be related to an increase in the field-of-view, and not to
information at higher frequencies beyond what is measured.

10.1.1 Contributions

1. Conclusions reached in Chapter 5 help explain why SRMRI experiments in the FE
direction have not met with success [11], and suggests that this particular approach
may not be viable for resolution enhancement in MRI. It is hoped that these con-
clusions will point future researchers working on resolution enhancement in MRI
towards more promising research directions that are more likely to make significant
contributions to SRMRI.
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2. The work presented in Chapter 5 may help emphasize to future researchers in
MR reconstruction the importance of having an accurate physical model of the
data that is being used. As pointed out throughout Chapter 5, much of the work
carried out on MASRMRI in the FE and PE directions by various research groups
ignored key signal processing steps of the acquisition process. The means by which
measured MRI data is acquired and subsequently processed must be understood
before any assumptions can be made as to its nature. Particular details relating
to the acquisition process can determine the efficacy of a particular processing
technique.

3. Results presented in Chapter 5 were published in the LNCS series [63], in the
European Society for Magnetic Resonance in Medicine and Biology 2006 conference
proceedings [64], and in MRI [66].

10.1.2 Future Work

There are at least two possible avenues for further research in SRMRI with multiple
acquisitions.

1. Further research in MASRMRI could improve the efficacy of techniques imple-
mented along the SE direction. One possible area of research for this would be
to investigate the use of known information about the pulse sequence used. Incor-
porating the PSF, which can be determined from pulse sequence parameters (see
discussion in Section 3.2.3), may help the image reconstruction in such an experi-
ment. Published research in this area [18, 31, 32, 33, 46, 47, 71, 79, 80] has only
made use of a PSF that was assumed to be given by Π(x) or by a Gaussian function,
with no physical basis for this choice.

2. Another MASRMRI technique that has been recently published [75] implements
multiple translations using multiple radiofrequency coils. Although initial exper-
imental results look promising, it is not immediately obvious why this approach
would yield images with higher spatial resolution. Indeed, new information is in-
troduced in each acquisition by extending the FOV. However, as with SR in the FE
and PE directions, information is only recorded over the same frequency band in
each image. An investigation, similar to what is presented in Chapter 5 (and pub-
lished in MRI [66]) exploring the nature of the new information in each acquisition
could be considered1.

1Without access to MRI data acquired with multiple RF coils, perhaps a simple letter to the editor

could be submitted, as was the case for the FE and PE SR models [82, 90].

96



10.2 The IFTS Operator

A fractal-based, conditionally-contractive IFTS operator over complex-valued functions
was derived in Chapter 7. This operator was derived from the well-established, spatial
domain IFSM operator. Properties of the IFTS operator were described, and the operator
was used to extrapolate simulated data for the purpose of spatial resolution enhancement.

10.2.1 Contributions

1. The IFTS operator introduced in Chapter 7 was the first of its kind, in that most
work carried out on fractal operators have worked in either the spatial or wavelet
domains [20, 73]. The IFTS operator works directly on complex data, and is derived
from the IFSM operator.

2. Several properties of the IFTS operator, listed in Section 7.2, were introduced.
Conditions for this operator to be contractive were provided.

3. The work presented in Chapter 7 established several relationships between the
Fourier domain IFTS and spatial domain IFSM operator from which it was de-
rived:

(a) The spatial domain IFSM operator expresses a function as a sum of scaled,
shifted, spatially-contracted copies of itself. The IFTS operator expresses a
Fourier domain function as a sum of scaled, modulated, frequency-expanded
copies of itself2.

(b) The fixed point of the IFTS operator is the Fourier Transform of the fixed
point of the corresponding IFSM operator.

(c) The IFTS and IFSM operators posses the same Lipschitz constant in the L2

metric.

4. Work presented in Chapter 7 was published in the LNCS series [65].

10.2.2 Future Work

The work carried out in Chapter 7 could be extended to two dimensions. However,
comparing the work presented in Chapters 7 and 8, there is currently no connection
to the physics of the MRI data acquisition process that would suggest that the IFTS
operator could be used for frequency extrapolation. There is, however, a physical basis
for linear prediction and self-similarity for frequency extrapolation of MR data that was
described in Section 8.2.

2This is a consequence of the Fourier scaling theorem, Table 2.2.
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Any future work on the IFTS operator should connect this operator to a physical
model of measured data to provide an explanation for why it could be used for frequency
extrapolation (or any other application in signal or image processing). Until then, there
may be more value in pursuing further research on the material presented in Chapters 8
and 9, based, perhaps, on recommendations made in Section 10.3.2.

10.3 Self-Similarity and ARMA Modeling in SRMRI

Chapter 8 explored the self-similarity of a 1D physical model of MRI data, as well as
the self-similarity of measured 2D Fourier data. Results presented in Chapter 8 were
developed further in Chapter 9, where a 1D piecewise linear and a 2D piecewise constant
model were considered. In each case, it was shown that these models lead to linear
prediction relations in k-space.

10.3.1 Contributions

1. A connection was established between 1D ARMA methods and self-similar, multi-
parent methods (Eq. 8.7). This connection suggests that a physical justification for
the use of multi-parent methods in k-space exists.

2. The 1D and 2D linear prediction models suggest that frequency extrapolation could
be obtained using self-similarity. Chapter 8 established a model in 2D that needs
to be further explored to implement a fully 2D algorithm for extrapolation.

3. Methods for measuring and displaying the self-similarity of k-space MRI data were
explored. It was found that some degree of self-similarity of this data can be found
using multi-parent operators.

4. Work presented in Chapter 8 was published in the LNCS series [67]. Work presented
in Chapter 9 remains unpublished, but may be helpful for future researchers working
in SRMRI.

10.3.2 Future Work

Many directions for future research were discovered that are based upon the results pre-
sented in Chapter 8. As the research results therein do not explore the extrapolation of
MR k-space data, the following items outline a set of research goals that may eventually
lead towards a viable approach to spatial resolution enhancement.

1. The most immediate step in furthering the research results in Chapters 8 and 9,
would be a development of a method to determine the parameters for the 2D AR
model of Eq. 9.18.
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2. A study of the stability of 2D linear prediction relations would be essential for de-
veloping practical extrapolation procedures. Any algorithm that determines AR
coefficients would ideally do so in a way that could be used for a stable 2D extrap-
olation.

3. Once a method for determining parameters for the 2D AR model has been es-
tablished (item 1 of this list), numerical simulations in two dimensions should be
performed. These simulations would test methods of determining AR parameters
and using these parameters for frequency extrapolation.

4. Provided a stable, and reasonably accurate implementation of a 2D algorithm can
be obtained, this technique could be implemented on MRI phantom and human
brain data.

There are also other research directions that can be taken, not considered in this
thesis, that do not necessarily relate to frequency extrapolation.

1. Further experiments involving the CEPH, presented in Section 8.3 could be ex-
plored. The filter, −4π2kxky, presented in Eq. 9.15, when applied to the 2D model
of the proton density allowed the data to be linearly predictable. It may be easy to
show, as in the 1D case, sNc(kx, ky) is self-similar.

2. A more precise connection between self-similar and physical parameters could be
made via Prony modeling. This would provide a connection between self-similar
methods and parameter estimation, which may be helpful for proving theorems or
uncovering new applications of self-similarity in image processing.

3. Research on the use of self-similarity for denoising MRI data could be explored. The
use of multi-parent transforms for denoising spatial domain data has been studied
[28]. The combination of linear prediction relations and self-similar methods may
yield interesting results for the denoising of k-space data.
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Appendix A

Derivations

A.1 Properties of the Discrete Extrapolation Problem

The purpose of this appendix is to provide a brief description of the discrete extrapolation
problem for Section 1.2, and to show that this problem is ill-posed. Indeed, an important
concept in the discrete spatially-limited (SL) extrapolation problem is that the solution
is not unique1. To demonstrate this property, we require the use of two matrices that
will model frequency limiting and spatial limiting operators on frequency domain discrete
signals. Consider the matrix R = {ri,j}, where i, j ∈ Z, and

ri,j =
sin(π(i− j)R)

π(i− j)
, R ∈ R.

Matrix R is an infinite Toeplitz matrix and is a spatially limiting operator on discrete
frequency domain signals.

Discrete frequency domain truncation is modeled with the matrix K = {ki,j}, with
elements

ki,j =

{
1 i = j, −N ≤ i ≤ +N
0 otherwise

, N ∈ Z+.

The matrix K has dimensions (2N + 1)×∞.

Now let us consider a continuous, SL signal, strue(k), where k ∈ R. This signal is
sampled at regular intervals to produce sd(n), where n ∈ Z. Application of matrix K to
the infinite vector sd(n) yields the truncated signal, sd,N (n):

sd,N (n) = Ksd(n), n ∈ Z. (A.1)

That is, sd,N is a vector of infinite length, whose central 2N + 1 points are equal to s(n),
and elsewhere the elements of sm are zero.

1The discussion in this appendix follows that presented in [42].
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The measurment of a SL discrete signal sd,N (n), n ∈ Z, is modelled with Eq. A.1.
However, since sd is spatially limited, we also have that sd = Rsd:

sd,N = KRsd, (A.2)

where KR is a rectangular matrix with dimensions (2N+1)×∞. Therefore, KR has rank
of at most 2N + 1. Eq. A.2 represents an underdetermined system of equations. The
solution to this system, and hence the solution to the discrete extrapolation problem, is
non-unique.

A.2 Sampling of The Measured Signal, F (k)

The purpose of this appendix is to prove Eq. 2.8. The sampled Fourier domain signal,
F̂ (k), can be expressed as, for all k ∈ R:

F̂ (k) = F (k)III(
k

∆k
)

= F (k)
+∞∑

n=−∞
δ
( k

∆k
− n

)
= F (k)

+∞∑
n=−∞

δ
(
(k − n∆k)

1
∆k
)
.

However, because of the scaling property of the Dirac delta function [38], δ(k/∆k) =
∆kδ(k), we may write this as:

F̂ (k) = F (k)
+∞∑

n=−∞
∆kδ(k − n∆k)

= ∆k
+∞∑

n=−∞
F (n∆k)δ(k − n∆k). (A.3)

We have completed our proof of Eq. 2.8.
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A.3 IFT of Infinitely Sampled Frequency Data

The purpose of this appendix is simply to prove Eq. 2.11, which is the inverse Fourier
transform of a discretized function in frequency space, defined over the entire real line:

f̃(x) =
∫ ∞
−∞

F̃ (k)ei2πkxdk, ∀ x ∈ R, k ∈ R,

=
∫ ∞
−∞

III
( k

∆k
)
Π
( k

2kmax

)
F (k)ei2πkxdk

=
∫ ∞
−∞

N
2
−1∑

n=−N
2

F (k)δ(
k

∆k
− n)ei2πkxdk

=
∫ ∞
−∞

N
2
−1∑

n=−N
2

F (k)δ
(
(k − n∆k)

1
∆k
)
ei2πkxdk

= ∆k

N
2
−1∑

n=−N
2

F (n∆k)ei2πn∆kx (sifting theorem). (A.4)

Eq. A.4 is Eq. 2.11, thereby completing our proof.

A.4 Derivation of Precession with Quantum Mechanical

Principles

The purpose of this Appendix is to derive Eq. 3.19. Using the Schrödiner solution for a
proton, (Eq. 3.17), the y-component of the expectation value of ~µ is:

< µy(t) > =< Ψ|µy(t)|Ψ >

=
∫ ( ∑

m=±1/2

Cmψme−iEmt/~
)∗
γJy

( ∑
m=±1/2

Cmψme−iEmt/~
)
dV

=
γ~V

2

( ∑
m=±1/2

Cmψme−iEmt/~
)∗
σy

( ∑
m=±1/2

Cmψme−iEmt/~
)

=
γ~V

2

[
+ iC∗−ψme+iE−t/~,−iC∗+ψme+iE+t/~

] ∑
m=±1/2

Cmψme−iEmt/~

=
γ~V

2

[
− iC∗+C−e−i(E−−E+)t/~ + iC∗−C+e

+i(E−−E+)t/~
]
, (A.5)

where C+ = C+1/2, C− = C−1/2, E+ = E+1/2, E− = E−1/2. Using the relation E−−E+ =
~ω0 (Eq. 3.9), we find that

< µy(t) > =
~γV

2
[−iC∗+C−e−iω0t + iC∗−C+e

+iω0t]

= ~γV Real
{
iC∗−C+e

+iω0t
}
. (A.6)
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For convenience, we introduce the following polar coordinate representation:

C+ = a+e
iα+ , C− = a−e

iα− , (A.7)

where a± is the magnitude of C±. The normalization condition on the total probability
implies a condition on the complex coefficients, Cm:

1 =< Ψ|Ψ >

=
∫

Ψ†ΨdV

= Ψ†ΨV

= V
∑
m

∑
n

C∗nCmψ
†
nψme

i
~ (En−Em)t, (A.8)

which leads to:

V
∑
m

|Cm|2 = 1. (A.9)

A combination of Eqs. A.9 and A.7 leads to:

1 = V (a2
+ + a2

−), (A.10)

which is satisfied by a+ = 1√
V

cos θ, and a− = 1√
V

sin θ, for some fixed θ ∈ [0, 2π). Hence,
Eq. A.6 becomes:

< µy(t) > = ~γV Real
{
ia−a+e

−iα−+iα++iω0t
}

= ~γReal
{
i sin θ cos θe−iα−+iα++iω0t

}
= γ~ sin θ cos θ

{
− sin(−α− + α+ + ω0t)

}
=
γ~
2

sin 2θ sin(α− − α+ − ω0t)

=
γ~
2

sin 2θ sin(φ0 − ω0t), (A.11)

where φ0 = α− − α+. We have completed our proof of Eq. 3.19.

A.5 Derivation of the z-Component of the Moment Expec-

tation in a Time Varying RF Field

The purpose of this appendix is to derive Eq. 3.26. Using Eqs. 3.6 and 3.7, the Hamil-
tonian for a proton at rest in the given RF field (Eq. 3.21) is:

H(t) = −~µ · ~B(t)

= −γ~S · ~B(t)

= −γ~
2
~σ · ~B(t)

= −γ~
2
[
σzB0 + (σx cosωrf t)B1 − (σy sinωrf t)B1

]
. (A.12)

103



The Schrödinger equation (Eq. 3.16) becomes:

i~
∂Ψ
∂t

= HΨ

= −γ~
2
[
σzB0 + (σx cosωrf t)B1 − (σy sinωrf t)B1

]
Ψ

= −γ~
2

[(
B0 0
0 −B0

)
+

(
0 B1 cosωrf t

B1 cosωrf t 0

)

−

(
0 −iB1 sinωrf t

iB1 sinωrf t 0

)]
Ψ

= −~
2

(
ω0 ω1e

+iωrf t

ω1e
−iωrf t ω0

)
Ψ. (A.13)

The constant ω=γB1 is a parameter set by the scanner operator. We assume a general
form for the wave function:

Ψ =

(
ψ1(t)e+iω0t/2

ψ2(t)e−iω0t/2

)
. (A.14)

We may set the acquisition parameter, ωrf , equal to the hydrogen precession frequency
for the given applied magnetic field, ω0. Substitution of Eq. A.14 into Eq. A.13 yields
the following set of coupled differential equations:

dψ1

dt
=
iω1

2
ψ2(t) (A.15)

dψ2

dt
=
iω1

2
ψ1(t). (A.16)

Solutions to these equations may be found through differentiation:

d2ψ1

dt2
=
iω1

2
dψ2

dt
= −ω

2
1

4
ψ1(t) (A.17)

d2ψ2

dt2
=
iω1

2
dψ1

dt
= −ω

2
1

4
ψ2(t). (A.18)

These equations yield general solutions for the wave functions:

ψ1(t) = c1 cos
ω1t

2
+ c2 sin

ω1t

2
(A.19)

ψ2(t) = c3 cos
ω1t

2
+ c4 sin

ω1t

2
. (A.20)

To find the complex coefficients, we may substitute these solutions into Eq. A.15 and
Eq. A.16:

dψ1

dt
=

d

dt

(
c1 cos

ω1t

2
+ c2 sin

ω1t

2
)

=
ω1

2
(
− c1 sin

ω1t

2
+ c2 cos

ω1t

2
)

=
iω1

2
(
− ic2 cos

ω1t

2
+ ic1 sin

ω1t

2
)
.
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By comparing this relation to Eqs. A.15 and A.20, we see that:

c3 = −ic2 , c4 = ic1. (A.21)

We may obtain a more convenient form for these coefficients from the normalization
condition on the wave function:

1 = < Ψ|Ψ >

=
∫

Ψ∗ΨdV

= V
[
|ψ1(t)|2 + |ψ2(t)|2

]
(A.22)

Substitution of Eqs. A.19, A.20 into this relation yields (and using Eq. A.21):

1 = V
[
|c1|2 + |c2|2

]
(A.23)

This relation is satisfied by:

c1 =
1√
V

cos
Θ
2

e−iφ1 , c2 =
1√
V

sin
Θ
2

e−iφ2 . (A.24)

The expectation value of the z-component of the angular momentum, < µz > may now
be calculated:

< µz(t) > = < Ψ|µz|Ψ >

=
∫
V

Ψ∗µzΨdV

=
γ~V

2
Ψ∗σzΨ

=
γ~V

2
[
ψ∗1(t),−ψ∗2(t)

][
ψ1(t), ψ2(t)

]T
=

γ~V
2
[
|ψ1(t)|2 − |ψ2(t)|2

]
. (A.25)

Using Eqs. A.19 and A.20, we obtain:

< µz(t) > =
γ~V

2

{[
|c1|2 cos2(

ω1t

2
) + |c2|2 sin2(

ω1t

2
) +

(c1c
∗
2 + c∗1c2) cos

ω1t

2
sin

ω1t

2
]
−[

|c2|2 cos2(
ω1t

2
) + |c1|2 sin2(

ω1t

2
)− (c1c

∗
2 + c∗1c2) cos

ω1t

2
sin

ω1t

2
]}

=
γ~V

2

{(
|c1|2 − |c2|2)(cos2 ω1t

2
− sin2 ω1t

2
)
−

2
(
c1c
∗
2 + c∗1c2

)(
cos

ω1t

2
sin

ω1t

2
)}

=
γ~V

2

[(
|c1|2 − |c2|2) cosω1t−

(
c1c
∗
2 + c∗1c2

)
sinω1t

]
. (A.26)

105



Use of Eq. A.24 yields:

< µz(t) > =
γ~V

2

[ 1
V

(
cos2 Θ

2
− sin2 Θ

2

)
cosω1t−

1
V

(
cos

Θ
2

sin
Θ
2

eiφ1−iφ2 + cos
Θ
2

sin
Θ
2

eiφ2−iφ1

)
sinω1t

]
=

γ~
2

[
cos Θ cosω1t−

1
2

sin Θ sin(ω1t)(eiφ1−iφ2 + eiφ2−iφ1)
]

=
γ~
2

[
cos Θ cosω1t− sin Θ sin(ω1t) cos(φ1 − φ2)

]
=

γ~
2

[
cos Θ cosω1t− sin Θ sin(ω1t) cos Φ

]
, (A.27)

where Φ = φ1 − φ2. We have therefore completed our proof of Eq. 3.26.

A.6 Derivation of the z-Component of the Equilibrium Mag-

netization

The purpose of this appendix is to prove Eq. 3.34 from Eq. 3.32. Recall that Eq. 3.32
provides the z-component of the thermal equilibrium value of Mz for a magnetic number
ms:

M0 = ρ

s∑
ms=−s

P (ε(ms))µz(ms),

where ρ is the density of spins per unit volume in the homogeneous isochromat volume
V . Using Eq. 3.8, we have that:

ε = −ms~ω0 , and µz = mγ~. (A.28)

Thus,

M0 =
Nγ~
V

∑s
ms=−smse

msu∑s
ms=−s e

msu
, u =

~ω0

kT
. (A.29)

This expression may be simplified by making an approximation. We see that u represents
a ratio of two energies: the nuclear magnetic energy of the system, ~ω0, and its thermal
energy, kT . In MR, the magnetic energies are significantly smaller than room-temperature
thermal energies2:

~ω0 � kT ⇒ u� 1 ⇒ emsu ≈ 1 +msu.

2A simple calculation yields u ≈ 1.0214× 10−5 radians at T = 300K and B0 = 1.5T.
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We therefore use a Taylor expansion of emsu to simplify Eq. A.29:

M0 = ργ~
∑s

ms=−smse
msu∑s

ms=−s e
msu

, ρ =
N

V

= ργ~
∑s

ms=−sms(1 +msu)∑s
ms=−s(1 +msu)

, because ~ω � kT

= ργ~
u
∑s

ms=−sm
2
s

(2s+ 1)
, because

s∑
ms=−s

ms = 0

= ρ
γ2~2

kT

2
∑s

ms=0m
2
s

(2s+ 1)
B0

= ρ
γ2~2

kT

2s(s+ 1)(2s+ 1)/6
(2s+ 1)

B0

= ρ
s(s+ 1)γ2~2

3kT
B0. (A.30)

For a proton, s = 1/2, and this expression simplifies to:

M0 ≈ ρ
γ2~2

4kT
B0. (A.31)

We have therefore completed our proof of Eq. 3.34.

A.7 Derivation of the Demodulated Signal

The purpose of this appendix is to derive Eq. 3.42 from Eq. 3.39. This derivation is a
mathematical model of the process of demodulation, or phase-sensitive detection (PSD).
Our derivation is carried out in one spatial dimension, but can very easily be extended
to higher dimensions, if desired.

PSD is carried out in a series of steps. The signal is first split into two channels, each
channel is multiplied by either a sine or cosine function, and finally, an LPF is applied
to each channel. The demodulated signal may be derived by multiplying Eq. 3.39 (for
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simplicity, consider only one spatial dimension) by 2[sin(ω0t) + icos(ω0t)]:

2[sin(ω0t) + icos(ω0t)]sm(t) = 2[sin(ω0t) + icos(ω0t)]
∫
M⊥(x, 0)sin(ω0t+ φG)dx

= 2
∫
M⊥(x, 0)[sin(ω0t)sin(ω0t+ φG)+

icos(ω0t)sin(ω0t+ φG)]dx

=
∫
M⊥(x, 0)[cos(φG)− cos(2ω0t+ φG)+

isin(2ω0t+ φG)− isin(−φG)]dx

=
∫
M⊥(x, 0)[cos(φG)− cos(2ω0t+ φG)+

isin(2ω0t+ φG) + isin(φG)]dx

=
∫
M⊥(x, 0)[eiφG − e−i(2ω0t+φG)]dx. (A.32)

Convolving with the low-pass filter (LPF) A(t) yields sd(t):

sd(t) = A(t) ∗
{

2[sin(ω0t) + icos(ω0t)]sm(t)
}

= A(t) ∗
∫
M⊥(x, 0)[eiφG − e−i(2ω0t+φG)]dx.

Because the LPF, A(t), is engineered to remove the high frequency term3, e−i(2ω0t+φG),
we may simplify this expression:

sd(t) ≈ A(t) ∗
∫ +∞

−∞
M⊥(x, 0)eiφGdx. (A.33)

Furthermore, as A(t) is designed to be a LPF, it will (ideally) not distort the low frequency
component of the signal, so that

sd(t) ≈
∫ +∞

−∞
M⊥(x, 0)eiφGdx. (A.34)

Thus, the expression for the demodulated signal as expressed in Eq. 3.42 has been
obtained. The processing steps that have been used in this derivation are displayed in
Fig. 3.2.

A.8 Derivation of the Slice Encoding Equation

The purpose of this section is to derive Eq. 3.45 from the Bloch equations using a standard
set of RF pulses and gradient fields. This appendix requires the use of Appendix A.9 to
derive the Bloch equations in the rotating frame with a rotating B1(t) RF field.

3 Applying a LPF, A(t), to Eq. A.32 easily removes the second sinusoidal term, as ω0t is typically a

few orders of magnitude greater than φG(x, t), for all (x, t).
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We begin with the Bloch equation for a given (x, y, z) coordinate:

d ~M

dt
(t) = ~M × γ ~B(t),

and consider a particular radiofrequency (RF) pulse applied in the transverse plane:

~B1(t) =
ω1(t)
γ

[cos(ωrf t)̂i− sin(ωrf t)ĵ]

= B1(t)[cos(ωrf t)̂i− sin(ωrf t)ĵ].

This RF pulse, together with the main magnetic field4, ~B0 = B0k̂, leads to the following
first order system of differential equations:

d ~M

dt
(t) = ~M × γ

[
B1(t)(cos(ωrf t)̂i− sin(ωrf t)ĵ) +B0k̂

]
=

 0 ω0 ω1(t) sinωrf t
−ω0 0 ω1(t) cosωrf t

−ω1(t) sinωrf t −ω1(t) cosωrf t 0


 Mx

My

Mz

 . (A.35)

This system of differential equations can be solved to determine the trajectory of the net
magnetization in the presence of the applied fields. The solution to this system describes
a magnetization vector being tipped away from the z-axis and into the transverse plane,
allowing for a signal to be measured (as we will soon see).

To solve this system, it is convenient to change the coordinate system into one rotating
about the z-axis at frequency ωrf . After changing to a rotating coordinate system, we
obtain the following differential system (see Appendix A.9):

d ~Mrot(t)
dt

= ~Mrot ×
[
ω1(t)̂irot +

(
ω0 − ωrf

)
k̂rot

]
=

 0 ω0 − ωrf 0
−(ω0 − ωrf ) 0 ω1(t)

0 −ω1(t) 0


 Mx,rot(t)

My,rot(t)
Mz,rot(t)

 . (A.36)

It is helpful to note that if we set ωrf = ω0, and if the RF pulse is designed to be constant
over a time interval t ∈ [0, Trf ], the solution to this system is simply: Mx,rot(t)

My,rot(t)
Mz,rot(t)

 =

 1 0 0
0 cosω1t sinω1t

0 − sinω1t cosω1t


 Mx,rot(0)

My,rot(0)
Mz,rot(0)

 , t ∈ [0, Trf ].

This solution describes a rotation5 of the vector ~Mrot(t) about îrot(t).
4We are assuming that the main magnetic field is spatially invariant and static. See [34], chapters 20

and 27, for discussion of magnetic field inhomogeneities and main magnet coil design.
5The RF pulse can be thought of as a screwdriver, rotating ~Mrot(t) away from the z-axis.
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Note that our solution is still not spatially dependent. However, the differential system
from which it was derived may be changed by adding a gradient, ~G(z, t) = Gz(t)zk̂, that
will permit spatial localization. With this gradient, the system becomes:

d ~Mrot(z, t)
dt

= ~Mrot × γ
[
B1(t)̂irot +

(
B0 +Gzz − ωrf/γ

)
k̂rot

]
=

 0 ω0 − ωrf + γGzz 0
−(ω0 − ωrf + γGzz) 0 ω1(t)

0 −ω1(t) 0


 Mx,rot

My,rot

Mz,rot

 .

Again, if we set ωrf = ω0, then our system may be simplified:

d ~Mrot(z, t)
dt

=

 0 γGzz 0
−γGzz 0 ω1(t)

0 −ω1(t) 0


 Mx,rot

My,rot

Mz,rot

 .

We have completed our proof of Eq. 3.45.

A.9 The Bloch Equation in the Rotating Frame

The purpose of this appendix is to derive Eq. A.36. Let us define vectors ~Mrot =
[Mx,rot,My,rot,Mz,rot] and ~Brot = [Bx′ , By′ , Bz′ ], which represent vectors ~M and ~B in the
rotating frame:

~M = Mxî+My ĵ +Mzk̂

= Mx,rotîrot +My,rotĵrot +Mz,rotk̂rot

= ~Mrot, (A.37)

and:

~B = Bxî+By ĵ +Bzk̂

= Bx′ îrot +By′ ĵrot +Bz′ k̂rot

= ~Brot. (A.38)

Differentiating A.37 with respect to time yields6:

d ~M(t)
dt

=
dMx,rot

dt
îrot +

dMy,rot

dt
ĵrot +

dMz,rot

dt
k̂rot +

Mx,rot
dîrot
dt

+My,rot
dĵrot
dt

+Mz,rot
dk̂rot
dt

(A.39)

6For our particular set of applied fields, we see that dk̂rot
dt

is actually zero. We have kept this term in

our derivations simply to maintain generality.
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If we introduce the vector ~Ωrf = ωrf k̂, we can easily verify that:

dîrot
dt

= îrot × ~Ωrf ,
dĵrot
dt

= ĵrot × ~Ωrf ,
dk̂rot
dt

= k̂rot × ~Ωrf . (A.40)

For convenience, we introduce the following notation for a primed derivative:(d ~Mrot(t)
dt

)′
=
dMx,rot

dt
îrot +

dMy,rot

dt
ĵrot +

dMz,rot

dt
k̂rot. (A.41)

Thus, Eq. A.39 becomes:

d ~M(t)
dt

=
(d ~Mrot(t)

dt

)′
+Mx,rotîrot × ~Ωrf +My,rotĵrot × ~Ωrf +Mz,rotk̂rot × ~Ωrf

=
(d ~Mrot(t)

dt

)′
+
(
Mx,rotîrot +My,rotĵrot +Mz,rotk̂rot

)
× ~Ωrf

=
(d ~Mrot(t)

dt

)′
+ ~Mrot(t)× ~Ωrf . (A.42)

Therefore: (d ~Mrot(t)
dt

)′
=
d ~M(t)
dt

− ~Mrot(t)× ~Ωrf

= ~M(t)× γ ~B(t)− ~Mrot(t)× ~Ωrf

= ~Mrot(t)× γ ~Brot(t)− ~Mrot(t)× ~Ωrf

= ~Mrot(t)× γ
(
~Brot(t)− ~Ωrf/γ

)
. (A.43)

If the total applied magnetic field, ~Brot(t) is given by:

~B(t) = ~B1(t) + ~B0

= B1(t)
(

cos(ωrf t)̂i+ sin(ωrf t)ĵ
)

+B0k̂

= B1(t)̂irot +B0k̂

= ~Brot(t),

then Eq. A.43 becomes:(d ~Mrot(t)
dt

)′
= ~Mrot(t)× γ

(
~Brot(t)− ~Ωrf/γ

)
= ~Mrot(t)×

(
ω1(t)̂irot + (ω0 − ωrf )k̂

)
. (A.44)

We have therefore completed our proof of Eq. A.36.

A.10 Derivation of the Fourier Transform Model of the MR

Signal Equation

This appendix is simply a derivation of Eq. 3.50 from Eq. 3.47:

sd(t) =
∫ ∫

Mz0(x, y)exp[iφG(x, y, t)]dxdy.
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Here we use a two (spatial) dimensional model, but our derivation can easily be extended
to one or three spatial dimensions.

Consider again the Larmor equation, which relates the spin frequency to the applied
magnetic field at time t and position (x, y),

ω(x, y, t) = γB(x, y, t). (A.45)

From Eq. 3.48, we can obtain a relationship between spin frequency and the gradient
fields:

ωG(x, y, t) = γBG(x, y, t)

= γ(Gx(t)x+Gy(t)y)

= γ~r · ~G(t). (A.46)

Finally, to make a connection between the phase, φ(x, y, t), and spin frequency, we inte-
grate Eq. A.46 with respect to time to obtain:

φG(x, y, t) = −
∫ t

0
ωG(x, y, τ)dτ

= −
∫ t

0
γBG(x, y, τ)dτ

= −γ~r ·
∫ t

0

~G(τ)dτ, (A.47)

where the components of the time integrated gradient fields are:∫ t

0

~G(t′)dt′ =
[ ∫ t

0
Gx(t′)dt′,

∫ t

0
Gy(t′)dt′

]
. (A.48)

We may now obtain the desired expression for the demodulated signal in terms of the
magnetic field gradients by substituting Eq. A.47 into Eq. 3.47:

sd(t) =
∫ ∫

Mz0(x, y)exp[iφG(x, y, t)]dxdy

=
∫ ∫

Mz0(x, y)exp[−iγ~r ·
∫ t

0

~G(τ)dτ ]dxdy.

Using a simple change of variables (Eq. 3.51), yields the desired Eq. 3.50.
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A.11 One-dimensional k-Space Model of the Merged Data

We will now derive Eq. 5.13. In the spatial domain, the merged data, g(j∆x) can be
expressed as (Eq. 5.12):

g(j∆x/2) =

{
l(j∆x/2, 0), j = 0, 2, 4, · · · , J − 2
l
(
(j − 1)∆x/2,∆x/2

)
, j = 1, 3, 4, · · · , J − 1

= lz(j∆x, 0) + lz
(
(j − 1)∆x,∆x/2

)
, (A.49)

where J = 2Nl, and:

lz(j∆x, 0) =

{
l(j∆x/2, 0), j = 0, 2, 4, · · · , J − 2
0, j = 1, 3, 4, · · · , J − 1

lz(j∆x,∆x/2) =

{
l(j∆x/2,∆x/2), j = 0, 2, 4, · · · , J − 2
0, j = 1, 3, 4, · · · , J − 1

.

We will denote the DFT of lz(j∆x, r) by Lz(m∆k, r), m = −Nl,−Nl + 1, · · · , Nl − 1.
We require an expression for Lz(m∆k, r) in terms of L(m∆k, r). Recall that by using a
discrete set of x values, we have made the assumption that L(m∆k, r) is periodic, with
period Nl∆k:

L(m∆k, r) = L
(
(m+Nl)∆k, r

)
, m = −Nl/2,−Nl/2 + 1, · · · , Nl/2− 1.

It can be shown that by performing the IDFT on L(m∆k, r) with 2Nl points, rather than
Nl points yields lz(m∆x, r) (see Appendix A.12 or [39, 62] for derivation):

Nl−1∑
m=−Nl

L(m∆k, r) exp
(

+ 2πij
m

2Nl

)
= lz(j∆x, r), j = 0, 1, 2, · · · 2Nl − 1. (A.50)

It follows that:

Lz(m∆k, r) = L(m∆k, r), m = −Nl,−Nl + 1, · · · , Nl − 1.

Since L(m∆k, r) has a period of Nl∆k, it follows that Lz(m∆k, r) also has a period of
Nl∆k. Using the discrete Fourier shift theorem and taking the DFT of Eq. A.49 yields:

G(m∆k) = Lz(m∆k, 0) + e2πi∆x
2
m∆kLz(m∆k,∆x/2), m ∈ [−Nl, Nl − 1]

=


Lz(m∆k, 0) + e2πi∆x

2
m∆kLz(m∆k,∆x/2), m ∈ [−Nl,−Nl/2− 1]

Lz(m∆k, 0) + e2πi∆x
2
m∆kLz(m∆k,∆x/2), m ∈ [−Nl/2, Nl/2− 1]

Lz(m∆k, 0) + e2πi∆x
2
m∆kLz(m∆k,∆x/2), m ∈ [Nl/2, Nl − 1]

=


Lz(m∆k, 0) + e2πi m

2NlLz(m∆k,∆x/2), m ∈ [−Nl,−Nl/2− 1]

Lz(m∆k, 0) +
[
Lz(m∆k, 0)− dL(m∆k,∆x/2)

]
, m ∈ [−Nl/2, Nl/2− 1]

Lz(m∆k, 0) + e2πi m
2NlLz(m∆k,∆x/2), m ∈ [Nl/2, Nl − 1]

.
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Eqs. 1.5 and 5.10 were used in the last simplification. For notational convenience, we
introduce the following sets:

N1 = [−Nl,−Nl/2− 1]

N2 = [−Nl/2, Nl/2− 1]

N3 = [Nl/2, Nl − 1].

Using that Lz(m∆k,∆x/2) is periodic with period Nl∆k, we may then write:

G(m∆k) =


Lz((m+Nl)∆k, 0) + e2πi m

2NlLz((m+Nl)∆k,∆x/2), m ∈ N1

2Lz(m∆k, 0)− dL(m∆k,∆x/2), m ∈ N2

Lz((m−Nl)∆k, 0) + e2πi m
2NlLz((m−Nl)∆k,∆x/2), m ∈ N3

=


Lz((m+Nl)∆k, 0) + e2πi

m+Nl−Nl
2Nl Lz((m+Nl)∆k,∆x/2), m ∈ N1

2Lz(m∆k, 0)− dL(m∆k,∆x/2), m ∈ N2

Lz((m−Nl)∆k, 0) + e2πi
m+Nl−Nl

2Nl Lz((m−Nl)∆k,∆x/2) m ∈ N3

=


Lz((m+Nl)∆k, 0) + e2πi

m+Nl
2Nl e2πi

−Nl
2Nl Lz((m+Nl)∆k,∆x/2), m ∈ N1

2Lz(m∆k, 0)− dL(m∆k,∆x/2), m ∈ N2

Lz((m−Nl)∆k, 0) + e2πi
m−Nl

2Nl e2πi
+Nl
2Nl Lz((m−Nl)∆k,∆x/2), m ∈ N3

=


Lz((m+Nl)∆k, 0)− e2πi

m+Nl
2Nl Lz((m+Nl)∆k,∆x/2), m ∈ N1

2Lz(m∆k, 0)− dL(m∆k,∆x/2), m ∈ N2

Lz((m−Nl)∆k, 0)− e2πi
m−Nl

2Nl Lz((m−Nl)∆k,∆x/2), m ∈ N3

.

Using that Lz((m+Nl)∆k, r) = Lz(m∆k, r) for all r, and Lz(m∆k, r) = L(m∆k, r) for
m ∈ [−Nl/2, Nl/2− 1] and all r, we can write:

G(m∆k) =


dL((m+Nl)∆k, 0), m ∈ [−Nl,−Nl/2− 1]
2L(m∆k, 0)− dL(m∆k,∆x/2), m ∈ [−Nl/2, Nl/2− 1]
dL((m−Nl)∆k, 0), m ∈ [Nl/2, Nl − 1]

.

We have completed our proof of Eq. 5.13.

A.12 DFT of the Merged Data

The purpose of this appendix is to prove Eq. A.50. Let l1(m), m = 0, 1, 2, · · · , Nl, be a
discrete signal. We design a new sequence l1,z(n) with Nh samples, where 2Nl = Nh, by
interleaving zeros in l1(m):

l1,z(n) =

{
l1(n2 ) n = 0, 2, 4, · · · , Nh − 2
0 n = 1, 3, 5, · · · , Nh − 1

. (A.51)
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To obtain the discrete Fourier Transform (DFT) of l1,z(n), we use the inverse DFT (IDFT)
of l1(n2 ):

l1(
n

2
) =

Nl−1∑
k=0

L1(k)exp(+i2π
n

2
k

Nl
), n = 0, 2, 4, · · · , Nh − 2. (A.52)

The vector L1(k) is the DFT of l1(n), where k = 0, 1, 2, · · · , Nl. To calculate the DFT of
l1,z(n), we use the weighting factor w(n):

w(n) =

{
1 n even
0 n odd

=
1
2

[1 + exp(iπn)]. (A.53)

Combining Eqs. A.51, A.52, and A.53, we obtain:

l1,z(n) =

{
l1(n2 ), n = 0, 2, 4, · · · , Nh − 2
0, n = 1, 3, 5, · · · , Nh − 1

= l1(
n

2
)w(n), n = 0, 1, 2, · · · , Nh − 1

=
1
2

Nl−1∑
k=0

L1(k)exp(+i2π
n

2
k

Nl
)[1 + exp(iπn)], n = 0, 1, 2, · · · , Nh − 1

=
1
2

Nl−1∑
k=0

L1(k)[exp(+i2π
nk

2Nl
) + exp(+i2π

n

2Nl
(k +Nl))], n = 0, 1, 2, · · · , Nh − 1

(A.54)

However, 2Nl = Nh, and L1(k) is periodic with period Nl (this can be verified from
the definition of the DFT of l1(n)), so that L1(k) = L1(k − Nl). Therefore, for n =
0, 1, 2, · · · , Nh − 1, Eq. A.54 becomes:

l1,z(n) =
1
2

Nl−1∑
k=0

L1(k){exp(+i2π
nk

Nh
) + exp[+i2π

n

Nh
(k +Nl)]}

=
1
2

Nl−1∑
k=0

L1(k)exp(+i2π
nk

Nh
) +

1
2

Nl−1∑
k=0

L1(k)exp[+i2π
n

Nh
(k +Nl)]

=
1
2

Nl−1∑
k=0

L1(k)exp(+i2π
nk

Nh
) +

1
2

Nh−1∑
k=Nl

L1(k −Nl)exp(+i2π
n

Nh
k)

=
1
2

Nh−1∑
k=0

L1(k)exp(+i2π
nk

Nh
). (A.55)

Thus, if L1,z(k) is the DFT of l1,z, then:

L1,z(k) =
1
2
L1(k), ∀ k ∈ Z. (A.56)
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However, the period of L1,z is Nh, while the period of L1 is only Nl. In other words, the
spectrum of 2l1,z is the same as that of l1, but the extents of their spectrums are different
by a factor of two (assuming that ∆k = 1). Thus, interleaving zeros in the discrete signal
l1 stretches its spectral extent from Nl to Nh.

A.13 A k-Space Interpretation for Why dL is Small

We will now offer an explanation for why dL can be small that involves the k-space
representation of this quantity. Often in NMR, the bandwidth of the anti-aliasing filter is
much larger than the bandwidth of the measured signal [29]. In this case, the convolution
integral may be approximated by s(k):∫ δk

−δk
s(km − κ)A(κ/BWread)dκ ≈ s(km),

and dL(km, rn) becomes:

dL(km, rn) = L(km, 0)−R(km,−rn)L(km, rn)

=
∫ δk

−δk
s(km − κ)R(km − κ, 0)A(κ)dκ

−R(km,−rn)
∫ δk

−δk
s(km − κ)R(km − κ, rn)A(κ)dκ

=
∫ δk

−δk
s(km − κ)A(κ)dκ

−R(km,−rn)
∫ δk

−δk
s(km − κ)R(km − κ, rn)A(κ)dκ

≈ s(km)−R(km,−rn)s(km)R(km, rn)

= 0.

Numerical simulations and experiments with real MRI data were carried out to study
the extent to which this approximation is valid. The results of these experiments are
described throughout Chapter 5.

A.14 Spatial Domain Interpretation for Why EdL is Small

The purpose of this section is to prove Eq. 5.16a, which is derived in the limit as δk goes
to infinity. We will first consider k to be a continuous parameter, and later discuss the
effects of finite sampling. The expression for the energy of dL(k, rn) for this case can be
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written as:

EdL(rn) =
∫ ∞
−∞
|dL(k, rn)|2dk

=
∫ ∞
−∞
|dl(x, rn)|2dx

=
∫ ∞
−∞
|a(x)− a(x− rn)|2|ρ̂(x)|2dx.

Parseval’s energy theorem [8] was used in this derivation. The function ρ̂(x) is the proton
density convolved with a sinc function

ρ̂(x) = 2kmax
∫ ∞
−∞

ρ(x′)sinc
(
2kmax(x− x′)

)
dx′,

and ρ(x) is the one-dimensional proton density of the object. If we again use A(k) =
sinc

(
k

∆k

)
, we can easily obtain Eq. 5.16a.

We have shown that the EdL can be small relative to the energy of L(k, 0) for con-
tinuous k. Sampling dL prior to calculating its energy will not increase the value of EdL,
i.e.: ∫ ∞

−∞
|dL(k, rn)|2dk ≤

∫ ∞
−∞
|dL(km, rn)|2dk, m = 0, 1, 2, · · ·Nl − 1.

A.15 Continuity of Contraction Maps

The purpose of this appendix is to prove that:

dX(x̄f , x̄g) 6
1

1− cf
dCon(X)(f(x), g(x)), ∀ x ∈ X,

which is a result of Theorem 2, in Section 6.1.2. To prove this inequality, we first introduce
the point z = f(x̄g). Then,

dX(x̄f , x̄g) 6 dX(x̄f , z) + dX(z, x̄g), (by the triangle inequality)

= dX(x̄f , f(x̄g)) + dX(f(x̄g), x̄g)

6 cfdX(xf , xg) + dX(f(x̄g), x̄g), (by contractivity)

= cfdX(xf , xg) + dX(f(x̄g), g(x̄g))

= cfdX(xf , xg) + dCon(X)(f, g), (by definition).

By rearranging this inequality, we obtain the desired result:

dX(x̄f(x), x̄g(x)) 6
1

(1− cf )
dCon(X)(f, g).
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A.16 Contractivity Condition for Fractal Transform

The purpose of this appendix is to prove Eq. 6.5:

‖ Tu− Tv ‖p ≤ Cp ‖ u− v ‖p, Cp =
N∑
m=1

|sm|1/p|αm|.

Recall the definition of the fractal transform, Eq. 6.3:

(T̂ u)(x) =
N∑
m=1

[
αmu(w−1

m (x)) + βm
]
IXm(x).

Substitution yields:

‖ Tu− Tv ‖p =‖
N∑
m=1

[
αmu(w−1

m (x)) + βm
]
IXm −

N∑
m=1

[
αmv(w−1

m (x)) + βm
]
IXm ‖p

=‖
N∑
m=1

αmu(w−1
m (x))IXm −

N∑
m=1

αmv(w−1
m (x))IXm ‖p

=
(∫ { N∑

m=1

αm[u(w−1
m (x))− v(w−1

m (x))]IXm

}p
dx
)1/p

.

Making the substitution y = w−1
m (x) implies x = wm(y) = smy + am, and dx = smdy:

‖ Tu− Tv ‖p =
(∫ { N∑

m=1

αm[u(y)− v(y)]IXm

}p
smdy

)1/p

≤
N∑
m=1

|sm|1/p|αm|
(∫ {

[u(y)− v(y)]IXm
}p
dy
)1/p

= Cp ‖ u− v ‖p .

We have completed our proof of Eq. 6.5. We see that the IFSM operator has the Lipschitz
constant

Cp =
N∑
m=1

|sm|1/p|αm|. (A.57)

A.17 Derivation of the IFTS Operator

The purpose of this appendix is to derive Eq. 7.6, which is found in Section 7.2. This
equation describes relationship between the Fourier Transforms U and V . To make this
connection, we first substitute the expression for the fractal transform (Eq. 6.3) into the
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definition of the Fourier Transform (Eq. 7.5):

V (k) =
Nmaps∑
m=1

αm

∫ ∞
−∞

e−2πikxu(w−1
m (x)) dx

+
Nmaps∑
m=1

βm

∫ ∞
−∞

e−2πikxIXm(x) dx. (A.58)

We assume that u vanishes outside the interval X = [−xmax, xmax]. In the first set
of integrals, we make the change of variable y = w−1

m (x), implying that x = wm(y) =
smy + am and dx = sm dy. The first set of integrals becomes∫ ∞

−∞
e−2πikxu(w−1

m (x)) dx = sm

∫
X
e−2πik(smy+am)u(y) dy

= sme
−2πiamk

∫ ∞
−∞

e−2πismkyu(y) dy

= sme
−2πiamkU(smk). (A.59)

We now consider the integral: ∫ ∞
−∞

e−2πikxIXm(x) dx. (A.60)

To evaluate this integral, we express IXm(x) in terms of the rect function:

IXm(x) =

{
1, x ∈ Xm

0, x /∈ Xm

=

{
1, |x− am| ≤ smxmax
0, |x− am| > smxmax

= Π
( x− am

2smxmax

)
= Π

(x− am
σm

)
, σm = 2smxmax.

Here we used that Xm is the interval centered at am with full width of 2smxmax, and the
following definition for Π(x):

Π(x) =

{
1, |x| ≤ 1/2
0, |x| > 1/2

,
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whose Fourier Transform is known. Eq. A.60 becomes:∫ ∞
−∞

e−2πikxIXm(x) dx =
∫ ∞
−∞

Π
(x− am

σm

)
e−2πikx dx, σm = 2smxmax

=
∫ ∞
−∞

Π
( x′
σm

)
e−2πik(x′+am) dx′, x′ = x− am

= e−2πiamk

∫ ∞
−∞

Π
( x′
σm

)
e−2πikx′ dx′

= σme−2πiamk

∫ ∞
−∞

Π(x′′)e−2πiσmkx′′ dx′′, x′′ =
x′

σm

= σme−2πiamk sin(πσmk)
πσmk

= σme−2πiamksinc(σmk). (A.61)

Combining Eqs. A.58, A.59, and A.61, yields

V (k) =
Nmaps∑
m=1

αm

∫ ∞
−∞

e−2πikxu(w−1
m (x)) dx+

Nmaps∑
m=1

βm

∫ ∞
−∞

e−2πikxIXm(x) dx

=
Nmaps∑
m=1

αmsme
−2πiamkU(smk) +

Nmaps∑
m=1

βmσme−2πiamksinc(σmk)

=
Nmaps∑
m=1

e−2πiamk
[
αmsmU(smk) + βmσmsinc(σmk)

]
.

We have completed our proof of Eq. 7.6.

A.18 Proof That the IFTS Operator Maps L2(R) to Itself

The purpose of this appendix is to prove that M̂ maps L2(R) to itself, which is item 1
on page 72. Using the definition of the IFTS operator,

||V ||2 = ||MU ||2

=
∣∣∣∣Nmaps∑

m=1

e−2πiamk
[
αmsmU(smk) + βmσmsinc(σmk)

]∣∣∣∣
2

≤
∑
m

[
|αm||sm|

∣∣∣∣U(smk)
∣∣∣∣

2

]
+
∑
m

[
|βm||σm|

∣∣∣∣sinc(σmk)
]∣∣∣∣

2
, (A.62)

by using the triangle inequality. From a change of variable,

||U(smk)||2 =
(∫ [

U(smk)
]2
dk
)1/2

=
(∫ [

U(t)
]2 dt
sm

)1/2
, t = smk

= |sm|−1/2||U(k)||, (A.63)
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and similarily

||sinc(σmk)||2 = |σm|−1/2||sinc(k)||2. (A.64)

We therefore have the result

||V || ≤
∑
m

[
|αm||sm|1/2

]
||U ||+

∑
m

[
|βm||σm|1/2

]
||sinc(k)|| <∞, (A.65)

because U and the sinc function are both in L2(R). Therefore V is in L2(R), and M̂

maps functions in L2(R) to itself.

A.19 Derivation of CIFTS,p

The purpose of this appendix is to prove that the IFTS operator has the Lipschitz constant
(see Eq. 7.7)

‖ M̂U(k)− M̂V (k) ‖p ≤ CIFTS,p ‖ U(k)− V (k) ‖p

CIFTS,p =
N∑
m=1

|sm|1+1/p|αm|.

Recall the definition of the IFTS operator, Eq. 7.6:

V (k) =
Nmaps∑
m=1

e−2πiamk
[
αmsmU(smk) + βmσmsinc(σmk)

]
.

Substitution yields

‖ M̂U(k)− M̂V (k) ‖p =‖
Nmaps∑
m=1

e−2πiamk
[
αmsmU(smk) + βmσmsinc(σmk)

]
−

Nmaps∑
m=1

e−2πiamk
[
αmsmV (smk) + βmσmsinc(σmk)

]
‖p

=‖
Nmaps∑
m=1

e−2πiamkαmsm

[
U(smk)− V (smk)

]
‖p

=
(∫ {Nmaps∑

m=1

e−2πiamkαmsm

[
U(smk)− V (smk)

]}p
dk
)1/p

≤
(∫ Nmaps∑

m=1

{
e−2πiamkαmsm

[
U(smk)− V (smk)

]}p
dk
)1/p

=
Nmaps∑
m=1

|αmsm|
(∫ [

U(smk)− V (smk)
]p
dk
)1/p

.
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Making the substitution y = smk implies k = y/sm, so that

‖ M̂U(k)− M̂V (k) ‖p ≤
Nmaps∑
m=1

|αmsm||sm|−1/p
(∫ [

U(y)− V (y)
]p
dy
)1/p

≤
Nmaps∑
m=1

|αm||sm|1−1/p ‖ U − V ‖p

= CIFTS,p ‖ U − V ‖p .

We have arrived at our proof of Eq. 7.7. We see that the Lipschitz constant for the IFTS
operator

CIFTS,p =
Nmaps∑
m=1

|αm||sm|1−1/p,

is equal to the Lipschitz constant for the IFSM operator (Eq. A.57) only for the p = 2
case.

A.20 The Mathematical Connection Between Self-Similar

and Autoregressive Based Methods

Here we provide a short but key derivation of Eq. 8.7. Using Eqs. 4.9 and 8.3:

r = [r(0), r(1), r(2), ....., r(NP − 1)]

= [−
2Nc∑
m=1

ams(Nm),−
2Nc∑
m=1

ams(Nm + 1), . . . ,−
2Nc∑
m=1

ams(NS − 1−m)]

= −
2Nc∑
m=1

am[s(Nm), s(Nm + 1), . . . , s(NS − 1−m)]

= −
2Nc∑
m=1

amdm.

where Nm = NS −NP −m.

A.21 Derivation of the One-Dimensional Linear Prediction

Equation

The purpose of this appendix is to derive Eq. 9.3 from Eq. 9.2. This particular proof
can be found in the literature [83, 97], but is referred to in several sections of this thesis.
For example, the 1D piecewise constant and piecewise linear, as well as the 2D piecewise
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constant models (discussed in Sections 4.1.3, and 9.2), make reference to the following
derivation.

To begin, we first define a new variable

zm = e−σm , m = 1, 2, 3, . . . , 2Nc − 1, (A.66)

using the unknown σm values. Eq. 9.2 becomes:

sNC (n) =
2Nc∑
m=1

hmz
n
m, hm, σm ∈ C, n = 0, 1, 2, . . . , Ns − 1. (A.67)

We also construct the polynomial

p(z) = Π2Nc
m=1(z − zm), (A.68)

and the polynomial coefficients am, such that

p(z) = Π2Nc
m=1(z − zm) =

2Nc∑
m=0

amz
m, (A.69)

where a2Nc = 1. We see that p(zl) = 0, for any integer l = 0, 1, 2, . . . , 2Nc, and will use
this property shortly.

We may construct the following sum:

2Nc∑
l=0

alsNC (n− l), n = 2Nc, 2Nc + 1, 2Nc + 2, . . . , Ns − 1. (A.70)

We find that this new entity is always equal to zero, because

2Nc∑
l=0

alŝ(n− l) =
2Nc∑
l=0

al

2Nc∑
m=1

hmz
n−l
m

=
2Nc∑
l=0

al

2Nc∑
m=1

hme
−σm(n−l)

=
2Nc∑
m=1

hme
−σmn

2Nc∑
l=0

ale
σml

=
2Nc∑
m=1

hme
−σmnp(zm)

= 0,

because p(zm) = 0 for any integer m ∈ [0, 2NC ], as noted above. We therefore have that

0 =
2Nc∑
l=0

alsNC (n− l)

= a0sNC (n) +
2Nc∑
l=1

alsNC (n− l).
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Simple rearrangement yields (assume a0 6= 0)

sNC (n) = −
2Nc∑
l=1

al
a0
sNC (n− l), n = 2Nc, 2Nc + 1, 2Nc + 2, . . . , Ns − 1.

A simple change of variables yields Eq. 9.3.

A.22 Derivation of the One-Dimensional Piecewise Linear

Model in Complex Trigonometric Polynomial Form

The purpose of this appendix is to prove Eq. 9.10. Starting with Eq. 9.9:

PNC (kx) = sinc2(∆xkx)∆x
NC∑
m=1

cme
iν , ν = −2πxmkx.

Using the identity sin θ = 1
2i(e

iθ − e−iθ), this becomes

PNC (kx) =
1

∆xπ2k2
x

sin2(πkx)
NC∑
m=1

cme
iν

=
−1

4∆xπ2k2
x

(eiθ − e−iθ)2
NC∑
m=1

cme
iν , θ = πkx

=
−1

4∆xπ2k2
x

(e2iθ + e−2iθ − 2)
NC∑
m=1

cme
iν

=
−1

4∆xπ2k2
x

NC∑
m=1

cm[ei(ν+2θ) + ei(ν−2θ) − 2eiν ]

=
−1

4∆xπ2k2
x

3NC∑
m=1

dme
iφmkx ,

where

φm =


ν + 2θ = −2π(xm + ∆x), m = 1, 2, . . . , NC

ν − 2θ = −2π(xm −∆x), m = NC + 1, NC + 2, . . . , 2NC

ν = −2πxm, m = 2NC + 1, 2NC + 2, . . . , 3NC

dm =


cm, m = 1, 2, . . . , NC

cm−NC , m = NC + 1, NC + 2, . . . , 2NC

−2cm−2NC , m = 2NC + 1, 2NC + 2, . . . , 3NC

.

We have derived Eq. 9.10.
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A.23 Derivation of the Two-Dimensional Piecewise Con-

stant Model in Discrete Complex Trigonometric Poly-

nomial Form

The purpose of this appendix is to derive Eq. 9.16, from Eq. 9.14:

sNC (kx, ky) = −4 sin(∆xπkx) sin(∆yπky)
NC∑
m1=1

NC∑
m2=1

cm1,m2e
−2πi(xm1kx+ym2ky).

For notational convenience, introduce the variables:

θx = π∆xkx, θy = π∆xky, νx = −2πxm1kx, νy = −2πxm2ky.

Using the identity sin θ = −0.5i(eθi − e−θi), Eq. 9.14 becomes:

sNC (kx, ky) = −4sin(θx)sin(θy)
NC∑
m1=1

NC∑
m2=1

cm1,m2e
iνx+iνy

= (eiθx − e−iθx)(eiθy − e−iθy)
NC∑
m1=1

NC∑
m2=1

cm1,m2e
iνx+iνy

=
NC∑
m1=1

NC∑
m2=1

cm1,m2 [ei(νx+θx) + ei(νx−θx)][ei(νy+θy) + ei(νy−θy)]

=
2NC∑
m1=1

2NC∑
m2=1

dm1,m2e
iζm1kxeiξm2ky ,

where

ζm1 =

{
νx + 2θx = −2π(xm1 + ∆x), m1 = 1, 2, . . . , NC

νx − 2θx = −2π(xm1 −∆x), m1 = NC + 1, NC + 2, . . . , 2NC

ξm2 =

{
νy + 2θy = −2π(ym2 + ∆y), m2 = 1, 2, . . . , NC

νy − 2θy = −2π(ym2 −∆y), m2 = NC + 1, NC + 2, . . . , 2NC

.

A simple relation can be derived that relates cm1,m2 to dm1,m2 . Otherwise, we have
completed our proof of Eq. 9.16.
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Appendix B

Algorithms and Examples

B.1 Application of Prolate Spheroidal Wave Functions for

Extrapolation

The purpose of this section is to provide some insight into how extrapolation can be
performed with Prolate Spheroidal Wave Functions (PSWF’s). This appendix expands
upon the discussion in Section 4.1.1.

The PSWF’s can be defined as the solution to the integral equation [61, 76, 91]:

λnψn(t) = R

∫ +kmax

−kmax
ψn(τ)sinc[R(k − τ)]dτ. (B.1)

The λn’s are the eigenvalues, and 0 ≤ n ≤ ∞. R is the known spatial extent of the
measured data. Several important properties of PSWF’s will be presented in order to
explain how they may be used for extrapolation (proofs of these properties may be found
throughout the literature [21, 76, 91]).

1. Given kmax ∈ R, kmax > 0, and R ∈ R, R > 0, we can find a countably infinite
set of real spatially-limited functions {ψn(k)} with spatial extent L and positive
eigenvalues λn ∈ R, n = 0, 1, 2, ..., such that 0 < λn < 1.

2. The set {ψn(k)} forms an orthonormal and complete basis in RR ⊂ L2(R), where

RR = {F (k)|F (k) =
∫ +R

2

−R
2

f(x)e−i2πkxdx, f ∈ L2(R)}.

3. The set {ψn(k)} forms an orthogonal and complete basis on k ∈ [−kmax,+kmax]:

∫ +kmax

−kmax
ψm(k)ψn(k)dk =

{
0,m 6= n

λn,m = n
.
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Now suppose that we are presented with the continuous spatially-limited extrapolation
problem, and the spatial extent of s(k) is known. Since {ψn(k)} forms an orthonormal
and complete basis for spatially limited functions in RR, s(k) can be written as a linear
combination of the basis functions {ψn(k)}:

s(k) =
∞∑
n=0

cnψn(k), ∀ k ∈ R. (B.2)

The functions {ψn(k)} are known for all k, but the coefficients cn are unknown and
need to be calculated. However, if the cn can be found, the PSWF series can be used to
determine ŝ(k) for all k. To determine the set of coefficients cn, consider the multiplication
of Eq. B.2 by ψm(k), followed by an integration:

∫ +kmax

−kmax
ψm(k)ŝ(k)dk =

∫ +kmax

−kmax
ψm(k)

∞∑
n=0

cnψn(k)dk, ∀ k ∈ R (B.3)

=
∞∑
n=0

cn

∫ +kmax

−kmax
ψm(k)ψn(k)dk (B.4)

= amλm. (B.5)

By rearranging the last equality, and using ŝ(k) = s(k) for k ∈ [−kmax,+kmax], we obtain

cn =
1
λn

∫ +kmax

−kmax
ψm(k)s(k)dk. (B.6)

Thus, by using Eqs. B.2 and B.6, we can uniquely determine ŝ(k) ∀ k with knowledge
of only s(k), k ∈ [−kmax,+kmax], and the spatial extent of ŝ(k), R.

This result may seem surprising! However, the PSWF algorithm presented here is
unstable. If we perturb the measured data with a small constant, ε, we obtain a new
expression for the coefficients:

c̃n = cn +
ε

λn

∫ +kmax

−kmax
ψm(k)dk. (B.7)

We denote the perturbed cn’s by c̃n. For small λn, the perturbation dominates the
calculation of ãn. Furthermore, it can be shown that λn can be ordered so that they
decrease monotonically for increasing values of n, and that the eigenvalues λn decay very
rapidly near n = 2kmaxR. Thus, 2kmaxR, is roughly the number of PSWF coefficients
that are used in practice.
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B.2 The Discrete PGA

In this chapter, we present several experiments that apply the discrete PG algorithm on
simulated data. A variety of data produced in the spatial and frequency domains were
synthesized to characterize the properties of this algorithm. Using these data sets, the
relevant parameters that defined the data and used in the DPGA were modified. The
results are reported below.

This appendix complements the discussion in Section 4.1.2.

B.2.1 Methods

A series of experiments were carried out on data generated in the spatial domain. In
these experiments, a discrete sequence of spatial domain data, h(n∆x), was produced,
where xn = −xmax + n∆x, n = 0, 1, 2, · · · , Nh − 1, and xmax = Nh∆x

2 . The sequence h
was assumed to be periodic with period Nh∆x. Specifically, h was chosen to be:

h(xn) = Π(
xn
R

), n = 0, 1, 2, · · · , Nh − 1. (B.8)

The number R is the spatial support of the signal. The DFT of h(n∆x) was used to
calculate H(n∆k), where ∆k is related to Nh and ∆x as in Eq. 2.13. Finally, the
measured low resolution data, L(n∆k), was produced by truncating H(n∆k):

L(n∆k) = Π(
n∆k
Nl∆k

)H(n∆k), n = 0, 1, 2, · · · , Nl − 1, (B.9)

and Nl < Nh. The PG algorithm was implemented by replacing the continuous functions
with vectors and the integration with a discrete summation in Eq. 4.4. The extrapolated
signal, Le,p(n∆k), where p is the iteration number, is given by:

Le,p+1(n∆k) = L(n∆k) + [1 + Π(
n∆k

2kmax
)]Restsinc(Restn∆k) ~ Le,p(n∆k)

Le,0(n∆k) = L(n∆k). (B.10)

The circled asterisk, ~, denotes cyclic discrete convolution which may be performed as a
multiplication in the spatial domain [8]. In some cases, it may not be possible to know
the true spatial extent, R, of the object being imaged, and so an estimate, Rest, of the
true spatial extent is used in the algorithm.

Several parameters were used to quantify the success of the DPGA. The average
absolute distance between Le,n and H in the frequency domain was measured at each
iteration:

Ek(n) =
1
Ne

∑
i

|Le,n(i∆k)−H(i∆k)|. (B.11)

The only terms included in Eq. B.11 were those that corresponded to extrapolated data.
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Several experiments were conducted to test the performance of the PG algorithm
using Eqs. B.8 and B.10. A simple initial experiment was implemented to demonstrate
the use of the DPGA to extrapolate frequency data (parameters used for this experiment
were R = Rest = 0.5, Nl = 16, Nh = 24, ∆k = 0.5). In this first experiment, 10,000
iterations were performed.

Several other experiments were performed to explore the effects on changing R, Rest,
and ∆k, Nl on the convergence of the algorithm. The effect of adding noise to L(n∆k)
with a normal distribution and variance of σ was also studied. The specific parameters
that were used for each of these experiments are given in Table B.1, and in each experiment
10,000 iterations were performed.

Other data sets were generated which were used to further explore the properties of
the DPGA. A data set consisting of multiple rect functions was generated:

h(xn) = Π(
xn
R

) + Π(
2xn
R

) + Π(
4xn
R

). (B.12)

For this experiment, R = Rest = 0.8, Nl = 16, Nh = 20, ∆k = 0.5, σ = 10−4.

Finally, the DPGA was also tested on the following signal:

H(kn) = sin(2πωkn). (B.13)

Here, kn = −kmax + n∆k, n = 0, 1, 2, · · · , Nh − 1, and kmax = Nh∆k
2 . Parameters used

were: ∆k = 0.5, Nl = 16, Nh = 20, and ω = 5.

B.2.2 Observations

Results obtained from changing R and Rest while holding all other experimental variables
constant are shown in Figure B.3a. Increasing R resulted in a longer convergence time.
Furthermore, the error in the extrapolated data slightly increased as R increased.

As shown in Figure B.3b, the PG algorithm was found to be very sensitive to under
estimations of R. Choosing a value of Rest that was smaller than R = 0.6 yielded a large
error. Choosing Rest > R resulted in longer convergence times and more error in the
extrapolation, but significantly less error than in the case when Rest < R.

As seen in Figure B.3c, changing the frequency sample spacing had no significant
effect on the convergence time or the error in the extrapolated signal.

Another experiment examined the effect of changing the measured frequency extent
while holding ∆k and Nh

Nl
constant. As shown in Figure B.3d, as Nl∆k was increased,

the error in the extrapolated result increased, and the convergence rate decreased.

When noise was added to the measured low-resolution data, L, two important ef-
fects occurred: the error in the extrapolated result increased, and the convergence time
decreased (see Figure B.3e). Indeed, the discrete PG algorithm is sensitive to noise.
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Figure B.1: Parameters used in experiments with the discrete PG algorithm.

Figure B.2: Simple application of the DPGA: a) a simulated data set was generated in the spatial
domain, and b) processed in the frequency domain. The squares represent the measured data,
L, and circles represent the extrapolated data, Le,1e4. The log10 of Ek(n) as a function of the
iteration number is shown in c).
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Figure B.3: The log10 of Ek(n) as a function of the log10 of the iteration number calculated
from the experiments listed in Fig. B.1 using the DPGA. Graphs are obtained from a) data with
varying spatial support lengths, b) varying the estimated spatial support lengths, c) varying the
frequency sample spacing, d) varying the measured spectral extent, e) varying the input noise
level, and f) varying the extrapolation length.

Figure B.4: Application of the DPGA to a data set made from multiple rect functions. Above
are results showing: a) the simulated data set in the spatial domain, and b) the discrete series
in the frequency domain. The squares represent the measured data, L, and circles represent the
extrapolated data, Le,4e4. The log10 of Ek(n) as a function of the iteration number is shown in
c).
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Figure B.5: Application of the DPGA to a frequency domain cosine function. Results show: a)
the simulated data set in the spatial domain, and b) the discrete series in the frequency domain.
The squares represent the measured data, L, and circles represent the extrapolated data, Le,2e4.
The log10 of Ek(n) as a function of the iteration number is shown in c).

Finally, Figs. B.4 and B.5 show results of applying the extrapolation algorithm when
multiple rect functions were used and when a cosine function were used, respectively. This
gives us some indication that the algorithm is capable of handling a variety of spatially
limited functions.

B.2.3 Discussion

From the experiments on the single rect function, it is apparent the DPGA is sensitive
to the estimated spatial support. Underestimating R can lead to an unacceptable result,
while overestimating R increases the convergence rate of the algorithm. This may be
important if R is very large relative to the spatial extent, Nh∆x, as shown in B.3a.

How the data is sampled affects the DPGA’s performance. While a decrease in ∆k
had little to no improvement in the final error, the measured frequency domain extent,
Nl∆k, can affect the overall convergence rate.

Finally, noise in the measured data can make a significant difference in the perfor-
mance of the DPGA. Figure B.3e shows that the error increases with σ, indicating that
a possible future direction may be to investigate techniques that are more noise tolerant.

B.3 Phase-Constrained Reconstruction

The purpose of this appendix is to describe phase-constrained reconstruction algorithms.
This discussion adds to the discussion in Section 4.1 of SRMRI techniques that employ
a single image.

Phase-constrained techniques incorporate the idea that, neglecting off-resonance arti-
facts and noise, the reconstructed data should be real. Ideally, the desired spatial domain
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signal represents the proton density, ρ(x), of the object being scanned. As noted in Eq.
3.41, ρ(x) is not only real, but also non-negative. These constraints, which are not ac-
counted for in the standard Fourier reconstruction, have been incorporated into a number
of MRI reconstruction algorithms [19, 37, 36, 53, 55, 60, 68, 100].

The Margosian Algorithm

A number of reconstruction techniques reconstruct the discrete image by using the as-
sumption that the spatial domain image has strictly no imaginary components, or has
zero phase. It can be shown that a real spatial domain data set has a Fourier spectrum
with Hermitian symmetry. Using this property of the Fourier Transform, one can acquire
data over only non-negative frequencies, and then use the complex conjugate of the known
data to fill in the negative frequency data. The image is then formed using an IDFT of
the completed data set.

The Margosian algorithm, which was first applied to MRI in 1986 [60], attempts to
employ this idea into an MRI reconstruction technique. Off-resonance artifacts such as
chemical shift artifacts, magnetic susceptibility artifacts [34, 55], and noise forces the
frequency domain data set to lose its conjugate symmetry in general. Reconstructing the
corrupted data with an IDFT yields an image that is not real, and thus has a non-zero
phase component. The Margosian algorithm attempts to estimate this phase component,
and uses this estimate to improve the reconstruction process. However, errors made in
the phase estimate have been found to restrict the efficacy of this approach.

For the interested reader, a brief desecription of the Margosian algorithm implemen-
tation is provided in Appendix B.4.

Phase-Constrained POCS

The Margosian reconstruction technique has been improved through using additional a
priori knowledge in the reconstruction process. The phase-constrained projection over
convex sets (PCPOCS) algorithm [36, 37, 68] uses a data-consistency constraint that
forces the extrapolated and measured data to be equal that on the region where the data
was measured in the frequency domain. In fact, the data consistency constraint that the
PCPOCS algorithm employs is the same as that used by the PG algorithm.

To implement the PCPOCS algorithm, an asymmetric data set is acquired and a phase
estimate is obtained, exactly as was done for the Margosian algorithm. The data is then
zero padded to create a symmetrical data set that can be brought into the spatial domain.
The data is then brought into the spatial domain with an inverse Fourier Transform, and
its phase is set equal to the phase estimate, φ̃(x). The PCPOCS algorithm then brings
the spatial domain data back into k-space and imposes a data consistency constraint.
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Specifically, the data on k ≥ 0 is set equal to L(k). This data set is then brought back to
the spatial domain, phase constrained, and the process repeats itself until a convergence
criterion is met.

B.4 The Margosian Algorithm

The purpose of this appendix is to provide a more detailed description of the Margosian
algorithm, briefly discussed in Section B.3. To describe the Margosian algorithm, consider
a one-dimensional frequency domain signal, H(k) ∈ L2(R), that is measured for non-
negative frequencies to produce L(k), k ∈ [0,∞):

L(k) =

{
0.5(sgn(k) + 1)H(k), k 6= 0
H(0), k = 0

. (B.14)

The signum function is defined as:

sgn(k) =

{
−1 k < 0
+1 k > 0

.

We wish to extrapolate the measured data L(k) using the Margosian algorithm to form
a new signal that is symmetrical in k-space.

Consider the inverse Fourier Transform of Eq. B.14:

l(x) = h(x) ∗ 0.5[δ(x) +
i

πx
]

= 0.5|h(x)|eiφ(x) + i0.5[|h(x)|eiφ(x)] ∗ 1
πx
. (B.15)

The functions l(x) and h(x) are the inverse Fourier Transforms of L(k) and H(k), and
h(x) = |h(x)|eiφ(x). If a reasonable estimate, φ̃(x), to φ(x) can obtained, φ̃(x) may be
used to phase correct Eq. B.14:

e−iφ̃(x)l(x) = 0.5|h(x)|ei(φ(x)−φ̃(x)) + i0.5e−iφ̃(x)[|h(x)|eiφ(x)] ∗ 1
πx
.

≈ 0.5|h(x)|ei(φ(x)−φ̃(x)) + i0.5[|h(x)|ei(φ(x)−φ̃(x)] ∗ 1
πx
. (B.16)

If our phase estimate is close to φ(x), we may obtain |h(x)|, the desired signal, with
2Real{e−iφ̃(x)l(x)}, where Real{f(x)} extracts the real part of f(x).

The Margosian algorithm is limited by the accuracy of the phase estimate which is in
turn limited by the degree to which noise and off-resonance sources have corrupted the
data. Various algorithms have been proposed to obtain the phase estimate with some
success, but the main drawback to this method is the sensitivity to artifacts in the data.
For some acquisition protocols (eg - spin echo methods) this algorithm produces useful
results. However, for most medical applications that can have a rapidly varying phase in
the image domain, this algorithm performs very poorly.
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Appendix C

Abbreviations

The following is a partial list of abbreviations and acronyms used in this thesis.

ADC Analog-to-digital converter

AR Autoregressive

ARMA Autoregressive moving average

CEPH Collage Error Probability Histogram

DFT Discrete Fourier Transform

DPGA Discrete Papoulis Gerchberg Algorithm

FE Frequency Encoding

fMRI Functional Magnetic Resonance Imaging

FOV Field of View

IDFT Inverse Discrete Fourier Transform

IFS Iterated Function System

IFSM Iterated Function System with Grey Level Maps

IFTS Iterated Fourier Transform System

LNCS Lecture Notes in Computer Science

LP Linear Prediction

LPF Low Pass Filter

MA Multiple Acquisitions

MR Magnetic Resonance

MRI Magnetic Resonance Imaging

NMR Nuclear Magnetic Resonance

PC Phase Constrained

PE Phase Encoding

List of abbreviations – continued on next page

135



List of abbreviations – continued from previous page

PG Papoulis Gerchberg

PGA Papoulis Gerchberg algorithm

POCS Projection onto Convex Sets

PSD Phase Sensitive Detection

PSF Point-spread function

PSWF Prolate Shperoidal Wave Function

RF Radiofrequency

SD Standard deviation

SE Slice Encoding

SL Support Limited

SNR Signal-to-noise ratio

SR Super-resolution

SRMRI Super-resolution MRI
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Appendix D

Mathematical Symbols

The following is a partial list of the functions and variables used in this thesis. Some of
the symbols are used for more than one purpose, and their meaning should be interpreted
in the context within the section or chapter it is found. Page numbers refer to where the
given symbol was defined or first used, if necessary.

αn 67 a parameter that defines the nth greyscale map
βn 67 a parameter that defines the nth greyscale map
γ 21 gyromagnetic ratio
δ(x) the Dirac delta function
δk 50 half-width of the anti-aliasing filer, A
∆ 74 collage distance
∆m 82 collage distance between a range block and the mth domain

block in D
∆k 50 spatial frequency sample spacing
∆x 1 spatial sample spacing in the x-direction
∆z 31 slice width
θ 22 an arbitrary real constant
Θ 24 an arbitrary real constant
ι 43 a PSF in an SRMRI experiment
λn 39 the eigenvalue of the PSWF ψn

Λ(x) 12 the triangle function
~µ 20 magnetic moment vector
νm 9 an arbitrary complex number
ρ 28 the proton density function
σm 72 a width parameter used in the IFTS definition

List of mathematical symbols – continued on next page
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List of mathematical symbols– continued from previous page

~σ 20 Pauli spin operator
φ 27 the phase due to a applied magnetic fields
φn 67 the nth greyscale map defining an IFS
φG 27 the phase due to a set of applied magnetic field gradients
φ0 22 an arbitrary phase
Φ 24 an arbitrary phase
ψm 39 the mth PSWF
ψ± 22 spin up/down eigenvectors
Ψ 22 general solution to the time-dependent Schrödinger differen-

tial equation
ω a radial frequency
ω0 radial frequency due to the main magnetic field, ω0 = γB0

ωrf 23 frequency at which the RF field rotates
Π(k) 12 the rectangle function
III(k) 12 the shah function
am 42 AR coefficients in Chapters 4, 8, 9
am 67 an IFS parameter in Chapters 6 and 7
a(x) 36 the anti-aliasing filter, in the spatial domain, that is employed

in a typical MRI acquisition sequence
A(k) 36,50 the anti-aliasing filter, in the frequency domain, that is em-

ployed in a typical MRI acquisition sequence
~B 19 total applied magnetic field vector
~Brot 110 the total applied magnetic field in the rotating frame
B0 19 magnitude of the main magnetic field vector
~B1 23 applied radiofrequency field vector
B1 23 magnitude of the applied radiofrequency field vector
BWread 3 the bandwidth in the readout direction
cf 63 contraction factor for a contractive mapping, f
cm 9 an arbitrary complex number
Cms 22 an arbitrary complex number
C(rn) 54 angle between L(km, 0) and R(km,−rn)L(km,+rn)
C the complex numbers
Con(X) 65 The set of all contraction maps in a given metric space, X
dn 55 a position parameter used for an SR simulation
D 82 the Domain pool, or set of domain blocks
dL 54 the difference between L(km, 0) and R(km,−rn)L(km, rn)
EdL 54 the l2 energy of dL

List of mathematical symbols – continued on next page
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List of mathematical symbols– continued from previous page

f(x) an arbitrary, possibly complex, function
F (x) the Fourier Transform of f(x)
F(f) 11 the Fourier Transform of f
g 43 the merged data set in an SRMRI experiment
G 44 the DFT of g
~G 32 magnetic field gradient
Gx, Gy, Gz 31, 32 magnetic field gradients applied in the x, y, and z-directions
h 43 high resolution data set in an SRMRI experiment
H 21 Hamiltonian of a system
~ 20 Planck’s constant divided by 2π
i

√
−1

î unit vector in the x-direction
îrot 24 a unit vector rotating in the transverse plane
IA(x) 67 the characteristic function of a set A ⊆ X: IA(x) = 1 if x ∈ A

and IA(x) = 0 otherwise
~J 20 nuclear angular momentum
J 20 magnitude of the nuclear angular momentum
Jz 20 z-component of the nuclear angular momentum
ĵ unit vector in the y-direction
ĵrot 24 a unit vector rotating in the transverse plane
k̂ unit vector in the z-direction
ĵrot 24 a unit vector, equal to k̂
k, kx, ky spatial frequency variables
k, kx, ky spatial frequency variables
kmax 4 maximum (positive) frequency measured in a 1D MRI exper-

iment
K 13 an arbitrary real constant
lm 43 the mth low resolution spatial domain data set, or channel
Lm 50 the mth low resolution data set, or channel in k-space
~L 20 angular momentum for atomic and nuclear systems due to

orbital motion
L2(R) 11 the space of all square-integrable functions
~M 19 the net magnetization induced in an object via an MR ex-

periment
M̂ 72 the IFTS operator
~Mz0 32 the net magnetization, after slice encoding
~Mrot 110 the net magnetization in the rotating frame

List of mathematical symbols – continued on next page
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List of mathematical symbols– continued from previous page

Mx,My,Mz 19 the x, y, and z-components of ~M

M⊥ 28 magnitude of the transverse component of the net magneti-
zation vector

m a summation index
ms 20 a magnetic quantum number
n a summation index
N an arbitrary integer, greater than zero
Nacq 3 number of averaged acquisitions
Nbin 3 number of bins in a joint probability histogram
Nimg 6 number of images in an SRMRI sequence
NGQ 43 number of points Gaussian quadrature scheme
Nh 43 number of data points in a high resolution data set
Nl 43 number of data points in a low resolution data set
Nx 3 the number of samples acquired in the x-direction
Ny 3 the number of samples acquired in the y-direction
Nz 3 the number of samples acquired in the z-direction
p a summation index
pi,j(rn, Nbin) 54 joint probability histogram between l(j∆x, 0) and l(j∆x −

rn, rn), using Nbin bins
r 82 a range block in 1D SRMRI experiment
rn 50 the spatial translation used between MASRMRI acquisitions
RR 13 space of spatially limited functions with extent R
R 13 spatial extent of a 1D obect
R(km, rn) 50 a discrete linear phase ramp with slope rn
Rx, Ry, Rz 28 spatial extents of a 3D obect in the x, y, and z-directions
s 20 spin quantum number
~S 20 quantum mechanical spin angular momentum
Sz 20 z-component of the quantum mechanical spin angular mo-

mentum
s(n) a discrete, and possibly complex, signal
sm 27 in Chapters 3-5, the raw, continuous, real, measured MRI

signal
sm 67 in Chapters 6-9, a scaling parameter that defines IFS maps
strue(k) 5 the desired, continuous MR signal defined over all values of

the spatial frequency variable k
skmax(k) 5 a truncated version of strue(k):

skmax(k) = Π(k/2kmax)strue(k)
List of mathematical symbols – continued on next page
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List of mathematical symbols– continued from previous page

sinc(k) 12 sin(πk)
πk

T 26 temperature
T̂ 67 the fractal transform operator
T1 26 the spin-lattice relaxation time
T2 26 the spin-spin relaxation time
Trf 109 the duration of time the RF pulse is switched on
TR 56 the repetition time in an MR acquisition sequence
TE 3 the echo time in an MR acquisition sequence
Tscan 3 the total time required to acquire one MR image
U 21 potential energy
V 24 a small volume within an object
w 55 a width parameter used for an SR simulation
wn 67 the nth affine contraction map defining an IFS
Wm(x) 42 a shifted and scaled rect function used in the 1D boxcar model
x̄ 64 the fixed point of a contractive operator
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