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ABSTRACT 
 

Thiostrepton (TS: TS; C72H85N19O18S5) is a thiazoline antibiotic that is effective 

against Gram-positive bacteria and the malarial parasite, Plasmodium falciparum. Tight 

binding of TS to the bacterial L11-23S ribosomal RNA (rRNA) complex of the large 50S 

ribosomal unit inhibits protein biosynthesis. The TS producing organism, Streptomyces 

azureus, biosynthesizes thiostrepton-resistance methyltransferase (TSR), an enzyme that uses 

S-adenosyl-L-methionine (AdoMet) as a methyl donor, to modify the TS target site. 

Methylation of A1067 (Escherichia coli ribosome numbering) by TSR circumvents TS 

binding. 

The S. azureus tsr gene was overexpressed in E. coli and the protein purified for 

biochemical characterization. Although the recombinant protein was produced in a soluble 

form, its tendency to aggregate made handling a challenge during the initial stages of 

establishing a purification protocol. Different purification conditions were screened to 

generate an isolation protocol that yields milligram quantities of protein with little 

aggregation and sufficient purity for crystallographic studies. 

 Enzymological characterization of TSR was carried out using an assay to monitor 

AdoMet-dependent ([methyl-3H]-AdoMet) methylation of the rRNA substrate by liquid 

scintillation counting. During the optimization of assay, it was found that, although this 

method is frequently employed, it is very time and labour intensive. A scintillation proximity 

assay was investigated to evaluate whether it could be a method for collecting kinetic data, 

and was found that further optimization is required. 

 Comparative sequence analysis of TSR has shown it to be a member of the novel 

Class IV SpoUT family of AdoMet-dependent MTases. Members of this class possess a non-
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canonical AdoMet binding site containing a deep trefoil knot. Selected SpoUT family 

proteins were used as templates to develop a TSR homology model for monomeric and 

dimeric forms. Validation of the homology models was performed with structural validation 

servers and the model was then used as the basis of ongoing mutagenesis experiments.  

The X-ray crystal structure of TSR bound with AdoMet (2.45 Å) was elucidated by 

our collaborators, Drs. Mark Dunstan and Graeme Conn (University of Manchester). This 

structure confirms TSR MTase’s membership in the SpoUT MTase family with a deep trefoil 

knot in the catalytic domain. The AdoMet bound in the crystal structure is in an extended 

conformation not previously observed in SpoUT MTases. RNA docking simulations revealed 

some features that may be relevant to binding and recognition of TSR to the L11 binding 

domain of the RNA substrate. 

Two structure-activity studies were conducted to investigate the TS-rRNA interaction 

and TS solubility. Computational analyses of TS conformations, molecular orbitals and 

dynamics provided insight into the possible modes of TS binding to rRNA. Single-site 

modification of TS was attempted, targeting the dehydroalanine and dehydrobutyrine 

residues of the antibiotic. These moieties were modified using the polar thiol, 2-

mercaptoethanesulfonic acid (2-MESNA). Similar modifications had been previously used to 

improve solubility and bioavailability of antibiotics. The resulting analogue was structurally 

characterized (NMR and mass spectrometry) and showed antimicrobial activity against 

Bacillus subtilis and Staphylococcus aureus. 
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CHAPTER 1: INTRODUCTION 

 
 

1.1. S-Adenosyl-L-methionine  

1.1.1. Structure and Biochemistry of S-Adenosyl-L-methionine (AdoMet) 

Since its discovery in 1952 by Giulio Cantoni, S-adenosyl-L-methionine (AdoMet, 1-

1) has been found to be involved in a myriad of essential biological processes [2]. It is second 

only to adenosine triphosphate (ATP) as the most frequently utilized cofactor in biochemical 

reactions [3,4]. AdoMet is synthesized via a condensation reaction between the 5′-carbon of 

ATP and the sulphur of L-methionine, as shown in Figure 1.1. This reaction is catalyzed by 

AdoMet synthase (also referred to as methionine adenosyltransferase, EC 2.5.1.6) and results 

in the complete dephosphorylation of ATP to eventually yield one pyrophosphate (PPi) and 

one phosphate (Pi). Subsequently the PPi is hydrolyzed to two Pis by pyrophosphatase [4,5]. 

The synthesis of AdoMet is the only reaction known to date that requires the complete 

hydrolysis of all three phosphates from ATP, making AdoMet a very energetically costly 

molecule to synthesize [5]. 

 
 

Figure 1.1: Biosynthesis of S-adenosyl-L-methionine.  
AdoMet (AdoMet; 1-1) is biosynthesized from methionine and ATP by AdoMet synthase. 
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The AdoMet molecule possesses a positively charged chiral sulfonium group bearing 

an S-configuration with a 5′-deoxyadenosine, an aminopropylcarboxylate and a methyl 

moiety appended to it. The three substituents (attached to the sulphur atom) all play a role as 

precursors or sources of chemical moieties utilized in biochemical reactions such as 

polyamine biosynthesis, 5′-deoxyadenosyl radical reactions, and posttranscriptional 

modification of tRNAs, making AdoMet an extremely versatile biological molecule [6,7]. 

However, out of all of the essential biological activities that it is involved in, AdoMet is best 

known as the universal methyl group donor in cellular alkylation processes [8]. 

1.1.2. Role of S-Adenosyl-L-methionine (AdoMet) in Methylation  

 The majority (approximately 95%) of S-adenosyl-L-methionine produced by cells is 

utilized in transmethylation reactions [9]. AdoMet can alkylate a number of nucleophiles 

containing oxygen, carbon, sulphur and the substrates that are methylated range in size from 

small molecules to macromolecules such as proteins and DNA [10]. AdoMet is the principle 

methyl group donor in the cell and is a few orders of magnitude more reactive to polarizable 

nucleophiles (N, O, and S) than another group of methyl donors, the methylated folates [3]. 

The powerful methylating ability of AdoMet arises from its chemical structure:  the 

methyl group is attached to the electron-deficient sulphonium atom, which confers 

thermodynamic instability on the molecule (∆GºH2O = -17 kcal/mol) [3,10].  This 

destabilization confers substantial reactivity to the methyl moiety, enabling its donation to 

the substrate.  Thus, the presence of the cationic sulphonium centre renders AdoMet the 

preferred biological methyl donor.  

When AdoMet transfers its methyl group, it is converted to S-adenosyl-L-

homocysteine (SAH or AdoHcy). The methylation is catalyzed by methyltransferases. 
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Following this event, SAH is then hydrolysed by SAH hydrolase to yield adenosine and 

homocysteine. At this point, homocysteine can act as a substrate for methionine synthase, 

which uses a folate derivative to methylate and regenerate methionine. AdoMet can then be 

generated by AdoMet synthase, completing what is referred to as the AdoMet cycle (Figure 

1.2) [4,6,8]. 

 
 

Figure 1.2: The S-adenosyl-L-methionine (AdoMet cycle).  
(1) AdoMet is formed from the reaction of methionine and ATP catalyzed by AdoMet synthetase. (2) Methyl 

group transfer from AdoMet to a nucleophile (:Nu) by methyltransferases yield S-adenosylhomocysteine 
(SAH/AdoHcy). (3) SAH hydrolase catalyzes the hydrolysis of SAH to give homocysteine which is then (4) 

methylated by methionine synthase to regenerate methionine to complete the cycle. 

1.2. S-Adenosyl-L-methionine-dependent Methyltransferases 
 
Methyl transfer reactions involving AdoMet are catalyzed by a large group of 

enzymes referred to as the S-adenosyl-L-methionine-dependent methyltransferases (AdoMet-

dependent MTases; E.C. 2.1.1.X). The by-product of all transmethylation reactions is S-

adenosyl-L-homocysteine (SAH or AdoHcy), which functions as a natural potent inhibitor of 

all methyltransferase reactions [11]. The crystal structures of over 40 AdoMet-dependent 
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MTases modifying small molecules, proteins, DNA and RNA have been determined, and 

have coordinates deposited in the Protein Data Bank. 

1.2.1. Classification and Structural Folds 

Structural commonalities within AdoMet-dependent MTases are observed despite low 

levels of sequence identity [12]. It was 1993 when the very first AdoMet-dependent MTase 

structure was determined (M. HhaI DNA-MTase; PDB: 6MHT) [13]. For a number of years, 

all MTase structures were considered to share a common structural core which eventually led 

to the designation of the “AdoMet-dependent MTase fold” [12]. However, recently 

determined AdoMet-dependent MTase structures revealed that not all MTases conform to 

this canonical fold. Presently, there are five distinct AdoMet-dependent MTase superfamilies 

based on structure (Table 1.1). 
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Table 1.1:  Known Structures of AdoMet-dependent MTases. 
E.C. Classification Enzyme Name PDB codeγγγγ 
Class I   
2.1.1.2 Guanidinoacetate N-MTase 1KHH 
2.1.1.5 Betaine-homocysteine S- MTase 1LT7 
2.1.1.6 Catechol O- MTase 1VID 
2.1.1.7 Nicotinate N- MTase 5MHT 
2.1.1.8 Histamine N- MTase 1JQD 
2.1.1.20 Glycine N- MTase 1BHJ 
2.1.1.28 Phenylethanolamine N-MTase 1HNN 
2.1.1.33 tRNA (guanine-N7-)-MTase 2FCA 
2.1.1.37 DNA (cytosine-C5-)- MTase 1HMY 
2.1.1.48 rRNA (adenine-N6-)- MTase 1QAO 
2.1.1.52 rRNA (guanine-N2-)-methyltransferase 2PJD 
2.1.1.56 mRNA (guanine-N7-)- MTase 1Z3C 
2.1.1.57 mRNA (nucleoside-2'-O-)- MTase 2GA9 
2.1.1.63 DNA(methylguanine-O6):[protein]-L-cysteine S-MTase 1EH6 
2.1.1.67 Thiopurine S- MTase 2BZG 
2.1.1.68 Caffeate O- MTase 1KYW 
2.1.1.72 Adenine-specific DNA- MTase  1AQI 
2.1.1.77 Protein-L-isoaspartate(D-aspartate) O- MTase 1D15 
2.1.1.79 Cyclopropane-fatty-acyl-phospholipid synthase 1KP9 
2.1.1.80 Protein-glutamate O- MTase 1AF7 
2.1.1.104 Caffeoyl-CoA O-MTase 1SUI 
2.1.1.113 cytosine-N4-specific DNA-MTase 1BOO 
2.1.1.125 Histone-arginine I- MTase 1ORH 
   
Class II   
  2.1.1.13 Methionine synthase 1MSK 
   
Class III   
2.1.1.107 Uroporphyrinogen-III C-MTase 1S4D 
2.1.1.130 Precorrin-2 C20- MTase 2E0K 
2.1.1.133 Precorrin-4 C11- MTase 1CBF 
   
Class IV   
2.1.1.31 tRNA (guanine-N1-)- MTase 1P9P 
2.1.1.34 tRNA guanosine-2'-O- MTase 1V2X 
2.1.1.51 rRNA (guanine-N1-)- MTase 1P91 
2.1.1.? rRNA 2'-O- MTase 1GZ0 
2.1.1.? rRNA uridine-2'-O- MTase 1X7P 
2.1.1.? tRNA (guanosine-2'-O-) methyltransferase 1J85 
2.1.1.? rRNA 2'-O- MTase 1IPA 
   
Class V   
2.1.1.43 Histone-lysine N- MTase 1O9S 
2.1.1.127 [Ribulose-bisphosphate-carboxylase]-lysine N-MTase 1MLV 
γMultiple PDB structures may exist for some enzymes. Only one representative PDB was chosen for this table. 
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1.2.1.1. Class I: The Classical AdoMet-dependent MTase Fold 

The majority of AdoMet-dependent MTases characterized to date belongs to the 

Class I or Classical Fold. Their structural core is reminiscent of the well-known nucleotide-

binding Rossman proteins having the β/α/β/α/β arrangement [14]. These Rossmann-based 

MTases are comprised of a seven-stranded β-sheet surrounded by α-helices in an alternating 

fashion to form an open α/β/α-sandwich. The order of the strands is 3214576 with strand 7 

being antiparallel to the others inserted between strands 5 and 6 (3↑2↑1↑4↑5↑7↓6↑) [12]. 

All Rossmann-fold like MTases possess this core fold or some related topological variant, 

where the C-terminal region of the enzyme contains the catalytic domain and the N-terminus 

constitutes the AdoMet binding region [12,15]. The structure of the small molecule MTase, 

catechol-O-MTase (E.C. 2.1.1.6) exemplifies the Class I fold and is shown in Figure 1.3 [16]. 

 
Figure 1.3: Catechol O- methyltransferase is a member of the Class I superfamily resembling the Rossmann 

fold.  
(A) Crystal structure (PDB: 1VID) and (B) topology of catechol O-MTase. Red represents α-helices, cyan 

represents β-strands, and green represents loops. 
 
 Multiple sequence alignments by a number of groups reveal conserved regions in the 

AdoMet-binding domain [17-20] (Motifs I – X). Motif I is a glycine rich sequence 

(E/DXGXGXG) located at β1, the loop between β1 and αA and part of the N-terminal region 

A B 
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of αA [20] and is involved in interacting with the amino acid moiety of AdoMet [12]; the 

main chain NH groups of the enzyme hydrogen bond with the carboxyl group of the 

aminopropylcarboxylate moiety of AdoMet [20]. The glycines in Motif I are not absolutely 

conserved; residues with small side chains or amino acids that induce bends are suitable 

substitutions [18].  

The loop between β2 and αB forms Motif II. The last residue of the β2 strand is a 

conserved acidic residue whose side chain hydrogen bonds to the ribose hydroxyls of 

AdoMet [20]. Furthermore, there are a high number of aromatic amino acids populating this 

region [17], which is believed to engage in van der Waals interactions with the adenine ring 

of AdoMet [20]. The conserved region of Motif III encompasses the first position of the αC 

helix, where a conserved acidic residue’s main chain NH hydrogen bonds with the N6-atom 

of adenine [20,21]. Motifs I to III occupy what has been designated as the AdoMet binding 

region and it is often that cocrystallization of AdoMet or the product, AdoHcy, is found to be 

located by the conserved residues. Furthermore, Motifs IV and V do make additional 

contacts with AdoMet. Motif IV is a diprolyl motif (D/N/E-PPY) and is located at the 

carboxyl end of strand β4 [21]. It interacts with the amino and sulfonium groups of the amino 

acid moiety of AdoMet [18]. Motif V (D/E-LYXXF-L/V/I) is comprised of helix αD and 

helps stabilize AdoMet binding [20,21]. 

Motif VI forms strand β5 which starts with an invariant glycine residue ends with 

G/P/A/S/N [21]. It makes contacts with the methionine moiety of AdoMet at the amino and 

sulfonium groups [18]. Motif VII is weakly conserved and has a NY in the loop region 

between αE and β6. It assists in the formation of the active site pocket. Motif VIII has a 

conserved sequence of N/QXRXR and also plays a role in the catalytic region. Motif IX 
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(RX4E) is also one of the less conserved motifs and is involved in maintenance of the 

structural integrity of the enzyme. The C-terminus of the enzyme folds together with Motif I 

to help form the AdoMet binding site and is termed Motif X with YX 3GN in its sequence 

[19,21]. 

1.2.1.2. Class II: B12-dependent Methionine Synthase 

 The one and only member of the Class II superfamily is the B12-dependent 

methionine synthase (Met synthase; E.C. 2.1.1.13). It converts homocysteine to methionine 

in the AdoMet cycle (Figure 1.2) by catalyzing the transfer of a methyl group from 

methyltetrahydrofolate  to cobal(I)amin [4,6,8,22]. The cobal(I)amin can be oxidized to the 

coba(II)amin species, which is inactive. Reactivation requires AdoMet to convert 

cobal(II)alamin to methylcobalamin [22]. The C-terminal region of the enzyme binds to 

AdoMet and this region is found to have a very different structure to that of the Class I 

Rossmann-like MTases [10]. 

 The 38 kDa AdoMet binding domain has an overall C-shaped architecture with a β-

sheet consisting of β1, β2, β5 and β8 mixed with α-helices (Figure 1.4).  This core β-sheet is 

adjacent to a long 28-residue with α-helix (α6) and the concave face of the C-shaped domain 

is where the AdoMet binding region resides. The co-substrate makes the majority of its 

contacts with the α6-helix with the recognition sequence of R-(P/F/Y)-(A/S)-(P/F/C)-G-y-

(P/G)(A/S)-X-P [22]. 
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Figure 1.4: The C-terminal, AdoMet binding domain of methionine synthase is the only member of the Class II 

MTases.  
The (A) Crystal structure (PDB: 1MSK) shows a general concave shape and (B) Topology of the C-terminal 

domain of Met synthase show no resemblance to the Class I MTases. Red represents α-helices, cyan represents 
β-strands, and green represents loops. 

1.2.1.3. Class III: Methyltransferases Involved in Vitamin B 12 Biosynthesis 

 Cobalamin (vitamin B12) biosynthesis involves numerous steps. Biosynthesis of the 

corrin ring entails the transfer of six methyl groups of AdoMet by six separate, but similar 

MTases to the tetrapyrrole scaffold [23]. Thus far, only three members to this superfamily 

have been structurally characterized: SUMT, which is responsible for the methlylation of 

uropophyringoen III to precorrin II [24]; CbiF, which methylates C11 of the tetrapyrrole ring 

of Co-precorrin 4[23]; and CbiL, which methylates the C20 position of the ring [25]. 

 The Class III MTase structure has two distinct α/β domains (Figure 1.5) and is 

homodimeric.  The two α/β domains form a kidney-shaped molecule, and both have a five 

stranded β-sheet surrounded by four α-helices; however, they do not possess the same 

topology. In the N-terminal domain, the strand order is 3↑2↑4↑1↑5↑, while in the C-

terminal domain, the order is 1↑2↑5↓3↑4↓ [23]. There is a conserved glycine rich sequence 

(GXGXG) at the end of the first β-strand similar to Motif I in the Classical MTases [24]. 

A B 
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However, unlike Motif I in the Classical MTases, this glycine-rich region does not interact 

directly with AdoMet [10,24]. Instead, the AdoMet cofactor binding pocket for Class III 

MTases resides between concave region of the kidney-like structure, between the N-terminal 

and C-terminal domains [23-25]. 

 

Figure 1.5: The monomer of a Class III MTase: precorrin-2 C20- MTase.  
(A) The crystal structure (PDB: 2E0K) shows the two distinct α/β domains (B) Topology diagram of precorrin-

2 C20- MTase. Red represents α-helices, cyan represents β-strands, and green represents loops. 

1.2.1.4. Class IV: The SpoUT MTases with a Deep Trefoil Knot 

 In 2002, a novel chain fold with an unexpected structural feature was observed: a 

deep trefoil knot [26]. Subsequently, approximately ten MTases have been found to possess 

this unique topological feature and have been designated as the Class IV or SpoUT (SpoU-

TrmD) MTases. These enzymes possess a α/β structure similar to the Class I MTases; 

however, they do not posses any sequence similarity [18]. SpoUT MTases contain a six 

stranded parallel β-sheet with the first three strands forming half of the Rossmann fold [10]. 

The β-strands are surrounded by seven α-helices to form a distinct α/β/α sandwich. The C-

terminal backbone region is tucked back within itself to form a deep trefoil knot, and is part 

of the active site and is critical to enzyme activity (Figure 1.6).  Additionally, all members of 

A B 
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this class are homodimeric structures in which the active site is situated on the subunit 

interface and the catalytic residues are comprised from both protomers [10,27]. 

 

Figure 1.6: The monomer of a Yibk methyltransferase posseses a deep trefoil knot at its active site. 
The (A) crystal structure (PDB: IJ85) (B) Topology of YibK MTase. Red represents α-helices, cyan represents 

β-strands, and green represents loops. Deep trefoil knot is highlighted with dashed box. 
 

Three sequence motifs have been identified in SpoUT MTases (Motifs I – III). Motif 

I is located at the N-terminus (X-N/D/E-X-G/S-X3-R-X5-G) [28]. The AdoMet binding motif 

is the second motif (Motif II: h-V/L/I/M-h-G-X-E/Y-X2-G-V/L/I/M/P-X, where h is a 

hydrophobic residue) which has bulky hydrophobic residues with two glycines within; it 

resembles Motif I in the Classical MTases [28,29]. The last motif is Motif III and it is 

situated in the C-terminal region and has a sequence of V/I-X-I-P-M-X5-S-L/M-N-X3 [28]. 

1.2.1.5. Class V: The SET MTases – the Protein Lysine MTases 

 The SET MTases are a superfamily of MTases known to methylate lysine residues of 

proteins. Originally thought to only contain histone MTases, the SET MTases’ namesake 

comes from the conserved domain found in histone modifying MTases from Drospophila 

melanogaster: Suppressor of variegation 3-9 (Su(var)3-9) [30], Enhancer of zeste (E(z)) [1] 

and Trithorax [31]. The SET domain is roughly 130 amino acid residues and is rich in β-

A B 
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conformation forming three small β-sheets. In the C-terminal region of the SET domain, the 

polypeptide backbone passes through a preceding loop to form a knot-like structure (Figure 

1.7) [10,32,33]. This loop and the C-terminal region that passes through it contain two highly 

conserved sequence motifs containing SET domains [33]. It consists of ELXF/YDY and 

RFNHS/CXXPN [32,34] and forms the active site. There is an absolutely conserved tyrosine 

(tyr) that has been implicated in catalysis. It is proposed that the tyrosine deprotonates the 

amino group of the lysine substrate to promote nucleophilic attack on the AdoMet molecule 

[33].  

 
Figure 1.7: The monomer of a SET7/9 MTase has a pseudo-knot in the C-terminus. 

Flanking the core SET domain are the preSET (nSET) and postSET (cSET) domains that some SET MTases 
have. The (A) Crystal structure (PDB: IO9S) (B) Topology diagram of SET7/9 MTase. Red represents α-

helices, cyan represents β-strands, and green represents loops.  
 
 Although the core of the SET domain is structurally conserved, protein lysine MTases 

can differ in their other domains. Some SET MTases may possess a pre-SET (nSET) or post-

SET (cSET) (Figure 1.7). The preSET domain is rich in cysteines (CXCX5CX4CXCXN-

CX3CXCX3C where N varies depending on the SET MTase) and is involved in interacting 

with amino acid residues of the core SET domain to maintain structural stability. Some SET 

MTases may have metal ions coordinating to the structure, such as in the case of the Su(var) 

A B 
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family members where the cysteines in the preSET domain coordinate to Zn2+ to form a 

Zn3Cys9 triangular cluster [32]. Other SET MTases may possess a postSET domain that 

houses aromatic residues to form a hydrophobic channel by packing against the core SET 

domain and forming part of the active site [34].  

1.2.2. Conformation of Cofactor Binding in S-Adenosyl-L-methionine- 

dependent Methyltransferases 

 Given the distinct structural folds for AdoMet-dependent MTases, it is not surprising 

that the binding conformations of Adomet or AdoHcy are found to vary among MTases. Four 

different features of the cofactor molecule can be compared when bound to different classes 

of MTases: 1) Sugar ring pucker, 2) dihedral angle of O4′-C1′-N9-C4, 3) dihedral angle of 

O4′-C4′-C5′-Sδ, and 4) dihedral angle of C4′-C5′-Sδ-Cγ (Figure 1.8, Table 1.2) [10]. 

 
Figure 1.8: The structure of S-adenosyl-L-methionine (AdoMet) and the dihedral angles used to compare 

cofactor binding in different classes of MTases.  
Red: O4′-C1′-N9′-C4; Blue: O4′-C4′-C5′-Sδ; Green: C4′-C5′-Sδ-Cγ. 

 
Table 1. 2: Dihedral angles of AdoMet or AdoHcy found in the different classes of Adomet-dependent MTases. 

Class Ring pucker O4′′′′-C1′′′′-N9-C4 O4′′′′-C4′′′′-C5′′′′-Sδδδδ C4′′′′-C5′′′′-Sδδδδ-Cγγγγ 
I 2′endo ~135° (anti) ~ 180° ~ 180° 
II 3′endo ~180° (anti) ~ -90° ~ 180° 
III 3′endo ~180° (anti) ~ -90° ~ -90° 
IV 3′endo ~180° (anti) ~ 80° ~ -90° 
V 3′endo ~180° (anti) ~ -90° ~ -90° 

 
In the classical Rossmanoid MTase class, AdoMet assumes an extended conformation 

with a 2′-endo sugar ring pucker and this adenine in the anti position (dihedral angle of O4′-
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C1′-N9′-C4′ is ~135°). The dihedral angle for O4′-C4′-C5′-Sδ is approximately 180°, as is 

the ligand dihedral angle (of C4′-C5′-Sδ-Cγ) (Figure 1.9a) [10]. For the Class II methionine 

synthase, the AdoMet also assumes for the most part an extended conformation, with the 

exception of the dihedral angle of O4′-C4′-C5′-Sδ (it is -90° instead of 180°), additionally, 

the conformation of the ribose sugar is 3′-endo [10]. For Class III to Class IV, one observes a 

more folded conformation for the cofactor; the dihedral angles of O4′-C4′-C5′-Sδ are also -

90° for Class III and V and for Class IV 80°, however for the ligand dihedral angle (C4′-C5′-

Sδ-Cγ), Class III – V all have a tightly folded conformation (Figure 1.9) [23,35]. 

 
Figure 1.9: Binding of cofactor AdoMet/AdoHcy amongst different classes of MTase demonstrates 

conformational specificity.  
(A) Class I, Classical MTase (1VID) (B) Class II (1MSK) (C) Class III (1CBF) (D) Class IV, SpoUT MTase  

(1MXI) and (E) Class V, SET MTase (IO9S). 

A B 

C D 

E 
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1.2.3. Inhibition of S-Adenosyl-L-methionine-dependent Methyltransferases 

 AdoHcy/SAH (1-2) is the transmethylation product arising from AdoMet-dependent 

methyl transfer reactions and is one of the most effective competitive inhibitors of this 

reaction (Figure 1.2) [11]. The Ki value for AdoHcy/SAH is often less than the Km value of 

AdoMet (Table 1.3), suggesting that the active sites of AdoMet-dependent MTases have 

similar or higher affinities for the demethylated product. Consequently, syntheses of 

structural analogues of AdoHcy/SAH and AdoMet as novel inhibitors of AdoMet-dependent 

MTases have been of considerable interest. Most notably, in an elegant series of structure-

activity studies, Borchardt and coworkers designed potential inhibitors of AdoMet-dependent 

MTases by systematically modifying the structure of AdoHcy/SAH and AdoMet; 

modifications were done on the amino acid [36-38], base [37,39]and ribose sugar [37,40,41] 

moieties.   

Table 1. 3: Comparison of Km value for AdoMet and Ki value of AdoHcy/SAH for selected MTases. 
MTase Km (AdoMet)  Ki (AdoHcy/SAH)  Reference 
 × 10-6 M   

Protein carboxy-O-MTase 3.2  0.64   [42] 
Catechol-O-MTase 14  4.4  [11] 
Phenylethanolamine N-MTase 10 1.4  [11] 
Acetylserotonin MTase 14 2.1 [11] 
tRNA (adenine) MTase 3  0.11  [43] 
Protein-L-isoaspartyl MTase 2  0.08  [44] 
Glycine N-MTase 100  35  [45] 
DNA MTase (Dnmt3a) 0.52  0.163  [46] 
Histamine MTase 6 5 [47] 

 
A naturally occurring AdoHcy analogue is the antifungal antibiotic sinefungin 

(A9145), which was first isolated by Hamill and Hoehn from Streptomyces griscolus [48]. In 

lieu of the thiomethyl moiety in AdoMet, sinefungin possesses an amino group (-CH+NH3) 

(1-3). It is believed that the analogue may be recognized as AdoMet-like structures but with 

the inability to donate a methyl group to an incoming nucleophile. Sinefungin and its related 
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compound A9145C (1-4) have been reported to be very potent inhibitors of methyl transfer 

reactions with Ki values in the nanomolar range compared to the Ki of AdoHcy/SAH (Table 

1.3) about making sinefungin-based target design very attractive [49-52] (Figure 1.10). 

 
Figure 1. 10: Natural inhibitors of AdoMet-dependent MTase reactions are structural analogues of AdoMet. 

 

1.3. rRNA Methyltransferases and Their Role in Antibiotic 
Resistance 

1.3.1. Antibiotics and Antibiotic Resistance 

Antibiotics can be considered one of the greatest discoveries of the twentieth century. 

Between 1940 and 1960, major strides and successes were made in the development of 

antibiotics in the clinical setting; it was during this time that penicillin, streptomycin, 

tetracycline, chlormaphenicol, erythromycin, cephalosporin and vancomycin were 

introduced. As a result this time period is often heralded as the “golden” era of antibiotics 

[53,54]. It was thought that the battle against infectious diseases had come to an end and 

victory was declared for humankind [55]. However, with the appearance of antibiotics, 

antimicrobial resistance soon followed, and has remained a concern for the health and 

medical community [56]. 

There are four main mechanisms of action of antibiotics/antimicrobials, involving the 

inhibition of: 1) cell wall biosynthesis, 2) protein biosynthesis, 3) DNA/RNA biosynthesis 

and, 4) certain metabolic pathways (Figure 1.11). Antimicrobials that interfere with cell wall 
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biosynthesis compromise the structural integrity of the rigid peptidoglycan cell wall such that 

the cell undergoes osmolysis. These antimicrobials include the penicillins, vancomycin and 

cephalosporins [57]. Prevention of protein biosynthesis is another common mode of action. 

Tetracyclines, macrolides and aminoglycosides, all bind to the large 50S or small 30S 

ribosomal unit and stop protein synthesis at different stages. This can eventually lead to cell 

death. Interference of nucleic acid biosynthesis, whereby the antimicrobial inhibits essential 

enzymes involved in DNA (i.e. fluoroquinolines) or RNA replication (i.e. rimfampin) is also 

effective. Lastly, inhibition of folate biosynthesis (i.e. sulfonamides) or other essential 

metabolic pathways will lead to the eventual demise of the cell and is often targeted by 

antimicrobials [54,57-59]. 

 

Figure 1.11: The four major targets of antibiotics and antimicrobials.  
1) DNA/RNA biosynthesis 2) Protein biosynthesis 3) Cell wall biosynthesis and 4) Major metabolic pathways 

 
With the increased use of antibiotics and antimicrobials, bacteria have evolved a 

number of strategies to circumvent their action. Resistance can appear between months and 

years after the first introduction of an antimicrobial into a clinical setting [60]. The 
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significant mechanisms that bacteria employ to achieve resistance are: 1) reduction of 

antibiotic accumulation, 2) enzymatic degradation or modification of the antibacterial, and 3) 

modification of the target site (Figure 1.12) [61]. In order for an antibacterial to be effective, 

it must be able to reach its target site within the cell. Intrinsic resistance is possible for Gram-

negative bacterial species whose outer membrane acts as a barrier to antimicrobials. 

Likewise, cell permeability can be reduced by mutations resulting in a decrease in expression 

or activity of small channels within the lipid bilayer. Alternatively, increasing the expulsion 

of antibiotics across the membrane by the action of efflux pumps will reduce the antibiotic’s 

intracellular concentration [54,58,61-63].  

 
Figure 1.12: Antibiotic resistance mechanisms utilized by bacteria. 

1) Decreasing the internal concentration of the antibiotic 2) modification of the target site 3) modification of the 
antibacterial 

 
Modification or hydrolysis of the antibiotic is a common mechanism of resistance 

employed by bacteria. β-Lactamases are a classic example of this type of resistance 

mechanism. These enzymes degrade penicillin by hydrolyzing the β-lactam ring of the 

antibiotic rendering it ineffective. Likewise, altering the target site prevents the antibiotic 
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from binding and exerting its action. This is the case for DNA gyrase and topoisomerase, 

which are targets for fluoroquinolone antibacterials [54,58,61-63].  

1.3.2. Methylation as a Resistance Mechanism: Erythromycin Resistance as a 

Paradigm 

The order Actinomycetes (in particular Streptomyces genus) has long been recognized 

as a prolific producer of antibiotics [64]. Any antibiotic-producing bacteria must find a way 

to avoid the toxicity of its own product (discussed briefly in the Section 1.3.1). One common 

molecular mechanism utilized to confer resistance to autogenous antibiotics is methylation 

(target alteration). Many antibiotic producers have genes that encode for AdoMet-dependent 

ribosomal RNA (rRNA) MTases that methylate ribosomes at specific sites. Methylation 

either on the 23S rRNA in the 50S subunit or the 16S rRNA in the 30S subunit blocks the 

antibiotic from binding so that it can no longer exert its action [65]. Resistance to the 

antibiotic erythromycin exemplifies this type of resistance mechanism, and will be a focus of 

this section. 

Erythromycin is a member of the macrolide class of antibiotics whose structural 

features are defined by a large macrocylic lactone ring (12-16 carbons) substituted with one 

or more sugar moieties [66,67]. Erythromycin A was first isolated from Saccharopolyspora 

erythraea (formerly known as Streptomyces erythreus) and is a 14-membered macrocylic 

lactone with two substituted sugars: β-D-desoamine in the C-5 position and α-L-cladinose in 

the C-3 position (1-5). Erythromycin is a commonly administered antibiotic and is active 

primarily against Gram-positive bacteria and some Gram-negative species [68,69]. 
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Macrolide antibiotics such as erythromycin are inhibitors of protein synthesis in 

prokaryotes by binding to the 50S subunit of the ribosome at the peptidyl transferase centre. 

The antibiotic prevents the growth of the nascent protein chain after two or three residues 

have been synthesized and causes premature dissociation of the peptidy-tRNA from the 

ribosome [70,71]. The binding site for erythromycin and other macrolides resides in domains 

II and V of the 23s rRNA [72]. In the completely folded 50S ribosomal subunit, hairpin 35 of 

domain II and the petidyl transferase loop of domain V are folded into close proximity to 

each other [73,74] (Figure 1.13).          

Footprinting studies have shown that erythromycin interacts with adenine 2058 

(A2058, E. coli numbering) and adenine 2059 (A2059) of domain V and adenine 705 (A705) 

of domain II (Figure 1.13) [72,74,75]. Ribosomal protein L22 interacts with all six domains 

of the 23S rRNA. It forms the majority of the polypeptide exit channel, and the narrowest 

constriction of this channel is comprised of L22 and L4 [73,76]. Upon binding of 

erythromycin or other macrolides into the binding pocket, the polypeptide exit tunnel is 

blocked, effectively stopping polypeptide elongation (Figure 1.13) [77,78]. 

 
 

A B 
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Figure 1.13: Macrolides block the the polypeptide exit tunnel of the large ribosomal unit.  
Erythromycin (red) blocking the entrance to stop the progression of polypeptide growth (PDB: 1YI2). Six 

domains comprise the 23S rRNA in the large 50S subunit of the ribosome and is shown on the right hand side. 
Ribosomal proteins are shown in yellow and RNA in blue. Hairpin 35 of domain II and the peptidyl transferase 
loop make the binding region of erythromycin. Foot binding studies show that the antibiotic interacts with A752 

of hairpin 35 and A0258 and A2059 of central loop of domain V (Adpated from [74]). 
 

 
Resistance to erythromycin can be achieved by mono- or di-methylation of the 

exocyclic amino group of a single adenine group (A2058) on domain IV carried out by 

erythromycin resistance methyltransferase [79-81]. Conversion of the adenine residue to N6, 

N6-dimethyladenine (or N6-methyladenine) reduces the binding affinity of erythromycin 

through disruption of hydrogen bonding interactions between the macrolide and the 

nucleotide, and consequently impedes erythromycin’s action. Furthermore, the presence of 

the additional methyl groups introduced by Erm MTase obstruct the interaction of 

erythromycin with binding to its cognate target [78-81]. Methylation renders resistance not 

only to macrolides, but provides cross-resistance to several structurally dissimilar antibiotics 

such as the lincosamides and streptogramin B (Figure 1.14). This resistance is collectively 

referred to as MLSB, or Macrolide-Lincosamide-Streptogramin B resistance [82]. 
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Figure 1.14: Examples of lincosamides and streptogramin Bs.  

Resistance to macrolides confers resistance two these two families of antibiotics despite structural dissimilarity. 
 

1.3.3. Other MTases that Confer Antibiotic Resistance 

 There are a number of other MTases that are known to confer antibiotic resistance. 

Methylation is an emerging resistance mechanism for clinically relevant aminoglycosides 

such as kanamycin and gentamycin [83]. Methylation of A1408 of the istamycin producer, 

Streptomyces tenjimarienus bestows resistance to kanamycin and apramycin, while 

methylation of G1405 of Micromonospora purpurea mediates resistance to kanamycin and 

gentamicin [84]. AviRb from Streptomyces viridochromogenes Tü57 methylates U2479 of 

23S rRNA and gives rise to resistance to avilamycin A, an antibiotic commonly used as a 

growth promoter in animal feed [85]. Resistance to chloramphenicol, florfenical and 

clindamycin can be achieved by methylation of A2503 in Staphylococcus sciuri [86]. 

Therefore, methylation by AdoMet-dependent MTases plays a significant role in antibiotic 

resistance mechanisms. The focus of this thesis is on the peptide antibiotic thiostrepton and 

the MTase that confers resistance to it, thiostrepton-resistance rRNA MTase (TSR) in the 

antibiotic producing organism Streptomyces azureus. 
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1.4. Thiostrepton and Thiostrepton Resistance 

1.4.1. The Thiopeptide Antibiotic Thiostrepton 

 Thiostrepton (TS; C72H85N19O18S5, mw = 1665 g/mol; 1-6) is a member of a family of 

multicyclic peptide antibiotics known as the thiopeptide antibiotics. These antibiotics all 

share common structural features such as thiazole groups, dehydro amino acid residues 

scattered throughout the peptide backbone scaffold and a piperidine or dehydropiperidine 

serving as linchpin between two or three macrocylic domains [87]. 

 

TS was originally isolated from Streptomyces azureus  [88,89] and later found in 

Streptomyces hawaiiensis [90] and Streptomycyes laurentii [91]. It is effective against Gram-

positive bacteria. Gram-negative species are intrinsically resistant due to the impermeability 

of the outer membrane to TS [92]. TS also exhibits activity against Plasmodium falciparum, 

the major organism responsible for human malaria [93]. 
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1.4.2. Mode of Action of Thiostrepton 

 All members of the thiopeptide antibiotics not only possess a similar structure, but 

they also share a similar mechanism of action. TS inhibits protein biosynthesis by binding to 

the 50S ribosomal subunit at the GTPase centre. This centre is comprised mainly of 

ribosomal protein L11 complexed with a region of the 23S rRNA termed the L11 Binding 

Domain (L11BD). Thiostrepton binds between the cleft that is formed between the rRNA and 

the N-terminal domain of L11 [94-97] (Figure 1.15).  

 
Figure 1.15: Thiostrepton inhibits protein biosynthesis by binding to the GTPase centre of the ribosome. 
The GTPase centre is comprised of 23S rRNA (white) and Protein L11 (red) (PDB: 3CF5 and 1OLN).  

 
The L11BD is a well conserved 58 nucleotide sequence (nt 1051 to 1108) that forms 

a hairpin structure to which TS binds very tightly (KD = 10-7M) [98] (Figure 1.16). However, 

binding affinity of TS in the presence of protein L11 is several orders of magnitude greater 

[98,99]. Ribosomal protein L11 has two distinct domains tethered by two conserved proline 

residues. The C-terminal domain (CTD) is responsible for anchoring the protein to the 

ribosome and binds to the L11BD, making extensive contacts with the rRNA backbone. 

Conversely, the proline rich N-terminal domain (NTD) makes limited contacts to the rRNA 

[100,101].  
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Figure 1. 16: Secondary structure of the 23S rRNA in the GTPase region.  
Nucleotides 1051-1108 (E. coli numbering) comprise the L11 Binding Domain (L11BD) which binds to the C-

terminal domain of protein L11. 
 

The NTD undergoes a sequence of conformational changes during the elongation step 

of protein biosynthesis that facilitate the essential GTP hydrolysis reactions [102]. Figure 

1.17 shows a general overview of the elongation cycle during protein chain growth. The 

process begins with Elongation Factor-Tu (EF-Tu) complexed with GTP delivering the 

aminoacyl-tRNA to the ribosomal aminoacyl site (A site) (Step 1). Upon binding, GTP is 

hydrolyzed, with the concomitant transfer of the growing peptide chain on the peptidyl-tRNA 

to the aminoacyl-tRNA that just arrived (Step 2). Translocation of the aminoacyl-tRNA from 

the A site to the Peptidyl site (P site) is mediated by the binding and hydrolysis of the 

Elongation Factor-G (EF-G) • GTP complex. The deacylated tRNA now leaves through the 

exit site (E site) and the cycle repeats (not shown in figure) [103]. It has been postulated that 

the flexible L11-NTD region functions as a molecular switch, playing a significant role in the 

release of EF-Tu and EF-G [104,105]. 
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Figure 1. 17: Steps in the peptide elongation cycle in protein biosynthesis. 

See text for a brief description of protein biosynthesis. The antibiotic thiostrepton inhibits the hydrolysis of the 
GTP in the EF-G•GTP•ribosome complex thus halting the process. 

 
The binary complex (L11 and rRNA) is the functional state to which elongation 

factors are able to bind freely and reversibly, however, with the antibiotic present, EF-G 

binding is prevented. When TS binds, the L11-NTD rotates and the domain moves closer to 

the rRNA (Figure 1.18). This binding imposes conformational rigidity to the NTD to the 

same degree as the CTD [106]. Therefore, the presence of TS locks this “molecular switch” 

in the “off position” [107], and as a consequence, protein biosynthesis is stopped prematurely 

at the translocation step [106-108]. 
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A second molecular switch, which has also been proposed to be turned off upon 

binding of TS involves ribosomal protein L7.  Ribosomal protein L7 is important in the 

release (but not the hydrolysis) of phosphate (Pi) [109]. In the presence of TS, a 

conformational change within the L11-NTD interrupts the otherwise stable interaction 

between protein L11 and the C-terminal domain L7. This interaction permits the L7-CTD to 

interact with EF-G such that the GTP-binding pocket of EF-G allows for Pi to be released 

[107]. Therefore, the binding of TS turns off two molecular switches by initiating an 

interdomain and intradomain change of protein L11. 

 
Figure 1. 18: Thiostrepton binding to the L11BD. 

(A) Structure of thiostrepton (TS) bound to the rRNA (white) and Protein L11 (red) (PDB: 2JQ7). (B) The 
relative orientation of the C-terminal domain (CTD) and the N-terminal domain (NTD) of Protein L11 changes 

upon 23S rRNA binding. The NTD is brought closer to the rRNA when TS binds (Adapted from [106]). 

1.4.3. Mechanism of Resistance: Thiostrepton-resistance rRNA 

Methyltransferase 

 Streptomyces species are quite sensitive to TS; however, the TS-producer, S. azureus 

is unaffected by the production of its own antibiotic. For example, Streptomyces coelicolor 

did not grow on nutrient plates containing 1 µg/mL of TS while S. azureus growth remained 

resilient at high concentrations (50 µg/mL) [110]. S. azureus encodes a gene that confers 

resistance by preventing TS from binding at the 23S rRNA target site. The gene product is a 

A B 
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RNA-pentose MTase, thiostrepton-resistance rRNA MTase (TSR), which, methylates a 

specific adenosine (A1067, E. coli numbering) at the 2-O′-hydroxyl group to give 2′-O-

methyladenosine. The introduction of a methyl group precludes binding of thiostrepton, 

thereby rendering the ribosome resistant to the antibiotic [94,111,112]. 

 TSR is produced within S. azureus and can only methylate protein-free 23S rRNA 

and has no effect on intact ribosomes. Methylation is only observed in vitro when salt treated 

(LiCl) are stripped to their “core particles”. However when the “split” proteins are added 

back to reconstitute ribosomes, methylation did not occur. This suggests that in vivo, TSR 

must act early during transcription and prior to the assembly of the 50S subunit [111]. 

Through a series of mutagenesis experiments, elements on the L11BD essential for TSR 

recognition and enzyme methylation have been determined. TSR enzyme activity requires 

U1061, U1057 and the sequence of U1066-A1067-G1068-A1069-A1070, which contains the 

methylation target itself. The majority of residues on the hairpin encompassing residues 

1051-1108 on the L11BD is also required for recognition (Figure 1.19) [113].  

 
Figure 1.19: Recognition hairpin on 23S rRNA for TSR MTase. 

(A) Secondary structure of the E. coli 23S rRNA GTPase centre at the L11 binding domain. Arrows point to 
nucleotide bases that are essential for the enzyme activity of thiostrepton-resistance rRNA methyltransferase 

(TSR), and bold residues are residues required for recognition. (B) Complex of protein L11 (red cylinders and 
blue arrows) and 23S rRNA fragment (grey ribbon).  Yellow residues are bases important for the recognition by 

TSR.  The arrow points to the site of methylation, A1067 shown in red (PDB: 1OLN). 

A B 
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1.5. Research Objectives 

 The widespread use of antibiotics has been accompanied by the appearance of 

antibiotic resistance in bacteria. The strategies by which antibiotic-producing bacteria 

maintain resistance to their endogenous drug’s action have been subjected to in depth 

investigation. This doctoral thesis explores the structure and function of TSR, with the intent 

of better understanding antibiotic-ribosome interactions. We overexpressed, isolated and 

characterized TSR, and this research is described in Chapter 2 and Chapter 3. The structure 

of the enzyme was approached, initially by in silico means (homology modelling) and later 

through X-ray crystallography by our collaborators. Towards the end of completion of this 

thesis research, a successful X-ray crystal structure was acquired by our collaborators, in the 

laboratory of Dr. Graeme Conn; Chapter 4 focuses on a detailed analysis of the structure of 

TSR. 

 In addition to studying the enzyme, we also endeavoured to study the cognate 

antibiotic, TS (Chapter 5). We performed molecular mechanics, semi-empirical and ab initio 

studies to further understand the structural and electronic properties of this antibiotic. In 

conjunction with this study, we began an investigation on single site chemical modifications 

of thiostrepton to attempt to improve its solubility while maintaining its antimicrobial 

activity.
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CHAPTER 2: OVEREXPRESSION AND PURIFICATION OF 

STREPTOMYCYES AZUREUS THIOSTREPTON-RESISTANCE rRNA 

METHYLTRANSFERASE 
 

 
It has been known for a number of years that resistance to the peptide antibiotic, 

thiostrepton (TS), can be achieved through methylation of the ribosomal RNA (rRNA) at the 

guanosine triphosphatase region [97,98]. The thiostrepton producer, Streptomyces azureus, 

possesses a gene (tsr) that encodes for a 23s rRNA methyltransferase which catalyzes the 

methylation of the 2′-hydroxyl group of adenosine 1067 (A1067, E. coli numbering) (Figure 

2.1).  

 
 

Figure 2. 1: Methylation of the 2′O hydroxyl moiety of A1067 of the 23S rRNA by thiostrepton-resistance 
rRNA methyltransferase (TSR). 

 
This enzyme, thiostrepton-resistance rRNA methyltransferase (TSR; EC 2.1.1.66), 

utilizes the methylating agent S-adenosyl-L-methionine (AdoMet) and modifies the 23S 

rRNA such that it prevents TS from binding between the hairpin region containing A1067 



 32 

and the ribosomal protein L11; as a result, protein translocation can continue without 

interruption [94,97,110-112]. 

TSR is composed of 269 amino acid residues with a molecular mass of 28901 Da, and 

initial isolation and characterization of this enzyme was performed by Thompson and 

Cundliffe [114] and Bechthold and Floss [113] in 1981  and 1994  respectively. Although the 

function of TSR has been briefly studied  and documented in the literature, its structure was 

not available until recently [113,114]. Interestingly, through sequence analyses, TSR is found 

to possess certain conserved sequence elements possessed by members of the newly 

identified SpoUT (Class IV) methyltransferase superfamily [29,115]. Therefore, it is very 

likely that TSR possesses the unique topological feature observed in this superfamily: a deep 

trefoil knot in its active site region. Proteinaceous knots are observed in nature and are quite 

rare: less than one percent of all protein structures deposited in the Protein Databank contain 

knots [116]. Therefore, TSR not only presents an attractive enzyme for which to study 

protein-RNA interactions and antibiotic resistance mechanisms, but its putative knot presents 

a fascinating aspect to protein structure-function relationships worthy of investigation.  

2.1. Cloning and Purification of Hexahistidine-tagged 
Thiostrepton Resistance rRNA Methyltransferase 

 
Previous work in the Honek laboratory resulted in the cloning of the S. azureus TSR 

gene (a generous gift from Dr. Gerry Wright, McMaster University) into a pET-22b 

expression vector and then introduced into E. coli BL21 (λDE3)/pLys. Purification of the 

enzyme was done by conventional chromatographic means: anion exchange, hydrophobic 

interaction, hydroxyapatite chromatography followed by a second anion exchange column. 

Although this purification of TSR yielded enzyme of substantial purity, unfortunately it was 
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still not sufficiently pure for X-ray crystallography and at each purification step, a substantial 

amount of protein was lost, giving a very low overall yield. Since the determination of the X-

ray crystal structure of TSR would require large amounts of highly purified enzyme, efforts 

to find an alternative, and more efficient method of purification were directed to the use of 

fusion tags. 

2.1.1. Affinity Tags 

 A fusion or affinity tag can be defined as an exogeneous amino acid sequence with a 

high affinity for a specific ligand (biological or chemical) [117]. These fusion tags can be 

classified as protein tags (small globular proteins) or peptide tags (less than 25 amino acid 

residues), and have become highly efficient tools for protein isolation [118]. Affinity tags can 

be introduced at the N- or C-terminal of the target protein, and they exploit the selective and 

specific interaction and recognition of the fusion protein to a complementary ligand 

immobilized on the stationary matrix. Fusion tags enable the purification of different proteins 

with different biochemical properties using a common procedure [117,119].  

Advantages of using affinity tags over conventional techniques are that they not only 

facilitate facile purification of their fusion partner (one step purification), but they can also 

increase overall purification yield [120], increase solubility [121], enhance proper protein 

folding [122] and prevent proteolysis [123]. On the otherhand, the presence of a fusion tag 

may lead to negative effects on the protein such as change in protein conformation [124], 

lower yields [125], and compromised enzyme activity [126]. It is imperative to choose an 

affinity tag that does not affect the structure or function of their fusion partner. 

There are a number of different affinity tags available, all of which follow a similar 

protocol with slight changes in buffer conditions [127] (Table 2.1). A comprehensive review 
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of these affinity tags is beyond the scope of this thesis, but the topic has been reviewed 

extensively elsewhere in the literature [117,118,127,128]. 
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Table 2. 1: Common Affinity Tags Utilized and their Matrices.  
(Adapted from [127]) 

Affinity Tag Size (aa) Sequence Matrix 
Poly-His 2-10 (5) HHHHHH Ni2+-NTA, Co2+-CMA* (Talon) 
Poly-Arg 5-6 (6) RRRRR Cation exchange resin 
FLAG 8 DYKDDDDK Anti-FLAG monoclonal antibody 
Strep-tag II 8 WSHPQFEK Strep-Tactin (modified streptavidin) 
c-myc 11 EQKLISEEDL Monoclonal antibody 
S-tag 15 KETAAAKFERQHMDS S-fragment of RNase A 
HAT (natural his affinity tag) 19 KDHLIHNVHKEFHAHAHNK Co2+-CMA (Talon) 
Calmodulin-binding peptide 26 KRRWKKNFIAVSAANRFKKISSSGAL Calmodulin 
Cellulose-binding domain 27-189 Domains Cellulose 
SBP 38 MDEKTTGWRGGHVVEGLAGELEQLRARLEHHPQGQREP Streptavidin 
Chitin-binding domain 51 TNPGVSAWQVNTAYTAGQLVTYNGKTYKCLQPHTSLAG

WEPSNVPALWWQLQ 
Chitin 

Glutathionine S-transferase 211 Protein Gluthathione 
Maltose-binding protein 396 Protein Cross-linked amylose 
*CMA = caroxylmethylaspartate
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2.1.2. Removal of Affinity Tags 

 The presence of an affinity tag may not alter the biological activity of a protein, and 

thus the removal of the affinity tag may not be necessary. Nonetheless, the presence of a 

fusion tag could potentially alter the protein in an unpredictable manner and it is usually 

preferable that the tag be removable [117]. Affinity tags are typically removed enzymatically 

[127], although treatment with harsh chemicals such as cyanogen bromide is an alternative 

method [129] (Table 2.2). Enzymatic cleavage is preferred over chemical methods because 

they are more specific and are performed under mild conditions, whereas with chemical 

cleavage can lead to modification of side chains and protein denaturation [117]. 

Table 2. 2: Different Agents Utilized to Remove Affinity Tags.  
(Adapted from: [118]) 

Cleavage Agent Cleavage Specificity 
Chemical Treatment (harsh)  
Cyanogen bromide X-M-↓-Xaa 
Hydroxylamine Asn-↓-Gly 
Formic Acid Asp-↓-Pro 
Acetic Acid Asp-↓-Pro 
  
Enzymatic Treatment (mild)  
Endopeptidases  
Thrombin Arg-Gly-Pro-Arg-↓-Xaa 
Trypsin Arg/Lys-↓-Xaa 
Factor Xa Ile-Glu-Gly-Arg-↓-Xaa 
Subtilisin Ala-Ala-His-Tyr-↓-Xaa 
Enterokinase Ala-Ala-Ala-Ala-Lys-↓-Xaa 
  
Exopeptidases  
Carboxypeptidase A Poly His-↓-Xaa 
Carboxypeptidase B Ply Arg-PolyLys-↓-Xaa 
Aminopeptidase I Glu-Ala-Glu-↓-Xaa 
Dipeptidylaminopeptidase Xaa-Tyr-↓-Xaa (not Pro) 

Xaa = unspecified amino acid 

 
A protease specific cleavage sequence is introduced between the fusion tag and the 

fusion partner [130]. Cleavage can be performed with either endoproteases such as thrombin 

and trypsin or exopeptidases such as carboxypeptidase A or aminoeptidase I. Depending on 
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the protease, cleavage of the tag can be “clean” or leave a few amino acid residues extra on 

the protein [118]. Overall protein yield may decrease if there is unexpected cleavage or 

incomplete cleavage, thus optimization of cleavage conditions is required. Furthermore, after 

removal of the tag, the “detagged” protein must be isolated from the protease and the affinity 

tag [117,118,127]. 

 

2.1.3. Purification with a Histidine Affinity Tag 

The most widely utilized affinity tag is the poly-histidine tag that is comprised of a 

stretch of histidine residues of varying numbers. His-tags are relatively small and work under 

both native and denaturing conditions. Its affinity resin is relatively inexpensive and elution 

conditions are mild. All these advantages make the histidine affinity tag a very attractive 

fusion tag to use on an enzyme system [128]. The general purification protocol of his-tagged-

proteins involves immobilized metal ion adsorption chromatography (IMAC) [131]. The 

crude cell lysate containing all of its endogenous proteins is passed through a column 

containing immobilized transition metal ions such as nickel, cobalt or zinc on an adsorbant 

(typically nitrilotriacetic acid). The histidine imidazole effectively chelates the metal ions 

allowing for the his-tagged-protein to be retained on the column.  The target protein is eluted 

by washing the column with increasing concentrations of imidazole which displaces the 

polyhistidine-tagged protein from the column [127] (Figure 2.2). IMAC is a very efficient 

method of protein purification, although it is not recommended for metalloproteins [117]. 
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Figure 2. 2: General overview of the purification of a histidine-tagged protein and its subsequent removal. 
Adapted from [117]. 

 
 The strength of binding of the affinity handle to the matrix is determined by the 

number of histidine residues present. However, at any given time, only two histidine residues 

in the sequence can coordinate to one metal ion. Therefore, the more histidine residues 

present, the higher the likelihood that two will be in a favourable orientation to coordinate 

with the immobilized metal. The most commonly employed histidine-tag is the 

hexahistidine-tag [118]. 
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2.1.4. Plan of Action 

 With the above considerations of fusion tags in mind, we endeavoured to overexpress 

and purify TSR with a hexahistidine-tagged appended to its N-terminus. While the 

hexahistidine-tagged TSR was expressed as a soluble protein, throughout the purification 

process, large amounts of protein precipitated, making TSR a very difficult enzyme to 

handle. A number of different screening conditions were examined and eventually, it was 

found that removal of the tag and addition of certain buffer additives yielded enough soluble 

protein for biochemical and structural studies. This chapter describes the experiments 

involved in the overexpression and isolation of TSR. 

2.2. Materials and Methods 

2.2.1 Reagents and Materials 

The following reagents and materials were obtained from the following companies: 

 

BDH (VWR) (Mississauga, ON): citric acid, 38% formaldehyde, sodium acetate 

 

Bioshop (Burlington, ON): agarose, bacto-tryptone, chloramphenicol, imidazole, isopropyl-

β-thiogalactopyranoside (IPTG), kanamycin, trichloracetic acid, Tris (hydroxymethyl) 

aminomethane hydrochloride  (Tris-HCl),  and Tris (hydroxymethyl) aminomethane 

hydroxide (Tris-OH ), phenylmethylsulfonyl fluoride (PMSF), yeast extract 
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EMD Pharmaceuticals (Durham, NC): acetone, 14.8 M ammonium hydroxide, 

ethylenediamine tetraacetic acid (EDTA), glacial acetic acid, glycerol, methanol, sodium 

dodecyl sulphate (SDS), sodium chloride, sodium hydroxide 

 

GE Healthcare (formerly Amersham Biosciences) (Uppsala Sweden): thrombin protease, 

Phastgels, Phastgel buffer strips 

 

 
Qiagen (Mississauga, ON): nickel (II) nitrolotriacetic (Ni-NTA) super flow resin 

 

New England Biolabs: 100 bp DNA ladder, NdeI, BamHI 

 

Sigma Chemical Company (St. Louis, MO): β-mercaptoethanol, bovine serum albumin, 

bromophenol blue, Coomassie Brilliant Blue G-250, ethidium bromide, nickel (II) sulphate,  

 

2.2.2 General Equipment 

2.2.2.1. Cell Disruption Equipment 

 Lysates of cells for purification were obtained from sonication of resuspended cells 

with a SonicatorTM cell disruptor model W225 from Heat Systems-Ultrasonics, Inc 

(Plainview, NY), converter model #2 with a standard tapered mircrotip at an output control 

setting at 5. 
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2.2.2.2. Centrifuges 

Microvolume centrifugation was carried out using the Biofuge A microcentrifuge 

(Heraeus Sepatech GmbH, Germany). For large volume samples (>20 mL), centrifugation 

was done on a Beckman Avanti J-25I centrifuge (Mississauga, ON) or on the Beckman 

Coulter Avanti JE centrifuge (Fullerton, CA, USA). For protein concentration with starting 

volumes between 1 – 2.5 mL, Vivascience Vivaspin concentrators were used at a speed of 

5000 rpm on the VWR Clinical 100 Microcentrifuge. 

2.2.2.3. Chromatographic Equipment 

All columns utilized in the purification process (HisTrapTM HP, HiTrap Benzamidine 

FF and MonoQ) were acquired from GE Healthcare (formerly Amersham Biosciences, 

Uppsala, Sweden). Purification of TSR was either performed on a Fast peptide and protein 

liquid chromatography (FPLC) machine or a high performance liquid chromatography 

apparatus (HPLC). FPLC was performed on a Pharmacia Biotech (now GE Healthcare, 

Uppsala, Sweden) system comprising of: LCC-500 chromatography controller, two P-500 

pums, MV-7 motor valve and Empower Pro (Build 1154) software. HPLC was carried out on 

a Waters HPLC system (Milford, MA, USA) consisting of the following components: Waters 

600S controller, Waters 626 pump, Waters 2996 Photodiode Array Detector, in addition to 

Waters Empower 2 software, Build 2154. All aqueous buffers were filtered through a 0.2 µm 

membrane filter (Pall Life Sciences, East Hills, NY). Before injection, all samples were 

filtered through a syringe filter: 0.2 µm polyethersulfone membrane (VWR International, 

Mississauga, ON). All buffers were degassed prior to use. 
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2.2.2.4. Incubators  

Growth of liquid bacterial cultures employed either a Series 25 controlled 

environment incubator shaker (New Brunswick Scientific Co., Inc., Edison, NJ) or InnovaTM 

4330 refrigerated incubator shaker (New Brunswick Scientific) both shaking ~ 200 rpm. For 

standing or plated bacterial cultures, growth was done in a Precision gravity convection 

incubator from Precision Scientific, Inc (Chicago, IL). 

2.2.2.5. Protein Concentration Devices 

 Concentration of purified protein was accomplished using Amicon Centricon YM 

10 (Millipore, Bedford, MA) centrifugal concentrators,  VivaScience Vivaspins (Stonehouse, 

UK) with a molecular weight cut off of 10 000 Da, or Nanosep® Centrifugal devices with 

10K molecular weight cutoff (PALL, East Hills, NY) 

2.2.2.6. Spectrophotometry 

 Protein quantitation assays using the Bradford Assay method were performed using  

one of the following instruments: Varian Cary 3 UV-Visible Spectrophotomter (Mississauga, 

ON) spectrophotometer with the CaryWinUV Advanced Reads Application Software 3.00 

(182); Ultrospec 2100 pro UV/Visible spectrophotometer (GE Healthcare, Uppsala, 

Swedan); Molecular Devices Spectramax Plus 384 (Union City, CA, USA), SoftmaxPro      

v. 501 Software. 
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2.2.2.7. Thermal Cyclers 

All polymerase chain reactionss were performed on a Techne (Princeton, NJ, USA) 

Techgene cycler or  Applied Biosystems GeneAmp PCR System 2700 v. 2.04 machine 

(Foster City, CA, USA). 

2.2.2.8. Mass Spectrometer 

The nano-electrospray mass spectrometer used was a Micromass Q-TOF UltimaTM 

Global and supplied by the Waterloo Chemical Analysis Facility, University of Waterloo. 

2.2.3 General Experimental Protocols 

2.2.3.1. Gel Electrophoresis 

DNA Electrophoresis  

Agarose gel electrophoresis was used to separate plasmid DNA and DNA fragments 

based on size for further manipulations. Agarose gels consisted of 0.8-1.5% (w/v) molecular 

biology grade agarose and 1× TAE (Tris-acetate-EDTA buffer; 40 mM Tris base, 20 mM 

glacial acetic acid, 1 mM EDTA) and were prepared in the following manner: 0.8 g of 

agarose was added to 100 mL of 1× TAE and dissolved with heat via microwaving for 

approximately two minutes. The agarose was allowed to cool to approximately 50 °C prior to 

adding 4 µL of ethidium bromide (0.5 µg/mL) for visualization. The agarose-ethidium 

bromide mixture (~20 mL) was then poured into a plastic chamber and allowed to cool. DNA 

samples to be separated were mixed 1:5 volume of 6× loading buffer (10 mM Tris-HCl, pH 

7.5, 50 mM EDTA, 10% glycerol, 0.25% Bromophenol Blue). All samples were run in 
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parallel with a 100 bp DNA ladder in TAE buffer at approximately 80 V. Bands were 

visualized under short UV-light for photographs and long UV-light for band excision. 

 

Protein Electrophoresis  

 Standard sodium dodecyl sulphate polyacrylamide-gel electrophoresis (SDS-PAGE) 

was utlized to separate proteins based on their molecular weights. All protein samples were 

denatured, linearized and were made negatively charged by boiling for 5-10 min after mixing 

with loading buffer (150 mM Tris-OH, 2% SDS, 1% β-mercaptoethanol, 10% glycerol, 0.1 

Bromophenol blue pH 8.0) at a 1:1 ratio. Separation of proteins employed the semi-

automated Pharmacia PhastSystemTM electrophoresis system with precast gels and buffer 

strips. Gradient gels (10-15%) were used for separation unless stated otherwise.  

 

Coomassie Staining 

 Development of gels involved three steps: 1) staining with 0.1% Coomassie brilliant 

blue R, 30% methanol and 10% acetic acid 2) destaining with 30% methanol, 10% acetic 

acid and 3) preserving with 5% glycerol and 10% acetic acid. 

 

Silver Staining 

 The silver staining protocol was adapted from Wray and coworkers [132] and 

involved four solutions. Solution A: 0.8 g AgNO3 was dissolved in 4 mL of ddH2O. Solution 

B: 10.5 mL of 0.35% NaOH mixed with 0.7 mL of 14.8 M NH4OH. Solution C: Solution A 

was added dropwise into Solution B with constant stirring. A small amount of precipitate will 

appear and then dissolve before adding the next drop. When all of Solution A is added to 
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Solution B OR if the precipitate does not dissolve, the total volume is increased to 100 mL 

with ddH2O. Solution C must be prepared fresh and used within 5 min. Solution D: 1.25 mL 

of 1% citric acid was mixed with 125 µL 38% formaldehyde and increased to a volume of 

250 mL with ddH2O. This solution must also be freshly prepared. 

After protein separation has been performed, the gel was soaked in 50% reagent grade 

MeOH for at least 1 hour. During this time, Solution C was prepared and used to stain the gel 

with constant agitation. The gel was then washed in ddH2O for 5 min before putting into the 

developer solution, Solution D. Development of the staining is stopped when bands appear 

and then the gel is washed immediately with ddH2O and placed in 50% MeOH or 45% 

MeOH/CH3COOH to stop the reaction. 

2.2.3.2. DNA Manipulation and Cloning Methods 

 Standard bacterial and DNA cloning was performed following the standard molecular 

protocols outlined by Sambrook et al. [133]. 

2.2.3.3. Trichloroacetic Acid Precipitation 

 Protein samples recovered at low concentrations were precipitated using 

trichloroacetic acid (TCA) and resolved using SDS-PAGE. TCA was added to a protein 

sample (~100 to 300 µL) to a final concentration of 10% and placed on ice for 15-30 min. 

The sample was centrifuged at 4 °C at 13000 ×g for 15 min. The supernatant was removed 

and discarded and the precipitated pellet was washed and resuspended with 300 µL of ice 

cold acetone and respun for 5 min. The acetone was removed and discarded and the final 

pellet was allowed to air dry thoroughly for a minimum of 15 min. The pellet was then 
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resuspended in SDS loading buffer with vigorous vortexing, and boiled for 5 -10 min prior to 

loading onto the SDS-PAGE gel. 

2.2.3.4. Determination of Protein Concentration 

Protein concentration was measured based on the Bradford method [134]. The 

Bradford assay dye reagent was prepared by dissolving 100 mg Coomassie Brilliant Blue G-

250 with 50 mL 95% ethanol. Then 100 mL of 85% (w/v) phosphoric acid was added to the 

solution, which was then diluted to 0.5 L with ddH2O. Bovine serum albumin (BSA) was 

used as standard protein and prepared in the same buffer solution as the protein of interest 

and were used to calculate the correlation factor between protein concentration and 

absorbance at 595 nm. 

2.2.3.5. Mass Spectrometric Analysis 

Preparation of Protein Samples for Mass Spectrometry 

 Verification of protein molecular weight was performed using mass spectrometry. All 

protein samples were prepared by exchanging sample buffer with Milli-Q water three times 

using Nanosep® centrifugal devices with 10  kDa molecular weight cutoff. Alternatively, if 

protein precipitation occured and was problematic, removal of buffer salts was achieved by 

applying protein sample onto a 1 mL Sephadex G25 gel filtration column with Milli-Q water 

as the eluant.  An additional step was occasionally required where the salts of the eluted 

samples were removed using a Nanosep®
 centrifugal device.  
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Electrospray Mass Spectrometry of Protein Samples  

The samples, now in Milli-Q water were diluted in a solution containing 1:1 

acetonitrile:water with 0.2% formic acid in a ratio of 1:1 before injecting into the mass 

spectrometer. Mass spectrometry was carried out with electrospray ionization (ESI) in 

positive ion mode. Molecular masses were obtained using the MaxEnt algorithm using the 

MassLynx program. 

2.2.4. Cloning of TSR into E. coli 

 The primers used for cloning tsr open reading frame (ORF) were as follows and were 

obtained from MOBIX Central Facility (DNA Synthesis Laboratory, The Institute for 

Molecular Biology and Biotechnology, McMaster University, Hamilton, ON): 

 
5′ CCA GAA TTC CAT ATG  ACT GAG TTG GAC ACC ATC GCA AAT CCG 3 ′ 
5′ C CCA AAG CTT GGA TCC TTA TCG GTT GGC CGC GAG ATT CCT GTC GAT CC 3 ′ 
 
 In both primers, the bold highlighted segments are homologous to part of the ORF 

encoding TSR. The underlined and italicized residues indicate NdeI and BamHI restriction 

endonuclease sites, respectively. The tsr gene was a generous gift from Dr. Gerry Wright 

(McMaster University, Hamilton, ON) originally from PIJ702 and now in pUC-19 and given 

the name pUC-TSR. The tsr ORF was amplified using the polymerase chain reaction (PCR). 

Both the gel purified PCR product and the pET28b vector were digested with the above 

restriction enzymes and gel purified. The purified products were then ligated using T4 DNA 

ligase. The ligation product was transformed into chemically competent E. coli DH5α cells, 

and then plated on kanamycin-containing Luria-bertaini (LB ; per liter:  10 g tryptone, 5 g 

yeast extract, 10 g NaCl pH 7.0) agar (LB broth plus 1.5% agar). Plasmid was isolated from 

the colonies and again digested with BamHI and NdeI restriction enzymes to confirm correct 
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size of tsr insert. The pET-28b-TSR vector, simply designated as pTSR10 was transformed 

into E. coli BL21 (λDE3) pLys. An expression test was performed and a band corresponding 

to the hexahistidine-tagged TSR was observed at ~30 kDa as observed on the SDS-PAGE 

gel. This work was completed by Graeme Couture and Dr. Elisabeth Daub. 
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A) 

      3       9      15      21      27      33      39       
      |       |       |       |       |       |       | 
  1 ATG ACT GAG TTG GAC ACC ATC GCA AAT CCG TCC GAT  CCC GCG  
 43 GTG CAG CGG ATC ATC GAT GTC ACC AAG CCG TCG CGA  TCC AAC 
 85 ATA AAG ACA ACG TTG ATC GAG GAC GTC GAG CCC CTC  ATG CAC 
127 AGC ATC GCG GCC GGG GTG GAG TTC ATC GAG GTC TAC GGC AGC 
169 GAC AGC AGT CCT TTT CCA TCT GAG TTG CTG GAT CTG  TGC GGG 
211 CGG CAG AAC ATA CCG GTC CGC CTC ATC GAC TCC TCG  ATC GTC  
253 AAC CAG TTG TTC AAG GGG GAG CGG AAG GCC AAG ACA TTC GGC 
295 ATC GCC CGC GTC CCT CGC CCG GCC AGG TTC GGC GAT ATC GCG 
337 AGC CGG CGT GGG GAC GTC GTC GTT CTC GAC GGG GTG AAG ATC 
379 GTC GGG AAC ATC GGC GCG ATA GTA CGC ACG TCG CTC GCG CTC 
421 GGA GCG TCG GGG ATC ATC CTG GTC GAC AGT GAC ATC ACC AGC 
463 ATC GCG GAC CGG CGT CTC CAA AGG GCC AGC CGA GGT TAC GTC 
505 TTC TCC CTT CCC GTC GTT CTC TCC GGT CGC GAG GAG  GCC ATC 
547 GCC TTC ATT CGG GAC AGC GGT ATG CAG CTG ATG ACG  CTC AAG 
589 GCG GAT GGC GAC ATT TCC GTG AAG GAA CTC GGG GAC AAT CCG 
631 GAT CGG CTG GCC TTG CTG TTC GGC AGC GAA AAG GGT GGG CCT 
673 TCC GAC CTG TTC GAG GAG GCG TCT TCC GCC TCG GTT  TCC ATC 
715 CCC ATG ATG AGC CAG ACC GAG TCT CTC AAC GTT TCC  GTT TCC 
757 CTC GGA ATC GCG CTG CAC GAG AGG ATC GAC AGG AAT CTC GCG  
799 GCC AAC CGA TAA 

 
Total number of bases: 810 
DNA sequence composition: A: 155;   C: 249;   G: 248;   T: 158  
 
B)  
            10         20         30         40         50 
             |          |          |          |          | 
  1 MTELDTIANP SDPAVQRIID VTKPSRSNIK TTLIEDVEPL MHS IAAGVEF  
 51 IEVYGSDSSP FPSELLDLCG RQNIPVRLID SSIVNQLFKG ERK AKTFGIA  
101 RVPRPARFGD IASRRGDVVV LDGVKIVGNI GAIVRTSLAL GASGIILVDS 
151 DITSIADRRL QRASRGYVFS LPVVLSGREE AIAFIRDSGM QLMTLKADGD 
201 ISVKELGDNP DRLALLFGSE KGGPSDLFEE ASSASVSIPM MSQTESLNVS 
251 VSLGIALHER IDRNLAANR  

 
Number of residues: 269 

Molecular weight (MW): 28901 Da   
 
Amino acid composition: 
 22 A 1 C 2 H 6 M 10 T     
 21 R 6 Q 25 I 9 F 0 W     
 9 N 15 E 26 L 13 P 2 Y     
 20 D 21 G 9 K 30 S 22 V     
 

Figure 2.3: S. azureus thiostrepton-resistance rRNA methyltransferase DNA and protein sequence. 
(A) DNA sequence and (B) corresponding protein sequence. Standard one letter codes for amino acids have 

been used. 
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2.2.5. Overexpression of TSR  

2.2.5.1. Optimization of Overexpression of TSR in Rich Media 

 A small starter culture in TB broth (per litre: 12 g tryptone, 24 g yeast extract, 4 mL 

glycerol in 900 mL ddH2O plus 100 mL of  0.17 M KH2PO4 and 0.72 M K2HPO4, pH 7.0) 

and NZCYM media (per litre: 10 g NZ amine, 5 g NaCl, 5 g yeast extract, 1 g casamino 

acids, 2 g MgSO4-7H2O, pH 7.0) supplemented with kanamycin (30 µg/mL) and 

chloramphenicol (34 µg/mL) was inoculated from frozen stock and grown over night at 37 

°C. The cultures were diluted 100 times in their respective medias and grown at 37°C with 

constant agitation (~200 rpm) until both sets of cells reached a mid-log phase (A600 = 0.5-0.8) 

optical density of 0.6. Isopropyl-β-thiogalactopyranoside (IPTG) was then added to the 

media to a final concentration of 1 mM to initiate TSR overexpression. The cells were grown 

for 24 h with 1 mL samples removed at various time points, then harvested by centrifugation 

(5 min at 13 000 ×g) and frozen at -80 °C. 

To ascertain if TSR expressed as a soluble protein, at the end of the time course, 2 

mL of the sample was taken out and subjected to three rounds of sonication (10 second 

pulses). The sample was separated by centrifugation (5 min at 13 000 ×g) and the supernatant 

and pellet were analyzed on SDS-PAGE along with the time-dependent sample pellets that 

were previously collected. 

2.2.5.2. Harvest of Induced Cells 

Following a large volume induction, in a large Beckman JA-15 rotor, cells were 

harvested by centrifugation at 6000 ×g for 15 min at 4 °C. Cells were washed twice with a 
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minimal volume of 20 mM Tris buffer pH 7.0 and re-centrifuged. Pelleted cells were frozen 

with liquid nitrogen and stored at -80 °C for future use. 

2.2.6. Purification of (His)6-tagged TSR (HTSR) 

2.2.6.1. Cell Lysis 

TSR was overexpressed in E. coli BL21 (λDE3)/pLysS strain as described above. To 

obtain crude cell lysate for purification of enzyme, the steps were as follows: Frozen cells 

were resuspended in HisBind Buffer (Buffer A: 50 mM Tris buffer pH 8.0, 20 mM 

imidazole, 500 mM KCl, 10% glycerol; 2-5 mL/g frozen cells) and thawed on ice in the 

presence of 1 mM of phenylmethylsulfonyl fluoride (PMSF) and 1 mg/mL lysozyme for ~30 

minutes. The suspension was then sonicated on ice for 10-12 cycles with 10 s pulses 

separated with one min pauses. If the lysate is very viscous, 5 µg/mL DNase was added to it, 

followed by incubation (15 min). The cell lysate (soluble fraction) was collected by 

centrifugation at 20000 rpm (48 300 ×g) with a JA-25.50 rotor for 20 min at 4 °C. The 

supernatant was then filtered through a 0.2 µm filter prior to further remove any particulate 

cell debris. 

2.2.6.2. Purification of Hexahistidine-tagged TSR with IMAC  

Batch Purification with Nickel(II)-nitrilotriacetic (Ni-NTA) Superflow resin 

Prior to the addition of clarified cell lysate, the nickel(II)-nitrolotriacetic (Ni-NTA) 

superflow resin (binding capacity of ~8 mg/mL) was washed at least three times with 

HisBind buffer (Buffer A: 50 mM Tris buffer pH 8.0, 20 mM imidazole, 250 mM KCl). The 

Ni-NTA resin slurry was combined with the cleared cell lysate and mixed gently on a rotary 
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shaker at 4°C for one hour. The lysate-resin slurry was then loaded into a 10 mL BioRad 

Econo-Column. The buffer level was drained to just about the resin bed and three to five 

column volumes of the HisBind buffer were applied. TSR elution was achieved by applying 

HisElution buffer (Buffer B: 50 mM Tris buffer pH 8.0, x mM imidazole, 250 mM KCl; 

where x is 20 mM, 40 mM, 100 mM, 250 mM) in a stepwise fashion with increasing 

concentrations of imidazole. Fractions of 2 mL volume were collected and 50 - 100 µL of 

each fraction was analyzed on SDS-PAGE.  Fractions of highest purity were then pooled and 

dialysed against two 1-L changes of 50 mM Tris buffer pH 7.5 at 4°C using 

SPECTRA/POR dialysis tubing with a molecular weight cutoff of 12 000 – 14 000 Da. The 

protein concentration was estimated by the Bradford assay using BSA as a standard. 

 

Optimization of Protein Solubility During Dialysis 

 Optimization of buffer conditions for enhanced solubility during the second dialysis 

step was achieved by screening different additives. Table 2.3 summarizes the different 

conditions that were tested and utilized for optimization. 

 
Table 2.3: Different Conditions Screened to Enhance TSR Solubility During Dialysis. 

Additive/Condition Amount/Concentration 
glycerol 0%, 10%, 15%, 20% (v/v) 
β-mercaptoethanol 0 mM, 10 mM 
dithiothreitol 0 mM, 1 mM 
NaCl 0 mM, 75 mM, 150 mM, 500 mM 
KCl 0 mM, 75 mM, 150 mM, 500 mM 
pH 7.0, 7.5, 8.0 
time* 3, 5, 8 h 
HistrapTM HP column Not applicable 
EDTAγ 2.5 mM 

*Time indicating the length of the first dialysis exchange 
γ
EDTA: ethylenediaminetetraacetic acid 

 
Equal amounts of protein for different sets of conditions were used for dialysis with 

two buffer changes. The amount of precipitation (if any) was quantified by pipetting the 
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white protein from the dialysis bag and centrifuging at 13000 ×g for 10 min. The supernatant 

was pipetted off or decanted and the white pellet was prepared for SDS-PAGE analysis to 

confirm that it contained TSR. The soluble fraction of the sample was quantitated by means 

of Bradford assay and compared. 

 

Optimized Purification with HistrapTM HP Ni2+-Sepharose column 

The recombinant (His)6-TSR (HTSR) was purified by IMAC on a HisTrapTM HP Ni2+ 

column. A 1 mL HisTrapTM HP was equilibrated with 5 column volumes of Binding/Wash 

Buffer (Buffer A: 50 mM Tris buffer pH 8.0, 20 mM imidazole, 500 mM KCl, 10% 

glycerol). The clarified cell lysate was loaded onto the column at a 0.5 mL/min flow rate. 

The column was washed extensively with buffer A until baseline absorbance at 280 nm to 

remove non-binding proteins. The hexahistidine-tagged TSR was eluted with Elution Buffer 

(Buffer B: 50 mM Tris buffer pH 8.0, 500 mM imidazole, 500 mM KCl, 10% glycerol). 

EDTA (2 mM) was added immediately to fractions containing TSR. To remove the 

imidizole, the eluted enzyme solution was dialyzed sequentially against 50 mM Tris buffer 

pH 7.5, 500 mM KCl, 10% glycerol at 4 °C using SPECTRA/POR dialysis tubing with a 

molecular weight cutoff of 12 000 – 14 000 Da. The protein concentration was estimated by 

the Bradford assay using BSA as a standard. 

2.2.7. Removal of (His)6-tag from Recombinant TSR 

2.2.7.1. Time Course on Thrombin Cleavage of Histag from TSR 

To 100 µL of HTSR (~1 mg/mL) was added CaCl2 to 2.5 mM. After, 5 µL was taken 

out and set aside as a mock digestion (negative control). To the remainder of the HTSR 
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sample, 1 µL of thrombin protease (1 U/µL) was added, since according to manufacturer’s 

instructions, 1 unit of thrombin protease should cleave 100 µg of protein to give the 

corresponding cleaved TSR (TSR′). The mixture was allowed to incubate at ambient 

temperature and at the following time points (t = 0.5 h, 1 h, 2 h, 4 h, 12 h, 24 h), 5 µL of the 

sample was taken out and frozen in at -20 °C with SDS-PAGE loading dye. At the end of the 

time course, all samples were analyzed with SDS-PAGE. 

2.2.7.2. Thrombin Cleavage and Clean up of de-tagged TSR (TSR′′′′) 

 Removal of the His-tag was achieved by treatment with of thrombin protease (1U/µL) 

at 4 °C while gently shaking for 16-18 h in thrombin cleavage buffer (50 mM Tris buffer pH 

7.5, 500 mM KCl, 10% glycerol, 2.5 mM CaCl2). One unit of thrombin protease was used to 

cleave 100 µg of protein to give the corresponding cleaved TSR (TSR′). The thrombin 

protease, along with any residual uncleaved HTSR was removed with the application of the 

cleavage mixture onto a HiTrap Benzamdine FF Affinity column and HisTrapTM HP in 

tandem. TSR′ was initially collected as the flowthrough at a rate of 0.5 mL/min in Buffer A 

(50 mM Tris buffer pH 7.5, 500 mM KCl, 10% glycerol) and the HTSR eluted with Buffer B 

(50 mM Tris buffer pH 7.5, 1M KCl, 10% glycerol) at 0.5 mL/min. Lastly the thrombin 

protease was eluted with Thrombin elution buffer (Buffer C: 50 mM glycine pH 3.0). The 

cleaved TSR sample was dialyzed against 50 mM Tris buffer pH 7.5 with 10% glycerol. 

2.2.8. Further Purification of TSR′′′′ 

In order to achieve higher purity, anion exchange chromatography was subsequently 

performed using a MonoQ column. The column was initially washed to zero baseline 
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absorbance at 280 nm and then TSR′ was eluted with an increasing linear gradient of KCl at 

1%/min from Buffer A (50 mM Tris pH 7.5, 10% glycerol) to Buffer B (50 mM Tris buffer 

pH 7.5, 1 M KCl, 10% glycerol) between 26-32% KCl. This purification was followed by 

dialysis against 50 mM Tris buffer pH 7.0, 75 mM KCl, 10 % glycerol and the protein stored 

at -80 °C for future use. 

2.2.9. Gel Filtration Chromatography of TSR′′′′ 

 Superdex-75 (10/300) is a gel filtration column with a bed volume of 24 mL and was 

calibrated used BioRad gel filtration standard consisting of protein aggregates (unspecified 

molecular weight), thyroglobulin (670 kDa), bovine gamma globulin (158 kDa), chicken 

ovalbumin (44 kDa), equine myoglobin (17 kDa) and vitamin B12 (1.35 kDa) in 50 mM Tris 

pH 7.5, 150 mM KCl and 10% glycerol. In addition, carbonic anhydrase (29 kDa) and bovine 

serum albumin (66 kDa) standards from Sigma were employed in the calibration process. 

Sample volumes of 100 µL of 1.0 mg/mL were filtered with a 0.2 µm GHP membrane filter, 

loaded onto the column and eluted at a rate of 0.5 mL/min in a buffer consisting of 50 mM 

Tris pH 7.5, 150 mM KCl and 10% glycerol. To test the effects of thiol-reducing agents, to 

the buffers were added β-mercaptoethanol or dithiothreitol to a final concentration of 10 mM 

and 1 mM respectively. 

2.3. Results and Discussion 

2.3.1. Expression of Recombinant His-tagged-TSR in E. coli 

In earlier work in the Honek laboratory, tsr was overexpressed successfully without a 

fusion tag; however, attempts at producing high levels of crystallographically pure protein 
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achieved only limited success. Taking this into consideration, the hexahistidine fusion vector 

pET28b(+) and the protease deficient BL21 (λDE3) strain harbouring pLys were chosen as 

the expression system. The tsr ORF was successfully subcloned from pUC-TSR to 

pET28b(+) to give pTSR10 (Figure 2.4).  

 

Figure 2.4: Cloning strategy for the construction of pET-28A(+)-tsr (pTSR10).  
Amp R, ampicillin resistance marker. Kan R, kanamycin resistance marker. 

 
Time course expression tests were performed with different types of rich media. 

Optimal expression occurred four hours after induction for NZCYM and between four and 

six hours for TB with comparable amounts of protein. Since the induction time for TB was 

slightly more flexible than for NZCYM and the induction time was shorter than the observed 

8 h with LB, all subsequent cell growth procedures were performed with TB medium with a 

four hour induction with 1 mM IPTG for overexpression (Figure 2.5). Although its sequence 

was determined by protein solubility prediction algorithms to more likely to be expressed 

(74%) as insoluble inclusion bodies [135], it was observed from SDS-PAGE analysis that 

TSR was expressed as a soluble protein. However, its solubility during subsequent 

manipulation was observed to be easily compromised. 
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Figure 2.5: Time course of expression of TSR in different rich media.  
Proteins were visualized with Coomassie staining on the 20% SDS PAGE gel. LMWM = low molecular weight 

marker. 

2.3.2. Enhancing Purification of His-tagged-TSR in E. Coli After IMAC 

Purification  

2.3.2.1. Batch Purification of TSR with Ni-NTA Superflow resin 

Initial purification of hexahistidine-tagged TSR was achieved through batch 

purification of the enzyme with a gravity Ni2+-affinity column. E. coli cells containing the 

overexpressed TSR were disrupted by lysozyme treatment and sonication and the clarified 

cell lysate incubated with the Ni2+-NTA resin for one hour. The lysate-resin mixture was 

loaded onto a column and the unbound proteins were washed off and TSR was eluted off 

with increasing amounts of imidazole in the buffer. After this process, the purity of fractions 

was examined by SDS-PAGE (Figure 2.6).   
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Figure 2.6: SDS PAGE analysis of fractions collected during purification of HTSR using a Ni2+-NTA 

Superflow column.   
LMW = low molecular weight marker.  Fractions 14-20 show a prominent band at ~31 kDa indicative of HTSR. 

 
A prominent TSR band at approximately 31 kDa with minor amounts of 

contaminating proteins was observed. Electrospray mass spectrometry confirmed this finding 

(Figure 2.7). Fractions containing TSR were pooled and dialysed. However, during dialysis, 

unwanted precipitation of TSR was observed resulting in a substantial decrease in protein 

yield.  

 

 
Figure 2.7: Positive ion mode electrospray mass spectrum of purified HTSR.  

The expected molecular weight 31064 Da .The major peak indicates a monomeric molecular weight of 30936 
Da after denaturation with the N-terminal methionine cleaved off. 
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2.3.2.2. Enhancing TSR Solubility During Dialysis 

 Prevention of precipitation and aggregation is desirable during the overexpression and 

isolation of a target protein. Protein can often accumulate into insoluble inactive aggregates 

known as inclusion bodies and can often be refolded into soluble active proteins [136,137]. 

Oftentimes however, the protein may be successfully expressed as soluble protein, but still 

have difficulty remaining soluble as in the case of TSR. Protein solubility is influenced by 

many different factors such as temperature, pH, salt type or concentrations [138]. Protein 

stability and solubility can be increased by use of buffer additives that can destabilize 

protein-protein interactions or stabilize intramolecular protein interactions.  

It was observed that dialysis of HTSR after the first step of purification resulted in 

undesirable precipitation. Protein was dialysed against two 1 L changes of 50 mM Tris buffer 

pH 7.5 at 4°C, and precipitation only occurred after the second change of dialysis buffer. The 

following discusses the approaches that were undertaken to reduce or circumvent protein 

precipitation during the purification process. 

 

Effect of Kosmotropes 

 Kosmotropes (“order makers”) is a term used to describe solutes that stabilize the 

native state of proteins. Kosmotropes increase ordering of water thereby enhancing the 

hydrophobic effect, which plays a significant role in protein solubility [139]. Both non-ionic 

and ionic kosmotropes were added to the buffer to increase HTSR stability.  

 Glycerol is a non-ionic kosmotrope whose protein stabilizing influence is widely 

recognized. Glycerol and other non-ionic kosmotropes are highly soluble molecules, and 

hydrogen bond with water, thereby enhancing the hydrogen bonding network that exist 
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between the ordered water molecules [139,140]. Therefore, three different concentrations of 

glycerol were used in buffers involving the purification and dialysis (10%, 15%, 20% v/v). 

The amount of enzyme recovered was compared to that of not having glycerol present using 

the Bradford assay. Increasing amounts of glycerol did not appear to affect the amount of 

enzyme recovered significantly (Table 2.4). 

 
Table 2.4: Effect of Different Types and Amounts of Kosmotropes in Dialysis Buffer on HTSR Solubility. 

Kosmotrope Amount of 
Kosmotrope 

% 
Recovery 

glycerol 0% (v/v) 30 ± 10 
 10% (v/v) 40 ± 5 
 15% (v/v) 40 ± 5 
 20% (v/v) 40 ± 5 
KCl 0 mM 30 ± 10 
 75 mM 30 ± 5 
 150 mM 60 ± 5 
 500 mM 60 ± 5 
NaCl 0 mM 30 ± 10 
 75 mM 30 ± 5 
 150 mM 60 ± 5 
 500 mM 60 ± 5 

 
Ionic strength and ionic composition have been found to be factors that influence 

protein solubility. Here the influence of two different types of weak ionic kosmotropes (KCl 

and NaCl) was investigated. Salts can bind to the protein, providing a shielding effect for 

unpaired side chains that otherwise may facilitate protein-protein interactions that may lead 

to aggregation [138]. Furthermore, since TSR is a nucleic acid binding protein, it may require 

a higher concentration of salts for stabilization [141].  

At concentrations above 150 mM KCl or NaCl, there was an increased yield in 

soluble TSR. It was therefore concluded that buffers used during dialysis should have a 

minimum concentration of 150 mM KCl. While the addition of kosmotropes did improve 

protein solubility, other additives were tried to further reduce protein aggregation. 
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Effect of Thiol-Reducing Agents 

 In the TSR sequence, there is one cysteine residue. Limited solubility of the enzyme 

may be due to unwanted intermolecular disulfide bond formation which may interfere with 

the proper folding or produce aggregates. Purification buffers were treated with reducing 

agents β-mercaptoethanol and dithiothreitol at 10 mM and 1 mM concentrations, respectively 

to break any putative disulfide bonds and promote the dissociation of aggregates. It was 

found that the presence of either agent did not improve its solubility (Table 2.5).  

 
Table 2.5: Effect of Different Types of Thiol-reducing agents in Purification Buffers on HTSR Solubility. 

Thiol-reducing agent Concentration 
(mM) 

% 
Recovery 

β-mercaptoethanol 0 30 ± 10 
 10 30 ± 10  
dithiothreitol 0 30 ± 10 
 1 30 ± 10 

 
 
Effect of pH and Time 

The pH optimum of TSR was published to be between a narrow range of 6.5 to 8.0 

with the optimum being at 7.5 [114] with a calculated pI of 6.14. We sought to adjust the pH 

to see if there was a correlation to the amount of enzyme that precipitated. Dialyses at pH 

7.0, 7.5 and 8.0 were carried out and the yield was found to be unaffected by pH (Table 2.6). 

 
Table 2.6: Effect of pH and Time on TSR Solubility. 

Condition pH or Time  % Recovery 
pH 7.0 30 ± 10 
 7.5 30 ± 10  
 8.0 30 ± 10 
Time 3 h 30 ± 10 
 5 h 30 ± 10 
 8 h 30 ± 10 

 
Precipitation of HTSR occurred only after the latter part of dialysis, that is, after the 

first dialysis buffer change. A relationship between the length of the first dialysis time and 
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precipitation was considered. Dialysis times of 3, 5 and 8 h were tried and found that 

precipitation occurred to the same extent regardless of the length of time of the previous 

dialysis step (Table 2.6). Therefore, it appears that only when the imidazole concentration 

within the TSR sample (carried over from the purification) is significantly lowered, that the 

protein preicipation occurs. 

 

Effect of Ni2+Leakage Reduction 

The role of possible Ni2+ leakage playing a part in protein aggregation was taken into 

consideration. Ni2+ from the binding matrix of the affinity column could potentially be found 

in the eluted protein sample. Ni2+ leakage was suspected because precipitation only occurred 

after the first dialysis buffer change. There are two histidines in one monomer of TSR, in 

addition to the six histidines that the N-terminal region, and Ni2+-induced oligomerization by 

forming histidine- Ni2+-histidine interactions is a possibility. We turned to the Histrap Ni2+-

sepharose column developed by GE Healthcare (formerly Amersham Biosciences) that 

claims to have negligible Ni2+ leakage. Use of the Histrap column provided a more facile 

method of purifying HTSR on a HPLC or FPLC machine with monitoring at 280 nm 

compared to the gravity Ni2+-NTA column. The protein was eluted in one step with elution 

buffer containing 500 mM imidazole and the sample subjected dialysis with the buffer 

additives that were determined previously to aid HTSR solubility (i.e. at least 10% glycerol 

and 150 mM KCl) (Figure 2.8).  
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Figure 2. 8: IMAC purification of HTSR with Histrap Ni2+-sepharose column.  
The absorbance was monitored at 280 nm and the column was washed until the baseline absorbance was 

attained. At 83 min, the protein was eluted with elution buffer containing 500 mM imidazole. The area under 
the first major broad peak corresponds to the flow through containing proteins that did not bind to the column. 
The area under the second major peak, shaded grey, corresponds to the column fractions that were pooled for 
subsequent steps of purification. After HTSR was eluted, column was washed with wash buffer back down to 

baseline absorbance value. 
 

This use of the Histrap column gave a more streamlined purification and for the 

majority of the time, the protein was recovered fully after dialysis. However, protein 

precipitation still occurred on occasion. From this we tentatively concluded that Ni2+ leakage 

was minimized significantly by the new column, but not fully. Treatment of protein 

precipitation when it did occur with 2.5 mM EDTA was found to be successful in 

resolubilizing the protein. Similar results were obtained by Sprules and coworkers who 

observed Ni2+-induced oligomerization of their protein tagged with 10 histidines [142]. We 

also believe that precipitation only occurred after the second dialysis buffer change since the 

free imidazole was no longer present to chelate to any free Ni2+ ions. Therefore, fractions of 

HTSR that are collected from the optimized IMAC purification were immediately treated 

with 2.5 mM EDTA and then dialyzed. This method allowed for reliable and successful 

recovery of HTSR after dialysis. 
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2.3.3. Removal of the Hexahistidine tag from HTSR 

The (His)6-tag was fused at the N-terminal region of TSR with an engineered 

thrombin protease cleavage site (Figure 2.9). Although a hexahistidine tag is small and in 

most cases does not interfere with enzyme activity, removal of the tag is often desired for 

structural analysis such as X-ray crystallography. Removal of the tag from HTSR leaves only 

two residues (glycine and serine) at the N-terminus. 

 
Figure 2. 9: The (His)6-tagged TSR methyltransferase.   

The affinity-labelled protein will have an additional 20 amino acid residues (redbox), which includes the six 
histidines that make up the tag on its N-terminal end.  In addition, a thrombin cleavage site was engineered into 
the tag to allow for future removal of the histidine-tag.  Cleavage will result between an arginine and glycine as 

indicated by the orange arrow. 
 
 From a small scale cleavage time course, optimal cleavage was determined by have 

occurred after 12 h. Initial attempts at large scale removal of the tag resulted in significant 

loss of protein through precipitation (over 50%). Re-addition of EDTA did not resolubilize 

the protein and therefore, aggregation due to any residual Ni2+ ions left over from dialysis 

was no longer the cause of aggregation. However, it was found that that increasing the salt 

concentration from 150 mM KCl to 500 mM KCl decreased the precipitation significantly, 

although it did not eliminate it entirely. 

 Following the fusion tag cleavage, the mixture was loaded onto a HiTrap 

Benzamidine Affinity column and HisTrap HP in tandem. The first column is designed to 

bind to serine proteases such as thrombin and the second column was present to remove any 

residual HTSR that remained. The cleaved protein (TSR′) was present in the flow through 

and was collected for the next stage of purification (Figure 2.10). The electrospray mass 
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spectrum was in agreement with the expected molecular weight of this cleaved protein 

(Figure 2.11). 

 
Figure 2. 10: Chromatogram showing the separation of TSR′ from thrombin protease and uncleaved HTSR.  

TSR′ did not bind to either column (HiTrap Benzamidine Affinity column and HisTrap HP which were attached 
in series). The area under the first major peak corresponds to the flow through containing TSR′. At 35 min, 

buffer containing 500 mM imidazole and 1 M KCl was used to elute any remaining protein on the two columns. 
At 50 min, columns were washed with wash buffer back down to baseline absorbance. 

 

 
 

Figure 2. 11: Positive ion mode electrospray mass spectrum of purified TSR′.  
The expected molecular weight 29182 Da .The major peak indicates a monomeric molecular weight of  29180 

Da after denaturation showing successful removal of the tag. 
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2.3.4. Final step in TSR Purification  

A final polishing step consisting of anion exchange chromatography was then 

performed after the thrombin cleavage clean-up. During this purification step, TSR′ fractions 

were identified over the range of KCl concentration of 260 mM – 320 mM (26-32%) (Figure 

2.12). The eluted protein was then collected and stored for future biochemical and 

biophysical studies (Figure 2.13). 

 
Figure 2. 12: Section of elution profile of anion exchange Mono-Q chromatography of TSR′.  

Protein was loaded onto the column and eluted with a 1% per minute gradient from 0 to 1 M KCl. 
 

 
Figure 2. 13: Summary of stages of purification for TSR.  

Samples were subjected to SDS-PAGE on a 20% homogeneous gel with silver staining. LMWM = Low 
Molecular Weight Marker. CL = cell lysate, H = Histrap, B = Benzamidine column, H2 = Second Histrap 

column, M = MonoQ anion exchange column. 
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2.3.5. Gel Filtration of TSR′′′′  

The oligomeric state of the protein was examined with gel filtration studies. Samples 

were loaded onto a gel filtration column with and without thiol-reducing agents. In both 

cases, the molecular weight calculated was found to be approximately ~52 kDa, which is 

close to twice the monomeric molecular weight of 29 kDa (Figure 2.14). This indicates that 

the native structure of TSR is dimeric and that the dimer structure is not formed with 

disulfide linkages between the two protomers. 

 
Figure 2. 14: Elution profile of TSR′ in the absence of thiol.  

A similar elution profile was observed. Solid and dotted lines are peaks from BioRad and Sigma gel filtration 
standards, respectively. Dashed lines is the elution profile for TSR′. 1: thyrogobulin, 670Kda and bovine 

gamma globulin, 158 kDa; 2:  chicken ovalbumin, 44 kDa; 3: equine myoglobin, 17 kDa; 4: Vitamin B12, 1.35 
kDa; 5: bovine serum albumin, 66 kDa; 6: carbonic anhydrase, 29 kDa. 

 

2.4. Conclusions and Future Work 

 The tsr gene product has been overexproduced at high levels in E. coli as an N-

terminal hexahistidine fusion protein and purified by IMAC. The majority of the protein was 

purified in a one-step procedure using a Ni2+-affinity column. After elution with a high 

concentration of imidazole and dialysed, it was found that the protein, although expressed as 

a soluble protein, was prone to aggregation. Difficulty in handling the enzyme remained a 

challenge throughout the initial stages of purification. It appears that TSR is not the only 
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member of the SpoUT MTase superfamily to be unstable. The avilamycin-resistance MTase 

(AviRb) has been reported to be unstable at ionic strengths below 0.3 M at concentrations 

above 0.5 mg/mL [143]. As a consequence, all purification buffers and crystallization buffers 

for AviRB had a minimum concentration of 500 mM NaCl. 

 An extensive screening of different conditions to reduce or eliminate precipitation 

was undertaken. A combination of buffer additives such as glycerol and salt (at least 150 mM 

KCl or NaCl) was found to reduce the amount of precipitation significantly. In conjunction 

with these buffer co-solutes, reducing the amount of Ni2+ leakage from IMAC purification 

with a different column and the addition of the metal chelator, EDTA, eliminated 

precipitation entirely. Therefore, one must remember that although IMAC provides a facile 

and quick method of purification, auto-aggregation facilitated by Ni2+ ion leakage from the 

column should be taken into consideration.  

 Enzymatic removal of the fusion tag was successful with the use of thrombin 

protease. However, solubility of the enzyme once again was an issue. Increasing the salt 

concentration from 150 mM KCl to 500 mM helped to improve solubility, but did not 

eliminate all precipitation issues. A final enrichment step with anion exchange 

chromatography gave enzyme of substantial purity. Gel filtration chromatography was 

performed on the cleaved enzyme in the presence and absence of thiol-reducing agents. It 

was found that the native structure of TSR is dimeric and that the dimer is not formed with 

disulfide bonds between the two monomers. The established and optimized purification 

detailed herein should enable the availability of the purified and cleaved TSR for further 

study on the structural and biochemical level. The final purification yield was 8 – 12 mg/L 

culture. 
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CHAPTER 3: BIOCHEMICAL CHARACTERIZATION OF 

THIOSTREPTON-RESISTANCE rRNA METHYLTRANSFERASE 
 

 
S-adenosyl-L-methionine (AdoMet) plays a central role in biological transmethylation 

reactions. The class of enzymes that catalyze these methyl transfer reactions are called the 

AdoMet-dependent MTases. These enzymes transfer the methyl group of AdoMet to a target 

molecule (Figure 3.1). A wide selection of molecules can serve as substrates for these 

enzymes and they can vary in size from small organic molecules such as catechol to large 

macromolecules such as lipids, protein and nucleic acids [3,6,8,9]. 

 
 

Figure 3.1.  Transmethlyation reaction catalyzed by AdoMet-dependent MTases.  
 
 The methylation by-product, SAH/AdoHcy is a potent feedback inhibitor [11], but 

cannot be differentiated from AdoMet by ultraviolet spectroscopy. As a result, standard 

MTase assays that are used to detect methyl transfer activity typically involve the 

measurement of the incorporation of a radiolabelled methyl group into the substrate. MTase 

enzymes generally have low turnover numbers and radiometric methods are sufficiently 

sensitive for detection [144,145].  
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3.1. Methods to Detect Methyl Transfer Reactions 

3.1.1. Principles of Radiometric Filter Binding Assays 
  

Radiometric techniques have been utilized with much success since their introduction 

in the 1950s for a wide number of applications i.e. enzyme kinetics. The filter binding (FB) 

assay has been used effectively and extensively to determine methyl transfer activity. 

Radiometric FB assays are based on the conversion of a radioactive substrate to a radioactive 

product that can be rendered insoluble and thus quantified by filtration [145]. In standard 

radioactive MTase assays, the AdoMet substrate is labelled on the methyl group with 3H or 

14C and is transferred to the substrate molecule via the MTase enzyme. The transmethylation 

reaction is stopped after a certain time period by the addition of an organic solvent such as 

ethanol or trichloroacetic acid, which also results in the precipitation of the substrate. 

Radioactive macromolecules are isolated by filtration for quantitation of methyl transfer 

[145,146]. Residual water is removed by drying in air or with heat and the samples can be 

analyzed by liquid scintillation counting methods (Figure 3.2). 

 
 

Figure 3.2. Filter Binding Assay.  
The two substrates are incubated together in the presence of a methyltransferase to facilitate methyl transfer. 

The reaction is stopped by the addition of organic solvent and the radiolabelled product is isolated via filtration. 
The filter paper is dried and sample is processed for measurement with a scintillation device. 
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 Although radioenzymatic assays are sensitive and simple, most assays of this type 

require the separation of labelled substrate (product) from the other assay components. This 

separation step in the FB assay can be laborious, tedious and time consuming when there are 

large numbers of samples to process. Additionally the assay can be difficult to adapt to high 

throughput processing. Accumulation of AdoHcy/SAH can result in product inhibition, 

contributing to errors in kinetic parameter determination [11]. Recently, efforts have been 

directed towards developing alternative assaying methods to circumvent these limitations. 

3.1.2. Scintillation Proximity Assay (SPA) Technology 
 
Scintillation proximity technology was pioneered in 1979 by Hart and Greenwald 

[147], and has recently become a very attractive alternative method for studies involving 

radioactivity. Its advantage is that it eliminates the need to filter or centrifuge a large number 

of samples. 

 With conventional FB assays, after separation of the product from the starting 

materials, the filter paper is placed in scintillation cocktail in a vial. The energy released by 

the radioisotope (i.e. β-particle from tritium) stimulates the scintillant in the cocktail and then 

converts the energy to light such that the signal is amplified and made readily detectable by 

the liquid scintillation counter. In scintillation proximity assays (SPA), the scintillant 

molecule is embedded in a microsphere (bead). 

 The basis of the SPA technology is that not only the microspheric beads contains a 

scintillant, but also the surface of the beads are derivatized with molecules that bind to 

specific radiolabelled molecules. For weak β-emitters such as tritium (3H), the isotope has to 

be close to the scintillant to produce light (within ~1.5 µm). This makes tritium an ideal 
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isotope to use for SPA, since only radiolabelled molecules bound to the SPA bead are 

sufficiently close to the scintillant to induce emission of light. Radioligand molecules that are 

not bound to the bead will have their radioisotopic energy dissipated in the medium so that 

they do not contribute to the measurable quantity of signal (Figure 3.3). As such, the SPA 

technology does not require any transfer, washing and separation steps that are involved in 

radiometric assays, thereby minimizing any errors that may occur from inconsistencies in 

these other procedures. 

 
Figure 3. 3. Overview of scintillation proximity assay. 

Radiolabelled molecules that are bound (close proximity) to the bead stimulate the embedded scintillant to emit 
light. Free, unbound radioligands are not close enough to stimulate light emission. 

3.1.3. Alternative Non-Radiometric Assay Methods for MTases 
  

A number of alternative MTase assay techniques have been developed that do not use 

radioactive material. These methodologies include spectrophotometric [148,149], 

fluorescence [150,151] and immunoassay techniques [152,153]. Most commonly, these 

assays measure the quantity of transmethylation product, AdoHcy/SAH. In the colorimetric 

assay developed by Hendricks et. al. [149], the AdoHcy/SAH product is converted by 

hydrolysis by SAH nucleosidase to give adenine and S-ribosylhomocysteine. S-

Ribosylhomocysteinase (LuxS) is then used to cleave the S-ribosylhomocysteine to yield 
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homocysteine. The thiol-containing homocysteine can be measured using Ellman’s reagent 

(5,5'-dithio-bis(2-nitrobenzoic acid, DTNB) by quantitating the absorbance of 2-nitro-5-

mercaptobenzoic acid at 412 nm (Figure 3.4A). In a similar approach, an enzyme-coupled 

fluorescent technique used by Collazo and co-workers [150] uses SAH hydrolase to generate 

adenosine and homocysteine in the presence of adenosine deaminase which converts 

adenosine to inosine. The homocysteine is then conjugated to a thiol-sensitive fluorophore, 

ThioGloR 1 (Ex = 384max nm; Emmax = 513 nm) (Figure 3.4B). Alternatively, AdoHcy/SAH 

product can be quantified by immunological methods where an anti-SAH antibody solution is 

used and subsequently a horseradish peroxidase (HRP)-conjugated rabbit anti-mouse 

antibody is applied; the addition of the HRP substrate (3,3,5,5-tetramethylbenzidine; TMB) 

produces a yellow colour upon acidification and can be quantified at 450 nm (Figure 3.4C) 

[152]. This assasy format is a competitive immunoassay in which the the SAH from the 

sample and the SAH that is immobilized on a solid surface competes for the anti-SAH 

antibody. Therefore, the signal that is detected is inversely proportional to the concentration 

of SAH in the sample. 
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Figure 3. 4. Non-radiometric assays developed for MTases.  
(A) Spectrophotometric (B) Fluorescence (C) Competitive immunoassay (HRP = horse radish peroxidase). See 

text for details. 

3.1.4. Plan of Action 
  

In the previous chapter (Chapter 2), the overexpression and purification of a 

hexahistidine-tagged TSR were described and discussed. This chapter describes the 

biochemical characterization of this purified cleaved TSR′ by means of the traditional FB 

assay. Although the FB assay has been the assay of choice over the years for measuring 

methyltransferase kinetics, it is time consuming, laborious and not suited for high throughput 

applications. This chapter also documents the preliminary development of a sensitive and 

efficient radiometric SPA method to more conveniently assay TSR′. 

A 

B 

C 
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3.2. Materials and Methods 

3.2.1. Reagents and Materials 

The following reagents and materials were obtained from the following companies: 

 

Amersham Biosciences (formerly Pharmacia Biotech) (Uppsala Sweden): S-adenosyl-L-

[methyl-3H] methionine (3H-AdoMet*; 60-80 Ci/mmol), RNA YSi Binding SPA beads 

(uncoated), Polylysine YSi Binding SPA beads 

 

Bioshop (Burlington, ON): ammonium chloride, N-2-hydroxyethylpiperazine N′– 2-

ethanesulphonic acid (HEPES), magnesium chloride hexahydrate 

 

EMD Pharmaceuticals (Durham, NC): glycerol, potassium hydroxide, trichloroacetic acid, 

RNase inhibitor 

 

MP Biochemicals ( Solon, OH): Cytoscint ESTM liquid scintillation fluid  

 

Roche  Diagnostics (Laval, QC): 16S/23S ribosomal RNA (E. coli MRE600) 

 

Sigma Chemical Company (St. Louis, MO): β-mercaptoethanol, S-adenosyl-L-methionine 

p-toluenesulfonate salt (from yeast ≥80%), diethylpyrocarbonate (DEPC) 

 

UltiDent Scientific (St. Laurent, QC): low binding pipette tips 
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VWR (Mississauga, ON): Whatman GF/B and GF/C glass filters, siliconized eppendorf 

tubes 

3.2.2. General Equipment 

3.2.2.1. Liquid Scintillation Counter 

All radiometric readings were carried out on a Beckman LS 5000TD (Fullerton, CA) 

or a Beckman LS 6500 TD (Fullterton, CA) liquid scintillation counter. 

3.2.2.2. Centrifuges 

Small volume centrifugation was carried out using the Biofuge A microcentrifuge 

(Heraeus Sepatech GmbH, Germany). 

3.2.2.3. Cell Disruption Equipment 

  

Lysis of cells for purification were obtained from sonication of resuspended cells with 

a SonicatorTM cell disruptor model W225 from Heat Systems-Ultrasonics, Inc (Plainview, 

NY), converter model #2 with a standard tapered mircrotip at an output control setting at 5. 

3.2.2.4. Chromatographic Equipment 

The Unosphere-Q anion exchange column was acquired from BioRad (Mississauga, 

ON) and the MonoQ column was obtained from Amersham Biosciences (formerly 

Pharmacia, Uppsala, Sweden). Purification of UT-TSR was performed on a high 

performance liquid chromatography apparatus (HPLC). FPLC was performed on a 

Pharmacia Biotech (now Amersham Biosciences, Uppsala, Sweden) system comprising of: 

LCC-500 chromatography controller, two P-500 pumps, MV-7 motor valve and Empower 
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Pro (Build 1154) software. HPLC was carried out on a Waters HPLC system (Milford, MA, 

USA) consisting of the following components: Waters 600S controller, Waters 626 pump, 

Waters 2996 Photodiode Array Detector, in addition to Waters Empower 2 software (Build 

2154). All aqueous buffers were filtered through a 0.2 µm membrane filter (Pall Life 

Sciences, East Hills, NY). Before injection all samples were filtered through a syringe filter: 

0.2 µm polyethersulfone membrane (VWR International, Mississauga, ON). All buffers were 

degassed prior to use. 

3.2.3 General Experimental Protocols 

3.2.3.1. Minimization of RNAse Contamination 

 A number of precautions were taken to minimize RNAse contamination, as TSR′ 

requires an RNA substrate. Fresh gloves were worn at all times. All preparation areas were 

wiped with RNase AWAYTM. Spatulas, glassware etc. were wrapped in aluminum foil and 

placed in a 160 °C oven for a minimum of four hours prior to use, and all plastic-ware 

utilized was certified RNase free by their respective manufacturers. All buffers were made 

from RNase-free Milli-Q water (MQW). RNase-free MQW was prepared in the following 

manner:  0.1% v/v diethylpyrocarbonate (DEPC) was added to MQW and allowed to stir for 

one hour in 37 °C or overnight at ambient temperature. The DEPC treated MQW was then 

autoclaved to remove residual DEPC from the solution [154,155]. In assay mixtures, 1 U of 

RNase inhibitor was added. 
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3.2.3.2. Reducing The Specific Activity of S-adenosyl-L-[methyl-3H]-methionine  
 

The specific activity of the commercially available substrate i.e. S-adenosyl-L-

[methyl-3H]-methionine (3H-AdoMet*) is often reduced for storage and assay conditions. 

The specific activity of a radiochemical is defined as the amount of radioactivity per unit 

amount of substance i.e. Ci/mmol. Reduction of specific activity can be accomplished with 

the addition of non-radiolabelled (“cold”) compound; that is, while the absolute amount of 

radioactivity remains the same, the total amount of substance increases giving a smaller value 

for specific activity.  The amount of unlabelled compound to add can be calculated with the 

following formula [156]: 
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Where W = weight (in mg) of unlabelled “cold” compound to be added (mg) 

M = molecular weight of radiolabelled compound (g/mol) 
a = total activity (GBQ, mCi) in sample 

A = molar specific activity (GBq/mmol, mCi/mmol of compound as supplied) 
A′ = molar specific activity (GBq/mmol, mCi/mmol) of the desired diluted compound 

 
 Typically the mass (in mg) of the cold AdoMet to be added to the “hot” sample is 

~0.477 mg (achieved through addition of a stock solution at a concentration of 5 µg/µL or 10 

µg/µL in 50 mM HEPES pH 7.5, 7.5 mM MgCl2, 73.5 mM NH4Cl, 3 mM β-

mercaptoethanol, 10% glycerol) to give a specific activity of 500 mCi/mmol and the solution 

is aliquotted and stored at -20 °C. Please refer to appendices for detailed sample calculations. 

 

3.2.4. Filter Binding Assay for TSR′′′′ 

 The MTase activity of the purified enzyme was analyzed in vitro by measuring the 

amount of 3H-methyl (from [3H]-AdoMet*) incorporated into the substrate rRNA. Kinetic 
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data for TSR have been previously published in the literature [113,114,157]. However, 

reproducibility with initial kinetic assays performed was not acheived with our experimental 

set-up when the literature protocol was followed. Multiple aspects of the assay preparation 

were refined to allow for reliable and accurate determination of TSR′ kinetic parameters. In 

addition, low-binding pipette tips and siliconized Eppendorf tubes were introduced in the 

assay to permit maximum retention of sample that may otherwise be lost through handling 

and manipulation.  

3.2.4.1. TSR′′′′ Filter Binding Assay Refinement and Optimization 

 A series of time courses and kinetic assays were performed under varying conditions. 

Table 3.1 shows different aspects of the assay procedure that were altered. 

Table 3.1: Different Variables of the Filter Binding Assay Optimized. 

Assay Variable Manipulation 
RNA Refolding vs. no refolding (used as is from manufacturer) 
Enzyme TSR′ vs. untagged TSR enzyme (UT-TSR) 
 Enzyme concentrations (20 nM, 40 nM, 80 nM, 100 nM and 160 nM) 
AdoMet Different specific activities (500 mCi/mmol, 250 mCi/mmol, 125 mCi/mmol) 
Sample Handing Filter binding paper (GF/B vs. GF/C) 
 TCA precipitation time (0, 15 min , 30 min , 45 min, 1 h, 2 h) 
 Volume of TCA used to washed sample (10 mL, 20 mL, 30 mL) 
 Volume of TCA used to quench methylation reaction (0.5 mL, 1.5 mL) 
 Concentration of TCA (5% w/v, 10% w/v) 
 Liquid scintillation cocktail addition 

 

All time-dependent measurements of enzymatic activity were performed in the 

following manner using the previously published methodologies [113,114,157] as a template: 

the 16S/23S rRNA was thawed over a period of one hour on ice prior to assay use. 

Incubation of 1 µM of 16S/23S rRNA, 8 pmol TSR′ in Assay buffer (50 mM HEPES pH 7.5, 

7.5 mM MgCl2, 73.5 mM NH4Cl, 3 mM β-mercaptoethanol, 10% glycerol) was performed 

for 15 min at 25 °C. The methylation reaction (total volume 100 µL) was initiated by the 
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addition of 2.5 µCi of [3H]-AdoMet* (with a specific activity of 500 mCi/mmol; final 

concentration: 1.7 mM). The methylation reaction was carried out at 25 °C for the allocated 

time period and quenched with 500 µL of ice-cold 5% TCA (w/v) solution. The quenched 

reaction mixture was kept at 0 °C on ice for one hour and the precipitated rRNA product was 

filtered through glass filters and washed with 10 mL of ice-cold TCA solution. The filter 

paper was allowed to dry overnight before addition of 10 mL of CytoscintTM liquid 

scintillation cocktail. For all trial kinetic assays, the rRNA substrate concentration was varied 

from 0 nM to ~340 nM and the [3H]-AdoMet* was kept at 2.5 µCi. 

Modifications of this standard procedure were made to manipulate the variable 

required for assay optimization as outlined in Table 3.1: 

 
Refolding the Ribosomal RNA Substrate 

 The 16S/23S rRNA was thawed on ice for one hour. The rRNA was unfolded at 65 

°C for 15 min and allowed to cool to room temperature for a minimum of one hour prior to 

addition to the reaction mixture. Alternatively, the rRNA was unfolded at 65 °C for 30 min 

and allowed to refold over 1.5 h. Also, the rRNA was unfolded at 85 °C for 30 min and 

allowed to cool to ambient temperature over 1.5 h. 

 
Enzyme Manipulation 
 

Different concentrations of TSR′ were used in the development of the assay (20 nM, 

40 nM, 80 nM, 100 nM and 160 nM). In addition, the untagged version of the enzyme (UT-

TSR) was over-expressed and purified for semi-quantitative methylation analysis. The gene 

encoding tsr (pUC-TSR) in E. coli DH5α was obtained from Dr. Gerry Wright of McMaster 

University (Hamilton, ON). A starter culture inoculated from frozen stock was grown at 37 
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°C in TB broth (per litre: 12 g tryptone, 24 g yeast extract, 4 mL glycerol in 900 mL ddH2O 

plus 100 mL of  0.17 M KH2PO4 and 0.72 M K2HPO4, pH 7.0) supplemented with 

chloramphenicol (34 µg/mL). Large scale growth was then initiated with a 100-fold dilution 

in media and grown at 37 °C with constant agitation (~200 rpm). The expression of the UT-

TSR was induced at mid-log phase (A600 = 0.5-0.8) with 1 mM isopropyl-β-

thiogalactopyranoside (IPTG). The cells were grown for four hours and harvested by 

centrifugation (5 min at 13 000 ×g) and frozen at -80 °C. 

The cell pellets were resuspended in lysis/loading buffer (50 mM Tris pH 7.5, 10% 

glycerol) with 1 mM phenylmethylsulfonyl fluoride (PMSF) and thawed on ice. The cell 

suspension was then sonicated on ice for 10-12 cycles with 10 s pulses separated with one 

minute pauses. The soluble cell fraction was collected by centrifugation at 48 300 ×g (20000 

rpm) with a JA-25.50 rotor for 20 min at 4 °C. Further removal of any remaining particular 

cell debris was achieved through filtering through a 0.2 µm filter. 

The cell lysate was loaded onto the anion exchange column (UnoSphere). The 

column was washed to baseline absorbance at 280 nm. A linear gradient of KCl at 1%/min 

from Buffer A (50 mM Tris pH 7.5, 10% glycerol) to Buffer B (50 mM Tris buffer pH 7.5, 1 

M KCl, 10% glycerol) was used and UT-TSR eluted between 7% - 23% KCl, but only 

fractions containing 15-18% were collected for the following step in the purification. KCl 

salt was dialysed away from the protein before the second stage of purification. A second 

anion exchange column (MonoQ) was used with the same gradient and the enzyme eluted 

gradually over 20% - 40% KCl. The fractions containing 28-31% salt were collected and 

dialyzed against 50 mM Tris buffer pH 7.0, 75 mM KCl and the purified protein was then 

stored at -80 °C for future use. 
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3.2.4.2. Optimized TSR′′′′ Filter Binding Assay 

The methylation assays were performed with the minor modifications that were used in the 

previous experiments. Methylation reaction mixtures contained X µM of 16S/23S rRNA 

(where X = 0 nM to ~340 nM), 4 pmol TSR′ (40 nM) in Assay buffer (50 mM HEPES pH 

7.5, 7.5mM MgCl2, 73.5 mM NH4Cl, 3 mM β-mercaptoethanol, 10% glycerol) and were 

incubated for ~15 min in a 25 °C water bath. Methylation was initiated by the addition of of 

2.5 µCi of [3H]-AdoMet* (500 mCi/mmol); the pipette tip was washed with the methylation 

reaction by 10 cycles of aspiration and expellation of the tube contents. The reaction tube 

was also flicked gently 30 times before placing back into the water bath. 

The reaction was performed at 25 °C and quenched at the desired time point by 

adding 1.5 mL of ice-cold 10% TCA (w/v) solution. The quenched reaction mixture was kept 

at 0 °C on ice for one hour and the precipitated rRNA product was filtered through a GF/C 

glass fibre filter paper (2.5 mL) and washed with 10 mL of ice-cold 10% w/v TCA solution. 

The filter paper was allowed to dry overnight before addition of 10 mL of CytoscintTM liquid 

scintillation cocktail. After addition of the cocktail, the vial was vortexed vigorously for one 

minute and allowed to stand for a minimum of 10 min prior to placing in a liquid scintillation 

counter. 

To obtain kinetic constants for rRNA, the [3H]-AdoMet* concentration was kept at 

1.7 mM (2.5 µCi; 500 mCi/mmol) and initial velocities were measured at varying 

concentrations of 16S/23S rRNA from 0 nM to ~340 nM. To obtain kinetic values for 

AdoMet, the RNA concentration was kept at 0.241 µM. 
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3.2.5. Towards the Development of a Scintillation Proximity Assay for TSR′′′′ 

3.2.5.1. Selection of SPA Bead Type  

 Two different types of beads were evaluated: polylysine coated yttrium silicate (YSi) 

SPA beads and RNA binding YSi SPA beads. Polylysine beads were supplied as a 

lyophilized powder and were reconstituted in the Assay Quench buffer (167 mM sodium 

citrate pH 2) at a concentration of 20 mg/mL. The RNA binding beads were provided in a 

suspension of water (100 mg/mL) from the manufacturers, and were transferred into assay 

quench buffer. This was achieved by allowing the beads to settle to the bottom of an 

eppendorf tube and pipetting off the water and then adding the same volume of assay quench 

buffer. This was done for a minimum of four times over the time period (minimum of four to 

five hours) as the beads were quite easily suspended. The working concentration of the RNA 

binding beads was also at 20 mg/mL. Different concentrations of bead-quench suspension 

were made from the 20 mg/mL stock (0, 0.25, 0.5, 1, 1.5. 2, 2.5, 3 mg/assay). 

The methylation reaction was set up in a similar manner to that of the FB assays 

described earlier. After the thawing of the 16S/23S rRNA on ice over one hour, the RNA 

substrate was incubated with 4 pmol of TSR′ in Assay Buffer buffer (50 mM HEPES pH 7.5, 

7.5 mM MgCl2, 73.5 mM NH4Cl, 3 mM β-mercaptoethanol, 10% glycerol) for 15 min at 25 

°C. Upon addition of 2.5 µCi of [3H]-AdoMet* (specific activity of 500 mCi/mmol), the 

methylation reaction was initiated (total volume 100 µL) at 25 °C and allowed to proceed for 

15 minutes before quenching with the bead-assay quench buffer to make a final total volume 

of 350 µL (250 µL quench solution + 100 µL assay volume). The bead-assay quench mixture 

was constantly agitated to prevent beads from settling to the bottom. This was achieved with 

constant light vortexing. The beads were allowed to settle for two hours or longer, and then 
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samples were counted with a liquid scintillation counter. A control experiment was 

performed in an identical fashion with rRNA substrate present, but no enzyme as a negative 

control. 

It was found that polylysine YSi beads gave more reproducible data than the RNA 

binding beads. Therefore, for the rest of the assay development, polylysine YSi beads were 

used at 2 mg/assay. 

3.2.5.2. TSR′′′′ SPA Refinement and Optimization 

 A series of time course experiments were performed under varying conditions with 

the same procedure as described in the previous section (Section 3.2.4.1). Table 3.2 shows 

different aspects of the assay procedure that were investigated: 

 
Table 3.2: Different Variables of the Scintillation Proximity Assay Optimized. 

Assay Variable Manipulation 
RNA Lower [rRNA] (50 nM) 

Refolded rRNA 
Enzyme Enzyme concentrations (20 nM, 40 nM, 8 µM, 16 µM ) 
Temperature 37 °C incubation with beads 
Non-specific 
binding 

Different blocking agents were evaluated:  
KCl, Tween-20, Triton-X100 and BSA 

 

3.3. Results and Discussion 

3.3.1. Filter Binding Assay for TSR′′′′ 

Kinetic parameters of TSR′ were available in previously published literature 

[113,114,157] and were used as the starting estimates for concentration ranges for the 

enzyme and substrates in our assays. Optimization and evaluation of the assay procedure was 

required as reproducibility was not possible in our hands and large errors were incurred with 

the initial biochemical characterization of TSR′. Efforts were made to minimize error with 
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the introduction of low-binding pipette tips and siliconized Eppendorf tubes to the assay set-

up. Other assay variables were manipulated and refined through many replicates of data sets 

to give a reliable and accurate determination of TSR′ parameters. 

3.3.1.1. Refolding the Ribosomal RNA Substrate 

 Proper secondary and tertiary structure is important to the biological role of RNA 

[158]. The 16S/23S rRNA substrate acquired from the manufacturer was used without any 

manipulation for assays. On occasion, it was found that quality of the RNA from the supplier 

was found to be quite heterogeneous (which led to erroneous results for some replicates of 

kinetic data), the possibility of having to refold the rRNA substrate to a biologically 

functional conformation was explored. In assays performed by Bechthold and Floss [113], 

the RNA substrate was heated to 65 °C for 15 min and then cooled to room temperature for a 

period of 30-60 min. The rRNA substrate that was utilized for our assay purposes was 

unfolded at 65 °C for two different time periods: 15 min and 30 min and then permitted to 

cool to ambient temperature between one to one and a half hours. In addition, a higher 

temperature was utilized to perform the unfolding (85 °C) and refolded over 1.5 h (Figure 

3.5). 
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Figure 3. 5: Short 15 min time course where the rRNA substrate was denatured at elevated temperatures and 
refolded over time.  

 
 It was observed that in all three cases that methylation activity was completely 

eliminated (reduced counts) compared to the RNA substrate that was not denatured and 

refolded. The rRNA substrate utilized by Bechthold and Floss was a significantly smaller 

fragment (nucleotides 1029-1122) compared to our 16S/23S rRNA substrate. As a 

consequence, the heating and refolding with the same conditions and conditions of a longer 

time frame and/or elevated temperatures most likely did not permit the RNA to fold back to 

its correct secondary structure resulting in a non functional RNA substrate. Therefore, for all 

remaining modifications of the enzyme assay, the 16S/23S rRNA was used without 

unfolding and refolding. 

3.3.1.2. Enzyme Manipulations 

 The effects of enzyme concentration on the methylation reaction were probed. One 

would expect a direct proportionality of the concentration of the MTase to the initial rate of 

methylation reaction. The error observed and the replication of three sets of data did not 
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make this relationship obvious indicating that another, yet to be identified variable was 

responsible for most of the observed experimental variations (Figure 3.6). Further assay 

optimization was pursued with the wild type, untagged enzyme (UT-TSR) as the histagged-

TSR, which was subsequently cleaved in the latter stages of the purification (see Chapter 2), 

had proven difficult to handle. The presence of a fusion tag could potentially alter protein 

conformation [117,124], and this effect could potentially be irreversible even though the tag 

was proteolytically removed. Therefore, the untagged enzyme was isolated and purified and 

methylation activity of this enzyme was compared to the cleaved histagged TSR′. 
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Figure 3. 6: Time course of methylation reactions with different TSR′ concentrations.  

Data obtained from this experiment indicated that other aspects of the assay remained to be optimized. 
 
 The growth and induction conditions for pUC-TSR/BL21 cells were identical to that 

for recombinant protein production from pTSR10/BL21. After cell breakage, the crude lysate 

was subjected to anion exchange chromatography using an UnoSphere-Q column and 

fractions were identified between 7% - 20% KCl by SDS-PAGE (Figure 3.7). Fractions 

containing 15-18% KCl were pooled and further processed using a MonoQ anion exchange 

column. During this final step of purification, UT-TSR fractions were identified over the 

Enzyme concentrations 
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range of KCl concentration of 20% - 40% (Figure 3.8). The fractions that contained the 28-

31% salt were selected based on the protein’s purity for future biochemical analysis. These 

fractions were dialyzed against 50 mM Tris buffer pH 7.0 containing 75 mM KCl and 10% 

glycerol and stored at -80 °C. 

 
Figure 3.7:  Chromatogram showing the separation of UT-TSR from the crude cell lysate mixture.  

Fractions eluted from the anion exchanger (Unosphere-Q) between 7-23% KCl (1%/min; shaded in light grey). 
Fractions containing 15-18% KCl (shaded in dark grey) were pooled together and carried to the next step of the 

purification. 
 

 
 

Figure 3.8: Elution profile of UT-TSR from the anion exchange Mono-Q column.  
Protein was loaded onto the column and eluted with a 1% per minute KCl gradient. UT-TSR was detected in 

fractions between 20% to 40% KCl (light grey). Only fractions containing 28-31% salt (dark grey) were 
collected and stored for experimental purposes. 

 
 Time courses performed on the freshly purified UT-TSR also had no consistent 

pattern (Figure 3.9), suggesting that His-tag cleavage of the NTA-purified enzyme did not 

affect activity as previously thought. It is apparent from all the data collected thus far that 
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methylation activity of both the TSR′ and UT-TSR was not likely compromised by the 

purification process, and indicated that other technical aspects of the assay required 

refinement and optimization. The following section discusses the assay variables that were 

altered to eventually obtain reliable and consistent data. 
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Figure 3.9: Representative time course of UT-TSR.  

Results show the same inconsistency as previously time courses obtained with TSR′ indicating that the cause of 
the erratic data is not likely due to any detrimental effects of the presence of a hexahistidine tag. 

3.3.1.3. Refinment of Other Technical Assay Variables 
 
Specific Activities of [3H]-AdoMet* 

The specific activity of radiolabelled compounds refers to the total amount of 

radioactivity per unit mass [156]. A compound with a specific activity of 1 Ci/mmol yields 

3.7 × 1010 disintegrations per second per millimole of compound. All commercial tritiated 

AdoMet acquired in our study has a high specific activity (~60-90 Ci/mmol) and is diluted 

with excess unlabelled AdoMet to reduce the specific activity to 500 mCi/mmol for storage 

and assay use.  
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It is recommended that radiolabelled compounds be stored at lower specific activities 

to slow down the rate of decomposition of the compound, which can otherwise affect the 

results of studies. Therefore, storage of [3H]-AdoMet* at lower specific activities was 

compared to the original 500 mCi/mmol (Figure 3.10). Overall results show that samples 

with lower specific activity still yielded inconsistent data. Therefore, the specific activity of 

500 mCi/mmol for storage and assay purposes remained unaltered. 
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Figure 3.10: Short time courses with lower specific activities of [3H]AdoMet*.  

Lower specific activities were used for both storage and assay purposes and were found to have no 
improvement on the acquired data. 

 
Filter Paper and TCA Conditions 

The type of filter paper and different trichloroacetic acid (TCA) precipitation 

conditions were varied in combination with each other. Table 3.3 shows the combinations 

that were studied: 
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Table 3.3: Different Combinations of Filters and TCA Precipitation Conditions Used for Optimization of the 
Filter Binding Assay. 

Combination Glass Filter  TCA condition 
1 GF/B Precipitation time (0, 15 min , 30 min , 45 min, 1 h, 2 h) 

Higher TCA concentration (10% w/v) 
2 GF/C Precipitation time (0, 15 min , 30 min , 45 min, 1 h, 2 h) 

Higher TCA concentration (10% w/v) 
3 GF/C TCA Quench solution volume  (0.5 mL, 1.5 mL) 

Higher TCA concentration (10% w/v) 
4 GF/C Washing volume (10 mL, 20 mL, 30 mL) 

Higher TCA concentration (10% w/v) 

 
The filter paper that was chosen for the assays was Whatman GF/B glass microfiber 

filter paper. Whatman GF/B filter papers were initially chosen over the standard Whatman 

GF/C filters for their ability to collect precipitated macromolecules such as protein and 

nucleic acids. The length of time required for the precipitation of the tritiated rRNA was 

investigated to ascertain if the length of the time allowed for substrate precipitation 

influenced the measurements. Since small volumes/amounts were utilized in the assay, errors 

during handling of assay components during the separation and counting, such as a small 

amount of rRNA not being precipitated, could have translated into a significant variation of 

radioactive counts.  

A comparison of both filter papers was performed in combination with variation in 

the length of time used for precipitation. This enzymatic reaction was performed over a fixed 

duration (15 min) and it was observed that after 15 min with 10% TCA on ice, there did not 

appear to be a significant difference in counts between that and longer precipitation times 

(Figure 3.11).  
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Figure 3. 11: Comparison of different TCA precipitation times between GF/C and GF/B glass filters. 

 
The GF/C filter paper is significantly thinner than its GF/B counterpart permitting 

faster processing time during the washing process. The vacuum used for filtration assays had 

to be adjusted to allow rapid filtering but not to tear the membranes. It appeared that better 

overall washing occurred with the thinner filter membrane, and it was observed that the error 

was reduced for the GF/C filtered samples when compared to the use of GF/B filters. 

Therefore, the filter paper used for our vacuum system in all subsequent studies was the 

standard and thinner GF/C glass fibre filter paper in conjunction with the higher 

concentration of 10% w/v TCA.  

A time course study was then performed using the thinner GF/C filters, in conjunction 

with a larger TCA quench buffer volume. In lieu of stopping the enzyme reaction with 0.5 

mL of 10% w/v TCA, 1.5 mL was used instead. The GF/C filter paper was better suited for 

our vacuum system significantly less error between replicates. Additionally, the larger 

quench volume most likely provided a quicker termination of enzyme methylation reaction 
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by dilution effects along with the drastic pH change provided by the acid. However, it was 

evident that further optimization of the assay was required. 

Since the error in the time courses was manifested not only between replicates, but 

also between time points, it was assumed that excess [3H]AdoMet* was not being thoroughly 

removed from the filter paper during the washing process in spite of changing to a thinner 

glass filter paper. It is imperative that filters be washed sufficiently to remove as much 

unbound radiolabelled AdoMet to maximize the specific binding signal detection. Larger 

volumes (two and three times) of TCA used for washing the filter paper were used. It was 

found that 10 mL of 10% w/v TCA used for washing was sufficient and larger volumes did 

not aid reduce error, but only contributed to the time required to perform the assay.  

Liquid Scintillation Cocktail Addition 

 The last step prior to the counting of replicates is the addition of the LSC cocktail to 

the filter paper (dried overnight). Surprisingly, it was found that after the addition of the LSC 

cocktail, vigorous mixing of the LSC vial with the vortex apparatus for one minute and 

letting the vial sit for 10 min allowed for more consistent and reliable data. Prior to this, the 

LSC cocktail was simply added and the vial inverted three times before putting in the liquid 

scintillation counter to obtain counts. Therefore, sufficient incubation time was required to 

allow the embedded radiocompound within the filter paper to become accessible to the liquid 

scintillation counter for maximum signal and reduced variability (Figure 3.12). 
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Figure 3.12: Time course of methylation that showed drastic improvement after several adjustments were made 

described in the text.  
The last adjustment made was the LSC incubation time that eliminated error between time samples. 

3.3.1.3. Evaluation of Kinetic Parameters of TSR′′′′ with Optimized Filter Binding Assay  

 With the optimized FB assay, these slight adjustments and improvements have 

yielded an assay procedure that generates reproducible replicates of kinetic data. The kinetic 

parameters for TSR′ obtained in this study are shown in the Table 3.4: 

Table 3. 4: Kinetic parameters for the TSR′ catalyzed methylation of 16S/23S rRNA. 
 Km (µµµµM)  Vmax (µµµµmol/min/mg) 

(× 10-2) 
kcat (s-1)   
(× 10-2) 

kcat/Km (M -1s-1) 
(× 10-4) 

AdoMet* 40  ± 5 1.0 ± 0.1  N/A N/A 
16S/23 S rRNA* 0.7 ± 0.3 2.3  ± 0.4 2.3 ± 0.2 3.8  ± 0.2 
AdoMetψψψψ 100 N/A N/A N/A 
58-mer hairpin rRNA ψψψψ 2.0 ± 0. 5 5.4 ± 0.5 2.6  ± 0.2 1.6 
AdoMetψψψψ 100 N/A N/A N/A 
23 S rRNAψψψψ 2.0 ± 0.5 4.3 ± 0.9 2.0  ± 0.5 1.2 
ψψψψAs reported by Bechthold and Floss [113] 
* To obtain kinetic parameters for rRNA, the AdoMet concentration was kept at 1.7 mM and rRNA concentrations were varied from 0 nM 
to 340 nM. To obtain kinetic parameters for  AdoMet, the RNA concentration was kept at 0.241 µM and the AdoMet concentration was 
varied from 0 mM to 0.255 mM. 

 
 Kinetic data obtained for TSR′ converges with the values reported by Bechthold and 

Floss [113]. The magnitude of the Km and Vmax values are comparable to previous studies 

for the AdoMet and rRNA substrate, although the slight differences did result in a 
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corresponding two to three time difference in the catalytic efficiency (kcat/Km) of the 

enzymes. Figures 3.13 show the Michaelis-Menten plot of a representative set of kinetic data: 

 

Figure 3. 13: Michaelis-Menten plot of a representative set of kinetic data for both substrates, Adomet (A) and 
16S/23s rRNA (B). 

3.3.2. Scintillation Proximity Assay Development for TSR′′′′ 

Throughout the entire assay refinement process for the filter binding method, it was 

noted that the conventional filter binding (FB) assay was time and labour intensive. 

Alternative methods were sought and the Scintillation Proximity Assay appeared to be well 

suited for our assay purposes. SPA is an approach that does not involve post-reaction 

handling steps that could contribute to experimental error in our current system. Efforts 

towards the development of a SPA method for TSR′ were pursued concomitantly during the 

FB assay optimization. 

We selected a solution phase signal increase assay format. In solid phase SPA, the 

substrates are immobilized on the SPA bead and are somewhat compartmentalized from the 

enzyme, which could affect the parameters of the Michaelis-Menten kinetics. Signal increase 

assays are also recommended for monitoring enzyme activity, where the labelled product, in 

this case the 16S/23S rRNA, is coupled or bound to the SPA bead. Therefore, the increase in 

the signal detected is proportional to the activity of the methyltransferase. 

A B 
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3.3.2.1. Selection of SPA Bead Type and Amount 

 Various types of SPA beads are available commercially, which differ in their matrix 

composition (polyvinyltoluene or yttrium silicate) and in the “capture molecule” coupled to 

the surface of the bead. Two types of beads were chosen for evaluation: polylysine and 

uncoated yttrium silicate (YSi) beads. The positively charged polylysine (polylys) residues 

derivatized on the surface of the bead can form ionic interactions with negatively charged 

molecular species such as nucleic acids [159], while uncoated YSi beads (also known as 

RNA-binding beads) have been demonstrated to interact with phosphate groups in small 

molecules such as ATP, oligonucleotides and larger biomolecules such as RNA and DNA 

[159]. 

 Initial development of the SPA method involved optimizing bead concentration; other 

reaction conditions were adapted from the FB assay. Incubation times for methylation were 

15 min and the reaction was terminated with quench buffer in the presence of SPA beads. 

The bead content utilized ranged from 0 to 3 mg of SPA YSi bead per assay reaction. We 

sought to obtain a signal and minimize background caused by non-specific binding (NSB) 

and/or close proximity effects (CPE) (Figure 3.14).  NSB can be be overcome by use of 

blocking agents so that free radiolabel is prevented from adhering to the bead surface. CPE 

can be a result of a high concentration of radiolabel and or a high concentration of SPA 

beads. Although the radiolabel is not bound to the bead, it is in close enough to elicit a signal. 
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Figure 3.14: False signal dectection is possible with SPA beads. 

 Close proximity (A) and Non-specific binding (B) effects can contribute to higher signal readings than 
expected. 

 
 For both polylys and RNA binding beads, both the signal and the NSB/false positive 

effects increased with increasing amount of beads (Figure 3.15). For polylys Ysi beads 

saturation of binding was reached between 2 to 2.5 mg/assay as the signal to noise ratio 

decreased at higher amounts of beads.  Therefore, for maximal sensitivity and minimal 

background noise, assays should be executed at 2 mg/assay using polylys YSi beads (Figure 

3.15A). With the naked RNA binding beads, 2 mg/assay was also required for optimal 

assaying conditions; however, the error over the entire range of SPA bead amounts was large 

(Figure 3.15B). Errors are most likely incurred during the buffer change process; the RNA 

binding beads are supplied in water and must be changed over to the assay buffer. However, 

beads are likely to be lost during the bead washing process and changeover process. 

Furthermore, preparation of the RNA binding beads in the assay buffer required a minimum 

of four to five hours with the washing and bead settling process. With the polylys beads 

being supplied as a lyopholized powder, stock preparations were facile and less time 

consuming. Therefore, all SPA assays were performed with polylys beads at 2mg/assay 

amounts. 

 

B A 
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Figure 3.15: Optimal SPA bead amounts were determined for two different types of beads. 

(A) Polylysine YSi beads and (B) RNA binding Ysi beads. Both types of beads at 2mg/assay reaction were 
found to give the largest signal with least amount of background. It was observed that polylysine beads were 

easier to handle and gave less error than the naked beads. 

3.3.2.2. TSR′′′′ Refinement and Optimization 

 Following the optimization of the bead amount for the SPA platform, a time course 

analysis of the TSR′ methyltransferase SPA enzyme assay was performed. Although CPE 

and NSB effects were taken into consideration from the previous bead amount study, it was 

observed over a collection of time course data that methylation did not increase over time 

(Figure 3.16). In a similar approach in the refinement of the FB assay, a number of assay 

variables were addressed such as different enzyme and RNA concentrations, incubation of 

the beads at an elevated temperature, refolding the RNA substrate and further minimizing 

any possible CPE and NSB effects. 

A B 
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Figure 3.16: Example of time course data obtained with Polylysine YSi beads.  

Methylation did not increase over time indicating that further adjustments are needed to be made. 
 
Enzyme and rRNA Concentrations Varied 

Enzyme concentrations half of and 200- and 400-times the original enzyme 

concentration were used. The data did not show an increase in methylation over time and 

remained the same with very little error between replicates (Figure 3.17). However, what was 

observed was that the signal produced correlated to the amount of enzyme present, indicating 

that enzyme methylation activity was not compromised. Furthermore, a quick comparison to 

the FB method lent further support that the enzyme remained active and functional and not 

an artefact of inactive dead enzyme. Likewise, a reduction in the rRNA substrate from 1 µM 

to 50 nM concentration yielded similar results (Figure 3.17).  
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Figure 3. 17: SPA time courses with differing concentrations of enzyme and RNA substrate. 
Varied concentrations of TSR′ (A) and RNA (B) were attempted. Methylation remains unchanged over time. 

[enz] = 40 nM. 
 

Elevated Temperature Effects  

The methylation reaction was also carried out at an elevated temperature of 37 °C. 

The ice cold bead-quench solution was added and also further incubated at 37 °C in which 

the SPA beads were allowed to settle at that temperature. Incubation of beads at a higher 

temperature did not increase the effectiveness of labelled product binding to the bead, but 

appeared to reduce it (Figure 3.18). 
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Figure 3.18: SPA time course at elevated temperatures. 

At higher temperatures, methylation across time did not change and appeared to be compromised. 
 

A B 
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Refolding the rRNA Substrate 

In a similar fashion to the FB assay, the 16S/23 rRNA was thawed over a time period 

of one hour and followed by unfolding at a temperature 65 °C for 15 min. The RNA was 

permitted to cool to ambient temperature for a minimum of one hour. Under the same 

conditions for the FB assay, the methylation activity was completely eliminated. It was 

assumed that the RNA was either not unfolded efficiently or refolded corrected to its native 

structure. However, the data acquired for the SPA method were rather ambiguous, and it was 

not clear that methylation activity was compromised (Figure 3.19). One would expect similar 

results to the FB assay and therefore, it is more than likely that NSB and/or false positive 

effects were giving a false signal. 
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Figure 3.19: SPA time course with refolded RNA substrate. 

 
Non-Specific Binding Effects 

 Results from the RNA refolding experiments suggest that either NSB or false positive 

signal effects are playing a role in the linear counts seen across time. Non-specific capture of 

the radiolabelled co-substrate on exposed areas of the SPA bead may result in the apparent 



 102 

signal detected at a time point of zero minutes. NSB effects can be overcome with the 

addition of “blocking agents” in the bead-quench buffer solution. Different blocking agents 

were used in the formulation of the new quench buffer. Varied concentration of KCl, 

detergents such as TWEEN-20 and Triton X-100 and BSA were employed (Figure 3.20). The 

addition of salt and detergents did not alter results; a linear trend of counts was observed. 

With increasing amounts of BSA, we observe a significant decrease in counts; at extremely 

high concentration of BSA (1 mg/mL), the protein did not only reduce non-specific binding, 

but circumvented specific binding as well. Most publications show an addition of 0.1% BSA 

to reduce NSB, however at that concentration, we did not observe a significant difference. 
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Figure 3.20: Different blocking agents used for SPA time course. 
Various blocking agents were attempted to reduce any non-specific binding that may be occurring. 

(A) Ionic strength variation with KCl (B) Tween-20 (C) Triton X-100 and (D) varying BSA concentrations. 
 
Further Optimization Required 

 Further investigation of the interaction and properties of the SPA media is required. 

NSB effects do not appear to play a significant role in measurements in all the time courses 

studied. Other false positive effects needs to be addressed, where free [3H]AdoMet* may not 

have physically adhered to the bead, but is in close enough distance to elicit a signal (close 

proximity effects). This can be overcome by adding more quench buffer and substantially 

diluting the assay volume prior to counting in the liquid scintillation counter. For the time 
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being, the FB method provides some detectable index of enzyme activity until the SPA 

method is fully optimized. 

3.4. Conclusions and Future Work 

In the early stages of research, the traditional filter binding assay was problematic to 

implement. Although shown to be previously executed in earlier published works, conditions 

were not optimal for our enzyme and experimental set up. Errors typically incurred with a 

radiometric FB assays involve loss of product associated with handling of small masses and 

dilute solutions, unwanted nuclease activity (if working with DNA or RNA) and quenching 

effects (in particular with low energy of tritium β-particles) [145]. It was observed quality of 

our data was found to be more sensitive to technical factors of the assay such as the type of 

filter paper used, volume of TCA quench solution and adequate mixing of filtered material 

with scintillation fluid. When these refinements of the protocol were carried out, the result 

was that appropriate data sets were attainable for the determination of kinetic parameters. 

While carrying out the FB assay, alternative and more streamlined methods of assay for TSR′ 

were investigated. The scintillation proximity assay (SPA) method is a procedure that has 

become increasingly popular for its facile handling over the FB method. Efforts towards 

establishing an SPA protocol for TSR′ were undertaken. An optimal bead amount was 

established for assay use and adjustments involving enzyme and RNA concentrations, 

temperature and blocking agents were carried out. Further work is needed to investigate the 

proper signal detection such as deciphering the role that NPEs may play. In summary, the FB 

assay has been successfully optimized for our enzyme system while SPA experiments are 
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still undergoing optimization. The comparison of kinetic data to the FB assay will be 

performed at a later date to validate the SPA methodology. 
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CHAPTER 4: STRUCTURAL STUDIES OF THIOSTREPTON-
RESISTANCE rRNA METHYLTRANSFERASE 

 
 

Knots in proteins are a relatively rare occurrence in nature; less than one per cent of 

protein structures deposited in the Protein Data Bank have knots identified within their 

structure [116]. There are different types of knots of varying complexities found in proteins 

such as the simple trefoil knot (31 knot) and the figure-of-eight knot (41 knot), which have 

three crossings and four crossings respectively (Figure 4.1) [160,161]. More recently, the 

enzyme ubiquitin hydrolase has been shown to have the most complex knot structure yet 

[162], a knot that possesses five crossings. Knots with five crossings can adopt two different 

topologies: the doughnut form (51 knot) and the less symmetrical pretzel form (52 knot) 

(Figure 4.1) [160,161]. The majority of knots that have been observed have the simple trefoil 

knot (also known as the three-foil) [163]. 

 
Figure 4.1: Different types of knots that can be found with protein structure.  

(A) trefoil knot with three crossings (mathematically denoted as 31); (B) figure-of-eight knot with four crossings 
(mathematically denoted as 41); (C) a five crossing knot with symmetry, known as the doughnut knot 

(mathematically denoted as 51) (D) a non symmetric five crossing knot, the pretzel knot (mathematically 
denoted as 52). Adapted from [161]. 

 
 Most prevalent in the α/β knot superfamily [164] are some S-adenosyl-L-methionine 

(AdoMet) –dependent RNA methyltransferases (MTase) that were found to have a carboxy-

terminal domain that houses a deep trefoil knot structure responsible for catalysis [27]. These 

MTases are denoted as the SpoUT (SpoU-TrmD) class of MTases (Class IV), whose double 

A B C D 
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name comes from the amalgamation of two MTase families that were previously thought to 

be unrelated (the SpoU and TrmD families) [29]. As previously discussed in Chapter 1, all 

MTases in this class function as homodimers, and the C-terminal knot binds to AdoMet. The 

active site is formed by residues from both monomers, suggesting that dimerization is 

essential for catalytic activity [27].  

The overall sequence similarity is weak among SpoUT MTases relative to their 

structural conservation [27]. Nonetheless, they do possess sequence motifs that are conserved 

between members (Chapter 1) (Figure 4.2) [27,115,165]. Based on amino acid sequence 

alignment analysis of several RNA ribose 2′-O-MTases [29], it was observed that TSR′ is a 

member of the SpoUT MTases (Figure 4.3).  

 
 Motif I:  X-N/D/E-X-G/S-X 3-R-X 5-G 
 Motif II: h-V/L/I/M-h-G-X-E/Y-X 2-G-V/L/I/M/P-X  
 Motif III:  V/I-X-I-P-M-X 5-S-L/M-N-X 3 

 
Figure 4.2: Conserved sequence motifs observed in SpoUT MTases.  

Hydrophobic residues are represented as h and  X is any amino acid residue. 
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SpoU family 
                                                                                   Motif I                          Motif II                               Motif III                                       
                    35   37        41                                124                                    143                150 152 

tRNA (Gm18) MTase                |    |         |                            |                                |                |    | 
 T. thermophilus HB8 TrmH  -----H NLSAIL RT----- VLFGAEKWGVSE-----K IPMLGMVQSLNV--- 
 E. coli TrmH -----H NVSAII RT----- VLMGQEKTGITQ-----V IPMIGMVQSLNV---  
 A. aeolicus TrmH -----H NFSAIV RT----- LVVGNELQGVSP-----V IPMYGMAQSLNV---  

23S rRNA (Gm2251) MTase 
 E.coli RmlB -----H NLGACLRS----- LVXGAEGEGXRR-----S IPXAGSVSSLNV---  
 23S rRNA (Am1068) MTase 
 S. azureus TSR -----G NI GAIV RT----- LLFGSEKGGPSD-----S IPMMGQTESLNV---  

Function unknown protein 
 T. thermophilus HB8 RrmA -----G NLGAVLRS----- IAVGPEHEGLRA-----R IPMQGQADSLNV---  
 H. influenzae YibK -----Q NTGNII RL----- LMFGPETRGIPM-----R IPMTANSRSMNV---  

 
TrmD family 
 
tRNA (m1G37) MTase 
 E. coli TrmD -----T DYGVTGRA----- LVCGRY-E GIDE-----S IGDYVL-SGGEL---  
 S. typhimurium TrmD -----T DYGVTGHA----- LVCGRY-E GVDE-----S IGDYVL-SGGEL---  
 H. influenzae TrmD -----T EFGVTGRA----- LVCGRY-E GIDE-----S IGDYVL-TGGEL---  
 A. aeolicus TrmD -----S EYGIVK QA----- IICGRY-E GVDE-----S LGDFIL-S GGEI---  

 
Figure 4.3: Partial sequence alignment of representative members of the SpoUT MTase class of enzymes.  
The three conserved sequence motifs are shown and bold amino acid residues show conserved residues. 

Adapted from [115]. 
 

4.1. Homology Modelling as a Strategy to Study TSR′′′′ Structure 
  

Information obtained from a three-dimensional structure of a protein or enzyme, in 

conjunction with biochemical experiments, offers essential insight into its molecular 

function. Traditionally, a detailed atomic structure is obtained by means of X-ray 

crystallography or nuclear magnetic resonance (NMR) methods [166]. X-ray crystallography 

requires that the protein be of high purity at a high concentration in order to form well 

ordered crystals for diffraction. Unfortunately, because of these requirements, not all proteins 

are amenable to this method. NMR is only applicable for proteins of a soluble nature and 

small molecular weight, although this limit has been raised to 35 kDa [167]. While both 

techniques have proven to be effective, they both require a substantial amount of time and 

labour [168] and remain unavailable for use with certain proteins [169]. The rate at which 
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protein structures are elucidated by these two methods still remains a limitation as the 

number of protein sequences available is high relative to the number of protein structures 

available [170]. Fortunately, the development of homology modelling has permitted 

computational protein prediction methods to help alleviate some of the demand for solving 

structures teo gain structural insights on proteins [168,171]. 

4.1.1. Homology Modelling: Basic Background and Methodology 
 

Homology modelling, also referred to as comparative modelling, is a computational 

method that predicts the three-dimensional structure of a protein using only its sequence, and 

the known structures of proteins, whose amino acid sequences display a high degree of 

similarity [172]. The basic assumption of this method is that evolutionarily related proteins 

should have similar structure and sequence [168]. 

There are four general steps in comparative modelling: 1) identification of 

homologous proteins that can be used as template based on sequence of interest (target) 2) 

alignment of target sequence with selected template structures 3) building a model for the 

target based on the information obtained from target-template alignment 4) evaluations of the 

model. This process is repeated until a satisfactory model is obtained (Figure 4.4) [171-173]. 

 
Figure 4.4: Flow chart of steps involved in homology modelling.  

Adapted from [172]. 
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4.1.1.1. Selection of the Template Protein  
 
 The initial step is to identify at least one template protein structure related to the 

target sequence.  This can be accomplished by performing a sequence similarity search in a 

database using the target sequence as the search query. Many of these databases are publicly 

available through websites [172]. There are three general approaches in searching for 

homologues.  

The first is the most simple and most popular method [174]. Pairwise sequence 

comparisons with every known protein structure in a database (i.e. The Protein Data Bank 

[175]) are made and sequence identity, similarity and E-values are calculated [168,172]. 

Programs such as BLAST [176,177] and FASTA [177] are typically used [168,172]. 

The second method is based on a series of multiple sequence alignments performed to 

expand the number of potential templates that can be used [172] and works well with 

homologues with less than 30% identity [171]. The homologues that are found are then used 

to construct a profile sequence to be used as a search query again to obtain new homologues. 

Subsequently, a new profile is then generated and the process is carried out in an iterative 

fashion until no more new homologues are found [171,172,174]. From the final profile, a 

sequence can then be used to search against the structure database. PSI-BLAST [178] is a 

program that is used often and is capable of seeking out distant evolutionarily related proteins 

compared to BLAST [171,172,174]. 

The third technique is called protein threading, where the target sequence is threaded 

through a library of 3D folds. This is a pairwise comparison of the target sequence to a 

protein structure and alignment of each sequence-structure pair is optimized and scored to 

see if the sequence can adopt that particular fold [172,174]. This method is applicable when 
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the above two methods (sequence and profile based) mentioned are unable to identify any 

homologues for the target sequence [172]. 

4.1.1.2. Target-Template Alignment 
 

The accuracy of homology models is directly influenced by how similar the target is 

to the template sequence. Generally speaking, a high sequence identity (50% or higher) can 

generate a fairly accurate model with a 1 Å root mean square deviation (RMSD) between 

their backbones, whereas proteins with sequence identities of 30%-50% have a RMSD of 2-3 

Å with 80% of the structure being conserved [179]. Protein sequences with sequence 

identities between 20-30% fall in the “twilight zone” region [180] where structural 

conservation of proteins can be as low as 55% [179]. Anything determined to be lower than 

20% in sequence identity is likely to give inaccurate and unreliable results. Therefore, not 

only in homology modelling where selection of a proper template is essential, the alignment 

of the template to the target is just as important. 

For sequences with high identity, errors with alignment between the target and the 

template are rare. However, error greatly increases as one moves towards the twilight zone, 

as the number of gaps and local regions of residue dissimilarity increase in size and number. 

It is imperative at this stage of modelling that an accurate alignment be obtained. 

4.1.1.3. Homology Model Building  
 
 Following the template-target alignment step is the actual construction of the 3D 

model. There are a number of ways to construct the model and will be briefly introduced in 

this section. However for further details, an excellent review written by Martí-Renom et al. is 

recommended [172]. The first method is the rigid-body assembly method, in which the 
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homology model is constructed from the average of Cα positions of structurally conserved 

regions (SCR) from a collection of template structures (the framework). Loops and side 

chains can be obtained from the aligned structures or scanning databases for segments of 

variable amino acids that can “connect” the SCRs [172,181]. Alternatively, a model can be 

generated by using segments of amino acid residues (usually seven) and using the atomic 

positions of conserved atoms (usually Cα atoms) from template structures as guiding 

positions. Therefore, the model is made in segments, using structures or segments of template 

proteins that can obtained by a protein structure database of all known proteins or by 

conformational searching [172,181]. Lastly, a homology model can be generated by using the 

restraints from the starting templates. The basis of this method is the concept that any 

restraints or constraints of the template in terms of bond lengths, bond angles, dihedral angles 

etc. will be similar in the target protein. Therefore, these spatial restraints are used as a 

guideline for geometry and optimization minimization techniques [172,181]. 

4.1.1.3. Evaluation of Model 
 

The accuracy of the 3D homology model obtained must be assessed. The errors 

accumulated in the model are directly related to the sequence similarity shared by the target 

and template. Therefore, verification of model quality should be undertaken. The first thing 

to be verified is whether the model has the correct fold. It will only have the right fold if the 

correct template was used and the alignment was acceptably correct. Once this is confirmed, 

other details of the structure can be looked at such as the stereochemistry, spatial distribution 

of small charged groups, main chain hydrogen bonding etc using free online programs such 

as PROCHECK [182] and VERIFY3D [183]. 
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4.1.2. Plan of Action 
 
 Comparative analysis of TSR′ suggested it to be a SpoUT enzyme with a deep trefoil 

knot in the C-terminal region [27,29,115,165]. However, the actual structure of this enzyme 

remained elusive and had yet to be elucidated. In the absence of any reported crystal 

structure, prediction of the structure of the enzyme was pursued by computational means. 

Homology models of TSR′ have been developed by our lab both for the monomer and the 

dimer. At the same time, efforts along with our collaborators resulted in an X-ray crystal 

structure of TSR in the absence and presence of AdoMet. 

4.2. Materials and Methods 

4.2.1 Reagents and Materials 
  

The following reagents and materials were obtained from the following companies: 
 
 

Amersham Biosciences (formerly Pharmacia Biotech) (Uppsala Sweden): thrombin 

protease, Phastgels, Phastgel buffer strips 

 
Bioshop (Burlington, ON): agarose, bacto-tryptone, chloramphenicol, imidazole, isopropyl-

β-thiogalactopyranoside (IPTG), kanamycin, trichloracetic acid, Tris (hydroxymethyl) 

aminomethane hydrochloride  (Tris-HCl),  and Tris (hydroxymethyl) aminomethane 

hydroxide (Tris-OH ), phenylmethylsulfonyl fluoride (PMSF), yeast extract 

 
EMD Pharmaceuticals (Durham, NC): acetone, ethylenediamine tetraacetic acid (EDTA), 

glacial acetic acid, glycerol, methanol, sodium dodecyl sulphate (SDS), sodium chloride, 

sodium hydroxide 
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New England Biolabs: 100 bp DNA ladder, NdeI, BamHI 

 

Sigma Chemical Company (St. Louis, MO): 

β-Mercaptoethanol, bovine serum albumin, Bromophenol Blue, Coomassie Brilliant Blue G-

250, ethidium bromide, nickel (II) sulphate,  

4.2.2 General Equipment 

4.2.2.1. Computational Hardware and Software 

 Calculations of the homology model of the monomeric TSR′ was executed on a 

Silicon Graphics Inc. (SGI, Mountain View, CA) O2 workstation or the University of 

Waterloo’s multi-CPU SGI Origin 3800 system called Flexor. Hardware specifications for 

Violin (Honek lab SGI O2): IRIX 3.5X operating system, MIPS R10000 processor chip, 

MIPS R10010 floating point chip, 195 MHz IP32 Processor, 750 MB RAM. Hardware 

specifications for Flexor: 64-bit IRIX 6.5.27f operating system and is a collection of forty 

400 MHz MIPS R12000 CPUS and twelve 500 MHz MIPS R14000 CPUs with 52 GB of 

RAM. 

 Homology modelling of the monomer and the dimer was pursued with Swiss-Model 

(http://swissmodel.expasy.org), an automated protein homology server  [170,184,185] using 

the visual client and tool DeepView – Swiss-Pdb Viewer (http://spdbv.vital-it.ch/) [184]. In 

addition, comparative modelling software used was Prime Suite 1.2 (Schrödinger Inc, 

Portland, OR) using the graphical interface Maestro (Schrödinger Inc, Portland, OR) for the 

TSR monomer. 
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4.2.2.2. Centrifuges 

Microvolume centrifugation (< 1.5 mL) was carried out using the Biofuge A 

microcentrifuge (Heraeus Sepatech GmbH, Germany). For large volume samples (>20 mL), 

centrifugation was done on a Beckman Avanti J-25I centrifuge (Mississauga, ON) or on the 

Beckman Coulter Avanti JE centrifuge (Fullerton, CA, USA). 

4.2.2.3. Chromatographic Equipment 

The following columns utilized in the purification process were acquired from 

Amersham Biosciences (formerly Pharmacia, Uppsala, Sweden): HisTrapTM HP, HiTrap 

Benzamidine FF and MonoQ. Protein purification of SeMet incorporated TSR and TSR′ was 

performed on a high performance liquid chromatography apparatus (HPLC) on a Waters 

HPLC system (Milford, MA, USA). The HPLC was comprised of: Waters 600S controller, 

Waters 626 pump, Waters 2996 Photodiode Array Detector, in addition to Waters Empower 

2 software, Build 2154. All aqueous buffers were filtered through a 0.2 µm membrane filter 

(Pall Life Sciences, East Hills, NY). Before injection all samples were filtered through a 

syringe filter: 0.2 µm polyethersulfone membrane (VWR International, Mississauga, ON). 

All buffers were degassed prior to use. 

4.2.2.4. Incubators  

For standing or plated bacterial cultures, growth was done in a Precision gravity 

convection incubator from Precision Scientific, Inc (Chicago, IL). Liquid bacterial culture 

growth used a a Series 25 controlled environment incubator shaker (New Brunswick 

Scientific Co., Inc., Edison, NJ) or InnovaTM 4330 refrigerated incubator shaker (New 

Brunswick Scientific) both shaking ~ 200 rpm.  
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4.2.2.5. Protein Concentration Devices 

 Concentration of purified protein was accomplished using VivaScience Vivaspins 

(Stonehouse, UK) with a molecular weight cut off of 10 000 Da, or Nanosep® Centrifugal 

devices with 10 kDa molecular weight cutoff (PALL, East Hills, NY) 

4.2.2.6. Spectrophotometry 

 The following instruments were used to quantitate protein concentration by the 

Bradford Assay method [134]: Varian Cary 3 UV-Visible Spectrophotomter (Mississauga, 

ON) spectrophotometer with the CaryWinUV Advanced Reads Application Software 3.00 

(182); Ultrospec 2100 pro UV/Visible spectrophotometer (Amersham Biosciences, Uppsala, 

Swedan); Molecular Devices Spectramax Plus 384 (Union City, CA, USA), SoftmaxPro v. 

501 Software. 

4.2.2.7. Thermal Cyclers 

All PCR was performed on a Techne (Princeton, NJ, USA) Techgene cycler or 

Applied Biosystems GeneAmp PCR System 2700 v. 2.04 machine (Foster City, CA, USA). 

4.2.2.8. Mass Spectrometer 

Mass spectrometric analyses were performed at the Waterloo Chemical Analysis Facility 

(University of Waterloo) with a Micromass Q-TOF UltimaTM Global mass spectrometer. 
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4.2.3 General Experimental Protocols 

4.2.3.1. Gel Electrophoresis 
 
DNA Electrophoresis  

Separation of plasmid DNA and DNA fragments were accomplished using agarose 

gel electrophoresis. Agarose gels consisted of 0.8-1.5% (w/v) molecular biology grade 

agarose and 1× TAE (Tris-acetate-EDTA buffer; 40 mM Tris base, 20 mM glacial acetic 

acid, 1 mM EDTA). Gels were prepared by adding 0.8 g of agarose to 100 mL of 1 × TAE 

and dissolved with heat (microwaving for approximately two minutes). The visualization 

agent, ethidium bromide (4 µL, 0.5 µg/mL) was added to the molten agarose (~50°C) before 

pouring into plastic chamber and allowed to cool. DNA samples to be run on the gel were 

mixed 1:5 volume of 6× loading buffer (10 mM Tris-HCl, pH 7.5, 50 mM EDTA, 10% 

glycerol, 0.25% Bromophenol Blue). All samples were run in parallel with a 100 bp DNA 

ladder in TAE buffer at approximately 80 V. Bands were visualized under short UV-light for 

photographs and long UV-light for band excision. 

 
Protein Electrophoresis  

 Standard sodium dodecyl sulphate polyacrylamide-gel electrophoresis (SDS-PAGE) 

was utilized to separate and visualize proteins based on their molecular weights. Separation 

of proteins employed the semi-automated Pharmacia PhastSystemTM electrophoresis system 

with precast gels and buffer strips. Gradient gels (10-15%) were used for separation unless 

stated otherwise. All protein samples were denatured, linearized and were made negatively 

charged by boiling for 5-10 min after mixing with loading buffer (150 mM Tris-OH, 2% 
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SDS, 1% β-mercaptoethanol, 10% glycerol, 0.1 bromophenol blue pH 8.0) at a 1:1 ratio prior 

to separation.  

 
Coomassie Staining 

 Development of gels involved three steps: 1) Staining with 0.1% Coomassie brilliant 

blue R, 30% methanol and 10% acetic acid 2) Destaining with 30% methanol, 10% acetic 

acid and 3) Preserving with 5% glycerol and 10% acetic acid. 

4.2.3.2. DNA Manipulation and Cloning Methods 

 Standard bacterial and DNA cloning was performed following the standard molecular 

protocols outlined by Sambrook et al. [133]. 

4.2.3.3. Determination of Protein Concentration 

Protein concentrations of sample were measured based on the Bradford method [134]. 

The Bradford assay dye reagent was prepared by dissolving 100 mg Coomassie Brilliant 

Blue G-250 in 50 mL 95% ethanol. Then 100 mL of 85% (w/v) phosphoric acid was added to 

the solution, which was then diluted to 0.5 L with ddH2O. Bovine serum albumin (BSA) was 

used as standard protein and prepared in the same buffer solution as the protein of interest. 

These solutions were used to determine a standard curve relating protein concentration to 

absorbance at 595 nm. 

4.2.3.4. Mass Spectrometric Analysis 
 
Preparation of Protein Samples for Mass Spectrometry 

 Verification of protein molecular weight was performed by analysis of data from 

mass spectrometry. Buffer salts were removed from protein samples by exchanging protein 
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into MQW using Nanosep®
 centrifugal devices with 10 kDa molecular weight cutoff. If 

protein precipition occurs during this exchange, protein was exchanging using a 1 mL 

Sephadex G25 gel filtration column with MQW as the mobile phase.  An additional step was 

occasionally required where the eluted protein sample was put through the Nanosep®
 

centrifugal device to remove any remaining salts.  

 
Electrospray Mass Spectrometry of Protein Samples  

All samples (in MQW) were diluted with a solution of 1:1 acetonitrile:water 

containing 0.2% formic acid in a ratio of 1:1. Mass spectrometry was carried out with 

electrospray ionization (ESI) in positive ion mode. Molecular mass was obtained using the 

MaxEnt algorithm using the MassLynx program. 

4.2.4. Homology Model Development 
 
All four steps involved in homology model construction: template identification, 

alignment, model building and evaluation [171-173] were be carried out from end to end 

using the homology server SwissModel (http://swissmodel.expasy.org) [170,184,185], or 

software suite Prime 1.2 (Schrödinger Inc, Portland, OR). Steps that involved third-party 

programs will be indicated.  

4.2.4.1. Template Selection and Alignment 

Swiss-Model Homology Server: 

For the Swiss-Model homology server, third party programs were accessed for the 

template selection and alignment process and this is detailed in the text below. 

The Streptomyces azureus TSR protein sequence (accession number: P18466) was 

used initially as a search query for the non-redundant (nr) database using the BLASTp 
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algorithm (http://blast.ncbi.nlm.nih.gov/Blast.cgi) [176] with default parameters. After the 

identification of conserved domains, the same query was performed against the PDB 

database to obtain a set of homologues whose structure was available as a modelling 

template. The same search process was repeated using PSI-BLAST [178]. The crystal 

structures of RrmA (I1PA) [26], RlmB (1GZ0) [165] and AviRb (1X7P) [143] were selected 

to be used for multi-template modelling processes whereas, only RrmA (I1PA) was selected 

for single sequence template comparative modelling. For dimeric comparative modelling, the 

AviRb (1X7P) was used as the template based on results from monomeric modelling. 

 The multiple sequence alignment (MSA) was generated using online programs such 

as  CLUSTALW (http://www.ebi.ac.uk/Tools/clustalw2/index.html) [186] and MultiAlin 

(http://bioinfo.genotoul.fr/multalin/multalin.html) [187] with default parameters. The MSA 

was analyzed manually and is determined that manual re-adjustment was not necessary based 

on conserved sequence motifs observed to be present in SpoUT MTases [29,115]. 

 
Prime Protein Structure Prediction 1.2  

 The TSR sequence FASTA file was imported into the workspace and submitted as a 

query for the homologue search. The BLAST algorithm [176,177] was used to search the 

non-redundant PDB database and a list of homologues was generated, in addition to the 

sequence alignment. Homologues with available structural coordinates were indicated and a 

search of the protein family based on the primary sequence of TSR was also carried out and 

the protein was identified as a SpoU methyltransferase. The top two homologues (1IPA and 

1GZ0) were in agreement with the template selection process done for the Swiss-Model 

projects. However 1X7P did not appear on the list so its sequence and PDB file were 
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imported into the workspace as a modelling template. The three structures were then 

structurally aligned by Prime before continuing on to the alignment process. 

 A secondary structure prediction was performed for the TSR query prior to the 

alignment procedure. Prime performs sequence alignments based on both sequence and 

secondary structural information. The alignment was compared with the multiple sequence 

alignment (MSA) obtained previously with Multalin [187] and adjustments were made. 

4.2.4.2. Homology Model Building 

SwissModel – TSR Monomer and Dimer Building 

TSR Monomer Construction 

Initially a DeepView project was made and loaded with the raw TSR sequence 

(target). Prior to loading the three PDB structures of the templates (1IPA, 1GZ0 and 1X7P), 

all structures were edited to ensure that they were in the monomeric form using Accelyrs DS 

Visualizer. The template structures were initially structurally aligned based on their Cα 

backbone using the “Magic Fit” function which provides a preliminary structural alignment, 

following by a crude “threading” of the raw TSR sequence onto the aligned structures. 

During this process a MSA was also generated in which it was manually edited so that it was 

in agreement with the Multalin [187] alignment obtained in the previous template 

identification step. Afterwards, a second superimposition was performed using the “Fit 

Molecules” function using absolutely conserved residues as part of this structural alignment. 

Care was taken to avoid placing gaps in secondary structural elements. Side chains that 

formed clashes in the alignment were reduced and corrected by substitution with a different 

amino acid rotamer when possible. The project file was then submitted to the Swiss-Model 

server for model construction. 
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TSR Dimer Construction 

A single structure, PDB: 1X7P, was selected as the template sequence for which the 

dimer model was to be based on. Manipulation of the PDB structure was required in 

DeepView before modelling submission for the dimer. The two chains, 1X7PA and 1X7PB, 

comprised the homodimer, however it was observed that within the B-chain (1X7PB) a 

number of segments were missing from the structure, making it unacceptable for homology 

modelling by Swiss Model. Therefore, a new dimer template had to be generated using two 

A Chains. 

The crystal structure of 1X7P was loaded into DeepView and the protomer that had 

the complete structure (Chain A) was saved as its own layer and designated IX7PA. 

Afterwards, it was saved a second time as a different layer with the label IX7PB, for use as 

the second protomer. The two chains on separate layers were structurally aligned with each 

of the monomers of the original template dimer (1X7P) in order to maintain proper protomer 

orientation. This was merged as a new dimer structure with two complete intact protomers, 

and was called 1X7Pspecial and was used for dimeric comparative modelling. 

In order to construct the dimer, two separate monomer models must be generated 

first. The protomer model for the dimer was generated in the same fashion as the TSR 

monomer discussed above. The two monomer models were merged together by aligning to 

the 1X7Pspecial template, making it the merged dimer target query structure.  

A different DeepView project was started with the TSR dimer target and the 

1X7Pspecial dimer crystal structure was now loaded. The sequence of steps that followed 

were similar to that of monomer homology performed previously with DeepView and 

SwissModel, with the exception that the sequence was twice as long since there were two 
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protomers. A crude “Magic Fit” alignment was followed by a reiterative “Magic fit” and 

subsequently an alignment done by Deepview and then visually inspected. All gaps were 

carefully looked over and amino acid residue clashes were minimized with a rotamer library. 

The project file was then submitted to the Swiss-Model server for model construction. 

During this time, side chains, loop building and energy minimization was performed along 

with building of the backbone structure. 

 
Prime Protein Structure Prediction 1.2 – TSR Monomer Building 

 The build process of Prime follows the sequence alignment step. Regions of the 

template sequences were selected that were to be used for the model development. Regions 

that were chosen were the conserved amino acids and then submitted to Prime for model 

construction.  

4.2.4.3. Refinement and Evaluation of Homology Models 
 
SwissModel – TSR Monomer and Dimer Evaluation 
 
Monomer Evaluation 

Model quality evaluation was performed automatically by the server during model 

construction by programs such as ANOLEA [188]. Nonetheless, the pdb structure that was 

given from the Swiss-Model server was submitted to the ProFunc Server [189,190] to 

confirm that the overall structural fold of the model was correct. Following this, the the PDB 

structure of the monomeric TSR was visually inspected using DeepView. Using the B-factor 

colouring option, segments of the model that were found to deviate greatly from the template 

structures were highlighted. Most noticeably, a high B-factor loop (highlighted by red) 

encompassing residues Phe61-Asn73 was found to deviate from the α-helices observed in the 
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template crystal structures. Therefore, a new loop was built using Pro60 and Ile74 as the 

anchoring residues and a scan of structures loop structure library was performed and the helix 

chosen that most fitted the template structures. This structure was energy minimized after the 

loop was built. This momomeric structure was given the name: TSRMonomer1. 

Further inspection of the amino acid sequence indicated that the loop comprising 

residues Glu49-Ser56 more than likely should be a β-strand based on the original templates. 

Using Val48 and Asp57 as anchors, a new β-strand was built that most fit the template 

structures and afterwards energy minimized. Afterwards, any side chain clashes formed by 

the introduction of the β-strand were selected and substituted with a different amino acid 

rotamer when possible. After this change, it was decided that the model quality was 

acceptable and required no readjustment to the sequence alignment to obtain another model. 

This monomeric structure was given the name: TSRMonomer2. 

Third party programs were used to further assess the monomeric model. However, the 

structure was first energy minimized using GROMOS96 [191] available through DeepView. 

Structures were minimized by method of steep descent with the number of cycles that 

permitted convergence to 0.05 KJ/mol. The structure coordinates of the model were 

submitted to the Structure Analysis and Verification Server (SAVES, 

http://nihserver.mbi.ucla.edu/SAVES/). Verification of the structure was performed by the 

programs within the server: VERIFY 3D [183], PROCHECK [182] and ERRAT [192]. 

 
Dimer Evaluation 

A similar approached was used for the dimer. The first round of modelling was the 

formation of a model of each of the protomers. During evaluation of the two separate 

protomers, all secondary structures were present and none needed to be modelled in. Side 
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chain clashes were minimized with the substitution of the rotamers available in a library on 

DeepView. The dimer was then modelled using the two comparative protomer models 

combined.  No major adjustments were made to the dimer and this structure was given the 

name: TSRDimer. The model was energy minimized by GROMOS96 [191] and then  further 

evaluated by the Structure Analysis and Verification Server (SAVES, 

http://nihserver.mbi.ucla.edu/SAVES/). Verification of the structure was performed by 

VERIFY 3D [183], PROCHECK [182] and ERRAT [192]. 

 
Prime Protein Structure Prediction 1.2 – TSR Monomer Evaluation 

The structure that was generated in the previous Build Structure step of Prime can be 

optionally further refined by the user with the available Refine feature of the program. Loops 

can be refined, side chain conformation can be adjusted and the structure can be energy 

minimized. The loop refinement task was chosen and a list of loops present for TSR were all 

selected to be refined. When multiple loops were selected to be refined in series, it resulted in 

an error. Therefore, individual loops were selected to alleviate computational demands; 

however, the task still could not be completed. Therefore, the structure was imported into the 

DeepView Interface for analysis, after doing the overall fold analysis with ProFunc 

[189,190]. The α-helix and β-strand that had to be modified in the Swiss-Model structures 

was did not require adjustment in the Prime model. Visual inspection of the loop and gap 

regions of the model revealed that no additional changes needed to be made. This structure 

was given the name: PrimeTSRMonomer. The Prime structure was also energy minimized 

with GROMOS96 [191] available in Deepview. Third party programs were used to further 

assess the monomeric model. An overall quality check of the enzyme models were verified 

using ProSa (Protein structure analysis, https://prosa.services.came.sbg.ac.at) [193], to 
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highlight any potential errors in the structure. After this, an in depth evaluation was 

performed with the Structure Analysis and Verification Server (SAVES, 

http://nihserver.mbi.ucla.edu/SAVES/). Verification of the structure was performed by 

PROCHECK [182], VERIFY 3D [183] and ERRAT [192].  

4.2.5. X-ray Crystallography of TSR′′′′ 

 The X-ray crystallographic work on TSR′ was performed in collaboration with Drs. 

Mark Dunstan and Graeme Conn (University of Manchester). General details are found 

within this chapter while detailed experimental procedures and data tables are included 

within the appendices. 

4.2.5.1. Selenomethionine Incorporation into TSR 

The plasmid containing the DNA encoding the S. azureus hexahistidine-tagged TSR 

(pTSR10), was transformed into an E. coli B834pLysS (DE3) auxotrophic cell line. During 

the development of an efficient means of incorporating selenomethionine (SeMet) into the 

protein structure, different incorporation times (0, 2, 4, 6, 8, 12, 16, 24 h) and concentrations 

(0.3 mM and 2 mM) were investigated. 

A small starter culture of Luria-Bertaini (LB; per liter:  10 g tryptone, 5 g yeast 

extract, 10 g NaCl pH 7.0) supplemented with kanamycin (15 µg/mL)  and chloramphenicol 

(17 µg/mL) was inoculated from frozen stock and grown overnight at 37 °C. The culture was 

then diluted 100-fold with M9+ (M9; per liter: 12.8 g Na2HPO4⋅7H2O, 3 g KH2PO4, 0.5 g 

NaCl, 1 g NH4Cl, pH 7.2; M9+; M9 media and 2 mL 1 M MgSO4 , 1 mL 100 mM CaCl2, 10 

mL 40% glucose, 1mL 100mM L-Met). The cells were grown with constant agitation (~200 

rpm) at 37 °C until mid-log phase (A600 = 0.5-0.8) optical density of 0.6 was reached. 
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The cells were centrifuged at 4 °C for 15 min (6000 ×g) and the supernatant was 

decanted. The minimal medium M9 was used to resuspend the cells and the sample 

centrifuged a second time for 15 min at 6000 ×g to eliminate residual methionine present. 

The supernatant was removed once again and half the original cell culture volume was 

resuspended in M9+ media. Cells were permitted to grow for an additional half hour prior to 

the addition of 1 mM isopropyl-β-thiogalactopyranoside (IPTG) and SeMet (final 

concentration of 0.3 mM and 2 mM respectively). The cells were grown for 24 h with 1 mL 

samples removed at various time point for analysis, then harvested by centrifugation (5 min 

at 13 000 ×g) and frozen at -80°C for SDS-PAGE analysis. 

4.2.5.2. Purification of SeMet TSR  

 The purification of SeMet-incorporated TSR is as described for the hexahistidine-

tagged TSR (Chapter 2, Sections 2.2.6-2.2.8). The complete replacement of all six 

methionine residues was confirmed by mass spectrometry. Yield: 5-10 mg/L of culture. 

4.2.5.3. Sample Preparation for X-ray Crystallography 

Both the TSR′ and SeMet-TSR were purified and purity checked by analysis with 

SDS-PAGE and silver-staining (Chapter 2, Section 2.2.3.1). The purified protein was 

dialyzed against 50 mM Tris buffer pH 7.0 containing 75 mM KCl, 10 mM β-

mercaptoethanol and 10% glycerol. The protein was concentrated using Vivascience 

Vivaspins (MWCO 10 kDa). During the protein concentration process, protein was found to 

precipitate as the concentration increased. All precipitated protein was filtered and the 

concentration was determined by Bradford analysis using BSA as a standard.  
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4.2.5.4. Data Collection, Structure Determination and Refinement 

Diffraction data was collected on beamline ID23-1 at the European Synchrotron 

Radiation Facility (ESRF) and the data processed with X-ray Detector Software (XDS) 

[194]. Using the CCP4 program MOLREP [195,196], the protein structure was solved with 

molecular replacement (MR) using the SpoUT MTase RrmA (1IPA; 27% identity) C-

terminal domain to improve the starting model. For further details please refer to the 

appendices. 

4.2.5.5. Modelling TSR-RNA Interactions 

Modelling of TSR and RNA interactions was performed by our collaborators. Details 

of their experiments can be found in the appendices. The figures in the appendices were 

prepared by Drs. Graeme Couture and Mark Dunstan. 

4.2.6. Site Directed Mutagenesis 

Point mutations of TSR were performed. If the Quikchange method did not yield the 

desired mutant after multiple attempts and primer re-design, the splicing overlap extension 

method was employed. Please refer to the appendices for a detailed description of these two 

methods. The primers designed for the mutagenesis were synthesized at Invitrogen Canada 

(Burlington, ON). Sequencing confirmation was performed by the DNA Sequence Facility at 

the Department of Biology at the University of Waterloo. 

4.2.6.1. QuikChange 
 

The following primers were made for the following mutants, and were homologous to 

the DNA encoding TSR containing the site of target change underlined: 
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N248A (AAC → GCC) 
 

5′ G ATG AGC CAG ACC GAG TCT CTC GCC GTT TCC GTT TCC CTC GGA ATC G 3 ′ 
5′ C TAC TCG GTC TGG CTC AGA GAG CGG CAA AGG CAA AGG GAG CCT TAG C 3 ′ 

 
N248D (AAC → GAC) 
 

5′ G ATG AGC CAG ACC GAG TCT CTC GAC GTT TCC GTT TCC CTC GGA ATC G 3 ′ 
5′ C TAC TCG GTC TGG CTC AGA GAG CTG CAA AGG CAA AGG GAG CCT TAG C 3 ′ 

 
 
For all Quikchange mutants, the following PCR conditions (50 µL) were performed: 
 

• 250 ng of S. azureus pTSR10 DNA added as template 
• Forward and reverse primers (above) added to a final concentration of  
• dNTPs added at a final concentration of 0.2 mM each 
• 5 µL of 10× Pwo buffer 
• Four different MgSO4 concentrations were attempted (0.5 mM, 1 mM, 1.5 mM and 2 

mM) 
 
The thermal cycle profile is as follows: 

• Initial denaturation at 95 °C for 5 min 
• “Hot start” holding temperature of 85 °C during the addition of polymerase (0.5 µL  

Pwo) 
• 16 cycles of: 

o Denaturation at 95 °C for 30 s 
o Annealing 60 °C for 6 min 
o Extension 72 °C for 45s 

• Final extension time of  72 °C for 10 min 
• Hold at 4 °C until reaction was retrieved for the following step. 

 
The PCR reaction mixture was then incubated with DpnI at 37 °C for one hour to degrade 

the methylated wild-type DNA. The plasmid containing the mutated tsr ORF, pTSR10, was 

introduced into E. coli DH5α competent cells by CaCl2 transfomation. This cell line is 

deficient in restriction enzymes to degrade non-methylated DNA. Colonies that grew were 

selected for kanamycin resistance and grown in a small culture (3mL) and DNA isolated for 

sequencing for confirmation of successful mutagenesis. Once confirmed, the isolated DNA 
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was transformed into E. coli BL21pLysS (CaCl2 heat shock) for future protein production 

and isolation. 

4.2.6.2. Splicing Overlap Extension (SOE) Method 
 

The following sets of primers were used for the following mutants, and were 

homologous to the DNA encoding TSR containing the site of target change underlined: 

 
S246A (TCT → GCG) 
 
T7 forward: 5' TAA TAC GAC TCA CTA TAG GG 3' (a) 
T7 reverse: 3' ATT ATG CTG AGT GAT ATC CC 5' (d) 

 
             5 ′ CG CAG ACC GAG GCG CTC AAC GTT TCC GTT TCC CTC 3 ′ (c) 
3′ GGG TAC TAC TGC GTC TGG CTC CGC GAG TTG C 3 ′ (b) 
 
 

R135A (CGC → GCG) 
 
T7 forward: 5' TAA TAC GAC TCA CTA TAG GG 3' (a) 
T7 reverse: 3' ATT ATG CTG AGT GAT ATC CC 5' (d) 

 
                 5 ′ CG ATA GTA GCG ACG TCG CTC GCG CTC GGA GCG 3′ (c) 
3′ CCC TTG TAG CCG CGC TAT CAT CGC TGC AGC GAG C 3 ′ (b) 
 
 
R135K (CGC → AAA) 
 
T7 forward: 5' TAA TAC GAC TCA CTA TAG GG 3' (a) 
T7 reverse: 3' ATT ATG CTG AGT GAT ATC CC 5' (d) 

 
                 5 ′ CG ATA GTA AAA ACG TCG CTC GCG CTC GGA GCG 3′ (c) 
3′ CCC TTG TAG CCG CGC TAT CAT TTT TGC AGC GAG C 3 ′ (d) 
 

To generate the mutant, a total of three PCR steps were performed with the following set of 
primer combinations: 
 

• PCR I: Primers (A) and (B) 
• PCR II:  Primer (C) and (D) 
• PCR III:  Primers (A) and (D) 
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PCR I and PCR II conditions (50 µL) were performed: 
• 5 ng – 20 ng of S. azureus pTSR10 DNA added as template 
• Primers A and B (or Primers C and D for PCR II) was added to a final concentration 

of 0.03 µM  - 0.06 
• dNTPs added at a final concentration of 0.2 mM each 
• 5 µL of 10× Pwo buffer (with 20 mM MgSO4 present) 
• 5-10% DMSO 

 
The thermal cycle profile is as follows: 
 

• Initial denaturation at 95 °C for 5 min 
•  “Hot start” holding temperature of 85 °C during the addition of polymerase (0.5 µL  

Pwo) 
• 10 cycles of: 

o Denaturation at 95 °C for 30 s 
o Annealing 60 °C for 60 s 
o Extension 72 °C for 45s 

• 15 cycles of: 
o Denaturation at 95 °C for 30s 
o Annealing 60 °C for 60s 
o Extension 72 °C for 45 s (extension time increased by 5 s for each cycle) 

• Final extension time of  72 °C for 10 min 
• Hold at 4 °C until reaction was retrieved for the following step. 

 
The PCR reaction mixture was digested with BamHI and NdeI and the fragments were 

isolated and separated with a 1.5-1.8% agarose gel with ethidium bromide. The fragments 

were visualized under UV light. The fragment of the correct size was identified and gel 

purified using a Qiagen miniprep column. The amplification product was stored at -20 °C for 

future use. 

 
PCR III conditions (50 µL) were performed: 

• PCR product from PCRI and PCR II added as template 
• Primers A and D was added to a final concentration of 0.03 µM  - 0.06 
• dNTPs added at a final concentration of 0.2 mM each 
• 5 µL of 10× Pwo buffer (with 20 mM MgSO4 present) 
• 5-10% DMSO 
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The thermal cycle profile is as follows: 
 

• Initial denaturation at 95 °C for 5 min 
• “Hot start” holding temperature of 85 °C during the addition of polymerase (0.5 µL  

Pwo) 
• 10 cycles of: 

o Denaturation at 95 °C for 30 s 
o Annealing 60 °C for 60 s 
o Extension 72 °C for 45s 

• 15 cycles of: 
o Denaturation at 95 °C for 30s 
o Annealing 60 °C for 60s 
o Extension 72 °C for 45 s (extension time increased by 5 s for each cycle) 

• Final extension time of  72 °C for 10 min 
• Hold at 4 °C until reaction was retrieved for the following step. 

 
The PCR reaction mixture was digested with restriction enzymes BamHI and NdeI and 

the fragments were isolated and separated with a 1.5-1.8% agarose gel with ethidium 

bromide. The fragments were visualized under UV light. The fragment of the correct size 

was identified and gel purified using a Qiagen miniprep column. The amplification product 

was stored at -20 °C for future use. 

 The pET28b vector was also digested with BamHI and NdeI and a ligation of the full 

length product with mutation (from PCR III) was inserted with the use of T4 ligase at 16 °C 

overnight. The subcloned fragment was then transformed into E. coli BL21pLysS for protein 

production and isolation. 

4.2.6.3. Expression and Purification of Mutants 

 The expression and purification of the mutants were performed in the same manner as 

the wildtype TSR described in Chapter 2. 
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4.3. Results and Discussion 

4.3.1. Homology Model Development 

 It is known, based on sequence analysis, that TSR is an RNA MTase that belongs to 

the novel SpoUT MTase class [27,29,115,165]. However, no detailed structural information 

about the enzyme by means of an X-ray crystal or NMR structure was available. We have 

used a computational approach to determine the structure of TSR to circumvent the lack of a 

high resolution structure. Comparative modelling approaches permitted the prediction of the 

3-dimensional structure of a protein based on its primary sequence. 

4.3.1.1. Template Selection and Alignment 

 Templates for a homology model for S. azureus TSR were identified based on results 

from BLASTp [176] and PSI-BLAST analysis [178]. It was revealed that TSR contains a 

SpoU MT fold and while nine structures were reported by the algorithm, the list was reduced 

to the top three scoring structures for monomer modelling and to one for dimer modelling 

(Table 4.1). All other structures were deemed unsuitable for either of the following reasons: 

1) the structure was not an MTase 2) the MTase was not a SpoUT member 3) the E-value, an 

indicator of whether the alignment occurred by chance, was too high.  For dimer modelling, 

only RlmB (1GZ0) and AviRb (1X7P) had dimer structures available. Since both RlmB 

(1GZ0) and AviRb (1X7P) had comparable E-value and crystal structure resolution, AviRb 

(1X7P) was chosen since AviRb has a higher sequence identity (31%) and is an MTase that 

confers resistance to an antibiotic. 
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Table 4.1: Template structures utilized during comparative modelling of TSRδ. 

Name PDB Source % 
identity 

% 
similarity 

E-value Resolution 
(Å) 

Reference 

RrmAφ I1PA Thermus theromophilus 24 46 6 × 10-13 2.4 [26] 
RlmB* 1GZ0 Escherichia coli 26 50 5 × 10-7 2.5 [165] 
AviRbγ 1X7P Streptomyces 

viridochromogenes 
31 50 7 × 10-7 2.55 [143] 

δAll three PDB structures were used for monomer modelling. For dimer modelling only AviRb (1X7P) was selected. 
φRrmA is a hypothetical SpoU MTase 
*RlmA is a SpoU MTase that methylates G2251 of the 23S rRNA that is essential for maturation of the large ribosomal unit 
γAviRb is a SpoU MTase that methylates U2479 and provides resistance to the oligosaccharide antibiotic avilamycin 

 
The multiple sequence alignment was performed by two different programs 

(CLUSTALW [186] and MULTALIN [187]), both of which gave an identical alignment 

(Figure 4.5). 
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                              1       10         20          30         40 
                              |        |          |           |          | 
TSR  .......... MTELDTIA NP SDPAVQRIID VTKPSRSNIK TTL I EDVEPL MHSIAAGVE. 
RrmA (I1PA) .......... .MRITSTA NP RIKELARLL. .ERKH RDSQR RFLI EGAREI ERALQAGI E. 
AviRb(1X7P) MARSRGERTP AARRITSR NA RFQQWQALLG .NRNKRTRAG EFLVMGVRPI SLAV EHGWP. 
RlmB (1GZ0)   .......... .......... .........S SGLV PRGSHX SEXI YGIHAV QAL LERAPER 
Consensus   .......... ........n. .......... ..... R.s.. ..l ! . g.... ... le . g. e. 
 
                  50           60         70         80        90         100 
                   |            |          |          |         |           |           
TSR  FIE ..VYGSD SSPFPSELLD LCGRQNIPVR LIDSSIVNQL FK GERKAKTF GIARVPRPAR 
RrmA (I1PA) LE QALVWEGG LNPEEQQVYA ALGRVGRLAL LEVSEAVLKK LSVRDN.PAG LI ALARMPER 
AviRb(1X7P)   V.RTLLYD G. .QRE LSKWAR ELLRTVRTEQ I AMAPDLLME LGEKNEAPPE VVAVVEMPAD 
RlmB (1GZ0)  FQEVFILK GR EDKRLLPLIH ALESQGVVI Q LANRQYLDEK SDGAVHQGII ARVKPGRQYQ 
Consensus   f . e..... g. .... l .. l .. al.rqg... q la .... l .. k .. g....... .. a... rp .. 
 
                   110             120        130        140        150        160 
                     |               |          |          |          |          | 
TSR     FG DI...ASR RG D..VVVL D GVKI VGNI GA IV RTSLALGA SGII LVDSDI TSIADRRLQR 
RrmA (I1PA) TL EE...YRP SP DALI LVAV GLEKPGNLGA VLRSADAAGA EAVLVAG.GV .D LYSPQVIR 
AviRb(1X7P) DL DR... I PV REDFLGVLFD RPTSPGNI GS II RSADALGA HGLIV AGHAA .DVYDPKSVR 
RlmB (1GZ0) EN DLPDLI AS LDQPFLLIL D GVTDPHNLGA CLRSADAAGV HAVIVPKDRS AQL.NATAKK 
Consensus  .. #.... i .. .. #... l .l d gv t. pgNl Ga .l Rsad AaGa haviv ..... .. l ...... r  
 
                        170        180               190        200        210         
                          |          |                 |          |          |  
TSR  A SRGYVFSLP VVLS.GREEA IAFIRDSG.. ...MQ LMTLK ADGDISVKEL GDNPDRLALL 
RrmA (I1PA) N STGVVFSLR TLAA.SES EV LDWIKQHN.. ...LP LVATT PHAEALYWEA NLRPP.V AIA 
AviRb(1X7P) S STGSLFSLP AV RVPSPGEV MDWVEARRAA GTPI VLVGTD EHGDCDVFDF DF TQP.TLLL 
RlmB (1GZ0) VAC GAAESVP LI RVTNLART XRXLQEEN.. ... I WIVGTA GEADHTLYQS KXT.G RLALV 
Consensus   . s. G.. f Sl p .. rv .... e. ....... n.. ... i . lvgt . .. a#.... #. .. t .. rlal  
 
                     220        230        240        250       260        270          
                      |          |          |          |          |          | 
TSR  F GSEKGGPSD LFEEASSASV SIP MMSQTES LNVSVSLGI A LHERIDRNLA ANR....... 
RrmA (I1PA) V GPEHEGLRA AWLEAAQTQV R IP MQGQADS LNVSVSAALL LYEALRQRLL RDRLTKTHST 
AviRb(1X7P) I GNETAGLSN AWRTLCDYTV SIP MAGSASS LNAANAATAI LYEAVRQRIS GRTATTP... 
RlmB (1GZ0) X GAEGEGXRR LTREHCDELI  SIP XAGSVSS LNVSVATGI C LFEAVRQRS. .......... 
Consensus  . G. E. eG. r . l . re . cd .. !  sIP mags. sS LNvsva . gi . L. Eavrqr .. .......... 
 
        277 
                   | 
TSR  . 
RrmA  L 
AviRb(1X7P) . 
RlmB (1GZ0) . 
Consensus   . 
 

Figure 4.5: Multiple sequence alignment of TSR and SpoU MTases used as templates for the homology 
modelling.  

Residue numbering is based on the TSR sequence. Red and blue residues indicate identical and similar residues, 
respectively. The symbol “!” indicate residues can the residue I or V and the symbol “#” indicate it can be N, D, 

Q or E. 
 

4.3.1.2. Homology Model Construction 

 All SpoUT monomers (with the exception of TrmH [197]) have two distinct domains, 

the N-terminal recognition domain and the catalytic Rossman-like C-terminal domain that 
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has an unique deep trefoil knot [10]. Both domains are tethered together by a flexible liner 

giving the monomeric form an overall dumbbell shape. Figure 4.6 shows the structures of the 

three template MTases that were used in this homology study. In addition, SpoUT MTases 

are only functional as homodimers, in which dimerization occurs between the C-terminal 

domains (Figure 4.7). The active site is formed by residues of both protomers [27,28]. 

 

Figure 4. 6: Representative monomer structures of SpoUT MTase.  
These three structures were used as a homology template in the generation of the monomeric TSR. (A) RrmA 
(I1PA) (B) RlmB (1GZ0) (C) AviRb (1X7P). Red represents α-helices, cyan represents β-strands and green 

represents loops. 
 

 
Figure 4.7: Dimer structure of AviRb (1X7P) in stereoview. The dimer is formed through interaction between 

the two C-terminal domains of each protomer. Orange and blue show the different monomers. 

A B C 
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The three dimensional structure of the target monomeric TSR protein was modelled 

using the Swiss-Model Homology server program [170,184,185]. An alternative model was 

generated using Prime Protein Prediction Suite (Schrödinger Inc, Portland, OR). These 

monomeric structures were generated based on the multiple sequence alignment (with RrmA, 

RlmB and AviRb sequences) generated in the previous step. A structural alignment of all the 

crystal structure templates and a rough threading of the TSR sequence onto the structures 

were carried out prior to submission to the homology modelling server. 

The TSR dimer comparative model was constructed only using the Swiss-Model 

Server, as the Prime Prediction Suite is unable to model oligomeric proteins. A single 

template approach was implemented and the crystal structure of AviRb (1X7P) was chosen. 

While RrmA (1IPA) (Table 4.1) gave the best score to use as the model scaffold, there was 

no available crystal structure available for the dimer. The avilamycin-resistance rRNA 

MTase (AviRB) was chosen over RlmB (1GZ0), since it possessed a higher sequence 

identity (31% vs. 26%).  

In order to generate the dimer, the model for each of the protomers must be generated 

first. The protomer model was based on the Chain A of AviRb was performed. The protomer 

model generated was evaluated and no major manual changes were made to the structure. 

The two models were then combined and a rough structural alignment was performed with 

the AviRb dimer before modelling the dimer. 

The initial three preliminary homology models of TSR (two monomers and one 

dimer) based on the aforementioned templates gave rise to structures that closely resembled 

typical Class IV (SpoUT) fold according to visual inspection. The overall structural fold was 

evaluated and confirmed by ProFunc [189,190], an online server 
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(http://www.ebi.ac.uk/thornton-srv/databases/ProFunc/) that predicts the possible function of 

a protein based only on its 3-dimenstional structure. ProFunc identified protein structures 

with matching folds belonging to SpoUT MTases, thereby indicating that the TSR homology 

models have the overall correct fold (Figure 4.8). The following section details the 

modification, refinement and evaluation of the quality of these models. 

 
Figure 4.8: The three initial TSR homology models generated using SwissModel and Prime.  

(A) Swiss-Model monomer (B) Prime monomer (C) Swiss-Model dimer. Red represents α-helices, cyan 
represents β-strands and green represents loops. Orange and blue show the different protomers within the dimer. 

4.3.1.3. Homology Model Refinement and Evaluation 
 
Homology Model Refinement 

 
Swiss-Model Monomer 

Visual inspection of the TSR monomer made with the Swiss-Model homology 

software revealed that there were two segments of the model that were found to deviate from 

the templates. Section Phe61-Asn73 of TSR was modelled to be a loop, whereas the 

correseponding areas on the templates were found to be α-helical (Figure 4.9a). A new loop 

was built using the Scan Loop feature available in Deepview, where a library of loops from 

solved crystal structures of other proteins is proposed based on the loop identities and 

similarities. After the new α-helix was added (Figure 4.9b), it was energy minimized and the 

A B C 
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structure was checked for any additional residue clashes and fixed if possible. There were no 

additional residue classes and this structure was called TSRMonomer1. 

 

 
Figure 4.9: Superimposition of TSR model over crystal structure templates used for homology modelling. 
The residues between Phe61-Asn73 were changed from a loop (A, red) to an α-helix (B, red) to match the 

template secondary structure (Blue: 1IPA; Pink: 1GZ0; 1X7P: Yellow). 
 

Further adjustments were made to the structure. Residues Glu49-Ser56 were changed 

into a β-strand using the scan library approach. The β-strand was energy-minimized and this 

model was designated as TSRMonomer2 (Figure 4.10). 

 
Figure 4.10: Superimposition of TSR model over crystal structure templates.  

The residues between Glu49-Ser56 were changed from a loop (A, red) to an β-strand (B, red) to match the 
template secondary structure (Blue: 1IPA; Pink: 1GZ0; 1X7P: Yellow). 

 
Prime Monomer 

The protein prediction suite, Prime 1.2, was also used to create the TSR model using 

the three same templates as a starting scaffold. During the building of the structure, the 

program not only takes into consideration the atomic positions of template(s), but also 

A B 
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solvent, ligands (if any), force fields (i.e. OPLS2000-AA), etc. Areas that are dissimilar to 

the template(s), such as loops and certain side chains can be refined by either building the 

loops by ab initio methods or re-calculating side chain conformations [169]. The Prime 

model that was constructed did not undergo any loop or side chain refinement due to 

computation limitations of our system. Therefore, the default loops generated for the 

structure were kept and the structure was imported to DeepView to correct side chains that 

were forming clashes with other atoms within the protein. No further adjustments to the 

structure were made afterwards. This structure was called PrimeTSR. 

TSR Dimer 

The protomers of the dimer model were evaluated by visual inspection and no 

changes were made before proceeding with the final stages of dimer generation. With the 

dimer generated, side chain clashes were relieved using the rotamer library containing more 

favourable side chain conformations and was evaluated as is. This model was called 

TSRDimer. 

 
Homology Model Evaluation 

Prior to further model evaluation, all models were refined with an energy 

minimization computation with GROMOS96 force field in vacuo [191] that was 

implemented by the DeepView software program. The local energy minima of all the models 

were compared and shown in Table 4.2.  

Table 4. 2: Local energy minima reached by comparative models using GROMOS96. 
 Local Minimum (kJ/mol) No. of cycles of steepest descent* 
TSRMonomer2 -12295.252 1374 
PrimeTSR -13675.838 773 
TSRDimer -25695.434 567 

*Number of cycles /steps until energy reached a convergence of 0.05 kJ/mol 
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ProSa (Protein Structure Analysis) was used in the initial assessment of the overall 

model quality. A database with a compilation of potentials of mean force from known 

structures is used as a statistical analysis tool [198]. A Z-score is a measure of the total 

energy of the structure with respect to energy distributions from random conformations.  If 

the Z-score is not within the range of scores given by native proteins, then the model is 

considered to be of poor quality and possesses errors. A plot of residue energies is also given. 

Positive values indicate areas of the structure that may contain errors [193]. The Z-scores 

obtained by the homology models were as follows: -6.8 for TSRMonomer2, -6.98 for 

PrimeTSR and -6.75 for TSRdimer. All these values were in the range of native 

conformations and the residue energies are mostly negative (Figure 4.11), demonstrating that 

overall, the models are of good quality. Further detailed evaluation of the structures is 

discussed below. 

 

 
 

Figure 4. 11: ProSa energy plots  
(A) TSRMonomer2 (B) PrimeTSR (C) TSRDimer. 

 
VERIFY 3D is a program that analyzes the compatibility of the protein model with its 

amino acid sequence. Each position within the atomic structure of the protein is characterized 

by the statistical preference of an amino acid residue for a certain environment (termed the 

3D-1D score). The environment comprises three parameters: area of residue that is buried, 

A B C 
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area that is covered by polar atoms (O and N) and local secondary structure. For each 

residue, the scores of a sliding 21-residue window (-10 to +10) are added and plotted, and for 

the most part should stay above 0.2 [183].  

 All models were assessed by VERIFY3D on the 3D-1D profile, and it was found that 

all of them had good compatibility between their amino acid residues and the local 3D 

structure (Table 4.3). Changes made to the initial TSR Swiss Model structure showed a 

marked improvement (57% to 64%), while the Prime model had a higher score of 72%, and 

the TSR dimer had the best score out of all the structures with 86%. 

 
Table 4. 3: Comparison of 3D-1D VERIFY 3D score between the homology models of the TSR monomer. 

Model % 3D-1D score > 0.2 Low Scoring Amino Acid Regions 
Initial TSR Monomer 57.36 Phe50-Lys95 (loop and α4) 

Arg101-Gly109 (part of β2) 
Ile145-Arg159 (β4-part of α6) 

TSRMonomer2 64.15 Leu65-Lys95 (part of α4 and α5) 
Gly144-Arg158 (β2 and α4) 

PrimeTSR 72.5 Val53-Gln72 (β2 - α4) 
TSRDimer 86.31 Phe61-Ser82 (α4-α5) 

 
PROCHECK is a suite of programs that is used to check the stereochemical quality of 

protein structures [182]. Ramachandran plots were generated and the distribution of amino 

acid residues based on their torsion angles (ψ and φ) [199] provided an insight into the 

torsional quality of the structure (Figure 4.12). All residues are limited to certain 

conformations within the protein structure, and therefore certain regions of the 

Ramachandran plot. There are core favoured regions, additionally favoured regions and 

generously allowed regions.  
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Figure 4. 12: Ramachandran plots for the comparatives models generated. 

(A) TSRMonomer2 (B) PrimeTSR (C) TSRDimer. The red regions are core favoured regions; yellow are 
additionally favoured regions and light beige are generously allowed regions. Each residue is represented by a 

square and glycine and prolines are represented by triangles. 
 

For a structure to be considered favourable, 80-90% of its residues should be found in 

the favoured regions, with the majority remaining in the additionally allowed region, and 

B 

C 
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very little in the generously allowed region [200]. All of the models generated were all 

comparable and considered to be of reasonably good quality. 

 
Table 4.4: Distribution of Residues in Homology Models in Ramachandran plots. 

 % in Region 
 TSRMonomer2 PrimeTSR TSRDimer 
Core favourable  83.8 87.2 82.3 
Additionally allowed 11.9 11.1 13.4 
Generously allowed 3.8 0.4 3.1 
Disallowed 0.5 1.3 1.2 

 
A further investigation into the stereochemical nature of the models was undertaken 

where all bond angles and lengths and planar group geometric distortions were taken into 

consideration.  Distortions with respect to main chain bond lengths and angles were minimal, 

however there were more planar group distortions across all three models (Table 4.5).  Please 

refer to the appendices for specific distortions. 

Table 4.5: Comparison of the Number of Geometric Distortions in the Monomeric Homology Model as 
Determined by Using ProCheck. 

 Geometric Distortion 
 Bond lengths* Bond angles* Planar groups 
TSRMonomer2 0 0 14 
PrimeTSR 1 0 12 
TSRDimer 7 0 34 

*main chain 

 
Pairwise interactions between non-bonding atoms in the protein structure (CC, CN, 

CO, NN, NO and OO) were statistically evaluated by the program ERRAT [192] (Figure 

4.13). In general, carbon, nitrogen and oxygen atoms are distributed throughout a protein 

structure non-randomly due to different energetic and geometric constraints. Errors in models 

often will give a more randomized distribution. ERRAT analyzes the non-covalent 

interactions and compares them with statistical distributions from a database of known 

proteins. Results from the ERRAT analysis show that the monomeric models had a high 

overall quality factor. Both models (TSRMonder2 and PrimeTSR) differed in low quality 
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areas and namely localized in the N-terminal region, which is to be expected since the NTD 

is more variable across SpoUT MTases. However, the dimer structure had almost a 10% 

lower quality factor with low quality areas not only in the NTD, but in the CTD as well.  We 

believe that a multiple template for that domain may improve the quality of non-bonded 

interactions. 

 
 

Figure 4.13: ERRAT results for the three homology models of TSR. 
(A) TSRMonomer2 (B) PrimeTSRmonomer (C) TSRdimer. *Lines drawn at 95% and 99% error value show 

regions in which structure of the model show poor quality. ** Overall quality factor is based on the percentage of 
the protein which has error values below the 95% rejection limit. 
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4.3.1.4. A Closer Examination of the Homology Models 

 The quality of a homology model depends on the degree of sequence identity. Models 

that have a sequence identity to their starting template above 40% have 90% of their Cα 

atoms within 1 Å of their correct positions [171]. For models that have a sequence identity 

between 30%-40%, only 80% of the Cα atoms are placed within 3.5 Å of their real positions 

[171]. Anything lower than 30% sequence identity, only 50% the backbone atoms are within 

an RMSD of 3.5 Å [172]. 

 For TSR, we could not obtain a highly accurate comparative model due to the low 

sequence identity (24%-31%, Table 4.1). Nonetheless, a lower resolution TSR structure for 

both the monomer and the dimer was computationally generated and appeared to be quite 

reasonable. The monomer was constructed using two different programs, and the two  

models were found to be in good agreement with 1.5 Å RMSD between the Cα backbone.

 Based on the three models, TSR has the typical topology of SpoUT MTases, 

possessing two distinct domains, each having a central β-sheet surrounded by α-helices. The 

N-terminal domain (residues 1-106) is connected to the catalytic C-terminal domain 

containing the deep trefoil knot that has been implicated in the binding of AdoMet. The knot 

is formed by a stretch of approximately 45 residues beginning with Glu220 to Ile238 

threading through an opening formed by residues Leu192 to Ser219 (Figure 4.14).  
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Figure 4.14: The deep trefoil knot in the TSR dimer homology model.  

The trefoil knots are highlight in red. 
 

The CTD of the homology TSR forms the dimer interface with the inner face of 

helices α6 and α11 of both protomers, and contains or is in close proximity to highly 

conserved SpoUT residues. These highly conserved amino acid residues from the three 

motifs (Figure 4.2 and Figure 4.15) were highlighted (Figure 4.16) and an hypothetical role 

was assigned to each residue as to its involvement with respect to AdoMet binding, catalysis 

or rRNA recognition. 

 
 TSR Motif I:  128G-N-I-G-A-I-V- R-T-S-L-A-L- G141  
 TSR Motif II: 215L-L-F- G-S- E-K-G- G-P-S 225  
 TSR Motif III:  236V-S- I- P- M-M-S-Q-T-E- S-L- N-V-S-V 251  
 

Figure 4.15: The three SpoUT sequence motifs in TSR.  
Absolutely conserved residues are indicated in bold. 
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Figure 4.16: Conserved residues highlighted in TSR monomer model (PrimeTSR). 

 

These role assignments were based on other biochemical studies performed on other 

SpoUT MTases. Various roles for residues in Motif I have been suggested. For example, it 

has been suggested that  Arg135 could either fix the attacking ribose sugar of A1067 at the 

2′OH group [143] or the Arg135 from the other protomer acts as a general base and 

depronates the 2′OH of the ribose of A1067, resulting in a subsequent nucleophilic attack of 

the methyl group of AdoMet [115]. It should be noted that although Arg residues are 

typically protonated at physiological pHs, and thus are unlikely to act as a general base, they 

have been suggested to take on the role of a catalytic base in certain cases [201,202].  

Asn129 in the motif, could be involved in cofactor binding [26,143,197], while no role as yet 

been assignmed to Gly141. 

Residues of Motif II are situated along the protein knot. Glu220 could potentially 

serve as a catalytic base [143]; alternatively it could maintain the structural integrity of the 

knot and the AdoMet binding site [143,197]. The residues in Motif 3 have also been 
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implicated in playing a role in the recognition of AdoMet. The hydrophobic residues in this 

motif (Ile238, Pro239 and Met240) form a hydrophobic pocket in which the adenine moiety 

can bind [26,165,197]. Ser246 and Asn248 could also play a role in the stabilization the 

adenine ring or the positioning of methionine moiety to prime the substrate for methyl group 

transfer [165]. 

A limited amount of information about the RNA substrate binding to the enzyme is 

gained from these homology models. The electrostatic potential surface of the dimer model 

was examined using the Accelyrs DS Visualizer, and it was shown that the TSR dimer 

possesses a large positive area in the cleft formed by both NTDs (Figure 4.17). This suggests 

that the negatively charged RNA can position itself along this surface such that the 

methylation can occur. No other areas on the dimer exhibited a large positive charge 

indicating that area is most likely the sole binding area of the RNA substrate.  Therefore, one 

would only expect to see one RNA substrate per dimeric TSR [143].  

 

 
Figure 4.17: Electrostatic surface potential of TSRDimer.  

Blue shows areas of positive charge and red shows areas of negative charge. A large area of positive charge is 
found between the two N-terminal domains of TSR and is the potential binding site of the RNA substrate. 

Electrostatic potential surface was generated using Accelyrs DS Visualizer v2.01.7347. 
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4.3.2. X-ray Crystallography of TSR′′′′ 

4.3.2.1. Overall Structure of S. azureus TSR 

 The X-ray crystal structure of TSR was obtained, after our work on the homology 

model was completed, in a collaborative investigation with Drs. Graeme Couture and Mark 

Dunstan of the University of Manchester. At the time of writing this thesis, a manuscript 

detailing the work described in this section was submitted for review. 

The TSR structure elucidated was found to contain features conserved by Class IV 

MTases such as the Rossman-like fold in the C-terminal catalytic domain and the 

proteinaceous knot. While sequence analyses [29] proposed that TSR is a SPoUT MTase 

member, the solved crystal structure has now definitively confirmed its membership. The 

TSR crystal structure with AdoMet bound was determined at 2.45 Å resolution, and was 

achieved by incorporating selenomethionine and the structure solved by molecular 

replacement.  

TSR is a homodimer with 2 × 269 amino acid residues and a molecular mass of 2 × 

28901 Da, and was expressed in E. coli with a hexahistine tag that was cleaved with 

thrombin after the first stage of purification. The purified TSR was confirmed to be a dimer 

with gel filtration chromatography (Chapter 2). In the crystal structure, it is revealed that 

extensive interaction between two α-helices (α6 and α11) on the inner face of the protein 

and the loop formed by residues 238 to 245 of the protein knot form the dimer. Dimerization 

buries approximately 30% of the total surface (~3500 Å) and involves many hydrophobic 

and ionic interactions between the two protomers. Leu247 and Val251 engages in reciprocal 

hydrophobic interactions with Thr136′ and Leu140′ of the other subunit, while His258 

interacts with G259′ reciprocally forms salt bridges. Both His258 and His258′ are close to 
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the dimeric interface and flank Glu259 and Glu259′. This ionic interaction is further 

enhanced by salt bridges formed by Lys204 and Lys204′. 

Similar to the proposed homology model for the monomer, TSR has two distinct 

structural domains:  the N-terminal domain (NTD) formed by amino acids 1 to 102 and the 

C-terminal domain (CTD) is formed by residues 108 to 269. The two domains both consist of 

a central β-sheet that is surrounded by α-helices, and are connected by a flexible linker 

(residues 101-118) that starts at the fourth β-strand (β4) and ends with a short α-helix (α5), 

giving the enzyme monomer and elongated dumbbell shape.  

The C-terminal Catalytic Domain 

The carboxy domain is the catalytic SpoUT domain with the deep trefoil knot. The 

seven stranded β-sheet is flanked between three α-helices on the outer surface and four α-

helices in the inner dimer surface, forming the open α/β/α sandwich common in Class IV 

MTases (Figure 4.18). 
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Figure 4.18: Topology and X-ray crystal structure of TSR-AdoMet complex. 

(A) Protein secondary structure topology diagram. Cylinders are α-helices and arrows are β-strands. One 
monomer is coloured blue and the other is coloured red. The red box highlights residues that constitute the 
protein knot. Figure courtesy or Drs. Mark Dunstan and Graeme Conn (B) Stereoview of TSR dimer with 

bound AdoMet (green). 
 

The X-ray crystal structure of TSR was acquired with two AdoMet molecules bound 

to the dimer at the carboxy domain at the deep trefoil knot that is characteristic of the Class 

IV MTases. The knot is formed by threading residues 237-269 through amino acids 195-203, 

which contains Motif 3 of SpoUT MTases [28,29] (Figure 4.19).  

A 

B 
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Figure 4. 19: TSR has a deep trefoil knot. 
The enzyme is shown in mesh with the knot highlighted, while the Adomet bound is shown as stick. 

 
This motif (IPM-X4-SLN) on the knot plays a pivotal role in the binding of AdoMet, 

forming a deep hydrophobic pocket in which the adenosine moiety of AdoMet can be 

positioned. AdoMet forms contacts with residues coming from both protomers, with the 

majority of interactions coming from one of the monomers suggesting that only one of the 

two monomers is catalytic. The N1 and N6 of the adenosine moiety ring hydrogen bonds 

with the main chain amino and carbonyl, respectively, of Ile238 (Figure 4.19) while Leu195 

and Gly218 participates in hydrogen bonding interactions with the 2′-OH and 3′-OH of the 

ribose sugar, respectively. 

 

 
Figure 4.20: The AdoMet binding pocket and extended conformation of AdoMet  

(A) Binding pocket with key TSR amino acid residues are indicated. Figure courtesy of Drs. Mark Dunstan and 
Graeme Conn. (B) AdoMet is bound in an extended conformation. See text for more description.  

A B 
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The TSR crystal structure also reveals an interesting aspect of the TSR-AdoMet 

complex. While most SpoUT MTases bind AdoMet in a tightly folded conformation [10,35], 

the AdoMet bound to TSR was in an extended conformation that is typically observed in 

Class I and Class II MTases [10] with dihedral angles of 151° and 152° for O4′-C4′-C5′-Sδ 

and C4′-C5′-Sδ-Cγ, respectively. This conformation is stabilized with electrostatic 

interactions between the methionine group of AdoMet that is positioned against Glu220 and 

Ser246 with Val249 situated below, and the highly conserved Arg135′ and non-conserved 

Arg165′ of the adjacent monomer (Figure 4.20). Residues of the equivalent position to 

Arg165′ in other SpoUT MTases are observed to be non-basic, suggesting that the presence 

of this basic residue may play a role in the unique AdoMet binding conformation of TSR 

(Figure 4.20). 

 

The N-terminal Recognition Domain 

Class IV MTases can be subdivided into the SpoU and TrmD families. The SpoU 

family can be further subdivided based on the presence of domains in addition to the catalytic 

domain: 1) single domain (i.e. not additional domain, just the catalytic domain is present), or 

additional N-terminal domains that resemble ribosomal proteins 2) L30 and 3) L5 [143] 

(Figure 4.21).  
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Figure 4.21: Classification of AdoMet-dependent MTases.  

TSR belongs to the SpoU family that contains a L30-like domain. Figure adapted from [143]. 
 

The NTD of TSR consists of a central four stranded β-sheet core that is flanked by 

two pairs α-helices on each side. The pairs of α-helices are positioned perpendicular relative 

to each other and in the β-sheet there is a topological switch with the fourth β-strand to give 

the arrangement of β3↑β2↑β4↓β1↑ (Figure 4.18). While the sequence of NTDs of SpoUT 

MTases are not conserved, a structure-based search using the DALI algorithm [203] revealed 

that the TSR NTD resembles yeast ribosomal proteins L30e and L7e, the eukaryotic release 

factor (eRF) 1, and two related SpoU MTases, AviRb [143] and RlmB [165] that also contain 

the “L30-like” NTDs. 

 Its structural relationship with ribosomal proteins suggests that the NTD of TSR 

guides the enzyme to the appropriate region of the RNA. This domain is tethered to the CTD 

with a flexible linker (residues 101-118). Based on the limited crystal packing contacts made 

by the NTD (Figure 4.22) and the poorly defined electron density map of the NTD for one of 

the monomers, there is reason to believe that there may be domain movement or rotation that 

play a significant role in rRNA target recognition and binding. The inherent flexibility of this 

domain is corroborated by the higher crystallographic B-factors observed for the NTDs 
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relative to the CTDs. It is very likely that one rRNA region binds in between the cleft formed 

by the two NTDs and domain re-orientation occurs to accommodate the target. 

 
Figure 4. 22: TSR crystal packing and N-terminal domain flexibility. 

(A) Crystal packing of TSR dimers with CTD shown in grey and the NTDs in red and blue. (B) TSR dimer 
coloured by main chain B-factors. The TSR NTDs are boxed with colours corresponding to those in (A). Figure 

courtesy of Drs. Mark Dunstan and Graeme Conn. 

4.3.2.2. Structural Insights: RNA-TSR Interactions 

 The crystal structure was solved in the absence of the RNA substrate. Therefore, an in 

silico approach to studying the RNA-protein interactions was pursued. Prior to modelling in 

the rRNA, the electrostatic potential of the dimer surface was examined. Similar to what was 

observed in the homology model (Figure 4.17), a large strip of positive residues were found 

between the cleft formed by the NTDs of the two monomers (Figure 4.23). On the reverse 

side, there is a large preponderance of negative charges across the centre, therefore 

precluding any binding of RNA. Thus, a rigid body docking was performed with the 58 

nucleotide (nt) L11 binding domain (L11BD) (Figure 4.24) that contains the A1067 

methylation target, and was oriented to face the positive electrostatic potential surface of the 

dimer. 

A B 
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Figure 4.23: The electrostatic surface potential of the TSR dimer.  

The TSR dimer structure is shown in four orthogonal views rotated around the z-axis with the electrostatic 
surface potential indicated in red (negative) and blue (positive). The asterisk (*) represents where RNA can be 

bound to the large positive area of the dimer. Figure courtesy of Drs. Mark Dunstan and Graeme Conn. 
 

 
Figure 4. 24: The secondary structure of the 58 nucleotide L11 rRNA binding domain (L11BD).  

The TSR target methylation site (A1067) is located on the apex of the hairpin in Helix A. The mutation from 
U1061 to A is shown to significantly decrease methylation activity. 

 
The backbone of the modelled RNA L11BD Helix A lies predominantly along the 

surface TSR. The A1067 methylation target loop is situated deep within the cleft formed by 

the dimeric CTDs (Figure 4.25). Only a single strand of RNA can be accommodated in this 

cleft. Its binding orientation delineates one monomer to be catalytic, that is the bound 

AdoMet co-factor bound to it will donate the methyl group, and the other to be non-catalytic. 

All residues in the later group is denoted with a prime symbol throughout this body of text. 
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Figure 4. 25: Modelled RNA-TSR Interactions.  

Orthogonal views of the 58 nucleotide L11 binding domain RNA docked to the TSR dimer. The enzyme is 
shown with an electrostatic surface potential where red is negative and blue is positive. Figure courtesy of Drs. 

Mark Dunstan and Graeme Conn. 
 

The NTDs of each TSR monomer are oriented such that they embrace the RNA 

strand and recognizes the two distinct structural features of the RNA: the target loop and the 

internal bulge in Helix A (Figure 4.24). The RNA target loop is located next to the non-

catalytic NTD of one TSR monomer, opposite to the modelled active site, while the catalytic 

TSR’s NTD contacts the internal bulge loop in the centre of Helix A. No other contacts with 

the other regions of the RNA substrate are predicted (i.e. Helix B and C), indicating that the 

recognition of the 58-nt domain is very likely to be based solely on the sequence and unique 

structure of Helix A. 

 A large cluster of basic residues is observed on the surface of TSR in both amino and 

carboxy domains. These residues include Arg17, Lys23, Arg26 and Lys89 from the NTD and 

residues Arg158, Arg159 and possibly Arg162 from the CTD. The non-catalytic TSR 

molecule is implicated to play a role in the recognition of the A1067 target loop, with Lys89′ 

and Arg92′ of the NTD and the Lys125′, Arg158′, Arg159′ and Lys221′ of the CTD. An 

exposed Phe88 is positioned near the open RNA minor groove. As TSR is a SpoU MTase 

with L30-like domain, examining the equivalent residue in the yeast L30e-mRNA, may offer 

insight to the potential interactions that TSR may engage in. In the X-ray and NMR 

structures of the yeast translation autoregulatory complex, stacking interactions were 
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observed between the equivalent Phe85 and the first unpaired nucleotide (G56) in the internal 

loop [204,205] (see appendices). Mutation of this amino acid residue caused a 20-fold 

reduction in binding. The Phe88 of TSR is not exposed on the surface of the protein and is 

hidden within a hydrophobic pocket. In order to engage in stacking interactions with the 

RNA substrate, it must rotate towards the RNA upon binding (Figure 4.26). Additional 

interactions were predicted between residues 152 to 157 of a loop of the catalytic TSR 

monomer and U1061. This base, along with A1070 of Helix A, is turned outwards such that 

they engage in stacking interactions. Mutation of either base dramatically reduces enzyme 

activity, suggesting that TSR recognizes this tertiary structure element of the RNA [113]. 

 
Figure 4.26: The modelled rRNA structure docked against the TSR dimer.  

(A) Overview structure of RNA binding (B) Internal loops of Helix A of L11BD and target site A1067. Figure 
courtesy of Drs. Mark Dunstan and Graeme Conn. 

 
 
 The CTD of the catalytic TSR monomer is shown to interact with the loop containing 

the A1067 target site; specifically, residues Gly128, Arg162 and Arg158 are implicated in 

interacting with the RNA backbone and possibly recognizing base edges of U1066, G1068 

and A1069. The methylation target, A1067, situated at the top of the L11BD Helix A (Figure 

4.24), has its base and ribose moiety moiety exposed on the surface for possible interactions. 

Docking of the RNA reveals that the 2′-OH of A1067 is ~10 Å away from the sulphur atom 

A B 
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of AdoMet, which places the methyl group at too great of a distance for any possible methyl 

group transfer.  

Thus, in order to position the 2′-OH of A1067 at an optimal distance for methylation, 

a base-flipping mechanism is proposed. Base flipping mechanisms are often used by DNA 

MTases [206,207]. A base flip occurance would place the 2′-OH group at a distance of 5 Å 

from the sulphur atom which is a closer distance for methyl group transfer. In addition, if the 

sugar ring pucker undergoes an inversion to C2′-endo, the 2′-OH group would be brought 

into even closer proximity to the sulphur atom of AdoMet. Sugar pucker changes have been 

observed within the 58-mer L11BD substrate itself [100,105]. 

Furthermore, upon flipping, A1067 will be in close proximity to many of the amino 

acid residues that have been implicated in having an important role in RNA and AdoMet 

binding in other SpoUT MTases. For example, the conserved residue Asn129 is within 

hydrogen bonding distance of the A1067 base edge, suggesting that perhaps this residue has 

a role in base recognition or positioning the target for methylation (Figure 4.27).   

 
Figure 4.27: Propose base flipping mechanim of A1067.  

Upon flipping, the 2′ OH is closer to the sulphur atom of AdoMet, permitting the transfer of its methyl group. 
Figure courtesy of Drs. Mark Dunstan and Graeme Conn. 
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4.3.3. Comparison of Homology Model with X-ray Model 

During the earlier stages of the project, the absence of an experimentally determined 

protein structure, a homology model was developed and is described above. It is generally 

accepted that the accuracy of a homology model is proportional to the degree of the sequence 

identity between the target and the template [172]. With the X-ray crystal structure now 

obtained by our collaborators, it become possible to assess the quality of the comparative 

model.  

A preliminary assessment of the crystallographic model and the homology models 

demonstrated very similar tertiary structure. The same secondary structure elements and fold 

were conserved between the structures as was the strip of positive residues is found between 

the two monomers that implicated for RNA binding. To assess model accuracy, the RMSD 

values between the superimposed comparative model and the X-ray crystal structure based 

on the Cα carbons, the backbone, heavy atoms and all atoms were calculated (Table 4.6). 

 
Table 4. 6: Global and Local RMSD between comparative models and the crystal structure based on their Cα 

atoms, backbone and all atoms. 
 

Comparison Homology Model RMSD (Å) 
  Cαααα atoms Backbone 

atoms 
All atoms 

Global TSRMonomer2 7.75 7.69 8.23 
 PrimeTSR 7.89 7.84 8.51 
 TSRdimer 10 9.94 10.5 
Local  CTD TSRMonomer2 1.20 1.20 2.19 
 PrimeTSR 1.06 1.06 2.07 
 TSRdimer 1.18 1.22 2.17 
Local NTD TSRMonomer2 6.15 6.02 6.84 
 PrimeTSR 5.04 4.94 5.71 
 TSRdimer 6.65 6.64 7.40 

*The local comparison of the comparative model to the crystal structure based on the C-terminal domain or the N-terminal domain. 

 
Upon comparison of the crystallographic model to both the SwissModel and Prime 

homology models, it was observed that all RMSD values were similar, with values between 
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7.5Å to 10 Å. The large values indicate that the models are of lower resolution. Given that 

the sequence identity with the templates was between 24-31%, this was to be expected. 

RMSD values for the dimeric form were much higher and can be a result from using only a 

single template, unlike the for the monomer model. Visual inspection of the superimposed 

structure reveals that the high RMSD values stem largely from the differences of the N-

terminal domain between the models and the crystal structure (Figure 4.28).  

 

 
Figure 4. 28: Superimposition of the X-ray crytal structure of TSR (blue) and homology models (purple). 

(A) TSRMonomer2 (B) PrimeTSR (C) TSRdimer Chain A (D) TSRdimer Chain B. Structural features 
superimposed very well for the CTD, while the NTD was found to vary greatly from the crystal structure. 

 
While the significant deviation of the NTDs give an overall poor model quality and 

high RMSD values ranging between 5 to 7 Å, the agreement of secondary structural elements 

localized on the C-terminal domain was found to be extremely good (Figure 4.28); RMSD 

values were between 1 to 2 Å (Table 4.6, Figure 4.29). This is to be expected as the CTD is 

the domain that contains all the conserved structural features of the SpoUT MTases, while 

the evolutionary divergence is observed for the N-terminal recognition domain, permitting a 

range of different substrates. Therefore, choosing alternative SpoUT MTases as templates or 

using changing the sequence alignment will more than likely not give a significant 

A B C D 
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improvement in the quality of the amino domain. The reliability of the homology model is 

only good for the C-terminal region. 

 

 
Figure 4. 29: Superimposition of the CTD between PrimeTSR (purple) and crystal structure (blue).  

Residues shown are conserved binding/active site of the enzyme. 
 

After the development of the homology model, a series of conserved amino acid 

residues important for catalysis were selected as a guide for mutagenesis experiments (Figure 

4.16). The homology model did not have AdoMet docked into its active sight, making it 

difficult to speculate on the roles of various residues. However, based on other published 

studies, the potential roles of residues were assigned and summarized below in Table 4.7.  

Table 4. 7: Proposed roles and mutations for conversed residues in TSR homology models.  
Motif Residues Proposed role Mutants 
Motif I Asn129 Cofactor binding N129A, N129D 

 Arg′135 Nucleophilic base or positioning of 2′ OH of A1067 R135A*, R135K* 
 Gly141 No defined role assigned N/A 

Motif II Glu220 Catalytic base or maintaining knot integrity E220A, E220Q 
 Gly218, Gly223 No defined role assigned N/A 

Motif III Ile238-Pro239-Met240 Forms hydrophobic pocket for adenine of A1067 ∆I238-M240 
 Ser246 Adenine stabilization or positioning of methyl group S246A* 
 Asn248 Adenine stabilization or positioning of methyl group N248A*, N248D* 

*mutants that have been made thus far, currently biochemcally characterized and shown to have no activity 

 
These residues were discussed earlier in Section 4.3.1.4. Prior to obtaining the 

crystallographic model, mutagenesis was carried out. The following mutants have been made 
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successfully: S246A, R135A, R135K, N248A, N238D. The mutations have been confirmed 

by DNA sequencing and by mass spectrometry (Table 4.9). Preliminary CD and DSC on 

some of the mutants have shown that the single base change did not produce any determinal 

effects to the protein structure (appendices). Biochemical characterization of these mutants is 

ongoing in our laboratory. 

Table 4. 8: List of mutants made so far and molecular weight confirmation by mass spectrometry. 

Mutant MW * Expected (Da) MW* Obtained by MS 
(Da) 

S246A 29166 29166 
R135A 29095 29097 
R135K 29152 29154 
N248A 29137 29139 
N248D 29182 29183 

*MW = molecular weight; for mass spectra, please refer to appendices 

 
The high resolution TSR structure and the RNA docking experiment gave light to 

what additional residues may be involved in AdoMet binding and catalysis. Table 4.9 

summarizes these roles and details can be found discussed earlier in Section 4.3.2. This 

crystal-structure based identification of important residues in TSR must be confirmed by 

biochemical means with quantitative measures in the form of methylation assays. 

Table 4. 9: Additional important residues of TSR identified by the crystal structure. 

Residues Proposed Role Mutants 
Gly128, Arg158, Arg 162 Interacts with backbone of RNA (U1066, U1068 and 

A1069) 
∆G128, ∆R158, ∆R162 

Ala163′ Hydrogen bonding with A1067 ∆Ala163 
Phe88 Stacking interactions with A1067 F88A 
Leu185, Gly218 Hydrogen bonding with 2′OH and 3′OH of A1067 ∆L185, ∆Gly218 
Ile238-Pro239-Met240 Forms hydrophobic pocket for adenine of A1067 ∆Ile238-Met240 

 

4.4. Conclusions and Future Work 

Comparative analysis of the TSR sequence suggested that it can be classified as a 

SpoUT MTase. Using the computational techniques of protein homology modelling, a 3D 

structure of TSR for both the monomeric and dimeric forms was produced. The TSR model 
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was generated using two different homology modeling software programs and either 

employed multiple (monomer structure) or single crystal (dimer) structures of other SpoUT 

MTases as a template; validation of the homology models was performed using various 

programs and mutagenesis efforts were begun. 

Towards the end of this project, the crystal structure of TSR with AdoMet bound was 

solved by our collaborators. This solved structure has definitively confirmed that TSR is an 

SpoUT MTase with a deep trefoil knot. RNA docking studies by our colleagues helped us 

gain insight into the protein-RNA interactions that may take place during binding of the 

rRNA substrate. A base-flipping mechanism, common to DNA MTases, was proposed for 

the methyl group transfer to A1067. 

A comparison of the homology models with that of the crystal structure showed 

suboptimal modelling for the overall structure. The homology models and the crystal 

structure were superimposed and RMSD values were calculated for the Cα atoms, backbone, 

heavy atoms and all atoms and all were found to be high. These high values can be attributed 

to the deviation of the N-terminal domains, which is quite apparent during visual inspection. 

The C-terminal domain was agreed nicely and gave very low RMSD values, indicating that 

the C-terminal domain of SpoUT MTases are highly conserved and the more variable N-

terminal is for recognition of different substrates. 

Biochemical confirmation is needed to substantiate the roles that have been 

implicated for certain residues. Some mutagenesis work was begun and methylation assays 

have been initiated for the mutants that have been made. Thus far, no activity has been 

detected for the mutants using the same range of substrate concentrations that was used for 

the wildtype enzyme. These mutations have eliminated all methylation activity. Further 



 167 

biochemical experiments such as equilibrium dialysis and isothermal titration calorimetry are 

ongoing. 
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CHAPTER 5: STRUCTURE-ACTIVITY STUDIES OF 

THIOSTREPTON

 
 

 Thiostrepton (TS) (5-1) (C72H85N19O18S5, mw = 1665 Da) is a paradigm for the class 

of multicyclic thiazole-containing antibiotics. This family of antibiotics has been reported to 

exhibit potent antimicrobial activity against Gram-positive bacteria through a common 

mechanism: inhibition of bacterial protein synthesis [87]. The most thoroughly studied 

member, TS, interacts with a region of the 23S rRNA and ribosomal protein L11 of the large 

50S ribosomal unit termed the guanosine triphosphatase (GTPase) centre [94-97]. Tight 

binding of this drug within this vicinity imposes conformational constraints on protein L11, 

resulting in an abolishment of GTP hydrolysis reactions involved in the protein elongation 

cycle [106]. TS also exhibits activity against Plasmodium falciparum, the major causative 

agent of malaria; it preferentially binds to the malarial plastid GTPase domain at nucleotides 

surrounding A1067 (E. coli numbering) [93] 
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 Much interest has been focused on the biochemistry and chemistry of TS, culminating 

in the recent and impressive total synthesis of the antibiotic, allowing for the preparation of 

analogues to probe structure-activity relationships [208,209]. Multidrug resistance is a 

critical problem and the development of either new targets or increasing the efficiency of 

known antibiotics is essential. 

5.1. Approaches to the Study of Thiostrepton 

5.1.1. Computational Chemistry 

 The crystal structure of TS was first reported in 1970, although the structural 

coordinates were never released [210]. However, the recent release into the public domain of 

an X-ray structure based on sulphur anomalous dispersion techniques has provided the 

coordinates for the heavy atoms in TS [211]. This information has since been utilized in 

docking experiments against the TS-RNA-L11 target complex [157]. The crystal structures 

of other cyclic thiazole peptides such as nosiheptide [212,213] and GE2270A [214] have also 

been determined. Recently, a high resolution NMR structure of the TS-RNA-L11 complex 

was published [106], and at the time this thesis was being written, the X-ray crystallographic 

structures of TS, nosiheptide and  micrococcin bound to the large ribosomal unit of 

Deinococcus radiodurans were solved at a resolution between 3.3 – 3.7 Å [107] (Figure 5.1). 
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Figure 5. 1: Ternary complex of thiostrepton bound in the binding pocket between ribosomal protein L11 (red) 

and 23s rRNA (white).  
(A) Docking model PDB: 1OLN [157] (B) NMR structure PDB: 2JQ7 [106] (C) X-ray crystal PDB: 3CF5 

[107]. 
 

Nevertheless, it is well known that crystal packing forces can play important roles in 

the overall structures determined by X-ray diffraction methods. In addition, the ability of a 

molecule to sample different conformations makes it imperative to study the structure of an 

antibiotic by a variety of techniques [215]. Computational chemistry is a technique that can 

lead to insight into the conformation profile of a molecule. There are a number of general 

approaches to molecular modelling.  Three types will be briefly introduced in this chapter: 

molecular mechanics [216], ab initio calculations [154] and semi-empirical methods [217].  

 

5.1.1.1. Molecular Mechanics 
 
Molecular mechanics calculations are based on classical mechanics [216,218]. The 

behaviour of the molecule can be derived through application of traditional mechanics where 

each atom in a molecular structure is considered to be a sphere of specific mass connected to 

other atoms by springs (representing chemical bonds). The potential energy (steric energy) of 

a molecule is the sum of all energy terms, including bond stretching, bond angle bending, 

dihedral angle rotation, and non-bonding interactions such as hydrogen bonding, electrostatic 

A B C 
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and van der Waals interactions and is the basis of a force field [218,219]. A force field can be 

defined as a collection of these energy terms and parameters utilized to calculate the overall 

energetics of a particular molecule. Force fields are developed for different molecules 

ranging from small organic molecules to large biomolecules such as proteins, and are derived 

from ab initio calculations and experimental data [220]. One of the great strengths of using 

molecular mechanics techniques is that it is one of the fastest computational methods, and 

thus can be applied to quite large molecular systems. Unfortunately, its greatest limitation 

comes from its accuracy as it is based on selecting a force field with parameters appropriate 

for the system of interest. In addition, since molecular mechanics calculations do not involve 

electronic properties, one cannot obtain information on the chemical reactivity of the 

molecule [216]. 

5.1.1.2. Ab initio Calculations 
  

Ab initio computations on the other hand are based on quantum chemistry first 

principles and use minimal experimental parameters and approximations [218]. All 

calculations are done purely mathematically based on Schrödinger’s equation to calculate the 

behaviour and probable positions of electrons in a system (the wavefunction) [218,221]. This 

approach, by far is the most consistent and accurate for a varied range of molecular systems; 

starting with only the molecular structure and a small number of constants, chemical 

properties and reactivity of the molecule can be calculated. However, this method is 

computationally “expensive”, that is, it places a considerable amount of demand on computer 

resources and time. Therefore, many ab initio calculations have been confined to smaller, 

simpler molecules of no more than 50 - 100 atoms (depending on computing power 

available) [218,220]. 
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5.1.1.3. Semi-empirical Methods 
  

Semi-empirical methods are often considered as the middle ground between ab initio 

and molecular mechanics calculations; it is based on quantum chemistry similar to that of ab 

initio methods, but, like molecular mechanics, is not restricted by molecular size [222]. 

Semi-empirical methods address the issue of size and time limitations encountered by ab 

initio methods by introducing approximations and simplifying the mathematics based on 

experimental parameters [217,222]. Although not as accurate as ab initio calculations, semi-

empirical computations permit users to study the behaviour of larger molecules relatively 

quickly [222]. 

 Not only are semi-empirical methods considered as an intermediate between ab initio 

and molecular mechanics in terms of speed, but they are also useful for range of applications 

[222,223]. Ab initio methods can be widely used to calculate a large range of properties of a 

molecule, and require little, if any, additional experimental data; however, they can only be 

used for smaller molecules [218]. On the other hand, where molecular mechanics makes up 

for the size and speed problem, it is restricted in its generality. These methods are confined 

by these parameters of the force fields chosen for a particular system [216]. If a parameter 

and/or a suitable force field is not well suited for a system, meaningful calculations cannot be 

performed. Semi-empirical calculations are very versatile in that they have a large range of 

applicability for large molecules (Figure 5.2) [222]. 
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Figure 5. 2: Semi-empirical calculations are a middle ground between ab initio and molecular mechanics. 
Ab initio methods are most general, having the largest range of applicability, however, are restricted to small 
molecular size. Molecular mechanics are more specific, but can be used to calculate properties of larger sized 
molecules. The region in black shows calculation ranges covered by semi-empirical methods. Figure adapted 

from [222]. 

5.1.2. Modification of Thiostrepton 
  

Thiostrepton was first isolated in 1955 and was found to exhibit extremely high 

antibacterial activity against Gram-positive organisms. It was also found to be effective 

against microorganisms resistant to penicillin and erythromycin [88]. It showed great 

promise; however, its low water solubility and poor bioavailability has restricted its use to 

topical application in veterinary practices (i.e. Panalog®) [224].  We embarked on 

developing TS analogues with improved aqueous solubility through chemical modification of 

the antibiotic, without compromising its biological activity. 

5.1.2.1. Development of Novel Antibiotics  
  

With the emergence of antibiotic resistance, the need for developing new 

antimicrobials is ever so pressing. In the past few decades, there has been very limited 

success in the development of novel classes of antimicrobials.  Current strategies involve 
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efforts towards improving existing antimicrobial agents [225]. A prime example is the 

introduction of the ketolides. Erythromycin is a macrolide antibiotic that was introduced into 

clinical practice in the early 1950s for use against the Gram-positive Staphylococcus aureus 

when penicillin resistance was first observed to be problematic [75]. Similar to TS, 

erythromycin acts by binding to the 23s rRNA of the large bacterial ribosomal unit and 

prevents the growing polypeptide chain from leaving the peptide exit tunnel (see Chapter 1, 

section 1.3.2 for more detail) [70,71]. 

 One of the major limitations of erythromycin is that it is labile to acidic conditions, 

making it unstable in the acidic gastrointestinal tract [226]. A number of semi-synthetic 

derivatives of erythromycin A derivatives that are acid stable were made (azithromycin, 

clarithromycin, dirithromycin and roxithromycin). These semi-synthetic derivatives were 

effective only for a short period of time before resistant strains began to appear [75]. As a 

result, the ketolide class of antibiotics was developed. Ketolide antibiotics have the same 

structural core as erythromycin A (5-2), however a keto group replaces the 3-L-cladinose 

moiety. Although the cladinose group has been implicated as the part of the pharmacophore 

of erythromycin, modifications throughout the structure readily compensate for the absence 

of the group [75]. For example, telithromycin (HMR 3647) (5-3) has an additional carbamate 

group between the C11 and C12 of the lactone ring. It was found that telithromycin has high 

in vitro activity against a wide spectrum of Gram-positives species; it was also shown that it 

was effective against strains of Streptococcus pneumoniae that were erythromycin-resistant 

[227]. 
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Figure 5. 3: The chemical structure of the antibiotic erythromycin (5-2) and its ketolide derivative, 
telithromycin (5-3).  

The ketolides replaces the sugar moiety at the 3 position of the lactone ring with a keto group. 

5.1.2.2. Modification of Nocathiacins: A Member of the Thiazole Peptide Antibiotics 
  

The nocathiacins are the latest members of the thiazoyl peptide family of antibiotics. 

They were isolated from the fermentation broths of Nocardia sp [228,229]. They are tricyclic 

molecules and are the only members of the thiopeptide antibiotics to contain an indole group 

within their framework. They display potent activity against Gram-positive bacteria. Like TS, 

the nocathiacins bind to the large ribosomal subunit at the 23S rRNA and protein L11 to stall 

protein translation [230].  

 Nocathiacin I (5-4) has a slightly better solubility profile at lower pHs than other 

thiopeptide antibiotics; however, its solubility still remains inadequate for intravenous 

administration [231]. A research group at Bristol-Myers Squibb successfully prepared semi-

synthetic nocathiacin I derivatives with improved aqueous solubility relative to the parent 

compound while retaining its biological activity [231-237]. One successful strategy 

employed in that study was the conjugation of the dehydroalanine side chain to water-

solubilizing or charged groups. 
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 Nocathiacins are soluble in methanol and initial efforts toward the optimization of the 

Michael addition of methylamine to the dehydroalanine tail were carried out at room 

temperature for one hour, and resulted in multiple side products. Although Michael additions 

are typically performed in organic solvents, recent attention has been directed to the use of 

water as the solvent of choice in organic synthesis [238]. It was reported that modifications 

performed in water gave the desired product in good yields with minimal side products. Even 

more surprising, it was observed by the authors that reaction at -20°C gave the highest yield 

and purity product in the shortest reaction time (Table 5.1). It was concluded that the low 

temperature (-20°C) played a role in limiting the number of side products formed [231,233]. 

Efficient conjugation was observed under the same conditions with various thiols. The 

biological activity of these nocathiacin analogues were tested and found to be similar to the 

parent antibiotic both in vivo and in vitro assays [236]. 
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Table 5. 1: Optimization of Michael Addition Reactions of Amines to Nocathiacin I.  
Adapted from [231]. 

Amine/equiv Solvent T 
(°°°°C) 

Time 
(h) 

% Yield % unreacted 
Nocathiacin I 

MeNH2/25 MeOH 22 3 Low* N/A 
MeNH2/10 MeOH 22 7 Low* N/A 
MeNH2/10 H2O 22 1 70 5 
Me2NH2/10 H2O 22 1 76 N/A 
Morpholine/10 H2O 22 24 50 14 
Morpholine/10 H2O 5 24 70 14 
Morpholine/10 H2O -20 5.5 90 3 
Morpholine/10 1:4 MeOH/H2O -20 120 70 27 

*multiple products were observed 

5.1.2.3. Semi-Synthesis of Thiostrepton Analogues 
  

The biological activity of TS and other thiopeptide antibiotics is attractive, since their 

mode of action is unique and different from other clinically available antibiotics. Therefore, 

an approach similar to the modification of the nocathiacins can be undertaken, where the 

drug can undergo chemical transformation such that improved solubility might be achieved. 

There are a number of sites on the TS molecule that can undergo chemical modification: 

three dehydroalanines and one dehydrobutyrine (Figure 5-4). In vivo and in vitro conjugation 

is observed between TS and thiolo groups on two proteins whose expression is induced by 

the presence of the antibiotic, TipAL and TipAS in Streptomyces sp. [239].   
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Figure 5. 4: Reactive groups on the antibiotic thiostrepton. 

(A) Thiostrepton has four sites of potential chemical modification by Michael addition. The three 
dehydroalanines (Deala1-3) and one dehydrobutyrine (But) are shown in black boxes. (B) Space filling model 

of TS with green atoms indicating the sites of unsaturation. 
 

Blocking experiments of the cysteine residues on TipAS with N-ethylmaleimide 

prevented the formation of covalent bond between the protein and antibiotic. Likewise, when 

the dehydroalanine and dehydrobutyrine residues of TS were blocked with cysteines, no 

adduct resulted. This indicates that the formation of this complex requires the cysteine 

residues of TipAS and the dehydroalanine/dehydrobutryine residues of TS. The protein-

antibiotic complex formation was analyzed using mass spectrometry and SDS-PAGE gel 

analysis and was found to have a 1:1 stoichiometric ratio in spite of the multiple sites 

available on TS for modification [240]. Nonetheless, it was reported by the same group that 

reaction with free cysteine and other thiols (β-mercaptoethanol and dithiothreitol) gave 

additions of three or four molecules to the thiostrepton. However, these thiol adducts had an 

antibiotic activity that was reduced 1000-fold [240]. 

 

A B 
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5.1.3 Plan of Action 
 
TS is an extraordinarily complex macrocyclic peptide antibiotic containing thiazoline 

and quinaldic acid moieties along with a didehydroalanine tail. The complexity of its 

molecular architecture underlines the need to characterize its electronic and conformational 

properties, which should provide the opportunity to extend our insight into its possible modes 

of binding to the ribosomal RNA. 

This chapter presents a detailed study on the structure of TS. The TS crystal structure 

was geometry optimized using molecular mechanics and semi-empirical methods. 

Information acquired from these computations were then utilized for detailed calculations 

including conformation searches and electron density calculations at the AM1 and ab initio 

levels to obtain partial charges of atoms that will be important in future modeling efforts. Our 

findings of this study, discussed later in this chapter, were published in Bioorganic Medicinal 

Chemistry Letters [241].  

Results of the preliminary studies on the modification of the antibiotic utilizing an 

approach similar to the semi-synthesis of nocathiacin analogues will also be presented and 

discussed. The previous study by Chiu et al. [240] was taken into consideration, and we 

limited ourselves to in performing single site modifications of the antibiotic to avoid any 

reduction of antibacterial activity. Single modifications also permit us to investigate which 

sites of unsaturation play a biologically significant role. In addition, modification with 

compounds bearing a polar functionality may increase the water solubility of TS. 
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 The antibiotic was modified successfully, purified and tested against various Gram-

positive bacterial species and provides a good scaffold for future modification processes to 

increase the solubility of the drug. 

 

5.2. Materials and Methods 

5.2.1. Reagents and Materials 

The following reagents and materials were obtained from the following companies: 

 
Caledon Laboratories (Georgetown, ON): dimethylformamide (DMF), HPLC grade 

acetonitrile (ACN) 

 
EMD Pharmaceuticals (Durham, NC): chloroform, triethylamine (TEA)  

 
Sigma Chemical Company (St. Louis, MO): 2-mercaptoethanesulfonic acid (2-MESNA), 

Thiostrepton from Streptomyces azureus (>90%) 

5.2.2. General Equipment 

5.2.2.1. Computational Hardware and Software 
 

All calculations were performed on a Silicon Graphics Inc. (SGI, Mountain View, 

CA) O2 workstation (named “Violin”) or Flexor, the University of Waterloo’s multi-CPU 

SGI Origin 3800 system. Violin hardware specifications: IRIX 3.5X operating system, MIPS 

R10000 processor chip, MIPS R10010 floating point chip, 195 MHz IP32 processor, 750 MB 

RAM. Flexor hardware specifications: 64-bit IRIX 6.5.27f operating system and is a system 

comprised of forty 400 MHz MIPS R12000 CPUs and twelve 500 MHz MIPS R14000 CPUs 

with 52 GB of RAM. 
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Structures were visualized using Maestro 5.1 (Schrödinger Inc, Portland, OR) or 

WebLab Viewer Pro 3.7 (MSI). Force field assessment, conformational searching and 

stochastic dynamics studies were carried out using MacroModel 8.0 (Schrödinger Inc, 

Portland, OR) [242]. Geometry optimizations and detailed electronic calculations were 

performed using Gaussian ’03, Revision B.05 (Gaussian Inc., Wallingford, CT) [243]. 

5.2.2.2. Chromatographic Equipment 
  

Modified TS derivatives were purified by using a Waters (Mildford, MA, USA) 

µBondapak C18 reverse phase radial compression column (25 × 100 mm). All HPLC 

purifications were carried out on a Waters HPLC system (Mildford, MA, USA) consisting of 

the following components: Waters 600 controller, Waters 600 Gradient Pump,  Waters 996 

Photodiode Array Dectector with Waters Empower software, Build 1152. All aqueous 

solvents were filtered through a 0.2 µm membrane filter (Pall Life Sciences, East Hills, NY) 

and all organic solvents were filtered through a 0.45 µm membrane filter (Millipore Corp., 

Billerica, MA). All solvents were degassed prior to use. 

  

5.2.2.3. Mass Spectrometer 
 
The nano-electrospray mass spectrometer that was used was a Micromass Q-TOF 

UltimaTM Global and supplied by the Waterloo Chemical Analysis Facility, University of 

Waterloo. 

5.2.2.4. Nuclear Magnetic Resonance (NMR) Spectrometer 
 
1H Nuclear magnetic resonance spectra were obtained using a Bruker 500 MHz NMR 

spectrometer using deuterated solvents manufactured by Cambridge Isotopes Laboratories 
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(Andover, MA). All samples were prepared by dissolving the compound in CDCl3 or CDCl3: 

CD3OD (4:1). The number of scans ranged from 48 to 1056 with a sweep width of -0.5 ppm 

to 11 ppm. 

 

5.2.2.5. Incubators  
 
Growth of liquid bacterial cultures employed either a Series 25 controlled 

environment incubator shaker (New Brunswick Scientific Co., Inc., Edison, NJ) or InnovaTM 

4330 refrigerated incubator shaker (New Brunswick Scientific) both shaking ~ 200 rpm. For 

standing or plated bacterial cultures, growth was done in a Precision gravity convection 

incubator from Precision Scientific, Inc (Chicago, IL). 

 

5.2.2.6. Spectrophotometry 
  

Optical density (λ = 600 nm) measurements on bacterial cultures were performed on 

one of the following instruments: Varian Cary 3 UV-Visible Spectrophotometer 

(Mississauga, ON) spectrophotometer with the CaryWinUV Advanced Reads Application 

Software 3.00 (182); Ultrospec 2100 pro UV/Visible spectrophotometer (Amersham 

Biosciences, Uppsala, Swedan); Molecular Devices Spectramax Plus 384 (Union City, CA, 

USA), SoftmaxPro      v. 501 Software. 

5.2.3. Computational Methods 

5.2.3.1. Experimental TS Structure 
 
The recently reported crystal structure of TS (PDB: 1E9W) [211] was imported into 

WebLab ViewerPro 3.7 (MSI) where bond types and hydrogen atoms were added to produce 

the complete structure used for analysis. One of the proton additions was a secondary amine 
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(N15) linked to the quinaldic acid moiety of TS. Secondary amines are known to pyramidalize 

and the heavy atom data for the crystal structure does not indicate the orientation of the 

proton. A number of steric interactions were visually observed when the proton was pointed 

inwards to the centre of the TS antibiotic, hence the proton was added such that it pointed 

outwards with a dihedral angle (H175-C164-N15-H33) of 65.1°. As well, the water of hydration 

bound to TS was removed. This TS structure, with all required hydrogens, was utilized as the 

starting structure for the series geometry optimizations outlined below. 

It is interesting to note that the structure of TS (PDB: 1E9W) was not the first 

reported crystal structure. It was first reported in 1970 by Anderson and co-workers in 

Nature, however the coordinates were never reported nor deposited in the Cambridge 

Structural Database [210]. 

5.2.3.2. Geometry Optimizations of Thiostrepton 
 
Molecular Mechanics Geometry Optimization  
  

An assessment of various available force fields in MacroModel 8.0 (Schrödinger Inc, 

Portland, OR) [242] was undertaken to determine if an appropriate force field might be found 

without the need for the development of new force field parameters. The following force 

fields were surveyed: AMBER, AMBER94, MM2*, MM3*, MMFF, MMFFS, OPLS and 

OPLS-AA using the TS crystal structure. Minimizations of TS in these force fields gave the 

number and quality of high, medium and the low bond stretch/bend/torsional parameters, 

which were then evaluated. The OPLS-AA force field was determined to be the best of the 

available force fields. Final geometry optimizations of TS were performed in vacuo and in 

water using the Generalized Born/Surface Area (GB/SA) implicit solvation model [244] as 

implemented by MacroModel [242].  
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Semi-empirical Geometry Optimization 
 
Geometry optimization calculations of TS were carried out with semi-empirical 

methods at the AM1 level [245] of theory using Gaussian ’03 (Gaussian Inc., Wallingford, 

CT) [243]. Structures obtained were compared with the starting experimental TS crystal and 

OPLS-AA derived structures and visualized in Maestro (Schrödinger Inc, Portland, OR). 

5.2.3.3. Molecular Orbital and Ab Initio Charge Calculations 
  

Molecular orbital calculations to determine the highest occupied molecular orbital 

(HOMO) and the lowest unoccupied molecular orbital (LUMO) were implemented at the 

semi-empirical AM1 level (Gaussian ’03), using the AM1 minimized structure obtained 

previously (see above). Ab initio Mulliken [246,247] and ChelpG [248] charge calculations 

using the AM1 minimized structure were performed on the B3LYP [249,250] functional 

using the 631-G(d) basis set. These calculations were performed in vacuo with Gaussian ’03. 

5.2.3.4. Investigation into Conformational Flexibility of Thiostrepton 
 
Low Mode (LMOD) Conformational Searching 
  

The OPLS-AA minimized structures (in vacuo and implicit water) were used as the 

starting structures for Low Mode (LMOD) [251] conformational searches as implemented by 

MacroModel 8.0 [242]. The chirality of the 17 chiral centres present in the TS structure were 

held fixed during the conformation search, with the exception of the secondary amine (N15).  

At each step, the new starting structure was selected from the previous set of low energy 

structures saved. Maximum iterations was set to 20 000 with 1000 steps. All other parameters 

were used at their default settings. Heavy atoms were used for comparison of similarity. All 

steps were repeated until conformations reached convergence. 
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Stochastic Dynamics Studies 

 
OPLS-AA derived structures were utilized as starting structures in stochastic 

dynamics studies in their respective phases (in vacuo and implicit GB/SA water solvation). 

One nanosecond dynamics experiments (MacroModel 8.0 [242]) were carried out at constant 

temperature of 300 K, with an equilibration time of 1.0 ps and 1.5 fs time steps. The 

following segments of the antibiotic were monitored during the 1 ns timespan: the dihedral 

angle of the internal lactone (C142-O144-C153-C154), the dihedral angle of secondary amine 

(H175-C164-N15-H33) and the atomic distance between the two loops (C2-N155). 

5.2.4. Modification of Thiostrepton with 2-Mercaptoethanesulfonic Acid 
Methods 

5.2.4.1. General Procedure for the Michael Addition of 2-Mercaptoethanesulfonic acid 
(2-MESNA) to Thiostrepton 
 
Initial Screening of Reaction Conditions 
  

The addition reaction of the thiol, 2-MESNA, was performed in different organic 

solvents and in water. Reactions were carried out as a simple one pot semi-synthesis: to a 

stirring solution of TS and triethylamine (TEA; varied equivalents), one equivalent of thiol 

was added, and the reaction was allowed to proceed at either room temperature (23 °C) or  

low temperature (-20 °C). Reactions conducted at room temperature were placed in -20 °C 

for an additional night. The progress of reactions was monitored with thin layer 

chromatography (TLC) with CHCl3: MeOH (4:1) and visualized with UV light as well as 

phosphomolybdic acid:0.4% in ethanol stain. Rf values: 2MESNA: 0.2; TS: 0.9 and 0.75; 

mTS-2MESNA: 0.2. 
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Optimized Reaction Procedure for Michael Addition of 2-MESNA to TS 
 
To a stirred solution of TS (30 mg) in DMF (755 µL) was added 10 equivalents of 

TEA at room temperature under argon. One equivalent of 2-MESNA (150 mM stock 

solution, deoxygenated) was then added to the pale orange-yellow solution to a final volume 

of 1 mL and stirred overnight at 4 °C. Thin layer chromatography was used to monitor the 

progress of the reaction. The solvent and excess TEA were removed by rotary evaporation 

and subsequently dried under high vaccum over night to remove any residual solvent to give 

an orange-yellow solid. Yield: 95%-100% 

5.2.4.2. Purification of Modified Thiostrepton (mTS-2MESNA) 
  
Method 1: Silca Gel Flash Chromatography Column  
  

The orange-yellow product was dissolved in a minimum amount of solvent 

(chloroform with a few drops of methanol) and dried on silica gel (mesh size: 40-63 µm).  

The sample was applied onto a silica flash column. Then 5-8% methanol in chloroform was 

used to elute TS starting material and impurities. The compound of interest was eluted with 

15% methanol in chloroform. All fractions were monitored by TLC and fractions containing 

the TS derivative were then combined and dried in vacuo. Yield: 73%. 

 
Method 2: C18 Reverse Phase Sep-Pak 

The crude product was dissolved in 20%/80% acetonitrile (ACN)/methanol and 

loaded onto a Waters C18 Sep Pak cartridge, which had been pre-conditioned with methanol 

and water. The column was washed with water followed by elution of mTS-2MESNA with 

30%/70% ACN/H2O, while the parent compound was obtained with 40%/60% ACN/H2O. 
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All fractions were analyzed by TLC and fractions containing the TS derivative were then 

combined and dried in vacuo. Yield: 51%. 

 
Method 3: Reversed-Phase HPLC 

The orange-yellow powder of modified TS (25-30 mg) and 2-MESNA conjugate 

(mTS-2MESNA) was dissolved in milli-Q water (MQW). The mTS-2MESNA was sparingly 

soluble in water and extensive sonication and vortexing was required to prepare the sample 

prior to injection. The sample was filtered through a 0.2 µm polyethersulfone filter (VWR 

International, Mississauga, ON) to remove any particulate matter and undissolved compound. 

The column was equilibrated with 100% MilliQ Water (MQW), and the sample loaded at 5 

mL/min. The column was washed extensively with MQW until an absorbance reached 

baseline at 220 nm (~10min).  

 Different elution gradients were performed to optimize for maximal separation, and 

were as follows: 

• A gradient of 100% MQW to 100% ACN over 50 min (2%/min) 

• A gradient of 100% MQW to 100% ACN over 100 min (1%/min) 

• A gradient of 90%:10% MQW/ACN to 50%/50% MQW/ACN over 100 min 

(0.4%/min) 

 

The large peak obtained from the last gradient was isolated and characterized by NMR 

and mass spectrometry and found contain a monoaddition product of 2-MESNA to TS. 

Yield: 13%. 1H NMR spectra showed elimination of dehydroalanine peaks at 6.82 ppm, 6.72 

ppm, 5.59 ppm, 5.49 ppm, indicating two modifications occurring at the tail portion of the 

parent antibiotic. Positive electrospray mass spectrometry confirmed a single successful 
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conjugation was made. Molecular weight determined: 1806 Da; expected molecular weight: 

1807 Da. Thus, a mixture of products was isolated. 

5.2.4.3. In vitro Susceptibility Test 
 
Two different Gram-positive species were tested for antibiotic susceptibility to mTS-

2MESNA. Bacillus subtilis ATCC E308 (strain 168) was a generous gift from Dr. Guy 

Guillemette (University of Waterloo) and the Staphylococcus aureus ATC 6538P was a kind 

contribution by Karen Pike (University of Waterloo). All microbiological manipulations 

were performed on Luria-bertani broth (LB ; per liter:  10 g tryptone, 5 g yeast extract, 10 g 

NaCl, pH 7.0) and LB agar (LB broth plus 1.5% agar) for B. subtillis and trypticase soy 

(TSB; per liter: 30 g trypticase, 3 g yeast extract, pH 7.0) broth and agar (TSB plus 1.5% 

agar) for S. aureus. Details of bacterial culture growth and tests are described below. 

 
Kirby-Bauer Disc Diffusion Method [252,253] 

A single colony was picked from an overnight bacterial re-streak grown on suitable 

agar plates and then inoculated into the appropriate broth (3 mL) as a small scale starter 

culture, and shaken overnight at 37°C. The actively growing culture (1 mL) was then diluted 

(1:100) in its respective media and grown at 37°C with constant agitation (~200 rpm) until 

both sets of cells reached a mid-log phase (A600 = 0.5-0.8). The densities of the bacterial 

suspensions were adjusted by addition of fresh sterile broth to give final optical densities of 

A600 = 0.5. These solutions were used immediately to inoculate agar plates. The inoculum 

(~200 µL) was spread evenly over the entire surface of the agar plate (100 × 15 mm plate) 

and allowed to dry (no more than 15 min) before application of discs. 
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The parent TS and the modified drug (mTS-2MESNA) were dissolved in MQW and 

DMF at various concentrations (Table 5.2). Sterile discs were firmly applied to the surface of 

the agar plate. Afterwards, 20 µL of each antimicrobial solution was added to the discs, and 

the plates were inverted and placed in a 37°C incubator immediately. After 16 h of 

incubation, each plate and disc was examined and the diameters of zones of inhibition were 

measured with a ruler. 

Table 5. 2: Concentrations Utilized for Kirby-Bauer Disc Diffusion Test for Thiostrepton and its Analogue. 

DMF H 2O (MQW) 

TS (µµµµg/mL) mTS-2MESNA 
 (µµµµg/mL) 

TS (µµµµg/mL) mTS-2MESNA  
(µµµµg/mL) 

0 0 0 0 
0.03 0.03 0.03 0.03 
0.3 0.3 0.3 0.3 
3 3 3 3 
  10 10 
  25 25 
  50 50 

 
In vitro Susceptibility Curve 

A small scale starter culture (3 mL) was inoculated with a single colony picked from 

an overnight re-streak grown from a suitable agar plate and grown overnight at 37°C with 

aeration. An aliquot of the starter culture (1 mL) was removed and its optical density adjusted 

to A600 = 0.5 with addition of fresh sterile broth. A series of fresh broths were prepared (5 

mL) and the antibiotics, previously prepared in DMF or MQW, were added at various 

concentrations (Table 5.3). The cultures were incubated at 37°C with constant agitation. 

Samples of 200 µL were withdrawn at one hour intervals for 5-7 h and their optical densities 

at 600 nm were determined. 
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Table 5. 3: Concentrations Used for Antibacterial Susceptibility Testing for Thiostrepton and its Analogue. 

DMF H 2O (MQW) 

TS (µµµµg/mL) mTS-2MESNA 
 (µµµµg/mL) 

TS (µµµµg/mL) mTS-2MESNA  
(µµµµg/mL) 

0 0 0 0 
0.1 0.1 1 1 
0.3 0.3 5 5 
3 3 50 50 

 

5.3. Results and Discussion 

5.3.1. Geometry Optimizations of Thiostrepton 
  

Using the crystal structure of TS with all the required hydrogens added as the starting 

structure, a survey of force fields available in Macromodel 8.0 [242] was performed to 

determine the best force field suited to model the antibiotic. From the information returned 

regarding the quality and number of stretch, bend and torsional parameters available in each 

forced field, it determined that the OPLS-AA was the best force field with which to model 

TS in (Table 5.4). 

 
Table 5. 4:  The number of bonds of high, medium and low quality bonds calculated for stretch/bend/torsional 

parameters in each force field available in MacroModel 8.0. 

Stretch Bend Torsional Force Field 
Ha Mb Lc Ha Mb Lc Ha Mb Lc 

MM2* 1 138 77 0 215 142 31 181 254 120 
MM3* 2 145 35 19 194 93 55 207 100 19 
Amber* 3 111 30 16 264 71 21 265 219 15 
OPLS4 Error Error Error 
Amber945 Error Error Error 
MMFF 6 195 0 13 301 0 62 318 0 217 
MMFFS 7 195 0 13 301 0 62 318 0 217 
OPLS-AA8‡ 200 8 0 348 15 0 435 98 2 

aHigh quality; bMedium quality; cLow quality; 1. Allinger, N. L. J Am Chem Soc 1977, 99, 8127-8134. 2. Allinger, N. L.; Yuh, Y. H.; Lii, J. 
H. J Am Chem Soc 1989, 111, 8551-8566. 3. Ferguson, D. M.; Kollman, P. A. J Comput Chem 1991, 12, 620-626. 4. Jorgensen, W. L.; 
Tiradorives, J. J Am Chem Soc 1988, 110, 1657-1666. 5. Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M.; Ferguson, D. 
M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A. J Am Chem Soc 1995, 117, 5179-5197. 6. Halgren, T. A. J Comput Chem 
1996, 17, 490-519. 7. Halgren, T. A. J Comput Chem 1999, 20, 720-729. 8. Jorgensen, W. L.; Maxwell, D. S.; TiradoRives, J. J Am Chem 
Soc 1996, 118, 11225-11236. ; ‡This force field is a greatly expanded version of the OPLS force field.; MM2*, MM3* and Amber* are 
MacroModel’s version of the three force fields originating from the above listed references. 
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 Two low quality torsional parameters for the following angles were noted: N98-C96-

S93-C94 and N179-C178-C191-S193 (Figure 5.5). These torsion angles are found in the ring of the 

dihydrothiazole group (N98-C96-S93-C94) and the bond attaching the thiazole of the tail to the 

piperidine group (N179-C178-C191-S193) (Figure 5.6, Red). Due to the ring constraints of the 

dihydrothiazole, these low quality torsional angles would not be expected to greatly affect the 

conformational studies. The tail with the piperidine group was expected to freely rotate in 

solution. This view was taken into account when evaluating the generated conformers for 

relatedness (see below). It is important to note that although we utilized OPLS-AA as the 

molecular mechanics for this particular problem, more detailed studies may require the 

development of force field parameters for these particular torsional rotations. 

 

 
 

Figure 5. 5: Low quality torsion angles of thiostrepton found in OPLS-AA.  
(A)  Torsion angle between atoms N98-C96-S93-C94 on the dihydrothiazole.  (B)  Torsion angle between atoms 

N179-C178-C191-S193 in the tail region of thiostrepton. 
 

A B 
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Figure 5. 6: A closer examination of the thiostrepton (TS) structure.  
(A) The dihydrothiazole moiety; (B) linkage between tail and body of thiostrepton; (C) ester linkage; (D) 

secondary amine (N15); (E) quinaldic acid moiety. Red: two low quality torsion angles found using the OPLS-
AA force field. Blue: dihedral angles used to monitor the stochastic dynamics run. Purple: distance monitored 

during the stochastic dynamics run between N155 and C2. 
 

OPLS-AA energy minimizations were performed in vacuo and in water, utilizing the 

implicit GB/SA methodology [244]. The GB/SA implicit solvation model is based on two 

popular continumm solvation models: the Generalized Born (GB) and Solvent Accessible 

Surface Area (SA) model; solvation free energies (Gsol) are calculated based on the sum of a 

solvent-solvent cavity term (Gcav), a solute-solvent van der Waals term (GwdW) and a solute-

solvent electrostatics polarization term (Gpol) [244,254].  The minimized structures obtained 

had energies of: -827.83 kcal/mol (vacuum) and -1014.75 kcal/mol (water). Superimposition 

of non-hydrogen atoms of the TS crystal structure with these two energy minimized 

structures revealed low RMS values of 0.4380 and 0.5431, respectively, suggesting that the 

two low quality torsional angle parameters discussed earlier do not appear to be major 

obstacles in modelling TS (Figure 5.7). The dihedral angles were determined to be -11.7° 
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(N98-C96-S93-C94) and 0.4° (N179-C178-C191-S193) in the gas phase. The didehydroalanine tail 

showed the largest difference with RMS values 1.797 and 1.820 for the gas and liquid phase, 

respectively.  

 

 
Figure 5. 7: Relaxed stereoview of thiostrepton starting crystal structure with OPLS-AA energy-minimized 

structure in vacuo and water and hydrogens eliminated for clarity [241].  
 

A second approach was undertaken to determine the energy-minimized structure of 

TS by utilizing semi-empirical AM1 calculations. The AM1 structure (vacuum) obtained 

from the starting crystal structure was minimized to a low energy structure that had no 

negative frequencies based on frequency calculations. When superimposed on the starting 

crystal structure, the RMS difference obtained was 0.9623 (Figure 5.8). Additional 

comparisons of the AM1 structure to the OPLS-AA structures determined in vacuo and in 

water resulted in RMS differences of 1.0433 and 0.9904, respectively (Figure 5.9 and 5.10). 

The two torsion angles, N98-C96-S93-C94 and N179-C178-C191-S193 in the AM1 structure were 

determined to be 0.8° and 12.0°, respectively. 
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Figure 5. 8: Relaxed stereoview of superimposed structures of the thiostrepton crystal structure with the AM1-
minimized structure (RMS = 0.9623) and hydrogens eliminated for clarity [241].  

 

 
Figure 5. 9: Overlay of the OPLS-AA minimized thiostrepton structure in vacuo with the AM1-minimized 

structure (RMS = 1.0433) in relaxed stereo mode with hydrogens eliminated for clarity [241]. 
 

 
Figure 5. 10: Overlay of the OPLS-AA minimized thiostrepton structure in water with the AM1-minimized 

structure (RMS = 0.9904) in relaxed stereo mode with hydrogens eliminated for clarity [241]. 

5.3.2. Molecular Orbital and Ab initio Charge Calculations 
  

The highest occupied molecular orbital (HOMO) and the lowest unoccupied 

molecular orbital (LUMO) at the AM1 level of calculation were determined to be localized 
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on the dihydrothiazole and quinaldic acid moieties, respectively (Figure 5.11). The HOMO 

and LUMO could be important in contributing to the interaction of TS with ribosomal RNA. 

It was previously suggested that the quanaldic acid and the thiazole moieties of TS engage in 

pi-stacking interactions with adenosine 1067 and 1095, respectively; this was confirmed by a 

recent NMR model by Jonker and coworkers [106].  

 
Figure 5. 11: The HOMO and LUMO of thiostrepton. 

The highest unoccupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) 
diagram at the AM1 level were overlapped, and were calculated to be localized on the dihydrothiazole and 

quinaldic acid moieties of thiostrepton, respectively [241]. 
  

Additionally, the AM1 minimized structure was utilized as the geometry for a single 

point energy calculation at the B3LYP/631-G(d)//AM1 level. The calculation led to a 

detailed analysis of the electronic structure of TS. The Mulliken charges were determined by 

AM1 and B3LYP/6-31(d) calculations and the CHelpG (B3LYP/6-31(d)) electrostically fit 

charges on the AM1 geometry-optimized structure are shown in Figure 5.12. 
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Figure 5. 12: Electrostatic potentials (-2.000e1 [red]-1.00e1 [blue]) mapped onto electron density (Density = 

SCF) for AM1 energy-minimized structure. Isovalue for isosurface: 0.0004 electrons/au3. 
 

5.3.3. Conformational Flexibility of Thiostrepton 

5.3.3.1. LMOD Conformational Search 

Although the semi-empirical and ab initio calculations provide partial charges for the 

atoms on this large drug molecule, it is also important to realize that the crystal structure and 

the minimized structures directly obtained from it, are each but one structure on the energy 

potential surface. Such a large molecule such as TS should exhibit a multiplicity of 

conformations in spite of the fact that is restricted by two internal loops. In order to explore 

this in a computationally efficient manner, we utilized the energy-minimized OPLS-AA 

(vacuum and water) structures for a series of conformational searches. 

 There are 39 rotatable bonds in the TS structure, not including methyl group 

rotations. This number precludes approaches that utilized dihedral angle drive-based search 

protocols. We therefore applied the highly efficient low mode (LMOD) [251] conformational 

search protocol implemented in MacroModel 8.0 [242]. This method explores the low 

frequency eigenvectors of the molecular system and is expected to follow “soft” degrees of 

freedom, such as those found in torsional rotations. Due to the aggressive search protocol 

utilized in this approach, the chirality of the 17 chiral centres were held fixed during the 
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conformational search. Only the secondary amine (N15) was not fixed, as it was believed that 

pyramidalization of this nitrogen, in addition to it inherent flexibility might be a contributing 

factor to the conformational flexibility of TS. Both vacuum and water phase OPLS-AA 

minimized structures were used in separate calculations using LMOD. 

 LMOD calculations performed in vacuo found a total of 158 conformations within 

~10.0 kcal/mol of the global minimum (-908.1 kcal/mol), 31 of which are within 3 kcal/mol 

of the global minimum. In the case of water (GB/SA), 293 unique conformations were found, 

76 of which were within 3 kcal/mol of the global minimum (-1133.8 kcal/mol). Overlaying 

the two global minimum structures (vacuum and water) with the starting TS crystal structure 

(Figure 5.13), reveal that Loop 2 and the tail region are more opened and exposed in vacuo, 

whereas the structure obtained in implicit water forms a more tightly packed architecture. 

The secondary amine (N15) was observed to have pyramidalized and faces inwards towards 

the TS core in the LMOD structure in vacuo. This suggests that the binding interactions of 

TS could potentially involve significant conformational changes of Loop 2 that may be 

facilitated by the pyramidalization and torsional flexibility of N15. 

 

 
Figure 5. 13: Superimposed global minimized energy structures calculated from LMOD in vacuum (green) and 

water (CPK) and the starting thiostrepton structure (magenta) [241]. 
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Although by no means exhaustive, the above approaches did find a number of 

conformations lower in energy than the OPLS-AA minimized crystal structure. A number of 

the conformations found in the LMOD searches showed N15 pyramidalization, where 

approximately 16% and 13% of the LMOD-generated vacuum and water conformation 

(1000) had the amine proton pointed inward. Hence this process may play an important role 

in defining the conformation ensemble of TS. In order to gain some insight into the 

frequency of this possible pyramidalization process, as well as to explore further the 

conformational mobility of the loop regions of TS, stochastic dynamics studies were 

undertaken. 

5.3.3.2. Stochastic Dynamics Studies 
  

One nanosecond dynamics experiments were undertaken at 300 K in vacuo and in 

implicit water (GB/SA). The dihedral angles around the internal lactone (C142-O144-C153-

C154), the secondary amine (H175-C164-N15-H33), and the atomic distance between the two 

internal loops (C2-N155) (Figure 5.6) were also monitored to gain additional information as to 

the conformational changes over the one nanosecond time frame.  

 Results from the stochastic dynamics studies performed in vacuo indicate that early in 

the run, the N15 proton orientates itself inwards (steps 17-74, 130-167) periodically, while no 

such behaviour was observed in the water run (Figure 5.14). The region of the internal 

lactone ring does not appear to change significantly in both cases, although conformation of 

the opposite orientation was sampled frequently throughout the duration of the analysis 

(Figure 5.15). The distance between the two loops was found to increase over the duration of 

the dynamics run (both vacuum and water), thereby expanding the core of TS (Figure 5.16). 
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Data from these stochastic dynamics runs suggest that TS exhibits a conformational 

flexibility, a ‘breathing’ dynamic for binding interactions.  

 

 
Figure 5. 14: Stochastic dynamics plot (in vacuo and water) of the dihedral angle (H175-C164-N15-H33) of the N15 

secondary amine (D, Figure 5.5) over time (1 ns) [241]. 
 

 
Figure 5. 15: Stochastic dynamics plot  (in vacuo and water) of the dihedral angle (C142-O144-C153- C154) of the 

internal lactone ring (C, Figure 5.5) over time (1 ns) [241]. 
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Figure 5. 16: Stochastic dynamics plots  (in vacuo and water) of the distance between the two macrocyclic 

rings (Loop 1 and 2, Figure 5.5) between C2 amd N155 over time (1 ns) [241]. 
 

5.3.4. Modification of Thiostrepton 

5.3.4.1. Reaction of Thiostrepton with 2-Mercaptoethanesulfonic Acid 

 With the recent success of the development of nocathiacin analogues from Michael 

addition reactions [231,233,236], we commenced our modification of TS in a similar fashion 

(Table 5.5 and 5.6). Nocathiacins only have a single double bond for modification, and is a 

good scaffold for which to base our reactions on. Therefore, a single site modification with 

TS should not be a problem.  With the goal of a single site modification, only one equivalent 

of thiol (2-mercaptoethanesulfonic acid; 2MESNA) was added under aqueous conditions. 

Although nocathiacins have poor solubility in water, it was found that successful conjugation 

with thiols was made possible with the addition of the weak base, triethylamine (TEA). It is 

believed that the TEA aided in improving the solubility of the nocathiacins in addition to 

acting as a general base catalyst for the Michael addition [233], however we did not observe 

this  for TS.  
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The TS starting material remained insoluble throughout the entire length of reaction. 

Increasing the amount of organic solvent in the reaction mixture and trying two different 

temperatures with varying equivalents of base allowed for evaluation of the effects of solvent 

temperature and base on the thiol addition. For conditions that were largely aqueous (80% 

H2O/20% DMF), no improvement in solubility of starting material was observed. On the 

other hand, when solvent was composed of 20% H2O/80% DMF, the cloudy reaction mixture 

was stirred for two hours before turning into a clear homogeneous solution, and product was 

observed by TLC. With fully organic conditions, Michael addition occurred much more 

rapidly and product was observed as early as one hour. Side reactions were minimal and did 

not discriminate between either set of conditions (100% DMF vs. 20% H2O/80% DMF). In 

addition, it did not appear that temperature (-20°C) eliminated side reactions as it did for the 

nocathiacins [231,233,236]. Nonetheless, it was later noticed that performing the reaction in 

100% DMF at 4 °C gave a crude product that was slightly less orange compared to when 

performed at 23°C (room temperature). Therefore, all subsequent reactions were executed at 

4 °C in 100% DMF. 
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Table 5. 5: Summary of Reactions Conditions Attempted for the Michael Addition of 2-MESNA to TS at 
Room Temperature (23 °C). 

Time (h) Solvent Equiv.  
TEA 0 1  2  O/N  O/N* (-20°°°°C) 

0 a  a  a  a  a 
1  a Product/thiolb Product/thiolb Product No changec 

DMF 

10  a Product/thiolb Product Product No changec 
0  a  a  a  a  a 
1  a  a  a Product/thiolb No changec 

80% DMF/20% H 2O 

10  a  a Product/thiolb Product No changec 
0  a  a  a  a  a 
1  a  a  a  a  a 

20% DMF/80% H 2O 

10  a  a  a  a  a 
0  a  a  a  a  a 
1  a  a  a  a  a 

H2O 

10  a  a  a  a  a 
*Reaction vessel was placed in -20 °C for an additional overnight 
aOnly starting material was observed on the TLC plate or nothing was observed as TS starting material was not soluble in solvent condition 
b
The emergence of the product was observed, along with the thiol and TS starting material 

c
No observable difference from placing reaction vessel from RT to -20°C 

 
Table 5. 6: Summary of Reactions Conditions Attempted for the Michael Addition of  

2-MESNA to TS at -20 °C 

Time (h) Solvent Equiv.  
TEA 0 1  2  O/N  

0 a a a a 
1 a Product/thiolb Product/thiolb Product 

DMF 

10 a Product/thiolb Product Product 
0 a a a a 
1 a a a Product/thiolb 

80% DMF/20% H 2O 

10 a a Product/thiolb Product 
0 a a a a 
1 a a a a 

20% DMF/80% H 2O 

10 a a a a 
0 a a a a 
1 a a a a 

H2O 

10 a a a a 
aOnly starting material was observed on the TLC plate or nothing was observed as TS starting material was not soluble in 
solvent condition 
b
The emergence of the product was observed, along with the thiol and TS starting material 

 

5.3.4.2. Purification of Thiostrepton Derivative (mTS-2MESNA) 

 Initial efforts at purifying the crude modified TS antibiotic were carried out using 

flash chromatography and purification by using a precolumn of C18 (Sep Pak). In both 

purification processes, although the majority of the starting material was removed, there was 
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still a residual amount that remained. Mass spectrometric analysis indicated a single addition 

had successfully occurred (please see below). No clear NMR spectra were obtained due to 

the presence of contaminants such as silica from the flash chromatography purification or 

side products. 

 Isolation of mTS-2MESNA was then pursued by analytical HPLC methods. Sample 

preparation encountered difficulties as the modified TS analogue still remained sparingly 

soluble in water. The sample was sonicated and vortexed to facilitate dissolution, however 

insoluble compound remained and was centrifuged and filtered away prior to purification. 

Different elution gradients from water to acetonitrile (ACN) were applied: 2%/min (100% 

H2O to 100% ACN; Figure 5.17), 1%/min (100% H2O to 100% ACN ; Figure 5.18) and 

0.4%/min (90% H2O:10% ACN to 50% H2O:50% ACN Figure 5.19) and it was found to 

remove the majority of side products and starting thiostrepton. Fractions collected from the 

0.4%/min run were assessed for biological activity relative to the parent compound (see 

Section 5.3.4.3).  

 

Figure 5. 17: Chromatogram showing the separation of mTS-2MESNA.  
A gradient of 100% water to 100% acetonitrile was employed over 50 min (2%/min). First major peak (shaded) 

corresponds to the modified antibiotic. 
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Figure 5. 18: Section of elution profile of the purification of mTS-2MESNA with 1%/min gradient. 

The gradient went from 100% water to 100% acetonitrile over 100 min. The area shaded indicates the fractions 
that contained the modified mTS-MESNA as shown with TLC. 

 
Figure 5. 19: Further separation was achieved with a slower gradient of 0.4%/min. 

The gradient went from 10% acetonitrile:90%water to 50% acetonitrile:50% water over 100 min. Area under 
shaded peak was collected and used for antibiotic susceptibility testing. 

  
Mass spectrometric analysis of all purified samples showed a single successful 

modification (Figure 5.20). However, it remained unclear whether the modification had 

occurred at a single location or whether it was a mixture of singly modified products. NMR 

spectroscopy was used to further provide insight into the location of the conjugation. The 

NMR data was obtained and compared to the TS starting material (Figure 5.21) and peak 

assignments were based on previous 1H NMR assignments published by in the literature by 

the groups of Anderson [255] and Floss [256].  

Peaks corresponding to the dehydrobutyrine (Figure 5.4A; But) and the internal 

dehydroalanine (Figure 5.4A and Figure 5.21; Deala(1)) were still present. However, the 

peak intensity of signals corresponding to the dehydroalanine residues in the tail region 

(Figure 5.4A and Figure 5.21; Deala(2), Deala(3)) were reduced significantly. The lack of 
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presence of proton shifts for both Deala(2) and Deala(3) shows that successful single site 

modification has been achieved, although the product isolated is composed of both products 

modified at the different sites of the tail (Figure 5.20). This mixture of products was then 

tested for its biological activity. 

 

 
Figure 5. 20: Positive ion mode electrospray mass spectrum of mTS-2MESNA.  

The expected molecular weight is calculated to be 1807 Da .The major peak indicates molecular weight 
corresponding to a mono-adduct. 
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Figure 5. 21: Comparison of partial 1H NMR spectrum of the modified TS (top) and the original TS (bottom) in 
CDCl3.  

Arrows show peaks corresponding to different protons in the four potential sites of modification. Asterisks (*) 
indicate the singles arising from protons of the dehydroalanine tails. Peaks corresponding to Deala(2) and 

Deala(3) were no longer present in the modified antibiotic. 
 

5.3.4.3. Susceptibility Testing of mTS-2MESNA 

 Two Gram-positive species were used to evaluate the antibacterial activity of the TS 

derivative and compared to that of parent compound, namely Staphylococcus aureus and 

Bacillus subtilis. Both the TS and the TS derivative were dissolved in organic solvent (DMF) 

and in MQW with varying concentrations (Table 5.2 and Table 5.3). The activity of the 

antibiotic solutions was tested using disc diffusion methods and broth dilution methods. 
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Kirby-Bauer Disc Diffusion Tests 

 Antibiotic and antibiotic analogue impregnated discs were put on the surface of the 

agar medium that had been previously inoculated with a pure bacterial suspension of either S. 

aureus or B. subtilis. After incubation of 16 h, zones of inhibition were measured and 

compared (Table 5.7).  

 
Table 5. 7: Inhibition Zone Diameters of Thiostrepton and its Derivative on B. subtilis and S. aureus. 
 Diameter of Growth Inhibition Zone (mm) 
 DMF H2O 
 B. subtilis S. aureus B. subtilis S. aureus 

Conc 
(µµµµg/mL) 

TS mTS-
2MESNA 

TS mTS-
2MESNA 

Conc 
(µµµµg/mL) 

TS mTS-
2MESNA 

TS mTS-
2MESNA 

0 6.5 6.5 6.5 6.5 0 6.5 6.5 6.5 6.5 
0.03 7.1 6.5 7.0 6.5 10 6.5 6.5 6.5 6.5 
0.3 7.2 7.0 8.0 6.7 25 7.2 8.8 10.0 10.2 
3 12.0 8.0 12.7 8.0 50 10.5 11.0 10.5 12.6 

 
At all concentrations in organic solvent, it was found that the unmodified compound 

exhibited similar or slightly larger zones of growth inhibition for both bacterial species. 

However, at the same concentrations (0, 0.03, 03 and 3 µg/mL) in water, it was found that 

there was no effect on bacterial growth. This is very likely due to the inherent low water 

solubility for both the native TS and the modified compound. Similar difficulties in 

dissolving the mTS-2MESNA during purification (section 5.3.4.2) and the parent TS were 

encountered. Concentrations three to one thousand times higher (10, 25, 50 µg/mL) were also 

examined and slightly larger diameters of inhibition zones were observed for the mTS-

2MESNA. This indicates that although the parent compound has a higher overall activity in 

organic solvent, in an aqueous environment, the modified TS was shown to have higher 

activity, therefore, correlating to higher water solubility. 
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In vitro Susceptibility Curve 

 The effect of the TS derivative on bacterial growth curves of both B. subtilis and S. 

aureus were studied. Initial growth curve studies were performed with liquid media with 

concentrations of antibiotic solutions that gave the largest clearing zone in the disc diffusion 

tests (3 µg/mL in DMF and 50 µg/mL in H2O), however, complete inhibition was observed 

and antibiotic concentrations were reduced to 0.3 µg/mL and 0.1 µg/mL in DMF and 5 

µg/mL and 1 µg/mL in H2O (Figure 5.22). 
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Figure 5. 22: Bacterial growth curves for B. subtilis (A and B) and S. aureus (C and D) in the presence of antibiotic in aqueous or organic solvent.

A B 

C D 
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 For both B. subtilis and S. aureus, TS and its modified counterpart inhibited growth 

completely at concentrations as low as 0.1 µg/mL and 0.3 µg/mL (Figure 5.22 A and C). 

However when the solutions of antibiotics were made in water, bacterial growth was 

observed for all antibiotics with concentrations of 0.1 µg/mL. It was only at a higher 

concentration of antibiotic (5 µg/mL) that inhibition was observed by only mTS-2MESNA. 

Thus, similar to the disc diffusion results, the modified thiostrepton is more active when 

administered in aqueous solution. 

5.4. Conclusions and Future Work 

 Two approaches were utilized in studying the structure-activity relationship of TS, a 

representative of a major class of thiazole peptide antibiotics. First, a detailed molecular 

mechanics-based conformational search, stochastic dynamics, semi-empirical and ab initio 

studies on TS yielded a number of insights into its structure including the potential 

pyramidalization of the secondary amine and aspects of the mobility of the TS loops. In 

addition, the focus has provided detailed electronic structure parameters on the antibiotic, 

including providing knowledge of the position of the HOMO or LUMO orbitals and the 

electrostatic charges of TS. This information should serve as an important basis for future 

studies on TS and other thiazole peptide antibiotic and their interaction with biological 

samples. 

 Second, a single addition of 2-mercaptoethanesulfonic acid (2-MESNA) to the TS 

didehydroalanine tail has been successfully made. A mixture of the didehydroalanine 

addition product can be attained using a C18 reverse phase column on the HPLC. It was 

demonstrated through Kirby-Bauer disc diffusion and in vitro susceptibility growth tests that 



 212 

the thiostrepton-2MESNA conjugates were more active than the parent TS compound in 

aqueous solution. Further information on the activity of the modified compound could be 

obtained by measuring the minimal inhibitory concentrations (MIC) of the antibiotics.   

Given that there are two sites that are possible for the modification of the TS tail, 

each position can give two different enantiomeric products (R and S) for a total of four 

products. Therefore, the aforementioned modified antibiotic in fact is a mixture two 

conjugation products, and further separation is required to separate these chemical species. 

Further resolution can be achieved by employing a gradient of 0.17% /min (25% 

ACN: 75% H2O to 35% ACN: 65% H2O over 78 min) on the major peak collected from 

previous gradient of 0.4%/min (10% ACN: 90% H2O to 50% ACN: 50% H2O over 100 min, 

Figure 5.19), and can be seen in Figure 5.23.  

 

Figure 5. 23: Further purification of mTS-2MESNA.  
(A) Purification of mTS-2MESNA with a 0.4%/min (10% acetonitrile:90%water to 50% acetonitrile:50% water 
over 100 min). Peak highlighted was pooled, and further resolution was achieved with a 0.17% gradient from 

25% ACN:75% H2O to 38% ACN:65% H2O over 78 min (B). 
 

A 

B 
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Therefore, collection of peaks can be further discriminated to optimize separation and 

discrete peaks can collected, isolated and characterized before testing against for biological 

activity in the future. 
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APPENDIX 1: RADIOMETRIC ASSAY SUPPLEMENTARY 

INFORMATION 
 

 

A1.1. Reducing the Specific Activity of S-Adenosyl-L-[methyl-3H]-
methionine 

 
The specific activity (SA) of commercially available S-adenosyl-L-[methyl-3H]-

methionine ([3H]-AdoMet*) is typically reduced for storage or assay conditions. This is 

achieved by “cutting” the SA (Ci/mmol) with a non-radiolabelled (“cold”) compound. 

Therefore, the amount of radioactivity (“hotness”) remains unchanged while the total amount 

of compound increases. For radiometric assays discussed in Chapter 3, [3H]-AdoMet* was 

typically stored at 500 Ci/mmol. This section shows a sample calculation of calculations 

involved in reducing the SA of [3H]-AdoMet* from the manufacturer from 61 Ci/mmol to 

500 mCi/mmol for storage. 

A1.1.1. Calculating How Much Non-radiolabelled AdoMet is Required 
 

Table A1. 1: Information on radiolabelled and non-radiolabelled AdoMet 
3H-AdoMet*commercial AdoMet  

• Specific activity = 61 Ci/mmol 
• [Radioactive] = 1.0 mCi/mL 
• Volume = 250 µL 
• Total radioactivity = 250 µCi 
• MW = 405 g/mol 

• in p-toluenesulfonate salt form with hydration 
• C15H22N5O5 ⋅ xC7H8O3S⋅ y H2O* 
• MW = 959.26 g/mol 

* x and y are obtained by manufacterer’s product sheet. In this example x = 3.1 and y = 1.5 

 Using the information for both “hot” and “cold” AdoMet (Table A1.1), the following 

equation [156] can be used to calculate how much non-radiolabelled AdoMet is needed to cut 

the specific activity down to 500 mCi/mmol: 
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Where W = weight (in mg) of unlabelled “cold” compound to be added (mg) 

M = molecular weight of radiolabelled compound (g/mol) 
a = total activity (GBQ, mCi) in sample 

A = molar specific activity (GBq/mmol, mCi/mmol of compound as supplied) 
A′ = molar specific activity (GBq/mmol, mCi/mmol) of the desired diluted compound 
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/61000
1

/500
1

)250.0()/275.959(  

)1063.1002.0(82.239 5−×−×=W  

gmgW µ7.4754757.0 ==  (1) 

Therefore, 475.7 µg of non-radiolabelled AdoMet must be added to reduce the 

specific activity. However, this mass was too small, making it not possible to measure out. 

Therefore, a stock solution of cold AdoMet was made (10 µg/µL). 

A1.1.2. Using the Cold AdoMet Stock Solution to Reduce Specific Activity 
 
Making the cold AdoMet stock solution: 

 
 
2.5 mg (2500 µg) of cold AdoMet into 
250 µL of Assay buffer*: 
 

Lg
L

g
c µµ

µ
µ

/10
250
2500 ==  (2) 

 
*Assay buffer: 50 mM HEPES pH 7.5, 7.4 mM MgCl2, 73.5 
mM NH4Cl, 3 mM mercaptoethanol, 10% glycerol 

 How much cold AdoMet stock to add to 
reduce SA: 

 

L
Lg

g
v

c

m
v

v

m
c

µ
µµ
µ

5.47
/10

5.475 ==

=⇒=
 

 
∴47.5 µµµµL  of the cold AdoMet stock 
solution is to be added to commercial 3H-
AdoMet* bottle to reduce the SA to 500 
mCi/mmol 

Substitute (1) and (2)  
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A.1.3. How Much 3H-AdoMet*Reduced to Be Added to Each Assay Tube 
 

If the total amount of radioactivity desired for each assay reaction tube (total volume 

of 100 µL) is 2.5 µCi, given the radioactive concentration, one should be able to calculate 

how much hot compound to add. The original commercial [3H]-AdoMet* had a radioactive 

concentration of 1.0 mCi/mL or 1.0 µCi/mL. The amount of [3H]-AdoMet* that is needed to 

be added to each assay tube can be calculated: 

 

Lx
x

Ci

L

Ci µµ
µ
µ

5.2
5.20.1 =⇒=  

 
Therefore, 2.5 µL of [3H]-AdoMet* is to be added to each assay. However, the radioactive 

concentration was changed upon the addition of the cold AdoMet that was used to cut down 

the SA (to give [3H]-AdoMet*reduced). Thus, the amount added must be corrected as follows: 

 

Adjusted volume = L
L

LL
L µ

µ
µµµ 975.2

250
2505.47

5.2 =+×  

 
Therefore, for each 100 µL assay, the amount of 3H-AdoMet*reduced to be added is 2.975 µL. 
 

A1.1.4. Calculating the Concentration of [ 3H]-AdoMet*reduced 
 
Number of moles of [3H]-AdoMet*commercial: 

 
-The bottle has a SA of 61000 mCi/mmol 
-In each assay (100 µL), has 2.5 µCi  
 
∴Number of moles of hot  
[3H]-AdoMetcommerical in each assay tube is: 
 
2.5 µCi = 0.0025 mCi 
 

mmol
mCi

mmol
mCi 8101.4

61000
1

0025.0 −×=×  

 Number of Moles of AdoMetcold: 
 
-Recall we had reduced SA down to 500 
mCi/mmol 

122
/500
/61000 =
mmolmCi

mmolmCi
 

-We added 122 fold more AdoMetcold 
 
∴ Number of mole of AdoMetcold is: 
 

mmolmmol 68 100.510098.4122 −− ×=××  
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Therefore, the TOTAL amount of AdoMet in each assay reaction tube: 
 [3H]-AdoMetcommercial + AdoMetcold = ~5.0 ×××× 10-6 mmol. 
 
 
Concentration of [3H]-AdoMet*reduced: 
 
 

mM
L

mol

v

n
c 68.1

10975.2
100.5

6

9

=
×

×== −

−

 

 

Final concentration of [3H]-AdoMet*reduced in 
each assay tube: 
 

mM
L

mol

v

n
c 05.0

101
100.5

4

9

=
×
×== −

−

 

 

A1.2. Conversion of Disintegrations Per Minute to a Mole 
Quantity 
 

The data collected using the liquid scintillation counter instrument gives methylation 

in disintegrations per min (dpm). In order to calculate kinetic parameters, the signal first must 

be converted to a molar quantity as seen below: 

 

mmol
Cidpm

Ci

Sdpm

Ci
dpm

A

13
1212

101.9
5.0
1

102.2
1

102.2
1 −×=×

×
=×

×
×  

 

Note: 
efficiency

cpm
dpm=  

 
After this conversion is performed, calculations to obtain kinetic values can proceed. 
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APPENDIX 2: S.AZUREUS TSR PROTEIN STRUCTURE 
 

 
The S. azureus TSR protein crystal structure and TSR-RNA modelling interactions 

were carried out by by Dr. Mark Dunstan and Dr. Graeme Conn at the University of 

Manchester. A summary of methodology used and structure data are provided here. 

A2.1. X-ray Diffraction Data Collection, Structure Determination 
and Refinement 
 
 Crystallization trials and optimizations were done with the JBScreen HTS1 screen 

(Jenabioscience) on an Innovadyne 96 crystallization robot. Protein crystals grew with the 

vapour diffusion hanging drop method. Diffraction-quality crystals grew within the first two 

to three days in 4 µL drops containing 27% PEG 4K, 0.2 sodium acetate and 0.1 M Tris 

buffer pH 8.0 with an equal volume of protein. An additional five days after their intial 

appearance, crystals produced reached their maximum size of  800 × 150 × 80 µm. Crystals 

with the S-adenosyl-L-methionine (AdoMet) cosubstrate bound was achieved by soaking the 

crystal in the same solution supplemented with 5 mM AdoMet for 24 hours.  

 Crystals were cryoprotected by passing through perfluoropolyether (PFPE) prior to 

flash-cooling with liquid nitrogren. Diffraction data sets were collected at the European 

Synchrotron Radiation Facility (ESRF) on the ID23-1 beamline and processed using X-ray 

Dectector Software (XDS) [194]. Molecular replacement (MR) was performed using the 

MOLREP program [195,196] of the CCP4 package with a poly-serine model of the C-

terminal domain of the SpoUT MTase RrmA (1IPA: 27% sequence identity) as a search 

template.  MOLREP determined that asymmetric unit contains two molecules which 
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confirms the number estimated by the Matthews coefficient (VM =2.12, solvent content = 

42%). 

Manual model building of the missing N-terminal domain was conducted with the 

program RESOLVE [257] and was initially difficult due to the poor electron density; the 

program only placed 280 of the amino acid residues into the electron density, most of which 

belong to the C-terminal domain. To improve the model quality, the dual-space MR model 

completion method was executed. After several rounds of phase calculation with OASIS06 

[258] and density modification with DM [195], followed by more automated model building 

with RESOLVE and structure refinement with CNS [259], over 470 residues (including side 

chains) were placed by RESOLVE into the electron density. The final steps of manual 

building was completed by Coot [260] and refinement of the model was achieved by 

translation, liberation, screw (TLS) refinement using Pheix.refine. The completed structure 

contains residues 8-268 for each TSR monomer in the asymmetric unit (Table A2.1 and 

Figure A2.1). 
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Table A2. 1: X-ray data collection and refinement statistics for the TSR-AdoMet complex. 
 TSR-AdoMet complex 

Space group P212121 
Resolution (Å) 2.45 
Unit cell                       a,b,c (Å) 
                                     α,β,γ (°) 

40.80, 56.20, 213.90 
90.0, 90.0, 90.0 

Redundancy 4.4 (4.5) 
Reflections                  Total 
                                     Unique 

85388 
18568 

Completeness (%) 95.8 (90.0) 
Rmeas (%) 10.9 (67.0) 
<I/σσσσI> 10.2 (2.36) 
Solvent molecules 43 
Rwork (%) 21.9 
Rfree (%) 26.6 
Overall B-factor (Å2) 57.9 
Ramachandran plot (%) 
             Favourable 
             Allowed 
             Generous 
             Disallowed 

 
84.6 
11.8 
1.8 
1.8 

RMS deviations from ideal geometry 
             Bond lengths (Å) 
             Bond angles (°) 

 
0.022 
2.007 

 
Figure A2. 1: X-ray crystal structure of TSR-AdoMet complex in three orthogonal views.  

AdoMet is represented by the green space-fill figure. Figure courtesy of Drs. Mark Dunstan and Graeme Conn. 
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A2.2. Modelling TSR-RNA Interactions 
 
 The coordinates for the 58 nucleotide L11 binding domain rRNA (PDB: 1HC8) was 

modified at position 1061 to the wild type E. coli sequence (U1061). Docking experiments 

were carried out using the Hex program (http://www.csd.abdn.ac.uk/hex). Rigid-body 

prediction of the RNA (‘ligand’) was applied and oriented towards the cleft formed by the 

conserved C-terminal domains of the TSR dimer (‘receptor’). Both shape-only and shape-

electrostatics correalation algorithms were used with a search radius of N-30 and the top 10 

docking solutions inspected visually in Coot. 

 In Chapter 4, the non-conserved N-terminal recognition domain has a striking 

similarity to the yeast L30e-mRNA, an autoregulatory complex [204,205]. A critical Phe 

residue engages in aromatic ring stacking interaction and is proposed for TSR (Figure A2.2). 

For more details, please refer to Chapter 4 of the thesis. 

 

 
Figure A2. 2: Yeast L30e domain structure with RNA binding.  

(A) Alignment of L30e (red) and the TSR NTD (blue). (B) Structure of L30e-mRNA complex including the 
interaction between Phe85 and nucleotide G56. The equivalent position is found in Phe88 of TSR and is 
believed to play a role in RNA recognition. Figure courtesy of Drs. Mark Dunstan and Graeme Conn. 

A B 
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APPENDIX 3: GEOMETRIC DISTORTIONS IN HOMOLOGY 

MODELS 
 

 

A3.1. Geometric Distortions for TSRMonomer2 
 

 
 

Figure A3. 1: Geometric distortions for the homology model TSRMonomer2. 
Figure obtained from PROCHECK. 
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A3.2. Geometric Distortions for PrimeTSR 

 
Figure A3. 2: Geometric distortions for the homology model PrimeTSR. 

Figure obtained from PROCHECK. 
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A3.3. Geometric Distortions for TSRDimer 

 
Figure A3. 3: Geometric distortions for the homology model TSRDimer. 

Figure obtained from PROCHECK. 
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APPENDIX 4: MUTAGENESIS 

 
 
 Two different mutagenesis methods were utilized to obtain the mutants discussed in 

Chapter 4. Below is an overview of these two techniques. 

A4.1. QuikChangeTM  Site-Directed Mutagenesis 
 

 
Figure A4. 1: Overview of the QuikChangeTM site directed mutagenesis method. Adapted from Stratagene 

Closing Systems QuikchangeTM Site-Directed Mutagenesis Kit Manual. 
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A4.2. Splicing Overlap Extension Mutagenesis 

 
Figure A4. 2: Overview of splicing overlap extension site-mutagenesis method.  

Primers a and b are the external primers (T7 forward and reverse) and the internal primers contain the mutation. 
After the first two PCR amplifications, two pairs of separate strands. These strands are complementary at their 
3′ ends such that they can act as primers for one another and be extended by polymerase to give the full length 

product with the desired mutation. Adapted from: [261]. 
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A4.3. Mass Spectra of TSR Mutants 
 
 All molecular weights of TSR mutants were determined by positive ion electrospray 

mass spectrometry. In conjunction with sequencing results, the success of the mutation was 

confirmed. 

 

 
Figure A4. 3: Positive ion mode electrosrapy of S246A TSR′. 

The expected molecular weight is 29162 Da and the major peak indicates a monomeric weight of 29164 Da. 
The secondary peak with a mass of 29483 Da is S246A TSR′ is most likely two tris adducts bound to the 

protein. 
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Figure A4. 4: Positive ion mode electrosrapy of R135A TSR′. 

The expected molecular weight is 29097 Da and the major peak indicates a monomeric weight of 29095 Da. 
 

 

 
Figure A4. 5: Positive ion mode electrosrapy of R135K TSR′. 

The expected molecular weight is 29154 Da and the major peak indicates a monomeric weight of 29152 Da. 
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Figure A4. 6: Positive ion mode electrosrapy of N248A TSR′. 

The expected molecular weight is 29139 Da and the major peak indicates a monomeric weight of 29137 Da. 
 
 

 

 
Figure A4. 7: Positive ion mode electrosrapy of N248D TSR′. 

The expected molecular weight is 29183 Da and the major peak indicates a monomeric weight of 29181 Da. 
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A4.3. Preliminary CD and DSC of TSR Mutants 
 

Circular dichroism (CD) and differential scanning calorimetry (DSC) were applied to 

TSR′ and some of the mutants created. 

 

 
Figure A4.8: CD spectra of mutants S246A, R135A and R135K compared to the wildtype TSR′. 
 

 
Figure A4.9: Raw DSC data for a representative scan of wildtype TSR′ and S246A. 

The differences in the melting temperature was negligible (Tm = 42 °C). All scans were performed at 1 °C per 
minute in 20 mM Tris pH 7.5, 75 mM KCl, 10% glycerol. 
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APPENDIX 5: TS MODELLING SUPPLEMENT 
 

 
Please refer to Chapter 5 for full description of the methods used as well as discussion 

of these results. 

A5.1. Conformational Flexiblity of Thiostrepton 
 

 
Figure A5. 1: Superimposition of the 158 conformations determined in vacuo by LMOD calculations. 

31 structures are within 3 kcal/mol of the global minimum (yellow) [241]. 
 

 
Figure A5. 2: Superimposition of the 293 conformations determined in water by LMOD calculations. 

76 structures were within 3 kcal/mol of the global minimum the global minimum (yellow) [241]. 
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A5.2. Electronic Structure of Thiostrepton 
 

Table A5. 1:Mulliken charges determined by AM1 and B3LYP/6-31G(d), and B3LYP/6-31G(d) CHelpG¥ 
electrostatic fit charges on the AM1 geometry-optimized structure.   

These calculations were performed using Gaussian ’03γ, Revision B.05 (Gaussian Inc., Carnegie, Pennsylvania, 
USA). 

 
Atom  AM1 B3LYP/6-31G(d)//AM1  

 Mulliken CHelpG  

1  N -0.352167 -0.619568 -0.563028 
2  C 0.006034 -0.075297 0.305248 
3  C 0.289517 0.58477 0.432976 
4  O -0.370304 -0.525672 -0.42032 
5  C 0.022375 0.139182 0.276134 
6  O -0.351363 -0.655566 -0.756127 
7  C -0.256556 -0.506569 -0.17378 
8  H 0.228686 0.414575 0.467268 
9  H 0.084999 0.134171 0.045535 
10  H 0.09852 0.183527 0.002156 
11  H 0.091529 0.144382 0.056838 
12  H 0.252561 0.367186 0.223853 
13  H 0.163622 0.208362 0.060864 
14  H 0.097144 0.143858 -0.00819 
15  N -0.331103 -0.585358 -1.117211 
16  C -0.023976 -0.074879 0.151235 
17  C 0.305118 0.616213 0.668707 
18  O -0.3792 -0.538112 -0.575322 
19  C -0.129165 -0.072546 0.135886 
20  C -0.160893 -0.267452 0.11856 
21  C -0.214305 -0.466023 -0.214814 
22  C -0.210464 -0.441187 -0.284545 
23  H 0.123475 0.154224 0.002167 
24  H 0.077027 0.143471 0.064636 
25  H 0.073647 0.144927 0.07286 
26  H 0.079594 0.150967 0.070961 
27  H 0.075099 0.122773 -0.014265 
28  H 0.088221 0.132074 -0.008621 
29  H 0.117159 0.149345 -0.001124 
30  H 0.084484 0.146212 0.05262 
31  H 0.070102 0.137847 0.054952 
32  H 0.077237 0.160619 0.03253 
33  H 0.181 0.313428 0.385495 
34  N -0.350785 -0.588068 -0.7216 
35  C 0.013755 -0.045128 0.379551 
36  C 0.286223 0.612792 0.446957 
37  O -0.371745 -0.526963 -0.479551 
38  C -0.22442 -0.438573 -0.195089 
39  H 0.087966 0.150571 0.025855 
40  H 0.09229 0.1598 0.062797 
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41  H 0.09747 0.167124 0.064395 
42  H 0.135631 0.178097 0.025056 
43  H 0.246037 0.341645 0.340361 
44  N -0.311574 -0.683237 -0.412663 
45  C -0.007911 0.342595 0.143375 
46  C -0.226751 -0.405154 -0.365006 
47  C 0.336281 0.558196 0.517567 
48  O -0.380973 -0.54657 -0.491196 
49  H 0.258435 0.356162 0.259858 
50  H 0.129155 0.151623 0.12567 
51  H 0.153782 0.192305 0.187783 
52  N -0.353819 -0.610375 -0.461184 
53  C 0.028262 0.008151 0.005989 
54  C 0.299581 0.599133 0.707109 
55  O -0.387686 -0.545067 -0.532253 
56  C -0.232591 -0.454256 -0.174515 
57  H 0.141593 0.1868 0.134987 
58  H 0.08629 0.147363 0.020476 
59  H 0.091289 0.159493 0.063423 
60  H 0.10291 0.177281 0.079174 
61  H 0.248515 0.347774 0.27917 
62  N -0.303021 -0.703014 -0.270373 
63  C -0.010164 0.33687 0.031916 
64  C -0.228916 -0.399543 -0.336149 
65  C 0.336442 0.527427 0.5868 
66  O -0.352551 -0.510952 -0.48756 
67  H 0.126931 0.147695 0.111132 
68  H 0.16526 0.20552 0.196307 
69  H 0.266893 0.364916 0.211037 
70  N -0.309434 -0.678436 -0.434442 
71  C -0.008502 0.343192 0.138967 
72  C -0.230499 -0.403302 -0.397183 
73  C 0.329352 0.508971 0.65651 
74  N -0.423287 -0.734575 -0.88364 
75  O -0.372061 -0.516054 -0.52706 
76  H 0.123189 0.142454 0.127831 
77  H 0.163324 0.204566 0.200818 
78  H 0.261355 0.3594 0.276388 
79  H 0.236064 0.352084 0.417318 
80  H 0.229187 0.342803 0.379947 
81  C -0.31887 0.085217 0.077324 
82  N -0.074595 -0.482419 -0.387723 
83  S 0.574442 0.30574 0.015414 
84  C -0.143395 0.235038 0.155826 
85  C -0.410601 -0.355633 -0.185523 
86  C 0.388457 0.57239 0.512506 
87  O -0.373793 -0.54517 -0.544602 
88  H 0.203081 0.207832 0.178943 
89  C -0.08876 -0.146898 -0.183873 
90  C -0.201014 -0.503346 0.047626 
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91  C 0.009845 0.336852 0.171093 
92  N -0.295758 -0.677927 -0.470627 
93  S 0.148371 0.159361 -0.326665 
94  C -0.302612 -0.465707 0.368807 
95  O -0.374402 -0.519918 -0.551217 
96  C -0.091292 0.073604 0.213686 
97  C 0.31514 0.613653 0.480743 
98  N -0.195312 -0.453253 -0.33744 
99  C -0.067565 -0.059643 0.023003 
100  H 0.140467 0.175963 0.042732 
101  H 0.153914 0.218809 -0.004192 
102  H 0.127163 0.18204 -0.038015 
103  H 0.141771 0.174844 0.147858 
104  H 0.081908 0.145606 0.015107 
105  H 0.096383 0.166518 0.011053 
106  H 0.122977 0.210227 0.027394 
107  H 0.256745 0.369643 0.320041 
108  C 0.071754 -0.026359 -0.019104 
109  N -0.349417 -0.605611 -0.288052 
110  C 0.102522 0.292235 0.435062 
111  C -0.246569 -0.509138 -0.323818 
112  O -0.359267 -0.674945 -0.621238 
113  C 0.03468 0.139831 0.278114 
114  C -0.24927 -0.490755 -0.255528 
115  O -0.331386 -0.625805 -0.649792 
116  H 0.156812 0.210534 0.126883 
117  H 0.096796 0.167802 0.114104 
118  H 0.109218 0.182663 0.077056 
119  H 0.087219 0.163367 0.048583 
120  H 0.238733 0.431409 0.338772 
121  H 0.090438 0.126554 -0.017905 
122  H 0.208462 0.400763 0.416956 
123  H 0.075016 0.138158 0.061511 
124  H 0.091035 0.160542 0.077863 
125  H 0.097272 0.178222 0.075543 
126  H 0.255496 0.3645 0.130111 
127  C -0.334784 0.077851 0.287098 
128  N -0.108977 -0.509019 -0.338946 
129  S 0.607985 0.330382 0.041959 
130  C -0.1436 0.238941 0.06528 
131  C -0.411414 -0.352448 -0.168427 
132  C 0.378648 0.57787 0.465063 
133  O -0.359372 -0.531487 -0.513624 
134  H 0.20771 0.21824 0.187066 
135  C -0.066237 0.360793 0.108345 
136  N -0.108769 -0.490191 -0.44439 
137  C -0.460659 -0.382445 -0.147586 
138  C -0.325172 0.066449 0.284981 
139  S 0.612102 0.314244 -0.014194 
140  C 0.076371 -0.028693 -0.036867 
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141  N -0.355136 -0.639769 -0.263541 
142  C 0.015808 0.101609 0.602063 
143  C -0.22965 -0.445658 -0.433883 
144  O -0.257377 -0.492454 -0.406104 
145  H 0.184049 0.184694 0.154269 
146  H 0.156057 0.212638 0.091631 
147  H 0.247939 0.371067 0.128706 
148  H 0.150063 0.203895 -0.06366 
149  H 0.095655 0.165414 0.119103 
150  H 0.088757 0.151827 0.109747 
151  H 0.095706 0.159696 0.097631 
152  O -0.36768 -0.503129 -0.515478 
153  C 0.375883 0.626964 0.572422 
154  C -0.056883 0.215722 0.264367 
155  N -0.097484 -0.557185 -0.626767 
156  C -0.08693 -0.190749 -0.260902 
157  C -0.045166 0.275997 0.474352 
158  C 0.082633 0.015267 0.137451 
159  O -0.344105 -0.666863 -0.821057 
160  C -0.032887 0.102097 0.232055 
161  O -0.327255 -0.630239 -0.611948 
162  C -0.033188 0.101916 -0.19967 
163  C 0.064281 0.078707 0.288101 
164  C 0.020869 -0.001433 0.888636 
165  C -0.252933 -0.475406 -0.247186 
166  C -0.104973 -0.140642 0.002639 
167  C -0.141172 -0.151248 -0.309694 
168  H 0.231511 0.447755 0.540543 
169  H 0.141464 0.152046 0.083856 
170  H 0.135675 0.14335 0.101497 
171  H 0.208786 0.399641 0.400296 
172  H 0.075399 0.129607 0.05921 
173  H 0.093315 0.15295 0.045215 
174  H 0.115845 0.198136 0.073792 
175  H 0.086028 0.127358 -0.12007 
176  H 0.114023 0.159946 0.022336 
177  H 0.088904 0.137828 0.000981 
178  C 0.064245 0.331943 0.275663 
179  N -0.175111 -0.447054 -0.550133 
180  C -0.14907 -0.340031 -0.032554 
181  C 0.045553 -0.069485 0.334722 
182  C 0.147805 0.160264 0.475772 
183  C -0.191678 -0.347358 0.117068 
184  N -0.346008 -0.645303 -0.635003 
185  H 0.125125 0.183731 0.027389 
186  H 0.12109 0.183925 0.003618 
187  H 0.091053 0.152016 -0.063189 
188  H 0.136802 0.21317 -0.008683 
189  H 0.119882 0.158546 -0.044486 
190  H 0.273633 0.400005 0.245325 
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191  C -0.296514 0.030295 0.235025 
192  N -0.083721 -0.502695 -0.411808 
193  S 0.676178 0.349872 0.033063 
194  C -0.14796 0.242795 0.086123 
195  C -0.435118 -0.345172 -0.116866 
196  C 0.388806 0.595199 0.495742 
197  O -0.358482 -0.533198 -0.516732 
198  H 0.208311 0.21848 0.168987 
199  H 0.18885 0.203411 0.130667 
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V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; 
Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; 
Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; 
Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; 
Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, 
B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, 
A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A.; B.05 ed.; 2003: Pittsburgh PA, 
2003. 
 
 

A5.3. AM1-Geometry Optimized Thiostrepton Coordinates 
 

Table A5. 2: Coordinates for the AM1-geometry optimized structure of thiostrepton. 
Center 

Number 
Atomic 
Number 

Atomic 
type Coordinate (Å) 

   X Y Z 

1 7 0 -1.3897 -2.00276 3.033206 
2 6 0 -2.80567 -2.20288 3.185295 
3 6 0 -3.22718 -3.65405 2.833889 
4 8 0 -2.43404 -4.46175 2.313412 
5 6 0 -3.6183 -1.20595 2.307403 
6 8 0 -4.90463 -1.1391 2.911417 
7 6 0 -3.70689 -1.63914 0.858382 
8 1 0 -5.37196 -0.40374 2.49414 
9 1 0 -4.22802 -0.85834 0.250213 
10 1 0 -4.27682 -2.59409 0.758512 
11 1 0 -2.68196 -1.78557 0.440159 
12 1 0 -0.97219 -2.37429 2.209875 
13 1 0 -3.08623 -2.00297 4.267723 
14 1 0 -3.13773 -0.18583 2.366572 
15 7 0 -5.0132 4.966454 0.70799 
16 6 0 -5.31902 5.175837 -0.68729 
17 6 0 -4.05363 5.607467 -1.47818 
18 8 0 -3.92521 5.21949 -2.65669 
19 6 0 -6.46665 6.160048 -1.00943 
20 6 0 -6.38112 7.46743 -0.23731 
21 6 0 -7.79701 5.477615 -0.76105 
22 6 0 -7.12803 8.579338 -0.93116 
23 1 0 -5.61118 4.190975 -1.17057 
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24 1 0 -7.05324 9.520885 -0.33491 
25 1 0 -8.20837 8.321808 -1.04836 
26 1 0 -6.70062 8.769778 -1.94544 
27 1 0 -6.80329 7.328056 0.793733 
28 1 0 -5.30833 7.772964 -0.11985 
29 1 0 -6.38293 6.38842 -2.11156 
30 1 0 -8.63533 6.149519 -1.06621 
31 1 0 -7.9204 5.230676 0.32143 
32 1 0 -7.87178 4.529077 -1.34942 
33 1 0 -5.29174 5.745708 1.272049 
34 7 0 -3.12432 6.432447 -0.88067 
35 6 0 -1.80885 6.633214 -1.4401 
36 6 0 -0.72053 6.3387 -0.36832 
37 8 0 -0.87426 6.708202 0.812497 
38 6 0 -1.5626 8.065381 -1.91901 
39 1 0 -0.53741 8.131301 -2.35597 
40 1 0 -1.64232 8.789015 -1.07286 
41 1 0 -2.30727 8.342294 -2.703 
42 1 0 -1.69727 5.936997 -2.32747 
43 1 0 -3.21328 6.655389 0.086341 
44 7 0 0.412235 5.68397 -0.80632 
45 6 0 1.526781 5.36373 -0.01129 
46 6 0 1.872186 5.983146 1.133009 
47 6 0 2.37336 4.245405 -0.59242 
48 8 0 2.491454 4.111781 -1.82986 
49 1 0 0.454567 5.364694 -1.75234 
50 1 0 2.769246 5.701873 1.697741 
51 1 0 1.280416 6.80145 1.567679 
52 7 0 2.975685 3.386566 0.292626 
53 6 0 3.710389 2.230817 -0.16859 
54 6 0 3.843178 1.191778 0.977846 
55 8 0 4.303565 1.54292 2.083375 
56 6 0 5.13323 2.540051 -0.6389 
57 1 0 3.132741 1.798188 -1.04469 
58 1 0 5.611768 1.595322 -0.99207 
59 1 0 5.745734 2.966107 0.191166 
60 1 0 5.10082 3.269239 -1.48433 
61 1 0 2.905597 3.530548 1.273217 
62 7 0 11.02277 -1.74683 -1.28445 
63 6 0 12.40456 -1.51018 -1.2966 
64 6 0 13.30789 -2.04824 -2.13782 
65 6 0 12.85768 -0.57053 -0.19178 
66 8 0 12.43507 -0.69739 0.972583 
67 1 0 14.37456 -1.80164 -2.06754 
68 1 0 13.03847 -2.75983 -2.93148 
69 1 0 10.55013 -1.49068 -0.44171 
70 7 0 13.75807 0.40802 -0.57228 
71 6 0 14.30599 1.387168 0.270003 
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72 6 0 13.87948 1.700006 1.508332 
73 6 0 15.45591 2.145081 -0.36409 
74 7 0 16.51897 2.473258 0.433223 
75 8 0 15.44726 2.451095 -1.57461 
76 1 0 14.35901 2.490455 2.098237 
77 1 0 13.03207 1.196737 1.995692 
78 1 0 13.99689 0.485696 -1.54058 
79 1 0 17.27711 2.980277 0.048626 
80 1 0 16.54463 2.21325 1.38508 
81 6 0 2.765874 -1.29564 2.69111 
82 7 0 1.444195 -1.41962 2.568628 
83 16 0 3.317496 -1.18059 4.324473 
84 6 0 0.865348 -1.43515 3.833992 
85 6 0 1.76862 -1.31232 4.891535 
86 6 0 -0.59894 -1.5577 4.073553 
87 8 0 -1.08378 -1.24942 5.182304 
88 1 0 1.466543 -1.29464 5.940361 
89 6 0 -4.74854 -6.43622 3.097092 
90 6 0 -3.61695 -6.73692 3.987537 
91 6 0 -5.14109 -5.18852 2.736549 
92 7 0 -4.52203 -4.00537 3.198194 
93 16 0 -7.30629 -6.45579 1.541404 
94 6 0 -8.3875 -5.53785 0.45849 
95 8 0 -8.39145 -4.1043 -1.90741 
96 6 0 -6.3124 -5.04551 1.839102 
97 6 0 -7.73926 -3.56395 -0.99167 
98 7 0 -6.67152 -3.94094 1.253584 
99 6 0 -7.87892 -4.0785 0.455125 
100 1 0 -8.6643 -3.41238 0.929598 
101 1 0 -8.36929 -5.98047 -0.56653 
102 1 0 -9.43121 -5.58856 0.843562 
103 1 0 -5.29149 -7.3089 2.68865 
104 1 0 -3.57465 -7.82836 4.222271 
105 1 0 -3.70136 -6.16834 4.948119 
106 1 0 -2.65314 -6.43672 3.495198 
107 1 0 -5.14713 -3.24671 3.395509 
108 6 0 -6.82579 -1.86932 -2.529 
109 7 0 -6.9734 -2.4407 -1.21124 
110 6 0 -6.72254 -0.30534 -2.47635 
111 6 0 -6.4584 0.25163 -3.86671 
112 8 0 -5.72268 0.105509 -1.55127 
113 6 0 -8.0497 0.270281 -1.90848 
114 6 0 -8.00723 1.780904 -1.76897 
115 8 0 -9.07093 -0.13691 -2.81202 
116 1 0 -7.76169 -2.10818 -3.1273 
117 1 0 -6.29789 1.355592 -3.80115 
118 1 0 -7.3405 0.051394 -4.52179 
119 1 0 -5.54857 -0.2028 -4.32365 
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120 1 0 -4.86132 0.005659 -1.97697 
121 1 0 -8.24264 -0.18311 -0.89535 
122 1 0 -9.89614 0.236289 -2.48075 
123 1 0 -8.91044 2.138463 -1.21835 
124 1 0 -7.98728 2.272557 -2.7708 
125 1 0 -7.09322 2.0773 -1.19642 
126 1 0 -6.33384 -2.11788 -0.51853 
127 6 0 -5.64377 -2.46562 -3.25871 
128 7 0 -4.37299 -2.26003 -2.90559 
129 16 0 -5.83895 -3.52756 -4.59633 
130 6 0 -3.53425 -2.95987 -3.76312 
131 6 0 -4.19835 -3.70335 -4.7421 
132 6 0 -2.0485 -2.88295 -3.68852 
133 8 0 -1.34791 -3.35968 -4.60374 
134 1 0 -3.68145 -4.30433 -5.49338 
135 6 0 2.279703 -2.81244 0.076696 
136 7 0 1.857378 -2.06101 -1.00952 
137 6 0 1.375611 -3.79475 0.483822 
138 6 0 0.63915 -2.46892 -1.38746 
139 16 0 0.010852 -3.76773 -0.46036 
140 6 0 -0.10795 -1.86599 -2.55266 
141 7 0 -1.48676 -2.30468 -2.56066 
142 6 0 0.036793 -0.31609 -2.55701 
143 6 0 -0.42292 0.276448 -3.87567 
144 8 0 -0.82417 0.226783 -1.53298 
145 1 0 1.531461 -4.48377 1.311801 
146 1 0 0.397116 -2.2367 -3.50238 
147 1 0 -2.08262 -1.82058 -1.92269 
148 1 0 1.11199 -0.04344 -2.36753 
149 1 0 -0.23561 1.377263 -3.87978 
150 1 0 -1.51461 0.106699 -4.03241 
151 1 0 0.145057 -0.1933 -4.71384 
152 8 0 0.963241 1.102618 -0.50331 
153 6 0 -0.26517 0.987711 -0.55007 
154 6 0 -1.22048 1.617008 0.405624 
155 7 0 -2.53964 1.711484 0.106488 
156 6 0 -0.66332 2.129447 1.594495 
157 6 0 -3.34094 2.304862 1.011517 
158 6 0 -4.81089 2.462329 0.656464 
159 8 0 -5.55325 1.353764 1.147286 
160 6 0 -1.50331 2.739476 2.535072 
161 8 0 0.426183 2.911557 3.897083 
162 6 0 -2.87972 2.800199 2.265591 
163 6 0 -0.9321 3.334474 3.790302 
164 6 0 -5.43761 3.718556 1.32797 
165 6 0 -1.01691 4.853846 3.766436 
166 6 0 -3.85612 3.334571 3.200075 
167 6 0 -5.06296 3.746772 2.788703 
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168 1 0 -5.55349 0.685511 0.448329 
169 1 0 -3.57126 3.356822 4.264589 
170 1 0 -5.82395 4.130736 3.481214 
171 1 0 0.779285 3.329015 4.691461 
172 1 0 -0.56988 5.273125 4.699272 
173 1 0 -2.08375 5.174583 3.698742 
174 1 0 -0.46581 5.269572 2.885869 
175 1 0 -6.56146 3.576278 1.246741 
176 1 0 -4.92495 2.515885 -0.46521 
177 1 0 -1.5009 2.929632 4.679418 
178 6 0 5.833975 -2.25461 -0.06958 
179 7 0 4.682952 -2.8262 -0.22305 
180 6 0 6.224301 -1.31161 1.034696 
181 6 0 3.618424 -2.61093 0.731677 
182 6 0 3.736203 -1.24272 1.526492 
183 6 0 5.171762 -1.25266 2.120887 
184 7 0 3.516294 -0.10951 0.654335 
185 1 0 7.200589 -1.63492 1.484892 
186 1 0 6.380038 -0.29144 0.588619 
187 1 0 5.263454 -2.15233 2.78596 
188 1 0 5.334681 -0.33619 2.750209 
189 1 0 3.713796 -3.42266 1.521147 
190 1 0 2.851818 -0.23337 -0.08243 
191 6 0 6.873534 -2.52664 -1.08109 
192 7 0 8.166961 -2.19942 -0.94401 
193 16 0 6.492875 -3.30619 -2.56597 
194 6 0 8.855399 -2.59672 -2.07791 
195 6 0 8.062614 -3.21729 -3.05349 
196 6 0 10.31861 -2.40099 -2.28221 
197 8 0 10.85496 -2.80843 -3.3315 
198 1 0 8.467836 -3.58124 -4.00095 
199 1 0 0.42206 2.049002 1.7774 

 
 
 


