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Abstract

This thesis introduces an original mathematical theory for a new kind of asymp-
totic expansion of real-analytic functions of two variables. The Dual Asymptotic
Ezpansion (DAE) expresses a bivariate function asymptotically as a sum of prod-
ucts of univariate functions: the series is asymptotic in the univariate sense as each
variable approaches its limiting value while the other variable remains fixed.

The DAE exists to infinitely many terms at almost every expansion point where
the function is analytic; the set of exceptional points has Lebesgue measure zero.
The terms of a DAE are uniquely determined by the choice of expansion point, and
usually contain nonpolynomial functions. DAE'’s can approximate special functions
by series of elementary functions with better accuracy than comparable Taylor or
Padé approximations.

The thesis presents several applications and includes a small implementation of
DAE methods in the MAPLE 5.4 computer algebra system.
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Chapter 1
Introduction

This chapter begins with a brief explanation of the thesis topic. After discussing
the motivation behind the thesis and giving an overview of the organization of the
thesis, the chapter ends by introducing some terminology and notation that will be
heavily used for the remainder of the thesis.

1.1 Thesis Topic

This thesis introduces an original mathematical theory for a new kind of asymptotic
expansion of real-analytic functions of two variables. If f(z,y) is a real-analytic
function on some open rectangle, and (a,b) is a point in its domain. the dual
asymptotic expansion of f(z.y) at (a,b) is a series expansion of the form

flz.y) ~ Zg"(x)h ) (1.1)

where the series (1.1) satisfies both of the following two conditions:

1. The series is an asymptotic expansion of f(z,y) as £ — a for each fixed y.

2. The series is an asymptotic expansion of f(z,y) as y — b for each fixed z.

This duality between the roles of the two independent variables gives dual
asymptotic expansions a number of special properties that are not shared by or-
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dinary univariate asymptotic expansions, or even by univariate expansions with a
parameter. For example, in some cases, a given univariate function may have no
meaningful asymptotic expansion at all with respect to a particular asymptotic se-
quence; in other cases, there may be several different asymptotic sequences which
yield meaningful asymptotic expansions of the same function. In contrast, a given
bivariate function has exactly one dual asymptotic expansion to any desired num-
ber of terms at almost every expansion point in its domain. In fact, the terms of the
dual asymptotic expansion are completely determined by the function f(z,y) and
point (a.b) alone, and can always be computed explicitly by a very straightforward
algorithm.

Does the characterization above sound familiar? Bivariate Taylor series are
also completely determined by the choice of analytic function f(z.y) and point
(a.b), and can always be computed explicitly by a straightforward algorithm. The
reader may argue that since the Taylor series at (a. b) always represents the analytic
function f(z.y) in a neighborhood of (a.b). and since every convergent Taylor series
is also an asymptotic expansion, there is nothing to be gained by introducing a new
kind of series expansion.

While it is true that Taylor series provide a canonical representation of analytic
functions (by their very definition), it is not necessarily the most desirable repre-
sentation for every conceivable purpose. For example, Padé approximations (i.e..
rational function approximations which interpolate the derivatives of a function at
a point up to some specified order), are better approximations of analytic functions
with nearby singularities than the corresponding Taylor approximations.

Unlike Taylor series, the terms of a dual asymptotic expansion can contain non-
polynomial functions such as rational functions. algebraic functions, elementary
transcendental functions, and even special functions. Series of nonpolynomial func-
tions can have very different qualitative properties than power series and rational
approximations. Due to these qualitative differences, dual asymptotic expansions
will be 2 more favorable choice for some applications than either Taylor series or
Padé approximations. For example, later in the thesis, we will see that the error
function erf(z) can be approximated more accurately near z = 0 by an approxi-
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mation derived from a dual asymptotic expansion than it can by a Taylor approxi-
mation — or even a Padé approximation — with a comparable number of nonzero
terms.

In short, by working with series whose terms come from a more general class
of functions than polynomials, we open ourselves to many new and interesting

possibilities.

1.2 Thesis Motivation

A major distinguishing characteristic of dual asymptotic expansions is the consid-
erable generality of the terms of the series. The reader may object to this, saying
that there are good, historical reasons for the use of polynomial and rational func-
tion approximations; such functions can be efficiently computed using nothing more
than elementary arithmetic operations. The author will agree with this observa-
tion. but will also point out that advances in computational hardware have rede-
fined and enlarged the scope of primitive mathematical operations. For well over
a decade, even desktop computers have possessed specialized numeric coprocessors
which implement the standard elementary transcendental functions in hardware;
consequently, these functions can be computed with the speed and accuracy of the
basic arithmetic operations.

Furthermore, with the advent of sophisticated computer algebra systems such
as MAPLE, it has become feasible to perform algebraic manipulations with closed-
form expressions far more general than either polynomials or rational functions.
Indeed the very paradigm of scientific computation has changed as a result of these
developments. For example, we are no longer limited to a single. fixed numerical
method for a given class of problems, but can perform symbolic preprocessing in
a computer algebra system to develop a numerical method that is customized for
a particular problem. The methods of the thesis embrace this new paradigm of
hybrid symbolic-numerical computation.

In short, thanks to advances in both computer hardware and computer software,
it is feasible to move beyond the classical approximation schemes and embrace
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methods of considerably greater generality.

1.3 Integral Representations

Although dual asymptotic expansions have a variety of applications, there is one
application in particular which has provided the impetus for the development of
much of the underlying theory: the approximation via asymptotic methods of ana-
lytic functions represented by integrals. Indeed. the asymptotic analysis of integrals
is sufficiently important that entire books have been devoted to the subject — for
example. [Ble-Han]. According to [Ble-Han, p. vii|], the class of functions repre-
sented by integrals is much broader than it may appear at first glance. Some of the

reasons for this are listed below:

1. Many large classes of functions which arise frequently in applied analysis can
be represented naturally by integrals. including:

e The probability distribution function for any continuous random variable
X, which is defined by the indefinite integral

Pr{X <z} =/_I o(t) dt,

where ¢ is the probability density function for X. (A list of density
functions can be found in [Abr-Ste. Chapter 26] and [EDM. Volume 2.
Appendix A, Table 22].)

e The class of linear integral transforms

b
Lifls) = [ K(s.6) f(t)at,

which includes the Fourier transform, Laplace transform, sine transform,
cosine transform, Hankel transform, Mellin transform, Stieltjes trans-
form, and Hilbert transform as important special cases.
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e The Green’s function representations

b
u(z) = [ Glz.y) f(y) dy

of solutions to boundary-value problems, which arise naturally in many
physical applications from thermodynamics, electrodynamics, classical
mechanics, quantum mechanics, and fluid mechanics ([Byr-Ful, Volume
2. Chapter 7], [Stakgold, Chapter 1], [Cho-Mar]).

e The Cauchy integrals

flz) = - /C L)

21 w—2z

which are useful for solving boundary-value problems and constructing
conformal mappings in the complex plane, and also have important ap-
plications to airfoils. elasticity. and digital signal processing ([Henrici86,
Chapter 14]}).

2. Many of the important standard functions of applied analysis have well-known
integral representations: for an extensive list of specific examples, please refer
to Appendix B.

3. Many of the special functions listed in Appendix B arise as eigenfunctions of
Sturm-Liouville problems. The techniques used to derive integral represen-
tations for these functions are fairly systematic and can be applied to other
Sturm-Liouville problems as well. (One basic idea is to find a generating
function for the sequence of eigenfunctions, expand the generating function
in a Laurent series, and use complex contour integrals to derive integral rep-

resentations for the coefficients.)

4. In general, integral representations for many functions which satisfy a lin-
ear ordinary differential equation can be derived using systematic techniques
based on linear integral transforms. For a detailed discussion of these tech-
niques, see [Ince, Chapters 8 and 18].
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Hence, the class of functions which can be represented by integrals contains a
vast collection of functions of genuine interest. Since dual asymptotic expansions
are extremely well-suited to approximating functions represented by integrals, the
computational methods presented by the thesis have great practical value.

1.4 Organization of the Thesis

Since the thesis depends heavily on the properties of analytic functions, Chapter 2
is devoted to this topic, and contains not only standard results. but a number of
original results as well. Chapter 3 consists largely of standard material on asymp-
totic expansions of functions of one variable, but has been rewritten from a new
point of view that is better suited to the purposes of the thesis. Chapter 4 contin-
ues in this vein, treating asymptotic expansions of functions with one independent
variable and one parameter. This provides a natural stepping-stone to Chapter 5,
which formally introduces dual asymptotic expansions, and develops many of their
fundamental properties, including uniqueness and a necessary condition for exis-
tence. Chapter 6 develops a sufficient condition for existence in terms of a nonlinear
operator that is fundamental to the theory of dual asymptotic expansions; this op-
erator also provides a straightforward algorithm for computing the terms of a dual
asymptotic expansion explicitly. Chapter 7 presents several practical applications
of the theory of dual asymptotic expansions. and Chapter 8 concludes the thesis
with a look at what lies ahead.

1.5 Terminology and Notation

The purpose of this section is to establish some conventions for the basic mathemat-
ical terminology and notation used throughout the thesis. Most of these conventions
are based on common mathematical usage, and the underlying ideas are assumed
to be familiar to the reader. More specialized terminology and notation specific to
the thesis will be introduced in the body of the thesis when the need arises.
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1.5.1 Numbers, Intervals, and Neighborhoods

Throughout the thesis, the natural numbers are denoted by N, and consist of the
nonnegative integers; thus, 0 € N. The real numbers and complex numbers are
denoted by R and C, respectively. The extended real numbers are the elements
of the set

R=RU{ - . +oc},

and the topology of R is the usual two-point compactification of the reals. For
any subset 4 C R. the closure A and boundary 9A are formed with respect to
the topology of R. Since by construction. the extended reals are the closure of the
reals, the notation R is consistent.

Let a.b € R satisfy a < b. The open interval (a.b) is the set

(a.b)y={reR|a<r<b}

This definition allows open intervals to be either bounded or unbounded. The context
in which the notation (a. b) is used will distinguish the open interval (a.b) C R from
the point (a,b) € R?. Note that every open interval is a connected open subset of
R; the converse is also true. If a,b € R satisfy a < b, the closed interval [a. 8] is
the set.

[a.bll={reR|a<r<b}

This definition forces closed intervals to be bounded subsets of R, hence compact in
R. Note that the strict inequality a < b ensures that intervals are always nonempty
sets.

Let A.B C R be arbitrary sets. A neighborhood of a point a € A is any
open interval I such that a € I C A. Note that if A is an open interval, then
A is automatically a neighborhood of every one of its points, by definition. A
deleted neighborhood of a point a € A is a set of the form I — {a}, where I is
a neighborhood of a. If I and J are open intervals, the set I x J C R? is called an
open rectangle. A rectangular neighborhood of a point (a,b) € A x B is any
open rectangle I x J such that (a,b) € I x J C A x B; note that I is therefore a
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neighborhood of a, and J is a neighborhood of b.

1.5.2 Functions

For the sake of clarity, the number zero is denoted by 0, whereas the zero func-
tion on a set () is denoted by 0q. If f is an arbitrary real- or complex-valued
function with domain §2, the relation f = Oq means that f is identically zero on
Q. The relation f # Oq means that f assumes at least one nonzero value on Q. If
W C Q, the restriction of f to W is'denoted by f| W. The relation f| W = Ow
means that f is identically zero on W.

Let Q C R"™ be an open set. The space of real-analytic functions on (2 is
denoted by C¥(2,R). If Q@ C C" is an open set, the space of complex-analytic
functions on  is denoted by C¥(€.C). Since the thesis is concerned primarily
with real-valued functions, C¥(Q2,R) will usually be shortened to C*(2). Similarly,
the space of continuous real-valued functions on ( is denoted simply by
C(9).

Remark 1.1 Throughout the thesis, the sets A and B will always denote open
intervals; therefore. A. B, and A x B will always be connected open sets. Further-
more, Q0 will nearly always be an open interval in R or an open rectangle in R2,
and will usually be one of A, B, or A x B.

Note that when 2 is an open interval (such as A or B), the elements of C“(f2)
are real-analytic functions of one variable, but when (2 is an open rectangle (such
as A x B), the elements of C¥(2) are real-analytic functions of two variables. In the
two-variable case, it is important to note that the elements of C¥({2) are enalytic in
both variables jointly, not merely analytic in each individual variable alone. Similar
observations apply to the elements of the function space C(§2) when 2 is an open
interval or open rectangle.

The space of all real-valued functions on 2 is denoted by R®. The elements
of R? are arbitrary functions, with no restrictions; thus, f € R® if and only if
f : Q& — R. The set of all functions from {} into the extended reals is
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denoted by R®. Note that R" is a purely set-theoretic construct, and does not

have the structure of a linear space.

1.5.3 Operators

For purposes of the thesis, operators are defined with minimal structure in a purely
set-theoretic sense: an operator is any mapping from a set of functions into a set
of functions. It is not assumed that these sets of functions are linear spaces. nor
that the operator itself is linear. For example. a mapping such as

=AxB

¥:C¥(Ax B) =R

constitutes an operator under this definition.

In order to improve the readability of complicated expressions involving opera-
tors, square brackets are used to denote operator evaluation, and round brack-
ets are used to denote function evaluation. For example. when the operator ¥ is
applied to a function f € C¥(A x B), the resulting function in R**? is denoted by
¥(f]. When the function ¥(f] is applied to a point (a.b) € A x B, the resulting
value in R is denoted by ¥[f](a.b).



Chapter 2

Real- and Complex-Analytic

Functions

This chapter begins by summarizing some useful standard results for real- and
complex-analytic functions of one or several variables, and ends by developing some
additional results that are specific to the thesis. All of these results will prove to
be of fundamental importance in subsequent chapters.

It is assumed that the reader is familiar with the definitions and elementary
properties of real- and complex-analytic functions of one or several variables. The
theory of complex-analytic functions of one variable is treated extensively in
[Conway], in [Knopp45], [Knopp47], and in [Henrici74], [Henrici77], [Henrici86].
A combined treatment of the theories of real- and complex-analytic functions of
one or several variables can be found in [Cartan]. A concise introduction to the
theories of real- and complex-analytic functions of several variables can be found
in (John, pp. 61-72].

2.1 Standard Results

This section discusses two general classes of well-known properties of analytic func-
tions: the unique continuation of real- or complex-analytic functions into overlap-
ping domains, and the extension of real-analytic functions into the complex domain.

10
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2.1.1 The Unique Continuation Property

Both real- and complex-analytic functions on a connected open set enjoy a number
of special properties which will be used heavily throughout the thesis. The most
important of these is the Unique Continuation Property, which has many useful
consequences. The properties which concern us are summarized in the following
two propositions, whose proofs can be found in [Cartan, pp. 39-41, 122], [Conway,
pp- 78-79], and [Knopp45, pp. 87-90, 92-96].

For the sake of brevity, let F denote either R or C in the two propositions
below. This will allow us to state the results for both function spaces C¥(f2.R) and
C¥(Q2. C) simultaneously.

The first proposition describes properties which are specific to real- and complex-
analytic functions of one variable.

Proposition 2.1 Let Q CF be a connected open set. and let f € C¥ (1 F).

1. If the zeros of f have a limit point in Q. then f = Oq.
2. If f #0q and f(a) =0 for a € Q. then a is an isolated zero of f.

3. If f # 0q and f(a) = 0 for a € Q. then there is a unique integer m > 1 and
a unique function g € C¥(Q, F) such that g(a) # 0 and f(z) = (z — a)™ g(z)
foralz e Q.

Proposition 2.1 enables us to define the notion of multiplicity for univariate
functions. Later in the chapter, we will consider a generalization of multiplicity for
bivariate functions.

Definition 2.2 If f # 0q and f(a) = 0 fora € Q, the positive integer m guaranteed
by item 3 of Proposition 2.1 is called the multiplicity of the root a. If f (a) #0,
we say that a has multiplicity zero.

Thus, multiplicity is defined at every point of Q if f # 0q, and undefined at
every point of  if f = 0q.
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Remark 2.3 As a consequence of Proposition 2.1 and Definition 2.2, every func-
tion f € C¥(QQ,F) with f # 0q can be written es

f(z)=(x —a)"g(z) forallz € Q

for some function g € C*(Q.F) with g{a) # 0, where m € N is the multiplicity of
the point a € Q.

The second proposition describes properties which apply to real- and complex-

analytic functions of one or several variables.

Proposition 2.4 Let Q C F* be a connected open set, let W C Q be any nonempty
open subset. and let f.g € C¥(QA.F).

1. If f| W =0y, then f = 0q.
2. IffIW =g| W, then f =g.
3. If f-9g=0q then f =0q or g = 0q.

Remark 2.5 Jtems 1 and 2 of Proposition 2.4 (which are clearly equivalent) are
called the Unique Continuation Property. Item 3 implies that the function
ring C* (0, F) has no divisors of zero, and is therefore an integral domain.

2.1.2 Complex Extensions of Real-Analytic Functions

We can develop real-analytic counterparts for many of the results of complex-
analytic function theory simply by extending real-analytic functions to the complex
domain. The following proposition extends a real-analytic function of one variable

to a complex-analytic function.

Proposition 2.6 If 2 C R is a connected open set and f € C*(,R), then there
ezist a connected open set Q! C C and a unique function f € C’“’(Q,C) such that
QcQand fIQ=f.
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The next proposition, which is based on the material in [John, pp. 61-72],
extends a real-analytic function of several variables to a complex-analytic function.

Proposition 2.7 Let Q C R™ be a connected open set, and let f € C“(Q,R). If
K C <) is a nonempty compact subset, then there erist a connected open set ) C C*
and a unique function f € C*(Q.C) such that K C  and flIK=f|K.

The peculiar feature of the previous result is that it actually provides a complex-

£ ehne tlhhae dlom il Lo _us .. ¢
"“&1}1’;;3 oxteonsion Cf J IK Tataner thnaii i€ ori igiiias function J-

2.2 Thesis-Specific Results

This section presents some original results of a more specialized nature. After de-
veloping some decomposition theorems for real-analytic functions of two variables,
we will apply these decomposition theorems to develop some of the mathematical
machinery needed later in the thesis.

2.2.1 Decomposition Theorems

Recall that A C R and B C R always denote open intervals, and that C¥(f) is an
abbreviated notation for C¥(2.R). Given an arbitrary point a € A. Remark 2.3
implies that every function f € C¥(A) with f # 04 admits a decomposition

flz)=(zr—a)"g(z) for all z € A,

where the function g € C“(A) is unique and satisfies g(a) # 0, and m € N is the
multiplicity of the point a as defined by Definition 2.2.

The goal of this section is to develop a similar decomposition for real-analytic
functions of two variables. The key to achieving this goal is to adopt a suitable bi-
variate generalization of zeros and their multiplicities. We begin with the following
definition, which applies to arbitrary functions of two variables.
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Definition 2.8 Assume f : A x B — R, and let (a.b) € A x B. We say that

f(z.y) vanishes on z =a if
f(a,y) =0 for ally € B;

in this case, we call z = a a vanishing line of f(z.y). Similarly, we say that

f(z.y) vanishes on y =05 if
f(z.b) =0 for all x € A,

and we call y = b a vanishing line of f(z.y).

These wvanishing lines are the bivariate analogues of the zeros of univariate
functions. Using the above terminology, we can now state the first of several de-
composition theorems for analytic functions of two variables.

Theorem 2.9 Assume f € C“(A x B) satisfies f # 0axp, and let a € A. There
erist a unique m € N and unique g € C¥(A x B) such that

flz.y) =(z —a)"g(z.y) for all (z.y) € Ax B.

subject to the restriction that g(z.y) does not vanish on r = a.

Remark 2.10 This result lies at the very foundation of the thesis. Since the author
has not encountered the result elsewhere in the mathematical literature, a complete
and rigorous proof is included in the thests. Due to its atypically long and technical
nature, the proof of Theorem 2.9 has been placed in Appendiz A.

Although Decomposition Theorem 2.9 is stated in terms of the variable =, an
obvious corollary in terms of the variable y can be obtained simply by interchanging
the roles of z and y.

Corollary 2.11 Assume f € C¥(A x B) satisfies f # 0axp, and let b € B. There
erist a unique n € N and unique g € C“(A x B) such that

f(z,y) = (y—b)"g(z,y) for all (z,y) € Ax B,
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subject to the restriction that g(z,y) does not vanish on y = b.

Both Theorem 2.9 and Corollary 2.11 are asymmetric in the sense that each
result focuses on only one of the two variables. The following theorem combines
the two previous results into a Symmetric Decomposition Theorem for analytic

functions of two variables.

Theorem 2.12 Assume f € C“(A X B) satisfies f # 04xp5, and let (a,b) € Ax B.

There etist unique m.n € N and a unigue f € CY“(A x B) such that
flz.y) = (z = a)™ (y - b)" f(z.y) for all (z.y) € A x B, (2.1)
subject to the restriction that f(z.y) does not vanish on either T = a or y=>b.
Proof. We will prove existence first, and then uniqueness.
Existence. By Theorem 2.9, there exist m € N and g € C¥(A x B) such that
flz.y) =(x —a)"g(z.y) for all (z.y) € A x B, (2.2)

with the proviso that g(z,y) does not vanish on z = a. Consequently, ¢ # 04x35.
and Corollary 2.11 implies there exist n € N and h € C“(A x B) such that

g9(z.y) = (y — b)"h(z,y) for all (z,y) € A x B, (2.3)

with the proviso that h(z, y) does not vanish on y = b. Equation (2.3) implies that
h(z,y) does not vanish on r = a either, since otherwise g(z,y) would vanish on
z = a. Let f = h, and substitute (2.3) into (2.2) to obtain (2.1).

Uniqueness. Assume that i € {1,2} throughout the proof. Suppose that
m;,n; € N and f; € C¥(A x B) are such that

f(z,y) = (z—a)™ (y — b)™ fi(z,y) for all (z,y) € A x B, (2.4)
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with the proviso that f}(z:, y) does not vanish on either z = a or y = b. Define
9: € C“(Ax B) by

gi(z,y) = (y ~ )™ fi(z,y) for all (z,y) € A x B, (2.5)

and note that g;(z.y) does not vanish on z = a, since otherwise fi(x.y) would
vanish on z = a. We can rewrite (2.4) as

flz.y) =(z—a)™gi(x,y) forall ( y) € A x B.
By Theorem 2.9. m; = m; and g; = g,. Denote g; simply by g, and rewrite (2.5)

as
9(z.y) = (y - O™ fiz,y) for all (z,y) € A x B.

Since g # 0,4« p, Corollary 2.11 implies that n, = n, and fl =f,.0

The existence part of the previous proof constructed suitable m.n € N and
feC“(Ax B) by applying Theorem 2.9 first and Corollary 2.11 second. Another
possible construction would apply Corollary 2.11 first and Theorem 2.9 second. The
uniqueness portion of the proof shows that all constructions must yield the same
result.

Example 2.13 What is the symmetric decomposition of sin(zy) at (0.0)? For all

t € R, define
sin(t)

ift #0

sinc(t) =
1 ift =0.

The sinc function is real-analytic on the entire real line since sin(t)/t has a remov-
able singularity at t = 0. In addition, sinc(zy) does not vanish on either £ = 0 or

y = 0 since sinc(0) = 1. Hence, the symmetric decomposition is

sin(zy) = ' - y! - sinc(zy).
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We are now in a position to define the notion of multiplicity for analytic func-
tions of two variables.

Definition 2.14 Assume f € C“(Ax B) satisfies f # 0axp, and let (a,b) € Ax B.
Ifm.n € N denote the unique values guaranteed by Symmetric Decomposition The-
orem 2.12, we call m the multiplicity of the line r = a, and n the multiplicity
of the line y =b.

Example 2.15 For sin(zy), Ezample 2.13 implies the vanishing lines z = 0 and
y = 0 both have multiplicity one.

Recall the analogy between the zeros of univariate functions and the vanishing
lines of bivariate functions. A point in the domain of a univariate function is a zero
if and only if its multiplicity is positive. In the bivariate case. £ = a is a vanishing
line of f(z.y) if and only if its multiplicity m > 0. Similarly, y = b is a vanishing
line of f(z.y) if and only if its multiplicity n > 0. Thus. the bivariate notion of

multiplicity is analogous to its univariate counterpart in every way.

2.2.2 Division Theorem

This section discusses an idea which can be informally described as “division in the
limit.” The essence of the idea is that an analytic function of two variables can
be divided by an analytic function of the first variable to produce, in the limit. an
analytic function of the second variable. The theorem presented below will make
this idea more precise.

The following definition explains what it means for a limit to be uniform in a

pararneter.

Definition 2.16 Assume f: Ax B — R and g : B — R are arbitrary functions.
Let a € A, and let [by,bs] C B be any closed subinterval. We say that the limit

lim f(z,y) = g9(y)
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ts uniform in y for y € [by,b,] if for every e > 0, there is a deleted neighborhood
I. — {a} such that the inequality

[f(z.y) —g(y)l <=
holds fOT all (I?y) € (Ie - {a}) x [bl,bQ].

The following Division Theorem is an important and useful consequence of

Decomposition Theorem 2.9.

Theorem 2.17 Assume f € C¥(A x B) and g € C¥(A), with ¢ # 04. Let a € A.
let J C B be any open subinterval, and let by, by] C B be any closed subinterval. If
the limit

e flzy)
h(y) = lim (@) (2.6)

exists for all y € J. then all of the following conclusions hold:

1. the limit erists for all y € B
2. the function h € C“(B)
3. the limit is uniform in y for y € [by, by].

Proof. If f = 0..p, then all three conclusions follow trivially. Suppose that
f # 0axp. By Decomposition Theorem 2.9, there exist m € N and f € C¥(A x B)
such that

f(z,y) = (z — &)™ f(z,y) for all (r,y) € Ax B, (2.7)

with the proviso that f (z,y) does not vanish on z = a. Similarly, by Remark 2.3,
there exist n € N and § € C¥(A) such that

g(z) = (z — a)" g(z) for all z € A4, (2.8)

where g(a) # 0.
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Define an open rectangle R = A x J. Since f(z, y) does not vanish on r = a,
the restriction f | R(z,y) also does not vanish on z = a (see Proposition A.l in
Appendix A). This implies that f (a.b) # 0 for some b € J.

Since b € J, limit (2.6) exists for y = b. If m < n, applying decompositions
(2.7) and (2.8) to limit (2.6) for y = b yields

h(b)

lim £(%:0)

z—a g(z) _

. (z—a)™ f(z.b)
2 T d()
lim f(z.b)

22— oy (a)

1

which does not ezist, since in the limit as z — a. the numerator f(a.b) # 0, but

the denominator 0™ g(a) = 0. Consequently, m > n.

Since g(a) # 0. the limit

h(y)

. flz.y)
g g9(z)

. (:L'—a)’"f(:z,‘,y)
M T ara)

lim &= " f(z.y) (2.9)
#e 4(z)

0" fa.y)

EECEE (210

exists for all y € B, which proves conclusion 1. For all y € B, we can write

where

c

_ Om—n

gl

h(y) = c- f(a,y),

_{ 1/§(a) ifm=n

0 ifm>n

is a constant. Since f € C¥(A x B), it follows that h € C¥(B), which proves
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conclusion 2.
Since g(a) # 0, there is a neighborhood I of a such that §(z) % 0 for all z € I,
by the continuity of §. Define ¢ € C*(I x B) by

('7: — a)m—n f(zv y)
g9(z)

o(z,y) = — h(y)

for all (z.y) € I x B. Note that ¢(a.y) = 0 for all y € B, by (2.10). It follows
from (2.9) that limit (2.6) is uniform in y for y € [b;.by] if and only if the limit

lim o(z,y) =0

I—a

is uniform in y for y € [b;, b,]. Hence, in order to prove conclusion 3, we must show
that for every £ > 0, there is a deleted neighborhood I, — {a} such that |o(z,y)| < ¢
for all (z.y) € (1. — {a}) x [b;,b2], by Definition 2.16.

Let [a;.a5] C I be a closed subinterval such that a € (a;.a;), and define

K= [01.02] X [b1b2] cIxB.

Since K is a compact subset of R? and ¢ is continuous on K, it follows by a
standard theorem of topology that ¢ is uniformly continuous on K. This means
that for every £ > 0. there is a § > 0 such that the inequality

lo(z.y) — (' y) < e (2.11)

holds whenever (z,y), (', y') € K satisfy

\/(z -2+ (y—y)? <é.

Let I. = (a1,a2) N (a — é.a + &), and note that I, is a neighborhood of a. Let
(z,y) € (Ic — {a}) x [by, bo] be arbitrary, and set (z',y') = (a,y). Since z,7’ €
I C [a1,ay], it follows that (z,y),(z’,y’) € K. Since z € I, implies |z — a| < §, it
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follows that

Ve-o2+@y-y)=\(z-a)?+(y—-y)?=|z—a| <6

Hence, (2.11) and ¢(a,y) = 0 imply that |o(z.y)| < £, which proves conclusion 3. &

In summary, Division Theorem 2.17 says that if an analytic function of z and
y can be divided in the limit as x — a by an analytic function of z for all y € J.
then this “division in the limit” can be carried out for all y € B. and produces an
analytic function of y. Furthermore, the uniformity of the limit in the parameter y
over any compact interval [by, by] follows automatically from the mere existence of
the limit on the interior (b, b2) of that interval.

2.2.3 Local Reduction

Let (a.b) € A x B. In this section. 7(A x B) denotes the set of functions C*(A x
B) — {04xg}, and Ry (A x B) denotes the subset of F(A x B) consisting of all
functions f(z.y) which do not vanish on either z =a or y = b.

Reformulated in this notation, Symmetric Decomposition Theorem 2.12 says
that for every f € F(A x B) and every (a.b) € A x B, there are a unique ordered
pair (m.n) € N2 and a unique function f € R(ap)(A x B) such that

flz.y)=(z-a)™ (y —b)"f(:r,y) for all (z.y) € A x B.

The following definition introduces some new terminology and notation based on
this reformulation of the theorem.

Definition 2.18 Given f € F(A x B) and (a,b) € A x B, let (m,n) € N2 and
fe R(ar)(A x B) denote the ordered pair and function provided by Symmetric
Decomposition Theorem 2.12.

1. The ordered pair (m,n) is called the degree of f at (a,b), and s denoted by
deg(a,b) (f)
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2. The function f is called the reduction of f at (a,b).

3. The operator pp) : F(A x B) = Rap)(A % B) defined by puaplf] = f is
called the reduction operator at (a.b).

4. We say that f is reduced at (a,b) if f € R(as)(A x B).

Example 2.19 Continuing Ezample 2.13, the degree of sin(zy) at (0.0) is (1,1).
and the reduction of sin(zy) at (0,0) is sinc(zy). In addition, sinc(zy) is reduced
at (0,0).

The property that f is reduced at (a.b) has other equivalent formulations, which
are expressed in the following proposition.

Proposition 2.20 For all f € F(A x B) and (a.b) € A x B, the following cond:-

tions are equivalent:

[T

- f € Rap)(A x B)

A5}

. degas(f) = (0.0)

. paslf] = f.

o

Proof. We will prove the equivalence of these three conditions by showing that
1=2=3=1.

If f € Rap)(A x B), then by definition, f(z,y) does not vanish on either z = a or
y = b. Consequently, the lines £ = a and y = b both have multiplicity zero. and
the symmetric decomposition of f is

flz,y) = (z - a)’(y = b)° - pap[f](z, y) for all (z,y) € A x B. (2.12)

By Definition 2.18, deg,;(f) = (0,0), which shows that 1 = 2. If deg;(f) =
(0,0), it follows from symmetric decomposition (2.12) that pp(f] = f, which
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shows that 2 = 3. If pa4)[f] = f, then
P(a.b) .7:(.4 X B) — R(a‘b)(A X B) (2.13)
implies that f € R(,4)(A x B), which shows that 3= 1. H

Remark 2.21 One implication of Proposition 2.20 is that R(at)(Ax B) is precisely
the set of fixed-points of the operator Pab)- This fact, together with mapping
diagram (2.13), imply that p(za‘b) = P(a,p)- Hence, the operator p(,p) is idempotent.

For the sake of interpretation, let us think of the ordered pair (m,n) e N2 asa
multi-indez (see [John. pp. 54-55]), and write x = (z,y) and a = (a,b) in vector
notation. Using standard multi-index notation. we can write

(x —a)™™ = (z —a)™ (y - b)".

Letting A = A x B. we can now express Symmetric Decomposition Theorem 2.12
very concisely in the notation of Definition 2.18 as follows: for every f € F(A) and
every a € A. the theorem implies that

f(x) = (x —a)¥B . 5 [f](x) for all x € A.

Thus, given a point a € A, every nonzero analytic function f(x) can be written as
the product of a polynomial (x — a)d°8«f) and an analytic function palf](x) which
s reduced at a.



Chapter 3

Asymptotic Expansions in One
Variable

The next two chapters present the elements of classical asymptotic theory which are
used throughout the thesis. This chapter discusses asymptotic expansions in one
independent variable, whereas the next chapter discusses asymptotic expansions
which also depend on a parameter. The material in these two chapters is largely
a synthesis of standard material found in [Erdelyi, Ch. 1] and [Ble-Han. Ch. 1]
however, some of this material has been modified to better suit the purposes of the
thesis. The result is an original presentation of asymptotic theory which breaks
with tradition in some important ways — in one sense narrowing the tradition, and
in another sense, broadening it.

This chapter develops asymptotic theory over the function space C¥(A). where
A C R is an open interval. Given a function f € C¥(A), traditional asymptotic
theory studies the limiting behavior of f(z) as £ — a, where a € A. In many
cases, a is an essential singularity of f, which can only occur when a € 3A. The
asymptotic theory presented here narrows tradition by requiring that a € A rather
than A. Since A is open, a must be an interior point, and boundary points are
therefore excluded from consideration. Although this restriction categorically rules
out the study of asymptotic behavior near singularities, the hypothesis a € A will
enable us to obtain stronger results in this chapter, and these results will prove

24
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indispensable later in the thesis.

The asymptotic theory presented here broadens tradition by carefully consider-
ing the role of the zero function. Surprisingly, it is useful to distinguish between
a finite asymptotic expansion and an infinite asymptotic expansion with a finite
number of nonzero terms. In the latter case. the asymptotic expansion as z — a
becomes an ezact identity for all z € A. The thesis will later demonstrate how
asymptotic techniques can be used to establish exact identities under suitable con-

ditions.

3.1 The “Little Oh” Order Relation

Asymptotic theory is founded upon order relations which express the relative rates
of growth or decay of two functions as £ — a. In order to handle finite and infinite
asymptotic expansions with equal simplicity, the thesis develops asymptotic theory
entirely in terms of the “little oh” order relation; the “big oh” order relation is not
used here.

3.1.1 Definition and Consequences

Recall that A C R always denotes an open interval. For any two arbitrary functions
f.9: A — R and any point a € A, the “little oh” order relation is defined as follows.

Definition 3.1 We say that f(z) is “little oh” of g(z) as r — a. which we
denote by
f(z) = o(g(z)) asz — a,

if for every € > 0, there is a neighborhood I. of a such that the inequality

|f(z)] < e lg(=) (3.1)

holds for all x € I,.

The following proposition explores the properties of “little oh” order relations
under addition, scalar multiplication, and composition; for brevity, the phrase “as
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z — a” will be omitted, but should be assumed throughout.
Proposition 3.2 Let f,g,h : A — R be arbitrary functions, and let c € R.
1. If f(z) = o(h(z)) and g(z) = o(h(z)), then f(z) + g(z) = o(h(z)).
2. If f(z) = o(h(z)), then c- f(z) = o(h(x)).
3. If f(z) = o(g(z)) and g(z) = o(h(z)), then f(z) = o(h(z)).
Proof. The proof of each property is based on a direct appeal to Definition 3.1.

1. Let = > 0 be given. Since f(z) = o(h(z)) and g(z) = o(h(z)), there are
neighborhoods I} and I of a such that |f(z)| < (¢/2) - |h(z)| and |g(z)| <
(£/2) - [h(z)| for all z € I) and all z € I, respectively. Note that I, N I, is
also a neighborhood of a. If z € I; N I, then

[f(z) + g(@)] < 1f(2) + lg(z)| < € |h(z)[,

which proves that f(z) + g(z) = o(h(z)).

2. Let £ > 0 be given. If ¢ =0, then |c- f(z)| < ¢ |h(z)] is trivially satisfied for
all z € A. If ¢ # 0, then f(z) = o(h(z)) implies there is a neighborhood I of
a such that |f(z)| < (g/|cl) - |h(z)], or equivalently, |c- f(z)| < ¢ |h(z)|, for
all z € I. Hence. c- f(z) = o(h(z)) for any constant ¢ € R.

3. Let £ > 0 be given. Since f(z) = o(g(z)) and g(z) = o(h(z)), there are
neighborhoods I; and I, of a such that |f(z)] < £ |g(z)| and |g(z)] <
VE |h(z)| for all z € I} and all = € I, respectively. If z € I, N I, then

|f(z)] < Ve lg(z)] < € |h(z)],

which proves that f(z) = o(h(z)). ®

Remark 3.3 These three properties of the ‘little oh” order relation are frequently

written in a more abbreviated form as:
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1. o(h(z)) + o(h(z)) = o(h(z))
2. c-o(h(z)) = o(h(x))
3. o(o(h(z))) = o(h(z)).

Note that these short forms are not true equations — they are transformation
rules which describe how to simplify various combinations of order relations into a

single order relation.

3.1.2 Characterization for Analytic Functions

The two propositions of this section characterize the “little oh” order relation for
analytic functions. We begin by proving the following lemma, which contains a

simple but useful observation.

Lemma 3.4 Let f € C¥(A). If f # 04, then for each a € A, there is a deleted
neighborhood I — {a} on which f assumes only nonzero values.

Proof. If f(a) =0, Proposition 2.1 implies that a is an isolated zero, which means
that f assumes only nonzero values on some deleted neighborhood I — {a}. If f(a)
# 0, then by continuity, there is a neighborhood I of a on which f is never zero:
thus, f cannot be zero on the deleted neighborhood I — {a}. &

The first proposition explains what is necessary and sufficient for an analytic
function to be “little oh” of a nonzero analytic function.

Proposition 3.5 Let f,g € C“(A), and suppose that g # 04. Then f(z) = o(g(z))
as £ — a if and only if
lim f(z) =0. (3.2)
z—a g(z)
Proof. First, note that the hypotheses g € C“(A) and g # 04 ensure that there
is some deleted neighborhood I — {a} where g is never zero, by Lemma 3.4. Since
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the quotient function f /g is defined on I; — {a}, it is reasonable to consider the
existence of the limit (3.2) as z — a in I; — {a}.

Suppose that f(z) = o(g(z)) as £ — a, and let £ > 0 be given. By Definition
3.1, there is a neighborhood I, of a such that

-

@) <5 lg(@) (3.3)

for all z € I,. Since I, and I, are both neighborhoods of a, the intersection
I =1, NI is also a neighborhood of a. By construction of I, the function g is
never zero on I — {a}, and inequality (3.3) holds for all z € I — {a}; consequently,
we can divide inequality (3.3) by |g(z)| to obtain

f(z)

—| <

tce
glz)| ~— 2

Thus, for every ¢ > 0, there is a deleted neighborhood I — {a} on which f /g is
defined and satisfies |f /g| < =, which implies that equation (3.2) holds.

Conversely, if equation (3.2) holds, then for every ¢ > 0. there is a deleted
neighborhood I — {a} such that

If(2)] < = lg(z)] (3.4)
for all z € I — {a}. Taking the limit of (3.4) as z — a in I — {a} yields

|f(a)] < < lg(a)] (3-5)
by the continuity of f and g. Inequalities (3.4) and (3.5) together imply that

|f(z)| < € |g(z)|

for all z € I. By Definition 3.1, f(z) =o(g9(z)) asz — a. ®
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The second proposition is also an equivalence. One of the implications of the
proposition is that an analytic function which is “little oh” of the zero function as
z — a must be zero also — not merely zero in a neighborhood of a, but zero on the
whole domain A. It is interesting that the result draws a global conclusion from a
local hypothesis.

Proposition 3.6 If f € C¥(A) and g = 04, then f(z) = o(g(z)) as £ — a if and
only if f =04.
Proof. Suppose that f(z) = o(g(z)) as £ — a. Choose £ = 1 in Definition 3.1 and
let W = I.. The inequality

|f(z)] < = |g(z)]

with ¢ = 04 holds for all z € W. which implies that f|W = Oyw. The Unique
Continuation Property (Proposition 2.4) implies that f = 04. Conversely. if f = 04,
then Definition 3.1 is trivially satisfied for g = 04 by setting I, = A for every € > 0,

since A is an open interval. B

3.1.3 Integration Theorems

The following two theorems demonstrate that under suitable circumstances, “lit-
tle oh” order relations can be integrated to obtain new order relations. The first
theorem is a standard result which establishes that order relations between con-
tinuous functions can be integrated with respect to the independent variable. The
second theorem shows that an even stronger conclusion can be obtained for analytic

functions.

Theorem 3.7 Let f,g € C(A). If f(z) = o(g(z)) as £ — a, then

LI f(t)dt=o(/: |g(t)|dt> as r — a. (3.6)

Proof. Let € > 0 be given. By Definition 3.1, there is a neighborhood I of a such
that |f(z)]| < e |g(z)| for all z € I. Consequently,

[ rwa< [Cirenae<e [ g ae
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for all z € I, which establishes that order relation (3.6) holds. B

Since C*(A) € C(A), we can certainly apply the previous theorem to analytic
functions f and g; however, the theorem has one defect: the function |g| need not
be analytic if ¢ is analytic. We can repair the defect by using the properties of
analytic functions to eliminate the absolute value from order relation (3.6), thereby
preserving the analyticity of g.

Theorem 3.8 Let f,g € C“(A). If f(z) = o(g(z)) as £ — a. then

LI f(t)dt=o(/j g(t)dt) as z — a.

Proof. For convenience, let F(z) = [; f(t)dt and G(z) = [T g(t) dt. Note that
F.G € C¥(A), and F(a) = G(a) = 0. The proof proceeds by cases on g.

Case 1. Suppose g # 04. By Lemma 3.4, there is some deleted neighborhood
I — {a} on which g is never zero. Suppose that G(b) = 0 for some b € I — {a}.
Since G(a) = 0 also. Rolle’s Theorem implies that G’(c) = 0 for some c strictly
between a and b. By the Fundamental Theorem of Calculus, G’(¢) = g(c) = 0 for
¢ € I — {a}, which contradicts that g is never zero on I — {a}. Hence. both g and G
are never zero on I — {a}, which allows us to form the quotient functions f /g and
F /G on I —{a} simultaneously. As  — a in I — {a}, F /G has the indeterminate
form 0/0. By L'Hospital’s Rule,

lim E—(—{)- = lim f_(:z:l (3.7)

z—a G(z) +—ag(z)
Since f(z) = o(g(z)) as £ — a, the value of limit (3.7) is zero by Proposition 3.5.
Since F(z) /G(z) — 0 as z — a, Proposition 3.5 implies that F(z) = o(G(z)) as

I —a.

Case 2. Suppose g = 04. By Proposition 3.6, f = 04 also. Consequently, the
indefinite integrals satisfy F' = 04 and G = 04, and Proposition 3.6 implies that
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F(z)=0(G(z)) asz —a. N

3.2 Asymptotic Sequences

In this section, V is either a positive integer or infinity, and represents the number
of elements in a sequence of functions {g,})_, C R4. The terminology and conven-
tions described below will enable us to handle both finite and infinite sequences with
a single notation, thereby obviating the need to consider the two cases separately.

Please do not underestimate the importance of the following simple definition,
which will be heavily used throughout the thesis.

Definition 3.9 A constant n is called an index of the sequence {g.})_, ifn € N
and satisfies1 <n < N.

This terminology will allow us to use short, convenient phrases such as “for
all indices n < N7 instead of the more cumbersome “for all n € N satisfying
1<n< N.”

Remark 3.10 The following are important conventions for interpreting the bound-
ary cases of Definition 3.9:

1. Since N > 1, it follows that n = 1 is always an indez of {gn}i_,.
2. If N < oc, then n = N is an indez of {g.}}_, as well.

3. If N =oc, then n = N is not an inder of {gn})_,, since oc ¢ N.

3.2.1 Definition and Consequences
In the following definition, {g.}Y_, € R4 and a € A are arbitrary.

Definition 3.11 {g.(z)})_, is called an asymptotic sequence as r — a if the
order relation
gn+1(z) = 0(gn(z)) asz — a (3.8)

holds for all indices n < N.
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Remark 3.12 The following are immediate consequences of the definition:

1. If N =1, the definition is vacuously satisfied.
2. If 1 < N < oc, order relation (3.8) must hold forn=1,2,... ., N — 1.

3. If N = co. order relation (3.8) must hold for all positive integers n.

Note that an asymptotic sequence may contain zero functions! For example,
{04}4_, constitutes an asymptotic sequence as £ — a. Although it is not customary
to consider asymptotic sequences containing zero functions, there is a benefit to be
gained by doing so; this benefit will be fully explained at the end of the chapter.

3.2.2 'Tractable Sequences and Essential Length

Although zero functions may occur in an asymptotic sequence. they cannot occur
in a random. haphazard fashion — especially if the sequence consists of analytic
functions. In order to describe what can actually occur, we need to introduce some
new terminology, which is the purpose of this section. Note that this terminology
applies to all sequences of functions. not merely to asymptotic sequences.

In the definitions below, {g,}}_; C R is an arbitrary sequence of functions.

n=1

Definition 3.13 We say that {gn}}_, is tractable if there is some N € NU {cc}
with 0 < N < N such that the following two properties hold:

1. gn # 04 for all indicesn < N
2. gn = 04 for all indicesn > N.

Recall that an index n of the sequence {g.}}_, must satisfy 1 < n < N.
Consequently, property 1 is vacuously satisfied when N = 0, and property 2 is
vacuously satisfied when N = N.

Proposition 3.14 If {g,}Y_, is tractable, then N is unique.

n=1
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Proof. Suppose that N; and N, have all the properties of N in Definition 3.13.
We will show that N; = N,. The proof proceeds by cases on N;. Note that
0 < N; < N, by definition.

Case 1. Suppose N; = 0. In this case, g, = 04 by property 2 with N = N;.
By definition. N, > 0. If N, > 0. then g; # 04 by property 1 with N = N,. This
contradicts that g; = 04; therefore, N = 0= N,.

Case 2. Suppose 0 < N; < N. In this case, both N, and N; + 1 are indices.
Consequently, gy, # 04 by property 1 with N = Ny, and gy, 41 = 04 by property
2 with N = Ni. If Ny > N,, then gn, = 04 by property 2 with N = N,. This
contradicts that gy, # 0,4; therefore, Ny < N,. If N} < N,, then gn,+1 # 04 by
property 1 with N = N,. This contradicts that gy, = 04; therefore, N; = N.

Case 3. Suppose N; = N. By definition, 0 < N, < N. We can rule out
the possibility that Ny = 0, since otherwise Case 1 (with the roles of N} and N,
reversed) implies that N = 0, which contradicts that N > 0. Similarly, we can
rule out the possibility that 0 < N; < N. since otherwise Case 2 (with roles re-
versed) implies that N < N, which is self-contradictory. By process of elimination.
No=N=N..®

The next definition gives us two different ways to think about the length of a

tractable sequence.

Definition 3.15 If {g.})\_, is tractable, N is called the essential length of the
sequence, and N is called the actual length of the sequence.

The essential length of a tractable sequence is well-defined by Proposition 3.14.
The following proposition characterizes tractable sequences which are also asymp-

totic sequences.
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Proposition 3.16 If {g.}), C R# is tractable with essential length N. then
{gn(z)}_, is an asymptotic sequence as T — a if and only if the truncated se-

quence {g.(z)}_, is an asymptotic sequence as z — a.

Proof. By Property 2 of Definition 3.13, g, = 04 for all indices n > N. Thus, the
order relation
gn+1(Z) = 0(gn(z)) asz — a (3.9)

holds trivially for all indices n > N, since the zero function is “little oh” of any
function by Definition 3.1. It follows that {g,(z)}/_, is an asymptotic sequence as
z — a if and only if order relation (3.9) holds for all indices n < N, or equivalently,

when {gn(:lc)}f=1 is an asymptotic sequence as £ — a. B
Remark 3.17 The previous result is vacuously true when N = 0.

The next definition creates a scheme for classifying tractable sequences.
Definition 3.18 Let {g,}Y_, be tractable with essential length N.

1. If N =N, then {gn})_, is said to be nonterminating.

2. If0< N < N, then {gn}Y_, is said to be terminating.

3. If N =0, then {gn}_, is said to be trivial.

By definition. every tractable sequence belongs to one of these three mutually

exclusive categories.

Remark 3.19 The meaning of Definition 3.18 is perhaps more clearly erpressed

in words:
1. A nonterminating sequence consists entirely of nonzero functions.

2. A terminating sequence consists of a finite number of nonzero functions fol-
lowed by a countable number of zero functions; furthermore, the sequence
contains at least one nonzero function (g5) and at least one zero function

(95 +1)-
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3. A trivial sequence consists of nothing but zero functions.

The next section shows that these three categories describe all the possibilities
which we will encounter in our study of asymptotics.

3.2.3 Tractability Property for Analytic Functions

The goal of this section is to show that every asymptotic sequence of analytic
functions is tractable. We begin by proving the following pair of lemmas.

The first lemma shows that if a zero function occurs in an asymptotic sequence
of analytic functions, the remaining portion of the sequence must consist entirely

of zero functions.

Lemma 3.20 Assume {g.}3_, C C*(A), and let {gn(z)})_, be an asymptotic
sequence as T — a. If gm = 04 for some inder m, then g, = 04 for all indices

n>m.

Proof. The proof is by mathematical induction on the index n. (The induction is
finite if N < =c. and infinite if N = oc.) The base case n = m is true by hypothe-
sis. For the induction step. assume that the conclusion holds for some index n with
m < n < N. By Definition 3.11, gn+1(z) = 0o(g.(z)) as £ — a. By the induction
hypothesis, g, = 04. Proposition 3.6 implies that g,.; = 04, which completes the
induction step. Consequently, the conclusion holds for all indices n > m. R

The second lemma shows that if a nonzero function occurs in an asymptotic
sequence of analytic functions, the preceding portion of the sequence must consist

entirely of nonzero functions.

Lemma 3.21 Assume {g.}_;, C C+¥(A), and let {ga(z)}}_, be an asymptotic
sequence as £ — a. If gm # 04 for some index m, then g, # 04 for all indices

n<m.

Proof. Suppose g, = 04 for some index n’ < m. Lemma 3.20 implies that
gm = 04, which contradicts that g, # 04. Consequently, g, # 04 for all indices
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n<m. BN

We are now ready to prove the main result of this section. which gives a necessary
condition for a sequence of analytic functions to be an asymptotic sequence.

Theorem 3.22 Assume {g.})_, C C“(A). If {ga(z)})_, is an asymptotic se-

quence as T — a, then {gn}}_, is tractable.

Proof. The proof proceeds by cases, with one case for each category of tractable

sequences.

Case 1. If {g.}, consists entirely of nonzero functions. then {g,}Y_, is

tractable with essential length N = N. In this case. {g,}}_, is nonterminating.

Case 2. If {g.}}_, consists entirely of zero functions, then {g,}2_, is tractable

with essential length N = 0. In this case. {g,}Y_, is trivial.

Case 3. Assume that {g,}._, contains at least one nonzero function and at
least one zero function. The latter assumption implies that g,, = 04 for some index
m: by Lemma 3.20, g, = 04 for all indices n > m. Define a special set of indices
by

S={neN|1<n< Nandg, #04},

and note that S is nonempty by the former assumption; furthermore, every index
n € S satisfies n < m. Since S is nonempty and bounded above, it has a largest
element, which we denote by N.

Since gy # 04, Lemma 3.21 implies that g, # 04 for all indices n < N. In
addition, g, = 04 for all indices n > N, since otherwise there would be some index
n’ > N with n’ € S, which would contradict that N is the largest element of S. By
Definition 3.13, {g,}/_, is tractable with essential length N. In this case, {gn}}_;
is terminating. W
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If we work our way down through all the intermediate results leading to Theorem
3.22, we find that the Unique Continuation Property (Proposition 2.4) lies at the
foundation; this in turn rests upon the analyticity of functions and the connected-
ness of their domains. Analyticity and connectedness are fundamental hypotheses
for the results of this section, and will play a fundamental role throughout the
thesis.

3.2.4 Characterization for Analytic Functions

The following characterization of asymptotic sequences of analytic functions incor-
porates the necessary condition established by Theorem 3.22.

Proposition 3.23 If {g.}_, C C¥(A) is tractable with essential length N. then

n=1

{gn(z)}2., is an asymptotic sequence as T — a if and only if the equation

].im gn+l(x)

lim S5 =0 (3.10)

holds for all indicesn < N.

Proof. By Proposition 3.16. {g.(z)}/_, is an asymptotic sequence as z — a if and
only if the truncated sequence {g,(z)}Y_, is an asymptotic sequence as z — a. By

Definition 3.11, the latter occurs if and only if the order relation
gn+1(z) = o(gn(z)) 85T — @ (3.11)

holds for all indices n < N. Since g, # 04 for all indices n < N by Property 1
of Definition 3.13, Proposition 3.5 implies that order relation (3.11) holds for all
indices n < N if and only if equation (3.10) holds for all indices n < N. This
completes the proof. @

3.2.5 Integration Theorems

The following theorem establishes that an asymptotic sequence of analytic func-
tions can be integrated with respect to the independent variable to obtain a new
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asymptotic sequence.

Theorem 3.24 Assume {g,}Y_, C C*(A), and define
Gulz) = [ gn(t)dt

for all z € A and all indices n. If {g.(z)}_, is an asymptotic sequence as r — a,

n=1

then {Gn(z)}1_, is an asymptotic sequence as z — a.

Proof. By hypothesis and Definition 3.11. gp.;(z) = o(gn(z)) as z — a for all
indices n < N. Since {go})_; C C¥(A), Theorem 3.8 implies that Gp.,(z) =
o(Gn(z)) as £ — a for all indices n < N. By Definition 3.11, {G.(z)}\_, is an
asymptotic sequence as z — a. Bl

The following theorem shows that indefinite integration preserves the essential
length of a tractable sequence of continuous functions, and hence whether the se-
quence is nonterminating, terminating, or trivial. Note that the hypotheses of this
theorem are weaker than those of the previous theorem.

Theorem 3.25 Assume {g,}Y_, C C(A), and define
Galz) = /’ Gu(t) dt

for allz € A and all indices n. If {g.}2_, is tractable with essential length N, then
{Gn})_, is tractable with essential length N

Proof. By elementary calculus, g, = 04 if and only if G, = 04. Since gn 7 04 for
all indices n < N, it follows that G, # 04 for all indices n < N. Similarly, since
gn = 04 for all indices n > N, it follows that G, = 04 for all indices n > N. By
Definition 3.13, {Gn}_, is tractable with essential length N. ®

We conclude that indefinite integration transforms any asymptotic sequence of
analytic functions into another asymptotic sequence with the same essential length.
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3.3 Asymptotic Expansions

Recall that V denotes either a positive integer or infinity. Let {g, N, CRA let
{an}ni C R, and let a € A. Assume that {g,(z)}"_, is an asymptotic sequence
as £ — a. The formal series

N
Z Qn gn(Z) (3.12)
n=1

is called an asymptotic series to N terms as z — a. An asymptotic series may
be finite (N < oc) or infinite (V = >0); in the infinite case, no a priori assumptions
are made about the convergence of the series for particular values of = € A.

If {gn}}, is a tractable sequence (with essential length N), we say that the
asymptotic series (3.12) is nonterminating, terminating, or trivial, respectively.
if the sequence {g,}/_, is nonterminating (N = N), terminating (0 < N < N ), or
trivial (N = 0). We will also say that the asymptotic series (3.12) has essential
length N.

For any index n. the n-th partial sum of the asymptotic series (3.12) is defined
by

-

sn(z) = Z Qm gm(Z) (3.13)
m=1

for all z € A. Since every index n is by definition a positive integer, s, is always
a finite sum. Let f : A — R be an arbitrary function. For any index n. the n-th
remainder of the asymptotic series (3.12) with respect to f is defined by

ra(z) = f(z) — sa(z) (3.14)
for all z € A.

Remark 3.26 For convenience, define so = 04 andrg = f. With these definitions,
equation (3.14) holds not only when n is an index, but when n = 0 as well.

The next section defines a relationship between the function f and the asymp-
totic series (3.12) by stipulating the behavior of the remainders r,,.
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3.3.1 Definition and Consequences
Definition 3.27 We say that the asympiotic series (3.12) is an asymptotic ezx-
pansion of f(z) to N terms as r — a if the order relation

ra(z) = o(gn(z)) as T — a (3.15)

holds for all indices n. We denote this relationship by
N
@) ~ 3 anga(e) asz — a. (3.16)
n=1

Remark 3.28 The following are immediate consequences of the definition:
1. If N < >, then order relation (3.15) must hold forn =1.2,...,N.
2. If N = oc. then order relation (3.15) must hold for all positive integers n.
The following proposition shows that weaker conditions will suffice in both cases.

Proposition 3.29 If r,,(z) = o(gm(z)) as £ — a holds for some indezx m. then

ro{z) = 0(gn(z)) as £ — a holds for all indices n < m.

Proof. The proof is by (reverse) finite induction on n. The base case n = m
is satisfied by hypothesis. For the induction step, suppose that r,(z) = o(gn(z))
as £ — a holds for some index n with 1 < n < m. The induction hypothesis.
along with equations (3.13) and (3.14), the definition of an asymptotic sequence
(Definition 3.11), and the transformation rules for order relations (Proposition 3.2),

imply that

f(z) = salz) + Talz)
Sn-1(Z) + an gn(z) + 0(gn(z))
Sn-1(Z) + an * 0(gn-1(z)) + 0(0(gn-1(z)))
Sn-1(7) + 0(ga-1(z)) + 0(gn-1(z))
= sn-1(z) + 0(gn-1(z))
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as £ — a. Thus, r,_1(z) = f(z) — sp—1(z) = 0(gn-1(z)) as £ — a, which completes
the induction step. By induction on n, it follows that r,(z) = o(gn(z)) as z — a
holds for all indicesn < m. R

Remark 3.30 By Proposition 3.29. the follountng weaker conditions imply the
stronger conditions of Definition 3.27:

1. If N < oo, it suffices to show that rn(z) = o(gn(z)) as £ — a.

2. If N = oc, it suffices to show that r,(z) = o(gn(z)) as z — a holds for all
sufficiently large integers n (or more precisely, to show that there is a positive
integer m such that ro(z) = o(gn(x)) as  — a holds for all integers n > m).

The next proposition shows that asymptotic expansions are preserved by linear

operations with the functions and coefficients.

Proposition 3.31 Assume f.g € R* and {h.}}_, C RA. Let {a.}, C R.
{3.})_; CR. and c € R. Assume {h.(z)})_, is an asymptotic sequence as z — a.
If f and g have asymptotic expansions

N
flz) ~ Z anhn(z) asz — a (3.17)
n=1
N
g(z) ~ Z Bnh,(z) as z — a, (3.18)
n=1

then f + g has an asymptotic expansion

N

(f +9)(z) ~ D (an + Ba) hu(z) as z — a, (3.19)

n=1
and c - f has an asymptotic expansion
N

(c- f)(z) ~ Z(c - ap) hn(z) as z — a. (3.20)

n=1
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Proof. Let r,[f], ra[g], Ta[f + g], and r,[c - f] denote the n-th remainders of
asymptotic expansions (3.17), (3.18), (3.19), and (3.20), respectively. The definition
of an asymptotic expansion (Definition 3.27) and the transformation rules for order
relations (Proposition 3.2) imply that

ralf +gl(z) = ra[fl(z) + ralg](z)
= o(hn(z)) + o(ha(z))
= o(hn(z))asz —a
ralc- fl(z) = c-ralfl(2)
= C'O(hn(l‘))

= o(hp(z))asz — a

for all indices n. Hence, asymptotic expansions (3.19) and (3.20) hold if (3.17) and
(3.18) hold- m

3.3.2 Consequences for Analytic Functions

The results of this section are specific to analytic functions. Suppose that f €
C¥(A) and {g.}_, € C¥(A). Although it is customary to first establish that
{gn(z)}}_, is an asymptotic sequence as z — a. and then to compute the coeffi-
cients {a,}._, C R of an asymptotic expansion of f with respect to {g.}_,, it is
sometimes useful to proceed in a different order. For instance, if we are given a

formal series (not necessarily an asymptotic series)

N
> angalz). (3.21)
n=1

we may be able to apply the proposition and corollary below to simultaneously
establish that:

1. the sequence {g,(z)}Y_, is an asymptotic sequence as z — a, and

2. the series (3.21) is an asymptotic expansion of f(z) as z — a.
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Proposition 3.32 Assume f € C*(A), {g.}}_, C C¥(A), and {a,}_, C R, and
leta € A. Assume that {g,}Y_, is nonterminating, and suppose that the remainders
of the formal series (3.21) with respect to f(z) satisfy

Tn(z) = 0(gn(z)) asz —a (3.22)

for all indices n. If a, # 0 for some index m > 1, then
gm(z) = 0(gm-1(z)) as z — a. (3.23)

Proof. Order relation (3.22) with index n = m implies

lim "2 _ g, (3.24)
I—a gm(l')

by Proposition 3.5. Since

rm(I) _ rm—l(I) - amgm(x) . 7'm—l(:r) _

gm(z) B gm(z) B gm(T) ™

limit (3.24) can be rewritten as

lim Tm=t(2) _ (3.25)

=a gm(z)
and since an, # 0 by hypothesis, (3.25) implies

I—a Tm—l(z) Am
Order relation (3.22) with index n = m — 1 implies

lim fﬂ)_ =0. (3.27)

z=a g _1(T) -
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Multiplying limits (3.27) and (3.26) together yields

lim gm(Z) — Lim Tm—1(T) - lim gm(T)

T—a gm—l(r) T—a gm—l(x) T—a rm-l(x)

1
=0-— =0,
Qm

which proves order relation (3.23), by Proposition 3.5. ®

Corollary 3.33 Assume the hypotheses of Proposition 3.32. If am # 0 for all
indices m > 1, then {gn(z)}Y_, is an asymptotic sequence as r — a, and the series

(3.21) is an asymptotic ezpansion of f(z) as = — a.

3.3.3 Existence and Uniqueness

This section explores the questions of existence and uniqueness of asymptotic ex-

pansions for analytic functions. In the course of exploring these questions, we will

develop a method for computing the coefficients of an asymptotic expansion.
Assume f € C¥(A) and {gn}}_; C C*(A). and let {gn(z)}}_, be an asymptotic

sequence as r — a.

Remark 3.34 Since C“(A) is a linear space, the partial sums of an asymptotic
series in {gn}h_, must satisfy {s.}_, C C*(A), and the remainders of the asymp-
totic series with respect to f must satisfy {r,}\_, C C~(A).

Since asymptotic expansions have a very different character when {g,}¥_, is
terminating or trivial. we will defer our study of these two cases until the end
of the chapter. In this section, assume that {g.}._, is nonterminating (i.e.. that
gn # 04 for all indices n).

The following theorem gives a necessary and sufficient condition for f to have

a nonterminating asymptotic expansion
N
f(z) ~ 3 G galz) as z — a (3.28)
n=1

with respect to {gn}2_,. In addition to answering the question of ezistence, the
theorem gives a recursive formula for computing the coefficients {a,}¥_,. The
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recursion enters into the formula for a,, via the remainder r,_,, which depends on
the first n — 1 coefficients a;, a3, ...,a,—;. The base case n = 1 is well-defined since
ro = f, which does not depend on any of the coefficients.

Theorem 3.35 Assume f € C“(A) and {g.}}., € C¥(A), and let {gn(z)}_,
be ¢ nonterminating asymptotic sequence as ¢ — a. The function f has a non-
terminating asymptotic ezpansion (3.28) with respect to {g.}_, if and only if the
equation

&, = lim "2=1(®) (3.29)
r—a gn(I)

holds for all indices n.

Proof. For each index n,

ra(z) = f(z) - sa(z)
= f(l’) - (sn-l(I) + angn(I))
= railz) = angale). (3.30)

These equations hold even when n = 1, since we defined s = 04 and ro = f. Since
gn € C*(A) and gn # 0.4. there is a deleted neighborhood I, — {a} on which g, is
never zero (Lemma 3.4). Dividing equation (3.30) by g.(z) yields

T’n(l') _ rn—l(I) _
nz) @ o (3.31)

for all z € I, — {a}. As z — a in I, — {a}, the left-hand side of equation (3.31)
has a limit if and only if the right-hand side has a limit; furthermore, the equation

ra(z) _
fim 225 = 0 (3.32)

holds if and only if equation (3.29) holds. Since r, € C*(A), equation (3.32) holds
if and only if
a(z) = 0(ga(z)) as z — a, (3.33)
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by Proposition 3.5.

For each index n, we have shown that equation (3.33) holds if and only if equa-
tion (3.29) holds. It follows by this equivalence and Definition 3.27 that f has an
asymptotic expansion (3.28) with respect to {g,}2_, if and only if equation (3.29)
holds for all indices n. B

The next result is a consequence of the existence theorem, and lays the ground-

work for uniqueness.

Proposition 3.36 Assume {g.}Y_, € C¥(A), and let {gn(z)})_, be a nontermi-
nating asymptotic sequence as r — a. The zero function f = 04 has an asymptotic
erpansion
N
f(Z)~ > angn(z) asz —a (3.34)
n=1

unth respect to {g.}Y_, if and only if o, = 0 for all indices n.

Proof. Clearly. if a, = 0 for all indices n, then the partial sums s, = 0, for all
indices n. and the remainders r, = f — s, = 0,4 for all indices n. Consequently,
the order relation r,(z) = o(g.(z)) as £ — a is trivially satisfied for all indices n.
which proves that asymptotic expansion (3.34) holds.

Conversely, suppose that asymptotic expansion (3.34) holds. We will show by
induction on n that a, = 0 for all indices n. By Theorem 3.35, we can compute

the coefficients via the recursive formula

rn-l(z)

@) (3.35)

Qp =

Since o = f = 0,4, equation (3.35) implies

= 0.
z—a g,(z)

) =
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If a, =0 for all indices m < n, then r, = 04, and equation (3.35) implies

Upt1 = lim rn(z)

=0.
78 gn+1(z)

By induction, a, = 0 for all indices n. &

The following uniqueness theorem is an immediate consequence of Proposition
3.36.

Theorem 3.37 Assume f € C¥(A) and {g.})_, C C¥(A), and let {gn(x)}_,
be a nonterminating asymptotic sequence as r — a. If f has a nonterminating

asymptotic expansion with respect to {gn}\_,, then the ezpansion is unigque.

Proof. Suppose that f has two asymptotic expansions
A’
flz) ~ Zangn(r) ast —a
n=1
Af
f(z) ~ D Bagnlz)asz —a
n=1

with respect to {g, }»_,. By Proposition 3.31. the difference of these two expansions
vields

N
04 ~ Z(an — 3n) gn(z) as  — a.
n=1

Proposition 3.36 implies that a, = (3, for all indices n. &

Another consequence of Proposition 3.36 is that every nonterminating asymp-
totic sequence of analytic functions must be linearly independent.

Proposition 3.38 Assume {g.}}_, C C“(A). If {g.(z)}Y_, is a nonterminating
asymptotic sequence as T — a, then the functions {g,}?_, are linearly independent

on any nonempty open subinterval I C A.
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Proof. The case N = oo can be reduced to the case N < oo, as follows. If
N = oo, the infinite sequence of functions {g,}Y_, is linearly independent provided
that every nonempty finite subset S C {g,}X_, is linearly independent. Given S,
let m be the largest index of the elements of S. Since S C {gn}m_,, it suffices to
show that the finite subsequence {g.}™, is linearly independent; the subset S must
also be linearly independent in order to avoid contradicting the linear independence
of the superset {g,}™ ;.
Assume without loss of generality that N < co. Let {a,})_, C R, and define

N
f(z) =) anga(z) (3.36)
n=1

for all z € A. By definition, the functions {9}, are linearly independent on I if
the equation f|I = 0; implies that a, = 0 for all indices n.

Suppose that f|I = 0;. Since f € C“(A), the Unique Continuation Property
(Proposition 2.4) implies that f = 04. We want to show that the asymptotic
expansion

£(@) ~ 3 ngals) a5z (3.37)

holds. Since N < oc. it suffices to show that
rn(z) = o(gn(z)) as T — a, (3.38)

by Remark 3.30. Equation (3.36) means that f = Sy, which implies that ry = 04-
Order relation (3.38) is trivially satisfied, and asymptotic expansion (3.37) holds.
Since f = 04, Proposition 3.36 implies that a, = 0 for all indices n. Consequently,
the functions {g,}#_, are linearly independent on I. W

3.3.4 Integration Theorem

Recall that integrating an asymptotic sequence of analytic functions with respect
to the independent variable produces another asymptotic sequence with the same
essential length. The next theorem shows that an asymptoti: ezpansion consisting
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of analytic functions can be integrated with respect to the independent variable to
obtain another asymptotic expansion with the same essential length.

Theorem 3.39 Assume f € C¥(A) and {ga}_, C C¥(A). Let {gn(z)}Y_, be an
asymptotic sequence as T — a, and let N denote its essential length. For allz € A
and all indices n, define

Fz)= [ f(t)dt, Galz) = [ satrat.

a

If f has an asymptotic expansion
N
f(z)~ Y angn(z) asz —a (3-39)
n=1

with essential length N with respect to {g.}Y_,, then F has an asymptotic expansion
N

F(z) ~ z 0nGn(z) asz — a (3.40)
n=1

with essential length N with respect to {Gp}\_,.

Proof. By Theorems 3.24 and 3.25, {G.(z)})\_, is an asymptotic sequence as
z — a and has essential length N. Let 7, denote the n-th remainder of asymptotic
expansion (3.39), and let R,, denote the n-th remainder of asymptotic expansion
(3.40). Note that

R.(z) = F(z)- i— Cm Gm(T)
= /z f(t)dt—iam /Igm(t)dt
a m=1 a

[ (£01= 3 amantt) at
a m=1
- / " ra(t) dt.
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By Definition 3.27, asymptotic expansion (3.39) means that
Tn(z) = 0(gn(z)) 85z —a

for all indices n. Since {r,}3_, € C¥(A), Theorem 3.8 implies that
Ra(z) = o(Ga(z)) sz — a

for all indices n, which proves that asymptotic expansion (3.40) holds. B

3.3.5 Exact Identity Theorem

This section discusses asymptotic expansions in the terminating and trivial cases
for analytic functions. The following theorem shows that a terminating or trivial

asymptotic expansion as £ — a is equivalent to an ezact identity for all x € A.

Theorem 3.40 Assume f € C¥(A) and {g.})_, C C“(A), and let {gn.(z)}N_,
be an asymptotic sequence as ¢ — a. If {g.})_, is terminating or trivial with
essential length N. then f has an asymptotic expansion

f(z) ~ XN: @ngn(z) ST —a (3.41)

n=1
with respect to {gn}_, if and only if
N
f(2) = angalz) (3.42)
n=1

foralze A.
Proof. Asymptotic expansion (3.41) holds if and only if

ra(z) = o(gn(z)) as z — a (3.43)

for all indices n, by Definition 3.27. Whether {g,})_, is terminating (0 < N < N)
or trivial (N = 0), it follows that N + 1 is an indez. If order relation (3.43) holds
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for the index n = N + 1. then (3.43) holds for all indices n < N + 1, by Proposition
3.29. It is therefore necessary and sufficient to show that (3.43) holds for all indices
n > N + 1, or equivalently, for all indices n > N.

By the definition of essential length, g, = 04 for all indices n > N. Conse-
quently, the partial sums of asymptotic series (3.41) do not change after n = N,
and s, = sy for all indices n > N. Furthermore,

Tm=f—Sa=f—-syg=rg

for all indices n > N. Showing that (3.43) holds for all indices n > N therefore
reduces to showing that one order relation holds:

ry (z) =0(04) as z — a. (3.44)

We have shown that asymptotic expansion (3.41) holds if and only if order
relation (3.44) holds. Since rg € C¥(A), Proposition 3.6 implies that (3.44) holds
if and only if rg = 04. However. rg = 04 means that f = s N OT equivalently, that
equation (3.42) holds for all z € A. This completes the proof. &

Remark 3.41 Consider the following consequences of the previous theorem.:

1. Theorem 3.40 establishes an equivalence between the asymptotic ezpansion
(3.41) and the ezact identity (3.42). Yet, the equivalence appears to be asym-
metrical since (3.41) involves all the coefficients {an}f:;l, whereas (3.42) in-
volves only a proper subset of the coefficients, namely {an},’f;l. We can
restore symmetry by noting that for all indices n > N, the value of o, in
(3.41) is inconsequential since g, = 04. Hence, only the coefficients {Ozn},’f’=1
enter into (3.41) in a significant way.

2. In the trivial case (N = 0), Theorem 3.40 implies that f € C“(A) has an
asymptotic ezpansion with respect to a trivial asymptotic sequence if and only
if f = sy = 04. In other words, the zero function is the one and only analytic
function which has a trivial asymptotic ezpansion.
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The notion of exact identities is more interesting when the function f depends
on a parameter. We will examine this generalization in the next chapter.



Chapter 4

Asymptotic Expansions with a

Parameter

This chapter extends the previous chapter’s results on asymptotic expansions in
one variable to asymptotic expansions in one variable and one parameter. This
chapter also serves as a natural intermediate step between asymptotic expansions
in one variable and dual asymptotic expansions, which are discussed in the next
chapter.

Although much of this chapter is inspired by standard material. many of the
results presented here draw conclusions stronger than those of traditional results.
This is achieved by using the full strength of analyticity for bivariate and univariate
functions. In particular, Division Theorem 2.17 plays a central role, and gives
many of the results of this chapter a distinctly different flavor than their univariate
counterparts in the previous chapter.

4.1 Uniform Order Relations

This section extends many of the results of Section 3.1 to order relations which
depend on a parameter.

Recall that B C R denotes an open interval, and let [b;, 2] C B be any closed
subinterval. If f : A x B — R, we can think of f(z,y) as a function of z, and treat

53
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Yy as a parameter in the parameter space [b;,b,]. Let g: A — R, and let a € A.
Suppose that for every y € [by,by], the order relation f(z,y) = o(g(z)) holds
as z — a. For every ¢ > 0, Definition 3.1 guarantees the existence of a suitable
neighborhood I, of a, but this I. may be different for different values of y. If for
every € > 0, we can find a single I, which suffices for all values of y, then the order
relation f(z.y) = o(g(z)) as z — a is uniform in the parameter y.
The next section makes this idea more precise.

4.1.1 Definition and Consequences

Definition 4.1 Assume f: Ax B — R and g: A — R are arbitrary functions.
Let a € A. and let [by,by] C B be any closed subinterval. The order relation
flz.y) = o(g(z)) as  — a holds uniformly in y for y € [61.6a] if for every
£ > 0. there 1s a neighborhood I. of a such that the inequality

|f(z.9)] < < |g(z)] (4.1)
holds for all (z.y) € I. x [by, b9].

The following proposition states the properties of uniform order relations under
addition, scalar multiplication, and composition. and is patterned after Proposition
3.2. The phrases “as z — a” and “holds uniformly in y for y € [b,b,]" will be
omitted for brevity. but should be assumed wherever the variables r and y occur.

respectively.

Proposition 4.2 Let f, f;, fo: AxB — R and g.h: A — R be arbitrary func-
tions, and let c € R.

1. If fi(z,y) = o(h(x)) and fa(z,y) = o(h(z)), then fi(z. y)+ fa(z, y) = o(h(z)).
2. If f(z,y) = o(h(z)), then c- f(z,y) = o(h(z)).

3. If f(z,y) = o(g(z)) and g(z) = o(h(z)), then f(z,y) = o(h(x)).
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The proof of Proposition 4.2 is nearly identical to the proof of Proposition 3.2,
and is therefore omitted.

Remark 4.3 The short forms of these three properties remain completely unchanged
by the introduction of a parameter; the transformation rules are still denoted by:

1. o(h(z)) + o(h(z)) = o(h(z))
2. c-o(h(z)) = o(h(z))
3. o(o(h(z))) = o(h(z)).

Although the notation is the exactly same, the interpretation is slightly different
than before. If all the order relations on the left-hand side hold uniformly in y for
y € [b1,bo], then the resulting order relation on the right-hand side also holds
uniformly in y for y € [by,8,]. In short. the transformation rules preserve the
uniformity of order relations.

4.1.2 Implications for Analytic Functions

Let f: Ax B — R and g : A — R be arbitrary functions, let a € A. and let
[b1.b2] C B be any closed subinterval. If the order relation

f(z,y) = o(g(z)) as z — a (4.2)

holds uniformly in y for y € [by,b2], it follows trivially from Definition 4.1 that
the order relation also holds in the univariate sense for each fixed y € [b;,bs]. The
main theorem of this section shows that for analytic functions, the converse is also
true — if order relation (4.2) holds in the univariate sense, then the order relation
automatically holds uniformly in the parameter over any compact interval

The following two propositions, which apply to analytic functions, give necessary
and sufficient conditions for an order relation with a parameter to hold in the

univariate sense.
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Proposition 4.4 Assume f € C“(A x B) and g € C¥(A), with g #04. IfSC B
is any subset, then f(z,y) = o(g(z)) as z — a for ally € S if and only if

im £&9) _,
—a g(z)

forallye S.
Proof. Simply hold each y € S fixed and apply Proposition 3.5. W

Proposition 4.5 Assume f € C“(A x B) and g = 04. If J C B is an open
interval, then f(r.y) = o(g(z)) as £ — a for ally € J if and only if f = 04x5.

Proof. For each fixed y € J, define F,(r) = f(z.y) for all z € A. and note that
Fye C“(A). f Fy(z) =o(g(z)) asz — aforally€ J, then F, =04 for all y € J,
by Proposition 3.6. This implies that f | AxJ = 04x;. By the Unique Continuation
Property (Proposition 2.4), f = 0axp. Conversely, if f = 04xp, then F, = 04 for
all y € J. and Proposition 3.6 implies that F,(z) = o(g(z)) asz — aforally € J. &

We are now ready to prove the following Uniform Order Relation Theorem.
which builds on the foundation laid by Division Theorem 2.17.

Theorem 4.6 Assume f € C¥(A x B) and g € C¥(A). Leta € A, let J C B be
any open subinterval. and let [by,bs] C B be any closed subinterval. If the order

relation
f(z.y) = o(g(z)) asz —a (4.3)

holds for all y € J, we can conclude that:

1. the order relation holds for all y € B

2. the order relation holds uniformly in y for y € [b,, by].

Proof. The proof proceeds by cases on g.
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Case 1. Suppose that g # 04. By Proposition 4.4 with S = J, order relation
(4.3) implies that
im L&Y _ g (4.4)
z—a g(z)
for all y € J. By Division Theorem 2.17, the limit

h(y) = lim @)

exists for all y € B. and the resulting function h € C*¥(B). Since h|J = 0. the
Unique Continuation Property (Proposition 2.4) implies that h = O, or equiva-
lently, that equation (4.4) holds for all y € B. By Proposition 4.4 with S = B,
order relation (4.3) holds for all y € B. which proves conclusion 1.

Division Theorem 2.17 also implies that the limit in (4.4) is uniform in y for
y € [b1,b2). By Definition 2.16, for every € > 0. there is a deleted neighborhood
I, — {a} such that the inequality

n

|f(z.y)| < = |g(z)] (4.5)

)

holds for all (z.y) € (I — {a}) x [by,b;]. Taking the limit of (4.5) as z — a in
L. - {a} yields

|f(a.y)| < e |g(a)l (4.6)
for all y € [by, bo], by the continuity of f and g. Inequalities (4.5) and (4.6) together

imply that
|f(z. )| < € |g(=)]

for all (z,y) € I. x {b;,b;]. By Definition 4.1, order relation (4.3) holds uniformly
in y for y € [by, bo), which proves conclusion 2.

Case 2. Suppose that g = 04. By Proposition 4.5, order relation (4.3) implies
that f = 04xp. By Proposition 4.5 with J replaced by B, the hypothesis f = 0445
implies that order relation (4.3) holds for all y € B, which proves conclusion 1.
Since f = 04xp, Definition 4.1 is trivially satisfied by setting I. = A for every
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e > 0. Consequently, order relation (4.3) holds uniformly in y for y € [b;, b,), which
proves conclusion 2. B

Thus, when we are working with analytic functions, we never have to postulate
the uniformity of an order relation as the parameter varies over a compact interval

— uniformity is an automatic consequence of analyticity.

4.1.3 Integration Theorem

The following standard result establishes that an order relation which holds uni-
formly in a parameter can be integrated with respect to the parameter. Note that
analyticity is not needed here — continuity is sufficient to establish the result.

Theorem 4.7 Assume f € C(A x B). and assume g : A — R is an arbitrary
function. Let a € A. and let [by. b2] C B be any closed interval. If f(z,y) = o(g(z))
as £ — a holds uniformly in y for y € [b,.bo], then

/ '” f(z.y)dy = o(g(z)) as z — a. (4.7)

Proof. Let ¢ > 0 be given, and let £ = ¢ /(b; — ;). By Definition 4.1, there is a
neighborhood I of a such that [f(z,y)| < £ |g(z)]| for all (z.y) € I x [b),b,]. For
all z € [.

1

&2 b2
[ sl < [7 @l

< [7elg)ay
= (b2 — b)) ¢ |g(z)]
= ¢ |g(z)l,

which establishes that order relation (4.7) holds. B
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Notice that this theorem uses the technique of Theorem 3.7. but avoids the
defect. Why does g rather than |g| appear in order relation (4.7)? This occurs
because the original order relation is integrated with respect to the parameter, and
g is independent of the parameter.

Applying Uniform Order Relation Theorem 4.6 to Theorem 4.7 yields the fol-
lowing corollary for analytic functions.

Corollary 4.8 Assume f € C“(A x B) and g € C*(A). Let a € A, and let
[b1,b2] € B be any closed subinterval. If f(z.y) = o(g(z)) as £ — a for all
Yy € (by.bs). then

Afﬂawwcm@unmx~w

4.2 Uniform Asymptotic Expansions

This section extends many of the results of Section 3.3 to asymptotic expansions
which depend on a parameter.

Recall that N denotes either a positive integer or infinity. Let {g,}}_, C R4, let
{an}ss; C R.and let a € A. Assume that {g,(z)})_, is an asymptotic sequence as
z — a. Let f: Ax B — R be an arbitrary function. and let S C B be an arbitrary
subset. If for every fixed y € S. the function f(z.y) has an asymptotic expansion
as £ — a, then each coefficient a, of the asymptotic expansion will depend on y.
Thus. the asymptotic series for f(z.y) will have the form

N
Z an(y) gn(x). (4.8)
n=1

Consequently, each partial sum s, of the asymptotic series (4.8) will depend on y,
and be given by

5z, 9) = 3" am(y) gm(@) (4.9)

m=1

for all (z,y) € A x S. Similarly, each remainder r, of the asymptotic series (4.8)
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with respect to f will also depend on y, and be given by

ra(z,y) = f(z,y) — sa(z,y) (4.10)

for all (z.y) € A x S.

Remark 4.9 For convenience, define s9 = Osxp and ro = f. With these defini-
tions, equation (4.10) holds for n = 0 as well as for all indices n.

The next section explains what it means for an asymptotic expansion to be
uniform in the parameter y.

4.2.1 Definition and Consequences

Definition 4.10 Let [b;,bs] C B be any closed subinterval, and assume that f(z.y)
has an asymptotic expansion

N
f(@.y) ~ Y an(y)galz) asz —a (4.11)
n=1

for every y € [by.b2]. We say that the asymptotic expansion holds uniformly in
y for y € [by.by] if, for all indices n. the order relation

ro(z.y) = 0o(gn(z)) asz — a (4.12)

holds uniformly in y for y € [by, ba).

Remark 4.11 By Proposition 4.2, the transformation rules for order relations pre-
serve uniformity. Consequently, we can easily extend Proposition 3.29 to show that
the following weaker conditions imply the stronger conditions of Definition 4.10:

1. If N < 20, it suffices to show that ry(z,y) = o(gn(z)) as £ — a holds
uniformly in y for y € (b1, ba).

2. If N = oo, it suffices to show that rp(z,y) = o(gn(z)) as z — a holds uni-
formly in y for y € [by, by] for all sufficiently large integers n.
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4.2.2 Implications for Analytic Functions

The main theorem of this section enables us to draw several strong conclusions
about nonterminating asymptotic expansions involving analytic functions — namely,
if the expansion holds for all parameter values in some open interval, then:

1. the expansion actually holds over the entire parameter domain;
2. the resulting coefficients are analytic functions of the parameter: and.

3. the expansion holds uniformly in the parameter over any compact interval.

The following theorem provides a necessary and sufficient condition for the
existence of a nonterminating asymptotic expansion whose parameter y ranges
over an arbitrary set S. The theorem also provides a useful recursive formula for
computing the coefficients {a,}¥_, as functions of the parameter Y.

Theorem 4.12 Assume f € C<(A x B) and {g.}}_, € C*(A). Leta € A, and let
S C B be an arbitrary subset. Assume {g,(z)}_, is a nonterminating asymptotic
sequence as £ — a. The asymptotic expansion
N
f(z.y) ~ D an(y)galz) asz — a

n=1

holds for all y € S if and only if the equation

T rn—l(xvy)
= @

holds for all indices n and ally € S.

Proof. Simply hold each y € S fixed and apply Theorem 3.35. ®

The framework of results constructed on the foundation of Division Theorem
2.17 reaches its apex in the following Uniform Asymptotic Ezpansion Theorem.
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Theorem 4.13 Assume f € C¥(A x B) and {g,})_, € C“(A). Let a € A, let
J C B be any open subinterval, and let [b1,b2] C B be any closed subinterval.
Assume {gn(z)})_, is o nonterminating asymptotic sequence as T — a. If the

asymptotic expansion

f@.9) ~ 3 an(y) gn(z) as z — a (4.13)

n=1

holds for all y € J, we can conclude that:

1. the asymptotic expansion holds for all y € B
2. the coefficient functions satisfy {a.}Y_, C C¥(B)
3. the asymptotic ezpansion holds uniformly in y for y € [by, by.

Proof. First, we will show by induction on n that a, € C¥(B) for all indices n.
By Theorem 4.12 with S = J. the limit

o) — i 702 y) L f(zy)
al(y)—}}f}z 91(z) 21:123 91(z)

exists for all y € J. Division Theorem 2.17 implies that the limit exists for all
y € B. and further implies that a; € C¥(B). Let n < N be an index, and suppose
that am € C¥(B) for all indices m < n. From these assumptions and the equation

ra(z.9) = f2.7) = 3 am(y) gm(),

m=1

it follows that r, € C¥(A x B). By Theorem 4.12 with S = J, the limit

: rn($’ y)
Qay = lim
1Y) z—a g, .1(z)

exists for all y € J. Division Theorem 2.17 implies that the limit exists for all
y € B, and further implies that a,,; € C¥(B). It follows by induction on n
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that a, € C¥(B) for all indices n. This proves conclusion 2, and also shows that
rn € C¥(A x B) for all indices n.

To say that asymptotic expansion (4.13) holds for all y € J means that for each
index n, the order relation

Tn(Z.y) = o(gn(z)) 8sz — a (4.14)

holds for all y € J. For each index n, Uniform Order Relation Theorem 4.6 implies
two things: that order relation (4.14) holds for all y € B. and that it holds uni-
formly in y for y € [by, b5]. Thus, asymptotic expansion (4.13) holds for all y € B,
and it holds uniformly in y for y € [b;, b5]. This proves conclusions 1 and 3. W

When we are working with analytic functions, we never have to postulate the
uniformity of an asymptotic expansion as the parameter varies over a compact
interval — uniformity is an automatic consequence of analyticity, just as with order
relations. Furthermore, we need not postulate the properties of the coefficients in
the asymptotic expansion — their analyticity is an automatic consequence of the
analyticity of the other functions.

4.2.3 Integration Theorem

The following standard result shows that an asymptotic expansion which holds
uniformly in a parameter can be integrated with respect to the parameter to ob-
tain another asymptotic expansion. Note that analyticity is not needed here —
continuity is sufficient to establish the result.

Theorem 4.14 Assume f € C(A x B) and {g.})_, € C(A). Let a € A, and
let [b1,b2] C B be any closed subinterval. Assume {gn(z)}\_, is an asymptotic
sequence as * — a. [f the asymptotic expansion

N
f@,y) ~ 3 on(y) gn(z) asz —a (4.15)

n=1
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holds uniformly in y for y € [by,bs], and if {an}Y_, C C(B), then the parameter-free
asymptotic ezpansion

N
[ iena~ 3 ([Motty) se asz—=a @19

n=1

also holds.

Proof. Let r, denote the n-th remainder of asymptotic expansion (4.15), and let
R, denote the n-th remainder of asymptotic expansion (4.16). Note that

n

R.(z) = /: flz.y)dy - Y (Afz am(y)dy) gm(z)

m=1

= [ (Fen) = 3 entr)on) a
m=1

1

b2

= [Traz.y)dy.

b

By Definition 4.10. the uniformity of asymptotic expansion (4.15) means that for
all indices n.

ra(Z.y) = o(gn(z)) a5  — a

holds uniformly in y for y € [b;, b2]. Since
ra(z.y) = f(z.y) — D_ am(y) gm(z),
m=1

it follows from the hypotheses that r, € C(A x B). Theorem 4.7 therefore implies
that
b2
Rn(z) = [ ra(z,y)dy = o(ga(z)) 2z — @

1
for all indices n, which proves that asymptotic expansion (4.16) holds. &
Applying Uniform Asymptotic Ezpansion Theorem 4.13 to Theorem 4.14 yields
the following corollary for analytic functions and nonterminating asymptotic ex-

pansions.
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Corollary 4.15 Assume f € C¥(A x B) and {g .}, C C¥(A). Let a € A, and
let [by,b2] C B be any closed subinterval. Assume {g.(z)}"_, is a nonterminating
asymptolic sequence as £ — a. If the asymptotic expansion

N
flz.y) ~ 3 on(y)ga(z) sz —a

n=1

holds for all y € (by, b,), then the parameter-free asymptotic ezpansion

N
K flz.y)dy ~ > (A:n an(y)dy) gnl(z) a5 — a

n=1

also holds.

4.2.4 Exact Identity Theorem

This section discusses asymptotic expansions with a parameter in the terminating
and trivial cases for analytic functions. The following theorem shows that a termi-
nating or trivial asymptotic expansion with a parameter is equivalent to an ezact

identity in two variables.

Theorem 4.16 Assume f € C¥(A x B) and {g.}_, C C¥(A). Leta € A, and
let J C B be any open subinterval. Assume {gn(z)})_, is a terminating or trivial
asymptotic sequence as £ — a. and let N denote its essential length. The asymptotic
erpansion

N
f(z,y) ~ D an(y)gn(z) asz —a (4.17)

n=1

holds for all y € J if and only if {an},’:-;l C C¥(B) and the equation

N
f(z,y) = 2_: () gn(z) (4.18)

holds for all (z,y) € A x B.



CHAPTER 4. ASYMPTOTIC EXPANSIONS WITH A PARAMETER 66

Proof. We will consider the terminating and trivial cases separately.

Case 1. Assume that {g,}}_, is terminating (0 < N < N). By the definition
of essential length, g, = 04 for all indices n > N. Consequently, the partial sums
and remainders of asymptotic series (4.17) do not change after n = N, which means
that s, = sy and

rm=f—sSpa=f—sg=rx

for all indices n > N.
If asymptotic expansion (4.17) holds for all y € J, then the order relation

ra(Z,y) = 0o(gn(z)) as z — a

holds for all indices n and all y € J; in particular, the order relation holds for all
indices n < N. which implies that the truncated asymptotic expansion

N
f(z.y) ~ > an(y)gn(z) assz —a

n=1

holds for all y € J.

By the definition of essential length, g, # 04 for all indices n < N. The
subsequence {gn}ff;l is therefore nonterminating. It follow by Uniform Asymptotic
Ezpansion Theorem 4.13 that {a,}¥_, ¢ C¥(B). Consequently,

&
re(z.y) = f(z.y) = D an(y) ga(z)
n=1

is defined for all (z,y) € A x B, and ry € C¥(A x B).
Since 0 < N < N, it follows that N + 1 is an indez. This implies that order
relation
Th41(Z,y) = o(gnsi(z)) asz —a (4.19)
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holds for all y € J. By previous remarks, N + 1 > N implies that rg,, = r5 and
gn+1 = 0a. Order relation (4.19) therefore becomes

ra(z,y) =0(04) asz —a

forall y € J. Since rg € C¥(A x B), Proposition 4.5 implies that rg = 04,5, which
means that f = sg, or equivalently, that equation (4.18) holds for all (z,y) € Ax B.
Conversely, suppose that {a, },f’:l C C¥(B). Suppose also that equation (4.18)
holds for all (z,y) € A x B, or equivalently, that f = sg. The analyticity of the
first N coefficients implies that sy € C¥(A x B); hence, the assumption f = sy is
consistent with the hypothesis f € C¥(A x B).
To prove that asymptotic expansion (4.17) holds for all y € J, we must show

that the order relation
ra(z.y) = o(gn(z)) as z — a (4.20)

holds for all indices n and all y € J. If n > N, then r, = rg by previous remarks,
and order relation (4.20) reduces to

ra(z.y) = o(gn(z)) as z — a
for all y € J: this order relation is trivially satisfied, since by assumption
ro=f =5 =0Oaxs.

We have shown that order relation (4.20) holds for all indices n > N and all
y € J. By Proposition 3.29 with m = N, the order relation also holds for all indices
n < N and all y € J. Thus, order relation (4.20) holds for all indices n and all
y € J. This completes the proof of the converse, and finishes Case 1.

Case 2. Assume that {g,}_, is trivial (N = 0). Since g, = 04 for all indices
n, it follows that s, =04 and r,, = f — s, = f for all indices n.
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Asymptotic expansion (4.17) holds for all y € J if and only if the order relation

Ta(z,y) = o(gn(z)) as z — a

holds for all indices n and all y € J; however, previous remarks reduce this to the
order relation
f(zv y) = O(OA) as r —a,

which must hold for all y € .J.
Since N = 0. the inclusion {a,}_, ¢ C¥(B) is vacuously satisfied. Equation
(4.18) holds for all (z,y) € A x B if and only if

f=SA7=So=OAx3.

Hence, we must show that f(z,y) = 0(04) as z — a holds for all y € J if and
only if f = 04,p. This follows directly from Proposition 4.5. B

Note that the proof of Theorem 4.16 is more complicated than the proof of its
univariate counterpart. Theorem 3.40. The reason is that the presence of a parame-
ter generally causes the coefficients of the asymptotic expansion to be nonconstant:
it is therefore necessary to include a condition which describes the dependence of
the coefficients on the parameter. That condition is analyticity.

Remark 4.17 We will work ezclusively with analytic functions for the remainder
of the thesis.



Chapter 5
Dual Asymptotic Expansions

In the previous chapter, we studied the asymptotic expansion

N
f(z.y) ~ D on(y)ga(z) as z —a (5.1)
n=1

in one independent variable r and one parameter y. We found that under suitable
hypotheses. the coefficient functions {a,(y)})_, are uniquely determined by the
function f(z,y), the real number a, and the asymptotic sequence {g.(z)}¥_,. Given
a function f(z,y) and a point (a, b) in its domain, there are a number of interesting
questions we can ask concerning asymptotic expansion (5.1):

1. Is it possible to choose the asymptotic sequence {g.(z)}}_, as £ — a in such
a way that the resulting coefficients {a,(y)}2_, form an asymptotic sequence
asy — b?

2. If this is possible, can it be done in more than one way — or are the asymptotic
sequences {gn(z)}}_; and {a.(y)})_, uniquely determined by the choice of

function f(z,y) and point (a,b)?

3. Can expansion (5.1), which is asymptotic as z — a for fixed values of y, also
be asymptotic as y — b for fixed values of z? That is, can the expansion
exhibit a duality between the independent variable and the parameter?

69
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4. If asymptotic expansion (5.1) does exhibit such a duality, what properties
does the expansion have? For example, is it uniform on compact intervals?
Is it preserved under indefinite integration?

5. What are some of the applications of these “dual asymptotic expansions”?
Does this two-variable approach to asymptotics have any advantages over
traditional one-variable methods?

We will have answers to all these questions by the end of the thesis.

5.1 Definition and Examples
Our search for answers begins with the definition of a dual asymptotic erpansion.

Definition 5.1 Assume f € C¥(Ax B) and let (a.b) € Ax B. Let N denote either
a positive integer or infinity. and assume {g.}}_, C C¥(4), {h.})_, C C¥(B),

and {c. };_; C R — {0}. Assume also that {gn(z)}X_, is an asymptotic sequence as
T — a, that {h,(y)}}_, is an asymptotic sequence as y — b, and that both sequences
have the same essential length N. If the asymptotic ezpansion

flz.y) ~ Zgn n(y) (5.2)

holds in the univariate sense

1. as x — a for each fired y € B, and

2. asy — b for each fized z € A,

we say that (5.2) is a dual asymptotic expansion of f to N terms at (a,b),
and we denote this relationship by

asT —aory—b. (5.3)

N I
Flz,y) ~ Z—: 9n(z) ha(y)

Cn
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Remark 5.2 A dual asymptotic ezpansion can be viewed as a “win pair” of uni-

variate asymptotic erpansions:

1. The dual asymptotic expansion (5.3) is a univariate asymptotic ezpansion in
the variable = with parameter y, since

N
flz.y) ~ > (M> gn(z) as z — a

n=1
holds for each fixred y € B.

2. The dual asymptotic ezpansion (5.3) is also a univariate asymptotic expansion
in the variable y with parameter z. since

N
e ~ 3 () hoty) 0oy 8

n=1

holds for each fized = € A.
Of course, these twin asymptotic ezpansions are intimately related:

1. They share a common algebraic structure — they can both be written in the
same form as (5.3). Indeed. this shared structure makes them inseparable —
each one is. by definition, the tuin of the other.

2. Although structurally identical, they ezperience a duality of purpose — there
is a duality between the variables and the parameters of the two univariate
expansions, as well as a duality between the coefficients and the asymptotic
sequences that appear in those expansions.

Although the twin asymptotic expansions appear to be made of the same stuff, they
behave in a complementary fashion. In short, they are identical in structure, but

complementary in function.

The reader is already familiar with a large class of dual asymptotic expansions.
Here is one such example.



CHAPTER 5. DUAL ASYMPTOTIC EXPANSIONS 72
Example 5.3 Letting t = —z%y® in the geometric series

1
ﬁ=1+t+t2+t3+--- ¢ < 1,

gives rise to the dual asymptotic expansion

1

m~l—x2y2+x4y4—r6y6+---as:z:—»Oory—»O. (5.4)

Let us verify that all the requirements of Definition 5.1 are satisfied:

1. The function f(z,y) = 1/(1 + z2y?) satisfies f € C*(R?), and (0,0) € R?;
hence. we can take A = B = R.

2. We have g,(z) = 227V, h,(y) = y** Y, and c, = (—1)""! for all positive
integers n. In addition, {gn}52, C C¥(R), {ha}Z, C C¥(R), and {c,}2, C
R — {0}, hence. we can let N = .

3. Clearly, {£*"~1}= | and {y*™~V}2 | are asymptotic sequences as £ — 0 and
y — 0. respectively. Since both sequences consist entirely of nonzero functions,
both sequences are nonterminating with essential length N = N = 0.

4. If y # 0. the infinite series (5.4) converges to 1/(1 + z%y?) whenever |z| <
1/|yl. Since convergent Taylor series are asymptotic expansions, it follows
that asymptotic ezxpansion (5.4) holds in the univariate sense as £ — 0 for
each fized y # 0. If y = 0, the ezpansion holds trivially as t — 0. Thus.
asymptotic ezpansion (5.4) holds as ¢ — 0 for each fized y € R. By symmetry,
the ezpansion also holds as y — 0 for each fized z € R.

More generally, if I C R is a neighborhood of zero, and F € C“(I) satisfies
F # 0, the Maclaurin series

oc ()
Fey =3 F n!(o) o (5.5)

gives rise to a dual asymptotic expansion in the following way. Let {n;}¥_, be
the strictly increasing sequence consisting of all n € N such that F(™)(0) # 0. (As
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always, NV denotes a positive integer or infinity; in this case, N < oo if and only if
F is a polynomial.) We can use the sequence {n;}Y_, to delete exactly those terms
in (5.5) whose coefficients are zero; this enables us to rewrite (5.5) as

_ N F(nk)(O) _— N e
Fit)=) ———=t* = ; TAETION

= (! 50

Let p and q be positive integers, let a, b, and r # 0 be arbitrary real constants,
and let B > 0 be the radius of convergence of the Maclaurin series (5.5). By

flz.y)=F ((I —a)P(y — b)Q)

construction,

r

is a well-defined real-analytic function in the open rectangle

Iz —a| < YI|r|R, |y—bl< YIr| R.

Letting t = (z —a)P(y—b)?/r in series (5.6) gives us this dual asymptotic expansion
of f to N terms at (a.b):

I_apnk.(y_b)an

(
e~ e (ne)! / F(0)

k_.

asr —aory—b (5.7)

Example 5.4 The dual asymptotic expansion in Example 5.3 can be obtained from
(5.7) in at least two ways:

1. LetI=(—oo,1), F(t)=1/(1—t),N=OO, le=k‘—1,p=q=2,r=—1,
anda="5b=0.

2. Let I =R. F(t) = 1/(1+t?), N=oo,ny =2(k—1),p=q=r=1, and
a=b=0.

Remark 5.5 Please do not be mislead by the previous examples — not every dual
asymptotic expansion is a Taylor series in disguise! Later in the thesis, we will
see examples of dual asymptotic ezpansions whose terms contain nonpolynomial
functions, and thus cannot be Taylor series.
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Although Taylor series, and more generally, univariate asymptotic expansions
are allowed to have zero terms interspersed with nonzero terms, dual asymptotic
ezpansions are not. Dual asymptotic expansions can contain zero terms, but only
after all of the nonzero terms have appeared. This is described more precisely
in the following definition, which applies our classification scheme for univariate
asymptotic expansions to dual asymptotic expansions.

Definition 5.6 We will say that dual asymptotic expansion (5.8) is nontermi-
nating, terminating, or trivial if the asymptotic sequences {g.}"_, and {h,}\_,
are nonterminating (N = N), terminating (0 < N < N), or trivial (N = 0), re-
spectively. We wnll also say that dual asymptotic ezpansion (5.8) has essential
length N.

The rest of this chapter explores the properties of dual asymptotic expansions,
assuming that such objects exist. The next two chapters will show that such objects
actually do exist, and have a number of useful applications.

5.2 Fundamental Properties
This section establishes the fundamental properties of dual asymptotic expansions

with regard to uniformity in parameters, indefinite integration, and exact identities.

5.2.1 Dual Uniformity Theorem

The following theorem shows that a nonterminating dual asymptotic expansion is
automatically uniform in each of its parameters over compact intervals.

Theorem 5.7 Assume the conditions specified in Definition 5.1, and let [a;,a;] C
A and [by, b2] C B be any closed subintervals. If

N
S ACLY) o

is a nonterminating dual asymptotic exzpansion of f to N terms at (a,b), then:
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1. as z — a, asymptotic ezpansion (5.8) holds uniformly in y for y € {b, b}

2. as y — b, asymptotic ezpansion (5.8) holds uniformly in z for = € |a;, as).

Proof. Since the hypotheses are completely symmetric, conclusion 2 can be ob-
tained from conclusion 1 simply by interchanging the roles of z and y. It therefore
suffices to prove conclusion 1. By Definition 5.1, asymptotic expansion (5.8) holds
as £ — a for all y € B, and by Definition 5.6, {g,}’_, is a nonterminating se-
quence. Conclusion 1 follows immediately from Uniform Asymptotic Ezpansion
Theorem 4.13 with J = B.

5.2.2 Dual Integration Theorem

The following theorem shows that a nonterminating dual asymptotic expansion can
be integrated with respect to either of its independent variables to obtain another

nonterminating dual asymptotic expansion.

Theorem 5.8 Assume the conditions specified in Definition 5.1. For all z € A.
all y € B. and all indices n. define

FO(zy) = [ fty)dt, Gule)= [ galt)at

a

FO(zy) = [ flzt)dt, Hay)= [ halt)at.

If the expansion y
flay) ~ 3 &Ll (5.9)

n=1

is a nonterminating dual asymptotic expansion of f to N terms at (a,b), then

F(l)(:z:,y) ~ i_G"(x—)h"(i) (5.10)
n=1 Cn

F(2)(I,y) ~ f:gn(z)cf{n(y) (5.11)
n=1
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are nonterminating dual asymptotic ezpansions of F") and F® to N terms at

(a,b).

Proof. By symmetry, it suffices to prove the result for expansion (5.10). Clearly.
F1) € C¥(Ax B) and {G,}Y_, C C¥(A). By Theorems 3.24 and 3.25, {G.(z)}_,
is an asymptotic sequence as r — a. and it essential length is N. Hence, {G,}_,

has the same essential length as {h,},.
For each fixed y € B. Theorem 3.39 implies that asymptotic expansion (5.10)
holds as z — a. Now fix £ € A. and consider the following three cases:

Case 1.

Case 2.

Case 3.

If £ > a. then [a.z] C A is a compact subinterval, and we can think of (5.10)
as resulting from definite integration from a to z with respect to the parameter
t: the result is a parameter-free asymptotic expansion in y as y — b. Since
{h.}._, is a nonterminating sequence by hypothesis, Theorem 4.15 (with the
roles of z and y reversed) implies that asymptotic expansion (5.10) holds as
y — b for the specified value of z.

If £ = a. then expansion (5.10) reduces to

N
OB ~ ZO - hn(y)v
n=1

which holds as y — b by Proposition 3.36.

If £ < a. then [z.a] C A is a compact subinterval. By thinking in terms of
definite integration from z to a with respect to the parameter ¢, an argument
similar to Case 1 establishes that the negated asymptotic expansion

N _
_F(l)(x’ y) ~ Z Gn(: ha(y)
n=1

holds as y — b for the specified value of z. By the linearity properties of
asymptotic expansions (Proposition 3.31), the desired asymptotic expansion
(5.10) also holds as y — b for the specified value of z.
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We have shown that the asymptotic expansion (5.10) holds as £ — a for all
y € B, and holds as y — b for all z € A. By Definition 5.1, asymptotic expansion
(5.10) is a dual asymptotic expansion at (a,b). Since N = N by hypothesis. the
dual asymptotic expansion (5.10) is also nonterminating. &

5.2.3 Exact Identity Theorem

The following theorem shows that a terminating or trivial dual asymptotic expan-
sion is equivalent to an eract identity in two variables.

Theorem 5.9 Assume f € C¥(A x B), {g.})_, C C¥(A), {h}}, C C¥(B),

and {c.}}, C R— {0}. Let (a,b) € A x B, and assume that {gn(z)}"_, s an
asymptotic sequence as T — a, that {h,(y)})_, is an asymptotic sequence as y — b,
and that both sequences have the same essential length N. If N < N. then the dual
asymptotic erpansion

asz —aory—b (5.12)

N
flz.y) ~ Z gn(l'z:'n(y)

holds if and only if the equation

f(z.y) Z gn(T) hn(y)

holds for all (z,y) € A x B.

Proof. The result follows immediately from Theorem 4.16 with J = B. ®

5.3 Uniqueness and Normalization

This section establishes that dual asymptotic expansions are unique up to normal-
ization, and then proposes a normalization scheme which produces true uniqueness

in the nonterminating case.
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5.3.1 Uniqueness Theorem

Assuming the conditions specified in Definition 5.1, let

N h

f(x,y)~ZMasx—*aory—>b (5.13)
n=1 Cn

be a nonterminating dual asymptotic expansion. For convenience, denote the n-th

term of the expansion by

falz.y) = 9n(2) in(y) (5.14)

for each index n. As usual. define the n-th partial sum by s, = ¥?_, fm and
the n-th remainder by r, = f — s, for each index n. and adopt the conventions
so =04xp and ry = f.

For any F € C¥(A x B) with F # 04xpg. define

F(z.g) F(z.
TanlFl(z.y) = lim_ (ll—l-%"' (xFy()i y()I y))

for all (z.y) € A x B. In the next chapter, we will show that T, 4) is a well-defined
operator, and will study its properties; however, in this chapter T, ;) merely serves
as a convenient notation for the specified limit process. Note that T, is defined
via one-sided limits: we lose nothing by doing so. since two-sided limits. if they
exists, must yield the same values.

The following theorem gives a recursive formula for computing the n-th term
(5.14) of the nonterminating dual asymptotic expansion (5.13).

Theorem 5.10 If (5.13) is a nonterminating dual asymptotic expansion, then the
n-th term (5.14) is given recursively by the formula

fa(z.y) = Yiap)[ra-1](z, y) (5.15)
for all indices n and all (z,y) € A x B.

Proof. If we think of (5.13) as an asymptotic expansion as z — a for all y € B,
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then Theorem 4.12 with S = B allows us to compute the coefficients via

”'n(y) .7 n—l(i ’ y)
— ! = im ——<~2 .16
Cn f—a gn(j:) (5.16)

for all indices n and all y € B. Similarly, if we think of (5.13) as an asymptotic
expansion as y — b for all z € A. then we can compute the coefficients via

gn(z) = lim rn—1(Z,¥)

o T EmTHG) (5.17)

for all indices n and all £ € A. (We have denoted the limit variables by Z and g for
convenience in subsequent calculations.) Solving (5.17) for ¢, and replacing z by
e (@) ha(3)
. n\Z) ln
=T e

Taking the limit. of (5.18) as £ — a yields

e = hm<h M) (5.19)

i—a \y—b Tn_1(Z,7)

(5.18)

Multiplying (5.19), (5.17). and (5.16) together yields the following formula for the
n-th term (5.14). which holds for all indices n and all (z.y) € A x B:

v gn(z) haly)

falz.y) = .

_ gn(z)) <h (y))
= Cn-
Cn

— gn (Z) h'n(y)) (lim Tn—1(Z, g)) . (hm rn-1(Z, y))

:: a y—ob Tn—1(Z, ) y—b  h,(9) i—~a  gn(Z)

( gn(Z) hn(§) Tn-1(z.§) rn_l(i,y)>
=5 \i=b T1(Z.9) ha(9) gn(Z)
( Tn-1(Z, §) Ta-1(Z, y))

z—.a g—b Tn-1(Z,9)
= Tay[ra-1l(z, ).
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This establishes formula (5.15). B

Recall that Theorem 5.9 showed a function has a trivial dual asymptotic ex-
pansion if and only if that function is identically zero. This result does not tell
us whether the zero function can have other kinds of dual asymptotic expansions.
The following proposition shows that the zero function cannot have a terminating

or nonterminating dual asymptotic expansion.

Proposition 5.11 If the function Osxg has a dual asymptotic ezpansion to N
terms at the point (a.b) € A x B. then the ezpansion is trivial.

Proof. Suppose that 0,45 has a dual asymptotic expansion

N
Oaxs~ S ﬂ%y—) (5.20)
n=1

with essential length NV at the point (a.b). Consider the following two cases.

Case 1. If N = N. expansion (5.20) is nonterminating. For any fixed y € B.
(5.20) is a nonterminating asymptotic expansion as £ — a. Theorem 3.36 implies

that the coefficients
ha(y)

=V

Cn
for all indices n. Consequently, h, = 0g for all indices n, and {h.}Y, is a trivial
sequence. This contradicts the assumption that {h,}Y_, is nonterminating; hence,

the dual asymptotic expansion (5.20) cannot be nonterminating.

Case 2. If 0 < N < N, expansion (5.20) is terminating. This implies that the
truncated dual asymptotic expansion

N
gn(z) ha(y)
Ouxg ~ S =l mid/
AxB n; p

holds at (a,b) and is nonterminating, which Case 1 showed to be impossible. Con-
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sequently, the original dual asymptotic expansion (5.20) cannot be terminating.
By process of elimination. dual asymptotic expansion (5.20) must be trivial B

The following Uniqueness Theorem establishes that all dual asymptotic expan-
sions — trivial. terminating, and nonterminating — are unique up to normalization.

Theorem 5.12 If f € C¥(A x B) has a dual asymptotic expansion to N terms at
the point (a,b) € A x B, then the terms of the expansion are unique.

Proof. Suppose that for i € {1.2}, the function f has two dual asymptotic

expansions
N

flz.y)~ > f(z.y)asz —aory —b (5.21)

n=1
Let s{) and r{) denote the n-th partial sum and remainder of expansion (5.21),
respectively. Let N9 denote the essential length of expansion (5.21), and define
N = min(N®, N@). It follows that the truncated dual asymptotic expansion

N
flzy)~> f(z.y)asz —aory—b
n=1
is nonterminating for i € {1,2}.
We will show by induction on n that f ) = f( for all indices n < N. By
Theorem 5.10,

fl(l) — T(a,b)[r(()l)] = T(a,b)[f] = T(a,b)[r(()2)] = f1(2).

Let n < N be an index, and suppose that f{!) = f.( for all indices m < n, in
which case r{!) = r (2. By Theorem 5.10,

2
= TanrV] = Tanr?) = 8.

It follows by induction that f{1) = f.? for all indices n < N. Note that this

implies sg—l,) = sg).
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We will now prove by contradiction that N0 = N@) [f NO) « N@ then
N = N by definition of N. Furthermore, N!) < N, which implies the original
expansion (5.21) is terminating or trivial for i = 1. Theorem 5.9 for i = 1 implies
that

f= s%()l) = Sg) = Sg). (5.22)
Since dual asymptotic expansion (5.21) holds for i = 2, the derived dual asymptotic
expansion
N
fz.y) ~sg(z.y)~ Y fP(z.y)asz—aory—b (5.23)
n=N+1

also holds. Since f = sg) by equation (5.22), expansion (5.23) becomes

N
Oaxs~ > f[P(z.y)asz—aory—b. (5.24)

n=N+1

Proposition 5.11 implies that expansion (5.24) is trivial, which means that f, 2 =
04xp for all indices n > N. By construction of N, it follows that f.2) # 04,5 for
all indices n < N. These two properties establish that N is the essential length
of dual asymptotic expansion (5.21) for i = 2. However, N = N < N® py
assumption. which contradicts that N is the essential length of (5.21) for i = 2.

Since the assumption that N(}) < N leads to a contradiction, we must have
that N > N By symmetry, we must also have N() < N® _which implies that

N = §O = .
By the definition of essential length,
& = £ =0axp

for all indices n > N. Since we established earlier that f,() = £.® for all indices
n < N, it follows that f,() = £, for all indices n. This completes the proof. @
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5.3.2 Point-Normalization

Although the terms of a dual asymptotic expansion

f(:r,y)~§:gfwgz—»aory—>b (5.25)
n=1

are uniquely determined, the factors which occur in each term are not unique. Each
term can be factored in infinitely many ways, namely

gn(z) hn(y) _ (@ - gn(z)) (8- ha(y))
Cn (@8- cn) ’

where a. 3 € R — {0}. In the nonterminating case, we can force the factors in each
term to be unique by selecting a suitable normalization scheme.

The simple normalization scheme proposed in this section is designed specifically
to ensure the unique factorization of the terms. Note that other normalization
schemes (e.g.. normalization in the LP spaces) will also ensure unique factorization.

and may be more suitable for some applications.

Definition 5.13 Define a mapping 74 : C*(A) x A = R by

g™(a) if g # 04, where m is the multiplicity of a.

"TA(gva)={ 0 lfg=OA

Given g € C*(A) and a € A. we call m4(g.a) the point-norm of g at a. We say
that g is point-normalized at a if m4(g,a) = 1.

Remark 5.14 Recall that for g € C¥(A) with g # 04, there is a unique § € C¥(A)
with g(a) # 0 such that g(z) = (z — @)™ §(z) for all z € A. In this case, the
point-norm of g at a is

Ta(g,a) = g"™(a) = m! §(a) # 0.

Consequently, a nonzero analytic function g can always be point-normalized at a by

dividing by the nonzero constant wa(g, a).
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Example 5.15 Let n be a positive integer, and consider the function

g9(z) = fl—',t

Since 0 is a root of g of multiplicity n,
!
=™y =" =
77‘4(990) =g (0) = n! - 1.'

which means that g is point-normalized at 0 for all positive integers n. Since 1 is
not a root of g,
1
malg:1) = ¢0(1) = g(1) = —,

which means that g is point-normalized at 1 if and only if n = 1: however. the

function
g(z)
T4 (g~ 1 )

ts point-normalized at 1 for all positive integers n. If n = 0, then g(z) = 1. which

=nlg(z) =z"

s pownt-normalized everywhere on R.

Definition 5.16 We say that the dual asymptotic ezpansion

N
fle)~ 3 B oo p g ory
n=1

is point-normalized if 74(gn,a) = mg(hn.b) = 1 for all indices n.

Remark 5.17 A point-normalized dual asymptotic ezpansion is automatically non-
terminating, since by Definition 5.13, m4(04,a) = m5(0g,b) = 0.

If the dual asymptotic expansion (5.25) is nonterminating, then g, # 04 and
hn # Op for all indices n. This means that each g, can be point-normalized at
a, and each h, can be point-normalized at b. To that end, define p, € C¥(A),
Y € C¥(B), and A\, € R — {0} by

hn \ = Cn
7rB(hﬂnb), " TrA(gn’a) WB(h'nvb)

gn
Rpu SN
¥n 7"A(gn’ a’)
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for each index n. It follows that

@n(Z)Un(y) _ gn(Z) hn(y)
An Cn

is the unique point-normalized factorization of the n-th term of (5.25), and that

f(z,y)~ifwasx—»aory—>b
n=1

n

is the unique point-normalized dual asymptotic expansion of f to N terms at (a.b).

5.4 Necessary Condition for Existence

Theorem 5.10 provides a recursive formula for the terms of a nonterminating dual
asymptotic expansion: in addition, the theorem provides a necessary condition for
the ezistence of such an expansion. By defining Y (,4)[0.1x8] = 04x5. We can extend
the recursive formula and the necessary condition to include all dual asymptotic
expansions — trivial. terminating, and nonterminating — as expressed in the fol-

lowing theorem.

Theorem 5.18 If f € C“(A x B) has a dual asymptotic expansion

flz.y) ~ Z falz.y) asz —aory—b (5.26)

n=1

at the point (a,b) € A x B, then the recursive formula
fa = T(ap)[Tn-1] (5.27)
holds for all indices n.

Proof. Let N denote the essential length of dual asymptotic expansion (5.26).
Since the result follows immediately by Theorem 5.10 if N = N, assume that
N < N for the remainder of the proof. In this case, Theorem 5.9 implies that
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f = sg, which means that rg = 0sxp. Since f, = 04, for all indices n > N,
the partial sums and remainders of (5.26) do not change after N. Consequently,
T, = 04, p for all indices n > N. Equation (5.27) therefore reduces to

OAxB = T(a.b) [OAx B]

for all indices n > N, which holds by the extended definition of T(, ;). We need to
show that (5.27) also holds for all indices n < N. Since this is vacuously satisfied
when N = 0. suppose that N > 0. Since (5.26) holds, the truncated expansion

N
f(z.y)~ > falz.y)asz —aory—b (5.28)

n=1

also holds. Since (5.28) is by construction nonterminating, Theorem 5.10 implies
that equation (5.27) holds for all indices n < N. Hence. equation (5.27) holds for
all indices n. &

The next section reformulates the uniqueness results of this chapter in the lan-
guage of dynamical systems.

5.5 Recursion, Iteration, and Orbits

In this section. we will reformulate the recursion

fn = T(aplra-1] (5.29)

from Theorem 5.18 in a way that provides some additional insight into the unique-
ness of dual asymptotic expansions. By definition, the terms { f,}/_; of a series de-
termine the partial sums {s,})_,, which in turn determine the remainders {r,}1_,.
Conversely, if the remainders with respect to a particular function f are known, it
is possible to recover the partial sums via

Sp=f —Tn, (5.30)
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and to recover the terms via
fn = Sn — Sp-1- (531)

Thus, all of the basic information we may wish to know about a series is encoded
in the sequence of remainders {r,}%_,.
Applying equation (5.30) to equation (5.31) yields

fa=sn—snar=(f—1a) = (f = Ta1) =Ty — 1,
which can be solved for r, to obtain
Tn = Tn_1 — fa- (5.32)
Substituting the original recursion (5.29) into (5.32) produces a new recursion
Tn = Ta_1 — Yiap)[Tno1] = (I — Tiap)) [Fr-1], (5.33)

where I denotes the identity operator. The principal advantage of (5.33) over (5.29)

is that we can rewrite the recursion (5.33) as an iteration
Tn = (I = T(ap)" [f] (5.34)
for all n € N.

Remark 5.19 In the language of discrete dynamical systems, the sequence of re-
mainders {r,}2_, is the orbit of f under the nonlinear operator I — T(ap)-

It is clear from equation (5.34) that the sequence of remainders {r,}%_, is com-
pletely determined by f and (a,b) alone. Since all of the basic information about
the series is encoded in the remainders, equation (5.34) confirms our earlier finding
that an N-term dual asymptotic expansion is completely determined by the choice
of function f € C¥(A x B) and point (a,b) € A x B.

This chapter has established the uniqueness of dual asymptotic expansions and
developed a necessary condition for existence. In the next chapter, we will study
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the operator T (44 in detail in order to develop a sufficient condition for existence
as well.



Chapter 6

The Asymptotic Splitting
Operator

If a function f € C¥(A x B) has a dual asymptotic expansion

N
- n hn
f(x.y)~zwasx—»aory—>b (6.1)
n=1 Cn
at a point. (a.b) € A x B, then the expansion (6.1) is unique up to normalization
by the results of the previous chapter. The previous chapter also established that
the n-th term of expansion (6.1) is related to the previous remainder r,_; by the

formula
gn(z) ha(y)

Cn
for all indices n and all (z,y) € A x B; this provides a necessary condition for the

= T(ap)[ra-1)(z. y) (6.2)

ezistence of the dual asymptotic expansion of f to N terms at (a, b).

Note that equation (6.2) implicitly requires the limit. process Y (4 4)[rn-1] to yield
a product of two analytic functions of one variable; furthermore, Y (4 4)[rn-1](z,y)
must assume a finite valuefor all (z,y) € A x B. This chapter will determine
sufficient conditions on r,_; and (a,b) to ensure that Y(,4[r.—1] exhibits these
properties. In addition, the chapter will show that these properties, in conjunction
with equation (6.2), provide a sufficient condition for the eristence of the dual

89
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asymptotic expansion of f to N terms at (a,b).
In order to achieve the goals of this chapter, we must study the limit process
denoted in the previous chapter by T (, ). We begin by formally defining the limit

process Y, ;) as an operator.

6.1 Definition and Examples

After stating the definition of T(,4) as an operator and considering some examples.
we will prove that the operator Y () is well-defined.

Definition 6.1 Given a point (a.b) € A x B, define the operator

=A4xB

Tap : C(AXx B) =R (6.3)
by ) )
%i_rg+ ( éi_rg+ f(If!ﬁ_f;;: y)) if f# 0axs
Tanlfl(z.y) = (6.4)
0 if f =04axB

for all f € C*(A x B) and all (z,y) € A x B. We call T(, the asymptotic
splitting operator at (a.b).

The following examples illustrate the action of the asymptotic splitting operator.

Example 6.2 Let f(z,y) = e™*¥. By Definition 6.1,

—zy o—Zy —zb o—ay
€ e ) e € ab—bz—ay

Tenlfl(z,y) = }113+(!}1_rg+ e e S

Example 6.3 Let f(z,y) = sin(zy). By Definition 6.1 and L’Hospital’s Rule,

sin(zy) sin(Zy) )
sin(Zy)

Toonlfl(z,y) = lim (}i_{%J,

-0+
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= lim [ lim xco§(zy) sinfl(zy)
£—0+ \ g—0+ Z cos(Zy)

Tsin(Zy) lim zy cos(Zy)

= 1y.
-0+ x -0+ 1 y

In order to prove that Y, is well-defined, we must show that the limit
T(at)[f1(z.y) exists in the eztended reals R for all f € C¥(A x B) — {04xp} and
all (z,y) € A x B. The following two lemmas, expressed in the terminology and
notation of Definition 2.18, will help us to achieve this.

Lemma 6.4 Assume f € C¥(A x B) — {O0axp}, and let (a.b) € Ax B. If f is
reduced at (a.b), then T ,4)(f](z,y) is finite on the lines £ = a and y = b.

Proof. By Definition 6.1,

Tanl(fl(a.y) = lim ( (6.5)

T—eat

. fla.g) f(2.y)
A TEN )
_ L fla.b) f(3,y)

= o TG

_ {ﬂmm if f(a.8) #0

0 if f(a,b) = 0.

for all y € B. which implies that T, 4)[f](z.y) is finite on z = a.

How do we know that the evaluation of the inner limit in (6.5) is justified? By
Definition 2.18, f(z,y) does not vanish on the line y = b. Consequently. Lemma
3.4 implies there is a deleted neighborhood I — {a} such that f(z,b) # 0 for all
z € I — {a}. For each fixed £ € I — {a}, there is a neighborhood J; of b such that
f(z,9) # 0 for all § € J;. Consequently, f(a,y)/f(Z,7) is defined and continuous
for all § € J;. The evaluation of the inner limit in (6.5) is therefore justified by the
continuity of f(a,y)/f(Z.y) at g = b.

Similarly, for all z € A,

. . f(z,9) f(2.b)
T@enlfl(z,b) = 511_1.2+ ( ganl}’f f(z,9) )
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 f(z,b) f(5,b)
T )

= f(z,b).
This shows that T (,5)[f](z.y) is finite on y = b, and completes the proof. ®

Lemma 6.5 Assume f € C“(Ax B)—{04xp}, and let (a.b) € Ax B. If(m.n) =
deg,p)(f) and f = pas)|f]. then

Tanlflz.9) = (z - )™ (y = )" - Tiam[fl(z,v) (6.6)

forall (z.y) € A x B.

Proof. By Definition 2.18.

flz.y) =(z—a)" (y — b)" f(z.y) for all (z.y) € A x B.

Consequently,

flz.9) f(Ey) _ (z=-a)™(F=b)"f(z,9) (& —a)™(y—b)" f(£,y)

f(z.9) B (£ = a)™ (g - b)" f(.9)
= @-ar(y-o. L2AIEY) (6.7)
f(z.9)

for all (£,7) € (A — {a}) x (B — {b}) such that f(£.3) #0. and all (z.y) € A x B.
Definition 6.1 states that

Ten[fliz.y) = iliﬂ+(}i_’£+ f(l'fzzlfé;ﬂy)) (6.8)
Substituting (6.7) into (6.8) yields
Teolfles) = Jm, ( i ey -n LEDIED) (o)
T—at \ g—bt ) f(l‘, y)
e (o f@9) f@,y)
= oo FERLR)
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= (z—-a)"(y - b)" Tanlfl(z,¥)

for all (z,y) € A x B.

Since 0- oc is undefined in the arithmetic of the extended reals, we must justify
taking the factor (z —a)™ (y — b)™ outside of the limits in equation (6.9). The factor
is zero only if z = a or y = b. Since f = Platylf] is reduced at (a.b), Lemma 6.4
implies that T (q4)[ fl(z.y) is finite whenever z = a or y = b. Hence, the product
0 - oc cannot occur. B

Corollary 6.6 If f € C“(A x B) and (a.b) € A x B. then Y(ap)[fl(z.y) is finite

on the linesz =a and y = b.
We are now ready to prove the main result of this section.
Proposition 6.7 For all (a.b) € A x B. the operator Y44 is well-defined.

Proof. Assume f € C¥(Ax B)—{0axg}, and let f = pia4)[f]. By Lemma 6.5. the
limit Y (,4)[f](z.y) exists for all (z.y) € A x B if and only if the limit Y g4 [f](z.)
exists for all (z.y) € A x B. By Definition 6.1.

YTeo(fliz.y) = lim (hm IM)

=\ = f(3.9)
T A CRF{C2¥)
f—a*  f(Z.D)
r - f(i'vy) er £
_ ) f(z.b) eh_‘&—f'@,b) if f(z,b) #0 (6.10)
0 if f(z,b) =0.

Since f(z,y) does not vanish on y = b, there are some z € A for which f(z,b) #
0. Consequently, equation (6.10) implies that the limit Y, 4)[ f](z,y) exists for all
(z,y) € A x B if and only if the limit
_ f(&.y)

lim %2 (6.11)
i—a* f(z,b)
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exists for all y € B.

Fix y € B, and define F,, € C¥(A) by Fy(z) = f(z,y) for all z € A. Similarly,
define F, € C¥(A) by Fy(z) = f(z,b) for all z € A. In this notation, limit (6.11)
becomes . )

im L&Y _ gy 5(E) (6.12)

m = .
f—at f(j; b) T—a+ Fb(:r)
If F, = 04, then the limit (6.12) evaluates to zero. If F; # 04, then there are
m € N and F, € C¥(A) with F,(a) # 0 such that

Fy(z)=(z —a)™Fy(z) for all z € A. (6.13)

Since f(:r. y) does not vanish on the line y = b, it follows that F, # 04. Conse-
quently, there are n € N and £}, € C¥(A) with Fy(a) # 0 such that

Fo(z) = (£ — a)" Fy(z) for all z € A. (6.14)

Now substitute (6.14) and (6.13) into (6.12) to obtain

. F(&) . (z-a)"F(&)
fm, Fo(z) L) (£ — a)™ Fy(Z) (6.13)
—_ _lim (}i‘y(%) . (.’i.' _ a)m-n)
E—at \ Fy(Z)
0 fm>n
= C lf m=n

signum(c) - oo if m < n,

where )
¢ = 5la)
Fy(a)
Since ¢ # 0, it follows that signum(c) - co is defined, and the limit (6.15) exists in
the extended reals. B
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6.2 Fundamental Properties

This section studies the fundamental properties of the asymptotic splitting opera-
tor, including: the finiteness and factorization properties of T, s), the fixed-points
of T (¢ 6), the interpolating properties of T, ), and the asymptotic behavior of Y (a)-

6.2.1 Finiteness

It is convenient to define the following terminology and notation.
Definition 6.8 Let Q C A x B. and assume f : Q — R.

1. We say that f is finite if | f(z.y)| < o for all (x.y) € §2, and denote this by
[f] < <.

2. We say that f is infinite if | f(z.y)| = oc for all (z.y) € Q, and denote this
by |fl = x.

3. We say that f is infinite almost everywhere if |f|(Q2 — E)| = o for some
E C Q with Lebesgue measure zero, and denote this by |f| = oc a.e.

The following proposition describes the two alternative behaviors of T, 4)[f] for

f ?é 0.4x8-

Proposition 6.9 Assume f € C¥(A x B) — {Oaxg}. Let (a.b) € A x B. and let

f = paslfl-
1. If f(a,b) #0, then |Y(ap(f]| < oo
2. If f(a,b) =0, then |T(a,b)[f]| = 00 a.e.

Proof. Note that for each point (z,y) € A x B, Lemmas 6.5 and 6.4 imply that
T [f1(z,y)| < o0 if and only if | 0 p)[f)(z.)| < 0.
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1.

o

If f(a,b) # 0. the limit

Yanlfl(z.y) = lim

f—at

( i, f(z.3) f(i,y)) _ f(z.b) f(a.y)

L2EL - (6.16)
f(z.7) f(a.b)

is easily evaluated by continuity, and is clearly finite for all (z.y) € A x B.
Consequently, 'T(a,b) [ f]l < oc.

Suppose that f(a.b) = 0. Define g € C¥(A) by g(z) = f(z.b) for all z € A.
and define h € C¥(B) by h(y) = f(a.y) for all y € B. Since f(z.y) does
not vanish on either £ = a or y = b, it follows that g # 04 and h # Op.
Consequently, the zero-sets ¢~}(0) C A and h~!(0) C B are countable. and
the set

E=(g7'(0) x B) U (A x h7}(0))

consists of a countable union of horizontal and vertical lines in A x B. Since
lines in R? have Lebesgue measure zero. countable subadditivity implies that

E has measure zero. Now consider the complement of F in 4 x B,
E° = (g7'(0) x B)°n (A x h"(O))C
= ((s7'@) x B)n (4 x (fr‘(O))‘)
= ((A-¢7'0) xB)n (Ax (B- h7(0)))
= (A-g70) x (B-r7Y0)).

If (z.y) € E°, the limit

fz.9) f‘(:e,y)) i [@0) f(Ey)

Tenlfle.y) = lim (ﬁm lim )

i—at \9=b* f(2,3)

is infinite, since the numerator tends to

f(z,b) f(a,y) = g(z) h(y) #0,
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while the denominator tends to f(a,b) = 0. Consequently. IT(a_b) (f]| E©

. and IT(“'b)[f]I =oc a.e. Bl

The following corollary expresses the preceding proposition in the form of an

Alternative Theorem.

Corollary 6.10 If f € C“(A x B) and (a.b) € A x B, then ezactly one of the

following two possibilities holds:
1. ]T(a,,,)[f]' < <.
2. \T(a‘b)[f]‘ = x a.e.

Since we are interested primarily in functions f for which T, 4)[(f] is finite. the

following definition will prove useful.
Definition 6.11 Given (a.b) € A x B. define
San(A x B) = {f € C*(A x B) : [Tan[f]| < 20}
If f € Sap)(A x B). we say that f splits asymptotically at (a.b).
Remark 6.12 Whenever we write Sz p)( AX B). it is understood that (a.b) € AxB.
The following proposition characterizes the elements of S;4)(A4 x B).

Proposition 6.13 If f € CY(A x B), then f € S(a5)(A x B) if and only if one of
the following two possibilities holds:

1. f =0axs,

2. f # 0axp and f(a,b) #0, where f = Pian) L f]-
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Proof. Since |Y(as[0axs]| = [04xs] < 20, it is clear that Ouxp € Stas)(A x B).
If f # 04xp, Proposition 6.9 implies that ‘T(a‘b) [f]l < oo if and only if f(a.b) # 0. W

If f € Sap)(Ax B)—{04xs}. the following proposition shows how to compute
T (ap) [f] explicitly.

Proposition 6.14 Assume f € Sp)(A x B) — {0axp}. If (m.n) = deg,(f)
and f = pab)|f]. then
fz.b) fla.y)

Tian)fl(z.y) = (z —a)" (y — b)" Fa.b) (6.17)

for all (x.y) € A x B.

Proof. Invoke Lemma 6.5 and apply equation (6.16) from the proof of Proposition
6.9. 8

As noted earlier. T (45)[0.1x5] = 04xp- The next proposition shows that 04, p is
the only solution of the operator equation Y, 4)[f] = 04xg over the function space
C¥(A x B). This result is a consequence of the finiteness properties of the operator
T (ab)-

Proposition 6.15 If f € C*(A x B) and (a.b) € A x B, then Y (44)[f] = 0axs if
and only if f = 0.4x5.

Proof. If f = 0.xp, then Y(,4)[f] = 0sxp by definition. Inversely, suppose
f #0axs. I T(ap)lf] = 0axp, then |Y(ap[f]| < oc, and f € Siap)(Ax B)—~{04x5}-
Proposition 6.13 implies f(a.b) # 0, where f = puy)[f]. If (m.n) = deg,(f),
Proposition 6.14 implies

e gy (g — gy L@ 0) flay)
T(a,b)[f](fﬂ, y) = ( ) (y b) f(a,b) (6 18)



CHAPTER 6. THE ASYMPTOTIC SPLITTING OPERATOR 99

for all (z,y) € A x B. Since f(a,b) # 0, there exist zo € A — {a} and yo € B — {b}
such that f(zo,b) # 0 and f(a, yo) # 0. Equation (6.18) implies T (a4 [f](zo, yo) #
0. which contradicts T (44)[f] = 04xs. Consequently, Y a5 [f] # 01x5. ®

6.2.2 Factorization

Given f € Sws)(A x B) — {0axs}, let (m.n) = deg,(f) and f = puas)lf]-
Proposition 6.13 implies f(a.b) # 0. and Proposition 6.14 shows that Y, [f] is

the product of univariate functions:

o ame g £@0) fay)
Taolfllz.y) = (z-a)"(y—b) Flab)

(z —a)™ f(z.) - (y — b)" f(a.y)

f(a.b)
g(z) h(y)
C

for all (z.y) € A x B. where

g(z) = (z—a)™ f(z.b) for all z € A.
h(y) = (y—b)" fla.y) for all y € B,

c = f(a.b).
We can also express Y (,4)[f] as a product of univariate functions when f = 04 p:

T(‘Lb)[f](x? y) = OAxB = OAIOB = g(I)ch(y)

for all (z,y) € A x B. where g =04, h =05, and ¢ = 1.
In either case, g € C¥(A), h € C¥(B), and ¢ € R — {0}. Furthermore,

Tanfl(z.y) = ﬁx_)chﬂ) (6.19)

holds by construction for all (z,y) € A x B. These properties inspire the following



CHAPTER 6. THE ASYMPTOTIC SPLITTING OPERATOR 100

definition.

Definition 6.16 Assume f € Sap)(A x B), and let g, h. and c be as defined in
the preceding discussion. We say that g, h. and c are the components of the
standard factorization of T .4 (f].

Note that f # 04xp implies g # 04 and h # 0g. Why is this true? Since
f(a.b) # 0, there exist o € A — {a} and yo € B — {b} such that f(zq,b) # 0 and
fla.yo) # 0. Consequently, g(zg) # 0 and h(yg) # 0, which implies that g # 04
and h # 0p. Inversely, f = 0.4xp implies that ¢ = 04 and h = 0g, by definition.

These relationships are summarized in the following equivalence:
f = 0_4,(3 — g = 0‘4 <> h = 03. (6.20)

The idea of factoring a bivariate function into the product of univariate functions
plays a central role in the thesis. We can represent such factorizations concisely
using the following notation.

Given two univariate functions ¢ : A — R and h : B — R. construct a new

bwwariate function
gh:AxB—-R

by setting
(9 3 h)(z.y) = g(z) - h(y)

for all (z.y) € A x B. The function g ® h is called the tensor product of the
functions g and h (see [Edwards, p. 242}).

If g € C¥(A) and h € C¥(B), then clearly g ® h € C¥(A x B). It is useful to
define some terminology and notation for functions of this form.

Definition 6.17 Define
P(AxB)={g®h|ge C*(A) and h € C*(B)}.

If f € P(A x B), we say that f splits algebraically.
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Given f € Sap)(A x B), let g € C¥(A), h € C¥(B), and c € R — {0} be the
components of the standard factorization of T (44)[f]. Expressed in tensor product
notation. the standard factorization (6.19) becomes

g h
Tiap)(fl = —,

which implies that.
T(a.b) tS(a‘b)(A X B) — P(A X B)

In words. this means that the operator Y, maps functions which split asymptot-

ically at (a.b) to functions which split algebraically.

6.2.3 Fixed-Points

The following proposition characterizes the fixed-points of the operator Y, 4 over
the function space C*¥(A x B). and states some of the consequences of this charac-

terization.

Proposition 6.18 Given (a.b) € A x B. all of the following are true:
1. The set of fixed-points of T (a5 tn C“(A x B) is precisely P(A x B).
2. The inclusion P(A x B) C Siap)(A x B) holds.

3. The restriction of T (ap) to Sap)(A x B) is an idempotent operator.
Proof. We will prove the three conclusions in the specified order.

1. Given g ® h € P(A x B) — {04xg}, we have

Tenlg @ Al(z.y) = lim (

f—at

T e )
i (e 9(EE) - 9@ )
- o ( B T g@)h() )

= 1, (fim, o) hiw)

f—at

Z—at
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= g(z) - h(y)
= (g®h)(z.y)

for all (z.y) € A x B. As noted previously, YT(,4)[04x5] = 04xs. Thus.
every element of P(A x B) is a fired-point of the operator T, ;. Conversely.
suppose that Y, [f] = f for some f € C¥(A x B). If

’T(&b)[f](l'o. y0)| =~

for some (z9,y0) € (A x B), then YT4)[f] = f ¢ C¥(A x B),which is a
contradiction: hence. IT(a‘b)[ f]l < < and f € Sp)(A x B). The mapping
diagram

T(ab) : Stat)(A x B) — P(A x B)

implies that T (o4 [f] = f € P(A x B). This proves conclusion 1.

o

Since P(A x B) € C¥(A x B). every element of P(A x B) is finite. If
g = h € P(A x B). the fixed-point property of conclusion 1 implies

lT(a,b)[g = h]l = |g ® h| < x.
and thus g 2 A € S,4)(A x B), which proves conclusion 2.
3. Conclusion 3 means that

(T(as) | Stab)(A x B))? = T(ap) | Sapy(A x B).

Since
T(a,b) ZS(a'b)(A X B) — P(A X B),

conclusion 3 follows from conclusions 1 and 2.

The set P(Ax B) of fixed-points of the operator T (44) is completely independent
of the choice of (a,b) € A x B, which has an interesting consequence: given any
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two distinct points (a.b).(a’.b') € A x B, the distinct operators T (5, and T (o)

have ezactly the same fired-points!

6.2.4 Interpolation

The following proposition shows that if f € Sap)(A x B), then T(op)[fl(z.y) in-
terpolates f(z.y) on the lines z = a and y = b.

Proposition 6.19 If f € S5 (A x B), then

Tas)[fl(a.y) = fla.y) for all y € B,
Tian)[f](z.6) = f(z.b) for all 7 € A.

Proof. If f = 04xp5. the conclusion follows trivially. If f # 045, let (m.n) =
deg, 4 (f) and f = pas)(f]: by definition.

flz.y) = (z —a)" (y — )" f(z.y)

for all (x.y) € A x B. Proposition 6.14 implies that

. f(z.b) fla.y)

Yaolflzy) = (@ —a)™ (y = )" ===

for all (z.y) € A x B. By direct computation.

Tanlflle.y) = 0™ (y —0)" f(a.y) = f(a,y) for all y € B,

Tan(fl(z.b) = (z—a)™0" f(z.b) = f(z,b) for all z € A.
This completes the proof. B

The following corollary reformulates the previous result in terms of the operator
I —Tap-
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Corollary 6.20 If f € Sa5)(A x B), then (I — T@ap) [fi(z.y) vanishes on the

linesr =a and y = b.

6.2.5 Asymptotic Behavior

The following proposition explains why the elements of S(,4)(A x B) are said to split
asymptotically at (a,b). We will put this result to good use later in the chapter when

we prove a sufficient condition for the existence of dual asymptotic expansions.

Proposition 6.21 Assume f € S (A x B). If g € C¥(A), h € C¥(B). and
c € R — {0} are the components of the standard factorization of Y (ap[f], then

9(z) h(y)
C

asr—aory—b

flz.y) ~

holds as a one-term dual asymptotic expansion.

Proof. It is vacuously true that the one-term sequences {g} and {h} are asymptotic
sequences. Furthermore. the sequences {g} and {h} have the same essential length

since
f=04xp =>g=04= h=0s. (6.21)
We must show that
h
flz.y) —M =o(g(z)) asz — a for all y € B. (6.22)
and that 5
flz,y) -—i@c(—y) =o(h(y)) asy — b for all z € A. (6.23)

It suffices to show that (6.22) holds, since (6.23) will follow by symmetry.
If f = 04x5. equivalence (6.21) implies that g = 04 and h = 0. In this case,

order relation (6.22) reduces to
Oaxg =0(04) asz — aforall y € B,

which holds by Proposition 4.5 with J = B.
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If f # 0axB, equivalence (6.21) implies that g # 0,4 and h # 0p. In this case,
Proposition 4.4 with S = B implies that order relation (6.22) holds if and only if

the equation

ﬂﬁw_guMW)
lim o) c =0forally e B (6.24)

is satisfied; equation (6.24) is clearly equivalent to

lim £&¥) _ AW o onye B, (6.25)
=a g(z) c

Let (m.n) = deg,4)(f). let f= Pap)[f]- and recall that
flz.y) = (z = a)™ (y = b)" f(z.y) (6.26)

for all (x.y) € A x B. By Definition 6.16.

g(z) = (z—a)™ f(z.b) for all z € A, (6.27)
hy) = (y—b)"f(a.y) for all y € B. (6.28)
¢ = fla.b). (6.29)

Applying equations (6.26) through (6.29) to limit (6.25) yields

flzy) _ o E—a™(y—b)" f(z.y)

lim m =
£=e g(z) = (z—a)™ f(z.b)
_ i 0" f(z.9)
I—a f:(I’ b)
_ w-brfay)
f(a,b)

= E%foraﬂyeB.

Thus, equation (6.25) is satisfied, and order relation (6.22) holds. B
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Remark 6.22 Some of the elements of Swap)(A x B) do not split algebraically;
however, Proposition 6.21 shows that every element of S, (A x B) is asymptotic
to a function which splits algebraically. Thus, in an asymptotic sense, it is always
possible to separate the variables of an element of S(,4)(A x B) by applying the
asymptotic splitting operator T 4.

6.3 Dual Asymptotic Expansions Revisited

In this section, we will reap the benefits of our study of the asymptotic splitting
operator T, 4. The section begins by proving a sufficient condition for the existence
of dual asymptotic expansions. and ends by expressing the most significant existence

and uniqueness results in the form of a Fundamental Theorem.

6.3.1 Sufficient Condition for Existence

The following theorem gives a sufficient condition for the eristence of an N-term

dual asymptotic expansion of a function f at a point (a.b).

Theorem 6.23 Assume f € C¥(A x B). and let (a.b) € A x B. The function f

has a dual asymptotic expansion
N
flz.y) ~ Z falz.y) asz —aory—b (6.30)

n=1

at the point (a,b) if the equation

frn = Tap)[Tn-1] (6.31)
and inequality
| fnl < o (6.32)

hold for all indices n.

Proof. For simplicity, reindex the remainders by defining R, = r,,_; for all indices
n. We will work with the sequence {R,})_, instead of {r,_}_, throughout most
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of the proof. Note that the first term is R; = 79 = f. Let n be an arbitrary index;
in the new notation, equation (6.31) becomes

fn = Tiap)[Rn)- (6.33)

Furthermore,
Rn+l =rn=rn—1_fn=Rn_fn- (634)

Equations (6.34) and (6.33) together imply
Rn+l = Rn - T(a.b)[Rn] = (I - T(a.b)) [Rﬂ] (635)

The proof constructs the dual asymptotic expansion (6.30) in six major steps.

Step 1. The first step shows that the remainders {R,}Y_, and terms {f,}_,
are well-defined. and proves

{Ra}ali C Stamy(A x B) and {fo})L, € P(4 x B). (6.36)

Recall that the domain of the operator Y(,4) is C¥(A x B) by definition. and that
we have shown
T(a,b) IS(a‘b)(A X B) i P(A X B)

The proof is by induction on the index n. In the base case,
Ri=feC”AxB)and f, = Tian|Ri] € R*Z.
Since |fi| = |T(a‘b)[R1]‘ < oc, we can conclude that
Ry € S(ap)(A x B) and f; € P(A x B).
For the induction step, let n < N be an index, and suppose that

Rn € Siapy(A x B) and f, € P(A x B). (6.37)
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Since
San)(Ax BYUP(A x B) C C¥(A x B),

it follows that
Rnsi = Ry~ fo € C*(Ax B) and far1 = Yia)[Ban] € R*Z.
Since n + 1 is an index, |foi:| = (T(G‘b) [Rn+1]| < oc, and we can conclude that
Rni1 € Sap)(A x B) and f,4) € P(A x B).

By induction. (6.37) holds for all indices n. which proves (6.36).

Step 2. The second step shows that {R,}%_; and {f.})_, are both tractable
sequences with the same essential length N. We begin by considering {R.}Y_,.
If R, # 0.4xp for all indices n, then {R,}Y_, is nonterminating, and N = N. If
{R.}_, is not nonterminating, then there is an index m such that R,, = 0.4xpg- Let
Al denote the smallest such index, and let N = M —1. By construction, R, # 04xg
for all indices n < V. Note that Ry = 0.4xp., and that equation (6.35) implies

Rty = (I — Y(ap)) [Ra] = 0axs

if R, = 04xp. It follows by induction on n that R, = 0,4, for all indices n > M.
or equivalently, for all indices n > N. Consequently, {R.})_, is terminating or
trivial with essential length N.

We have shown that {R,}%_, is tractable with essential length N. For each
index n, equation (6.33) and Proposition 6.15 imply that

fn=Tau[Rn] =04x8

if and only if R, = 0axp. Consequently, { fa}X_, is also tractable, and must have
essential length N as well.
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Step 3. The third step constructs three sequences of factors {g,}_, Cc C¥(A),
{ha}a=1 C C¥(B), and {cq}i_, € R — {0}, and shows that {g,}_, and {h.},
are also tractable with essential length N. For each index n, recall that R, €
S(ab)(A x B) by Step 1, and let g, € C¥(A), h, € C¥(B), and ¢, € R — {0} be
the components of the standard factorization of Y(,;[R,] as defined in Definition

6.16. For each index n.,

n & h,
fa = Tas)lRa] = Z : (6.38)
Cn
and
fn = 0.4><B < gn = 04 = hn = OB~ (639)

Since {fo}}_, is tractable with essential length N by Step 2. equivalence (6.39)
implies that {g,}._, and {h,}}_, are also tractable with essential length V.

Step 4. The fourth step shows that

ro(z.y) = o(gn(z))asz —aforal ye B (6.40)
ro(z.y) = olhn(y)) asy—bforallze A (6.41)

for all indices n. In what follows. let n be an arbitrary index. Since R, €
S(ab)(A x B) by Step 1. and since g,. h,, and ¢, are the components of the stan-
dard factorization of T, 4)[R.] by Step 3, Proposition 6.21 implies the one-term

dual asymptotic expansion

Rn(r,y)rvg—"(—a:)cjlﬂasr—»aory—»b (6.42)

holds. Equations (6.34) and (6.38) imply that

gn(z) ha(y)

Roo(z.y) = Ra(z.y) — (6.43)
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for all (z,y) € A x B. In the notation of equation (6.43), expansion (6.42) means
that

Roii(z,y) = o(gu(z))asz — aforallye B (6.44)
Ro(z.y) o(h,(y)) as y — b for all z € A. (6.45)

Since R, = r,, order relations (6.44) and (6.45) imply that (6.40) and (6.41) hold.

Step 5. The fifth step shows that the truncated sequence {g,(z) ;f’=1 is an
asymptotic sequence as £ — a; the truncated sequence {h,(y)}"_, is an asymptotic

sequence as y — b: and. the truncated expansion

l\_l n hn
f(r,y)~zwasr—’aory—>b
n=1

is a nonterminating dual asymptotic expansion of f to N terms at (a.b). Since
these results are vacuously true when N = 0, assume N > 0 for the remainder of
this step.

By symmetry, it suffices to show that {g,,(:r:)},’:_’=l is an asymptotic sequence as
r — a. and to prove that the asymptotic expansion in =

N
fey~ 3 (%) ga(z) 35 7 — (6.46)

n=1
holds for all y € B. Note that {g,}~_, and {h,}"_, both nonterminating, and let
m be a fixed index such that 1 < m < N. Since h,, # 0g, there is a point y,, € B
such that A, (ym) # 0. Consequently, the m-th coefficient in formal series (6.46)

with y = y,, satisfies

am=w¢o.
Cm

By Step 4 with y = y,,, the order relation

Ta(Z,Ym) = 0(gn(z)) aS T — @
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holds for all indices n < N. By Proposition 3.32, the order relation
gm(z) = o(gm-1(z)) as z — a (6.47)

also holds.

Since m was arbitrary, order relation (6.47) holds for all indices m with 1 <
m < N. which proves that {g,,(nc)},’f’=l iIs an asymptotic sequence as £ — a. By
Step 4. the order relation

ra(Z.y) = o(gn(z)) as z — a

holds for all y € B and all indices n < N. which proves that asymptotic expansion
(6.46) holds for all y € B.

Step 6. The sixth step shows that {g,(z)}}_, is an asymptotic sequence as

n=1

r — a. that {h,(y)}._, is an asymptotic sequence as y — b. and that

N
Feg) ~ S 9n2) n(y)

n=1 Cn

asr —aory—b (6.48)

is a dual asymptotic expansion of f to N terms at (a,b). If N = N, all of these
results follow immediately from Step 5.

Suppose V < N. Since {g,}¥_, is tractable with essential length N by Step 3,
and since {gn(:r)},’f’=1 is an asymptotic sequence as z — a by Step 5, Proposition
3.16 implies that {g,(z)}{., is an asymptotic sequence as z — a. By symmetry,
{hn(y)}5, is an asymptotic sequence as y — b. Since { R,}Y_, has essential length
N by Step 2, and since N < N by assumption, Ry.1 = ry = 04xp, which means
that f = sg5. It follows from Theorem 5.9 that (6.48) is a dual asymptotic expan-
sion of f to N terms at (a,b). This completes the proof. B

The following corollary reformulates the sufficient condition for existence in

terms of the operator I — T (44)-
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Corollary 6.24 Assume f € C¥(A x B), and let (a,b) € A x B. The function f
has a dual asymptotic ezpansion to N terms at the point (a.b) if the inequality

|(I ~ Tiap)™ [f]l <

holds for all positive integers n < N.

Remark 6.25 Not only does Theorem 6.23 give a sufficient condition for the ez-
istence of a dual asymptotic expansion of f to N terms at (a.b), the theorem also

provides a way to compute the erpansion explicitly!

In practice. the sufficient condition is fulfilled while computing the terms of the
dual asymptotic expansion of f at (a.b). Each new term f, is obtained from the
previous remainder rn_; by applying the asymptotic splitting operator Y 4. If
the resulting term is finite. then the term is guaranteed to split algebraically, and
the term can be included in the dual asymptotic expansion. If. however. the term
is wnfinite (almost everywhere). then no more terms can be computed. and the
expansion of f at (a.b) must end with the previous term.

The following example illustrates this process.

Example 6.26 Let us expand f(z.y) = e™*¥ in a three-term dual asymptotic ez-
pansion at the point (a.b). From Ezample 6.2, the first term is

filz y) = Tap[fllz. y) = 70,

and the first remainder is

ri(z.y) = f(@.9) - filz.y) = e — b,

The second term is

fo(z.y) = T@ylril(z.y)
C i < . (e—zg _ eab—bz—ag) . (e—i'y _ eab—b:t—ay))

f-—at g—bt e—iﬂ — eab-bi'_aﬂ
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(—ze""ﬂ + ae“b“"‘"“f’) . (e“iy — e“”‘bj‘“y)
= lim lim — —
F—at \ bt —Ze~%Y 4 geab—bi-ay
. (_xe-bz + ae-—b:r) N (e—:i:y _ eab—bi—ay)
= m - P
F—at —~ze~% 4 ge—b%
(.’E _ a) e—bz . (e—z':y _ eab—bi—ay)
= lim - -
i—at (Z —a) e=b
. (r—a) e®=. (—ye‘iy + be“b‘b‘-‘“y)
= m - - -
f—av+ e % ~b(f —a) et
_ (x—a) e . (—ye™ W + be )
- e—ab
_ G-ae (y-b) e
- e—ab
— -—(;L‘ _ a)(y _ b) eab—bz—ay‘.

by L 'Hospital's Rule. With the help of the MAPLE (version 5.4) computer algebra
system. we find the third term to be

1 . Y abbra
fo(z.y) = Tiaplral(z.y) = 5 (z — a)* (y ~ b)* e~

Hence, the three-term dual asymptotic expansion of e™*Y at (a.b) is

1 2 2
e~ TV ~ eab—b:r—ay _ (.’L‘ _ a) (y _ b) eab—b:x:—ay + 5 (.’L‘ _ a)- (y _ b)- eab—bz—ay (649)

asT —a ory — b.

If the dual asymptotic expansion of f to N terms fails to exist at some point
(a,b), one can simply expand f at a more suitable point (a’,’). This is illustrated
later in the thesis by Examples 7.4 and 7.5.

By constructing matrices of the partial derivatives of f and analyzing their
determinants, it is possible to identify those points in A x B where f admits a dual
asymptotic expansion to any desired number of terms. Although this determinant
criterion is beyond the scope of the thesis, it has a simple consequence which is
worth mentioning. For each NV € N, let Ey consist of all points in A x B where the
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dual asymptotic expansion of f to NV terms fails to exist. Each exceptional set Ey
has Lebesgue measure zero. Since the countable union of the exceptional sets

E=|]J En
N=0

also has measure zero. it follows that f admits a dual asymptotic expansion with
infinitely many terms at almost every point in A x B.

6.3.2 Fundamental Theorem

This section consolidates the most important results from both the previous and
current chapters. Recall that Theorem 5.12 established the uniqueness of dual
asymptotic expansions, and that Theorems 5.18 and 6.23 established a necessary
and sufficient condition for the eristence of dual asymptotic expansions. Taken
together. these existence and uniqueness results give us the following Fundamental

Theorem.

Theorem 6.27 Assume f € C“(A x B). Let (a.b) € A x B. and let N denote a
positive integer or infinity. The erpansion

Y
flz.y) ~ Z falz.y) asz —aory—b (6.50)
n=1
s a dual asymptotic expansion of f to N terms at (a.b) if and only if the equation

fn=Tap([rrn-1]

and inequality

|[fal < o0

hold for all indices n. Furthermore. when dual asymptotic expansion (6.50) ezists,
the terms {fn}_, are unique and satisfy

{fatnz1 € P(A x B).



CHAPTER 6. THE ASYMPTOTIC SPLITTING OPERATOR 115

In addition, erxistence implies that the remainders satisfy
{ra-1}n=1 € Sas)(4 x B)
and are given by

'n = (I - ‘r(a..b))'1 [f]

for all natural numbers n < N.

The following corollary to Fundamental Theorem 6.27 reformulates the neces-

sary and sufficient condition for existence in terms of the operator I — T ,,.

Corollary 6.28 Assume f € C“(A x B), and let (a.b) € A x B. The function f
has a dual asymptotic expansion to N terms at the point (a.b) if and only if the
inequality

(I = Tar) [f]] < > (6.51)

holds for all positive integers n < N.

Remark 6.29 The condition for existence given by Corollary 6.28 has slightly dif-

ferent consequences depending on whether N is finite or infinite.

1. If N < x, the condition that inequality (6.51) holds for n = N presupposes
that (6.51) holds for all indices n < N. In this case we can simply write

l([ - T(a,b))N[f” < o0.

2. If N = o<, the eristence condition means that inequality (6.51) holds for all

postitive integers n.

The existence condition given by Corollary 6.28 is free of extraneous notation
pertaining to the terms and remainders of a series of functions. Let us use this

more concise formulation to define the following classes of analytic functions.
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Definition 6.30 Let (a.b) € A x B. For each N € N, define
Din(A x B) = {f € C*(Ax B) : |(I = Tiap)" [f]| < o0}
In addition. let
D, (Ax B) = {f € C*(Ax B) : (I = Tauy)" [f]] < for alln e N} :

For each V € NU {oc}. the class of functions D}, (A x B) is analogous to the
class of N-time continuously differentiable functions CV(A x B). For example, we
have both

Dlsy(Ax B)C DL p(Ax B)C---C D;5(A x B)

and
CoAx B)CCYAxB)C---C C™(Ax B),
as well as -
ey (Ax B) = () Diiy(Ax B)
N=0
and -
C*(Ax B)= () C¥(A x B).
N=0

Remark 6.31 In the notation of Definition 6.30. Corollary 6.28 says that a func-
tion f € CY(A x B) has a dual asymptotic ezpansion to N terms at a point
(a.b) € A x B if and only if

fe ’D{Z‘b)(A x B).

Hereafter, we will use this notation as a convenient way of invoking the eristence

condition.

Remark 6.32 Whenever we write D(Iz‘b)(A x B), it is understood that (a,b) €
A x B. Since
DY, 5(A x B) = C¥(A x B),
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we will assume that N denotes a positive integer or infinity, unless stated otherwise.

We noted in the previous chapter that the terms of a dual asymptotic expansion
are unique, but the factors are not unique unless we impose some additional re-
strictions, such as point-normalization. If f € D(’Z‘b)(A x B), Fundamental Theorem
6.27 guarantees that f, = Y(a.4)[Tn—1] and rn_; € S(a4)(A x B) for all indices n. In
conjunction with Definition 6.16. these properties provide another way to impose

uniqueness on the factors of each term.

Definition 6.33 d4ssume f € Df], (A x B). and let

v
- n\- hn
f(r.y)~zm—(ylasr—>aory—vb (6.52)
n=1 Cn
be the dual asymptotic expansion of f to N terms at (a.b). If gn, hn, and c, are
the components of the standard factorization of T (44)(rn-1] for all indices n. we say

that dual asymptotic ezpansion (6.52) is in standard form.

We have now finished developing the basic theory of dual asymptotic expansions.
In the next chapter. we will explore some applications of this theory to problems

of practical interest.



Chapter 7
Applications

This chapter explores some applications of dual asymptotic expansions, including:
deriving exact identities — such as sum formulas — for analytic functions; gener-
ating univariate asymptotic expansions which are qualitatively well-behaved; and,

approximating special functions by series of elementary functions.

7.1 Deriving and Validating Identities

The thesis has gone to a fair amount of trouble to develop a theoretical frame-
work which handles asymptotic sequences and asymptotic expansions containing
zero functions. This aspect of the theory reaches its culmination in the three Eract
Identity Theorems — Theorem 3.40 for univariate asymptotic expansions, Theorem
4.16 for univariate expansions with a parameter, and Theorem 5.9 for dual asymp-
totic expansions. The Ezact Identity Theorems show that an asymptotic expansion
containing one or more zero functions holds if and only if the asymptotic expansion
Is an exact identity.

The underlying motivation for these theoretical developments is revealed in this
section, which shows that dual asymptotic expansions can be used to derive exact
identities for certain real-analytic functions of two variables. In addition, the author
has developed the following Criterion for Eractness, which can be used to validate
the resulting identities.

118



CHAPTER 7. APPLICATIONS 119

Theorem 7.1 Let N denote a positive integer, let f € D{X'b)(A x B), and let

f(x.y)~zw asr —aory—b (7.1)

n=1

denote the dual asymptotic expansion of f to N terms at (a.b). If expansion (7.1)
i1s nonterminating, then the ezact identity
N

fzy) =S gn(z) hn(y) (7.2)
n=1 Cn

holds on A x B if and only if the (N + 1) x (N + 1) Wronskian determinant

flz.y) ai(z) - gwn(z)

| @Oy gi@) - gh(a)
et N : c. :

0/8)V[fl(z.y) ¢™M(z) - gW(z)

vanishes identically on A x B.

The theory of dual asymptotic expansions. in conjunction with the exactness
criterion stated above, provide a complete algorithm for the automatic generation
and proof of identities of the form (7.2). Unfortunately, the proof of the exactness
criterion is beyond the scope of the thesis and is therefore omitted.

The examples presented below involve a bivariate function f € C* (R?) defined

in terms of a univariate function F € C¥(R) via
flz.y) = F(z +y) for all (z,y) € R2. (7.3)

Substituting equation (7.3) into identity (7.2) yields a more specialized identity of
the form

F(z +y) = i -———g"(x)cﬂ huly) (7.4)

In this special case, the dual asymptotic expansion becomes a process which gen-
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erates sum formulas (7.4) for certain univariate analytic functions F.

7.1.1 Elementary Functions

The first and simplest example comes from the exponential function.

Example 7.2 The first term in the dual asymptotic expansion of f(zx,y) = e*+Y
at the point (0.0) is given by

filz.y) = T(O,O)[f](l‘.y) = lim ( lim eIty e-r+y> _ eIley.

F—0+ §j—0+ eIty

Consequently,

I+y

eV ~efeasr—0ory—0 (7.5)

holds as a one-term dual asymptotic expansion. Since the Wronskian determinant

e.l"?"y el‘.’
det
eIty T

vanishes identically. the Exactness Criterion implies that expansion (7.5) is ezact.

Thus. we have derived and proven the identity

eV =eTel.
The next four examples involve trigonometric functions. The first of these illus-

trates a straightforward derivation of a two-term identity.

Example 7.3 Let us ezpand f(z,y) = cos(z +y) in a dual asymptotic ezpansion
at the point (0,0). The first term is

fl(Iwy) = T(O.O)[f](zvy)
I cos(z + ) cos(Z + y)
T #50+ \ g—o+ cos(Z + §)

_ cos(z) cos(y)

1
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and the first remainder is

ri(z.y) = f(z.y) — fi(z.y) = cos(z + y) — cos(z) cos(y).

The second term is

flz.y) = Toglrlz.y) = }‘i%+<$‘3%+ xrly()xrly(x y)
(rl(a‘c y) lim Sz 1 9) - cos(z) cos y)>
. )

= I
o —0+ cos(Z + §) ~ cos(Z) cos(y

—0
o ) . —sin(z + g) + cos(z) sin(y)
= I_ll_r.%Jf <r1(1~ y) éx_r.%+ —sin(Z + §) + cos(z) sin(7)

sin(x))

sin(z)

= lim (T‘l(i‘,y)

£—0+
~ sin(z) lim S FY) — cos(F) cos(y)
—0* sin(z)
= sin(z) lim — sin(Z +y) + ?in(i) cos(y)
—07 cos(Z)
—sin(y)
T

= sin(z)

by L ’Hospital’s Rule. Hence. the two-term dual asymptotic expansion of cos(z + y)
at (0,0) s

cos(z + y) ~ cos(z)cos(y) — sin(z)sin(y) asz — 0 ory — 0. (7.6)

The Wronskian determinant

cos(z + y) cos(z) sin(z)
det | —sin(z +y) —sin(z) cos(z)

—cos(z +y) —cos(z) —sin(z)

vanishes identically since the first and third rows are linearly dependent. By the

Exactness Criterion, ezpansion (7.6) is exact. Thus, we have derived and proven
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the identity

cos(z + y) = cos(z) cos(y) — sin(z) sin(y). (7.7)

The next example illustrates a difficulty which can arise when trying to derive
an identity.

Example 7.4 Let us attempt to compute the first term in the dual asymptotic
ezxpansion of f(z.y) = sin(z + y) at the point (0.0); more specifically, let us try to
determine the value of the first term at (w/2.7/2):

fl(TT/2. 71"/2) = T(og)[f](‘ﬂ’/?. 71'/2)

in(7w/2 + y) sin(z 2
- lim lim sin(w/ -+.-y)~s1n§:z:+7r/ )
=0+ \ g—O0+ sin(z + y)
sin(z + 7/2)

= lim ——— = 4.
i—0+  sin(Z)
Since the value is infinite. sin(z + y) does not split asymptotically (0.0), which

means that sin(z + y) does not have a dual asymptotic ezpansion at (0.0).

We could simply differentiate identity (7.7) with respect to either r or y to
obtain the sum formula for sin(z + y). It is more instructive. however, to see how
dual asymptotic expansions can be used to circumvent the difficulty which arose in
the previous example; the next two examples do this in two different ways.

Example 7.5 One way around the difficulty is to expand f(z.y) =sin(z +y) in a
dual asymptotic expansion at the point (w/2.0) instead of (0,0). The first term is

Hzy) = Yepolfilzy)
_ im lim sin(z + y)~ smg:r +y)
f—w/2+ \ §—0+ sin(Z + g)
sin(z) sin(7/2 + y)
1 b

and the first remainder is

m(z,y) = f(z,y) - fi(z,y) = sin(z + y) — sin(z) sin(7/2 + y).
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The second term is

_ o . r(z,y)ri(z,y)
falz.y) = Yaponl(z.y) = jgsgﬁ(gh_l’%*r n(Z.3)

_ . . . sin(z + g) — sin(z) sin(7w/2 + §)
= Lhm, (r‘(x’ i GG+ §) — sin(z) sin(7r/2 + g))
B i . . cos(z + g) — sin(z) cos(m/2 + 7)
- z':EErI}2+ (rl(:r. y) g}l—l.%+ cos(Z + y) — sin(Z) cos(w/2 + 3}))
_ . . .cos(z)

- z'l_l.frl}r (rl(x. y)cos(i:))

sin(Z + y) — sin(Z) sin(7/2 + y)

= cos(z) lim

E—/2+ cos(Z)
. _ o\ o
~ cos(z) lim cos(Z + y) co§( )Slﬂ(ﬂ/- +y)
P—m/2% —sin(Z)
_ cos(r,&s(ﬂ/%y_),

by L 'Hospital's Rule. Hence. the two-term dual asymptotic expansion of sin(z + y)
at (w/2.0) is

sin(z + y) ~ sin(z) sin(7/2 + y) — cos(x)cos(w/2+y) asz — /2 ory — 0. (7.8)

The Wronskian determinant

sin(z + y) sin(z) cos(z)
det | cos(z+y) cos(z) —sin(x)

—sin(z +y) -—sin(z) - cos(z)

vanishes identically since the first and third rows are linearly dependent. By the
Exactness Criterion. ezpansion (7.8) is ezact. Thus, we have derived and proven
the identity

sin(z + y) = sin(z) sin(7/2 + y) — cos(z) cos(w/2 + y). (7.9)
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Setting y = w/2 in (7.9) yields
sin(z + 7/2) = cos(z), (7.10)
and setting £ = 0 in (7.9) yields
sin(y) = — cos(7/2 + y). (7.11)
Using (7.11) and (7.10), we can rewrite (7.9) in the more familiar form
sin(z + y) = sin(z) cos(y) + cos(z) sin(y).

Example 7.6 A second way around the difficulty is to use the dual asymptotic

expansion which we computed earlier for cos(z + y) at the point (0,0):
cos(z + y) ~ cos(r) cos(y) — sin(zx)sin(y) as z — 0 or y — 0. (7.12)

Taking the indefinite integral of expansion (7.12) with respect to y yields another

dual asymptotic expansion. namely

/:cos(a: + t) dt ~ cos(zx) /wcos(t) dt — sin(:r)/ysin(t) dt asz — 0 ory — 0.
0 0
(7.13)
Evaluating the integrals in (7.13) gives us

sin(z +y) —sin(z) ~ cos(z) sin(y) + sin(z) (cos(y) — 1) as  — 0 or y — 0. (7.14)

Since the Wronskian determinant

sin(z + y) — sin(z) cos(z) sin(z)
det | cos(z +y) —cos(z) —sin(z) cos(z)
—sin(z + y) + sin(z) —cos(z) -sin(z)

contains linearly dependent rows and therefore vanishes identically, the Exactness

Criterion implies that ezpansion (7.14) is exact. Thus, we have derived and proven
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the identity
sin(z + y) — sin(z) = cos(z)sin(y) + sin(z)(cos(y) — 1),
which simplifies to
sin(z + y) = cos(z) sin(y) + sin(z) cos(y).

7.1.2 The Bessel Function J,

This section is concerned with a class of special functions, namely the Bessel funec-
tions of the first kind with integer order. These functions are denoted by J, and
defined for all integers n and all real = by

\" > (—l)k T 2k )
Tu(z) = (5) ?;0 K (n+ k)1 (5) fn20 (7.15)
(=1)*J_n(z) ifn <0

The expressions in (7.15) are actually special cases of more general formulas ap-
pearing as equations 9.1.5 and 9.1.10 in [Abr-Ste. pp. 358, 360]. It is clear from

(7.15) that
=
Ja(0) = 1 1 n=20
0 ifn#0.

The following three formulas for the derivatives of J, hold for all integers n, all
natural numbers m. and all real z:

Bz = —d) (7.16)

Jr,;(l') — Jn—l(I);Jn-b-l(:r) (717)

K@) = S (’"‘) T (@), @n
om 2 k

Equations (7.16), (7.17), and (7.18) appear as equations 9.1.28, 9.1.27, and 9.1.31
in [Abr-Ste, p. 361}, respectively. The above information concerning the Bessel
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functions J, is sufficient to carry out the following example.

Example 7.7 Let us compute the two-term dual asymptotic ezpansion of f(z.y) =
Jo(z + y) at the point (0.0). The first term is

filz.y) = Yeolfl(z.y)

— lim < lim JoZ+9) JoE + y))
=0+ \ §—O0+ Jo(Z + )
_ olz)dy)
T .

and the first remainder is

ri(z.y) = f(z.y) = filz. y) = Jolz + y) — Jo(z)Jo(y)-

The second term is

frlz-y) Too[rl(z.y) = lim (lim iz 9) rl(i.y))

20 \ ior  1(2,9)
o .o Jolz +7) = Jo(z)Jo(9)
—ﬂfmﬂﬂwwwmwﬁ
- im (rl(i.y) im —JuE+9)+ Jo(r)Jl(y))

0+ y—0+ —Ji (T + §) + Jo(2) J1(7)

) . Ji(x)
= lm (rl(I'y)JI(i)>
_ . =z +y) + Ji(2)Jo(y)
= @) I 0@ - HE)2
_Jl(y)

= Jl(l')m—;
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by L’Hospital’s Rule. Hence, the two-term dual asymptotic ezpansion of Jo(z + y)
at (0.0) s

Jo(z + y) ~ Jo(z)Jo(y) — 2 J1(z)J1(y) as z — 0 or y — 0. (7.19)

The following formula is a special case of equation 9.1.75 in [Abr-Ste. p. 363]:

Jo(z +y) = Z J_i(z) I (y). (7.20)

k=-oc

Using J_k(z) = (—=1)*Ji(z). we can rewrite (7.20) as

Jo(z +y) = Jo(z) Jo(y) + "kZ( D Ji(z) e (). (7.21)
which converges for all real £ and y. Equation (7.21) can be regarded as an infinite
sum formula for Jo(z + y).

Notice that dual asymptotic expansion (7.19) reproduces the first two terms of
sum formula (7.21). In fact. since £ = 0 is a root of Ji(z) of multiplicity k& for all
natural numbers k. it follows that {Jc(z)}5S, is an asymptotic sequence as z — 0.
Equation (7.21) further implies that Jo(z + y) has a dual asymptotic expansion
with infinitely many terms. namely

Jo(z +y) ~ Jo(z Z Y Je(z)Je(y) as £ — Q or y — 0. (7.22)

Expansion (7.22) shows that interesting dual asymptotic expansions occur naturally
in the mathematical universe.

Let us conclude this section with the following observations concerning this
example:

1. Using the method of this section, the computation of the n-th term via

fo=Tw0)[rn-1]
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requires n—1 applications of L'Hospital’s Rule for each of the two limits which
define the operator Y (). Since the remainder r,_, is a linear combination of
n terms involving Bessel functions, and since by equation (7.18), the (n — 1)-
st derivative of each Bessel function will also be a linear combination of n
Bessel functions, it is clear that this method of computing the n-th term

rapidly becomes quite complicated as n grows large.

This example illustrates the need for a more efficient algorithm to compute
dual asymptotic expansions. The final chapter of the thesis will describe
an entirely different approach which may lead to a substantially improved
algorithm.

o

The infinite dual asymptotic expansion (7.22) is actually a convergent infinite
series and provides an infinite sum formula (7.21) for Jo(z+y). An improved
algorithm for computing dual asymptotic expansions would presumably en-
able us to determine the general term f, in expansion (7.22). thereby deriving
the sum formula for Jy(z + y) automatically. In order to validate that expan-
sion (7.22) is in fact an ezact identity (with infinitely many terms), we need to
understand the convergence properties of infinite dual asymptotic expansions.
One possible approach to the question of convergence will be presented in the
final chapter.

7.2 Generating Univariate Expansions

This section begins with a theorem that shows univariate asymptotic expansions
can be derived from dual asymptotic expansions in a variety of ways. The section
then explores some simple relationships between univariate and bivariate functions;
these relationships facilitate the application of the theorem, and create a systematic
method for generating asymptotic expansions of univariate functions. The section
ends by presenting an extended example illustrating the method, and discusses im-
portant qualitative features of the asymptotic expansion produced by the method.
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7.2.1 Parameterization Theorem

The following theorem shows that we can generate univariate asymptotic expan-
sions from dual asymptotic expansions simply by parameterizing the independent

variables.

Theorem 7.8 Assume f € Df,,(A x B). Let

N

flz.y) ~ Z fa(z.y) asz —aory—b (7.23)

n=1

denote the dual asymptotic expansion of f to N terms at (a.b), and let N denote
its essential length. Let I C R be a neighborhood of ty € R, and let X : | — A
and Y : I — B be nonconstant real-analytic functions such that X(t3) = a and
Y(to) = b. Define F € C*(I) and {F,}\_, C C¥(I) by

Ft) = f(X(t).Y(t)) (7.24)
Fa(t) = fa(X(2).Y(2)) (7.25)

for allt € I and all indices n. It follows that:
1. {F.}Y_, has essential length N.
2. {F.(t)}Y_, is an asymptotic sequence as t — tq.
3. F has an asymptotic expansion

F(t) ~ i F,(t) ast — tg (7.26)

n=1
with respect to {F,}¥_,.

Proof. Fundamental Theorem 6.27 implies that f, = Y(a4)[rn-1] and r,_, €
S(a,6)(A x B) for all indices n; we will invoke these properties freely throughout the

proof. Let

N
flz,y) ~ Z gn(Z) ha(y)

n=1

asz —aory—b
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denote the standard form of dual asymptotic expansion (7.23), and note that
{foXil, {gn}l), {ha}y_,, and {r,_1}¥_, all have essential length N. We will

prove the three conclusions in the specified order.

L.

(8]

Since f, = Oaxp for all indices n > N, it follows by equation (7.25) that
F, = 0, for all indices n > N. We will prove by contradiction that F, s 0,
for all indices n < N. Suppose that F}, = 0; for some index n < N. and note

that
) ha (Y (2))

Cn
for all ¢ € I. Since C¥([) is an integral domain by Proposition 2.4, F, = 0;
implies that g, 0 X = 0y or hpooY = 0;. Ifg,0X = 0, then X(I) C
9. '(0). Since the continuous image of a connected set is connected, X (I) is
a connected subset of g;!(0). Since g, € C¥(A) and g, # 04, the zero-set
9.'(0) consists of isolated points by Proposition 2.1; consequently, the only

Falt) = fu(X(2). Y (2)) = 22X

(7.27)

connected subsets of g;;'(0) are singleton sets. Hence, X (I) is a singleton set.
which means that X is constant on . Since this contradicts the hypotheses
of the theorem. we must have g, o X # 0;. By symmetry, we must also have
hn oY # 0;. which means that F,, = 0; is impossible for any index n < N.
By definition, {F,}¥_, has essential length V.

. Since {F,}, € C¥(I) is tractable with essential length N by conclusion 1,

Proposition 3.23 implies that { F,,(¢)}2_, is an asymptotic sequence as t — tg
if and only if the equation
Fn+l(t)

Fan(t) _ 0
Ay 0 (7.28)

holds for all indices n < N. Substituting (7.27) into the limit in (7.28) yields

Fn+1(t) — hm ( Cn 'gn+1(X(t)).hn+1(Y(t)))
SREG AR\ g (XQ) (Y ()
Cn o gn+l(X(t)).- hnt1(Y(t))
o B (X)) B ha(Y(2)
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Cn lim In+1(T) - lim hnt1(y)
Cat1 T2 gn(x) wv—b hy(y)

(7.29)

for all indices n < N. Since {g.}}_, C C*(A) and {h.})_, C C¥(B) are
tractable with essential length N. and since {g.(z)}2_, and {h.(y)})_, are
asymptotic sequences as £ — a and y — b, respectively, Proposition 3.23
implies that (@) e (5]

. Gn+1(Z . n+1\Y

p 0 - -0 rn
for all indices n < N. Equations (7.30) and (7.29) imply that (7.28) holds for
all indices n < N. This proves conclusion 2.

3. For each index n. let s, and S, denote the n-th partial sums of expansions
(7.23) and (7.26), respectively, and let r,, and R, denote the n-th remainders.
Note that equation (7.25) implies

Salt) = 3 Fult) = 3" Sl X(8).Y(£)) = su(X(8).Y())  (7.31)
m=1 m=1

for all t € I, and equation (7.24) implies

Ra(t) = F(t) = Sa(2)
= fX(2).Y () — sa(X(t). Y (2))
= ra(X(t).Y(2)) (7.32)

for all t € I. We will prove conclusion 3 by considering the following two

cases.

Case 1. If N < N, then dual asymptotic expansion (7.23) is terminating or
trivial, and Ezact Identity Theorem 5.9 implies that f = s5. Equations
(7.24) and (7.31) further imply that

F(t) = f(X(2). Y (2)) = sp(X(2), Y () = S, (t)
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Case 2.

for all t € I. Since FF = S_, Theorem 3.40 implies that asymptotic
expansion (7.26) holds.

If N = N, then the nonterminating asymptotic expansion (7.26) holds

if and only if the limit
Rn— 1 (t)

t—to  F,(t)

holds for all indices n, by Theorem 3.35. In what follows, let n be
any index. Note that equations (7.32) and (7.25), along with f, =

=1 (7.33)

T (a.6)[Tn-1], imply that

Roi(t) _ ra(X(),Y(@)  re(X(2),Y (1) (7.34)

Falt)  fa(X(@). Y1)  Tamlra-t(X(8).Y(2)

for all t € I. Since N = N by assumption. it follows that {r,_;})_, is

nonterminating and r,_; # 04xg. Consequently, we can let
(PnsGn) = deg,p)(Tn-1) and fn_i = p(as)[Tn-1]

and write
rn-1(z.y) = (z — a)P"(y — 6)* Fn_i(z, y) (7.35)

for all (z.y) € A x B. Since rp_; € Sap)(-4 X B) — {01x5}. Proposition
6.13 implies 7,_,(a.b) # 0. and Proposition 6.14 implies

Tanlrnail(z.y) = (& — @)~ (y — b)* - f"‘l‘f,:_”f&",z‘f“’y’ (7.36)

for all (z,y) € Ax B. Dividing equation (7.35) by equation (7.36) yields,

after cancellation,

rn_1(T,y) _ Ta_1(Z,Y) Froi(a, b)
T(a,b) [T'n—ll(l', y) - Tn_1(Z, b) f'n—),(a, y) (737)
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for all (z,y) € A x B. Equations (7.34) and (7.37) imply

Rn-—l(t) — ":n—l(X(t)r Y(t)) f‘n—l(av b)
Fn(t) f.n—l(X(t)r b) 7‘:rt—l(av Y(t)) '

(7.38)

Using equation (7.38), we find that limit (7.33) evaluates to

. Rn—l(t) _ fn.—l(a's b) 7;n—l(a’ b)
B F®) - Faa(ab)Fai(ad)

by continuity, since 7,_(a.b) # 0. Since n was arbitrary, limit (7.33)
holds for all indices n. and asymptotic expansion (7.26) holds.

This proves conclusion 3. B

7.2.2 Polarization and Depolarization

When applying Theorem 7.8. it is often helpful to convert a univariate function
into a bivariate function. and vice versa. The following definition introduces some
terminology for describing such relationships between univariate and bivariate func-

tions.
Definition 7.9 Assume I C R is an open interval.

1. Let the univariate function F € C¥(I) be given, and suppose that we can find
a bivariate function f € C¥(I x I) such that

f(t.t) = F(t) forallt € I.

We say that f is a polarization of F.

2. Let the bivariate function f € C¥(I x I) be given, and define the univariate
function F € C¥(I) via

F(t) = f(t,t) forallt € I.

We say that F' is the depolarization of f.
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Example 7.10 If F(t) = e™. then fi(z,y) = e™*Y and fo(z.y) = e~@+¥")/2 gre
two different polarizations of F'. By construction, the depolarizations of f, and f,
are both F.

Remark 7.11 Please note the following:

1. A univariate function F € C¥(I) may have many different polarizations, but
a bivariate function f € C¥(I x I) has only one depolarization.

2. The depolarization f(t,t) of any polarization f(z,y) automatically recon-

structs the original univariate function F(t).

The definitions of polarization and depolarization are motivated by an analogy
with quadratic forms and bilinear forms on a vector space V over the reals R. If
Q : V — R is a quadratic form. then there is a unique symmetric bilinear form
B :V xV — R such that B(v.v) = Q(v) for all v € V. (If Q is positive-definite,
then B is actually an inner product on V.) The bilinear form B is a polarization
of the quadratic form Q, and the depolarization of B reconstructs Q.

The following corollary of Theorem 7.8 applies the polarization and depolar-
ization processes to the problem of generating asymptotic expansions of univariate

functions.

Corollary 7.12 Assume I C R is an open interval. Let F' € C¥(I) be given, and
let to € I. Suppose there erists a polarization f of F such that f € Df\{o‘to)(l x I).
Let

N
flzy) ~ > falz,y) as T — tg or y — £

n=1
denote the dual asymptotic ezpansion of f to N terms at (to,tg), and let N denote
its essential length. If F,, denotes the depolarization of f, for each index n, then
{F.(t)}N_, is an asymptotic sequence as t — to, and

n=1

F(t) ~ i Fa(t) ast — to

n=1

is an asymptotic ezpansion with essential length N.
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Proof. Apply Theorem 7.8 with A=B =1, a=b=ts,and X(t) =Y (t)=¢t. R

Given a univariate function F' € C¥(I), Corollary 7.12 enables us to construct
an asymptotic sequence { F,,(¢)}2_, which yields a meaningful asymptotic expansion
of F(t) as t — ty. This is achieved by following a systematic, three-step process:

1. Find a polarization f of F such that f € D , /(I x I).

2. Compute the terms {f,}2_, of the dual asymptotic expansion of f at (to.%o)
explicitly via f, = T (4 .10)[rn—1] for all indices n.

3. Depolarize the terms {f,}}_, to obtain the asymptotic sequence {F,}¥_,.

This three-step process is depicted in Figure 7.1 as a commutative diagram. The
first step in the process — finding a suitable polarization — is the most difficult of
the three. The next section explores some techniques designed to help us with this

initial step.
Dual Asymptotic Expansion
N
flz.y) — > falz.y)
n=1
T l
Polarization Depolarization
| i
N
F(t) — > Fu(t)
n=1

Univariate Asymptotic Expansion

Figure 7.1: Three-Step Process for Generating Univariate Expansions

7.2.3 Auxiliary Functions

The following definition introduces a useful device for constructing polarizations of

univariate functions.
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Definition 7.13 Let I C R be an open interval. If u € C¥(I x I) is such that
u(t.t) =t for allt € I. we call u an auziliary function for I. Ifu(l x I) C I
also holds, we say that u is well-behaved.

An auxiliary function for [ is simply a polarization of the identity function on I.
The following example shows that well-behaved auxiliary functions can be obtained

by means of means.

Example 7.14 If I is an open interval, then each of the following functions u €
C¥(I x I) is a well-behaved auziliary function for I:
1. The arithmetic mean on I C R. defined by

r+y
U(I,y) = 9 °

2. The geometric mean on I C (0. ). defined by
u(z.y) = T -y.

3. The harmonic mean on I C (0.c), defined by

2zy

u(z.y) = Tty

Auxiliary functions can be used to construct polarizations in at least two dif-

ferent ways:

1. Let FF € C¥(I) be given. If u € C¥(I x I) is a well-behaved auxiliary function

for I, then
f(z.y) = F(u(z,y))

defines a polarization of F.
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2. Let F € C¥(]) be given, and let J be an open interval such that F(I) C J.
If ue C¥(J x J) is an auxiliary function for J, then

f(z.y) = u(F(z). F(y))

defines a polarization of F'. Note that u need not be well-behaved in this

case.

In the next section. we will apply auxiliary functions to a concrete example.

7.2.4 Example and Commentary

The following example uses an auxiliary function to generate a univariate asymp-
totic expansion via the previously described three-step process: polarization, com-
putation of the dual asymptotic expansion. and depolarization.

Define F(t) = e~ for all t € R. and let a € R be an arbitrary constant. Recall
that u(z.y) = /Ty (the geometric mean) is a well-behaved auxiliary function for
(0.xc). Define a polarization f of F by

2

f(l',y) = F(U.(.’L‘y)) = e-(\/'t_'y-) — e—z:y.

and observe that
f(t.t) =€ = F(¢).

Although u(z, y) is analytic only for -y > 0, note that the polarization f = Fou
can be analytically continued to all of R? since F is an even function.

In Example 6.26, we determined the three-term dual asymptotic expansion of
e %Y at (a.b). The result, given by expansion (6.49), can be written in factored

form as
g?bbz=ay (1 —(z—a)(y—-0b)+ % (z—a)’(y - b)2> . (7.39)

Setting b = a in (7.39) gives the dual asymptotic expansion of e~*¥ at (a, a), which

1S
e (1-(z-a)(y-a)+; G- w-af).  (140)
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Letting £ = y = ¢t in (7.40) depolarizes the terms and produces

p-a(2t—a) (1 —(t-a)?+ :)1_ (t a)4) ’ (7.41)

which is a (factored) three-term asymptotic expansion of e’ as t — a.

Let us make the following observations concerning this example:

1.

o

If a = 0. expansion (7.41) reduces to

2 14

1 -+ 5 t,
which is the sum of the first three terms of the Maclaurin series for e~**. If
a # 0, the presence of the exponential factor e~*(2¢=%) in expansion (7.41)
shows that (7.41) is not a truncated Taylor series. but a different kind of

erpansion altogether.

Although the original function e~** is bounded and tends to zero as t — =c.
every nonconstant Taylor polynomial P(t¢) is unbounded and becomes infinite
as t — oc. In contrast, for any fixed a > 0, expansion (7.41) is bounded for
all £ > o and tends to zero as t — oc. Hence, ezpansion (7.41) ezhibits the
appropriate qualitative behavior on the semi-infinite interval (¢y.>c) for any
fixed t; € R.

The original function et cannot be integrated in closed form over the class
of elementary functions. In contrast, the terms in expansion (7.41) are of the

form

e—a(2t—a) | L (t — a)®

n! ’
and can be integrated in closed form via repeated integration by parts. Hence,
ezpansion (7.41) is more amenable to integration than the function it approx-

imates. This property can be used to approximate the error function

erf(z) = \%_r 0,.- et (7.42)
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accurately near r = a.

In the case a = 0, the resulting approximation for erf(z) will reduce to a
Maclaurin series; however, by using a somewhat different technique. we can
develop a new approximation for erf(z) that is more accurate near z = 0 than
the Maclaurin series. This technique is illustrated in the next section.

7.3 Approximating Special Functions

This section shows that dual asymptotic expansions can be used to approximate
special functions by series of elementary functions. Throughout this section. we will
use the MAPLE (version 5.4) computer algebra system to expedite the intermediate
calculations. to compute numerical approximations when needed. and to plot the

graphs of various functions.

7.3.1 A New Approximation of the Error Function

Suppose that we wish to approximate the error function erf(z). defined by equation
(7.42), near the point £ = 0. As a preliminary step, make the change of variable
t = ry to convert (7.42) from an indefinite integral of a univariate function into a

definite integral of a bivariate function: this yields
eff(z) = — [ e T ¥ dy. (7.43)

Now expand the integrand of (7.43) in a three-term dual asymptotic expansion at
the point (0.b), and extract a common factor from each term to obtain

e~ TV ~ et (1 -z (y* -6 + %r“ (y* - 62)2) (7.44)
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as r — 0 or y — b. Taking the definite integral of expansion (7.44) with respect to
y and multiplying by 2z7~!/2 produces a univariate asymptotic expansion in z:

erf(z) ~ —=e "% -(1 —+—c1r2+c2z4) as z — 0,

where ! . ! !
=b— - and == — B 4+ —.
‘1 3 ¢ @=3" 73" 710

Hence, using the theory of dual asymptotic expansions, we have produced an

approximation

2 o 1 5 1 1., 1
."l(l‘) = \/—;e_bzz2 [1 + (b" -_ 5) I~ + (3b4 - §b" + E) .’E4]

of erf(x) which consists entirely of elementary functions.

7.3.2 The Classical Approximations

Let us compare the new approximation A(z) to two of the best-known classical

approximations. The fifth degree Taylor polynomial for erf(z) at £ =0 is

and a comparable Padé approximation for erf(z) at z =0 is

1
2 10—§$2
v | 10 + 322

P(z) =
Note that the approximation errors for A(z), T(z), and P(z) all have the same

asymptotic order:

1
erf(z) — A(z) = (lbﬁ—éb4+5b2—l)iz7+o(x7)asz—»o,

21) /=
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1
erf(z) = T(z) = —5%17 +o(z7) as  — 0,
erf(z) — P(z) = Toso == +o(z') asz — 0.

However, the coefficients of the =7 terms in these asymptotic error formulas are not

the same. In particular, the coefficient of z7 in the error for A(r) is

(lbs—lb“-f- - =

1 )_1_ (7.45
3 3 5 21) /7 43)

which depends on the free parameter b.

7.3.3 Choosing the Parameter

We can increase the asymptotic order of the approximation error for A(z) by finding
values of b which make the coefficient (7.45) equal to zero. Since the polynomial
(7.45) is cubic in b?, it is possible to solve for the roots of (7.45) in terms of
radicals. MAPLE is able to compute these roots exactly; however, as often happens
with solution by radicals. the results are too unwieldy to display here.

Polynomial (7.45) has exactly one positive real root. whose ezact value we will

denote by by. Numerical computation in MAPLE shows that
bo =~ 0.6292111285.
Upon setting b = by, the approximation error for A(z) becomes
erf(z) — A(z) = c- 2% + o(z®) as z — 0,
where the ezact value of the constant c is also unwieldy; the approximate value is
¢ =~ 0.0006956928575.

Compare the approximation error for A(z) to the approximation errors for T(z)
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and P(r). which are roughly

erf(r) — T(zx) = —0.0269z + 0.00522z° + o(z?) as r — O.
erf(z) — P(z) = 0.00699 r" — 0.00493 z° + o(z°) as £ — 0.

Not only do the errors for T(z) and P(z) have nonvanishing r” terms. but the
coefficients of the r° terms are nearly an order of magnitude larger than the coeffi-

cient c.

7.3.4 Comparing the Accuracy

In light of our analysis of the errors. we expect A(z) to approximate erf(z) notice-
ably better than both T(r) and P(x) near r = 0. In order to test this hypothesis.
let us compare the accuracy of the approximations T'(z). P(z). and A(r) using the

plots in Figures 7.2. 7.3. and 7.4.

2.5¢

24.
T(x)

1.5+
erf(x)
17 —

P(x) & ACx)

0.5

o 0.5 1 1.5 2

Figure 7.2: Plot of T(z). P(z). A(z). and erf(z) on [0.2].
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l<—
erf(x)
0.8
P(x)
0.6 A(CX)
o.4
0.2
o 0.5 1 1.5 2 2.5 3

Figure 7.3: Plot of P(r). A(z). and erf(z) on [0. 3].

Figure 7.2 shows a plot of T(r). P(x). A(z). and erf(z) on the interval [0.2].
The wildly misbehaved curve in this plot corresponds to the Tavlor polynomial
I'(r). Figure 7.3 omits T(r) and shows a plot of P(z). A(z). and erf(z) on the
interval [0.3].

How do we know which curve belongs to which function in these plots? (The
curves were labeled manually. not by the software which produced them.) The
asymptotic behavior of P(x). A(z). and erf(z) identifies each of these curves uniquely
since P(r) — —>. A(x) — 0. and erf(z) — 1 as £ — oc. To see this more clearly.
consider Figure 7.4. which shows a plot of P(z). A(z). and erf(z) on the interval
0. 8]: the longer interval accentuates the behavior of the three functions for “large”
values of r. and makes it easier to identifyv the three curves.

Together. Figures 7.3 and 7.4 make clear that A(z) is a better approximation
of erf(r) than P(z) as r varies from 0 to 2.4. This conclusion is corroborated by
Table 7.1. which lists the numerical values of the approximation errors for T'(z).
P(z). and A(z) on the interval [0. 3].
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erf(x)

A(CX)

O.271 P(x)

Figure 7.4: Plot of P(x). A(z). and erf(z) on [0.8].

On the basis of these comparisons. we can conclude that the best approximation
to erf(x) on the interval [0.2.4] is the new approximation .4(r): the second-best
approximation is the Padé approximation P(r): and. the worst approximation of the
three is the Taylor polynomial T(z). Hence. in this example. the new approximation

A(x) out-performs bhoth of the classical approximations.
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] T erf(z) — T'(z) | erf(z) — P(z) | erf(z) — A(x)
0 0 0 0
0.1000000000 { -0.0000000027 | 0.0000000007 | O
0.2000000000 | -0.0000003412 | 0.0000000869 | 0.0000000004
0.3000000000 { -0.0000057742 | 0.0000014344 | 0.0000000133
0.4000000000 | -0.0000426832 | 0.0000102386 | 0.0000001704
0.5000000000 | -0.0002000920 | 0.0000459210 | 0.0000012227
0.6000000000 | -0.0007023858 | 0.0001528686 | 0.0000060264
0.7000000000 | -0.0020175401 | 0.0004129796 | 0.0000228559
0.8000000000 | -0.0050003865 | 0.0009552744 | 0.0000714256
0.9000000000 { -0.0110665618 | 0.0019591884 | 0.0001921704
1.0 -0.0223899016 | 0.0036496175 | 0.0004587312
1.100000000 | -0.0421143838 | 0.0062838213 | 0.0009926575
1.200000000 | -0.0745714669 | 0.0101321624 | 0.0019784257
1.300000000 | -0.1254945811 | 0.0154558884 | 0.0036761160
1.400000000 | -0.2022243002 | 0.0224855275 | 0.0064287224
1.500000000 | -0.3138999715 | 0.0314030007 | 0.0106613046
1.600000000 | -0.4716359077 | 0.0423295495 | 0.0168699650
1.700000000 | -0.6886822354 | 0.0553203520 | 0.0255999223
1.800000000 | -0.9805720644 | 0.0703655571 | 0.0374134945
1.900000000 | -1.365257613 | 0.0873966092 | 0.0528503643
2.0 -1.863238291 | 0.1062962545 | 0.0723838331

2.100000000

-2.497683713

0.1269105025

0.0963775129

2.200000000

-3.294554206

0.1490609760

0.1250471659

2.300000000

-4.282720839

0.1725564342

0.1584318854

2.400000000 | -5.494086350 | 0.1972026588 | 0.1963778290
2.500000000 | -6.963707842 | 0.2228102882 | 0.2385363047
2.600000000 | -8.729921611 | 0.2492005266 | 0.2843763980
2.700000000 | -10.83447009 | 0.2762088803 | 0.3332108376
2.800000000 | -13.32263089 | 0.3036872127 | 0.3842324868
2.900000000 | -16.24334741 | 0.3315044787 | 0.4365579527
3.0 -19.64936085 | 0.3595464905 | 0.4892743772

Table 7.1: Approximation Errors for T'(z), P(z), and A(z) on [0, 3]
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Chapter 8
Conclusions

This final chapter strives to impart some perspective on the thesis. Let us reflect on
our recent journey through the world of dual asymptotic expansions, and ponder

what we may encounter on the road ahead.

8.1 Potential New Applications

This section discusses two broad application areas which may prove well-suited to
the methods of the thesis.

8.1.1 Hermite Interpolation

The previous chapter presented an example showing that dual asymptotic expan-
sions can be used successfully to approximate special functions in terms of elemen-
tary functions, and that the resulting approximation can be made more accurate
than both the Taylor and Padé approximations. All of these approximations share
a common property: they reproduce the ezact values of the derivatives of the orig-
inal function at the point in question up to some specified order. Approximations
with this property are examples of a scheme called generalized Taylor interpo-
lation. Technically, this is a method of interpolation rather than approximation,
since some characteristics of the original function are reproduced ezactly by the in-

146
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terpolating function; for our purposes, this is a minor distinction since well-chosen
interpolating functions can yield good approximations.

Generalized Taylor interpolation is a special case of a much more general scheme
called Hermite interpolation. In this scheme. the interpolating function repro-
duces the exact values of the derivatives of the original function at a number of
different points up to some specified order, where the orders need not be the same
for all points. Note that taking only zero-order derivatives reduces the method to
ordinary interpolation at discrete points, whereas interpolating at only one point
returns us to generalized Taylor interpolation.

By the interpolating properties of the asymptotic splitting operator. the expres-
sion

(I = Yian))fl(z-y)

vanishes on the lines z = @ and y = b. This implies there is some function g €
C¥(A x B) such that

(I = Tiar)[fUz.y) = (z —a)(y — b) - g(z.y).

Applying this idea repeatedly to the remainder formula for dual asymptotic expan-
sions yields

ra(z,y) = (I — Tiap)" [fl(z.y) = (x — a)*(y — b)" - gu(z.9),

from which it can be seen that dual asymptotic expansions are indeed generalized
Taylor interpolants.

Presumably, a different kind of ezpansion could be generated by applying the
asymptotic splitting operator at a number of different points (a,, b.), thereby pro-
ducing a remainder of the form

@) = I] (= Yanan) 11@:9) = [T @ = am) (v~ br) - 9a(2,1).

This method can accommodate any Hermite interpolation scheme by a suitable
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choice of points (an,b,). In fact. when interpolating by this method at n specified
points a;,....a, € A, there are still n parameters b,,....b, € B which can be
freely chosen. These extra n degrees of freedom may dramatically decrease the
approximation error of an interpolation scheme produced in this way. For example,
a generalized Taylor interpolant produced by this method may be able to interpolate
the first 2n nonzero derivatives of a function using a series with only n nonzero

terms.

8.1.2 Singular Perturbation Problems

In the previous chapter. we noted that asymptotic expansions produced by the
methods of the thesis can be qualitatively well-behaved for large arguments when
the corresponding Taylor approximation is not. In fact, it is precisely this drawback
of Taylor approximations which results in the failure of direct Taylor series meth-
ods to produce satisfactory solutions u(¢. <) to singular perturbation problems: the
solutions are unsatisfactory because they fail to be uniformly valid at fixed values
of the small parameter = for large values of the independent variable ¢.

In contrast. dual asymptotic expansions may be ideally suited for singular per-

turbation problems. for two reasons:

1. The exact solution to such problems is (generally assumed to be) an analytic
function u(t. =) of two variables. and the methods of the thesis are specifically

designed for analytic functions of two variables.

2. Any good approximation to the exact solution must exhibit the appropriate
qualitative behavior, and dual asymptotic expansions appear to possess the

qualitative behavior of the functions from which they are derived.

The major challenge in this application is to determine how to compute the
terms of the dual asymptotic expansion of a function which is defined indirectly —
for example, by an initial-value problem involving an ordinary differential equation.
The only hint the author can provide at this time is to expand at a point (o, &),
where the initial data is specified at to, and £¢ is small but positive. When ¢y =
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0. the dual asymptotic expansion may in some cases reduce to a Taylor series.
thereby losing the qualitative advantage offered by the method of dual asymptotic
expansions.

8.2 Further Theoretical Developments

This section proposes some natural extensions to the theoretical results presented

in the thesis.

8.2.1 Convergence Properties

The example of the infinite sum formula for the Bessel function Jy(z + y) under-
scored the need to understand the convergence properties of infinite dual asymptotic
expansions. The author proposes to study this question by the following approach.

If K C A x B is a compact rectangle. we can define a norm on the function
space C¥(A x B) by

1l = max 1f(z.9)l.

Note that || f||,, = 0 implies f = 04xp by Unique Continuation. Let the subset
SCCYAx B)-{04x5}
be arbitrary, and suppose that
$®:5—-CYAx B)

is an operator (though not necessarily a linear operator). We can define the oper-
ator norm of ¢ by

1 [l
®|,. = —_— R
1915 =sup S

Let f € D, (A x B), and define the subset

Sae)(f) = {(I = T@an)"[f]In € N},
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which is the orbit of the function f under the operator I — Y (5. Assume that
04xB & Sas)(f). and let

@ = ”(I —Tan)l S(avb)(f)“K )

If we can determine suitable hypotheses on the point (a, b), the function f, and the

rectangle K to ensure that o < 1. it will follow immediately from the inequality

Irallee = {[(7 = Tawa)" [F]]] . < @™ Ifllx

that the infinite series

i gn(Z) hn(y)

n=1 Cn
converges uniformly to f(x.y) for all (z.y) € K. Hence. the question of uniform
convergence on compact rectangles K can be reduced to a study of the operator

norm

[ = Twa) 1S9 -

8.2.2 Asymptotic Inner-Product Spaces

The infinite sum formula for Jy(z + y) also called attention to the need for a more
efficient algorithm to compute dual asymptotic expansions. Let f € C¥(A x B) and
(a.b) € A x B be given. The author contends that a much better algorithm can
be developed by applying an Asymptotic Gram-Schmidt process to the univariate
sequences of partial derivatives

{ (;%) "G b)}; and { ((—%) e y)}; |

The Asymptotic Gram-Schmidt process — which is analogous to the well-known
Gram-Schmidt process of classical linear algebra — is an algorithm developed by the
author to transform a given sequence of functions into an asymptotic sequence with
the same linear span. The analogy between the classical Gram-Schmidt algorithm
and its asymptotic counterpart is made possible by defining an Asymptotic Inner
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Product
im {®)

[f.gla = lim o) (8.1)
which endows a linear space of analytic functions with the structure of an Asymp-
totic Inner-Product Space.

The astute reader will recognize that limits of the form (8.1) have appeared
numerous times throughout the thesis — for example, in the characterization of
the Landau “little oh” order relation, and in the computation of the coefficients of
univariate asymptotic expansions. Both of these operations apply the asymptotic
inner product implicitly. Even the asymptotic splitting operator itself can be writ-
ten in terms of the asymptotic inner product. which indicates that there is a strong
natural connection between these two bodies of ideas.

The author has developed an abstract theory of Nonlinear Inner- Product Spaces,
which shows that the theories of classical inner-product spaces and Asymptotic
Inner-Product Spaces and are both special cases of a single more general theory.
The author hopes to make more information about these developments available
in the near future. and plans to use these ideas to reformulate the univariate and

bivariate theory of the thesis into a single. more unified framework.

8.2.3 Expansions at Boundary Points

The thesis has confined itself to studying asymptotic behavior at points in the
domain of analyticity of the function in question. However, it is the behavior at
boundary points which is often of greatest interest in applications. How might we
extend the theory to develop dual asymptotic expansions at boundary points? Be-
fore we can answer this question, we need to understand what lies at the foundation
of the current theory.

The ubiquitous Unique Continuation Property, despite its numerous cameo ap-
pearances throughout the thesis, is not the fundamental property which makes
things work. The role of Unique Continuation has been to extend various local
results to produce a global theory. If extending the theory to boundary points
requires us to sacrifice Unique Continuation, we may have to be content with local
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rather than global results; however, since asymptotic analysis is by definition a
study of local properties, this is not a serious loss.

The fundamental existence and uniqueness theory for dual asymptotic expan-
sions is based upon the properties of the asymptotic splitting operator. The asymp-
totic splitting operator in turn depends heavily upon the Symmetric Decomposition
Theorem. At the heart of the Symmetric Decomposition Theorem lies the defining
property of analytic functions. namely: that every analytic function can be repre-
sented locally by a convergent power series. Hence. it is local series representations
which lie at the foundation of the theory of dual asymptotic expansions. The ques-
tion of how to extend the theory to boundary points thus becomes a question of
how to represent analytic functions by more general types of series expansions at
boundary points.

Certain classes of boundary points appear to offer ready-made solutions to this
problem. For example. an analytic function with an isolated singularity can be ex-
panded in a Laurent series. and an analytic function with an algebraic branch point
can be expanded in a Puiseux series. Consequently, the Symmetric Decomposition
Theorem should easily generalize when the Laurent or Puiseix series contains only
a finite number of terms with negative powers — for example. as the Laurent series
does when the singularity is a pole. Note that the degree of a function at a pole
will be a pair of integers (rather than a pair of natural numbers, as for points of
analyticity), and the degree of a function at an algebraic branch point will be a
pair of rational numbers.

Extending the theory to poles and algebraic branch points would substantially
enlarge the scope of the methods presented in the thesis. For example, this would
allow us to develop dual asymptotic expansions at the poles of meromorphic func-
tions, as well as at the branch points of algebraic functions.

Even greater breadth might be achieved by employing yet more general kinds of
series expansions. Some of these generalized series have already been studied and
implemented by various researchers in computer algebra, such as Keith Geddes
and Gaston Gonnet ([Ged-Gon]), as well as Bruno Salvy ([Salvy]). By using the

univariate methods of these researchers as a new foundation, it may be possible
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to significantly extend the bivariate methods presented in the thesis. Indeed. a
successful synergy between these univariate and bivariate methods may well open

new vistas for both.



Appendix A

Proof of Decomposition Theorem

This appendix contains a proof of Decomposition Theorem 2.9, which is restated
below. Before we can prove this theorem. we need to understand how a function’s
vanishing or not vanishing on the line r = a is affected by restricting the function
to a subset of its domain.

Suppose that f : 4 x B — R is an arbitrary function. Let I x J C A x B
be an open rectangle such that a € I. and let g = f|] x J. To say that f(z.y)
vanishes on z = a means that f vanishes on the set {a} x B. by Definition 2.8.
However, to say that g(z, y) vanishes on z = a means that f vanishes on the subset
{a} x J, which is an ostensibly weaker condition. The next proposition shows that
for analytic functions. the two conditions are actually equivalent.

Proposition A.1 Assume f € C*(Ax B). Let IxJ C Ax B be an open rectangle
such that a € I, and let g = f|I x J. The function f(z,y) vanishes on z = a if

and only if the restriction g(z,y) vanishes on r = a.

Proof. Clearly. if f(a,y) = 0 for all y € B, then g(a,y) = 0 for all y € J, since
J C B. To show the converse, define F,(y) = f(a,y) for all y € B, and note that
F, € C¥(B). If g(z,y) vanishes on = = a, then F,|J = 0;. The Unique Contin-
uation Property of Theorem 2.4 implies that F, = 0p, which means that f(z,y)
vanisheson z =a. B
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We are now ready to prove Decomposition Theorem 2.9, which is restated here
as Theorem A.2

Theorem A.2 Assume f € C“(A x B) satisfies f # 0axg, and let a € A. There
exist a unique m € N and unique g € C¥(A x B) such that

flz.y) =(x —a)"g(z.y) for all (z.y) € A x B, (A.1)

subject to the restriction that g(z.y) does not vanish on z = a.

Proof. We will prove uniqueness first. and then existence.

Uniqueness. Suppose that m.n € N and g.h € C¥(A x B) are such that

f(z.y) = (z - a)"g(z.y) = (z — a)" h(z,y) (A.2)

for all (z.y) € 4 x B. subject to the restriction that g(z.y) and h(z.y) do not
vanish on z = a. If m < n. we can divide (A.2) by (z — a)™ to obtain

g9{z.y) =(z —a)" " h(z.y) (A.3)

forall z € A — {a} and all y € B. Since n — m > 0, taking the limit of (A.3) as
r —ain A — {a} yields
g{a.y)=0forall y € B,

by the continuity of g. This contradicts the assumption that g(z.y) does not vanish
on r = a. Consequently, m > n. Similarly, if m > n, we can show that h(z,y)
vanishes on z = a, which again contradicts our assumptions. Consequently, m = n.

Since m = n. equation (A.2) implies that

9(z.y) = h(z.y) (A-4)

for all z € A — {a} and all y € B. By the continuity of g and h, equation (A.4)
implies that
9(a,y) = h(a,y) (A.5)
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for all y € B. Equations (A.4) and (A.5) together imply that g = h.
We have shown that m = n and g = h. which means that decomposition (A.1)

is unique.

Existence. We will prove the existence of decomposition (A.1) in four major

steps.

Step 1. This step will show via power series that a decomposition exists locally
on some rectangular neighborhood. Let b € B be arbitrary. By definition of
analyticity. f € C“(A x B) has a convergent power series representation

x
flzy)= Y cy(z—a)(y—b) (A.6)
++7=0
on some rectangular neighborhood [, x J, of (a.b) € A x B. (The neighborhood
Iy x Jy is indexed by b to reflect that the neighborhood depends upon the choice of
b.)

By definition. “convergence” for multivariate power series means absolute con-
vergence (see [John. p. 62]). Since every rearrangement of an absolutely convergent
series converges to the same sum. the order of summation is therefore inconsequen-
tial. In fact, it is even permissible to rearrange the absolutely convergent series
(A.6) into a double infinite sum

f(z.y) = i (i c;(z—a)(y- b)’) (A7)

1=0 \j=0
(see [Knopp56. pp. 83-87]).
For each i € N, the absolute convergence of the inner subseries
3" e (z —a)f (y — by (A8)

7=0

follows from the absolute convergence of the original series (A.6), by comparison.
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The convergence of (A.8) for all (z,y) € I, x J, allows us to define an analytic
function h; € C*¥(J,) for each i € N by

h(y) =D cy(y— by (A.9)

for all y € J,. We can now write (A.7) as

<

flz.y) = (z —a) hy). (A.10)
=0
If h, = 0y, for all i € N. then (A.10) implies that f|I, x J, = Or,xg,- By the
Unigque Continuation Property (2.4), f = 04xp. which contradicts our assumption
that f # 04.p. Consequently, h; # 0, for at least one i € N. Let m, denote the
smallest i € N such that h, #0,,.

Using m,. we can rewrite (A.10) as

flz.y) = > (z—a)hy)

where g, € C¥(1, x J) is defined by

x

g(z.y) = ZO (z = )" hurm, (y)
for all (z.y) € I, x J,. Note that gy(a,y) = hm,(y) for all y € J,. It follows by
definition of m, that h,, # 0j, which implies that g;(z.y) does not vanish on
z =a.
In summary, for every b € B, we have produced a rectangular neighborhood
Iy, x Jy of (a,b) and shown that there exist m; € N and g, € C¥(I, x J,) such that
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f(z.y) = (z — a)™ gs(z.9) (A.11)

for all (z.y) € I, x J,, subject to the restriction that g,(z,y) does not vanish on
z = a. This completes Step 1.

Step 2. For each b € B, Step 1 produces a neighborhood J, of b. Step 2 will
show that any closed subinterval [c.d] C B can be covered by a finite sequence of
overlapping neighborhoods from {J,}scp. beginning with J. and ending with J,.
More precisely. we will construct a finite sequence {bc}p_, C B with n > 1 such
that

Jou N, # O

fork=0..... n — 1. and such that g = c and b, = d.
Since b € J, for each b € B. it follows that

[C.d]C U Jb.

befe.d]

Thus, {Js}se(cq is a covering of [c.d] by open sets. Since [c,d] is compact, there is
a finite subset By C [c. d] such that {J,}sep, covers [c.d]. Define B = ByU {c.d} to
construct an enlarged subcover {.J,}scp which is guaranteed to contain J. and Jj.

We will construct the desired sequence {bc}7_q by iterating a successor function
S : B — B, which is defined using the following notation. For each b € B, let b and
b denote the left and right endpoints, respectively, of the open interval J,. In this
notation, J, = (b.0), with b < b < b. Given any b € B C [c,d], the function value
S(b) is determined by one of these two rules:

Case 1. f JyNJy = (b,b) N (d,d) = @, then ¢ < b < b < d < d. which implies that
b€ [c d]. Since [c,d] is covered by {Jy}vep, there exists at least one &' € B
such that b € J,. Let S(b) denote the largest such ¥'.

Case 2. If JyN J; # @, let S(b) = d.



APPENDIX A. PROOF OF DECOMPOSITION THEOREM 159

Note that for every b € B, the interval J, and its successor Js, satisfy
Jy N Jse) # @, (A.12)

which means that the two intervals overlap. This is easily proven by cases from
the definition of S. In Case 1, Jy N J; = &. By definition, b € JIsey = (S(b), S(b)),

which implies that S(b) < b < S(b). Since J, = (b, ), it follows that J,N Jsw) # 9.
In Case 2, Jy,N Jy # O. By definition. S() =d.and J, N JS(b) =JyNJy # .

Next. we define an infinite sequence {b;}2., C B recursively via

bo = C (A13)
beei = S(be). for all k € N. (A.14)

It follows immediately from (A.14) and (A.12) that
ka M .]bk+l = ka N -]S(b,‘) ?é @. for all & € N.

Since we defined by = ¢ in equation (A.13), all that remains is to prove b, = d for
some n > 1.

Suppose that J,, NJy = @ for all k € N. Each successor by,; = S(b;) is therefore
computed via Case 1 of the definition of S. In Case 1, b € Js, for all b € B. This
implies that

b € Jse) = Joryy = (brsr. ber1)

for all & € N. Consequently, by < be,; for all k& € N, which means the infinite
sequence {bx}2, is strictly increasing and therefore consists of infinitely many
distinct values; this cannot occur, because the sequence {b;}$2, is the image under
the mapping b — b of the sequence {b;}2, C B, which consists of finitely many
distinct values since B is a finite set.

We conclude that there must be at least one £ € N such that J,, N J; # @.
Assume that N is the smallest such k, and let n = N + 1 > 1. By definition,
bn = bn+1 = S(by) = d. Hence, the finite subsequence {bx}?_, has all the desired
properties, and Step 2 is complete.



APPENDIX A. PROOF OF DECOMPOSITION THEOREM 160

Step 3. This step will show that the m; from Step 1 is independent of b. It
suffices to show that m. = my for every c.d € B with ¢ < d. Note that [c.d] C B.
By Step 2, there is a finite sequence {b;}?_, C [c.d], with n > 1. such that

Jo N o, O

for k=0..... n — 1, and such that by = c and b,, = d.
Recall that for each b € B, Step 1 produces a rectangular neighborhood I, x J;
of (a.b), along with m, € N and g, € C“(I, x J,) such that

f(z.y) = (z — a)™ go(z.y)

for all (z.y) € I, x .J,. with the proviso that g,(z.y) does not vanish on z = a. For

simplicity. define

R = I, x Jp,
.\[k = My,

Gk = gb

for k =0.1.....n. Thus. M, € N and Gi € C¥(Ry.) satisfy

f(z.y) = (z — a)** G(z.y)

for all (z.y) € Rk, and Gi(z.y) does not vanish on z = a, for k=0.1,...,n.
For k = 0.....n—1, consider the intersection of two consecutive open rectangles

Ri N Ry = ([bk X ka) N (Ibk“ X kaH)

= (Ibk N [b,,H) X (ka n ka+1)
= A X Bk,
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where
Ak = [b,‘ M Ibk+l and Bk = ka n ka“.

Since a € I, for all b € B, it follows that a € A, hence A; # &. By construction,
B # @ (Step 2). Since the nonempty intersection of two open intervals is also
an open interval, we conclude that Ry N Riy; = Ax x By is an open rectangle for

The following two decompositions
flz.y) = (z — @) Gi(z. y) = (z — )"+ Giesr (2. 1)

hold for all (z.y) € Ry N Riyy = Arx x Br. The restrictions of the functions Gx
and G4 to Ax x By are obviously analytic. Recall that a € A, and note that the
restrictions

[Gi | Ak x Bi] (z.y) and [Gis1 | Ak x Bi](z. y)

do not vanish on z = a, by Proposition A.1. The uniqueness portion of this theorem.
proven earlier, implies that M = M., for k=0..... n — 1, and thus

me = My, = My = M, = m,_ = my,

which completes Step 3.

Step 4. This step will construct the desired analytic function g € C¥(A4 x B)
from a compatible family of analytic functions whose domains cover A x B. Since
my is independent of b by Step 3, we can denote m, simply by m for the remainder
of the proof. Thus, for each b € B, Step 1 provides a rectangular neighborhood
Iy x Jy of (a.b) and a function g, € C¥(I, x J;) such that

f(z.y) =(z —a)" go(z,y) (A.15)

for all (z,y) € I, x Jp, with the proviso that g(z,y) does not vanish on z = a. Let
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U = (A - {a}) x B. and define
(A.16)

for all (z.y) € U. Note that G € C¥(U). Our immediate goal is to show that the

function
G(z.y) if (z.y) € U,

g(z.y) = _
gl(z.y) if (z.y) € I, x J, for some b € B

is well-defined for all (z.y) € A x B. After achieving this goal. we will show that
g has all the properties required by the theorem.
In order to show that g is well-defined, we must prove two things — that the

family of functions
I'={G}U {gs}een

is compatible. and that family of domains
A={U}U{ly x Jo}een

covers A x B. By definition, I" is a compatible family of functions if every pair
of functions in " agree on their common domain. If the pair consists of G and g,
for some b € B. then

= gb(zr y)

for all (z,y) € UN(Iy x Jy), by (A.16) and (A.15). If the pair consists of g. and gy
for some c.d € B. then

ge(z,y) = ga(z. y)

for all (z,y) € (. x J.) N (I4 x J4) by a uniqueness argument similar to the one
at the end of Step 3. Thus, I is a compatible family of functions. The family of
domains A covers A x B if every point of A x B belongs to at least one domain
D € A. Recall that (a,b) € I, x J, for each b € B. Consequently,

{a}xBC UI[,XJ(,

beB
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and

AxB=Uu({a}xB)c (J D.
DeA

Hence, A covers A x B. and g is well-defined.

We will now show that g satisfies all the requirements of the theorem. Since
analyticity is a local property. G € C*(U) and g, € C¥(1I, x J,) for all b € B imply
that g € C¥(A x B). From the definition of g, it follows that

f(z.y) =(z —a)" g(z.y) (A.17)

for all (z.y) € U = (A — {a}) x B. By the continuity of f and g on A x B, (A.17)
also holds for all (z.y) € {a} x B. and thus for all (z.y) € A x B. By the definition
of g.

gl x Jo =gy

for any b € B. Since gy(z.y) does not vanish on = a. Proposition A.l1 implies
that g(r.y) does not vanish on r = a. This completes Step 4. and the proof of

existence. @



Appendix B

Integral Representations

This appendix contains a list of integral representations for many of the standard
functions of applied analysis. A more comprehensive collection of integral repre-
sentations can be found in the references cited below.

In keeping with the orientation of the thesis, this appendix focuses primarily on
integrals over the real line. Complex contour integrals have generally been omitted:

however. when = is complex. the proper indefinite integral

o) = [ g&)dt. lal <o

can be interpreted as a contour integral over the line segment joining the points a

and :z in the complex plane, and the improper indefinite integral

@)= [T a)at

can be interpreted as a contour integral over some ray joining z to the point at
infinity.

Throughout this appendix, z and w denote complex variables, z denotes a real
variable, and n denotes an integer, unless stated otherwise. In the absence of explicit

restrictions, a formula is valid over the entire domain implicitly specified by its
arguments.
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B.1 Elementary Transcendental Functions

Most of the material in this section can be found in [Abr-Ste, Chapter 4].

B.1.1 Logarithm Function

= dt
In(z) = T larg(z)| < 7w (B.1)

B.1.2 Inverse Trigonometric Functions

= dt .
in~! il p—dt _— ,"2 7 2
sin~!(z) /0 = ]argu z )| <7 (B.2)
= dt
~l(. = 22
tan™ (z) A T larg(l +z )l <m (B.3)

B.1.3 Inverse Hyperbolic Functions

.y = dt
sinh™!(z) = /o — ‘arg(l + z2)' < (B.4)
= dt
cosh™!(z) = /1 T larg(z — 1)| < (B.5)
z dt .
tanh™'(z) = /(; - larg(l — zz)l <7 (B.6)

B.1.4 Sinc Function

sin(z) _

/01 cos(zt)dt (B.7)

sinc(z) = —

B.2 Special Functions

The material in this section was compiled from [Abr-Ste, Chapters 5-7 and 17],
(EDM, Volume 2, Appendix A, Tables 16.1, 17.1, and 19.11], and [Arfken, Chapters
5 and 10].
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B.2.1 Gamma and Beta Functions

These formulas are valid for Re z > 0 and Rew > 0:

Gamma Function

Beta Function

1
B(z.w) = /ot"l(l—t)‘”“dt
aC t:—l
—dt
/0 (I +¢t)=+w
_ oo [P a1 2w—1
= 2 (sin @) (cos ) do
0

Incomplete Gamma Function

Incomplete Beta Function

Bz(z.w)=/0 N1 —t)*dt. 0<z<1
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(B.9)
(B.10)

(B.11)

(B.12)

(B.13)

B.2.2 Log-Gamma, Digamma, and Polygamma Functions

These formulas are valid for Re z > 0:
Log-Gamma Function
oc -t _ -zt dt
InT(z) =/ [(z— et — e—e—J =
0

Digamma Function

w(z)=d%-1nr(z)=/o°° [e—_t- e }dt

(B.14)

(B.15)
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Polygamma Functions

n

d
() = | —
v ("') [dZ

tn -zt
v = (- [T —dt >
0

B.2.3 Error Functions

Error Function

Complementary Error Function
2 oc
erfe(z) = ——_/ et dt
VT Jz

B.2.4 Exponential and Logarithmic Integrals

In these formulas. PV denotes the Cauchy principal value integral:
Exponential Integrals

Y
Ei(z) = PV/ %dt. z#0

xe_t
E(z) = / —dt. largz| <

oc p—=t
E.(z) = / etn dt, Rez>0.n>0
1

B.2.5 Sine and Cosine Integrals

In these formulas, v denotes Euler’s constant:
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(B.16)

(B.17)

(B.18)

(B.19)
(B.20)

(B.21)

(B.22)
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Sine Integrals

zsint
Si(z) = /E—d
o t
< gin t
si(z) = - L
z t
Cosine Integral
= t—-1
Ci(z) = v+lnz+ EE%——&.Imgd<ﬁ
0

Hyperbolic Cosine Integral

: cosht — 1
Chi(z) = 7+mz+/'917——a.|mgﬂ<n
0

> cosht
= —/ Cot dt. |arg z| <=

B.2.6 Fresnel Integrals

Fresnel Sine Integral
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(B.25)

(B.26)

(B.30)

(B.31)
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B.2.7 Elliptic Integrals

In these formulas, ¢, a. . m, and n all denote real variables. Many of these symbols
have special names, are related to one another in some way, and have restrictions

on their range of values; this information is summarized in the following table:

Symbol Name Relation Range
o) amplitude 0<p<m/2
a modular angle 0<a<mw/2
T T =sing 0<z<1
m parameter | m =sin’a| 0<m<1
n characteristic all reals

The precise form of the definitions of the elliptic integrals depends upon the
symbols which are chosen as arguments. The most common forms are listed below.

Elliptic Integral of the First Kind
v oo \=1/2
F(r\a) = / (1 — sin® « sin 0) df. a#w/2 (B.32)
0
z o 1172
F = / 1—£2) (1—me? dt. 1 B.33
em) = [[(-8) (-me) " mar @
Elliptic Integral of the Second Kind

E(p\a) = /: (1 -sin’a sin?6) """ ag (B.34)

/OI (1 - t2)_1/2 (1- mt2)1/2 dt (B.35)

Elliptic Integral of the Third Kind

E(z|m)

M(n;p\a) = /0 “(1-nsin?8) " (1 -sinasin’8)Fdd (B.36)

O(n;zlm) = /0I (1 - ntf"’)_l [(1 - t2) (1 - mt2)]—1/2 dt (B.37)
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Complete Elliptic Integral of the First Kind

/2 -
mm==A (1-msin?6) """ do, m#1

= [10-8) (-me) e m

Complete Elliptic Integral of the Second Kind

/2 Lo o172
Em)=/ (1~ msin6)"" a6
0

- /01 (1 —tz)_”2 (1—mt2)1/2 dt

(B.38)

(B.39)

(B.40)

(B.41)
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Maple Routines

This appendix demonstrates a rudimentary implementation of the asymptotic split-
ting operator (ASQ) and the basic algorithm for computing a dual asymptotic expan-
sion (DAE) in the M APLE (version 5.4) computer algebra system. The first section
contains the MAPLE source code for the two routines ASO and DAE. The second
section illustrates the use of these routines with examples taken from the body of
the thesis.

C.1 Maple Source Code

macro(ASO=Asymptotic_Splitting_Operator):

Asymptotic_Splitting_Operator :=
proc(expr::algebraic, eql::name=algebraic, eq2::name=algebraic)
local x, y, a, b, £, X, Y;
x := lhs(eql); a := rhs(eql);
y := lhs(eq2); b := rhs(eq2);
if normal(expr)=0 then RETURN(O) fi;
f := unapply(expr, x, y);
limit(Qimit (£ (x,Y)*f(X,y)/£(X,Y), Y=b, right), X=a, right);

end:
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macro (DAE=Dual _Asymptotic_Expansion):

Dual_Asymptotic_Expansion :=
proc(expr::algebraic, eql::name=algebraic, eq2::name=algebraic,
ord: :posint)
local remainder, term, n;
remainder := expr; # remainder with O terms
for n from 1 to ord do
term := Asymptotic_Splitting_Operator(remainder, eql, eq2);
remainder := remainder - factor(term); # with ’n’ terms
od;
expr - remainder; # expansion with ’ord’ terms

end:

C.2 Examples of Use

Asymptotic Splitting Operator
> ASO(exp(-x*y), x=a, y=b);

e(—b:r—ycH—ba.)

> ASO(sin(x*y), x=0, y=0);

Ty
Dual Asymptotic Expansion
> DAE(1/(1+x"2xy~2), x=0, y=0, 4);

1 — 2292 + 2t yt — 2845
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> DAE(exp(-x*y), x=a, y=b, 3);
e(-bz=ya+ba) _ (_p 4 ) (1 — g) el~bT-vatba) | %(—b-{-y)Q (z — a)? (~b=-va+ba)
> DAE(cos(x+y), x=0, y=0, 2);
cos(z) cos(y) — sin(z) sin(y)
> DAE(sin(x+y), x=Pi/2, y=0, 2);
sin(zx) cos(y) + cos(z) sin(y)
> DAE(BesselJ(0,x+y), x=0, y=0, 2);

BesselJ(0. y) BesselJ(0. ) — 2 BesselJ(1. y) BesselJ(1. z)
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