
On Geometric Range Searching,
Approximate Counting and Depth

Problems

by

Peyman Afshani

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2008

c© Peyman Afshani 2008

I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

In this thesis we deal with problems connected to range searching, which is one
of the central areas of computational geometry. The dominant problems in this
area are halfspace range searching, simplex range searching and orthogonal range
searching and research into these problems has spanned decades.

For many range searching problems, the best possible data structures cannot
offer fast (i.e., polylogarithmic) query times if we limit ourselves to near linear
storage. Even worse, it is conjectured (and proved in some cases) that only very
small improvements to these might be possible. This inefficiency has encouraged
many researchers to seek alternatives through approximations. In this thesis we
continue this line of research and focus on relative approximation of range counting
problems.

One important problem where it is possible to achieve significant speedup through
approximation is halfspace range counting in 3D. Here we continue the previous
research done and obtain the first optimal data structure for approximate halfspace
range counting in 3D. Our data structure has the slight advantage of being Las
Vegas (the result is always correct) in contrast to the previous methods that were
Monte Carlo (the correctness holds with high probability).

Another series of problems where approximation can provide us with substantial
speedup comes from robust statistics. We recognize three problems here: approxi-
mate Tukey depth, regression depth and simplicial depth queries. In 2D, we obtain
an optimal data structure capable of approximating the regression depth of a query
hyperplane. We also offer a linear space data structure which can answer approxi-
mate Tukey depth queries efficiently in 3D. These data structures are obtained by
applying our ideas for the approximate halfspace counting problem. Approximating
the simplicial depth turns out to be much more difficult, however.

Computing the simplicial depth of a given point is more computationally chal-
lenging than most other definitions of data depth. In 2D we obtain the first data
structure which uses near linear space and can answer approximate simplicial depth
queries in polylogarithmic time. As applications of this result, we provide two non-
trivial methods to approximate the simplicial depth of a given point in higher
dimension. Along the way, we establish a tight combinatorial relationship between
the Tukey depth of any given point and its simplicial depth.

Another problem investigated in this thesis is the dominance reporting problem,
an important special case of orthogonal range reporting. In three dimensions, we
solve this problem in the pointer machine model and the external memory model
by offering the first optimal data structures in these models of computation. Also,
in the RAM model and for points from an integer grid we reduce the space com-
plexity of the fastest known data structure to optimal. Using known techniques in
the literature, we can use our results to obtain solutions for the orthogonal range
searching problem as well. The query complexity offered by our orthogonal range
reporting data structures match the most efficient query complexities known in the

iii

literature but our space bounds are lower than the previous methods in the external
memory model and RAM model where the input is a subset of an integer grid. The
results also yield improved orthogonal range searching in higher dimensions (which
shows the significance of the dominance reporting problem).

Intersection searching is a generalization of range searching where we deal with
more complicated geometric objects instead of points. We investigate the rectilin-
ear disjoint polygon counting problem which is a specialized intersection counting
problem. We provide a linear-size data structure capable of counting the number
of disjoint rectilinear polygons intersecting any rectilinear polygon of constant size.
The query time (as well as some other properties of our data structure) resembles
the classical simplex range searching data structures.

iv

Acknowledgements

During my work on this thesis, I had the distict honor of being supervised by
Timothy M. Chan whose insight and incredible knowledge of the field came to my
rescue on many occasions. I am also in debt to his dedication and guidance; he
always found time to discuss new problems or to review my drafts, even those he
did not appear as a coauthor; without his intellectual input, this thesis would have
been an impossibility.

I would also like to thank my friends Reza Dorrigiv, Hamid Zarrabi-Zadeh,
Arash Farzan and specially, Mahya Ghandehari and Hamed Hatami who always
shared their insights with me.

Finally, I would like to thank my thesis committee members Alex Lopez-Ortiz,
Anna Lubiw, Chaitanya Swamy and Sariel Har-Peled for their many constructive
comments.

v

Dedication

To my parents, Akram and Mohammadtaghi, for setting an example to revere,

to my sister, Shilan, whom I love dearly, and

finally, to Laura who made this easier with love and patience.

vi

Contents

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Range Searching . 1

1.1.1 Basic notation . 3

1.1.2 Levels . 4

1.1.3 Cuttings and partition trees 7

1.1.4 Shallow cutting and partition theorems 9

1.2 Classical Range Searching Results 11

1.2.1 Simplex range searching . 11

1.2.2 Halfspace range searching 12

1.2.3 Orthogonal range searching 12

1.3 Robust Statistics . 15

1.3.1 Tukey depth . 16

1.3.2 Simplicial depth . 17

1.3.3 The L1 median . 18

1.3.4 Regression and hyperplane depth 18

1.3.5 Other definitions of depth 18

1.4 Our Results and Organization of the Thesis 19

2 Approximate Counting: The Basics 21

2.1 Approximating the Ranges . 21

2.2 ε-nets and ε-approximations . 22

2.3 Relative Approximations . 24

vii

2.3.1 Probabilistic tools . 25

2.3.2 Reduction to emptiness . 26

2.3.3 Reduction to small counts 27

3 Approximate Halfspace Range Counting 29

3.1 An Optimal Solution . 30

3.1.1 Approximate levels by shallow cuttings 30

3.1.2 Combine with randomized incremental construction 32

3.2 Approximate Regression Depth Queries in 2D 34

3.3 Approximate Tukey Depth Queries 37

4 Approximate Simplicial Depth 39

4.1 Bounding the Simplicial Depth with Tukey Depth 40

4.1.1 Properties of random samples 41

4.2 Approximating the simplicial depth in 2D 43

4.2.1 Filling the gaps . 47

4.3 Approximate Simplicial Depth in Higher Dimensions 50

4.3.1 Approximate simplicial depth in 3D 51

5 Dominance Queries 55

5.1 Introduction . 55

5.2 Dominance Reporting in 3D . 56

5.2.1 Preliminaries . 56

5.2.2 Optimal approximate levels 57

5.3 Solving the Dominance Reporting Problem 59

5.4 The External Memory Model . 60

6 Rectilinear Polygon Counting 65

6.1 A Simple Combinatorial Lemma . 66

6.2 Intersection Counting for Disjoint Rectilinear Polygons 70

7 Conclusion 75

Bibliography 77

Appendices 87

A Lower Bound on the 3D Shallow Partition Theorem 87

viii

List of Tables

3.1 Results on approximate halfspace range counting. MC and LV stand
for Monte Carlo and Las Vegas respectively. 30

5.1 Results on 3D dominance reporting problem. Here, n, k, B are input,
output and block size respectively. The results on a RAM assume
the input is from a U ×U ×U integer grid. PM, EM and IEM stand
for pointer machine, external memory and external memory with
integer inputs respectively. Optimal query complexities are marked
with a star. The last two rows assume an external memory model of
computation in the RAM model where the input is on a U × U × U
integer grid. 56

5.2 The fastest known orthogonal range reporting algorithms for d ≥ 3.
Here, n, k, B are input, output and block size respectively. EM stand
for external memory. 57

ix

List of Figures

1.1 Some examples for range searching queries. 1

1.2 An example of a 2D dominance query determined by a point A. . . 2

1.3 Some examples for intersection searching queries. A query q is
marked with dashed lines when possible. 3

1.4 (a) A 3-set has been marked in bold. (b) Five points with only three
1-sets. 4

1.5 (a) A point p with level 4. (b) 2-level is drawn in bold. The marked
points have level 1 but they are included in the 2-level since they lie
in the closure of the points with level 2. 5

1.6 The grey area represents the (≤ 2)-level of the arrangement. 6

1.7 Lines `1 and `2 partition the plane into four regions each containing
n/4 points. Any other line ` can cross at most three of these regions. 8

1.8 (a) A 3-sided query. (b) The query can be answered by recursing on
P`. (c) The query can be answered by two 2-sided queries on P` and
Pr. 14

1.9 Sorting points radially around q. Only the final location on the circle
C is relevant to the Tukey depth of q. 17

3.1 A point q with undirected depth two. Any ray through q intersects
at least two lines. 34

3.2 (a) An edge of a simplified polygon (in dotted line). (b) Proof of
Lemma 3.2.2(i). (c) Proof of Lemma 3.2.2(ii). 35

4.1 (a) A point with simplicial depth Θ(n2) in a point set of Θ(n) points.
(b) The random sample misses A and the n2/4 triangles that share
A as a vertex; the simplicial depth of q is now O(n5/3). 40

4.2 There are at most x = C ′τP(q) points above h. The number of
dashed triangles is at least (n1− x)(n2− x) and at most n1n2; these
two values are very close if x is small in comparison to n1 and n2. . 43

4.3 ni denotes the number of points of Si contained in each wedge. . . . 48

xi

4.4 The points above h can be expressed as the union of O(log k) sets
represented by brackets; the number before each bracket denotes the
number of points contained in the corresponding set. 49

4.5 Decomposing the query line q into a constant number of rays. . . . 50

4.6 (a) Projecting the set of points outside h onto a parallel plane from
point p. (b) Triangles pab and pa′b′ both contain q. 53

5.1 (a) Boxes b1, b2 and b3 already swept (b) The sweep plane discovers
b4 and from this point b1 can be ignored. (c) Marks denote the new
vertices on the 0-level. (d,e) View on plane h 58

5.2 (a) r′i is contained inside r. (b) Only the x-coordinate of A′
i is greater

than that of A. (c) Two coordinates of A′
i are greater than those of

A. 61

6.1 An example of four regions r1, . . . , r4 and four curves c1, . . . , c4 with
curves c1 and c2 being the only two equivalent curves. 66

6.2 It is impossible to connect r1 to r4 without either crossing an existing
curve or going through a third region. 67

6.3 (a) Erasing from the endpoints marked with circle. (b) Erasing from
the other endpoints. (c) The final curves. 68

6.4 Changing a connected component into a curve. 70

6.5 A set of Θ(n) regions and Θ(nk2) curves. 70

6.6 (a) An example of disjoint rectilinear polygon counting. (b) The
generalization of the problem where the objects are connected com-
ponents formed by a set of polygons and the query is not even as-
sumed to be a single connected component. If a polygon is shaded
then containment counts as intersection for that polygon. 71

6.7 An example of a q-grid. 71

6.8 A connected component with interval representation of (r1, r4), (r4, r8)
for the i-th row. 72

6.9 The query object (or parts of it) is drawn with dotted lines and the
segments of the grid is drawn with dashed lines. c1 represents a
connected component. 74

7.1 (a) The tree T . (b) The larger circles represents the elements of h(v).
(c) We have chosen to include the left child of v and thus the right
half of every list is discarded. 87

7.2 We are free to choose the angle α and the distance from the next
plane hj+2. 88

xii

Chapter 1

Introduction

1.1 Range Searching

Range searching problems are among the most natural data structure problems in
computational geometry. For instance, for a set of points scattered in the plane
or 3D space, we can ask “report the points that lie inside a circle” or “count the
points in a triangle” (Figure 1.1). In statistics, graphics, geographic information
systems, databases or other fields such queries arise and require efficient solutions.

X1 X2

Y1

Y2

(c)(b)(a)

Figure 1.1: Some examples for range searching queries.

Let P be a set of n points in Rd. In a range searching problem we want to
preprocess P, such that for a query object q the elements of P contained in q can
be found efficiently. Often, q is restricted to a specific class of geometric objects.
The important cases of geometric range searching include the following:

• Simplex range searching: In this problem the query object is a simplex, a
convex hull formed by d + 1 points. Since any polyhedral object can be
decomposed into simplices, the simplex case is one of the most fundamental
cases of range searching.

1

• Halfspace range searching: In this problem the query object is a halfspace.
From the algorithmic perspective, a halfspace can be modelled as a simplex
with one vertex placed sufficiently far away and thus this is a special case
of simplex range searching. However, this special case is important as many
problems such as spherical range searching can be reduced to this problem
(the spherical range searching in Rd reduces to halfspace range searching in
Rd+1 via an elementary geometric transformation).

• Orthogonal range searching: Here, the query object is an orthogonal box.
Many problems outside computational geometry can be reduced to this case.
For instance, in the context of databases, for a given set of employees, the
x and y-coordinate can represent the salary and the age of each employee
respectively. Thus, a query for the rectangle [X1 Y1] × [X2 Y2] translates to
“Give me the name of all the employees aged between Y1 and Y2 who earn
between X1 and X2.” (Figure 1.1(c)).

• Dominance searching: Here, the query range is determined by one point A
and contains all the points that have all their coordinates smaller than A
(Figure 1.2). Sometimes a solution for the general case of orthogonal searching
can be obtained by using this special case as a subroutine.

x

y

A

Figure 1.2: An example of a 2D dominance query determined by a point A.

Furthermore, there are many variants of each range searching problem.

• Reporting: In a range reporting problem (such as simplex range reporting)
the goal is to output all the points contained in the query range. Usually, the
query time of range reporting algorithm is in form of O(f(n) + k) where k
is the size of the output. In this thesis, we may omit k if there is no fear of
ambiguity.

• Counting: In a range counting problem (such as simplex range counting) the
goal is to simply count the number of points in the query range.

• Emptiness: This is a decision problem where we determine whether the query
range contains at least one point or not. This is a special case of both counting
and reporting variants.

2

qq

q

(a) (b) (c)

Figure 1.3: Some examples for intersection searching queries. A query q is marked
with dashed lines when possible.

Intersection searching is a generalization of range reporting where the input P

is a set of n geometric objects and given a query object q the goal is to search for
the elements of P that intersect q. This is another fundamental geometric problem
with applications in areas such as computer graphics and other fields. The following
list contains some of important cases of intersection searching.

• Segment intersection searching: In this problem, the queries are line segments
and the input can be any set of geometric objects. Input objects may include
segments, circles, boxes or polygons (Figure 1.3(a)).

• Point intersection searching: In this problem, the queries are single points
where we want to search for all the input objects containing the query point
(Figure 1.3(b)). This is in some sense the dual of range searching.

• Rectilinear polygon searching: In a rectilinear polygon all edges are either
vertical or horizontal. Many problems in VLSI design are related to rectilinear
polygons which makes this an important special case. Here, the input and
query objects are rectilinear polygons (Figure 1.3(c)).

In this context, intersection counting and intersecting reporting can be defined
similarly. Usually, for a range searching (or intersection searching) data structure
the important measures of efficiency are preprocessing time, space and query time.

For further background, the reader is referred to the surveys by Agarwal and
Erickson [5, 10].

1.1.1 Basic notation

Throughout this thesis ε, always refers to an arbitrary positive constant, the Oε

notation hides constant factors that depend on ε and the Õ notation hides poly-
logarithmic factors. Often, we assume that the input is in general position, which
intuitively means the combinatorial structure of the input (usually a set of points)

3

cannot be altered by any sufficiently small perturbation. For instance, in case of
a planar point set this implies no three of them are on a straight line and no four
of them on a circle. In many cases, there are standard techniques which remove
this extra assumption [60]. For two values a and b, if a ≥ (1 + ε)b then we say a
is ε-approximately greater than b, if a ≤ (1− ε)b then we say a is ε-approximately
less than b and if (1− ε)b ≤ a ≤ (1 + ε)b then we say a is ε-approximately equal to
b.

The model of computation. Throughout this thesis, the default model of com-
putation is the standard RAM models used in computational geometry. This RAM
model is equipped with both integer and real registers. The integer registers con-
tain log n bits and are capable of performing integer arithmetic in constant time.
The real registers can contain any real number and are able to do real arithmetic
in constant time; however, the conversion from reals to integers is not allowed.

In the next subsections we introduce various tools such as levels, cutting lemmas
and partition theorems which play an important role in many algorithms.

1.1.2 Levels

The concept of levels is often encountered when studying problems that deal with
arrangements of lines and hyperplanes. Some of the most well-known open problems
of discrete geometry are about this concept and its generalization.

(a) (b)

Figure 1.4: (a) A 3-set has been marked in bold. (b) Five points with only three
1-sets.

This concept was first explored in around 1970 by Lovász [88] and Erdős et
al. [65]. They defined a k-set for a set P of n points in the plane as a subset of
P of size k separated from P via a line ` (see Figure 1.4 for an example). Since
then, bounding the maximum number of such k-sets as function of n and k is
known as the k-set problem. The point-line duality [60] is an elementary geometric
transformation that conserves the spatial relationship between lines and points. We
represent the dual of a geometric object q (or a set S of geometric objects) with
q (or S). By this duality, a point p below a line ` is mapped to a line p which
passes below the point `. Thus, a subset of points of P below a line ` corresponds
to the subset of lines of P passing below the point `. Given an arrangement of

4

lines A, define the level of a point p as the number of lines passing directly below
p (Figure 1.5(a)) and the k-level of A as the closure of the set of all the points of
A with level equal to k (Figure 1.5(b)). The size of the k-level is the number of
the vertices of A contained in it. In dual space, the k-set problem asymptotically
translates to bounding the size of the k-level of A. This is known as the k-level
problem.

(b)

p

(a)

Figure 1.5: (a) A point p with level 4. (b) 2-level is drawn in bold. The marked
points have level 1 but they are included in the 2-level since they lie in the closure
of the points with level 2.

The k-set problem has a fascinating story. The original papers by Lovász [88]
and Erdős et al. [65] established an O(n

√
k) bound. Erdős conjectured that the

true bound lies in o(n1+ε). The same asymptotic upper bound has been derived
by different researchers (see [8, 40]). The first improvement, by Pach et al. [104],
arrived after about two decades and only reduced the bound by a log∗ k factor,
using a complicated proof. The story of the upper bound ends with a 1998 paper
by Dey [62] who obtained a bound of O(nk1/3) using clever techniques. On the
other hand, the current best lower bound is n2Ω(

√
log n) [117].

The research into this problem has led to many interesting generalizations.
Many proof techniques can be applied to the k-levels of pseudo-lines or pseudo-
segments as well. An arrangement of x-monotone curves is called an arrangement
of pseudo-lines if every two curves intersect at most once. An arrangement of
curve-segments satisfying the same condition is called an arrangement of pseudo-
segments. More generally, a set of x-monotone curves where each pair intersects at
most s times gives rise to an arrangement of s-intersecting curves (the term pseudo-
parabolas is used for s = 2). Many papers deal with the above generalization of
k-level and related problems [7, 8, 11, 12, 39, 40, 43, 92, 107, 115, 116]. Similar
questions in 3 or higher dimensions have received some attention [42, 82, 112].

Apart from the historical importance of this problem, levels frequently appear
in many algorithmic problems, although sometimes (≤ k)-levels are more relevant
in algorithmic applications. In an arrangement A of n lines in R2, the (≤ k)-level

5

refers to the closure of the set of all the points with level at most k (see Figure 1.6).
Similar to the k-set problem, here the objective is to bound the number of vertices
of A contained in the (≤ k)-level of the arrangement. It is not difficult to come up
with examples where every k-level of A has size Θ(n). Thus, Ω(nk) is an obvious
lower bound on the worst case size of the (≤ k)-level and a matching O(nk) upper
bound can be proved. Here, we present a short proof which is based on the powerful
technique of Clarkson and Shor [56]. To use this technique we need surprisingly
few ingredients, only a non-trivial upper bound on the 0-level of the arrangement.
In 2D the worst case complexity of the 0-level is O(n).

Figure 1.6: The grey area represents the (≤ 2)-level of the arrangement.

Lemma 1.1.1. The complexity of the (≤ k)-level of an arrangement A formed by
a set P of n lines in the plane is O(nk).

Proof. Let S be a random p-sample of P (i.e., a subset of P where each element is
chosen independently with probability p). Let L0 be the 0-level (also known as the
lower envelope) of the arrangement formed by S. We fix p := k−1. We have

E(|L0|) = O (np) = O
(n

k

)
. (1.1)

Let M be the set of all the vertices contained in the (≤ k)-level of A. We
compute the probability of a vertex v ∈ M appearing on the lower envelope of S.
Let ` and `′ be the two lines incident to v and `1, . . . , `t be the lines which pass
below v. Since we have assumed that v lies inside the (≤ k)-level of A, we have
t ≤ k. The probability of v appearing on L0 is equal to the probability of ` and `′

being chosen in S times the probability that none of the lines `1, . . . , `t are chosen
in S. Since t ≤ k we have

Pr[v ∈ L0] ≥ p2 (1− p)k = Θ(p2e−kp) = Θ(k−2).

Thus, in expectation we have E(|L0|) = Ω(|M|k−2). Combining with (1.1) we have

|M|k−2 = O
(n

k

)
or in other words, |M| = O(nk).

6

We will use this technique in many places throughout this thesis. In 3D, the
worst case complexity of the 0-level is O(n) and the same technique yields the
following bound.

Lemma 1.1.2. The complexity of the (≤ k)-level of an arrangement of n hyper-
planes in R3 is O(nk2).

1.1.3 Cuttings and partition trees

Divide and conquer is one of the successful ideas in design of the algorithms. Apply-
ing this idea in geometric settings is one of the main motivations to study cuttings.
Let H be a set of n hyperplanes in Rd. A 1/r-cutting for H is a set of disjoint
simplices C which cover Rd with each simplex s ∈ C intersecting at most n/r hy-
perplanes of H. For a simplex s ∈ C, we call the subset of H intersecting s the
conflict list of s. The size of the cutting is the number of simplices in C.

The main cutting theorem is the following.

Theorem 1.1.3. [47, 48] For every parameter 0 < r < n, a 1/r-cutting of size
O(rd) for a set H of n hyperplanes in Rd always exists.

The bound O(rd) on the size of the cutting is tight: n hyperplanes form Θ(nd)
vertices and a simplex intersecting m hyperplanes can contain at most O(md) ver-

tices of the arrangement. So each simplex in a 1/r-cutting contains O
(
(n/r)d

)
vertices and thus, there must be Ω

(
nd/(n/r)d

)
= Ω(rd) simplices in the cutting.

An application. This theorem is invaluable when designing divide and conquer
algorithms. For instance, consider the halfspace range counting problem. In dual
space, this problem translates to finding the number of hyperplanes from an input
set H of n hyperplanes which pass below a query point q. Using Theorem 1.1.3,
build a 1/r-cutting C for H. For every simplex ∆ ∈ C, store then number of
hyperplanes which pass below ∆ then recurse on the set of hyperplanes which cross
∆. To answer the query q, in O(rd) time we find the simplex ∆ which contains
q. With a recursive call on ∆, we find the number of hyperplanes that cross ∆
and pass below q. To this, we add the number of hyperplanes which pass below ∆.
Let S(n) and Q(n) be the space complexity and the query time of the algorithm
respectively. We have S(n) = O(rd)S(n/r) + O(rd) and Q(n) = Q(n/r) + O(rd),
which solve to S(n) = O(nd+ε) and Q(n) = O(log n) if we set r to be a sufficiently
large constant.

Let P be a set containing n points. A simplicial partition Π for P is a partition of
P into r subsets P1, . . . ,Pr of roughly the same size together with a list of simplices
∆1, . . . , ∆r such that Pi lies inside ∆i. The crossing number of any hyperplane h
in this simplicial partition is defined as the number of simplices crossed by h. The

7

ℓ1

ℓ2
P1

P2

P3

P4

ℓ

Figure 1.7: Lines `1 and `2 partition the plane into four regions each containing
n/4 points. Any other line ` can cross at most three of these regions.

maximum value of the crossing number over all hyperplanes h is called the crossing
number of Π. A simple construction of a simplicial partition in 2D is shown below:

Erect a vertical line `1 that partitions P into two subsets of size n/2. Using a
well-known theorem [87] (ham-sandwich cut), we simultaneously partition the left
and right subsets with another line `2 into subsets of size n/4 each (see Figure 1.7).
With this construction, that any line can cross at most three of the four regions.
Thus, this is a simplicial partition of size 4 with crossing number 3.

An application. Consider the halfspace range counting problem. Partition P

into four sets P1, . . . ,P4 with crossing number 3. For each Pi repeat the same
process and partition it further into four additional sets with crossing number 3 and
continue this operation until the sets are of constant size are reached. The resulting
structure can be represented with a tree of degree four which is called a partition
tree. At each node we store the number of points contained in the set represented
by that node. Clearly, the total storage cost is linear. For a given query halfspace
h, we start from the top level of the data structure. The three subsets which cross
the boundary of h can be found in constant time and by recursively calling the
query on each of the three sets, we can find the number of points contained in h
among them. Dealing with the fourth set is easy: either it is completely outside h,
in which case we ignore it, or it is completely contained in h, in which case we add
the number of points contained in it (which is precomputed) to the final answer.
The query time Q(n) can be bounded by the recursion Q(n) ≤ 3Q(n/4) + O(1),
which solves to Q(n) = O(nlog4 3) = O(n0.793). Thus, 2D halfspace range counting
can be solved with linear space and O(n0.793) query time.

Matoušek was the first to construct an optimal simplicial partition of P into r
subsets for any value of r.

Theorem 1.1.4. [96] For every parameter 0 < r < n and a point set P of size n,
a simplicial partition Π of size r with crossing number O(r1−1/d) exists.

An application. Start with a simplicial partition for a parameter r and build a
partition tree of degree r. Consider the halfspace range counting problem. Using

8

this partition tree, we can obtain a linear-size data structure where the query time
Q(n) is determined by the recursion

Q(n) ≤ O(r) + O(r1−1/d)Q(n/r).

Setting r = Θ(nε) this recursion solves to

Q(n) = Õ(n1−1/d) [96].

The query time can be further reduced to O(n1−1/d) using the more complicated
techniques of Matoušek [93].

Multilevel partition trees. In certain applications, we can apply the partition
tree in the multilevel fashion which increases the domain of problems that can be
attacked using this idea. Consider a partition tree T and call the subset of points
represented by a node (internal or leaf) of T a canonical set . A recursion similar
to the one seen above proves that if we set r = nε then the set of points contained
in any halfspace h is the union of Õ(n1−1/d) canonical sets. To obtain a multilevel
partition tree, we can store another partition tree (usually on a different point set
associated with the canonical set) for every canonical set. We can continue this
nesting operation a constant number of times and obtain a partition tree with a
constant number of levels.

An application. Let A be a set of n line segments in Rd. Consider the problem of
reporting the subset of A crossed by a query hyperplane h. For every line segment
denote one endpoint as the left endpoint and the other as the right endpoint. First,
build a partition tree on the left endpoints. This single partition tree allows us
to represent the set of points below q as the union of Õ(n1−1/d) canonical subsets.
Consider one such canonical subset Pi and an arbitrary point p ∈ Pi. We know p
lies below h. Observe that the segment s whose left endpoint is p intersects h if
and only if the right endpoint p′ of s lies above h. Thus, we can solve this problem
by storing a secondary partition tree on the set of right endpoints corresponding to
Pi. The segments with their right endpoints below q can be reported in a similar
fashion. The final result is a near-linear-size data structure which can answer
segment intersection queries in Õ(n1−1/d) time.

1.1.4 Shallow cutting and partition theorems

For some applications, better results can be obtained by alternate “shallow” ver-
sions of the cutting and partition theorem as noticed by Matoušek [97].

In the shallow version of the cutting theorem we are not interested in covering
the whole space. For two parameter k and r, a k-shallow 1/r-cutting for a set H

of hyperplanes is a set of disjoint simplices C which cover the (≤ k)-level of H

9

with each simplex s ∈ C intersecting at most n/r hyperplanes of H. Clearly, any
ordinary cutting is also a shallow cutting but a better bound is possible for shallow
cuttings.

Lemma 1.1.5. [97] For a set H of n hyperplanes in Rd and parameters r, k < n a
k-shallow 1/r-cutting of size O(rd(k/n)dd/2e) always exists.

Usually, the most useful case of the above shallow cutting theorem is when
r = n/k where the bound becomes O((n/k)bd/2c). In 3D, we use the following
modification of this lemma.

Lemma 1.1.6. For any set of n planes in R3 and a parameter k, there exists a
k-shallow O(k/n)-cutting of size O(n/k) that covers the (≤ k)-level. The cells in
the cutting are all vertical prisms unbounded from below (simplices with one vertex
at (0, 0,−∞)).

Furthermore, we can construct these cuttings for all k of the form b(1 + ε)ic
simultaneously in Oε(n log n) expected time for constant ε > 0; we can also construct
the conflict lists of all cells in the same time.

The first part follows from Lemma 1.1.5. The construction time for the cuttings
follows from an algorithm by Ramos [109]. That vertical prisms suffice was observed
by Chan and the construction of vertical prisms involves computing the convex hull
of vertices of original shallow cutting [36]. With O(n log n) expected preprocessing
we build a halfspace range reporting data structure (see Section 1.2.2). The compu-
tation of the conflict lists can be carried out in additional O(n(log n+k)/k) expected
time for each k: issue O(n/k) halfspace range reporting queries (one for each vertex
of the prisms), each requiring O(log n + k) time. Summing O(n(log n + k)/k) over
all k still gives Oε(n log n).

Consider one level of the cutting. We project the prisms on the plane, forming
a planar configuration composed of O(n/k) triangles (i.e., a triangulation). For
each triangle, we store the equation of the plane corresponding to its corresponding
vertical prism. For any point q ∈ R3, if we can find the triangle which contains
the projection of q, then we can easy check whether q lies inside the corresponding
vertical prism. In a 2D triangulation composed of m triangles, finding the triangle
which contains a given point is known as the planar point location problem [63, 108]
and can be solved using O(m) space and O(log m) query time. Thus, in O(log(n/k))
time, we can test whether q lies below a level of the cutting and if so, also find the
vertical prism that contains q.

For a given point set P, a halfspace is said to be k-shallow if it contains at most
k points of P. The following is the shallow version of the partition theorem.

Theorem 1.1.7. [97] Let P be a set of n points in Rd and k and r be parameters
satisfying k < n/r. There exists a simplicial partition of size O(r) such that the
crossing number of any k-shallow halfspace is O(r1−1/bd/2c + log r).

10

Remarks. The bound on the crossing number offered by the above theorem is
tight for d > 3. Whether or not it can improved for d ≤ 3 has been an open question
going back to Matoušek [97] who wrote: “For d = 2, 3, it would be interesting to
see to what extent the crossing number can be improved. It is not clear whether
a crossing number bounded by a constant can be attained (we conjecture that it
cannot).” In the appendix, we confirm this conjecture for d = 3, by exhibiting an
example where the crossing number is Ω(log r/ log log r), proving that the upper
bound is almost tight.

1.2 Classical Range Searching Results

In this section we review some known results in range searching. Many of the
results discussed in this section use the ideas described in the previous section and
thus they can be regarded as further applications of these tools.

1.2.1 Simplex range searching

The general simplex range searching problem is difficult in the sense that the best
algorithms either consume too much space or have high query costs. The best
simplex range searching algorithm using linear space and can answer queries in
O(n1−1/d) time [93]. This query time is conjectured to be optimal. As we have
seen in the previous section, the partition theorem is a central part of this algo-
rithm (although Matoušek used a heavily modified partition tree with additional
properties).

Chazelle, Sharir and Welzl [54] were the first to propose trade-offs between
space and the query complexity of the simplex range searching algorithms. They
described a data structure which uses m units of space and can answer simplex
range searching queries in O(n1+ε/m1/d) time. Such a trade-off can be obtained by
building a partition tree in which we stop when the size of each node gets close to
m, then implementing an algorithm with logarithmic query time and high space
complexity on the resulting subsets. Matoušek [93] improved the query time to
O(n/m1/d logd+1(m/n)) using O(m) units of space.

The algorithms obtained by Matoušek are considered to be close to optimal as
there are lower bounds in the so-called semigroup model (see [68, 125] for more
details) which almost match the complexity of his data structures. Essentially,
it has been demonstrated that if the data structure uses m units of space then
the query time is bounded below by Ω(n/

√
m) in 2D and Ω(n/(m1/d log n)) for

dimensions three and higher [46]. It is interesting to note that these lower bounds
do not work for halfspaces but they still work for strips (the region surrounded by
two parallel hyperplanes).

11

1.2.2 Halfspace range searching

Since halfspace range searching is a special case of simplex range searching, the
previous upper bounds are still valid for this problem. For instance, for the halfspace
range counting problem the best bound still comes from simplex range searching:
linear space and O(n1−1/d) query time. We continue this section with a discussion
of halfspace range reporting.

In the plane, Chazelle, Guibas and Lee [51] presented an algorithm with O(n)
space and O(log n + k) query time. For 3D, the first result with query time of
O(log n+k) came from Chazelle and Preparata [53]. The algorithm as described by
them has the space complexity of O(n log8 n(log log n)4) but plugging in the bound
O(nk2) on the complexity of the (≤ k)-level obtained by random sampling (see
Lemma 1.1.1) improves this to O(n log2 n log log n). A result with optimal query
time and O(n log n) space was provided by Aggarwal et al. [15] but the prepro-
cessing time was not optimal. Much later, Chan [35] presented an algorithm with
O(n log n) space and O(n log n) expected preprocessing and O(log n + k) expected
query time. The space bound was later reduced to O(n log log n) by Ramos [109]
and the query time was made worst-case (the journal version of Chan’s original
paper also contains an improved algorithm with O(n log log n) space [37]). For
halfspace range reporting in higher dimensions the best query time is due to Clark-
son and Shor [56]. Their algorithm can answer queries in O(log n + k) time using
O(n[d/2]+ε) space. Matoušek also covered the other extreme by an algorithm with
O(n log log n) space and O(n1−1/[d/2] logO(1) n + k) query time.

In this case, the halfspace emptiness problem is also hard. Matoušek offered an
improvement in polylogarithmic factors for the query time: a data structure with
O(n1−1/[d/2]2O(log∗ n)) query time and linear space. There are various lower bounds
for the halfspace emptiness queries and related problems [32, 67, 66] which work in a
restricted “partition graph” model. Assuming s and t are the storage and the query
time of the algorithm, these lower bounds prove std = Ω((n/ log n)d−(d−1)/(d+1)).

1.2.3 Orthogonal range searching

Orthogonal range searching has been studied extensively together with its many
variants and special cases. We first consider the 2D case where the queries are
orthogonal boxes.

One special case is when one coordinate of the queries is always fixed at infinity;
in this case the query is a rectangle with one side at infinity, and thus is called a
3-sided query. A 2-sided query is one where one x-coordinate and one y-coordinate
are fixed at infinity. We do not consider a query with both infinite x-coordinates
or y-coordinates a 2-sided query since it reduces to a one-dimensional problem.

This problem can be generalized to higher dimensions. In Rd a query for or-
thogonal range reporting is a box [X1 Y1]× [X2 Y2]× . . . [Xd Yd] and a k-sided query
can be defined similarly. A d-sided query in Rd leads to the idea of dominance: we

12

say a point A dominates a point B if and only if all the coordinates of A are greater
than those of B. A d-sided query translates into a dominance searching problem.

To review the possible solutions for orthogonal range searching, we start with
the one-dimensional case. Here, the queries are intervals and we are asked to return
(or count) the points contained within a query interval. In a pointer machine, this
problem can be solved optimally by a binary search. We can extend this solution to
higher dimensions by paying an extra log n factor in preprocessing, space and query
complexities with each added dimension [30] (using range trees). This results in a
data structure with O(n logd−1 n) space and O(logd n+ k) query time (or O(logd n)
for counting) in Rd. It is possible to improve the query time of the algorithm for
d = 2 to O(log n + k) [50, 90] thus improving the query time for all dimensions
greater than one to O(logd−1 n + k). Chazelle provides another improvement by
using an α-ary tree for a suitable choice of α [44]. Using his idea, it is possible to
reduce the space complexity of the 2D case further to O(nlog n/ log log n) while still
maintaining the same query time. This also generalizes to higher dimensions. In 2D,
McCreight solves the 3-sided queries optimally using linear space and O(log n + k)
query time [101].

A popular idea in orthogonal range searching is reduction to the rank space. We
can briefly describe this idea as follows. Assume x1, . . . , xn are the x-coordinates
of the input point set sorted in increasing order. We can change xi to i without
distorting the order of the points. Repeating this process on all the coordinates
ensures that the input is a subset of the grid {1, . . . , n}d. If the smallest x-coordinate
of the query is xq, then we can replace xq with index i such that xi−1 < xq ≤ xi.
Repeating this for all the query coordinates maps the query coordinates to the new
grid coordinates; however, we need to solve the following subproblem called the
predecessor search: given a set of integers S, preprocess them such that for a given
query number xq one can find the largest x ∈ S with x ≤ xq.

The reduction to rank space maps the input coordinates to integers which makes
it possible to store the coordinates of the points in the integer registers, making
various bit manipulation techniques possible. This allows us improve the space
complexity of various orthogonal range reporting algorithms in this model. In 2D,
Chazelle [45] obtains a data structure with O(n logε n) space and O(log n+k) query
time. For 3D, Alstrup et al. [18] offer a data structure with O(n log1+ε n) space and
O(log n + k) query time. As before, we pay a log n factor in space and query time
to extend these results to one dimension higher; however, Alstrup et al. [18] provide
an alternative: we can choose to pay a log1+ε n factor in space while suffering only
a log n/ log log n factor increase in the query time.

In the word RAM model we assume the input is a subset of a {1, . . . , U}d integer
grid, with the word size being at least log U bits. Within this framework, we can
solve the predecessor search problem in O(log log U) time and with linear space [124]
(see also [69, 105, 106]). This results in a 2D orthogonal range reporting data
structure that uses O(n logε n) space and can answer queries in O(log log U + k)
time [18]. In 3D, a data structure of Nekrich [102] uses O(n log4 n) space and

13

can answer queries in O(log log U + (log log n)2 + k) time. As before, his method
generalizes to higher dimensions resulting in an O(n logd+1+ε n) space data structure
with query time of O

(
logd−3 n/(log log n)d−5 + k

)
for d ≥ 4 [102] on the standard

RAM.

In the external memory model, the data is organized in blocks of size B and
the query complexity is measured by the number of blocks accessed during the
query process. We only survey results with near linear space and polylogarith-
mic query complexity in this model. Arge et al. [20] describe a linear-size data
structure that solves the 2D 3-sided queries with O(logB n + k/B) query I/Os.
Combining it with the filtering technique of Chazelle [44] they obtain a data struc-
ture for the 2D orthogonal range reporting problem with O(logB n + k/B) query
I/Os which uses O((n/B) log(n/B)/ log logB n) space; this is optimal [20]. For 3D
orthogonal range reporting, Vengroff and Vitter present a data structure using
O((n/B) log4 n/ log logB n)) space and O(logB n + k/B) query I/Os [121].

Pℓ Pr Pℓ Pr

(a) (b) (c)

Figure 1.8: (a) A 3-sided query. (b) The query can be answered by recursing on
P`. (c) The query can be answered by two 2-sided queries on P` and Pr.

As we have explained, dominance and k-sided queries are important special
cases of orthogonal range reporting. One reason is that it is possible to reduce
(k + 1)-sided queries to k-sided queries with a small overhead [102, 121, 113]. We
can explain this basic idea in 2D, although it is more frequently used in 3D:

Assume we have a data structure capable of answering 2-sided queries in Q(n)
time which consumes S(n) units of space. We use this data structure to answer
3-sided queries as follows. Without loss of generality, assume the 3-sided queries
that we are interested in are those with a top, left and right side (Figure 1.8(a)).
Sort the input points according to their x-coordinates and let xm be the median
x-coordinate. Partition the point set into two sets P` and Pr with P` containing
the n/2 points with smallest x-coordinates. On both sets P` and Pr, implement
a data structure capable of answering any 2-sided query then recurse on P` and
Pr. This increases the space complexity to O(S(n) log n). Now consider a 3-sided
query. We have two cases: either the query does not cross the vertical line through
xm, or it does (Figure 1.8(b,c)). In the former case, we can safely recurse on one
of the sets P` or Pr, since the query rectangle does not contain any point from the
other set. In the latter case, the query decomposes into two 2-sided queries, which
can be answered immediately using the data structures on P` and Pr. This naive
implementation results in the query time of O(log n + Q(n)). However, we can

14

improve this by noticing that the extra log n factor comes from finding the proper
vertical line which decomposes the 3-sided query into two 2-sided queries. It is
possible to reduce this step into another predecessor search subproblem and lower
the query time for 3-sided queries to O(log log U + Q(n)). This type of reduction
motivates us to consider dominance reporting problem in greater detail, since it is
the simplest among k-sided queries.

In 2D, 2-sided and 3-sided queries can be solved optimally. In 3D and in
the pointer machine model, Makris and Tsakalidis [91] achieve the query time
of O(log n log log n + k) with linear space, improving an old result from 1987 [49].
Also, in the same paper they achieve the query time of O((log log U)2 log log log U +
k log log U) in the word RAM model and with linear space. Further results in the
RAM model include an algorithm with linear space and query time of O(log n/ log log n+
k) [78] assuming integer inputs. However, these are not the fastest data structures,
since if we allow O(n log n) space we can achieve the query time of O((log log n)2 +
log log U + k) [102]. In the external memory model, there are fewer results and it
is believed that solving orthogonal range reporting problems is more difficult than
in the main memory model [113]. Currently, the best algorithm uses O(n logB n)
space and can answer queries with optimal O(logB n + k/B) I/Os [121, 122].

1.3 Robust Statistics

Many problems in robust statistics are related to geometric range searching, specif-
ically, range counting. As our techniques will have implications in this area, we will
introduce basic concepts in computational statistics.

Statistical data points are usually accompanied by errors, exceptions and anoma-
lies since virtually all the practical ways of gathering data are imprecise. For in-
stance, consider a series of measurements of a certain phenomenon. It is quite
improbable that we get the exact same values when repeating the said measure-
ment. A fundamental question is how to use the resulting sequence of numbers
to get a single good estimate. While we can assume the errors are from a normal
distribution with unknown mean and variance, this may not be true in practice. In
this section, we review ideas on how to obtain an estimate, given an input of data
points, without making any assumptions on the nature of the error.

Comparing mean and median. Assume we are given a set P of n real values
and we are asked to find the “center” or “representative” of this point set.

The trivial strategy of averaging the numbers can be problematic in some cases.
For instance, if n−1 points of P are between 0 and 1 and just one point is above n,
then the averaging strategy will return an answer greater than 1 whereas a “typical”
point of P lies between 0 and 1 (remember we have not assumed anything about
the nature of the error). In practice, sometimes such erroneous data points are
removed by researchers themselves.

15

Instead consider the median of the given numbers. In our example the median
is between 0 and 1 and it is clear that a few very imprecise points cannot alter
the median by much. In other words, the median is automatically robust against
outliers. The following definition provides one theoretical way to measure this
tolerance to outliers.

Breakdown value. Let P be a set of n points in Rd. Assume we have access
to a function F which given P outputs a single point as the estimate (intuitively,
the single point which is closest to the “true” value and minimizes the error). The
robustness of function F is measured by its breakdown value which is defined as the
fraction of the points which need to be moved until this estimate can be moved to
infinity.

For example, the median function has breakdown value of 1/2; if one moves
less than half the points to infinity, then the median would still be confined in an
interval formed by the remaining points. On the other hand, the mean function
has the breakdown of value 1/n.

While the main emphasis in robust statistics is to find or compute good esti-
mators, many definitions allow us to assign an attribute known as depth to every
point in the space, with a point of maximum depth chosen as the estimator. In the
remainder of this section we review some of the most commonly used definitions of
data depth.

1.3.1 Tukey depth

The Tukey depth of a point q is defined as the minimum number of points in any
halfspace that contains q. This is also known as the halfspace depth. If q is outside
the convex hull of P, then there exists a hyperplane which separates q from P and
thus the Tukey depth of q is 0. On the other hand, Helly’s theorem implies the
existence of a point with Tukey depth at least n/(d + 1): Consider halfspaces that
contain more than n− (n/(d + 1)) points of P. Since there are less than n/(d + 1)
points outside every such halfspace, any d + 1 of them contain an element of P and
thus have a common point. By Helly’s theorem, all of them have a common point.
That common point has Tukey depth at least n/(d + 1). It is not difficult to see
that the breakdown value of Tukey depth is 1/(d + 1).

In 1D, the Tukey depth of a point is easily determined by its rank. Thus, depth
of a point and the point of maximum depth (which is the median) can be computed
in linear time. In 2D, the situation is different and Tukey depth of a given point
can be computed in O(n log n) time, which is optimal [16]. This computation is
not too difficult: Let q be the given point. Sort the points radially around q as
in Figure 1.9. Since only the location of the points on the unit circle around q is
important, the problem reduces to a one-dimensional problem: given n points in an
interval of size 2π, find an interval of size π containing maximum number of points.

16

This can be solved in O(n) time given the sorted order of points [16]. In the same
paper, Aloupis et al. [16] prove the matching lower bound of Ω(n log n) by reducing
it to the set equality problem (whether two given sets A and B are identical).

q

p1

p2

pn

p
′

1 p
′

2

p
′

n

(c)(b)(a)

p1

p2

pn

C

Figure 1.9: Sorting points radially around q. Only the final location on the circle
C is relevant to the Tukey depth of q.

Computing a point of maximum Tukey depth is not as easy. In 1991, Ma-
toušek [95] proposed an O(n log5 n) time algorithm to find the Tukey median in 2D.
The running time was later improved to O(n log4 n) by Langerman and Steiger [86]
and was finally made optimal by Chan [41] who provided an O(n log n) expected
time algorithm. In higher dimensions the situation is worse. Chan’s algorithm
is able to find a Tukey median in Rd, d > 2, in O(nd−1) expected time which is
believed to be optimal.

A related concept here is a centerpoint which is a point with halfspace depth at
least n/(d + 1). As already explained, any point set has at least one centerpoint.
Obviously, algorithms computing a Tukey median also compute a centerpoint, but
in 2D one can find a centerpoint in linear time [77].

1.3.2 Simplicial depth

The simplicial depth [111] of a point q ∈ Rd with respect to a point set P ⊂ Rd is
defined as the number of simplices formed by d + 1 points of P which contain q.
This is another important definition of data depth. Unfortunately, this notion of
data depth appears to be more computationally challenging than other definitions
of depth, like the Tukey depth. For instance, in 2D the best algorithm computing
a simplicial median (a point with the maximum simplicial depth) runs in O(n4)
time [17]. In higher dimensions the situation is worse and the only strategy seems
to be the brute-force one.

Interestingly, computing the simplicial depth of a single point in 2D is considered
even before its formal definition [83], because it translates to counting the number of
triangles containing the given point which is of independent interest. At least three
papers describe algorithms to compute the simplicial depth of a given point in 2D
in O(n log n) time [70, 83, 111], which is optimal [16]. As with Tukey depth, sorting

17

points radially around the given point reduces the problem to a one-dimensional
problem.

The situation is far more complicated in 3D. Finding the simplicial depth of a
given point can be done in O(n2) time in 3D and the solution came after a failed
attempt (see [70] and the correction of its flaw [55]).

For dimensions four and higher, there seems to be no significant improvements
over the trivial O(nd+1) brute-force solution.

1.3.3 The L1 median

The L1 median of a point set P is defined as the point q which minimizes the
sum of distances to points of P. This appears in an old problem proposed by
Fermat to Torricelli in which he asked for the L1 median of three points. Because
of this, finding the L1 median for larger point sets is sometimes known as the
generalized Fermat-Torricelli problem (or Fermat-Weber problem). Unfortunately,
going beyond three points has proved to be much more difficult. It is believed that
the exact computation of L1 median is not possible but there are various numerical
methods designed to approximate the median. The L1 median has the breakdown
value of 1/2, which is the maximum possible.

1.3.4 Regression and hyperplane depth

Rousseeuw and Hubert [110] introduced the regression depth to address the problem
of finding a “representative” hyperplane for a set of data points. The regression
depth of a hyperplane h with respect to a point set P is defined as the minimum
number of points of P intersected during any continuous motion which turns h into
a vertical hyperplane (a hyperplane parallel to the d-th coordinate vector). In dual
space, this corresponds to hyperplane depth of a point q that is defined with respect
to a set of hyperplanes as the minimum number of hyperplanes intersected by a ray
originating from q.

The existence of a hyperplane of regression depth n/(d+1) for a point set of size
n (which was a conjecture of Rousseeuw and Hubert [110]) was proved by Amenta
et al. [19].

In 2D van Kreveld et al. [120] presented an algorithm that finds a point of
maximum depth in O(n log2 n) time. This has been improved to O(n log n) by
Langerman and Steiger [86, 85].

1.3.5 Other definitions of depth

The Oja depth is similar to the simplicial depth: in Oja depth of a point q, we sum
the volumes of all the simplices created by d points of the original point set and q.

18

The point with the minimum Oja depth is called the Oja median. The Tverberg
depth is also another depth measure similar to simplicial depth: the Tverberg depth
of a point q is the maximum number of vertex disjoint subsets from the point set
P which contain q inside their convex hulls [19] (see [13] for more details and
references).

For any point set P, there exists a point with Tverberg depth of n/(d+1) [118].
In 2D the Tverberg depth is equal to the Tukey depth when the Tukey depth is
less than n/3. This relation is shown to be false in 3D [27]. We are not aware of
other nontrivial results relating these two depth concepts.

1.4 Our Results and Organization of the Thesis

The high query time of some of the best range searching data structures is a mo-
tivation to consider approximations as one possible way to lower the query time.
In Chapter 2 we review possible approaches to approximation, together with some
background material.

We consider relative approximation of halfspace range counting queries in Chap-
ter 3. We continue the previous attempts and present the first data structure that
uses linear space and can answer 3D approximate halfspace range counting queries
in O(log n) expected time. Unlike the previous algorithms where the correctness
was guaranteed with high probability, our results are always correct. Our tech-
niques imply new results for problems related to statistical depth. In 2D, we show
the regression depth of a query line can be approximated in O(log n) time using a
linear-size data structure. Similar ideas can be used for the Tukey depth problem,
yielding an optimal 2D algorithm (O(n) space, O(log n) query time) and a near
optimal algorithm in 3D (linear space, O(log n log log n) query time). The results
of this chapter have appeared in a SoCG paper [4].

In Chapter 4 we focus on the approximate simplicial depth problem. Unfortu-
nately, the techniques from the previous chapter do not apply to this problem. In
2D, we solve this problem using a data structure of size Õ(n) capable of answering
approximate simplicial depth queries in Õ(1) time (as a reminder, the Õ(·) notation
hides the polylogarithmic factors). This planar algorithm has at least two applica-
tions in higher dimensions. One is an Õ(nd−2) time algorithm for approximating
the simplicial depth of a given point and another is a data structure of size Õ(n2)
capable of answering 3D approximate simplicial depth queries in Õ(n2/3) time.
Other results in this chapter include a tight combinatorial relationship between the
simplicial depth of a point and its Tukey depth.

The 3D dominance reporting problem is studied in Chapter 5. We present the
first optimal data structures in the pointer machine model (O(n) space, O(log n)
query time) and the external memory model (O(n) space, O(logB n) query I/Os)
and lower the space complexity of the fastest data structure by a log n factor in
the word RAM model (our result has O(n) space and O(log log U +(log log n)2 +k)

19

query time). These can be used to obtain new data structures for orthogonal range
searching: one with O(n log3 n) space and O(log log U +(log log n)2 +k) query time
in the word RAM model and another with O(n log3 n) space and O(logB n) query
I/Os in the external memory model. As before, these 3D orthogonal results can be
extended to higher dimensions. The results contained in this chapter will appear
in an ESA 2008 paper [1].

In Chapter 6 we study the following problem in intersection counting: given a set
of disjoint rectilinear polygons, preprocess them such that the number of polygons
intersecting a query rectilinear polygon of constant size can be found efficiently. We
solve this problem using linear space and Õ(n6/7) query time. This is one of the
few intersection counting data structures where the input objects have non-constant
size while the size of the query objects can be any constant value. A preliminary
version of the results of this chapter has appeared in an ESA 2006 paper [3].

20

Chapter 2

Approximate Counting: The
Basics

As we surveyed previously, many range searching problems such as simplex and
halfspace range searching are hard in the sense that no single algorithm achieves
both near linear storage complexity and low query time; many researchers point
to lower bounds in some models of computation as evidence that the existing data
structures for halfspace and simplex range searching cannot be improved signifi-
cantly. This justifies the attempts made to obtain approximate versions of range
searching problems. This approximation can be achieved through the following
methods:

1. through approximating the ranges,

2. through ε-nets and ε-approximations, and

3. through relative ε-approximation.

In this thesis, we will only consider the third form of approximation but we will
examine the first two categories in the following sections.

2.1 Approximating the Ranges

One possible approach to approximation is by approximating the ranges. This was
first done by Arya and Mount [26].

Let P be the input point set and let r be a bounded query range of diameter
ω and ε > 0 be an arbitrary constant. We are interested in the list of points
contained in r; however, we allow the data structure to either report or discard
any point within εω distance from the boundary of r. Intuitively, the range r is
regarded as an object with fuzzy border.

21

One drawback of this approach is that it becomes meaningless for thin or un-
bounded objects: for unbounded objects diameter is undefined and for thin objects
(those with width to diameter ratio of less than ε) the empty set is a trivial cor-
rect answer. In particular, this definition does not make sense for halfspace range
searching.

Nonetheless, for bounded objects, this particular definition makes polylogarith-
mic query times possible using only linear space. Arya and Mount present a data
structure with O(n) space and O(log n + (1

ε
)d) query time for general queries and

O(log n + (1
ε
)d−1) for convex queries.

This model has continued to receive considerable attention. For the case of
spherical range searching, Arya et al. [25] provide a space/query trade-off: for any
parameter γ, they design a data structure with O(nγd log(1

ε
)) space and O((γ +

1
(εγ)d) log n) query time. When the dimension d is not considered a constant, we
encounter the curse of dimensionality in which the query time is no longer polyno-
mial. Chazelle et al. [52] have tackled this issue and obtained a data structure which
can answer approximate halfspace range searching queries with Õ(d/ε2) query time
using dnO(ε−2) space. Of course to define an approximate version of the halfspace
range searching, they used a slightly different model: they assumed the diameter
of the input point set is at most one and for a given query halfspace h the points
within the distance ε from the boundary may or may not be reported.

2.2 ε-nets and ε-approximations

The concepts of ε-nets and ε-approximations have a rich history. From combina-
torial perspective, these two concepts are defined for a finite set system (S, X) in
which X is a ground set and S ⊂ 2X. Throughout this section, we assume |X| = n.
An ε-net for this set system is a set N ⊂ X with the property that for any A ∈ S

with |A| ≥ εn we have A∩N 6= ∅. In other words, N must intersect all the “large”
sets of the set system. This condition is obviously satisfied if we take N = X and
thus the goal is to minimize the size of the ε-net.

One possible way to construct an ε-net is via random sampling. Assume we
include every element of X in N with probability p. The probability that no element
of a set A ∈ S gets sampled is

Pr[X ∩A = ∅] = (1− p)|A| = Θ(e−|A|p).

Thus, assuming |A| ≥ εn we can set p = C log |S|/εn and by choosing C to be
sufficiently large we can ensure that

Pr[X ∩A = ∅] < 1/3|S|.

This means with probability at least 2/3 the set X fails all the events X ∩ A = ∅
and thus is an ε-net. On the other hand, with probability at least 2/3 the set

22

X will contain O(pn) elements, proving the existence of an ε-net of size O(pn) =
O(log |S|/ε). This construction can be made deterministic via derandomization [79,
89].

The above bound on the size of the ε-net can be made independent of |S| for
a very important case of set systems; this brings us to the concept known as the
VC-dimension. Let (S, X) be a set system. For a subset A ⊂ X, the induced set
system S|A is defined as {S ∩A|S ∈ S}; furthermore, we say A is shattered if the
size of the induced set system is 2|A| (the maximum possible). The VC-dimension
of the set system (S, X) is defined as the maximum size of a shattered set.

Theorem 2.2.1. [94] If the set system (S, X) has VC-dimension d, then the size of
any induced set system S|A is O(md) where m = |A|. In fact, |S|A| ≤

(
m
0

)
+

(
m
1

)
+

· · ·+
(

m
d

)
and this bound is tight in the worst case.

In particular, if we set A = X we get S|X = S thus, |S| = O(nd). For more
details on VC-dimension, the reader is referred to various books and surveys on
this topic [94, 99].

This concept has a wide range of applications, for example in machine learning.
We only briefly review the ideas that are relevant to computational geometry and
specifically to geometric counting.

To see the usefulness of VC-dimension in computational geometry, consider
the 2D circle range searching problem with a set P of n input points and circles as
queries. We formulate this problem using the set system (D, P) in which D contains
all the subsets of P which can be contained in a circle. By examining small cases, it
is easy to see that no point set of size four can be shattered. Thus, this set system
has VC-dimension at most three. Usually the set systems obtained from geometric
problems in constant dimensions tend to have constant VC-dimension as well.

For the case of set systems with low VC-dimension, the bound on the size of an
ε-net can be improved.

Theorem 2.2.2. [75] There exists an ε-net of size O(d(1/ε) ln(1/ε)) for a set
system (S, X) of VC-dimension d. Furthermore, this bound is asymptotically tight.

Note that the above bound is independent of n and is constant for constant ε.

An ε-net does not provide a true estimate of size; this task is done with the
related concept of ε-approximation. For a set system (S, X), an ε-approximation is
a set A ⊂ X such that for every S ∈ S we have ||A ∩ S|/|A| − |S|/n| ≤ ε. Notice
that this condition implies the difference between n|A ∩ S|/|A| and |S| is at most
εn; in other words, computing |A∩S| allows us to approximate |S| with an additive
error of εn. Note that an ε-approximation is also an ε-net. The following result
yields ε-approximations of constant size for constant ε.

Theorem 2.2.3. [98, 100] For a set system (S, X) of VC-dimension d, an ε-
approximation of size O

(
(1/ε)2−2/(d+1)(log(1/ε))2−1/(d+1)

)
exists.

23

A slightly worse bound can obtained by random sampling.

Theorem 2.2.4. [75] Let (S, X) be a set system of VC-dimension d. A set A

built by choosing every element of X with probability cdε−2 log(dε−1)/n is an ε-
approximation with constant probability for a sufficiently large constant c.

Since many counting problems in computational geometry deal with set systems
of constant VC-dimension, the above theorem provides a very efficient and simple
method to obtain an approximation with additive error of εn.

2.3 Relative Approximations

Approximating ranges does not provide satisfactory solutions for problems such as
halfspace range counting and the approximation provided by ε-approximations is
too imprecise. Another alternative is to use relative approximations: if the final
“count” is k, then any answer between (1 − ε)k and (1 + ε)k is a valid ε-relative
approximation given a constant ε > 0. Note that when the value of the count is
zero, an ε-relative approximation must return the exact value of the count. Thus,
an obvious requirement for a problem to admit an efficient relative approximation
algorithm is that there is an efficient algorithm for the emptiness problem. This
requirement immediately rules out problems such as simplex range counting and
the halfspace range counting in dimensions 4 and above (for both problems it is
conjectured that the emptiness problem is almost as hard as the counting variant).

A problem that greatly benefits from relative approximation is halfspace range
counting in 3D. To answer halfspace emptiness queries, we can simply compute and
store the convex hull of the point set P. A given query halfspace h is non-empty
if and only if it intersects the convex hull of P. The convex hull has linear size in
2D and 3D so the emptiness queries can be answered in O(log n) query time using
linear space [60].

Another type of problem that benefits from relative approximation come from
robust statistics. Many notations of depth in robust statistics can be regarded as
results of counting procedures; for instance, the Tukey depth of a point q can be
regarded as counting the minimum number of points in a halfspace which includes
q, and the simplicial depth of q can be regarded as counting the number of sim-
plices which contain q. For these definitions of depth, the corresponding emptiness
problem can be solved efficiently as well.

Sometimes it is possible to reduce a relative approximate counting problem to
an emptiness problem (with some overhead). In the remainder of this chapter, we
will discuss these reductions after a brief review of the required probabilistic tools.

24

2.3.1 Probabilistic tools

We begin this section with a discussion of a well known theorem on the distribution
of a sum of independent random variables known as Chernoff inequality :

Chernoff Inequality. Let X1, . . . Xn be n independent random variables with |Xi| ≤
1. For the random variable X =

∑n
i=1 Xi with variance σ2 we have

Pr[|X − E(X)| ≥ γσ] ≤ 2e−γ2/2.

In most applications of the above inequality, all Xi’s are identical 0-1 random
variables with Pr[Xi = 1] = p for a fixed parameter p. The following alternate
inequality will be useful.

Lemma 2.3.1. Let Xi, 1 ≤ i ≤ n be n identically distributed independent 0-1
random variables with Pr[Xi = 1] = p ≤ 1/2 and Pr[Xi = 0] = 1 − p. For the
random variable X =

∑n
i=1 Xi we have

Pr[|X − E(X)| ≥ αE(X)] ≤ 2e−α2E(X)/4.

Proof. We have

σ2(X) =
n∑

i=1

σ2(Xi) =
n∑

i=1

(p− p2) = n(p− p2) ≥ np/2

and
E(X) = pn.

Plugging in these values in Chernoff inequality with γ = 2ασ yields

Pr[|X − E(X)| ≥ 2ασ2] ≤ 2e−α2σ2

⇒ Pr[|X − E(X)| ≥ αnp] ≤ 2e−α2np/2

⇒ Pr[|X − E(X)| ≥ αE(X)] ≤ 2e−α2E(X)/2.

Lemma 2.3.2. Let cε be a sufficiently large constant depending on ε and k be a fixed
parameter such that k ≥ cε log n. Let P be a set of n elements, and let R be a random
sample where each element of P is included with probability p = (cε log n)/k < 1.
Given any subset S ⊆ P of size k∗, we have |k∗ − |S ∩ R|/p| ≤ ε max{k, k∗} with
high probability.

Proof. Let Xi = 1 if the i-th element of S is in R, and 0 otherwise; these are
independent, identically distributed, random variables. Let X = |S∩R| =

∑k∗

i=1 Xi.
According to Lemma 2.3.1,

Pr[|X − E(X)| ≥ αE(X)] ≤ 2e−α2E(X)/2,

where E(X) = pk∗. Let K := max{k, k∗}. Substituting α = εpK/E(X), we get

Pr[||S ∩ R| − pk∗| ≥ εpK] ≤ 2e−ε2p2K2/(2E(X)) ≤ 2e−ε2pK2/(2k∗) ≤ n−c0

if cε is a sufficiently large.

25

2.3.2 Reduction to emptiness

Aronov and Har-Peled [21] have observed that an efficient solution for the emptiness
problem can be used to build an efficient solution for the relative approximation
with small overhead in query and space complexity, provided the problem fits a
certain model.

Theorem 2.3.3. [21, 80] Given a set P of n geometric objects, suppose a data
structure can answer emptiness queries in Q(n) time using S(n) space and P (n)
preprocessing time.

Then in Oε(P (n) log2 n) time, one can build another data structure that uses
Oε(S(n) log n) space and can provide an ε-relative approximation for the number of
elements of P intersected by a query range in Oε(Q(n) log n log log n) time.

The correctness is guaranteed with high probability for any fixed query range.

We provide a quick sketch of the idea behind the proof. For a sufficiently large
constant C, build m := C log n random samples Ri ⊂ P in which each element of P

is chosen with probability p = k−1/2 in each Ri (sometimes we will use the notation
p-random sample to describe Ri). Implement the emptiness data structure on all
point sets Ri. Let q be the query range. Let k′ be the number of elements of P

intersected by q. We claim by issuing one emptiness query for each Ri we can detect
whether k′ is ε-approximately greater, less than or equal to k. For simplicity, we
only consider the case when k′ is ε-approximately less than k. It is easily checked
the probability that q intersects no element of Ri is

pempty := (1− 1

2k
)k′ ≥ (1− 1

2k
)k ≥ 1

2
.

This event can be detected using the emptiness data structure but the probabilistic
guarantee is too weak. Let Xi be the 0-1 random variable corresponding to the
result of the emptiness query on Ri where Xi = 1 corresponds to q intersecting no
element of Ri. According to what we just said, we have Pr[Xi = 1] = pempty ≥ 1/2.
Let X =

∑m
i=1 Xi and apply the Chernoff inequality in Lemma 2.3.1. This implies

Pr[|X − E(X)| ≥ εE(X)] ≤ eε2E(X)/4.

By definition E(X) = pemptym so if we set C large enough, with high probability we
are guaranteed to witness roughly pemptym emptiness events.

The other cases are similar: If k′ is ε-approximately larger than k then we will
witness roughly (1− pempty)m non-emptiness events. This enables us to do a binary
search among the possible values of k but since there are only Oε(log n) of such
values (i.e., only for k = (1 + ε)i, 0 ≤ i = Oε(log n)), we only need Oε(log log n)
binary search steps. This results in the query time of Oε(Q(n) log n log log n).

This is a Monte Carlo algorithm, in other words, there is a small chance that the
result of the query is incorrect. This reduction has a wide range of applications.

26

For instance, combined with the solution for the 3D halfspace range emptiness
queries with S(n) = O(n) and Q(n) = O(log n), it provides a data structure us-
ing Oε(n log n) space with query time of Oε(log2 n log log n) for the approximate
halfspace range counting in 3D. Similar ideas can be used to obtain algorithms for
approximate Tukey and regression depth queries. In the next section we will review
another general reduction with even better results.

2.3.3 Reduction to small counts

In this section we describe how to approximate a counting problem using a “small
count” data structure instead of an emptiness algorithm.

Theorem 2.3.4. Given any point set of size n and a “threshold” parameter `,
suppose there is a data structure that can decide whether the number of points in
a query range is at most `, and if so, return this number. Let Psmall(n), Ssmall(n),
and Qsmall(n, `) be the (expected) preprocessing time, space, and query time of this
data structure (assuming these functions are well-behaved).

Then with Oε(Psmall(n)) preprocessing time and Oε(Ssmall(n)) space one can build
a data structure that can approximate the number of points in a query range in
Oε(Qsmall(n, log n) log log n) expected time.

The algorithm is correct with high probability for any fixed query range.

Proof. For each i, we take a random sample Ri of P with sampling probability
pi = (cε log n)/ki in which ki = b(1 + ε)ic for i =

⌈
log1+ε(cε log n)

⌉
, . . . ,

⌈
log1+ε n

⌉
.

We then build a small-count data structure for every sample Ri, with threshold
` = cε log n. Since the expected size of Ri geometrically decreases as i increases,
the total preprocessing time and space is asymptotically unchanged.

To approximate the (unknown) number k∗ of points inside a query halfspace
h, we do an approximate binary search. By Lemma 2.3.2, for a given ki, we can
determine whether k∗ is O(ε)-approximately less than ki or O(ε)-approximately
greater than ki, by testing whether |h ∩Ri|/pi ≤ ki or not, i.e., whether |h ∩Ri| ≤
cε log n. This can be done by using the small-count data structure for Ri. After
O(log log1+ε n) iterations of binary search on the ki’s, we arrive at a value that
O(ε)-approximates k∗ with high probability. (We can readjust ε by a constant
factor if necessary.) The query time is O(Qsmall(n, cε log n) log log1+ε n).

One special case remains: what if k∗ is less than all the ki’s, i.e., k∗ ≤ cε log n?
In this case, we can directly answer the query using a small-count data structure
for P in Qsmall(n, cε log n) time.

Compared to the reduction offered by Aronov and Har-Peled in Theorem 2.3.3,
the “small count” data structure used in our reduction is more difficult to construct
than the emptiness data structure; however, our approach introduces no extra
factors in space and preprocessing time and only a small factor in the query time.

27

We can build an efficient small count data structure for the halfspace range
counting problem in 3D, using an idea which will reappear later in this thesis. In
the dual problem, we must build a small count data structure for the problem of
finding the number of hyperplanes that pass below a query point. Let H be the
set of n hyperplanes and q be the query point. Build an `-shallow O(`/n)-cutting
for H using Lemma 1.1.6. For every prism D in the cutting we store the list of
hyperplanes that cross D. There are O(n/`) prisms and each is crossed by O(`)
hyperplanes and thus the total storage cost is linear. If q is contained in a prism
D, then the value of the count can be found in O(`) time by examining all the
hyperplanes crossing D. If this is not the case, then the value of the count is
greater than `. This results in a linear-size thresholding algorithm with query time
of Qsmall(n, `) = O(log n + `). We thus obtain a data structure for 3D approximate
halfspace range counting with Oε(n log n) expected preprocessing time, Oε(n) ex-
pected space, and Oε(Qsmall(n, log n) log log n) = Oε(log n log log n) expected query
time. This is almost optimal, though Monte Carlo.

Note that the algorithm is correct for all queries with high probability (after
readjusting c0), since the number of combinatorially “different” halfspaces is poly-
nomial. We will give still more efficient 3D solutions to approximate halfspace range
counting in the next chapter.

28

Chapter 3

Approximate Halfspace Range
Counting

As we discussed, the existing space/query trade-offs for halfspace range counting
are not very satisfactory, even in low dimensions. We remind the reader that in 3D
(which is the main case of interest in this chapter) for data structures with linear
space, it is generally believed that one cannot do better than query time of O(n2/3)
or, in terms of the actual count k, O(k2/3) [38].

Previously, we have seen two general reductions which enable us to attack this
problem and obtain some efficient results. In this chapter, we describe several new
methods for approximate halfspace range counting in 3D, with still better space
and query time.

Variants of approximate halfspace range counting were actually considered early
on, for example, in a 1986 paper by Edelsbrunner and Welzl [123], who studied
the 2D problem with additive instead of relative error (and called the problem
“halfplanar range estimation”). If an additive error of εn is tolerable, then the
problem can be solved with constant space and query time in any fixed dimension
by simply working with ε-approximations of constant size by using Theorem 2.2.3
or Theorem 2.2.4. In particular, when the count k is close to n, we can get low
relative error easily. So, the main challenge is in getting low relative error when k is
small. In particular, for k = 0, we do not tolerate any error, but the case k = 0 can
be easily solved, hinting that the approximate halfspace range counting problem
can also be solved efficiently.

Indeed, that is the case, as was shown in two recent papers. We have already
mentioned Aronov and Har-Peled’s [21] work, which proposed a black-box reduction
from approximate halfspace range counting to range emptiness, with polylogarith-
mic increase in space and query time. In 3D, their resulting data structure needs

29

Space Query time Notes

Aronov & Har-Peled [21] O(n log n) O(log2 n log log n) MC

Aronov & Har-Peled [22] O(n log n) O(log2 n) MC

Kaplan & Sharir [80] O(n log n) O(log2 n) MC

Har-Peled & Sharir [73] O(n logO(1) n) O(log n log log n) MC
This thesis O(n) O(log n) LV

Table 3.1: Results on approximate halfspace range counting. MC and LV stand for
Monte Carlo and Las Vegas respectively.

O(n log n) space and O(log2 n log log n) query time but is Monte Carlo. The sec-
ond paper, by Kaplan and Sharir [80], improved the query time to O(log2 n) with
the same O(n log n) space bound, by using a different strategy that combined an
approximation technique of Cohen [57] with a new combinatorial lemma about
overlaying lower envelopes over all prefixes of a randomly permuted sequence of
planes. This query algorithm is also Monte Carlo. Subsequently, in an updated
version of the first paper [22], Aronov and Har-Peled showed that the same im-
proved query time of O(log2 n) can be obtained directly by their original method,
making the overlay lemma unnecessary. In a third paper, Har-Peled and Sharir [73]
among other results discuss an improvement of the query time to O(log n log log n)
but with a larger space bound of O(n logO(1) n) for the 3D problem. A summary of
these results is shown in Table 3.

Both Aronov and Har-Peled’s and Kaplan and Sharir’s approaches are subopti-
mal by a logarithmic factor in space as well as time, and the question of obtaining
an O(n)-size structure with O(log n) query time in 3D was left open—this situation
is somewhat unsettling, considering the fundamental nature and simplicity of the
problem, and the desirability of linear space and logarithmic time in practice.In
this chapter, we answer this open question, by giving a new solution with O(n)
space and O(log(n/k)) query time in 3D.

3.1 An Optimal Solution

3.1.1 Approximate levels by shallow cuttings

Our optimal solution will involve a nontrivial combination of several ideas, but to
start we introduce one idea that, in itself, leads to another suboptimal method
with the same time bound offered by the reduction in Theorem 2.3.4. The main
advantage of this new method is that it is Las Vegas.

We work in dual space, where we want to preprocess a set H of n planes in R3

in a data structure that can answer the following queries: given any query point q,
approximate the number k∗ of planes below q, or in other words, the level of q.

Our idea is to use approximate levels rather than exact levels. In 3D, the best

30

upper bound on the complexity of the exact k-level currently is O(nk3/2) [112].
However, we know the total complexity of the k′-level for all k′ = 0, . . . , k is O(nk2)
(Theorem 1.1.2) which means that the average complexity of a k′-level with (1 −
ε)k ≤ k′ ≤ (1 + ε)k is Oε(nk). This is still too large for our purposes. We show
that a form of approximate k-level exists with complexity Oε(n/k) only, which
surprisingly is sublinear for non-constant k. The main tool is the modification of
Matoušek’s shallow cutting lemma presented in Lemma 1.1.6.

We formally define an ε-approximate (≤ k)-level to be a collection of simplices
that contains the (≤ (1− ε)k)-level and is contained in the (≤ (1 + ε)k)-level. The
size of an ε-approximate (≤ k)-level is the number of simplices in the collection.
Using the shallow cutting lemma, we get:

Lemma 3.1.1. For any set of n planes in R3 and a parameter k, there exists an
O(ε)-approximate (≤ k)-level of size Oε(n/k).

Furthermore, we can construct such approximate levels for all k of the form
b(1 + ε)ic simultaneously in Oε(n log n) expected time; in the same time, we can
also build a linear-size data structure that can decide whether a query point lies
inside such an approximate (≤ k)-level in O(log(n/k)) time.

Proof. Construct a k-shallow O(k/n)-cutting of size O(n/k), covering the (≤ k)-
level by Lemma 1.1.6. For each vertical prism ∆ in the cutting, consider the O(k)
planes that cross ∆ (i.e., the conflict list). We use the cutting theorem (Theo-
rem 1.1.3) to build an ε-cutting of constant size (more precisely, of size O(ε−3)) for
the conflict list of ∆. This can be done in time linear in the number of planes, i.e.,
O(k) time and ensures that each subcell δ ⊂ ∆ intersects O(εk) planes. Summing
over all O(n/k) prisms for a given k, this process produces Oε(n/k) subcells and
takes Oε(n) time.

For each subcell δ ⊂ ∆ of the ε-cutting, we compute the level `δ of some
arbitrary point in δ, and if `δ ≤ k, we include δ in the approximate (≤ k)-level and
discard the remaining subcells. This construction satisfies the desired property,
because each remaining subcell δ intersects O(εk) planes and so the levels of any
two points in δ differ by at most O(εk). But δ contains a point in (≤ k)-level,
so, all the points of δ have level at most k(1 + O(ε)). Computing `δ corresponds
to computing the number of hyperplanes below an arbitrary point in δ. This is
equivalent to a halfspace range counting query in primal space which can be solved
using a halfspace range reporting algorithm in O(log n+k) time. So, the total time
for this step is O(n(log n + k)/k), which sums to Oε(n log n).

For a given query point q, we can find the vertical prism ∆ in the k-shallow
O(k/n)-cutting containing q in O(log(n/k)) time by planar point location. After-
wards, we can find the subcell δ ⊂ ∆ containing q in constant time and see if δ was
included in the approximate (≤ k)-level.

The above lemma immediately suggests a data structure for our problem:

31

Theorem 3.1.2. With Oε(n log n) expected preprocessing time one can build a data
structure of size Oε(n) which can answer approximate 3D halfspace range counting
queries in Oε(log n log log n) worst-case time. The query algorithm is always correct.

Proof. Let ki = b(1 + ε)ic for i = 1, . . . ,
⌈
log1+ε n

⌉
, and construct an approximate

(≤ ki)-level for each i. The expected preprocessing time is Oε(n log n). The total
space is given by a geometric series O(

∑
i n/ki) = Oε(n).

To approximate the number k∗ of planes below the query point q, we do an
approximate binary search. For a given ki, we can determine whether k∗ is O(ε)-
approximately less than ki or O(ε)-approximately greater than ki, by testing whether
q lies inside the approximate (≤ ki)-level or not. This can be done in O(log(n/ki))
time. After O(log log1+ε n) iterations of binary search on the ki’s, we arrive at a
value that is O(ε)-approximately k∗. The query time is O(log n log log1+ε n).

Remark. The above data structure uses a hierarchy of shallow cuttings and is
similar in spirit to Chan’s data structure for halfspace range reporting [37], which
uses a hierarchy of lower envelopes of random samples. Lower envelopes of samples
share some similar characteristics as shallow cuttings and are more practical for
implementation but, without additional ideas, do not seem to yield Las Vegas
results as good as the above data structure. In the next method, though, we will
employ lower envelopes of random subsets, but in conjunction with our shallow-
cutting-based method.

3.1.2 Combine with randomized incremental construction

The last ingredient we need is a technique by Kaplan and Sharir:

Lemma 3.1.3. Let h1, . . . , hn be a random permutation of n given planes in R3.
With O(n log n) expected preprocessing time one can build a data structure of ex-
pected size O(n log n) so that given a query point q, one can find the smallest index
j such that hj lies below q in O(log n) expected time. In fact, the expected query
bound can be reduced to O(log j).

Proof. The first part is due to Kaplan and Sharir [80], and is derived from their
combinatorial lemma stating that the overlay of all the lower envelopes encountered
during a randomized incremental construction has expected complexity O(n log n).

For the improvement to O(log j), let ji = 22i
for i = 1, 2, . . . , dlog log ne and

build the above data structure for the prefix h1, . . . , hji
, which is itself a random

permutation, for each i. The expected preprocessing time and space remain asymp-
totically unchanged. To answer a query, we query the prefix h1, . . . , hji

for i = 1,
i = 2, and so on, until an answer is found. The total expected query time is
O(

∑
ji−1≤j log ji) = O(log j).

32

The usefulness of the above lemma is explained by the following observation:

Observation 3.1.4. Let h1, . . . , hn be a random permutation of a set H. Given
any subset S ⊆ H of size k∗, let j be the smallest index with hj ∈ S. Let k = n/j.
Then the probability that k∗ < k/b or k∗ > bk is O(1/b).

Proof. The event k∗ < k/b implies that j < n/bk∗ and so at least one of the planes
h1, . . . , hn/(bk∗) is in S; this happens with probability at most n/bk∗ · k∗/n = 1/b.
On the other hand, k∗ > bk implies that j > bn/k∗ and so h1, . . . , hbn/k∗ are all not
in S; this happens with probability at most (1− k∗/n)bn/k∗ = 1/eΩ(b).

We now present our final method. The key idea is to use Kaplan and Sharir’s
lemma to obtain an initial estimate k = n/j which approximates the unknown
count k∗ well with good probability (“well” and “good” in the sense of the above
observation). With the availability of this initial estimate, we can speed up the
method used in Section 3.1.1: namely, we can replace the approximate binary
search (which is the cause of the extra log log n factor) with a simple linear search.
In the analysis, we bound the overall expected query time by a geometric series.

Theorem 3.1.5. With Oε(n log n) expected preprocessing time, one can build a
data structure of expected size Oε(n) which can answer approximate 3D halfspace
range counting queries in Oε(log(n/k∗)) expected time for any fixed query halfspace.
Here k∗ is the actual value of the count and the query algorithm is always correct.

Proof. Our data structure consists of the data structure from Theorem 3.1.2, aug-
mented with the data structure in Lemma 3.1.3 applied to a prefix h1, . . . , hn/ log n

of a random permutation of size n/ log n. Since the number of planes is O(n/ log n),
the expected space is O(n).

To approximate the number k∗ of planes below a query point q, we first compute
the smallest index j such that hj lies below q in O(log j) time. Let k = n/j and
suppose ks ≤ k < ks+1. We apply a linear search starting at ks. Recall that we can
determine whether k∗ is O(ε)-approximately less than ks±i or O(ε)-approximately
greater than ks±i, in O(log(n/ks±i)) time by querying an approximate level. If k∗

is O(ε)-approximately less than ks, we repeatedly O(ε)-approximately compare k∗

with ks−1, ks−2, . . .; otherwise, we repeatedly O(ε)-approximately compare k∗ with
ks+1, ks+2, . . . With O(i) iterations of the search, we eventually arrive at a value
ks±i that is O(ε)-approximately k∗.

The probability that k∗ is O(ε)-approximately ks±i is at most O(1/(1 + ε)i) by
Observation 3.1.4. Thus, the total expected query time is upper-bounded by

∞∑
i=1

1

(1 + ε)i
·O

(
i log

n(1 + ε)i

k∗

)
= Oε

(
log

n

k∗

)
.

One special case remains: what if there is no index j such that hj lies below
q (i.e., k < log n)? Here, we start the search with ks ≤ log n < ks+1. If k∗ is

33

O(ε)-approximately less than ks ≤ log n, we can directly answer the query using
a small-count data structure in Qsmall(n, log n) = O(log n) = O(log(n/k∗)) time.
Otherwise, the probability that k∗ is O(ε)-approximately ks+i ≈ (1 + ε)i log n is
even smaller by Observation 3.1.4 since k < log n, and the same query bound
holds.

3.2 Approximate Regression Depth Queries in 2D

q

Figure 3.1: A point q with undirected depth two. Any ray through q intersects at
least two lines.

The problem of computing the regression depth of a query line in 2D reduces to
the following in dual space: Given a set H of n lines in R2, preprocess them in a data
structure so that given any query point q, we can find the minimum number k∗ of
lines intersected by a ray over all rays originating from q. Following [31], call k∗ the
undirected depth of q (Figure 3.1). Call the locus of all points of undirected depth at
most k the (≤ k)-envelope. Call the boundary of this locus the k-envelope [120]. In
measuring the complexity of a k-envelope or a polygonal chain, we will include all
vertices in the arrangement that lie on the chain, even those making angles of π (in
other words, every line contributes as many vertices as its number of intersections
with the boundary).

We can adapt the method used in Section 3.1.1 to solve the problem. We
first need an analog of Lemma 3.1.1. Define an ε-approximate (≤ k)-envelope
to be a region that contains the (≤ (1 − ε)k)-envelope and is contained in the
(≤ (1 + ε)k)-envelope. We prove the existence of an ε-approximate (≤ k)-envelope
of size O(nα(k)/k), where α(·) is the inverse Ackermann function.

Lemma 3.2.1. For any set H of n lines in R2, the total complexity of the k′-
envelope over all k′ = 0, . . . , k is O(nk).

Proof. First observe that in 2D, the 0-envelope consists of all unbounded cells in
the arrangement and has linear complexity by the zone theorem [63], since the
unbounded cells intersect the line x = −M or x = M for a sufficiently large M .

34

vim

vim+1

v(i+1)m

vim

v(i+1)m
r

r
′

v(i+1)m

vim

(c)(b)(a)

r
′

Figure 3.2: (a) An edge of a simplified polygon (in dotted line). (b) Proof of
Lemma 3.2.2(i). (c) Proof of Lemma 3.2.2(ii).

We apply Clarkson and Shor’s technique [56], similar to one used to prove
Lemma 1.1.1, by picking a random sample in which each line is chosen with prob-
ability 1/k. The lemma follows from the fact that a vertex v of the arrangement
which lies in the (≤ k)-envelope of H has Ω(1/k2) chance of surviving in the sample
and being a 0-envelope vertex.

In 2D, one can obtain an approximate level of size O(n/k) by taking an exact
level of size O(n) and applying a “simplification” process (e.g., as in [123]). We
show that approximate envelopes can be constructed in a similar fashion. The
modification is not trivial, as k-envelopes have a more complicated geometry than
k-levels. In particular, we do not know if they are always connected and thus may
consist of multiple polygons [120]; all points inside these polygons have undirected
depth at least k and all points outside have undirected depth at most k.

Given a polygon A = 〈v0, v1, . . . , vt〉, we define its m-simplification as the poly-
gon A′ = 〈v0, vm, v2m, . . . , vmbt/mc, vt〉 (see Figure 3.2(a)). Note that even if A is a
simple polygon, the simplified polygon A′ may self-intersect. We say that a point
p is outside a non-simple polygon C if p is in the outer connected component of
R2 − C (i.e., the component containing infinity); otherwise, p is inside C. Simi-
larly, p is outside a collection C of polygons (possibly with holes) if p is in the outer
component of R2 −

⋃
A∈C A. The following lemma encompasses all the properties

of simplified polygons that we need:

Lemma 3.2.2. Let C be the collection of polygons defining the k-envelope and C ′ be
the collection of the m-simplifications of these polygons. Then (i) all points inside
C ′ have undirected depth at least k −m; (ii) all points outside C ′ have undirected
depth at most k + m; and (iii) C ′ has at most O(|C ′|m) crossings.

Proof. (i) Consider any ray r′ from an arbitrary point inside C ′ which inter-
sects C ′, say, at a point p on the segment vimv(i+1)m. Draw a ray r par-
allel to r′ from vim (Figure 3.2(b)). Then r hits at least k lines since vim

35

has undirected depth k. Any line of H which crosses only one of these two
rays, intersects the segment vimv(i+1)m and thus creates a vertex on the chain
〈vim, vim+1, . . . , v(i+1)m〉 (as a reminder, we allow vertices to create angles of
π on the boundary), but there are only m such vertices. So, r′ hits at least
k −m lines.

(ii) Let p be outside C ′. If p is outside C, then it has undirected depth at most k.
Thus, we may assume p is inside a polygon A ∈ C for some A = 〈v0, v1, . . . , vt〉
but outside the simplified polygon A′.

Since p is outside A′, it is possible to connect p to infinity through a curve c
not crossing A′. Since p is inside A, the number of intersections between c and
A must be odd. This implies that for some vim, the number of intersections
between c and the chain Ai = 〈vim, vim+1, · · · , v(i+1)m〉 is odd.

Observe that p is inside the shape formed by adding the segment vimv(i+1)m of
A′ to the chain Ai, since the number of intersections of c with this boundary
is odd. Thus, we have a situation similar to Figure 3.2(c). Consider a ray r
from vim which crosses k lines, and draw a ray r′ parallel to r from p. Then
any line of H which crosses r′ but not r must also cross the chain Ai, but
there can be at most m such lines. So, p has undirected depth at most k +m.

(iii) Suppose two segments vimv(i+1)m and wjmw(j+1)m of C ′ cross. Consider two
chains Ai = 〈vim, vim+1, . . . , v(i+1)m〉 and Bj = 〈wjm, wjm+1, . . . , w(j+1)m〉.
Since the original k-envelope C does not have crossings, one of two possi-
bilities must hold: Ai intersects the segment wjmw(j+1)m, in which case we
give wjmw(j+1)m one charge; or Bj intersects the segment vimv(i+1)m, in which
case we give vimv(i+1)m one charge.

Any line which intersects the segment vimv(i+1)m must create a vertex on the
chain Ai, but there are only m such vertices. Thus, each of the |C ′| segments
receives O(m) charges.

Sadly, the above simplification procedure does not give us an ε-approximate
(≤ k)-envelope of size Oε(n/k) since the segments obtained by the simplification
procedure can self-intersect. Fortunately, it is possible to control the number of
self-intersections using the combinatorial fact stated below.

Lemma 3.2.3. Given an arrangement of N line segments in R2 with X intersec-
tions, the outer face has complexity O(Nα(dX/Ne)).

Proof. By a standard result [74], the outer face has complexity O(Nα(N)). To
obtain an X-sensitive bound, we use known results on intersection-sensitive cuttings
(e.g., [59]): there exists a partition of R2 into O(r + X(r/N)2) triangles, such that
each triangle intersects O(N/r) segments. For each triangle ∆, let S∆ be the
segments clipped to ∆. Since each vertex in ∆ of the outer face of the overall
arrangement must be on the outer face of S∆, the complexity of the overall outer

36

face is at most O (
∑

∆ |S∆|α(|S∆|)) = O((r + X(r/N)2) · (N/r)α(N/r)). Setting
r = min{N2/X, N} yields the O(Nα(dX/Ne)) bound.

Lemma 3.2.4. For any set of n lines in R2 and a parameter k, there exists an
O(ε)-approximate (≤ k)-envelope of size Oε(nα(k)/k).

Proof. According to Lemma 3.2.1, the average complexity of a k′-envelope for a
random k′ between (1−ε)k and (1+ε)k is Oε(n). Let C be such a k′-envelope. We
return the outer face of the m-simplifications of the polygons in C, with the param-
eter m = εk. By Lemma 3.2.2(i,ii), the resulting polygon is an O(ε)-approximate
(≤ k)-envelope.

Note that any polygon in C with complexity less than m can be simplified to
the empty polygon and be discarded. The total number of vertices in the sim-
plified polygons is N = Oε(n/k) and the number of crossings is X = Oε(Nk) by
Lemma 3.2.2(iii). By Lemma 3.2.3, the complexity of the outer face is Oε(nα(k)/k).

We can now use the above lemma to prove the following theorem.

Theorem 3.2.5. One can build a data structure that uses Oε(n) space and can
answer approximate regression depth queries in 2D in Oε(log n) worst-case time.

Proof. Let ki = b(1 + ε)ic for i = 1, . . . ,
⌈
log1+ε n

⌉
, and build an (ε/3)-approximate

(≤ ki)-envelope Ei for each i by Lemma 3.2.4. The total size of the Ei’s is
Oε(

∑
i n/kiα(ki)) = Oε(n). Finally, we store all these approximate envelopes in

a point location data structure. Note that there are no intersections between the
boundaries of the Ei’s.

To approximate k∗ for a query point q, we return the smallest ki such that q
lies inside Ei. This can be done in Oε(log n) time by a single planar point location
query on the combined subdivision formed by the boundaries of the Ei’s.

3.3 Approximate Tukey Depth Queries

Consider a point set P of size n and let A be the arrangement formed by the set P

of hyperplanes dual to P. A query point q has Tukey depth at least m if and only
if every halfspace through q contains at least m points of the point set P. In dual
space this means there are at least m hyperplanes passing above and below every
point of the hyperplane q; in other words, the hyperplane q lies between the m-level
and (n−m)-level of A. Thus, the problem of computing the Tukey depth of a query
point reduces to the following in dual space: Given a set H of n hyperplanes in Rd,
preprocess them in a data structure so that given any query hyperplane q, we can
find the smallest value k∗ such that q intersects the (≤ k∗)-level in the arrangement
of H.

37

First, we investigate this problem in 3D. We can either use the general reduction
to emptiness obtained by Aronov and Har-Peled (Theorem 2.3.3) or the reduction
to small counts offered by us (Theorem 2.3.4) or the methods used in Section 3.1.1
to attack this problem. The last option has the advantage of giving us a Las
Vegas algorithm (instead of a Monte Carlo one) with the same performance as one
obtained using Theorem 2.3.4.

Theorem 3.3.1. One can preprocess a 3D point set of size n in Oε(n log n) expected
time into a data structure of Oε(n) size such that the Tukey depth of any query point
q can be approximated in Oε(log n log log n) worst-case time. The query algorithm
is always correct.

Proof. Let ki = b(1 + ε)ic for i = 1, . . . ,
⌈
log1+ε n

⌉
, and construct an approximate

(≤ ki)-level Li for each i by Lemma 3.1.1, as in the proof of Theorem 3.1.2. For
each i, we compute the upper hull Ui of the O(n/ki) vertices of Li. This takes time
O(

∑
i n/ki log n/ki) = Oε(n log n).

To approximate k∗ for a query plane q, we do an approximate binary search.
For a given ki, we can determine whether k∗ is O(ε)-approximately greater than
ki or O(ε)-approximately less than ki, by testing whether q lies strictly above the
upper hull Ui or not, in O(log n) time (back in primal space, this corresponds testing
whether a point lies below a lower envelope of planes, which reduces to planar point
location). After O(log log1+ε n) iterations of binary search, we arrive at a value that
is O(ε)-approximately k∗. The query time is O(log n log log1+ε n).

The problem in 2D can be solved in an identical way, although there is no need
to perform Oε(log log n) steps of binary search. In the plane, we can simply overlay
all the upper hulls Ui and replace the approximate binary search steps with a single
point location query.

Theorem 3.3.2. One can preprocess a planar point set of size n in Oε(n log n)
expected time into a data structure of Oε(n) size such that the Tukey depth of
any query point q can be approximated in Oε(log n) worst-case time. The query
algorithm is always correct.

38

Chapter 4

Approximate Simplicial Depth

Unlike the Tukey and regression depth measures, approximating the simplicial
depth of a given query point appears to be more difficult. To begin with, this
problem does not fit in the framework of Theorems 2.3.3 and 2.3.4. While the
ε-approximation techniques are applicable to this problem, they do not yield any
relative approximations. We do not know of any previous results on approximate
simplicial depth queries. We can only mention the result of Eppstein et al. [28],
which provides an efficient way to approximate the depth of a query point in 2D in
a restricted streaming model but only with an additive error of εn3.

Technical difficulties. As we have repeatedly seen in the previous chapters,
one standard technique to approximate various geometric measures is the use of
uniform random samples combined with Chernoff type inequalities; however, these
existing techniques seem insufficient to solve our problem. One particular troubling
situation is depicted in Figure 4.1. In this figure no high probability bound can be
achieved for the simplicial depth of q in a uniform random sample despite the fact
that q is far from being an outlier (it has Tukey depth of Θ(n1/3)).

We overcome such difficulties by using a diverse set of tools and techniques such
as martingales and Azuma’s inequality, which were seldom used in the previous
papers in the area.

For a set S and a point q, we denote the simplicial depth and the Tukey depth
of q in S with σS(q) and τS(q) respectively. We might omit the subscript S if there
is no fear ambiguity. For a point p ∈ S, we use the notation ωq,S(p) (called the
weight of p) to denote the number of simplices formed by points of S that contain
q with p as one of the vertices. Clearly we have,

∑
p∈S ωq,S(p) = (d + 1)σS(q). For

simplicity, sometimes we will only use ω(p) if q and S can be deduced from the
context. We may use the notation f � g and f � g to denote f = O(g) and
f = Ω(g) respectively.

39

A

q

n1/3 points n1/3 points

n/2 pointsn/2 points

(a)

q

n1/3/2 points n1/3/2 points

about n/4 pointsabout n/4 points

(b)

about about

sample each point

with probability 1

2

Figure 4.1: (a) A point with simplicial depth Θ(n2) in a point set of Θ(n) points.
(b) The random sample misses A and the n2/4 triangles that share A as a vertex;
the simplicial depth of q is now O(n5/3).

4.1 Bounding the Simplicial Depth with Tukey

Depth

We first examine the relationship between the simplicial depth of a point and its
Tukey depth. We start with the following easy lemma.

Lemma 4.1.1. Let x ∈ Rd be a point which is contained in a simplex S. For every
point p ∈ Rd, there exists a unique vertex v of S such that the simplex S∪{p}\{v}
contains x.

Proof. Consider the ray r from x in the direction x− p. Since x is inside S, the ray
intersects a unique boundary face of S. The vertex v opposite to this face is the
unique vertex claimed in the lemma.

The following bound relates the two notions of depth.

Lemma 4.1.2. For any point set P ⊂ Rd and any q ∈ Rd we have σP(q) =
Ω(|P|τ d

P(q)) and σP(q) = O(|P|dτP(q)).

Proof. If τP(q) = 0 then q is outside the convex hull of P and there is nothing left
to prove. So assume τP(q) > 0. By Carathéodory’s theorem [33, 34, 71] there exists
a simplex S1 formed by d + 1 points of P which contains q. Removing S1 from P

reduces the Tukey depth of q by at most d + 1 (in fact at most d, but this can only
improve the constant factors in the lemma). By repeating this operation we can
find m disjoint subsets S1, . . . , Sm ⊂ P of size d+1, m ≥ τP(q)/d + 1, such that the
simplex formed by each Si contains q.

Let A =
⋃m

i Si = Θ(m). Bárány [29] proves that σA(q) = Ω(md+1). Denote
by A∆ the set of all the simplices which contain q with vertices from A. We
can assume |A| ≤ |P|/2, otherwise A∆ already contains Ω(|P|d+1) simplices and

40

there is nothing to prove. By Lemma 4.1.1, for every p ∈ P \ A, we can produce
Ω(|A∆|/|A|) = Ω(md) = Ω(τ d

P(q)) different simplices with p as a vertex. For two
points p and p′ in P \ A the corresponding simplices are distinct. In total they
produce Ω(|P|τ d

P(q)) different simplices.

To see the upper bound, consider a halfspace h which passes through q and
contains τP(q) points. Every simplex containing q must have at least one point
from this halfspace, and the maximum number of such simplices is |P|dτP(q).

Remarks. The bounds mentioned in the above lemma are tight. To see the
tightness of the upper bound, consider a simplex S and a point q inside it. Replace
one vertex of the simplex with a cluster of m points placed closely to each other,
and replace all the remaining vertices with clusters of n points with m ≤ n. The
resulting point set P1 contains Θ(n) points with σP1(q) = mnd and τP1(q) = m.
The tightness of the lower bound is realized by a very similar construction but
using clusters of size m at every vertex except one, and using a cluster of size n
at the remaining vertex. The resulting point set P2 contains Θ(n) points with
σP2(q) = mdn and τP2(q) = m.

4.1.1 Properties of random samples

Most papers that deal with approximations use Chernoff-type inequalities to obtain
their desired high probability bounds. The dependence among random variables
corresponding to the simplices prevents us from using any inequality that deals with
independent random variables. Thus, we need to turn to more complicated concen-
tration bounds, such as Azuma’s inequality which deals with martingales: a mar-
tingale is a series of random variables X1, . . . , Xn such that E(Xi+1|X1, . . . , Xi) =
E(Xi).

Azuma’s Inequality. Suppose {Xk}nk=0 is a martingale with the property that
|Xi+1 −Xi| ≤ ci. Then

Pr[|Xn −X0| ≥ t] ≤ e
− t2

2
Pn

k=1
c2
k .

The following lemma captures some of the useful properties of the simplicial
depth of a given point in a uniform random sample.

Lemma 4.1.3. Let P ⊂ Rd and q ∈ Rd be a point set of size n and an arbitrary
point respectively. Define M := maxp∈P ωq,P(p) and let t be an arbitrary parameter.
For any α-sample S from P, 1/2 ≤ α ≤ 1, we have Pr[|E(σS(q)) − σS(q)| ≥
γ(E(σS(q)) + rM)] ≤ e−Ω(γ2r).

Proof. We build a martingale in the usual way of revealing presence or absence of
points of S in an arbitrary order. Let p1, . . . , pn be the points of P. Let Xi be the

41

random variable corresponding to the expected number of simplices containing q
where the expectation is taken over the points pi+1, . . . , pn (i.e., Xi is a function of
our random choices regarding p1, . . . , pi). According to this definition, Xn is equal
to σS(q) (when all the values of random variables have been revealed) while X0

is equal to E(σP(q)). Since every simplex survives with probability αd+1 in the
random sample S, we have X0 = E(σP(q)) = αd+1σP(q).

It is not difficult to see that the sequence of random variables X0, . . . , Xn has
the martingale property. By our assumptions, each point can participate in at most
M simplices, and so revealing the value of each point brings about O(M) changes
to the expected value of X. Define ci := |Xi+1 −Xi|. We have

Xn = σS(q)

X0 = E(σS(q)) = αd+1σP(q)

ci = |Xi+1 −Xi| � ωq(pi+1) ≤M
n∑

i=1

ωq(pi) = (d + 1)σP(q)� X0

n∑
i=1

ci � X0.

Let r be an arbitrary parameter. According to Azuma’s inequality, we have

Pr[|Xn −X0| ≥ γ(X0 + rM)] ≤ e
−γ2(X0+rM)2P

c2
i ≤ e

−γ2(X0+rM)2

M
P

ci ≤ e−Ω(γ2r).

Since α = Θ(1), we can set r = Ω(γ−2 log n) and obtain the following corollary.

Corollary 4.1.4. Let S be a α-random sample of P, 1/2 ≤ α ≤ 1. The simplicial
depth of q in P can approximated by σS(q)/α

d+1. The maximum additive error with
high probability is O(γσP(q) + Mγ−1 log n) where M := maxp∈P ωq(p).

Remarks. There are many articles that deal with concentration of functions of
independent random variables and the results obtained in many of them can possi-
bly be applied to our problem as well. For instance, we can formulate our problem
easily in Van Vu’s polynomial model [84] although the final bound will be slightly
worse than what we have obtained above. We can also use Talagrand’s inequal-
ity [114] and obtain an equivalent result to that of Lemma 4.1.3. These imply the
result of Lemma 4.1.3 might not be optimal in terms of dependence on γ although
the situation depicted in Figure 4.1 implies we cannot hope to get a better bound
than e−Θ(γr).

42

q

ph

n1

n2

Figure 4.2: There are at most x = C ′τP(q) points above h. The number of dashed
triangles is at least (n1 − x)(n2 − x) and at most n1n2; these two values are very
close if x is small in comparison to n1 and n2.

4.2 Approximating the simplicial depth in 2D

In this section we consider the 2D case of the problem, which can be stated as a
triangle counting problem: given a set of n points P in the plane, store them in a
data structure capable of approximating the number of triangles formed by points
of P which contain a query point q.

The observation that different points of the input can contribute different values
to the simplicial depth is a major obstacle that needs to be overcome. We can
describe our general strategy to deal with this difficulty using the following toy
problem.

Problem 4.2.1. Assume n closed boxes B1, . . . , Bn with box Bi containing bi objects
are given such that b1 ≥ b2 ≥ · · · ≥ bn. Find an ε-approximation of the sum
s :=

∑n
i=1 bi by opening a small number of boxes.

We propose the following strategy to solve the problem. Let k be a small
(polylogarithmic) parameter. Compute s1 =

∑k
i=1 bi by opening k boxes. For

the remaining boxes, discard each box with probability 1/2 and then recursively
compute the approximate number of objects contained in the remaining boxes. Let
s2 be this value. Return s1 + 2s2. It is easy to see that the algorithm works in the
expected sense since the expected value of s2 is (s−s1)/2. It is not difficult so show
that by setting k to be a polylogarithmic factor the final result is correct with high
probability. It is also easy to see that the algorithm opens O(k log n) boxes.

We follow a similar strategy for our problem. The planar geometry of the
problem provides us with the following simple observation which plays a crucial
role in our algorithm.

Observation 4.2.1. Let P ⊂ R2 be a set of n points, q ∈ R2 an arbitrary point
and h a halfplane containing x points with q on its boundary. Consider the line
pq for a point p ∈ h and assume it partitions P into two sets of sizes n1 and n2.
If n1, n2 ≥ Cεx then n1n2 is a relative ε-approximation of ωq(p) in which Cε is a
constant depending on ε.

43

Furthermore, with Oε(n) space it is possible to obtain a 2ε-approximation of
ωq(p) in Oε(log n) time.

Proof. It can be argued from Figure 4.2 that there are at least (n1 − x)(n2 − x)
triangles containing q that have p as a vertex. On the other hand, if a triangle with
p as one vertex contains q, then it must have one vertex from either side of line pq.
Thus, the maximum number of such triangles is n1n2 which means

(n1 − x)(n2 − x) ≤ ωq,P(p) ≤ n1n2.

The assumption n1, n2 ≥ Cεx implies xn1, xn2 ≤ C−1
ε n1n2 which combined with

the above inequality yields

n1n2 − 2C−1
ε n1n2 ≤ (n1 − x)(n2 − x) ≤ ωq,P(p) ≤ n1n2.

Thus, n1n2 is a relative ε-approximation of ωq,S(p) if Cε is chosen to be suf-
ficiently large. Using the approximate halfspace range counting data structure
developed in the previous section, it is possible to obtain a 2ε-approximations of
the term n1n2.

For a point p ∈ P, we call the minimum number of points of P at either side of
line pq its dissection value with respect to q and P (or dissection value for short). The
above observation intuitively implies that under the right conditions, approximating
the weight of a point (i.e., ωq,P(p)) is equivalent to approximating its dissection
value. It also means (again under the right conditions) that a larger dissection
value implies a larger weight. We now return to solve the main problem of this
chapter.

Consider a series of random samples S0, S1, . . . , Sr in which S0 = P and Si+1 is a
1/2-random sample from Si. For technical reasons, we solve a slightly more general
problem in which an additional set of points D (called the discard set) is given and
we are asked to approximate the simplicial depth of q in Si\D. Initially, D is set to ∅.
Throughout the algorithm we maintain the invariant that D ≤ 2m for a sufficiently
large parameter m with high probability; if it fails, we can switch to a brute-force
algorithm and the expected cost of this will still be O(1). Also, if τSi\D(q) = Ω(|Si|)
then the simplicial depth can be approximated using ε-approximations (since an
additive error is acceptable). By our invariant |D| is small, thus we can assume

τSi\D(q) = O(|Si|) and τSi
(q) = O(|Si|). (4.1)

This can be tested efficiently using our data structure for approximate planar Tukey
depth queries implemented on Si since D is assumed to have few points by the
invariant. The main steps of our algorithm, excluding the failure of the invariant
and the above easy case, are presented in Algorithm 1. Below, C and Cε are
constants which must be chosen sufficiently large. ApproxRangeCount is an
approximate halfspace range counting data structure and ApproxRangeCount(S,

44

`, “Above/Below”, ε) finds a relative ε-approximation of the number of points of S

lying above or below a given line `.

The procedure small (which shall be discussed later) kicks in when the Tukey
depth of the query point is small (τSi

(q) ≤ Cεm) and returns a relative approxima-
tion of the simplicial depth. For the rest of this analysis we assume

τSi
(q) ≥ Cεm. (4.2)

By choosing Cε large enough, this implies τSi
(q) is ε-approximately equal to

τSi\D(q) and ωq,Si
(p) is ε-approximately equal to ωq,Si\D(p) for all points p with

dissection value greater than CετSi
(p). We call the value of ωq,Si

(p) the weight of p
and use approximate weight to refer to its ε-approximation.

The procedure dissectionReport returns a halfplane h containing O(τSi
(q))

points with q on its boundary and a set A ⊂ Si ∩ h of size at least 3m. Let x
be the number of points in h. Intuitively, if h contains more than 3m points with
dissection value greater than Cεx, then dissectionReport must report 3m points
with “approximately” the maximum dissection value. Otherwise, it reports all the
points with dissection value greater than Cεx and some other arbitrary points. To
be precise, for every p ∈ A either the dissection value of p is ε-approximately less
than Cεx or the dissection value of p is ε-approximately greater than the (3m)-th
largest dissection value in h. The latter also implies the weight of p is approximately
greater than the (3m)-th largest weight in h. Finding A is not easy at all and we
shall discuss the details at the end of this section.

Algorithm 1 ApproxSimplicialDepth(Si, q, D)

1: m← Cε−3 log3 |P|
2: if τSi

(q) ≤ Cεm then
3: call small(Si, q)
4: else
5: (h,A)← dissectionReport(Si, q)
6: T ← sort(A \D)
7: for j = 1 ; j ≤ m do
8: n1 ← ApproxRangeCount(Si, ajq, “Above”, ε)
9: n2 ← ApproxRangeCount(Si, ajq, “Below”, ε)

10: if n1 or n2 < CετSi
(q) then

11: Break the for loop.
12: end if
13: ŝ← ŝ + n1n2

14: D← D ∪ {aj}
15: end for
16: D← D ∩ Si+1

17: Return ŝ + 8 ·ApproxSimplicialDepth(Si+1, q, D)
18: end if

45

For each Si we implement data structures capable of answering approximate
halfspace range counting queries and approximate Tukey depth queries (see Chap-
ter 3). Using techniques discussed in the previous chapter, lines (2), (8) and (9)
can be done in Õ(1) time. At line (6), the procedure sort(A \D) sorts the points
of A\D decreasingly according to their approximate weights. At this point, all but
one of the requirements of Observation 4.2.1 are satisfied; line (10) checks for this
last requirement. Line (13) uses Observation 4.2.1 to 2ε-approximate ω(ai). Thus,
ŝ is 2ε-approximately equal to the sum of weights of the points processed in the
for loop. Finally, a recursive call to Si+1 computes the simplicial depth in a smaller
input excluding the points processed in the for loop. So, assuming that line (5)
can be completed in Õ(1) time, it is clear that the total query time is Õ(1) and it
remains to prove the correctness of the algorithm.

Let t be the value of the variable j at the end of the for loop and T be the
set {a1, . . . , at}. ŝ is a relative 2ε-approximation of s :=

∑t
j=1 ωq,S(aj) and thus

an 3ε-approximation of
∑t

j=1 ωq,S\D(aj); however, s counts the number of triangles
containing q with at least one vertex from T with the triangles having two points
of T being double counted. The assumption 4.1 implies during every execution of
line (13) we have n1 + n2 ≥ |Si|/2 (since n1 and n2 are approximations of number
of points on either side the corresponding line). Thus, n1n2 ≥ |Si|CετSi

(q)/4 and
s ≥ t|Si|CετSi

(q)/4. The number of triangles having two points from T is at most
|T|2|Si| = t2|Si|. By assumption 4.2, this is negligible in comparison to ŝ since

t2|Si| ≤ t|Si|m ≤ t|Si|τSi
(q)C−1

ε ≤ sC−2
ε .

Thus,

σSi\D(q) = ŝ + serr + σSi\(D∪T)(q) where |serr| ≤ 4εs. (4.3)

We know for every p ∈ A, either the dissection value of p is ε-approximately less
than Cεx or the dissection value of p is ε-approximately greater than the (3m)-th
largest dissection value in h. Thus, for any point p ∈ h \ (D ∪ T), either ω(p) :=
ωq,Si\D = O(ŝ/m) or the dissection value of p is at most 2C−1

ε τSi
(q) (otherwise, it

would have been included in T). This implies

M := max
p∈h\(D∪T)

ω(p)� max{C−1
ε τSi

(q)|Si|,
ŝ

m
} � C−1

ε τSi
(q)|Si|+

ŝ

m
. (4.4)

Using Corollary 4.1.4 with parameter γ = ε/ log n and substituting M from (4.4),
we get

σSi\(D∪T)(q) = 8σSi+1\(D∪T)(q) + ferr

|ferr| � γσSi+1\(D∪T)(q) + Mγ−1 log n

� γσSi+1\(D∪T)(q) + γ−1C−1
ε τSi

(q)|Si| log n + γ−1 ŝ

m
log n.

46

Since m = Θ(γ−2ε−1 log n), we have γ−1 ŝ
m

log n� εγŝ. Furthermore, according to
Lemma 4.1.2

σSi\(D∪T)(q)� (|Si| − (|D|+ |T|))τ 2(q)� |Si|τ(q)2 �
|Si|τ(q)m� γ−2ε−1τSi

|Si|(q) log n.

In other words,

γ−1ε−1τSi
(q)|Si| log n� γσSi\(D∪T)(q)

Combining these inequalities we get

σSi\D(q) = ŝ + 8σSi+1\(D∪T)(q) + serr + ferr

|serr| ≤ 4εs

|ferr| � γσSi+1\(D∪T)(q) + γσSi\(D∪T)(q) + εγŝ.

The value of σSi+1\(D∪T)(q) can be approximated recursively by updating D′ =
(D ∪ T) ∩ Si+1 and calling the query q with the set D = D′ on Si+1. Assume
the recursive call at line (17) returns a value σ̂ which is ε′-approximately equal
to σSi+1\(D∪T)(q). Since 8σ̂ is approximately equal to 8σSi+1\(D∪T)(q), the above
inequalities imply that the value ŝ + 8σ̂ computed at line (17) is δ-approximately
equal to σSi\D(q) where δ = max {4ε, ε′ + O(γ)}; however, since there are only log n
steps of recursion and γ = ε/ log n, the final result is a relative O(ε)-approximation
of σSi

(q).

4.2.1 Filling the gaps

Now, we return to fill the two missing parts of the algorithm.

small(Si, q). As in the main case, we first find a halfplane h containing O(τSi
(q))

points then use Observation 4.2.1 to approximate ω(p) for every point p ∈ h with
the dissection value of Ω(ε−1τSi

(q)). Summing up these values amounts to the
approximate contribution of these points to the simplicial depth and as before
the amount of double counting is negligible. Remove these points from h and let
a1, . . . , ak be the list of remaining points sorted radially around q. Since one side
of every line aiq contains O(ε−1τSi

(q)) points, we can issue exact halfspace range
counting queries in O(ε−1τSi

(q)) time and compute the exact number of points
contained in the wedges formed by the lines aiq (see Figure 4.3); the simplicial
depth of q can be exactly computed using this information.

dissectionReport(Si, q). First we show how to find the halfplane h. We remind
the reader of the subproblem which must be solved.

47

q

h

a1
a2

ak−1

ak

n1

n2

nk

nk+1
.

.

.

.

.

.

Figure 4.3: ni denotes the number of points of Si contained in each wedge.

Problem 4.2.2. Let P be a set of n points in R2, and ε, m > 0 be fixed parameters.
Build a data structure of size Õ(n) such that given a query point q, in Õ(1) time one
can find a halfspace h and a subset A ⊂ P ∩ h. Furthermore, if τP(q) ≥ Cm for a
sufficiently large constant C, then A must have the following properties: (i) h must
have q on its boundary and contain Θ(τP(q)) points, (ii) |A| ≥ min {m, |H|}, (iii)
for every p ∈ A either the dissection value of p is O(τSi

(q)) or ω(p) is approximately
greater than the (3m)-th largest weight in h.

The requirement that A must be a subset of h ∩ P is quite annoying since h
depends on the query point and thus we do not have access to h ∩ P during the
preprocessing phase. First we try to remove this requirement. This is done by
employing the following simple lemma which is Matoušek’s shallow cutting in dual
space.

Lemma 4.2.2. Let P be a point set of n points in R2. For every k we can build a
set Ck of O(n/k) halfplanes with each halfplane containing O(k) points of P, such
that for every point q ∈ R2 with τP(q) ≤ k, there exists a halfplane h ∈ C which
contains q. Furthermore, h can be found in O(log n) time.

Proof. In the dual space P corresponds to a set P of n lines and q corresponds to a
line q which intersects either the k-level or the (n− k)-level of the arrangement A
formed by P. Consider the first case since the similar case can be handled similarly.
By Matoušek’s shallow cutting lemma we can build a set C of O(n/k) triangles
which cover the k-level of A. Since q intersects the k-level of A, there exists a
vertex v of C which lies directly above q. In the primal space, v corresponds to
a halfplane which contains q and O(k) additional points of P. Thus, the set of
halfplanes claimed in the lemma can be taken as the set of halfplanes dual to the
vertices of the triangles obtained by the shallow cutting lemma.

For every S, we build the above set of halfplanes for k = 2i, i = 0, . . . , blog Sic
and obtain a set C of O(n) halfplanes containing a total of O(n log n) points with the
property that for any given point q we can find a halfplane hi ∈ C which contains
q and O(τSi

(q)) additional points. The halfplane h outputted by the subroutine
dissectionReport is a halfplane through q and parallel to hi.

48

hi

h. . .











































































{

{

{

{

k

k

2

k

2

k

4

k

4

k

4

k

4

Figure 4.4: The points above h can be expressed as the union of O(log k) sets
represented by brackets; the number before each bracket denotes the number of
points contained in the corresponding set.

For a halfplane hi containing k points, it is easily seen that we can build O(k) sets

H
(1)
i , . . . ,H

(ti)
i containing O(k log k) points in total such that the points contained

in any halfplane h parallel to hi can be expressed as the union of the O(log k) such
sets (see Figure 4.4). Thus, by causing only a polylogarithmic factor increase in the
space and query time of the algorithm, we can assume A is required to be subset
of a fixed set H. This reduces our problem to the following.

Problem 4.2.3. Let P, H be sets containing n points in R2 and ε, m > 0 be fixed
parameters. Build a data structure of size Õ(n) such that given a query point q in
Õ(1) time one can find a halfspace h and a subset A ⊂ H. (i) h must have q on
its boundary and contain Θ(τP(q)) points, (ii) |A| ≥ min {3m, |H|}, (iii) for every
p ∈ A either the dissection value of p is O(τSi

(q)) or ω(p) is approximately greater
than the (3m)-th largest weight in h.

We also notice that it suffices to solve the “decision” version of the above prob-
lem in which we are given a fixed parameter M and we are asked to report 3m
points with dissection value approximately greater than M . It is clear by running
log n instances of the this decision version for M = n/2i, i = 0, . . . , blog nc we can
compute the set A.

To solve this decision version, we switch to the dual space. A point p ∈ H has
dissection value at least M with respect to q and P if and only if the dual of the line
` := pq (which is a point represented by `) neither is contained in the (≤M)-level
nor in the (≥ |P| −M)-level of P. An observation of Chan [36] implies that there
exists a convex polygonal chain PL of size O (|P|/M) which contains the M -level
of P and is contained in an O(M)-level of P. Consider a similar polygonal chain
PU for the (≥ |P| −M)-level of P. Thus, if ` is inside either PL or PU , then the
dissection value of p is approximately less than M , otherwise the dissection value
of p is approximately greater than M . Also, notice that ` is the intersection point
of the lines q and p ∈ H. In other words, our problem reduces to reporting up to
3m lines from a given set of lines H which intersect a query line q outside two fixed
convex polygons PL and PU .

To solve this subproblem, we compute the intersection points of the query line q
with the convex polygons PU , PL and the lines x =∞ and x = −∞ in O(log n) time

49

q

Figure 4.5: Decomposing the query line q into a constant number of rays.

and then decompose this line into a constant number of rays as shown in Figure 4.5.
This further reduces our problem to a ray shooting problem (finding the first object
hit by a ray) in an arrangement of lines. Unfortunately, we cannot use any of the
standard ray shooting results since we are aiming for a polylogarithmic query time
with near linear space which is impossible with the current ray shooting algorithms.
Nonetheless, we can exploit a key property of our problem which is the observation
that all the query rays are originating from a fixed convex object. For simplicity,
we only describe how to solve the ray shooting queries for rays originating from the
boundary of PL.

The convexity of PL implies its zone (the set of vertices of the arrangement
adjacent to the cells crossed by PL) has near linear complexity [24] and can be
constructed in Õ(|H|) time [58]. Constructing the zone of PL enables us to find the
first line intersected by a ray originating from the boundary of PL.

By taking a random k−1-sample Hk of H we can answer a wider range of queries.
In fact, we can use the techniques of Chan [37] and report the first 3m lines inter-
sected by a query ray in O(log |H| + 3m) time using Õ(|H|) space by building a
series of random samples.

Finally, using all the above data structures we obtain the following theorem.

Theorem 4.2.3. It is possible to preprocess a point set P ⊂ R2 of n points in
Õ(n) expected time using Õ(n) space such that given a query point q a relative ε-
approximation for the simplicial depth of q can be found in Õ(1) expected time for
any arbitrary fixed constant ε > 0. The final result is correct with high probability.

4.3 Approximate Simplicial Depth in Higher Di-

mensions

In this section we consider the problem of approximating the simplicial depth of a
given point q in a set P of n points in Rd. We will use the following observation
made by Gil et al. [70].

Observation 4.3.1. Let q be a point inside a simplex a1 . . . ad+1 and let a′i be a

point on the ray
→
qai. The simplex defined by a1 . . . ai−1a

′
iai+1 . . . ad+1 contains q.

50

The above lemma essentially means we can move every point of the input on
rays originating from the point q without changing its simplicial depth.

Theorem 4.3.2. Let P be a set of n points in Rd, d ≥ 3, and p be an arbitrary
point. A relative ε-approximation of the simplicial depth of p can be obtained in
Õ(nd−2) expected time with high probability.

Proof. First we find a halfspace h through p containing a set A ⊂ P of O(τ(p))
points. This can be done in Õ(nbn/2c) time using various methods for instance, by
using the general reduction used by Aronov and Har-Peled (Theorem 2.3.3). Ignor-
ing polylogarithmic factors, this is essentially the time needed to decide whether a
point is outside the convex hull P and if so, to find the halfspace separating it from
P.

Let ` be the boundary hyperplane of h and without loss of generality assume
A lies above `. Consider a hyperplane `′ parallel to ` with the remaining set of
points B := P \ A sandwiched between ` and `′. By using central projection from
p, map a point b ∈ B to a point b′ on the hyperplane `′ (Figure 4.6(a)). Let B′ be
the set of the projected points. According to Observation 4.3.1, replacing B with
B′ does not change the simplicial depth and thus in the remainder of the proof we
will focus on the set P′ := A ∪B′.

Any simplex containing p must have at least one point from A. Thus, we can
express the simplicial depth of p as the sum of the number of simplices contain-
ing exactly one point from A (denoted by σ(1)(p)) and the number of simplices
containing two or more points from A (denoted by σ(2+)(p)).

For a point a ∈ A denote the intersection of the ray
→
ap with `′ by a′. The number

of simplices containing p with a as their only vertex from A is exactly equal to the
number of d − 1 dimensional simplices formed by the points of B′ which contain
the point a′ which is a (d − 1)-dimensional problem. Using Theorem 4.2.3 as our
base case, we can build a Õ(nd−2) time algorithm capable of finding a relative
ε-approximation of σ(1)(p).

For the remaining term of σ(2+)(p) notice that the total number of simplices with
at least two vertices from A is O(τ 2(p)nd−1). By Lemma 2.3.2, to obtain a relative
approximation we can pick Õ

(
τ 2(p)nd−1/σ(2+)(p)

)
random simplices. We observe

that since σ(2+)(p)+σ(1) = σ(p) = Ω(τ d(p)n), only Õ
(
τ 2(p)nd−1/τ d(p)n

)
= Õ(nd−2)

random samples is sufficient to give an additive error of O(εσ(p)). Combining these
two cases will result in an Õ(nd−2) time algorithm.

4.3.1 Approximate simplicial depth in 3D

In this section we describe a slight modification of the algorithm of Theorem 4.3.2
which improves its query time at the expense of raising its space complexity. This
can be seen as an application of our techniques in the previous sections since we

51

introduce no new ideas and simply use a different combination of the previous
techniques.

Unfortunately, since we are aiming for an o(n) query time, we cannot use Ob-
servation 4.3.1 and in fact this can be seen as the biggest challenge in getting an
o(n) query time in 3D. But since we are aiming for an Õ(n2/3) query time, we have
access to a variety of simplicial range searching data structures including the fol-
lowing lemma which can be obtained using standard techniques in simplicial range
searching such as multi-level partition trees.

Lemma 4.3.3. Given n simplices in 3D, one can store them in a data structure
of size Õ(n) using O(n1+ε) preprocessing time such that the number of simplices
containing a query point q can be counted in O(n2/3) time.

The following lemma extends Lemma 4.2.2 to 3D and can be proved in an
identical way.

Lemma 4.3.4. Let P be a point set of n points in R3. For every k, we can build
a set Ck of O(n/k) halfspaces with each halfspace containing O(k) points of P such
that for every point q ∈ R3 with τP(q) ≤ k there exists a halfspace h ∈ C which
contains q. Furthermore, h can be found in O(log n) time.

Theorem 4.3.5. Given a set P of n points in R3, with Õ(n2) preprocessing time
one can build a data structure of size Õ(n2) such that the approximate simplicial
depth of any query point q can be computed in Õ(n2/3) time. The correctness of the
final result holds with high probability.

Proof. Corollary 4.1.4 implies that we can reduce the problem to a random 1/2-
sample of P provided M = Õ(σP(q)), where M := max p ∈ Pω(p); however, ac-
cording to Lemma 4.1.2, σP(q) = Ω(nτ 3

P(q)) implying M = Õ(σP(q)) if τP (q) ≥
n2/3 logc n. Thus, we can essentially reduce the problem to the case when τP(q) =
Õ(n2/3).

Similar to the 2D case, using Lemma 4.3.4 we build a fixed set C of halfspaces
such that for every query point q we can find a halfspace h ∈ C containing q
and O(τP(q)) points of P. Next, we follow the proof steps and terminology of
Theorem 4.3.2 and show it is possible to approximate σ(1)(q) in Õ(n2/3) time using
Õ(n2) space.

Unfortunately, we cannot use Observation 4.3.1 as the required central projec-
tion depends on the query point; however, we are able to apply a modification of
the observation and use a central projection from every point of p ∈ h rather than
q. Since q is contained in h, a simplex S with p as one of its vertices contains
q if and only the corresponding simplex with the projected points contains q (see
Figure 4.6(b)). We implement the 2D data structure on the projected points for
every p ∈ h. This would consume Õ(n2) space but will enable us to find a rela-
tive ε-approximation of σ(1)(q) in Õ(n2/3) time by issuing one 2D ε-approximate
simplicial depth query for every point of h.

52

h

ℓ′

p

h

ℓ′

p

qa

b

a′

b′

(b)(a)

ℓ ℓ

B

Figure 4.6: (a) Projecting the set of points outside h onto a parallel plane from
point p. (b) Triangles pab and pa′b′ both contain q.

Finally, as with the case in Theorem 4.3.2, we need to sample Õ(n/τ(q)) sim-
plices containing two or more points from h and count the fraction of these con-
taining q. Using Lemma 4.3.3 this phase can be done in Õ(n2/3) time, using Õ(n)
space and O(n1+γ) preprocessing time for an arbitrary constant γ > 0.

53

Chapter 5

Dominance Queries

As we have mentioned in the first chapter, dominance queries are a very important
special case of orthogonal range searching queries. In this chapter, we focus our
attention on dominance reporting problem in 3D and show that this problem can be
attacked using the techniques that are used in the previous sections of this thesis,
namely, approximate levels (Chapter 3).

5.1 Introduction

Let P be a set of n points in Rd. In the dominance reporting problem, we are
given a query point q = (q1, . . . , qd) and we are asked to find all the points p =
(x1, . . . , xd) ∈ P such that xi < qi, 1 ≤ i ≤ d. A comparison of our results with the
previous work is shown in Table 5.1. When used as the base case for the orthogonal
range reporting problem, our results also imply new improvements for this problem
as well. These implications, together with the corresponding previous best results,
are shown in Table 5.2.

Unlike previous methods for the dominance problem, we borrow ideas and tech-
niques from non-orthogonal range searching, namely, halfspace range searching. We
observe that both halfspace range reporting and dominance reporting in 3D can be
attacked within the same framework and using the same array of techniques. This
observation has apparently eluded the previous researchers. For instance, we use a
version of the shallow cutting lemma (Lemma 1.1.5). Previously, in the orthogonal
setting, Vengroff and Vitter [121] and Nekrich [102] have used a similar concept
but under a different name (“B-approximate boundaries”) and with non-optimal,
complicated constructions.

One might wonder whether other techniques for halfspace range searching such
as the shallow partition theorem can also be applied in this context. We show the
existence of a novel partition-type theorem for the dominance reporting problem
(it is not a partition per se but resembles the partition theorem in “spirit”). This
theorem leads to an optimal external memory data structure. In contrast, an

55

Model Space Query complexity Source

PM O(n) O(log n log log n + k) [91]
PM O(n log n) O(log n + k)∗ [49]
PM O(n) O(log n + k)∗ here

RAM O(n) O((log log U)2 log log log U + k log log U) [91]

RAM O(n) O(log n
log log n

+ k) [78]

RAM O(n log n) O((log log n)2 + log log U + k) [102]
RAM O(n) O((log log n)2 + log log U + k) here

EM O(n log n) O(logB n + k/B)∗ [121]
EM O(n) O(logB n + k/B)∗ here

IEM O(n log n) O(log logB U + (log log n)2 + k/B) [103]
IEM O(n logB n) O(log logB U + (log log n)2 + k/B) here

Table 5.1: Results on 3D dominance reporting problem. Here, n, k, B are input,
output and block size respectively. The results on a RAM assume the input is
from a U × U × U integer grid. PM, EM and IEM stand for pointer machine,
external memory and external memory with integer inputs respectively. Optimal
query complexities are marked with a star. The last two rows assume an external
memory model of computation in the RAM model where the input is on a U×U×U
integer grid.

optimal external memory result for the halfspace range reporting problem is not
known yet [6].

As a consequence of our results, we obtain two new orthogonal range reporting
algorithms consuming O(n log3 n) space; one with O((log log n)2 + log log U + k)
query time in the RAM model and another with O(logB n + k/B) I/Os in the
external memory model. Previously, the best results consumed O(n log4 n) space
in both cases. We only use randomization in the preprocessing part and our query
bounds are all worst case.

5.2 Dominance Reporting in 3D

5.2.1 Preliminaries

To remind the reader, we say a point A ∈ Rd dominates another point B ∈ Rd

if and only if all the coordinates of A are greater than those of B. This is our
source of inspiration for defining a special form of geometric range that we call a
downward corner . A downward corner is uniquely determined by a point A ∈ Rd

(called the apex) and contains all the points of Rd which are dominated by A. Let
P be a set of n points in Rd. To make the notation consistent, we reserve the
symbol r for downward corners and with an abuse of notation, sometimes we use
r to refer both to the geometric object and the subset of P inside the geometric

56

Model Dimension Space Query complexity Source

RAM d = 3 O(n log4 n) O((log log n)2 + log log U + k) [102]

RAM d = 3 O(n log3 n) O((log log n)2 + log log U + k) here

RAM d > 3 O(n logd+1+ε n) O(logd−3 n/(log log n)d−5 + k) [102]

RAM d > 3 O(n logd−2+ε n) O(logd−2 n/(log log n)d−2 + k) [18]

RAM d > 3 O(n logd+ε n) O(logd−3 n/(log log n)d−5 + k) here

EM d = 3 O(n log4 n) O(logB n + k/B) [121]

EM d = 3 O(n log3 n) O(logB n + k/B) here

Table 5.2: The fastest known orthogonal range reporting algorithms for d ≥ 3.
Here, n, k, B are input, output and block size respectively. EM stand for external
memory.

object. In this chapter, we define an approximate k-level Lk as a set of downward
corners with the following two properties: (i) any downward corner r ∈ Lk must
contain at most c1k points of P and (ii) any downward corner r′ which contains
at most k points of P must be contained in a downward corner r ∈ Lk. Here,
c1 can be chosen to be an arbitrary constant (by our algorithms). The size of an
approximate level is the number of its downward corners. Finally, for the sake of
simplicity of description, we assume the input point set and the query points are
in general position; a restriction that can be overcome using standard tricks.

5.2.2 Optimal approximate levels

Consider a set S of n downward corners. We define the level of a point p ∈ R3

to be the number of downward corners of S which contain p. As with the case
of halfspaces, we define the (≤ k)-level to be the set of all the vertices of the
arrangement A formed by S with level at most k. Thus, the (≤ 0)-level of A
contains all the vertices of the arrangement that are not inside any downward
corner of S.

One crucial requirement of any optimal result on approximate levels is a linear
bound on the size of the (≤ 0)-level of A.

Lemma 5.2.1. For a set S of n downward corners the size of the (≤ 0)-level is
O(n).

Proof. Sweep a plane h parallel to the xy plane from z = +∞ to z = −∞. We
count the vertices of the (≤ 0)-level of the arrangement as they appear on this
sweep plane.

The apex A of an element r ∈ S will appear on h when the z-coordinate of
h becomes equal to the z-coordinate of A and it disappears as soon as another
point q′ on h dominates A (in 2D sense). The crucial observation is that if a point
disappears from h it no longer can contribute any new vertices to the (≤ 0)-level

57

b1

b2

b3

b1

b2

b3

b4

b1

b2

b3

b4

(d)

b1
b2

bt

(e)
(a) (c)(b)

Figure 5.1: (a) Boxes b1, b2 and b3 already swept (b) The sweep plane discovers b4

and from this point b1 can be ignored. (c) Marks denote the new vertices on the
0-level. (d,e) View on plane h

(Figure 5.1(a,b,c)). So, at any moment we have an active set of downward corners
on this plane with none dominating another; these points form a chain on this plane
(Figure 5.1(d)). Assume a new point ct+1 appears on this plane. If ct+1 creates j
new vertices then it will have to dominate and remove Ω(j − 4) active points from
h (Figure 5.1(c,e)). A simple charging argument implies that number of vertices of
the (≤ 0)-level is O(n).

The shallow cutting lemma of Agarwal et al. [9] operates on a general class
of surfaces and thus accepts a parameter φ(r) which is the worst case size of the
(≤ 0)-level of any collection of r surfaces. The above lemma implies that in our
problem we have φ(r) = O(r). Combining this with the theorem of Agarwal et
al. [9] we obtain the following lemma.

Lemma 5.2.2. Given a set S of n downward corners in 3D and a parameter k, one
can build a set B of O (n/k) boxes which cover the (≤ k)-level of the arrangement
formed by S where each box is intersected by O(k) downward corners.

Proof. With slight perturbations we can turn a downward corner into a continuous
surface which fits the framework of Agarwal et al. [9] and use their shallow cutting
lemma with r = n/k. The fact that the set B can be taken as a set of boxes follows
from the vertical decomposition used by Agarwal et al. [9].

The above shallow cutting result can be used to construct approximate levels.

Lemma 5.2.3. There exists an approximate k-levels of size O(n/k), 1 ≤ k ≤ n,
for the dominance reporting problem.

Proof. Let P be an input set of size n. For a point p ∈ R3, define an upward corner
with apex p to be the subset of R3 which dominates p. Let S be the set of n upward

58

corners determined by points of P as apexes and let A be the arrangement formed
by S. A point reflection with origin can transform A into an arrangement of n
downward corners, A′, and thus we can use Lemma 5.2.2 and build a collection B′

of O(n/k) boxes which cover the (≤ k)-level of A′. Perform the point reflection
on elements of B′ and let B be the resulting set of boxes. For every box in b ∈ B,
place the vertex with the maximum coordinates, denoted with m(b), in a set C. We
claim the set of downward corners defined by apexes in C is an approximate level.

Consider a downward corner r with apex A which contains less than k points
of P. This means that there are less than k upward corners of S which contain A.
The reflection A′ of A by the origin lies in the (≤ k)-level of A′ and thus there is a
box b ⊂ B which contains A. The downward corner defined by m(b) ∈ C contains
r.

On the other hand, Lemma 5.2.2 implies that every box b′ ∈ B′ lies in the
(≤ O(k))-level of A′. Thus, every vertex of b ∈ B can dominate at most O(k)
vertices of P.

5.3 Solving the Dominance Reporting Problem

To solve the dominance reporting problem in the RAM and the pointer machine
models, we simply need a linear size data structure with polylogarithmic query
time to combine it with our lemma on approximate levels. For instance, we can
either use the data structure of Makris and Tsakalidis [91] or Edelsbrunner and
Chazelle [49]. For the moment assume that we have access to a linear size data
structure with O(log2 n + k) query time.

Theorem 5.3.1. Given a set of n points P in R3, dominance reporting queries can
be answered in O(log n + k) worst case time in a pointer machine and using linear
space.

Proof. Let A be a data structure consuming linear space which can answer domi-
nance reporting queries in O(log2 n + k) time. Build an approximate (log2 n)-level
C. For every downward corner r ∈ C implement the data structure A on the points
contained in r and at the end build on extra copy for the whole point set P.

If k = Ω(log2 n) then we can use the data structure on P to answer the query in
O(log2 n + k) = O(k) time. Otherwise, one downward corner r in C will contain q.
As with the case of halfspaces, finding q is equivalent to a point location query in
a 2D orthogonal arrangement and thus can be solved in O(log n) time. Since r will
contain at most log2 n points, the query can be answered in O((log log2 n)2 + k) =
O((log log n)2 + k) time using the data structure implemented on r. Combining all
these gives us a query time of O(log n + k).

The exact same idea can be applied in the word RAM model, by employing the
point location data structure of [61] which offers the query time of O((log log U)2)
in a U × U × U integer grid.

59

Theorem 5.3.2. Given n points in U × U × U integer grid, dominance reporting
queries can be answered in O((log log U)2 + k) worst case time in the RAM model
using linear space.

By reduction to the rank space as described in Section 1.2.3, we get:

Corollary 5.3.3. For n points in R3, dominance reporting queries can be answered
in O((log log n)2 + log log U + k) time using only linear space.

Also, by using the standard techniques described in Section 1.2.3, orthogonal
range reporting queries reduce to dominance reporting queries, resulting in the
following corollary.

Corollary 5.3.4. There exists a data structure capable of answering 3D orthogonal
range reporting queries on a U ×U ×U grid in O((log log n)2 + log log U + k) time,
using O(n log3 n) space.

The above can be extended to higher dimensions.

Corollary 5.3.5. In a RAM, Orthogonal range reporting can be solved in Rd using
O(n logd+ε n) space and with O(logd−3 n/(log log n)d−5 + k) query time.

We also note that any improvements to the data structure for point location in
a planar rectangular subdivision [61] will automatically improve our query times as
well.

Unfortunately, we cannot do the same trick to obtain an optimal algorithm
in the external memory model, since in this model, to our knowledge, there is no
linear space algorithm with reasonable query time to combine with our approximate
levels. Thus, to get an optimal algorithm in the external memory model, we need
to develop additional tools and ideas. This is done in the next section.

5.4 The External Memory Model

We use B to denote the block size in the external memory model. Using our result
on approximate levels, we can re-obtain the same O(n log n) bound on the space
as Vengroff and Vitter [122]; although our data structure will be much simpler.
Nonetheless, to reduce the space complexity, we need the following lemma.

Lemma 5.4.1. Let P ⊂ R3 be a set of n points such that the level of each point
is at most m. We can find t = O(n/m) sets, V1, . . . ,Vt ⊂ P, |Vi| = O(m) such
that for any downward corner r containing k points there exist s = O(k/m) sets
Vt1 , . . . ,Vts with |Pr \ (

⋃s
i=1 Vti)| = O(m) in which Pr = P ∩ r.

60

Proof. Let C = {r1, . . . , rt} be an approximate Cm-level for a constant C to be
determined later. With a slight abuse of the notation, we will use ri to refer to both
the downward corner ri and the subset of P contained in ri. We claim r1, . . . , rt

are the sets claimed in the lemma. By Lemma 5.2.3 we know t = O(n/m).

Consider a downward corner r containing k points. According to Lemma 5.2.3,
we can find an approximate m-level, C ′ = {r′1, . . . , r′t}, of size t′ = O(k/m) for the
points inside r. By definition, C ′ covers the (≤ m)-level of Pr and so every point

of Pr is contained in at least one downward corner of C ′. Thus, Pr =
⋃t′

i=1 r
′
i. If we

could show that for every r′i ∈ C ′ there is another downward corner rj ∈ C which
contains r′i, then our lemma could be easily solved. Unfortunately this is not true
and in fact, r′i may contain Ω(n) points of P (although it can only contain O(m)
points of Pr). Because of this we aim for a slightly weaker claim.

Let (x, y, z) be the coordinates of the apex A of r and (x′, y′, z′) be the coordi-
nates of the apex A′

i of r′i. By Lemma 5.2.3 we know each r′i contains O(m) points;
assume the constant in the O notation is c. Pick C > c. We have four important
cases:

r

r
′

i

A

A′

i

Ar

A′

i

r
′

i

P

x

y

z

Ar

A′

i

r
′

i

(a) (b) (c)

Figure 5.2: (a) r′i is contained inside r. (b) Only the x-coordinate of A′
i is greater

than that of A. (c) Two coordinates of A′
i are greater than those of A.

1. A dominates A′
i (Figure 5.2(a)): In this case r′i contains at most Cm points

of P and is contained in at least one downward corner ri ∈ C. Thus, in this
case r′i ⊂ ri.

2. Only one coordinate of A′
i is not dominated by that of A (Figure 5.2(b)):

Without loss of generality assume it is the x-coordinate (i.e., x < x′, y > y′

and z > z′). In this case, the point Q = (x, y′, z′) is contained in r and thus
dominates at most Cm points of P which means Q is contained in at least
one downward corner ri ∈ C. Thus, in this case r′i ∩ r ⊂ ri.

3. Only one coordinate of A dominates that of A′
i (Figure 5.2(c)): This case can

only happen for three elements of C ′, once for each coordinate; for instance,
if x′ > x and z′ > z, then r′i contains at most Cm points with minimum
y-coordinates in Pr.

4. A′
i dominates A. This case can only happen if Pr contains less than Cm

points.

61

For every downward corner r′i ∈ C′, the first two cases provide us with another
downward corner ri ∈ C such that r′i ∩ r ⊂ ri. The other two cases only cover
O(m) points. Thus, we can find at most t′ downward corners r1, . . . rt′′ ,∈ C such
that |Pr \ (∪t′′

i=1rti)| = O(m) with t′′ = O(k/m).

Remarks. The closest theorem in the context of the halfspace range searching
to the above lemma is the shallow partition theorem by Matoušek. However, the
above lemma does not partition the point set and does not cover all the points
inside the downward corner r. Also, it can be viewed as “output-sensitive” in the
sense that the number of sets contained or intersected by r depends on the number
of points, k, contained in r. It has been observed that such dependence on k is a
desirable property [23]. Thus, an interesting question is whether it is possible to
obtain a similar result for halfspace range searching.

Lemma 5.4.2. There is a data structure for a set P of n points in R3 which can
answer dominance reporting queries with O(logB n + k/B) I/Os using O(n) space.

Proof. Partition P into subsets P1, . . . ,Pr in the following way: define P1 to be the
set of points p ∈ P with level at most B logB n, remove P1 and repeat and continue
this operation until P is partitioned. This construction ensures that every point
p ∈ Pi has level at most O(B logB n) in Pi.

Assume for every Pi we have a data structure which uses O(|Pi|) space and can
answer queries with O(logB |Pi|+k/B) I/Os. Given a query r, we start from P1 and
using the data structure implemented on P1 we return all the points of P1 inside r

and then move on to the next set P2 and continue this until we reach a point set Pi

which does not contain any point in r; at this point we terminate the search. The
crucial observation is that if r contains at least one point from Pi+1 then it must
contain at least B logB n points from Pi−1. This implies k = Ω(iB logB n) and thus
the total query complexity will add up to O((i+1) logB n+k/B) = O(logB n+k/B).
In short, this means that it suffices to solve the problem for point sets P in which
the level of every point is at most B logB n. This will be our assumption in the rest
of the proof.

Let m = B logB n. Using Lemma 5.4.1, compute t = O(n/m) sets, V1, . . . ,Vt,
|Vi| = O(m) and store the points of each set Vi sequentially. Consider a downward
corner r containing k points. According to Lemma 5.4.1 there are s = O(k/m) sets
Vt1 , . . . ,Vts such that |Pr \ (∪s

i=1Vti)| = O(m). We can represent the points inside
r using O(k/m) pointers to sets Vti and an additional list of O(m) points. This is
our storage scheme for the list of points inside a downward corner r.

To make the data structure, we build a hierarchy of approximate ki-levels for
ki = 2im, 0 ≤ i ≤ O(log(n/B)) and we store the list of points in every downward
corner of the approximate levels using our storage scheme. Every downward corner
in an approximate 2im-level has O(2im) points and thus will be stored using O(2i)
pointers and a list of O(m) points. Since this approximate level contains O(n/2im)

62

ranges, the total space consumption for this level will be O(n/m + m). Summing
this up over all the approximate levels and including the space needed to store the
sets V1, . . . ,Vt yields the space complexity of

O

(
n +

n log(n/B)

m
+ m log(n/B)

)
.

A simple calculation reveals this is always O(n) for all values of B.

To answer the query, we find the smallest i such that a downward corner rj

of an approximate 2im-level contains r. This can be done with O(i + 1) steps of
point location, once for every approximate level up to the i-th one. This will also
ensure that rj contains Θ(m2i) = Θ(k) points. The output can be determined by
a linear scan of all the points in rj; however, we have not stored the list of points
of rj directly and thus we must perform O(k/m) I/Os to just access the pointers,
O(k/B) I/Os to access the list of points referenced by these pointers and finally an
additional O(m/B) I/Os to access the list of points stored at rj. This amounts to
O ((i + 1) logB n + k + m/B) = O(logB n + k/B) I/Os.

Combined with the standard reductions (e.g., see [102]), we can obtain the
following corollary.

Corollary 5.4.3. There is a data structure for a set of n points in R3 that can
answer orthogonal range reporting queries using O(n log3 n) space and O(logB n +
k/B) I/Os.

Using an external memory point location data structure of Nekrich [103], we
can also have the following result.

Corollary 5.4.4. There is a data structure for a set of n points in R3 which that
can answer dominance reporting queries using O(n logB n) space and O(log logB U+
(log log n)2 + k/B) I/Os.

The super-linear space complexity of the above corollary stems from the super-
linear requirement of the point location data structure.

63

Chapter 6

Rectilinear Polygon Counting

In this section, we turn to a problem in the area of intersection searching: Let P be
a set of n disjoint rectilinear polygons and let q be a query rectilinear polygon of
constant size. Our goal is to count the number of polygons of set P which intersect
q (whether containment counts as intersection can be specified in the input).

Rectilinear objects appear in many applications, specially areas such as VLSI
design. In computational geometry, many researchers have studied problems related
to intersection reporting and intersection counting of orthogonal objects. In this
area, the simplest problem is to process an input set of n vertical line segments
so that one can report line segments intersecting a horizontal query line segment.
This problem was originally introduced as the rectilinear line segment intersection
problem and was solved in O(log n + k) time using O(n log n) space [119].

The more complicated formulations of the problem allow for input segments to
be marked with a color. This is known as the colored intersection problem in which
the goal is to report or count the set of colors of the input objects intersected by
the query object. The colored version of the rectilinear line segment intersection
problem can be solved in O(log n+k) time using O(n log n) space [14]; the counting
variant can be solved in O(log2 n) time using O(n log2 n) space [72]. If the input is
a collection of rectilinear polygons of total complexity n, then we can color all the
segments of a polygons with the same color and thus report or count the number
of polygons intersecting a query segment within the same time bound.

These techniques do not require disjointness of the given rectilinear polygons;
however, only the reporting variants are able to deal with queries more complicated
than a line segment but in that case the query performance will depend on k which
in worst case can can be Ω(n). In fact, we are not aware of any solution for the
counting problem that can deal with both complex input (i.e., polygons) and queries
that are composed of more than one line segment.

In the next section we develop a combinatorial technique that allows us attack
the disjoint rectilinear polygon counting problem and finally in Section 6.2 obtain
a non-trivial solution for this problem.

65

6.1 A Simple Combinatorial Lemma

r1

r3

r2

r4

c1

c2
c3

c4

(a) (b)

X = {r1, r2, r3, r4}

S = {

{r1, r3},
{r1, r2, r4},

{r2, r4}

}

Figure 6.1: An example of four regions r1, . . . , r4 and four curves c1, . . . , c4 with
curves c1 and c2 being the only two equivalent curves.

Consider a set R of n disjoint regions with simply connected boundaries and a
set C of disjoint simple curves in the plane. We say two curves are equivalent if
they intersect the exact same set of regions from R (see Figure 6.1(a)). Generally,
there could be up to 2n curves such that no two are equivalent (one for each subset
of R). However, we aim to show that if the curves are disjoint, then we cannot have
too many such curves. In fact, there can be at most Θ(n3) curves such that no two
are equivalent.

We mention that a slightly weaker bound can be obtained by using VC-dimension
techniques (Section 2.2). To apply these techniques to our problem, we first need
to define an appropriate set system (X, B). The ground set X in our case is the set
of all the regions R. For every curve c ∈ C we include the subset of R crossed by
c in B. Notice that equivalent curves result in the same subset of R and thus size
of B is equal to the number of non-equivalent curves (see Figure 6.1(b)). Thus, we
need to show that the set system defined above has constant VC-dimension.

This is done by a K5-avoidance argument. Let A be a set of five regions
r1, . . . , r5. The induced set system S|A cannot contain all the

(
5
2

)
subsets of size

two of A (see Figure 6.2): The set of curves that cross exactly two regions can
be regarded as the set of edges of a graph built on regions. This graph will be
planar (since the curves are disjoint by definition) and thus cannot contain a K5 as
a subgraph meaning A cannot be shattered.

This implies the size of any shattered set is at most four and thus the VC-
dimension of the set system is at most four. According to Theorem 2.2.1, the
maximum number of non-equivalent curves is O(n4). While this looks like an
interesting bound, it is not tight. In the remainder of this section we describe two
improvements upon this bound. We start off with a special case of the problem.

66

r1

r2

r3

r4

r5

Figure 6.2: It is impossible to connect r1 to r4 without either crossing an existing
curve or going through a third region.

Lemma 6.1.1. Assume R is a set of n disjoint regions and C is a set of pairwise
non-intersecting curves with common endpoints p and q, p 6= q. If no two curves
are equivalent in C, then |C| = O(n).

Proof. Let c1, c2, . . . , cm be the given curves, ordered clockwise around p. We define
cm to be before c1 and c1 to be after cm, resulting in a cyclic order. For every i,
consider two adjacent curves ci and ci+1. These two curves are not equivalent, so
they do not pass through the same set of regions. This implies that there is at least
one region r which intersects exactly one of them. We charge ci to r. Obviously,
we have charged m− 1 units in total. In the cyclic ordering of the curves, consider
the curves ci and cj such that all the curves from ci to cj intersect r and all the
curves from cj to ci do not intersect r. The total charge of r is at most two since
only ci−1 and cj can be charged to r. This proves |C| = O(n).

Lemma 6.1.2. (The Main Lemma) Assume R is a set of n disjoint regions and C

is a set of pairwise non-intersecting curves. If no two curves are equivalent in C,
then |C| = O(n3).

Proof. Consider one curve c ∈ C. Begin from one endpoint of c and start erasing
(or shrinking) c from that endpoint. This process can be viewed as moving the
endpoint along the curve c. We continue this shrinking process until the endpoint
of c lies on a boundary point p of a region r such that r and c only intersect at
p. We repeat the same process for the other endpoint of c and call the resulting
curve c′. In other words, the curve c′ is a minimal sub-curve of c which intersects
the exact same regions as c; thus this operation preserves the equivalence relation.
(See Figure 6.3.)

We do this operation on all the curves in C. Let C′ be the set of shrunken curves.
Every curve c ∈ C′ has the property that it starts from (and ends at) the boundary
of a region r and never passes through that region again. For two regions ri and
rj, let Cij be the set of curves that have one endpoint in ri and another endpoint in

67

(a) (b) (c)

Figure 6.3: (a) Erasing from the endpoints marked with circle. (b) Erasing from
the other endpoints. (c) The final curves.

rj. If we consider only the curves in Cij, then we can contract the regions ri and rj

to two points and apply Lemma 6.1.1. This implies that Cij contains O(n) curves.
(For the special case i = j, we have |Cii| ≤ 1, since at most one curve is entirely
contained in ri.) There are O(n2) different sets of Cij and thus the total number of
curves in C′ and C is O(n3).

The above lemma is optimal in terms of n (as we shall see later) but we can
still improve upon it by introducing another parameter:

Lemma 6.1.3. Assume R is a set of n disjoint regions and C is a set of pairwise
non-intersecting curves. If no two curves are equivalent in C, then |C| = O(nk2) in
which k is the maximum number of regions crossed by a curve.

Proof. We use the random sampling idea of Clarkson and Shor demonstrated in
Lemma 1.1.1.

Take a random sample Q ⊆ R where each region is included with probability
1/k. We define a planar (multi)graph GQ where vertices are the contracted regions
of Q, as follows. Assume the curves have been shrunk as in the earlier proof. Fix
two regions ri and rj. Let c1, . . . , cm be the curves in Cij in clockwise order around
ri. For m = 1, if ri and rj are in Q and all of the ≤ k regions intersecting c1

are not in Q, then add c1 to GQ as an edge between ri and rj. Observe that the
probability that c1 is added is at least 1/k2(1− 1/k)k = Ω(1/k2). For m > 1, take
each consecutive pair (ct, ct+1) and let r(ct, ct+1) be a region intersected by ct+1 but
not ct, or a region intersected by ct but not ct+1. Color the pair red in the former
case, and blue otherwise. Without loss of generality, assume that at least half of
all pairs are red. For a red pair (ct, ct+1), if ri, rj, and r(ct, ct+1) are in Q and all of
the ≤ k regions intersecting ct are not in Q, then add the curve ct to the graph GQ

as an edge between ri and rj. Observe that the probability that ct is added is at
least 1/k3(1− 1/k)k = Ω(1/k3). Thus, E[GQ] = Ω(|C|/k3).

On the other hand, E[|V (GQ)|] = O(n/k). By Euler’s formula, every planar
graph with all face lengths at least 3 (in particular, every simple planar graph)
has a linear number of edges. Our graph GQ is planar but not simple. However,

68

between any 2 parallel edges, there is at least one vertex in GQ: for any two parallel
edges ct and cu between ri and rj, the fact that ct and cu are added as edges implies
these two curves do not intersect any region except ri and rj and furthermore, ct+1

intersects r(ct, ct+1) and cu+1 intersects r(cu, cu+1). Because of this property, we
may assume that GQ has no faces of length 2 (by adding extra edges to isolated
vertices if necessary). Thus, E[|E(GQ)|] = O(n/k).

We can conclude that |C|/k3 = O(n/k).

We can apply Lemmas 6.1.2 and 6.1.3 to the case of connected components
formed by a set of axis-parallel rectangles, or more generally, polygons. Assume we
have a set P of polygons. A connected component Ci is a set of polygons such that
any two polygons p1, p2 ∈ Ci are connected by a chain of intersecting polygons in
Ci. Assume P forms m connected components. Given a set R of n disjoint regions,
we say two connected components are equivalent if and only if the set of regions
that they intersect is identical.

Corollary 6.1.4. Assume a set of simple polygons forms a set C of connected com-
ponents and R is a set of n disjoint regions. If there exists no pairwise equivalent
components in C, then |C| = O(n3). Furthermore, if X is the total number of inter-
sections of the polygons’ boundaries with the regions, then |C| = O(n + n1/3X2/3).

Proof. If a component ci completely contains a region rj (i.e., rj is completely
inside the union of all polygons in ci), then we delete both ci and rj. Since no
other component can intersect rj, this operation preserves the equivalence relation.
By repeating this operation, we remove a total of O(n) components and at the
end no region is completely contained in a connected component. Thus, a region
rj intersects ci if and only if rj intersects the boundary of a polygon in ci. So, it
suffices to consider a set of line segments rather than polygons.

Pick one connected component ci and look at the arrangement created by the
line segments of ci. Pick one cell except the outer cell of the arrangement and cut
one bounding segment of this cell at some arbitrary point (as in Figure 6.4). This
operation connects this cell to its neighboring cell. We repeat this for all the other
remaining cells until only one cell, the outer cell, is left in the arrangement. Define
the curve c′i as the Eulerian tour of this arrangement.

The resulting curves are disjoint and they intersect the same set of regions as
their corresponding connected component. Using Lemma 6.1.2 we conclude that
|C| = O(n3).

To get a bound sensitive to X, observe that there are at most X/k components
intersecting more than k regions. Using Lemma 6.1.3 we conclude that |C| =
O(nk2 + X/k). We can set k = (X/n)1/3.

69

Figure 6.4: Changing a connected component into a curve.

Remark. The bounds in Lemmas 6.1.2 and 6.1.3 and Theorem 6.1.4 are all tight,
as we can see from the following example of a set R of Θ(n) regions and a set C

of Θ(nk2) curves, for any given k ≤ n: Let R contain the 2k vertical segments
{i} × [0, n + 1] for i = −k, . . . ,−1 and i = 1, . . . , k, as well as n short vertical
segments {0} × [t− ε, t + ε] for t = 1, . . . , n (see Figure 6.5(a)). Let C contain nk2

horizontal segments [i, j]×{t} for all i = −k, . . . ,−1, j = 1, . . . , k, and t = 1, . . . , n.
Small perturbations can ensure that the segments in C are disjoint. No two segments
in C are equivalent. Furthermore, all the curves are horizontal segments. This
construction immediately proves the tightness of Lemmas 6.1.2 and 6.1.3. To see
the tightness of Corollary 6.1.4, notice that in this construction we have X = Θ(nk3)
and the number of segments (i.e., curves) is Ω(nk2) = Ω(n + n1/3X2/3).

i :
−k −1

.

1 k2−2

t = 1

t = n

(a)

−k −1

. . .

1 k2−2

(b)

.

.

.

.

.

.

.

.

.

. . .

.

.

.

.

.

.

.

.

.

Figure 6.5: A set of Θ(n) regions and Θ(nk2) curves.

One of the main motivations behind combinatorial lemma described in this
section, was the dynamic connectivity. As we do not discuss dynamic algorithms
in this thesis, we simply mention that using the above lemma, we can obtain a
data structure that supports connectivity queries in a set of orthogonal rectangles
in O(1) time and updates in Õ(n10/11) = O(n0.910) time [3].

6.2 Intersection Counting for Disjoint Rectilin-

ear Polygons

Let S be a set of rectilinear disjoint polygons containing a total of n vertices. A
query q in our problem is another rectilinear polygon of constant size and the answer
must be the number of polygons of S which intersect q(see Figure 6.6(a)).

70

q

(a) (b)

Figure 6.6: (a) An example of disjoint rectilinear polygon counting. (b) The gen-
eralization of the problem where the objects are connected components formed by
a set of polygons and the query is not even assumed to be a single connected com-
ponent. If a polygon is shaded then containment counts as intersection for that
polygon.

We generalize this problem slightly in the following way. We remove the as-
sumption that the polygons of S are disjoint but instead ask for the number of
connected components intersected by q. Let C be the set of connected components
formed by elements of S. A connected component c ∈ C is said to intersect q if q
intersects or is contained in at least one of the polygons composing c. Furthermore,
we allow the query object to be any set of rectilinear objects of total constant size.

Fix a parameter t and build a t × t grid by drawing vertical (and similarly
horizontal) lines at every n/t-th corner vertex of S so that each vertical or horizontal
slab contains O(n/t) vertices. We call this grid a t-grid (see Figure 6.7).































n

t

vertices

Figure 6.7: An example of a q-grid.

Let the set of regions R be the set of Θ(t2) non-intersecting (vertical and horizon-
tal) line segments which form this grid. We define the equivalence of two connected
components as before and give subroutines that help in computing and maintaining
the corresponding equivalence classes.

We have developed the combinatorial aspects of our results in Lemmas 6.1.2
and 6.1.3 and Corollary 6.1.4 but for these to have any meaningful algorithmic

71

results we must be able to build and manipulate the set of equivalent classes defined
by R. This is done as follows.

Consider a connected component c ∈ C. We define a canonical representation
for the set of regions (grid segments) intersected by c, with the intention that two
components are equivalent (i.e., they cross the same set of regions) if and only if
their representations are identical. (A naive bit-vector representation of size Θ(t2)
would be too long for our purposes.)

First, if a polygon of c entirely contains a region r, then c is the only component
of its equivalence class. In this case we store r as the representation for c. If
this is not the case, then we proceed to find a representation for the set of regions
intersected by b, the union of all line segments bounding the polygons of c. Consider
the i-th row of the grid (a horizontal slab) and let ri,0, · · · , ri,t be the regions (vertical
grid segments) contained in this row, ordered from left to right. We represent the
regions intersected by b in this row by a list of intervals, (ri,j1 , ri,j′1

), · · · , (ri,jk
, ri,j′k

),
where j1 ≤ j′1 ≤ · · · ≤ jk ≤ j′k (for an example see Figure 6.8). Here, an interval
(ri,j, ri,j′) indicates that b intersects regions ri,j+1 to ri,j′−1 but not the regions ri,j

and ri,j′ . We build a similar representation for the columns of the grid (vertical
slabs) and define the representation of c to be the concatenation of these lists for
all the rows and columns of the grid. Note that the size of this representation is
O(min{|c|, t2}), where |c| denotes the number of rectangles in c.

ri,0 ri,1 ri,2 ri,3 ri,4 ri,5 ri,6 ri,7 ri,8

Figure 6.8: A connected component with interval representation of (r1, r4), (r4, r8)
for the i-th row.

Consider a set S of simple polygons forming a set C of

Lemma 6.2.1. Given a t-grid and a set S of simply polygons of total complexity
n we can find the connected components and the set of equivalence classes in Õ(n)
time.

Proof. The connected components can be found in O(n log n) time by a sweep-
line algorithm [76]. To build the classes, we need to compute the representation
for each connected component c. Since elements of S are rectilinear polygons, we
can do this by considering vertical and horizontal segments separately. Within
each row, the key subproblem is to compute the union of the x-intervals of the
horizontal segments contained in the row. By sorting and scanning, the union of
any m given (one-dimensional) intervals can be constructed in O(m log m) time.
Within each column, we have a similar subproblem. The total time to compute the
representation for c is therefore O(|c| log |c|).

72

If we interpret the representation of the components as long strings, we can
compare the representation of two components c1 and c2 in O(min{|c1|, |c2|}) time
using the lexicographical ordering of strings. Since the total size of these strings
is O(n), we can sort the strings lexicographically in Õ(n) time, for example, by
mergesort. This will put all the elements of the same class in consecutive order.
Finally, a linear scan can be used to separate the components into classes.

Theorem 6.2.2. Given a set of disjoint simple rectilinear polygons in the plane of
total complexity n, we can build a data structure in Õ(n) time and space, so that
we can count the number of polygons intersecting a query component of constant
size in Õ(n6/7) time.

Proof. We build a t-grid for a parameter t and compute the connected components
and the corresponding set of classes according to Lemma 6.2.1 and let M be the
number of resulting equivalent classes. According to Lemma 6.1.4 we have M =
O(t6). For each polygon, we keep an intersection-search data structure [64]. For
each equivalence class `, we record the number of its components. Finally, we break
down the class of components intersecting no regions into O(t2) smaller classes, one
for each cell of the grid.

Let q be the query object. We call the slabs of the grid which contain a vertex
of q the special slabs; each special slab contains O(n/t) corners and thus the total
number of components with a corner in these slabs is O(n/t). In O(n/t) time we
count such components manually and mark them to prevent double counting in the
next step.

Now we claim that if a connected component c1 of a class ` intersects q, then
any other member c2 of ` will intersect q as well. We consider two cases. The
first case is when an element of q entirely contains c1 (Figure 6.9(a)). Note that
if c1 does not intersect any region then its cell must be contained by q since we
have removed all the components from the special slabs of q. So we can assume c1

intersects at least one region r1 (Figure 6.9(b)). Since c1 does not have any corners
in the special slabs (otherwise it would be removed), q entirely contains r1. Since c1

and c2 are equivalent, c2 must also intersect r1, and thus q. The second case is when
c1 intersects a bounding segment s of q; say s is horizontal (Figure 6.9(c)). Since
c1 does not have any corners in the special slabs, we can find a grid cell (rectangle)
such that c1 cuts through the cell vertically while s′ cuts through it horizontally.
Since c1 and c2 are equivalent and c2 does not have any corners in the special slabs
either, c2 must cut through the same cell vertically and must intersect s, and thus
q.

The above implies that if an unmarked component of a class ` intersects q, then
any other unmarked member of ` intersects q as well. So, we go through each
class `, and if an arbitrary unmarked component in ` intersects q, we increase the
counter by the number of unmarked components in `. This takes O(M) = Õ(t6)
additional time. The total query time Õ(t6 + n/t) is asymptotically minimized for
t = n1/7.

73

q

c1

(a)

q c1
r1

(b)

c1

s

(c)

Figure 6.9: The query object (or parts of it) is drawn with dotted lines and the
segments of the grid is drawn with dashed lines. c1 represents a connected compo-
nent.

74

Chapter 7

Conclusion

In this thesis we have studied problems in range searching, intersection counting,
and statistical depth. While we have resolved some of the problems we consider,
there are still questions left open.

As we have discussed in Chapter 2, one general important question is how to
improve the efficiency of range searching data structures. We have provided partial
answers to this question using relative approximations, but there are still many ideas
(such as assuming a probability distribution on the query range and obtaining a
distribution sensitive range searching data structure) that can be tried.

The results in Chapter 3 leave two open questions: approximate Tukey depth
and regression depth queries in 3D. For the former problem we have provided an
almost optimal answer, with an extra log log n factor, but we have not obtained
any nontrivial results for the second problem. The trivial lower bound for both
problems is linear space and Ω(log n) query time.

In Chapter 4, we have described the first data structure to approximate pla-
nar simplicial depth queries in Õ(1) time using Õ(1) space; however, we have not
optimized the logarithmic factors for our 2D approximate simplicial depth data
structure. While it seems difficult to obtain an data structure with linear space
and O(log n) query time, some of the logarithmic factors could perhaps be re-
moved. Another important problem is to improve the efficiency of the simplicial
depth algorithms (exact or approximate) in higher dimensions. Obtaining any non-
trivial lower bound for this problem would also be an important result, as there are
none in the literature at the moment.

In Chapter 5, we have shown that the dominance reporting problem reduces
to point location in a rectilinear arrangement. Thus, an improved point location
data structure in the word RAM model would result in an improved orthogonal
range searching data structure in 3 and higher dimensions. Alternatively, we can
directly turn to the orthogonal range searching data structures and try to improve
the space bounds of the data structures obtained here. A very recent manuscript
by Karpinski and Nekrich [81] reduces some of the log n factors from the space

75

complexity but increases the query time slightly to O(log log U + (log log n)3 + k).
Another open question is whether it is possible to prove an analogue of Lemma 5.4.1
for halfspace range reporting in 3D. If so, then halfspace range reporting can
be solved optimally in various models of computation as well (In a very recent
collaboration with Timothy M. Chan, we have solved the halfspace range reporting
model in the standard RAM model but the solution in the external memory model
is still a log∗ n factor off from optimal [2]). The lower bound we present in the
appendix shows that we cannot hope to obtain an analogue of Lemma 5.4.1 via a
partition.

In Chapter 6, we have described a combinatorial lemma regarding a set of
regions and a set of curves. Using this we have obtained a data structure for disjoint
rectilinear polygon counting with Õ(n6/7) query time. It would be interesting to see
what other applications can be found for this lemma. Perhaps it is possible to lower
the exponent of our query time, although a polylogarithmic query time seems out
of reach. Also, since the combinatorial lemma applies to non-rectilinear polygons
as well, another open question is whether a similar counting data structure can
be built without the rectilinear assumption. In general, it would be worthwhile to
have a more detailed study of the connection between this combinatorial lemma,
intersection searching and “VC-dimension” of disjoint polygons.

76

Bibliography

[1] P. Afshani. On dominance reporting in 3D. In ESA’08: Proceedings of the
16th conference on Annual European Symposium, pages 41–51, 2008. 20

[2] P. Afshani and T. M. Chan. Optimal halfspace range reporting in three di-
mensions. To appear in SODA’09: Proceedings of the 20th Annual Symposium
on Discrete Algorithms. 76

[3] P. Afshani and T. M. Chan. Dynamic connectivity for axis-parallel rectan-
gles. In ESA’06: Proceedings of the 14th conference on Annual European
Symposium, pages 16–27, 2006. Algorithmica, to appear. 20, 70

[4] P. Afshani and T. M. Chan. On approximate range counting and depth.
In SCG ’07: Proceedings of the 23rd Annual Symposium on Computational
Geometry, pages 337–343. ACM Press, 2007. Invited to Discrete and Com-
putational Geometry (SOCG special issue). 19

[5] P. K. Agarwal. Range searching. In J. E. Goodman and J. O’Rourke, editors,
CRC Handbook of Discrete and Computational Geometry. CRC Press, Inc.,
2004. 3

[6] P. K. Agarwal, L. Arge, J. Erickson, P. G. Franciosa, and J. S. Vitter. Efficient
searching with linear constraints. Journal of Computer and System Sciences,
61(2):194–216, 2000. 56

[7] P. K. Agarwal, B. Aronov, T. M. Chan, and M. Sharir. On levels in arrange-
ments of lines, segments, planes, and triangles. Discrete and Computational
Geometry, Volume 19:315–331, 1998. 5

[8] P. K. Agarwal, B. Aronov, and M. Sharir. On levels in arrangements of lines,
segments, planes, and triangles. In SCG ’97: Proceedings of the 13th Annual
Symposium on Computational Geometry, pages 30–38. ACM, 1997. 5

[9] P. K. Agarwal, A. Efrat, and M. Sharir. Vertical decomposition of shallow
levels in 3-dimensional arrangements and its applications. SIAM Journal on
Computing, 29(3):912–953, 2000. 58

77

[10] P. K. Agarwal and J. Erickson. Geometric range searching and its relatives.
In B. Chazelle, J. E. Goodman, and R. Pollack, editors, Advances in Discrete
and Computational Geometry. AMS Press, 1999. 3

[11] P. K. Agarwal, E. Nevo, J. Pach, R. Pinchasi, M. Sharir, and S. Smorodinsky.
Lenses in arrangements of pseudo-circles and their applications. Journal of
the ACM, 51(2):139–186, 2004. 5

[12] P. K. Agarwal and M. Sharir. Pseudo-line arrangements: duality, algorithms,
and applications. SIAM Journal on Computing, 34(3):526–552, 2005. 5

[13] P. K. Agarwal, M. Sharir, and E. Welzl. Algorithms for center and Tver-
berg points. In SCG ’04: Proceedings of the 12th Annual Symposium on
Computational Geometry, pages 61–67. ACM Press, 2004. 19

[14] P. K. Agarwal and M. van Kreveld. Polygon and connected component in-
tersection searching. Algorithmica, 15:626–660, 1996. 65

[15] A. Aggarwal, M. Hansen, and T. Leighton. Solving query-retrieval problems
by compacting Voronoi diagrams. In STOC ’90: Proceedings of the 22nd
Annual ACM Symposium on Theory of Computing, pages 331–340. ACM
Press, 1990. 12

[16] G. Aloupis, C. Cortés, F. Gómez, M. Soss, and G. Toussaint. Lower bounds
for computing statistical depth. Journal of Computer and System Sciences,
40(2):223–229, 2002. 16, 17

[17] G. Aloupis, S. Langerman, M. Soss, and G. Toussaint. Algorithms for bi-
variate medians and a Fermat–Torricelli problem for lines. Computational
Geometry Theory and Applications, 26(1):69–79, 2003. 17

[18] S. Alstrup, G. S. Brodal, and T. Rauhe. New data structures for orthogonal
range searching. In FOCS ’00: Proceedings of the 41st Annual Symposium on
Foundations of Computer Science, page 198. IEEE Computer Society, 2000.
13, 57

[19] N. Amenta, M. W. Bern, D. Eppstein, and S.-H. Teng. Regression depth and
center points. Discrete and Computational Geometry, 23:305–323, 1998. 18,
19

[20] L. Arge, V. Samoladas, and J. S. Vitter. On two-dimensional indexability
and optimal range search indexing. In PODS ’99: Proceedings of the 18th
Symposium on Principles of Database Systems, pages 346–357. ACM, 1999.
14

[21] B. Aronov and S. Har-Peled. On approximating the depth and related prob-
lems. In SODA ’05: Proceedings of the 16th Annual Symposium on Discrete
Algorithms, pages 886–894. Society for Industrial and Applied Mathematics,
2005. 26, 29, 30

78

[22] B. Aronov and S. Har-Peled. On approximating the depth and related prob-
lems, 2005. http://valis.cs.uiuc.edu/˜sariel/research/papers/04/depth/. 30

[23] B. Aronov, S. Har-Peled, and M. Sharir. On approximate halfspace range
counting and relative epsilon-approximations. In SCG ’07: Proceedings of
the 23rd Annual Symposium on Computational Geometry, pages 327–336.
ACM, 2007. 62

[24] B. Aronov, M. Pellegrini, and M. Sharir. On the zone of a surface in a
hyperplane arrangement. Discrete and Computational Geometry, 9(2):177–
186, 1993. 50

[25] S. Arya, T. Malamatos, and D. M. Mount. Space-time tradeoffs for approxi-
mate spherical range counting. In SODA ’05: Proceedings of the 16th Annual
Symposium on Discrete Algorithms, pages 535–544. Society for Industrial and
Applied Mathematics, 2005. 22

[26] S. Arya and D. M. Mount. Approximate range searching. Computational
Geometry Theory and Applications, 17(3-4):135–152, 2000. 21

[27] D. Avis. The m-core properly contains the m-divisible points in space. Pattern
Recognition Letters, 14(9):703–705, 1993. 19

[28] A. Bagchi, A. Chaudhary, D. Eppstein, and M. T. Goodrich. Deterministic
sampling and range counting in geometric data streams. In SCG ’04: Pro-
ceedings of the 20th Annual Symposium on Computational Geometry, pages
144–151. ACM Press, 2004. 39

[29] I. Bárány. A generalization of Carathédory’s theorem. Discrete Mathematics,
40:141–152, 1982. 40

[30] J. L. Bentley. Multidimensional divide-and-conquer. Communications of the
ACM, 23(4):214–229, 1980. 13

[31] M. Bern and D. Eppstein. Multivariate regression depth. Discrete and Com-
putational Geometry, 28:1–17, 2002. 34

[32] H. Brönnimann, B. Chazelle, and J. Pach. How hard is half-space range
searching? Discrete and Computational Geometry, 10:143–155, 1993. 12

[33] C. Carathéodory. Über den variabilitätsbereich der koeffizienten von poten-
zreihen, die gegebene werte nicht annehmen. Math. Ann, 64:95–115, 1907.
40

[34] C. Carathéodory. Über den variabilitätsbereich der fourierschen konstanten
für positiven harmonischen funktionen. Rend. Circ. Mat. Palermo, 32:193–
217, 1911. 40

79

[35] T. M. Chan. Random sampling, halfspace range reporting, and construction
of (≤ k)-levels in three dimensions. In FOCS ’98: Proceedings of the 39th An-
nual Symposium on Foundations of Computer Science, pages 586–595. IEEE
Computer Society, 1998. 12

[36] T. M. Chan. Low-dimensional linear programming with violations. SIAM
Journal on Computing, 34:879–893, 2000. 10, 49

[37] T. M. Chan. Random sampling, halfspace range reporting, and construction
of (≤ k)-levels in three dimensions. SIAM Journal on Computing, 30(2):561–
575, 2000. 12, 32, 50

[38] T. M. Chan. On enumerating and selecting distances. International Journal
of Computational Geometry and Applications, 11:291–304, 2001. 29

[39] T. M. Chan. On levels in arrangements of curves. Discrete and Computational
Geometry, 29:375–393, 2003. 5

[40] T. M. Chan. On levels in arrangements of curves, II: A simple inequality and
its consequences. Discrete and Computational Geometry, 34:11–24, 2004. 5

[41] T. M. Chan. An optimal randomized algorithm for maximum Tukey depth.
In SODA ’04: Proceedings of the 15th Annual Symposium on Discrete Algo-
rithms, pages 430–436. Society for Industrial and Applied Mathematics, 2004.
17

[42] T. M. Chan. On levels in arrangements of surfaces in three dimensions. In
SODA ’05: Proceedings of the 16th annual ACM-SIAM symposium on Dis-
crete algorithms, pages 232–240. Society for Industrial and Applied Mathe-
matics, 2005. 5

[43] T. M. Chan. On levels in arrangements of curves, III: further improvements.
In SCG’08: Proceedings of the 24th Annual Symposium on Computational
Geometry, pages 85–93, 2008. 5

[44] B. Chazelle. Filtering search: a new approach to query answering. SIAM
Journal on Computing, 15(3):703–724, 1986. 13, 14

[45] B. Chazelle. Functional approach to data structures and its use in multi-
dimensional searching. SIAM Journal on Computing, 17(3):427–462, 1988.
13

[46] B. Chazelle. Lower bounds on the complexity of polytope range searching.
Journal of the American Mathematical Society, 2:637–666, 1989. 11

[47] B. Chazelle. Cutting hyperplanes for divide-and-conquer. Discrete and Com-
putational Geometry, 9(2):145–158, 1993. 7

80

[48] B. Chazelle. Cuttings. In Handbook of Data Structures and Applications.
Chapman and Hall/CRC, 2005. 7

[49] B. Chazelle and H. Edelsbrunner. Linear space data structures for two types
of range search. Discrete and Computational Geometry, Volume 2(1):113,126,
1987. 15, 56, 59

[50] B. Chazelle and L. J. Guibas. Fractional cascading: A data structuring tech-
nique with geometric applications. Algorithmica, 1:133–162, 1986. 13

[51] B. Chazelle, L. J. Guibas, and D. T. Lee. The power of geometric duality.
BIT, 25(1):76–90, 1985. 12

[52] B. Chazelle, D. Liu, and A. Magen. Approximate range searching in higher
dimension. Computational Geometry Theory and Applications, 39(1):24–29,
2008. 22

[53] B. Chazelle and F. P. Preparata. Halfspace range search: an algorithmic ap-
plication of k-sets. Discrete and Computational Geometry, 1(1):83–93, 1986.
12

[54] B. Chazelle, M. Sharir, and E. Welzl. Quasi-optimal upper bounds for simplex
range searching and new zone theorems. Algorithmica, 8:407–429, 1992. 11

[55] A. Y. Cheng and M. Ouyang. On algorithms for simplicial depth. In Pro-
ceedings of the 13th Canadian Conference on Computational Geometry, pages
53–56, 2001. 18

[56] K. L. Clarkson and P. W. Shor. Applications of random sampling in com-
putational geometry, II. Discrete and Computational Geometry, 4:387–421,
1989. 6, 12, 35

[57] E. Cohen. Size-estimation framework with applications to transitive closure
and reachability. Journal of Computer and System Sciences, 55(3):441–453,
1997. 30

[58] M. de Berg, K. Dobrindt, and O. Schwarzkopf. On lazy randomized incremen-
tal construction. Discrete and Computational Geometry, 14:261–286, 1995.
50

[59] M. de Berg and O. Schwarzkopf. Cuttings and application. International
Journal of Computational Geometry and Applications, 5:343–355, 1995. 36

[60] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Compu-
tational Geometry: Algorithms and Applications. Springer-Verlag, 1997. 4,
24

[61] M. de Berg, M. van Kreveld, and J. Snoeyink. Two- and three-dimensional
point location in rectangular subdivisions. Journal of Algorithms, 18(2):256–
277, 1995. 59, 60

81

[62] T. K. Dey. Improved bounds for planar k-sets and related problems. Discrete
and Computational Geometry, 19:373–382, 1998. 5

[63] H. Edelsbrunner. Algorithms in Combinatorial Geometry, volume 10 of
EATCS Monographs on Theoretical Computer Science. Springer-Verlag, 1987.
10, 34

[64] H. Edelsbrunner and H. A. Maurer. On the intersection of orthogonal objects.
Information Processing Letters, 13:177–181, 1981. 73

[65] P. Erdős, L. Lovász, A. Simmons, and E. Straus. Dissection graphs of planar
point sets. In J. N. Srivastava, editor, A Survey of Combinatorial Theory,
pages 139–154. North-Holland, 1973. 4, 5

[66] J. Erickson. New lower bounds for halfspace emptiness. In FOCS ’96: Pro-
ceedings of the 37th Annual Symposium on Foundations of Computer Science,
pages 472–481. IEEE Computer Society, 1996. 12

[67] J. Erickson. Space-time tradeoffs for emptiness queries. SIAM Journal on
Computing, 29(6):1968–1996, 2000. 12

[68] M. L. Fredman. A lower bound on the complexity of orthogonal range queries.
Journal of the ACM, 28(4):696–705, 1981. 11

[69] M. L. Fredman and D. E. Willard. Surpassing the information theoretic bound
with fusion trees. Journal of Computer and System Sciences, 47(3):424–436,
1993. 13

[70] J. Gil, W. Steiger, and A. Wigderson. Geometric medians. Discrete Mathe-
matics, 108(1-3):37–51, 1992. 17, 18, 50

[71] P. M. Gruber and J. M. Wills, editors. Handbook of Convex Geometry :
Two-Volume Set. North Holland, August 1993. 40

[72] P. Gupta, R. Janardan, and M. Smid. Computational geometry: generalized
intersection searching. In Handbook of Data Structures and Applications,
chapter 64, pages 1–17. Chapman & Hall/CRC, 2005. 65

[73] S. Har-Peled and M. Sharir. Relative ε-approximations in geometry, 2006.
http://valis.cs.uiuc.edu/˜sariel/research/papers/06/relative/. 30

[74] S. Hart and M. Sharir. Nonlinearity of Daveport-Schinzel sequences and of
generalized path compression schemes. Combinatorica, 6(2):151–177, 1986.
36

[75] D. Haussler and E. Welzl. Epsilon-nets and simplex range queries. Discrete
and Computational Geometry, 2:127–151, 1987. 23, 24

82

[76] H. Imai and T. Asano. Finding the connected components and a maximum
clique of an intersection graph of rectangles in the plane. Journal of Algo-
rithms, 4(4):310–323, 1983. 72

[77] S. Jadhav and A. Mukhopadhyay. Computing a centerpoint of a finite planar
set of points in linear time. Discrete and Computational Geometry, 12:291–
312, 1994. 17

[78] J. JaJa, C. W. Mortensen, and Q. Shi. Space-efficient and fast algorithms
for multidimensional dominance reporting and counting. In ISAAC 2004:
International Symposium on Algorithms and Computation, pages 558–568,
2004. 15, 56

[79] D. S. Johnson. Approximation algorithms for combinatorial problems. In
STOC ’73: Proceedings of the 5th annual ACM symposium on Theory of
computing, pages 38–49. ACM, 1973. 23

[80] H. Kaplan and M. Sharir. Randomized incremental constructions of three-
dimensional convex hulls and planar Voronoi diagrams, and approximate
range counting. In SODA ’06: Proceedings of the 17th Annual Symposium on
Discrete Algorithms, pages 484–493. ACM Press, 2006. 26, 30, 32

[81] M. Karpinski and Y. Nekrich. Space-efficient multi-dimensional range report-
ing. see http://arxiv.org/abs/0806.4361v1. 75

[82] N. Katoh and T. Tokuyama. k-levels of concave surfaces. Discrete and Com-
putational Geometry, 27:567–584, 2002. 5

[83] S. Khuller and J. S. B. Mitchell. On a triangle counting problem. Information
Processing Letters, 33(6):319–321, 1990. 17

[84] J. H. Kim and V. H. Vu. Concentration of multivariate polynomials and its
applications. Combinatorica, 20:417–434, 2000. 42

[85] S. Langerman and W. Steiger. An optimal algorithm for hyperplane depth
in the plane. In SODA ’00: Proceedings of the 11th Annual Symposium on
Discrete Algorithms, pages 54–59. Society for Industrial and Applied Mathe-
matics, 2000. 18

[86] S. Langerman and W. L. Steiger. Optimization in arrangements. In STACS
’03: Proceedings of the 20th Annual Symposium on Theoretical Aspects of
Computer Science, pages 50–61. Springer-Verlag, 2003. 17, 18

[87] C.-Y. Lo and W. L. Steiger. An optimal time algorithm for ham-sandwich
cuts in the plane. In Proceedings of the 2nd Canadian Conference on Com-
putational Geometry, pages 5–9, 1990. 8

[88] L. Lovász. On the number of halving lines. Annal. Univ. Scie. Budapest. de
Rolando Eötvös Nominatae, Sectio Math., 14:107–108, 1971. 4, 5

83

[89] L. Lovász. On the ratio of optimal integral and fractional covers. Discrete
Mathematics, 13:383–390, 1975. 23

[90] G. S. Lueker. A data structure for orthogonal range queries. In FOCS ’78:
Proceedings of the 19th Annual Symposium on Foundations of Computer Sci-
ence, pages 28–34, 1978. 13

[91] C. Makris and A. Tsakalidis. Algorithms for three-dimensional dominance
searching in linear space. Inf. Process. Lett., 66(6):277–283, 1998. 15, 56, 59

[92] A. Marcus and G. Tardos. Intersection reverse sequences and geometric ap-
plications. Journal of Combinatorial Theory, Series A, 113(4):675–691, 2006.
5

[93] J. Matoušek. Range searching with efficient hierarchical cuttings. Discrete
and Computational Geometry, 10(2):157–182, 1993. 9, 11

[94] J. Matoušek. Geometric set systems. European Congress of Mathematics,
2:1–27, 1998. 23

[95] J. Matoušek. Computing the center of a planar point set. Discrete and
Computational Geometry, pages 221–230, 1991. 17

[96] J. Matoušek. Efficient partition trees. Discrete and Computational Geometry,
8(3):315–334, 1992. 8, 9

[97] J. Matoušek. Reporting points in halfspaces. Computational Geometry Theory
and Applications, 2(3):169–186, 1992. 9, 10, 11, 87

[98] J. Matoušek. Tight upper bounds for the discrepancy of halfspaces. Discrete
and Computational Geometry, 13:593–601, 1995. 23

[99] J. Matoušek. Lectures on Discrete Geometry. Springer-Verlag, 2002. 23

[100] J. Matoušek, E. Welzl, and L. Wernisch. Discrepancy and approximations for
bounded vc-dimension. Combinatorica, 13:455–466, 1995. 23

[101] E. M. McCreight. Priority search trees. SIAM Journal on Computing,
14(2):257–276, 1985. 13

[102] Y. Nekrich. A data structure for multi-dimensional range reporting. In SCG
’07: Proceedings of the 23rd Annual Symposium on Computational Geometry,
pages 344–353. ACM, 2007. 13, 14, 15, 55, 56, 57, 63

[103] Y. Nekrich. I/O-efficient point location in a set of rectangles. In LATIN 2008:
Theoretical Informatics, pages 687–698, 2008. 56, 63

[104] J. Pach, W. Steiger, and E. Szemerédi. An upper bound on the number of
planar k-sets. Discrete and Computational Geometry, 7(2):109–123, 1992. 5

84

[105] M. Pǎtraşcu and M. Thorup. Time-space trade-offs for predecessor search.
In STOC ’06: Proceedings of the thirty-eighth Annual ACM Symposium on
Theory of Computing, pages 232–240, 2006. 13

[106] M. Pǎtraşcu and M. Thorup. Randomization does not help searching prede-
cessors. In SODA ’07: Proceedings of the 18th Annual Symposium on Discrete
Algorithms, pages 555–564, 2007. 13

[107] R. Pinchasi and R. Radoicic. Topological graphs with no self-intersecting
cycle of length 4. In SCG ’03: Proceedings of the 19th Annual Symposium on
Computational Geometry, pages 98–103. ACM, 2003. 5

[108] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduc-
tion. Springer-Verlag, 1985. 10

[109] E. A. Ramos. On range reporting, ray shooting and k-level construction.
In SCG ’99: Proceedings of the 15th Annual Symposium on Computational
Geometry, pages 390–399. ACM Press, 1999. 10, 12

[110] P. J. Rousseeuw and M. Hubert. Regression depth. Journal of American
Statistical Association, 94(446):388–402, 1999. 18

[111] P. J. Rousseeuw and I. Ruts. Bivariate location depth. Journal of Applied
Statistics, 45(4):516–526, 1996. 17

[112] M. Sharir, S. Smorodinsky, and G. Tardos. An improved bound for k-sets in
three dimensions. Discrete and Computational Geometry, 26:195–204, 2001.
5, 31

[113] S. Subramanian and S. Ramaswamy. The P-range tree: a new data structure
for range searching in secondary memory. In SODA ’95: Proceedings of the
6th annual ACM-SIAM symposium on Discrete algorithms, pages 378–387,
1995. 14, 15

[114] M. Talagrand. Concentration of measure and isoperimetric inequalities in
product spaces. Publications Mathématiques de L’IHÉS, 81:73–205, 1995. 42

[115] H. Tamaki and T. Tokuyama. How to cut pseudoparabolas into segments.
Discrete and Computational Geometry, 19:265–290, 1998. 5

[116] H. Tamaki and T. Tokuyama. A characterization of planar graphs by pseudo-
line arrangements. Algorithmica, 35:269–285, 2003. 5

[117] G. Tóth. Point sets with many k-sets. Discrete and Computational Geometry,
26:187–194, 2001. 5

[118] H. Tverberg. A generalization of Radon’s theorem. Journal of the London
Mathematical Society, 41:123–128, 1966. 19

85

[119] V. K. Vaishnavi and D. Wood. Rectilinear line segment intersection, layered
segment trees, and dynamization. Journal of Algorithms, 3:160–176, 1982. 65

[120] M. van Kreveld, J. S. B. Mitchell, P. Rousseeuw, M. Sharir, J. Snoeyink, and
B. Speckmann. Efficient algorithms for maximum regression depth. In SCG
’99: Proceedings of the 15th Annual Symposium on Computational Geometry,
pages 31–40. ACM Press, 1999. 18, 34, 35

[121] D. E. Vengroff and J. S. Vitter. Efficient 3-D range searching in external
memory. In STOC ’96: Proceedings of the 28th Annual ACM Aymposium on
Theory of Computing, pages 192–201. ACM, 1996. 14, 15, 55, 56, 57

[122] J. S. Vitter. External memory algorithms and data structures: dealing with
massive data. ACM Comput. Surv., 33(2):209–271, 2001. 15, 60

[123] E. Welzl and H. Edelsbrunner. Constructing belts in two-dimensional arrange-
ments with applications. SIAM Journal on Computing, 15:271–284, 1986. 29,
35

[124] D. E. Willard. Log-logarithmic worst-case range queries are possible in space
θ(n). Information Processing Letters, 17:81–84, 1983. 13

[125] A. C. Yao. On the complexity of maintaining partial sums. SIAM Journal
on Computing, 14:277–288, 1985. 11

86

Appendices

A Lower Bound on the 3D Shallow Partition The-

orem

In his 1992 paper, Matoušek [97] asked whether the O(log r) crossing number bound
in the 3D shallow partition theorem (Theorem 1.1.7) is optimal. Besides being
a natural combinatorial question, lowering crossing number to O(1) would have
potential algorithmic applications. We show, however, that O(1) is not possible.
Given two parameters r and t, t ≥ r, we describe a point set P of O(tr) points
such that for any partition of P into r sets of size t there exists a halfspace with
crossing number Ω(log r/ log log r) that contains at most 2t points. To improve
the readability, we first describe the combinatorial structure of the point set. For
simplicity, we assume that t and r are powers of two.

(a)

. . .

...
...

...
...

v1 vt

p
′

i
p
′

i+t−1 p
′

i+t
p
′

i+2t−1

v

...
...

...
...

...
...

(b) (c)

v

u w

. v vℓ
vr

Figure 7.1: (a) The tree T . (b) The larger circles represents the elements of h(v).
(c) We have chosen to include the left child of v and thus the right half of every
list is discarded.

Consider a full binary tree T with r leaves with an ordered list of t points
placed in each node of the tree (Figure 7.1(a)); this order is important and will
play a crucial role when embedding the points in 3D. The height of T is log r and
in total contains O(tr) points. We claim it is possible to embed these points in
3D such that a set of “basic” halfspaces with the following definition exists. For
every node v, a unique basic halfspace exactly contains all the points of v together
with a sublist of the points in every ancestor of v; we denote this halfspace with

87

h(v). Let v` and vr be the left and right child of v respectively. To obtain h(v`),
first we discard right half of every list in h(v), then include all the points in v`

(Figure 7.1(b,c)). h(vr) can be formed in a similar fashion. It is easy to see that
all the basic halfspaces have less than 2t points.

Consider a partition of this point set into subsets of size O(t). Think of points
in the same subset as having the same color. We want to find a basic halfspace
that contains Ω(log r/ log log r) colors. Let m be the maximum number of colors
contained in a basic halfspace and d := c log m for a sufficiently large constant c.

Consider a random walk v1, v2, . . . , vlog r from the root to the leaves in which at
each inner node the probability of descending to one of the two children is 1/2. We
use Xi, i > d, to denote the event that the node vi contains at most t/4 points with
colors that also appear in h(vi−d). h(vi−d) contains at most m colors, so the tree
contains O(tm) points that share colors with h(vi−d). The number of descendants
of vi−d at level i is 2d = 2cm thus on average any of them has O(tm)/(2cm) points
that share colors with h(vi−d). This means by choosing c large enough we can
ensure that Pr[Xi] ≥ 2/3.

Let Yi be the event that at most half of the points of h(vlog r) ∩ vi have colors
which also appear in h(vi−d). For any two leaves u and w that are descendants
of vi, the subsets h(u) ∩ vi and h(w) ∩ vi are disjoint. Using this property, it is
easy to see that Pr[Yi |Xi] ≥ 1/2 and thus Pr[Yi] ≥ Pr[Yi ∧ Xi] ≥ 1/3. This
implies in the sequence v1+id, 0 ≤ i < (log r)/d, on average (log r)/3d of the events
Y1+id happen. Each such event marks the appearance of a new color in h(vlog r)
as we scan the colors of h(vlog r) from root to leaf. This proves the existence of
a basic halfspace with (log r)/(3d) colors, so (log r)/(3d) ≤ m, which solves to
m = Ω(log r/ log log r).

hj+1

p′
i+t2j

−1

p′i

C

α

h(v)

hj

hj+2

Figure 7.2: We are free to choose the angle α and the distance from the next plane
hj+2.

It remains to show how to embed the claimed set of points. Consider the
unit circle centered on origin of the xy-plane and let C be the part which lies in
the first quadrant of the plane. We embed the points such that their projection
(which we denote with π(·)) on the xy-plane lies on C. Also, consider log r planes
h1, . . . , hlog r all parallel to the xy-plane in which hi is determined by the equation
Z = −di. We will set the value of each di later but for the moment assume
d1 = 0 < d2 < · · · < dlog r. All the points at level i of the tree are placed on hlog r−i+1

88

(the level of the root is zero). Thus, for a point at level i of the tree, knowing its
the projection on C completely determines its location in space. Let p1, . . . , ptr be
the sequence of points contained in the leaves, as read from the leftmost leaf to the
rightmost one. Position them such that their projection on C lies in the above order
when read clockwise (the amount of spacing between the points is not important
and we only require it to be non-zero). We say a point q lies between pi and pj if

π(q) lies on the arc ̂π(pi)π(pj).

Consider an inner node v at height j with points v1, . . . , vt (height of the leaves
is defined to be zero). Assume the list of points contained in the leaves of the tree
rooted by v is pi, . . . , pi+t2j−1. Position the points of v such that the first t/2j points
(v1 up to vt/2j) lie between pi and pi+t−1, the next t/2j between pi+t and pi+2t−1 and
continue until all the points of v are in place (as a reminded, they are being placed
on hj+1). Let p′i, . . . , p

′
i+t2j−1 be the projection of the points pi, . . . , pi+t2j−1 on hj+1.

The basic halfspace h(v) is determined by a hyperplane which passes through p′i and
p′i+t2j−1. From Figure 7.2 it can be argued that by picking the angle α sufficiently
close to π/2 we can guarantee that h(v) exactly includes the points which are below
hj+1 and between pi and pi+t2j−1; next, by choosing hj+2 sufficiently above the hj+1

we can ensure that no point above hj+1 is in h(v).

This proves the bound on the crossing number in the shallow partition theorem
cannot be improved beyond Ω(log r/ log log r) for r ≤

√
n. We remark that the

Ω(log r/ log log r) bound is tight for the family of point sets described here.

89

	List of Tables
	List of Figures
	Introduction
	Range Searching
	Basic notation
	Levels
	Cuttings and partition trees
	Shallow cutting and partition theorems

	Classical Range Searching Results
	Simplex range searching
	Halfspace range searching
	Orthogonal range searching

	Robust Statistics
	Tukey depth
	Simplicial depth
	The L1 median
	Regression and hyperplane depth
	Other definitions of depth

	Our Results and Organization of the Thesis

	Approximate Counting: The Basics
	Approximating the Ranges
	-nets and -approximations
	Relative Approximations
	Probabilistic tools
	Reduction to emptiness
	Reduction to small counts

	Approximate Halfspace Range Counting
	An Optimal Solution
	Approximate levels by shallow cuttings
	Combine with randomized incremental construction

	Approximate Regression Depth Queries in 2D
	Approximate Tukey Depth Queries

	Approximate Simplicial Depth
	Bounding the Simplicial Depth with Tukey Depth
	Properties of random samples

	Approximating the simplicial depth in 2D
	Filling the gaps

	Approximate Simplicial Depth in Higher Dimensions
	Approximate simplicial depth in 3D

	Dominance Queries
	Introduction
	Dominance Reporting in 3D
	Preliminaries
	Optimal approximate levels

	Solving the Dominance Reporting Problem
	The External Memory Model

	Rectilinear Polygon Counting
	A Simple Combinatorial Lemma
	Intersection Counting for Disjoint Rectilinear Polygons

	Conclusion
	Bibliography
	Appendices
	A Lower Bound on the 3D Shallow Partition Theorem

