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Abstract

In this thesis, we present a method for the automated generation of numerical
evaluation routines for bivariate functions via tensor product series and develop
a toolkit to assist with the generation of the approximations. The �nal approx-
imations can be evaluated in user-de�ned precision or in hardware �oating point
precision by default. The evaluation routines can also be compiled into a C library
(or a library in some other language) for more e�cient evaluations.

The toolkit can be used for various mathematical functions of two variables, such
as Bessel functions or user-de�ned functions, at any given precision. The method
of tensor product series expansion reduces the bivariate approximation problem to
a sequence of univariate approximation problems. In order to control the degrees
of the approximating functions so that evaluation will be accurate and e�cient, we
recursively divide the bivariate intervals into subintervals until both the number of
terms in the tensor product series and the degrees of the univariate approximations
are less than speci�ed bounds. We then generate in each subinterval rational ap-
proximations using Chebyshev-Padé approximants or polynomial approximations
using Chebyshev series according to the user's speci�cation.

Finally we show the experimental results for a variety of bivariate functions,
which achieve a signi�cant speedup over the original Maple functions for evalua-
tion in hardware �oating point precision. We also compare the results of choosing
polynomial approximations versus rational approximations for the univariate sub-
problems.
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Chapter 1

Introduction

This thesis investigates a method for the automated generation of numerical eval-
uation routines for bivariate functions via tensor-product series. The goal of this
thesis is to develop a Maple toolkit that automatically generates evaluation routines
which can be compiled into a C library (or into a library in some other language)
for e�cient evaluation in hardware �oating point precision.

1.1 Previous Work

Thomas A. Robinson in his Masters thesis [9] developed a toolkit to assist with
the generation of numerical evaluation routines for approximations of univariate
functions at any �xed precision. He investigated various approximation methods
to improve the e�ciency of the Maple implementation, including Chebyshev series
expansions and minimax approximation. The approximation process of the toolkit
is to divide the real line interval on which it is approximating into subintervals and
then generate polynomial or rational approximations on each subinterval.

In his chapter of future work, Thomas A. Robinson considered the possibility
of adapting the method of tensor product series, which was developed by Frederick
W. Chapman in his PhD thesis [3], to the case of generating approximations for
bivariate functions. The approach used by Robinson was not very successful and
therefore further study was warranted.

As a continuation of Thomas A. Robinson's work, Jingchi Chen in his Masters
essay [4] developed a method to approximate bivariate functions, such as the Bessel
function Jv(x). The method uses Chapman's tensor product series expansion to
approximate a bivariate function into a sequence of univariate functions, and then
uses truncated Chebyshev series for the univariate approximations. However, as
mentioned in Chen's last chapter, his method only works on a �xed-sized single
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interval and this limits the applicability of the method. Another limitation is that
the �nal approximation is a single bivariate polynomial and as the number of terms
gets large, numerical accuracy problems arise.

1.2 Motivation

In mathematical software, as well as in many non-mathematical applications, a com-
mon requirement is to be able to evaluate functions at numerical (�oating point)
values. For the most common elementary functions (such as ex, cosx, etc.), nu-
merical libraries have long ago been developed based on approximations (typically
polynomial or rational function approximations) valid for a speci�ed �xed precision
[5]. In a more general mathematical software environment such as Maple, routines
have been developed for arbitrary-precision evaluation in Maple's software �oating
point mode. For the most common univariate functions, Maple is able to dispatch
to e�cient compiled code in numerical libraries if the requested precision is not too
high (e.g. hardware �oating point precision). However, for bivariate functions such
numerical libraries have not been developed.

This thesis is considered as the continuation of the work done by Thomas A.
Robinson and Jingchi Chen. In this thesis, we investigate the generation of approx-
imations for bivariate functions in the x-y plane. Our toolkit generates piecewise
polynomial or rational approximations. When we talk about generation of an ap-
proximation here, we mean to generate a new function which is su�ciently close to
the original function for a speci�ed �xed precision. The goal is to have the approx-
imating function be signi�cantly faster to evaluate than the original function when
evaluated at the speci�ed precision.

Our overall plan is to use the toolkit to generate routines for e�cient numerical
evaluation at any point in a speci�ed region of the x-y plane in advance and to build
a library in Maple (or other languages) to be used when needed. So we are not
overly concerned about the time required to generate the approximation functions.
What we mostly care about is the time e�ciency and accuracy when we use the
approximations to obtain values of the function at various points.

Before proceeding, here is an outline of the rest of this thesis. Chapter 2 presents
some de�nitions and describes the three modes for evaluating functions in Maple as
technical background. We then look at various techniques for approximation of uni-
variate functions, including polynomial approximations in Chapter 3 and rational
approximations in Chapter 4. Chapter 5 then discusses the approximation of bi-
variate functions using tensor product series. This provides background to continue
to Chapter 6 where we present our method and package for automated generation
of numerical evaluation routines for bivariate functions. Chapter 7 presents the

2



corresponding experimentation and results for some approximations computed. Fi-
nally, in Chapter 8 possible future work and in Chapter 9 the general conclusion of
this thesis are stated.

3



Chapter 2

Technical Background

In this chapter we explain the de�nition of some terms which we will use later.

2.1 Expression vs. Procedure

In mathematics, an expression is a term consisting of a single symbol, such as x, or
a well-formed combination of mathematical symbols, such as 3x2+ y� 1. In Maple
we usually assign an expression to a name so that we can use the expression again
more conveniently thereafter. For example,

> expn := 3x2 + y � 1;

is a very common use in Maple. In this case expn is an expression in terms of the
variables x and y. Then we may use expn instead of 3x2+y�1 whenever the latter
is needed.

In Maple, a procedure can be assigned to a name. A procedure, which is also
called functional operator form, can be invoked by a function call. We can change
an expression to a function in procedure form. For example, a procedure

> f := (x; y)! 3x2 + y � 1;

can be derived from expression expn by using the Maple command unapply:

> f := unapply(expn; (x; y)); :

We may also convert procedure form f to expression form expn by using the
apply command in Maple

> expn := apply(f; (x; y)); :

4



which is equivalent to the function invocation f(x; y).

In particular, if f is a functional operator in Maple taking two arguments then

> unapply(f(x; y); (x; y));

yields a functional operator equivalent to f . Analogously,

> unapply(expn; (x; y))(x; y);

yields an expression equivalent to expn.

An expression is usually evaluated by the eval command. For example, expn
can be evaluated at the point (x; y) = (2; 3) by using

> eval(expn; [x = 2; y = 3]); :

Unlike expressions, a procedure can be simply evaluated by a function call, such as
f(2; 3).

Our toolkit takes an expression as input for the function to be approximated.
We will convert between the expression form and procedure form in our code when
necessary.

2.2 Norms

If we have a function f and its approximation q which we want to use for ob-
taining values of f , then we are interested in knowing the maximum error of the
approximation for all the points on the interval.

A commonly used norm is the maximum (or in�nity) norm which is de�ned as

kf � qk1 = max
a�x�b

jf(x)� q(x)j (2.1)

for a univariate function f(x) and its approximation q(x) on the interval [a; b].

For a bivariate function f(x; y) and its approximation q(x; y) in the region
R = [a; b]� [c; d], the maximum norm is de�ned as

kf � qk1 = max
(x;y)2R

jf(x; y)� q(x; y)j : (2.2)

5



2.3 Absolute Error vs. Relative Error

There are two common measures of error in experimental science: absolute and
relative error. In mathematics, absolute error is the di�erence between the exact
value and the approximation value. The relative error is the absolute error di-
vided by the exact value, indicating how many signi�cant digits are correct in the
approximation.

Let us use f(x; y) to denote the original bivariate function which needs to be
approximated and use q(x; y) to denote an approximation of f(x; y). We also use
p(x; y) and r(x; y) to denote the polynomial and rational function respectively. In
our work, q(x; y) is a collection of pi(x; y) or ri(x; y), or possibly a combination of
both pi(x; y) and ri(x; y). Then the absolute error at a point (x; y) is

� = jf(x; y)� q(x; y)j (2.3)

and if f(x; y) 6= 0, the relative error is

� =
jf(x; y)� q(x; y)j

jf(x; y)j
: (2.4)

We can see that the absolute error is associated with the number of correct
decimal places in the decimal representation of q(x; y), while the relative error can
be associated with the number of correct signi�cant digits in the decimal represen-
tation of q(x; y) [5].

As mentioned in Chapter 1, our goal is to generate an approximation q(x; y)
which is su�ciently close to f(x; y). When we say su�ciently close here, we mean
that the relative error of q(x; y) as an approximation of f(x; y) is equal or less than
the desired accuracy which is hardware �oating point precision by default.

However, when we give a speci�ed error tolerance as an argument to the pro-
cedure for tensor product series generation, the measure is not treated as a pure
relative error tolerance. Additionally, when we use Chebyshev series expansion with
a given error tolerance on a speci�ed interval to estimate the degree of the approx-
imation (by which we then know whether it is necessary to divide the interval into
subintervals), again it is not treated as a pure relative error tolerance.

In the following section, we will discuss the various measures of error.

2.4 Measures of Error

For a numerical library in a �oating point environment, it is generally desired that
the relative error should be small. For a bivariate function f(x; y) and its approxi-
mation q(x; y) in the region R, the pointwise relative error is

6



relerr = max
(x;y)2R�

jf(x; y)� q(x; y)j

jf(x; y)j
(2.5)

where R� = f(x; y) 2 R : f(x; y) 6= 0g.

In our project, we are using previously-written code for generating tensor prod-
uct series expansions. In order to explain the measure of accuracy achieved by an
approximation generated by this code, we �rst de�ne what we call global relative
error:

global_relerr =
kf � qk1
kfk1

(2.6)

which is the absolute error kf � qk1 divided by kfk1, the maximum absolute value
of f(x; y).

Note that if there are points (x; y) 2 R where f(x; y) is much smaller than
kfk1, then global_relerr < tol does not imply that relerr < tol. Therefore,
global_relerr is a weaker measure than relerr (the pure pointwise relative error
measure).

Finally, the actual measure of error used in our project (which is the actual
measure of accuracy achieved by the tensor product code) is a further modi�cation
of relative error, namely:

modified_relerr =
kf � qk1

max(kfk1 ; 1)
: (2.7)

For a given region R = [a; b]� [c; d], we can see that modified_relerr reduces
to a pure absolute error measure if kfk1 � 1. Otherwise modified_relerr is
equivalent to the global relative error measure global_relerr.

2.5 Numerical Evaluation in Maple

In Maple, there are three environments in which we may numerically evaluate a
function : evalf (or software �oats), evalhf (or hardware �oats), and compiled
code (which may be generated by the Maple compiler).

In this section we discuss these three modes.

7



2.5.1 evalf

The evalf command in Maple is used to numerically evaluate expressions includ-
ing constants and mathematical functions. What we especially care about in our
work is its use in evaluating functions. The evalf command uses Maple's software
�oating-point arithmetic. The precision of the computation can be controlled by
the environment variable Digits, which is set to 10 by default. So we may compute
the value of an expression to any precision by assigning the corresponding positive
integer value n to Digits. Alternatively, we could call evalf[n](expression) to
specify the numeric precision for an evalf computation without changing the value
of Digits.

Maple's initially known mathematical functions, such as sin(x) or Jv(x), can be
evaluated with evalf. Additionally, these functions automatically invoke the cor-
responding evalf subfunction if they are passed a �oating-point argument. Maple
dispatches to a numerical library if the precision is not greater than hardware
�oating point precision and if the numerical library includes the given function.
Otherwise, a general arbitrary-precision routine is used and it executes in software
�oating point mode (which is signi�cantly slower).

2.5.2 evalhf

Maple has another useful command evalhf which can numerically evaluate a func-
tion in double precision using the �oating-point hardware of the underlying sys-
tem. The argument evaluated by evalhf can be either a standard function, such
as sin(x), or a user-de�ned Maple procedure (as in our work). However, such a
user-de�ned procedure must be �purely numerical� which excludes many Maple pro-
gramming constructs. In order to avoid the conversion overhead it is recommended
to do all possible computations within one single call to evalhf.

Using evalhf for evaluations is usually much faster than using evalf. This is
because the former evaluates functions in hardware �oats while the latter works
in software �oats. However, the precision of the results when using evalhf is
limited by the number of Digits in the hardware on which Maple is run. For
example, if Digits is set to the integer part of the value evalhf(Digits) (usually
14 or 15 on 32-bit architectures) then evalhf and evalf should produce similar
results. Because of the limitation, it is more di�cult to guarantee a speci�ed
high accuracy by using evalhf. Some special functions are also more di�cult to
implement in the hardware �oating point environment than in the software �oating
point environment. There are only 79 functions, such as sin(x) and cos(x), that
can be handled directly by evalhf, and consequently executed without using Maple
code, simply by calling the corresponding mathematical function from the C library
or executing C code [7]. Our toolkit can create approximations for various special
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bivariate functions and add them to the set of 79 functions. Then we will be
able to evaluate these special functions by evalhf instead of evalf, which can
speed up the evaluation. For example, using hardware numerical routines for the
Bessel functions will accelerate their plotting and other relevant applications within
hardware �oating point accuracy.

Our toolkit is able to generate the approximations to any user-speci�ed level of
accuracy or hardware �oating point accuracy by default. For example, if the user
just wishes to create a simpler approximation than hardware accuracy for plotting
or if the user wants to generate an approximation to full hardware precision, then
e�cient evaluation will be achieved in hardware �oats, which is considerably faster
than in software �oats.

As will be illustrated by an example in Chapter 7, the function to be approx-
imated may be de�ned implicitly, for example, by a procedure which numerically
solves a boundary value problem. In such a case, the accuracy of the function def-
inition may be limited and therefore the approximations can be generated only to
that limited accuracy.

2.5.3 Compiler

Maple's Compiler:-Compile command can convert �numerical� Maple procedures
to native code. The Maple procedure is �rst translated to C language code and
compiled by an external C compiler, and then the compiled code is dynamically
linked into Maple so that we can call the procedure directly in Maple.

All the computation in a compiled procedure is carried out in hardware �oating
point precision, as is the case when using evalhf. The compiled procedure could
possibly run hundreds of times faster than the original Maple code. The compiled
procedure also runs faster than executing the code in evalhf mode in most cases.

Unfortunately there is only a very limited subset of Maple procedures that can
be translated by the compiler. Note that none of the following can be translated:
nested procedures, modules, exception handling (other than merely raising an ex-
ception), procedures that return arrays or allocate new arrays, and procedures that
call other procedures about which insu�cient type information can be obtained
at compile time [7]. For example, the Maple procedures for evaluating the Bessel
functions cannot be compiled using the Compiler:-Compile command. But the ap-
proximations generated by our toolkit are compilable and thus are able to improve
the speed of evaluations.
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Chapter 3

Polynomial Approximations

There are two common types of approximation techniques for univariate functions:
polynomial and rational approximations. In this chapter we discuss three polyno-
mial approximation techniques, including Taylor series, minimax polynomial ap-
proximation, and Chebyshev series, and introduce their corresponding commands
in Maple.

3.1 Taylor Approximations

3.1.1 Taylor Series

A Taylor series is a series expansion of a function about a point. If a function f(x)
is in�nitely di�erentiable in a neighborhood of a point a, then the Taylor series of
f(x) about point x = a can be given in the following fashion:

f(x) = f(a) + f 0(a)(x� a) +
f 00(a)

2!
(x� a)2 + � � �+

f (n)(a)

n!
(x� a)n + � � � (3.1)

where n! is the factorial of n and f (n)(a) denotes the nth derivative of f(x) at point
a.

If a = 0 in the particular case, then the expansion is known as a Maclaurin
series [11].

Taylor series expansion is one of the important techniques for univariate function
approximation because f(x) can often be approximated to a speci�ed accuracy
by the partial sums of the series in equation (3.1), i.e., the order k Taylor series
expansion, with su�ciently many terms k.
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3.1.2 The taylor Command

Maple has the command taylor(f(x),x=a,n) which computes the Taylor series
expansion of f(x) about the point a to the expansion order n, namely

n�1X
k=0

f (n)(a)

n!
(x� a)n +O((x� a)n): (3.2)

The third argument n (the truncation order) may be omitted in which case
the order is determined by the environment variable Order (which is set to 6 by
default).

If we need to convert the Taylor series to ordinary polynomial form, we can
use the command convert(s, polynom), where s is the Taylor series in equation
(3.2).

Maple has the more general command series(f(x),x=a,n). If the function
f(x) has a Taylor series expansion about the point x = a then the result of the
series command is identical to taylor. Otherwise, a generalized (non-Taylor)
series expansion may be returned.

3.2 Minimax Polynomial Approximations

It is often desirable in applications to minimize the maximum absolute or relative
error of a polynomial approximation in order to reduce the computational expense
of evaluation. The polynomial of best approximation of a given degree, called
the minimax polynomial, is de�ned to be the one that has the smallest maximum
deviation from the true function.

According to Chebyshev's theorem on polynomial approximations [5], we know
that if u(x) denotes a function continuous in a closed, �nite interval [a; b], v(x)
denotes a function continuous and nonzero in [a; b], and Vn denotes the set of
polynomials of degree� n, then there exists a unique polynomial p�n(x) , i.e., the
minimax polynomial, in Vn such that

max
a�x�b

����p�n(x)v(x)
� u(x)

���� = min
pn(x) in Vn

max
a�x�b

����pn(x)v(x)
� u(x)

���� : (3.3)

Generally there are two di�erent p�n(x) of interest that approximate f(x) with
the two error types in the interval [a; b]:

� If v(x) = 1 and u(x) = f(x) in equation (3.3), the minimax polynomial p�n(x)
is with respect to absolute error.
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� If v(x) = f(x) and u(x) = 1 in equation (3.3), then p�n(x) is with respect to
relative error.

Maple has a minimax command in the numapprox package which may be used to
compute the minimax polynomial. In our project, we will use the computationally
less expensive chebyshev command which computes a �near-minimax� polynomial
approximation as discussed in the next section.

3.3 Chebyshev Approximations

3.3.1 Chebyshev Polynomials

In mathematics, there is a well-known Chebyshev's di�erential equation which is
de�ned as:

(1� x2)y00 � xy0 + n2y = 0 (3.4)

where n is a real number.

If n is a non-negative integer, the solutions to this equation are often referred to
as Chebyshev polynomials of the �rst kind, or Chebyshev polynomials, denoted by
Tn(x). The Chebyshev polynomials here are a sequence of orthogonal polynomials.
There are two common ways to de�ne Chebyshev polynomials Tn(x) of degree n.
One way is by the recurrence relation:

T0(x) = 1; T1(x) = x;

Tn+1(x) = 2xTn(x)� Tn�1(x); n = 1; 2; 3; ::: (3.5)

An alternative way is by the trigonometric identity:

Tn(x) = cos(n arccosx) for � 1 � x � 1: (3.6)

3.3.2 Chebyshev Series

As described in [5], if a function f(x) has a continuous �rst derivative in [�1; 1];
then it has a Chebyshev series expansion:

f(x) =
1X
k=0

akTk(x) =
1

2
a0T0(x) + a1T1(x) + a2T2(x) + � � � (3.7)
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which converges uniformly in [�1; 1], where

ak =
2

�

Z 1

�1

f(x)Tk(x)(1� x2)�
1

2dx: (3.8)

Since the Chebyshev series is �in�nite�, we usually use a truncated Chebyshev
series of degree n as the approximation for f(x) instead. In [8] it is proved that
if qn(x) denotes the truncated Chebyshev series of degree n and p�n(x) denotes the
best minimax polynomial approximation of degree n then

kf � qnk1 � n kf � p�nk1 (3.9)

where [a; b] is the interval of the approximation, n are known as the Lebesgue
constants and n < 5 for n � 1000.

Therefore we conclude that the truncated Chebyshev series of degree n closely
approximates the minimax polynomial approximation of f(x). Since it is compu-
tationally less expensive to compute the truncated Chebyshev series (via a fast
discrete cosine transform), it is our method of choice.

The main di�erence between Taylor series and Chebyshev series is that the
former expansions are often convenient for theoretical work but less useful for prac-
tical applications, while the latter is better for numerical computation since the
Chebyshev polynomials, Tn(x), are better behaved than the monomials, xn, on an
interval [a; b] of the real line. As stated in [10], since the Chebyshev series has
superior performance to that of the Taylor series in terms of convergence, it is ex-
pected to exhibit better performance in terms of approximation error, when the
approximation interval is large. Hence we will use Chebyshev series for polynomial
approximation in our toolkit.

3.3.3 The chebyshev Command

Maple's numapprox package has the command chebyshev(f(x),x=a..b,eps)

which computes a truncated Chebyshev series expansion, in terms of the Cheby-
shev polynomials Tk(x), for a given function f(x) on a speci�ed interval [a; b], in
the form:

c0T0(v) + c1T1(v) + � � �+ cnTn(v) (3.10)

where v is an expression in x of the form v = Dx + E representing the linear
transformation of the speci�ed interval [a; b] to the standard interval [�1; 1].
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Such an approximation is computed to a speci�ed accuracy eps, which is achieved
by discarding all the terms with coe�cients smaller (in magnitude) than a particular
tolerance criterion.

We may use the Maple command T(k,x) in the orthopoly package to expand
the approximation (3.10) into standard polynomial form in terms of powers of x,
although such a conversion is generally not advisable for numerical evaluation.

In our package we added three optional arguments ('output=Vector', size,

FixedSize) to the numapprox:-chebyshev procedure.

If 'output=Vector' is speci�ed then the returned value from chebyshev is
a vector representation of the Chebyshev series. The vector representation is an
expression sequence (coef; v) where coef is a Maple vector of the �oating point
coe�cients ck; k = 0 : : : n in the corresponding Chebyshev series (3.10), and v is the
linear expression in x described above. The vector representation can be evaluated
more e�ciently and accurately than the sum-of-products form in (3.10).

If we want to evaluate the vector representation at some point x, for example,
x = 2:5, we can use the Maple command chebeval in the numapprox package for
this purpose:

> numapprox : �chebeval(coef; eval(v; x = 2:5)); : (3.11)

The integer argument size is used to specify the dimension of the local ar-
ray allocated for Chebyshev coe�cients, which can specify the number of func-
tion evaluations to be used. Note that the number of function evaluations actu-
ally used is a number of the form 2 � 3M + 1 due to the algorithm invoked in
numapprox:-chebyshev and therefore reasonable values might be 163, 487, 1459,
or 4375. size is initialized to 487 by default; however, if the convergence is not
achieved and size�487 and FixedSize is false, then size is reset to 4375.

The boolean argument FixedSize, which is false by default, may be used to
specify whether size may be increased in case of non-convergence. If FixedSize
is true then the number of function evaluations is limited to the value speci�ed by
size.

Note that the numapprox:-chebyshev command does not break an interval into
subintervals, so it computes a single polynomial approximation on the given interval
no matter how large the degree of the approximation is. Due to the near-minimax
property of the truncated Chebyshev series, the degree of the approximation com-
puted by the chebyshev command is a very good estimate of the minimum degree
required to approximate the function on the given interval to the speci�ed accuracy.
In other words, it is a measure of the di�culty of approximating the function.
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As will be discussed later, our toolkit will break intervals into subintervals as
necessary to achieve approximations with degrees that do not exceed user-speci�ed
bounds.
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Chapter 4

Rational Approximations

Another class of very important approximation techniques for univariate functions
is rational approximations. In this chapter we discuss three techniques for ra-
tional approximation: Padé approximation, minimax rational approximation, and
Chebyshev-Padé approximation. In doing so, we will compare polynomial and ra-
tional approximations and describe how they are useful for developing our toolkit.

4.1 The Padé Method

4.1.1 Padé Approximation

The method of Padé approximation is used widely in computer calculations. It
approximates a function f(x) by a ratio of two polynomials Rm;n(x) =

Pm(x)
Qn(x)

such

that the Taylor series expansion of Rm;n(x) has maximal initial agreement with
the Taylor series expansion of f(x). If we let f(x) denote a function having the

Maclaurin series expansion f(x) =
1P
k=0

akx
k, from [5] we know that the Padé ap-

proximation of order (m;n) to f(x) is de�ned to be a rational function Rm;n(x) of
the form:

Rm;n(x) =
Pm(x)

Qn(x)
=
p0 + p1x+ p2x

2 + � � �+ pmx
m

q0 + q1x+ q2x2 + � � �+ qnxn
(4.1)

where Pm(x) and Qn(x) are polynomials whose coe�cients satisfy the set of equa-
tions :
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a0q0 = p0

a1q0 + a0q1 = p1
...

amq0 + am�1q1 + � � �+ am�nqn = pm

am+1q0 + amq1 + � � �+ am�n+1qn = 0

am+2q0 + am+1q1 + � � �+ am�n+2qn = 0
...

am+nq0 + am+n�1q1 + � � �+ amqn = 0: (4.2)

Note that these equations are derived from the de�ning property:

f(x) �Qn(x)� Pm(x) = O(xm+n+1): (4.3)

4.1.2 The pade Command

Maple's numapprox package has the command pade(f(x),x=a,[m,n]) which
computes a Padé approximation of degree (m;n) for the function f(x). It �rst
expands f(x) in a Taylor (or Laurent) series about the point x = a to orderm+n+1,
and then computes the Padé rational approximation [7]. If n is 0 or not speci�ed,
then it simply computes the Taylor polynomial of degree m.

4.2 The Minimax Method

4.2.1 Minimax Rational Approximations

Similar to Chebyshev's theorem on polynomial approximation introduced in sec-
tion 3.2, we have Chebyshev's theorem on rational approximation. Let us continue
using u(x) and v(x) de�ned in equation (3.3). We also let Vm;n denote the family

of rational functions which is expressible as an irreducible fraction Pm(x)
Qn(x)

, where

Qn(x) 6= 0 in [a; b]. Then [5] states that there exists a unique rational function
R�
m;n(x) in Vm;n such that

max
a�x�b

����R�
m;n(x)

v(x)
� u(x)

���� = min
Rm;n(x) in Vm;n

max
a�x�b

����Rm;n(x)

v(x)
� u(x)

���� : (4.4)

As with polynomial approximations, there are two corresponding cases of min-
imax absolute error and minimax relative error:
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� When v(x) = 1 and u(x) = f(x), we have����Rm;n(x)

v(x)
� u(x)

���� = jRm;n(x)� f(x)j

which approximates f(x) with minimax absolute error in [a; b].

� When v(x) = f(x) 6= 0 and u(x) = 1, we have����Rm;n(x)

v(x)
� u(x)

���� =
����Rm;n(x)� f(x)

f(x)

����
which approximates f(x) with minimax relative error in [a; b].

4.2.2 The minimax Command

The minimax command in the numapprox package of Maple can be used to com-
pute the best minimax rational approximation p(x)

q(x)
of degree (m;n) for a speci�ed

function f(x) on the interval [a; b], where p(x) is of degree� m and q(x) is of

degree� n. The p(x)
q(x)

returned by numapprox:-minimax is the one that minimizes

w(x)

f � p

q


1

(4.5)

where w(x) is a positive weight function, which is set to 1 corresponding to absolute

error measure by default and set to
��� 1
f(x)

��� for relative error measure if speci�ed.

As mentioned in the case polynomial approximation, in our project we avoid us-
ing the minimaxmethod. For rational approximations, the Chebyshev-Padé method
is computationally less expensive and yields similar results.

4.3 The Chebyshev-Padé Method

4.3.1 Chebyshev-Padé Approximation

Chebyshev-Padé approximation is a combination of Chebyshev approximation and
Padé-like rational approximation. It approximates a given function f(x) as a ratio-
nal function in which the numerator and denominator are both in Chebyshev series
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forms as follows:

mP
k=0

akTk(x)

nP
k=0

bkTk(x)
(4.6)

where Tk(x) is the Chebyshev polynomial of degree k. Note that the Chebyshev-
Padé approximation of f(x) is de�ned by the property that the Chebyshev series
expansion of the rational function in (4.6) has maximal initial agreement with the
Chebyshev series expansion of f(x). In standard cases, the expansions agree up to
the term of degree m+ n.

As proved by equation (3.9), the Chebyshev series has a very good near-minimax
performance and small, uniform errors. Likewise the Chebyshev-Padé approxima-
tion described is a near-minimax rational approximation. This is achieved by using
the method described in [6] as implemented in the chebpade command in Maple.
As previously mentioned, the Chebyshev-Padé method is a relatively inexpensive
method.

4.3.2 The chebpade Command

Given a function f(x), the command chebpade(f(x),x=a..b,[m,n]) in the num-
approx package of Maple computes a Chebyshev-Padé approximation of degree
(m;n) on the interval [a; b].

Similar to numapprox:-chebyshev, we added one more argument 'output=Vec-
tor' to numapprox:-chebpade so that when we use chebpade it returns a vector
representation (numcoef; dencoef; v) of the Chebyshev-Padé approximation. Both
of numcoef and dencoef are Maple vectors of �oating point coe�cients of dimen-
sions m + 1 and n + 1 respectively, such that the corresponding Chebyshev-Padé
approximation is as in (4.6), where a = numcoef , b = dencoef , and v is a linear
expression in x exactly as described in section 3.3.3.

As in the case of numapprox:-chebyshev, if f(x) is an expression, we may nu-
merically evaluate the approximation at some point x, say, x = 2:5, by the Maple
command numapprox:-chebeval

> numapprox : �chebeval(numcoef; eval(v; x = 2:5))

=numapprox : �chebeval(dencoef; eval(v; x = 2:5)); :

Using the method described in [6], the numapprox:-chebpade command �rst
expands f(x) in a Chebyshev series on the interval [a; b] which is converted to a
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power series with the same coe�cients. It computes a Padé approximation for the
power series and then transforms to the Chebyshev-Padé rational approximation on
the speci�ed interval [a; b]. Since our toolkit always uses numapprox:-chebyshev
to estimate the degree of approximation, it is more time-e�cient if we can use the
output from numapprox:-chebyshev as input to numapprox:-chebpade so that
we can avoid re-computing the Chebyshev series in the �rst step of computation in
numapprox:-chebpade. Hence we altered the chebpade command so that it can ac-
cept as an argument the vector representation sequence (coef; var) of a Chebyshev
series, as returned by chebyshev with the option 'output=Vector'.

Note that if Digits�evalhf(Digits) then we will specify the option 'datatype
= float[8]' for the vectors numcoef and dencoef in order to have e�cient pro-
cessing by procedure numapprox:-chebeval. Speci�cally, the type float[8] in
Maple refers to hardware �oating point numbers.

4.4 Polynomial Approximation vs. Rational Ap-

proximation

In our toolkit we �rst expand a given bivariate function in a tensor product series so
that we can reduce a bivariate approximation problem to a sequence of univariate
approximation problems. Then we use polynomial or rational approximations for
the univariate functions.

To approximate a function within the speci�ed (�xed) accuracy on a given
interval, we consider two choices: polynomial approximation and rational approxi-
mation. Since the error tolerance is the same for the two methods in such case, we
would prefer to use the one with faster speed for evaluation.

As shown by experiments in [9], it takes essentially the same amount of time
to evaluate a polynomial of degree n as to evaluate a rational function of degree
[n
2
; n
2
]. If the degree of a rational function can be reduced, which is possible for

some functions, we will then be able to evaluate the approximation faster by using
rational approximations. Generally, if the function being approximated is polyno-
mial in nature, such as the Bessel function of the �rst kind Jv(x), using polynomial
approximation should be a better choice since rational approximation is of no ben-
e�t over polynomial approximation in such cases. However, in the case when the
function is not polynomial in nature, such as the modi�ed Bessel function of the
second kind Kv(x) which has a singularity at x = 0, a rational approximation can
achieve a better result with a smaller total degree.

In our toolkit, by default we attempt to use rational approximations if possible
unless the user speci�es 'rational=false' as an optional argument in which case
only polynomial approximations will be used. In the default case, we prefer to use
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rational approximation even if the total degree is a little higher than that of poly-
nomial approximation. This is because in our data structure (described later) for
storing the various approximations, there is an e�ciency advantage if all approxi-
mations are similar (rather than having, for example, a rational approximation of
degree (4; 4) in one case and a polynomial approximation of degree 7 in another
case). If we fail to achieve the accuracy by using rational approximation in default
case, we will revert to use polynomial approximation.
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Chapter 5

Approximation Using Tensor

Product Series

Traditionally, as in the case of univariate function approximations, the approx-
imations for bivariate or multivariate functions are achieved by �xing the basis
functions �rst, such as trigonometric basis functions or polynomial basis functions.
Frederick W. Chapman introduced a method in his PhD thesis [3] to approximate
functions by using tensor product series, and he gave the name Geddes series to
the particular tensor product series generated by his method. Orlando A. Carvajal
summarized the relevant work and explained how to use tensor product series to
approximate symmetric functions in his Masters thesis [2], which dealt with the
application to multidimensional integration.

We will start by giving a brief overview of de�nitions of tensor products and the
splitting operator. Many of the concepts presented here appear in [1], [3] and [2].

5.1 Tensor Products

A tensor product is a �nite sum of the terms, where each term is a product of
univariate functions:

sn(x; y) =
nX
i=1

gi(x)hi(y): (5.1)

It is easy to see that many bivariate functions can be written in terms of tensor
products, for example,

ex+y = exey (5.2)

sin(x+ y) = sinx cos y + cosx sin y: (5.3)
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The minimum number of terms among all the equivalent expressions of a tensor
product is called the rank of the tensor product. A tensor product is natural if
the factors of each term can be derived from the original function by a �nite linear
combination of linear functionals. Hence in the above examples, (5.2) has rank 1
and (5.3) has rank 2, and they are both natural tensor products.

5.2 The Splitting Operator

The splitting operator �(a;b) at the point (a; b) is de�ned as in [3]:

�(a;b)f(x; y) = lim
x̂!a

�
lim
ŷ!b

�
f(x; ŷ) � f(x̂; y)

f(x̂; ŷ)

��
: (5.4)

If f is continuous in the interval and f(a; b) 6= 0, we then have the splitting
operator as

�(a;b)f(x; y) =
f(x; b) � f(a; y)

f(a; b)
: (5.5)

The point (a; b) here is called a splitting point.

There are two important properties of �(a;b)f(x; y):

� �(a;b)f(x; y) interpolates f(x; y) on the lines x = a and y = b. Thus�(a;b)f(a; y)
� f(a; y) and �(a;b)f(x; b) � f(x; b).

� If there is a value �x such that f(�x; y) � 0, it follows that �(a;b)f(�x; y) � 0 as
well. Likewise for a �y such that f(x; �y) � 0.

5.3 Tensor Product Series

Not all bivariate functions f(x; y) can be expressed as a tensor product of �nite
rank such as in examples (5.2) and (5.3), whereas we can approximate f on the
region R = [a; b]� [c; d] by a tensor product series sn(x; y) as in equation (5.1):

f(x; y) = sn(x; y) + rn(x; y) (5.6)

where rn(x; y) is the n-th remainder term for the series. jrn(x; y)j is also called the
absolute error for the approximation sn of f on R.
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Orlando A. Carvajal, Frederick W. Chapman and Keith O. Geddes described an
algorithm NTPS to compute a tensor product series approximation of a bivariate
function f with absolute error � > 0 on region R in their ISSAC paper [2]. Their
interest in that paper is multidimensional integration. They �rst approximated the
integrand f(x; y) by a tensor product series expansion and then integrated term
by term. Our interest is to apply their algorithm to generate an approximation
for a bivariate function by a tensor product series. The algorithm NTPS works as
follows:

1. De�ne the initial remainder by r0 := f and initialize the counter i := 1.

2. While the uniform error satis�es kri�1k1 > �, iterate the following two steps:

(a) Choose a splitting point (ai; bi) 2 R such that jri�1(ai; bi)j = kri�1k1.

(b) Let ri := ri�1 ��(ai;bi)ri�1 and i := i+ 1.

3. After exiting the loop, let n := i � 1 and sn := f � rn. Return sn as the
desired series approximation of f with uniform error krnk1 � � over R.

The resulting series sn is the natural tensor product series expansion of f to n terms
with respect to the splitting points f(ai; bi)g

n

i=1.

The Algorithm NTPS in its most general form as presented above has one
expensive step. Speci�cally, step 2a calls for a two-dimensional search of the region
[a; b]� [c; d] for the point where the numerical maximum is attained for the absolute
remainder jri�1(x; y)j. It turns out to be su�cient to replace step 2a by two one-
dimensional searches (or a single one-dimensional search in the case of symmetric
functions). Moreover, for the one-dimensional searches it is su�cient to sample
a discrete set of points de�ned by the midpoints of previous splitting points. In
doing so we can achieve more e�cient computation; however, this is based on
computational experience and some proofs are still needed here.

We now present a simple example from [2] which illustrates how to reduce
the bivariate function approximation problem to a sequence of univariate function
approximation problems.

Example 5.1

The following function is de�ned on the unit square [0; 1]� [0; 1]:

f(x; y) = ex
2y2 cos(x+ y):
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The tensor product series to three terms is as follows:

s3(x; y) =
3X
i=1

cigi(x)hi(y)

where the splitting points are (a; a) for a =1, 0, 0.616336, and

c1 = �0:884017;

g1(x) = ex
2

cos(x+ 1):

h1(y) = ey
2

cos(y + 1);

c2 = 0:794868;

g2(x) = cosx+ 0:477636 ex
2

cos(x+ 1);

h2(y) = cos y + 0:477636 ey
2

cos(y + 1);

c3 = �9:83284;

g3(x) = e0:379870x
2

cos(x+ 0:616336)�

0:356576 ex
2

cos(x+ 1)� 0:623342 cosx;

h3(y) = e0:379870 y
2

cos(y + 0:616336)�

0:356576 ey
2

cos(y + 1)� 0:623342 cos y:
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Figure 5.1: Lines of Interpolation for 3 Splitting Points
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As shown in Figure 5.1, all the splitting points in Example 5.1 are located on
the diagonal y = x. However, due to the interpolating properties of the splitting
operator described in section 5.2, unlike ordinary interpolation which produces zero
error exactly at the interpolation points, with our tensor product series we get zero
error at all points on the lines passing through the splitting points. With this
strong interpolation property, the approximation s3(x; y) agrees exactly with the
function f(x; y) at all points on the horizontal and vertical lines passing through
the three splitting points. Therefore, we �nd that even with only three splitting
points, the maximum error over the unit square for the approximation in Example
5.1 is kf � s3k1 � 3:0� 10�3.

5.4 Vector-Matrix Representation

5.4.1 Symmetric Case

The series generated by algorithm NTPS in section 5.3 has the following form:

sn(x; y) =
nX
i=1

 
ci

 
iX

j=1

ki;jf(x; bj)

! 
iX

j=1

li;jf(aj; y)

!!
(5.7)

where ci, ki;j, li;j 6= 0 are real coe�cients, and (ai; bi) are the splitting points.

In the symmetric case, i.e., f(x; y) = f(y; x) for all (x; y) 2 R, we require the
splitting points to be either on the diagonal y = x or selecting a point (a; b) as
a splitting point implies that the next splitting point must be (b; a). According
to the symmetry property of this criterion for selecting splitting points, we have
faig

n

i=1 = fbig
n

i=1, i.e., the set of x-coordinates of the splitting points is the same as
the set of y-coordinates. Hence for the symmetric case, we can present the series
in (5.7) by using matrices and vectors as

sn(x; y) = V T (x) � LT � P �D � L � V (y) (5.8)

where

� V (x) is the column vector of dimension n whose elements are the univariate
functions f(x; ai).

� D is an n � n diagonal matrix whose diagonal elements correspond to the
coe�cients ci = 1=ri�1(ai; bi).

� P is an n�n permutation matrix that allows the coe�cients ki;j to be obtained
from the coe�cients li;j via [ki;j] = P � [li;j].
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� L = [li;j] is an n� n unit lower triangular matrix.

More details can be found in [2] and [1].

5.4.2 Asymmetric Case

For general asymmetric functions, we have the matrix-vector representation of (5.8)
rewritten as:

sn(x; y) = V T (x) � U �D � L �W (y) (5.9)

where

� V (x) is the column vector of dimension n whose elements are the univariate
functions f(x; bi).

� U = [ki;j]
T is an n� n unit upper triangular matrix.

� D is an n � n diagonal matrix whose diagonal elements correspond to the
coe�cients ci = 1=ri�1(ai; bi).

� L = [li;j] is an n� n unit lower triangular matrix.

� W (y) is the column vector of dimension n whose elements are the univariate
functions f(ai; y).

In particular, if we are working with symmetric functions then U = LT and V (x)
is identical to W (y) with just the variable name changed, i.e., W (y) = V (y).

We will adopt this updated vector-matrix representation in our package for ap-
proximation of general functions, including both symmetric and asymmetric cases.
Note that recently Frederick W. Chapman and Keith O. Geddes have theoretically
proved the convergence of the tensor product series expansion for a symmetric
positive de�nite kernel, where the kernel means the bivariate function f(x; y) [see
Appendix A]. We do not have mathematical proofs for the convergence in the gen-
eral case yet; however, the practical results of our toolkit show the promise of the
method as will be seen in Chapter 7.

Now we show an example of how to represent the tensor product series generated
in Example 5.1 by vector-matrix form.

Example 5.2
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As de�ned in Example 5.1, we have the following function on the unit square
[0; 1]� [0; 1]:

f(x; y) = ex
2y2 cos(x+ y);

and the tensor product series to three terms:

s3(x; y) =
3X
i=1

cigi(x)hi(y);

where the splitting points are (a; a) for a =1, 0, 0.616336.

By converting s3(x; y) to vector-matrix representation we get:

V (x) =

2
4 ex

2

cos(x+ 1)
cosx

e0:379870x
2

cos(x+ 0:616336)

3
5 ;

U =

2
4 1 0:477636 �0:356576

0 1 �0:623342
0 0 1

3
5 ;

D =

2
4 �0:884017 0 0

0 0:794868 0
0 0 �9:83284

3
5 ;

L =

2
4 1 0 0

0:477636 1 0
�0:356576 �0:623342 1

3
5 ;

W (y) =

2
4 ey

2

cos(y + 1)
cos y

e0:379870 y
2

cos(y + 0:616336)

3
5 :

We can obviously see that W (y) is the same as V (x) with x replaced by y, and
U is the transpose of L, i.e., U = LT , in this example. This is simply because
f(x; y) is a symmetric function in this case.

Now we can compute the tensor product series s3(x; y), and s1(x; y), s2(x; y) as
well, by using the above vector-matrix representation as follows:
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Approximation with rank 1:

s1(x; y) = V T (x)[1] � U [1; 1] �D[1; 1] � L[1; 1] �W (y)[1]

= �0:884017 ex
2

cos(x+ 1) ey
2

cos(y + 1):

Approximation with rank 2:

s2(x; y) = V T (x)[1::2] � U [1::2; 1::2] �D[1::2; 1::2] � L[1::2; 1::2] �W (y)[1::2]

= ey
2

cos(y + 1)
�
�0:702679 ex

2

cos(x+ 1) + 0:379658 cosx
�
+

cos y
�
0:379658 ex

2

cos(x+ 1) + 0:794868 cosx
�
:

Approximation with rank 3:

s3(x; y) = V T (x) � U �D � L �W (y)

= ey
2

cos(y + 1)�
�1:95289 ex

2

cos(x+ 1)� 1:80587 cosx+ 3:50615 e0:379870x
2

cos(x+ 0:616336)
�

+cos y�
�1:80587 ex

2

cos(x+ 1)� 3:02573 cosx+ 6:12922 e0:379870x
2

cos(x+ 0:616336)
�

+e0:379870 y
2

cos(y + 0:616336)�
3:50615 ex

2

cos(x+ 1) + 6:12922 cosx� 9:83284 e0:379870x
2

cos(x+ 0:616336)
�
.

5.4.3 Bene�ts of the Vector-Matrix Representation

There are several reasons why we choose the vector-matrix representation rather
than the explicit expression of tensor product series sn(x; y) as in (5.7). We can see
that the vector-matrix representation improves the time e�ciency and accuracy of
the approximation from the following points of view:

� When using the explicit expression, the size of the expression grows exponen-
tially as the number of terms increases. However, we can avoid such expression
growth by adopting the representation in vector-matrix form.
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� The vector-matrix representation reduces the cost of handling the complex
expressions for rn and sn from O (n2) to O(n) evaluations of the original
function f(x; y).

� Applying built-in linear algebra operations for vector-matrix multiplication
and inner product make the computation more e�cient.

� It is usually impossible to evaluate to full accuracy with the explicit expres-
sion. Because the remainders ri get successively smaller, the i�th diagonal
elements D[i; i] in matrix D, which are equal to 1

ri
, get larger as i increases

(though this does not really show up in Example 5.2 because of the small
number of terms). As a result we will produce a sum of terms with large
values adding up to a relatively small �nal result which leads to a loss of ac-
curacy. However, using vector-matrix representation can prevent this problem
and maintain a stable evaluation as will be seen in Chapter 6.

Note that in our package we evaluate the expressions of x and y, which only appear
in the vectors V (x) and W (y), to numerical values before performing the vector-
matrix multiplications. We will show the details of coding in Chapter 6.

5.5 Translation of Variables

The original implementation of generating tensor product series for a bivariate
function f was speci�cally on the unit square region R = [0; 1]� [0; 1]. Hence there
has been some modi�cation to the code so that the new implementation can accept
any region R = [a; b]� [c; d] and automatically transform the speci�ed region to the
unit square [0; 1]� [0; 1]. After the computation is done, the inverse transformation
is then used to get back to the original region.

If the function to be approximated is f(x; y) and we want to translate the
original variables (x; y) on the region [a; b]� [c; d] to new variables (s; t) on the unit
square [0; 1]� [0; 1], then it works as follows:

1. Apply the change of variables which maps the region [0; 1]�[0; 1] to [a; b]�[c; d]

x = a� (1� s) + b� s;

y = c� (1� t) + d� t; (5.10)

where 0 � s � 1 and 0 � t � 1.
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2. Now we have a modi�ed function g(s; t) transformed from f(x; y) such that
g(s; t) = f((b� a)� s+ a; (d� c)� t+ c). Use g(s; t) directly in the old code
to generate the tensor product series on [0; 1]� [0; 1].

3. Once we have created the approximation, apply the inverse transformation

s =
x� a

b� a
;

t =
y � c

d� c
; (5.11)

which maps the region [a; b]� [c; d] to [0; 1]� [0; 1]. Then we have the tensor
product series in terms of (s; t) changed back to the approximation with
respect to (x; y).

By using the translation of variables as described above, we are now able to compute
tensor product series expansions for any given regions.

5.6 TensorProductInt

The Maple module TensorProductInt developed by Frederick W. Chapman, Or-
lando A. Carvajal and Keith O. Geddes can be used to generate tensor product
series for a given function f(x; y).

As mentioned in section 5.4.2, the old version of the module only worked for
symmetric functions and for the unit square region; however, it can now deal with
asymmetric functions on any region since it has been recently updated. A new
routine has been added in the module to deal with general cases. If the function to
be approximated is symmetric, this Maple module will call the subroutines which
were already in the old one; otherwise, the module will use the newly developed
code for the asymmetric case.

The �ow chart of the module TensorProductInt is shown in Figure 5.2.

We can use the command `evalf/int/TensorProductInt`:-TensorInt2D to
invoke the new procedure TensorInt2D. This procedure accepts as input arguments
the given bivariate function expr, the ranges of the two variables in the list region,
and the requested accuracy epsilon, and then returns the following values:

TPSeriesRep The natural tensor product series approximation of expr.
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function?

TensorInt2D

SymmTensorSeries

SymmConfinement

NonSymmTensorSeries
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NoYes

TensorProductInt

(expr, region, epsilon, 'normf', 'maxerror', 'nTerms', 
'errflag', 'TPSeriesRep', 'Integrate'=false, 'VarSubs')

(normf, maxerror, nTerms, errflag, 
TPSeriesRep, VarSubs)

Figure 5.2: Structure of TensorProductInt
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nTerms The number of terms, i.e., the rank, in the tensor product series ap-
proximation.

maxerror The estimated maximum error which is less than epsilon.

normf The maximum absolute value of expr in the given region.

VarSubs A list [s; t] specifying the change of variables x ! s; y ! t which
transforms the original region into the unit square [0; 1]� [0; 1].

The value of TPSeriesRep here is a sequence (TPSeries, Vx, U, D, L, Wy)

where TPSeries is an explicit expression of the desired approximation of expr

in sum-of-products form, i.e., sn(x; y) in equation (5.9), and (Vx, U, D, L, Wy)

are de�ned as in section 5.4.2 with n speci�ed by nTerms.

In order to have this procedure work properly for our package, we also added
an optional argument errflag whose value is assigned 0 for a normal return and
assigned 1 if the requested accuracy failed to be achieved before the maximum
number of iterations without improvement was reached. This allows our toolkit to
treat the case errflag=1 in the same way that we treat the case where nTerms is
too large, namely, subdividing the region into smaller subregions.
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Chapter 6

General Approximation Method for

Bivariate Functions

6.1 Purpose of Our Maple Package

Some functions currently provided by Maple, such as chebyshev and minimax, are
useful for generating approximations on a �xed small region. Unfortunately, when
the region gets too large on the real line, the degree of the approximation may
become large which is an impediment for e�cient and accurate evaluations.

The solution that we use in our package, which is a straightforward way, is
to divide the region on which we need to do the whole approximation of large
degree into subregions on which we can use rational or polynomial approximation
of smaller degree instead. In section 6.4, we describe the scheme used by our toolkit
in Maple to divide the region into subregions.

There are some built-in functions in Maple, speci�cally bivariate functions of our
interest such as the Bessel function of the �rst kind Jv(x), which evaluate relatively
slowly (e.g., for plotting or integrating over a two-dimensional region). This is
because the numerical evaluation routine is a general-purpose routine operating in
software �oating point for any user-speci�ed precision. We wish to �nd a better
solution to improve the e�ciency of the evaluations in hardware �oating point
precision without losing accuracy.

Our approach here is to generate e�cient numerical evaluation routines for a
given bivariate function by �rst converting the problem of approximating a bivariate
function to the problem of approximation for a sequence of univariate functions,
and then using polynomial or rational approximations for the univariate functions.

Generally there are four goals that we want to achieve when generating an
evaluation routine for the original function f(x; y):
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� The maximum error of the numerical evaluation routine fapprox on the region
of interest R = [a; b] � [c; d] must be less or equal than the user-speci�ed

precision (or hardware �oating point precision by default), i.e.,
kfapprox�fk

1

max(kfk
1
;1)

�

finaltol as discussed in section 2.4.

� The new evaluation routine should be e�cient, i.e., signi�cantly faster than
Maple's current method. Note that the speed here refers to the execution
time when using the generated approximation to evaluate at any point in
the speci�ed rectangular region of R, not the time required to generate the
approximation.

� The process of generating approximations should be automated, such as by
automatically subdividing the region R and then generating approximations
on each subregion. The details of automated region selection will be explained
in section 6.4.

� The generated routine must be numerical in the sense that it can be trans-
lated into the C language (or other languages) and compiled into a numerical
library.

In the following sections, we describe how our toolkit meets these goals in practice
and discuss the algorithms that are used in the package.

6.2 Use of the Toolkit

We describe the use of our toolkit in this section.

The following parameters are required to be speci�ed by the user:

f The bivariate function to be approximated, represented as a Maple ex-
pression (see section 2.1 for details).

region A list de�ning the two-dimensional region of approximation with each
dimension speci�ed as an equation: var=a..b.

The following parameters are optional:

rationalEqn An equation 'rational=true' (the default case) or 'rational=fal-
se' indicating whether rational approximations will be attempted. If
the argument 'rational=false' is speci�ed then only polynomial ap-
proximations will be used.
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finaltol The accuracy tolerance desired for the �nal approximation. If it is not
speci�ed, we use hardware �oating point precision as the default value.

The value returned by the toolkit is a sequence (hash, arrayRep) which is speci-
�ed as follows:

hash A Maple piecewise expression which, when evaluation is required at a
speci�c point (xval, yval), returns the integer index such that index
:= hash(xval, yval) de�nes the index in arrayRep corresponding to
the approximation for the subregion containing the point (xval, yval).

arrayRep A Maple table with two dimensions, the �rst being the integer index
identifying a subregion. It stores the Matrix values LDU, V and W repre-
senting the tensor product approximation in that subregion (see section
6.10 for details).

Given a point (x; y) for evaluation, we can extract the corresponding information
of the approximation from (hash, arrayRep) and compute the numerical result.

6.3 Algorithm

The following simpli�ed algorithm explains how our main procedure for approxi-
mation generation works.

If the given bivariate function is denoted by f , the maximum error of the current
approximation is denoted by �, and the desired accuracy is denoted by �, then our
approach generally consists of three phases:

1. Invoke `evalf/int/TensorProductInt`:-TensorInt2D as introduced in sec-
tion 5.6 to generate a tensor product series expansion for the given bivariate
function, and then check the maximum error. If necessary, divide the current
region of the x-y plane into subregions, call the main procedure with the new
subregions, and exit the current procedure.

2. Set � to Float(infinity). As long as � > � repeat the following steps:

(a) Increase Digits for a higher working precision.

(b) For each univariate function in the vector V (x) do the following steps:

i. Call numapprox:-chebyshev to get the truncated Chebyshev series
expansion of the entry.
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ii. If the user has speci�ed 'rational=false', directly go to step 2c;
otherwise, use numapprox:-chebpade to get the Chebyshev-Padé
approximation of the entry. If rational approximation fails, we revert
to using polynomial approximation, i.e., truncated Chebyshev series.

(c) Break the current x region into subregions if needed, invoke the main
procedure again with new subregions, and exit the current procedure.

(d) For each univariate function in the vector W (y) do the iterations as in
step 2b.

(e) Break the current y region into subregions if necessary, invoke the main
procedure once again with new subregions, and exit the current proce-
dure.

(f) Randomly select 2�nTerms points on each x and y region, where nTerms
is as de�ned in section 5.6. Check the errors of the approximation on
these points, and then assign the maximum error to �.

3. Since we have now achieved an approximation which satis�es � � �, we
will store all the information of the approximation for the current region
in arrayRep, an array with two dimensions.

By applying the above algorithm, we obtain the desired piecewise approximation in
the form of a piecewise function hash for index association and an array arrayRep,
as de�ned in section 6.2, which stores the approximation for each subregion.

The above algorithm description does not cover every part of the code and we
will discuss each phase in more detail throughout this chapter.

6.4 Region Subdivision Process

For each region Ri there is a user-speci�ed maximum degree of approximation,
denoted by the global variable MAXDEGREE. There is also a user-speci�ed maximum
number of terms, denoted by MAXTERMS, for the tensor product series expansion. In
experimenting with our package, we set MAXDEGREE and MAXTERMS to various values
according to empirical results for di�erent functions. Further experimentation will
be needed to �nd the best values of MAXDEGREE and MAXTERMS automatically in the
process of generating approximations.

In order to calculate the degree of the approximation so that we can know if it
is necessary to subdivide the region, we use Maple's numapprox:-chebyshev com-
mand which returns the Chebyshev series truncated at a �nite degree based on the
requested accuracy for polynomial approximation, and we use the numapprox:-che-
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bpade command which returns a Chebyshev-Padé approximation of speci�ed degree
(m;n) for rational approximation. The usage of these two commands are described
in section 3.3.3 and 4.3.2.

Suppose R = [0; 5] � [0; 5] is the whole region on x and y where we wish to
approximate the bivariate function f . The following algorithm describes when
and how the toolkit breaks the region into subregions based on MAXTERMS and
MAXDEGREE.

1. R0 is passed into the main procedure, where R0 = R initially.

2. If the rank of the tensor product series is too large, i.e., nTerms>MAXTERMS,
or errflag 6= 0, or the maximum error is too large, then we split the x region
into two equal subregions, and split the y region into two equal subregions.
Otherwise we skip to step 4. Thus we have split the rectangular region R0

into four smaller regions fRig
4
i=1, where the area of each Ri is one-quarter

that of R0. Figure 6.1 illustrates the relationship of R0 and fRig
4
i=1.

3. Call the main procedure again four times with a di�erent R0 = Ri passed in
each time. Exit from the current procedure since we do not need to compute
approximations on the larger region R0 any more.

4. If the degree of approximation for the functions of x is too large, i.e., x_maxdeg
>MAXDEGREE, then split the x region into smaller subregions where each sub-
region is reduced to half size. Otherwise go to step 6 directly. Note that the
y region is left unchanged. Thus we have R0 split into two subregions fRig

2
i=1

this time, where the area of each Ri is half of that of R0. The relationship of
R0 and fRig

2
i=1 is shown as in Figure 6.2.

5. For each Ri set R0 = Ri and return to step 1.

6. If y_maxdeg>MAXDEGREE, i.e., the degree of approximation for the functions
of y is too large, we then split the y region into two smaller subregions. Oth-
erwise there is no need to break the current region and we will just continue
to compute the approximation for the current region. Similarly as in step 4,
we only divide the y region but do not split the x region here. Again we will
get two subregions R1 and R2 separated from R0 by dividing R0 by half on
the y region, which is shown in Figure 6.3.

7. As in step 5, return to step 1 and invoke the main procedure twice with
R0 = Ri. Exit from the current procedure because it is not necessary to
continue working on the larger region R0 now.

Note that when we use rational approximation of degree (m1;m2) for the func-
tions of x in step 4, the value of x_maxdeg is not m1+m2 but max(m1;m2) instead.
The same rule applies to y_maxdeg in step 6.
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The above algorithm is actually a part of the algorithm in section 6.3. The steps
2 and 3 in this algorithm explain how the step 1 of the algorithm in section 6.3
works concretely. Analogously, the steps 4 and 5, and steps 6 and 7 here are more
detailed versions of step 2c and step 2e in the algorithm of section 6.3 respectively.

Now we illustrate the idea of subdividing the region into subregions in our
package by exhibiting an example of approximation in a large region.

Example 6.1

Suppose we wish to approximate the Bessel function Kv(x) on the region R =
[0; 6] � [1; 7], and we have MAXTERMS and MAXDEGREE set to 15 and 8 respectively.
Then the piecewise expression hash, de�ned in section 6.2, returned by our toolkit
is as follows:
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8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

0 v < 0:0 or x < 1:0

1 0:0 � v and v � 1:5 and 1:0 � x and x � 1:75

2 0:0 � v and v � 1:5 and 1:75 � x and x � 2:5

3 0:0 � v and v � 1:5 and 2:5 � x and x � 4:0

4 1:5 � v and v � 3:0 and 1:0 � x and x � 2:5

5 1:5 � v and v � 3:0 and 2:5 � x and x � 4:0

6 0:0 � v and v � 3:0 and 4:0 � x and x � 7:0

7 3:0 � v and v � 4:5 and 1:0 � x and x � 2:5

8 3:0 � v and v � 4:5 and 2:5 � x and x � 4:0

9 4:5 � v and v � 6:0 and 1:0 � x and x � 2:5

10 4:5 � v and v � 6:0 and 2:5 � x and x � 4:0

11 3:0 � v and v � 6:0 and 4:0 � x and x � 7:0

12 otherwise

where the �rst column contains the indices and the second column are the sub-
regions associated with each index.

The resulting subdivisions for the region R are illustrated in Figure 6.4.
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Figure 6.4: Subregions for Example 6.1
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Hence given a point (vi; xj) at which to evaluate, we can pass it into hash

which returns the associated index k that we can use to �nd the corresponding
approximation on the k-th subregion stored in arrayRep. For example, for the
point (4:6; 2:9) invoking hash(4.6,2.9) will return 10, meaning that we should
evaluate the approximation of the subregion indexed by 10.

6.5 Structure of the Toolkit

Figure 6.5 illustrates the working structure of the three-phase algorithm of section
6.3 as well as the region subdivision algorithm of section 6.4.

In this �gure, generateApprox is the procedure that the user invokes in or-
der to use the toolkit. After reading in, analyzing and processing the parameters
(f, region, rationalEqn, finaltol), generateApprox passes them into the
procedure generatePwlist, which invokes all the procedures inside the big green
box in the �gure, for the main work of creating approximations for the bivariate
function f over the (possibly large) speci�ed region of the x-y plane. Eventually
generateApprox returns (hash, arrayRep) as de�ned in section 6.2.

All the blue arrows show how the generation of the approximation goes through
successfully to the third phase which ultimately sends the approximation results
back to generateApprox implicitly.

Each red arrow shows when the region will be possibly subdivided after imple-
menting the procedure which it points from. The region is subdivided as necessary
to achieve approximations on each subregion satisfying the constraints speci�ed by
the global variables MAXTERMS and MAXDEGREE. We can see that all the red arrows
point to generatePwlist; hence this procedure works in a recursive way and we
apply generatePwlist to each subregion in order to get di�erent approximations
because of region subdivision.

The pink arrows are relevant only when the user has speci�ed 'rational=false',
in which case we skip the two steps of invoking chebpade on x and chebpade on

y as shown in the �gure.

The black arrow represents that when the error is too large we will increase the
value of Digits and repeat the current phase. Note that increasing the working
precision speci�ed by Digits implies that chebyshev will return a higher-degree
approximation.

Note that the number of subregions corresponds to the number of indices in
hash. Generally the more indices we have, the more distinct approximations are
generated and the longer execution time for generation is needed.
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Figure 6.5: Structure of the Toolkit
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6.6 Singularities

A singularity is in general a point at which the given mathematical function is not
de�ned or is unbounded. For example, the function

f(x) =
1

x
(6.1)

on the real line has a singularity at x = 0 since it tends to �1 and is not de�ned
at this point.

More generally, we consider a point x0 to be a singularity if the function does
not have a Taylor series expansion about x = x0. For example, f(x) = x

1

2 has a
�square root singularity� at x = 0.

It is possible that there exists such a singularity x0 for a function f(x) that we
wish to approximate, which will cause troubles due to two reasons:

� It becomes impossible to get a polynomial approximation that is correct when
arbitrarily close to x0. Depending on the type of the singularity, using rational
approximation might get a better result than polynomial approximation in
such case, in the sense of being able to approximate closer to the singularity.

� It tends to require a very high degree when we approximate f(x) near the
singularity even on a quite small interval, both for polynomial and rational
approximation cases. This may result in highly ine�cient evaluation or an
in�nite loop during the approximation generation.

In Thomas A. Robinson's Masters thesis [9], he attempted to automatically remove
the singularities before approximating the function and then replace them once the
approximation has been completed for the modi�ed function. He tried two methods,
multiplying and subtracting the singularity, with some success. For our current
project on bivariate approximation, we have not attempted automatic removal of
singularities except to the extent discussed below.

In our generation of the bivariate approximation, we arti�cially keep the region
away from the singularity to avoid such problems. For example, if the singularity
is at x0 = 0 we will restrict x � xmin for the speci�ed interval used in our toolkit,
where xmin may be chosen as small as 1

1000
.

Additionally, in order to minimize the degree of the approximation when near
singularities, we will factor out a power of y for some functions.

Let us �rst see an example of the Bessel function of the second kind, Yx(y), so
that we can illustrate this idea more intuitively.
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Example 6.2

Suppose we are approximating Yx(y) on the region R = [0; 2] � [ 1
10
; 1]. In this

example, we concentrate on approximating in the variable y, with x �xed.

Since lim
y!0+

Yx(y) = �1 for any x, y = 0 is a singularity for Yx(y). If x is a

non-integer such as 1
4
, the series expansion for Yx(y) at y = 0 is
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Actually for any value of x, no matter integer or non-integer, the expansion of
Yx(y) about y = 0 starts with a term in y�x. It is obvious that evaluation at points
(x; y) with y close to 0 will pose di�culties.

Let us try to compute the truncated Chebyshev series for Y 1

4
(y) to the hardware

�oating point precision hfeps:

> with(numapprox):

> chebseries := chebyshev(BesselY(1/4, y), y = 1/10 .. 1, hfeps):

> deg := chebdeg(chebseries); .

The deg obtained here is 44 which is quite large.

However, if we �rst multiply Y 1

4
(y) by y

1

4 we get a function that is better-behaved

at y = 0. The series expansion for yx Yx(y) with x = 1
4
at y = 0 is
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When we compute the Chebyshev series for this expansion we get deg=38 which
is smaller than the previous result.

We can notice that this series expansion has a square root singularity at y = 0.
For the case of integer x, it reveals a logarithmic singularity. Therefore rational
approximation will be advantageous over polynomial approximation in both of the
two cases.

After trying di�erent degrees we �nd that hfeps can be su�ciently achieved by
rational approximation q of degree (15,15), a great reduction from degree 44, in the
following form:

q =

15P
k=0

ckTk
�
20
9
y � 11

9

�
15P
k=0

dkTk
�
10
9
y � 11

9

� (6.4)
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where ck and dk are the numerator coe�cients and denominator coe�cients respec-
tively.

In the end we can get an approximation for the original function Y 1

4
(y) by

forming y�
1

4 q.

In order to have more e�cient approximations, as shown in the above example
for Yx(y), we will always factor out y

const when f(x; y) is Bessel function Jx(y) or
Ix(y) for which the series expansion about y = 0 has leading term f(const; y) =
coef�yconst+ :::. Similarly for f(x; y) = Yx(y) or Kx(y), the series expansion about
y = 0 has leading term f(const; y) = coef�y�const + :::. To avoid the singularity
at y = 0 we will factor out y�const .

6.7 Preparation Work

Starting from this section we are going to see how our package works in more detail.

We will begin with the procedure generateApprox and the arguments process-
ing stage �rst.

6.7.1 generateApprox

After reading in the arguments (f, region, rationalEqn, finaltol), the pro-
cedure generateApprox �rst checks if the quantities of the arguments and their
format are correct.

If rationalEqn is speci�ed, it determines the value of doRational:

> doRational := rhs(rationalEqn); .

Otherwise we always try rational approximations by default:

> doRational := true; .

If the optional argument finaltol isn't speci�ed, we use hardware �oating
point precision as the accuracy tolerance in the package.

> hfDigits := trunc(evalhf(Digits));

> tol := Float(5,-hfDigits); .

We then analyze the region of x-y and set the corresponding values to (xrange,
yrange). Note that we must avoid approximating on the singularity area; however,
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for some functions such as Jx(y), specifying xmin = 0 is allowed but we must specify
ymin > 0 due to the singularity at (0,0).

> (x_orig, y_orig) := (lhs(region[1]), lhs(region[2]));

> (x, y) := (x_orig, y_orig);

> (xmin, xmax) := op(rhs(region[1]));

> (ymin, ymax) := op(rhs(region[2]));

> (xrange, yrange) := (xmin..xmax, ymin..ymax); .

We also need to initialize pwlist which is a global variable to procedures
generateApprox and generatePwlist.

> pwlist := []; .

After processing all the arguments, generateApprox passes the arguments (f,
x, y, xrange, yrange, tol, doRational) into generatePwlist, of which there
is no returned value but instead it updates the global variables pwlist and arrayRep.

Note that in our package we have some code to print related information for the
user; however, for simpli�cation we will not display this code or any insigni�cant
code here. This rule applies to all the Maple code we will show in this thesis.

6.7.2 pwlist

Before getting down to generatePwlist, we will �rst introduce the de�nition of
the construct named pwlist in our package.

As described in the Maple help pages, the command convert(piecewise,

pwlist, x) in Maple will convert a piecewise expression, such as piecewise(cond1,
f1, cond2, f2,...), into an ordered list [f1; t1; f2; t2; :::; fn; tn; fn+1] which repre-
sents the piecewise-de�ned function:

fi when ti�1 < x < ti; i = 1; 2; :::; n+ 1

where t0 = �1 and tn+1 =1 implicitly.

In our package we use an extension of this idea for univariate functions to our
case of bivariate functions.

For example, if we have the piecewise function piecewise(x < 0:0 or y < 0:0,
0, 0:0 � x � 1:7 and 0:0 � y � 2:3, 1, 0:0 � x � 1:7 and 2:3 � y � 3:5, 2, 3), then
the corresponding representation of pwlist is [0, [0.0, 0.0], 1, [0.0, 1.7, 0.0, 2.3],
2, [0.0, 1.7, 2.3, 3.5], 3] which associates index 0 with x < 0:0 or y < 0:0 (outside
the region of interest), associates index 1 with x in [0.0, 1.7] and y in [0.0, 2.3],
associates index 2 with x in [0.0, 1.7] and y in [2.3, 3.5], and associates index 3
otherwise.
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Since we specify closed intervals, there will be some redundancy for the index
association. For example, the point (1.7, 2.3) could be associated with index 1 or
2. In such a case, the piecewise construct will choose the �rst condition which is
satis�ed.

As we process each subregion, we build up the information for the particular
piecewise function in pwlist.

6.8 Tensor Product Series Approximation

Now let us look at the �rst phase in the procedure generatePwlist which is for
generating a tensor product series .

After reading in the arguments (f, x, y, curXrange, curYrange, finaltol,

rational), generatePwlist �rst de�nes the function f in procedure form (see
section 2.1 for details) which is useful for error checking after we have the approxi-
mation.

> fproc := unapply(f, (x,y)); .

Then we enter the �rst phase and we increase Digits by the global variable
GUARD_TensorInt2D which speci�es the guard digits for the TensorInt2D compu-
tation. We will set the value of GUARD_TensorInt2D in the testing setup of section
7.1.

Note that the accuracy sftol used for TensorInt2D is separate from finaltol.
sftol changes as Digits increases while finaltol is �xed as speci�ed by the calling
routine.

As introduced in section 5.6, by invoking TensorInt2D we are able to compute
a natural tensor product series expansion TPSeriesRep of rank nTerms with com-
puted value maxerr less than the speci�ed sftol. We then extract components
(TPSeries, Vx, U, D, L, Wy) from the variable TPSeriesRep.

The corresponding Maple code is as follows:

> orig_Digits := Digits;

> maxrelerr := Float(infinity);

> Digits := Digits + GUARD_TensorInt2D;

> sftol := Float(5,-Digits);

> `evalf/int/TensorProductInt`:-TensorInt2D(f, [x=curXrange,

y=curYrange], sftol, 'normf', 'maxerr', 'nTerms', 'errflag',

'TPSeriesRep', 'Integrate'=false, 'VarSubs');

> (TPSeries, Vx, U, D, L, Wy) := TPSeriesRep; .
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As discussed in section 5.4.3, if we compute with the diagonal entries of ma-
trix D corresponding to rn < sftol, we would likely have inaccurate numerical
results because of roundo� error contamination. Hence we will trim nTerms to
nTerms1 based on roundo� error level corresponding to finaltol (if normf�1) or
normf�finaltol (if normf>1). Recall from equation (5.6), the remainder jrn(x; y)j
is the absolute error for the approximation. Hence we can estimate the error of the
approximation by using D[nTerms1+1,nTerms1+1] since it is the reciprocal of the
remainder.

Here is the Maple code:

> if nTerms <= MAXTERMS and errflag = 0 then

> cutoff := `if`(normf > 1.0, 1/(normf*finaltol), 1/finaltol);

> for i from nTerms by -1 to 1 while abs(D[i,i]) > cutoff do

> end do;

> nTerms1 := i;

> if nTerms1 < nTerms then

> maxabserr := 1/abs(D[nTerms1+1,nTerms1+1]);

> maxerr := maxabserr/max(1.0,normf);

> else

> errflag := 1;

> end if;

> end if; .

In generatePwlist, the current subregion is speci�ed by x=curXrange and
y=curYrange. If nTerms is too large, or errflag is not 0 indicating that TensorInt-
2D failed to achieve the requested accuracy sftol, or the maximum error maxerr
in the �rst phase is not smaller than finaltol, we split both the current x and y
regions into subregions, call generatePwlist with each subregion and then return,
i.e., exit the current procedure generatePwlist. Otherwise we continue to the
second phase.

> if nTerms > MAXTERMS or errflag <> 0 or maxerr > finaltol then

> Digits := orig_Digits;

> aa[0] := evalf(op(1, curXrange));

> aa[2] := evalf(op(2, curXrange));

> aa[1] := (aa[0] + aa[2])/2.0;

> cc[0] := evalf(op(1, curYrange));

> cc[2] := evalf(op(2, curYrange));

> cc[1] := (cc[0] + cc[2])/2.0;

> for i from 1 to 2 do

> for j from 1 to 2 do

> generatePwlist(f, x, y, aa[i-1]..aa[i], cc[j-1]..cc[j],

finaltol, rational);

> end do;

> end do;
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> return;

> end if; .

6.9 Univariate Function Approximation

In the second phase of generatePwlist, we compute the approximations for the
univariate functions in the vectors Vx and Wy.

6.9.1 Initialization

At the beginning we initialize the values for some variables:

> Digits := orig_Digits;

> (maxerr, prevmaxerr) := (Float(infinity), Float(infinity));

> count := 0; .

Then we repeat the main loop in this phase until the desired accuracy finaltol

is reached.

The �rst step in the main loop is to set accuracy tolerance sftolcheb which
determines the degree of the Chebyshev series approximation for f (represented by
the vector chebcoef). We also use a higher working precision sftol similarly as
in the �rst phase; however, the di�erence is that sftol will be changed here each
time we repeat since Digits is increased each time.

> count := count + 1;

> sftolcheb := Float(5, -(Digits + count*GUARD_chebyshev));

> Digits := Digits + (2*count+1)*GUARD_chebyshev;

> sftol := Float(5,-Digits); .

The approximation degree determined by sftolcheb is required for the given
function f and we do not want the degree to be higher than necessary. Hence,
GUARD_chebyshev should be relatively smaller than GUARD_TensorInt2D, both of
which are global variables. As for GUARD_TensorInt2D, we will also set the value
of GUARD_chebyshev in the testing setup of section 7.1.

We have already obtained nTerms1 from nTerms based on roundo� error level
in the �rst phase. We now assign the value of nTerms1 to nTerms2, which will be
used as the number of entries in Vx and Wy later:

> nTerms2 := nTerms1; .
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6.9.2 Approximation for Vx

Now we compute Chebyshev approximations for the univariate functions in vector
Vx. Again there are some initializations �rst:

> fromChebseries_x := NULL;

> x_degreelist := NULL;

> x_maxdeg := 0; .

We should keep in mind that the vector Vx contains entries of the form f(x; bi)
for various values of bi and similarly Wy contains entries of the form f(ai; y), where
ai and bi are as de�ned in equation (5.7). So when we use polynomial or rational
approximation for the univariate functions, we need to do the univariate approx-
imation for each entry separately in Vx and Wy. Using polynomial approximation
for one entry in Vx does not necessarily mean that we need to use the same type of
approximation for another entry in Vx (unless it is required by the user); and vice
versa. Therefore we are theoretically using a mixture of polynomial and rational
approximations for Vx (and similarly for Wy) in our method, though it is often seen
in practice that we are using the same kind of univariate approximation for all the
entries in Vx and Wy .

For each entry i in Vx, the total number of which is nTerms2, we need to
implement the following steps:

We �rst compute the Chebyshev series to a higher degree based on sftol. See
the details for usage of command numapprox:-chebyshev in section 3.3.3. The
higher-degree Chebyshev series (represented by cheb_accuratecoef) will be used
for computing an estimate of the error in chebcoef. In case the function is only de-
�ned for limited accuracy, we use a try-catch clause. If the numapprox:-chebyshev
command fails, try again with cheb_accuratetol increased to be between sftol

and sftolcheb, which decreases the Chebyshev degree.

> h := Vx[i];

> cheb_accuratetol := sftol;

> cheb_success := false;

> for trycount from 1 to 2 while not cheb_success do

> try

> (cheb_accuratecoef, var) := numapprox:-chebyshev(h,

x=curXrange, cheb_accuratetol, 'output=Vector', 487,

true);

> cheb_success := true;

> catch "singularity in or near interval":

> cheb_success := false;

> if trycount = 1 then

> cheb_accuratetol := 10^((log[10](sftol)+log[10](

sftolcheb))/2.0);
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> end if;

> end try;

> end do; .

If the above steps work successfully, we then truncate the Chebyshev series
according to the accuracy sftolcheb. Otherwise, we set the values of degree_x
and maxerr to in�nity so that we know that the current region needs subdividing.

> if cheb_success then

> dim := LinearAlgebra:-Dimension(cheb_accuratecoef);

> varproc := unapply(var, x);

> maxcoef := LinearAlgebra:-VectorNorm(cheb_accuratecoef);

> chebtol := 1/5*maxcoef*sftolcheb;

> for K from dim by -1 to 1 while abs(cheb_accuratecoef[K])<

chebtol do end do;

> chebcoef := cheb_accuratecoef[1..K];

> degree_x := K-1;

> if K < dim then

> maxerr := LinearAlgebra:-VectorNorm(cheb_accuratecoef[

K+1..dim], 1) /maxcoef;

> else

> maxerr :=`if`(K>1, chebcoef[K]/chebcoef[K-1]*chebcoef[K],

sftolcheb);

> end if;

> else

> chebcoef := Vector([0.0]);

> degree_x := infinity;

> maxerr := Float(infinity);

> end if;

> fromChebseries_x := fromChebseries_x, degree_x; .

If cheb_success and the argument rational are both true, we will attempt to
use rational approximation. Note that for some functions, such as LegendreP(x,y),
particular cross-sections f(x; const) or f(const; y) may degenerate to polynomials
of low degree. Therefore, we require degree_x to be larger than 5 before using
rational approximation, otherwise we will use polynomial approximation.

The maximum error of the approximation p here is estimated by

kf � pk1
kfk1

=
kcheb_accuratecoef � approxcoefk1

maxcoef
(6.5)

where the norm of cheb_accuratecoef-approxcoef is bounded by the absolute
sum of the coe�cients.

Note that for many functions, one �nds that if polynomial approximation re-
quires degree n then to achieve an approximation of the same accuracy by rational
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approximation, typically the degree will be (m1;m2) with m1+m2 < n. We choose
to try rational approximations by starting with degree (n

2
+1; n

2
+1) and decreasing

both components by 1 until discovering the minimum possible degree.

If we are unable to compute the Chebyshev-Padé approximation, we then try
with denominator degree smaller than numerator degree since it may work for some
functions in this way. If we still fail in doing so, we catch the error and revert to
use polynomial approximation.

Here is the corresponding Maple code:

> halfdeg := iquo(degree_x, 2);

> (m, n) := (halfdeg+2, halfdeg+2);

> while m+n-2 >= dim do (m, n) := (m-1, n-1) end do;

> (numcoef, dencoef) := ('numcoef', 'dencoef');

> maxerr := 0.0;

> for trycount from 1 to halfdeg while maxerr < sftolcheb do

> (m, n) := (m-1, n-1);

> try

> prev := (numcoef, dencoef, var);

> (numcoef, dencoef, var) := numapprox:-chebpade(

cheb_accuratecoef, var, [m,n], 'output=Vector');

> chebratproc := t -> numapprox:-chebeval(numcoef,

varproc(t))/numapprox:-chebeval(dencoef, varproc(t));

> (approxcoef, dummy) := numapprox:-chebyshev(chebratproc,

curXrange, sftol, 'output=Vector');

> dimapprox := LinearAlgebra:-Dimension(approxcoef);

> if dimapprox > dim then

> approxcoef := approxcoef[1..dim];

> elif dimapprox < dim then

> approxcoef := Vector(dim, [seq(approxcoef[k], k = 1

..dimapprox), seq(0.0, k = dimapprox+1 .. dim)]);

> end if;

> maxerr := LinearAlgebra:-VectorNorm(cheb_accuratecoef-

approxcoef,1) /maxcoef;

> catch "Chebyshev-Pade approximation of given degree is

not well-defined",

"singularity in or near interval":

> (m, n) := (m+2, n+1);

> while m+n-2 >= dim do (m, n) := (m-1, n-1) end do;

> catch:

> maxerr := sftolcheb;

> end try;

> if trycount = 1 and maxerr >= sftolcheb then

> (m, n) := (m+2, n+2);

> if m+n-2 < dim then
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> (numcoef, dencoef) := ('numcoef', 'dencoef');

> maxerr := 0.0;

> end if;

> end if;

> end do;

> (numcoef, dencoef, var) := prev;

> if type(numcoef,'Vector') and type(dencoef,'Vector') then

> (numdeg, dendeg) := ( LinearAlgebra:-Dimension(numcoef)-1,

LinearAlgebra:-Dimension(dencoef)-1 );

> else

> (numdeg, dendeg) := (degree_x, 0);

> (numcoef, dencoef) := (chebcoef, Vector([0.0]));

> end if;

> x_degreelist := x_degreelist, [numdeg, dendeg];

> x_maxdeg := max(x_maxdeg, numdeg, dendeg); .

If rational is false, we simply use polynomial approximation:

> (numcoef, dencoef) := (chebcoef, Vector([0.0]));

> x_degreelist := x_degreelist, [degree_x, 0];

> x_maxdeg := max(x_maxdeg, degree_x); .

Since we have achieved the approximation for the entry now, we will store the
corresponding information into array xUnivarApprox. If x_maxdeg of the current
entry is already too large, we simply break out of the loop since we are de�nitely
going to subdivide the current x region and there is no need to continue the loop:

> xUnivarApprox[i] := (1, numcoef, dencoef, var);

> if x_maxdeg > MAXDEGREE then break; end if; .

After computing approximations for all the entries in Vx, we compare the degree
for approximation of x and MAXDEGREE. If the former is too large then split the x
region into smaller subregions and recall generatePwlist:

> if x_maxdeg > MAXDEGREE then

> Digits := orig_Digits;

> aa[0] := evalf(op(1, curXrange));

> aa[2] := evalf(op(2, curXrange));

> aa[1] := (aa[0] + aa[2])/2;

> for i from 1 to 2 do

> generatePwlist(f, x, y, aa[i-1]..aa[i], curYrange,

finaltol, rational);

> end do;

> return;

> end if; .
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6.9.3 Approximation for Wy

We next compute Chebyshev approximations for the functions in vector Wy, which
is very similar as we did for Vx.

Note that we factor out a power of y for some functions as discussed in section
6.6. We also need to apply fnormal to op(2,h) to the level of orig_Digits since
op(2,h) may be in a form such as 1:0 y+2:3�10�17, though we expect op(2,h)=y.
By using fnormal we are able to remove the phantom zero of op(2,h) and strip
the constant 1.0 from y.

Therefore, we need to add the following at the beginning of approximation for
the univariate functions in each entry of Wy:

> fact := 1;

> if member(op(0,h), {BesselJ,BesselI,BesselY,BesselK}) then

> arg2 := fnormal(op(2,h), orig_Digits);

> if type(arg2,`*`) and abs(op(1,arg2)-1.0) <

Float(5,-orig_Digits) then

> arg2 := mul(op(i,arg2), i=2..nops(arg2));

> end if;

> if op(0,h) = BesselJ or op(0,h) = BesselI then

> fact := arg2^op(1,h);

> elif op(0,h) = BesselY or op(0,h) = BesselK then

> fact := arg2^(-op(1,h));

> end if;

> end if; .

Remember that we must use h/fact instead of h in numapprox:-chebyshev for
computing approximations for the functions in Wy:

> (cheb_accuratecoef, var) := numapprox:-chebyshev(h/fact,

y=curYrange, cheb_accuratetol, 'output=Vector', 487, true); .

Just as for the approximation of x, if the degree for approximation of y is too
large we then divide the y region and exit generatePwlist:

> if y_maxdeg > MAXDEGREE then

> Digits := orig_Digits;

> cc[0] := evalf(op(1,curYrange));

> cc[2] := evalf(op(2,curYrange));

> cc[1] := (cc[0]+cc[2])/2.0;

> for j from 1 to 2 do

> generatePwlist(f, x, y, curXrange, cc[j-1]..cc[j],

finaltol, rational);

> end do;

> return;

> end if; .
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6.9.4 Error Checking

In order to check whether the approximation computed in this phase satis�es the
required accuracy, we �rst need to get new L and U matrices, both of which are
global variables for error checking of the second phase:

> L_new := Matrix(nTerms2,nTerms2,datatype=sfloat);

> U_new := Matrix(nTerms2,nTerms2,datatype=sfloat);

> for i from 1 to nTerms2 do

> for j from i to nTerms2 do

> U_new[i,j] := U[i,j];

> end do;

> for j from 1 to i do

> L_new[i,j] := L[i,j];

> end do;

> end do; .

Afterwards we invoke the procedure absErrorCheck2 to check the error of the
approximation that we get in this phase. The input of absErrorCheck2 is as
follows:

fproc The bivariate function f(x; y) in procedure form.

x=a..b The variable name x and the range of values for x.

y=c..d The variable name y and the range of values for y.

npts The number of points to be randomly selected in each region of x and
y for testing errors.

absErrorCheck2 uses the global variables nTerms2, L_new and U_new, computes the
absolute errors at the npts�npts points and outputs (maxabserr, avgabserr,

normf) where maxabserr is the maximum absolute error, avgabserr is the average
absolute error, and normf is the maximum absolute value of f(x; y).

> (maxabserr, avgabserr, normf) := absErrorCheck2(fproc,

x=curXrange, y=curYrange, 2*nTerms);

> maxerr := maxabserr/max(1.0,normf); .

If maxerr is larger than finaltol we will repeat the main loop in the second
phase again until we achieve the desired accuracy. Otherwise we will continue to
the third phase.
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6.10 Store of the Approximation

At the completion of the procedure generatePwlist, we have obtained the desired
approximation for the current subregion. The �nal phase is to store the approxima-
tion in arrayRep so that we can compile the information into a numerical library
and retrieve it for applications such as evaluation or plotting.

We �rst introduce the procedure pwlistUpdate that we developed to be used
in this phase.

6.10.1 pwlistUpdate

There are three parameters for the procedure pwlistUpdate:

pwlist A list (initially empty) representing a piecewise function, as described
in section 6.7.2.

xRange A new range such as xleft..xright.

yRange A new range such as yleft..yright.

Then pwlistUpdate outputs the following:

Count The index associated with the new ranges of x and y.

pwlist The updated list with the new ranges added.

As discussed in section 6.2, we de�ne the function hash as a piecewise function.
After we process each particular subregion, we build up the information for the
hash function in pwlist by adding the current region to pwlist.

> (index, pwlist) := pwlistUpdate(pwlist, curXrange, curYrange); .

6.10.2 Approximation Store in arrayRep

Recall from equation (5.9) that the bivariate approximation p(x; y) for the current
subregion satis�es

p(x; y) = V T (x) � U �D � L �W (y): (6.6)
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Note that the univariate approximation for each entry in Vx (and similarly in
Wy) is of the following form

f(x; const) = x�

MAXDEGREEP
k=0

ckTk(�x+ �)

MAXDEGREEP
k=0

dkTk(�x+ �)

(6.7)

where �, � and � are constants.

If we are using polynomial approximation here we will have no denominator
term and hence d[0] = 1 and d[k] = 0 for k > 0.

We choose to represent Vx and Wy in �oating point matrices V and W respectively.
The i-th row of V corresponds to the i-th entry f(x; const) in Vx, which is stored
in the following fashion:

�; �; �; c[0]; c[1]; : : : ; c[MAXDEGREE]; d[0]; d[1]; : : : ; d[MAXDEGREE]

where the number of columns required is M = 2�MAXDEGREE + 5. This form
also holds for Wy.

Therefore the whole approximation for the current subregion will be represented
by three �oating-point matrices as follows:

LDU nTerms-by-nTerms Matrix storing L, D and U.

V nTerms-by-M Matrix representing Vx.

W nTerms-by-M Matrix representing Wy.

The following code stores L, D and U into a single Matrix LDU:

> LDU := Matrix(nTerms, nTerms, datatype=float[8], L);

> for i from 1 to nTerms do

> LDU[i,i] := D[i,i];

> for j from i+1 to nTerms do

> LDU[i,j] := U[i,j];

> end do;

> end do; .

Note that since L is a unit lower triangular matrix and U is a unit upper trian-
gular matrix, their diagonal entries are all 1.0. Hence we do not store the diagonal
entries of L and U into LDU in order to save the space for D. When we extract L, D
and U from LDU for evaluations we will add those diagonal entries 1.0 back to L and
U.
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We also should note that storing L, D and U in the single Matrix LDU does not
mean that we need to form the matrix product U�D�L. We avoid forming the product
because, as already discussed in section 5.4.3, the diagonal entries in D increase in
magnitude from approximately 1 to 1015 (assuming the hardware �oating Digits

is 15), while L and U have entries of magnitude approximately 1. For numerical
stability, we must evaluate formula (6.6) in a right-to-left order.

The following code shows how we store the corresponding information of ap-
proximation in V. Note that we use nTerms2, not nTerms, for the number of entries
here. Diagonal entries in D beyond position nTerms2 would be larger than 1015 (i.e.,
the reciprocal of hfeps) indicating terms beyond the roundo� error threshold.

Column 1 of V stores tau where xfact = xtau (or yfact = ytau for W). Columns
2 and 3 store alpha and beta where xvar = alpha�x + beta (or yvar = alpha�y +
beta).

If xdencoef[1] = 0.0 which implies we are using polynomial approximation for
this entry, then the remaining columns store the Chebyshev coe�cients. Otherwise
the remaining columns store the Chebyshev-Padé coe�cients.

Note that for the polynomial approximation case, default entries 0.0 are correct
for the remaining columns except for the entry corresponding to the denominator
d[0] = 1. However, here we store 0.0 instead of 1 for d[0] as a �ag to indicate that
it is a polynomial being represented.

> for k from 1 to nTerms2 do

> (xfact, xnumcoef, xdencoef, xvar) := xUnivarApprox[k];

> if type(xfact,`^`) and op(1,xfact) = x then

> V[k,1] := op(2,xfact);

> elif xfact = x then

> V[k,1] := 1;

> elif xfact = 1 then

> V[k,1] := 0;

> else

> error "the factor %1 was expected to be a power of %2",

xfact, x;

> end if;

> if not type(xvar,'linear'(x)) then

> error "expression %1 was expected to be linear in %2",

xvar, x;

> end if;

> V[k,2] := coeff(xvar, x, 1);

> V[k,3] := coeff(xvar, x, 0);

> for j from 1 to LinearAlgebra:-Dimension(xnumcoef) do

> V[k, j+3] := xnumcoef[j];

> end do;
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> if xdencoef[1]=0.0 then

> V[k, M-MAXDEGREE] := 0.0;

> else

> for j from 1 to LinearAlgebra:-Dimension(xdencoef) do

> V[k, j+4+MAXDEGREE] := xdencoef[j];

> end do;

> end if;

> end do; .

For succinctness we do not show the code for storing the approximation for W,
which is actually very similar to that of V.

At last, we store the three �oating-point arrays LDU, V and W for the current
subregion into arrayRep as follows:

> arrayRep[index, 1] := LDU;

> arrayRep[index, 2] := V;

> arrayRep[index, 3] := W; .

6.10.3 piecewiseCreate

Given the arguments (pwlist, x, y), the procedure piecewiseCreate forms the
corresponding Maple piecewise construct as described in section 6.7.2.

After we have computed all the approximations for each subregion, indicat-
ing that generatePwlist has completed updating the global variables pwlist

and arrayRep, we will �nish our execution of generatePwlist and return to
generateApprox which returns (hash, arrayRep) by the following code:

> return (piecewiseCreate(pwlist, (x,y)), eval(arrayRep)); .
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Chapter 7

Experimental Results

We now present experimental results of using our approximation method for several
bivariate functions in this chapter, and in doing so we can evaluate how well our
toolkit works.

7.1 Testing Setup

Before proceeding to the concrete testing cases, we �rst see how to set up the coding
as preparation work.

7.1.1 fapprox

The procedure fapprox is used to evaluate the approximation at a given point
(x; y) and return the numerical result.

In fapprox we have the following global variables: nTermsMax, maxDegActual,
LDUarray, Varray, Warray, numcoef, dencoef, Vx, Wy. We will need to initialize
them before we call fapprox in the testing cases. We �rst determine the index
of (x; y) in the approximation representation arrayRep. Note that _condExpr is
a placeholder which has been replaced by the piecewise expression hash before
executing this code.

> ind := _condExpr;

> maxDegPlus1 := maxDegActual + 1;

> nTermsVx := nTermsMax; .

We will now evaluate every entry, of which the total number is nTermsMax, for
Vx. We need to extract the related information for the approximation, i.e., �, �,
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� , the coe�cients for numerator and denominator, from Varray. Since the value
of 0:00:0 is not de�ned in Maple, we have to check if there is such special case and
handle it. If in Varray there is a special value 0.0, as discussed in section 6.10.2,
indicating the denominator of the approximation is 1, we then know that we should
use polynomial approximation; otherwise we will numerically compute the entry as
a rational approximation.

The following is the corresponding Maple code:

> for k from 1 to nTermsMax do

> tau := Varray[ind,k,1];

> alpha := Varray[ind,k,2];

> beta := Varray[ind,k,3];

> if alpha=0.0 and beta=0.0 then

> nTermsVx := k-1;

> break;

> end if;

> if tau = 0.0 then fact := 1.0 else fact := x^tau end if;

> var := alpha*x + beta;

> if Varray[ind, k, maxDegActual+5] = 0.0 then

> for i from 1 to maxDegPlus1 do

> numcoef[i] := Varray[ind, k, i+3];

> end do;

> Vx[k] := fact * `numapprox/evalhf/chebeval2`(numcoef,

maxDegPlus1, var);

> else

> for i from 1 to maxDegPlus1 do

> numcoef[i] := Varray[ind, k, i+3];

> dencoef[i] := Varray[ind, k, maxDegPlus1+i+3];

> end do;

> Vx[k] := fact * `numapprox/evalhf/chebeval2`(numcoef,

maxDegPlus1, var) /`numapprox/evalhf/chebeval2`(

dencoef, maxDegPlus1, var);

> end if;

> end do; .

We also evaluate Wy in a similar way.

Afterward we perform the matrix-vector multiplications such that approx(x,y)
= Vx%T�U�D�L�Wy. We implement the multiplications in a right-to-left order of eval-
uation.

The dimension of the two vectors numcoef and dencoef is max(maxDegActual+1,
nTermsMax). Size maxDegActual+1 is required for storing the numerator and de-
nominator Chebyshev coe�cients, and size nTermsMax is required because these
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vectors are used for temporary storage during the matrix-vector multiplications for
space e�ciency.

We can simply use the Maple commands LinearAlgebra:-MatrixVectorMult-
iply and LinearAlgebra:-DotProduct when we evaluate points for error checking
in the second phase; however, we are not allowed to use them for fapprox since
the Maple compiler does not accept them. Therefore we have to use lower-level
code for the multiplications as below. Note that the diagonal entries in L and U

are implicitly 1.0.

> for i from 1 to nTermsVx do

> numcoef[i] := Wy[i];

> for j from i-1 by -1 to 1 do

> numcoef[i] := numcoef[i] + LDUarray[ind,i,j] * Wy[j];

> end do;

> end do;

> for i from 1 to nTermsVx do

> numcoef[i] := LDUarray[ind,i,i] * numcoef[i];

> end do;

> for i from 1 to nTermsVx do

> dencoef[i] := numcoef[i];

> for j from i+1 to nTermsVx do

> dencoef[i] := dencoef[i] + LDUarray[ind,i,j] * numcoef[j];

> end do;

> end do;

> result := 0.0;

> for i from 1 to nTermsVx do

> result := result + Vx[i] * dencoef[i];

> end do;

> return result; .

We will invoke fapprox in various modes for our tests: evalf, evalhf, and com-
piled. Since the compiler accepts an `if` expression but not a piecewise expression,
we developed a procedure convertToIf to convert a Maple piecewise expression
into a nested `if` expression. convertToIf also changes all constants to �oats at
hardware precision since the Maple compiler cannot handle fractions.

7.1.2 Preparation

At the beginning for testing we de�ne the value of hfDigits corresponding to hard-
ware �oats and set finaltol for generating the approximations. We use hfDigits
typically for the value of Digits here since we will test many functions with hard-
ware �oating point precision, but any other user-speci�ed precision may be used.
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> hfDigits := trunc(evalhf(Digits));

> Digits := hfDigits;

> finaltol := Float(5,-Digits); .

We also initialize the four global variables introduced in Chapter 6: MAXDEGREE,
which controls the degree of polynomial and rational approximation; MAXTERMS,
which controls the number of terms in a tensor product series; GUARD_TensorInt2D,
the guard digits for the TensorInt2D computation; and GUARD_chebyshev, the
guard digits for Chebyshev series computation. The values of (MAXTERMS,MAXDEGR-
EE) here are just examples from the �rst testing case in this chapter. We may alter
their values for di�erent regions and functions as will be shown soon.

> MAXTERMS := 20;

> MAXDEGREE := 20;

> GUARD_TensorInt2D := 4;

> GUARD_chebyshev := 2; .

We then de�ne the function and the region of approximation by the following
code. In addition we make the protected function name of f be an inert name.
We then invoke the main procedure generateApprox to get the approximation and
the number of indices. Note that evalhf accepts a piecewise expression, but not
an `if` expression; while the compiler is just the opposite. Hence we will use the
piecewise expression for evalf and evalhf mode, but use the `if` expression for
compiled mode. We take the example of Maple's BesselJ(x; y) function for f and
[0; 1]� [ 1

1000
; 1] for the region here since it will be our �rst experimental case to be

shown in the next section.

> fname := BesselJ:

> unprotect(fname);

> unassign(fname);

> f := fname(x,y);

> fproc := unapply(f, (x,y));

> region := [x = 0 .. 1, y = 1/1000 .. 1];

> (hash, arrayRep) := generateApprox(f, region, 'rational=true',

finaltol):

> Nindices := op(-1,hash) - 1;

> fapprox := subs(_condExpr = hash, eval(fapprox)):

> fapprox_compile := subs(_condExpr = convertToIf(hash),

eval(fapprox_compile)): .

The Maple command unprotect is used to override the protection on the func-
tion name, and the command unassign sets the name given as input to an �unas-
signed name�, which is a name that has no value other than its own name. Note
that applying evalf to the function will continue to invoke the numerical evaluation
code.
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We then extract LDU, V and W from arrayRep into a numerical array datatype.
We determine the actual number of terms for index ind by looking at the diagonal
values of LDUarrayLarge. We also examine all denominator and numerator degrees
to determine maxDegActual among all the numerator and denominator polynomi-
als.

> maxDeg := MAXDEGREE;

> maxDegPlus1 := maxDeg + 1;

> nTerms := MAXTERMS;

> M := 2*maxDegPlus1 + 3;

> LDUarrayLarge := Array(1..Nindices,1..nTerms,1..nTerms,

datatype=float[8]):

> VarrayLarge := Array(1..Nindices,1..nTerms,1..M,

datatype=float[8]):

> WarrayLarge := Array(1..Nindices,1..nTerms,1..M,

datatype=float[8]):

> (nTermsMax, maxDegActual) := (0, 0):

> for ind from 1 to Nindices do

> LDUarrayLarge[ind, 1..nTerms, 1..nTerms] := arrayRep[ind, 1];

> VarrayLarge[ind, 1..nTerms, 1..M] := arrayRep[ind, 2];

> WarrayLarge[ind, 1..nTerms, 1..M] := arrayRep[ind, 3];

> for k from nTerms to 1 by -1 while LDUarrayLarge[ind,k,k] =

0.0 do end do;

> nTermsMax := max(nTermsMax, k);

> for k from 1 to nTermsMax do

> for i from M by -1 to M-maxDeg while VarrayLarge[ind,k,i]

= 0.0 and WarrayLarge[ind,k,i] = 0.0 do end do;

> maxDegActual := max(maxDegActual, i-maxDegPlus1-4);

> for i from M-maxDegPlus1 by -1 to 4 while VarrayLarge[ind,

k,i] = 0.0 and WarrayLarge[ind,k,i] = 0.0 do end do;

> maxDegActual := max(maxDegActual, i-4);

> end do;

> end do:

> Mmax := 2*maxDegActual + 5; .

There may be some waste of space and time if we directly use the arrays
LDUarrayLarge, VarrayLarge and WarrayLarge for procedure fapprox since these
arrays will likely have a lot of zero entries if we just use nTerms and M for their sizes.
In order to avoid this wasted space, we allocate smaller arrays LDUarray, Varray
and Warray based on nTermsMax and Mmax, and shift the remaining elements for
denominator coe�cients in the arrays accordingly. We also initialize some vectors
required within fapprox.

> LDUarray := Array(1..Nindices,1..nTermsMax,1..nTermsMax,

LDUarrayLarge[1..Nindices,1..nTermsMax,1..nTermsMax],

datatype=float[8]):
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> Varray := Array(1..Nindices,1..nTermsMax,1..Mmax, VarrayLarge[1

..Nindices,1..nTermsMax,1..Mmax],datatype=float[8]):

> Warray := Array(1..Nindices,1..nTermsMax,1..Mmax, WarrayLarge[1

..Nindices,1..nTermsMax,1..Mmax],datatype=float[8]):

> for ind from 1 to Nindices do

> for k from 1 to nTermsMax do

> Varray[ind,k,(Mmax-maxDegActual)..Mmax] := VarrayLarge[ind,

k,(M-maxDeg)..(M-maxDeg+maxDegActual)];

> Warray[ind,k,(Mmax-maxDegActual)..Mmax] := WarrayLarge[ind,

k,(M-maxDeg)..(M-maxDeg+maxDegActual)];

> end do;

> end do;

> numcoef := Vector( max(maxDegActual+1,nTermsMax),

datatype=float[8] ):

> dencoef := Vector( max(maxDegActual+1,nTermsMax),

datatype=float[8] ):

> Vx := Vector( nTermsMax, datatype=float[8] ):

> Wy := Vector( nTermsMax, datatype=float[8] ): .

All of our experiments are run in Maple 11 on the scg.cs linux server, a Sun
V40Z - quad AMD operating system with 16G ram and three 144G SCSI drives,
of the University of Waterloo. Since each evaluation of a single point takes a
relatively small amount of time, it is not reliable to use the CPU timing of only
one computation. Thus we randomly select 70 points on each x and y region and
evaluate 70�70 = 4900 (a quite large number) points for our experiments. We also
insert the four boundary points of the rectangular region into the list of evaluation
points.

> (Nx, Ny) := (70, 70);

> (xmin, xmax) := op(rhs(region[1]));

> (ymin, ymax) := op(rhs(region[2]));

> xvector := LinearAlgebra:-RandomVector( Nx, 'generator'=evalf(

xmin .. xmax), 'outputoptions'=[datatype=float[8]] ):

> yvector := LinearAlgebra:-RandomVector( Ny, 'generator'=evalf(

ymin .. ymax), 'outputoptions'=[datatype=float[8]] ):

> xvector[1] := evalf(xmin):

> xvector[Nx] := evalf(xmax):

> yvector[1] := evalf(ymin):

> yvector[Ny] := evalf(ymax):

We then de�ne procedure testEval for the timing tests. In testEval we re-
peatedly invoke fapprox to numerically evaluate each point and store the values in
a matrix Values to allow accuracy checking later. The main loop in testEval is
as follows:

> for i from 1 to Nx do
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> for j from 1 to Ny do

> Values[i,j] := fapprox(xvector[i], yvector[j]);

> end do;

> end do;

For comparison purposes, we test four timings for evaluating f at the 4900
points: the original function in Maple, evalf mode, evalhf mode, and compiled
code. We are mainly concerned about how much faster we can evaluate by using
compiled code than by using the original function in Maple.

When testing in evalf mode, we use extra guard digits to achieve full accuracy
since evaluation speed is not sensitive to this change in software �oats. We also
create arrays with sfloat entries for a fair timing of evalf mode.

Note that when we test in evalhf mode, we should not simply put the state-
ment evalhf(fapprox(xvector[i], yvector[j])) in the procedure testEval.
This is because the for loops would be done in the default Maple mode while
evalhf mode is run in hardware �oats, thus the above code would cause conver-
sions between software and hardware �oat environments which takes a lot of extra
time. Therefore we should use one single call of evalhf(testEval) to avoid the
conversion overhead.

In order to see if our approximation satis�es the required precision in each mode,
we also check the errors at all the evaluation points between Maple's function, which
we assume to be the correct value, and each of the three di�erent modes.

> (maxabserr, normf) := (0.0, 0.0):

> for i from 1 to Nx do

> for j from 1 to Ny do

> val := Values[i,j];

> val_correct := evalf( fproc(xvector[i], yvector[j]) );

> abserr := abs(val_correct - val);

> maxabserr := max(maxabserr, abserr);

> normf := max(normf, abs(val_correct));

> end do;

> end do;

> maxerr := maxabserr/max(1.0,normf); .

7.2 Results for Jx(y)

We use the Bessel function of the �rst kind, Jx(y), as our �rst example. The
corresponding command for this function in Maple is BesselJ(x,y).

As discussed before, we will stay away from singularities in our approximation
since special code such as series expansion would be used for evaluation near a
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singularity. Therefore, among all the points that we evaluated in our experiments
the closest one to the singularity (0; 0) of BesselJ(x,y) is (0; 1

1000
).

We tested various regions to prove that our toolkit is scalable to work on any
region. Table 7.1 shows the timings and corresponding maximum errors for rational
approximations of Jx(y) on these regions.

For each test, we recorded the timing of the original function BesselJ, the
timing of evalf mode, the timing of evalhf mode and the timing of compiled
code for our approximation. We also show the speedup factors between the timings
so that we can know how much improvement we have obtained by using our toolkit.
Since di�erent values of MAXTERMS and MAXDEGREE may result in di�erent errors and
timings, we also included their values for each test.

Although what we really care about is the timings for evaluating points, we
also included the timing for generating the approximations and the number of
subregions for each test in the table so that readers can see the di�erence more
clearly. Theoretically, the smaller values of MAXTERMS and MAXDEGREE that we set,
the larger number of subregions we will have and the more time we need to spend
on the approximation generation.

Table 7.1 includes the results of 5 testing cases, for which we use the hardware
�oating point precision as the desired accuracy. The hfDigits is 15 in our machine,
hence the desired precision is 5�10�15. As we can see in the table, all the maximum
errors are smaller than the precision as expected and the overall speedup factor of
our toolkit is around 11.

In the �rst two cases, we tried di�erent values of MAXTERMS and MAXDEGREE for
the same small region [0; 1]� [ 1

1000
; 1]. When (MAXTERMS, MAXDEGREE) = (10, 10),

the time it took to generate the approximation is almost 5 times as that of using
(MAXTERMS, MAXDEGREE) = (20, 20) since the former divided the region into 22
subregions while the latter did not have any subdivision at all. However, the second
case is faster than the �rst one in evaluating points, hence using smaller values of
MAXTERMS and MAXDEGREE should achieve better results in terms of evaluation time.

Since this region is already fairly close to the singularity (0; 0), we did not
expect to achieve the accuracy; however, the result turned out to be quite good.
The second test proves that using our toolkit in compiled code is around 12 times
faster than Maple's BesselJ method.

The third test shows how our toolkit works on another small region which is
away from the singularity. Again the compiled code achieves faster speed than the
original function.

The last two tests show that our toolkit works properly on large regions. Note
that the two cases have successive regions, which indicates that we can partition
the x-y plane into some large regions and use our toolkit on each large region.
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We also have included in the table the timings for plotting the original function
in Maple and plotting our approximation in compiled code. The speedup factor is
around 8.

Table 7.2 shows the experimental results for using polynomial approximations
for Jx(y).

Comparing the �rst case in this table and the second case in Table 7.1, both on
the same region near the singularity, we can see that the former took less time in
generating the approximation while achieving larger speedup factor for evaluation
time than the latter.

The second and third cases tested di�erent values of MAXTERMS and MAXDEGREE

on the same region. As we can see, using (MAXTERMS, MAXDEGREE) = (15, 15) is
better than (MAXTERMS, MAXDEGREE) = (20, 30) in terms of evaluation timings,
which is similar to our observations in the rational case. The last two testing
cases are again two successive large regions which show our approximation using
polynomials works properly on large regions as expected.

7.3 Results for Yx(y)

Table 7.3 and Table 7.4 include the testing results for the Bessel function of the
second kind, Yx(y) or BesselY(x,y), using rational and polynomial approximations
respectively. Again we tested on various regions, from small to large, and used
di�erent values of MAXTERMS and MAXDEGREE, which result in diverse evaluation
speeds as the tables show.

7.4 Results for �(x; y)

The experimental results for the Beta function, �(x; y) or Beta(x,y), are shown in
Table 7.5 and Table 7.6.

Comparing the two tables, we can see that the closest point to the singularity of
�(x; y) is ( 1

100
; 1
100

) when using polynomial approximation, while with rational ap-
proximation the closest point is only ( 1

10
; 1
10
). For other regions which are far away

from the singularity, we see that polynomial approximation took much less time in
generating the approximation than that of rational approximation. However, since
rational approximation achieved a little faster speeds than polynomial approxima-
tion in most of these cases, we may still prefer to use rational approximation for
�(x; y).
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Figure 7.1: Plot for �(x; y)
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Figure 7.2: Plot for Our Approximation �0(x; y)
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Figure 7.1 and Figure 7.2 are the graphs for plotting �(x; y) and our approxi-
mation �0(x; y) respectively on the region [1

2
; 10]� [1

2
; 10].

7.5 Results for JacobiSN(x; y)

We also tested the Jacobi elliptic function JacobiSN(x; y) in Maple. The results
are shown in Table 7.7 and Table 7.8. Note that the regions are relatively small
since JacobiSN(x; y) is very curvy and generating approximations takes much time
on large regions for this function.

7.6 Results for LegendreP(x; y)

Table 7.9 and Table 7.10 show the results for the Legendre function of the �rst kind,
LegendreP(x; y). Comparing the last two cases of large regions in the two tables, we
see that the polynomial approximation is able to achieve the desired accuracy while
the rational approximation fails. Additionally, the polynomial approximation took
much less time for generating the approximation than the rational approximation
(but still results in similar speedup factors) in these two cases. Therefore, for
LegendreP(x; y) using polynomial approximation is advantageous over the rational
approximation in the sense of being more time e�cient for approximation generation
and having better accuracy.

7.7 A Boundary Value Problem

Besides working on Maple's built-in functions as shown in the above sections, our
toolkit can also generate approximations for user-de�ned functions. We show this
by an example of a boundary value problem (BVP) here.

Consider the function H(�; x) de�ned by the following nonlinear BVP on 0 �
x � 1: 8><

>:
y00(x) + � jy(x)j = 0;

y0(0) = 1;

y(1) = �1:

(7.1)

Speci�cally, the value H(�; x) is de�ned by solving the BVP with parameter �
and then returning the value y(x). We can de�ne the function H(�; x) by a pro-
cedure H(alpha, tval) which numerically solves the BVP to obtain the function
value in Maple.
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> H := proc (alpha, tval)

> local t, u, soln;

> soln := dsolve({(D@@2)(u)(t)+alpha*abs(u(t))=0, D(u)(0)=1,

u(1)=-1}, numeric);

> eval(u(t), soln(tval));

> end proc; .

Table 7.11 and Table 7.12 show the experimental results of using our toolkit for
H(�; x) with rational and polynomial approximations respectively. For this speci�c
example, the largest x region is [0; 1] while the � region can be �exible.

Note that the desired precision here is 5� 10�6, which is di�erent from all the
tests in the above sections, since this is the default value of error tolerance for the
numerical solution of a BVP when using the dsolve command in Maple.

As seen in the tables, the computation of the original function H(�; x) is very
slow, which is because each new evaluation point requires the numerical solution of
a BVP. However, using the approximation generated by our toolkit, we are able to
achieve almost 1900 times faster computation on average.

Figure 7.3 and Figure 7.4 are the graphs for plotting H(�; x) and our approxi-
mation H 0(�; x) respectively on the region [�2; 2]� [0; 1].

7.8 Conclusions

Based on the results shown in the above tests, we are able to see that our toolkit
works well for both Maple's built-in functions and user-de�ned functions. For all
the functions in the experiments, our toolkit can achieve the speci�ed accuracy,
both hardware �oating precision and user-de�ned precision, in all the three modes.

For Maple's built-in functions, although evalf mode and evalhf mode some-
times do not evaluate faster than the original functions in our tests, we are still
able to have the compiled code always run faster than the original functions. The
compiled code of our toolkit has gained from 11 to 200 times speedup compared
with the original function evaluation.

For our BVP example, all three modes achieve faster calculation speeds than the
original function: evalf mode is around 35 times faster than the original function
on average, evalhf mode is around 9 times faster than evalf mode on average,
and the compiled code is around 6 times faster than evalhf mode on average.
This results in almost 1900 times speedup compared with the original function
evaluation in Maple, which is a signi�cant improvement. We also obtained more
than 1000 times speedup for plotting with our approximation compared with the
original function in Maple.
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α x

H

Figure 7.3: Plot for H(�; x) de�ned by a BVP

α x

H'

Figure 7.4: Plot for Our Approximation H 0(�; x)
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Chapter 8

Future Work

In this chapter we mention several areas of investigation which may improve the
performance of our toolkit by further development.

8.1 Singularities

As stated in the above two chapters, when using our toolkit we avoided approxi-
mating a function within a certain distance from its singularity. The rational and
polynomial approximations that we mainly use in our package work well to meet
the minimax criterion, but they cannot get results accurately enough when very
close to function singularities.

Since a minimax approximation cannot be useful on a certain region around the
singularity, a totally di�erent type of method, such as a generalized series expansion,
will need to be explored in order to approximate the value of the function for such
special cases.

8.2 Maximum Number of Terms and Degree

As shown in Chapter 7, we choose diverse values for MAXDEGREE and MAXTERMS,
the limit of maximum degree for univariate approximations and number of terms
in tensor product series, in each testing case. These values are experiential results
which we believe is a good choice; however, there may be some other values that
can make the toolkit work faster with less subregions.

It will be optimal if the toolkit can automatically decide which values we should
use individually for the speci�ed function to be approximated. Further investiga-
tions will be needed on this aspect.
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8.3 Region Subdivision

In this thesis we have already developed a region subdivision algorithm that works
well for having a polynomial or rational approximation within a certain region.
However, this algorithm may not be the optimal one since it is possible that the
function has some sections where it changes relatively slowly. It would be better if
our algorithm can estimate the appropriate size of region in such cases instead of
always dividing the region by half.

We have two possible solutions to this problem but have not done experiments
with them yet:

1. Detect the derivative which implies if the function changes slowly in the sub-
region and if it does, we can expand that region. We will need to do more
research on this method.

2. Always attempt a larger region when having a region with approximation of
degree � MAXDEGREE or number of terms � MAXTERMS before �nally deciding
the region size. This method is pretty straightforward and easy to implement
but may result in a fairly slow algorithm.

8.4 Complex Approximations

Currently our toolkit only works for functions on the real region; however, it is
possible to extend it to approximation of complex functions, such as the Hankel
functions H

(1)
v (x) = Jv(x) + i Yv(x) and H

(2)
v (x) = Jv(x)� i Yv(x).

It should be possible to achieve such approximation by calling our toolkit for
the real part and imaginary part of the function separately. But plenty of research
needs to be done to �nd an appropriate way to do this e�ciently.

8.5 Multivariate Approximations

So far we have shown how to automatically generate numerical evaluation routines
for bivariate functions via tensor product series in this thesis. We have also sum-
marized the approximation for univariate functions in Thomas A. Robinson's thesis
[9]. We have not yet investigated on approximation for functions of more than two
variables, for which we must use a di�erent method.

In Orlando A. Carvajal's Masters thesis [1] he attempted to solve the problem
of integration in high dimensions by separating the variables in a recursive fashion
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using a Deconstruction/Approximation/Reconstruction Technique (DART) until
the multidimensional problem is reduced to the evaluation of one dimensional in-
tegrals. We may learn to use some of these techniques for multivariate function
approximation, yet there is still a lot of research left to be done in this area.
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Chapter 9

Conclusion

We have looked at the problem of approximating bivariate functions via tensor
product series in this thesis.

We have shown that our toolkit can be used to easily and e�ciently generate
numerical evaluation routines for bivariate functions. From the experimental results
we can see that the toolkit we have developed will be very useful in many Maple
applications including evaluating given points as well as plotting, especially when
combined with the Maple compiler.

In general, our toolkit can signi�cantly speed up and optimize Maple's bivariate
functions (both Maple's built-in functions and user-de�ned functions) and can also
be utilized in many Maple applications to improve the computations.
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Appendix A

Geddes-Newton Series Convergence

Theorem

Theorem (Chapman & Geddes, 2008): Assume A � C is compact and let f be
a positive de�nite kernel on A. For all n � 0, let rn = f � sn, where sn is
the Geddes-Newton series expansion of f with n distinct diagonal splitting points
f(ai; ai)g

n�1
i=0 � diag(A2). If f is complex-analytic on a su�ciently large region

containing A2, then sn ! f absolutely and uniformly on A2 at a linear rate or
faster.

Proof Sketch: Let Rn = f � Sn, where Sn is the Boolean tensor product which
interpolates f on the grid lines x = ai and y = ai for i = 0; : : : n� 1. For all n � 0
and some �xed  2 (0; 1),

krnk1 = kr̂nk1 �
R̂n


1
� kRnk1 = O (n) as n!1: (A.1)

In addition, the Geddes-Newton series sn converges absolutely by comparison with
a geometric series with common ratio .
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