
Security for Rural Public Computing

by

Sumair Ur Rahman

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2008

c© Sumair Ur Rahman 2008

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Sumair Ur Rahman

ii

Abstract

Current research on securing public computing infrastructure like Internet kiosks
has focused on the use of smartphones to establish trust in a computing platform or to
offload the processing of sensitive information, and the use of new cryptosystems such
as Hierarchical Identity-based Encryption (HIBE) to protect kiosk user data. Challenges
posed by rural kiosks, specifically (a) the absence of specialized hardware features such
as Trusted Platform Modules (TPMs) or a modifiable BIOS in older recycled PCs, (b)
the potential use of periodically disconnected links between kiosks and the Internet, (c)
the absence of a production-ready implementation of HIBE and (d) the limited avail-
ability of smartphones in most developing regions make these approaches difficult, if
not impossible, to implement in a rural public computing scenario. In this thesis, I
present a practical, unobtrusive and easy-to-use security architecture for rural public
computing that uses a combination of physical and cryptographic mechanisms to pro-
tect user data, public computing infrastructure and handheld devices that access this
infrastructure. Key contributions of this work include (a) a detailed threat analysis of
such systems with a particular focus on rural Internet kiosks and handheld devices, (b)
a security architecture for rural public computing infrastructure that does not require
any specialized hardware, (c) an application-independent and backward-compatible
security API for securely sending and receiving data between these systems and the In-
ternet that can operate over delay tolerant links, (d) an implementation of my scheme
for rural Internet kiosks and (e) a performance evaluation of this implementation to
demonstrate its feasibility.

iii

Acknowledgements

I would like to thank my thesis advisors, Prof. Srinivasan Keshav and Prof. Urs
Hengartner, for all their guidance and support throughout my graduate studies at
the University of Waterloo; my thesis committee, Prof. Ian Goldberg and Prof. Paul
Ward, for all their detailed comments on this thesis; my colleagues at the Tetherless
Computing and CrySP Labs for all their advice and moral support; Jessica Miranda
and Margaret Towell for all their help; and finally, Prof. Chrysanne DiMarco, whose
passion for research inspired me to pursue graduate studies.

iv

Dedication

For my loving
parents Shafiq and Rubina,

brother Saad and sister Eman,
whose encouragement,

endless support
and countless sacrifices

made this possible.

v

Contents

List of Figures x

1 Introduction 1

1.1 Background . 1

1.2 Thesis Scope . 2

1.3 Thesis Organization . 3

2 Related Work 4

2.1 Trusted Public Computing . 4

2.2 Security in Delay Tolerant Networks . 6

2.3 Security for Mobile Devices . 7

3 System Model 11

3.1 Overview . 11

3.2 Concerned Entities . 11

3.3 Infrastructure . 13

3.4 Rural Kiosks . 14

3.5 Handhelds . 14

3.6 Usage Scenarios . 14

3.6.1 Rural Internet Kiosks . 15

3.6.2 Handhelds . 15

vi

4 Threat Model 17

4.1 Security Goals . 17

4.1.1 Infrastructure and Rural Kiosks . 17

4.1.2 Handhelds . 18

4.2 Attacker Model . 19

4.2.1 Attack Vectors . 19

4.2.2 Threats against Rural Kiosks and Infrastructure 19

4.2.3 Threats against Handhelds . 20

5 Security Architecture 23

5.1 Infrastructure . 23

5.2 Rural Kiosk . 24

5.2.1 User and Operator Security . 24

5.2.2 Terminal Security . 27

5.2.3 Digitally signed Software Updates 29

5.2.4 Authenticated Remote Shell Commands 29

5.2.5 Tamper-evident System Logs . 30

5.3 Handhelds . 30

5.3.1 User Registration . 30

5.3.2 Secure Connectivity . 31

5.3.3 Secure Communication . 34

5.3.4 Secure Storage . 36

5.4 Security Architecture Usage Scenarios . 36

5.4.1 Rural Internet Kiosks . 36

5.4.2 Handhelds . 37

vii

6 Security Evaluation 38

6.1 Rural Kiosks and Infrastructure . 38

6.1.1 Users . 39

6.1.2 Franchisees . 39

6.1.3 Outsiders . 40

6.2 Handhelds . 41

6.2.1 Users . 41

6.2.2 Outsiders . 42

7 Implementation 43

7.1 Constraints . 43

7.2 Building Blocks . 44

7.2.1 KioskNet . 44

7.2.2 Cryptography Libraries . 44

7.3 Entity Credentials . 44

7.4 Rural Kiosks . 45

7.4.1 Digitally signed Software Updates 45

7.4.2 Authenticated Remote Shell Commands 46

7.4.3 Tamper-evident System Logs . 46

7.4.4 Secure Directory API . 46

7.4.5 Encrypted User Home Directories 48

7.5 Infrastructure . 49

7.6 Issues Encountered . 49

7.6.1 Public/Private Key pairs . 50

7.6.2 Encrypted User Home Directories 50

7.6.3 White Pages on Kiosk Terminals . 50

viii

8 Performance Evaluation 52

8.1 Typical Hardware setup . 52

8.2 Effect on User Experience . 52

8.2.1 Creating New User Accounts . 52

8.2.2 Logging In/Out of Terminals . 55

8.2.3 Sending/Receiving Secure User Data 55

8.2.4 Reading/Writing to Home Directories 55

8.3 Load on Infrastructure Components . 59

9 Conclusion 60

9.1 Summary and Contributions . 60

9.2 Future Work . 61

Appendices 63

A Sample X509 Certificates 63

References 65

ix

List of Figures

1.1 Rural Public Computing Infrastructure . 2

3.1 Rural Public Computing Infrastructure (detailed view) 12

4.1 Potential threats against Rural Public Computing 21

5.1 Registration Protocol for new Kiosk Users 25

5.2 Registration Protocol for Handheld Users 32

5.3 QR Tag encoding SHA1 Hash of X509 Certificate 33

5.4 Protocol to establish connection between Handhelds and Infrastructure . 35

6.1 Security Mechanisms for Rural Public Computing Infrastructure 39

6.2 Security Mechanisms for Handhelds . 41

8.1 Creating Virtual Volumes (log time scale) 53

8.2 Creating Virtual Volumes (linear time scale) 54

8.3 Performance of the Secure Directory API 56

8.4 Reading User Data . 57

8.5 Writing User Data . 58

A.1 X509 Certificate for Kiosk Administrator 64

x

Chapter 1

Introduction

Public computing infrastructure, such as rural Internet kiosks, is being widely deployed
in developing regions around the world [39, 43] with the goals of providing people in
these regions with low-cost access to the Internet [10, 33, 25], improving health care
services [17], expanding the reach of e-government services [16], and simplifying the
provision of rural microfinance services [12].

To date, most research in this area has focused on the design and implementation of
the underlying network infrastructure. Notable exceptions are recent work by Seth et
al. [32] and Kate et al. [13] which propose the use of IBE (Identity-based Encryption) to
provide security and anonymity in DTNs (Delay Tolerant Networks). This thesis aims
to address the problem of securing rural public computing in depth, taking into account
the needs of all stakeholders, the constraint imposed by the hardware and software
available in developing regions, and the need to minimize costs through the use of
open-source off-the-shelf software tools, to produce a practical, unobtrusive security
architecture for rural public computing.

1.1 Background

The rural public computing model I consider is based on the KioskNet platform [10]
and consists of one or more recycled commodity PCs that connect to the Internet either
over a long-range wireless link such as WiMAX, or over a purpose-built DTN (Delay
Tolerant Network), as shown in Figure 1.1. (I describe the roles of Kiosk Controllers
and Proxy Servers in Section 3.3.) Users in this model may also use recycled mobile
devices to wirelessly access the rural public computing infrastructure.

1

Internet

Long-range wireless (e.g., WiMAX) or
mechanical backhaul (e.g., DTN) link

Kiosk Controller

Kiosk
Proxy Server

Recycled PCs

Village

City

Recycled
Handheld

WiFi

Figure 1.1: Rural Public Computing Infrastructure

Currently, rural kiosks provide weak security and therefore cannot support secure
applications such as banking. For example, there is nothing to stop a kiosk admin-
istrator from installing malicious software or accessing user data stored on the kiosk.
Securing rural Internet kiosks is more challenging than securing privately-owned PCs
because users of these kiosks do not own the hardware that they use and cannot always
trust kiosk owners/operators. In addition, the potential use of DTN links in remote re-
gions to connect kiosks to the Internet precludes the use of traditional session-oriented
technologies such as SSL to build secure applications for kiosks.

1.2 Thesis Scope

This thesis focuses on four main areas: (a) providing a detailed security risk assessment
of public computing infrastructure that clearly identifies attackers, their capabilities and
potential attacks, (b) the design of a suitable security architecture, (c) a security analysis
of this architecture and finally, (d) an implementation and evaluation of the same. My
goal is to deliver a low-cost implementation that would be practical for use in rural
developing regions. Thus, my design makes use of proven, readily available, free open-
source software tools, relies on existing cryptosystems and does not require the use of
specialized hardware such as Trusted Platform Modules constraints.

In this thesis, I present a practical, unobtrusive and easy-to-use security architec-
ture for rural public computing thats uses a combination of physical and cryptographic

2

mechanisms to protect user data, public computing infrastructure and handheld de-
vices that access this infrastructure. Key contributions of this work include (a) a de-
tailed threat analysis of such systems with a particular focus on rural Internet kiosks
and handheld devices, (b) a security architecture for rural public computing infrastruc-
ture that does not require any specialized hardware, (c) an application-independent
security API for securely sending and receiving data between these systems and the
Internet that can operate over periodically disconnected links, (d) an implementation
of my scheme for rural Internet kiosks and (e) a performance evaluation of this imple-
mentation to demonstrate its feasibility.

1.3 Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2, I review the current state-of-
the-art and other related work. In Chapter 3, I present my system model, followed by a
comprehensive threat analysis in Chapter 4. I continue in Chapter 5 by presenting my
security architecture. Chapter 6 analyses this architecture and its effectiveness in pre-
venting or mitigating the attacks identified in Chapter 4. I then discuss implementation
issues in Chapter 7 and evaluate the performance of my implementation in Chapter 8.
I conclude and briefly discuss potential directions for future work in Chapter 9.

3

Chapter 2

Related Work

In this chapter, I provide a detailed review of related work, focusing on three specific
areas of interest: trusted public computing, security for delay tolerant networks and
security mechanisms for mobile devices.

2.1 Trusted Public Computing

Prior work in trusted public computing has focused on allowing users to access remote
services via an untrusted proxy without revealing sensitive information, such as private
keys or passwords, to the proxy. Several schemes [9, 31, 37, 4] propose a user query
the proxy about its state and verify that this state is trustworthy via a mobile device
trusted by the user. I now briefly review the first three of these approaches as they are
the most closely related to my scenario and discuss their feasibility in a rural public
computing environment.

Garriss et al. propose a scheme that makes use of a mobile device trusted by a user
to establish trust in a kiosk providing public computing services [9]. Through the use
of software installed on both the mobile device and PC providing kiosk services, the
user first uses the camera on his/her mobile device to capture a visual “tag” represen-
tation of a hash of the kiosk’s public key. (This visual tag is tamper-evident and either
affixed to the kiosk itself or the building housing the kiosk.) The mobile device then
attempts to authenticate with the kiosk over a short-range BlueTooth wireless link, with
the hash value captured via its camera being used to guard against potential man-in-
the-middle attacks during this authentication phase. The mobile device then requests
that the kiosk reboot in front of the user, upon completion of which it queries the kiosk
to verify the integrity of its software stack against a set of known configurations stored

4

on the mobile device. This step makes use of specialized security hardware on the
kiosk PC called a Trusted Platform Module (TPM) [42] that is used to achieve trusted
boot. Once the user’s mobile device has successfully verified the integrity of the kiosk,
it gives the kiosk access to any required personal user data (e.g., private keys) stored
on the mobile device and informs the user that he/she is free to use the (now) trusted
kiosk. Kiosk operators use a similar protocol to verify remotely the integrity of their
kiosks over the Internet using a “kiosk supervisor” application. Challenges to applying
this scheme in a rural public computing environment include its reliance on specialized
hardware not currently available in recycled PCs such as TPMs and newer x86 proces-
sors with Dynamic Root of Trust for Measurement (DRTM) capabilities, as well as the
requirement that all users carry trusted mobile devices.

Seshadri et al. propose a software-based scheme called “Pioneer” [31] that allows
for the untampered execution of applications on untrusted legacy platforms. In Pio-
neer, when a user wishes to run an application on an untrusted platform, an external
trusted entity called a dispatcher (e.g., a mobile device trusted by the user) is first used
to engage in a challenge-response protocol with the untrusted platform. As part of this
protocol, Pioneer establishes a “dynamic root of trust” on the untrusted platform using
its “verification function”. Any attempt by an attacker to tamper with the verification
function increases its execution time beyond expected values, allowing the attack to be
detected by Pioneer’s dispatcher. After establishing this root of trust on the untrusted
platform, Pioneer verifies the integrity of the application the user wishes to run and
then executes this software in the untampered execution environment provided by the
dynamic root of trust. The main challenges to applying this approach in a rural public
computing scenario are a number of open problems noted by Seshadri et al. as well as
the requirement that dispatchers know all possible hardware configurations of the un-
trusted platform. (Kiosk terminals, the untrusted platforms in my rural public comput-
ing scenario, are recycled PCs supplied by franchisees whose hardware configurations
are unknown to the franchisers who operate rural public computing infrastructure.)

Surie et al. propose the “Trust-Sniffer” system [37], a scheme which allows users to
quickly establish trust in a public computing platform. In Trust-Sniffer, all users carry
an inexpensive USB memory stick called a “trust initiator” that contains a minimal
trusted OS and hashes of all known trusted OS kernels and applications. When a user
wishes to establish trust in an untrusted public computing system using Trust-Sniffer,
he/she boots the system with his/her trust initiator. (It is assumed that the PCs serv-
ing as public computing platforms in this scheme are capable of booting via USB.) The
minimal trusted OS on the trust initiator then verifies the integrity of the public com-
puting platform’s on-disk OS kernel against hashes stored on the trust initiator. If the
on-disk kernel is successfully validated, the trust initiator reboots the public computing

5

platform using its on-disk OS. The (now) trusted OS on the public computing platform
then validates every application the user attempts to run (before these applications
are run) by computing hashes of their binaries and comparing these against hashes of
known trusted applications stored on the trust initiator. Applications which cannot be
verified by the trusted OS are not run and an error message is displayed on the public
computing platform to inform the user. When the user has finished using the public
computing platform, he/she simply shuts the system down and removes his/her trust
initiator. Challenges to applying this approach in a rural public computing environ-
ment include the need to update the hashes stored on trust initiators every time the
software on public computing platforms is changed and the requirement that public
computing platforms be capable of booting via USB. (Recycled PCs serving as kiosk
terminals, the platform to be trusted by users in my rural public computing scenario,
may not be capable of booting via USB.)

Alternative schemes to those discussed above [6, 24, 35] propose offloading the
processing of sensitive information from the untrusted proxy to a mobile device trusted
by the user. The main problem with applying these approaches to my scenario is
their dependency on all users carrying trusted mobile devices, a requirement which is
currently unrealistic in the developing regions where rural public infrastructure would
most likely be used.

2.2 Security in Delay Tolerant Networks

Delay Tolerant Networks (DTNs) are characterized as networks where end-to-end con-
nectivity is not guaranteed. Typically used in performance-challenged environments,
applications of DTNs include space and underwater exploration, defense systems, ad-
hoc sensor networks and providing Internet access in remote developing regions.

Several security architectures have been proposed for DTNs. Some focus on the
use of light-weight crypto systems such as Identity-Based Encryption (IBE) [3, 13, 32],
while others make use of traditional PKI [8, 38]. I now briefly review these approaches.

Farrell et al. present an overview of the security analysis of DTNs carried out by
the IETF‘s Delay Tolerant Networking Research Group (DTNRG) [8]. They discuss
potential threats against the availability of DTNs such as resource consumption, denial
of service and traffic storms as well as threats against the confidentiality and integrity
of in-flight data. Farrell et al. build on this threat analysis to present a series of security
requirements and design considerations, including the use of Public Key Infrastructure
(PKI). A suitable key management scheme for DTNs is considered an open problem.

6

Symington et al. extend the work done by Farrel et al. to propose the DTN Bundle
Security Protocol Specification [38] which details the data confidentiality and integrity
services provided by the bundle security protocol. They describe extensions to the DTN
Bundle Protocol Specification [30], which like IPSec [14], allows for the authentication
of bundles‘ sources as well as the confidentiality and integrity of payloads carried by
these bundles. Symington et al. also describe the processing of secure bundles, which as
demonstrated in a trial implementation by Scheirer and Chuah [28], results in very poor
performance with respect to processing times, even when the host systems are 2.8 GHz
workstations. It should also be noted that while Symington et al. focus on the secure
exchange of messages between DTN nodes and the required format specifications, my
concern is at the application and usability level; that is, how users can send and receive
secure messages.

Kate et al. [13] and Seth and Keshav [32] choose instead to make use of a Hierarchi-
cal Identity-Based Encryption (HIBE), a variant of IBE, for their security architectures.
HIBE is a light-weight crypto system which, as with IBE, allows users to use their
human-readable identities (e.g., email addresses) to generate public keys, eliminating
the need to distribute public keys. Whilst technically sound, the main problem with
these approaches is the absence of a production-ready implementation of HIBE. I also
note that the IBE toolkit formerly distributed at no cost by Voltage Security, Inc. [44] is
no longer available for download as of August 2008.

2.3 Security for Mobile Devices

Recent interest in mobile computing has resulted in a wealth of literature on securing
mobile devices such as laptops, PDAs and smartphones. I now review some of the
more relevant work in this area, touching on topics such as the security model for the
“One Laptop per Child” (OLPC) project [15], security mechanisms proposed to protect
private keys stored on mobile devices [19, 20], the zero-interaction authentication of
mobile devices’ users [7], a scheme which makes use of smartphones to simplify the
access control to shared computing resources [5], a scheme which allows for the secure
use of untrusted ubiquitous computing resources [36] and the security architecture for
Research In Motion’s (RIM) BlackBerry smartphone [2, 27].

Bitfrost [15] is the security architecture for OLPC, a project whose goal is to dis-
tribute low-cost, networked laptops (the XO) to children in the developing world, al-
lowing these children to gain computer experience and communicate with other chil-
dren using XOs. This project’s goal is different from that of rural public computing,

7

where people use shared public infrastructure, instead of individual laptops, to (poten-
tially) perform secure transactions, such as online banking. In Bitfrost, a user has full
control over his/her laptop, and the security model makes it difficult, but not impossi-
ble, for the user (and software) to execute actions which may compromise the security
of the laptop. The designers of Bitfrost also have the advantage of being in control of
the underlying hardware. For example, they can use the BIOS for boot time integrity
checking, which we cannot. Bitfrost’s users hold self-signed certificates that bind their
name to a public key, the usage of which is transparent to users, as the infrastructure
generates and processes certificates on their behalf.

Because secret information stored on mobile devices (e.g. private keys) is typically
protected by passwords or encryption keys protected by the same, dictionary attacks
against these passwords are a significant threat if the devices are lost or stolen. MacKen-
zie and Reiter [19, 20] propose a scheme which requires mobile devices to interact with
a remote server when performing private key operations such as signing and decryp-
tion. The protocols which form the basis of this scheme are designed such that the
remote server doesn’t need to be trusted and no prior relationship needs to exist be-
tween the mobile device and the server. MacKenzie and Reiter prove that through the
use of their protocols, the remote server poses no threat to the mobile device in that it
cannot learn any information about the mobile device’s private key that would allow
it to maliciously compute signatures or decrypt messages on the device’s behalf. A
requirement of this scheme is that the remote server be reachable whenever the mobile
device requires use of its private keys, as is the case in interactive protocols such as TLS
with client authentication. This assumption is not, however, realistic in a rural setting
where connectivity between mobile devices and remote servers may be over a DTN.

To reduce the exposure of sensitive information stored on mobile devices, the cryp-
tographic filesystems employed by these devices are typically configured to frequently
prompt users for their passwords (e.g. every time a smartphone’s keypad is unlocked.)
This improves the security of the device as sensitive information stored on it is only
decrypted and available for short periods of time, but makes usage of the system more
intrusive, in that users face the inconvenience of having to frequently re-enter their
passwords. To work around this problem, Corner and Noble propose a scheme called
“Zero-Interaction Authentication” (ZIA) [7]. In ZIA, a user carries a small authen-
tication token that contains the decryption key(s) for the user’s mobile device. Users
authenticate with the token infrequently (e.g. once a day) but the mobile device authen-
ticates with the token frequently (e.g. every few minutes or every time the user attempts
to access sensitive information stored on the mobile device) over a short-range wireless
link. This scheme eliminates the need for users to frequently re-enter their passwords
and provides the mobile device with the same level of physical security, in that sensi-

8

tive information stored on the device is only accessible when it is in possession of its
owner. Challenges to deploying ZIA in a rural environment include the added cost of
authentication tokens, the limited availability of batteries used to power such tokens
and the replacement of lost/stolen tokens. It is also not clear what the effects of ZIA
are on the battery life of the mobile devices that would implement it.

To unify and simplify access control to virtual and physical resources such as com-
puters and office buildings, Bauer et al. [5] propose the “Grey System”. Designed
as a set of software extensions to smartphones, Grey makes use of an authorization
framework based on Proof-Carrying Authorization (PCA) to allow users to wirelessly
authenticate with various Grey-enabled systems such as PCs and electronic doors using
their Grey-enabled smartphones. Grey gives users the flexibility of being able to tem-
porarily delegate their authority to other Grey users, allowing for example, a friend to
temporarily access a user’s PC. Secret cryptographic material stored on Grey-enabled
mobile devices is protected, in the event of loss or left of the device, using the capture-
resilience scheme for mobile devices [20] proposed by MacKenzie and Reiter described
earlier. Bauer et al. detail an implementation of their system and a pilot deployment
at Carnegie Mellon University which covers 150 users and over 60 offices. Their per-
formance evaluation does not, however, appear to take into account the effect on the
battery life of mobile devices making use of Grey or the portability of its implemen-
tation amongst various mobile platforms. Also, as noted earlier, although my model
for rural public computing does include the use of mobile devices, it does not require
users to own such devices if they only wish to access the public computing infras-
tructure through kiosks, making an automated access control scheme which requires
mobile devices such as Grey, inapplicable.

Smetters et al. [36] propose the Instant Matchmaker, a system which uses mobile
devices such as smartphones to securely gain remote access to their personal computing
resources (e.g., data stored on a PC) using untrusted local computing resources such
as a TV in a hotel room. Because this approach assumes the presence of network
connectivity between the local computing resource and remote personal computing
resources (to form a VPN connection between the two), it is unfortunately inapplicable
in a rural public computing scenario where local and remote personal resources may
only be connected via a DTN, preventing the use of interactive protocols such as TLS
that are required to create VPN links between local and remote computing resources.

At the time of writing, RIM’s BlackBerry [27] is the most popular smartphone in
North America, trailing rival Nokia in worldwide sales of similar devices and just
ahead of newcomer Apple’s iPhone smartphone. The BlackBerry platform consists of
handsets (the smartphones themselves) and infrastructure called the BlackBerry Enter-

9

prise Solution (BES) [2]. In an enterprise setting, BES is deployed by corporations on
their intranets behind a firewall such that the BES gateway maintains an open TCP
connection over the Internet to communicate with BlackBerry handhelds (belonging
to the same corporation) over a cellular network. For individual telecom subscribers,
RIM operates and maintains BES-like infrastructure on behalf of telecoms in data cen-
ters at its Waterloo, Ontario campus. Other components of the BES infrastructure,
such as the messaging server, interface with existing corporate computing infrastruc-
ture on the same network (e.g., a Microsoft Exchange server to provide push email
service). Because communication between BlackBerry handsets and the BES gateway
takes place over potentially untrusted cellular networks, it is secured using a shared
secret key unique to each handset and known only to the handset and its parent BES
gateway. This key is refreshed on a regular basis using an interactive protocol. Sensitive
data stored on BlackBerry handsets may optionally be secured by enabling the devices’
content protection feature which acts as an encrypted filesystem. An ephemeral key
derived from the BlackBerry handset user’s password is used to encrypt the secret key
used by this encrypted filesystem. The primary challenge in deploying a BlackBerry-
like system in a rural environment is the potential use of DTN links between mobile
devices and public computing infrastructure, which in turn makes the use of inter-
active protocols such as that currently used to refresh the secret key shared between
BlackBerry handhelds and the BES gateway impossible.

10

Chapter 3

System Model

In this Section, I introduce my deployment model for rural public computing, identi-
fying the entities that operate, support or use this computing infrastructure, and then
outlining typical usage scenarios involving both rural kiosks and mobile devices.

3.1 Overview

Rural public computing infrastructure is deployed over a geographically large rural
region to provide people in this region with low-cost, periodically disconnected access
to information and services on the Internet. A detailed view of a typical deployment
scenario is illustrated in Figure 3.1. Components of this setup include rural Internet
kiosks (see Section 3.4), recycled handheld devices (see Section 3.5) and the support-
ing infrastructure described below in Section 3.3. The individuals and organizations
which own, operate and use such a public computing environment are organized into
a hierarchy which I describe in the following Section.

3.2 Concerned Entities

The following entities have an interest in the correct and reliable operation of the rural
public computing infrastructure deployed in their geographic region:

• Franchisers – franchisers are public or private organizations that own and operate
public computing infrastructure deployed in a particular geographic area.

11

Internet

Delay tolerant
link via WiFi

Kiosk
Controller

Kiosk
Proxy Server

Recycled
PCs

Village 1

City

Recycled
Handheld

WiFi

Kiosk
Gateway

Mobile
Router

Kiosk
Controller

Recycled
PCs

Recycled
Handheld

WiFi

Village 2

Long-range wireless
link (e.g. WiMAX)

Delay tolerant
link via WiFi

Vehicle

Figure 3.1: Rural Public Computing Infrastructure (detailed view)

12

• Franchisees – franchisees are private organizations or individuals licensed by a
franchiser to operate terminals connected to a kiosk controller provided by the
local franchiser.

• Application Service Providers (ASPs) – application service providers are public or
private organizations (e.g., micro finance banks) that are licensed by franchisers
to deploy their applications on a rural Internet kiosk.

• Kiosk Users – users who subscribe to rural kiosk services with a franchiser, usually
through a franchisee, to access services, such as applications provided by ASPs,
and the Internet using kiosks owned and operated by local franchisees.

• Handheld Users – users who wirelessly access kiosks via handhelds (described in
section 3.5). These users would want to be able to send and receive data over the
public computing infrastructure deployed in their franchiser’s region.

Franchisers control all infrastructure components. This effectively creates a “closed
universe” where franchisers have control over all franchisees and registered users in
their region, as well as user data and the software running on terminals. I make use
of this organizational structure in Chapter 5 when proposing the use of a Public Key
Infrastructure (PKI) in my security architecture.

3.3 Infrastructure

Each rural public computing deployment provides service to users in a specific geo-
graphic region and is independently administered by a Franchiser (see Section 3.2). I
illustrate a typical deployment scenario in Figure 3.1. Infrastructure components of a
typical deployment include:

• Kiosk Controllers – servers deployed at rural kiosks that have wired connections to
terminals (see below), providing them with network boot, a network file system,
user management, and Internet connectivity through kiosk proxy servers (also
see Section 3.3 below) via long-range wireless (e.g., WiMAX) or a DTN.

• Kiosk Gateways – servers with a WiFi network interface, persistent storage, and
live Internet connectivity. Deployed at urban locations with broadband Internet
access, gateways collect data opportunistically from mobile routers and stage it in
local storage before uploading it to the Internet through a proxy.

13

• Mobile Routers – lightweight embedded devices with a WiFi network interface and
persistent storage deployed on vehicles that regularly travel between locations
with gateways and rural kiosks. Mobile routers opportunistically communicate
with gateways and kiosk controllers to transport data between them.

• Kiosk Proxy Servers – servers deployed at data centers that serve as a proxy be-
tween gateways and disconnection-unaware legacy servers on the Internet. (Legacy
servers in this context provide services such as HTTP, IMAP and SMTP.)

3.4 Rural Kiosks

Rural Internet kiosks are owned and operated by entities known as Franchisees (see
Section 3.2). I illustrate a typical deployment scenario in Figure 3.1. Rural Internet
kiosks consist of a single kiosk controller (as described earlier in Section 3.3) and one
or more inexpensive recycled PCs called Kiosk Terminals that are connected to this kiosk
controller over wired Ethernet links.

3.5 Handhelds

Handhelds are recycled smartphones or PDAs with one or more wireless interfaces,
including cellular technologies such as GSM or CDMA and relatively short-range wire-
less technologies such as Bluetooth or WiFi and a built-in camera. Although such
handhelds may also have access to cellular data services such as EDGE or HSDPA, it
is assumed that the cost of using these services in a rural environment is prohibitive.
Owners of handhelds would use instead use the devices to wirelessly access rural pub-
lic computing infrastructure in order to send and/or receive data (in a potentially delay
tolerant setting) at a significantly lower cost.

3.6 Usage Scenarios

In this section, I briefly present two usage scenarios: the first involving the use of a rural
Internet kiosk to conduct the sale of agricultural produce, and the second, involving
the use of handhelds to send a video message.

14

3.6.1 Rural Internet Kiosks

In this usage scenario, I describe how Karina, a rural Internet kiosk user, uses a vil-
lage kiosk to negotiate the sale of her farm’s produce using a hypothetical application,
SellProduce, deployed at the kiosk by a produce wholesaler registered as an ASP.

1. Karina logs into a recycled PC at her local kiosk, launches SellProduce and spec-
ifies the produce she has for sale along with her asking price. She then hits the
submit button to send her offer to the wholesaler. SellProduce generates an offer
message and transmits this to the kiosk controller.

2. The kiosk controller forwards the offer message to a kiosk proxy server which
then forwards the message to a kiosk used by the wholesaler. (This may be con-
nected to the proxy directly via the Internet.)

3. The produce wholesaler reviews Karina’s offer in SellProduce and responds with
another offer message detailing desired purchase price, quantity and timeframe.
When the wholesaler submits this offer through SellProduce, the message is sent
to the kiosk proxy server.

4. The kiosk proxy server forwards the wholesaler’s offer message to Karina’s kiosk
controller, which stores it for her to review and respond the next time she logs
in. Karina would then either respond to further negotiate her terms of sale or
confirm the sale as described above.

In the absence of security mechanisms that guarantee the authenticity, integrity
and privacy of the offer messages exchanged between Karina and the wholesaler, it
would be difficult for either side to trust and act on the messages that they receive. As
mentioned earlier, the potential use of a DTN link between kiosks and the kiosk proxy
server prevents the use of traditional, session-oriented technologies such as SSL to
secure kiosk applications such as SellProduce. Other applications with similar security
requirements include rural banking, government record and telemedicine.

3.6.2 Handhelds

In the usage scenario below, I describe how Hana, a handheld user, uses a hypothetical
application called VideoMessenger on her handheld device to record a video message
and send it to Karina, a rural Internet kiosk user.

15

1. Hana launches VideoMessenger on her handheld and records an event in her
village using a camera built into the device. Upon completing this, she enters
Karina’s email address to specify the message’s recipient, and hits send. The
message is stored on her handheld until the device next connects with the rural
public computing infrastructure in her region.

2. Hana visits a location in his village with a rural Internet kiosk and wirelessly
connects to the rural public computing infrastructure (a kiosk controller in this
case) with her handheld. The device automatically transfers her video message
destined for Karina to the kiosk controller.

3. The kiosk controller forwards the video message to a kiosk proxy server which
then forwards the message to the kiosk used by Karina.

4. The video message is delivered to Karina’s kiosk and displayed on the recycled
PC she uses to login to the kiosk.

As in the previous usage scenario, the absence of security mechanisms that guar-
antee the authenticity, integrity and privacy of the video message exchanged between
Hana and Karina would make it difficult for Karina to believe the message actually
came from Hana and that it had not been viewed or altered by a malicious third party
before she viewed it.

16

Chapter 4

Threat Model

In this chapter, I describe my security design objectives for rural public computing,
identify potential attackers, describe their capabilities, and list potential attacks against
rural kiosks, handhelds and their supporting rural public computing infrastructure.

4.1 Security Goals

In this section, I outline my security design goals for rural public computing, detailing
the requirements for rural kiosks, handhelds and the supporting infrastructure.

4.1.1 Infrastructure and Rural Kiosks

My overall security goals are to provide the best possible security for users, operators
and infrastructure components given the need to minimize costs, the limited process-
ing capabilities of infrastructure components and the recycled PCs used as terminals,
as well as the absence of specialized hardware in recycled PCs, such as TPMs or a
modifiable BIOS. Specific security goals, in terms of the four entities that use or operate
rural Internet kiosks, are as follows:

• Franchisers – franchisers want to detect, if not prevent, the misuse of their infras-
tructure components by any of the concerned entities or outsiders (defined as
someone other than one of the concerned entities from Section 3.2).

• Franchisees – franchisees want protection against the spread of viruses over and
any attacks launched through the public computing infrastructure.

17

• ASPs (Application Service Providers) – depending on the type of service they pro-
vide, ASPs may want franchisers to guarantee the integrity of their software when
deployed on the public computing infrastructure. Examples of such software
might be microfinance systems operated by banks and medical records systems
operated by health care agencies.

• Kiosk Users – users are primarily concerned with the confidentiality and integrity
of their data.

In addition, all of the above entities would be concerned with the availability of the
rural public computing infrastructure. In a potentially disconnected environment, this
means the period of disconnection from the Internet would be within the timeframe
specified by the franchiser.

The physical and cryptographic mechanisms used to achieve these goals are de-
scribed in Chapter 5 and then evaluated in terms of the protection they provide against
potential attacks (see Section 4.2.2) in Chapter 6.

4.1.2 Handhelds

Allowing handheld users to access rural public computing infrastructure with their
mobile devices requires meeting the following security and usability goals:

1. Simple Registration – mobile users should be able to quickly and easily register
their handhelds in a specific franchiser’s region and obtain the cryptographic
credentials necessary to securely send and receive data over the rural public com-
puting infrastructure.

2. Secure Communication – all communication between handheld users’ mobile de-
vices and the rural public computing infrastructure should be guaranteed in-
tegrity and privacy.

3. Unrestricted Mobility – handheld users should be able to access all infrastructure
operated by their franchiser in order to securely send and receive data over the
rural public computing infrastructure.

4. Unobtrusive, User-friendly Security – the security mechanisms used to protect hand-
held users should be unobtrusive and easy to use, having minimal impact on the
performance and battery life of users’ mobile devices.

18

I note that these goals are contradictory and that a trade-off is necessary. As with
infrastructure and rural kiosks, the security mechanisms used to achieve these goals
are described in Chapter 5 and then evaluated in terms of the protection they provide
against potential attacks (see Section 4.2.3) in Chapter 6.

4.2 Attacker Model

In this section, I describe my attacker model, highlighting potential attack vectors and
identifying the resulting threats against rural kiosks, handhelds and the supporting
rural public computing infrastructure.

4.2.1 Attack Vectors

In addition to outsiders, defined as being none of the entities introduced in Section 3.2,
I assume attackers to be either franchisees or users. Franchisers do not appear in our
list of attackers because as operators of the system, its correct and reliable functioning
is in their best interest. I exclude ASPs under the premise that any software, data and
configuration changes produced by these entities will only affect their own software
and data, that is, ASPs’ software and data is isolated from that of other ASPs. (This
would be achieved by running ASPs’ software in separate virtual machines on kiosk
terminals.) Attackers may possess one or more of the following:

• Wireless Communication Channel – the ability to eavesdrop on, inject messages into
or jam the wireless communication channel between infrastructure components
and handheld devices, given sufficient physical proximity to these systems.

• Physical Access – unfettered physical access to infrastructure components in the
absence of authorized franchiser personnel, without knowledge of their adminis-
trator passwords.

• Technical Expertise – the experience and technical expertise required to modify
the software or configuration of a Linux-based system, given network-based or
physical access.

4.2.2 Threats against Rural Kiosks and Infrastructure

Threats against rural kiosks can be categorized as attacks against the confidentiality,
integrity or availability of the system. In terms of confidentiality, I am concerned with

19

the privacy of user data and any secret keys stored in their accounts (see Section 5.2.1
for details). For integrity, I am concerned with the integrity of this data as well as the
integrity of infrastructure components, recycled PCs used at kiosks and the imperson-
ation of franchiser personnel and kiosk users. For availability, I consider the jamming
of wireless links between infrastructure components. (Recycled PCs are connected to
kiosk controllers by a wired link.) When combined with potential attackers, these
threats give us the attacks numbered 1 through 12 in Figure 4.1. I further classify each
attack according to its likelihood. It should be noted the attacks shown in Figure 4.1 are
for illustrative purposes only and that this Figure does not represent a comprehensive
list of all possible attacks.

The classification of likely and unlikely threat-attacker combinations in Figure 4.1
is based on the capabilities of a particular attacker, the cost of mounting a particular
attack, and the potential benefits. For example, a franchiser would be more likely to
attempt to modify the configuration of a kiosk controller in order to disable its wireless
interface than set up a jamming signal to achieve the same result, given the cost of
setting up the jamming signal and the simplicity of disabling a wireless interface.

Threat-attacker combinations that are marked as ignored appear as such because
either the cost of mounting the attack exceeds the benefit to the attacker or because a
lower-cost attack that achieves the same result is available.

Because I have no control over the underlying delay tolerant network infrastructure
for my implementation, I do not consider traffic analysis attacks against application
messages exchanged in a rural public computing network (e.g., looking at the source
and/or destination of messages), as these are threats I cannot guard against.

4.2.3 Threats against Handhelds

Threats against users of handhelds can be categorized as attacks against the confiden-
tiality, integrity or availability of the system. In terms of confidentiality, I am concerned
with the privacy of user data and any secret keys stored stored in their handhelds (see
Section 5.2.1 for details). For integrity, I am concerned with the integrity of this data
as well as the integrity of handheld devices. For availability, I consider the jamming of
wireless links between infrastructure components and handhelds. I also classify each
attack according to its likelihood. Potential attacks against handhelds appear alongside
attackers as threats 13 through 17 in Figure 4.1. As noted earlier, the attacks shown in
Figure 4.1 are for illustrative purposes only and that this Figure does not represent a
comprehensive list of all possible attacks against handhelds.

20

01. User impersonation at kiosk terminals
Attacker impersonates user identity at terminal to use an application, view private data or escape liability of malicious terminal use

02. User impersonation at kiosk controller
Attacker uses Linux PC with root access to connect to kiosk controller, mount NFS-exported /home and view/fabricate users’ data

03. Viewing/fabrication/modification of user data at kiosk controller
Attacker logs into kiosk controller as root or removes hard disk and boots with Live CD to view/fabricate users’ data

04. Eavesdropping on wireless channel between infrastructure components
Attacker sniffs packets on wireless channel between infrastructure components to view private data

05. Message injection on wireless channel between infrastructure components
Attacker injects packets on wireless channel between infrastructure components to generate/corrupt data

06. Modification of kiosk terminal software stack
Attacker replaces terminal application with malicious application to enable attack (e.g., login daemon stores passwords)

09. Impersonation of infrastructure components
Attacker sets up device to impersonate infrastructure components (e.g., mobile routers) to obtain users’ data

10. Modification of software stack on KioskNet infrastructure components
Attacker replaces application on infrastructure components with malicious application to enable attack

08. Viewing/fabrication/modification of user data transferred between terminal and kiosk controller
Attacker sniffs/injects packets on wired channel between terminal and kiosk controller to view/fabricate users’ data

11. Modification of software configuration on infrastructure components
Attacker changes infrastructure component software configuration to enable attack (e.g., disable logging)

07. Modification of kiosk terminal software configuration
Attacker changes terminal software configuration to enable attack (e.g., disable logging)

Possible, likely attack Possible, unlikely attack Ignored, no benefit to attacker or easier attack exists

12. Jamming of wireless channel between infrastructure components
Attacker jams wireless channel between infrastructure components to prevent the transfer of data

Kiosk Franchisees Kiosk Users Outsiders

F K H

F K O

O

Handheld UsersH

13. User impersonation on handheld
Attacker impersonates user identity on handheld to view private data or escape liability of malicious handheld use

14. Viewing/fabrication/modification of user data on handheld
Attacker views, fabricates or modifies data stored on handheld while owner is unaware or device is lost/stolen

15. Eavesdropping on wireless channel betweeen handhelds and infrastructure components
Attacker sniffs packets on wireless channel between handhelds and infrastructure components to view private data

16. Message injection on wireless channel between handhelds and infrastructure components
Attacker injects packets on wireless channel between handhelds and infrastructure components to generate/corrupt data

17. Jamming of wireless channel between handhelds and infrastructure components
Attacker jams wireless channel between handhelds and infrastructure components to prevent the transfer of data

Figure 4.1: Potential threats against Rural Public Computing

21

As with kiosks and infrastructure, the classification of likely and unlikely threat-
attacker combinations in Figure 4.1 is based on the capabilities of a particular attacker,
the cost of mounting a particular attack, and the potential benefits. Similarly, certain
threat-attacker combinations are marked as ignored for the same reasons described
earlier when discussing kiosks and infrastructure. Finally, as noted above for rural
kiosks and infrastructure, I do not consider traffic analysis attacks against handhelds
for the same reasons.

22

Chapter 5

Security Architecture

In this Chapter, I detail my security architecture for rural public computing, beginning
with rural public computing infrastructure, and then moving onto rural kiosks and
handhelds. I finish by discussing how this architecture works in the two usage scenarios
introduced earlier in Chapter 3.

5.1 Infrastructure

Rural public computing infrastructure components are protected against attack using a
combination of cryptographic and physical security mechanisms.

For physical security, I assume that kiosk controllers, mobile routers and gateways
are equipped with sealed, tamper-evident enclosures. These enclosures would most
likely utilize proprietary screws and locks, in addition to sticker seals over removable
enclosure panels, similar to those used by vendors of commercial electronics to detect
attempts to open the devices. The other physical security mechanism I rely on is the
regular inspection of deployed infrastructure components by franchiser field techni-
cians to check for tampering or damage.

In terms of cryptographic security, all infrastructure components are issued unique
credentials called Infrastructure Credentials by the franchisers that operate them. In-
frastructure Credentials consist of a signing key pair generated by the device and a
corresponding certificate signed by the franchiser that binds the infrastructure compo-
nent’s identity to its public key. These credentials are installed in each device’s /root
directory by its operating franchiser when it is first deployed, along with the oper-
ating franchiser’s public key certificate and the certificates of all trusted CAs. (The

23

franchiser’s certificate is signed by one of these trusted CAs.) A device uses its creden-
tials to authenticate to other infrastructure components, and to secure communication
between infrastructure components.

Administrator privileges on infrastructure components are limited to authorized
franchiser personnel. Namely, only the franchiser knows the administrator passwords
for its infrastructure components, but not franchisees (e.g., only franchisers can login
as “root” on a kiosk controller).

5.2 Rural Kiosk

In this section, I introduce my security architecture for rural Internet kiosk, describing
how it provides security for kiosk users and the operators of rural public computing in-
frastructure. I also describe the security mechanisms used to protect terminals deployed
at rural kiosks and secure mechanisms available to franchisers to remotely maintain in-
frastructure components (i.e., authenticated remote shell commands, tamper-evident
system logs and digitally signed software updates).

5.2.1 User and Operator Security

Entities that use or operate rural kiosks each possess a unique set of Entity Credentials.
Entity Credentials consist of a signing RSA key pair and an encryption RSA key pair,
along with the corresponding X.509 certificates that bind the holder’s identity to the
public part of each key pair. Kiosk users and franchisees obtain and use their Entity
Credentials as described below.

• Franchisers – franchisers self-generate their key pairs and then use the public parts
of their signing key pairs to obtain certificates signed by a trusted CA such as
VeriSign or Thawte, allowing for inter-franchiser authentication. Certificates for
encryption keys are then signed using their own signing keys. (In KioskNet,
franchisers’ signing certificates are signed by the University of Waterloo.) Fran-
chisers’ signing key pairs are then used to sign certificates issued to franchiser
administrative personnel, licensed franchisees, and ASPs.

• Franchisees – franchisees obtain certificates in a similar fashion to franchisers, with
the only difference being their signing certificates are signed by their franchiser.
Franchisees use their private signing keys to sign certificates for their encryption
keys and all signing certificates issued to users registered at their kiosks.

24

Kiosk Terminal Kiosk Proxy Server

Desired User ID, Password

TLS over Ethernet

Confirmation

TLS over Ethernet

Close TLS connection

Ethernet

Generate public/private
key pairs and X509 certificates,

create encrypted home directory,
store key pairs in home directory

Initiate TLS connection

Ethernet

Kiosk Controller

Kiosk user's X509 encryption certificate

Secure Directory API over
rural public computing network

Confirmation of registration
Secure Directory API over

rural public computing network

Validate kiosk user's
X509 encryption certificate,
add user to White Pages

Figure 5.1: Registration Protocol for new Kiosk Users

25

• ASPs – ASPs obtain certificates from the local franchiser in an identical fashion to
franchisees. They use their Entity Credentials to authenticate software deployed
at kiosks on their behalf by franchisers and any subsequent updates to this soft-
ware and to secure the transfer of data between ASPs and users, if necessary.

• Users – users obtain their credentials when they register at a rural kiosk using
the protocol illustrated in Figure 5.1. (See Section 5.2.2 for a description of the
Secure Directory API.) Their signing certificates are signed by the local franchisee,
with encryption certificates being signed using their own signing keys. The usage
of certificates and key pairs is transparent to users, which is important because
previous research has shown that users cannot be expected to manually deal with
certificates [11]. Namely, key pairs and certificates are automatically created upon
registration and stored in the user’s encrypted home directory (see Section 5.2.2).
Furthermore, usage of the keys is simplified through the Secure Directory API
(described in Section 5.2.2), where incoming data is transparently decrypted and
verified, and outgoing data is transparently encrypted and signed without any
user intervention.

It is noted that as shown in Figure 5.1, a users’s key pairs are generated on the kiosk
controller, a device operated by the local franchiser. This is done because new accounts
are created via a web-based interface accessible through the franchisee’s account on any
kiosk terminal. (Franchisees are not trusted entities.) Although franchisers are trusted
in my attacker model, they may still stand to benefit from replicating users’ key pairs
outside their accounts and using them to impersonate these users. As such, I leave it
to future work to develop a technqiue for establishing trust in a kiosk terminal and
moving the creation of new accounts and users’ key pairs to a special, trusted guest
account on kiosk terminals.

Certificates for users are made available to other kiosk users, franchisers, ASPs,
other franchisees and the Internet by means of a public database known as the White
Pages. This database is maintained by each region’s franchiser and updates to it are
periodically broadcast to all franchisees (more specifically, the kiosk controllers servic-
ing them) and all licensed ASPs. The database is the only place that is consulted by
a kiosk upon receipt of a signed message. Any certificate that no longer shows up in
the database is considered revoked, which eliminates the need for a separate certificate
revocation mechanism. For a user base of 10,000 with each certificate requiring about
2KB of storage, the entire White Pages database would be around 20MB in size. I note
that this size is trivial when considering the hard disk capacity of a kiosk controller or
mobile router (at least 40GB), and that mobile routers carried by vehicles can wirelessly
transfer upto 100MB of data in a single visit to a kiosk controller.

26

All certificates described above are chained to a trusted root CA’s certificate (e.g.,
VeriSign, Thawte or the University of Waterloo) such that trusting this certificate alone
is sufficient to verify the above entities’ certificates. This way, an ASP can, but does not
have to, delegate identity verification to a franchisee or even a franchiser, which can be
important in rural public computing environments.

5.2.2 Terminal Security

Terminals are PCs, typically recycled, that network boot from a read-only image stored
in a kiosk controller. These images contain the Linux kernel used by terminals, configu-
ration files and applications. Because we expect a terminal’s disk to fail or be corrupted
by viruses, user data is stored in the kiosk controller. All applications launched by the
user are run on the terminal for better performance. To prevent an attacker from im-
personating a user, every user is assigned a Linux login password during registration
and has to enter this password into the terminal when logging in. This password is also
used for protecting a user’s data, which I describe in the following subsection. Termi-
nals automatically shut down when users logout, effectively forcing all kiosk terminals
to be rebooted between users, killing any processes the previous user may have left
running. Rebooting a Kiosk terminal also allows the BIOS to clear the RAM, making
it harder for attackers to launch a memory dump attack on the system to obtain the
secret keys used to encrypt users’ home directories (refer to Chapter 7 for details on
how users’ home directories are protected).

Additional physical security mechanisms, such as informative posters and unan-
nounced “surprise” inspections by franchiser personnel, are used to protect terminals
against attacks such as hardware key loggers, “shoulder surfing” and terminals booted
off malicious terminal images. Anti-virus software is used to protect kiosk terminals
against viruses, with virus definitions for this software being regularly updated using
digitally signed software updates (see Section 5.2.3).

Secure Directory API

The Secure Directory API allows developers to easily produce applications that com-
municate securely between kiosks, handhelds and the Internet. To simplify the devel-
opment of applications, the Secure Directory API is implemented as a daemon that
watches a configured set of directories for new files, providing applications with an
API similar to that used by Plan 9 [26]. On kiosk terminals, for example, applications
write outgoing data to a user’s ˜/application/supload directory and read incoming

27

data from the ˜/application/sdownload directory, where ˜/ corresponds to the mount
point on the terminal for the user’s encrypted home directory.

For incoming data, a daemon implementing the Secure Directory API automati-
cally decrypts and verifies signatures on received data using the user’s private keys
(stored in his/her encrypted home directory if a kiosk user) and other users’ public
keys included in senders’ signing certificates attached to messages and the White Pages
database (introduced in Section 5.2.1) and places it in the sdownload directory. Simi-
larly, this daemon automatically encrypts and signs all outgoing data placed in supload
after looking up the recipient’s public encryption key in the White Pages database (the
daemon learns the identity of a message’s recipient from the accompanying metadata
file, as described in Section 7.4.4). Messages destined for a server reachable over the
Internet via the kiosk proxy server are either encrypted with the proxy’s public encryp-
tion key and then forwarded in plaintext over the Internet by the proxy, or encrypted
with a specific ASP’s public encryption key (in the case of an ASP’s server on the Inter-
net). Similarly, messages destined for rural users whose public keys could not be found
in the White Pages database (for example, because a White Pages update has not yet
propagated to a kiosk controller), are re-addressed and encrypted for the proxy, which
then decrypts and encrypts the messages for their intended recipients using its up-to-
date copy of the White Pages database. (Because franchisers are assumed to be trusted
in my threat model, as described in Chapter 4, it is assumed that all proxy servers run
by a user’s franchiser are also trusted.)

Encrypted User Home Directories

All user data, such as a user’s pictures and emails, are stored in kiosk controllers
and exported over NFS for access via terminals connected to a kiosk controller. As
highlighted in Section 4.2.2, this setup makes it possible for an attacker to connect to
the kiosk controller using a Linux PC with administrator access to override filesystem
permissions and access the NFS-exported user data or, in a more extreme scenario, to
break into the kiosk controller, remove its hard disk, and boot it in a PC with a Live CD
to achieve the same.

To protect user data stored in kiosk controllers, users’ home directories are created
in encrypted virtual volumes. Users’ virtual volumes are exported in their encrypted
form to terminals over NFS for automatic mounting and decryption when users logs
in. The process is reversed when users log out. My implementation is based on off-the-
shelf, open-source software, as described in Chapter 7.

28

In the event a user forgets his/her password, an encrypted backup copy of the key
used to encrypt the user’s virtual volume is maintained by the franchiser. Users who
forget their passwords must contact their local franchiser to request a password reset
and the release of the backup copy of their virtual volume’s encryption key.

5.2.3 Digitally signed Software Updates

Digitally signed software updates are produced and distributed by authorized fran-
chiser administrative personnel. To authenticate these updates, administrative person-
nel sign them with a designated private signing key, part of an Entity Credential as
described earlier in Section 5.2.1, attaching the corresponding public key certificate
signed by the franchiser. Signatures on software updates are automatically verified by
infrastructure components before the update is applied. The signing certificate chain
attached to each update is verified with the franchiser’s public key, which is installed
when an infrastructure component is first set up. This same mechanism can be used to
update the franchiser’s public key, if necessary.

It is noted that the loss of a franchiser’s private signing key will effectively invalidate
all certificates issued to franchisees, ASPs, infrastructure components and users in the
franchiser’s region. To guard against this, franchisers are expected to maintain one or
more secure backup copies.

5.2.4 Authenticated Remote Shell Commands

Lukac et al. propose the Disruption Tolerant Shell (DTS) [18], a reliable asynchronous
remote shell interface which allows for remote system management and configura-
tion. In a rural public computing environment where infrastructure components such
as kiosk controllers may be deployed in remote areas, such (authenticated) remote
shell commands allow franchiser administrative personnel to maintain these systems
remotely (e.g., by running scripts to diagnose a fault) even when the links between these
systems and the rural public computing network are delay tolerant. As with software
updates, infrastructure components verify the signatures on remote shell commands
before running them. Authenticated remote shell commands are produced and dis-
tributed in an identical fashion to signed software updates, as described in Section
5.2.3 above.

29

5.2.5 Tamper-evident System Logs

System logs produced by infrastructure components contain valuable debugging in-
formation, error reports, notifications of software updates, records of shell commands
executed by the administrator, and fingerprints of all executables present on the system.
These logs are periodically sent to franchiser administrative personnel, allowing them
to monitor deployed infrastructure components. To avoid being noticed, an attacker
making changes to the software stack or configuration of an infrastructure component
would likely attempt to modify the device’s system logs. Thus, these logs need to be
made tamper-evident. Tamper-evident protection is provided by means of the hash-
chaining scheme detailed in Section 7.4.3.

5.3 Handhelds

In this section, I introduce my security architecture for handhelds in a rural public
computing scenario. I describe mechanisms for the remote registration of new hand-
held users, a protocol to authenticate handhelds to rural public computing infrastruc-
ture that makes use of visual tags and mechanisms for secure communication between
handhelds and infrastructure components.

5.3.1 User Registration

The registration of new handheld users is a three-step process:

1. Register with Franchiser – handheld users begin by registering with a franchiser
through a website. This involves providing the new user’s name, contact infor-
mation (e.g., a phone number or mailing address), specifying the desired user ID
(alternatives could be suggested by the franchiser if the desired ID is not available,
as is common with most free web-based email services) and providing some iden-
tifying information (e.g., a credit card number) that proves the user is real and
does in fact correspond to the provided contact information. Upon successful
completion of this step, the franchiser provides the new user with confirmation
of his/her new user ID and an Activation Password. (Activation passwords are
randomly-generated alphanumeric strings, unique to each user that are stored in
a database maintained by the franchiser alongside the corresponding user’s ID.)

2. Download Handheld Software Package – in this second step, handheld users down-
load the Handheld Software Package, a suite of applications that allow users to

30

generate public/private key pairs, register with their franchiser and connect to
their local rural public computing network. For additional security, the package
could be signed with a franchiser’s private signing key and verified using the cor-
responding public key certificate which in turn would be signed by a trusted CA
such as VeriSign or Thawte. (In my implementation, the University of Waterloo
signs franchisers’ certificates.)

3. Run Registration Client – after installing the Handheld Software Package, hand-
held users launch the included Registration Client on their mobile device. This
application asks the user to enter his/her user ID and activation password (ob-
tained as described earlier) as well as a login password which the user would be
required to enter every time he/she connects to the rural public computing net-
work. The registration application then connects to a Handheld Registration Server
operated by the franchiser over the Internet and completes registration, storing
the user’s private keys and corresponding public key certificates on the handheld.

I note that it is assumed that no more than one user would be registered per hand-
held and that users will be able to access the Internet with their handhelds to complete
the registration process described above.

When storing private keys on the user’s handheld, the Registration Client encrypts
them with an ephemeral key derived from the user’s password and a salt value. This
password has to be entered by the user every time the user connects to the rural public
computing network (or every time the private key is used, for added security), ensuring
a lost or stolen device cannot be used to easily obtain its owner’s private keys.

The protocol implemented by the Handheld Registration Client and Server appears
in Figure 5.2. When verifying a Certificate Signing Request (CSR), the Registration
Server checks to see that the provided Activation Password matches the supplied user
ID and that the signature on the CSR is valid (i.e., that it matches the requesting hand-
held user’s public signing key).

5.3.2 Secure Connectivity

To guard against man-in-the-middle attacks in the authentication phase between in-
frastructure components and handhelds, we require an out-of-band mechanism to bind
infrastructure components’ public keys to the physical devices. As in the scheme pro-
posed by Garriss et al. [9], I make use of printed 2D barcodes called Quick Response
(QR) tags [1] that can encode upto 4,296 alphanumeric characters to achieve this. It is
assumed that handheld users wishing to connect to an infrastructure component will

31

Handheld Registration Client Handheld Registration Server

X509 CSR (for signing key pair), Activation Password

TLS over Internet

X509 Signing Certificate

TLS over Internet

Close TLS connection

Internet (WiFi, EDGE, etc.)

Generate public/private
signing and encryption

key pairs with X509 CSRs

Initiate TLS connection without client authentication

Internet (WiFi, EDGE, etc.)

Validate Activation Password,
verify CSR and sign certificate

Self-sign Encryption Certificate
with private signing key,

attach Signing Certificate

X509 Encryption Certificate | X509 Signing Certificate

TLS over Internet

Validate Encryption Certificate,
add user to White Pages

Figure 5.2: Registration Protocol for Handheld Users
32

Figure 5.3: QR Tag encoding SHA1 Hash of X509 Certificate

be within visual range of the device and that the QR tag will be in an area which is
sufficiently lit in order to allow a camera in the user’s handheld to capture the tag.

Each infrastructure component has a QR tag printed on a tamper-evident sticker
attached to it, encoding a hash of its public key, such as that shown in Figure 5.3. (The
sample QR tag in Figure 5.3 encodes a SHA1 hash of the X509 certificate in Appendix
A.1.) This is similar to the visual tag schemes proposed by Scott et al. [29] and McCune
et al. [21]. These QR tags are generated by the corresponding franchiser and printed
on tamper-evident stickers such as those used to seal the enclosures of electronics for
warranty purposes, making it difficult for attackers to replicate them.

To connect to the rural public computing network (via an infrastructure compo-
nent), handheld users launch the HandheldConnectClient application on their handheld
devices. This application attempts to connect to a daemon running on the infrastruc-
ture component, the HandheldConnectServer, using a predefined IP address and port
number. Following the protocol shown in Figure 5.4, HandheldConnectClient first asks
the user to point the handheld’s camera at the infrastructure component’s QR tag, al-
lowing it to capture a hash of the infrastructure component’s public key encoded in the
QR tag. HandheldConnectClient then negotiates a connection with the infrastructure
component secured by TLS, after verifying that the public key provided by Handheld-
ConnectServer in the TLS server authentication phase matches the hash captured earlier
from the infrastructure component’s QR tag. The client authentication phase in TLS is
extended so the infrastructure component only admits handhelds that are registered
with its franchiser.

Handheld users disconnect from infrastructure components through the Handheld-
ConnectClient application. A timeout based on a period of inactivity is used to auto-
matically close the connection if users forget and just walk away.

33

I note that it isn’t necessary to use an out-of-band channel (such as QR tags) to bind
infrastructure components’ public keys to the physical devices. An alternate scheme
would be to simply display an infrastructure component’s certificate on a handheld
device and ask the user to approve before continuing with authentication (this might
involve comparing the infrastructure component’s ID in its certificate with the kiosk’s
name). Recent research, however, shows that users can’t be expected to manually deal
with certificates [11]. In a rural environment where most users may not understand
such certificates, the use of QR tags as described above also serves to simplify usage of
the system.

5.3.3 Secure Communication

Secure communication between handheld users and other users of the rural public
computing infrastructure, including kiosk users and other handheld users, is protected
using the Secure Directory API described earlier in Section 5.2.2.

A Secure Directory API daemon running on the handheld device obtains public
keys for recipients from its cache of the White Pages database. When the recipient’s
public encryption key is present in the handheld’s cache, the process of sending a mes-
sage works in the same way described in Section 5.2.2. Because handhelds may have
limited opportunities to synchronize their caches of the White Pages database with
infrastructure components, it is possible that the handheld may not have the public en-
cryption key for a recipient. In such cases, the Secure Directory API daemon encrypts
the outgoing message for the regional kiosk proxy server and forwards the message to
this server when the handheld next connects to the rural public computing network.
Upon receiving this message, the kiosk proxy server decrypts it using its private en-
cryption key and then encrypts it again using the recipient’s public encryption key
(the kiosk proxy server maintains the master copy of the White Pages database) before
forwarding the message to the recipient. The next time the handheld connects to the
rural public computing network, it asks the host infrastructure component for public
encryption keys of recipients it didn’t have these keys for, storing them in its cache of
the White Pages database.

Messages destined for handheld users are flooded throughout the rural public com-
puting network, allowing handheld users to obtain incoming messages by connecting
to any infrastructure component in their region (assuming sufficient time for these
messages to propagate to the infrastructure component the handheld connects to).

I note that one potential issue with the scheme described above is that encryption of
data while the user is interacting with the handheld will likely have a noticeable impact

34

Handheld Infrastructure Component

H(InfrastructureComponentCert)
via Camera as QR code

HELLO_CONNECT
WiFi

InfrastructureComponentCert
WiFi

Verify that
H(InfrastructureComponentCert)

matches hash of
InfrastructureComponentCert

Initiate TLS connection with client authentication

WiFi

Data exchange with Infrastructure Component

TLS over WiFi

Close TLS connection

WiFi

Figure 5.4: Protocol to establish connection between Handhelds and Infrastructure

35

on the device’s performance, particularly in terms of UI responsiveness. Ideally, all
such processing should be completed when the device is not in use (i.e., when it is in a
“locked” state). Because the implementation of my security architecture on handhelds
is incomplete, I leave addressing this issue as a topic of future work.

5.3.4 Secure Storage

To protect user data stored on handhelds in the event the devices are lost or stolen, all
user data is encrypted when stored in the devices’ flash memory. This is achieved by
means of an encrypted file system keyed with a salted ephemeral key derived from the
user’s handheld password.

5.4 Security Architecture Usage Scenarios

In this section, I discuss how my proposed security architecture works for rural Internet
kiosks and handhelds, in keeping with the two usage scenarios outlined in Section 3.6.

5.4.1 Rural Internet Kiosks

For this usage scenario, I refer back to the rural Internet kiosk usage scenario described
in Section 3.6. It is assumed that the produce wholesaler Karina wishes to do business
with is registered as an ASP with her regional franchiser.

When Karina hits submit in SellProduce, the application writes her offer message
to her home directory in ˜/sellproduce/supload. The Secure Directory API daemon
then signs the message with Karina’s private signing key stored in her encrypted home
directory, attaches her public signing key certificate and encrypts the message for the
wholesaler, by looking up the wholesaler’s public encryption key in the White Pages
database. The Secure Directory API daemon sends the secure offer message to the kiosk
controller for forwarding to the kiosk proxy server. (I note that the link between the
kiosk controller and proxy server may either be DTN or long-range wireless, as illus-
trated in the sample network topology in Figure 3.1.) The proxy server then forwards
the message to the wholesaler’s kiosk controller.

A Secure Directory API daemon running on the wholesaler’s computer (this could
be a special “terminal” only used by the wholesaler) decrypts the offer message, vali-
dates Karina’s public signing key certificate, verifies the signature on her message and
then passes the validated offer message up to SellProduce running on the wholesaler’s

36

computer. Offer messages sent by the wholesaler to Karina would be secured in the
same fashion and stored in her encrypted home directory.

5.4.2 Handhelds

For this usage scenario, I refer back to the handheld usage scenario described in Section
3.6. It is assumed that both Hana and Karina are already registered users.

When Hana has finished recording the event in her village with VideoMessen-
ger on her handheld, she enters Karina’s email address as a recipient and hits send.
VideoMessenger creates a message addressed to Karina from Hana and places it in the
/var/apps/videomessenger/supload/ directory on his handheld. A daemon imple-
menting the Secure Directory API running on Hana’s handheld detects this file, reads
the file’s metadata to determine Karina is the recipient and pulls Karina’s public en-
cryption key from its local cache of the White Pages database. The outgoing video
message is first signed using Hana’s private signing key and then encrypted using
Karina’s public encryption key.

The next time Hana connects to the rural public computing network, her handheld
delivers the video message destined for Karina to the infrastructure component he
connects to (e.g., a kiosk controller in his village). This infrastructure component then
forwards the message to the regional kiosk proxy server (this connection may be over
a DTN, please refer to Figure 3.1 for possible network topologies). The kiosk proxy
server then forwards the message to Karina’s kiosk controller, where the message is
stored for the next time she logs in.

When Karina logs into a terminal at her local rural Internet kiosk, a Secure Direc-
tory API daemon first decrypts the video message from Hana and then verifies that the
signature on the message matches Hana’s public signing key (attached to the message
itself as part of an X509 certificate). If the signature is successfully verified, the video
message is placed in the appropriate sub-directory in Karina’s encrypted home direc-
tory for her to view the next time she launches the VideoMessenger application on her
terminal.

If, alternatively, Karina were a handheld user, her handheld would automatically
download Hana’s video message when she connects to an infrastructure component
(e.g., the kiosk controller in her village) and then follow the reverse process to that
described above for sending a message from a handheld to verify the signature on the
message and decrypt it for Karina to view on her device.

37

Chapter 6

Security Evaluation

As outlined in Chapter 4, specific security goals, in terms of the entities that use or
operate rural kiosks and handhelds, are as follows: (a) franchisers want to detect, if
not prevent, the misuse of their infrastructure components, (b) franchisees want protec-
tion against the spread of viruses over and any attacks launched against their kiosks,
(c) depending on the type of service that they provide, ASPs may want franchisers to
guarantee the integrity of their software when deployed on rural kiosks, where exam-
ples of such software include tax payment and land registry systems operated by the
government, and (d) both kiosk and handheld users are concerned with the confiden-
tiality and integrity of their data. It is noted that franchisera is considered a trusted
entity and therefore not the source of any potential attacks. I now describe how the
mechanisms proposed in Chapter 5 achieve these goals.

6.1 Rural Kiosks and Infrastructure

In this Section I present an analysis of the security mechanisms used to protect rural
Internet kiosks and infrastructure components. Figure 6.1 summarizes the security
mechanisms I propose and shows how these are combined to guard against the attacks
that were presented earlier in Chapter 4. The attack numbers along the top of the
table correspond to attacks presented earlier in Figure 4.1. I now describe how these
mechanisms defend kiosks and infrastructure components against attacks by users,
franchisees and outsiders.

38

1208 09 10 1104 05 06 0701 02 03

Password-protected user accounts

Encrypted user home directories

Root priviledges limited to franchisers

In-flight user data signed & encrypted

Read-only terminal boot images

Unique infrastructure credentials

Unique entity credentials

Sealed infrastructure component enclosures

Security mechanism mitigates/prevents attack Security mechanism does not mitigate/prevent attack

Figure 6.1: Security Mechanisms for Rural Public Computing Infrastructure

6.1.1 Users

To prevent users from impersonating other users, each user is assigned a password.
The operating system running on the terminal ensures that a user enters this password
before granting him/her access. For additional security, a terminal is shut down when
a user logs out, killing any processes that the user might have left behind and that
could use up CPU or memory resources. The next user must then boot the termi-
nal himself/herself, making it harder for franchisees to launch the phishing attack for
users’ login passwords described in Section 6.1.2 below.

6.1.2 Franchisees

The most likely attacks (in terms of simplicity) against terminals and kiosk controllers
by franchisees involve tampering with the devices’ software stacks and credentials or
the impersonation of kiosk terminals to launch phishing attacks for users’ login pass-
words. In a more sophisticated attack, franchisees may use hardware key stroke loggers
connected to kiosk terminals in order to obtain users’ login passwords.

Physical security mechanisms and the fact that only franchisers can login as “root”
on infrastructure components, (as described in Section 5.1,) prevent franchisees from
tampering with the software and data stored in kiosk controllers (e.g., adding malicious

39

terminal software, replacing the certificate identifying a franchiser, or extracting the
kiosk controller’s private key.)

Preventing franchisees from setting up fake login screens on kiosk terminals to
obtain users’ login passwords is a more challenging problem. The only robust solution
is shutting down a kiosk terminal when a user logs out and training users to boot
the kiosk terminal before logging in. (Instructional posters displayed at rural kiosks
can be used to remind users to log out when the leave, to boot terminals themselves
and to check for any irregularities in the connections between kiosk terminals and
keyboards that might indicate the presence of a hardware key stroke logger.) Currently
proposed techniques for verifying the integrity of public computing platforms such
as kiosk terminals [9] require the use of trusted mobile computing devices and the
presence of specialized hardware in kiosk terminals (e.g., TPMs), assumptions which
will likely not be reasonable in developing regions for quite some time.

Finally, franchisees may also launch phishing attacks against kiosk users by booting
terminals with modified (malicious) terminal images. Such attacks can be guarded
against by franchisers signing terminal images and forcing terminal boot loaders to
verify these signatures before booting. An alternative solution might be to make use of
a technique similar to that proposed by Surie et al. [37] and have a user boot a terminal
from a trusted USB memory stick before logging in. A minimal trusted OS on the stick
would then download the kiosk terminal image from the controller, verify its integrity,
and, if successful, boot into the kiosk terminal environment. Because most recycled
PCs do not support booting via USB and the boot loader features required to verify
signatures on terminal images are not currently available in off-the-shelf software, I
leave protection against this form of attack to future work.

6.1.3 Outsiders

We also need to defend against attacks on a kiosk by outsiders. A terminal is connected
to its controller by a wired connection, which makes interception or man-in-the-middle
attacks by an outsider difficult. If these attacks are a concern, the boot process could
be extended such that a terminal authenticates the controller and downloads the kernel
image over a secure connection. However, current off-the-shelf network boot software
does not support this feature.

40

6.2 Handhelds

In this Section I present a brief analysis of the security mechanisms used to protect
handhelds. Figure 6.2 summarizes the security mechanisms I propose and shows how
these are combined to guard against the attacks that were presented earlier in Chapter
4. The attack numbers along the top of the table correspond to attacks presented earlier
in Figure 4.1. I now describe how these mechanisms defend handhelds against attacks
by outsiders and other handheld users.

16 1713 14 15

Password-protected handhelds

Encrypted storage on handhelds

In-flight user data signed & encrypted

Unique handheld user credentials

Security mechanism mitigates/prevents attack Security mechanism does not mitigate/prevent attack

Figure 6.2: Security Mechanisms for Handhelds

6.2.1 Users

Attacks against handheld users by other handheld users involve the impersonation of
handheld users and viewing, modification or fabrication of data stored on handheld
devices. Password protection of handheld devices makes it difficult (but not impos-
sible) for other users to access any secret information stored on a device that doesn’t
belong to them. The encryption of data stored on handheld devices, makes it difficult
for attacks to view, modify or fabricate this data in the event the device is lost or stolen.
Use of the Secure Directory API to protect data exchanged between handheld devices
and the rural public computing infrastructure, as described in Section 5.2.2, ensures the
authenticity, integrity and privacy of all such in-flight data.

41

6.2.2 Outsiders

Attacks against handheld users by outsiders involving the impersonation of such a user,
the viewing, modification or fabrication of and secret information stored on handheld
devices and attacks against in-flight data exchanged between handhelds and the rural
public computing infrastructure are mitigated using the same mechanisms described
earlier in Section 6.2.1. Attacks against the availability of the system, namely the jam-
ming of wireless channels used for communication between handhelds and infrastruc-
ture, are considered an open problem. The use of QR tags to encode the public keys of
infrastructure components mitigates man-in-the-middle attacks against handhelds and
infrastructure components such as those identified by Garriss et al. [9].

42

Chapter 7

Implementation

In this chapter, I provide details of my implementation. I begin by detailing the con-
straints facing my implementation and then describe my implementation for infrastruc-
ture components and rural kiosks. Finally, I briefly discuss the issues I encountered.
I note that an implementation of my security architecture for handhelds is incomplete
and thus, is not described in this Chapter.

7.1 Constraints

Constraints for the implementation of my security architecture for rural public com-
puting, as briefly noted in Section 1.2, include the following:

• Minimize Costs – the need to minimize the cost of required hardware and software,
making use of recycled hardware that will be readily available in developing
regions and building my software on free, open-source platforms and libraries to
eliminate software licensing fees.

• Minimize Required Computational Resources – the use of recycled PCs for kiosk ter-
minals and inexpensive, low-power embedded devices for infrastructure compo-
nents requires an effort to minimize the required computational resources (i.e.,
processor and memory) and avoiding the use of specialized hardware features
such as TPMs and modifiable BIOSs.

43

7.2 Building Blocks

In this Section, I outline the software building blocks for my implementation, specifi-
cally the underlying network infrastructure and the cryptography libraries I used.

7.2.1 KioskNet

KioskNet is envisioned as a means of providing low-cost access to the Internet in remote
developing regions [10]. Implemented as a set of tightly coupled software modules
written in Java, C/C++, Perl and shell scripts running on Linux, KioskNet forms the
underlying network infrastructure for my implementation. (Infrastructure components,
as described in Section 3.3, run Debian whereas kiosk terminals run Ubuntu.) The
system is almost entirely developed by a team of faculty members, graduate students,
part-time undergraduate research assistants and summer interns at the University of
Waterloo [40].

Because there is currently no known efficient routing mechanism for DTNs, mes-
sages sent and received within KioskNet are flooded throughout the network. So, for
example, the SellProduce message generated by Karina in the kiosk usage scenario
outline in Section 3.6 would be placed on every mobile router that connects to Karina’s
kiosk controller and all subsequent infrastructure components these routers encounter
until the message reaches its destination and an acknowledgement sent by the whole-
saler is successfully received by Karina. The process of sending and receiving messages
(and acknowledgements) over KioskNet is implemented by OCMP (Opportunistic Con-
nection Management Protocol) [34] via an API identical to the Secure Directory API
described earlier in Section 5.2.2.

7.2.2 Cryptography Libraries

The two cryptography libraries used in my implementation are OpenSSL [23] and
BouncyCastle [41]. The former provides a C API via its accompanying libcrypto
library while the latter provides a Java API. Both libraries are open-source, updated
regularly and used extensively by the open-source community.

7.3 Entity Credentials

As briefly described in Section 5.2.1, Entity Credentials consist of signing and en-
cryption 2048-bit RSA public/private key pairs and corresponding X.509 certificates

44

binding the public portions of these key pairs to the owner’s identity. Signing key
pairs are typically long-lived with their lifespans measured in months, whereas en-
cryption key pairs are typically short-lived, with their lifespans being measured in
weeks. In a rural public computing network, each entity, be it a user, franchisee,
franchiser, ASP, kiosk controller or infrastructure component, is assigned a unique
identifier called an Endpoint ID (EID). (An example of an EID for a kiosk user is
sumair.kiosk.village.franchisee.franchiser.) As can be seen from the above ex-
ample, EIDs are hierarchical in nature, with the top-level entity being the regional
franchiser. X.509 certificates held by entities follow the same structure, with each cer-
tificate being signed by the authorizing entity one level above it in the hierarchy of
entities. The only exception to this hierarchical structure is handheld users: handhelds
and their users share the same EID, key pairs and certificates because it is assumed that
each handheld will only have one user.

7.4 Rural Kiosks

In this section, I describe the implementation of my security architecture for rural Inter-
net kiosks, detailing my implementation of digitally signed software updates, authen-
ticated remote shell commands, tamper-evident system logs, the Secure Directory API
and encrypted home directories for users.

7.4.1 Digitally signed Software Updates

Digitally signed software updates are produced and applied by authorized franchiser
administrative personnel. To authenticate these updates, administrative personnel sign
them with a designated private signing key, part of an Entity Credential as described
earlier in Section 5.2.1, attaching the corresponding public key certificate signed by the
franchiser. Signatures on software updates are automatically verified by infrastructure
components before the update is applied, with the signing certificate chain attached to
each update being verified with the franchiser’s public signing key, which is installed
when an infrastructure component is first set up. This same mechanism may be used
to update the franchiser’s public signing key, if necessary.

45

7.4.2 Authenticated Remote Shell Commands

Authenticated remote shell commands are produced and distributed in an identical
fashion to signed software updates, as described above. As with software updates,
infrastructure components verify the signatures on remote shell commands before run-
ning them.

7.4.3 Tamper-evident System Logs

Operational logs produced by infrastructure components contain debugging informa-
tion, error reports, notifications of software updates, records of shell commands exe-
cuted by the administrator, and fingerprints of all executables present on the devices.
These logs are periodically sent to administrative personnel, allowing them to monitor
deployed infrastructure components.

Logs are secured using a combination of hash chains, MACs (Message Authentica-
tion Codes), and a unique, randomly-generated symmetric key, KLog0 , which is installed
in the /root directory of an infrastructure component when it is set up. KLog’s are used
to produce a MAC for 24 hours of log entries at the end of each day before these log
entries are rotated and combined with previous logs. In cryptographic terms, this is

MAC(Logi) = MAC(KLogi , Logi || i),

where i ≥ 1, Logi is today’s log entries, KLogi = H(KLogi−1), H is a cryptographic hash
function and KLog0 is the initial KLog. Logs can be verified by validating the correspond-
ing MACs. With this scheme, any attempt by an attacker to remove or modify a day’s
log can be detected. For non-repudiation purposes, each set of logs is signed with the
source device’s private key and the corresponding certificate is attached.

I note that this scheme does not protect logs against modification during the day if
the above hash-chaining approach is applied to logs collected at the end of each day.
This is reasonable if it is assumed that attacks on logs will only take place after they are
sent to the franchiser (but before they are received). To provide increased protection,
logs could be collected more frequently, with the most secure solution being to apply
this scheme to all logs collected just before they are sent to franchiser personnel.

7.4.4 Secure Directory API

As described earlier in Section 5.2.2, the Secure Directory API is implemented as a dae-
mon process which “watches” a configurable set of directories for files. This daemon is

46

thus an atypical file server, implementing a file-based API similar to that available on
Bell Labs’ Plan 9 platform [26]. The Secure Directory API daemon is implemented as a
multi-threaded Java application that makes use of the open-source BouncyCastle Java
Cryptography package [41] for cryptographic operations.

For an example of how the Secure Directory API is used, on a kiosk terminal
applications simply write outgoing data to a user’s ˜/application/supload direc-
tory and read incoming data from the ˜/application/sdownload directory, where ˜/
corresponds to the mount point on the terminal for the user’s encrypted home di-
rectory (described earlier in Section 5.2.2). Applications writing outgoing files (e.g.,
filename.ext), must also write an associated metadata file called filename.ext.desc
in the same ˜/application/supload directory. This metadata file contains a destination
tag of the form DEST: <destination-eid>, where destination-eid is the end-point ID
(EID) of the recipient (e.g., sumair.kiosk.villagename.franchisee.franchiser), and
an optional certificate tag of the form ATTACH_CERT which tells the daemon to attach the
sender’s complete X509 certificate chain.

When new files are detected in an application’s outgoing ˜/application/supload
directory the daemon is configured to service, the daemon first reads the corresponding
metadata file to determine the intended recipient. It then searches through the local
White Pages database to obtain the recipient’s public encryption key. If this key is not
found or the X509 certificate containing it is found to no longer be valid, the outgoing
file is ignored. If the key is found, the daemon first uses the sender’s private signing key
to digitally sign the outgoing file, attaching this signature to the file to create a message
M. The daemon then generates a random 256-bit Message Encryption Key (MEK) using a
cryptographically-secure Pseudo-Random Number Generator (PRNG) (included in the
BouncyCastle package), and then encrypts the outgoing message M using this MEK
with the AES-256 symmetric cipher in Cipher-Block Chaining (CBC) mode. The MEK
is then encrypted with the recipient’s public encryption key. The result is a signed,
encrypted message, EM, of the form:

EM = EMEK(M ||SSenderSigningPri
(M) ||SigningCerti f icateSender) ||ERecipientEncryptionPub

(MEK)

If the optional ATTACH_CERT tag is set in the outgoing file’s metadata file, the encrypted
message includes the sender’s X509 encryption key certificate, producing an EM of the
following form:

EM = EMEK(M ||SSenderSigningPri
(M) ||SigningCerti f icateSender) ||ERecipientEncryptionPub

(MEK)
|| EncryptionCerti f icateSender

47

When new files are detected in an application’s incoming ˜/application/download
directory (note that this is different from ˜/application/sdownload), the daemon first
checks the EM to see if a sender’s encryption certificate was attached. If this certifi-
cate is present, the daemon attempts to validate it. If this certificate is found to be
invalid or the sender’s EID encoded in it does not match that of the incoming message,
the daemon stops processing the incoming message and discards the message, report-
ing an error in its log. If not, the daemon parses the encryption certificate to obtain
the sender’s public encryption key. If no sender’s certificate is attached to the mes-
sage, the daemon obtains the sender’s EID from the incoming message and searches
through its local cache of the White Pages database to find the sender’s encryption
certificate. If no such certificate is found or the certificate found is no longer valid, the
message is discarded and an error logged. (The sender is not a valid user.) The daemon
uses the recipient’s private decryption key to decrypt the incoming EM to reveal the
plaintext message M, signature and signing certificate. This signing certificate is then
verified, failure of which results in the message being discarded. If the sender’s public
signing key in this signing certificate can be used to successfully verify the message
signature, the validated plaintext message is copied into the application’s incoming
˜/application/sdownload directory for processing by the application.

I note that initial messages produced by a new user (messages sent before the user
appears in the White Pages directory) include the new user’s complete encryption cer-
tificate chain, allowing his/her messages to be processed even if the recipient’s White
Pages database has not yet been updated to reflect the new user. This is only allowed
for a limited perion of time measured from the “valid-after” field in the encryption
certificate (e.g., the maximum amount of time required for a White Pages update to
propogate to a kiosk).

7.4.5 Encrypted User Home Directories

All user data, such as a user’s pictures and emails, is stored in kiosk controllers and
exported over NFS for access via terminals connected to a kiosk controller. As described
in Chapter 5, to protect user data stored in kiosk controllers, users’ home directories
are created in encrypted virtual volumes. A user’s virtual volume is exported in their
encrypted form to terminals over NFS for automatic mounting and decryption when
the user logs in using a mount extension to the Linux Pluggable-Authentication Module
(PAM). The process is reversed when the user logs out. The use of an on-demand block
device encryption scheme (DM_Crypt) ensures that a user’s entire virtual volume does
not need to be decrypted when a user logs in, and encrypted when the user logs out.

48

Blocks in the virtual volume are decrypted and encrypted only when they are read or
modified, minimizing the impact of these operations on the performance of terminals.

Virtual volumes are encrypted using the AES-256 symmetric cipher on a randomly-
generated key, KUserHomeDir. This key is then replicated, one copy is encrypted with the
franchiser’s public key to produce KUserHomeDirBackup and stored in the kiosk controller’s
/root directory and another copy is encrypted with a key derived from the user’s login
password to produce KUser such that KUser = EPassword [KUserHomeDir].

The encrypted key KUser is stored on the kiosk controller, alongside the user’s en-
crypted virtual volume in the /home directory. (The /home directory on the kiosk con-
troller is exported over NFS to terminals.) When a user logs in, the terminal first
automatically decrypts KUser using the user’s password to obtain KUserHomeDir and then
uses this key to decrypt the user’s encrypted virtual volume.

In the event users forget their passwords, they can contact the local franchiser and
ask to have their passwords reset. The franchiser, using the Secure Remote Shell, can
then reset the user’s password and create a new KUser by using the franchiser’s pri-
vate key to decrypt the appropriate KUserHomeDirBackup key retrieved from the controller’s
/root directory. When a user runs out of space in his/her home directory, we create
a new, larger volume keyed with the same KUserHomeDir and sync the two volumes. I
note that alternative schemes, such as those used by telecom service providers to re-
place users’ lost SIM cards via telecom franchisees could be used instead of the scheme
described above.

7.5 Infrastructure

The implementation of my security architecture on infrastructure components is sim-
ilar to that on rural kiosks, as described above. All infrastructure components (i.e.,
mobile routers, kiosk gateways and kiosk proxy servers) feature digitally signed soft-
ware updates, authenticated remote shell commands and tamper-evident system logs,
as described in Section 7.4. Kiosk gateways and proxy servers additionally make use
of the Secure Directory API for secure communication over the rural public computing
network with kiosk controllers and mobile devices.

7.6 Issues Encountered

In this section, I briefly discuss some of the more interesting issues I encountered while
implementing my security architecture.

49

7.6.1 Public/Private Key pairs

Contrary to the description in Section 7.3, entities in my implementation only possess
a single public/private key pair, which in effect means they decrypt and sign data with
the same private key – a potential security risk. This implementation decision affects
entities in my model differently: (a) kiosk controllers, mobile routers and gateways
only use their private keys to sign data, (b) proxy servers use their private keys for
both signing and decryption, with both of these operations being implemented by the
Secure Directory API (described in Section 7.4.4) which only produces signatures on
hashed input data, (c) kiosk users, handheld users and ASPs use their private keys for
both signing and decryption also through the Secure Directory API under the same con-
ditions described earlier and (d), both franchisers and franchisees only use their private
keys for signing data. Initially, this decision was made to reduce bandwidth usage costs
in an implementation of my security architecture for the KioskNet platform [10], which
uses an SMS (Short Message Service) data channel over cellular networks to complete
user registration between kiosk controllers and proxy servers [22]. Public key certifi-
cates corresponding to signing keys could be attached to outgoing messages, however,
with only the certificates corresponding to users’ encryption keys being placed in the
White Pages database. This approach would increase message sizes but has the advan-
tage of being consistent with the current security architecture. This change (the use of
two key pairs) will be made in the production version of my implementation.

7.6.2 Encrypted User Home Directories

In Section 7.4.5, I describe how I implement per-user encrypted home directories. As
part of this implementation, I had to choose between either (a) mounting users’ en-
crypted virtual volumes at the kiosk controller and exporting these via NFS, over an
SSH tunnel, to kiosk terminals or (b), exporting the encrypted virtual volumes via NFS,
without using an SSH tunnel, for mounting and decryption at kiosk terminals. My
decision was to go with the latter option, as this reduces the computational load on
kiosk controllers, distributing it instead to the recycled PCs serving as kiosk terminals.
Chapter 8 includes a performance analysis of encrypted home directories implemented
in this manner, demonstrating the feasibility of this approach.

7.6.3 White Pages on Kiosk Terminals

Because the encryption of outgoing application messages produced at kiosk terminals
requires the public keys of recipients, it is necessary to provide access to the White

50

Pages database on kiosk terminals. Implementation options in this case were to either
(a) place the White Pages database on the kiosk controller and provide kiosks terminals
with read-only access to it over an SSH tunnel or (b), replicate the White Pages database
on each kiosk terminal when a user logs in. Despite the additional load on kiosk
controllers, the former option was selected to ensure kiosk terminals always have access
to the most recent White Pages records available on the kiosk controller. (The White
Pages database may be updated after a user logs into a kiosk terminal.)

51

Chapter 8

Performance Evaluation

In this chapter, I present a performance evaluation of my implementation with respect
to its impact on users’ experience and the increased load on kiosks and infrastructure
components due to the added computational requirements imposed by my security
implementation.

8.1 Typical Hardware setup

My experimental setup consists of a 1.2GHz x86-based system with 1GB of RAM and
a 5400rpm 40GB hard disk as a kiosk controller, connected via 100Mbps Ethernet to a
1.8Ghz Pentium IV-based system with 1GB of RAM as a kiosk terminal.

8.2 Effect on User Experience

I now present an analysis of the impact of my security architecture on the performance
of a rural Internet kiosk with the hardware setup described above.

8.2.1 Creating New User Accounts

As described earlier in Section 5.2.2, user accounts are created on kiosk controllers,
with users’ home directories placed in encrypted virtual volumes. These virtual vol-
umes are created as disk images that must be initialized from one of either /dev/zero
or /dev/urandom, with the latter providing more security as encrypted users’ files writ-
ten to their virtual volumes are harder to distinguish from pseudo-random data than

52

from simple zeros. The performance cost of these two alternatives is shown in Figures
8.1 (log time scale) and 8.2, with the creation of a new user account of size 1GB taking a
little over 20mins with pseudo-random data and approximately 45s with zeros. Exper-
iments were repeated 3 times for the indicated file sizes using the test setup described
earlier in Section 8.1.

 1

 10

 100

 1000

 10000

 0 256 512 768 1024

Pr
oc

es
sin

g
Ti

m
e

(s
, l

og
 s

ca
le

)

Size (MB)

Initialized from /dev/zero
Initialized from /dev/urandom

Figure 8.1: Creating Virtual Volumes (log time scale)

Using /dev/urandom to initialize users’s virtual volumes guards against some crypt-
analytic attacks, particularly where the attacker has physical access to the hard drive
these volumes are stored on. So, although our test setup makes use of /dev/zero to
mimimize the overhead of creating new user accounts, because users’ virtual volumes
are exported over NFS by kiosk controllers, it necessary to initialize these volumes from
pseudorandom data for improved security.

In order to improve performance, an alternative approach to using /dev/urandom
proposed by one of my readers, Prof. Ian Goldberg, is to initialize users’ virtual vol-

53

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 256 512 768 1024

Pr
oc

es
sin

g
Ti

m
e

(s
)

Size (MB)

Initialized from /dev/zero
Initialized from /dev/urandom

Figure 8.2: Creating Virtual Volumes (linear time scale)

54

umes with pseudorandom data generated by an RC4 stream cipher fed by /dev/zero.
Implementation of this optimization is left as future work.

8.2.2 Logging In/Out of Terminals

Typical login times without encrypted home directories were in the range of 0.4s, with
corresponding logout times of around 1.4s. Enabling encrypted home directories added
approximately 100ms to both these times, an additional latency which I believe would
likely go unnoticed. Experiments to measure login and logout delays were repeated
3 times using the test setup described earlier in Section 8.1 with a single user account
that had been allocated 1GB of storage space as a virtual volume.

8.2.3 Sending/Receiving Secure User Data

Figure 8.3 reveals the performance of the Secure Directory API, which as outlined
earlier in Section 5.2.2 is used by users’ applications to securely send and receive data
over KioskNet. Secure outgoing data is first signed and then encrypted using the RSA-
2048 and AES-256-CBC ciphers. Secure incoming data is decrypted, the sender’s public
key certificate chain verified, and the corresponding signature on the data verified.

With the exception of the anomaly in Figure 8.3 for file sizes of 500KB (this warrants
further investigation), I note that processing times increase linearly with file sizes and
that a user would have to wait 560ms for a 1MB message to be signed and encrypted
and 750ms for the same message to be decrypted and authenticated. These differences
in processing times can be attributed to differences in the times required to encryp-
t/decrypt and sign/verify with RSA, as well as the additional time required to validate
the sender’s public key certificate chain attached to incoming messages.

As with previous experiments, experiments used to produce the dataset for Figure
8.3 were repeated 3 times for the indicated file sizes using the test setup described
earlier in Section 8.1.

8.2.4 Reading/Writing to Home Directories

Figures 8.4 and 8.5 show data rates for reading and writing to users’ home directories
over NFS both with and without encryption. Experimental data reveals a drop in
performance when reading files over 800MB in size without encryption, with a similar
drop appearing for files over 250MB in size with encryption. I believe this occurs when

55

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 200 400 600 800 1000

Pr
oc

es
sin

g
Ti

m
e

(m
s)

File Size (KB)

Decrypting and Verifying Signed Data
Signing and Encrypting Data

Figure 8.3: Performance of the Secure Directory API

56

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 500 1000 1500 2000

Da
ta

 R
ea

d
Ra

te
 (M

B/
s)

File Size (MB)

With Encryption
Without Encryption

Figure 8.4: Reading User Data

57

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 500 1000 1500 2000

Da
ta

 W
rit

e
Ra

te
 (M

B/
s)

File Size (MB)

With Encryption
Without Encryption

Figure 8.5: Writing User Data

58

the terminal’s cache maintained in its RAM disk fills and the system begins paging
out to its NFS-mounted swap on the kiosk controller. Further investigation is required
to determine why this performance drop appears earlier when encryption is used. (I
note that in a production system, this NFS-mounted swap space would also have to be
encrypted, further reducing performance.)

As expected, average data read/write rates with encryption are lower than without
encryption, with users experiencing drops in average read and write rates of approx-
imately 2MB/s 1 and 3MB/s, respectively, with typical read and write rates over NFS
without encryption averaging around 10MB/s and 7MB/s, respectively.

As with previous experiments, experiments used to produce the dataset for Fig-
ures 8.4 and 8.5 were repeated 3 times for the indicated file sizes using the test setup
described earlier in Section 8.1.

8.3 Load on Infrastructure Components

Because no additional security-related operations are performed on mobile routers and
gateways as a result of my security architecture, there is no effect on the performance
of these systems. The proxy server, however, is required to function as an end-point
in secure communication between users and legacy servers on the Internet, placing
additional load on this system.

1MB/s = 1 Megabyte (1,048,576 bytes) per second

59

Chapter 9

Conclusion

In this Chapter, I conclude this thesis by summarizing my contributions and briefly
discussing some potential directions for future work.

9.1 Summary and Contributions

In this thesis, I have presented a practical, unobtrusive and easy-to-use security archi-
tecture for rural public computing thats uses a combination of physical and crypto-
graphic mechanisms to protect user data, public computing infrastructure and hand-
held devices that access this infrastructure. Key contributions of this work include (a) a
detailed threat analysis of such systems with a particular focus on rural Internet kiosks
and handheld devices, (b) a security architecture for rural public computing infrastruc-
ture that does not require any specialized hardware, (c) an application-independent
security API for securely sending and receiving data between these systems and the
Internet that can operate over periodically disconnected links, (d) an implementation
of my scheme for rural Internet kiosks and (e) a performance evaluation of this imple-
mentation to demonstrate its feasibility.

60

9.2 Future Work

Potential directions for future work include a feature-complete implementation and
evaluation of my security architecture for handhelds, further strengthening of my secu-
rity architecture to account for untrusted franchisers, a practical technique to establish
trust in kiosk terminals which does not require any specialized hardware and a third-
party review of my implementation and use of cryptographic mechanisms.

61

Appendices

62

Appendix A

Sample X509 Certificates

63

Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 5 (0x5)
 Signature Algorithm: sha1WithRSAEncryption
 Issuer: C=CA, ST=Ontario, L=Waterloo, O=KioskNet, OU=KioskNet Franchisee, CN=Waterloo
 Validity
 Not Before: Jun 26 00:09:35 2008 GMT
 Not After : Jun 26 00:09:35 2009 GMT
 Subject: C=CA, ST=Ontario, L=Waterloo, O=KioskNet, OU=KioskNet User, CN=Kiosk Administrator
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 RSA Public Key: (2048 bit)
 Modulus (2048 bit):
 00:b2:9c:ec:94:2e:70:55:aa:a5:4d:14:b6:02:4d:
 71:0e:fb:fd:9e:9f:43:a8:fb:64:59:b1:68:41:ea:
 ab:48:fa:83:56:39:80:68:35:02:76:b6:cc:c8:45:
 21:28:65:7a:9b:e2:d4:aa:d4:2f:4a:95:cd:97:25:
 05:c7:a6:01:d9:f1:7b:2c:dd:7c:84:14:6f:b9:ca:
 e4:21:09:7d:07:59:1b:79:d0:3b:e8:2c:d2:44:71:
 bf:80:75:12:de:5c:d1:2d:ec:77:2a:d7:6c:85:4d:
 18:14:66:8d:6c:e1:20:5b:b6:be:11:a3:7f:be:9e:
 85:83:f7:5b:66:ce:15:2b:30:ce:ed:f9:c2:47:b3:
 9a:d3:73:7c:6f:59:22:3b:40:f8:2b:4a:1e:54:d6:
 fb:da:a4:0d:8a:2a:ab:63:51:0e:44:51:f6:3f:5f:
 2c:1a:84:4a:69:55:a4:41:0e:56:5b:17:cf:6a:6d:
 67:0d:c3:6d:b3:77:30:c1:69:dd:f9:7f:c1:40:36:
 e8:e1:ae:b7:23:29:38:3d:15:50:a0:18:de:85:45:
 21:20:ce:08:82:61:ba:65:65:c3:c5:d4:fc:c8:76:
 dc:53:e9:a9:1e:e6:73:eb:33:ad:60:3a:1a:37:1c:
 f7:7b:96:ee:c2:dd:93:4d:e9:89:d6:b2:43:72:27:
 9c:2b
 Exponent: 65537 (0x10001)
 X509v3 extensions:
 X509v3 Basic Constraints:
 CA:FALSE
 Netscape Comment:
 "OpenSSL Generated Certificate"
 X509v3 Subject Key Identifier:
 98:C6:54:27:56:98:B9:61:48:2A:F5:B3:3C:6F:C8:8D:5F:61:21:86
 X509v3 Authority Key Identifier:
 keyid:8B:08:9C:3C:4B:2D:69:7A:A1:91:25:1C:84:E6:62:46:00:F9:57:01
 DirName:/C=CA/ST=Ontario/L=Waterloo/O=KioskNet/OU=KioskNet Franchiser/CN=UW Test
 serial:02

 X509v3 Key Usage:
 Digital Signature, Non Repudiation, Key Encipherment
 X509v3 Subject Alternative Name:
 DNS:admin.kiosk.tetherless.uw.kiosknet.org
 Signature Algorithm: sha1WithRSAEncryption
 0f:9c:a3:a8:0e:d2:3a:e1:c8:37:ec:36:cb:d2:c2:1f:99:56:
 68:6c:b6:12:80:4c:90:12:46:9c:cf:79:fa:8e:3e:86:cb:f4:
 fb:d4:04:48:fe:7a:be:c7:b2:af:a2:b3:0a:f3:5e:58:a6:e0:
 6f:02:6f:8f:ef:fd:f2:3c:6e:23:90:f4:f0:f5:41:b4:b1:70:
 65:36:5e:f9:05:93:b7:ac:08:48:88:d5:f7:2a:89:20:98:fa:
 6a:7f:e8:60:1c:72:77:06:10:19:58:e2:1a:6a:89:96:7c:b5:
 02:28:6d:90:0e:32:7e:25:0b:49:87:84:66:4b:77:c7:5a:1d:
 48:9d:37:3e:15:3c:9a:23:cb:4a:a2:40:a4:15:2b:0d:28:b1:
 c3:9a:ff:8d:f5:2a:3b:98:ee:9f:52:3f:d9:fd:06:39:bf:43:
 f7:e8:a1:92:9c:0e:0d:0c:0b:ad:06:5b:f5:4a:b5:41:47:3f:
 1f:51:6d:2e:fe:61:35:86:a4:bd:d2:c0:27:dc:92:6a:ee:4f:
 7a:35:9d:29:07:83:62:86:a2:32:a5:79:c3:9d:5b:33:ce:b4:
 a8:d9:93:09:09:d7:c7:48:31:37:df:e9:a3:f4:00:75:5b:bb:
 cb:29:16:7e:3a:bc:37:8f:0e:60:3d:be:4e:1d:79:21:84:10:
 03:9a:ae:87
-----BEGIN CERTIFICATE-----
MIIErjCCA5agAwIBAgIBBTANBgkqhkiG9w0BAQUFADB2MQswCQYDVQQGEwJDQTEQ
MA4GA1UECBMHT250YXJpbzERMA8GA1UEBxMIV2F0ZXJsb28xETAPBgNVBAoTCEtp
b3NrTmV0MRwwGgYDVQQLExNLaW9za05ldCBGcmFuY2hpc2VlMREwDwYDVQQDEwhX
YXRlcmxvbzAeFw0wODA2MjYwMDA5MzVaFw0wOTA2MjYwMDA5MzVaMHsxCzAJBgNV
BAYTAkNBMRAwDgYDVQQIEwdPbnRhcmlvMREwDwYDVQQHEwhXYXRlcmxvbzERMA8G
A1UEChMIS2lvc2tOZXQxFjAUBgNVBAsTDUtpb3NrTmV0IFVzZXIxHDAaBgNVBAMT
E0tpb3NrIEFkbWluaXN0cmF0b3IwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEK
AoIBAQCynOyULnBVqqVNFLYCTXEO+/2en0Oo+2RZsWhB6qtI+oNWOYBoNQJ2tszI
RSEoZXqb4tSq1C9Klc2XJQXHpgHZ8Xss3XyEFG+5yuQhCX0HWRt50DvoLNJEcb+A
dRLeXNEt7Hcq12yFTRgUZo1s4SBbtr4Ro3++noWD91tmzhUrMM7t+cJHs5rTc3xv
WSI7QPgrSh5U1vvapA2KKqtjUQ5EUfY/XywahEppVaRBDlZbF89qbWcNw22zdzDB
ad35f8FANujhrrcjKTg9FVCgGN6FRSEgzgiCYbplZcPF1PzIdtxT6ake5nPrM61g
Oho3HPd7lu7C3ZNN6YnWskNyJ5wrAgMBAAGjggFAMIIBPDAJBgNVHRMEAjAAMC4G
CWCGSAGG+EIBDQQhFh8iT3BlblNTTCBHZW5lcmF0ZWQgQ2VydGlmaWNhdGUiMB0G
A1UdDgQWBBSYxlQnVpi5YUgq9bM8b8iNX2EhhjCBnwYDVR0jBIGXMIGUgBSLCJw8
Sy1peqGRJRyE5mJGAPlXAaF5pHcwdTELMAkGA1UEBhMCQ0ExEDAOBgNVBAgTB09u
dGFyaW8xETAPBgNVBAcTCFdhdGVybG9vMREwDwYDVQQKEwhLaW9za05ldDEcMBoG
A1UECxMTS2lvc2tOZXQgRnJhbmNoaXNlcjEQMA4GA1UEAxMHVVcgVGVzdIIBAjAL
BgNVHQ8EBAMCBeAwMQYDVR0RBCowKIImYWRtaW4ua2lvc2sudGV0aGVybGVzcy51
dy5raW9za25ldC5vcmcwDQYJKoZIhvcNAQEFBQADggEBAA+co6gO0jrhyDfsNsvS
wh+ZVmhsthKATJASRpzPefqOPobL9PvUBEj+er7Hsq+iswrzXlim4G8Cb4/v/fI8
biOQ9PD1QbSxcGU2XvkFk7esCEiI1fcqiSCY+mp/6GAccncGEBlY4hpqiZZ8tQIo
bZAOMn4lC0mHhGZLd8daHUidNz4VPJojy0qiQKQVKw0oscOa/431KjuY7p9SP9n9
Bjm/Q/fooZKcDg0MC60GW/VKtUFHPx9RbS7+YTWGpL3SwCfckmruT3o1nSkHg2KG
ojKlecOdWzPOtKjZkwkJ18dIMTff6aP0AHVbu8spFn46vDePDmA9vk4deSGEEAOa
roc=
-----END CERTIFICATE-----

Figure A.1: X509 Certificate for Kiosk Administrator
64

References

[1] ISO/IEC 18004-2006: QR Code 2005 Bar Code Symbology Specification. Interna-
tional Organization for Standardization (ISO), Geneva, Switzerland, August 2006. 31

[2] BlackBerry Enterprise Solution: Security Technical Overview. Technical report,
Research In Motion Limited, 2008. 7, 10

[3] N. Asokan, K. Kostianinen, P. Ginzboorg, J. Ott, and C Luo. Towards Securing
Disruption-Tolerant Networking. Technical Report NRC-TR-2007-007, Nokia Re-
search Center, March 2007. 6

[4] D. Balfanz and E. W. Felten. Hand-Held Computers Can Be Better Smart Cards.
In Proc. of 8th USENIX Security Symposium, August 1999. 4

[5] L. Bauer, S. Garriss, J. M. McCune, M. K. Reiter, J. Rouse, and P. Rutenbar. Device-
enabled authorization in the Grey system. In Proc. of the 8th Information Security
Conference (ISC 2005), September 2005. 7, 9

[6] D. Clarke, B. Gassend, T. Kotwal, M. Burnside, M. van Dijk, S. Devadas, and
R. Rivest. The Untrusted Computer Problem and Camera-Based Authentication.
In Proc. of Int’l Conference on Pervasive Computing (Pervasive 2002), pages 114–124,
August 2002. 6

[7] M. D. Corner and B. D. Noble. Zero-Interaction Authentication. In Proc. of the
8th annual international conference on Mobile computing and Networking, pages 1–11,
2002. 7, 8

[8] S. Farrell, S. Symington, H. Weiss, and P. Lovell. Delay-Tolerant Networking Se-
curity Overview - draft-irtf-dtnrg-sec-overview-04. Internet Draft, February 2008.
6

[9] S. Garriss, R. Cáceres, S. Berger, R. Sailer, L. van Doorn, and Z. Zhang. Towards
Trustworthy Kiosk Computing. In Proc. of 8th IEEE Workshop on Mobile Computing
Systems and Applications (HotMobile’07), February 2007. 4, 31, 40, 42

65

[10] S. Guo, M. H. Falaki, E. A. Oliver, S. Ur Rahman, A. Seth, M. A. Zaharia, U. Ismail,
and S. Keshav. KioskNet: A System for Low-Cost Internet Access For Developing
Regions. Proc. of ICTD, December 2007. 1, 44, 50

[11] P. Gutmann. Plug-and-Play PKI: A PKI your Mother can Use. In Proc. of 12th
USENIX Security Symposium, pages 45–58, August 2003. 26, 34

[12] ICICI Bank’s Microfinance Strategy: A Big Bank thinks Small. http://www.
microfinancegateway.org/content/article/detail/13446. Accessed August
2008. 1

[13] A. Kate, G. Zaverucha, and U. Hengartner. Anonymity and Security in Delay
Tolerant Networks. In Proc. of 3rd Int’l Conference on Security and Privacy in Commu-
nication Networks (SecureComm 2007), September 2007. 1, 6, 7

[14] S. Kent and R. Atkinson. Security Architecture for the Internet Protocol - RFC
2401. Internet Standard, November 1998. 7

[15] I. Krstíc and S. L. Garfinkel. Bitfrost: the One Laptop per Child Security Model. In
Proc. of 3rd Symposium on Usable Privacy and Security (SOUPS 2007), pages 132–142,
July 2007. 7

[16] R. Kumar and M. L. Best. Impact and Sustainability of E-Government Services in
Developing Countries: Lessons Learned from Tamil Nadu, India. The Information
Society, 22(1):1–12, June 2006. 1

[17] R. Luk, M. Ho, and P. M. Aoki. Asynchronous Remote Medical Consultation for
Ghana. In Proc. of the 26th ACM SIGCHI CHI Conference (CHI 2008), April 2008. 1

[18] M. Lukac, L. Girod, and D. Estrin. Disruption Tolerant Shell. In Proc. of 2006 ACM
SigComm Workshop on Challenged Networks (CHANTS 2006), September 2006. 29

[19] P. MacKenzie and M. K. Reiter. Delegation of cryptographic servers for capture-
resilient devices. In Proc. of the 8th ACM conference on Computer and Communications
Security, pages 10–19, 2001. 7, 8

[20] P. Mackenzie and M. K. Reiter. Networked cryptographic devices reilient to cap-
ture. International Journal of Information Security, 2(1):1–20, November 2003. 7, 8,
9

[21] J. M. McCune, A. Perrig, and M. K. Reiter. Seeing-is-believing: Using Camera
phones for human-verifiable authentication. In Proc. of 2005 IEEE Symposium on
Security and Privacy, May 2005. 33

66

http://www.microfinancegateway.org/content/article/detail/13446
http://www.microfinancegateway.org/content/article/detail/13446

[22] Earl Oliver. Exploiting the short message service as a control channel in challenged
network environments. In Proc. of the third ACM MobiCom Workshop on Challenged
Networks (CHANTS 2008), September 2008. 50

[23] OpenSSL. http://www.openssl.org/. Accessed June 2008. 44

[24] A. Oprea, D. Balfanz, G. Durfee, and D. K. Smetters. Securing a Remote Terminal
Application with a Mobile Trusted Device. In Proc. of 20th Annual Computer Security
Applications Conference (ACSAC 2004), pages 438–447, December 2004. 6

[25] A. Pentland, R. Fletcher, and A. Hasson. DakNet: Rethinking Connectivity in
Developing Nations. IEEE Computer, 37(1), January 2004. 1

[26] R. Pike, S. Presotto, D. Dorward, B. Flandrena, K. Thompson, H. Trickey, and
P. Winterbottom. Plan 9 from Bell Labs. Computing Systems, 8(3):221–254, 1995. 27,
47

[27] RIM BlackBerry. http://www.blackberry.com. Accessed June 2008. 7, 9

[28] W. Scheirer and M. Chuah. DTN Security Features Technical Report. Technical re-
port, Department of Computer Science and Engineering, Lehigh University, April
2006. 7

[29] D. Scott, R. Sharp, A. Madhavapeddy, and E. Upton. Using visual tags to bypass
Bluetooth device discovery. Mobile Computing and Communications Review, 1(2),
January 2005. 33

[30] K. Scott and S. Burleigh. Bundle Protocol Specification - draft-irtf-dtnrg-bundle-
spec-03. Internet Draft, January 2006. 7

[31] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla. Pioneer:
Verifying Code Integrity and Enforcing Untampered Code Execution on Legacy
Systems. In Proc. of 20th ACM Symposium on Operating Systems Principles (SOSP
2005), pages 1–15, October 2005. 4, 5

[32] A. Seth and S. Keshav. Practical Security for Disconnected Nodes. In Proc. of 1st
Workshop on Secure Network Protocols (NPSec 2005), pages 31–36, 2005. 1, 6, 7

[33] A. Seth, D. Kroeker, M. Zaharia, S. Guo, and S. Keshav. Low-cost Communication
for Rural Internet Kiosks Using Mechanical Backhaul. In Proc. of 12th International
Conference on Mobile Computing and Networking (MOBICOM 2006), pages 334–345,
September 2006. 1

67

http://www.openssl.org/
http://www.blackberry.com

[34] A. Seth, S. S. Bhattacharyya, and S. S. Keshav. Application Support for Oppor-
tunistic Communication on Multiple Wireless Networks. Manuscript, 2005. 44

[35] R. Sharp, J. Scott, and A. R. Beresford. Secure Mobile Computing via Public Ter-
minals. In Proc. of 4th Int’l Conference on Pervasive Computing (Pervasive 2006), pages
238–253, May 2006. 6

[36] D. K. Smetters, D. Balfanz, G. Durfee, T. Smith, and K. Lee. Instant Matchmaking:
Simple and Secure Integrated Ubiquitous Computing Environments. In Proc. of 8th
International Conference on Ubiquitous Computing (UbiComp 2006), September 2006.
7, 9

[37] A. Surie, A. Perrig, M. Satyanarayanan, and D. Farber. Rapid Trust Establishment
for Transient Use of Unmanaged Hardware. Technical Report CMU-CS-06-176,
School of Computer Science, Carnegie Mellon University, December 2006. 4, 5, 40

[38] S. Symington, S. Farrell, H. Weiss, and P. Lovell. Bundle Security Protocol Spec-
ification - draft-irtf-dtnrg-bundle-security-05. Internet Draft, February 2008. 6,
7

[39] Telecentre.org. http://www.telecentre.org. Accessed June 2008. 1

[40] Tetherless Computing Group. http://blizzard.cs.uwaterloo.ca/tetherless.
Accessed June 2008. 44

[41] The Legion of the Bouncy Castle. http://www.bouncycastle.org/. Accessed June
2008. 44, 47

[42] Trusted Computing Group. https://www.trustedcomputinggroup.org. Accessed
August 2008. 5

[43] United Villages. http://www.unitedvillages.com. Accessed June 2008. 1

[44] Voltage Security, Inc. http://www.voltage.com. Accessed June 2008. 7

68

http://www.telecentre.org
http://blizzard.cs.uwaterloo.ca/tetherless
http://www.bouncycastle.org/
https://www.trustedcomputinggroup.org
http://www.unitedvillages.com
http://www.voltage.com

	List of Figures
	Introduction
	Background
	Thesis Scope
	Thesis Organization

	Related Work
	Trusted Public Computing
	Security in Delay Tolerant Networks
	Security for Mobile Devices

	System Model
	Overview
	Concerned Entities
	Infrastructure
	Rural Kiosks
	Handhelds
	Usage Scenarios
	Rural Internet Kiosks
	Handhelds

	Threat Model
	Security Goals
	Infrastructure and Rural Kiosks
	Handhelds

	Attacker Model
	Attack Vectors
	Threats against Rural Kiosks and Infrastructure
	Threats against Handhelds

	Security Architecture
	Infrastructure
	Rural Kiosk
	User and Operator Security
	Terminal Security
	Digitally signed Software Updates
	Authenticated Remote Shell Commands
	Tamper-evident System Logs

	Handhelds
	User Registration
	Secure Connectivity
	Secure Communication
	Secure Storage

	Security Architecture Usage Scenarios
	Rural Internet Kiosks
	Handhelds

	Security Evaluation
	Rural Kiosks and Infrastructure
	Users
	Franchisees
	Outsiders

	Handhelds
	Users
	Outsiders

	Implementation
	Constraints
	Building Blocks
	KioskNet
	Cryptography Libraries

	Entity Credentials
	Rural Kiosks
	Digitally signed Software Updates
	Authenticated Remote Shell Commands
	Tamper-evident System Logs
	Secure Directory API
	Encrypted User Home Directories

	Infrastructure
	Issues Encountered
	Public/Private Key pairs
	Encrypted User Home Directories
	White Pages on Kiosk Terminals

	Performance Evaluation
	Typical Hardware setup
	Effect on User Experience
	Creating New User Accounts
	Logging In/Out of Terminals
	Sending/Receiving Secure User Data
	Reading/Writing to Home Directories

	Load on Infrastructure Components

	Conclusion
	Summary and Contributions
	Future Work

	Appendices
	Sample X509 Certificates
	References

