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Abstract

Statistical models are often used for the prediction of future random variables. There are two

types of prediction, point prediction and probabilistic prediction. The prediction accuracy is

quantified by performance measures, which are typically based on loss functions. We study

the estimators of these performance measures, the prediction error and performance scores, for

point and probabilistic predictors, respectively. The focus of this thesis is to assess the pre-

diction performance of survival models that analyze censored survival times. To accommodate

censoring, we extend the inverse probability censoring weighting (IPCW) method, thus arbi-

trary loss functions can be handled. We also develop confidence interval procedures for these

performance measures.

We compare model-based, apparent loss based and cross-validation estimators of prediction

error under model misspecification and variable selection, for absolute relative error loss (in

chapter 3) and misclassification error loss (in chapter 4). Simulation results indicate that

cross-validation procedures typically produce reliable point estimates and confidence intervals,

whereas model-based estimates are often sensitive to model misspecification. The methods are

illustrated for two medical contexts in chapter 5. The apparent loss based and cross-validation

estimators of performance scores for probabilistic predictor are discussed and illustrated with

an example in chapter 6. We also make connections for performance.
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Chapter 1

Introduction

Statisticians use models to approximate the relationship between a set of covariates Z and

the variable of interest Y . The two main objectives of model building are to explain and to

predict variable Y , using the covariates Z. Much of the statisticians’ effort has been devoted

to the estimation of model parameters and the construction of confidence intervals for them.

However practitioners and scientists often desire a model that is reasonably easy to construct

and interpret, and predicts well. Thus, the assessment of prediction performance is critical

and has practical relevance. This is especially true for models with prediction as their primary

objective. A good example is fraud detection in credit card transactions.

This thesis deals with the assessment of prediction performance of survival models. Survival

models, also known as failure time models, provide statistical methods for the analysis and

prediction of data when the variable of interest is the time to some event. The time variable Y

is typically subject to censoring, which is the distinguishing and challenging feature of survival

data. This type of data arises naturally from a wide class of settings, most notably in industry

and biomedical sciences. In biomedical research, an important objective of multivariate survival

1



Introduction 2

time modeling is risk and survival time prediction for an individual with given covariates Z.

For example, at the time of diagnosis, cancer patients are often informed of their expected

survival time or survival probabilities at some specific future time. Clinicians themselves often

use the predicted risk of a patient to classify him/her into some risk group and make treatment

decisions. Thus, it is of great interest to assess the prediction accuracy of survival models and

risk group classification.

The evaluation of prediction performance for survival models has been studied by various

authors, e.g. Korn and Simon 1990; van Houwelingen and le Cessie 1990; Henderson 1995;

Graf et al. 1999; Schemper and Henderson 2000; Heagerty et al. 2000; Rosthøj and Keiding

2004; Heagerty and Zheng 2005; Gerds and Schumacher 2006 & 2007; and Uno et al. 2007.

Different frameworks and approaches have been proposed, which are reviewed in the second

chapter. However, model misspecification and variable selection, which are common in practice,

have not been fully addressed. In addition, further development for the treatment of censoring

is needed along with methods for obtaining confidence intervals for prediction error. These

are the problems we study in this thesis. In the next section, we first introduce two types of

predictors, and then discuss the loss function approach for the evaluation of predictors.

1.1 Statistical Prediction

The standard prediction problem arises in the following scenario. We want to make prediction

for the future random variable Y given covariates Z = z. To do so, a sample D = {(yi, zi), i =

1, . . . , n} is randomly selected from the population. Data D is often called the training data.

The data analyst chooses a prediction procedure M and applies it to the training data to

give a predictor for Y . Note that the prediction procedure may include model specification,
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parameter estimation, variable and model selection, and possibly tuning parameter selection,

etc. We want to know how accurately this predictor predicts.

There are two types of predictors, point predictors and probabilistic predictors. A point

predictor Ŷ (Z) = G(Z; θ̂) specifies a value for Y , where θ̂ = θ̂(D) is estimated from the training

data D and G(Z) is a function of covariates Z. A probabilistic predictor F̂p(y|z) = P̂ r(Y ≤
y | z) gives probabilities or prediction intervals for Y . In the aforementioned example, for a

recently diagnosed cancer patient, a point predictor would be the predicted survival time, and

a probabilistic predictor could be the predicted one year survival probability P̂ r(Y > 1 year |
Z = z) = 1 − F̂p(1|z). Note that both types of predictors could be data or expert opinion

based. To assess the accuracy of these two types of predictors, a common approach is to use a

loss function.

It has been noted by some authors (e.g. see Graf et al. 1999) that probabilistic predictors

are more useful than point predictors in many survival settings. Nevertheless, there are reasons

to consider point prediction. Among them are the desire to classify individuals according to

their predicted survival time in some settings; for example, the allocation of donor organs for

transplantation is often based in part on predicted survival times for potential recipients. A

second reason for interest in point predictors is the close relationship between their performance

and measures of explained variation due to a set of covariates, which is reviewed in section 1.1.2.

Our main focus in this thesis is point prediction, but probabilistic prediction is considered in

chapter 6.

Some authors studying survival model prediction do not distinguish between these two types

of predictors. In particular, the probabilistic predictor Ŝp(t|z) = P̂ r(Y > t | z) is considered by

a number of authors (e.g. Schemper and Henderson 2000), and is treated as a point predictor

for the indicator variable Wt = I(Y > t). Wt is termed the survival status at time t; it takes
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value one if the survival time is greater than t and zero otherwise. In this thesis we require that

a proper point predictor have the same support as the variable being predicted, which implies

that Ŵt should only take value 0 or 1, and should not be an arbitrary probability.

1.1.1 Prediction loss and prediction error

A loss function approach is often used to evaluate the accuracy of a point predictor Ŷ . Let

L(Y, Ŷ ) denote the loss incurred when Ŷ is used to predict a random variable Y . A loss function

L(·) usually satisfies the following conditions: it is bounded below by 0 and attains 0 when

correct prediction is made, i.e. Ŷ = Y ; and as the “distance” between Y and Ŷ increases, the

loss function is nondecreasing. Two commonly used loss functions for a continuous variable Y

are

Squared error loss: L(Y, Ŷ ) = (Y − Ŷ )2,

Absolute loss: L(Y, Ŷ ) = |Y − Ŷ |.

For a categorical variable W , we often use

0-1 loss: L(W, Ŵ ) = I(W 6= Ŵ ) = |W − Ŵ |,

where I(·) is the indicator function and Ŵ is also categorical. In specific settings, other suitable

loss functions may be defined, which is the case for survival data. One major challenge for

survival data is to identify appropriate loss functions and there have been many discussions in

the literature (e.g. Korn and Simon 1990, Henderson 1995, Henderson et al. 2001, Rosthøj and

Keiding 2004). We leave the details to chapter 2.
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For a point predictor Ŷ , the prediction error is defined as the expected loss. We call

the predictor that minimizes the prediction error the optimal predictor. It is easy to show

that the optimal predictor for squared error loss is Ŷ = EY (Y ) and for absolute error loss

is Ŷ = median(Y ). The optimal predictor for a binary variable W , under 0-1 loss, is Ŵ =

I(Pr(W = 1) > 0.5). Here we consider the case where the true distribution is known and used.

In practice, we base a point predictor on training data D, as follows. Suppose the true joint

distribution of (Y, Z) is FT (y|z)HZ(z), where FT (y|z) denotes the true conditional distribution

function of Y given Z, and HZ(z) denotes the marginal distribution of Z. Training data

D = {(yi, zi), i = 1, . . . , n} is a random sample from the joint distribution (Y, Z). To model

the data, the analyst applies a modeling procedure M , which specifies some family of models

Fθ(y|z), indexed by parameter θ, for the approximation of FT (y|z). Model Fθ(y|z) can be

semiparametric or nonparametric, though we consider mainly parametric model in this thesis.

Let G(Z; θ) denote the optimal predictor for Y under Fθ(y|z); that is, G(Z; θ) minimizes the

prediction error EFθ
[L(Y, G(Z))] among all functions G(Z). G(Z; θ) is a function of Fθ; for

example, if squared error loss is used, G(Z; θ) = EFθ
(Y |Z) =

∫∞
−∞ ydFθ(y|Z).

The modeling procedure M yields Fθ̂ based on D. Therefore, the optimal predictor is

given by Ŷ (Z) = G(Z; θ̂). We emphasize that the procedure M includes parameter estimation,

variable and model selection, and possibly tuning parameter selection etc., thus θ̂ = θ̂(D) is

usually a complex function of the training data D.

We want to know how well G(Z; θ̂) predicts on an independent test data set Dtest =

{(yj, zj), j = 1, . . . , m}, arising from the same population (Y, Z). The prediction loss L(yj, G(zj; θ̂))

measures the prediction accuracy of the predictor G(Z; θ̂) for a realized Yj given Z = zj. And

the average loss m−1
∑m

j=1[L(yj, G(zj; θ̂))] measures the prediction accuracy of G(Z; θ̂) for the

particular test data set.
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The set up of the prediction problem leads to the following definitions,

π1(M ; FT , z,D) = EY [L(Y, Ŷ (Z)) | Z = z, D] =

∫
L(y, G(z; θ̂))dFT (y|z), (1.1)

π2(M ; FT , z) = EY,D[L(Y, Ŷ (Z)) | Z = z] = ED[π1(M ; FT , z)], (1.2)

π3(M ; FT , HZ) = EY,D,Z [L(Y, Ŷ (Z))] = EZ [π2(M ; FT , Z)], (1.3)

where Y ∼ FT for Z = z, and is independent of training data D and therefore Ŷ (Z). Here

π1(M ; FT , z) measures the prediction accuracy of the procedure M given the training data D

and that Z = z. Taking the expectation of (1.1) with respect to D, i.e. allowing training data to

vary, we obtain the expected loss (1.2) that measures the performance of the procedure M under

FT for Z = z. This expectation is typically complex since θ̂(D) is a complex function of D,

as we discussed previously. Therefore, π2(M ; FT , z) generally has to be evaluated numerically,

even when FT is known. Finally we take expectation of (1.2) over the distribution of Z to

give (1.3). Since HZ is typically unknown, we frequently estimate the prediction error for the

empirical Z distribution H̃Z , based on (z1, . . . , zn) in D, that is,

π3(M ; FT , H̃Z) =
1

n

n∑
i=1

π2(M ; FT , zi). (1.4)

Here we focus on the estimation of π3(M ; FT , HZ), and often consider (1.4), since π3(M ; FT , HZ)

measures the average performance of a prediction procedure M , under the true distribution FT

and HZ . For simplicity, from now on we denote π3(M ; FT , HZ) by π or π(M ; FT ), suppressing

HZ .
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1.1.2 Explained variation and prediction power

Marginal prediction error

The prediction error π of a procedure M is a positive number. It is often useful to compare π

with the prediction error of a model F0(y) not using the covariates Z. This type of model is

known as marginal model or null model. Let Ŷ0 denote the optimal predictor of Y based on

F0(y), that is, Ŷ0 minimizes the marginal prediction error,

EY [L(Y, Ŷ0)] ≤ EY [L(Y, Ŷ )]

for all Ŷ . Let π0 denote the marginal prediction error EY [L(Y, Ŷ0)] . The ratio π/π0 indicates

how much prediction error is reduced when the covariates Z and the prediction procedure M

are used for predicting Y .

Typically, the optimal marginal point predictor Ŷ0 is a simple function of {Yi, i = 1, . . . , n} in

D. For example, ŷ0 =
∑n

i=1 yi/n if we use squared error loss, and ŷ0 = median(yi), i = 1, . . . , n,

for absolute error loss.

Prediction power

Many authors have discussed the concepts of predictive power and explained variation of sur-

vival models (e.g. Korn and Simon 1990; Korn and Simon 1991; Schemper and Stare 1996;

Schemper and Henderson 2000), which involves a comparison of the prediction error for re-

gression models and the marginal prediction error. A common measure of predictive power,

proposed by Korn and Simon (1991), is defined as

U = 1− π

π0

. (1.5)
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U takes values between zero and one. It is close to zero when the denominator and numerator

are close. That is, the marginal prediction error π0 is almost as small as the prediction error

π. In our framework, it suggests that the modeling procedure M and covariates Z do not

have much prediction power for Y . On the other hand, U close to one suggests that π is

much smaller than π0, indicating that the use of procedure M and covariates Z leads to much

improved prediction of Y .

By definition, U depends on FT (y|z), HZ(z), and the parameters indexing them, as well

as the estimated model Fθ̂(y|z). For illustration, we assume that FT belongs to the model

family Fθ, that is, FT = Fθ0 for some θ0 and assume θ0 is known. Then for squared error loss,

Ŷ (Z) = EFθ0
(Y |Z) and Ŷ0 = EFθ0

,HZ
(Y ), so (1.5) becomes

U = 1− EZ [var(Y |Z)]

var(Y )
=

var(EFθ0
(Y |Z))

var(Y )
. (1.6)

Thus, U measures the percentage of variation in Y that is explained by the true model Fθ0 ,

hence the name “explained variation” (Korn and Simon 1991). We use “prediction power” and

“explained variation” interchangeably hereafter.

For a normal linear regression model Y = α + βT Z + ε, ε ∼ N(0, σ2),

Ŷ (Z) = α + βT Z,

Ŷ 0 = E(Y ) = α + βT E(Z),

var(Y |Z) = σ2,

var(Y ) = E[var(Y |Z)] + var[EFθ0
(Y |Z)] = σ2 + βT ΣZβ,

where ΣZ denotes the covariance matrix of Z. In this case, equation (1.6) can be expressed as

U =
βT ΣZβ

σ2 + βT ΣZβ
. (1.7)

We see that U depends on the parameters β and σ2, which index the conditional distribution

of Y given Z, as well as ΣZ , which indexes the distribution of Z.
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1.1.3 Prediction error and prediction power of misspecified model

The true conditional distribution function FT (y|z) is rarely known, neither its functional form

nor the parameter indexing it. We choose some model family Fθ(y|Z) based on the available

data to approximate FT (y|z). If the maximum likelihood method is used for estimating θ,

White (1982) proves that under regularity conditions, θ̂ → θ∗ in probability as sample size

approaches infinity, and θ∗ is the unique solution to the estimating equation of score function

EFT
[S(θ)] = 0. This θ∗ minimizes the Kullback-Leibler divergence D(θ) (White 1982). D(θ)

is a measure of the distance from the true unknown density to the density determined by Fθ

(Kullback and Leibler 1951). It is defined as

D(θ; Z) = E

{
log

[
fT (y|Z)

fθ(y|Z)

]}
=

∫
fT (y|Z) log

[
fT (y|Z)

fθ(y|Z)

]
dy, (1.8)

D(θ) = EHZ
{D(θ; Z)}, (1.9)

where fT (y|z) = dFT (y|z)/dy denotes the true unknown density and fθ(y|z) = dFθ(y|z)/dy

denotes the density function indexed by parameter θ. D(θ) is the average of distance D(θ; Z)

over the distribution of Z. The parameter θ∗ that minimizes D(θ) is sometimes called the least

false parameter and Fθ∗(y|z) is the best approximating model to FT (y|z) in the model family

Fθ.

Let Ŷ ∗(Z) = G(Z; θ∗) denote the optimal point predictor given by the best approximating

model Fθ∗(y|z). The associated prediction error πθ∗ = EFT ,HZ
[L(Y, Ŷ ∗(Z))] measures the pre-

diction error of the best approximating model Fθ∗(y|z) with respect to the true unknown joint

distribution of (Y, Z).

The optimal predictor of marginal model, Ŷ0, remains unchanged, since it is often a simple

function of the marginal distribution of Y . Hence, the prediction power of the misspecified
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model Fθ∗(y|z) with respect to the true data generating mechanism FT (y|z) is

Uθ∗ = 1− πθ∗

π0

. (1.10)

It measures the proportion of the prediction error π0 for the null model that is reduced by

the misspecified model Fθ∗(y|z). The greater Uθ∗ is, the better the predictor G(Z; θ∗) predicts.

Note that πT ≤ πθ∗ , where πT denotes the prediction error of the true model. This inequality

can be verified by the definition of the optimal predictor. Let µ(Z) denote the optimal predictor

for L(Y, Ŷ (Z)) under the true model FT (y|z), then

πT = EFT ,HZ
[L(Y, µ(Z))] ≤ EFT ,HZ

[L(Y, Ŷ (Z))]

for all Ŷ (Z) which include Ŷ ∗(Z). Consequently, the prediction power of model Fθ∗(y|z) is less

than or equal to the prediction power of the true model FT (y|z), i.e. Uθ∗ ≤ UFT
.

1.2 Estimation of Prediction Error and Prediction Power

We now discuss estimation of prediction error π. If “test” data is available for the same set

of Z values, i.e., Dtest = {(y′i, zi), i = 1, . . . , n}, where y′i is a realization from FT (y|zi), the

prediction error π can be estimated via

π̂ = Ltest =
1

n

n∑
i=1

L(y′i, G(zi; θ̂)). (1.11)

When we do not have test data, the following three methods are the main approaches for the

estimation of prediction error (e.g. Korn and Simon 1991, Efron 2004, Rosthøj and Keiding

2004).



Introduction 11

1.2.1 Estimators for prediction error

Model-based method

The first method is based on estimating π2(M ; FT , z) (1.2) and π(M ; FT ) (1.3 or 1.4) by using

an estimator F̂T , from which D and Dtest (given z1, . . . , zn) are assumed to arise.

Suppose F̂T is obtained from D, the model-based estimator π̂m takes the form

π̂m = π(M ; F̂T ) =
1

n

n∑
i=1

EF̂T

∫ ∞

−∞
L(y, G(zi; θ̂))dF̂T (y|zi), (1.12)

note that the expectation with respect to θ̂ = θ̂(D) is taken using F̂T . Again since variable and

model selection are used in determining θ̂(D), (1.12) can not be simplified in general and has

to be evaluated to a desired degree of approximation by simulation.

A crucial question for the model-based approach is what to use for F̂T . There are various

proposals around and the final model Fθ̂ given by the prediction procedure M is often used. A

number of authors have argued that a sensibly chosen and adequately checked model can be

expected to perform well, based on their experiences (e.g. see the discussion of Efron, 2004 and

Rosthøj and Keiding 2004). However, this approach can be problematic, which is discussed in

sections 2.3 & 3.5 and illustrated with the simulation results in chapters 3 & 4.

The fact that π̂m is a function of F̂T makes it convenient under some settings, e.g. in the case

of the survival model where censoring creates difficulties for the use of other estimators, or when

the distribution of Z for the population we want to predict is different from the distribution of

Z in the training data, as we will see later in sections 3.2 and 7.1.
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Apparent loss based method

By definition, prediction error measures the accuracy of a point predictor given by some mod-

eling procedure on new independent data. Such new data is often not available. Alternatively,

we can use the penalty method approach that does not require a new data set. This approach

uses the “apparent loss” evaluated on the training data,

AL =
1

n

n∑
i=1

L(yi, G(zi; θ̂)), (1.13)

and adds a penalty term to it. In (1.13), G(zi; θ̂) is the predicted value for yi of the training

data and yi is also from the training data. On its own, AL tends to underestimate (1.4) because

Yi and G(zi; θ̂) are not independent; they are positively correlated.

Let Ω denote the bias, the difference between prediction error and the expected apparent

loss. That is,

Ω = π − ED(AL). (1.14)

Consider a normal linear model with fixed number of covariates and no model misspecifica-

tion,

Y = βT Z + ε, ε ∼ N(0, σ2).

Then under squared error loss,

π = EY,D(Y − β̂T Z)2

= EY (Y − βT Z)2 + ED(β̂T Z − βT Z)2

= (1 +
p

n
)σ2,

where p is the dimension of Z and n is the sample size. The expected apparent loss, on the



Introduction 13

other hand, is

ED(AL) = ED(Y − β̂T Z)2

= (1− p

n
)σ2.

It turns out that Ω = π − ED(AL) =
2p
n σ2, which can be estimated by plugging in σ̂2. The

linear normal model above is the simplest case and we can get an exact expression for the

penalty term. However, if variable selection is involved and/or another loss function is used, an

exact expression for the penalty term is typically difficult to obtain and can not be estimated

directly.

A number of authors have proposed methods for estimating Ω (e.g., Mallows 1973; Stein

1981; Efron 1983; Efron 1986; Efron and Tibshirani 1997; Ye 1998; Tibshirani and Knight 1999

and Efron 2004), and the estimator given by Efron (2004) is used here. It applies to several

loss functions and a wide class of models, and is given by

Ω =
2

n

n∑
i=1

cov(yi, f(ŷi)), (1.15)

where the functional form of f(·) depends on the loss function used. For the following commonly

used loss functions, Efron (2004) showed

• Squared error loss: f(ŷ) = ŷ − 1/2,

• Binary 0-1 loss (for binary variable Y ): f(ŷ) = −1/2 or 1/2 as µ̂y = P̂ r(Y = 1) is less

than or greater than 1/2,

• Entropy loss (for binary variable Y ): f(ŷ) = log(µ̂y/(1− µ̂y)).

Efron (2004) uses the parametric bootstrap to estimate the covariance between yi and f(ŷi) .
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The size of Ω depends on the modelling procedure, the number of parameters being esti-

mated, sample size, the dispersion of FT , as well as the loss function used, among other factors

(see for example, Ye 1998, Tibshirani and Knight 1999, and Efron 2004). Generally speaking,

the more data adaptive the modelling procedure is, the more the number of parameters being

estimated, and the smaller the sample size is, the bigger the penalty term is.

A penalty adjusted apparent loss estimator of prediction error is then, by (1.14) and (1.15)

π̂A = AL + Ω̂ = AL +
2

n

n∑
i=1

ĉov(yi, f(ŷi)). (1.16)

Cross-validation method

The third approach is to use some form of cross-validation (CV) or data-splitting. It is the

most widely used technique for estimating prediction error.

V -fold cross-validation splits the n training individuals into V sets Sv of approximately

equal sizes nv (v = 1, . . . , V ) and uses the estimate

π̂cv =
1

n

V∑
v=1

∑
i∈Sv

L(yi, G(zi; θ̂(−v))), (1.17)

where θ̂(−v) = θ̂(D/Sv) is obtained by applying the modeling procedure M to the training

data D with Sv omitted. When V equals the sample size n, it is called “leave-one-out” cross-

validation and ŷ(−i) = G(zi; θ̂(−i)) is the predictor of yi based on data

D/(yi, zi) = {(y1, z1), . . . , (yi−1, zi−1), (yi+1, zi+1), . . . , (yn, zn)}

with (yi, zi) excluded from D. Depending on n and V , (1.17) tends to overestimate (1.4)

somewhat, because for i ∈ Sv the predictor is based on a training data set of size n−nv, rather

than n.
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The cross-validation approach enjoys the following properties that popularize its usage:

• It is a nonparametric method where no modelling assumption is made, and therefore it

is robust to model misspecification;

• The estimator π̂cv tends to have low bias;

• It is easy to implement.

Many implementations of statistical methods, e.g. partial least squares, classification and

regression trees, nearest neighbor methods etc., use the cross-validation estimates π̂cv for model

selection. However, Efron (2004) showed that π̂cv tend to be highly variable when compared

to the estimates based on apparent loss π̂A. This trade-off between robustness and efficiency is

common to all estimation problems, and can be investigated in specific settings. In addition,

the performance of cross-validation estimates depends somewhat on the number of folds V , as

does the amount of computation needed.

Other popular estimators of prediction error include the 0.632+ bootstrap estimator, the

Monte Carlo cross-validation estimator, and etc. (e.g. Efron 1983, Efron and Tibshirani 1997,

Molinaro et al. 2005, Tian et al. 2007, Gerds and Schumacher 2007). These estimators are in

many ways similar to π̂A or π̂cv and can be investigated similarly.

1.2.2 Estimators for prediction power

We have reviewed the three common approaches for prediction error estimation. The same

approaches can be used for the estimation of marginal prediction error π0 and hence giving

estimators for prediction power U .
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The model based estimator uses the estimated distribution F̂T , generating both D and Dtest.

It takes the form,

π̂m
0 =

1

n

n∑
i=1

EF̂T ,H̃Z
[L(Yi, Ŷ0)]

where Ŷ0 = EF̂T ,H̃Z
(Y ). The corresponding estimator for explained variation is

Ûm = 1− π̂m

π̂m
0

. (1.18)

The estimator Ûm is called estimated explained variation by Rosthøj and Keiding (2004). It

only depends on the observed values (yi, zi) through F̂T and the empirical distribution of

covariates H̃Z .

The second estimator of the marginal error is based on apparent loss,

π̂A
0 = AL0 + Ω̂0, (1.19)

where AL0 = 1
n

∑n
i=1 L(yi, ŷ0) and Ω̂0 = 2

n
∑n

i=1 ĉov(yi, f(ŷ0)). ŷ0 is the marginal predictor

based on the empirical distribution of Y in the training data D. The explained residual variation

(Korn and Simon 1991) is based on the apparent loss estimators,

Û = 1− AL

AL0

= 1−
∑n

i=1 L(yi, ŷi)∑n
i=1 L(yi, ŷ0)

(1.20)

It can be shown that under appropriate conditions, Û is a consistent estimator of Uθ∗ (1.10)

(Rosthøj and Keiding 2004). But in finite samples, the apparent losses tend to underestimate

prediction error as we showed previously. We modify the estimator (1.20) slightly, replacing

AL and AL0 with the adjusted apparent loss estimator, that is

ÛA = 1− π̂A

π̂A
0

, (1.21)

where π̂A is defined in (1.16) and π̂A
0 is defined in (1.19). ÛA is our second estimator for

prediction power.
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The cross-validation estimators of marginal error and prediction power are given by

π̂cv
0 =

1

n

V∑
v=1

∑
i∈Sv

L(yi, ŷ0(−v)), (1.22)

Û cv = 1− π̂cv

π̂cv
0

. (1.23)

ŷ0(−v) is the marginal predictor based on the empirical distribution of Y in the training data D

with Sv omitted.

1.3 Prediction Error and Survival Analysis

In survival analysis, prediction error and prediction power can be similarly defined. But the

distinguishing feature of survival data, censoring, poses a unique challenge for the estimation

of π with the loss function approach. The actual loss of a censored observation is not known

because the corresponding survival time is unobserved. As a result, it is impossible to estimate

the prediction error with π̂A (1.16) or π̂cv (1.17) unless a device such as imputation or weighting

is used. We will review the current approaches that deal with censoring in the second chapter,

and extend an inverse weighting method to accommodate arbitrary loss functions. The model-

based estimator π̂m can still be obtained since it only involves the expected loss computed under

the model F̂T , and not the actual loss (1.12). Furthermore, we investigate how these estimators

perform under model misspecification and variable selection with simulation studies.

Another challenge for survival data is to identify appropriate loss functions. Quite a few

loss functions have been discussed and studied (e.g. Korn and Simon 1990, Henderson 1995,

Henderson et al. 2001, Rosthøj and Keiding 2004). Henderson (1995) proposed several features

of a desirable loss function for survival data. Some of them are as follows, when Y is a survival

time:
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1. The loss L(Y, Ŷ ) should be bounded above as |Y − Ŷ | increases. Consider the following

scenario: if a subject survived only 1 month, the loss associated with a prediction of 20

years should be little greater than the loss with a prediction of 15 years. Likewise, the

loss associated with a prediction of 1 month in comparison with an observed survival time

of 20 years should be a little greater than the loss with lifetime being 15 years.

2. The bounds on L(Y, Ŷ ) are not necessarily the same for Y > Ŷ and Y < Ŷ .

3. The loss L(Y, Ŷ ) does not have to be symmetric in Y − Ŷ . We may need the flexibility

of treating underestimation and overestimation of survival time differently.

1.4 Thesis Outline

In this chapter, we defined prediction loss, prediction error, the associated concept of predic-

tion power, and the estimation of the above quantities for a prediction procedure M . The

squared error loss and normal linear model are used for illustration of various concepts. In

the later chapters, we develop methods for obtaining estimators and confidence intervals for

measures of prediction performance in survival models. The same methodology can be applied

to obtain measures of prediction performance for marginal model F0(y), which are often used

as references. Our contributions are: (i) we consider different approaches to the estimation of

performance measures, recognizing that model selection and misspecification are ever present

factors; (ii) we extend the inverse probability of censoring weights (IPCW) approach of Gerds

and Schumacher (2006) to deal with arbitrary loss functions; (iii) we recognize that point es-

timates of prediction error are often subject to considerable uncertainty and thus we provide

confidence interval procedures; (iv) we consider both point and probabilistic predictors and

make connections for performance measures of the two types of predictors.
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The remaining chapters are organized as follows. In the second chapter, we study the

estimation of prediction error, including confidence intervals, for survival models. We first de-

fine appropriate loss functions, then we extend the inverse probability of censoring weighting

(IPCW) approach for the censored survival data. In addition, we develop confidence interval

procedures. In chapters 3 and 4, model-based, apparent loss based, and cross-validation es-

timators are compared through simulation studies, taking into account variable selection and

model misspecification. Two loss functions, the absolute error loss and binary 0-1 loss, are

investigated in the third and fourth chapters, respectively. Our results indicate that the model

based methods are susceptible to model misspecification, but the apparent loss based and the

cross-validation methods are robust. In the fifth chapter, we apply the methods to two survival

data sets and give point and confidence interval estimates for prediction error. In the sixth

chapter, we study the performance measures of probabilistic predictors for survival models, and

connect the performance measures for the two types of predictors. Finally in the last chapter,

we discuss the estimation of π when the distribution of covariates changes, and other future

research topics.



Chapter 2

Estimation of Prediction Error in

Survival Models

2.1 Loss Functions for Survival Data

A number of authors have discussed estimation of prediction error for survival models using the

loss function approach (e.g. Korn and Simon 1990, Henderson 1995, Graf et al. 1999, Henderson

et al. 2001, Rosthøj and Keiding 2004). An important question is which loss function to use,

and the answer varies depending on the variable of interest. In survival analysis, the survival

time Y is the response variable. But depending on the objectives of data analysis, other

variables may be defined. In particular, the binary survival status Wt is often of interest, where

Wt = I(Y > t) indicates whether or not an individual is alive at some pre-specified time t.

Clearly, the appropriate loss functions are different for variables Y and Wt, and we discuss

them separately in section 2.1.1 and 2.1.2.

20
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2.1.1 Loss function for survival time Y

In section 1.1.1, we mentioned that squared error loss and absolute error loss are often used for

continuous variables. Between the two, squared error loss has received a great deal of attention

in the literature, largely due to its mathematical convenience. It is easily decomposed and is

differentiable. In addition the variance is defined using squared error loss, which makes the

interpretation of results based on squared error loss easy to relate to. However, the squared

error loss may not be a good choice for survival time Y , since survival distributions commonly

found in practice are asymmetric with long tails to the right, for which the squared error loss

tends to put too much weight on the extremely long-term survivors. For this reason, we prefer

to use the absolute error loss for survival time Y . There are other benefits for choosing absolute

error loss. From a practical point of view, median survival time can be easily obtained from

the survival models and is widely reported in the medical literature. Note that the median

is the optimal predictor for the absolute error loss. Therefore, we choose absolute error loss

L(Y, Ŷ ) = |Y − Ŷm| for our investigation, where Ŷm stands for the predicted median of Y . The

prediction error based on it gives the expected value of the absolute difference between the

future and predicted responses.

In many applications, accurate prediction of Y is thought to be important for subjects that

are expected to die soon but of less interest for the long-term survivors. It is often enough to

know that they will live for a long time. To incorporate this consideration, Korn and Simon

(1990) proposed a bounded loss function. Instead of the unbounded absolute error loss, we

consider

Lτ (Y, Ŷ ) = |(Y ∧ τ)− (Ŷm ∧ τ)|, (2.1)

where Y ∧ τ = min(Y, τ) and τ is a specific time of interest, e.g. it could be the maximum

followup time. With the bounded loss function, a zero loss is incurred if both Y and Ŷm exceed
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τ . Of course, setting τ = ∞ gives the ordinary loss function L(Y, Ŷ ). The loss function Lτ (Y, Ŷ )

(2.1) is bounded between [0, τ ]. This is equivalent to limiting the prediction error calculation

to the range of [0, τ ], which is desirable in survival settings, as outlined in section 1.3. Other

types of bounded loss functions have been studied by Henderson (1995).

In addition to the truncation of loss functions, transformations of Y may be considered.

Consider an observed survival time of 9 years with a prediction of 10 years and a survival

time of 1 year with a prediction of 2 years; the former should result in a smaller loss. The log

transformation is a convenient choice to address this concern. By using log(Y ) instead of Y ,

the prediction error is invariant to the units of time and it gives relative errors that are often of

more interest than absolute errors on the original time scale. We consider both transformation

of Y and the truncation of the loss, the final form of our loss function for Y being

Lτ (Y, Ŷ ) = | log(Y ∧ τ)− log(Ŷm ∧ τ)| (2.2)

Predictors Ŷm are based on a model family Fθ(y|z) that approximates FT (y|z). An optimal

predictor G(Z; θ̂) is obtained from the model Fθ̂(y|z) fitted to training data D. For absolute

error loss on the original scale (2.1) or on the log scale (2.2), we take Ŷm(z) = G(z; θ̂) =

median(Y |z; θ̂), or argmin
y

{Fθ̂(y|z) > 0.5}. Note that since median(log(Y )) = log(median(Y )),

log(Ŷm) = log(G(Z; θ̂)) is the optimal predictor for log(Y ) based on Fθ̂(y|z). This is another

nice feature of the absolute error loss.

2.1.2 Loss function for survival status Wt

In many survival settings, the variable of interest is not necessarily the survival time Y . For

example, it is often of interest to identify patients who are going to suffer a relapse or succumb

to disease early, say within 6 months. This time period is sometimes of special interest because
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of government regulation. In the UK and US, to qualify for hospice care, a patient usually has

to be terminally ill with a life expectancy of 6 months or less. In another setting, cancer patients

are sometimes considered cured if they are alive and cancer free 5 years after treatment. For

both cases, we are interested to know whether patients’ survival status at some future time t

can be successfully predicted with covariates.

A binary variable Wt, known as survival status (e.g. Schemper and Henderson 2000), is

defined as Wt = I(Y > t) for pre-specified t. One possible predictor is the estimated survival

probability Sθ̂(t|Z) = Pr(Y > t | Z; θ̂) = 1 − Fθ̂(t|Z), for which the squared error loss

and absolute error loss have been investigated (Korn and Simon 1990, Graf et al. 1999, and

Schemper and Henderson 2000). However, it is not a proper point predictor for Wt since it does

not have the same support as Wt, as discussed in section 1.1. The predictor that does this is

the predicted survival up to t, Ŵt = I(Sθ̂(t|Z) > 0.5) or equivalently I(Ŷm > t). By restricting

Ŵt to be 0 or 1, we emphasize the ability of the predictor to classify individuals correctly as to

whether they will or will not survive beyond time t.

A 0-1 or “misclassification error” loss function L(Wt, Ŵt) is

L(Wt, Ŵt) = I(Wt 6= Ŵt) = |Wt − Ŵt|, (2.3)

which here is equivalent to squared error loss. Although it is very often impossible to accurately

predict Y for most individuals (e.g. Henderson et al. 2001 and Henderson and Keiding 2005),

it is sometimes possible to more accurately predict who will survive beyond some time t; see

for example, Korn and Simon (1990), Schemper and Henderson (2000), and Rosthøj and

Keiding (2004).
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2.1.3 ROC curve for Wt

When binary Wt is of interest, we essentially have a two-class classification problem. In addition

to the misclassification error, the receiver operating characteristic (ROC) curve has been used

extensively as a performance measure for binary classifiers, especially in medical diagnostic

settings (Pepe 2003).

Consider a simple case where a continuous variable X is the only independent variable and

a higher X value is more indicative of a class 1 subject, who is of interest to identify. Using a

threshold c, subject i is classified into class 1 if and only if Xi > c, i.e. Ŵi = I(Xi > c).

There are two types of misclassification error:

Ŵ = 1, but W = 0 (false positive),

Ŵ = 0, but W = 1 (false negative).

The conditional probabilities Pr(Ŵ = 1|W = 0) and Pr(Ŵ = 0|W = 1) are termed false

positive rate (FPR) and false negative rate (FNR), respectively. The true positive rate (TPR)

and true negative rate (TNR) are defined as Pr(Ŵ = 1|W = 1) and Pr(Ŵ = 0|W = 0),

respectively. Denote the false positive and true positive rates at threshold c as FPR(c) and

TPR(c); then the ROC curve plots TPR(c) against FPR(c) as the threshold c moves through

the range of X. As c decreases from ∞ to −∞, the points on the ROC curve go from (0,0) to

(1,1), which allows us to see both false positive and true positive rates for any given c.

A typical ROC curve is shown in Figure 2.1. The closer the ROC curve is to the left and

top borders of the unit square, the better is the variable X at discriminating the two classes.

A perfect test allows a complete separation of the two classes. That is, for some threshold c we

have TPR(c)=1 and FPR(c)=0. The resulting ROC curve is along the left and top borders of
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Figure 2.1: An ROC curve.

the unit square. On the other hand, an uninformative or useless test means that X is unrelated

to W . The corresponding ROC curve is a straight line with unit slope. Note that the marginal

model classifies all subjects into either class 0 or 1, which corresponds to either point (0,0) or

(1,1) on the curve.

Put into the ROC context, the survival probability at time t, S(t|z), takes the role of X.

Classification or prediction rules are of the form

Ŵt = I(S(t|z) > c), (2.4)
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where c ∈ [0, 1]. In section 1.1.1, we showed that the optimal predictor for 0-1 loss is rule

(2.4) with c = 0.5. The 0-1 loss treats the false positive and false negative equally. When the

two types of error incur different costs c0 and c1, it can be shown that the optimal predictor is

(2.4) with c = c0
c0 + c1

. The ROC curve conveniently displays the entire set of possible c values

in one graph. This is a good idea especially when we may not wish to focus completely on a

single loss function.

A summary measure for ROC curves is the area under curve (AUC), which has a probability

interpretation. That is,

AUC = Pr(S(t|zi) > S(t|zj) | Ti > t, Tj ≤ t),

where the ith individual is randomly selected from class 1 and the jth individual is from class 0.

However, this probability interpretation of AUC is not that useful because it is a conditional

probability. Copas (1999) showed that the AUC is not a good measure for judging the usefulness

of S(t|z) when the two classes are highly unbalanced. This will be the case if we are interested

in early failures which are only a small fraction of the population.

The ROC curve and the associated AUC statistic are often used to compare two or more

classification models. But as Adams and Hand (1999) pointed out, only in the case that one

classifier dominates another will the AUC be universally valid in a comparison of classification

models. In reality, two competing classification methods may yield ROC curves that cross each

other. If that happens, one classification model is better for some values of the cost ratio and

the other model will be better for other values.

In the context of survival analysis, we use models to predict the survival probabilities Sθ̂(t|z).

ROC curve compares the ranking of these survival probabilities with the true survival status and

shows how well the survival model identifies the class of interest. It may be more informative
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than the misclassification error under specific settings. For example, when t is small, only a

small proportion of the population fails, and the marginal model classifies everyone into the

survived category and results in a small misclassification error. The regression model may not

improve the misclassification error much but may be able to correctly identify individuals with

high risk of failure at t, and that could be visualized with the ROC curve.

2.2 Estimation of Prediction Error in the Presence of

Censoring

Survival data is known for the censoring of survival time Y . Let Yi denote the survival time

and Ci denote a potential censoring time for the ith individual. The data observed on n

independent individuals is D = {(Ti, δi, Zi), i = 1, . . . , n}, where Ti = min(Yi, Ci) is the right

censored survival time and δi = I(Yi ≤ Ci) is the censoring indicator (e.g. Lawless 2003).

When δi = 1, Yi is observed. When δi = 0, Yi is censored, all we know is that the individual is

still alive at Ci.

Consider the estimator (1.11), which is of the form

π̂ =
1

m

m∑
j=1

L(y′j, ŷj), (2.5)

where ŷj = G(zj; θ̂) and the (y′j, zj) are independent realizations from FT (y|z)HZ(z). However,

we can not use (2.5) if some of the Yj are censored. This is a type of missing data problem.

There are two general approaches to missing data problems: weighting and imputation. Both

methods have been explored in survival settings, for example, by Graf et al. (1999), Schemper

and Henderson (2000), Gerds and Schumacher (2006), and Uno et al. (2007).
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2.2.1 Inverse probability of censoring weighting

Inverse probability weighting for censoring was introduced by Robins and Rotnitzky (1992) and

used by Graf et al. (1999) to deal with censored losses in prediction error estimation. Uno

et al. (2007) used the same weighting method for a different loss function and a different class of

survival models. Both papers assume random censoring where C is completely independent of

Y and Z, and propose estimators for the survival status Wt. Their estimators can be generalized

to the survival time Y , which is given below for illustration of their method.

The inverse probability weighting method assign weights α−1
j for the jth individual whose

survival time yj is observed, where αj = Pr(C ≥ yj) = Sc(yj) is the probability that the jth

individual survived to time yj without being censored. By definition, the weights α−1 ≥ 1 for

uncensored individuals. Censored individuals, on the other hand, receive weights 0. Thus, they

do not contribute to the estimator of prediction error directly. Their contributions are made

through the weights, which are determined by the observed censoring times. The weighted

estimator is of the form

π̂w =
1

m

m∑
j=1

(
δj

αj

L(y′j, ŷj)

)
, (2.6)

where δj is the censoring indicator for the jth individual, αj = Sc(y′j) is the marginal censoring

time distribution for C, and y′j and ŷj are independent. Given that C is completely independent

of Y and Z, EC(π̂w) equals π̂ in (2.5). Under suitable conditions, Rosthøj and Keiding (2004)

proved that π̂w is a consistent estimator of π for (1.3) or (1.4).

The assumption of random censoring is quite restrictive and often not met in practice. Nor-

mally we only want to assume independent censoring, i.e., censoring times C are independent

of survival times Y given Z. Gerds and Schumacher (2006) propose an estimator that can

handle independent censoring for the loss L(Wt, Ŵt) = (Wt − Ŵt)
2.
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Let

Sc(c|z) = Pr(C > c | Z = z) (2.7)

denote the conditional survivor function of the censoring variable C given Z. The IPCW

approach replaces α by an estimate of Sc(c|z) in (2.6) and similar expressions,

π̂w =
1

m

m∑
j=1

(
δj

Ŝc(yj|zj)
L(yj, ŷj)

)
. (2.8)

Note that when we model the censoring distribution Sc(c|z), it may be misspecified, in which

case the estimator Ŝc(c|z) can be biased. This issue is briefly discussed in section 7.2.4. For

now, we assume that Sc(c|z) can be consistently estimated.

We now generalize the Gerds & Schumacher’s IPCW estimator (2.8) to arbitrary loss func-

tions, using the general approach of van der Laan et al. (2002). Our approach is similar to

Gerds & Schumacher’s in the sense that we also use the IPCW, but our method is more general

and (2.8) can be viewed as a special case of our estimator.

Define the binary variable

∆j = I{L(Yj, G(Zj; θ̂)) is known}, (2.9)

and note that ∆j depends on Yj, Zj, Cj and training data D. Let

αj = Pr(∆j = 1 | Yj, Zj, D), (2.10)

and note further that given Yj, Zj and D, the random variable ∆j is a function of censoring

time Cj only. Therefore αj is determined by the conditional censoring distribution Sc(c|z). For

example, if L(Yj, Ŷj) = (Yj − Ŷj)
2 then ∆j = δj = I(Cj ≥ Yj) and αj = Sc(Yj|Zj). If L(Yj, Ŷj)

is the bounded loss function given by (2.1) or (2.2), then

∆j = I(Yj > τ,Cj > τ) + I(Yj ≤ τ, Yj ≤ Cj)
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and

αj = I(Yj > τ)Sc(τ |Zj) + I(Yj ≤ τ)Sc(Yj|Zj).

Similarly, for L(Wt,j, Ŵt,j),

∆j = I(Wt,j = 1) + I(Wt,j = 0, δi = 1)

= I(Yj > t, Cj > t) + I(Yj ≤ t, Yj ≤ Cj) (2.11)

αj = I(Yj > t)Sc(t|Zj) + I(Yj ≤ t)Sc(Yj|Zj). (2.12)

Our IPCW estimator, for αj > 0 and arbitrary loss function L(Y, Ŷ ) is given by

π̂w(M ; FT ) =
1

m

m∑
j=1

∆j

α̂j

L(yj, ŷj). (2.13)

where α̂j is an estimate of Sc(·|z) at a suitable time. The motivation for (2.13) is

E

[
1

m

m∑
j=1

∆j

αj

L(Yj, Ŷj)

]
= E

[
1

m

m∑
j=1

L(Yj, Ŷj)

]
,

where the expectation on the left is with respect to Y, Z, C and D, and the one on the right

is with respect to Y, Z and D. The above equation holds because

EY,Z,C,D

[
1

m

m∑
j=1

∆j

αj

L(Yj, Ŷj)

]
= EY,Z,D

[
EC|Y,Z,Gθ̂

[
1

m

m∑
j=1

∆j

αj

L(Yj, Ŷj)]

]
,

where αj = E(∆j|Yj, Zj, D) by the definition of αj (2.10). Note that Yj has to be a time for

which Sc(Yj|zj) > 0 holds almost surely.

IPCW estimator of π̂A and π̂cv

We now apply (2.13) to the cases of adjusted apparent loss estimator (1.16) and CV estimator

(1.17) for survival time Y , and obtain

π̂A =
1

n

n∑
i=1

∆i

α̂i

L(yi, ŷi) + Ω̂ (2.14)
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and

π̂cv =
1

n

V∑
v=1

∑
i∈Sv

∆i

α̂i

L(yi, ŷi(−v)). (2.15)

The consistency of the IPCW estimators (2.14) and (2.15) depends on whether Ŝc(c|z) is a

consistent estimator of the conditional censoring distribution Pr(C > c | z). Similar IPCW

estimators for prediction error of marginal model can be obtained.

ROC curve estimation using IPCW approach

In section 2.1.3, we discussed using the ROC curve to evaluate the performance of a classification

rule for survival status Wt. Define Ŵt = I(S(t|z) > c) as in (2.4), the true positive and false

positive rates at c are then given by

TPR(c) = Pr(Ŵt = 1 | Wt = 1) =
Pr(S(t|z) > c, Y > t)

Pr(Y > t)
, (2.16)

FPR(c) = Pr(Ŵt = 1 | Wt = 0) =
Pr(S(t|z) > c, Y ≤ t)

Pr(Y ≤ t)
, (2.17)

for c ∈ (0, 1). When some of the Wt are censored, the ROC curve can not be estimated

directly. Heagerty et al. (2000) discussed two estimation methods for (2.16) and (2.17). The

first method uses the Bayes theorem and the Kaplan-Meier estimator to give P̂ r(Y > t) and

P̂ r(Sθ̂(t|z) > c, Y > t). However, it is shown that the ROC curve estimated by this method

may not be monotonic. The second method uses a nearest neighbor kernel method for the

estimation of the bivariate function, Pr(Sθ̂(t|z) > c, Y > t) (Akritas 1994). It can ensure the

monotonicity of the estimated ROC curve and has been used by several authors (e.g. Li and

Gui 2004 and Guo et al. 2006).

Here we show that the (2.16) and (2.17) can be estimated using the IPCW approach and

the monotonicity of the resulting ROC curve is also guaranteed.
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Consider the numerator of (2.16) Pr(S(t|z) > c, Y > t), which normally can be estimated

by n−1
∑n

i=1 I(Yi > t, Sθ̂(t|zi) > c). When censoring is present, we use instead

P̂ r(S(t|z) > c, Y > t) =
1

n

n∑
i=1

∆i

α̂i

I(Yi > t, Sθ̂(t|zi) > c), (2.18)

for c ∈ (0, 1) and where ∆i (2.11) and αi (2.12) are defined for L(Wt, Ŵt). Other probabilities

such as Pr(Y > t), Pr(S(t|z) > c, Y ≤ t) and Pr(Y ≤ t) can be estimated the same way.

The monotonicity is guaranteed by noting that as c decreases, the right hand side of (2.18),

n−1
∑n

i=1
∆i
α̂i

I(Yi > t, Sθ̂(t|zi) > c), is nondecreasing, because the weights ∆i/α̂i are non-

negative.

2.2.2 Imputation

Imputation is also used for the estimation of prediction error in survival data. Schemper and

Henderson (2000) consider the survival status Wt and impute the censored loss with its expected

value, which is determined by the estimated regression model, conditional on the censoring time

C. Their prediction error estimator is given by averaging the available losses and the expected

conditional losses, that is,

π̂sh
t =

1

n

n∑
i=1

(
∆iL(wi,t, ŵi,t) + (1−∆i)Eθ̂[L(Wi,t, Ŵi,t)|Y > ci, Z = zi]

)
.

Note that this estimator is a sum of both model based and non-model based terms.

Robins and his coworkers (e.g. Robins and Rotnitzky 1992, van der Laan et al. 2002) have

shown that the weighting method has a number of advantages over the imputation method in

dealing with missing data problems. Our simulation results in chapter 3 and 4 also suggest

that the model-based terms could be seriously biased when the model is misspecified.
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2.3 Probability Limits of Prediction Error Estimators

It is useful to consider what an estimator of prediction error converges to in probability when

the size n of the training data sample becomes arbitrarily large. To do this, we assume that a

well-defined prediction procedure M produces an estimate θ̂n(D) and a corresponding model

Fθ̂n
that gives predictor G(Z; θ̂n). This procedure would include, for example, the specification

of model family Fθ and rules for the selection of covariates or tuning parameters. In letting

n become large, we assume that covariate values z1, . . . , zn in D are generated independently

from a distribution HZ and the corresponding yi are generated independently from FT (y|zi), i =

1, . . . , n.

Authors such as Rosthøj and Keiding (2004), Gerds and Schumacher (2006), and Tian et al.

(2007) provide certain analytical results. All the authors assume that estimates θ̂ are of fixed

dimension and, in some cases, that the true distribution FT is a member of the parametric

family Fθ used to obtain the predictor. For differentiable loss functions and FT ∈ Fθ, Rosthøj

and Keiding (2004) showed the weighted estimator π̂w (2.6) by Graf et al. (1999) and the

estimator π̂sh by Schemper and Henderson (2000) are consistent estimators of prediction error

(1.3). Under the misspecified survival model, i.e. FT does not belong to Fθ, the estimator

of Graf et al. is still consistent while the estimator of Schemper and Henderson is not. Tian

et al. (2007) studied the absolute error loss and proved that the prediction error can be

consistently estimated by apparent loss and V-fold cross-validation loss, under the condition

that the regression coefficients converge to a limit and other regularity conditions. In Gerds

and Schumacher (2006), the uniform consistency of the IPCW estimator (2.8) is established

for a specific loss function L(Wt, Sθ̂(t|z)) = (Wt − Sθ̂(t|z))2, under the assumption that the

censoring distribution is correctly specified.
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A rigorous development for the consistency of our IPCW estimator (2.13) would require

a careful specification of the prediction rules. Here we provide a heuristic discussion only.

This can, however, be checked by simulation and compared with finite sample properties. As

in Rosthøj and Keiding (2004), we assume conditions on the training data and family Fθ of

models so that θ̂n converges in probability to a limit θ∗ as n →∞. The model-based estimator

(1.12) will then, under suitable conditions like those assumed by Rosthøj and Keiding, converge

to π(M ; Fθ∗). If Fθ∗ = FT then (1.12) estimates the “true” prediction error of the procedure

and is a consistent estimator of π(M ; FT ). Of course, no model is true in practice and one

hopes that a sensible procedure will give a well-specified model which produces a prediction

error estimate that is not too biased.

The AL estimator (1.13) and (1.16) and CV estimator (1.17) do converge in probability

to π(M ; FT ), the true prediction error for the procedure in question. Once again, this can be

shown under conditions similar to those in Rosthøj and Keiding (2004). Because of censoring,

we can not use (1.16) and (1.17), but consider instead the IPCW versions (2.14) and (2.15).

To establish that they converge in probability to π(M ; FT ), we require a consistent estimator

Ŝc(c|z) on which to base the weight α̂i in (2.14) and (2.15). Under suitable conditions we

can then show that n−1
∑n

i=1 ξiL(Yi, G(Zi; θ̂n)) with ξi equal to each of 1, ∆i/αi and ∆i/α̂i,

all converge to the same probability limit, which is π(M ; FT ). Misspecification of Sc(c|z) is

discussed briefly in section 7.2.4.

In practice, there is often a subjective element to model specification and the selection of

a predictor and so estimates of prediction error must be interpreted cautiously. In chapters 3

and 4, we carry out simulation studies with a fixed rule for variable selection and are able to

provide support for the limits stated above.
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2.4 Construction of Confidence Intervals

Estimates of prediction error are usually subject to considerable uncertainty. For example,

consider the case of squared error loss, where the optimal predictor is µ(Z) = EFT
(Y |Z). For

a predictor G(Z; θ̂) = µ̂(Z) given by procedure M , we have

π(M ; FT ) = E{[Y − µ̂(Z)]2}

= EZ{var(Y |Z) + var[µ̂(Z)] + [µ∗(Z)− µ(Z)]2},

where µ∗(Z) = EFT
[µ̂(Z)]. To estimate π we have to estimate variances, and it is well-known

that sample sizes must be reasonably large to do this precisely. Other loss functions are also

based on measures of variation, and a similar situation holds. Nonetheless, there has been

little discussion of confidence interval estimation, with Uno et al. (2007) being a recent ex-

ception. Rosthøj and Keiding (2004) acknowledged that they were unable to approximate the

variance of the prediction error estimators well using the analytical approach; and there was

no variable selection in their modelling procedure. Uno et al. (2007) also noted the difficulty

of obtaining variance estimates, and they used a perturbation-resampling procedure to give an

approximation to the variance estimate; their results were based on fixed models as well.

We propose to use bootstrap procedures to give confidence intervals for prediction error (1.3)

and (1.4). The distributions of the prediction error estimators π̂m (1.12), π̂A (2.14) and π̂cv

(2.15) depend on the sampling variability of the training data D, and our confidence interval

procedures are based on the generation of B pseudo training samples D∗
b (b = 1, . . . , B) by

using either parametric or nonparametric bootstrap sampling.

Assume random censoring and suppose the parametric bootstrap is used for obtaining D∗
b .

We use the following procedure to approximate the distribution of π̂m (1.12), which is used

later for the construction of confidence intervals for π.
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1. Apply the prediction procedure M to D, giving the estimated model Fθ̂(y|z); obtain the

Kaplan-Meier estimate Ŝc for the survivor function of C.

2. Generate the survival times Y ∗
b = {y∗1, . . . , y∗n} from Fθ̂ for {z1, . . . , zn}, and the cen-

soring times C∗
b = {c∗1, . . . , c∗n} from Ŝc. Let t∗i = min(y∗i , c

∗
i ), which then gives D∗

b =

{(t∗i , δ∗i , zi), i = 1, . . . , n}.

3. Apply the same model selection procedure to D∗
b , which gives an estimated model Fθ̂b

.

Estimate the survivor function Ŝc
b from D∗

b with the Kaplan-Meier method.

4. Repeat step 2, replacing Fθ̂ and Ŝc with Fθ̂b
and Ŝc

b to produce D∗
bk; in addition, generate

an independent set of survival times Y ∗
bk = {y∗bki , i = 1, . . . , n} from Fθ̂b

for {z1, . . . , zn}.
The set Y ∗

bk is used for assessing the average prediction loss in step 5.

5. Apply the prediction procedure to D∗
bk, which gives predictor ŷ∗bki = G(zi; θ̂∗bk). Suppose

the loss function is Lτ (Yi, Ŷi), then the average prediction loss is

PLbk =
1

n

n∑
i=1

Lτ (y∗bki , ŷ∗bki ),

where y∗bki ∈ Y ∗
bk.

6. Repeat steps 4 and 5 K times, obtaining a bootstrap estimate of prediction error (model-

based) for D∗
b

π̂∗mb =
1

K

K∑

k=1

PLbk.

7. Repeat steps 2 through 6 B times, giving bootstrap estimates {π̂∗mb , b = 1, . . . , B}, which

approximate the distribution of π̂m and are used for the construction of confidence interval

for π, as discussed later.
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Figure 2.2: An illustration for the point and variance estimation of π̂m using parametric boot-

strap procedure.

The point estimate π̂m is obtained following the above simulation procedure steps 3, 4, 5 and

6, with Fθ̂b
, Ŝc

b , D∗
bk and Y ∗

bk replaced with Fθ̂, Ŝc, D∗
k and Y ∗

k , respectively; see section 3.2 for a

more detailed description. Figure 2.2 gives a graphical representation of the procedure above.

In settings where we want to consider independent censoring, we assume a model family

Sc
θ(c|z) for survivor function Pr(C > c | Z = z) for censoring variable C. Then instead of the

Kaplan-Meier estimates Ŝc and Ŝc
b , Sc(c|z; θ̂) fitted to D and Sc

b(c|z; θ̂b) fitted to D∗
b are used

to generate the censoring times in steps 2 and 4, respectively. When nonparametric bootstrap

is used instead of parametric bootstrap, D∗
b in step 2 consists of selecting n items from the

original training data D = {(yi, zi), i = 1, . . . , n} with replacement. Note that we do not need
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to generate censoring times for D∗
b when nonparametric bootstrap is used.

There are two levels of bootstraps in Figure 2.2 for getting the bootstrap estimates π̂∗mb

(b = 1, . . . , B). In the first level, D∗
b could be obtained by either parametric or nonparametric

bootstrap, but the second level has to be a parametric bootstrap in order to produce indepen-

dent D∗
bk and Y ∗

bk. Note that to obtain bootstrap estimates π̂∗Ab or π̂∗cvb for π̂A or π̂cv, only the

first level of bootstrap is needed, which could be either parametric or nonparametric. This is

because these two estimators can be obtained with only the pseudo training data D∗
b .

In the present setting, analytic variance estimates for π̂ are not available, and for computa-

tional reasons we consider simple normal approximations, with the B bootstrap estimates π̂∗b

used to estimate var(π̂) as

v̂ar(π̂) =
1

B − 1

B∑

b=1

(π̂∗b − ¯̂π∗)2, ŝd(π̂) = v̂ar(π̂)1/2

where ¯̂π∗ =
∑B

b=1 π̂∗b/B. We then treat (π̂−π)/ŝd(π̂) as a pivotal quantity that has a standard

normal distribution, producing 1− α confidence intervals

π̂ ± Φ−1(α/2)ŝd(π̂),

where Φ(·) denote the cumulative density function of the standard normal distribution and

Φ−1(α/2) gives the α/2 quantile for the standard normal distribution.

We have also investigated bias corrections, replacing π̂ with 2π̂ − ¯̂π∗. This is because the

bias E(π̂)− π can be estimated by ¯̂π∗ − π̂ (Efron and Tibshirani 1993, section 10.2). Another

idea we experimented with is the alternative use of ψ = log π for the normal approximations,

with confidence intervals based on (ψ̂−ψ)/ŝd(ψ̂). The variance estimate for ψ̂ is obtained from

the bootstrap estimates ψ̂∗b = log π̂∗b . This may be a sensible choice since π̂ is always positive

and its distribution likely has a longer right tail. To see this, consider the χ2 distribution, which
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has a close connection with π̂A in the case of squared error loss under normal linear models. A

log transformation may help normalize the distribution of π̂, especially when sample size n is

not very large. We have also considered the percentile method of obtaining confidence intervals

(Efron and Tibshirani 1993, Section 13.3). Letting π̂
∗(α)
B be the 100 · αth empirical percentile

of the π̂∗b values, the approximated 1− α confidence interval is

[π̂
∗(α/2)
B , π̂

∗(1−α/2)
B ]. (2.19)

Finally, we considered the “basic” percentile method (Davison and Hinkley 1997, Section 5.3),

which is given by [2π̂ − π̂
∗(1−α/2)
B , 2π̂ − π̂

∗(α/2)
B ].

Procedures for obtaining model-based, AL and CV estimators (1.12), (2.14) and (2.15)

and confidence intervals based on them are considered for the cases of absolute error and

binary losses in chapters 3 and 4. Because the model-based estimators require simulation,

confidence intervals based on them require two levels of simulation, as illustrated in Figure 2.2.

Consequently, we typically use B = 100 bootstrap samples for confidence interval estimation,

whereas with the AL and CV estimators a larger number such as 500 is computationally feasible.



Chapter 3

Estimation of Prediction Error with

Absolute Error Loss

3.1 Absolute Error Loss for log Survival Time

In this chapter, we consider the bounded absolute error loss for log(Y ) (2.2) defined in sec-

tion 2.1.1,

Lτ (Y, Ŷ ) = | log(Y ∧ τ)− log(Ŷm ∧ τ)|

where Y represents survival time, τ is a specified time, Y ∧ τ = min(Y, τ), and Ŷm is the

predicted median survival time.

Prediction error estimation with absolute error loss for censored data has received little

attention in the literature. Tian et al. (2007) consider the absolute error loss for a specific class

of generalized linear models, but they do not consider censored data and ignore variation due

to estimation of parameter θ, as well as variable and model selection. We develop point and

40
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confidence interval estimators for prediction error with absolute error loss for survival models

and examine the performance of these estimators through simulation studies in this chapter.

3.2 Estimators of Prediction Error and Confidence In-

tervals

The training data sets D are assumed of the form D = {(Ti, δi, Zi), i = 1, . . . , n}, where

Ti = min(Yi, Ci) and δi = I(Yi ≤ Ci), as defined in section 2.2. As there, it is assumed that

survival time Y and censoring time C are conditionally independent, given covariates Z. We

concentrate on the three point estimators of prediction error and the confidence intervals, as

discussed in sections 1.2.1 and 2.4, combined with the IPCW adjustments given in section 2.2.1.

The model-based estimator π̂m, the estimator based on apparent loss π̂A and the cross-

validation estimator π̂cv are easily used with this bounded absolute relative loss function. Since

an adjustment term Ω for apparent loss is not provided by Efron’s (2004) or others’ results

for the absolute error loss, we take π̂A = AL without an adjustment, and note that some

underestimation of prediction error can be expected when n is not very large.

The model-based estimator π̂m given by (1.12) is obtained via simulation. We first generate

K sets of training data D∗
k = {(t∗ki , δ∗ki , zi), i = 1, . . . , n} and test data Y ∗

k = {(y∗ki , zi), i =

1, . . . , n}, k = 1, . . . , K, from Fθ̂(y|z). θ̂ is estimated under the chosen model family Fθ(y|z)

with data D following variable selection. The values of Z are assumed known and fixed.

Censoring times have to be generated for each D∗
k, and this is done using a model Ŝc(c|z),

estimated from the censoring times in the given data D. Ŝc(c|z) is also used to give weights

to the observed losses when π̂A and π̂cv are used with the IPCW approach. The model-based
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prediction error estimator is then

π̂m =
1

K

K∑

k=1

PLk =
1

K

K∑

k=1

1

n

n∑
i=1

Lτ (y∗ki , Ĝ(zi; θ̂
∗
k)),

where Ĝ(zi; θ̂
∗
k) is the median of Y given Z = zi, based on the model Fθ̂∗k

(y|z) obtained from

D∗
k.

The IPCW version of apparent loss (AL) is, as in (2.14)

ÂL =
1

n

n∑
i=1

∆i

Ŝc(yi ∧ τ |zi)
Lτ (yi, ŷi). (3.1)

As we discussed earlier, a penalty adjustment term is not available so π̂A = ÂL.

The V-fold cross-validation estimator π̂cv is obtained by replacing ŷi in (3.1) with ŷi(−v), as

in (2.15)

π̂cv =
1

n

V∑
v=1

∑
i∈Sv

∆i

Ŝc(yi ∧ τ |zi)
Lτ (yi, ŷi(−v)). (3.2)

For each of the three estimators, the confidence intervals for π are obtained using either

the parametric or nonparametric bootstrap approach as described in section 2.4. Simulation

results for point and confidence interval estimation are given in the next section.

3.3 Simulation Studies

A number of authors have conducted simulation studies for estimation of prediction error for

survival models, mainly for the binary status variable Wt (e.g. Rosthøj and Keiding 2004;

Gerds and Schumacher; 2006 & 2007; Uno et al. 2007). No one has considered confidence

interval estimation except for Uno et al. (2007), and most studies ignore model selection and

misspecification.
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Variable logbun hgb scalc age logpbm logwbc frac protein gender

β -1.85 0.12 -0.16 0.02 -0.4 -0.01 -0.01 -0.01 0.01

sd(variable) 0.31 2.56 1.82 10.3 0.36 0.24 6.01

Table 3.1: Covariates and true regression coefficients of the simulation model (3.3). logbun:

log(Blood Urea Nitrogen); hgb: Hemoglobin; scalc: Serum Calcium; age: Age in years; logpbm:

log(Percentage of Plasma Cells in Bone Marrow); logwbc: log(White Blood Cell Count); frac:

Fractures present at diagnosis 0-no, 1-yes; protein: Proteinuria; gender: 0-male, 1-female. The

empirical standard deviation of the continuous variables are also given.

We investigate point estimators and confidence intervals for the bounded absolute log rela-

tive error loss function ((2.2), page 22) with simulation studies. The effects of model misspec-

ification and variable selection are considered. The simulation settings are based on survival

data for multiple myeloma patients, which has features typical of many situations. The data

set contains 65 survival times, 17 of which are censored, and 16 covariates (Krall et al. 1975).

We simulated data from a 9-variable model:

log Yi = β0 + β1z1i + . . . + β9z9i + εi, i = 1, . . . , n, (3.3)

where εi follows a standard extreme value distribution EV(0, 1) and Yi is measured in months.

Thus the conditional distribution FT (y|z) follows an exponential distribution with mean E(Y |Z =

zi) = exp(β0 + β1z1i + . . . + β9z9i) months. The names of the covariates Z and the true re-

gression coefficients are given in Table 3.1. Of the nine variables, we let three (log(Blood Urea

Nitrogen), Hemoglobin and Serum Calcium) have large effects, two (log(Percentage of Plasma

Cells in Bone Marrow) and age) have moderate effects, and the other four variables have very

small effects. This simulation model is consistent with variables found important in analysis of

the data (Krall et al. 1975; Lawless and Singhal 1978).

The simulated survival times were subjected to random censoring, with censoring times
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generated according to the empirical censoring distribution of the multiple myeloma data set.

To examine the effects of sample size, we conducted simulations with n = 65 and 400. Since

the correlations between the nine variables in the original data set are not high, for the n = 400

case we generate values for each of the nine variables independently, roughly following the

empirical distribution of the corresponding Z in the original data set. For example, the binary

variable “Fractures” is generated from a Bernoulli distribution (Pr(having fractures) = 0.75),

and the continuous variable “log(Blood Urea Nitrogen)” is generated from a univariate normal

distribution with sample mean and standard deviation equal to those in the original data set.

Once generated, these 400 zi values were kept fixed and Yi values were generated from model

(3.3).

In order to make the simulation study feasible, we consider a simple variable selection pro-

cedure where the full model is fitted and then variables with p-values greater than or equal

to 0.2 are removed, and the data refitted to the remaining variable(s), giving the final model.

Two families of models, Weibull and Lognormal, are fitted to the simulated data. The Weibull

corresponds to using (3.3) with εi having an extreme value distribution with location parameter

0 and unknown scale parameter b (see Lawless 2003, page 20), and the Lognormal model corre-

sponds to using (3.3) with εi having a normal distribution with mean 0 and unknown standard

deviation b. In this setting, the Weibull is the “correct” model family and the Lognormal model

is an example of a misspecified model.

3.4 Simulation Results

Simulation results for the point estimators of π(M ; FT ) (1.4) are shown in Table 3.2 for the loss

function (2.2) truncated at τ = 50 months, at which time Ŝ(τ) = 0.21 and Ŝc(τ) = 0.65. To
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keep the computing demands reasonable while still allowing a decent comparison of methods,

we used 500 simulation runs. The model-based estimators π̂m as in (1.12) are estimated with

simulation from the fitted model Fθ̂ following variable selection; here θ̂ = (β̂, b̂) includes the

regression coefficients in (3.3) and the scale parameter in the error distribution. In the present

simulation setting, the estimates π̂m were obtained from K = 50 simulated samples. We use

B = 100 samples to obtain v̂ar(π̂m) and confidence intervals (see section 2.4) in each case.

Larger values of B and K are desirable and can be used for single training samples. However,

the process was repeated 500 times in the simulation study and we chose to use these smaller

values while still obtaining a quite good picture of the method’s properties.

For the estimator π̂A (3.1) there was no optimism adjustment, and 5-fold cross-validation

is used for π̂cv (3.2). We used B = 500 bootstrap samples (both parametric, based on Fθ̂,

and nonparametric) to obtain variance estimates. Confidence intervals for all three methods

were based on treating either π̂ or log(π̂) as normally distributed random variables; we also

considered bias correction as well as the percentile method and the basic percentile method

(see section 2.4). The averages of the prediction error estimates and their standard deviations

are given in Table 3.2, and the coverage proportions of the confidence intervals are given in

Tables 3.3 and 3.4, for sample size 65 and 400, respectively. Simulation data for each estimator

and bootstrap method combination was generated independently. Therefore, a total of 24

independent simulations, one for each row of Table 3.2, were conducted.

We use simulations to obtain the true prediction errors (1.4) for the Weibull and Lognormal

prediction procedures were obtained from simulation. We generated 10,000 pairs of training

and test data sets under the true Weibull model (3.3). The training data was subjected to

random censoring described in section 3.3. Either a Weibull or a Lognormal model was fitted

to the training data and subjected to the variable selection scheme discussed in section 3.3,
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Model fitted Estimator Bootstrap Ave(π̂) Esd(π̂) Ave(ŝd(π̂))

Model based Parametric 0.829 0.115 0.102

π̂m Nonparametric 0.818 0.116 0.113

Weibull Apparent Loss, Parametric 0.780 0.113 0.102

(0.915) π̂A Nonparametric 0.780 0.113 0.113

n = 65 5 fold CV, Parametric 0.946 0.137 0.128

π̂cv Nonparametric 0.945 0.131 0.143

Model based Parametric 0.878 0.125 0.085

π̂m Nonparametric 0.877 0.116 0.109

Lognormal Apparent Loss Parametric 0.810 0.119 0.092

(0.942) π̂A Nonparametric 0.812 0.125 0.119

n = 65 5 fold CV, Parametric 1.001 0.146 0.122

π̂cv Nonparametric 0.971 0.146 0.147

Model based Parametric 0.856 0.040 0.040

π̂m Nonparametric 0.858 0.040 0.041

Weibull Apparent Loss Parametric 0.853 0.046 0.044

(0.869) π̂A Nonparametric 0.851 0.043 0.045

n = 400 5 fold CV Parametric 0.872 0.045 0.045

π̂cv Nonparametric 0.873 0.046 0.046

Model based Parametric 0.898 0.047 0.033

π̂m Nonparametric 0.900 0.050 0.047

Lognormal Apparent Loss Parametric 0.864 0.044 0.037

(0.883) π̂A Nonparametric 0.861 0.045 0.048

n = 400 5 fold CV Parametric 0.887 0.047 0.039

π̂cv Nonparametric 0.888 0.047 0.049

Table 3.2: Simulation results for estimates of prediction error based on absolute error loss (500

simulations). True prediction error estimated from 10,000 simulations is given in the left column

in parenthesis for each model. Ave(π̂) is the average and Esd(π̂) is the standard deviation of

π̂ over the 500 simulation runs; Ave(ŝd(π̂)) is the average of the standard deviation estimates

for π̂ over the 500 simulation runs. “Bootstrap” refers to the way the variance estimates for π̂

are obtained, as described in section 2.4. π̂m, π̂A and π̂cv are given by (1.12), (3.1) and (3.2).
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giving predicted median survival time G(zi; θ̂). Prediction error was assessed with the test

data. The true prediction errors for the two modelling procedures are given in Table 3.2. We

note that the true prediction error is slightly smaller under the true Weibull family, but the

Lognormal family also performs quite well. This is because the estimates of the median of Y

given Z that Lognormal model produces are not too different from those of the Weibull model.

Table 3.2 indicates that, as expected, π̂A underestimates π substantially when n is small

(n = 65) but only a little when n = 400. Conversely, π̂cv overestimates π somewhat when

n = 65 but is very accurate for n = 400. The model-based estimator π̂m is somewhat biased

when n = 65, no matter which family of models is used. However, a more serious problem is

that when the incorrect model (Lognormal) is used, the variance estimated with the parametric

bootstrap procedure is biased downward across all methods, with the problem being most severe

for the model-based estimator π̂m. This is seen by comparing the last column Ave(ŝd(π̂)) of

Table 3.2 with the empirical standard deviation (Esd) column. For example, the empirical

standard deviation of π̂m is 0.125 when the sample size is 65 under the Lognormal model, and

the average of its parametric bootstrap estimates is only 0.085. The underestimation persists

in the large sample case when n = 400; the Esd(π̂m) is 0.047 and the average of its estimates is

0.033. This underestimation produces low confidence interval coverages of π for the misspecified

model, as seen in Table 3.3 and 3.4.

The coverage proportions for confidence intervals at three nominal levels, 0.90, 0.95 and 0.99,

are summarized in Tables 3.3 and 3.4, for the two sample sizes n = 65 and 400, respectively.

A method performs well when the coverage proportions are close to the nominal levels. With

500 simulations, the empirical coverage probability would be expected to fall in the interval

0.93 and 0.97 for 95% confidence intervals, for example. Table 3.3 shows that when the sample

size is small, log-transformation of π̂ improves the coverage of confidence intervals; it is seen

by comparing the “for log(π̂)” column with the “for π̂” column. Similarly we find that the

coverage is better when the bias correction is applied to π̂m and π̂A. Overall, table 3.3 suggests
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Nominal Normal Approximation Bias corrected NA Basic Percentile

Level for π̂ for log(π̂) for π̂ for log(π̂) method method

Weibull 0.90 0.706 0.798 0.818 0.916 0.798 0.500

(Parametric 0.95 0.776 0.880 0.886 0.952 0.852 0.580

Bootstrap, π̂m) 0.99 0.882 0.962 0.952 0.986 0.914 0.714

Weibull 0.90 0.740 0.830 0.824 0.916 0.506 0.480

(Nonparametric 0.95 0.802 0.910 0.876 0.972 0.584 0.568

Bootstrap, π̂m) 0.99 0.898 0.978 0.966 0.998 0.686 0.702

Weibull 0.90 0.576 0.702 0.724 0.826 0.714 0.354

(Parametric 0.95 0.676 0.806 0.786 0.892 0.774 0.486

π̂A) 0.99 0.812 0.938 0.892 0.960 0.856 0.686

Weibull 0.90 0.630 0.770 0.798 0.918 0.782 0.384

(Nonparametric 0.95 0.726 0.862 0.858 0.966 0.838 0.500

π̂A) 0.99 0.850 0.964 0.938 0.990 0.908 0.696

Weibull 0.90 0.864 0.916 0.678 0.694 0.686 0.874

(Parametric 0.95 0.928 0.954 0.774 0.790 0.788 0.928

π̂cv) 0.99 0.986 0.994 0.878 0.896 0.882 0.980

Weibull 0.90 0.932 0.954 0.750 0.780 0.762 0.914

(Nonparametric 0.95 0.966 0.976 0.838 0.858 0.842 0.958

π̂cv) 0.99 0.992 0.998 0.936 0.952 0.934 0.984

Lognormal 0.90 0.654 0.724 0.710 0.788 0.674 0.684

(Parametric 0.95 0.724 0.796 0.796 0.868 0.746 0.764

Bootstrap) 0.99 0.842 0.912 0.898 0.954 0.840 0.860

Lognormal 0.90 0.764 0.850 0.824 0.886 0.536 0.538

(Nonparametric 0.95 0.816 0.904 0.886 0.944 0.602 0.614

Bootstrap) 0.99 0.904 0.968 0.970 0.988 0.692 0.706

Lognormal 0.90 0.540 0.620 0.620 0.734 0.618 0.380

(Parametric 0.95 0.608 0.694 0.710 0.828 0.684 0.446

π̂A) 0.99 0.746 0.856 0.828 0.906 0.802 0.616

Lognormal 0.90 0.648 0.776 0.780 0.884 0.776 0.438

(Nonparametric 0.95 0.714 0.866 0.856 0.936 0.834 0.546

π̂A) 0.99 0.858 0.946 0.916 0.986 0.906 0.678

Lognormal 0.90 0.810 0.824 0.610 0.626 0.618 0.870

(Parametric 0.95 0.894 0.902 0.710 0.726 0.722 0.922

π̂cv) 0.99 0.974 0.982 0.830 0.842 0.836 0.976

Lognormal 0.90 0.884 0.940 0.724 0.748 0.722 0.886

(Nonparametric 0.95 0.948 0.970 0.810 0.840 0.818 0.938

π̂cv) 0.99 0.990 0.992 0.918 0.936 0.920 0.980

Table 3.3: Coverage proportions for three nominal confidence levels, 0.90, 0.95 and 0.99, based

on 500 simulations for sample size n = 65.
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that

1. π̂m: Under the Weibull model, both parametric and nonparametric procedures work well

with bias correction and treating log(π̂m) as approximately normal. Under the Lognor-

mal model, the nonparametric procedure still produces confidence intervals with approx-

imately the right coverage when bias correction and log(π̂m) are used; but when the

parametric procedure is used, the coverage is substantially lower. This is largely due to

the underestimation of var(π̂m) when parametric bootstrap is used under the incorrect

model, as seen in Table 3.2. This point will be discussed further in the next section.

2. π̂A: The nonparametric bootstrap procedure with bias correction and the use of log(π̂A)

works well for both Weibull and Lognormal models. The parametric bootstrap does not

work so well, and the undercoverage is more severe under the incorrect model.

3. π̂cv: Under the Weibull model, the parametric bootstrap works well with the unadjusted

estimate and the use of log(π̂cv), the nonparametric bootstrap gives some overcoverage

using the unadjusted estimate (for π̂cv and log(π̂cv)). Under the Lognormal model, the

coverage is approximately right with the nonparametric bootstrap procedure and the use

of unadjusted π̂cv. In addition, the results suggest that bias correction does not work

with π̂cv under either model.

4. The basic method works poorly across the table.

5. The percentile method works well only when confidence intervals are based on π̂cv and

the nonparametric bootstrap.

When the sample size increases to 400, the coverage proportions are similar for π̂ and log(π̂)

(Table 3.4). The table suggests that

1. π̂m: Under the correct model family, both parametric and nonparametric bootstrap work

well, for the normal approximation considered here. Under the incorrect model family,
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Nominal Normal Approximation Bias corrected NA Basic Percentile

Level for π̂ for log(π̂) for π̂ for log(π̂) method method

Weibull 0.90 0.876 0.888 0.888 0.888 0.872 0.798

(Parametric 0.95 0.924 0.938 0.932 0.936 0.912 0.868

Bootstrap, π̂m) 0.99 0.968 0.984 0.978 0.990 0.966 0.926

Weibull 0.90 0.912 0.920 0.898 0.902 0.896 0.876

(Nonparametric 0.95 0.954 0.956 0.946 0.954 0. 950 0.922

Bootstrap, π̂m) 0.99 0.984 0.988 0.982 0.984 0.974 0.974

Weibull 0.90 0.860 0.870 0.786 0.794 0.782 0.834

(Parametric 0.95 0.900 0.916 0.856 0.868 0.852 0.884

π̂A) 0.99 0.964 0.972 0.938 0.946 0.920 0.948

Weibull 0.90 0.868 0.874 0.884 0.908 0.882 0.838

(Nonparametric 0.95 0.914 0.934 0.942 0.956 0.938 0.892

π̂A) 0.99 0.982 0.986 0.984 0.988 0.984 0.966

Weibull 0.90 0.884 0.890 0.778 0.780 0.774 0.930

(Parametric 0.95 0.946 0.950 0.846 0.854 0.846 0.960

π̂cv) 0.99 0.996 1.000 0.944 0.946 0.940 0.992

Weibull 0.90 0.904 0.906 0.880 0.880 0.880 0.894

(Nonparametric 0.95 0.958 0.956 0.926 0.928 0.926 0.956

π̂cv) 0.99 0.990 0.992 0.988 0.986 0.982 0.988

Lognormal 0.90 0.736 0.746 0.684 0.696 0.654 0.734

(Parametric 0.95 0.834 0.836 0.776 0.766 0.752 0.816

Boostrap) 0.99 0.924 0.922 0.890 0.890 0.852 0.890

Lognormal 0.90 0.872 0.868 0.822 0.810 0.800 0.800

(Nonparametric 0.95 0.942 0.940 0.906 0.900 0.886 0.878

Boostrap) 0.99 0.982 0.980 0.970 0.968 0.942 0.938

Lognormal 0.90 0.800 0.802 0.658 0.660 0.648 0.812

(Parametric 0.95 0.882 0.880 0.750 0.758 0.740 0.890

π̂A) 0.99 0.946 0.952 0.880 0.886 0.856 0.954

Lognormal 0.90 0.858 0.870 0.888 0.900 0.878 0.826

(Nonparametric 0.95 0.910 0.928 0.930 0.948 0.920 0.874

π̂A) 0.99 0.974 0.988 0.988 0.994 0.980 0.954

Lognormal 0.90 0.824 0.822 0.712 0.704 0.712 0.806

(Parametric 0.95 0.892 0.890 0.804 0.800 0.800 0.872

π̂cv) 0.99 0.976 0.968 0.922 0.918 0.900 0.960

Lognormal 0.90 0.926 0.924 0.886 0.880 0.886 0.918

(Nonparametric 0.95 0.960 0.964 0.944 0.944 0.952 0.958

π̂cv) 0.99 0.988 0.990 0.986 0.990 0.982 0.986

Table 3.4: Coverage proportions for three nominal confidence levels, 0.90, 0.95 and 0.99, based

on 500 simulations for sample size n = 400.
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however, the coverage proportions are close to nominal levels only when the nonparametric

bootstrap is used with the unadjusted estimator.

2. π̂A: Under both models, the nonparametric bootstrap procedure with bias corrected

estimator works well.

3. π̂cv: Under the Weibull model, both parametric and nonparametric work well with the

unadjusted estimators, log-transformed or not. Under the Lognormal model, the only

method that gives satisfactory coverage proportions is the nonparametric bootstrap pro-

cedure with the unadjusted estimators.

4. The basic method gives approximately right coverage when the nonparametric procedure

is used under the Weibull model. Under the incorrect Lognormal model, it only works

well with nonparametric bootstrap based on π̂cv.

5. The percentile method only works with nonparametric bootstrap based on π̂cv, similar to

the results seen in Table 3.3.

To summarize, the parametric bootstrap procedure for the construction of confidence intervals

is susceptible to model misspecification, therefore it is not recommended. The nonparametric

bootstrap based on the cross-validation estimator π̂cv works well for all scenarios investigated.

The estimator π̂A, or log(π̂A) for small sample size, can also be used with the nonparametric

bootstrap to correct for bias and for confidence interval estimation.

The choice of τ = 50 months in the simulation study is arbitrary, we believe that the results

should be similar for other choices of τ , but more simulation studies are needed to verify it.



Estimation of Prediction Error with Absolute Error Loss 52

3.5 Problems with the Model-based Approach

We note in Table 3.2 that the parametric bootstrap procedure fails to produce reliable estima-

tors for var(π̂) in the face of model misspecification. Simple calculations show that the degree

of undercoverage of confidence intervals seen in Tables 3.3 and 3.4 under normal approximation

can be explained by the bias of the estimator and the degree of underestimation of var(π̂) seen

in Table 3.2. We illustrate the connection between the underestimation of variance and the

undercoverage of confidence interval with a normal example. Problems with the model-based

procedure for the estimation of π̂ and of v̂ar(π̂) under a misspecified model are discussed later

in the section.

To obtain a confidence interval for π, we need to know the distribution of π̂. Let ŝd(π̂)

denote the estimate of sd(π̂), the standard deviation of π̂, and define the “sd factor”

sd.f = E[ŝd(π̂)]/sd(π̂)

and the “bias factor”,

b.f = (EFT
(π̂)− π)/sd(π̂).

sd.f measures the under or over estimation of standard deviation of π̂ and b.f measures the bias

of π̂ relative to the variance of π̂. Assuming π̂ is approximately normally distributed, the effects

of the sd factor and bias factor on the coverage probability can be explained with Figure 3.1,

which displays two normal density functions. Suppose the lighter curve N(µ = 0.5, σ2 = 1.22)

represents the true distribution of π̂, so the confidence interval based on this curve would have

the right coverage. But the true curve is unknown to us and suppose instead the darker curve

N(0, 1) is estimated from the data and used to construct the confidence interval for π. The

two dashed vertical lines at -1.645 and 1.645 give a nominal 90% confidence interval under the

darker curve. The true coverage probability, however, is given by the area under the lighter

curve between lines -1.645 and 1.645, which corresponds to the area under the darker curve
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Figure 3.1: The effects of bias and underestimation of variance of π̂ on the coverage probability.
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between the two dotted vertical lines, of which the x-coordinates are

−1.645
1

1.2
+

0− 0.5

1.2
= −1.79, 1.645

1

1.2
+

0− 0.5

1.2
= 0.95,

where sd.f = 1/1.2 = 0.83, and b.f = (0 − 0.5)/1.2 = −0.42. Hence, the true coverage

probability is Φ(0.95) − Φ(−1.79) = 79.3%. Since the sd factor operates multiplicatively and

the bias factor is not very big, the reduction in coverage probability is largely due to the sd

factor. The underestimation of the standard deviation by 17% alone reduces the coverage

probability from 90% to 82.9%.

In the simulation study above, we find that the variance underestimation of π̂ is the main

reason for the undercoverage observed, especially for the misspecified Lognormal model. We

calculated the coverage proportions with the data in Table 3.2 and the method described above,

and found the results agree well with the observed coverage probabilities seen in Tables 3.3 and

3.4. For example, let us look at the estimate π̂A under the Lognormal model and sample size

400 (Table 3.2). The true prediction error is π = 0.883 and E(π̂)
.
= ¯̂πA = 0.864, the standard

deviation is sd(π̂)
.
= Esd(π̂A) = 0.044 and the average estimate from the parametric bootstrap

procedure gives E(ŝd(π̂))
.
= 0.037. Therefore, approximately,

sd.f = 0.037/0.044 = 0.84, b.f = (0.864− 0.883)/0.044 = −0.43.

For nominal 90%, the coverage probability under normal assumption is

Φ(1.645× 0.84− 0.43)− Φ(−1.645× 0.84− 0.43) = 79.4%.

Similar calculation shows that the coverage probabilities for nominal levels 95% and 99% are

86.9% and 95.4%, respectively. These values agree with the observed coverage probabilities

80.0%, 88.2% and 94.6% in Table 3.4, under the column “Normal Approximation for π̂” and

row “Lognormal (Parametric π̂A)”.

The confidence interval coverage problems with model-based estimation are largely due

to biases in the estimation of var(π̂) or, more generally, in the distribution of π̂, when an
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incorrect model is used to generate D∗
b for the estimation of var(π̂). A misspecified model can

return similar point predictors Ŷ to a correctly specified model when predictors are measures

of location such as medians or means. This is supported by our simulation results: the true

prediction errors π are not that different under the correct and incorrect models (0.915 and

0.942 for n = 65, and 0.869 and 0.883 for n = 400, see Table 3.2). However, the models

can differ substantially in the distribution tails, leading to bias in estimates of measures of

variation and to estimates of var(π̂) when a model-based procedure is used, such as π̂m and

var(π̂) estimated by the parametric bootstrap.

In the present simulation setting, π̂m is not very biased under the incorrect model, but

v̂ar(π̂) is seriously biased when the parametric bootstrap procedure is used under the incorrect

model. Nonetheless, we can easily find an example where the model-based estimator π̂m dif-

fers substantially in mean from π under model misspecification: when we reverse the role of

Lognormal and Weibull models in the present simulation setting by generating data from the

“true” Lognormal model and fit the data with the “misspecified” Weibull model. In particular,

suppose we simulate the data from the model

log Yi = β0 − γ + β1z1i + . . . + β9z9i + εi, i = 1, . . . , n, (3.4)

where γ = 0.5772... is the Euler constant, εi follows a normal distribution N(0, π2/6) and Yi is

measured in months. Here π = 3.14159... refers to the mathematical constant, sometimes known

as the circular constant. The regression coefficients β for covariates are kept unchanged; their

values are given by Table 3.1. γ is added to the intercept β0 so that the mean E(log(Y )|Z) under

the model (3.4) is the same as E(log(Y )|Z) under the model (3.3). The variance σ2 = π2/6 is

used so that the variance of the conditional distribution Y |Z remains unchanged. Both Weibull

and Lognormal models are fit to the simulated data with the same variable selection procedure

described in section 3.3. Note that in this case Lognormal model is the true distribution and

the Weibull is an example of misspecified model.

Simulation results for the point estimators of prediction error are shown in Table 3.5 and
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Model fitted Estimator Ave(π̂) Esd(π̂) Ave(ŝd(π̂))

PBS NPBS

Weibull π̂m 0.996 0.047 0.047 0.044

n = 400 π̂A 0.868 0.034 0.051 0.037

(0.894) π̂cv 0.897 0.037 0.053 0.039

Lognormal π̂m 0.869 0.032 0.031 0.032

n = 400 π̂A 0.855 0.035 0.036 0.037

(0.880) π̂cv 0.882 0.037 0.038 0.039

Table 3.5: Simulation results for estimates of prediction error based on absolute error loss for

model (3.4) (500 simulations). True prediction error estimated from 10,000 simulations is given

in the left column in parenthesis for each model. Ave(π̂) is the average and Esd(π̂) is the

standard deviation of π̂ over the 500 simulation runs; Ave(ŝd(π̂)) is the average of the standard

deviation estimates for π̂ over the 500 simulation runs. PBS and NPBS refer to parametric and

nonparametric bootstrap estimation of var(π̂), respectively, as described in section 2.4.

for the confidence interval procedures in Table 3.6, for the same loss function (2.2) truncated

at τ = 50 months and sample size n = 400.

Table 3.5 shows that

1. The model-based estimator π̂m has a large bias when the incorrect Weibull model is used

(average (π̂m) = 0.996, when the true value is 0.894). This results in very poor confidence

interval coverage even for the nonparametric bootstrap procedure (0.404 for nominal 0.95,

see Table 3.6).

2. The model-based parametric bootstrap procedure overestimates var(π̂A) and var(π̂cv)

substantially under the incorrect Weibull model, producing the overcoverage of confidence

intervals seen in Table 3.6.

3. The nonparametric bootstrap procedure provides satisfactory confidence interval when
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Model fitted Method Normal Approximation Bias corrected NA

for π̂ for log(π̂) for π̂ for log(π̂)

π̂m PBS 0.462 0.440 0.338 0.314

π̂m NPBS 0.404 0.388 0.200 0.196

Weibull π̂A PBS 0.976 0.962 0.318 0.294

n = 400 π̂A NPBS 0.894 0.914 0.932 0.954

π̂cv PBS 0.996 0.994

π̂cv NPBS 0.962 0.964

π̂m PBS 0.922 0.934 0.942 0.942

π̂m NPBS 0.928 0.934 0.944 0.948

Lognormal π̂A PBS 0.884 0.896 0.850 0.840

n = 400 π̂A NPBS 0.892 0.912 0.930 0.952

π̂cv PBS 0.946 0.950

π̂cv NPBS 0.958 0.960

Table 3.6: Coverage proportions for nominal 0.95 confidence levels with different methods based

on 500 simulations for model (3.4). PBS and NPBS refer to the parametric and nonparametric

bootstrap procedures used in the estimation of var(π̂), respectively.
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used with π̂A and π̂cv even under the incorrect Weibull model.

Table 3.6 confirms that the model-based estimator π̂m can be serious biased. In section 2.3

we noted that under model misspecification π̂m converges to π(M ; Fθ∗), rather than to the

true prediction error π(M ; FT ). When the Lognormal model is fitted to data generated by an

Exponential (Weibull) model (3.3), the corresponding π(M ; Fθ∗) is close to the true error of

interest π(M ; FT ). This is because π(M ; FT ) is a variation measure and an incorrectly assumed

normal distribution still produces a consistent estimate of variance. But this is not true in

general as Table 3.5 indicates.

Both simulation studies show that the estimator for var(π̂) based on the parametric boot-

strap procedure is problematic under the misspecified model. For models in the location-scale

family, the variance of the distribution is determined by the scale parameter b. Thus, var(π̂) is

closely related to the variance of the estimated scale parameter, var(b̂). Under a misspecified

model, the regression coefficients β̂ (except for the intercept term β̂0 and scale parameter b) are

consistently estimated when there is no censoring, but the variances of β̂, including that of the

scale parameter, are not correctly estimated by the maximum likelihood estimation method

(Gould and Lawless 1988). For example, when data is generated from the model (3.3) and

fitted with a Lognormal model with no variable selection, the average ŝd(b̂) (estimated from

the information matrix for sample size 400) is 0.040 over 500 simulations, which is smaller

than Esd(b̂) = 0.065, the empirical standard deviation of b̂. Therefore, with the parametric

bootstrap procedure, var(σ̂2) is underestimated under the incorrect Lognormal model.

A small simulation experiment confirmed the above observation. In this experiment, data

sets were simulated from model (3.3) with sample size 400 and no censoring. The modelling

procedure included variable selection and the loss function L(Y, Ŷ ) = (log Y − log Ŷ )2 was

considered. The prediction error π is then a function of σ2, the variance of the error distribution.

Table 3.7 reports the results from 500 simulations. We find the true prediction error and E(π̂m)

under the incorrect Lognormal model are very close, as expected. But, var(π̂m) is severely
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True Ave(π̂m) Esd(π̂m) ŝd(π̂m)

Weibull 1.670 1.637 0.134 0.128

Lognormal 1.689 1.683 0.174 0.120

Table 3.7: Simulation results for estimates of prediction error based on squared error loss (500

simulations). True prediction error estimated from 10,000 simulations. Ave(π̂m) is the average

and Esd(π̂m) is the standard deviation of π̂m over the 500 simulation runs; Ave(ŝd(π̂m)) is the

average of the standard deviation estimates for π̂m using parametric bootstrap over the 500

simulation runs.

underestimated: average ŝd(π̂m) = 0.12, when empirical standard deviation is 0.174.

3.6 Analytic Results under Correct and Misspecified Mod-

els

In section 3.3, we generate data from simulation model (3.3) with the error following a EV(0,

1) distribution, denoted by fθ0(y|z). When we fit a Lognormal model to the simulated data,

the working model is of the form (3.3) with the error having a normal distribution, denoted by

gθ(y|z). Since gθ(y|z) is a regular model and satisfies the regularity conditions stated in White

(1982), θ̂ → θ∗ in probability as sample size approaches infinity, as discussed in section 1.1.3. In

the case above, the unique least false parameter θ∗ can be obtained analytically by minimizing

the Kullback-Leibler divergence D(θ) given in (1.8).

For the simplicity of notation, we suppress z in the following development. By definition,

D(θ) = E

{
log

[
fθ0(y)

gθ(y)

]}
=

∫
fθ0(y) log

[
fθ0(y)

gθ(y)

]
dy,

where fθ0(y) is the density function of an extreme value distribution with parameter θ0 =

(u, b) = (0, 1), and gθ(y) is a normal density function with parameter θ = (µ, σ2). We now
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show that D(θ) is minimized by (µ∗, σ∗2) = (−γ, π2/6). Note that in this section, γ = 0.5772...

refers to the Euler constant and π = 3.14159... refers to the circular constant

Consider

D(µ, σ) =

∫
log

[
fθ0(y)

gθ(y)

]
fθ0(y)dy

=

∫
log

exp(y − exp(y))

1√
2πσ

exp(−(y − µ)2

2σ2 )

exp(y − exp(y))dy

=

∫
[(log(

√
2πσ) + (y − exp(y) +

(y − µ)2

2σ2
)] exp(y − exp(y))dy.

Let x = exp(y),

D(µ, σ) = log(
√

2πσ) + (1− µ

σ2
)

∫
log x exp(−x)dx−

∫
x exp(−x)dx

+
1

2σ2

∫
(log x)2 exp(−x)dx +

µ2

2σ2

∫
exp(−x)dx

= log(
√

2πσ) + (1− µ

σ2
)a− 1 +

b

2σ2
+

µ2

2σ2
,

where a =
∫

log x exp(−x)dx = −γ, and b =
∫

(log x)2 exp(−x)dy = 1.978.... To minimize

D(µ, σ) with respect to µ and σ, we take partial derivatives, set them to 0 and solve for

(µ∗, σ∗) with constraint σ > 0,

∂D(µ, σ)

∂µ
=

µ− a

σ2
= 0

∂D(µ, σ)

∂σ
=

1

σ3
(σ2 − (b + µ2 − 2aµ)) = 0,

which gives µ∗ = a = −γ and σ∗2 = b− a2 = π2/6.

The procedures above give a general approach for obtaining θ∗. In the case where gθ(y) is

a normal density, a straightforward solution exists for (µ∗, σ∗2),

µ̂ =
1

n

n∑
i=1

yi −→ µ∗ = EFθ0
(Y ) = −γ,
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and

σ̂2 =
1

n

n∑
i=1

(yi − ȳ)2 −→ σ∗2 = var(Y ) = π2/6,

as n →∞. If gθ(y) is not a normal density, however, there may not be a simple way to identify

θ∗. For example, let fθ0(y) be a normal density with θ0 = (µ0, σ
2
0) = (−γ, π2/6) and gθ(y) be an

extreme value density indexed by (u, b), we want to find the parameter (u∗, b∗) that provides the

best approximation to the normal distribution determined by fθ0(y). This setting corresponds

to the simulation model (3.4) considered in section 3.5 with the Weibull model fitted. Then

the Kullback-Leibler distance D(u, b) is

D(u, b) =

∫
log




1√
2πσ0

exp(−(y − µ0)
2

2σ2
0

)

1
b

exp(
y − u

b
− exp(

y − u
b

))




1√
2πσ0

exp(−(y − µ0)
2

2σ2
0

)dy.

D(u, b) cannot be evaluated analytically and is approximated by the Gauss-Hermite formula,

which is then minimized with respect to u and b. The detailed steps are omitted.

Figure 3.2 shows a plot of ∂D
∂u

and ∂D
∂b

for different (u, b) values. The • in Figure 3.2

corresponds to the least false parameter θ∗, which is given by the intersection of two lines,

∂D
∂u

= 0 and ∂D
∂b

= 0. From the graph, the u∗ and b∗ are approximately 0.064 and 1.28,

respectively.

Taken together, N(−γ, π2/6) is the best approximating distribution to EV(0, 1) among

all possible normal distributions. EV(0.064, π/
√

6) is the best approximating distribution to

N(−γ, π2/6) among all extreme value distributions. Figure 3.3 plots the three density functions

in the same graph.

Given knowledge of the three distributions, we can then obtain the theoretical true predic-

tion errors for n → ∞ under specific loss functions. Assuming Z is uniformly distributed on

the 400 zi-values generated for the n = 400 case (section 3.3), and that the absolute error loss

of the log survival time truncated at 50 months is used, Table 3.8 gives the true prediction

errors under the three error distributions.
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Figure 3.2: Plot of ∂D
∂u

and ∂D
∂b

. D stands for the Kullback-Leibler distance of EV(u, b) to

N(−γ, π2/6). The black dot at the intersection of lines ∂D
∂u

= ∂D
∂b

= 0 gives the u∗ and b∗ that

minimizes D.
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Figure 3.3: Three probability density functions. The solid, dashed and dotted curves are EV(0,

1), N(−γ, π2/6), and EV(0.064, π/
√

6), respectively.

True Model

EFT
|Lτ (log(Y ), log(Ŷ ))| EV(0, 1) N(−γ, π2/6) EV(0.0641, π/

√
6)

Fitted EV(0, 1) 0.860 0.881

N(−γ, π2/6) 0.874 0.868

Model EV(0.064, π/
√

6) 0.876 1.081

Table 3.8: Prediction error based on absolute relative error loss under correct and misspecified

models for Z distributed according to the empirical Z distribution of sample size 400.
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True Model

EFT
|Lτ (log(Y ), log(Ŷ ))| EV(0, 1) N(−γ, π2/6) EV(0.0641, π/

√
6)

Fitted EV(0, 1) 0.847 0.863

N(−γ, π2/6) 0.856 0.850

Model EV(0.064, π/
√

6) 0.859 1.058

Table 3.9: Prediction error based on absolute error loss under correct and misspecified models

for Z distributed according to the empirical Z distribution of sample size 65.

The first column in Table 3.8 corresponds to the simulation model (3.3) in section 3.3,

where the error distribution of log(Y ) given Z is EV(0, 1). When a Weibull model is fitted, the

prediction error converges to 0.860, and the simulation result is 0.869 when n = 400 (Table 3.2).

When a Lognormal model is fitted, the prediction error converges to 0.874, and the simulation

result is 0.883 when n = 400 (Table 3.2). The simulation results are slightly larger than

the theoretical results, which is expected. The sample size, censoring, and variable selection

procedure all contribute to this difference.

The second column in Table 3.8 corresponds to the simulation model (3.4) in section 3.5,

where the error distribution is N(−γ, π2/6). When a Weibull model is fitted, the best ap-

proximating error distribution is EV(0.064, π2/6), thus the prediction error converges to 0.876,

and the simulation result is 0.894 when n = 400 (Table 3.5). When a Lognormal model is

fitted, the prediction error converges to 0.868, and the simulation result is 0.880 when n = 400

(Table 3.5).

A similar calculation gives the theoretical prediction errors for Z uniformly distributed on

the 65 zi-values of the multiple myeloma data, which are shown in Table 3.9. A comparison

of these values to those of Table 3.2 shows that the contributions of variable selection and

parameter estimation to the prediction error are greater when sample size is smaller (theoretical

prediction error 0.847 vs. simulation prediction error 0.915 for Weibull model; and theoretical

prediction error of 0.858 vs. simulation prediction error of 0.942 for Lognormal model).
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3.7 Variable Selection

The variable selection procedure drops variables with p > 0.2, thus introduces variability in

the final models. That is, different simulation data sets may yield different final models. There

may be differences in the number of variables as well as variables themselves. Each of the nine

variables in Table 3.1 has a probability of being included in the final model, depending on the

model family and sample size n. The inclusion proportions for the nine variables from 500

simulation are summarized in Table 3.10. Table 3.10 shows that the inclusion proportions of

the variables are different between Weibull and Lognormal models when data are generated by

simulation model (3.3), especially when sample size is small. In addition, the variables with

large effects are more likely to be included when sample size is large.

The confidence interval procedures, discussed in section 2.4, use either the parametric boot-

strap samples simulated from the final model Fθ̂(y|z) or the nonparametric bootstrap samples

taken from D. The parametric bootstrap generates data from Fθ̂(y|z), which varies in model

size and variables included from one simulation data set to another. We summarize the results

for model size in Table 3.11, which are from 500 simulations. B = 500 is used for parametric

and nonparametric bootstrap in each simulation. Table 3.11 shows that

• Larger sample size tends to give larger model.

• The model size is slightly larger for Weibull models. The difference in model sizes between

the two model families may be due to the fact that the data are generated by the extreme

value distribution which has a shorter right tail than the normal distribution.

• Models based on nonparametric bootstrap samples are slightly larger than those based

on parametric bootstrap samples.

• Variability in model size decreases as sample size increases, as suggested by the standard

deviation of the model size.
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Model fitted Sample size Aver(model size) PBS (s̄d) NPBS (s̄d)

n = 65 4.5 (1.29) 4.9 (1.23) 5.2 (1.28)
Weibull

n = 400 6.0 (0.94) 6.2 (0.90) 6.4 (0.96)

n = 65 4.0 (1.28) 4.5 (1.26) 4.8 (1.37)
Lognormal

n = 400 5.9 (0.97) 6.0 (0.94) 6.2 (1.00)

Table 3.11: Simulation results for average model size when different model families are used

for sample size n = 65 and 400, respectively. PBS refers to parametric bootstrap and NPBS

to nonparametric bootstrap, which are used for confidence interval estimation. The numbers

in the parenthesis give the standard deviation. s̄d refers to the averaged standard deviation of

model size for the bootstrap procedure.



Chapter 4

Estimation of Prediction Error with

Binary Loss

It is very often impossible to predict the survival time Y accurately for most individuals (e.g.

Henderson et al. 2001; Henderson and Keiding 2005), but it is sometimes possible to more

accurately predict who will survive beyond some time t; see for example, Korn and Simon

(1990), Schemper and Henderson (2000), Rosthøj and Keiding (2004) and Henderson and Kei-

ding (2005). In this chapter, we consider the binary survival status at a specified time t, defined

as

Wt = I(Y > t). (4.1)

Wt = 0 if subject died before time t and 1 if subject survived beyond time t. The point predictor

for Wt is Ŵt, which is also binary.

68
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4.1 Binary Loss for Survival Status at Time t

We consider the 0-1 loss function L(Wt, Ŵt) for predicted survival status at time t.

L(Wt, Ŵt) = I(Wt 6= Ŵt) = |Wt − Ŵt|. (4.2)

The 0-1 loss is minimized by Ŵt = I(ST (t|z) > 0.5), where ST (t|z) = Pr(Y > t | z) = 1−FT (t |
z) is the survivor function of Y given z.

The 0-1 loss has been considered by Henderson and Keiding (2005) in a data analysis.

They handled the censored observations by omitting them from the data set. Other authors

considered Ŵt = Sθ̂(t|z) as a predictor for Wt with some other loss functions (e.g. Graf et al.

1999, Schemper and Henderson 2000, and Rosthøj and Keiding 2004). We restrict Ŵt to be 0 or

1 and use the 0-1 loss to emphasize the ability of the predictor to classify individuals correctly.

We consider the estimation of prediction error for the survival status Wt = I(Y > t) with

the 0-1 misclassification error loss function. By definitions (1.1) and (1.2) we have in this case,

π1t(M ; FT , z,D) = EWt [I(Wt 6= Ŵt) | Z = z, D]

= Pr(Wt = 1 | z)I(Ŵt = 0) + Pr(Wt = 0 | z)I(Ŵt = 1).

The equation follows because Wt is independent of Ŵt. Then also

π2t(M ; FT , z) = ED(π1t)

= Pr(Wt = 1 | z)Pr(Ŵt = 0 | z) + Pr(Wt = 0 | z)Pr(Ŵt = 1 | z)

= ST (t|z)(1− Pr(Sθ̂(t|z) ≤ 0.5))

+(1− ST (t|z))Pr(Sθ̂(t|z) > 0.5),

where Sθ̂(t|z) is an estimator of ST (t|z) based on the training data D. And by definition of

(1.4), the prediction error π3t(M ; FT , H̃Z) is,

π3t(M ; FT , H̃Z) =
1

n

n∑
i=1

[ST (t|zi)(1− Pr(Sθ̂(t|zi) > 0.5)

+(1− ST (t|zi))Pr(Sθ̂(t|zi) > 0.5)]. (4.3)
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If we use the estimator Sθ̂(t|z) for ST (t|z), we obtain a model-based estimator of π2t,

π̂m
2t(M ; FT , z) = Sθ̂(t|z)P̂ r(Sθ̂(t|z) ≤ 0.5) + (1− Sθ̂(t|z))P̂ r(Sθ̂(t|z) > 0.5).

P r(Sθ̂(t|z) ≤ 0.5) can be estimated by simulation, in order to allow for model selection in the

estimation/model fitting process. Both parametric and nonparametric bootstrap procedures

can be used to get the estimate P̂ r(Sθ̂(t|z) ≤ 0.5). In a parametric procedure, we simulate

K sets D∗
1, . . . , D

∗
K of training data {(Y ∗

i , zi), i = 1, . . . , n} using Fθ̂(y|z) = 1 − Sθ̂(y|z) and

apply the modeling procedure to D∗
k to produce the predictor Ŵ ∗k

t = I[Sθ̂∗k
(t|z) > 0.5], where

θ̂∗k is based on D∗
k. Note that we also need to generate censoring times for each D∗

k; they are

generated using the model Ŝc(c|z) fitted in connection with IPCW estimation described below.

This then gives

P̂ r(Sθ̂(t|z) ≤ 0.5) =
1

K

K∑

k=1

I(Sθ̂∗k
(t|z) ≤ 0.5), (4.4)

for any z. We can alternatively draw K nonparametric bootstrap samples and apply the

modeling procedure for each sample to get (4.4). This has the advantage that censoring times

do not need to be generated, since we simply resample with replacement from {(ti, δi, zi), i =

1, . . . , n} to get D∗
1, . . . , D

∗
K .

An estimator of πt in (4.3) is then

π̂m
t =

1

n

n∑
i=1

π̂m
2t(zi)

=
1

n

n∑
i=1

[Sθ̂(t|zi)P̂ r(Sθ̂(t|zi) ≤ 0.5)

+(1− Sθ̂(t|zi))P̂ r(Sθ̂(t|zi) > 0.5)]. (4.5)

The second approach in section 1.2.1 involves the apparent loss (AL), to which we can add

an “optimism” adjustment Ωt,

π̂A
t = ALt + Ω̂t. (4.6)
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When Y is subject to censoring, Wt may not be observed, and we use IPCW with fitted model

Ŝc(c|z) for the censoring time survivor function, as described in section 2.2.1. This gives the

IPCW estimator of apparent loss,

ÂLt =
1

n

n∑
i=1

∆i

Ŝc(ti ∧ t|zi)
I(wi,t 6= ŵi,t) (4.7)

where wi,t = I(yi > t), ŵi,t = I(Sθ̂(t|zi) > 0.5), ∆i indicates whether I(wi,t 6= wi,t) is observed,

and X ∧ Y = min(X,Y ).

The adjustment term proposed by Efron (2004) takes the form Ωt = 2
n

∑n
i=1 cov(wi,t, f(ŵi,t))

(1.15). In the case of the 0-1 loss, f(ŵt) = ŵt. We use a model-based approach, as suggested

by Efron (2004), to estimate cov(wt, ŵt) by simulation from F̂T .

The V-fold cross-validation estimator π̂cv replaces ŵi,t in (4.7) with ŵi(−v),t, giving

π̂cv
t =

1

n

V∑
v=1

∑
i∈Sv

∆i

Ŝc(ti ∧ τ |zi)
I(wi,t 6= ŵi(−v),t). (4.8)

Confidence interval estimates for πt are obtained as described in section 2.4, using any of the

three estimators of πt. Simulation results for point estimates and confidence interval estimates

are given in the next section.

4.2 Simulation Results

We used the simulation model (3.3) and the same modelling procedures described in chapter

3. For the binary 0-1 loss, we investigated the prediction error for survival status Wt at ten

evenly spaced time points, t1 = 5, t2 = 10, . . . , t10 = 50 months, with 500 simulation runs.

In every simulation, survival status was predicted for subject i at the ten time points tj,

Ŵi,tj = I(Sθ̂(tj|zi) > 0.5), j = 1, . . . , 10, where Sθ̂(tj|zi) is given by the fitted model following

the variable selection.
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To obtain the model-based estimator π̂m
t in (4.5), the quantity

P̂ r(Sθ̂(t|z) ≤ 0.5)

was estimated using either parametric bootstrap or nonparametric bootstrap samples using

(4.4). Parametric bootstrap refers to simulation from the fitted model Fθ̂ following variable

selection. Nonparametric bootstrap refers to simple random sampling with replacement from

D. We used K = 100 bootstrap samples for the estimates π̂m
t and B = 30 samples for obtaining

v̂ar(π̂m
t ) (see Figure 2.2). A small B is used here for computational reasons; for each subject we

predict Wt and estimate prediction error ten times. The pseudo training data at the second level

of simulation, D∗
bk, was generated by either parametric or nonparametric bootstrap, according

to the method used to estimate P̂ r(Sθ̂(t|z) ≤ 0.5) for π̂m
t . We note that the nonparametric

bootstrap reduces the effective sample size, which increases the variability of the estimator.

The second level estimator π̂∗b is obtained by bootstrap sampling from D∗
b . When D∗

b is itself a

nonparametric sample from D, the effective sample size for π̂∗b is much smaller than the original

sample size n of D.

Note that we can use a nonparametric approach to obtain the model-based estimator π̂m
t

for the 0-1 loss, but can not do so for the absolute error loss. This is because we need a training

data set D∗ and an independent test data set Y ∗ to estimate π̂m for absolute error loss. If

both Y ∗ and D∗ are nonparametric bootstrap samples from the same data D, they are not

independent anymore, and thus can not be used for estimating π̂m. For 0-1 loss, we only need

D∗ to estimate π̂m
t .

For the AL and CV approaches, we used the penalty-adjusted apparent loss π̂A
t and 5-fold

cross-validation π̂cv
t , respectively. The variance estimates for π̂t were obtained with B = 100

bootstrap samples (both parametric based on Fθ̂ and nonparametric). We choose a small B

because for each subject we need to predict Wt ten times. For single data sets, larger values

can be used. Confidence intervals are based on treating π̂t as normally distributed random

variables; a bias correction for π̂m
t is also considered and results are shown in Table 4.1. The
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percentile and basic percentile method were not considered here since B = 100 is too small to

give accurate coverage probabilities.

Figure 4.1 shows the simulation results. The true πt are given by lines, and the average

point estimates of misclassification error at t1, . . . , t10 are given by symbols. πt is estimated

using (4.3), i.e.

πt =
1

n

n∑
i=1

[ST (t|zi)Pr(Sθ̂(t|zi) ≤ 0.5)

+(1− ST (t|zi))Pr(Sθ̂(t|zi) > 0.5)],

where ST (t|zi) is known and Pr(Sθ̂(t|zi) ≤ 0.5) is estimated with 5000 samples generated under

the true Weibull model (3.3), and accounts for the variable selection scheme under either the

Weibull or Lognormal model. The true misclassification error is slightly smaller under the

Weibull family as indicated by the lines corresponding to the Weibull model lying beneath the

lines corresponding to the Lognormal model (see graphs in the right panels of Figure 4.1).

Figure 4.1 indicates that the adjusted apparent loss estimator π̂A is almost unbiased, even

when sample size is small (n = 65). The model-based penalty term Ω̂ performs well and

corrects the bias of apparent loss. Similar to the results for absolute error loss, we find that

π̂cv overestimates π somewhat when n = 65 but is very accurate for n = 400. The model-based

estimators π̂m tends to underestimate π when n = 65. When n = 400, π̂m for the Lognormal

model, which corresponds to the upsidedown triangle in the bottom right graph, drifts away

from the true error πt as t increases. This result agrees with our discussion in section 2.3: π̂m
t

converges to π3(M ; Fθ∗), not the true error of interest π3(M ; FT ). When t increases from 35 to

50 months, the biases of the point estimates π̂m also increase. As a result, the undercoverage

of the πt becomes more serious as t increases.

The coverage proportions of the ten time points are averaged and summarized in Table 4.1.

The results in Table 4.1 agree with those in Table 3.3 in general: the model-based procedure

performs well under the correct model with nonparametric bootstrap (with or without bias
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Figure 4.1: Simulation results for estimates of prediction error based on binary loss. The

graphs in the left panels are for the Weibull model, and the graphs in the right panels are for

the Lognormal model. The top panels correspond to sample size 65 and the bottom panels

correspond to sample size 400. The lines give the true prediction error estimated from 5000

simulations, and the points give the π̂ averaged over 500 simulation runs.
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Model fitted Estimator PBS NPBS

NA/Bias corrected NA NA/Bias corrected NA

Model-based π̂m 0.758/0.857 0.932/0.927

Weibull Apparent Loss (adj.) π̂A 0.921 0.956

n = 65 5 fold CV π̂cv 0.946 0.966

Model-based π̂m 0.879/0.858 0.920/0.869

Lognormal Apparent Loss (adj.) π̂A 0.927 0.957

n = 65 5 fold CV π̂cv 0.944 0.962

Model-based π̂m 0.924/0.934 0.950/0.951

Weibull Apparent Loss (adj.) π̂A 0.942 0.963

n = 400 5 fold CV π̂cv 0.950 0.967

Model-based π̂m 0.766/0.675 0.762/0.672

Lognormal Apparent Loss (adj.) π̂A 0.952 0.967

n = 400 5 fold CV π̂cv 0.960 0.969

Table 4.1: Average coverage proportions of the ten time points for binary 0-1 loss, at nominal

0.95 confidence levels with different methods based on 500 simulations. PBS and NPBS refer to

parametric and nonparametric bootstrap, respectively, as described in section 2.4. NA stands

for normal approximation. Model-based estimates are subject to bias correction, and coverage

proportions for both uncorrected and corrected point estimates are given. The adjusted appar-

ent loss estimates and 5-fold cross-validation estimates are not corrected for bias, hence only

one value is given.
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correction); confidence intervals based on the adjusted apparent loss estimator π̂A perform well

under both models except for the slight undercoverage when parametric bootstrap is used in

the small sample case; confidence intervals based on π̂cv without bias correction perform well

under all circumstances investigated.

Figure 4.2 shows the coverage proportions of the individual time points for nominal 0.95

confidence intervals based on the 500 simulations. Different symbols are used for different

methods of obtaining confidence intervals. Examination of Figure 4.2 indicates that

1. Intervals based on π̂m perform well under the Weibull model with bias correction and non-

parametric bootstrap when sample size is 65. When sample size is 400, both parametric

and nonparametric bootstrap perform well with bias correction.

2. Intervals based on π̂A perform well under the Weibull model. The Lognormal model

gives less satisfactory coverage probabilities under the same settings, though the coverage

proportion is good when averaged over the ten time points (Table 4.1) .

3. Intervals based on π̂cv work well when parametric bootstrap is used under the correct

model. Some mild overcoverage is observed for intervals based on π̂cv in other settings.

To summarize, parametric model-based methods are susceptible to model misspecification.

Presumably this is due to the same reasons discussed in section 3.5 for absolute error loss.

Overall, cross-validation methods work well in conjunction with nonparametric bootstrap re-

sampling, and for reasonably large samples, methods based on apparent error and nonparamet-

ric bootstrap resampling also work well.

Molinaro et al. (2005) has investigated the estimation of prediction error for the binary

classification problem with variable (feature) selection and a number of parametric and non-

parametric models. They conducted an extensive simulation study to compare estimators

based on v-fold cross-validation, leave-one-out cross-validation, Monte Carlo cross-validation,
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Figure 4.2: The coverage proportions of the ten time points for binary 0-1 loss, at nominal

0.95 confidence levels with different methods based on 500 simulations. The graphs in the top

panels are for n = 65, and the graphs in the bottom panels correspond to n = 400. The left

panels are for the Weibull model and the right panels are for the Lognormal model. In each

graph, the solid line is the reference line for the nominal 95% level and the dashed lines give

the pointwise 0.95 probability intervals [pL, pU ] based on 500 Bernoulli trials with p = 0.95.
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and 0.632+ bootstrap. Tibshirani and Knight (1999) studied model and variable selection

and its connection with prediction error in general settings. Both papers suggest that cross-

validation tends to perform well as far as the point estimation of prediction error is concerned.

We have studied prediction error estimation using absolute error and binary loss functions for

censored survival data. Our results agree with their findings and furthermore we show that

confidence intervals based on the CV estimator with the nonparametric bootstrap procedure

perform well.



Chapter 5

Applications

In this chapter, we consider prediction error estimation for two data sets, (i) the multiple

myeloma data on which the preceding simulation studies were based, and (ii) the Mayo Clinic

Primary Biliary Cirrhosis (PBC) data, which has been considered by Gerds and Schumacher

(2006) and other authors.

5.1 Multiple Myeloma Data

The multiple myeloma data (Krall et al. 1975) is analyzed with the 9 covariates described in

Table 3.1. Weibull and Lognormal models are fitted with variable selection, which correspond

to using model (3.3) and assuming εi is extreme value and normally distributed, respectively.

The reduced Weibull model has three variables: log(Blood Urea Nitrogen), Hemoglobin and

Serum calcium. The reduced Lognormal model has four variables: log(Blood Urea Nitrogen),

Hemoglobin, Serum Calcium and Fractures. Residual probability plots suggest that both re-

duced models provide adequate fits to the data (Figure 5.1). Besides the Weibull and Lognormal

model, we also fit a semiparametric Cox PH model with same variable selection criterion. The

79
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Figure 5.1: Residual plots for the reduced Weibull (left panel) and Lognormal (right panel)

models for Multiple Myeloma data.

reduced Cox PH model has two variables, log(Blood Urea Nitrogen) and Hemoglobin.

5.1.1 Absolute error loss

We are interested in estimating the prediction error associated with these three families of

models with the variable selection procedure. Based on the simulation results of chapter 3, the

parametric bootstrap procedure for estimation of var(π̂A) and var(π̂cv) are not pursued. For the

model-based point estimates π̂m and var(π̂m), we used K = B = 500 bootstrap samples. We

also used B = 500 nonparametric bootstrap samples for the estimation of confidence intervals

using AL (π̂A) and 5-fold CV estimates (π̂cv), and B = 100 bootstrap samples for the more

computationally demanding leave-one-out CV (LOOCV), which is 65-fold. Confidence intervals

are based on the approximate normality of log(π̂) since the sample size is small, and bias

correction was used for π̂m and π̂A.

In order to use IPCW, we modeled the censoring times for an estimate of Sc(c|z) (2.7).
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Note that the covariates used for modeling the censoring times are those in the reduced final

model for survival times, because the IPCW method is valid provided Y ⊥ C given a set of

covariates Z. Suppose survival time Y depends on Z1 and censoring time C depends on Z1 and

Z2, it can be shown that Y is independent of C given only Z1:

f(y, c|z1) =

∫
f0(y, c, z2|z1)dz2

=

∫
f1(y, c|z1, z2)g(z2|z1)dz2

=

∫
fY (y|z1, z2)fC(c|z1, z2)g(z2|z1)dz2

= fY (y|z1)

∫
fC(c|z1, z2)g(z2|z1)dz2

= fY (y|z1)fC(c|z1).

Therefore, the set of covariates C is regressed on can be a subset of the covariates in the survival

model for Y . For the example above, the IPC weight α is estimated by Ŝc(c|z1).

For the multiple myeloma data, we found that the censoring times are roughly independent

of the covariates used in the survival models, such as log(Blood Urea Nitrogen), Hemoglobin,

Serum Calcium and Fractures (all P -values > 0.05). Hence, a random censoring mechanism

was assumed and the Kaplan-Meier estimate Ŝc(c) was used for the censoring survivor function,

which was also used to generate the censoring times for parametric bootstrap samples.

The point estimates of the prediction error (1.4) with absolute relative error loss truncated

at τ = 50 months and the corresponding confidence intervals for the three fitted models are

reported in Table 5.1. For the Cox PH model, the estimated survival probability for each

individual is given by

Ŝ(y|zi) = Ŝ0(y)exp(zT
i β̂), (5.1)

where Ŝ0(y) is the estimated baseline survival probability. Then the predicted median survival

time for yi is

ŷi = argmax
t

{Ŝ(t|zi) > 0.5},
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Weibull Lognormal Cox PH

π̂ 95% CI π̂ 95% CI π̂ 95% CI

π̂m PBS 0.98 (0.76, 1.30) 0.87 (0.71, 1.10) 0.96 (0.76, 1.23)

π̂m NPBS 1.04 (0.81, 1.42) 0.87 (0.71, 1.10) 0.97 (0.73, 1.34)

π̂A NPBS 0.89 (0.69, 1.19) 0.88 (0.69, 1.16) 0.86 (0.55, 1.40)

π̂cv NPBS 0.91 (0.68, 1.23) 0.91 (0.68, 1.21) 0.91 (0.67, 1.25)

LOOCV NPBS 0.94 (0.70, 1.28) 0.95 (0.72, 1.27) 0.93 (0.68, 1.27)

Table 5.1: The estimated prediction error and 95% confidence interval under the Weibull,

Lognormal and Cox PH models with absolute error loss function truncated at τ = 50 months.

π̂m is the model-based estimator, π̂A refers to the AL method, π̂cv to the 5-fold CV method,

and LOOCV stands for the leave-one-out CV method. The confidence interval is based on the

approximation that log(π̂) is normally distributed. The point estimates π̂m and π̂A reported

here are corrected for bias with the estimates from bootstrap samples, as described in section 2.4.

where t is the set of distinctive failure times in the training data D. It is possible that

S(tmax|zi) > 0.5 for some zi where tmax denote the maximum observed failure time in D.

In this case the predicted median survival time ŷi > tmax and is not available. However,

since we consider the truncated loss function and choose τ ≤ tmax, the predictor is given by

min(Ŷ , τ) = τ if Ŷ is greater than tmax. To obtain the model-based estimator π̂m, we take

parametric bootstrap samples from the Cox PH model by treating the step function Ŝ(y|zi) in

(5.1) as the survivor function of a multinomial random variable Yi, and we generate survival

time Yi by sampling this distribution. Therefore the possible values of Yi are limited to the

observed failure times in D.

The point estimates are similar under different approaches and the three model families,

except for the estimates based on π̂m under the Weibull and Cox PH model: they are slightly

greater than the rest of the estimates. The model-based approach is not very reliable as

discussed in section 3.5. It is included merely for comparison and comprehensiveness. In
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addition, we note that for Weibull and Lognormal models, the confidence intervals based on the

CV estimates are slightly wider than those of the corresponding AL estimates, and confidence

intervals based on the Lognormal model are slightly narrower than those of the Weibull and

Cox PH models. The confidence intervals under the Cox PH model are comparable to those of

the Weibull models, except for the one based on the AL estimate, which is the widest among

all estimators and model families considered.

We also estimate the prediction error of the marginal model as define in section 1.2.2 with the

IPCW approach. The marginal model in survival settings is given by the Kaplan-Meier estimate

Ŝ(y). The 5-fold cross-validation estimator of π̂cv
0 (1.22) is 1.001 and the 95% confidence

interval is (0.75, 1.25), which are in close agreement with the estimates given in Table 5.1. For

the multiple myeloma data, the covariates and the survival models seem to have little if any

predictive power.

5.1.2 Binary loss

For the Weibull and Lognormal model families and modeling procedures described above, we

also estimated the binary misclassification loss and confidence intervals for the prediction of

Wt = I(Y > t) at t = 10, 20, 30, 40, 50 months with the approaches described in chapter 4.

The point estimates are plotted in Figure 5.2. The 95% confidence intervals for month 20 and

40 are shown in the same figure for illustration. For comparison, we also plot in the same graph

the misclassification error of the marginal model (5-fold CV estimate).

Figure 5.2 shows that the model-based estimates agree well between parametric and non-

parametric procedures within each model family. Their confidence intervals are narrower than

the confidence intervals of other estimates. As previously reported for absolute error loss, the

confidence intervals based on CV estimates are slightly wider than the intervals based on ad-

justed apparent error estimates. For most time points, the confidence intervals given by the



Applications 84

0 10 20 30 40 50

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Weibull

Time (Months)

M
is

cl
as

si
fic

at
io

n 
er

ro
r

Marginal model

π̂
m

 PBS
π̂

m
 NPBS

π̂
A

π̂
cv

 5 fold
LOOCV

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

0 10 20 30 40 50

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Lognormal

Time (Months)

M
is

cl
as

si
fic

at
io

n 
er

ro
r

Marginal model

π̂
m

 PBS
π̂

m
 NPBS

π̂
A

π̂
cv

 5 fold
LOOCV

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

Figure 5.2: Estimates of prediction error based on binary loss at t = 10, 20, 30, 40, 50 months.

The graph on the left is for the Weibull model, and the graph on the right is for the Lognormal

model. The 95% intervals for the misclassification error are given by pairs of “-” symbols for

month 20 and 40. For each time point, the five intervals from left to right correspond to the

five estimators from top to bottom (see legend). The solid line shows the misclassification error

(5-fold CV estimate) of the marginal model.
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regression model contain the corresponding estimated misclassification error of the marginal

model. It shows that not much prediction power is gained when the regression model is used.

This finding agrees with the results obtained for absolute error loss, i.e. the prediction error

estimates are comparable between the regression models and the marginal model.

5.1.3 Estimated ROC curve

The misclassification error rate is one way of assessing the classification rules. As discussed in

section 2.1.3, an ROC curve is often used to evaluate the classifier performance for its ranking

ability. We estimate the ROC curve with the IPCW approach described in section 2.2.1 for the

multiple myeloma data. For illustration, we choose t0 = 10 months, at which time six out of 65

subjects are censored. Among the remaining 59 patients, twenty-one have failed. Our objective

is to identify these early failures using the survival models. Thus we define Wi,t0 = I(Yi ≤ t0),

for which the predicted class is given by Ŵi,t0 = I(Sθ̂(−i)(t0|zi) ≤ c), and θ̂(−i) is a LOOCV

estimate. In this case, the ROC curve consists of points with (FPR(c), TPR(c)) as their X-Y

coordinates, moving from (0, 0) to (1, 1) as c increases from [0,1].

Figure 5.3 displays the estimated ROC curve of the reduced Weibull model for t0 = 10

months, assuming random censoring. As we can see, it is relatively close to the reference line

for a random ranking model, indicating the lack of ranking power of the survival model for

detecting early failures.

5.2 Mayo PBC Data

The second example is based on the well-known Mayo primary biliary cirrhosis data (Therneau

and Grambsch 2000, appendix D.2). The data set is available in R library “survival” and

contains 418 subjects and 18 prognostic variables. There are missing covariate values for some
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Figure 5.3: ROC curve of the reduced Weibull model for identifying the subjects who died

within 10 months after diagnosis. 4 displays (FPR(0.5), TPR(0.5)) based on the classification

rule Ŵi,t0 = I(Sθ̂(−i)(t0|zi) ≤ 0.5).
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subjects, especially the 106 subjects who did not participate in the associated randomized

clinical trial. We analyze the data from 276 subjects that have complete baseline covariate

information. Others (e.g. van Houwelingen and le Cessie 1990; Gerds and Schumacher 2006)

have analyzed this data set using five significant covariates suggested by Fleming and Harrington

(1991). These five variables have no missing values and their data analysis are apparently based

on all 418 subjects. Since binary variable “edema” indicates the presence and absence of edema

and for variable “edtrt”, 0 = no edema, 0.5 = edema present but not treated or successfully

treated, 1 = edema present and did not respond to treatment, the information contained in

“edema” is in “edtrt”. Thus we omit “edema” from the covariates. The same 276 subjects and

17 variables were studied by Tibshirani (1997) and Soh et al. (2008). Below is a list of the

variables included in our data analysis.

Y : Survival time.

δ: 1 if Y is time to death, 0 if time to censoring.

X1: Treatment code, 1 = D-pencillamine, 2 = placebo.

X2: Age in years.

X3: Sex, 0 = male, 1 = female.

X4: Presence of ascites, 0 = no, 1 = yes.

X5: Presence of hepatomegaly, 0 = no, 1 = yes.

X6: Presence of spiders, 0 = no, 1 = yes.

X7: Presence of edema, 0 = no, 0.5 = yes but either not treated or responded to diuretic

treatment, 1 = yes, did not respond to treatment.

X8: Serum bilirubin, in mg/dl.

X9: Serum cholesterol, in mg/dl.



Applications 88

X10: Albumin, in g/dl.

X11: Urine copper, in kg/day.

X12: Alkaline phosphatase, in U/litre.

X13: SGOT, a liver enzyme, in U/ml.

X14: Triglycerides, in mg/dl.

X15: Platelet count; coded value is number of platelets per cubic ml of blood divided by 1000.

X16: Prothrombine time, standardized blood clotting time, in seconds.

X17: Histologic state of disease, graded 1, 2, 3 or 4.

Continuous covariates are log transformed following preliminary checks of the data and

suggestions from data analysis by Fleming and Harrington (1991). Sixty percent of the survival

times are censored and the maximum follow-up time is 13 years. We therefore choose τ = 10

years as the upper bound for the absolute error loss. The marginal survival and censoring

probabilities at τ are 0.42 and 0.23, respectively.

5.2.1 Absolute error loss

Weibull, Lognormal and Cox PH models were fitted with variable selection. The reduced

Weibull model has eight variables and they are: X2, X7, X8, X10, X11, X13, X16, X17. The

reduced Lognormal model also includes eight variables, seven of which are used by the Weibull

model and the other variable is X4, which replaces X10 in the above list. There are seven

variables in the reduced Cox PH model, all of which are in the reduced Weibull model. X13 is the

variable in the Weibull model but not in the reduced Cox PH model. The residual probability

plots suggest that the Weibull model provides a slightly better fit than the Lognormal model

(Figure 5.4).
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Figure 5.4: Residual plots for the reduced Weibull (left panel) and Lognormal (right panel)

models for PBC data.

We estimated the prediction error associated with these families of models with the variable

selection procedure. The point estimates of the prediction error with absolute log relative error

loss truncated at τ = 10 years and the corresponding confidence intervals for two IPC weights

are reported in Table 5.2. One IPC weight is based on a random censoring assumption, so

Ŝc(c|z) is simply the Kaplan-Meier estimate Ŝc(c) as in section 5.1.1, and the other weight

is based on the independent censoring assumption where the censoring distribution is mod-

eled with selected covariates. Weibull models provide adequate description of the censoring

time distribution. Covariates were selected from the set used for the Weibull, Lognormal or

Cox PH models for survival time, respectively. Variables significant at the 0.05 level for the

Weibull, Lognormal and Cox PH cases are (X2, X10, X13, X16, X17), (X2, X13, X16, X17),

and (X10, X16, X17), respectively. We used B = K = 500 bootstrap samples for estimation of

π̂m and variances of π̂m, π̂A and π̂cv. For the leave-one-out (276-fold) cross-validation, we used

B = 100 bootstrap samples. Confidence intervals are based on the approximate normality of

π̂, and bias correction method was used for π̂m and π̂A.
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The point estimates of prediction error and the confidence intervals are similar across dif-

ferent models, regardless of the estimator used (Table 5.2). As expected, the model-based

estimates for prediction error and confidence intervals are almost unchanged between the two

censoring models. This is because no IPCW weights are used in model-based estimators. The

independent censoring model gives slightly smaller point estimates and lower confidence limits

for π̂A and π̂cv. The prediction error of the null model was assessed with 5-fold CV, giving

point estimate 0.56 and 95% confidence interval (0.47, 0.67). The estimates associated with

the null model are greater than those of the regression models, indicating that the covariates

and the survival models have some predictive power for this data set.

5.2.2 Binary loss

For the Weibull and Lognormal model families and modeling procedures described in 5.2.1, we

estimated the misclassification error and confidence intervals for prediction of Wt = I(Y > t)

at t = 1, 2, . . . , 10 years. The point estimates at the ten time points and the 95% confidence

intervals for years 2, 5 and 9 are shown for the Weibull models in the left panels and for the

Lognormal models in the right panels of Figure 5.5. The misclassification rates are similar

between models, with rates slightly lower in the Weibull model. The width of the confidence

intervals based on π̂m is the smallest among the three estimators, and the width is consistent

for time = 2, 5 and 9 years. Meanwhile, the confidence intervals based on π̂A and π̂cv are

comparable in width and they become wider as time increases from 2 to 9 years.

Figure 5.6 contrasts the misclassification error of the marginal model with that of a Weibull

model under the random censoring assumption (other regression models give similar plots). We

find that the error of the marginal model is above the 95% confidence intervals of the regression

model except for the initial time period. It shows that the regression model can improve the

prediction of survival status on PBC data, which agrees with our conclusion for the absolute

error loss in section 5.2.1.
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Figure 5.5: Estimates of prediction error based on binary loss at t = 1, 2, . . . , 10 years. The

graphs in the top panels assume random censoring and the graphs in the bottom panels assume

independent censoring. The graphs in the left panels are for Weibull model, and the graphs in

the right panels are for Lognormal model. The 95% intervals for the misclassification error are

given by pairs of “-” symbols for t = 2, 5 and 9 years. For each time point, the five intervals

from left to right correspond to the five estimators from top to bottom (see legend).
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Figure 5.6: The estimates of misclassification error based on binary loss of the marginal model,

in comparison with the point and interval estimates of the Weibull regression model under the

random censoring assumption. The marginal error is estimated with 5-fold CV.
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5.2.3 Estimated ROC curve

Figure 5.7 displays the estimated ROC curves for the Weibull model with random censoring

in left panels and independent censoring in the right panels at t = 2 & 10 years. Subjects are

ranked according to Sθ̂(−i)(t|zi), the LOOCV estimates of survival probability at t. Note that

for t1 = 2 and t2 = 10 years, we define Wt1 = I(Y ≤ t1) and Wt2 = I(Y > t2), respectively.

This is because at t1 = 2 years, our objective is to identify the early failures, but at t2 = 10

years, our objective is to identify the long-term survivors.

All estimated ROC curves in Figure 5.7 are well above the reference line of an uninformative

ranking model, suggesting good ranking ability of the Weibull model for identifying the early

failures as well as the long-term survivors. The curves in the left and right panels are similar,

indicating that the IPCW estimates of TPR(c) and FPR(c) are close under either random or

independent censoring assumption. In addition, the curves in the top panels seem to be closer

to the top and left borders of the unit square than the curves in the bottom panels do, implying

that the discriminating power of the regression model may be larger for early failures than for

long-term survivors.

At t1 = 2 years, only one subject is censored. Out of the remaining 275 subjects, 29 subjects

have failed. If we take c = 0.5, i.e. Ŵi,t1 = I(Sθ̂(−i)(t1|zi) ≤ 0.5), we would predict 21 failures,

of which 14 would be correctly classified. The overall misclassification rate in this case is 0.08.

This classification rule is indicated by 4 in the top panels of Figure 5.7. When our primary

objective is to identify the earlier failures, we may be willing to allow for a higher false positive

rate. For example, if we take c = 0.83, i.e. Ŵi,t1 = I(Sθ̂(−i)(t1|zi) ≤ 0.83), we would predict 55

failures, of which 24 would be correctly classified. This classification rule corresponds to × on

the ROC curves (top panels, Figure 5.7). The overall misclassification error in this case is 0.13.
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Figure 5.7: ROC curve for ranking ability of the Weibull regression model. The ROC curves

in the left and right panels assume random and independent censoring, respectively. The top

panels correspond to t1 = 2 years and assess the ability of the regression model for identifying

the early failures. The bottom panels correspond to t2 = 10 years and assess the ability for

identifying the long-term survivors. 4 displays (FPR(0.5), TPR(0.5)) based on the classifi-

cation rules Ŵi,t1 = I(Sθ̂(−i)(t1|zi) ≤ 0.5) and Ŵi,t2 = I(Sθ̂(−i)(t2|zi) > 0.5), for the top and

bottom panels, respectively.



Chapter 6

Probabilistic Prediction of Survival

Times

The prediction error and prediction power discussed in previous chapters focus on point predic-

tion. As mentioned in chapter 1, there is another type of prediction, probabilistic prediction,

which gives probabilities or prediction intervals for random variable Y . To do this, we use a

probabilistic predictor F̂p(y|z) = P̂ r(Y ≤ y | Z = z). Since it specifies a distribution for Y

given Z, the probabilistic predictor is also termed a predictive distribution. These two terms

are used interchangeably henceforth. Examples of probabilistic prediction in survival contexts

are easy to find. For example, clinicians may predict the 1-year survival probability to be 0.5

for one patient, and 0.1 for another. Furthermore, when clinicians make point predictions of

the survival time, there is usually an unstated probability attached to that prediction. In this

section, we consider methods of assessing and comparing predictive distributions for survival

times.

Predictive distributions have received much attention, ranging from classical settings that

do not involve covariates (e.g. Dawid 1984, Geisser 1993, Lawless and Fredette 2005) to com-

96
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plex settings involving meteorological processes (Gneiting et al. 2007). Several authors have

studied probabilistic prediction for survival times and made important contributions, e.g. van

Houwelingen and le Cessie (1990), Graf et al. (1999), Gerds and Schumacher (2006 & 2007).

Nonetheless, there remain interesting and challenging issues. We address some of them, which

include links between point and probabilistic predictors, and evaluation of the performance of

a probabilistic predictor. Special attention is paid to the characteristics of survival data, such

as long time span of studies and censoring of survival times.

A probabilistic predictor based on data D = {(yi, zi), i = 1, . . . , n} is denoted F̂p(y|z), where

z is a known vector of covariates. Often, F̂p(y|z) is of the form Fθ̂(y|z) where Fθ is a family of

distributions indexed by the parameter θ and θ̂ = θ̂(D). In survival settings, the survival time

Yi may be censored at the time of analysis or when prediction is carried out; that is, we only

know that Yi exceeds the censoring time Ci. A frequentist framework is used to discuss the

performance of predictive distributions. But Bayesian predictive distributions can be assessed

under this framework as well.

A good probabilistic predictor F̂p(y|z) should have two features, calibration and sharpness

(Gneiting et al. 2007). Calibration means that the probability is “honest”, in the sense that the

fraction of Y ≤ y given Z = z in future observations is close to F̂p(y|z). Sharpness measures

the degree of concentration of the predictive distribution F̂p(y|z), which is equivalent to the

sharpness of the corresponding predictive probability density function f̂p(y|z) = dF̂p(y|z)/dy.

A narrow prediction interval can be expected when the plot of density f̂p(y|z) vs. y is sharp-

looking. This concept has a connection with prediction power of a point predictor, which will

be shown later.

The notation used in the previous chapters is adopted here. First, we assume that there

is a conceptual sequence of data sets Dn = {(yi, zi), i = 1 . . . , n} based on independent units

(Yi, Zi). We assume further that given data D there is a procedure involving estimation and

other aspects of model selection for obtaining a predictive distribution F̂p(y|z). In addition, we
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assume that as n → ∞, F̂p converges at least pointwise to a limit F ∗, for all z. Finally, the

true distribution from which Y is generated given Z = z is denoted FT (y|z), and the Y -values

to be predicted correspond to Z-values arising from a distribution HZ(z). The Z-values in D

may come from a different distribution or in some cases may be fixed by investigators.

6.1 Calibration and Sharpness

6.1.1 Calibration

Various forms of calibration have been proposed; these depend on whether predictive probabil-

ities or prediction intervals are considered and whether D and Z are fixed or random. Let U(0,

1) denote the uniform distribution on the interval [0,1]. Then for continuous random variable

Y , we call F̂p(y|z) strongly calibrated if

U = F̂p(Y |z) ∼ U(0, 1), (6.1)

for all Z = z and where Y and D are both random. This differs from the strong calibration

definition of Gneiting et al. (2007), who do not consider explicitly covariates Z or specification

of F̂p. It is generally impossible to verify (6.1) when Z has continuous components, and a

weaker form of calibration is then

U = F̂p(Y |Z) ∼ U(0, 1), (6.2)

where Y, Z and D are all random.

Standard model checking procedures involve (6.1) and (6.2). The uniform probability plots

of residuals ûi = Fθ̂(yi|zi) provide checks of (6.2) on fitted models Fθ̂. We can also plot ûi against

zi or generate probability plots within strata defined by Zi. When probabilistic prediction based

on F̂p is the objective, one may prefer deletion residuals ûi = F̂p(−i)(yi|zi), where F̂p(−i) is based

on the data D/(yi, zi) with (yi, zi) dropped, similar to leave-one-out cross-validation. Other
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cross-validation residuals, or whenever possible, residuals ûj = F̂p(yj|zj) based on independent

“test” data (Yj, Zj) could be valuable, too.

The calibration discussed above is termed probabilistic calibration by Gneiting et al. (2007),

and we call (6.2) unconditional probabilistic calibration. In the same paper, Gneiting et al.

discussed two other types of calibration. One of them is marginal calibration, which compares

the observed and predicted Y -frequencies

F̂0(y) =
1

m

m∑
j=1

F̂p(y|zj) vs. F̃0(y) =
1

m

m∑
j=1

I(yj ≤ y), (6.3)

where (yj, zj) are test data.

Many authors consider calibration under the assumption that the family Fθ(y|z) includes

the true distribution FT (y|z); that is, FT (y|z) = Fθ0(y|z) for some θ0. In that case one can

seek a predictive distribution F̂p(y|z) so that (6.1) is true, either exactly or approximately.

If θ̂n = θ̂(Dn) is a consistent estimator of θ0 as n → ∞, then the standard “plug-in” choice

F̂p = Fθ̂n
yields (6.1) asymptotically. For finite n, a number of authors have discussed how

to make (6.1) exact, or at least more accurate (e.g. Lawless and Fredette 2005 and references

therein) in the case of classical settings where covariates are not considered.

6.1.2 Sharpness

Broadly, sharpness refers to the degree of dispersion of the predictor F̂p(y|z) (Gneiting et al.

2007). It can be quantified or assessed by the standard deviation of the predictive distribution or

the difference in its quantiles such as Q̂(0.95|z)−Q̂(0.05|z), where Q̂(α|z) satisfies F̂p(Q̂(α|z)) =

α. Note that (Q̂(α/2|z), Q̂(1 − α/2|z)) gives a central 1 − α prediction interval for Y given

z. When two or more well-calibrated predictive distributions are compared, the one with

shorter prediction intervals is deemed to be better. The sharpness of a predictive distribution

is naturally constrained by the sharpness of FT (y|z) and thus depends on the explanatory or
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prediction power of the covariates Z for Y . Numerous authors have noted that for survival

models the predictive power of the covariates is often rather low (e.g. Korn and Simon 1990,

Graf et al. 1999, Henderson et al. 2001, Schumacher et al. 2003, Bair and Tibshirani 2004,

Rosthøj and Keiding 2004, and Henderson and Keiding 2005).

The performance of probabilistic predictors F̂p(y|z), therefore, is determined by a combi-

nation of its calibration to FT (y|z), its sharpness, and the predictive power or sharpness of

FT (y|z). Performance scores, also known as scoring rules, address these features simultane-

ously and have been used as summary measures for assessing the performance of predictive

distributions.

6.2 Performance Scores

The two most common performance scores are the integrated Brier score (IBS) and logarithmic

score (LS). The IBS is defined as

IBS(Y ) =

∫ ∞

−∞
{I(Y ≤ s)− F̂p(s|z)}2ds =

∫ ∞

−∞
BS(Y ; s)ds, (6.4)

where BS(Y ; s) = {I(Y ≤ s) − F̂p(s|z)}2 is called the Brier score at time s. BS(Y ; s) defined

here is actually one half the traditional Brier score given by Brier (1950) and is the squared

error loss between the indicator variable I(Y ≤ s) and EF̂p
[I(Y ≤ s)].

The LS is defined as

LS(Y ) = − log f̂p(Y |z), (6.5)

where f̂p(y|z) = dF̂p(y|z)/dy is the predictive density function.

Given m individuals with Z-values z1, . . . , zm and realized Y -values y1, . . . , ym, the perfor-



Probabilistic Prediction of Survival Times 101

mance of a predictive distribution can be measured by the average IBS or LS,

IBS =
1

m

m∑
j=1

IBS(yj), (6.6)

LS =
1

m

m∑
j=1

{− log f̂p(yj|zj)}. (6.7)

We may also consider the expected IBS or LS, defined respectively as

EIBS = E{IBS(Y )}, ELS = E{LS(Y )}. (6.8)

The expectation is taken with respect to both Y and D, and often also with respect to a dis-

tribution HZ(z) for Z, because we are interested in assessing the performance of F̂p obtained

through a modeling procedure M . The definitions of EIBS and ELS are similar to the defi-

nition of prediction error π3(M ; FT , HZ) in section 1.2. EIBS is called the continuous ranked

probability score (CRPS) by Gneiting et al. (2007) and others. Similar to prediction error π,

the smaller the EIBS or ELS, the better the predictor.

The scoring rules address both calibration and sharpness, which can be seen by decomposing

the EIBS and ELS as follows:

EIBS = EZ

∫ ∞

−∞
FT (y|z)(1− FT (y|z))dy

+EZ

∫ ∞

−∞
ED{F̂p(y|z)− FT (y|z)}2dy (6.9)

ELS = EZE{− log fT (Y |z)}+ EZE[log{fT (Y |z)/f̂p(Y |z)}]. (6.10)

The first terms in (6.9) and (6.10) are measures of sharpness of FT (y|z) which depend on the

inherent variation of Y given Z. The second terms can be interpreted as bias or goodness of

fit measures, which capture the discrepancy between F̂p and FT . In fact, the second term in

(6.10) is the well-known Kullback-Leibler distance, which gives the distance from fT (density

of FT ) to the predictive density f̂p averaged over the Z distribution. Both (6.9) and (6.10) are

minimized when F̂p = FT for all Z, with the lower limits given by the first terms.
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The first term of EIBS is less transparent and we give some connection with other mea-

sures. First we prove the following result, which links the first term in (6.9) with the length of

prediction intervals.

Theorem 6.2.1 Let Q(p|z) = F−1
T (p|z) denote the p-quantile of Y given Z = z (0 < p < 1),

so that L(α; z) = Q(0.5 + 0.5α | z)−Q(0.5− 0.5α | z) is the length of the central α prediction

interval for Y given z (0 < α < 1). Assuming E(Y |Z) exists, we have

∫ ∞

−∞
FT (y|z)[1− FT (y|z)]dy =

∫ 0.25

0

L(
√

1− 4v; z)dv. (6.11)

Proof: For notational convenience we will suppress z in the following development. Let yL(v)

and yU(v) be the smaller and larger of the two y-values satisfying F (y)[1 − F (y)] = v. When

F (y) is a continuous distribution function, we can verify that

F (yL(v)) = 0.5− 0.5
√

1− 4v and F (yU(v)) = 0.5 + 0.5
√

1− 4v.

for 0 < v ≤ 0.25. By the definition of Q(p) and L(α), we can show

yU(v)− yL(v) = Q(0.5 + 0.5
√

1− 4v)−Q(0.5− 0.5
√

1− 4v) = L(
√

1− 4v),

which is illustrated in Figure 6.1. Therefore, provided that E(Y ) exists

∫ ∞

−∞
F (y)[1− F (y)]dy =

∫ 0.25

0

L(
√

1− 4v)dv.

Note that the integral on either side of equation (6.11) represents the area under the curve as

shown in Figure 6.1. The integral on the left hand side corresponds to integrating from left to

right with respect to y and the integral on the right hand side corresponds to integrating with

respect to v from 0 to 0.25.

Gneiting et al. (2007) suggest using both a Brier score plot and the boxplot of widths

of prediction intervals for the visual comparison of the probabilistic predictors. The above

theorem shows that the two types of plot are equivalent.
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Figure 6.1: Illustration of Theorem 6.2.1.
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Links can also be established between prediction error π for point predictors and expected

performance scores for predictive distributions, due to the fact that π are in essence measures

of variation around the point predictor. A connection for the first term of EIBS with expected

absolute error loss is given by the following theorem.

Theorem 6.2.2 Let m(Z) denote the median of Y given Z under FT (y|z). Then

0.5E{|Y −m(z)|} ≤
∫ ∞

−∞
FT (y|z)[1− FT (y|z)]dy ≤ E{|Y −m(z)|}. (6.12)

Again, for notational convenience, we suppress z in the following proof.

Proof: It is easily seen that for any distribution function F (y),

0.5 min(F (y), 1− F (y)) ≤ F (y)[1− F (y)] ≤ min(F (y), 1− F (y)),

in addition, integration by parts gives

∫ ∞

−∞
min(F (y), 1− F (y))dy =

∫ m

−∞
F (y)dy +

∫ ∞

m

(1− F (y))dy

=

∫ m

−∞
(m− y)f(y)dy +

∫ ∞

m

(y −m)f(y)dy

= E{|Y −m|}

This provides a link between the expected absolute error loss and (6.11). It can also be

shown along similar lines that

∫ ∞

−∞
FT (y|z)[1− FT (y|z)]dy = E{|Y −m(z)||1− 2F (Y |z)|},

which gives (6.11) explicitly as an expected loss corresponding to the loss function L(Y, Ŷ ) =

|Y − Ŷ ||1− 2F (Y |z)| where Ŷ = m(z).
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6.3 Estimation of Expected Performance Scores

When “test” data {(yj, zj), j = 1, . . . , m} is available for the assessment of F̂p(y|z), the average

integrated Brier score or logarithmic score over the predictions can be computed as in (6.6)

and (6.7). However, when the test data is not available, it is often of interest to estimate

the expected performance scores, i.e. EIBS or ELS (6.8). Graf et al. (1999) and Gerds and

Schumacher (2006 & 2007) have recently considered this for the EIBS and also for the expected

Brier score, EBS(s) = E[BS(Y ; s)], in the case of survival time prediction. They provide point

estimates, but these are typically subject to substantial sampling variation, as are the prediction

error estimates. We use the bootstrap method for confidence interval estimation (see section 6.4

below), similar to the confidence interval procedures for prediction error given in section 2.4.

The procedures can be applied to either the EIBS or ELS.

In survival settings, the followup time is usually limited. Therefore, we consider truncated

versions of IBS(Y), LS(Y) and their expectations. In particular, let τ denote an upper limit or

followup time. We consider

IBS(Y ; τ) =

∫ τ

0

{I(Y ≤ s)− F̂p(s|z)}2ds =

∫ τ

0

BS(Y ; s)ds (6.13)

and

LS(Y ; τ) = I(Y ≤ τ){− log f̂p(Y |z)}+ I(Y > τ){− log Ŝp(τ |z)}, (6.14)

where Ŝp(τ |z) = 1− F̂p(τ |z) is the predictive survivor function. The expectations of (6.13) and

(6.14) are then

EIBS(τ) = E{IBS(Y ; τ)}, and ELS(τ) = E{LS(Y ; τ)}. (6.15)

Here the expectations are with respect to Y , Z and the data D giving F̂p(y|z). Graf et al. (1999)

and Gerds and Schumacher (2006 & 2007) considered bootstrap, cross-validation or simple plug-

in estimates of the EIBS(τ) based on data D. An important contribution they made is the

introduction of IPCW to address the censored BS(y; s), as discussed in section 2.2.1 and this

is briefly reviewed below.
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The notation used here are similar to those in section 2.2.1, let Y denote the survival time

and C denote the censoring time. The observed data D on n independent individuals consist

of {(Ti, δi, Zi), i = 1, . . . , n}, where Ti = min(Yi, Ci), and δi = I(Yi ≤ Ci). Let

∆i(s) = I(BS(Yi; s) is observed).

Note that ∆i(s) = 1 if δi = 1 or if δi = 0 but Ci > s. To apply IPCW, we assume independent

censoring, and that

Ŝc(s|zi) = P̂ r(Ci > s | zi), i = 1, . . . , n,

provides consistent estimators of the Pr(Ci > s | zi). A naive or “plug-in” IPCW estimate of

EIBS(τ) for the case in which Z has a uniform distribution on the values {z1, . . . , zn} observed

in D is then (Gerds and Schumacher, 2006 & 2007)

ÊIBS(τ) =

∫ τ

0

ÊBS(s)ds

=

∫ τ

0

1

n

n∑
i=1

∆i(s)

αi(s)
BS(yi; s)ds, (6.16)

where αi(s) = Sc(yi ∧ s|zi) = Pr(∆i(s) = 1 | yi, zi). Assuming that Sc(τ |z) > 0 for all z, (6.16)

provides a consistent estimator of EIBS(τ) as n →∞ (Gerds and Schumacher 2006).

The same IPCW approach can be applied to the estimation of ELS(τ) when some LS(yi, τ)

are censored. Define

∆1i = I(Yi ≤ τ, Yi ≤ Ci) and ∆2i = I(Yi > τ,Ci > τ),

then αi = Sc(Yi ∧ τ |zi) and the estimator of ELS(τ) is

ÊLS(τ) =
1

n

n∑
i=1

{
∆1i

αi

[− log f̂p(yi|zi)] +
∆2i

αi

[− log Ŝp(τ |zi)]

}
. (6.17)

The plug-in estimator (6.16) and (6.17) may be expected to underestimate the true expected

performance score with respect to new data, because they are based on the training data D that

was used to obtain F̂p(y|z). This is similar to the underestimation of apparent loss for prediction
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error discussed in section 1.2.1. A cross-validation estimator (e.g. Gerds and Schumacher 2007)

is a preferable alternative, especially when n is not very large relative to model size. The V -fold

cross-validation estimator is, for EIBS(τ), given by

B̂S−v(Y ; s) = {I(Y ≤ s)− F̂p(−v)(s|z)}2, (6.18)

ÊIBS
cv

(τ) =

∫ τ

0

1

n

V∑
v=1

∑
i∈Sv

∆i(s)

α̂i(s)
BS−v(yi; s)ds (6.19)

where F̂p(−v)(y|z) is based on D with Sv left out. Note that α̂i(s) is still estimated from the

complete data D, as suggested by Gerds and Schumacher (2007). The cross-validation version

of the ELS(τ) estimator could be similarly defined as

ÊLS
cv

(τ) =
1

n

n∑
i=1

{
∆1i

α̂i

[− log f̂p(−v)(yi|zi)] +
∆2i

α̂i

[− log Ŝp(−v)(τ |zi)]

}
. (6.20)

6.4 Construction of Confidence Intervals

In section 2.4, we used bootstrap methods for the construction of confidence intervals for

prediction error, which worked well as demonstrated by the simulation studies in chapters 3

and 4. We take a similar approach here for EIBS(τ) and the confidence interval procedures

are based on the generation of B pseudo training samples D∗
b (b = 1, . . . , B) by nonparametric

bootstrap sampling. Parametric bootstrap for generating D∗
b is not considered due to the

sensitivity of the parametric bootstrap to model misspecification, as discussed in chapter 3.

The confidence interval procedures based on the V -fold cross-validation estimator ÊIBS
cv

(τ),

abbreviated ÊIBS, is discussed here for illustration. We need B bootstrap estimates ÊIBS
∗
b ,

each from a pseudo training data set D∗
b , for the estimation of var(ÊIBS). The procedure starts

by drawing n items from the original training data D = {(yi, zi), i = 1, . . . , n} with replacement,

to give D∗
b . Then we divide each D∗

b into S∗v , V sets of approximately equal sizes, and apply the

modelling procedure on D∗
b with S∗v omitted. The resulting predictive distributions F̂ ∗

p(−v)(y|z)
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are used to give estimates of B̂S
∗
−v(yi; s) for yi ∈ S∗v as in (6.18) and then ÊIBS

∗
b as in (6.19).

Note that α̂∗i (s) in (6.19) is estimated from the complete data D∗
b .

The variance of ÊIBS is estimated with the bootstrap estimates ÊIBS
∗
b , b = 1, . . . , B,

v̂ar(ÊIBS) =
1

B − 1

B∑

b=1

(ÊIBS
∗
b − ÊIBS

∗
)2,

where ÊIBS
∗

=
∑B

b=1 ÊIBS
∗
b/B. We then treat (ÊIBS − EIBS)/

√
v̂ar(ÊIBS

∗
) as a normally

distributed pivotal quantity, producing 1−α confidence intervals ÊIBS±Φ−1(α/2)

√
v̂ar(ÊIBS

∗
),

where Φ(·) denote the cumulative distribution function of the standard normal distribution and

Φ−1(α/2) gives the α/2 quantile for the standard normal distribution.

6.5 An Example

For illustration, we use the Mayo PBC data and consider the Weibull, Lognormal and Cox PH

models with variable selection (see section 5.2 for details). The performance of the probabilistic

predictors given by the fitted models is assessed with the methods discussed above.

We first look at the calibration. Figure 6.2 shows unconditional probabilistic calibration and

marginal calibration plots of the three models. The probabilistic calibration plot is a uniform

probability plot of residuals. Let û(i), i = 1, . . . , n denote the ordered ûi = F̂p(yi|zi); the

uniform probability plot plots E(U(i)) = i/(n + 1) under the U(0, 1) hypothesis vs. û(i). Points

that follow a straight line with intercept 0 and unit slope suggest a well calibrated probabilistic

predictor F̂p(yi|zi). For a censored survival time yi, its corresponding ûi = F̂p(yi|zi) is also

censored and the Kaplan-Meier estimate of Pr(U > ûi) is used. We then plot the estimated

P̂ r(U ≤ ûi) vs. the observed ûi. Note that the ûi plotted in the left panels of Figure 6.2

are the leave-one-out cross-validation (LOOCV) estimates F̂p(−i)(yi|zi). The graphs indicate

that the three models are satisfactory in terms of unconditional probabilistic calibration (6.2),
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Figure 6.2: Calibration plots for the Weibull, Lognormal and Cox PH models on PBC data.

The left panels are the unconditional probabilistic calibration plots and the right panels are

the marginal calibration plots.
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since there is no obvious departure from the reference lines. However, we should not read too

much into the plot for the Cox PH model, because Cox PH is a semi-parametric model with a

nonparametric component. When the effects of covariates are small, the ui of Cox PH model

are close to U(0,1) by construction (Lawless 2003, page 359).

A marginal calibration plot proposed by Gneiting et al. (2007) is adopted in Figure 6.2.

It plots the difference of F̂0(y) and F̃0(y), both defined in (6.3), as a function of time y. Note

that our F̂0(y) is a LOOCV estimate, given by n−1
∑n

i=1 F̂p(−i)(yi|zi) and F̃0(y) is the Kaplan-

Meier estimate. Three such plots are made, for the Weibull, Lognormal and Cox models,

respectively. They are displayed in the right panels of Figure 6.2. Under the hypothesis

of marginal calibration, we expect to see minor fluctuations around the horizontal line at 0.

The plots show small oscillations around 0 for small Y , but as Y increases, the variability in

F̂0(y)− F̃0(y) also increases. This pattern holds true for all three models. It may be partially

due to the fact that the variance of the estimated marginal probability F̃0(y) increases as y

increases. Intuitively, as time passes and more subjects are censored, we have fewer subjects

in the sample and the estimate of marginal survival probability becomes less precise. We also

notice that the marginal calibration plots for Lognormal and Weibull models have very similar

patterns, indicating that the F̂0(y) estimates are very close between these two models. Cox PH

model shows the best marginal calibration with the empirical F̃0(y) among the three competing

models. This is somewhat due to the semiparametric nature of Cox PH model. Note that if

we fit a nonparametric model to the marginal distribution of Y , e.g. a Kaplan-Meier estimate

for F̂p(y), then we have perfect marginal calibration as well as unconditional probabilistic

calibration.

The point estimates of EIBS(τ) (for τ = 10 years) and the confidence intervals for the three

competing models are summarized in Table 6.1. Nonparametric bootstrap with B = 500 is

used for confidence interval estimation. The LOOCV estimates of EIBS(τ) are greater than

their plug-in counterparts, both sets of estimates are contained in the confidence intervals of

each other. The LOOCV estimates of EIBS(τ) of Weibull and Cox PH model are close. The
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Weibull Lognormal Cox PH

π̂ 95% CI π̂ 95% CI π̂ 95% CI

Plug-in 1.06 (0.88, 1.23) 1.12 (0.93, 1.35) 1.01 (0.82, 1.20)

LOOCV 1.14 (0.94, 1.30) 1.22 (1.00, 1.43) 1.12 (0.90, 1.34)

Table 6.1: The estimated expected integrated Brier score and 95% confidence interval for the

PBC data under the Weibull, Lognormal and Cox PH models, truncated at τ = 10 years. The

confidence intervals are based on 500 nonparametric bootstrap samples and the approximation

that ÊIBS are normally distributed.

confidence intervals under Cox PH model are slightly wider than under Weibull model. The

estimated EIBS(τ) of Lognormal model (both plug-in and LOOCV estimates) are the greatest,

but they are still located inside the respective confidence intervals of the other two models.

Overall, these results suggest that the predictive performance of the three competing models

are similar for the PBC data. The EIBS(τ) of the marginal distribution of Y , which corresponds

to the Kaplan-Meier estimate F̃0(y), often serves as a reference for model-based probabilistic

predictors (e.g. Schumacher et al. 2003). For the PBC data, the estimated marginal EIBS(τ) is

1.72 and the corresponding confidence interval is (1.55, 1.89), much greater than the estimates

of the regression models reported in Table 6.1.

Figure 6.3 plots the estimated expected Brier score ÊBS(y) for the three associated models.

The two graphs in the top panels and the one in the bottom left panel illustrate the integral

representation on the right hand side of the plug-in estimator (6.16) and the LOOCV estimator

(6.19) of ÊBS(y), respectively for Weibull, Lognormal and Cox PH models. The last graph in the

bottom right panel contrasts the ÊBS(y) of the marginal model with the LOOCV estimates of

the three regression models. Note that for Cox PH model and the marginal model, the expected

Brier scores are evaluated at distinct failure times and ÊBS(y) are step functions of y. On the

other hand, the expected Brier scores for Weibull and Lognormal models are estimated at 100

evenly spaced time points between 0 and 10 years; the graphs consist of line segments that
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connect neighboring points.

As expected, we find that the cross-validation estimates are slightly greater than the plug-in

estimates for all three regression models (top panels and bottom left panel in Figure 6.3). The

last graph indicates that ÊBS(y) of Lognormal model is a bit larger than those of Cox PH

and Weibull models, which are close. Since a smaller score indicates better performance, we

may conclude that the Cox PH and Weibull model outperform the Lognormal model on the

PBC data in terms of probabilistic prediction. However, the difference in performance is small

and very likely insignificant, as suggested by the largely overlapping confidence intervals of

EIBS(τ) of the three models (Table 6.1). The line representing ÊBS(y) of the marginal model,

which lies above the other lines of the regression models, is plotted in the same graph as a

reference. For some region of y, e.g. year 3 to 6, the difference of ÊBS(y) between the marginal

model and the regression models is large, which suggests superior predictive performance of

the probabilistic predictors given by the regression models. We further note that this graph is

similar to Figure 5.6, which shows the misclassification error of the marginal model and Weibull

model at selected time points.

The expected logarithm score ELS(τ) and the associated confidence intervals could also be

estimated, using (6.17) and the confidence interval procedures described above, for the PBC

example and the three models. But whether ELS(τ) of different models with possibly different

model sizes are truly comparable remains an open question. Simulation studies to examine

the width and coverage of prediction intervals, the estimators of EIBS(τ) and ELS(τ), and

the performance of the proposed confidence interval procedures would be worthwhile. This

investigation will be carried out in the future.
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Figure 6.3: Expected Brier score plot on PBC data. The plug-in (dashed line) and leave-one-out

cross-validation (LOOCV, solid line) estimates are plotted in the top panels and the bottom

left panel for Weibull, Lognormal and Cox PH model, respectively. The graph in the bottom

right panel shows the estimated expected Brier score for the marginal model with the LOOCV

estimates of the three regression models.



Chapter 7

Future Research Topics

7.1 Change of Covariates’ Distribution

In previous chapters, we assume that the prediction is made for Y arising from the same joint

distribution (Y, Z) where the training data D is from. That is, both the conditional distribution

function FT (y|z) and the marginal distribution function HZ(z) stay stationary. Moreover, when

the estimation of prediction performance is considered, we further assume that Z is uniformly

distributed on the values (z1, . . . , zn) observed in D, see (1.4), (6.16) and (6.17). This very

restrictive assumption is frequently made by other authors, either explicitly (e.g. Efron 2004)

or implicitly (e.g. Gerds and Schumacher 2007). In this section, we relax the assumption

on the distribution of Z and consider the case where prediction of Y is made for Z ∼ HM(z),

different from the Z distribution HD(z) in the training data. We call it the changing covariates’

distribution problem, which naturally applies to the prediction for future population where Z

distribution is likely to evolve over time, e.g. the age structure in the population of patients

with certain diseases.

Shimodaira (2000) studied this issue for probabilistic predictor. He considered a simple

114



Future Research Topics 115

case where Z is univariate. Let hM(z) = dHM(z)/dz denote the density function of the new

Z for which prediction is to be made and hD(z) = dHD(z)/dz denote the density function

of covariates Z observed in D. By using the importance sampling identity, Shimodaira (2000)

showed that when the weighting function ξ(z) = hM(z)/hD(z) is applied to the observed sample

for the estimation of θ, the resulting predictive distribution Fθ̂(y|z) is optimal, in the sense that

the expected logarithm score averaged over HM(z) is minimized.

We consider the HM 6= HD situation for point predictor. Our objective is to assess the

performance of predictor ŶD(Z) = G(Z; θ̂), obtained by applying modeling procedure to train-

ing data D of size n that comes from FT (y|z)HD(z). The prediction error of ŶD(Z) for

DM = {(yj, zj), j = 1, . . . , m} arising from FT (y|z)HM(z) is of interest. That is, we want

to estimate

π(M ; FT , HM , HD) = EHM ,FT ,HD
[L(Y, ŶD(Z))]. (7.1)

For simplicity π(M ; FT , HM , HD) is abbreviated as π(HM). Suppose such DM is available, then

the average prediction loss

PL =
1

m

m∑
j=1

L(yj, ŷD(zj))

provides a consistent estimator of π(HM). When covariates Z from HM(z) are available but Y

is yet to be observed, π(HM) has to be estimated with training data D and HM(z).

To get an idea of how prediction error is affected by the change of covariates’ distribution,

consider a normal linear model with p covariates,

Y = Zβ + ε, ε ∼ N(0, σ2).

Let ZD and ZM denote the n×p and m×p covariate matrices associated with YD (n×1 vector)

in the training data and YM (m×1 vector) to be predicted, respectively, and µM = E(YM |ZM).

We further assume that ZD and ZM are fixed. Using squared error loss, the optimal predictor
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is ŶD(ZM) = ZM β̂D. It follows that

π(HM) =
1

m
EFT

[(YM − ŶD(ZM))T (YM − ŶD(ZM))]

=
1

m
EFT

[(YM − µM)T (YM − µM)]

+
1

m
EFT

[(ŶD(ZM)− µM)T (ŶD(ZM)− µM)]

= σ2 +
1

m
trace[var(β̂D)(ZT

MZM)]

= σ2 +
σ2

m
trace[(ZT

DZD)−1(ZT
MZM)]. (7.2)

When ZM = ZD, (7.2) simplifies and π(HM) = (1 + p/m)σ2; when ZM 6= ZD, π(HM) depends

on the relationship between ZD and ZM , and has to be evaluated numerically. This example

indicates that when estimating prediction error, the covariates’ distribution should be accounted

for, even when the error distribution of Y given Z is the same for all z.

In section 1.2.1, we discussed three approaches, namely the model-based, the apparent loss

based and the cross-validation methods, for the estimation of π(M ; FT , HD). When HM 6= HD,

we note that the model-based method can be applied directly with minor adjustments. The

apparent loss and cross-validation based methods require further consideration and we offer

some preliminary thoughts and proposals.

7.1.1 Model-based method

Assume sets (z′1, . . . , z
′
m) and (z1, . . . , zn), respectively coming from HM and HD, are given.

The empirical distributions based on the two sets are denoted by H̃M and H̃D henceforth. The

model-based method uses an estimator F̂T , from which D given H̃D and DM given H̃M are

assumed to arise. The estimator is then

π̂m(H̃M) = π̂(M ; H̃M , F̂T , H̃D) =
1

m

m∑
j=1

ED

∫

AY

L(y, G(z′j; θ̂))dF̂T (y|z′j), (7.3)
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where AY denotes the range of Y . A popular choice for F̂T is the fitted model Fθ̂. We

commented in section 1.2 that θ̂ = θ̂(D) is a complex function of training data D and therefore

an analytical estimate of π(H̃M) is usually not feasible. We can use a simulation procedure as

shown below to evaluate (7.3):

1. Apply the prediction procedure M to D, giving an estimated model Fθ̂(y|z).

2. Generate pseudo data D∗k = {(y∗1, z1), . . . , (y
∗
n, zn)} and D∗k

M = {(y′∗1 , z′1), . . . , (y
′∗
m, z′m)}

from Fθ̂(y|z).

3. Apply the modeling procedure to D∗k, which gives predictor ŷD∗k = G(z; θ̂∗k). With loss

function Lτ (Y, Ŷ ), the average prediction loss for D∗k
M is

PLk =
1

m

m∑
j=1

Lτ (y
′∗
j , G(z; θ̂∗k)).

4. Repeat steps 2 and 3 K times, obtaining a model-based estimate of prediction error

π(H̃M)

π̂m(H̃M) =
1

K

K∑

k=1

PLk.

For censored survival data, we modify the above procedures by generating censoring times, as

described in section 2.4. If instead of specific sets (z′1, . . . , z
′
m) and (z1, . . . , zn), HM and HD are

known, we can generate Z∗
M and Z∗

D randomly from the corresponding distribution functions

for D∗k
M and D∗k in step 2.

A critical problem with this approach is that when the model is misspecified, the model-

based estimator (7.3) converges to π(M ; HM , Fθ∗ , HD), rather than π(M ; HM , FT , HD), under

suitable regularity conditions. This can be shown along similar lines given in section 2.3.
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7.1.2 Weighting the apparent loss and cross-validation estimators

The estimators based on apparent loss (1.16) and cross-validation method (1.17) converge to

π(M ; FT , HD) asymptotically, thus they may not be appropriate estimators on their own for

π(HM). Inspired by Shimodaira (2000), we consider importance sampling and obtain

π(HM) = EHM ,FT ,HD
[L(Y, ŶD(Z))]

= EHD

∫

AM

∫

AY

L(y, ŷD(z))FT (y|z)hM(z)dydz

= EHD

∫

AD∪AM

∫

AY

hM(z)

hD(z)
L(y, ŷD(z))FT (y|z)hD(z)dydz

= EHD,FT

[
hM(z)

hD(z)
L(y, ŷD(Z))

]
, (7.4)

where AM denotes the range of Z in HM . For (7.4) to hold, we require AD ⊇ AM where

AD denotes the range of Z in HD, so that hM(z)/hD(z) exists for all z ∈ AD. The last term

EHD,FT

{
hM(z)
hD(z)

L(y, ŷD(Z))

}
in (7.4) can be estimated by, for example, a weighted apparent

loss based estimator

π̂(H̃M) =
1

n

n∑
i=1

ξiL(yi, ŷi) (7.5)

with

ξi = ĥM(zi)/ĥD(zi), (7.6)

This seems to be a sensible approach. Theoretically we could estimate the density of Z using

kernel or projection pursuit method, but it is well-known that for moderate number of covari-

ates, an accurate estimate of the multivariate density hM or hD is difficult to obtain, especially

when Z has both continuous and categorical components. This might be the reason that in

Shimodaira (2000) a single explanatory variable Z with normal density is considered.

The weighting approach suggested in (7.5) may still be a viable idea. The most appropriate

weight for L(yi, ŷi), is given by hM(zi)/hD(zi), the relative probability of observing zi in HM to

observing it in HD. Motivated by the above, we consider constructing the weights with respect
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to the relative location of zi in H̃D and H̃M , using some distance measure. In particular, we

choose the Mahalanobis distance, which is defined as

dij =
√

(zi − z′j)Σ
−1
M (zi − z′j) (7.7)

for points zi in H̃D and z′j in H̃M . It measures the distance of zi to z′j scaled by the covariance

matrix ΣM of H̃M . We use this distance because we think it is important to consider the

correlation structure among the covariates when distance between vectors are measured.

Let K(·) denote a kernel function, we define

ηij =
K(dij)∑n
i=1 K(dij)

.

ηij is a measure of influence from zi to z′j relative to other points in H̃D, and increases as zi

approaches z′j. Summing ηij over j, we get

ηM
i =

m∑
j=1

ηij =
m∑

j=1

K(dij)∑n
i=1 K(dij)

.

ηM
i gives the overall contribution of zi to H̃M . It increases as zi approaches the high density area

of H̃M . Thus ηM
i gives a density-like estimate of zi in H̃M . Note that ηij is defined such that

ηM
j =

∑n
i=1 ηij = 1 for all z′j. This constraint ensures that each observation (y′j, z

′
j) contributes

equally to the estimator π(H̃M). Similarly, we get the density-like estimate of zi in H̃D with

dii′ =
√

(zi − z′i)Σ
−1
D (zi − z′i)

ηii′ =
K(dii′)∑n

i=1,i6=i′ K(dii′)
,

ηD
i =

n∑

i′=1,i′ 6=i

ηii′ =
n∑

i′=1,i′ 6=i

K(dii′)∑n
i=1,i6=i′ K(dii′)

,

and note that ηD
i′ =

∑n
i=1,i6=i′ ηii′ = 1.

The weight ξi in (7.5) is then estimated by

ξi = ηM
i /ηD

i . (7.8)
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Simulation studies are needed to examine the proposed distance-based nonparametric method.

We showed that for normal linear models with fixed number of covariates, the prediction

error on DM has a closed form

π(HM) = σ2(1 +
1

m
trace[(ZT

DZD)−1(ZT
MZM)].

If we ignore the change in the distribution of Z and use π = σ2(1 + p/n) as the estimator for

π(HM), the bias is

Bias = π − π(HM) = σ2{p

n
− 1

m
trace[(ZT

DZD)−1(ZT
MZM)]}

The magnitude of the bias depends on trace[(ZT
DZD)−1(ZT

MZM)]. We conducted a simulation

experiment to examine the bias and the performance of the proposed weighted estimator. The

simulation model is

log(Y ) = β0 + β1Z1 + β2Z2 + ε, ε ∼ EV(0, 1),

where

HD ∼ BVN





 2

2


 ,


 10 1

1 4





 HM ∼ BVN





 2.5

1.6


 ,


 4 0.6

0.6 1







The sample size is n = 200 for training data D and m = 100 for new data DM . We use

the absolute relative error loss (L(Y, Ŷ ) = | log Y − log Ŷm|) to evaluate prediction performance

and the Gaussian kernel function for estimation of the weights ξ given by (7.8). The simulation

results suggest that the weighted estimator (7.5) is indeed less biased. But the bias of π−π(HM)

is small and amounts to less than 4% of average(π̂). In addition, the variance of weighted

estimator π̂(HM) tends to be greater than that of π̂ because wi > 1 for some i. Thus, the

weighting method does not offer substantial improvement under the current simulation setting.

It is difficult to reduce the variance inflation, since it is inherent in the weighting method. We

may, however, find a setting in which the bias of π − π(HM) is relatively large and justify the

use of the weighted estimator. Possible settings include:
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• Under the above simulation setting, we assess the prediction error with L(Y, Ŷ ) = |Y − Ŷ |
on the original scale of Y instead of using the loss function on the log(Y ) scale. This is

because log(Y ) given Z has the same error distribution, fixed by the simulation model.

Therefore, EFT
[L(log(Y ), log(Ŷ )) | Z] are identical for all z. But E[L(Y, Ŷ ) | Z] under

FT depends on Z through the linear predictor βT Z.

• We can consider assessing the prediction error with the truncated loss function Lτ (Y, Ŷ ).

The truncated loss also depends on Z through the linear predictor βT Z.

• We can also consider the case where some points in HM are far away from the points in

HD, e.g. reversing the role of HM and HD in the above simulation setting.

7.2 Other Topics

7.2.1 Issues in prediction error and prediction power estimation

In chapters 2, 3 and 4, we studied the performance of point predictors allowing for model

misspecification and variable selection, and proposed prediction error estimators for censored

survival data. The model-based point and confidence interval estimators are shown to be

sensitive to model misspecification, by which we mean the error distribution is wrongly specified.

This is different from the model misspecification studied by Rosthøj and Keiding (2004), where

they examine the misspecification of the linear predictor in the normal and the logistic regression

models. They found that the model-based prediction power estimates are close to the true

prediction power. Presumably under our definition of model misspecification, the model-based

estimators of marginal prediction error and prediction power should behave like the model-

based estimators for regression models and be biased estimators. This can be investigated in

the future.
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We studied the parametric models with simulation studies (chapter 3 and 4) and compared

the prediction performance of parametric models and semi-parametric Cox PH model in the

data analysis examples (chapter 5). Presumably, properties of prediction error and confidence

interval estimates of the Cox PH model are similar to those of the parametric models, but

investigation of this could be valuable. Predictors given by nonparametric modeling procedures

such as regression trees and neural networks could also be examined under the same framework,

however, their confidence intervals require more computation.

7.2.2 Prediction with time-varying covariates

Current literature and the present study limited the attention to the baseline covariate values

and evaluated their prediction performance for short and long-term survival time. Realistically,

it may not be reasonable to expect that the baseline values have much power in determining the

long-term survival probabilities. Often during the followup period, patients are seen regularly

and measurements of certain physiological variables are repeatedly taken to monitor the disease

progression. Some of these time-varying physiological variables could be predictors of failure

occurring in the near future. Thus it is important to model them for the prediction of short-

term survival experiences and disease progressions. For example, a patient might be predicted

to survive the next 6 months if,

P̂ r(Yi > t + s | Yi > t, Zi(t)) > 0.5,

where s = 6 months, and Z(t) represents the values of time-varying covariates at time t.

Alternatively, we could use P̂ r(Yi > t + s | Yi > t, Zi(t)) as a probabilistic predictor.

Taylor et al. (2005) modeled the baseline covariates along with the time-varying prostate-

specific antigen (PSA) for prostate cancer patients and were successful in predicting future

PSA values and times to clinical recurrences. It is our interest to investigate the assessment of

predictors’ performance in this ”dynamic” setting.
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7.2.3 Updating and sequential validation of prediction performance

In survival studies, patients are often recruited for a period of time. Their survival times could

be highly variable and sometimes may be very large. Therefore, a long study or followup time

may be needed to obtain performance measures for statistical models. These measures include

prediction error (1.3) for point predictors, expected integrated Brier score (EIBS) (6.6) and

expected logarithm score (ELS) (6.7) for probabilistic predictors, or the truncated versions like

EIBS(τ) and ELS(τ) (6.15). Therefore, we may wish to recalculate the performance measures

periodically as the followup time increases. It is then important to study the updating of

performance measures for predictors on a cohort.

Let us consider the probabilistic predictor. Denote t the time when prediction is made and

suppose that at time t, the followup time for individual j (i.e. time since their survival time

origin) is cj(t). We then consider IBS(τ)(6.13) and LS(τ) (6.14) at time t with τ = cj(t).

For example, the truncated logarithm score for individual j at calendar time t is given by

LS(yj; cj(t)). Then at a subsequent time t + s, the updated LS takes the form

LS(yj; cj(t + s)) =





LS(yj; cj(t)) if yj ≤ cj(t)

LS(yj; cj(t))− log

(
f̂p(yj|zj)

Ŝp(cj(t)|zj)

)
if yj ∈ (cj(t), cj(t + s)]

LS(yj; cj(t))− log

(
Ŝp(cj(t + s)|zj)

Ŝp(cj(t)|zj)

)
if yj > cj(t + s)

Note that once individuals are observed to fail, that is, yj ≤ cj(t), their logarithm scores remain

constant. Similarly, we can update IBS(yi, cj(t)) as t increases,

IBS(yj, cj(t)) =

∫ cj(t)

0

[I(yj ≤ s)− F̂p(s|zj)]
2ds,

IBS(yj, cj(t + s)) = IBS(yj, cj(t)) +

∫ cj(t+s)

cj(t)

[I(yj ≤ s)− F̂p(s|zj)]
2ds.

The above equation suggests that the integrated Brier score may increase as t increases after

the observation of individual’s survival time, in which case LS stays constant. This form of
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update is also convenient when there are time-varying covariates. In that case, it is useful to

consider the increments to the individual scores at time interval (t, t+s). We intend to develop

the methodology for sequential validation and assessment of F̂p(y|z) when censoring is present.

7.2.4 Additional topics

Many other topics related to prediction in general or specifically for survival times are worth

investigation. For example, we can check for the unconditional probabilistic calibration (6.2)

with the uniform probability plot of residuals. But the method to check for the stronger version

of probabilistic calibration (6.1) has yet to be developed. We are interested to address this issue.

In addition, in section 6.1 we mentioned that methods are available to improve the probabilistic

calibration of Fθ̂(y) for finite n under conditions i) the family Fθ(y) we specify includes the

true distribution FT (y); ii) no covariates are allowed. It would be interesting to extend some of

the methods to the regression models with covariates so that the calibration of the “plug-in”

predictive distribution Fθ̂(y|z) can be improved and consequently a well-calibrated prediction

interval for Y given Z = z can be obtained.

Survival analysis is regarded as a special case of event history analysis, which models the

occurrence of various types of events. Interesting and challenging prediction problems in event

history analysis include the prediction of time to multiple endpoints, the prediction of the

number of events in a given time period, updating prediction as events take place, and etc. We

would like to generalize the methodologies developed for survival models to the event history

framework and provide measures for prediction performance.

The consistency of IPCW estimators depends on the correct specification of the censoring

time distribution. Gerds and Schumacher (2006) studied the misspecification of the censoring

time distribution and showed that the IPCW estimator B̂S(y) could have considerable bias. It

is of interest then to compare the bias introduced by misspecified censoring distribution with
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the bias introduced by discarding censored observations, as some authors did (e.g. Henderson

and Keiding 2005).
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