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Abstract

This thesis explores the optimal node placement for linear Gaussian multiple re-

lay networks of an arbitrary size and with one source-destination pair. Consider

the model that signal attenuation grows in magnitude as 1
dδ with distance d in the

low attenuation regime (path loss exponent δ < 3/2). Under the condition that the

minimum achievable rate from source to destination is maintained, we derive upper

bounds of node placement with the incoherent and coherent coding schemes, and ex-

amine the optimal power assignment related to the node placement with the coherent

coding scheme. We prove that the farthest distance between two adjacent nodes is

bounded even for an infinite total number of relay nodes, and closed-form formulas

of the bounds are derived for both the coding schemes. Furthermore, the distance

from the source to the destination is of the same order as the total number of nodes,

given the path loss exponent δ > 1
2

under the incoherent coding scheme and δ > 1

with coherent relaying with interference subtraction coding scheme. Conditioned on

a conjecture based on the simulation results, we also provide heuristic upper bounds,

which are a little tighter than the strictly proved bounds. The bounds provided in

this thesis can serve as a helpful guideline for the relay extension problem in practical

network implementation.
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Chapter 1

Introduction

With the fast expansion of wireless communications applications, the demand for

more efficient and cost effective wireless communication networks is motivating the

research community to put great efforts in exploring the cooperation among a mul-

titude of network nodes/terminals.

When cooperation strategies are considered in a wireless network with even a few

nodes, the situation becomes very complicated. There are many possible functions

that a node can simultaneously serve, such as relaying, broadcasting, interference can-

celing, etc [1]. Relaying, as an elementary and important mode of cooperation that

has been explored for 40 years, has become a hot topic along with the advancement

in network information theory. The study on relay networks provides a great deal of

guidance to the application of cooperation among the wireless nodes/terminals.

1.1 Motivations and Objectives

How should a pair of source and destination nodes communicate through multi-

terminal wireless networks? One possibility is to select a sequence of nodes forming

the path from source to destination and then relay the packets from node to node

until the destination is reached. Without exploring the cooperation between nodes,

the traditional way of relaying along such a path is that each node fully decodes the
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packets and retransmits to the next node. While doing the regeneration of the pack-

ets, all interferences are treated as noise. Accompanying this mode of information

transfer, which is called ”multihop mode” in [2], there are many protocols addressing

the interference related problem, such as medium access control (MAC) protocol,

power control protocol, etc. Along with the advancement of network information

theory, it is clear that exploring the interference instead of avoiding its happening is

important to improve the achievable rate of multi-terminal wireless relay networks

([3], [2]).

To our best knowledge, there is no study on the fundamental limits of the relay

node placement yet. Few works have taken advantage of cooperative relaying while

addressing the node placement problem. In [4], Lin et. al. examines the relay station

placement with cooperative scheme in a practical setting, a two-relay scenario. There

are some studies exploring the node placement problem of relay sensor networks, such

as [5], [6], and [7]. But these works mainly explore node placement or related issues

under the conventional non-cooperative “multi-hop” mode.

Thus motivated, this study is targeted at understanding the fundamental limits

of node placement problem in linear Gaussian multiple relay network (LGMRN) with

cooperative relaying schemes. Two advanced cooperative coding schemes utilized in

this study are coherent relaying with interference subtraction (CRIS) and incoherent

relaying with interference subtraction (IRIS) coding schemes [1]. The fundamental

limits to be pursued will provide a foundation for practical system design.

1.2 Contributions

The thesis, based on the result of the achievable rate region for the Gaussian multiple

relay network in Xie and Kumar’s previous work, i.e., Theorem 3.11 of [1], addresses

the optimal node placement problem for the LGMRN. Given a set of relay nodes on

a straight line, our objective is to find out the optimal positions for the whole set of

relay nodes in order to transmit data to the furthest distance under the condition

that the minimum rate requirement is satisfied at each node up to the destination.
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This node placement problem is studied with two related coding schemes, i.e., CRIS

and IRIS.

We prove that, under a minimum transmission rate requirement, the distance

between any adjacent 2 nodes in an LGMRN is bounded and the total relayed dis-

tance from source to destination is of the same order as the number of nodes in the

LGMRN for both the coding schemes. Being more specifically, the bounds of the

distance between adjacent nodes are 1 + ( P
P rec

min

2δ
2δ−1

)
1
2δ and 1 +

(
P

P rec
min

) 1
2δ ( δ

δ−1

) 1
δ for

CRIS and IRIS schemes respectively, where P is the individual power constraint of

source and each of the relay nodes, P rec
min is the minimum received power at desti-

nation node required to meet the minimum transmission rate requirement, and δ is

the path loss exponent used in the attenuation model. Strict proofs are given for

these bounds. Conditioned on a conjecture based on the simulation results, we also

provide heuristic bounds which are a little tighter than the above bounds.

Simulations are presented after the theorems and proofs. There is also some

comparison between the simulations for both situations. The purpose is to compare

that how efficient one is over the other, thus the guidance can be provided when

the tradeoff is considered between the transmission rate (or the distance could be

reached, equivalently) and the practical cost when the relaying is implemented.

1.3 Organization

This thesis continues as follows.

Chapter 2 reviews the basic concepts and related research works on relay channels.

We present relay channel models, such as the Discrete Memoryless Channel (DMC),

the Gaussian relay channel and some capacity and achievable rate results developed

so far. We also provide the background on the node placement problem for the relay

channel.

In Chapter 3 and 4, we study the node placement problem by presenting the

theorems, proofs and corresponding simulation results. Chapter 3 is mainly for the

node placement problem with the IRIS coding scheme. Chapter 4 is focused on the
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node placement problem with the CRIS coding scheme. We will also compare the

theoretical and simulation results corresponding to these two coding schemes in this

chapter. The conclusion of the thesis and some discussions about the future research

are presented in Chapter 5.
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Chapter 2

Background and Literature Review

In this chapter, we review the basic concepts of relay channels. We present several

relay channel models, such as the discrete memoryless relay channel and the Gaussian

relay channel. We also provide some background about the coding schemes, related

research results on capacity and achievable rate region, and node placement problem

for the relay channel.

Due to the broadcasting nature of wireless networks, there are many possibilities

of cooperative strategies among the wireless terminals, such as relaying, broadcasting,

interference canceling, etc. Relaying is a primary type of cooperation and has been

one of the basic topics of the multi-user information theory for 40 years.

In a relay network, generally, the relay nodes may have their own information to

transmit and also help forwarding information from other nodes. This work considers

the case that relay nodes solely assist the transmission from source to destination.

2.1 Overview of Relay Channels

A model of relay channels was first introduced by Van de Meulen in his pioneering

work [8], [9]. The simplest case studied is the three nodes scenario where there is one

node that functions purely as a relay to assist the transmission between the source
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and destination nodes. Two fundamental coding strategies, namely, Decode-and-

Forward (DF) and Compress-and-Forward (CF), were developed in [10] by Cover

and El Gamal, though the strategies got their names later in [11]. In the last decade,

many works have been done on the multiple relay channel and the achievable rate

and transport capacity has been explored in [1], [3], [12], [13] and [14], etc.

Source 
Node

Destination 
Node

Relay 
Nodes

BC MAC

relay_general

Figure 2.1: A general relay model

Fig. 2.1 shows a general relay channel model with one source and one destination.

All the nodes lie in a 3-dimensional Euclidean space. There are one or more relay

node(s) helping the transmission from source to destination. It is a combination

of the broadcast channel (BC), which is from source to relays and destination, and

multiple access channel (MAC), which is from source and relays to destination.

The capacity of the channel is upper bounded by the max-flow min-cut bound

[10], [15], which has become the standard tool for bounding the capacity regions [16](

p.445).

For example, for a single-relay channel, which can be formulated by

(X0 × X1, p(y, y1/x0,x1), Y×Y1)
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where the source send x0, the relay receives y1 and sends x1, the destination receives

y, then, the capacity is bounded above by

C ≤ sup
p(x0,x1)

min{I(X0, X1; Y ), I(X0; Y, Y1/X1)}. (2.1)

The first term in (2.1) upper bounds the maximum rate of information transfer

X0 and X1 from transmitters of source and relay to destination receiver Y (Multiple

Access Channel); the second term bounds the rate from X0 to Y and Y1 (Broadcast

Channel), but the destination should decode the relay signal X1 before decoding X0,

which contributes to the conditioning term X1 in I(X0; Y, Y1/X1). The proof can be

found in [10].

Discrete memoryless relay channel model:

Source

Relay

Destination
Node 0

Node 1

Node 2 ŴW
0x

1x

y),/,( 101 xxyyp

1y

Figure 2.2: A discrete memoryless relay channel model.

In the simplest DMC (Discrete Memoryless Channel) relay model introduced in

([8]), as shown in Fig. 2.2, there are three nodes: 0, 1 and 2, which are source, relay

and destination respectively. W is the original message. Ŵ is the estimated message

at the destination end. x0 and x1 are the inputs sent by the source and relay nodes.

y1 is the output sent to relay. y is the output sent to the destination by the channel.

The inputs and outputs are all discrete random variables in the discrete channel
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model. If we denote the transmitter alphabets of node 0 and 1 as X0 and X1, and

the receiver alphabets of node 1 and 2 as Y1 and Y , the channel can be described

as (X0 ×X1, p(y1, y/x0, x1),Y1 ×Y), where p(·, ·/x0, x1) is a collection of probability

distributions on Y1×Y for every pair of (x0, x1) ∈ X0×X1. The source sends to the

channel input x0 according to the specific message it need to transmit. relay gets y1

and sends the input x1 after processing y1.

The channel is memoryless in the sense that (Yi, Y1,i) depends on the past only

through the current transmitted symbols (X0,i, X1,i).

For the single-relay DMC described above, the best achievable rates so far are

still those proved 20 years ago in [10]:

R < max
p(x0,x1)

min{I(X0; Y1/X1), I(X0, X1; Y )}. (2.2)

The above rate could not be achieved by simply multihop. Instead, the destination

needs to make use of both inputs from the source and the relay in order to achieve

(2.2). A special discrete memoryless relay channel even constructed where no reliable

transmission from source to destination if no relay helps in [8].

The degraded relay channel implies that the destination receives a degraded ver-

sion of the relay received signal for the single-relay channel described above. The

signal y1 that the relay received is better than the signal y that the destination re-

ceived. Thus the relay can cooperate with the source to transmit information to the

destination. The other case, in which the relay received y1 is worse than y, is less

interesting, because the relay can not contribute new information to the destination.

It is called a reversely degraded relay channel and the relay still can facilitates the

transmission of x0 by sending x1.

Cover and El Gamal presented that the right hand side of (2.2) is the capacity of

the degraded relay channel in [10].

The relay channel (X0×X1, p(y, y1/x0,x1), Y×Y1) is said to be degraded if X0 →
(X1; Y1) → Y form a Markov chain.

Equivalently, a relay channel is degraded if p(y/y1, x0, x1) = p(y/y1; x1), which
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makes

p(y, y1/x0, x1) = p(y1/x0, x1)p(y/y1, x1) (2.3)

holds.

Hence, due to the degradedness, I(X0; Y, Y1/X1) = I(X0; Y1/X1).

In the following, we present more details about the model of Gaussian relay

channel.

Gaussian relay channel:

Relay

),0(~ 11 NNZ

),0(~ NNZ

0X Y

1Y
1X

Figure 2.3: Gaussian single-relay channel

A Gaussian single-relay channel (see Figure 2.3) is modeled by

Y1 = X0 + Z1, (2.4)

Y = X0 + X1 + Z, (2.5)

where Z1 and Z are independent Gaussian noise . For the general Gaussian single-

relay channel, the capacity is still unknown. Through an interesting study [17] about

the Gaussian parallel relay channel, it was shown that there exists no unifying opti-

mal coding scheme because the asymptotically optimal coding scheme dramatically

depends on the relative locations of the nodes.

Only for the degraded Gaussian relay channel, the capacity is known for some

cases (see [10] p.380-381 and [18]). In [10], The degradedness of the Gaussian single
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Relay),0(~ 11 NNZ ),0(~ 22 NNZ

0X Y

1Y 1X

21 NNN +=

Figure 2.4: Degraded Gaussian single-relay channel

relay channel means it can satisfy (2.3), i.e., X0 → (X1; Y 1) → Y form a Markov

chain.

A degraded Gaussian single-relay channel (as shown in Figure 2.4) is modeled by

Y1 = X0 + Z1, (2.6)

Y = X0 + Z1 + X1 + Z2, (2.7)

The receiver Y is a degraded version of the receiver Y1 conditioning on X1.

If we denote the power of the source and relay as P0 and P1 respectively, the

channel capacity is

C = max
0≤α≤1

min

{
S

(
P0 + P1 +

√
(1− αPP1)

N1 + N

)
, S

(
αP

N1

)}
(2.8)

where S(x) := 1
2
log(1 + x) is the Shannon function.

Multiple level relay channel:

When it involves a multitude of relay nodes, the problem becomes complicated.

Recently, problems of multiple-level relay channels attracted more research efforts

along with the increased interest in wireless networks and network information theory.

Gupta and Kumar demonstrated an achievable rate region result for a fairly

general multi-level relay channel in [3], where the coding scheme of [10] was extended.
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Relay 1

0Z 1Z

0X

0Y 1X

…

Relay k

1−kZ kZ

2−kY

1−kY 1X1−kX

source destination

Physically degraded gaussian k-level relay channel

Figure 2.5: Degraded Gaussian K-relay channel

The result holds for both the discrete memoryless and the additive white Gaussian

noise (AWGN) channel. Xie and Kumar [1] proposed a new coding scheme, namely,

Coherent Relaying and Interference Subtraction(CRIS), for the Gaussian multi-level

relay channel. They also proved an achievable rate region which is higher than those

proved in [3].

Figure 2.5 depicts a degraded Gaussian multiple relay channel which has one

source-destination pair and K relays. It is a special case of the general gaussian mul-

tiple relay channel. The achievable rate for general gaussian multiple relay channel

presented in Xie and Kumar [1](see Theorem 3.11) actually is the capacity for the

physically degraded gaussian multiple relay channel. The proof can be found in [18].

Due to the complexity of relay channels, not much about the capacity for a

general relay channel has been known even only one relay gets involved. Transport

capacity, as a very helpful and effective metric instead of capacity, has been explored

from almost a decade ago [12] and it underwent thorough examination in Xie and

Kumar’s works [1], [13], [14].

2.2 Coding Schemes for Relaying

Two fundamental coding strategies, Decode-and-Forward (DF) and Compress-and-

Forward (CF) for single-relay model, were developed by Cover and El Gamal [10]
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(see Theorems 1 and 6), though they got these names later in [11].

There are 3 different DF strategies developed so far, as reviewed by Kramer et.

al. in [19]:

a) irregular encoding/successive decoding;

b) regular encoding /sliding window decoding;

c) regular/backward decoding.

The irregular encoding is different from the regular encoding by using codebooks

of different sizes.

What used in [10] (Theorem 1) is irregular encoding (Block Markov superposition

encoding) and successive decoding. King developed the other 2 strategies in [20].

The irregular encoding/successive decoding strategy was extended to degraded relay

networks by Aref in [15]. These strategies were generalized to multiple relay channels

in subsequent works in [11], [12] and [3].

Xie and Kumar extended regular encoding/sliding window decoding for multiple

relays in [1] and the result was extended to discrete memoryless channels in [13]. It

also has been shown that their scheme achieves better rates than what were used in

[3] and [15].

In this thesis, theorems and simulations are based on the condition of using both

CRIS scheme and IRIS scheme. Both coding schemes are explained in the following.

CRIS coding scheme:

An advanced new coding scheme called coherent relaying with interference sub-

traction (CRIS) for general Gaussian relay network was proposed by Xie and Kumar

in [1]. An explicit achievable rate formula was obtained also. Later, this coding

scheme and achievable rate formula were extended to the discrete memoryless chan-

nel in [13].

Here we present the basic idea of the CRIS scheme. CRIS scheme uses regular

12



encoding/sliding window decoding strategy. The channel using this scheme has better

achievable rate than using other schemes developed in [3], [10], [15] and [16] .

To see how this coding scheme is applied, consider the simplest case first: a

single-relay channel.

01α

Node 0

12α

02α

Node1

Node 2

Figure 2.6: A single relay channel

As fig. 2.6 shows, there is a source node 0, relay node 1, and destination node

2. The α01, α02 and α12 denote the corresponding signal attenuation factors. Based

on the block-Markov coding scheme, the transmission time is partitioned into equal

blocks. The first and the last blocks need special treatment. In each intermediate

node, Node 0 divide its power into P01 = θP0 and P02 = (1− θ)P0, 0 ≤ θ ≤ 1. P01 is

used to inform relay node 1 what message the source node intents to transmit in the

next block. It can achieve any rate R that satisfies

R ≤ S

(
α2

01θP0

σ2

)
. (2.9)

The other part P02 is dedicated to the destination node and it cooperates with

the total power of relay node 1 since node 1 has already known the intention of node

0 from the previous block. In other words, node 0 and node 1 (using part of its power

P02) coherently transmit to the destination node. The signal that the destination

node 2 receives contains 3 components: the coherent cooperation of node 0 and 1, the

signal send by node 0 intended to node 1, and the noise with power (α02

√
(1− θ)P0+

α12

√
P1)

2, α2
02θP0, and σ2 respectively. The intuition for the decoding at destination

node 2 is that, at the end of each block, node 2 takes the first part of the present block

and the second part of the previous block as signal simultaneously and decodes. The

13



first part of the previous block is deducted because it is interference to the present

block and its content is known at the end of the previous block. This is also the reason

that this coding scheme is called coherent relaying with interference subtraction).

For a multiple relay channel with one source and one destination as shown in

Figure 2.7, the CRIS scheme applies similarly as in the one relay channel, though it

appears much more complicated.

Node 0

Node 2

Node 1 Node 4

Node 3

Figure 2.7: Single-source single-destination multiple relay channel

Let’s consider a relay network with n + 1 nodes, which is not necessary to be

a linear network, or even planar network. This network has one source-destination

pair, denoted as node 0 and n, all the intermediate nodes denoted as node 1 to n−1.

The higher numbered nodes are called ”downstream nodes” but it is not necessary

that they are the ones closer to the destination. The attenuation from node i to node

j is known as αij and there is an i.i.d. additive noise N(0, σ2) at each receiver. Each

node i has a power constraint Pind. Source node and each relay node (except the last

relay node, which contributes all of its power to the destination) divides its power

into different portions for the downstream nodes respectively.

The block-Markov coding scheme will be used also. The whole transmission time

is divided to equal blocks and the first n-1 and the last n-1 blocks will be treated

specially. In each of the intermediate time blocks, each node (include the source

node 0 and every relay node) uses explicit parts of its total power for the immediate

next node and every node after that. The coherence cooperation lies in the coherent
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transmission, e.g. node i dedicate a portion of its power Pij for the transmission to a

certain downstream node j(0 ≤ j ≤ k− 1), coherently transmit to node j with other

nodes using Pkj, 0 ≤ k < j but k 6= i. For decoding, each intermediate node and the

destination node do the decoding only when it has received all related signals and

determines the message directly. This coding scheme generally achieves higher rate

than the scheme proved in [3].

Remarks: For each of the intermediate nodes, it can be replaced with a group of

nodes and the coding scheme still can apply.

IRIS coding scheme:

The IRIS scheme using interference subtraction but no coherent transmission

among the upstream nodes j (0 ≤ j ≤ k − 1) as they each devotes the power to

transmit to the next downstream node. The incoherent relaying scheme does not

do coherent transmission of the CRIS scheme but keeps the interference subtraction

part while decoding.

It results in a lower achievable rate for the relay network compared with the CRIS

scheme but higher achievable rate than the conventional ”multi-hop” scheme. The

information is transmitted from source to destination as in a multihop mode, but

the key difference is that the interference from downstream nodes are subtracted

from the received signal when the decoding is performed at every node because the

information transmitted among the downstream nodes is already known by upstream

nodes.

The tradeoff here is that the incoherent scheme demands significantly less coding

and decoding complexity and cost than that of applying coherence among the relaying

nodes.
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2.3 The Achievable Rate Theorem

For Gaussian multiple relay networks, regular encoding/sliding window decoding,

named CRIS coding scheme in [1], is currently the preferred substitution of multi-

hopping in the sense that it achieves the best rates in the simplest way.

Theorem 3.11 of [1] states: Consider a Gaussian multiple relay channel with a

single source-destination pair using the CRIS coding scheme. There are n+1 nodes,

sequentially denoted by 0, 1, ..., n, with 0 as the source and n as the destination,

the rest serving as n − 1 relays. αij stands for the attenuation from node i to node

j. There are also i.i.d. additive Gaussian noise N(0, σ2) at each receiver. Then the

following inequality is achievable from 0 to n:

R < min
1≤j≤n

S

 1

σ2

j∑
k=1

(
k∑

i=0

αij

√
Pik

)2
 (2.10)

where Pik ≥ 0 satisfies
∑n

k=i+1 ≤ Pi.

The nodes need not lie on a straight line or a plane. The proof can be found in

[1].

2.4 Node Placement

There have been a few related studies to the relay node placement problem. Nev-

ertheless, in most of these studies, e.g., [5], [21] and [6], the main focus is on the

wireless sensor networks with a few relay nodes helping a nearby sensor node using

the conventional noncooperative “multi-hop” mode. In [4], a practical relay station

placement problem is examined in a dual-relay network with cooperative relaying

scheme. In this thesis, we study a cooperative coding scenario for the node place-

ment problem in a Gaussian multiple relay networks with arbitrary size. In other

words, we explore the ultimate limits of the node placement in LGMRN with ad-

vanced cooperative relaying schemes.

For the attenuation model, we utilize α = e−γd

d2δ , where d is the distance. In

the low attenuation regime, the path loss exponent δ < 3
2

and absorption constant
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γ = 0. With two different but related cooperative coding schemes, we place the nodes

sequentially to the right on a straight line as long as the minimum transmission rate

is maintained. We examine the limit of the largest distance between adjacent nodes

and the source-destination distance can be covered when the total number of nodes

goes to infinity.

More specifically, we prove that, under a minimum rate requirement, the source-

destination distance is of the same order as n and the distance between two adjacent

nodes is upper bounded even when the total number of nodes, each possesses the

same individual transmit power, goes to infinity with incoherent relaying scheme-

IRIS (δ > 1
2
) or with coherent relaying scheme-CRIS (δ > 1) in an LMGRN.

This chapter discussed the background of relay channels and the node placement

problem. In the next Chapter, we will present our theorem of an upper bound for

the node placement problem with IRIS coding schemes, followed by corresponding

simulation results.
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Chapter 3

Node Placement for the LGMRN

using IRIS Scheme

In this chapter we study the node placement problem for an LGMRN that uses an

with the IRIS coding scheme. We first present theoretic results with the IRIS coding

scheme, which are bounds for the distance between adjacent nodes and the maximum

relay distance. Simulations are then conducted to demonstrate the theorem.

3.1 Node Placement with the IRIS Scheme

This section formulate the node placement problem with the IRIS coding scheme

and presents two theoretic results on the distance between adjacent nodes and the

source-destination distance.

3.1.1 System Setting

Consider a Gaussian multiple relay network, as shown in fig. 3.1, where all nodes lie

on a straight line.

This linear network consists of n + 1 nodes, which include one source-destination

pair, denoted as node 0 and n. All the intermediate nodes denoted as nodes 1 to n−1.
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d

Figure 3.1: A linear multiple relay network

The source node represents a transmitter, the destination is a receiver, and each of

the intermediate relay nodes has both a transmitter and a receiver. Consider the low

attenuation regime, i.e., the absorption constant γ = 0 and the path loss exponent

δ < 3
2
, while using the simplistic model of signal attenuation α = e−dγ

dδ over distance

d. Let dij denote the distance between nodes i and j, make it simpler. Denote di as

the distance between the ith node and the i + 1th node. The attenuation from node

i to node j is

αij =
1

dδ
ij

=
1

(
∑j−1

k=i dk)δ
.

There is a constraint on P for each node’s individual power Pind. At the receiver

end of each node, there is an i.i.d. additive white noise N(0, σ2).

3.1.2 IRIS Coding Scheme for LGMRN

Consider the above linear Gaussian multiple relay network using the IRIS coding

scheme. The IRIS coding scheme employs interference subtraction without coherent

transmission among the upstream nodes j (0 ≤ j ≤ k − 1) as each of them devote

its power to transmit to the next downstream node. The relay nodes are placed in

a way that the achievable rate from the source to the destination is no less than a

required value. Without loss of generality, we assume Pi ≤ P , where Pi is the power

of the ith node. Denote the actual received power at the destination as P rec. Denote

Rmin as the minimum achievable rate from the source to the destination since there

is a minimum rate requirement of the system. Therefore, accordingly the received
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power at the destination as P rec is assumed to be greater than a minimum of P rec
min,

which corresponds to the minimum achievable rate as the Shannon function defines,

i.e., Rmin = S(
P rec

min

σ2 ), where σ2 is the power of the Gaussian noise.

According to Theorem 3.11 in [1], which is for CRIS scheme, we derive the achiev-

able rate formula for IRIS:

R < min
1≤j≤n

S

(
1

σ2

j∑
i=1

α2
i,nPi

)

= min
1≤j≤n

S

(
1

σ2

j∑
k=1

Pk

(
∑n−1

i=k−1 di)2δ

)
. (3.1)

For the case of j = n, we have

Rmin ≤ R < S

(
1

σ2

n∑
i=1

α2
i,nPi

)
. (3.2)

Correspondingly, we have the following inequalities for the received power at the

destination node:

P rec
min ≤ P rec =

n∑
i=1

Pi

(
∑n

l=i dl)2δ
, (3.3)

3.1.3 Theorem and Proof of the Bound

Using the above formulas of the achievable rate from source to destination and the

received power at the destination, we develop the following theoretical results:

Theorem 3: Consider a Gaussian linear relay network with n + 1 nodes, where

n might be infinite. Let the source node denoted as 0, the destination node denoted

as n and the intermediate nodes denoted as 1 to n− 1 sequentially. With incoherent

relaying and interference subtraction strategy, place the relays, i.e. all the intermedi-

ate nodes, in a manner that the minimum transmission rate is achieved from source
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to each of the downstream nodes and the destination. Given the path loss exponent

δ > 1/2, as the number of nodes n + 1 goes to infinity,

i) the distance between any two adjacent nodes di is bounded above by

1 + ( P
P rec

min

2δ
2δ−1

)
1
2δ ;

ii) the total distance between source and destination nodes
∑n

i=1 di = Θ(n).

Proof: First let’s prove that all di’s (0 ≤ i ≤ n−1) are bounded for even infinite

total number of nodes n + 1 given δ > 1/2.

Assume there exists a finite number j such that dj is unbounded. Let m ≤ dj <

m+1, where m is a positive integer. Under this assumption, m should be unbounded

also.

Since it is always preferable to move the nodes to the right as much as possible in

order to maximize the source-destination distance, we construct an extreme situation

for the worst case as the following:

1d0 =

1 2 j-10

…
j j+1

1d1 = jd1d 1 =−j

Figure 3.2: A constructed network to maximize the dj

.

As Figure 3.2 shows, place all the nodes in a way that di = 1 (0 ≤ i ≤ j − 1) and

place node j + 1 to the furthest point possible as long as the minimum required rate

still can be attained. The received power at the node j + 1, which should be greater

or equal to the minimum received power corresponding to the minimum required

rate.

From inequality (3.3), we have
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P rec
min ≤ P rec

j <

j∑
k=1

Pk

(
∑n

i=k di)2δ

< P

(
j∑

k=1

1

(
∑j

i=k di)2δ

)

= P

(
j∑

k=1

1

(j − k + dj)2δ

)
(3.4)

as all Pk ≤ P , where P is the constraint of individual power that each nodes possesses.

The equation follows from di = 1 (0 ≤ i ≤ j − 1).

Combining m ≤ dj < m + 1 and the inequality (3.4), we have

P rec
min ≤ P rec

j < P

(
j∑

k=1

1

(j − k + dj)2δ

)

≤ P

(
j∑

k=1

1

(j − k + m)2δ

)

= P

(
j+m−1∑

i=m

1

i2δ

)
(3.5)

When j goes to infinity,
∑j+m−1

i=m
1

i2δ is a special case of Riemann zeta-function∑∞
n=1

1
nα ([22], also see Appendix A). We have

∞∑
n=m

1

nα
<

1

mα
+

∫ ∞

m

1

xα
dx

=
α

(α− 1)mα
.

(3.6)

which is bounded given α > 1.

Therefore,

P rec
min ≤ P rec

j < P
2δ

(2δ − 1)m2δ
, (3.7)
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given δ > 1
2
.

Apparently, when δ is given (δ > 1
2
), P rec

j → 0 if m is unbounded, which will

lead to the situation that the received power tends to 0 so that it cannot meet the

requirement of the minimum received power. Thus, the assumption that the distance

dj could be unbounded can not satisfy the requirement of the network. Therefore,

we proved that the distance between adjacent nodes is bounded.

From the inequality (3.7), we can derive

m <

(
P

P rec
min

2δ

2δ − 1

) 1
2δ

, (3.8)

From the assumption m ≤ dj < m + 1, we have

dj < 1 +

(
P

P rec
min

2δ

2δ − 1

) 1
2δ

, (3.9)

even for the worst case. This is an upper bound for the distance between adjacent

nodes.

Thus, for all 0 ≤ i ≤ j,

1 ≤ di < 1 +

(
P

P rec
min

2δ

2δ − 1

) 1
2δ

, (3.10)

where the right hand side is a finite number given δ > 1
2
.

Furthermore,

n + 1 <
n∑

i=0

di < (n + 1)

(
1 +

(
P

P rec
min

2δ

2δ − 1

) 1
2δ

)
, (3.11)

which means that the total distance from source to destination is of the same order

as n, i.e.,
∑n

i=1 di = Θ(n). �

3.1.4 A Heuristic Bound

Through the simulation result (cf. section 3.2 ), it is safe to make a conjecture that

the sequence of di is monotonically increasing. The proof of this conjecture could
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be an interesting problem for future research. Based on the conjecture, we attain a

tighter upper bounded for the distance between adjacent nodes, which is(
P

P rec
min

2δ

2δ − 1

) 1
2δ

,

where P is the constraint of individual power, P rec
min is minimum received power

required corresponding to the minimum required rate, path loss exponent δ > 1
2
. We

outline the proof in the following:

Assume there exists an integer N, which could be very large, such that for every

i > N , di is not bounded.

From inequality (3.3), we have

P rec
min <

n−1∑
k=1

Pk

(
∑n−1

i=k di)2δ

< P

(
n−1∑
k=1

1

(
∑n−1

i=k di)2δ

)
(3.12)

as all Pi ≤ P , where P is the constraint for individual power that each node possesses.

Using the heuristic property of monotonically increasing for the sequence of di,

we have
n∑

i=k

di ≥


∑n

i=N di if k ≤ N .

(n− k + 1)dN if k > N.

The inequality (3.12) then turns into

P rec
min < P

{
N − 1

(
∑n

i=N di)2δ
+

1

d2δ
N

n−N∑
m=1

1

m2δ

}
. (3.13)

The first term of the right hand side in the inequality (3.13) becomes

N − 1

(
∑n

i=N di)
→ 0

since n goes to infinity and
∑n

i=N di is infinite.

Thus,

P rec
min < P

{
1

d2δ
N

n−N∑
m=1

1

m2δ

}
. (3.14)
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Using the result derived from the Riemann Zeta-function ([22], also cf. Appendix

A) that
∞∑

n=1

1

nα
<

α

α− 1
,

given α > 1, where α
α−1

is a finite number, we have

1

d2δ
N

(
n−N∑
m=1

1

m2δ

)
→ 0,

if there exists N such that dN is unbounded given δ > 1/2.

Thus, given a specific δ (δ > 1/2), the minimum received power P rec at the

destination node tends to 0 if our assumption of unbounded dn’s existence is true,

which is contrary to the requirement that the minimum rate being achieved from

source to destination.

Hence, dN is bounded for any number of nodes given δ > 1/2, if the minimum

source-destination rate is required in the multiple relay channel.

Moreover, we can derive from the inequality (3.14) and (3.1.4) that

dN <

(
P

P rec
min

2δ

2δ − 1

) 1
2δ

,

which means for any value of N , the distance dN is bounded above by a finite

number which is related to the path loss exponent δ, the minimum required rate from

source to each downstream node and the individual power constraint.

Apparently,

n <
n−1∑
i=0

di < n

(
P

P rec
min

2δ

2δ − 1

) 1
2δ

,

which also means the total distance from source to destination is on the order of n,

i.e.,
∑n

i=1 di = Θ(n) for any number of total nodes n + 1 given δ > 1/2. �

The heuristic upper bound for the distance between adjacent nodes is 1 less than

the upper bound we strictly proved above. For example, if δ = 1.25, P rec
min = P = 1,
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then, the heuristic upper bound is 1.50 and the strictly proved upper bound is 2.50

for the distance between adjacent nodes.

Remark: Intuitively, the heuristic upper bound of di corresponds to the situation

that there are infinite number of relay nodes. When i is large enough, every di possess

a same value d∗ and is arbitrarily close to this heuristic upper bound ( P
P rec

min

2δ
2δ−1

)
1
2δ

we derived above.

3.2 Simulations of Node Placement with IRIS Scheme

In this section, we present the methods and results of the simulation for LMGRN

using IRIS coding scheme given a minimum rate requirement.

Consider a linear Gaussian relay networks using IRIS coding strategy in the low

attenuation regime. For computing what is the farthest distance that the destina-

tion node can be placed given the requirement that a minimum rate from source to

destination is maintained, we can use a recursive algorithm to solve the problem.

Figure 3.3: A 3-nodes linear relay network using IRIS.

Fig. 3.3 shows the simplest case of a linear relay network, where is only one relay

node helping the transmission from node 0 (source node) to node 2 (destination node).

Node 0 doesn’t need to divide its power to two parts dedicated to the transmission

to node 1 and node 2 respectively while the IRIS coding strategy is used.

While applying the IRIS scheme discussed above, the node placement problem is

to solve
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P rec
min ≤ P rec < min

1≤j≤n

j−1∑
i=1

α2
ijPi. (3.15)

When we use the model of signal attenuation αij = 1
dδ

ij
in the low attenuation

regime, the above expression can be written as

P rec
min ≤ P rec < min

1≤j≤n

j−1∑
i=1

Pi

(
∑j−1

l=i dl)2δ
(3.16)

Under the assumption of each node occupying the same power, one need to find

the optimal value of all di’s (total number is n) that maximize the source-destination

distance. The computing complexity is not high if we compare with the situation

using CRIS scheme. Especially in the recursive algorithm I developed, one only need

to find one optimal value of the dn−1 at each recursion. For the three modes case,

only the point the farthest point that node 2 can be placed is needed to be computed.

The dual question is, if we normalize the distance from source to destination, which

point is the optimal one to place node 1 to maximize the achievable rate from source

to destination.

Just as what was clarified in section 2.3, for node placement problem in a linear

network using IRIS scheme, the computing of the power assignment of each nodes

is not needed, thus it is relatively easy to apply the recursive algorithm for solving

the node placement problem. Since no power assignment is needed, every time when

a new node, denoted as n + 1, is added to the end of the system as the present

destination, where just like the previous destination get a transmitter attached and

become a relay node, all the terms in the minimization expression (3.16) need not

being changed to fit in the new system. Only be one new term

n−1∑
i=0

Pi

(
∑n−1

l=i di)2δ
,

should be added to this expression.

The algorithm applied for getting the sequence of optimal di’s is as following:
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Step 1. Initiation: Start from a 3-node scenario. Let P0 = P1 = 1 and d0 = 1,

thus the received power P rec at node 1 is also 1 and it is set as the minimum received

power P rec
min. using exhaustive search to find the farthest point that node 2 can be

placed, i.e., d2.

Step 2. Add another node at the end of the linear network (total number of nodes

n + 2), using

P rec
min <

n∑
i=0

Pi

(
∑n

l=i dl)2δ
,

to search for the farthest dn if the total node number is n + 1.

Step 3. Repeat step 2 until reach the desired number n.

The following figures are drawn according to the result calculated using the above

recursive algorithm. The individual power of each node, the distance d0, and the

minimum achievable rate are normalized.

0 50 100 150 200 250 300 350 400 450 500
0

200

400

600

800

1000

1200

1400

1600

number of nodes

so
ur

ce
-d

es
tin

at
io

n 
di

st
an

ce

0.6
0.7
0.9
1.0
1.2

Figure 3.4: The maximal source-destination distances vs. the number of nodes under

the condition of δ = 0.6, 0.7, 0.9, 1, 1.2.

In fig. 3.4, the horizontal axis is the number of nodes, which is up to 500, and
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the vertical is the distance between source and destination, given the distance from

node 0 to node 1 is 1. This figure shows how the distance from source to destination

grows when the number of nodes increases. According to Theorem 3, if the path

loss exponent δ > 1/2, the source-destination distance is of the same order as the

number of nodes. δ = 0.6, 0.7, 0.9, 1, 1.2 are chosen for the recursive algorithm.

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

number of nodes

m
ax

im
um

 d
is

ta
nc

e 
be

tw
ee

n 
ad

ja
ce

nt
 n

od
es

simulation result
Heuristic bound
proved bound

Figure 3.5: The maximum distance between adjacent nodes di and two bounds given

δ = 0.7.

Fig. 3.5 depicts the simulation result of the maximum distance between adjacent

nodes, the heuristic bound and the strictly proved bound. We calculated di for up

to 500 nodes.

From the above figures we can see, the result is quite consistent with the theo-

retical result we proved. Moreover, the heuristic bound provides helpful insight for

understanding the improvement that the IRIS scheme can achieve.
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Chapter 4

Node Placement for LGMRN with

CRIS Scheme

In this chapter, First we deform the achievable rate formula for the CRIS case,

then we examine the bound for the distance between adjacent nodes using a similar

approach as in Chapter 3. Finally, we present algorithms and results for both opti-

mal(up to 4-nodes case) and suboptimal (up to 28-nodes case) simulations. We also

make some comparison between the simulation results for the network with IRIS and

CRIS coding scheme.

4.1 Node Placement with the CRIS Scheme

We present the theorem and the proof in the following. The system Setting is linear

Gaussian multiple relay channel similar as what we used in the last chapter. The

difference is the CRIS coding scheme applied here, which causes the node placement

problem much more complicated than in the IRIS case. The reason is, with the CRIS

coding scheme, the power assignment at source and each relay node is necessary to

implement the coherent transmission under this situation.
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4.1.1 Theorem and Proof of the Bound

Consider a Gaussian linear relay network with n + 1 nodes in the low attenuation

regime, i.e., the absorption constant γ = 0 and the path loss exponent δ < 3
2
. There

is only one source-destination pair.

In the following theorem that we develop for the scenario using CRIS scheme, the

statement is similar as what we presented in the case of the IRIS scheme, but the

proof starts with the deformation of the achievable rate formula to make the proofing

applicable.

Theorem 4: Consider a linear Gaussian multiple relay channel with the CRIS

coding scheme. There are n+1 nodes lies on a straight line and each node possesses

the same power constraint P . Place the relay nodes in a manner that the minimum

rate is achieved from source to destination. Given δ > 1, for any number of total

nodes n + 1, we have the following two results:

i) The distance between any two adjacent nodes di is upper bounded by 1 +(
P

P rec
min

) 1
2δ ( δ

δ−1

) 1
δ , where P is the constraint of individual power, P rec

min is the minimum

received power required corresponding to the minimum required rate,

ii) the distance between source and destination is on the order of n, i.e.,
∑n

i=1 di =

Θ(n).

Proof: First we prove inductively that

j∑
k=1

(
k−1∑
i=0

αij

√
Pik

)2

<

(
j∑

k=1

αk−1,j−1

√
Pk−1

)2

(4.1)

For a linear network with n+1 nodes, it is easy to prove

α2
0,nP01 +

(
α0,n

√
P02 + α1,n

√
P12

)2

<
(
α0,n

√
P01 + P02 + α1,n

√
P12

)2

. (4.2)

The LHS (left hand side) of the inequality (4.2) is

α2
0,n(P01 + P02) + α2

1,nP12 + 2α0,nα1,n

√
P02P12.
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The RHS (right hand side) of (4.2) is

α2
0,n(P01 + P02) + α2

1,nP12 + 2α0,nα1,n

√
(P01 + P02)P12.

Apparently, LHS < RHS, i.e. (4.2) holds. Thus, for the case of j=3, inequality

(4.1) holds.

Suppose that inequality (4.1) holds for j = n, we have

n∑
k=1

(
k−1∑
i=0

α2
i,n

√
Pik

)2

<

 n∑
k=1

αk−1,n

√√√√ n∑
l=k

Pk−1,l

2

, (4.3)

where Pk−1 =
∑n

l=k Pk−1,l.

We need to prove

n+1∑
k=1

(
k−1∑
i=0

αi,n

√
Pik

)2

<

n+1∑
k=1

αk−1,n

√√√√ n∑
l=k

Pk−1,l

2

(4.4)

where Pk−1 =
∑n+1

i=k Pk−1,i.

Using the assumed inequality (4.3), the LHS of (4.4) is less or equal to n∑
k=1

αk−1,n

√√√√n−1∑
l=k

Pk−1,l

2

+

(
n∑

i=0

αi,n

√
Pi,n+1

)2

.

Now we need to shown−1∑
k=1

αk−1,n

√√√√n−1∑
l=k

Pk−1,l

2

+

(
n∑

i=0

αi,n

√
Pi,n+1

)2

≤

 n∑
k=1

αk−1,n

√√√√ n∑
l=k

Pk−1,l

2

(4.5)
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If we unfold the square of all the terms in the above inequality, and compare the

LHS and RHS, we see that we need to prove

αk,nαm,n

√√√√n−1∑
l=k

Pk−1,l

√√√√n−1∑
l=m

Pm−1,l + αk,nαm,n

√
Pk−1,n−1

√
Pm−1,n−1

≤ αk,nαm,n

√√√√ n∑
l=k

Pk−1,l

√√√√ n∑
l=m

Pm−1,l (4.6)

where

k = 1, 2, ..., n− 1, m = 1, 2, ..., n− 1,

n∑
l=k

Pk−1,l =
n−1∑
l=k

Pk−1,l + Pk−1,n

and
n∑

l=m

Pk−1,l =
n−1∑
l=m

Pm−1,l + Pm−1,n.

In the inequality (4.6), the αk,nαm,n can be canceled from both the LHS and RHS

sides, so we only need to compare the square root terms.

Using the fact
√

ab +
√

cd ≤
√

(a + c)(b + d). (4.7)

it is clear that the inequalities (4.6) and (4.5) hold.

Also, we have

αk,nαn,n+1

√
Pk−1,n

√
Pn−1,n ≤ αk,nαn,n+1

√√√√n−1∑
l=k

Pl,n

√
Pn−1,n (4.8)

where k = 1, 2, ..., n− 2. This inequality holds apparently.

Combine (4.8) with (4.5), it is proved that the inequality (4.1) holds.
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Now let’s prove that all di’s (0 ≤ i ≤ n − 1) are bounded for even infinite total

number of nodes given δ > 1. This part of the proof is similar as the proof in section

3.1.3.

Assume there exists a finite number j such that dj is unbounded. Let m ≤ dj <

m+1, where m is a positive integer. Under the assumption, m should be unbounded

also.

We also construct the worst case situation as we did for the proof of Theorem

3. As Figure 3.2 shows, place all the nodes in a way that di = 1 (0 ≤ i ≤ j − 1) and

place node j + 1 to the furthest point possible as long as the minimum required rate

can be achieved. The received power at the node j + 1, which should be greater or

equal to the minimum received power corresponding to the minimum required rate.

From Theorem 3.11 in Xie and Kumar’s work [1], we have inequality (2.2). Sub-

stituting αij by 1
dδ

ij
and rewrite (2.2), that is

P rec
j <

n∑
k=1

(
k−1∑
i=0

√
Pik

(
∑n

l=i dl)δ

)2

, (4.9)

for the received power at node j.

Do similar substitution in the inequality (4.1), we have

j∑
k=1

(
k−1∑
i=0

√
Pik

(
∑j−1

l=i dl)δ

)2

<

(
j∑

k=1

√
Pk−1

(
∑j−1

l=k−1 dl)δ

)2

, (4.10)

From (4.9) and (4.10), we have

P rec
j <

(
j∑

k=1

√
Pk−1

(
∑j−1

l=k−1 dl)δ

)2

, (4.11)

Consider the minimum received power requirement and the individual power con-

straint Pi ≤ P (0 ≤ i < j),
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P rec
min ≤ P rec

j < P

(
j∑

k=1

1

(
∑j−1

l=k−1 dl)δ

)2

1
= P

(
j∑

k=1

1

(j − k + dj−1)δ

)2

2
< P

(
j∑

k=1

1

(j − k + m)δ

)2

, (4.12)

where
1
= follows from di = 1 (0 ≤ i ≤ j − 1) and

2
< is due to m ≤ dj < m + 1.

Using the fact of Riemann zeta-function ([22], and cf. Appendix A) that

∞∑
n=m

1

nα
<

1

mα
+

∫ ∞

m

1

xα
dx

=
α

(α− 1)mα
,

(4.13)

we have

P rec
min ≤ P rec

j < P

(
δ

(δ − 1)mδ

)2

, (4.14)

Given δ > 1, if m is unbounded as we assumed, P rec
j will tend to 0 which will lead

to the situation that the received power can not meet the minimum received power

requirement.

Thus, the assumption that the distance dj could be unbounded is not satisfying

the requirement of the network. Therefore, we proved that the distance between

adjacent nodes is bounded.

From the inequality (4.14), we can derive

m <

(
P

P rec
min

) 1
2δ
(

δ

δ − 1

) 1
δ

, (4.15)
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From the assumption m ≤ dj < m + 1, we have

dj < 1 +

(
P

P rec
min

) 1
2δ
(

δ

δ − 1

) 1
δ

, (4.16)

even for the worst case.

Hence, for all 0 ≤ i ≤ j,

1 ≤ di < 1 +

(
P

P rec
min

) 1
2δ
(

δ

δ − 1

) 1
δ

, (4.17)

where the right hand side is a finite number given δ > 1.

Moreover,

n + 1 <
n∑

i=0

di < (n + 1)

[
1 +

(
P

P rec
min

) 1
2δ
(

δ

δ − 1

) 1
δ

]
, (4.18)

which means that the total distance from source to destination is on the order of n,

i.e.,
∑n

i=1 di = Θ(n). �

4.1.2 A Heuristic Upper Bound

Similar to the conjecture introduced in Section 3.1.4, we assume that the sequence of

di is monotonically increasing. Therefore, we attain a tighter upper bounded for the

distance between adjacent nodes, which is
(

P
P rec

min

) 1
2δ ( δ

δ−1

) 1
δ , where P is the constraint

of individual power, P rec
min is minimum received power required corresponding to the

minimum required rate, path loss exponent δ > 1. In the following, we briefly prove

this heuristic bound.

Proof: Assume there exists a finite number N, for all n ≥ N , dn is unbounded.

From inequalities (4.1) and (4.9), we have

P rec
min ≤ P rec <

n∑
k=1

(
k−1∑
i=0

√
Pik

(
∑n

l=i dl)δ

)2

<

(
n∑

i=0

√
Pi−1

(
∑n

k=i dk)δ

)2

≤ P

(
n∑

i=0

1

(
∑n

k=i dk)δ

)2

(4.19)
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as all Pi ≤ P , where P is the constraint for individual power that the nodes possess.

Using the conjecture that all di’s are monotonically increasing, we have the rela-

tion that

n∑
i=k

di ≥


∑n

i=N di if k ≤ N ,

(n− k + 1)dN if k > N.

then, inequality 4.19 turns into

P rec
min < P

(
N − 1

(
∑n

i=N di)δ
+

1

dδ
N

n−N∑
m=1

1

mδ

)2

. (4.20)

The first term of the right hand side in the parenthesis of inequality (4.20)

N − 1

(
∑∞

i=N di)
→ 0

since
∑∞

i=N di goes to infinity.

Hence, we have

P rec
min < P

(
1

dδ
N

n−N∑
m=1

1

mδ

)2

. (4.21)

Using the fact (cf. Appendix A) that

∞∑
m=1

1

mα
<

α

α− 1

for α > 1 [22], we have

1

dδ
N

(
n−N∑
m=1

1

mδ

)
→ 0

if dN is unbounded for a finite N given δ > 1.

This means the right hand side of inequality (4.20) tends to 0 if dn is unbounded

for all n ≥ N .

Thus, given a specific δ (δ > 1), the received power P rec at the destination node

tends to 0 if our assumption of the existence of the unbounded dn is true, which
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is contrary to the requirement that the minimum rate being achieved from source

to destination. Hence, dN is bounded for any number of nodes given δ > 1, if the

minimum source-destination transmission rate is required in the LMGRN with CRIS

scheme.

Moreover, from inequality 4.21, we have

dN <

(
P

P rec
min

) 1
2δ
(

δ

δ − 1

) 1
δ

, (4.22)

which means for any value of N , the distance dN is bounded by a finite number which

is related to the path loss exponent δ, minimum required received power, and the

individual power constraint.

Apparently,

n <
n−1∑
i=0

di < n ·
(

P

P rec
min

) 1
2δ
(

δ

δ − 1

) 1
δ

,

which also means the total distance from source to destination is on the order of n,

i.e.,
∑n

i=1 di = Θ(n) for any number of total nodes n + 1 given δ > 1. �

Again, we compute an example of the upper bound for the distance between

adjacent nodes. Choose the same δ = 1.25, P rec
min = P = 1 as we did for the IRIS

scheme, we get the heuristic bound 3.62 and the strictly proved bound 4.62 for the

LMGRN with CRIS scheme.

Remark: The heuristic upper bound is based on our conjecture of an mono-

tonically increasing sequence of {di}. It is 1 less than the upper bound we strictly

proved above. Meanwhile, the heuristic bound perfectly matches with our simulation

results, as to be presented later in this chapter.
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4.2 Simulations

In this section, I present the simulation algorithm and numerical results for linear

Gaussian relay network using CRIS coding scheme, which was explained in section

2.1, given a minimum rate requirement. The problem of the optimal relay nodes

placement and power assignment are studied. A suboptimal method is also developed

to decrease the computing complexity of finding the optimal solution.

For the Gaussian linear network using CRIS scheme, the situation becomes more

complicated than that use the IRIS scheme. Each node i divides its power Pi into

a group of Pij(j > i) for every downstream node. The power assignment and the

distances between adjacent node introduce large amount of variables to deal with in

the optimization problem for networks with node number greater than 3.

4.2.1 Three Nodes Scenario

Figure 4.1: A 3-nodes relay network using CRIS scheme

In Fig. 4.1 shows the simplest case, a three modes Gaussian linear network using

CRIS scheme. There are three modes denoted 0, 1,and 2. Node 0 is the source, node

1 is the relay helping the source node 0 to transmit to destination node 2. d0 and d1

are the distances between the nodes. Node 0 divide its power P0 into two parts P01

and P02, dedicated to the transmission to node 1 and 2 respectively. P1 is the power

of node 1 and it is dedicated to node 2 totally since there is only one downstream

node to node 1.
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Apply the achievable rate formula 2.2, we have

R < min

{
S

(
1

σ2
α2

01P01

)
, S

(
1

σ2

(
α2

02P01 + (α02

√
P02 + α12

√
P1)

2
))}

Substitute 1
dδ
0
, 1

dδ
1

and 1
(d0+d1)δ for α01, α12 and α02, and omit the Gaussian formula

S, our object function, which aims to maximize achievable rate, for the optimization

becomes

max
d0,P01

min

{
P01

d2δ
0

,
P01

(d0 + d1)2δ
+

( √
P02

(d0 + d1)δ
+

√
P1

dδ
1

)2
}

where d0 + d1 and P0 are given.

for the three modes case: optimal placement of nodes 1 when the distance from

node 0 to node 2 is normalized to 1.

Without loss of generality, we normalize the distance from source(node 0) to

destination(node 1), and the power P0, P1 to 1. Let d0 = x, P01 = θP0, thus d1 = 1−x,

P02 = (1− θ)P0, where 0 < θ, x < 1. The above expression now is

max
θ,x

min

{
θ

x2δ
, θ + (

√
(1− θ) +

1

(1− x)δ
)2

}
,

which can be further simplified as

max
θ,x

min

{
θ

x2δ
, 1 +

1

(1− x)2δ
+

2
√

1− θ

(1− x)δ

}
, (4.23)
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Figure 4.2: The surface of achievable rate in a three-nodes LMGRN.

Fig. 4.2 shows the 3-dimensional curved surface for

min

{
θ

x2δ
, 1 +

1

(1− x)2δ
+

2
√

1− θ

(1− x)δ

}
,

while δ = 1.25. The x,y and z axis of this figure are x, θ and the corresponding value

of the minimization function respectively.

Let

f1(θ, x) =
θ

x2δ
, (4.24)

f2(θ, x) = 1 +
1

(1− x)2δ
+

2
√

1− θ

(1− x)δ
. (4.25)

If we fix θ, i.e., fix the power assignment of the source node, f1(x) is monotoni-

cally decreasing, f2(x) is monotonically increasing. If we fix x, i.e., fix the distances

between these nodes, f1(θ) is monotonically increasing, f2(θ) is monotonically de-

creasing.

We apply a recursive algorithm for finding the optimal θ and x for the three-nodes

scenario. The exhaustive search can also be used to do it also since there are only 2

variables in the three modes scenario.
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The recursive algorithm is as follows:

step 1: Initialization: Normalize the power of node 0 and 1 and the distance

between node 0 and 2. let x = 0.5, or other value between 0 and 1 can be taken as

the starting point of x.

step 2: Using equations (4.24) and (4.25) compute f1 and f2, record the smaller

value of them as min{f1, f2}. step 3: Keep the value of x, add small step size to

θ until min{f1, f2} won’t increase. step 4: Add a small step size(can be positive

or negative) to x, repeat step 2 and 3. If the min{f1, f2} improves, keep adding the

same step size to x and repeat steps 2 and 3 until there is no more improvement to

min{f1, f2}. Halt.

Then, the corresponding θ and x will be the optimal value we are looking for.

The result of optimal θ and x, which are x ≈ 0.42 and θ ≈ 0.80 when the path loss

exponent δ = 1.25.

There is another approach for solving this problem. Mathematically, the optimal

pair of (θ, x) satisfies f1(θ, x) = f2(θ, x). From this equation, we can derive the

relation of x = g(θ).

Define function

h(θ) := max
θ,x

min {f1(θ, x), f2(θ, x)}

= max
θ,x

min {f1(θ, g(θ)), f2(θ, g(θ))} (4.26)

Thus, getting the derivative of the function h(θ) and let it be 0, we can get the

optimal θ∗. Through x = g(θ), we can find the corresponding optimal x∗, and get

the optimal θ∗ from the relation x = g(θ).

4.2.2 Four Nodes Scenario

Though the above approach seems simple to get the optimal value of x and θ, the

situation changes dramatically for the problem of more nodes. As the following figure

shows, when there are 4 nodes in the network, we need to deal with 5 variables for

the optimization problem.
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Figure 4.3: A 4-nodes linear network.

Fig. (4.3) depicts a 4-nodes linear network using CRIS scheme. Node 0 divides

its power into 3 parts dedicated to node 1 to 3 respectively; node 1 divides its power

into 3 parts dedicated to node 2 and 3; node 2 does not need to divide its power since

there is only one downstream node to it. After normalize the individual power and

the total distance from node 0 to 3, there are 5 variables needed to be determined in

order to solve this optimization problem.

According to 2.10, the achievable rate formula for a 4-nodes network is

R < min{f1, f2, f3}, (4.27)

where

h1 := S

(
1

σ2
α2

01P01

)
,

h2 := S

(
1

σ2

(
α2

02P01 + (α02

√
P02 + α12

√
P12)

2
))

,

h3 := S

(
1

σ2

(
α2

03P01 + (α03

√
P02 + α13

√
P12)

2 + (α03

√
P03 + α13

√
P13 + α23

√
P23)

2
))

.

(4.28)

Substitute 1
dδ

ij
for αij(0 ≤ i < j ≤ 3), and omit the Gaussian function S, our

object function, which aims to maximize achievable rate, becomes

max min{f1, f2, f3, }, (4.29)
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where the maximization is over di and Pij (0 ≤ i < j ≤ 3) and

f1 :=
P01

d2δ
0

,

f2 :=
P01

(d0 + d1)2δ
+

( √
P02

(d0 + d1)δ
+

√
P12

dδ
1

)2

,

f3 :=
P01

(d0 + d1 + d2)2δ
+

( √
P02

(d0 + d1 + d2)δ
+

√
P12

(d1 + d2)δ

)2

+

( √
P03

(d0 + d1 + d2)δ
+

√
P13

(d1 + d2)δ
+

√
P2

dδ
2

)2

. (4.30)

Without loss of generality, we normalize the distance from source (node 0) to

destination (node 2), and the power P0, P1 and P2 to 1. Let P01 = θ01, P02 = θ02,

P12 = θ12, thus d2 = 1− d0− d1, P03 = 1− θ01− θ02, P13 = 1− θ12, where θ01, θ02 are

positive.

Now we have

f1 :=
θ01

d2δ
0

,

f2 :=
θ01

(d0 + d1)2δ
+

( √
θ02

(d0 + d1)δ
+

√
θ12

dδ
1

)2

,

f3 := θ01 +

(√
θ02 +

√
θ12

(1− d0)δ

)2

+

(√
1− θ01 − θ02 +

√
1− θ12

(1− d0)δ
+

1

(1− d0 − d1)δ

)2

.

(4.31)

The expression (4.29) now is

max
θij ,di

min{f1, f2, f3},

where (0 ≤ i < j ≤ 2).

By examining the changing direction of the power assignment from the 3-nodes

case to the 4-nodes case, we can see that, in the 4-nodes case, the power and distance

ratio between the first three modes will only differ a little from the 3-nodes case.

Thus, the search conducted for the optimal set of θij and di (0 ≤ i < j ≤ 2) starts
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from the result of the 3-nodes scenario. Firstly, we use two constants c1 and c2 to

scale the power and the distance of results from the 3-nodes case respectively. Then,

based on the approximation value by scaling, a recursive algorithm is used to find

the optimal results for the 4-nodes case.

Step 1: Initialization: Normalize the power of node 0, 1 and 2, and the distance

between node 0 and 3 to 1. The optimal result of 3-nodes case is θ∗ = 0.80, x∗ = 0.42

from above algorithm for 3-nodes case. Using c1 and c2 to scale the power and the

distance assignment for 3-nodes, i.e., let

θ01 = c1θ
∗ = 0.8c1,

θ02 = c1(1− θ∗) = 0.2c1,

θ12 = c1,

d0 = c2x
∗ = 0.42c2,

d1 = c2(1− x∗) = 0.58c2,

Now there are only two variables, which are c1 and c2, left in the optimization

problem. Using the algorithm for 3-nodes case, we can find optimal c∗1 = 0.86 and

c∗2 = 0.60. Substitute c∗1 and c∗2 back into the θij and di (0 ≤ i < j ≤ 2), we have the

starting value for these variables.

Step 2: Select a searching step size, e.g. 0.02. Using a 5-layer loop, compute

min{f1, f2, f3} in the 5-dimensional ball which has a radius 10 times of the stepsize,

centered at starting point of the θij and di (0 ≤ i < j ≤ 3). Keep the set of θij and

di (0 ≤ i < j ≤ 3) corresponding to the maximum min{f1, f2, f3}.

Step 3: Shorten the stepsize and repeat Step 2, get a new set θij and di (0 ≤
i < j ≤ 3) corresponding to the maximum min{f1, f2, f3}.

Step 4: Repeat Step 2 until reached desired stepsize. Halt.

Using the above algorithm, the optimal θij and di (0 ≤ i < j ≤ 3) attained for

δ = 1.25 are:

θ01 = 0.734, θ02 = 0.194, θ12 = 0.820, d0 = 0.263, and d1 = 0.344.

Since the source-destination distance d02 is normalized to 1, we can see from above

result that d0 = 0.263, d1 = 0.344, and d2 = 0.393 are in an increasing order.
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4.2.3 Recursive Power Updating: Suboptimal Strategy for

Multiple Nodes Scenario

In this section, we present a simulation strategy more practical for the multi-relay

nodes scenario.

For the simulation of the network using IRIS scheme, the recursive algorithm

we used in the last chapter is adding a node every time to compute for more nodes

scenario. Due to the nature of the achievable rate formula corresponding to CRIS

scheme, every time there is a new node added in as the new destination, the power

assignment of all the previous nodes and the distances between every pair of adjacent

nodes will all change if the optimal setting is needed. The recursive algorithm we

used in the simulation for the linear network using IRIS scheme is not appropriate

anymore.

Thus, a recursive power updating strategy, a suboptimal approach, is developed

here for making the problem easier. This strategy make an recursive algorithm

possible for the linear network using CRIS scheme. It is applied as the following

procedure:

The recursive individual power updating procedure:

1d10 =d
10 =P 1P

0 1 2

0P∆

Figure 4.4: Power updating strategy for a 3-nodes network.

Step 1: Normalize the individual power of each node to 1. Normalize the distance

between node 0 to node 1 as 1. Calculate the received power at node 1 and set it as

the required minimum received power for each destination node as each of them are

added at the end of the line.
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Figure 4.5: Power updating strategy for a 4-nodes network.

Step 2: Add the 3rd node after node 1 at a distance x away from node 1. As

what is shown in Fig. 4.4, let node 0’s power updated as P0 = P0 + ∆P0 and let

∆P0 + P1 = 1. The task now is to find optimal power assignment between ∆P0 and

P1 instead of finding P01 + P02 = 1 and letting P1 = 1 in the optimal setting. Using

recursive steps to find the best ∆P0 that maximizes d1. Record ∆P0 as P
′
02 and the

furthest d1 that still satisfies the minimum rate requirement. Also, let P
′
01 = P1.

Step 3: As Fig. 4.5 shows, add the 4th node at the end of the line, let node 0’s

power updated as P0 = P
′
01+P

′
02+∆P0, let node 1’s power updated as P1 = P1+∆P1,

and let ∆P0 + ∆P1 + P2 = 1. The task now is to find optimal power assignment

between ∆P0, ∆P1 and P2 instead of finding P01, P02, P03 = 1, P12 and P13 that satisfy

P01 + P02 + P03 = 1, P12 + P13 = 1 and letting P2 = 1 in the optimal setting. Using

recursive steps to find the best ∆P0 and ∆P1that maximizes d2 while keeping d0 and

d1’s value from the last step. Record ∆P0 as P
′
03, and ∆P1 as P

′
13, and the furthest

d2 that still satisfies the minimum rate requirement. Also, let P
′
12 = P1.

Step 4: Now do the similar thing as in Step 3 whenever add a new node at the

end of the line as the new destination. Suppose the last node is n. Keep all the

previous value of Pij (0 ≤ i ≤ n − 1, i ≤ j ≤ n − 1) and di (0 ≤ i ≤ n − 1). Let∑n−2
i=0 ∆Pi + Pn−1 = 1, then find the optimal assignment among them corresponding

to the furthest dn−1 that still satisfies the minimum rate requirement. Also, update

all the P
′
ij as calculated in this step.

Step 5: repeat Step 4 until reach the desired number of nodes of n or the source-
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Figure 4.6: Simulation result of using CRIS scheme given δ = 1 and δ = 1.25.

destination distance according to the request.

As a new node is added and each individual power is updated, the received power

at the destination node can always be met without change the distances between

upstream nodes.

The simulation has been done for the linear Gaussian relay network under the

CRIS scheme under two conditions: one is given the path loss exponent δ = 1, the

other is given δ = 1.25. Both results are shown in the figure (4.6).
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4.3 Comparison between Results with IRIS, CRIS

and Multi-hop Schemes

Some comparison between the schemes of CRIS, IRIS and conventional ”multi-hop”

are presented in this section. The ”multi-hop” relaying herein means that each

relay node use Decode-and-Forward coding scheme to decode then retransmit the

information to the next node (can be relay or destination). No cooperation amongs

the nodes in the network.

The main purpose of this comparison is to show that with the same kind of

interference subtraction strategy, how the effect of coherent relaying scheme differ

from the incoherent scheme or the conventional ”multi-hop” scheme. we did prove

that the node placement bounds for a Gaussian linear relay network using IRIS

or CRIS are quite similar given the path loss exponent δ > 1, but through the

simulation, we can see more clearly how much the coherent scheme can be better

than the incoherent scheme or the ”multi-hop” scheme. This comparison can provide

significant guidance for applications, since there is the trade-off between the higher

cost or the lower achievable rate, since the devices need to be equipped with beam-

forming function, which is necessary for utilize the coherent scheme,

In the following figure 4.7, the result for the CRIS scheme is calculated by using

the power update strategy. For a fair comparison, the result of updated individual

power for each node is used for the calculation for the IRIS scheme, though it is not

needed because the computing complexity is low.

Fig. 4.7 shows under IRIS, CRIS and ”multi-hop” schemes, how the total dis-

tance from source to destination changes when the number of nodes increases, given

the path loss exponent δ = 1.25. For the ”multi-hop” scheme, since there is no

cooperation, the distance between adjacent nodes keeps as the constant 1 as we

normalized.

From this 2 figure we can see, as we have proved, the distance from source to

destination, which is the summation of the distances between adjacent nodes of the

linear network, grows linearly with the number of the nodes, i.e.,
∑∞

i=0 = Θ(n).
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Figure 4.7: Comparison of the source-destination distance under 3 schemes given

δ = 1.25

The figure also shows apparently the advantage of the CRIS scheme and IRIS

scheme over the ”multi-hop” , which presented here as the longer source-destination

distance given the same individual power and minimum achievable rate requirement.
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Chapter 5

Conclusions and Future Research

This chapter concludes the thesis with a summary of contributions and presents a

few thoughts on future research.

5.1 Conclusions

5.1.1 Upper Bounds with CRIS and IRIS Schemes

We consider the LGMRN in the low attenuation regime (δ < 3
2
) using the attenuation

model of α = 1
dδ , where δ is the path loss exponent and d is the distance. For the

LGMRN with IRIS and CRIS coding schemes, upper bounds for the distance between

adjacent nodes are presented and proved under the condition of a minimum required

achievable rate.

For the LGMRN with IRIS scheme, the upper bound for the distance between

adjacent nodes is 1 + ( P
P rec

min

2δ
2δ−1

)
1
2δ if δ > 1

2
. For the LGMRN with CRIS scheme, the

upper bound for the distance between adjacent nodes is 1+
(

P
P rec

min

) 1
2δ ( δ

δ−1

) 1
δ if δ > 1.

We also proved that the corresponding total distance from source to destination is

of the same order as the total number of nodes for both cases.

51



5.1.2 Simulations

Thorough simulations are conducted for demonstrating the above theoretical results.

For the LGMRN with IRIS scheme, the simulation is relatively easy to proceed

because the incoherent relaying scheme does not need each upstream node to divide

its power to all the downstream nodes. We simulate the relay placement problem for

up to 500 nodes based on the same condition as the theorem.

For the LGMRN with IRIS scheme, the simulation is quite complicated since the

power assignment of each node for the downstream nodes is necessary to implement

the coherent transmission. For the optimal power assignment and node placement

problem, we conducted simulations for three-nodes and four-nodes scenarios. We

also developed a suboptimal power updating procedure to simplify the problem while

maintaining the main property of the problem. Using the suboptimal power updating

procedure, we simulate the power assignment and node placement problem for up to

28 nodes.

Comparing the theoretical and simulation results, which are well consisted with

each other, we can say we attained tight upper bounds for the LGMRN node place-

ment problem.

5.2 Future Research

As a part of future work, we would like to examine the scenario for a planar network,

i.e., the nodes lies on a 2 dimensional plane. Also, the result in this thesis can be

extended to the scenario that each relay node be placed by a group of nodes.

Also, result for the situation when δ = 1, which corresponds to the ideal inverse

square law, can be another interesting point in our future research.

Application prospects: in relay placement problem for sensor networks, how to

make use of the relaying with CRIS or IRIS coding scheme to improve the resource

efficiency, including power and lifetime trade-off, etc.
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Appendix A

Upper Bound for Riemann

Zeta-function

Riemann zeta-function ζ(α) is defined by the following infinite series:

ζ(α) =
∞∑

n=1

1

nα
, (A.1)

for values of α, which is a complex variable, with real part greater than one, and

then analytically continued to all complex α 6= 1. This Dirichlet series converges for

all real values of α greater than one [22] .

The summation
∑∞

m=1
1

mα can be bounded above by an integration

∞∑
m=1

1

mα
< 1 +

∫ ∞

1

1

xα
dx. (A.2)

∫∞
1

1
xα dx = 1

α−1
is finite as long as α > 1, .

Example: if α = 1.25,

1 +

∫ ∞

1

1

xα
dx = 1 +

α

α− 1
= 5. (A.3)

Corresponding simulation result:
∑106

m=1
1

mα = 4.47
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We could see that the upper bound attained by integration is quite tight.

We also can derive

∞∑
n=m

1

nα
<

1

mα
+

∫ ∞

m

1

xα
dx

=
α

(α− 1)mα
, (A.4)

which we used in Chapter 3 and 4 for the proofs.
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