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Abstract

This thesis focuses on convex sets and convex cones defined using hyperbolic
polynomials.

We first review some of the theory of convex sets in Rd in general. We then
review some classical algebraic theorems concerning polynomials in a single
variable, as well as presenting a few more modern results about them. We
then discuss the theory of hyperbolic polynomials in several variables and
their associated hyperbolicity cones. We survey various ways to build and
decompose hyperbolic cones and we prove that every nontrivial hyperbolic
cone is the intersection of its derivative cones. We conclude with a brief
discussion of the set of extreme rays of a hyperbolic cone.
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Chapter 1

Introduction and background

1.1 Notational conventions

Unless otherwise specified, G is a convex set, K is a convex cone, ē is the
vector of all ones of the appropriate dimension, Rd is the set of d-tuples of
real numbers, Σd is the set of d×d symmetric matrices, Σd

+ is the set of d×d
symmetric and positive semidefinite matrices, and Σd

++ is the set of d × d
symmetric and positive definite matrices.

We define arithmetic on (−∞,∞] = R ∪ {∞} by setting ∞ + x = ∞ for
all x ∈ (−∞,∞], λ∞ = ∞ for λ ∈ (0,∞], and 0 · ∞ = ∞ · 0 = 0. We do
not permit ∞ to be subtracted from ∞ or ∞ to be multiplied by a negative
number.

A function f : Rd → Rd′ is said to be Ck if it is k times continuously
differentiable. We denote the kth derivative of a Ck function f by Dkf ;
evaluated at a point x it is (Dkf)(x). (Dkf)(x) is a function mapping k-
tuples of vectors in Rd to Rd′ ; its evaluation at the vectors v1, . . . , vk is
written (Dkf)(x)[v1, . . . , vk]. Out of habit, we have special notations for the
first derivative of a C1 function and the second derivative of a C2 function —
(∇f)(x) is the first derivative of f evaluated at x and (Hf)(x) is the second
derivative of f evaluated at x. If d′ = 1, then (∇f)(x) is a linear functional
on Rd and so we often omit the square brackets around its argument.
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If G ⊆ Rd, then cl G is the closure of G, int G is the interior of G, and bd G
is the boundary of G.

1.2 Introduction

A wide variety of real-world problems can be modelled effectively as con-
tinuous optimisation problems. Continuous optimisation problems that are
convex tend to be better-behaved and tend to admit solution algorithms that
are faster and more robust than their nonconvex relatives. (A convex opti-
misation problem, for our purposes, is a problem of minimising some fixed
convex function (defined in Section 1.4), called the objective function, over a
fixed convex set (defined in Section 1.3), called the feasible set.)

Some effective approaches to nonconvex continuous optimisation problems
rely heavily on the ability to solve a sequence of convex optimisation problems
efficiently.

Convex optimisation in general is also a very powerful tool for proving that
a given optimisation problem may be approximated efficiently. This power
stems from the ellipsoid method of D. Yudin and A. Nemirovskii [43] and N.
Shor [36]; subject to fairly weak polynomial-time computability conditions
on the objective function and the feasible set, the ellipsoid method will take
a parameter ǫ > 0 and either produce a feasible point whose objective value
is within ǫ of optimal or conclude that no such point exists in polynomial
time.

Certain classes of convex optimisation problems are especially well-behaved
and admit especially fast and robust solution algorithms. Most notably, lin-
ear programs, where the objective function is linear and the feasible region is
polyhedral, have a simple and well-understood duality theory and especially
efficient algorithms for their solution. Nontrivial linear programs defined over
spaces with millions of dimensions are routinely solved to optimality using
modern linear program solvers. Another notable class are the semidefinite
programs, where the objective function is linear and the feasible region is the
intersection of an affine space with the set of positive semidefinite matrices of
a given size. Software packages exist that take advantage of the underlying
structure of the set of positive semidefinite matrices to get substantially bet-
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ter performance than could be expected from a package for general convex
programming.

Another class of convex optimisation problems, the hyperbolic programs, has
recently gained attention. In a hyperbolic program, the objective is again
linear, but the feasible set is defined using a polynomial that satisfies a certain
stability property known as hyperbolicity. Hyperbolic programs appear to be
more general than semidefinite programs — every semidefinite program can
be formulated as a hyperbolic program, but the converse is not known.

This thesis is concerned with hyperbolic polynomials and, in particular, the
structure of the feasible set of hyperbolic programming problems.

This notion of hyperbolicity first arose in partial differential equations in the
work of I. Petrovsky. The theory of hyperbolic partial differential equations
was notably furthered by M. Atiyah, R. Bott, and L. G̊arding ([1], [2]). It is
discussed in L. Hörmander’s four-volume set [22].

There are also deep connections to discrete mathematics. Y. Choe, J. Oxley,
A. Sokal, and D. Wagner [10], P. Brändén [7] and D. Wagner and Y. Wei
[42] used hyperbolic polynomials to prove theorems in matroid theory. L.
Gurvits [18] used hyperbolic polynomials to give simple proofs of two impor-
tant theorems in combinatorics.

A connection to matrix theory exists; J. Borcea, P. Brändén, and B. Shapiro
[6] used hyperbolic polynomials to prove three conjectures of C. Johnson in
the theory of matrices. Further, P. Brändén, J. Borcea, and T. Liggett [8]
established results in probability theory using hyperbolic polynomials.

1.3 Convex sets

Let G ⊆ Rd. We say that G is convex if, for each x and y in G, the line
segment [x, y] between x and y is contained in G. The class of convex subsets
of Rd is closed under intersection, so one can speak of the “smallest convex
set” containing a given set G ⊆ Rd, meaning simply the intersection of all
convex sets containing G. This “smallest convex set” is known as the convex
hull; the convex hull of a set X is denoted conv X.
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A classical theorem asserts that the convex hull of a set X is simply the set of
all affine combinations of elements of X in which the coefficients of elements
of X are nonnegative and sum to 1. (Such affine combinations are known as
convex combinations.) A theorem of C. Carathéodory asserts that, in fact,
each point of conv X can be written as a convex combination of at most d+1
points of X.

1.4 Convex functions

Let f : Rd → R ∪ {∞}. We say that f is convex if f(λa + (1 − λ)b) ≤
λf(a) + (1 − λ)f(b) for all a ∈ Rd, b ∈ Rd, and λ ∈ [0, 1].

There is a correspondence between convex functions and convex sets. If f is
convex, define its epigraph epi f by

epi f = {(x, y) ∈ R
d × R : y ≥ f(x)}.

Then epi f is a convex set. Further, if f is differentiable at x, then no point
(y, z) ∈ epi f satisfies (∇f)(x)[y] > z.

Conversely, given a convex set G, one can define the indicator function of G,
1/χG, by

1/χG(x) :=

{

∞ if x ∈ G

1 otherwise

1.5 Convex optimisation

A general convex optimisation problem can be stated in the form

inf f(x)
subject to g1(x) ≤ 0

...
...

...
gm(x) ≤ 0

(1.1)
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for some convex functions f and g1, . . . , gm mapping Rd to R. No generality
is lost by insisting that the objective function is linear; the problem above is
equivalent to the problem (in one more variable, λ)

inf λ
subject to g1(x) ≤ 0

...
...

...
gm(x) ≤ 0

f(x) − λ ≤ 0

The transformed problem is still a convex optimisation problem. The op-
timal objective values, if such exist, are the same. If one problem has no
feasible solution, neither does the other, and if there are feasible points with
arbitrarily negative objective value in one problem, the same is true for the
other.

Another form, more convenient for our purposes, is the conic form. A convex
optimisation problem in conic form is phrased as

inf cT x
subject to x ∈ K ∩ (V + b)

where c is a vector, K is a convex cone, V is a linear space, and b is a vector.
We can transform a problem in the form of 1.1 whose objective function is
linear to an equivalent problem in conic form by taking

K =

{

(x, y) ∈ R
d × R++ : gi

(

1

y
x

)

≤ 0 for 1 ≤ i ≤ n} ∪ {0
}

and letting V = {(x, y) ∈ Rd × R++ : y = 1}. Optimisation problems in
conic form are a convenient setting both for practical implementations and
for our theoretical development.

When the set V ∩ K contains an interior point of K, a remarkable duality
theorem (see, for instance, [38]) holds: the optimal objective value of the
“primal” problem

inf cT x
subject to x ∈ K ∩ (V + b)
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is equal to the optimal objective value of the “dual” problem

sup bT y
subject to y ∈ K∗ ∩ (V ⊥ + c)

where K∗ is the dual cone to K (defined in Section 2.8).

Interior-point methods are a class of particularly effective methods for solving
convex optimisation problems in conic form. One constructs a convex barrier
function for the cone K — a function f : int K → R such that if {xn}∞n=1

tends to x ∈ bd K, then f(xn) tends to ∞. If one further requires that f be
three-times differentiable and satisfy the self-concordance conditions

|(D3f)[h, h, h]| ≤ 2
√

|(Hf)[h, h]|3 for all h ∈ R
d

and
|(∇f)[h]| ≤

√

θ(Hf)[h, h] for all h ∈ R
d

for some θ, one can apply the rich theory of Y. Nesterov and A. Nemirovskii
[28]. In particular, one can obtain an algorithm that finds a solution within
an error of 1

ǫ
from optimal after doing O(

√
θ log 1

ǫ
) iterations.

1.6 Hyperbolic polynomials and

hyperbolic cones

1.6.1 Polynomials in general

The following fundamental theorem shows that the function mapping the
coefficients of a polynomial to its roots is continuous.

Theorem 1.6.1. Let Pn be the set of univariate monic polynomials of degree
n with complex coefficients. The map Z : Pn → 2C sending a polynomial to
its set of roots is continuous (in the Hausdorff metric).

Proof : Let p ∈ Pn and fix ǫ > 0. We shall assume that ǫ is so small that
no two distinct roots of p are within 2ǫ of one another. Let δ > 0 be such
that |p(x)| < δ/2 whenever x is at most ǫ away from a root of p.
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Let q ∈ Pn be such that |q − p| < δ/2 on every circle of radius ǫ centred at a
root of p. (The set of such polynomials contains p as an interior point.) Let
r be a root of p, and let γ be the contour running once clockwise around the
circle of radius ǫ centred at r. Since |q−p| < δ < |p| on γ, Rouché’s theorem
informs us that p + (q − p) = q has the same number of roots as p within
this contour. q has the same number of roots as p, so all of q’s roots must
be within ǫ of a root of p. The theorem follows. �

Corollary 1.6.2. Let Pn be as before. Let S be the set of nonzero polynomials
of degree n with only real roots. Then, for 1 ≤ k ≤ n, the function λk(p)
mapping a polynomial p ∈ S to its kth smallest root is continuous.

Definition 1.6.3. A multivariate polynomial p ∈ R[x1, . . . , xd] is said to be
homogeneous if there is an n for which, for all x ∈ Rd and real λ, p(λx) =
λnp(x). Equivalently, p is homogeneous if all terms of p have the same total
degree.

1.6.2 Hyperbolic polynomials and their cones

Definition 1.6.4. p is said to be hyperbolic in a direction e ∈ Rd if p is
homogeneous, p(e) > 0, and the univariate polynomial q(λ) = p(x+λe) only
has real roots for all x ∈ Rd.

If p is hyperbolic in direction e, let Λ++(p, e) be the connected component of
e in the set {x : p(x) 6= 0}. The hyperbolicity cone of p in direction e, denoted
Λ+(p, e), is the closure of Λ++(p, e). If K is the hyperbolicity cone of some
hyperbolic polynomial in some direction we say that K is a hyperbolic cone.

Important examples of hyperbolic polynomials are linear functionals (which
are hyperbolic in the direction e if they are positive when evaluated at e),
quadratics of the form

∑d
i=2 x2

i − x2
1, which are hyperbolic in the direction

(1, 0, 0, . . . , 0)T , and the determinant on the space of symmetric matrices of a
fixed size, which is hyperbolic in the direction of the identity matrix I. The
corresponding hyperbolic cones are halfplanes through the origin in the case
of linear functionals, the second-order cone in the case of x2

2 + . . . + x2
d − x2

1,
and the cone of symmetric, positive semidefinite matrices in the case of det.
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The hyperbolicity cone of a hyperbolic polynomial in a direction of hyper-
bolicity is clearly a cone, since hyperbolic polynomials are required to be
homogeneous. It is a rather deeper theorem due to L. G̊arding [15] that
every hyperbolic cone is convex.

Motivated by the example of the positive semidefinite cone, we define the
eigenvalues of a point x ∈ Rd with respect to the direction e′ ∈ Λ++(p, e) to
be the roots (with multiplicity) of the polynomial λ 7→ p(x + λe′). These are
the usual eigenvalues if p = det and e′ = I, and they are the entries of x if
p = x1 . . . xn and e′ = ē.

1.7 Hyperbolic programs

One can define conic-form convex optimisation problems over hyperbolic
cones. Let p be hyperbolic in direction e. A hyperbolic program is an optimi-
sation problem of the form

inf cT x
subject to x ∈ Λ+(p, e) ∩ (V + b)

for some linear space V and vector b.

It appears that hyperbolic programs can easily model a wider class of prob-
lems than semidefinite programs can.

We note that − log p(x) is a barrier function for Λ+(p, e); it is defined on
Λ++(p, e) and tends to infinity near its boundary. It follows from results of
O. Güler [17] that − log p is a self-concordant barrier for Λ+(p, e) with barrier
parameter θ = deg p. Moreover, − log p shares many of the properties of
− log det that make interior-point methods for semidefinite programming so
successful.

In Chapter 2, we discuss aspects of the theory of general convex sets in Rd.
In Chapter 3, we collect many useful results about polynomials in a single
variable. In Chapter 4, the main body of this thesis, we discuss the theory
of hyperbolic polynomials and hyperbolic cones.

It is prudent to remark that, while I have directed significant effort at giving
proper attribution for results previously known, there are probably cases of
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lacking or improper attribution that have thus far escaped my notice. Almost
everywhere, if attribution is missing, I implicitly attribute the result to the
“folklore” of mathematics; the exceptions are Theorem 4.2.4 and Section
4.5.
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Chapter 2

Convex sets

2.1 Convex bodies and cones

Let G ⊆ Rd.

Definition 2.1.1. G is said to be convex if, for all x and y in G, every point
on the line segment between x and y also lies in G. That is, G is convex if,
for all x and y in G and λ ∈ [0, 1], the point λx + (1 − λ)y lies in G.

The convex hull of G is the intersection of all convex sets containing G. The
convex hull of G is denoted by conv G.

K ⊆ Rd is said to be a cone if, for all x ∈ K and λ ≥ 0 in R, one has λx ∈ K.

G is said to be a convex cone if, for all x and y in G (not necessarily distinct)
and nonnegative real λ and µ, the point λx + µy also lies in G. We remark
that a set is a convex cone if and only if it is convex and a cone.

Proposition 2.1.2. The convex hull of a set G is precisely the set

{

∑

g∈G

λgg :
∑

g∈G

λg = 1, λg ≥ 0 for all g ∈ G

}

where all sums are understood to have finite support.
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Figure 2.1: The first three pictures depict convex sets in the plane. The
fourth depicts a nonconvex set. The third picture depicts a convex cone; the
other three do not.
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Proof : Omitted. This is Theorem 1.1.2 of the book by R. Schneider [35].
�

Proposition 2.1.3. Let P be a linear map from Rd to Rd′ and let G ⊆ Rd

Then:

(a). If G is convex, so is PG.

(b). P conv G = conv PG.

(c). If G is a cone, so is PG.

(d). If G is a convex cone, so is PG.

(e). If G ⊆ Rd and H ⊆ Re are two convex sets, then their Cartesian
product G × H ⊆ Rd+e is also a convex set.

(f). If G ⊆ Rd and H ⊆ Rd are two convex sets, then their Minkowski sum
G + H = {g + h : g ∈ G, h ∈ H} is also convex.

Proof :

(a). Let x, y, and λ be such that x ∈ PG, y ∈ PG, and λ ∈ [0, 1]. Let x′

and y′ be members of G such that Px′ = x and Py′ = y. Then λx +
(1−λ)y = λPx′ +(1−λ)Py′ = Pλx′+P (1−λ)y′ = P (λx′+(1−λ)y′).
Since G is convex, λx′ + (1 − λ)y′ is in G, and hence λx + (1 − λ)y is
in PG.

(b). Let A be a convex set containing G. Then PA is convex (by the
preceding part) and PA contains PG. Thus, conv PG ⊆ PA. It follows
that conv PG ⊆ P conv G. Now let B be a convex set containing
PG. The preimage P−1B contains P−1PG ⊇ G, establishing that
P conv G ⊆ conv PG. The result is thus proved.

(c). Let x ∈ PG. Let g be such that Pg = x. Let λ ≥ 0. Then λx =
λPg = P (λg) ∈ PG. Thus PG is a cone.

(d). By (a), PG is convex. By (c), PG is a cone. Thus it follows that PG
is a convex cone.
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(e). Let (g1, h1) and (g2, h2 be in G×H , and let λ ∈ [0, 1]. Then λ(g1, h1)+
(1 − λ)(g2, h2) = (λg1 + (1 − λ)g2, λh1 + (1 − λ)h2). Since G and H
are convex, λg1 + (1− λ)g2 is in G and λh1 + (1− λ)h2) is in H . Thus
λ(g1, h1) + (1 − λ)(g2, h2) is in G × H . Thus G × H is convex.

(f). Let P be the linear map from Rd×Rd such that P (x, y) = x+y. Then
G+ H = P (G×H), so G+ H is a linear image of a Cartesian product
of convex sets. By (a) and (d), therefore, G + H is convex.

�

2.2 Combinatorial theorems about convexity

Though we shall not have occasion to use any of the following theorems
except for Carathéodory’s, we present the results and their proofs because
they are elegant and fundamental to the broader study of convex sets in finite
dimensions.

Theorem 2.2.1 (Carathéodory’s Theorem (1911) [9]). Let X be a subset
of Rd, and let y ∈ conv X. Then there are x1, . . . , xd+1 ∈ X such that
y ∈ conv{x1, . . . , xd+1}.

Proof : Let d be the least dimension in which Carathéodory’s theorem
fails, and let X be a d-dimensional set and y a point of conv X such that
for any choice of x1, . . . , xd+1 in X one has that y 6∈ conv{x1, . . . , xn}.
Carathéodory’s theorem is easily verified in one dimension, so we may assume
that d ≥ 2.

By Theorem 2.1.2, there is a finite subset {x1, . . . , xn} ⊆ X and real numbers
λ1, . . . , λn such that λi > 0 for each i,

∑n
i=1 λi = 1, and

∑n
i=1 λixi = y.

Choose such a subset of minimum cardinality. Since n > d + 1, there is an
affine dependence among x1, . . . , xn — there are µ1, . . . , µn, not all zero, such
that

∑n
i=1 µi = 0 and

∑n
i=1 µixi = 0.

Choose a scalar ν such that λi + νµi ≥ 0 for all i and there exists a k for
which λk +νµk = 0. Then

∑n
i=1 λi+νµi = 0 and

∑n
i=1(λi+νµi)xi = y. Since
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λk + νµk = 0, however, one may omit any mention of xk. This contradicts
minimality of {x1, . . . , xn}. �

Theorem 2.2.2 (Radon’s Theorem (1921) [32]). Let S ⊆ Rd contain at least
d+2 points. Then there is a subset T ⊆ S such that (conv T )∩ (conv(S \T ))
is nonempty.

Proof : Without loss of generality, assume that S contains exactly d + 2
points. We again induct on d. If d = 1, Radon’s theorem informs us that,
given three points on a line, one is between the other two. This is obvious;
we therefore assume that d > 1.

Suppose that not all points of S are vertices of conv S. Then there is an
s ∈ S such that s ∈ conv(S \ {s}); take T = {s}. We therefore assume that
all points of S are vertices of conv S. (One particular consequence of this
assumption is that no three points of S are on the same straight line.)

Again without loss of generality, we shall assume that the origin is a member
of S. (If not, perform an appropriate translation.) Since 0 is a vertex of
conv S, there is a vector a ∈ Rd and scalar β > 0 such that aT x < β for all
x ∈ S \ {0}.

Let P : Rd\{0} → {x ∈ Rd : aT x = β} be defined by P (x) = βx
aT x

. (Then P is
perspective projection onto the plane aT x = β with the camera placed at the
origin.) One can show that P maps line segments to line segments and that
P maps the line segment [a, b] to a single point if and only if a, b, and 0 lie
on the same line. This implies, in particular, that P (conv X) = conv P (X)
for any finite set X.

We apply Radon’s theorem on P (S \{0}), which is a set of d+1 points in the
(d − 1)-dimensional affine subspace {x ∈ Rd : aT x = β}. There is therefore
a T ⊆ S \ {0} such that conv P (T ) ∩ conv P (S \ {0} \ T ) is nonempty;
let p be a point in that intersection. Then there are points t ∈ conv T
and s ∈ conv(S \ {0} \ T ) that lie on the line through 0 and p. One of
these two is farther from the origin; without loss of generality, say s. Then
conv(S \ T ) ∩ conv T is nonempty, as desired. �

Theorem 2.2.3 (Helly’s Theorem (1923) [19]). Let S1, . . . , Sn be closed,
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convex subsets of Rd. If, for every I ⊆ {1, . . . , n} with |I| ≤ d + 1, one has

∩i∈ISi 6= ∅

then
∩n

i=1Si 6= ∅.
Proof : We induct on n. If n ≤ d + 1, the result clearly follows from
the hypotheses. Thus we see that n ≥ d + 2. For each i with 1 ≤ i ≤
n, let xi be some point of ∩j 6=iSj . (This is nonempty by induction.) By
Radon’s theorem, one can partition the set {xi : 1 ≤ i ≤ n} into two subsets
whose convex hulls intersect. Thus let I1 and I2 be such that I1 ∩ I2 = ∅,
I1 ∪ I2 = {1, . . . , n}, and conv{xi : i ∈ I1}∩ conv{xi : i ∈ I2} intersect. Each
point of {xi : i ∈ I2} belongs to ∩i∈I1Si; by convexity, so does each point
of conv{xi : i ∈ I2}. Similarly, each point of conv{xi : i ∈ I1} belongs to
∩i∈I2Si. Let x ∈ conv{xi : i ∈ I1} ∩ conv{xi : i ∈ I2}. Then x ∈ Si for all
i ∈ I1 and x ∈ Si for all i ∈ I2; it follows that x ∈ ∩n

i=1Si. Thus ∩n
i=1Si is

nonempty, as desired. �

The bounds in all three theorems are tight. For Carathéodory’s theorem,
|T | ≤ d does not suffice if one takes S to be the vertices of a d-simplex and
x a point in its interior. For Radon’s theorem, |S| ≥ d + 1 does not suffice
since one can choose S to be the set of vertices of a d-simplex. For Helly’s
theorem, taking all S with |S| ≤ d does not suffice since one can choose F
to be the set of facets of a d-simplex.

Carathéodory’s theorem has the following “interior” analogue due to E.
Steinitz in the early 20th century. We do not prove it.

Theorem 2.2.4. Let S ⊆ Rd be finite and let y ∈ int conv S. Then there
exists a subset T ⊆ S of size at most 2d such that y ∈ int conv T .

2.3 Convex sets and topology

Proposition 2.3.1. Let G ⊆ Rd be convex and let X ⊆ Rd.

(a). If x ∈ int G and y ∈ cl G, then [x, y) ⊆ int G.
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Figure 2.2: If x ∈ int G, then G contains B(x, ǫ) for some ǫ > 0. If y ∈ cl G,
then int G also contains the region enclosed by the dotted curve.

(b). cl G and int G are convex.

(c). If X is open, conv X is open.

(d). If X is compact, conv X is compact.

(e). conv X ⊆ conv cl X ⊆ cl conv X.

(f). If X is bounded, conv cl X = cl conv X.

Proof : We omit the messy algebra needed to prove part (a), but the idea is
contained in Figure 2.2.To see that cl G is convex, let x and y be in cl G. Let
xn → x and yn → y; by continuity, λxn+(1−λ)yn → λx+(1−λy). Convexity
of int G follows from part (a). If a convex set contains an open set, then so
does its interior; (c) quickly follows. It is clear that conv X ⊆ conv cl X.

Let ∆d = {λ ∈ Rd
+ :

∑

λi = 1}. By Carathéodory’s theorem, conv X is a
continuous image of the compact set ∆d × Xd+1. If X is compact, it follows
that conv X is compact as well. Let x ∈ conv cl X. Draw sequences {λn}∞n=1

from ∆d and {xn}∞n=1 from Xd+1 such that
∑

λn,ixn,i → x, λn converges, and
xn converges. It is then immediate that x ∈ cl conv X.

If X is bounded, then cl X is compact; hence cl conv X ⊆ cl conv cl X =
conv cl X. The reverse containment follows from part (e). �

Definition 2.3.2. The affine hull of G is the intersection of all affine spaces
in Rd containing G. It is denoted by aff G.
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Proposition 2.3.3. aff G is the set of all x ∈ Rd that can be written as
∑d+1

i=1 λixi for some λ with ēT λ = 1 and some x1, . . . , xd+1 in G.

Proof : Omitted. �

Definition 2.3.4. x ∈ G is in the relative interior of G if x is in the interior
of G in the usual topology on aff G.

Proposition 2.3.5. Let G ⊆ Rd be convex. If G is nonempty, then G has
nonempty relative interior.

Proof : Omitted. �

2.4 The metric projection

Given any closed, convex set and any point, there is a unique nearest point in
the convex set to the point. The proof is elementary and is omitted; however,
this fact is so important that it earns a name and a convenient notation:

Definition 2.4.1. The metric projection to a convex set G maps a point x
to its nearest point in G. The metric projection of x onto G is denoted by
proj(G, x).

It will be convenient to fix a closed, convex set G ⊆ Rd for the remainder of
this section.

If x 6∈ G, then the angle from a point of G to proj(G, x) to x is always obtuse:

Proposition 2.4.2. Let x 6∈ G and let z ∈ G. Then

(z − proj(G, x))T (x − proj(G, x)) ≤ 0.

Proof : Suppose otherwise. Let z ∈ G be such that (z − proj(G, x))T (x −
proj(G, x)) > 0. Then, by convexity, [proj(G, x), z] ⊆ G. We observe that
the function f(λ) = ||x − λz + (1 − λ) proj(G, x)||2 is differentiable. Since
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proj(G, x) is the nearest point of G to x, f must have nonnegative derivative
at zero. Sadly, its derivative at zero is

f ′(0) = 2(x − proj(G, x))T (z − proj(G, x)),

from which the theorem follows. �

In particular, the hyperplane

{z ∈ R
d : (x − proj(G, x))T z = (x − proj(G, x))T proj(G, x)}

defines a hyperplane separating G from x.

Proposition 2.4.3. The metric projection is Lipschitz with constant 1 and
hence continuous.

Proof : Let x and y be in Rd. Let a = proj(G, x) and b = proj(G, y). Then
(b− a)T (x− a) ≤ 0 and (a − b)T (y − b) ≤ 0; thus, (b− a)T (x− a − y + b) =
(b−a)T (x−y)+||b−a||2 ≤ 0. We note that |(b−a)T (x−y)| ≤ ||b−a||||y−x||;
it quickly follows that ||y − x|| ≥ ||b − a||. �

Proposition 2.4.4. Let x ∈ Rd \ G. Let y = proj(G, x) + λ(x− proj(G, x))
for some λ ≥ 0. Then proj(G, y) = proj(G, x).

Proof : Omitted. �

Proposition 2.4.5. Let G be compact and convex. Let R be so large that
G ⊆ B(0, R). The image of the sphere S(0, R) under the metric projection
proj(G, ·) is bdG.

Proof : S(0, R) is compact, so its image under the continuous function
proj(G, ·) is compact as well. It is certainly contained in bd G. To prove
the reverse inclusion, suppose x ∈ bd G is not in proj(G, S(0, R)). By com-
pactness, there is an ǫ > 0 such that B(x, ǫ) ∩ proj(G, S(0, R)) = ∅; choose
y ∈ B(x, ǫ) \ G. Since proj(G, ·) is Lipschitz of constant 1, proj(G, x) = x,
||x − y|| < ǫ, and there are no points of proj(G, S(0, R)) within ǫ of x, we
see that proj(G, y) 6∈ proj(G, S(0, R)). Sadly, there is some point of S(0, R)
on the ray from proj(G, y) through y, and all such points map to proj(G, y)
under the metric projection; this is a contradiction. �
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Definition 2.4.6. A supporting hyperplane of G is a hyperplane H = {x ∈
Rd : aT x = b} such that all points g of G satisfy aT g ≤ b.

Theorem 2.4.7. Let x ∈ bd G. There is a supporting hyperplane to G
containing x.

Proof : Let y ∈ Rd \ G be such that proj(G, y) = x. Then, by Proposition
2.4.2 (z − x)T (y − x) ≤ 0 for all z ∈ G; take the hyperplane {z ∈ Rd :
(y − x)T z = (y − x)T x}. �

2.5 Faces

Definition 2.5.1. F ⊆ G is a face of G if F is convex and, whenever x and
y are in G and (x + y)/2 is in F , both x and y must also be in F .

A subset F of G is an exposed face if it is the intersection of G with a
supporting hyperplane.

Example 2.5.2. As the nomenclature implies (and as can easily be proven),
all exposed faces are faces. However, the converse is not true, as can be seen
by examining the point (1, 1) in the Minkowski sum [(0, 0), (1, 0)] + B(0, 1)
depicted in Figure 4.2.

Proposition 2.5.3. Faces of faces of G are faces of G.

Proof : Let F be a face of G and let E be a face of F . Let x ∈ E, and
suppose that x = (y + z)/2 where y and z are in G. Since x ∈ F and F is a
face, y and z must be in F . Sadly, E is a face of F ; y and z must therefore
lie in E. �

Proposition 2.5.4. Exposed faces of exposed faces of G are not necessarily
exposed faces of G.

Proof : Let G be the set [(0, 0)T , (1, 0)T ]+B(0, 1). Then F = [(0, 1)T , (1, 1)T ]
is an exposed face of G and E = {(0, 1)T} is an exposed face of F . Sadly, E
is not an exposed face of G. �
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Proposition 2.5.5. Every point of G lies in the relative interior of some
face of G.

Proof : We induct on the dimension of G. The result is clear if the di-
mension is zero. Let x ∈ G. If x ∈ int G, then x lies in the relative interior
of G. Otherwise, x ∈ bdG. Then x lies in some exposed face F of G. F
has dimension strictly smaller than dim G, so x lies in the relative interior of
some face E of F . E is then a face of G, yielding the desired result. �

Definition 2.5.6. Let G ⊆ Rd be a closed, convex set. An extreme point of
G is a point x ∈ G such that {x} is a face of G. An exposed extreme point of
G is a point x ∈ G such that {x} is an exposed face.

Let K ⊆ Rd be a convex cone. An extreme ray of K is a ray {λx : λ ≥ 0}
that is a face of G and is not {0}. An exposed extreme ray of G is a ray
{λx : λ ≥ 0} that is an exposed face of G and is not {0}.

Proposition 2.5.7. The extreme rays of Rd
+ are the rays defined by the

vectors of the standard basis.

Proof : Let x ∈ Rd
+ \ {0}. Suppose that xi 6= 0 and xj 6= 0. Fix ǫ < xi.

Then x±ǫei is not a scalar multiple of x. Further, x = 1
2
(x+ǫei)+ 1

2
(x−ǫei).

It follows that x does not define an extreme ray if x has at least two nonzero
components.

Now suppose that x has exactly one nonzero component — that is, x = xiei

for some i. Further suppose that x = λv + (1 − λ)w for some v and w in
Rd

+ and λ ∈ (0, 1). For all j 6= i, we have that xj = 0, vj ≥ 0, and wj ≥ 0.
It follows that vj = wj = 0. Thus v and w are scalar multiples of ei. This
proves that x defines an extreme ray. �

Proposition 2.5.8. Every nonzero boundary point of a second-order cone

{x ∈ R
d : x2

2 + . . . + x2
d ≤ x2

1}

defines an extreme ray.

Proof : Let x be such that x2
2 + . . . + x2

d = x2
1 and x1 > 0 — that is, x is

a nonzero boundary point of the d-dimensional second-order cone. Suppose
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that x = λv + (1 − λ)w for some v and w in SOCd and λ ∈ (0, 1). By the
triangle inequality,

√

x2
2 + . . . + x2

d

≤ λ
√

v2
2 + . . . + v2

d + (1 − λ)
√

w2
2 + . . . + w2

d ≤ λv1 + (1 − λ)w1 = x1

Equality holds in the first inequality if and only if (v2, . . . , vd) and (w2, . . . , wd)
are scalar multiples of one another. Equality holds in the second inequality
if and only if v1 =

√

v2
2 + . . . + v2

d and w1 =
√

w2
2 + . . . + w2

d. Thus one has
equality if and only if v and w are scalar multiples of one another. It follows
that x defines an extreme ray. �

Proposition 2.5.9. The extreme rays of a positive semidefinite cone are
defined by the positive semidefinite matrices of rank one.

Proof : Let M be a positive semidefinite matrix of rank at least two. By
the spectral theorem, one may write

M =

rank M
∑

i=1

λiPi

where, for each i, Pi is a rank-one positive semidefinite matrix. The spectral
theorem further guarantees that the matrices Pi are linearly independent.
One can thus write M , for instance, as M = (λ1P1) + (λ2P2 + . . . + λnPn)
and it is clear from this and linear independence that M defines no extreme
ray.

Thus all extreme rays of a positive semidefinite are defined by matrices of
rank one. We now check that every matrix of rank one defines an extreme ray.
We recall that every rank-one positive semidefinite matrix is of the form vvT

for some vector v. Suppose that vvT = λA+(1−λ)B for positive semidefinite
A and B and λ ∈ (0, 1). If w ⊥ v, then 0 = wT vvTw = λwTAw + (1 −
λ)wTBw. By positive semidefiniteness, we must have wTAw = wT Bw = 0.

We recall that, if M is positive semidefinite, then wTMw = 0 iff w ∈ ker M .
Hence v⊥ ⊆ ker A and v⊥ ⊆ ker B. Thus A and B are both of rank one; let
A = aaT and B = bbT . Since v⊥ ⊆ ker aaT , we see that a ∈ (v⊥)⊥ = span v.

21



Similarly, b ∈ span v. Thus there are α and β such that a = αv and b = βv;
it follows that aaT and bbT are scalar multiples of vvT . Thus vvT defines an
extreme ray of the positive semidefinite cone. �

2.6 Curvature and smoothness

Let G be a closed convex set with interior. We study the consequences of
various differentiability assumptions on bd G.

Definition 2.6.1. Let x ∈ bd G. The normal cone to G at x is

N(G, x) = {y ∈ R
d : proj(G, x + y) = x}.

Let x ∈ bd G. x is said to be a regular boundary point if N(G, x) is a ray.
The outward unit normal to G at a regular boundary point x is the unique
element of N(G, x) of norm one.

If x is a regular boundary point, the tangent space to G at x is the set

TxG = {y ∈ R
d : z ∈ N(G, x) =⇒ 〈y, z〉 = 0}.

Example 2.6.2. Let G = {x ∈ Rd : Ax ≤ b} be a polytope. Let x ∈ bd G.
Let A=x ≤ b= be the subsystem of the defining inequalities that are satisfied
with equality at x. Then N(G, x) is the convex cone generated by the rows
of A=. Thus x is a regular boundary point iff x lies in the relative interior of
a facet of G. The tangent space to G at a regular boundary point x is the
affine hull of the facet containing x in its relative interior.

Example 2.6.3. Let G be the unit disc in the plane. The normal cone to
a point x on the boundary of G is the ray generated by x. It follows that
every boundary point of G is regular. The tangent space to G at a boundary
point x is the translate of the line tangent to the unit circle at x that passes
through the origin.

The next result states that G near a boundary point is locally the epigraph
of a convex function. We call this function the local representation of G at
x.
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Theorem 2.6.4. Let x ∈ bd G be a regular boundary point, and let −e be
the outward unit normal to G at x. Then there exists an ǫ > 0 and a convex
real function f on TxG ∩ B(0, ǫ) such that

• f(0) = 0.
• f(y) ≥ 0 for all y ∈ TxG ∩ B(0, ǫ).
• x + y + f(y)e ∈ bd G for all y ∈ TxG ∩ B(0, ǫ).

Proof : The proof of this theorem lies outside the scope of our investigation;
we therefore omit it. �

We say that G is “Ck at x” if its local representation at x is Ck at 0.

Theorem 2.6.5. G is C1 if and only if every boundary point is regular.

Definition 2.6.6. Let G be closed and convex and let x ∈ bd G. Let f be
the local representation of G at x. We define the upper curvature κ by

κ(G, x, h) = lim sup
t→0+

2f(th)

t2

and lower curvature κ by

κ(G, x, h) = lim inf
t→0+

2f(th)

t2
,

both for any h ∈ TxG.

When the two agree, we simply call them the curvature and denote it by
κ(G, x, h). We shall show that the two agree precisely when G is C2 at x.

Proposition 2.6.7. Suppose G is C2 at x. Then, for all h ∈ TxG, κ(G, x, h) =
κ(G, x, h). Furthermore, κ defines a bilinear form on TxG.

Proof : Let f be the local representation of G at x. Then f(0) = 0 and
(∇f)(0) = 0. Thus, f(−v) = f(v) + o(||v||2). We therefore compute

lim
t→0+

2f(th)

t2
= lim

t→0+

f(th) + f(−th) + o(t2)

t2

= lim
t→0+

f(th) − 2f(0) + f(−th)

t2
+ o(1) =

∂2

∂t2
f(th).

Thus κ = κ and κ is merely the Hessian of f at zero. �
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2.7 Convex sets described by the zero set of

a function

Let f : Rd → R be a function such that G := {x ∈ Rd : f(x) ≥ 0} is convex.
Assume that bd G = {x ∈ Rd : f(x) = 0} and that int G = {x ∈ Rd : f(x) >
0}.
Proposition 2.7.1. Suppose that f is C1 and x ∈ bd G. Then, if (∇f)(x) 6=
0, a supporting hyperplane for G at x is {y : (∇f)(x)y = 0}.
Proof : If y is such that (∇f)(x)y < 0, then, for some point z on the line
segment [y, x), we have that (∇f)(x)z < 0. Thus having y ∈ G would violate
convexity of G. �

Proposition 2.7.2. If f is C2, x ∈ bd G, and (∇f)(x) 6= 0, then the curva-
ture map κ at x is simply

1

2||(∇f)(x)||(Hf)(x).

Proof : Let g be the local representation of G at x. Let h ∈ TxG. We note
that

f(x+th) = f(x)+t(∇f)(x)h+t2(Hf)(x)[h, h]+o(t2) = t2(Hf)(x)[h, h]+o(t2).

(The linear term vanishes because the gradient must be orthogonal to the
tangent space.)

When t is near zero, we have

g(th) = f(x + th)/
∂f(x + th + λ(∇f)(x + th))

∂λ
= f(x + th)/||(∇f)(x + th)|| = t2(Hf)(x)[h, h]/||(∇f)(x + th)|| + o(t2).

Thus,

κ(x)[h, h] = lim
t→0

g(th)

t2
= lim

t→0

t2(Hg)(0)[h, h] + o(t2)

t2

= lim
t→0

(Hg)(0)[h, h] + o(1) = (Hg)(0)[h, h] =
(Hf)(x)[h, h]

2||(∇f)(x)|| .

�
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2.8 Polarity and duality

We next consider three notions of duality in convex geometry. We roughly
follow the presentation in the book by R. Schneider [35].

Definition 2.8.1. Let convd be the set of nonempty compact convex subsets
of Rd. We call sets in convd “convex bodies.” Let convd

0 be the set of convex
bodies with interior. Let convd

00 be the set of convex bodies containing the
origin in their interior.

Let G be a convex subset of Rd. The polar body of G, denoted G∗, is the set

G∗ = {y ∈ R
d : 〈x, y〉 ≤ 1 for all x ∈ G}.

Thus, G∗ can be considered the set of linear functionals on Rd mapping each
point of G to a value at most 1. Polarity behaves particularly well on convd

00:

Proposition 2.8.2. If G ∈ convd, then G∗ ∈ convd if and only if G ∈ convd
00.

Furthermore, if G ∈ convd, then G∗∗ = G.

Proof : It is immediate from the definition that G ⊆ G∗∗. Thus we prove
only that G∗∗ ⊆ G. Let x ∈ G∗∗ \G. Then there is a vector a ∈ Rd for which
aT x > 1 and aT y ≤ 1 for all y ∈ G. Since aT y ≤ 1 for all y ∈ G, we see that
a ∈ G∗. Unfortunately, aT x > 1, so x 6∈ G∗∗. This is a contradiction from
which we conclude that G∗∗ ⊆ G. Thus equality is proven. �

Proposition 2.8.3. Let A and B be members of convd
00 such that A ⊆ B.

Then A∗ ⊇ B∗.

Proof : Let y ∈ B∗. Then, for every x ∈ B — and, in particular, every
x ∈ A — we have xT y ≤ 1. Thus y ∈ A∗ and the theorem is proved. �

Proposition 2.8.4. Let A and B be in convd
00. Then (A∩B)∗ = conv(A∗ ∪

B∗) and conv(A ∪ B)∗ = A∗ ∩ B∗.

Proof : Let x ∈ conv(A∗ ∪ B∗). Let a ∈ A∗, b ∈ B∗, and λ ∈ [0, 1] be such
that x = λa + (1 − λ)b. Now let y ∈ A ∩ B. Since y ∈ A, aT y ≤ 1; since
y ∈ B, bT y ≤ 1. Thus xT y ≤ 1. It follows that conv(A∗ ∪ B∗) ⊆ (A ∩ B)∗.
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Applying this result to A∗ and B∗ and using the relation G∗∗ = G and the
inclusion-reversing property, we see that conv(A ∪ B)∗ ⊇ A∗ ∩ B∗.

Now let x ∈ conv(A ∪ B)∗. Then xT a ≤ 1 for all a ∈ A and xT b ≤ 1 for all
b ∈ B. Thus conv(A ∪ B)∗ ⊆ A∗ ∩ B∗. Applying this result to A∗ and B∗,
and using G∗∗ = G and the inclusion-reversing property again, we see that
conv(A∗ ∪ B∗) ⊇ (A ∩ B)∗. Thus the theorem is proved. �

To each exposed face of a convex body, one can associate a corresponding
exposed conjugate face of the polar body. This notion of conjugacy is well-
behaved — the conjugate of the conjugate of an exposed face is the face itself,
and conjugacy is an inclusion-reversing bijection from the lattice of exposed
faces of a convex body to the lattice of exposed faces of its polar body.

Definition 2.8.5. Fix a convex body G. Let F ⊆ G. The conjugate face of
F is the face F̂ of G∗ given by

F̂ = {x ∈ G∗ : 〈x, y〉 = 1 for all y ∈ F}.

Proposition 2.8.6. Let F be a face of G, and let x ∈ relint F . Then F̂ =
{y ∈ G∗ : 〈x, y〉 = 1}.
Proof : One direction is clear, namely that F̂ ⊆ {y ∈ G∗ : 〈x, y〉 = 1}.
Now suppose that y is such that 〈x, y〉 = 1 but y 6∈ F̂ . Let z ∈ G be such
that 〈z, y〉 6= 1. since y ∈ G∗ and z ∈ G, we see that 〈z, y〉 < 1. Let x′ be
some point of F on the ray {x+λ(x− z) : λ > 0}. (Such a point exists since
x lies in the relative interior of F .) We observe that, for some positive λ,

〈x′, y〉 = 〈x, y〉 + λ〈x − z, y〉 > 〈x, y〉.

Thus y 6∈ G∗, a contradiction from which the containment F̂ ⊇ {y ∈ G∗ :
〈x, y〉 = 1} follows. �

Proposition 2.8.7. Let F be a proper face of the convex body G. Then F̂

is a nonempty exposed face of G∗ and
ˆ̂
F is the smallest exposed face of G

containing F .

Proof : Let x ∈ relint F . Then x ∈ bd G. Since G∗∗ = G, there is a point y
of G∗ for which 〈x, y〉 = 1. Thus F̂ is nonempty. Exposure of F̂ then follows
from the preceding proposition.
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Let x ∈ F and let y ∈ F̂ . Then 〈x, y〉 = 1, so x ∈ ˆ̂
F . Thus

ˆ̂
F is an exposed

face of G containing F . Let E = {x ∈ G : 〈a, x〉 = 1} be an exposed face of G

that contains F . Then a ∈ F̂ . Consequently,
ˆ̂
F ⊆ {x ∈ G : 〈a, x〉 = 1} = E.

This proves that
ˆ̂
F is the smallest exposed face of G containing F , as desired.

�

Definition 2.8.8. Let coned be the set of pointed closed convex cones with
interior in Rd. Let K ∈ coned. Define the dual cone of K to be

K∗ = {x ∈ R
d : 〈x, y〉 ≥ 0 for all y ∈ K}.

Proposition 2.8.9. If K ∈ coned, then K∗ ∈ coned. Furthermore, K∗∗ =
K.

Proof : This proof is so similar to the analogous proof for convex bodies
that we omit it. �

Proposition 2.8.10. Let A and B be in coned. Then (A∩B)∗ = cl(A∗+B∗)
and (cl(A + B))∗ = A ∩ B.

Proof : Omitted. �

2.9 Automorphisms of convex sets

Definition 2.9.1. Let G be a convex subset of Rd. The automorphism group
of G, denoted Aut G, is the set of invertible affine maps T such that TG = G.

Theorem 2.9.2. The automorphism group of a closed, convex set is closed
in the group of invertible affine maps.

Proof : Let G be a closed, convex set. Let {Tn}∞n=1 be a sequence of linear
maps in Aut G that tends to the invertible linear map T . For each x ∈ G,
we see that Tx = limn→∞ Tnx; since G is closed, this limit lies in G. Thus T
maps points of G to points of G — that is, TG ⊆ G.
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By continuity of inverses, we see that T−1 = limn→∞ T−1
n . One can then

apply the argument above to show that T−1G ⊆ G. It follows that G ⊆ TG;
equality is therefore proven. Thus T ∈ Aut G as well. �

In particular, the automorphism group of a closed, convex set is a matrix Lie
group.

It is clear that any automorphism of G must fix the centroid of G. We can
prove more, however: every automorphism of G must fix the centre of the
Löwner-John ellipsoid of G, which is the smallest ellipsoid containing G.

Theorem 2.9.3. det1/d is concave on Σd
++.

Proof : We note that det is hyperbolic in direction I. Thus, from G̊arding’s
inequality 4.1.11, we immediately see that det1/d is concave. �

Theorem 2.9.4. Let A and B be in Σd
++. If A and B are not scalar multiples

of one another, then det1/d is strictly concave on the line segment between A
and B.

Proof : If det1/d is not strictly concave on [A, B], then there is a nonempty
subinterval of [A, B] on which det1/d is linear. Since det1/d is the dth root of a
polynomial, this implies that det has a root of order d somewhere on the line
through A and B. The only root of order d that det has is at zero; therefore
A and B are scalar multiples of one another. This is a contradiction; det1/d

must be strictly concave. �

The following theorem is classical and due to Fritz John [23].

Theorem 2.9.5 (Fritz John’s theorem [23]). Let G be a compact subset of
Rd with interior. There exists a unique minimum-volume ellipsoid containing
G.

Proof : Let

X = {(A, c) : ||Ax − c|| ≤ 1 for all x ∈ G; A ∈ Σd
+; c ∈ R

d}.
We prove that X is convex. Let (A1, c1) and (A2, c2) be in X, and let λ ∈
[0, 1]. If x ∈ G, then

||(λA1 +(1−λ)A2)x−λc1− (1−λ)c2|| = ||λ(A1x−c1)+(1−λ)(A2x−c2)||
≤ ||λ(A1x−c1)||+||(1−λ)(A2x−c2)|| ≤ λ||A1x−c1||+(1−λ)||A2x−c2|| ≤ 1.

28



Thus X is convex. By G̊arding’s inequality, det1/d is concave on Σd
+ and

hence on X.

One can check that the level sets of det in X are bounded; it follows that det
has a maximiser in X. Suppose that det has two distinct maximisers, say
(A1, c1) and (A2, c2), in X. We note that

det
A1 + A2

2
=

1

2d
det(I + A

−1/2
1 A2A

−1/2
1 ).

Let λ1, . . . , λd be the eigenvalues of A
−1/2
1 A2A

−1/2
1 ; not all of these are one

since {A1, A2} is a linearly independent set. By the Cauchy-Schwarz inequal-
ity,

1

2d
det(I + A

−1/2
1 A2A

−1/2
1 ). =

1

2d

d
∏

i=1

(1 + λi) >
1

2d

d
∏

i=1

2λi =

d
∏

i=1

λi = 1,

a contradiction to the maximality of det A1 and det A2.

Suppose that E = {x ∈ Rd : ||Ax − c|| ≤ 1} is an ellipsoid containing G.
Note that Ax − c = A(x − A−1c); it quickly follows that the volume of E is
1/ detA. Note also that x ∈ E if and only if

(x − A−1c)T AT A(x − A−1c) ≤ 1.

Let B be the unique positive definite square root of AT A. Then x ∈ E if and
only if

||Bx − BA−1c|| ≤ 1.

We may therefore assume that the A in the definition of E is positive definite,
and hence that (A, c) lies in X. Thus the unique maximiser of det corresponds
to the unique minimum- volume ellipsoid containing G. Fritz John’s theorem
is therefore proved. �

We note that any automorphism for a convex body G must be an automor-
phism of its Löwner-John ellipsoid. We note that the automorphism group
of an ellipsoid centred at the origin is simultaneously similar to the orthog-
onal group, with the similarity being given by any linear map sending the
unit sphere to the ellipsoid. Thus we are justified in considering only convex
bodies whose Löwner- John ellipsoid is the unit ball centred at the origin.
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Figure 2.3: The set G from Example 2.9.7.

The automorphism group of any such body will be a (compact) subgroup of
the orthogonal group O(d).

We now compute the automorphism groups of a few convex bodies.

Example 2.9.6 (The simplex). Let G be a regular d-simplex centred at the
origin such that each vertex is at distance one from the origin. Then the
Löwner-John ellipsoid of G is the unit ball centred at the origin. G has d+1
points at distance one from the origin, so every automorphism must permute
these d + 1 points. Furthermore, a permutation of the d + 1 vertices of G
defines a unique affine map. It can be checked that every such map is an
automorphism of G.

Example 2.9.7. We study the convex body in Figure 2.3. Let

G =

{

(x, y) ∈ R
2 : (y − 1)

(√
3

2
x − 1

2
y − 1

)(

−
√

3

2
x − 1

2
y − 1

)

≤ −1

2

}

The maps R of rotation by 120 degrees about the origin and S of reflection
about the y-axis defined by

R(x, y) =

(

−x

2
+

√
3y

2
,
−
√

3x

2
− y

2

)
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and S(x, y) = (−x, y) are linear. It can be checked using the definition of G
that R ∈ AutG and S ∈ Aut G. It follows that R must be an automorphism
of the minimum-volume ellipsoid containing G and hence that the minimum-
volume ellipsoid containing G is a disc centred at the origin. G has three
farthest points from the origin; they lie along the rays at 30, 150, and 270
degrees. Every automorphism of G must permute these three farthest points.
Since these three farthest points form an affinely independent set, an auto-
morphism of G is defined by its action on the three farthest points. It follows
that Aut G is simply the group generated by R and S — it is isomorphic to
the dihedral group with six elements.

We now consider the automorphism group of the cone

K :=

{(

λx
λ

)

: x ∈ G, λ ≥ 0

}

for some fixed convex body G whose Löwner-John ellipsoid is the unit ball
centred at the origin. We can naturally identify Aut G with a subgroup of
Aut K by the map

T 7→
(

T 0
0 1

)

Proposition 2.9.8. Aut G is the subgroup of Aut K that maps the hyper-
plane {(x, λ) : λ = 1} to itself.

Proof : Trivial. �

One might conjecture that Aut G is a normal subgroup, or even a direct
summand, of Aut K. This is not the case, as the following example shows:

Example 2.9.9. Let G = [−1, 1] ⊆ R. Then

K = {(x, y)T : x + y ≥ 0 and y − x ≥ 0}.

The map T (x, y) = (−x, y) is in Aut G. The map T ′(x, y) = (3x+y, x+3y) is
in Aut K. Unfortunately, T ′−1(T (T ′(1, 1))) = T ′−1(T (4, 4)) = T ′−1(−4, 4) =
(−2, 2). Thus T ′−1TT ′ is clearly not a member of Aut G.

I believe, but I cannot prove, the following result:
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Conjecture 2.9.10. Aut K is the semidirect product of some subgroup of
Aut K with Aut G. That is, there is a normal subgroup X of Aut K such
that every element of Aut K may be written uniquely as xg for some x ∈ X
and g ∈ AutG.

I further suspect that this subgroup X is isomorphic to Rn under addition
for some n.

One can impose conditions on Aut K and Aut G so that this result becomes
almost trivial. Namely, if in each connected component of Aut K there is
a unique element of Aut G, then Aut K is the product of the connected
component of the identity in Aut K with Aut G.

2.10 Homogeneous and symmetric cones

Definition 2.10.1. Let K be a convex cone. We say that K is homogeneous
if Aut K acts transitively on int K. That is, if, for all x and y in int K there
exists a T ∈ Aut K for which Tx = y.

We say that K is symmetric if K is homogeneous and K = K∗.

Symmetric cones have a very deep connection with the theory of Jordan
algebras. The cone of squares in a Euclidean Jordan algebra is a symmet-
ric cone. Moreover, every symmetric cone arises as the cone of squares in
a Euclidean Jordan algebra. Using the classification theorem for Euclidean
Jordan algebras established by P. Jordan, J. von Neumann, and E. Wigner
[24], one can prove that every symmetric cone arises as a direct sum of
members of five simple classes of cone — the second-order cones, the sym-
metric positive-semidefinite real matrices of a particular size, the Hermitian
positive-semidefinite complex matrices of a particular size, the Hermitian
positive-semidefinite quaternionic matrices of a particular size, and the Her-
mitian 3 × 3 matrices over the octonions. It quickly follows from this result
that each symmetric cone arises as a slice of a semidefinite cone. J. Faraut
and A. Korányi have written a book [13] on the theory of symmetric cones
which contains proofs of the above results and many further details about
symmetric cones.
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It is a recent theorem, discovered independently by C. B. Chua and L. Fay-
busovich ([11]; [14]), that every homogeneous cone arises as the intersection
of a semidefinite cone with an affine space. Their proofs rely upon the ma-
chinery of T -algebras, developed by E. B. Vinberg ([40]; [39]), which give an
algebraic characterisation of the structure of a homogeneous cone.

We now attempt to give a taste of the theory of homogeneous cones. We
closely follow the presentation of Truong and Tunçel [37].

Definition 2.10.2. Let K ⊆ Rd be a closed convex cone. A K-symmetric
bilinear form on Rn is a bilinear map T : Rn × Rn → Rd such that:

• T (u, v) = T (v, u) for all u and v in Rn.
• T (u, u) ∈ K for all u ∈ Rn.
• If T 6= 0, then T (u, u) = 0 implies u = 0.

We note that if d = 1 and K is the nonnegative real axis, then the K-
symmetric bilinear forms on Rn are precisely the inner products on Rn to-
gether with the zero map. We shall continue our development, however,
bearing in mind a less trivial example:

Example 2.10.3. Let K be the cone Σn
+ (in the ambient space Σn, so d =

(

n
2

)

). Let T be the bilinear map on Rk×n given by T (U, V ) = 1
2
(UV T +V UT ).

It is immediate that T is symmetric and bilinear. If U 6= 0, then T (U, U) =
UUT , which is certainly positive semidefinite. Further, if U 6= 0, then there
is a u 6∈ ker U ; we compute uTT (U, U)u = uT UUT u = ||Uu||2 6= 0. Thus T
is a K-bilinear form.

Definition 2.10.4. Let K ⊆ Rd be a closed convex cone and let T be a
K-symmetric bilinear form on Rn. The Siegel domain of K and T is

SD(K, T ) := {(x, v) ∈ R
d × R

n : x − T (v, v) ∈ K}.

The Siegel cone of K and T is

SC(K, T ) := cl{(t, x, v) ∈ R++ × R
d × R

n : tx − T (v, v) ∈ K}.

If T is an inner product on Rn and K = R+ (i.e. d = 1), then SD(K, T ) is
the paraboloid

{(x, y) ∈ R × R
n : x ≥ ||y||2}
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and SC(K, T ) is the set

cl{(t, x, y) ∈ R++ × R+ × R
n : tx ≥ ||y||2}.

Example 2.10.5. We continue with Example 2.10.3. We compute

SD(K, T ) = {(M, U) ∈ Σn × R
k×n : M − UUT � 0}

and

SC(K, T ) = cl{(t, M, U) ∈ R++ × Σn × R
k×n : tM − UUT � 0}.

A striking theorem of E. Vinberg [40] states that if K is homogeneous and
T is a K-symmetric bilinear form satisfying some mild conditions, then the
Siegel cone SC(K, T ) is also a homogeneous cone. An even more striking
theorem of S. Gindikin [16] states that every homogeneous cone in at least
two dimensions arises as the Siegel cone of a homogeneous cone K and a
K-symmetric bilinear form satisfying the same mild conditions. Truong and
Tunçel [37] use this recursive construction to much effect, proving numer-
ous geometric results about the boundary structure of homogeneous cones
without recourse to the semidefinite representation theorem of Chua and
Faybusovich. Among them are a characterisation of the extreme rays of a
Siegel cone and its dual and a proof that that homogeneous cones are facially
exposed.
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Chapter 3

Polynomials in one variable

In Section 3.1, we will present a certain useful symmetric function of the
roots of a polynomial called the discriminant, and discuss some of the infor-
mation it uncovers. In Section 3.2, we will show that the discriminant can
be computed knowing only the coefficients of a polynomial, and then use the
same technique to characterise completely when the roots of a polynomial
with real coefficients are all real or all nonnegative.

3.1 The discriminant

Let p ∈ R[x], and let n be the degree of p. Let p0, . . . , pn be the coefficients
of p, so that

p(x) =

n
∑

i=0

pix
i.

Definition 3.1.1. Let the complex roots of p be r1, . . . , rn. Define the dis-
criminant of p by

disc p = p2n−2
n

n
∏

i=1

i−1
∏

j=1

(ri − rj)
2.
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Example 3.1.2. Let p(x) = ax2 + bx + c. Then the roots of p are famously

−b ±
√

b2 − 4ac

2a

The discriminant of p is then

a2

(−b +
√

b2 − 4ac

2a
− −b −

√
b2 − 4ac

2a

)2

= a2 b2 − 4ac

a2
= b2 − 4ac.

The discriminant tells many things about the roots of a polynomial. In
particular,

Proposition 3.1.3. Let p ∈ R[x]. Then

(a). disc p = 0 if and only if p has a multiple root.

(b). If p only has real roots, then disc p ≥ 0.

(c). disc p < 0 if and only if p has an odd number of pairs of nonreal roots
and no multiple roots.

Proof :

(a). Trivial.

(b). disc p is the square of a nonzero real number.

(c). Assume, without loss of generality, that p is monic. Say p has real roots
r1, r2, . . . , rk and nonreal roots c1, c̄1, c2, c̄2, . . . , cm, c̄m. We note that

k
∏

i=1

i−1
∏

j=1

(ri − rj)
2 > 0

since (x − r1)(x − r2) . . . (x − rn) is a polynomial with only real roots
and no repeated roots and this product is its discriminant. We also
note that

m
∏

i=1

k
∏

j=1

(ci − rj)
2(c̄i − rj)

2 =

m
∏

i=1

k
∏

j=1

((ci − rj)(ci − rj))
2

=

m
∏

i=1

k
∏

j=1

|ci − rj|4 > 0.
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Similarly,

m
∏

i=1

i−1
∏

j=1

(ci − cj)
2(ci − c̄j)

2(c̄i − cj)
2(c̄i − c̄j)

2

=
m
∏

i=1

i−1
∏

j=1

(

(ci − cj)(ci − cj)(ci − c̄j)(ci − c̄j)
)2

=
m
∏

i=1

i−1
∏

j=1

|ci − cj|4|ci − c̄j|4 > 0.

The remaining factors in disc p are

m
∏

i=1

(ci − c̄i)
2

Since ci− c̄i is purely imaginary for each i, its square is always negative.
We take the product of m negative things; the product is negative if
and only if m is odd. This establishes the desired result.

�

3.2 Vandermonde and Hankel matrices; New-

ton sums

The discriminant, in the form given in the previous section, does not appear
particularly useful — it appears that one must compute all of the roots of
a polynomial before one gets the small amount of summary information the
discriminant provides. Vandermonde and Hankel matrices, the theory of
which we develop below, allow one to compute the discriminant in terms
of the coefficients of the polynomial. The minors of the Hankel matrix will
also provide some information about the roots of a polynomial to which the
discriminant alone is blind.
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The following famous result computes the ”Vandermonde determinant.” It
finds particular use in polynomial interpolation; since the Vandermonde ma-
trix is horribly ill-conditioned, one cannot solve a system involving a Vander-
monde matrix directly. However, Cramer’s rule and this theorem together
result in a more numerically stable formula due to Lagrange.

Theorem 3.2.1. Let Vand(r1, . . . , rn) be the Vandermonde matrix











1 r1 . . . rn−1
1

1 r2 . . . rn−1
2

...
...

. . .
...

1 rn . . . rn−1
n











.

Then

det Vand(r1, . . . , rn) =

n
∏

i=1

i−1
∏

j=1

(ri − rj).

Proof : We note that














1 0 0 . . . 0
−1 1 0 . . . 0
−1 0 1 . . . 0
...

...
...

. . .
...

−1 0 0 . . . 1

























1 r1 . . . rn−1
1

1 r2 . . . rn−1
2

...
...

. . .
...

1 rn . . . rn−1
n











=











1 r1 . . . rn−1
1

0 r2 − r1 . . . rn−1
2 − rn−1

1
...

...
. . .

...
0 rn − r1 . . . rn−1

n − rn−1
1











.

and







r2 − r1 . . . rn−1
2 − rn−1

1
...

. . .
...

rn − r1 . . . rn−1
n − rn−1

1

























1 −2r1 3r2
1 −4r3

1 . . . (−1)n−2
(

n−2
n−3

)

rn−2
1

0 1 −3r1 6r2
1 . . . (−1)n−3

(

n−2
n−4

)

rn−3
1

0 0 1 −4r1 . . . (−1)n−4
(

n−2
n−5

)

rn−4
1

0 0 0 1 . . . (−1)n−5
(

n−2
n−6

)

rn−5
1

...
...

...
...

. . .
...

0 0 0 0 . . . 1



















=







r2 − r1 (r2 − r1)
2 . . . (r2 − r1)

n−1

...
...

. . .
...

rn − r1 (rn − r1)
2 . . . (rn − r1)

n−1






.
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The determinant of this last matrix is simply

(r2 − r1) . . . (rn − r1) det Vand(r2 − r1, . . . , rn − r1)

= (r2 − r1) . . . (rn − r1) det Vand(r2, . . . , rn)

Induction on n gives the desired result. �

Remark 3.2.2. An easier proof, suggested to me by D. Wagner, proceeds as
follows: Note that Z[r1, . . . , rn] is a unique factorisation domain in which
det Vand(r1, . . . , rn) lies. We note that ri − rj, for i 6= j, divides det
Vand(r1, . . . , rn). Since {ri − rj : 1 ≤ j < i ≤ n} is a set of pairwise co-
prime elements of Z[r1, . . . , rn], it follows that

n
∏

i=1

i
∏

j=1

(ri − rj) | det Vand(r1, . . . , rn).

The degrees of the two sides match, so

det Vand(r1, . . . , rn). = α

n
∏

i=1

i
∏

j=1

(ri − rj)

for some α ∈ Z. The coefficient of r0
1r

1
2 . . . rn−1

n on the left-hand side is one
and on the right-hand side is α, so α = 1 and the theorem is proved.

Corollary 3.2.3. Let r1, . . . , rn be the roots of a monic polynomial p. Then

disc p = (det Vand(r1, . . . , rn))2 = det(VandT (r1, . . . , rn) Vand(r1, . . . , rn)).

We now develop some tools to make this formula more philosophically sat-
isfying. Namely, we shall show that the right-hand matrix contains entries
that can be computed from the coefficients of p.

Definition 3.2.4. The kth n × n elementary Hankel matrix is the matrix
Hankk with entries

(Hankk)ij =

{

1 if i + j = k

0 otherwise.
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(There is a slight awkwardness hidden in our choice of notation — the first
nonzero n × n elementary Hankel matrix is Hank2 and the last is Hank2n.)

The kth Newton sum of a polynomial with roots at r1, . . . , rn is

sk =
n
∑

i=1

rk
i .

We overload notation slightly and let Hank(p) be the deg p × deg p matrix

Hank(p) =

2 deg p
∑

i=2

si−2 Hanki .

Let r1, . . . , rn be the roots of some polynomial p. We note that the (i, j) entry
of VandT (r1, . . ., rn) Vand(r1, . . ., rn) is precisely the (i + j − 2)th Newton
sum. That is,

(

VandT (r1, . . . , rn) Vand(r1, . . . , rn)
)

=

2n
∑

i=2

si−2 Hanki = Hank(p).

The Newton sums of a polynomial can be computed in terms of the coeffi-
cients of the polynomial, as we show next:

Proposition 3.2.5. Let p be a monic polynomial of degree d. Let the roots
of p be r1, . . . , rd, and let pi be the coefficient of xi in p. Then the pi and si

are related by the following system of equations, called the Newton identities:

pd = 1

pd−1 = −s1pd

pd−2 = −1

2
(s1pd−1 + s2pd)

pd−3 = −1

3
(s1pd−2 + s2pd−1 + s3pd)

...
...

...

pd−k = −1

k

(

k
∑

i=1

sipd−k+i

)

.
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Proof : The first equation is clear since p is monic; we shall ignore it. A
direct combinatorial proof of the remaining identities exists, but we prefer to
present instead an elegant argument given by S. Basu, R. Pollack, and M.-F.
Roy [3].

Let R be a real number larger than the magnitude of any of the roots of p.
We shall perform calculations in the region {x ∈ C : |x| > R}.

Note that p(x) =
∏d

i=1(x−ri). Doing logarithmic differentiation, we see that

p′(x)/p(x) =
∑d

i=1(x− ri)
−1. We observe (x− ri)

−1 = x−1
∑∞

j=0(
ri

x
)j . Thus,

p′(x)

p(x)
=

d
∑

i=1

∞
∑

j=0

rj
i

xj+1
=

∞
∑

j=0

d
∑

i=1

rj
i

xj+1
=

∞
∑

j=0

∑d
i=1 rj

i

xj+1
=

∞
∑

j=0

sj

xj+1
.

Multiplying both sides by p(x), we see that

p′(x) =

(

∞
∑

j=0

sj

xj+1

)(

d
∑

i=0

pix
i

)

=

∞
∑

j=0

d
∑

i=0

pisj

xj−i+1
=

d
∑

k=−∞





d
∑

i=max(0,k)

pisi−k



 xk−1.

We shall next prove that the negative-degree terms sum to zero. The promised
Newton identities will then follow by extracting coefficients in the formula
above.

We take the dth derivative of each side; since p′(x) is a polynomial of degree
d − 1, the left-hand side is zero. All of the positive-degree terms on the
right-hand side also vanish, since each one is of degree at most d− 1, leaving
only the negative-degree terms. Thus, we have an equation of the form

0 =

∞
∑

i=1

aix
−i

that holds for any x outside a sufficiently large disc. Letting f(x) =
∑∞

i=1 aix
−i,

we see that the function f(1/x) =
∑∞

i=1 aix
i is analytic on some disc con-

taining the origin and is equal to zero on that disc. It follows that f is zero;
the Newton identities therefore follow. �
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Corollary 3.2.6. Given the coefficients of a polynomial, one can exactly and
efficiently compute its Newton sums. Likewise, given the Newton sums of a
monic polynomial, one can exactly and efficiently compute its coefficients.

Proposition 3.2.7. Hank(p) is a real symmetric matrix.

Theorem 3.2.8. Let p ∈ R[x]. Then p only has real roots if and only if
Hank(p) is positive semidefinite.

Proof : Let r1, . . . , rk be the roots of p. If p only has real roots, then

VandT (r1, . . . , rk) = Vand∗(r1, . . . , rk).

It quickly follows that

Hank(p) = VandT (r1, . . . , rk) Vand(r1, . . . , rk)

is positive semidefinite.

Now suppose that p has some conjugate pair of complex roots; without loss
of generality, say r1 and r2. Also assume that all of the roots of p are distinct.
Let A and B be real matrices such that

Vand(r1, . . . , rk) = A + Bi.

We observe that

Hank(p) = VandT (r1, . . . , rk) Vand(r1, . . . , rk)

= (AT + BT i)(A + Bi) = AT A + i(AT B + BT A) − BT B.

Hank(p) is a real symmetric matrix, so its imaginary part is zero; therefore,
Hank(p) = AT A−BT B. We note that A has kernel since its first two rows are
equal; let x be a real vector in ker A. Since Vand(r1, . . . , rk) is nonsingular,
we see that Bx 6= 0. Thus, xT Hank(p)x = −xT BT Bx < 0. Hence Hank(p)
is not positive semidefinite if p has distinct roots and at least one pair of
nonreal roots.

Now suppose that p has some nonreal roots and some repeated roots. Let
q = p/ gcd(p, p′). (Then q has roots exactly where p has roots and q only has
simple roots.) By the above argument, Hank(q) is not positive semidefinite.
Let s1, . . . , sl be the roots of q, and suppose the roots of p are ordered so
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that ri = si for all i with 1 ≤ i ≤ l. Let E be the l × k matrix whose (i, j)
entry is one if i = j and zero otherwise. Then

Vand(s1, . . . , sl) = E Vand(r1, . . . , rk)E
T .

Thus

Hank(p) = E Vand(s1, . . . , sl)E
T E VandT (s1, . . . , sl)E

T

= E Vand(s1, . . . , sl) VandT (s1, . . . , sl)E
T = E Hank(q)ET .

Since ET is a surjection and Hank(q) is not positive semidefinite, it follows
that Hank(p) is not positive semidefinite. This proves the desired result. �

A related result is

Theorem 3.2.9. Let p be a real polynomial with only real roots. Then all of
p’s roots are nonpositive if and only if all of p’s coefficients are nonnegative.

Proof : The coefficients of
∏n

i=1(x+ri) are simply the elementary symmet-
ric functions of the ri. The elementary symmetric functions map nonnegative
numbers to nonnegative numbers; it follows that if all of p’s roots are non-
positive then all of p’s coefficients are nonnegative.

Now suppose that p is a real polynomial that has nonnegative coefficients.
Then, if x > 0,

∑n
i=0 pix

i > pnx
n > 0. �

Corollary 3.2.10. If p ∈ R[x], then p has only nonnegative real roots if and
only if Hank(p(x2)) is positive semidefinite.

3.3 Interlacing and the Gauss-Lucas theorem

Theorem 3.3.1 (Interlacing). If p(x) is a polynomial with roots r1, . . . , rn,
all real, then p′(x) only has real roots. Further, if q1, . . . , qn−1 are the roots
of p′(x), these roots may be ordered so that

r1 ≤ q1 ≤ r2 ≤ . . . ≤ rn−1 ≤ qn−1 ≤ rn.
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Proof : We observe that p(x) is a scalar multiple of (x− r1)(x− r2) . . . (x−
rn). We assume, without loss of generality, that p in fact equals (x −
r1) . . . (x− rn). We compute p′(x) =

∑n
i=1(x− r1)(x− r2) . . . ̂(x − ri) . . . (x−

rn). Suppose first that all of the roots of p are distinct. We observe that

p′(ri) = (x − r1) . . . ̂(x − ri) . . . (x − rn).

This is positive if n − i is even and negative if n − i is odd. It follows from
the intermediate value theorem that p′ has a root in (ri, ri+1) for each i with
1 ≤ i ≤ n − 1. These are all of the roots of p′ and the theorem is proved
when the roots of p are all distinct.

Now suppose that p has repeated roots. p is then the limit a sequence pn of
polynomials with only simple roots. Since differentiation is continuous and
the roots of p′n interlace the roots of pn for each n, it follows from continuity
of roots that the roots of p′ interlace the roots of p. �

Theorem 3.3.2 (Gauss-Lucas). If p(x) is a complex polynomial whose roots
are r1, . . . , rn, then the roots of p′(x) are contained in conv(r1, . . . , rn).

Proof : We observe that, for x not a root of p,

p′(x) =

(

n
∑

i=1

1

x − ri

)

p(x).

Thus, if p′(x) = 0, then either x is a root of p or

0 =
n
∑

i=1

1

x − ri

=
n
∑

i=1

x̄ − r̄i

|x − ri|2
=

n
∑

i=1

1

|x − ri|2
(x̄ − r̄i).

Rearranging the last sum, we find that

(

n
∑

i=1

1

|x − ri|2

)

x̄ =
n
∑

i=1

1

|x − ri|2
r̄i.

For i ∈ {1, . . . , n}, let

λi =
1/|x − ri|2

∑n
i=1 1/|x− ri|2

.
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Then λi ≥ 0 for each i and
∑n

i=1 λi = 1. Further, we have

x̄ =

n
∑

i=1

λir̄i.

Thus x̄ is a convex combination of r̄1, . . . , r̄n; the Gauss-Lucas theorem fol-
lows after complex conjugation. �

Definition 3.3.3. We overload some terminology and call univariate real
polynomials that only have real roots univariate hyperbolic polynomials, (Note
that we have dropped the condition that the polynomial be homogeneous.)

Let p and q be univariate hyperbolic polynomials. We say that p and q are
in proper position and write p ≪ q if (p′q − q′p)(x) ≤ 0 for all real x.

Two polynomials are in proper position iff their zeroes interlace:

Proposition 3.3.4. Let p and q be in R[x]. Let the roots of p be r1, . . . , ra,
and let the roots of q be s1, . . . , sb. If p ≪ q, then either:

(a). a = b and r1 ≤ s1 ≤ r2 ≤ s2 ≤ . . . ≤ ra ≤ sb, or

(b). a = b + 1 and r1 ≤ s1 ≤ r2 ≤ s2 ≤ . . . ≤ sb ≤ ra, or

(c). a = b − 1 and s1 ≤ r1 ≤ s2 ≤ r2 ≤ . . . ≤ ra ≤ sb, or

(d). a = b and s1 ≤ r1 ≤ s2 ≤ r2 ≤ . . . ≤ sb ≤ ra.

Proof : p′q − q′p = q2(p/q)′. If p/q has two consecutive poles that are
not separated by a root, its derivative clearly must change sign between the
two poles. Likewise, if p/q has two consecutive roots that are not separated
by a pole, its derivative must change sign between the two roots. Thus the
number of roots of p and the number of roots of q must differ by at most one
and satisfy one of the four strings of inequalities listed. �

The following fundamental result is attributed to Obreschkoff [30]. Though
our argument is long, this theorem is not especially hard to prove.
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Theorem 3.3.5 (Obreschkoff’s theorem). Letp and q are univariate hyper-
bolic polynomials. The polynomial αp + βq is univariate hyperbolic for all
real α and β if and only if p ≪ q or q ≪ p.

Proof : The following argument is overcomplicated. There must be a better
proof, but I do not know it.

We first prove that if p ≪ q or q ≪ p then αp + βq is univariate hyperbolic
for all real α and β. Fix α and β.

We examine only the case where gcd(p, q) = 1. This, together with interlac-
ing, excludes p and q from having repeated roots. If gcd(p, q) 6= 1 and p ≪ q,
then p/ gcd(p, q) ≪ q/ gcd(p, q); further, αp + βq = gcd(p, q)(αp/ gcd(p, q) +
βq/ gcd(p, q)) is univariate hyperbolic if and only if αp/ gcd(p, q)+βq/ gcd(p, q)
is univariate. Thus there is no loss in generality caused by assuming gcd(p, q) =
1.

Let the roots of p be r1 < r2 < . . . < rn and the roots of q be s1 < s2 <
. . . < sm. By the preceding theorem, we may order the roots of p and q so
that (without loss of generality) r1 ≤ si ≤ ri+1 for each i. We also assume
without loss of generality that α and β are positive and that p is negative to
the left of r1. There are still eight cases, however: q can be either positive or
negative left of s1, deg p could be either even or odd, and deg q could either
equal deg p or be one smaller. We shall tackle exactly one of these cases and
refer to our excellent Figure 3.1 for the remaining cases.

Assume that deg p = deg q = n is even and that q is positive left of s1.
Then p is negative on (−∞, r1), (r2, r3), . . ., (rn,∞), positive on (r1, r2), . . .,
(rn−1, rn). q is negative on (s1, s2), (s3, s4), . . ., (sn−1, sn) and positive on
(−∞, s1), (s2, s3), . . ., (sn,∞). It follows that αp + βq is positive on (r1, s1),
(r3, s3), . . ., (rn−1, sn−1) and negative on (r2, s2), (r4, s4), . . ., (rn, sn). Thus,
by the intermediate value theorem, αp + βq has roots in (s1, r2), (s3, r4), . . .,
(sn−1, rn). As such, αp + βq has at least n − 1 real roots. But nonreal roots
must come in pairs; αp + βq has all n roots real. The theorem is therefore
proven in this case, and we choose to omit the proofs for the seven other
cases.

Suppose gcd(p, q) 6= 1. Let p̂ := p/ gcd(p, q) and q̂ := q/ gcd(p, q). The
above argument shows that αp̂ + βq̂ is univariate hyperbolic for any real α
and β. Since gcd(p, q)|p, gcd(p, q) is also univariate hyperbolic, it follows
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Figure 3.1: A proof that p + q is univariate hyperbolic in the case where p
and q both have positive leading coefficient, deg p = 6, deg q = 5, and the
zeroes of p and q interlace. The red line shows the sign of p, while the green
line shows the sign of q. The solid blue line indicates the sign of p + q where
it can be deduced from the signs of p and q. Continuity of p + q implies that
a root of p+ q must lie at an abscissa in each dashed blue line segment; there
are at least deg(p + q) − 1 such segments.

that (gcd(p, q))(αp̂+βq̂) = αp+βq is univariate hyperbolic. This proves the
backward direction of Obreschkoff’s theorem for arbitrary choices of p and q.

We now prove that if αp + βq is univariate hyperbolic for all choices of real
α and β then either p ≪ q or q ≪ p. We shall assume that gcd(p, q) = 1;
no generality is lost. Let p’s roots be r1, . . . , rn. Suppose, for the sake of
contradiction, that the roots of p and q do not interlace. Then there is a
pair of roots of one polynomial, say rk and rk+1 of p, such that q has the
same sign on [rk, rk+1]. Assume, for now, that rk < rk+1. Without loss of
generality, suppose q is positive on [rk, rk+1] and p is positive on (rk, rk+1).

Let ai(t) be the ith smallest root of Pt := (1 − t)p − tq. We recall that ai

is a continuous function of t. We note that ak(0) = rk and ak+1(0) = rk+1.
We also note that, if 0 < t ≤ 1, then Pt(rk) < 0 and Pt(rk+1) < 0. Fix
c ∈ (rk, rk+1). Then there is an 0 < ǫ < 1 for which Pǫ(c) > 0. But
Pǫ(rk) < 0 and Pǫ(rk+1) < 0. Thus, Pǫ has at least two roots in (rk, rk+1).
Since neither rk nor rk+1 is a root of Pt when 0 < t ≤ 1, Pt must have at
least two roots in (rk, rk+1) for all t ∈ (0, 1]. Sadly, P1 = q has no roots in
(rk, rk+1), a contradiction from which we conclude that either p or q has a
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multiple root or the roots of p and q interlace. �

3.4 Convexity results

The following result on univariate polynomials will quickly imply G̊arding’s
inequality for hyperbolic polynomials.

Theorem 3.4.1 ([15]). Let p be a polynomial of degree n with only real roots.
If p is positive on the interval (a, b), then p1/n is concave on (a, b).

Proof : Let t be a point at which p is positive.

Let c and r1, . . . , rn be such that

p(x) = c
n
∏

i=1

(x − ri).

Then, if x is not a root of p,

p′(x) = c

(

n
∑

i=1

1

x − ri

)

p(x)

and

p′′(x) = c



−
(

n
∑

i=1

1

(x − ri)2

)

p(x) +

(

n
∑

i=1

1

x − ri

)2

p(x)



 .

We note that
d

dt
p(t)1/n =

1

n
p′(t)p(t)1/n−1

and

d2

dt2
p(t)1/n =

1

n

(

p′′(t)p(t)1/n−1 + (1/n − 1)p(t)1/n−2(p′(t))2
)

=
p(t)1/n−2

n2

(

np′′(t)p(t) + (1 − n)(p′(t))2
)
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We see that p(t)1/n

n2 is positive whenever t 6= 0. We now apply the above
calculations of p′ and p′′ and find

1

c
n2p(t)−1/n d2

dt2
p(t)1/n = n

(

n
∑

i=1

1

t − ri

)2

− n

(

n
∑

i=1

1

(t − ri)2

)

+ (1 − n)

(

n
∑

i=1

1

t − ri

)2

=

(

n
∑

i=1

1

t − ri

)2

− n

(

n
∑

i=1

1

(t − ri)2

)

Now let v ∈ Rn be the vector whose ith entry is 1/(t− ri). We note that, by
the Cauchy-Schwarz inequality,

(

n
∑

i=1

1

t − ri

)2

= 〈ē, v〉2 ≤ ||ē||2||v||2 = n

n
∑

i=1

1

(t − ri)2
.

This establishes that
d2

dt2
p(t)1/n ≤ 0.

A theorem of elementary calculus reminds us that a function whose second
derivative is nonpositive everywhere on an interval must be concave, proving
the desired result. �
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Chapter 4

Boundary structure of

hyperbolic cones

Let p ∈ R[x1, . . . , xd]. We begin in Section 1 by recalling the meaning of
the phrase “p is hyperbolic in direction e” and proving some fundamental
facts about the cones associated with hyperbolic polynomials. In Section 2,
we study a selection of techniques for constructing hyperbolic polynomials
from other hyperbolic polynomials and prove the main theorem of this thesis,
namely that the intersection of all derivative cones of a nontrivial hyperbolic
cone yield the cone itself. We also discuss some recent work by J. Borcea,
P. Brändén, and B. Shapiro toward classifying all linear maps on the space
of real polynomials in d variables that preserve a related notion called real
stability. In Section 3, we prove another fundamental result of J. Renegar,
namely that all hyperbolic cones are facially exposed. In Section 4, we collect
a few basic properties of strictly hyperbolic polynomials, and we conclude with
a brief discussion of the set of extreme rays of hyperbolic cones in Section 5.

4.1 Definitions and background

We follow quite closely Section 2 of Renegar’s paper [34].

Definition 4.1.1. p is said to be hyperbolic in direction e ∈ Rd if p(e) > 0
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and, for all x ∈ Rd, the univariate polynomial λ 7→ p(x + λe) only has real
roots. e is called a direction of hyperbolicity of p.

Another definition, more popular when nonhomogeneous polynomials are to
be considered, is:

Proposition 4.1.2. Let p be a homogeneous polynomial in d variables. p is
hyperbolic in direction e ∈ Rd if and only if there exists a τ0 ∈ R such that,
whenever τ < τ0, p(x + τie) is never zero.

Proof : Suppose p is hyperbolic in direction e. Take τ0 = 0. Fix x ∈ Rd.
The polynomial λ 7→ p(x + λe) only has real roots — in particular, it has no
roots with negative imaginary part. This proves the ” =⇒ ” direction.

Now let τ0 be such that, whenever τ < τ0 and x ∈ Rd, p(x + τie) is never
zero. Let qx(λ) := p(x + λe). We observe that if λ is a root of qx, then,
by homogeneity, µλ is a root of qµx. It follows that p(x + τie) is never zero
whenever τ < 0. Since p is a polynomial with real coefficients, p(x + τie) is
also never zero whenever τ > 0. It follows that p only has real roots. �

Hereafter, assume that p ∈ R[x1, . . . , xd] is hyperbolic in direction e ∈ Rd.

Definition 4.1.3. Let Λ++(p, e) be the connected component of e in the
set {x ∈ Rd : p(x) 6= 0}. The hyperbolicity cone of p in direction e is
Λ+(p, e) = cl Λ++(p, e).

Let K be a convex cone. Then K is said to be hyperbolic if K is the hyper-
bolicity cone of some hyperbolic polynomial in a direction of hyperbolicity.

We motivate our study of hyperbolic polynomials largely by considering the
following three examples.

Example 4.1.4.

• The nonnegative orthant
Let p(x1, . . . , xn) = x1x2 . . . xn. Then p is hyperbolic in direction ē and
its hyperbolicity cone is the nonnegative orthant.
• The second-order cone
Let p(x1, . . . , xn) = x2

2 + . . . + x2
n − x2

1. Then p is hyperbolic in the
direction e1, and the hyperbolicity cone of p in direction e1 is the cone

{(x1, . . . , xn)T : x2
2 + . . . + x2

n ≥ x2
1, x1 ≥ 0}.
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• The positive semidefinite cone

Identify the n× n symmetric real matrices with R(n
2) in the usual way.

The polynomial p = det is hyperbolic in the direction e = I, and
its hyperbolicity cone is the cone of n × n real symmetric positive
semidefinite matrices.

Definition 4.1.5. Motivated by the example of the semidefinite cone, we
define the eigenvalues of a point x ∈ Rd to be {λ ∈ R : p(x + λe) = 0}.

Theorem 4.1.6 ([15]). The cone Λ++ is precisely the set of points whose
eigenvalues are all positive, and Λ+ is the set of points whose eigenvalues are
all nonnegative.

Proof : Let x ∈ Λ++. Since the roots of a polynomial vary continuously
with its coefficients, we see that λmin is continuous on Λ++. Since λmin is
never zero on Λ++ and Λ++ is connected, we conclude that λmin(x) > 0.
Thus, every point of Λ++ has only positive eigenvalues.

Now let x be a point with only positive eigenvalues. Then x + λe is also a
point with only positive eigenvalues for any λ ≥ 0. By homogeneity, then,
so is x/λ + e. The arc from x to x + e given by γ1(t) = x + 2te for t ∈ [0, 1

2
]

and the arc from x + e to e given by γ2(t) = 2(1 − t)x + e for t ∈ [1
2
, 1]

can be concatenated to form an arc from x to e on which all points have
only positive eigenvalues. Thus, x is in the same connected component of
{y : p(y) 6= 0} as e.

Let x have nonnegative eigenvalues. Then, for any ǫ > 0, x + ǫe has positive
eigenvalues and therefore belongs to Λ++. This proves that all points with
only nonnegative eigenvalues are contained in Λ+. Now suppose x ∈ Λ+ has
a negative eigenvalue. By continuity of roots, there is an ǫ > 0 such that
every point within ǫ of x has a negative eigenvalue. Then no point within ǫ
of x is in Λ++; it follows that x 6∈ cl Λ++ = Λ+. �

Corollary 4.1.7.

Λ++(p, e) = {x ∈ R
d : Hank p(x − λ2e) ≻ 0}

and
Λ+(p, e) = {x ∈ R

d : Hank p(x − λ2e) � 0}.
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Corollary 4.1.8. Λ++(p, e) is the set of points x ∈ Rd such that p(x + λe)
has nonnegative coefficients.

Theorem 4.1.9 ([15]). If x ∈ Λ++, then p is hyperbolic in direction x.

Proof [34]: We need only show that, for y ∈ Rd, the polynomial λ 7→
p(y + λx) only has real roots.

Fix α > 0. We shall show that all roots of λ 7→ p(αie+λx+sy) have negative
imaginary part for every s ∈ [0,∞). From this and continuity of roots, it
quickly follows that λ 7→ p(λx + sy) only has real roots.

When s = 0, this follows by hyperbolicity of p; all roots of λ 7→ p(αie + λx)
are merely αi times a root of λ 7→ p(e+λx) — and all roots of this polynomial
are negative.

Now suppose that there is some positive s for which λ 7→ p(αie + λx + sy)
has a root of nonnegative imaginary part. By continuity of roots, there is a
least such s; at this s, λ 7→ p(αie + λx + sy) has a real root; let µ be this
root. We observe that αi is a root of β 7→ p(βe + µx + sy). Sadly, µx + sy is
a real vector; hyperbolicity in direction e permits this polynomial no nonreal
roots.

It follows that there is no positive s for which λ 7→ p(αie + λx + sy) has a
root of nonnegative imaginary part. This is true for any α > 0; we let α tend
to zero and apply continuity of roots again to find that λ 7→ p(λx + sy) has
no roots of positive imaginary part. But p has real coefficients, so p also has
no roots of negative imaginary part. Since y was arbitrary, it follows that p
is hyperbolic. �

Corollary 4.1.10. If f ∈ Λ++(p, e), then, for any x ∈ Rd, the polynomial
λ 7→ p(f + λx) only has real roots.

We first prove an inequality due to L. G̊arding. It will follow from this
inequality that all hyperbolic cones are convex.

Theorem 4.1.11 (G̊arding’s inequality [15]). If p is hyperbolic in direction
e, then p1/n is concave on Λ++(p, e).
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Proof : Let x0 ∈ Λ++(p, e). Let ǫ be such that B(x0, ǫ) ⊆ Λ++(p, e). Let
v ∈ Rd have norm one. Let g(t) = p(x0 + tv). Then, by 3.4.1, g is concave
on (−ǫ, ǫ). Since this holds for any v ∈ Rd of norm one, we see that p1/n is
concave on B(x0, ǫ). For any x0 ∈ Λ++(p, e), one can find an ǫ > 0 for which
p1/n is concave on B(x0, ǫ). Thus p1/n is concave on Λ++(p, e). �

Theorem 4.1.12 ([15]). Hyperbolic cones are convex.

Proof : Omitted; this follows easily from 4.1.11. �

Remark 4.1.13. The dual cone of a hyperbolic cone is not, in general, a
hyperbolic cone. Let

K = {(x, y, z)T ∈ R
3 : x2 + y2 ≤ z2, x2 − 2yz + z2 ≥ 0}.

This is a hyperbolic cone — it is the hyperbolicity cone of p(x, y, z) = (z2 −
x2 − y2)(z2 − 2yz + x2) in the direction (0, 0, 1)T . Its dual, unfortunately, is
the cone

K∗ = {(x, y, z)T ∈ R
3 : (x/z, y/z) ∈ B(0, 1) + [(0, 0)T , (1, 0)T ], z ≥ 0}.

We shall prove later that every hyperbolic cone is facially exposed. Since K∗

is not facially exposed, K∗ cannot be a hyperbolic cone.

Pictures of the z = 1 slices of these cones are given in Figures 4.1 and 4.2.

A major open problem is

Problem 4.1.14 (The generalised Lax conjecture). If p is hyperbolic in
direction e, does there exist a dimension D and a subspace S of ΣD so that
Λ+(p, e) is linearly isomorphic to S ∩ ΣD

+?

Remark 4.1.15. When d = 2, one can factorise the zero set of a hyperbolic
polynomial as a product of linear functions and quickly find a semidefinite
representation; the generalised Lax conjecture trivially holds in two dimen-
sions. The case d = 3 was recently proven by Lewis, Parrilo, and Ramana
[26] using results of Helton and Vinnikov [21] and Vinnikov [41]. In higher
dimensions, however, the conjecture is still open.
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Figure 4.1: The set {(x, y)T ∈ R2 : x2 + y2 ≤ 1, x2 − 2y + 1 ≥ 0}.

Figure 4.2: The set B(0, 1) + [(0, 0), (1, 0)].
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The preceding two corollaries appear to suggest a purely algebraic proof
strategy for the generalised Lax conjecture — given the coefficients of a
hyperbolic polynomial, find a linear map from Rd to Σd mapping exactly
those points in Λ+ to the positive semidefinite cone. Sadly, difficulties quickly
arise.

If one wishes to apply 4.1.7 directly, one needs to find a linear map from
Rd to Σd mapping a vector x to a matrix similar to Hank p(x − λ2e). Since
Hank p(x − λ2e) has exactly one entry of maximum total degree and hence
any similar matrix will have at least one entry of that degree, this approach
is doomed.

A different attack, aimed instead at proving that every hyperbolic cone is
a linear image of a slice of a semidefinite cone, is as follows: Consider the
polynomial p as a univariate polynomial in the direction e whose coefficients
are polynomials on Rd. First, find a way to represent the coefficients of p
using linear matrix inequalities that will move no roots across the imaginary
axis. Then, relate the coefficients of p, as a function of x, to the Newton
sums, again as a function of x, in a semidefinite-representable way. Then
form a Hankel matrix from the Newton sums and constrain it to be positive
semidefinite.

Two difficult questions arise. First, how does one represent the coefficients
of p using linear matrix inequalities without scattering p’s roots all over the
complex plane? Recent work of J. Borcea, P. Brändén, and B. Shapiro [5]
has characterised all differential operators with polynomial coefficients that
leave the roots of all real-rooted polynomials on the real line.

Second, the equations relating the Newton sums to the coefficients of a poly-
nomial are unpleasantly nonlinear. How can one write linear matrix inequal-
ities in the coefficients that produce values for Newton sums that give rise
to a positive semidefinite Hankel matrix exactly when the true Newton sums
do?

The first question seems more fundamental than the second. Using 3.2.9,
we see that a real-rooted real polynomial only has nonpositive real roots iff
its coefficients are all positive. We shall therefore assume that e = e1 and
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extract coefficients:

[λk]p(x + λe) = [λk]

n
∑

i=0

pi(x2, . . . , xn)(x1 + λ)i =

n
∑

i=0

pi(x2, . . . , xn)

(

i

k

)

xi−k
1 .

Thus, it is sufficient to find that some matrix similar or conjugate to

Diag(

n
∑

i=0

pi(x2, . . . , xn)

(

i

k

)

xi−k
1 : 0 ≤ k ≤ n)

is a linear image of x1, . . . , xn. This, too, is hopeless for reasons involving
the degrees of polynomials, and so we must use positive semidefiniteness
constraints to enforce what is necessary. I do not see how to proceed.

The central failing of the above proof techniques is that they use only results
that relate the roots of a polynomial to its coefficients — they leave relatively
undisturbed the question of their semidefinite representability.

4.2 New hyperbolic polynomials from old

The first three theorems are folklore. The first states that, if two hyperbolic
cones share an interior point, their intersection is hyperbolic.

Theorem 4.2.1. If p and q are polynomials hyperbolic in direction e, then
pq is also a polynomial hyperbolic in direction e. Furthermore, Λ+(pq, e) =
Λ+(p, e) ∩ Λ+(q, e).

Proof : Since p(e) > 0 and q(e) > 0, it follows that (pq)(e) = p(e)q(e) > 0.
Fix x ∈ Rd. Then λ 7→ p(x + λe) and λ 7→ q(x + λe) only have real roots;
it follows that λ 7→ (pq)(x + λe) = p(x + λe)q(x + λe) only has real roots.
Thus, pq is hyperbolic.

Further, λ 7→ p(x + λe) and λ 7→ q(x + λe) only have nonpositive real roots
if and only if λ 7→ p(x + λe)q(x + λe) = (pq)(x + λe) only has nonpositive
real roots. From this it follows that Λ+(pq, e) = Λ+(p, e) ∩ Λ+(q, e). �

The next theorem states that direct sums of hyperbolic polynomials are hy-
perbolic.
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Theorem 4.2.2. If p ∈ R[x1, . . . , xp] and q ∈ R[y1, . . . , yq] are hyperbolic in
directions ep and eq respectively, then the polynomial p ⊕ q ∈ R[x1, . . . , xp,
y1, . . . , yq] defined by (p ⊕ q)(x, y) = p(x)q(y) is hyperbolic in direction e :=
ep ⊕ eq. Furthermore, Λ+(p ⊕ q, e) = Λ+(p, ep) ⊕ Λ+(q, eq).

Proof : We note that (p ⊕ q)(x, y) = 0 if and only if either p(x) = 0 or
q(y) = 0. Thus, (p⊕ q)(x + λep, y + λeq) = 0 if and only if p(x + λep) = 0 or
q(y + λeq) = 0. The theorem quickly follows. �

The directional derivative of a hyperbolic polynomial in a direction of hy-
perbolicity is also hyperbolic; further, the cone generated by the directional
derivative contains the original cone.

Theorem 4.2.3 ([34]). If p is hyperbolic in direction e, then p′e = (∇p)(·)[e]
is also hyperbolic in direction e. Furthermore, Λ+(p′e, e) ⊇ Λ+(p, e).

Proof : Apply the interlacing theorem for roots of a polynomial. �

In a certain sense (of limited utility), the derivative cones completely describe
Λ+(p, e). We make this precise:

Theorem 4.2.4. Suppose that deg p ≥ 2. Λ+(p, e) is the intersection of all
of its derivative cones — that is,

Λ+(p, e) = ∩e′∈Λ++
Λ+(p′e′ , e).

Proof : Fix z ∈ bd Λ+(p, e).

We first dispatch two degenerate cases:
• If (∇p)(z) = 0, then z is also in the boundary of any derivative cone; it

therefore must be in the boundary of the intersection of all derivative
cones. Thus assume (∇p)(z) 6= 0.

• If Λ+(p, e) has nontrivial lineality space L — that is, the biggest linear
space L contained in Λ+(p, e) has positive dimension — work instead
with the restriction of p to L⊥ and the projection of e onto L⊥.

It suffices to show that there are points arbitrarily close to z in the two-
dimensional linear subspace spanned by z and (∇p)T (z) that are excluded
from some derivative cone. In particular, it is sufficient to establish this
result in the case where the dimension of the ambient space, d, is two. We

58



therefore focus only on this case, and we assume without loss of generality
that z = (1, 0)T . and that (∇p)(z) = (0, c) for some positive c.

Since Λ+(p, e) is linefree, deg p ≥ 2. Thus, p splits as

p(x, y) = y

n−1
∏

i=1

(x + aiy).

The gradient of p is then

(∇p)(x, y) =

(

y
∑n−1

i=1

∏

j 6=i(x + ajy)
∏n−1

i=1 (x + aiy) +
∑n−1

i=1 ai

∏

j 6=i(x + ajy)

)T

.

Evaluated at (1,−ǫ), this is

(∇p)(1,−ǫ) =

(

−ǫ
∑n−1

i=1

∏

j 6=i(1 − ǫaj)
∏n−1

i=1 (1 − ǫai) +
∑n−1

i=1 ai

∏

j 6=i(1 − ǫaj)

)T

.

The component of this gradient in the first coordinate is negative; it follows
that p′f(1,−ǫ) < 0 for some f in Λ++(p, e) near (1, 0)T , and hence that
(1,−ǫ)T is excluded from some derivative cone. The result is therefore proven.
�

We now sketch some of the work of Borcea, Brändén, and Shapiro charac-
terising the differential operators with polynomial coefficients that preserve
hyperbolicity.

Recall that if p and q are in R[x] and only have real roots then p ≪ q
if p′(x)q(x) − q′(x)p(x) ≥ 0 for all x — that is, if the zeroes of p and q
interlace. We present an analogous notion for multivariate polynomials.

Definition 4.2.5. Now let p and q be multivariate polynomials hyperbolic
in the same direction e. We say that p and q are in proper position and write
p ≪ q if λ 7→ p(x + λe) ≪ λ 7→ q(x + λe) for all x ∈ Rd.

We now study a generalisation of Obreschkoff’s theorem to hyperbolic poly-
nomials in many variables. This generalisation is due to Borcea, Brändén,
and Shapiro [5], but we shall refer to it as “Obreschkoff’s theorem” regardless.
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Theorem 4.2.6 (Obreschkoff’s theorem). Let p and q be hyperbolic in di-
rection e. The polynomial αp + βq is hyperbolic for all real α and β if and
only if p ≪ q or q ≪ p.

Proof [5]: The backward direction quickly follows from Obreschkoff’s
theorem in a single variable. We therefore consider only the forward direction.
By Obreschkoff’s theorem in a single variable, for each x ∈ Rd we have either
p(x + λe) ≪ q(x + λe) or q(x + λe) ≪ p(x + λe). If at least one of these is
true for all x, then it is proven that p ≪ q or q ≪ p. Thus suppose that there
are x1 and x2 such that p(x1 + λe) ≪ q(x1 + λe), q(x2 + λe) ≪ p(x2 + λe),
but q(x1 + λe) 6≪ p(x1 + λe) and p(x2 + λe) 6≪ q(x2 + λe).

Pick an arc from x1 to x2 that evades the line through origin in direction
e; by continuity, there is an x3 on this arc for which p(x3 + λe) ≪ q(x3 +
λe) ≪ p(x3 + λe). Then p(x3 + λe) is a scalar multiple of q(x3 + λe); say
p(x3+λe) = µq(x3+λe). The polynomial p−µq is, by hypothesis, hyperbolic
in direction e. Unfortunately, it is zero on the line through x3 in direction e;
we calculate

(p−µq)(e) = lim
t→0

(p−µq)(tx3 + e) = lim
t→0

tn(p−µq)(x3 + e/t) = lim
t→0

tn · 0 = 0.

Thus p − µq is not in fact hyperbolic in direction e. Since q(x1 + λe) 6≪
q(x1 + λe), however, we see that p is not a scalar multiple of q — that is,
p−µq is not identically zero. This is a contradiction from which we conclude
that p ≪ q or q ≪ p. �

Corollary 4.2.7 ([5]). Let p be hyperbolic in direction e. The set

{q hyperbolic in direction e : q ≪ p}
is a convex cone.

G. Pólya and I. Schur classified, in 1917, the set of univariate hyperbolicity
preservers λ that act on polynomials by λp =

∑∞

i=0 λipix
i. They proved the

following theorem:

Theorem 4.2.8 (Pólya-Schur multiplier theorem [31]). Let λ : N → R be a
sequence of real numbers. Let λ act on R[x] as above. Define a function on
C by

Φ(z) =
∞
∑

k=0

λkz
k

k!
.
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Then the following are equivalent:

(a). λ is such that, if p is univariate hyperbolic, then λ(p) is either zero or
univariate hyperbolic.

(b). Φ is entire and is the limit, in the topology of uniform convergence on
compacts, of a sequence of polynomials with only real roots of the same
sign.

(c). One can write either Φ(z) or Φ(−z) in the form

Ceαzzn
∞
∏

i=0

(1 + aiz)

where C ∈ R, α ≥ 0, n ∈ Z, and ai ≥ 0 for all i.

(d). For every natural n, the polynomial λ((1+z)n) is univariate hyperbolic
with all zeroes of the same sign.

Definition 4.2.9 ([5]). Let p ∈ R[x1, . . . , xd]. p is said to be real stable if,
for all x ∈ Rd and e ∈ Rd

++, the univariate polynomial p(x + λe) only has
real roots.

The main theorem in Borcea, Brändén, and Shapiro’s paper is the following,
which characterises the differential operators with polynomial coefficients that
preserve a certain modified notion of hyperbolicity.

Theorem 4.2.10 ([5]). Let T : R[x1, . . . , xd] → R[x1, . . . , xd] be defined by

T (p) =
∑

α∈Nd

tα∂α(p)

where tα ∈ R[x1, . . . , xd] for all α and is zero for all but finitely many α.
(That is, T is a general finite-order linear partial differential operator with
polynomial coefficients.)

Let q ∈ R[x1, . . . , xd][w1, . . . , wd] be defined by q(w) =
∑

α∈Nd tα(−w)α. Then
q is real stable if and only if T maps all real stable polynomials to real stable
polynomials.
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4.3 Hyperbolic cones are facially exposed

We prove a result of Renegar, namely that all hyperbolic cones are facially
exposed.

Proposition 4.3.1 ([34]). Let x ∈ bdΛ+ and let y be a tangent direction to
bdΛ+ at x. Then (Hp)(x)[y, y] ≤ 0.

Proof : Λ+ is convex. �

Theorem 4.3.2 ([34]). Let x ∈ bd Λ+ be a point where (∇p)(x) 6= 0. Let
y be a tangent direction to bd Λ+ at x. Either p(x + λt) = 0 for all λ or
(Hp)(x)[y, y] < 0.

Proof [34]: Suppose that (Hp)(x)[y, y] = 0 yet p(x+λt) is not identically
zero. We shall restrict our attention to the one-dimensional slices Sα =
{x + αe + βy : β ∈ R} — let pα be the restriction of p to Sα.

We note that zero is a root of multiplicity at least three of p0, since p and
its second derivatives are zero at x and y is a tangent direction at x. Choose
δ > 0 so that 0 is the only root of p0 within δ of 0. Then choose ǫ > 0 so
that pλ has at least three roots within δ of zero whenever 0 ≤ λ ≤ ǫ but no
root at distance δ from 0. (This is possible by continuity of roots.)

Since x + λe ∈ Λ++ whenever λ > 0, it follows by hyperbolicity of p that
pλ only has real roots whenever λ > 0. (Namely, because p(x + λe + βy) =
1

βn p(x+λe
β

+ y) and the right-hand side is a slice of p in direction x + λe.)

Since 0 is not a root of pǫ, it follows that pǫ has at least two roots either in
(−δ, 0) or in (0, δ); without loss of generality assume (0, δ).

The only point along the path P = [x, x + δy][x + δy, x + δy + ǫe] at which
p is zero is x. For each point z on P , define qz(t) = p(z + t(x + ǫe − z)). It
follows from continuity of roots that, whenever z ∈ P \ {x}, qz has two roots
in (0, 1). It follows, again by continuity of roots, that qx has two roots in
[0, 1]. Sadly, qx(t) = p(x + tǫe); for t ∈ (0, 1], the point x + tǫe is in Λ++. It
follows that qx has two roots at zero. This quickly implies that the gradient
of p at x is zero, a contradiction. �
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Theorem 4.3.3 ([34]). Let Λ+(p, e) be pointed and have interior. Let x ∈ bd
Λ+(p′e, e) \ Λ+(p, e) be such that (∇p′e)(x) 6= 0 and let h ⊥ (∇p′e)(x). Then
either h is a scalar multiple of x or (Hp′e)(x)[h, h] < 0.

Proof [34]: Suppose otherwise. Then there is an x ∈ bd Λ+(p′e, e)\Λ+(p, e)
for which (∇p′e)(x) 6= 0 and an h ⊥ (∇p′e)(x) such that h is not a scalar
multiple of x and (Hp′e)(x)[h, h] = 0. By Theorem 4.3.2, then, p′e(x+λh) = 0
for all λ ∈ R. By homogeneity, then, p′e is zero on the linear space spanned
by x and h; we may select h so that the line through x and x + h intersects
Λ+(p′e, e) in a line segment. Let x1 and x2 be the ends of this line segment.
Since Λ+(p, e) is convex, at least one of x1 and x2 must lie outside Λ+(p, e);
without loss of generality, say x1. We note that the line segment [x1, x2] is
contained within Λ+(p′e, e).

It is clear (from continuity of roots applied to p′e(λx1 + (1 − λ)x2) when
λ < 0) that p′e(x1 + λe) has a root of multiplicity k ≥ 2 at zero and no
positive roots. By interlacing, p(x1 +λe) must also have a root at zero; since
differentiation reduces the order of roots, this root must be of order k + 1.
Sadly, then, p(x1 + λe) has no positive roots and hence x1 ∈ Λ+(p, e). This
is a contradiction from which the theorem follows. �

Theorem 4.3.4 ([34]). Hyperbolic cones are facially exposed.

Proof : We prove this first for cones that contain no line.

We induct on deg p. If deg p = 1, it is clear that Λ+(p, e) is facially exposed.
Thus assume deg p > 1. Let F be a face of Λ+(p, e) and let x be in its relative
interior. If (∇p)(x) = 0, then F is also a face of Λ+(p′e, e), hence an exposed
face of Λ+(p′e, e), hence an exposed face of Λ+(p, e).

Thus assume that (∇p)(x) 6= 0. Let F ′ be the exposed face of Λ+(p, e)
defined by

F ′ = {y ∈ Λ+(p, e) : (∇p)(x)y = 0}.
F ′ certainly contains F . If F ′ 6= F , then there is a direction h and an ǫ > 0
for which x + ǫh ∈ F ′ \ F . But then p = 0 on the line {x + λh : λ ∈ R};
since p only has a simple root at x, it follows from continuity of roots that
x − δh ∈ Λ+(p, e) for some δ > 0, Thus F was not a face, a contradiction.
Thus, all linefree hyperbolic cones are facially exposed.

63



Suppose Λ+(p, e) contains a line. Let L be the largest linear space contained
in Λ+(p, e). Λ+(p, e) ∩ L⊥ contains no line, and the faces of Λ+(p, e) are
exactly the orthogonal direct sums of the faces of Λ+(p, e)∩L⊥ with L; their
exposure quickly follows. �

4.4 Strictly hyperbolic polynomials

Definition 4.4.1 ([22]). Let p ∈ R[x1, . . . , xd]. p is said to be strictly hy-
perbolic in direction e if p is hyperbolic in direction e and (∇p)(x) 6= 0 iff
x 6= 0.

Proposition 4.4.2. p is strictly hyperbolic in direction e if Hank p(x + λe)
is positive definite whenever x is not a scalar multiple of e.

Proof : If Hank p(x + λe) is positive semidefinite whenever x is not a
scalar multiple of e, continuity implies that Hank p(x+λe) is always positive
semidefinite and hence that p is hyperbolic in direction e. If Hank p(x + λe)
is positive definite whenever x is not a scalar multiple of e, then p(x + λe)
has no repeated roots unless x is a scalar multiple of e. Since (∇p)(x) = 0
iff x is a repeated root of p, the theorem follows. �

W. Nuij proved a number of fundamental results about strictly hyperbolic
polynomials through surprisingly elegant means. We reproduce three of them
below.

Theorem 4.4.3 ([29]). Let Pn be the space of polynomials of degree n.

(a). The set of strictly hyperbolic polynomials of degree n is open in the set
of all polynomials of degree n.

(b). Every polynomial hyperbolic in direction e is a limit of polynomials
strictly hyperbolic in direction e.

(c). The set of polynomials p ∈ Pn strictly hyperbolic in direction e such
that p(e) = 1 is simply connected.
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Proof [29]: Assume, without loss of generality, that e is the direction (1,
0, 0, . . ., 0)T . Name the variables, in order, x1, . . . , xn. Define a function
Tk,s : Pn → Pn by

Tk,s(p) = p + sxk
∂p

∂x1

.

We note that Tk,s is a linear operator. It follows from interlacing and
Obreschkoff’s theorem that, if p is hyperbolic and 2 ≤ k ≤ d, then Tk,s(p) is
hyperbolic.

We prove (a) by purely topological means. Let S be the set of all points
x such that x1 = 0 and x2 + . . . + xn = 1. Then p is strictly hyperbolic if
M(x) = Hank p(x + λe) is positive definite whenever x ∈ S. The entries of
Hank p(x + λe) are continuous functions of x, so M is continuous. The set
of strictly hyperbolic polynomials in direction e, then, is the preimage under
M of the set of positive definite matrices; it is therefore open. This proves
(a).

Suppose that x is such that λ 7→ p(x + λe) has a root of order ρ at zero.
Then, if sxk 6= 0, λ 7→ Tk,s(p)(x + λe) as a root of of order at most ρ − 1 at
zero. Thus,

T n
2,sT

n
3,s . . . T n

d,sp

only has simple roots other than zero. One recovers p by letting s tend to
zero, proving (b).

We omit the proof of (c). �

Part (b) is the most interesting for our purposes; it allows us to prove things
about hyperbolic cones that do not deeply rely upon the boundary struc-
ture by proving such results about strictly hyperbolic polynomials and then
appealing to continuity.

4.5 Extreme rays of hyperbolic cones

A complete characterisation of the extreme rays of a hyperbolic cone that
appeals only to properties of the defining polynomial and direction currently
seems slightly out-of-reach, but we can make some useful progress in this
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direction. We begin by recording a theorem of J. Renegar that appears to
be the only previously-known result toward characterising the extreme rays
of a hyperbolic cone.

Theorem 4.5.1 ([34]). Let Λ+(p, e) be linefree and suppose that d ≥ 3. If
x ∈ bd Λ+(p′e, e) \ Λ+(p, e), then (∇p′e)(x) 6= 0 and x defines an extreme ray
of Λ+(p′e, e).

Proof : By 4.3.3, the boundary of Λ+(p′e, e) has positive curvature in all
but one direction at x; it follows that x defines an extreme ray. �

One wonders how useful the above theorem is for characterising the extreme
rays of a hyperbolic cone. We observe that it is very useful for derivatives of
strictly hyperbolic polynomials:

Theorem 4.5.2. Suppose p is strictly hyperbolic in direction e and is such
that Λ+(p, e) contains no line. If x ∈ bdΛ+(p′e, e), then x is an extreme ray
of Λ+(p′e, e).

Proof : We note that, if x ∈ bdΛ+(p′e, e), then x 6∈ bdΛ+(p, e) since p has
no multiple roots. Theorem 4.5.1 applies and yields the desired result. �
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[6] Julius Borcea, Petter Brändén, and Boris Shapiro. Applications of stable
polynomials to mixed determinants: Johnson’s conjectures, unimodality
and symmetrized Fischer products. Duke Journal of Mathematics, to
appear, 2008.
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