

Designing a Real-Time Grid Simulator
for use in Market and A.G.C. Studies

by

Oliver Romaniuk

A thesis
presented to the University of Waterloo

in fulfilment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2008
© Oliver Romaniuk 2008

 ii

I hereby declare that I am the sole author of this thesis. This is a true copy of the

thesis, including any required final revisions, as accepted by my examiners. I understand

that my thesis may be made electronically available to the public.

 iii

Abstract

Market based generation dispatch is becoming the industry norm in advanced

electrical jurisdictions. Due to the continuous evolution of markets and their potential

impacts on system operation, studies are performed from economic and social

perspectives in order to gauge the effects of any changes before implementation into live

systems. In addition, it is essential to verify the effect of changes in market design on

power systems from a technical perspective.

The main objective of this thesis is to develop a real-time power system simulator

for use in the investigation of market designs and automatic generation control schemes.

The scope of this thesis is the mathematical algorithms used in the simulator, hardware

and software implementation, and validation of the implemented simulator.

The simulator is based on a modified version of the power flow calculation using

an innovative combination of a standard numerical technique implemented on a readily

available computing hardware platform. The result is a significant decrease in

computation time.

The power flow is performed repeatedly, with frequency being calculated

between time steps to provide system dynamics. Frequency is calculated using a modified

version of the generic generator swing equation. Generator and load models and their

respective control systems are provided for the purposes of simulator validation and

testing, although do not fall within the scope of the simulator itself.

 iv

Acknowledgements

Before we dive headfirst into this technical rant I call my thesis, I would like to say:

“Thank you! I could not have done this without you.”

The list of people that statement relates to is long and distinguished, but I would like to

individually thank the following people who have helped me in the following ways:

• To my loving and patient parents, Krystyna and Alexander, for creating me and

being forced to live with the consequences of that decision for the past 31 years.

Some have said that I’m turning out just fine, and I owe it all to you.

• To Associate Professor Ehab El-Saadany, for taking a chance on an unknown

quantity, and for all the help and guidance you’ve provided in the past two years.

• To Aden Seaman, you’ve been indispensible in turning an idea into reality.

• To Erin Young, this all started with you and I’ll never forget that.

• To Mario Chiarelli, the Yoda to my Luke Skywalker.

• To Vito Casola, the Emperor to my Darth Vader.

• To Lily Milanovitch, for calling me a lepton, knowing full well I would spend

hours in the high school library trying to figure out what you meant by that.

• To my friends, because without you all I would have lost my mind long ago.

• To Julio Iglesias, Willie Nelson and ‘To All the Girls I’ve Loved Before’.

And finally, to non-persons who have played a role in my quest for knowledge:

• To the Flying Spaghetti Monster, for touching me with His Noodly Appendage.

• To caffeine, in all its wonderful forms. Jet fuel for the thinking machine.

• To the Universe, for existing and giving us all the opportunity to just be.

• To Humanity, for taking advantage of that opportunity and continuously working

towards something better. Every day I wake up and smile, knowing we’re one day

closer to finally getting it right.

 v

Contents

List of Figures.. viii

List of Tables ... ix

Chapter 1. Introduction ... 1

1.1 Background .. 1

1.2 Objectives... 2

1.3 Overview.. 4

1.3.1 Purpose of Power System Simulation .. 4

1.3.2 The Power Flow Calculation.. 5

1.3.3 Required Modifications to the Power Flow ... 6

1.3.4 Adding System Dynamics .. 7

1.3.5 Generator and Load Models ... 8

1.3.6 Validation ... 9

1.3.7 Results .. 9

Chapter 2. Literature Survey... 11

2.1 Power System Simulation .. 12

2.1.1 Fast Transient Simulation... 12

2.1.2 Transient Simulation .. 13

2.1.3 Long Term Dynamic Simulation.. 14

2.1.4 Steady-state Simulation.. 14

2.1.5 Simulator Scope ... 15

2.2 Parallel Power Flow Algorithms.. 15

2.2.1 Parallel Newton-Raphson Algorithms ... 17

2.2.2 Parallel Gauss-Seidel Algorithms .. 19

2.2.3 Parallel Jacobi Algorithms ... 20

2.2.4 Example of Dynamic Parallel Power Flow .. 21

 vi

Chapter 3. Theory ... 23

3.1 Standard Jacobi Power Flow Algorithm .. 23

3.2 Raw Jacobi Power Flow... 28

3.3 System Dynamics... 29

Chapter 4. Implementation ... 32

4.1 Hardware Implementation.. 33

4.1.1 Graphics Processing Units ... 33

4.1.2 Equivalent Processing Architectures.. 34

4.2 General Software Implementation ... 35

4.2.1 Third Party Power Flow Verification... 36

4.2.2 Serial Equivalent Implementation.. 36

4.2.3 Parallel Implementation ... 37

Chapter 5. Results and Discussion.. 38

5.1 Simulator Validation .. 39

5.1.1 Establishing the Baseline Values ... 39

5.1.2 Validating Steady-state Values .. 39

5.1.3 Validating System Dynamics ... 41

5.1.4 Validating the Parallel Implementation.. 43

5.2 Parallel Simulator Timing Analysis ... 46

5.2.1 Synthesis of Large Systems.. 46

5.2.2 Large System Timing Analysis .. 48

5.3 Discussion and Future Potential... 53

5.3.1 Theoretical Limits of the Jacobi Algorithm ... 53

5.3.2 Reduction in Jacobi Iterations .. 53

5.3.3 Additional Parallelism and Optimizations ... 54

Chapter 6. Conclusions and Future Work... 56

6.1 Conclusions .. 56

6.2 Future Work ... 58

 vii

References... 59

Appendices

Appendix A - 5 Bus Power System Model... 63

5 Bus System Diagram... 64

5 Bus System Simulator Input Files... 65

Appendix B - 14 Bus System Model .. 66

14 Bus System Diagram... 67

14 Bus System Simulator Input Files... 68

Appendix C - 30 Bus System Model .. 70

30 Bus System Diagram... 71

30 Bus System Simulator Input Files... 72

Appendix D - PowerWorld and Serial Results ... 76

5 Bus System - Results Comparison .. 77

14 Bus System Results Comparison .. 78

30 Bus System - Results Comparison .. 80

Appendix E - Dynamic Serial Simulation .. 83

5 Bus System Validation.. 84

14 Bus System Validation.. 85

30 Bus System Validation.. 86

 viii

List of Figures
Figure 3.1 - Generator Droop Control Characteristics.. 31

Figure 5.1 - System Disturbances and Steady-state Points Used for Comparison 40

Figure 5.2 - Ramping Dynamic Sampling Points ... 42

Figure 5.3 - Serial / Parallel Frequency Comparison.. 43

Figure 5.4 - Serial / Parallel Iteration Comparison ... 44

Figure 5.5 - Serial Parallel Mismatch Relationship .. 45

Figure 5.6 - 100 Bus Parallel Timing Comparison ... 49

Figure 5.7 - 500 Bus Parallel Timing Comparison ... 49

Figure 5.8 - 1000 Bus Parallel Timing Comparison ... 50

Figure 5.9 - 2000 Bus Parallel Timing Comparison ... 51

Figure 5.10 - Simulation Time per Bus .. 52

Figure 5.11 - Computation Time Increase .. 52

 ix

List of Tables
Table 3.1 - Standard Power Flow Bus Types ... 26

Table 3.2 - Raw Jacobi Power Flow Bus Types ... 29

Table 5.1 - Transmission Line Characteristics ... 48

Table 5.2 - Transmission Line Characteristics ... 48

 1

Chapter 1.
Introduction

1.1 Background

In the 1990s, a number of electrical jurisdictions around the world moved from

the vertically integrated utility model to that of competitive markets. While the reasoning

behind such decisions is outside the scope of this discussion, it can be said that this move

introduced a number of new intricacies to the operation and control of power systems [1].

One of the primary changes was the use of wholesale electricity markets as the method

for determining which generators would be dispatched. For the first time competing

generators were asked to submit bids to be ranked and cleared by an independent third

party.

The methods for ranking bids, setting market prices, settling finances and

providing some ancillary services were developed using economic supply demand theory

and referred to as market design. Due to the nature of electricity as a commodity, part of

the standard economic theory used in commodity markets required modification, with

examples including the inability to warehouse or queue for the commodity. Electricity

markets currently in use have been repeatedly modified and honed in order to obtain

higher economic efficiency.

 2

The United States Federal Energy Regulatory Commission (FERC) has issued a

suggested Standard Market Design (SMD), with some electrical jurisdictions adopting it

and others moving towards it. The result is that many of the numerous electrical

jurisdictions have differing market designs. The success of these market designs varies,

with arguably positive and negative aspects to each. The evolution of electricity markets

is a continuous process in both academia and industry, with some methods eventually

being implemented into physical electrical systems.

In order to be able to estimate the effects of a particular change in market design,

in-depth studies are often completed before any changes are implemented. Many of the

studies are based in social science and attempt to gauge the effects on stakeholders and

the market place. While this is a highly useful exercise, the electrical commodity is quite

different from others and drawing parallels with other commodities may not always prove

accurate.

Effects of this were seen in the California energy crisis of 2000-2001. Due to a

fundamental disconnect between the financial market and the physical aspects of the grid,

the market provided great potential for gaming, to the benefit of many generators and

financial players, but to the detriment of society [2].

For this reason there should be additional studies based on simulations that

include both the financial and physical aspects of a power system. Physical aspects

include items typically absent from social and economic studies, primarily effects on

frequency and voltage levels. By observing the two fundamental metrics of a stable

power system during the simulation of a market, one could identify whether the market

operates to the benefit or detriment of the power system.

1.2 Objectives

The main objective of this thesis is to develop a real-time power system simulator

used in the investigation of market designs and Automatic Generation Control (AGC)

schemes. The scope of this thesis is the mathematical algorithms used in the simulator,

hardware and software implementation, and validation of the implemented simulator.

Simulators have been widely used in the industry to measure, analyze and control

power systems. Currently, there is a wide range of applications where simulators, or more

 3

generally, solution calculators, are being used. These include steady-state power flow

problems, optimal power flows, transient and steady-state stability analysis and short

circuit studies [3].

Each application has requirements on accuracy that dictate the complexity of the

models used within their respective simulators. In turn, the complexity of the calculations

dictates the speed at which the calculations can be performed, neatly dividing the

applications into two groups. Simulations that can be performed in real-time or faster can

be used in on-line applications, that is, have the potential to be used to control the power

system itself. Simulations that take longer than real-time, while still highly useful, are

used in off-line applications where the results can be applied to the power system with

some latency. This latency can be on the order of minutes, hours, days or months,

depending on the calculation and its application.

The purpose of limiting this simulator to the study of markets and AGC stems

from the desired requirement of real-time simulation, coupled with the compromise

between model complexity and calculation time. Power systems contain a wide range of

time constants stemming from the different components of electrical power systems,

primarily generation, load and protection. By identifying and eliminating portions of the

system model not required to simulate the desired result complexity and, therefore,

calculation time can be reduced.

Protection systems and electromagnetic transients operate at timescales orders of

magnitude faster than that of the deliberate generation and load changes associated with

markets and AGC. During a contingency such as a short circuit, protection systems

should operate to isolate the fault, typically within hundreds of milliseconds. Once the

fault is extinguished, the protection system will either be open or closed.

If the protection is closed, the system is at its original state and the simulation can

continue as if the fault never occurred. A limitation to that statement is loss of angular

stability in which the fault causes a generator to lose synchronism and be taken offline.

The magnitude and potential negative results of such an occurrence are dealt with in

dedicated stability studies. For the purposes of market and AGC simulation the

assumption is that either the generator recovers and the system is stable or if taken offline

the resulting system configuration is once again stable and a reserve market or AGC

 4

operates to replace the generation over a longer timescale, within the capabilities of the

simulator being described.

In the case that the protection system is open after the fault, the power system is,

therefore, in a reconfigured state and the simulator is required to reflect the change in the

topology of the system. This requires a modification to the system model itself and can be

accomplished through a second simulation using a ‘new’ power system model. Once

again, transient stability in the transition between the two models is addressed using

different tools. The assumption is that the system maintains stability and recovers using a

market or AGC based system of some form. The question of power system dynamics is

further addressed below.

Individual loads can operate quickly, although when aggregated tend to become

quite predictable within a few percent of peak demand. The simulator should be able to

reflect changes in load, although once again at a timescale much larger than that of the

protection, and within the timescale of the capabilities of a market or AGC. In the case

that a large portion of load is lost, (the probable case when dealing with large changes in

load) a market or AGC would once again operate to modify generation over a longer

timescale within the capabilities of the simulator.

To summarize, a simulator for the purposes of studying the operation of markets

or AGC schemes should recognize and be capable of handling relatively slow changes in

generation, load, voltage and frequency. Discontinuities such as the operation of

protection devices, major contingencies, forced outages, loss of transmission or load and

similar are assumed to leave the system in a stable state where a market or AGC can act

to find the long term equilibrium point. The transients associated with such

discontinuities are contained and dealt with in the larger field of power system stability,

which has other tools for use in its analysis.

1.3 Overview

1.3.1 Purpose of Power System Simulation

Power system simulators, state estimators and economic optimal power flow

calculators are core to the reliability of modern electricity systems and are used to predict

and control the state of every major electricity jurisdiction. The prevalent operational

 5

model utilizes a centralized system, where Supervisory Control and Data Acquisition

(SCADA) information from across the jurisdiction is transmitted to one or more Grid

Control Centres (GCC), often owned and operated by the Independent System Operator

(ISO). At the GCC, high powered computers perform complex mathematical calculations

to determine the current state of the system and any control actions required to maintain

stability. In [4], a detailed breakdown is given of the hierarchy and levels of control

required to ensure this stability, including a number of both local and wide area controls.

To summarize, local controls typically operate to maintain protection at the load,

generation and protection component level, while wide area controls operate to maintain

the stability of the system as a whole.

In order to properly control the power system, the ISO needs to know the current

state of the system. Based on the current state of the system, decisions are made as to

what actions will be required to ensure stability over the near-term time frame, i.e.

minutes to hours.

1.3.2 The Power Flow Calculation

The basis for many of the calculations integral to the stability of the system is the

Power Flow (PF). Given the physical characteristics of the power system, as well as

inputs regarding generation and load, the PF calculates the voltages on every bus in the

power system, as well as the required real and reactive power levels required to balance

supply and demand and keep voltages near nominal values. The calculated values can be

compared to actual measurements in order to verify the state of the system, and the

calculated power levels can be used to dispatch actual generation across the electrical

jurisdiction. The decision as to which generation is dispatched is often made using market

economics, constrained by physical system metrics such as system congestion and

security.

Since the power flow is a simulated version of the power system, alternate (i.e.

theoretical) values can be used as inputs to provide operators with estimates of the

potential state of the power system under hypothesized conditions. This is an extremely

useful analysis for contingency planning, such as generator forced outages, transmission

line failures and rapid load changes. These potential system states are put into the PF to

 6

estimate the condition of the power system after such changes. System operators can

make decisions that ensure a stable system taking into account the current state of the

system, as well as potential system configurations after hypothetical system disturbances.

The power flow is a static method, providing a snapshot of the power system at

any given moment in time. In its basic form it does not contain any time based

information and does not provide any information regarding the dynamics of the power

system. Additional tools for such purposes are available to system operators but are

outside the scope of the current discussion.

The power flow is a highly used and valued tool in the system operator’s toolkit,

therefore there has been significant research into reducing the time required to perform

the calculation and obtain the results. Industrial grade systems largely use the Gauss-

Seidel and Newton-Raphson algorithms, as well as a number of modifications to, and

variations of, these algorithms. Due to the mathematical nature of the methods, the speed

with which the solution can be obtained is highly coupled with the method of hardware

and software implementation. These methods are introduced and discussed in depth in

Chapter 2 - Literature Survey.

1.3.3 Required Modifications to the Power Flow

The power flow is a tool used to find steady-state system voltages and required

real and reactive power outputs. Alternatively, the application of power system

simulation attempts to find the state of the system, based on the generation and load

inputs. The state of generation and load are functions of their own respective or central

control systems.

In other words, ISOs want to know what generation dispatch orders are required

in order to stabilize the system and, therefore, use the power flow calculation to obtain

that information. The application of the power flow calculation to power system

simulation requires that the ‘control and dispatch’ mechanism be removed from the

algorithm and dealt with separately.

In the case of real power, if generation and load are not in balance, then the PF

provides the required dispatch in order to balance the system. In simulation, the

 7

imbalance manifests itself as a frequency deviation, upon which some as-yet undefined

control system would act to correct the imbalance.

This is also true for reactive power output. The PF calculates required reactive

power to maintain a desired (pre-set) bus voltage. In simulation, the bus voltage is largely

a function of the reactive output of the generator at that bus. The duty of maintaining the

desired bus voltage lies with the as-yet undefined control system.

The PF will therefore be modified as required and referred to as the Raw Power

Flow (RPF). Raw implies the removal of the control aspect of the power flow algorithm.

RPF provides the solution to the bus voltages, as well as a value known as the mismatch.

With the control aspect removed, the RPF no longer attempts to balance the system, and

the resulting error manifests itself in the mismatch value. It is this value that will further

be used in the dynamic calculations. Inputs to the RPF are limited to the actual generation

and load without any predefined voltages, save the reference bus.

To summarize, the goal is to identify what the system wants to do given the

inputs, as opposed to what needs to be done to get the system to the desired operating

state. That function is left to the control systems, often markets and AGC schemes in the

case of real power or direct closed loop control systems in the case of reactive power.

1.3.4 Adding System Dynamics

The power flow is a static algorithm providing a snapshot of the state of the

system. Under the assumption that the simulator is restricted to slow system dynamics, it

is possible to utilize the power flow to provide a large number of successive snapshots,

each slightly different from the previous to provide a time based simulation. An analogy

would be a film or television broadcast, which is a series of static frames which when

played successively provide the sensation of movement. Such modelling concepts are

described in [5] and applied to voltage stability analysis. The method allows for higher

computational efficiency by using an equilibrium model for the network while providing

the level of accuracy required for the events under study.

The concept contains two issues to overcome in order to be practically

implemented. The first being the large number of calculations required to perform the PF

 8

and the second being the PF does not contain any information regarding the frequency, a

key indicator of power system state.

In order to provide a time varying simulation in a reasonable amount of time, the

speed at which the PF is performed must be increased. There are two primary techniques

described in this thesis that attempt to provide this functionality, both encapsulated within

the method of calculation and its associated implementation. The first is the use of a long-

ago discarded method for finding the power flow solution, the Jacobi method. The second

lies in the use of recent advances in parallel computing technology.

Once a single power flow calculation can be performed in a short enough time to

provide fast successive ‘frames’, the required system dynamics must be added to the

simulator, i.e. the frequency component. Turning to the area of transient generator

stability provides a suitable tool, the generator swing equation. Certain modifications are

made in order to apply the equation to a time based simulation.

The novelty in this implementation of a power system simulator is implementing

a neglected numerical method on a recently available hardware platform. This allows for

fast computation time such that the steady-state power flow calculation can be used as the

foundation for a dynamic real-time power system simulator.

1.3.5 Generator and Load Models

While the focus of the thesis is the development of a power system simulator, it

would not be possible to test the simulator without the inclusion of generator and load

models. For the purposes of preliminary testing the models developed were basic, in

order to focus development efforts on the simulator.

Load models are constant power, both real and reactive. It is expected that when

used in further research or simulations, the load models will be further developed to

include sensitivity to voltage and frequency changes, elasticity to power prices, typical

changes in load level over time as well as stochastic changes to reflect short term

fluctuations.

Each generator is modeled as a simple rotating mass with variable real output

power. The frequency of the system is calculated using the rotational inertia of the entire

system, which is obtained through the summation of the rotational inertia constants of

 9

each of the generators. A variation of Newton’s Second Law uses the system inertia and

real power imbalance to calculate the system frequency.

Since perfect power balance is improbable, each generator model contains a

control system that varies real power output according to frequency, known as droop

control. The generator(s) reduce output linearly if the frequency is above 60Hz, and

increase output linearly if the frequency drops below 60Hz.

Similar to load models, when the simulator is to be used for further research and

simulation, the generator models would be further developed to include transient

dynamics, market based generation set-points and voltage control.

1.3.6 Validation

With the solution algorithm and equations defined, the hardware and software

implementation complete, and generator and load models designed and implemented, the

task turns to validating the results to ensure that the simulator produces reliable output.

Academic and industry grade power flow programs are readily available and can

be used to provide third party results against which to compare the simulator results. In

order to place both systems on the same level, comparisons are only made to the

simulator once it reaches steady-state values after a disturbance. If the two steady-state

results match, the simulator will be considered to be producing accurate results.

For the purposes of validating the dynamic calculations, the equation is rather

rudimentary and literature has shown that similar approximations have been implemented

for use in other areas of study. A series of manual calculations given the same inputs for

comparison should be sufficient to ensure numerical accuracy and validate the results.

1.3.7 Results

Design metrics for considering the operation of the simulator a success are

described in Chapter 3 - Theory. To summarize, the simulator will use generation and

load power levels as inputs, perform a single power flow calculation in less than 0.033

seconds and provide system voltages and frequency as outputs. The system size is that of

typical power systems in the 3000 bus range.

 10

In order to test the performance of the simulator, a number of potential scenarios

are developed and tested. By comparing the scenarios, the effectiveness of each portion

of the simulator can be estimated.

To measure dynamic response, three scenarios are used. The first is two step

changes in generation, the second a slow continuous ramp of generation to observe

response to a constant change, and the final scenario two generation ramps in different

directions. As loads are considered to be constant power, the simulations will not include

changes in load levels. The ability to vary load will be developed in more advanced load

models as described previously.

In order to measure the success of the parallel Jacobi implementation, the

simulator is run using larger systems with different numbers of processors. Small systems

do not require enough computations in order to be able to take advantage of parallel

processing, and are of little practical significance.

 11

Chapter 2.
Literature Survey

The literature survey begins with a general review of power system simulation

with the purpose of identifying and justifying the scope of the simulator under

development. After reviewing the major categories of simulation currently in use, the

desired level of approximation and the inputs and outputs are selected.

The second section of the survey focuses on parallel processing implementations

of power flow algorithms, which are inherently faster than serial algorithms. The three

algorithms for solving the power flow problem are Newton-Raphson, Gauss-Seidel and

Jacobi. The survey reviews the state of research for parallel implementation of each

algorithm and assesses the potential maximum speedup using current parallel processing

technology.

The final section presents a paper that provides an example of the type of

simulation decided upon in the balance of the survey. While not identical to the proposed

implementation, the paper does illustrate a method for modifying the power flow to

include the dynamics required for market and AGC simulation as described in the first

section.

 12

2.1 Power System Simulation

Power system operators and planners use a wide range of tools to study and

control electrical power systems. The majority of power system tools fall into one of two

major categories, those used to analyze a spectrum of possibilities for a given system or

event, and those used simulate a given sequence of events or the state of a system. Each

has different implementations and objectives.

Examples of tools that analyze spectrums of possibilities include the continuation

power flow for voltage stability and bifurcation analysis for voltage and angular stability.

To generalize, such tools give the user an indication of where the system is, and how far a

certain variable can be changed before the system becomes unstable. The purpose of the

simulator being designed is to perform a time based simulation using markets or AGC as

the control system. Therefore, the use of such tools to examine the potential stability

consequences resulting from the operation of the market and/or AGC under test would be

an interesting exercise, but are irrelevant to the design of a time varying simulator.

Tools that simulate events or states typically fall into one of four categories,

steady-state, long term dynamics, transient conditions, and fast transients. Each category

requires different levels of accuracy to obtain the desired result. This is reflected in the

complexity and level of abstraction in the mathematical models used.

2.1.1 Fast Transient Simulation

Fast transients are the most complex of the four categories and use full models for

all the components in the system under study. The component models take into account

all the electrical and physical properties of the device, whose equations reflect all

electromagnetic transients with time constants in the millisecond range and below.

Examples of such simulations include lightning strikes, capacitor switching

overvoltage, and fault and circuit switching transients. In many cases such events are

damped rather quickly and have little lasting effect on the power system in the long term,

provided that protection systems have not operated, stability is maintained and no

damage to the devices has occurred.

 13

While highly accurate [6], such simulations require significant computing power

to perform in a reasonable timeframe [7]. Such systems are generally known to be quite

expensive.

For the purposes of simulating a market or AGC, a number of assumptions are

made to simplify the calculation, one of which is occurrences such as those listed above

can be ignored. For this reason, the use of the fast transient level of simulation would be

overkill for the application and would only serve to intensify the computation, increase

the calculation time, and/or require additional hardware to attain the design metrics.

While cost is not strictly a design metric, optimizing the cost to benefit ratio is an

overarching goal in most activities.

2.1.2 Transient Simulation

The next level of simulation is that of transients. Examples include generator

speed control, electromechanical oscillations and primary voltage control. The system

model used in such studies includes individual models for each component, with larger

mathematical abstraction and, therefore, less accuracy than used in fast transient studies.

Electrical phenomena with time constants less than 0.1s, such as travelling waves

on transmission lines or switching transients, are ignored or considered to be

instantaneous [8]. By abstracting such phenomenon the models are simplified, resulting

in sets of differential equations describing the simplified electromechanical

characteristics of the components. The calculations required to perform such simulations

are still quite complex, although much simpler than fast transient analysis. Note that

transient models are also utilized in bifurcation analysis as described earlier [9].

While the action of market control or AGC will produce slight generator

oscillations and other transient phenomenon, an assumption is made that the changes

occur on a timescale much longer than the damping time of such events and can therefore

be ignored. In addition, it is assumed that the transient phenomenon are in fact transient

and do not lead to system instability. The stability of the system after such control actions

is another matter dealt and with in stability studies.

 14

2.1.3 Long Term Dynamic Simulation

Long term dynamic simulation reflects slowly changing conditions corresponding

to normal system operation. This includes normal variations in load, ramping due to

generation dispatch, automatic generation control, and voltage and frequency regulation

activities.

The system and component models are significantly less complex than either form

of transient simulation. The primary assumption is that of ‘tied-rotors’, that is, there is a

single system frequency and no generator oscillations. While the frequency can change, it

does so uniformly around the system.

The models for generation take into account the output set points, limits and

delays, but much (if not all) of the transient dynamics are removed depending on the

purpose of the simulation [10]. Load models can vary widely, from simple constant

power to time, frequency and voltage dependant. Once again, the nature and complexity

of the model is largely defined by the objectives of the simulation.

Long term dynamics are adequate for simulating the actions of markets and

automatic generation control [11]. It is assumed that the system is in a stable operating

condition and that generation and load will change but not affect system stability. The use

of power flow based simulators is often used in stability studies as is discussed in [5].

Such functionality is a possible avenue for further development, although outside the

scope of the use of the simulator described in this thesis.

2.1.4 Steady-state Simulation

In steady-state, it is assumed that all the variables are constant. Under this

assumption, one can remove all the dynamic portions of the system and component

models. This greatly simplifies the calculations required to obtain the solution and

increases the speed at which the solution can be found. Examples of such tools include

the power flow and optimal power flow calculations.

For the purposes of market and AGC simulation, steady-state techniques do not

provide the dynamics required to observe the desired phenomenon of varying voltages

and frequency. Fortunately, the network models for steady-state power flow calculations

are the same as that used in long term dynamic simulations [12]. The dynamics come as a

 15

result of changing the models of the generators and loads to provide variable output and

include frequency and voltage deviations.

2.1.5 Simulator Scope

Of the four levels of simulation, only long term dynamics are of interest in market

and AGC studies. The goal of this thesis is then to take the power flow method that

normally resides in the steady-state category and modify it to fall into the long term

dynamics category. The other two categories provide significantly more accuracy than

required at the cost of calculation time.

The simulator will utilize the power flow method to calculate the system voltages

and the active power balance. Using the residual power balance, the frequency can be

calculated using dynamic generator models operating under the ‘tied-rotor’ assumption.

2.2 Parallel Power Flow Algorithms

Power flow has been used extensively in academic and industry settings. It is a

powerful tool used to calculate the voltages given generation and load inputs. Its typical

use is to estimate the state of an electrical system given partial state information. Grid

control centres use it as the first operational program when performing the calculations

and operations required in finding the dispatch orders required to ensure steady-state

system stability. As well, the power flow algorithm is an integral part of a number of

other calculations such as voltage stability analysis and continuation power flows,

security constrained optimal power flows and system optimization.

The amount of literature on the power flow is large but falls into a relatively small

number of varieties. The method in which the calculation is performed can be split into

six major headings using two criteria, the solution algorithm and the solution

implementation. The three primary algorithms used to find the solution are the Jacobi,

Gauss-Seidel and Newton-Raphson algorithms, each of which has various serial and

parallel implementations.

As these are mathematical computations, the method of implementation plays a

large part in determining the computational efficiency, and therefore the computation

 16

time of the algorithm. Due to the important nature of the power flow calculation, a

significant amount of research has been performed in order to accelerate the computation.

The first digital power flow calculators were based on computers that had only

one processor. Thus, serial algorithms and techniques were developed in order to reduce

the number of computations and memory accesses required to perform the calculations.

There are a number of methods in which this can be accomplished.

Since the relevant matrices are quite sparse, there are a number of mathematical

and computational methods available in order to reduce their storage requirements (i.e.

not storing large quantities of zeros) as well as removing the large numbers of

multiplications of values by zero. In the case of the Jacobi and Gauss-Seidel algorithms,

pre-processing and ordering techniques help to obtain these efficiencies. In the case of the

Newton-Raphson algorithm, the largest computational portion consists of calculating and

decomposing the Jacobian using sparse matrix techniques. Due to its sparseness there are

a number of mathematical and computational techniques that assist in reducing the

number of computations required.

There is extensive literature dealing with serial algorithms but parallel processing

has made such significant advances in accelerating the algorithms to the extent that, for

the purposes of this discussion serial algorithms will be omitted and the focus will remain

on implementation of the three algorithms, keeping in mind that many methods for

improving performance are standard in the field of matrix computation, and many have

been incorporated into both serial and parallel implementations.

With the decrease in hardware costs and the development of faster inter-processor

communication, the next major advance in the calculation of the power flow solution

came in the form of parallel processing techniques, with the specific techniques for

parallelization of each algorithm taking different forms due to inherent differences in

their formulation. All three techniques attempt to solve the same set of equations or some

mathematical rearrangement thereof, the power flow equations:

*

1








=+= ∑

=

N

n
nknkkkk VYVjQPS k=1..N (2.1)

Where: N is the number of buses

 17

 k refers to an individual bus

 S, V and Y are complex numbers

In [13], an in depth explanation is provided of the intricacies of parallel

processing with application to a number of power system related problems. The focus

here is on the portion regarding the power flow problem.

2.2.1 Parallel Newton-Raphson Algorithms

Newton-Raphson is currently the industry choice for solving the power flow

problem. The algorithm involves iteratively performing the following process:

Step 1: 







=

)(
)(

)(
iV
i

ix
δ

 (2.2)

Step 2:
[]
[]






−
−

=







∆
∆

=∆
)(
)(

)(
)(

)(
ixQQ
ixPP

iQ
iP

iy (2.3)

Step 3: 







∆
∆









=








∆
∆ −

)(
)(

)(4)(3
)(2)(1

)(
)(1

iQ
iP

iJiJ
iJiJ

iV
iδ

 (2.4)

Step 4: 







∆
∆

+







=








+
+

=+
)(
)(

)(
)(

)1(
)1(

)1(
iV
i

iV
i

iV
i

ix
δδδ

 (2.5)

Where J1, J2, J3 and J4 constitute the Jacobian matrix based on the partial derivatives of

P and Q with respect to V and δ. The most computationally intensive portion of the

algorithm is constructing, calculating and decomposing the Jacobian using sparse matrix

techniques, and limits the ability for the algorithm to be highly parallelizable.

A number of papers investigate accelerating the NR algorithm by parallelizing

various portions. It was attempted to omit variations on the NR algorithm such as fast

decoupled and DC power flow. These techniques are approximations and could

potentially introduce significant error into the final solutions, causing the simulator to

operate improperly. As a significant portion of the body of literature focuses on

approximate algorithms for performing power flow calculations, a number of the papers

investigated are done so under the assumption that the techniques may possibly be valid

for application to the full NR algorithm.

 18

In [13] the author describes the portions of the algorithm which can be performed

in parallel, as well as some of the theoretical limitations to this process. A number of

algorithms exampled in this paper attempt to apply mathematical re-ordering in order to

find parallelism in an inherently sequential algorithm. While this does improve

performance, it has inherent limitations as stated.

There are a number of papers that directly address the problem of NR

parallelization and describe the difficulties in depth. In addition, the papers provide

potential solutions.

In [14], the author utilizes re-ordering as mentioned above. The paper describes in

depth the application of LU factorization to the matrices in solving non-linear systems of

equations, as well as methods to find parallelization in the process. The implementation

allows for a speed-up of 13-20 times the original calculation speed.

In [15], the author provides a method to parallelize totally the Newton power flow

process on a distributed memory architecture with message passing between the

computing nodes. This is a misleading statement, as the NR algorithm has inherent

coupling between portions of the calculation. The statement should more accurately be

phrased as the author has found a method to identify all steps of the NR method in a

parallel manner, although within every step there are limitations to the amount of the

algorithm that can be performed in parallel. The speedups are up to 6 times the original

single processor calculation speed.

A good paper with which to draw a parallel is [16]. It uses the NR algorithm with

a different technique applied, that of the Generalized Minimal Residual method

(GMRes). Using this methodology, speed ups of twice the previous paper were attained.

The final paper in the NR category is [17], which focuses on transient simulation.

While this is not the calculation being performed in this thesis, it nonetheless performs

similar calculations and the results may provide insight. The algorithm is still the NR

using successive over-relaxation. The parallelization method utilizes a ‘travelling

window’, which means that portions of the next iteration can begin once portions of the

current iteration are complete. This is not a powerful parallelization technique as the

theoretical maximum parallelization is not great compared to inherently parallel

 19

algorithms, and the potential number of parallel processors is quite low. As in previous

papers, speed up was in the range of 12 times the original speed.

Note that it is difficult to compare the papers above in terms of absolute time, as

the systems under test were not necessarily the same. This is a significant drawback in

comparing calculation speeds as few papers in the literature utilize a standard test system.

2.2.2 Parallel Gauss-Seidel Algorithms

Moving to the Gauss-Seidel algorithms, we return to [13]. The blanket statement

by the author is that, to paraphrase, the GS algorithm is not suitable for parallel

processing however variations exist which are. The GS algorithm requires the following

calculation to be performed repeatedly until the system converges.

() () ()







−+−

−
=+ ∑∑

+=

−

=

N

kn
nkn

k

n
nkn

k

kk

kk
k iVYiVY

iV
jQP

Y
iV

1

1

1
* 1

)(
11 (2.6)

It can be seen in the structure of formulation that the calculation of the present

voltage has dependence on a portion of the voltages, namely those between 1 and k. It is

this portion of the GS algorithm that limits its ability to be a fully parallel algorithm.

The first example of an attempt to find parallel components of the GS algorithm is

contained in [18]. This paper does a thorough review of previous GS algorithms and

addresses the bottlenecks in computation. The first method for finding parallel portions is

known as colouring, or ensuring that portions of the calculation sent to each processor do

not have relationships with portions sent to other processors. This is similar to the re-

arranging method applied to the NR algorithm. Once again, these are procedures for

finding available parallelism in an inherently sequential algorithm. This leaves us with

speed ups on larger systems of approximately 9 times.

The next paper [19] provides another example of an ordering technique. The

method of rearranging the calculation in order to find parallelism is repeated, this time

with a two-step system instead of the colouring technique utilized in the previous

example. This allows the author to attain speed ups of approximately 12 times, similar to

the balance of the papers described.

 20

2.2.3 Parallel Jacobi Algorithms

The final of the three primary power flow algorithms is the Jacobi, a variation, or

more properly, a simplification of, the GS algorithm. As is shown, the formulation is

almost identical, with the dependency between rows removed by the use of voltage

values from the previous iteration only.

() () ()







−−

−
=+ ∑∑

+=

−

=

N

kn
nkn

k

n
nkn

k

kk

kk
k iVYiVY

iV
jQP

Y
iV

1

1

1
*)(

11 (2.7)

This can be re-written as:

() ()







−=+ ∑

≠=

N

knn
nkn

k

k

kk
k iVY

iV
S

Y
iV

,1
*

*

)(
11 (2.8)

As the formulation shows, for every bus k of N buses, the calculation does not

depend on any other bus during the same iteration. The caveat, and the primary reason

that the Jacobi algorithm has fallen to the wayside in recent years, is that it has more

difficulty converging than the GS.

The concept of parallelising the Jacobi algorithm was first attempted long ago. In

[20], the author utilizes complex mathematical methods in order to find the Eigenvalues

of a matrix. While not directly applicable to the power flow, the paper shows the power

of parallelization in the Jacobi algorithm.

Another example of the utilization of Jacobi to find Eigenvalues is described in

[21]. The author provides a method for partitioning the problem and in some cases

utilizes as many as 256 processors, the first example of highly parallel execution. While

speed up values are not provided the calculation is that of Eigenvalues and, therefore, not

directly applicable to our application.

An example of parallel Jacobi to the power flow problem is discussed in [22].

While the title indicates that a Gauss-Seidel algorithm is being utilized, further

investigation shows that the algorithm is in fact the Jacobi algorithm. This paper

describes a novel method of using dedicated hardware for performing a number of the

calculations. A Field Programmable Gate Array (FPGA) is implemented to perform the

complex math required to solve the problem. In addition, the author performs

 21

optimisation in order to gain efficiency in the parallelisation of the complex calculations

themselves, which often have additional parallelism internally. For example, the

multiplication of two complex numbers consists of four parallel multiplications, followed

by a parallel addition and subtraction:

ad) + j(bc + bd) - (ac = jd) + (c jb) + (a (2.9)

The paper continues to describe the speed up of approximately 5 times, which

falls below the speed up achieved by the parallel NR and GS algorithms described

previously. With the additional iterations required for the Jacobi algorithm, it appears that

the implementation does not provide significant gains. This is addressed by the author,

stating that the comparison is between a 1.5GHz processor versus a 100MHz FPGA. If a

1.5GHz FPGA hardware solution could be found, the speedup would be on the order of

5x(1500/100), or 75 times. This would provide significant speed up over other

algorithms.

Given the advances of parallel computing hardware and software, it was decided

that the potential for the Jacobi algorithm outweigh the potential for the NR or GS

algorithms, without the advancement of the complex mathematical methods and their

implementation on both hardware and software. The natural parallelism inherent to the

Jacobi algorithm allows simple and effective implementation on parallel hardware, and it

seems that the potential speed up is limited by hardware technology. Since the publishing

of the previous paper in 1996, a number of new technologies have emerged in the area of

high performance parallel computing. These technologies will be discussed in Chapter 4 -

Implementation.

2.2.4 Example of Dynamic Parallel Power Flow

Only one paper was found that attempted to provide a simplified dynamic model

utilizing a similar method as the one developed for this thesis, although the

implementation focused on using one of the dishonest NR algorithms known as normal

fast decoupled NR power flow.

In [23], the author performs a complex variation of the power flow (referred to in

the paper as a load flow) and breaks the problem down into three portions, the load, the

transmission losses, and the generation/load imbalance. By using participation factors of

 22

the individual generators and assigning portions to each, the imbalance is distributed

across the generators, and referred to as the net accelerating or decelerating power.

The author states that using standard power flow techniques, the power imbalance

would manifest itself at the reference bus, and potentially result in incorrect results for

system imbalance. This may be true and the practice of distributing the imbalance could

provide greater accuracy, but the complexity of the solution may also outweigh any

additional accuracy. In addition, a single slack generator is the standard implementation

for power flow solutions to find the required slack generator output. If such an

implementation is utilized in industry with great success, it is interesting that the author

believes it would not work for the calculation of system imbalance.

The paper is a good attempt to add dynamics to the power flow, although fails to

actually utilize the power imbalance to calculate the system dynamics, that is, the

frequency.

From the results of the literature survey, it is concluded that this thesis will utilize

the Jacobi power flow solution algorithm to perform a sequence of snapshots of a

dynamic power system, using power imbalance as described above to calculate deviations

in frequency between the snapshots. The process will thereby produce a discrete time

power system simulator that uses generation and load as inputs to produce bus voltages

and a system wide frequency as outputs. As mentioned previously transient phenomena

are the realm of transient and fast transient power system simulation and, therefore, not

part of the design criterion.

 23

Chapter 3.
Theory

As described in Chapter 1 - Introduction, the main objective of this thesis is to

develop a real-time power system simulator used in the investigation of market designs

and AGC schemes.

In order to attain the main objectives, the simulator is required to calculate the

voltages and frequency of the simulated system at every time step. While the generation

and load levels are also required, these are considered inputs to the simulator and the

models of each are not intrinsic to the simulator itself.

This chapter describes the mathematical theory and thought process used during

the development of the simulator. It begins with modifications performed to the standard

Jacobi power flow algorithm and reasons for doing so. The second section describes the

addition of system dynamics. The third and final section discusses areas for possible

future improvement to the simulator.

3.1 Standard Jacobi Power Flow Algorithm

From the results of the preceding literature survey, it was decided that the Jacobi

algorithm would be implemented due to the potential of using recent advances in parallel

processing technology to increase the speed of calculation.

 24

The increase in calculation speed is required as typical large scale power flow

calculations may take as long as a few seconds. If the purpose of the simulator is to

simulate the market and AGC, then the time step used in the simulation must be

significantly smaller then the events under observation. From a system perspective,

changes in load and generation occur on a longer term timeframe such as on the order

seconds to minutes. With this in mind, it would be reasonable to state that the simulator

must have time steps on the order of less than one second.

If the goal of the simulator is to be able to provide real-time performance, the

desired time step is selected to be less than 1/30, or 0.033, seconds. This decision results

from the video industry, where such a refresh rate allows the human brain to visualize a

sequence of stationary frames as motion without any visual motion artifacts. While not

important for a numerical solution, this becomes important in the case of real-time

visualization. Note that this is a goal for perfect visualization and not reaching the full

refresh rate does not indicate failure of the system. Refresh rates much slower than 0.033

seconds are typical in real-time power system simulations.

In order to ensure that the simulator can attain the 0.033 seconds refresh rate all

actual simulations referred to in Chapter 5 - Results are done using a time step of 0.01

seconds, increasing the calculation rate by three times.

The normal use of a power flow solution is to find the state of an electrical system

given the inputs of generation and load. Typically, the algorithm also finds the real power

generation required at the slack bus such that the system is balanced in steady-state, as

well as the reactive power generation required in order to hold the voltage at certain

buses within limits. In short, a power system under normal steady-state operation

typically meets the following criteria:

1) The generation must equal the load plus all losses.

2) Bus voltage magnitudes should remain close to rated values.

3) Generators operate within specified real and reactive power limits.

4) Transmission lines and transformers are not overloaded.

 25

Standard power flow algorithms calculate the complex nodal voltages for each

bus in a power system under study. Once complete, the real and reactive power flows can

be calculated.

In large power systems, input data is normally given in terms of real and reactive

powers instead of impedances and/or currents. For that reason, the system of equations

becomes non-linear and requires a numerical solution method in order to obtain the

solution.

The system of equations required to be solved for the power flow are as follows.

First, the real and reactive powers at any given bus k are defined as the difference

between the generation and load at the bus:

LkGkk PPP −= (3.1)

LkGkk QQQ −= (3.2)

In a typical power flow simulator, the buses are divided into one of three types,

swing, load and voltage, also referred to as the reference, PQ and PV buses.

There is only one swing bus and is used as the voltage reference bus. At this bus,

the voltage magnitude and angle are fixed and do not change during the solution process.

This is required in order to obtain meaningful results. Without the inclusion of a

reference voltage angle the entire system of equations would be under-constrained and

contain an extra degree of freedom. Holding one of the buses at a constant voltage angle

provides the system with a voltage phasor reference.

Another name for the reference bus is the swing bus. In standard power flow

calculations, the swing bus contains the swing generator. In power flow studies, the loads

and desired generator set points are typically known in advance and used within the

power flow. What is unknown is the losses and imbalance in the system. For this reason,

the real power output of the generator at the reference bus is allowed to change (i.e.

swing) and absorb the losses and imbalance to produce a balanced steady-state solution

for the system. At this bus, the algorithm will calculate Pk and Qk, or the real and reactive

powers.

At load buses, Pk and Qk are given as inputs and the algorithm calculates the

complex voltage, that is, the voltage magnitude (V) and angle (δ).

 26

Buses with generators or other sources of controllable reactive power (Q) are

considered to be PV buses. At these buses, the bus voltage magnitude is held constant

and the algorithm solves for Qk and the voltage angle.

The three types of buses and their parameters are listed in Table 3.1.

Table 3.1 - Standard Power Flow Bus Types

Bus Type Given Solved

Swing (Reference) V δ P Q

Load (PQ) P Q V δ

Voltage (PV) P V Q δ

In order to be able to calculate the power flow solution, the physical

characteristics of the system are required. This is given in the Ybus matrix, which

contains the admittances of every static device on the grid. This includes transmission

lines as well as any series or shunt admittances. The Ybus matrix is typically symmetric,

although may be unsymmetrical if certain devices are present within the system, an

example being phase-shifting transformers.

The admittance model used for transmission lines is the π model. Using this

model, short, medium and long steady-state models can be incorporated into the

simulator, as well as passive shunt and series devices. As noted in the literature survey,

steady-state and long term dynamic network models are identical. Devices such as

synchronous condensers would be modeled as generators and are therefore outside the

scope of this discussion.

With the Ybus matrix defied, the nodal equations for the network are determined:

VYI Bus= (3.3)

∑
=

=
N

n
nknk VYI

1
 (3.4)

*
kkkkk IVjQPS =+= (3.5)

Which results in the power flow equations for a general system:

 27

*

1








=+= ∑

=

N

n
nknkkkk VYVjQPS where k=1..N (3.6)

In many power system simulators the Gauss-Seidel or Newton-Raphson

algorithms would be applied, but in this implementation the Jacobi iterative substitution

algorithm is applied to obtain the following:

() ()







−=+ ∑

≠=

N

knn
nkn

k

k

kk
k iVY

iV
S

Y
iV

,1
*

*

)(
11 (3.7)

Where: N is the number of buses

 k refers to an individual bus

 S, V and Y are complex numbers

When computing the power flow calculations, there is one instance of the above formula

for every bus in the power system. For example, a 2000 bus system would have 2000

equations, labelled ()11 +iV to ()12000 +iV . Each of the equations is independent of each

other during a single iteration and can be calculated simultaneously. As will be shown in

Chapter 4 - Implementation, the efficiency of the Jacobi algorithm on parallel processing

hardware is the ability to compute every equation simultaneously. In theory, the example

2000 bus system could use 2000 processors to complete the entire calculation in the same

time as a single calculation.

The voltages are iteratively calculated until the stopping criterion is met. Often,

the stopping criterion is the mismatch, calculated using the following formula.

*

1








−=∆ ∑

=

N

n
nknkk VYVSS (3.8)

Simply put, the mismatch for a bus is the difference between the known and

calculated complex powers at the bus. If there is a significant difference between the two,

then the system has yet to converge. Normally, the stopping criterion is that the

magnitude of the mismatch on every bus must be below a desired threshold.

The standard power flow solution includes a number of additional steps in order

to deal with occurrences such as real and reactive power limits on generators, but for the

 28

purposes of this thesis the discussion of standard power flow calculation algorithms is

concluded, and the development of the power flow system under discussion begins.

3.2 Raw Jacobi Power Flow

The goal of the thesis is to develop a simulator and not a power flow calculator,

and therefore requires a number of modifications to the PF that must be made in order to

suit the application.

The first is the embedded ‘control systems’ within the algorithm. The standard

algorithm actively changes the output of the real and reactive power set points of certain

generators at the reference and PV buses.

At the reference bus the power flow algorithm maintains the voltage of the bus to

the desired value. In order to allow the required degrees of freedom in the equations, it

allows P and Q to change. As the goal is to modify the power flow algorithm for the

purposes of simulation, having the swing generator modify its output based on the results

of a calculation is not realistic. For this reason the constant voltage magnitude and angle

criteria is maintained, although the portion which calculates the real and reactive powers

is removed. In essence the swing bus is being modified into a load bus, but maintaining

the voltage reference portion.

At first glance, it may seem that removing the variable generation at the slack bus

would result in removing a degree of freedom from the system of equations, thereby

over-constraining them. In fact, the swing bus power values come from reducing another

portion of the calculation, the mismatch at the reference bus, to zero. By constraining the

power and removing the mismatch constraint on the reference bus, the over-constraint on

the system of equations is relieved. At the completion of the calculation, the mismatch at

the reference bus will not be zero, and reflects the generation/load imbalance in the

power system. This value is later used in the dynamic portion of the simulation to

calculate the frequency deviation.

This discussion holds for the balance of the voltage constrained buses (PV) where

standard power flow algorithms modify the reactive power output of a generator or

synchronous condenser to obtain the desired bus voltage. As a simulation, not a power

flow calculation, is being performed it is desired that the bus voltage reflect the actual

 29

reactive output of the generator. Therefore, all buses on the power system are considered

to be load (PQ) buses and therefore have set real and reactive power levels. As such, the

duty of regulating the generator reactive power output falls onto the voltage controller,

part of the generator or grid control system and therefore outside the scope of the

simulator. The modified list of bus types is given in Table 3.2.

Table 3.2 - Raw Jacobi Power Flow Bus Types

Bus Type Given Solved

Reference V δ Mismatch

Load (PQ) P Q V δ

With the power flow portion of the simulator complete, the development of the

dynamic portion of the simulator can begin.

3.3 System Dynamics

As stated in the previous section, the power flow was modified to remove the

slack bus concept, resulting in a residual mismatch at the reference bus. Numerically, this

residual is equivalent to the amount that the slack generator would have modified its

output to allow the system to converge.

In this section, a method is described to provide the simulator with dynamic

response through the addition of frequency. As described in the introduction and

literature survey, generator oscillations and fast dynamics will be omitted.

The fundamental equation describing a rotating machine is the swing equation.

)()()()()(2
........ tptptp

dt
tdtH

uapuepumpup
syn

=−=
ωω

ω
 (3.9)

Where: H is the normalized generator rotational inertia constant

 ωsyn is the synchronous frequency of the system

 ωp.u.(t) is the per unit system frequency at time t

 pp.u. are the per unit mechanical, electrical and accelerating powers

 30

This equation is typically used in studying the motion of synchronous machine

rotors in transient generator stability studies. Similar equations could be used to study

inter-generator dynamics and oscillations. For the purpose of long term dynamic

simulation the equation is modified slightly.

The H in the swing equation relates to the rotational inertia of the generator in

question. As stated in the literature survey, long term dynamic studies operate under the

‘tied-rotor’ assumption, neglecting inter-generator oscillations and the entire system

contains only a single frequency. Therefore, H is used to reflect the rotational inertia

constant of the entire system. The method for obtaining this value is to simply sum the H

constants of each of the generators together [24].

The accelerating power refers to the system wide imbalance between generation

and load, inclusive of any losses. From the results of the modified power flow, the

reference bus real power mismatch provides this value. This is an approximation as the

imbalance in a physical power system does not manifest itself at a single bus, but is rather

spread out among the generators in the system. For the purposes of coarse system control

such as markets and AGC, such an approximation makes little difference in the results

and, as described in the literature survey, is often used in power flow calculations.

Admittedly, dividing the imbalance among the generators and removing the tied-rotor

assumption is an area for further development. This would allow for a greater accuracy in

calculating the imbalance as viewed from a system perspective as opposed to the

perspective of the reference bus, as well as allow for the simulator to simulate inter-

generator oscillations and local variations in frequency.

For discrete time simulations, the use of full differential equations is not required.

The equation is modified removing the derivatives and replacing them with division.

()1..
)()(2

Busup
syn

Sre
t
ttH

∆=
∆

∆ωω
ω

 (3.10) and rearranging for ∆ω(t),

(){ }
)(2

)(
..

1

tH
tSre

t
up

Bussyn

ω
ω

ω
∆∆

=∆ (3.11)

 31

By applying the equation at the end of every raw power flow calculation, the

simulator will be able to modify the frequency of the system and reflect the required

dynamics.

In order for the generators to change their real power output to halt frequency

deviations due to real power imbalance, each is modeled with basic droop control. Droop

control uses frequency as the input to increase or decrease generator output accordingly.

With frequency above nominal, the droop controller will reduce the generators output

linearly with the magnitude of the frequency deviation as shown in Figure 3.1.

The slope of the line in Figure 1 dictates the magnitude to which the generators

output will be changed with respect to frequency and is denoted the droop regulation

constant, R. The values of R used in the generators models for the simulations can be

found in Appendices A, B and C for the 5, 14 and 30 bus models, respectively.

Droop Control

-10%

-5%

0%

5%

10%

59.9 59.95 60 60.05 60.1

Frequency (Hz)

Po
w

er
 (%

 M
W

 C
ha

ng
e)

Figure 3.1 - Generator Droop Control Characteristics

 32

Chapter 4.
Implementation

The previous chapter introduced the Jacobi algorithm and the modifications

implemented to the algorithm with the intent of meeting the design requirements. The

formulation of the algorithm lends itself naturally to parallel processing as each of the

equations are independent of each other during each iteration.

While it is true that other algorithms have faster rates of convergence, only the

Jacobi has such potential utilizing recent advances in parallel processing technology. If

the parallelisation can be performed to a great extent, the increased number of iterations

may be outweighed by decreased time per iteration.

This chapter introduces and discusses the hardware and software implementations

of the parallel Jacobi simulator. The first section includes a discussion of the hardware

originally chosen for the implementation, as well as a reasonable substitute eventually

chosen as the desired hardware was unavailable. The second section explains the method

of software implementation by introducing the three stage approach used to ensure

accuracy.

 33

4.1 Hardware Implementation

In the industry of high performance computing, parallel processing has

ubiquitously taken over as the dominant method for solving large complex problems [25].

While the specific implementations differ based on the nature of the problem, the basic

unit of computation used in such massively parallel machines is the multi-core

microprocessor.

Moore’s Law (or more accurately, the popular culture version of it) has continued

to be proven correct as the ‘floating point operations per second’ (flops) of

microprocessors increases. This has, however, not been due to increasing clock

frequencies as it was in the past. It has been primarily due to the emergence of another

type of processor, the Graphics Processing Unit (GPU) [26].

4.1.1 Graphics Processing Units

The general trend for GPU design has been increasing the simultaneous number

of calculations the processor can perform. This functionality stems directly from the

mathematical requirements of graphics processing, which are embarrassingly parallel

problems [27]. A significant portion of the calculations required to display an image

consist of large vector and matrix manipulations, often requiring the same calculation

performed on a large number of values. These calculations can be performed in a serial

fashion, but due to their independence from each other, can be performed in parallel.

Current versions of graphics processors have up to 240 processing cores, allowing

for 240 simultaneous independent calculations. In addition, vendors are developing

platforms which contain multiple chips. For example, the NVIDIA Tesla Series will

release the S1070 in Fall of 2008. The unit occupies 1U in a standard computer rack

mount enclosure and contains four GPU’s with a total of 960 cores, capable of up to 4

teraflops. Multiple units can be stacked together and chained to provide large numbers of

simultaneous calculations [28].

From a computing perspective, the ability to perform a large number of

simultaneous calculations requires that the processing core be able to obtain the data it

requires with low latency, otherwise clock cycles are wasted as the processor sits idle

waiting for data. For this reason GPUs have a different architecture than typical general

 34

purpose processors. The main design changes consist of locating greater amounts of high

speed memory closer to the cores, reducing the memory latency, and increasing the size

of the pipelines between the off-chip memory, on-chip memory and processing cores

[29].

4.1.2 Equivalent Processing Architectures

Unfortunately, at the time of implementation for the simulator for this thesis, no

GPU based machines were available. Therefore, other architectures were investigated in

order to find a substitute that possesses similar computing characteristics. The goal was to

implement the simulator on an architecture that reflects many of the same characteristics

with the intent that the hypothesis of decreased calculation time could be achieved. In

order to find a viable substitute, the characteristics of the GPU based architecture were

reviewed and the most important aspects selected.

In parallel computing, the primary objective is to speed up the computation time

of a process by finding available parallelism, and using multiple processing cores to

perform parts of the calculation simultaneously. The theoretical maximum speed up is

linear with the number of processors, that is, in a infinitely parallelisable program,

doubling the number of processors would half the computation time. While theoretically

accurate, there are a number of real world reasons this does not occur.

The primary reason for this is communication time between processors. When

comparing the time of moving data from high speed memory located on the processor

itself with the time of moving information from local memory or across even the highest

speed networks, the difference between the three can be orders of magnitude. For this

reason, a large part of the optimization involved in parallel programming is finding the

optimal balance between available parallelism and communication delays.

The GPU implementation desired consists of a large number of processors on the

same chip, with local memory available for moving information between the processing

cores. Similar systems were developed before the emergence of the GPU and are known

as Shared Memory Processors (SMP). While not on the same chip, SMP systems use a

number of processors located in the same machine and share relatively high speed local

 35

memory. In this hardware implementation the largest part of the communication delay,

the use of an external network, is removed.

The Shared Hierarchical Academic Research Computing Network (SharcNet) is a

consortium of academic institutions that share high performance computing platforms.

On this network is a shared memory system with 128 cores and 256GB of memory.

Given the same number of processors as currently available GPUs, with little

communication overhead compared to cluster systems using network connections, it was

deemed that this machine was the closest in functionality that was available for the

purpose of system implementation, it was therefore originally chosen as the

implementation platform for the simulator.

A portion of the way through the software development for the parallel

implementation, another available machine was found with greater similarities to the

GPU implementation desired.

It consisted of a dual processor quad core Intel Xeon machine. In total, the

simulation would have access to eight processing cores. With four cores having high

speed access to shared, on-chip memory, the implementation should perform better than

on the SharcNet SMP machine. At this point, software implementation was directed to

continue on the Xeon machine. Fortunately, little code modification was required as the

utilized parallel programming language, OpenMP, is a widely recognized standard for

parallel programming.

It is important to note that even the SMP and Xeon implementation still fall

victim to significant processor-memory latency issues. The difference between using on-

chip and off-chip memory can be two orders of magnitude in typical processors [30].

Therefore there is a possibility that the results of the Xeon simulations would still be

significantly slower than those of a GPU based implementation.

4.2 General Software Implementation

Once the hardware platform was decided, the process of implementing the

software to simulate the algorithm needed to be performed. Due to a lack of familiarity

with parallel programming and the possibility of computational error, it was decided that

 36

a three staged process for development with multiple system models would be used to

ensure accuracy and validate the results.

The first stage was the use of third party software to produce verifiable power

flow results. The second was a serial processing version of the simulator, and the third a

parallel processing implementation. The three electrical system models used were a 5

[31], 14 [31] and 30 [32] bus system. Diagrams of the systems can be found in

Appendices A, B and C respectively. In addition, once the parallel system was verified,

two larger systems were used to observe the operation of the parallel simulator under

large system scenarios. The results of the three implementations and discussion are found

in Chapter 5 - Results and Discussion.

4.2.1 Third Party Power Flow Verification

The third party software chosen was PowerWorld Corporation’s PowerWorld

Simulator Version 8.0, Glover and Sarma Edition, a highly functional academic and

industrial grade power flow calculator. The three test systems were implemented and

simulated. The results were not dynamic simulations, but instead, sets of individual

power flow solutions, i.e. snapshots of the systems at certain points in time. Under

steady-state conditions, the power flow solutions should coincide with the results

produced by both the serial and parallel implementations of the simulator.

4.2.2 Serial Equivalent Implementation

The second implementation of the simulator was developed in Microsoft Visual

Basic 2005 on a standard PC using a single processor. Using the same algorithm and

processing each of the Jacobi equations in a serial fashion instead of in parallel should

theoretically produce identical solutions.

Since the only difference between the two implementations is the sequence of

calculations, it was expected that the results will not only be numerically equal, but the

number of iterations should be identical as well. Having the two implementations agree

should provide a high degree of confidence that the parallel simulation is performing as

expected.

 37

4.2.3 Parallel Implementation

The final implementation was performed in C++ with OpenMP multiprocessor

extensions in order to take advantage of the multiple cores on the Xeon machine. The

parallel implementation is considered the final version used to run simulations. In

addition, timing analyses were performed to validate the potential for speedup using the

parallel Jacobi and dynamic simulation concepts.

As mentioned in the first section, the hardware on which the simulator was

implemented was not the desired hardware but had similar characteristics. As parallel

hardware has a number of different forms, often the method of software implementation

changes with the hardware. Fortunately, the method of parallel software implementation

for both the GPU and Xeon machines are quite similar. The largest difference between

the two is the level of parallelism involved. The GPU implementation has a much higher

level and the internal hardware architecture is optimized for such calculations.

In the programming language being used (C++ with OpenMP), the user implicitly

states the processes that can be performed in parallel, specifies the number of processors

to be used, and the program complies. Since each processor only has 4 processing cores,

the amount of work dedicated to a single core will be approximately 25% of the entire

processor workload.

With an NVIDIA GPU implementation using C++ with CUDA parallel

programming extensions, a similar process is performed, although the processor itself has

in excess of 128 processing cores per processor, instead of the 4 available on the Xeon.

As was shown in Chapter 3 - Theory, since the Jacobi is an embarrassingly parallel

algorithm its efficiency stems from the ability to perform each equation in parallel. For

larger systems of thousands of buses, the GPU implementation could perform 128 of the

calculations simultaneously instead of the 4 on the Xeon.

With the ability to process over 128 calculations simultaneously using on-chip

memory, it is expected that the GPU implementation will show significantly less delays

due to off-chip memory access latency. For this reason, it is once again stated that there is

a possibility that the results of the Xeon simulations would still be significantly slower

than those of a GPU based implementation.

 38

Chapter 5.
Results and Discussion

The chapter begins with the process used to validate the simulator to ensure

accuracy. The development and validation process used a three stage approach, with third

party power flow software being used to validate the serial implementation and the serial

implementation being used to validate the parallel implementation. An analysis is

provided on the accuracy of the implemented simulators.

The second section provides and discusses a number of simulations performed

using the parallel implementation. Two large scale systems are simulated to gauge the

performance of the simulator on larger systems. Results are presented and a discussion is

provided to interpret the results.

The third section discusses the outcome of the simulations and attempts to analyze

any discrepancies or divergences from the original hypotheses. As well, the section

compares the resultant simulator to the original design scope in an effort to gauge the

successfulness of the implementation. Finally, the discussion turns to areas for

improvement that could be pursued in order to attain the desired performance.

 39

5.1 Simulator Validation

To ensure accuracy of the final simulator, a three stage approach was taken in

implementation. The first stage consisted of a steady-state simulation in a verifiable

industry-used software package. The second was simulation in the serial implementation,

third followed by simulation in the parallel implementation. The three models used for

the validation procedure were 5, 14 and 30 bus systems. The details of each system can

be found in Appendices A, B and C respectively.

5.1.1 Establishing the Baseline Values

The first step of validation was to input the systems into the PowerWorld

simulator to establish the baseline conditions. For each of the three systems, the

PowerWorld simulator was used to find the steady-state equilibrium conditions. Since

PowerWorld uses the standard power flow algorithm, the input values were the

generation levels and reference bus voltage. PowerWorld then found the unknown

voltages and slack bus powers required to meet system equilibrium. As the amount of

information regarding the details of the systems is lengthy, it has been omitted here with

full details found in Appendix D.

The resulting equilibrium PowerWorld generation values were used as inputs to

the serial implementation of the simulator. Although PowerWorld and the simulator

perform different calculations to find different variables, the systems are identical and

should therefore produce the same results.

The serial simulator was provided with the reference bus voltage and all the

generation and load values. The resulting solution was extremely close to that of

PowerWorld, with the largest error in the initial condition simulations being 0.01% of the

PowerWorld results.

5.1.2 Validating Steady-state Values

With the initial condition comparison complete, the serial simulator was subjected

to a disturbance to vary the generation and voltage levels from the initial conditions.

Once the simulator completed its reaction to the disturbances and came to the new

 40

steady-state equilibrium, it was subjected to a second disturbance and once again came to

equilibrium.

The disturbances were an increase of real power generation at bus 1 of 1.0pu at

time t=5 seconds, followed by a reduction of generation at bus 1 of 0.5pu at time t=20

seconds. The result of the serial 5 bus simulation is shown in Figure 5.1.

The voltages and generation levels at each steady-state equilibrium point were

used as inputs to PowerWorld to compare the accuracy of the solutions after a

disturbance. Once again it was found that the simulator voltages were within 0.01% of

the PowerWorld equivalent values.

For the real power comparison, the results were the same as voltage, in that both

systems came to the same results with less than 0.01% deviation. The major deviation

was found to be in the reactive power comparison.

As the simulator no longer has a slack generator to relieve any mismatch in real or

reactive power mismatch, the reference bus is left with residual mismatch at the end of

the raw power flow algorithm. The real portion is used to calculate the system frequency

change, which moves the generation control system (market or AGC, in this case droop

control) to modify real power output to compensate. Note that there are no limits on the

reactive power output at the reference bus.

Figure 5.1 - System Disturbances and Steady-state Points Used for Comparison

 41

5.1.3 Validating System Dynamics

Satisfied that the steady-state values of the simulation to this point were accurate,

the procedure moved to validate the dynamic portion of the simulation. Long term

dynamic simulations work under the base assumption that all the generators move in

synchronism with a single system frequency, referred to as the ‘tied-rotor’ assumption.

Under this assumption, calculation of system frequency is performed using the

swing equation which describes the acceleration and deceleration of generators under

mechanical input and electrical output imbalances. It is based on Newton’s Second Law

with modifications for the purposes of using power system inputs such as system

frequency, normalized generator inertia constants, and per unit powers.

Three scenarios were simulated on each system to validate the simulator

dynamics using the modified swing equation. A sample scenario is shown in Figure 5.2.

In all scenarios the systems were allowed to come to equilibrium after an imbalance in

initial conditions of the generators. The initial conditions are described in the generator

files (Gx.txt) of Appendices A, B and C. The following sequence of steps was followed:

Scenario 1 - Impulse Test

• At time t=5 seconds, bus 1 real power generation increases by 1.0pu.

• The system is allowed to settle for 15 seconds until time t=20 seconds.

• At time t=20 seconds, bus 2 real power generation decreases by 0.5pu.

• The system is allowed to settle for 20 seconds until time t=40 seconds.

• Simulation completes at time t=40 seconds.

Scenario 2 - Slow Ramp Test

• At time t=5 seconds, bus 1 real power generation increases by 0.0001pu per time

step of 0.01s, i.e. bus 1 real power generation increases at a rate of 0.01pu/second.

• The ramp continues until time t=25 seconds, at which the generation increase

ceases and the system is allowed to settle until time t=40 seconds.

• Simulation completes at time t=40 seconds.

 42

Scenario 3 - Ramp Test

• At time t=5 seconds, bus 1 real power generation increases by 0.0005pu per time

step of 0.01s, i.e. bus 1 real power generation increases at a rate of 0.05pu/second.

• The ramp continues until time t=10 seconds, at which the generation increase

ceases and the system is allowed to settle until time t=10 seconds.

• At time t=10 seconds, bus 1 real power generation decreases by 0.001pu per time

step of 0.01s, i.e. bus 1 real power generation increases at a rate of 0.1pu/second.

• The ramp continues until time t=30 seconds, at which the generation decrease

ceases and the system is allowed to settle until time t=40 seconds.

• Simulation completes at time t=40 seconds.

Each of the three scenarios was chosen to investigate a different aspect of the

simulator’s ability. The impulse scenario was used to observe system response to step

changes in generation. The slow ramp scenario was used to observe the system response

to a long term ramp with the intent to have the droop control eventually equal the

generator ramping. The ramp scenario was used to observe the system response to faster

ramps of generation in different directions.

Figure 5.2 - Ramping Dynamic Sampling Points

 43

At the points indicated on Figure 5.2 (in addition to points on the other scenarios),

the real power mismatch values were taken from the simulation results and the frequency

deviations were calculated manually to ensure that the simulation results were correct. It

was found that the frequency deviations for the times given were indeed identical and

therefore proved the integrity of the calculation. The full results of the calculations can be

found in Appendix E.

Having completed validation of both the steady-state and dynamic portions of the

serial simulator, the implementation is considered to operate properly and can be used to

validate the operation of the parallel implementation.

5.1.4 Validating the Parallel Implementation

Once the serial simulator was validated, it was used as the benchmark for the

parallel implementation. Using the three system models of 5, 14 and 30 buses and the

three scenarios for each, the output of the parallel implementation was compared to the

serial version in order to compare accuracy.

Frequency

59.9995

60

60.0005

60.001

60.0015

60.002

60.0025

60.003

0 5 10 15 20 25 30 35 40

Time (s)

Fr
eq

ue
nc

y
(H

z)

F (serial)

F (parallel)

Figure 5.3 - Serial / Parallel Frequency Comparison

 44

Iterations

0

5

10

15

20

25

0 5 10 15 20 25 30 35

Time (s)

Ite
ra

tio
ns

Serial Iterations

Parallel Iterations

Figure 5.4 - Serial / Parallel Iteration Comparison

The three scenarios were simulated using the Xeon parallel processing

implementation. Figure 5.3 and Figure 5.4 show sample results obtained for the 30 bus

impulse scenario.

Note that on Figure 5.4 the scale has been altered in order to increase the

resolution. The Jacobi algorithm requires a large number of iterations in the first time

step in order to converge from a flat start (voltage of magnitude 1 and angle 0) to the first

solution. In the small systems described, this was on the order of one to five hundred

iterations. This is an initial condition issue and once the system is solved initially, the

values from the previous time step are used as the starting point for the next time step.

With little dynamics occurring in the system, it often converges in a single iteration. With

large changes in the system, such as in the impulse scenario, the number of iterations is

seen to increase from 20 to 50 iterations.

Visually, all of the simulations appear to be almost identical. From a numerical

perspective, virtually all of the parallel calculations are within 0.1% of their serial

equivalents. The balance of the values have rather large percentage differences, although

they occur during or just after the generation changes applied during the scenarios.

 45

Further observation indicates that these significant deviations may be a result of a

time step offset. As an example, in the serial implementation the step increase in

generation may occur at time t=5 seconds, that is, at the beginning of the t=5 second time

step. In the parallel implementation the step increase may occur at the end of the t=5

second time step, that is, at the beginning of the t=5.01 time step.

Mismatch Relationship

-0.60

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

1.20

-0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 1.00 1.20

Parallel Mismatch

Se
ria

l M
is

m
at

ch

Figure 5.5 - Serial Parallel Mismatch Relationship

From a percentage perspective, the deviations may be numerically significant but

there is a much more important relationship between the values, correlation. By plotting

the same data points from both simulations against each other on the same graph should

show a linear relationship between the two. Any outliers should be readily visible. An

example of one such graph is given in Figure 5.5.

It can be seen that the significant majority of the data sets have a strict

relationship. The three points that lie on the y-axis are examples of the time step offset

described. They occur at the time at which the impulses are applied.

As the simulator is used for long term dynamic studies in real-time, such minute

discrepancies are of little significant interest and do not materially affect the results.

Constant offsets of 0.01 seconds are trivial in real-time simulation scenarios that may last

 46

tens of minutes and where the stimuli and their associated responses are measured in

second to minutes. A number of additional serial / parallel result relationships were

studied and came to similar results.

In terms of meeting the functional objectives of power system simulation, the

simulator is considered validated. That is, the results of all the simulations have come to

nearly identical results and exhibit nearly identical behaviour during the simulation of

long term dynamics in a power system.

5.2 Parallel Simulator Timing Analysis

With a validated long term dynamic power system simulator, a performance

analysis can be performed. The primary goal of the thesis is to be able to implement a

real-time power system simulator, with time steps of less than 0.033 seconds. This should

be true for a number of system sizes, such that the simulator is scalable for use in real

world power system studies. For the actual simulations, time steps of 0.01 seconds were

used in order to ensure that the simulator could achieve or surpass the required goal.

This section performs a number of simulations using the parallel Xeon

implementation. Different systems are simulated using anywhere from 1 to 8 processing

cores. Comparisons are made with respect to system size and number of cores used.

The 5, 14 and 30 bus test systems were considered too small to be of any

computational significance to the parallel processing implementation. Additional systems

were developed that contained 100, 500, 1000 and 2000 buses. As the version of

PowerWorld being used to generate the Ybus matrices was limited to 30 buses, a random

power system generator was developed to create larger systems. A description of the

program is included in the following section, with the timing analysis following.

5.2.1 Synthesis of Large Systems

The models used for the 5, 14 and 30 bus systems were originally obtained as

IEEE Common Format files and imported into the PowerWorld software package. The

version of PowerWorld is a limited version meant for academic purposes. While the

software remains full functional, it is limited to the simulation of systems of 40 buses or

less. The full version is capable of over 60,000.

 47

Since PowerWorld was used to provide the Ybus matrix, system sizes greater than

40 buses were not able to be imported to PowerWorld or their associated Ybus matrices

exported for use within the simulator. In order to test the performance characteristics of

the parallel simulator with greater system sizes, a program was developed in order to

produce random electrical systems.

In order to produce a random system, the following information is required:

1) The number of buses in the system.

2) The network layout in the form of the Ybus matrix.

3) The location and power output of generators.

4) The normalized rotational inertia constant (H) of each generator.

5) The droop characteristics (R) of each generator.

6) The location and demand of all the loads.

In the random system generator developed the only user defined value is the

number of buses, the balance of the information is calculated using randomly chosen

values with limits. For the systems used in the testing of the simulator, the following

system design parameters were implemented.

For the layout of the network, it was decided that approximately 2% of the buses

would be connected to another bus through a transmission line. For every possible

connection a random number between 1 and 0 was chosen. If the number was 0.02 or

less, a randomly chosen admittance was added to the Ybus matrix. The value of the

admittance was a randomly chosen value within typical limits of actual transmission lines

as shown in Table 5.1. This procedure was repeated until the upper triangular portion of

the Ybus matrix was filled in.

Once the random procedure was complete, the program went through the system

to ensure that no electrical islands were produced during the random process. If an island

was found, a random bus in the island was connected through a transmission line to a

random bus in the island that contained the reference bus. This ensured that all the buses

were part of a single electrical network.

 48

Once the upper triangular portion of the Ybus matrix was complete, the diagonal

values were calculated using the upper triangular portion and then the upper triangular

portion was symmetrically copied to the lower triangular portion.

Generators were randomly scattered throughout the system with a generator to

bus ratio of 1 to 5, i.e. one generator for every 5 buses. The power output and H constants

of the generators were chosen randomly within limits, as shown in Table 5.2. The droop

control constant, R, was chosen such that all generators could participate equally in

responding to frequency deviations.

Loads were assigned to every bus, with randomly assigned values between the

limits as shown in Table 5.2.

Table 5.1 - Transmission Line Characteristics

 Ymax(re) Ymin(re) Ymax(im) Ymin(im)

Transmission Line -25 -1 25 1

Table 5.2 - Transmission Line Characteristics

Component Pmax Pmin Qmax Qmin Hmax Hmin

Generator 50 10 50 0 3 1

Load 100 1 50 1 - -

5.2.2 Large System Timing Analysis

Each of the four large systems was simulated on the parallel Xeon implementation

using 1 to 8 processing cores. Each simulation consisted of 40 seconds of simulation,

with time steps of 0.01s. Therefore, the results are the time required to perform 4000

sequential power flows for the system size given, as well as the frequency calculation in

between each power flow.

The result of each set of simulations is presented in Figures 5.6 to 5.9. Each figure

contains two sets of data, User and Real. The Real line refers to the actual time taken for

the simulation to complete, taken from a human’s perspective sitting at the simulator. The

User line refers to the total time taken by all processors to complete the simulation, that

is, the sum of each processors computation time. The performance of the simulator is

solely gauged on the Real time results.

 49

Figure 5.6 - 100 Bus Parallel Timing Comparison

Figure 5.7 - 500 Bus Parallel Timing Comparison

 50

From observation, it can be see that for the 100 and 500 bus systems the best

performance is obtained from the use of a single processing core. This is entirely

attributed to the large communication delays between the processing cores. This is

largely seen in the change from a single to dual processing cores. Once the largely

constant communication delay is introduced, the use of more cores once again decreases

the simulation time as more operations are being done simultaneously. The fact remains

that the simulator cannot achieve the peak performance obtained from a single core.

Figure 5.8 - 1000 Bus Parallel Timing Comparison

When moving to larger systems, there are significantly more calculations to be

performed within a single iteration of the Jacobi power flow algorithm. For this reason,

the use of multiple cores can outweigh the communication delays between cores. This is

evident in the simulation results of the 1000 and 2000 bus systems of Figures 5.8 and 5.9.

As cores are added the processing time decreases in larger systems, but there is a

point at which adding cores produces diminishing returns. This eventually results in no

additional timing gains with more cores.

 51

From the results of the timing analysis, it appears that larger systems can take

advantage of more cores. This is exhibited in Figure 5.10 that shows the simulation time

per bus. For the larger 2000 bus system, the simulation time per bus continues to decrease

as the number of cores is increased. Figure 5.11 shows the relationship between the

number of buses and the effect of adding cores. Using a single core the computation

times increase in what seems to be an exponential manner. As cores are increased, the

effect is to flatten out the graph, although more simulations of larger systems would be

required in order to fully describe the true effect on the results.

Figure 5.9 - 2000 Bus Parallel Timing Comparison

Regarding the original design metric of achieving real-time performance, it

appears that the implementation does not quite meet the objective. In each of the large

system simulations, the simulation time was 40 seconds with the impulse scenario under

test. In the case of the 100, 500 and 1000 bus systems, the simulator managed to achieve

the goal with a wide margin. In the 2000 bus simulation, the 8 cores version achieved a

time of approximately 55 seconds, 15 seconds past the real time deadline.

 52

Time Per Bus

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

1 2 3 4 5 6 7 8

Cores

Ti
m

e/
B

us
100 Buses

500 Buses

1000 Buses

2000 Buses

Figure 5.10 - Simulation Time per Bus

Computation Time Increase

0

20

40

60

80

100

120

140

100 300 500 700 900 1100 1300 1500 1700 1900

Buses

Ti
m

e
(s

)

1 Core

2 Cores

4 Cores

6 Cores

8 Cores

Figure 5.11 - Computation Time Increase

 53

5.3 Discussion and Future Potential

The simulator has been validated, simulations performed and timing analysis

completed. This section includes a discussion of observations made during the process, as

well as possible explanation for the observations made.

5.3.1 Theoretical Limits of the Jacobi Algorithm

The Jacobi is an inherently embarrassingly parallel algorithm. The bulk of the

computations are the calculation of the updated voltages and resulting bus mismatches

during each iteration. For example, in a 2000 bus system there are 2000 independent

voltage equations, one for each bus, and 2000 independent mismatch equations. In a

theoretical implementation which does not include any communication delays, the

number of serial computations to be performed could be brought down from 4000 (2000

voltage and 2000 mismatch) to only 2. In this respect the Jacobi algorithm is potentially

very powerful if the correct parallel implementation can be found.

In current technology, the most powerful parallel processing technology for

embarrassingly parallel algorithms is that of the GPU. The architecture is specifically

designed and optimized for such calculations. Unfortunately, the technology was not

available for the implementation of the simulator and a substitute technology was used.

From the results of the larger simulations, it was shown that inter-processor

communication delays resulted in decreased performance. At the same time, it was

generally shown that the Jacobi algorithm has potential for accelerating power flows.

5.3.2 Reduction in Jacobi Iterations

The largest drawback to the Jacobi algorithm lies in the large number of iterations

required to solve the problem. In standard power flow applications the calculations are

normally performed from a flat start, that is, a voltage of magnitude 1 and angle 0. This is

shown in the initial iterations required during the first time step. In the systems simulated,

this ranged from 500 for the smaller systems, to thousands for the larger systems.

As this thesis focuses on a simulator and not a power flow calculator, there is one

major benefit that acts to increase the performance of the Jacobi algorithm. At the end of

each time step, the next cycle of the Jacobi algorithm has a reasonably good estimate of

 54

the voltages in the next iteration. Long term dynamics are typically slow moving and

therefore the system state does not typically make large changes. This has the effect of

significantly reducing the number of iterations required in order to obtain convergence. If

iteration count is the largest drawback of the algorithm, then it has been effectively

negated when Jacobi is used to continuously simulate power systems.

This effect was described briefly in the parallel validation section. In the 30 bus

system the initial iteration count was over 500. During portions of the simulation when

little dynamics were occurring, the system often converged in only a single iteration.

During severe changes such as an impulse increase in generation, the iteration count

never exceeded 25.

It is expected that this feature will be of great benefit when simulating large

systems where the differences between time steps are relatively small. If the number of

simultaneous equations calculated can be increased and the iteration count reduced, the

Jacobi algorithm can prove to be a powerful tool in power system simulation.

5.3.3 Additional Parallelism and Optimizations

In the timing analysis it was observed that as the number of processors increased,

the additional benefits of parallelism showed diminishing return. This was primarily due

to the nature of the hardware being utilized to implement the algorithm. As stated, the

available parallelism in Jacobi is quite high from a theoretical standpoint, and that the

GPU implementation could potentially harness these efficiencies.

In addition to the parallel nature of the Jacobi algorithm, there is significant

parallelism available within the complex math required to perform the calculations. As

shown in the literature survey, complex operations can be broken down into simpler real

number multiplications and additions, many of which can be performed simultaneously.

The nature of the GPU allows for this level of parallelism to be performed highly

efficiently.

Another available level of parallelism available is that of the voltage and

mismatch equations themselves. The summation terms in both the voltage and mismatch

equations consist of a number of independent complex multiplications that can be

performed simultaneously.

 55

() ()







−=+ ∑

≠=

N

knn
nkn

k

k

kk
k iVY

iV
S

Y
iV

,1
*

*

)(
11 (5.1)

*

1








=+= ∑

=

N

n
nknkkkk VYVjQPS (5.2)

When considering the Jacobi algorithm as a whole, it is observed that the new

voltages are calculated, updated, and then the mismatch values calculated. It can be seen

that the summation of the mismatch calculation is the same as the summation of the

following voltage calculation, save the n=k term. By isolating the mismatch summation

and reusing the calculation could effectively cut the computation time in half.

Such fine grained parallel optimizations require the correct hardware in order to

be able to produce significant efficiency increases and could potentially be met using

current GPU technology.

 56

Chapter 6.
Conclusions and Future Work

Market based generation dispatch is becoming the industry norm in advanced

electrical jurisdictions. Due to the continuous evolution of markets and their potential

impacts on system operation, studies are performed from economic and social

perspectives in order to gauge the effects of any changes before implementation into live

systems. In addition, it is essential to verify the effect of changes in market design on

power systems from a technical perspective.

6.1 Conclusions

The main objective of this thesis is to develop a real-time power system simulator

used in the investigation of market designs and AGC schemes. The scope of this thesis is

the mathematical algorithms used in the simulator, hardware and software

implementation, and validation of the implemented simulator.

Market and AGC studies operate in the long term dynamic time scale, with time

constants varying from seconds to minutes. For this reason the simulator is restricted to

these timescales, and operates under the ‘tied-rotor’ assumption. The maximum time-step

was defined to be 0.033 seconds in order to allow for video quality refresh rates, although

time steps of 0.01 seconds were used for the actual simulations.

 57

A literature survey was performed to gauge the status of long term dynamic

simulators, as well as the specific implementation desired for this thesis. It was found

that, to the best of the author’s knowledge, there have been no Jacobi based parallel

processing implementations of a long term dynamic power system simulator.

The simulator is based on a modified version of the Jacobi power flow solution

algorithm. The slack generator was removed to provide a generation load imbalance for

the dynamic portion of the simulator. By performing a number of power flow calculations

in quick succession, the resulting sequence provides the sensation of a fluid simulation.

As the power flow is a static algorithm, dynamics were added to the simulator

using a variation of the generator swing equation. The reference bus mismatch is used in

the equation to calculate the frequency deviation for every time step.

A number of hardware platforms were considered for use, with the GPU based

systems being the optimal system. Unfortunately, none were available at the time of

development, and a substitute system with similar qualities was found.

The development and validation was done using a three stage process. The first

was the use of a third party commercial software package for verification purposes. The

second was the development of a serial version of the simulator, and finally the parallel

implementation.

The third party software produced steady-state results against which the serial

implementation was compared for numerical accuracy. The dynamics of the serial

implementation were compared to hand calculations in order to verify their accuracy. The

accuracy of the steady-state simulations was high.

With the serial implementation validated, it was used as a benchmark for the

parallel implementation. It was found that the simulations were not identical, but

correlated such that the parallel simulator was considered to be an accurate representation

of a dynamic power system.

A number of large systems were synthesized using a proprietary program. The

large systems were used to test the performance of the simulator to see if it managed to

meet the original performance specification. It was found that smaller systems did not

take advantage of the parallel processing implementation. For larger systems significant

gains were apparent.

 58

From the timing analysis, it was hypothesized that a GPU hardware

implementation could achieve significant performance gains over the Xeon multi-core

processing architecture used for the parallel implementation.

In conclusion, the simulator achieved the basic functionality goals, but failed to

meet the ultimate performance goals. Achieving the stated performance goals is

addressed in the following section.

6.2 Future Work

The primary advancement that could be implemented is the use of a GPU based

hardware platform. With the highly parallel nature of both the Jacobi algorithm and

GPU’s, it is believed that the simulator could make significant performance gains.

With the level of parallelism available in such hardware, a number of algorithm

optimizations could be implemented as well. Examples include parallelizing the

calculation of the summations within the voltages and mismatches and breaking down the

complex mathematics into fundamental operations.

Beyond the concepts mentioned within the thesis, there are additional avenues for

developing the simulator. During the literature survey, a paper suggested the concept of

distributing mismatch in order to gain accuracy for the frequency calculation. While the

implementation of the distributed mismatch in the paper was highly complex and ‘after-

the-fact’, there is a possibility of having the Jacobi power flow algorithm converge such

that the mismatch is distributed upon convergence. This would be a major modification

and would require additional information from the generators in terms of their

participation in the mismatch.

Additional functionality could also be found in providing a better modelling of the

voltage controls such as PV buses and reactive power limits on the generator models. In

addition, the simulator here is for simple power networks and the addition of additional

controls such as transformer tap changers and phase shifters should be added in order to

be able to better represent and simulate actual power systems.

 59

References
[1] K. Bhattacharya, M. H. J. Bollen, J. E. Daalder, Operation of Restructured Power

Systems. Norwell, MA: Kluwer Academic Publishers, 2001, pp. 1-2.

[2] P. L. Joskow, “California’s Electricity Crisis,” National Bureau of Economic

Research, Cambridge, MA, Working Paper 8442, Aug. 2001.

[3] J. P. Barret, P. Bornard, B. Meyer, Power System Simulation. London, UK: Chapman

and Hall, 1997, pp. 1.

[4] K. Tomsovic, D. E. Bakken, V. Venkatasubramanian, A. Bose, “Designing the Next

Generation of Real-Time Control, Communication, and Computations for Large Power

Systems,” Proceedings of the IEEE, vol. 93, no. 5, pp. 965-979, May 2005.

[5] T. Van Cutsem, Y. Jacquemart, J.-N. Marquet, P. Pruvot, “A Comprehensive

Analysis of Mid-Term Voltage Stability,” IEEE Transactions on Power Systems, vol. 10,

no. 3, pp. 1173-1182, Aug. 1995.

[6] W. Long, D. Cotche, D. Ruiu, P. Adam, S. Lee, R. Adapa, “EMTP - A Powerful Tool

for Analyzing Power System Transients,” IEEE Computer Applications in Power, vol. 3,

no. 3, pp. 36-41, July 1990.

[7] R. Kuffel, J. Giesbrecht, T. Maguire, R. P. Wierckx, P. G. McLaren, “A Fully Digital

Power System Simulator Operating in Real-Time,” in IEEE Canadian Conference on

Electrical and Computer Engineering, vol. 2, pp. 733-736, May 1996.

[8] J. P. Barret, P. Bornard, B. Meyer, Power System Simulation. London, UK: Chapman

and Hall, 1997, pp. 99.

 60

[9] IEEE Task Force on Power System Stabilizers, “Overview of Power System Stability

Concepts,” in IEEE Power Engineering Society General Meeting, vol. 3, pp. 1762-1768,

July 2003.

[10] V. Kola, A. Bose, P. M. Anderson, “Power Plant Models for Operator Training

Simulators,” IEEE Transactions on Power Systems, vol. 4, no. 2, pp. 559-565, May 1989.

[11] D. R. Davidson, D. N. Ewart, L. K. Kirchmayer, “Long Term Dynamic Response of

Power Systems: An Analysis of Major Disturbances,” IEEE Transactions on Power

Apparatus and Systems, vol. 94, no. 3, pp. 819-826, May 1975.

[12] J. P. Barret, P. Bornard, B. Meyer, Power System Simulation. London, UK:

Chapman and Hall, 1997, pp. 84-86.

[13] IEEE PES Power Systems Engineering Committee, “Parallel Processing in Power

Systems Computation,” IEEE Transactions on Power Systems, vol. 7, no. 2, pp. 629-638,

May 1992.

[14] W. Jun Qiang, A. Bose, “Parallel Solution of Large Sparse Matrix Equations and

Parallel Power Flow,” IEEE Transactions on Power Systems, vol. 10, no. 3, pp. 1343-

1349, Aug. 1995.

[15] T. Feng, A. J. Flueck, “A Message-Passing Distributed-Memory Parallel Power

Flow Algorithm,” in IEEE PES Winter Meeting, vol. 1, pp. 211-216, Jan. 2002.

[16] T. Feng, A. J. Flueck, “A Message-Passing Distributed-Memory Newton-GMRES

Parallel Power Flow Algorithm,” in IEEE PES Summer Meeting, vol. 3, pp. 1477-1482,

July 2002

 61

[17] C. Hong, C. M. Shen, “Implementation of Parallel Algorithms for Transient Stability

Analysis on a Message Passing Multicomputer,” in IEEE PES Winter Meeting, vol. 2, pp.

1410-1415, Jan. 2000

[18] G. Huang, W. Ongsakul, “Managing the Bottlenecks in Parallel Gauss-Seidel Type

Algorithms for Power Flow Analysis,” in IEEE Power Industry Computer Application

Conference, pp. 74-81, May 1993.

[19] D. P. Koester, S. Ranka, G. C. Fox, “A Parallel Gauss-Seidel Algorithm for Sparse

Power System Matrices,” in IEEE Supercomputing, pp. 184-193, Nov. 1994.

[20] S. H. Ahmed, “On Jacobi and Jacobi-Like Algorithms for a Parallel Computer,”

Mathematics of Computation, vol. 25, no. 115, pp. 579-590, July 1971.

[21] D. Gimenez, R. van de Geijn, V. Hernandez, A. M. Vidal, “Exploiting the Symmetry

on the Jacobi Method on a Mesh of Processors,” in IEEE Euromicro Workshop on

Parallel and Distributed Processing, pp. 377-384, Jan. 1996.

[22] D. P. Chassin, P. R. Armstrong, D. G. Chavarria-Miranda, R. T. Guttromson,

“Gauss-Seidel Accelerated: Implementing Flow Solvers on Field Programmable Gate

Arrays,” in IEEE PES General Meeting, June 2006.

[23] R. Ramanathan, H. Ramchandani, S. A. Sackett, “Dynamic Load-Flow Technique

for Power System Simulators,” in IEEE PES Summer Meeting, pp. 25-30, August 1986.

[24] J. P. Barret, P. Bornard, B. Meyer, Power System Simulation. London, UK:

Chapman and Hall, 1997, pp. 84-86.

[25] Top 500 Supercomputer Sites (2008, July). Top 500 List - June 2008. [Online].

Available at http://www.top500.org/list/2008/06/100

 62

[26] No Author, “NVIDIA CUDA Programming Guide, Version 0.8,” NVIDIA

Corporation, Santa Clara, CA, Dec. 2007.

[27] C Boyd, “Data Parallel Computing,” in ACM Queue, vol 6, no. 2, pp. 30-39,

March/April 2008.

[28] No Author, “NVIDIA Tesla S1070 Datasheet,” NVIDIA Corporation, Santa Clara,

CA, June 2008.

[29] K. Fatahalian, M. Houston, “GPU’s - A Closer Look,” in ACM Queue, vol 6, no. 2,

pp. 30-39, March/April 2008.

[30] C. C. Liu, I. Ganusov, M. Burtscher, S. Tiwari, “Bridging the Processor-Memory

Performance Gap with 3D IC Technology,” in IEEE Design and Test of Computers, pp.

556- 564, Nov/Dec 2005.

[31] Software, “PowerWorld Simulator Version 8.0, Glover and Sarma Edition,”

PowerWorld Corporation, Champaign, IL, 2001.

[32] University of Washington Department of Engineering (2008, July). Power Systems

Test Case Archive. [Online]. Available at http://www.ee.washington.edu/research/pstca/

 63

Appendix A - 5 Bus Power System Model

 64

5 Bus System Diagram

 65

5 Bus System Simulator Input Files

Bx.txt

Bus BusID Y(re) Y(im) VRef(re) VRef(im)
1 B1 3.729 -49.7203 1 0
2 B2 2.6783 -28.459 1 0
3 B3 7.458 -99.4406 1 0
4 B4 11.9219 -147.959 1 0
5 B5 9.0856 -108.578 1 0

Tx.txt

Bus1 Bus2 Y(re) Y(im)
1 5 -3.729 49.7203
2 4 -0.8928 9.9197
2 5 -1.7855 19.8393
3 4 -7.458 99.4406
4 2 -0.8928 9.9197
4 3 -7.458 99.4406
4 5 -3.5711 39.6786
5 1 -3.729 49.7203
5 2 -1.7855 19.8393
5 4 -3.5711 39.6786

Gx.txt

Bus GenID P Q PMax H %Reg
1 G1 394.84 114.29 500 942.5 0.0005
3 G3 520 337.48 700 1696.5 0.0005

Lx.txt

Bus LoadID P Q
2 L2 800 280
3 L3 80 40

 66

Appendix B - 14 Bus System Model

 67

14 Bus System Diagram

 68

14 Bus System Simulator Input Files

Bx.txt

Bus BusID Y(re) Y(im) VRef(re) VRef(im)
1 Bus1 6.025 -19.4471 1.06 0
2 Bus2 9.5213 -30.2721 1 0
3 Bus3 3.121 -9.8224 1 0
4 Bus4 10.513 -38.6542 1 0
5 Bus5 9.568 -35.5336 1 0
6 Bus6 6.5799 -17.3407 1 0
7 Bus7 0 -19.549 1 0
8 Bus8 0 -5.677 1 0
9 Bus9 5.3261 -24.0925 1 0
10 Bus10 5.7829 -14.7683 1 0
11 Bus11 3.8359 -8.497 1 0
12 Bus12 4.015 -5.4279 1 0
13 Bus13 6.7249 -10.6697 1 0
14 Bus14 2.561 -5.344 1 0

Tx.txt

Bus1 Bus2 Y(re) Y(im)
1 2 -4.9991 15.2631
1 5 -1.0259 4.235
2 1 -4.9991 15.2631
2 3 -1.135 4.7819
2 4 -1.686 5.1158
2 5 -1.7011 5.1939
3 2 -1.135 4.7819
3 4 -1.986 5.0688
4 2 -1.686 5.1158
4 3 -1.986 5.0688
4 5 -6.841 21.5786
4 7 0 4.8895
4 9 0 1.8555
5 1 -1.0259 4.235
5 2 -1.7011 5.1939
5 4 -6.841 21.5786
5 6 0 4.2574
6 5 0 4.2574
6 11 -1.955 4.0941
6 12 -1.526 3.176
6 13 -3.0989 6.1028
7 4 0 4.8895
7 8 0 5.677
7 9 0 9.0901

 69

8 7 0 5.677
9 4 0 1.8555
9 7 0 9.0901
9 10 -3.902 10.3654
9 14 -1.424 3.0291
10 9 -3.902 10.3654
10 11 -1.8809 4.4029
11 6 -1.955 4.0941
11 10 -1.8809 4.4029
12 6 -1.526 3.176
12 13 -2.489 2.252
13 6 -3.0989 6.1028
13 12 -2.489 2.252
13 14 -1.137 2.315
14 9 -1.424 3.0291
14 13 -1.137 2.315

Gx.txt

Bus GenID P Q PMax H %Reg
1 G1 232.38 -27.61 250 1319.5 0.0005
2 G2 40 50 50 1394.9 0.0005
3 G3 0 28 50 1583.4 0
6 G6 0 11.1 50 1470.3 0
8 G8 0 20.5 50 1508.0 0

Lx.txt

Bus LoadID P Q
1 Load1 0 0
2 Load2 21.7 12.7
3 Load3 94.2 19
4 Load4 47.8 -3.9
5 Load5 7.6 1.6
6 Load6 11.2 7.5
9 Load9 29.5 16.6
9 Null9 0 0
10 Load10 9 5.8
11 Load11 3.5 1.8
12 Load12 6.1 1.6
13 Load13 13.5 5.8
14 Load14 14.9 5

 70

Appendix C - 30 Bus System Model

 71

30 Bus System Diagram

 72

30 Bus System Simulator Input Files

Bx.txt

Bus BusID Y(re) Y(im) VRef(re) VRef(im)
1 Bus1 6.7655 -21.2316 1.06 0
2 Bus2 9.7523 -30.6487 1 0
3 Bus3 9.7363 -29.1379 1 0
4 Bus4 16.3141 -55.5094 1 0
5 Bus5 4.09 -12.1906 1 0
6 Bus6 22.3416 -82.8291 1 0
7 Bus7 6.5442 -18.4567 1 0
8 Bus8 7.7333 -26.5275 1 0
9 Bus9 0 -18.7063 1 0
10 Bus10 13.4621 -41.3838 1 0
11 Bus11 0 -4.8077 1 0
12 Bus12 6.574 -24.4242 1 0
13 Bus13 0 -7.1429 1 0
14 Bus14 4.0175 -5.4243 1 0
15 Bus15 9.3655 -16.0116 1 0
16 Bus16 3.2711 -8.9451 1 0
17 Bus17 5.2751 -15.1582 1 0
18 Bus18 4.8865 -9.9062 1 0
19 Bus19 8.958 -17.9835 1 0
20 Bus20 7.6672 -15.7501 1 0
21 Bus21 21.8765 -45.1084 1 0
22 Bus22 21.9345 -43.4829 1 0
23 Bus23 3.4298 -6.9653 1 0
24 Bus24 5.3118 -9.1883 1 0
25 Bus25 4.4957 -7.865 1 0
26 Bus26 1.2165 -1.8171 1 0
27 Bus27 3.6523 -9.4604 1 0
28 Bus28 5.8068 -22.6715 1 0
29 Bus29 1.9076 -3.6044 1 0
30 Bus30 1.5995 -3.0173 1 0

Tx.txt

Bus1 Bus2 Y(re) Y(im)
1 1 6.7655 -21.2316
1 2 -5.2246 15.6467
1 3 -1.5409 5.6317
2 1 -5.2246 15.6467
2 2 9.7523 -30.6487
2 4 -1.7055 5.1974
2 5 -1.136 4.7725
2 6 -1.6861 5.1165

 73

3 1 -1.5409 5.6317
3 3 9.7363 -29.1379
3 4 -8.1954 23.5309
4 2 -1.7055 5.1974
4 3 -8.1954 23.5309
4 4 16.3141 -55.5094
4 6 -6.4131 22.3112
4 12 0 4.1913
5 2 -1.136 4.7725
5 5 4.09 -12.1906
5 7 -2.954 7.4493
6 2 -1.6861 5.1165
6 4 -6.4131 22.3112
6 6 22.3416 -82.8291
6 7 -3.5902 11.0261
6 8 -6.2893 22.0126
6 9 0 4.9158
6 10 0 1.8561
6 28 -4.3628 15.4636
7 5 -2.954 7.4493
7 6 -3.5902 11.0261
7 7 6.5442 -18.4567
8 6 -6.2893 22.0126
8 8 7.7333 -26.5275
8 28 -1.444 4.5408
9 6 0 4.9158
9 9 0 -18.7063
9 10 0 9.0909
9 11 0 4.8077
10 6 0 1.8561
10 9 0 9.0909
10 10 13.4621 -41.3838
10 17 -3.956 10.3174
10 20 -1.7848 3.9854
10 21 -5.1019 10.9807
10 22 -2.6193 5.4008
11 9 0 4.8077
11 11 0 -4.8077
12 4 0 4.1913
12 12 6.574 -24.4242
12 13 0 7.1429
12 14 -1.5266 3.1734
12 15 -3.0954 6.0973
12 16 -1.952 4.1044
13 12 0 7.1429
13 13 0 -7.1429
14 12 -1.5266 3.1734
14 14 4.0175 -5.4243

 74

14 15 -2.491 2.2509
15 12 -3.0954 6.0973
15 14 -2.491 2.2509
15 15 9.3655 -16.0116
15 18 -1.8108 3.6874
15 23 -1.9683 3.9761
16 12 -1.952 4.1044
16 16 3.2711 -8.9451
16 17 -1.3191 4.8408
17 10 -3.956 10.3174
17 16 -1.3191 4.8408
17 17 5.2751 -15.1582
18 15 -1.8108 3.6874
18 18 4.8865 -9.9062
18 19 -3.0757 6.2188
19 18 -3.0757 6.2188
19 19 8.958 -17.9835
19 20 -5.8824 11.7647
20 10 -1.7848 3.9854
20 19 -5.8824 11.7647
20 20 7.6672 -15.7501
21 10 -5.1019 10.9807
21 21 21.8765 -45.1084
21 22 -16.7746 34.1277
22 10 -2.6193 5.4008
22 21 -16.7746 34.1277
22 22 21.9345 -43.4829
22 24 -2.5405 3.9544
23 15 -1.9683 3.9761
23 23 3.4298 -6.9653
23 24 -1.4614 2.9892
24 22 -2.5405 3.9544
24 23 -1.4614 2.9892
24 24 5.3118 -9.1883
24 25 -1.3099 2.2876
25 24 -1.3099 2.2876
25 25 4.4957 -7.865
25 26 -1.2165 1.8171
25 27 -1.9693 3.7602
26 25 -1.2165 1.8171
26 26 1.2165 -1.8171
27 25 -1.9693 3.7602
27 27 3.6523 -9.4604
27 28 0 2.6087
27 29 -0.9955 1.881
27 30 -0.6875 1.294
28 6 -4.3628 15.4636
28 8 -1.444 4.5408

 75

28 27 0 2.6087
28 28 5.8068 -22.6715
29 27 -0.9955 1.881
29 29 1.9076 -3.6044
29 30 -0.9121 1.7234
30 27 -0.6875 1.294
30 29 -0.9121 1.7234
30 30 1.5995 -3.0173

Gx.txt

Name GenID P Q PMax H %Reg
1 GlenLyn 260.93 -17.22 350 942.5 0.0005
2 Claytor 40 50 50 1319.5 0.0005
5 Fieldale 0 37 50 565.5 0
8 Reusens 0 37.3 50 377.0 0
11 Roanoke 0 16.2 50 942.5 0
13 Hancock 0 10.6 50 754.0 0

Lx.txt

Bus LoadID P Q
2 Claytor 21.7 12.7
3 Kumis 2.4 1.2
4 Hancock 7.6 1.6
5 Fieldale 94.2 19
7 Blaine 22.8 10.9
8 Reusens 30 30
10 Roanoke 5.8 2
12 Hancock 11.2 7.5
14 Bus14 6.2 1.6
15 Bus15 8.2 2.5
16 Bus16 3.5 1.8
17 Bus17 9 5.8
18 Bus18 3.2 0.9
19 Bus19 9.5 3.4
20 Bus20 2.2 0.7
21 Bus21 17.5 11.2
23 Bus23 3.2 1.6
24 Bus24 8.7 6.7
26 Bus26 3.5 2.3
29 Bus29 2.4 0.9
30 Bus30 10.6 1.9

 76

Appendix D - PowerWorld and Serial Results

 77

5 Bus System - Results Comparison

 78

14 Bus System Results Comparison

 79

 80

30 Bus System - Results Comparison

 81

 82

 83

Appendix E - Dynamic Serial Simulation

 84

5 Bus System Validation

 85

14 Bus System Validation

 86

30 Bus System Validation

