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Abstract 

Market based generation dispatch is becoming the industry norm in advanced 

electrical jurisdictions. Due to the continuous evolution of markets and their potential 

impacts on system operation, studies are performed from economic and social 

perspectives in order to gauge the effects of any changes before implementation into live 

systems. In addition, it is essential to verify the effect of changes in market design on 

power systems from a technical perspective. 

The main objective of this thesis is to develop a real-time power system simulator 

for use in the investigation of market designs and automatic generation control schemes. 

The scope of this thesis is the mathematical algorithms used in the simulator, hardware 

and software implementation, and validation of the implemented simulator. 

The simulator is based on a modified version of the power flow calculation using 

an innovative combination of a standard numerical technique implemented on a readily 

available computing hardware platform. The result is a significant decrease in 

computation time. 

The power flow is performed repeatedly, with frequency being calculated 

between time steps to provide system dynamics. Frequency is calculated using a modified 

version of the generic generator swing equation. Generator and load models and their 

respective control systems are provided for the purposes of simulator validation and 

testing, although do not fall within the scope of the simulator itself. 
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Chapter 1. 
Introduction 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1.1 Background 

In the 1990s, a number of electrical jurisdictions around the world moved from 

the vertically integrated utility model to that of competitive markets. While the reasoning 

behind such decisions is outside the scope of this discussion, it can be said that this move 

introduced a number of new intricacies to the operation and control of power systems [1]. 

One of the primary changes was the use of wholesale electricity markets as the method 

for determining which generators would be dispatched. For the first time competing 

generators were asked to submit bids to be ranked and cleared by an independent third 

party. 

The methods for ranking bids, setting market prices, settling finances and 

providing some ancillary services were developed using economic supply demand theory 

and referred to as market design. Due to the nature of electricity as a commodity, part of 

the standard economic theory used in commodity markets required modification, with 

examples including the inability to warehouse or queue for the commodity. Electricity 

markets currently in use have been repeatedly modified and honed in order to obtain 

higher economic efficiency. 
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The United States Federal Energy Regulatory Commission (FERC) has issued a 

suggested Standard Market Design (SMD), with some electrical jurisdictions adopting it 

and others moving towards it. The result is that many of the numerous electrical 

jurisdictions have differing market designs. The success of these market designs varies, 

with arguably positive and negative aspects to each. The evolution of electricity markets 

is a continuous process in both academia and industry, with some methods eventually 

being implemented into physical electrical systems. 

In order to be able to estimate the effects of a particular change in market design, 

in-depth studies are often completed before any changes are implemented. Many of the 

studies are based in social science and attempt to gauge the effects on stakeholders and 

the market place. While this is a highly useful exercise, the electrical commodity is quite 

different from others and drawing parallels with other commodities may not always prove 

accurate. 

Effects of this were seen in the California energy crisis of 2000-2001. Due to a 

fundamental disconnect between the financial market and the physical aspects of the grid, 

the market provided great potential for gaming, to the benefit of many generators and 

financial players, but to the detriment of society [2]. 

For this reason there should be additional studies based on simulations that 

include both the financial and physical aspects of a power system. Physical aspects 

include items typically absent from social and economic studies, primarily effects on 

frequency and voltage levels. By observing the two fundamental metrics of a stable 

power system during the simulation of a market, one could identify whether the market 

operates to the benefit or detriment of the power system. 

1.2 Objectives 

The main objective of this thesis is to develop a real-time power system simulator 

used in the investigation of market designs and Automatic Generation Control (AGC) 

schemes. The scope of this thesis is the mathematical algorithms used in the simulator, 

hardware and software implementation, and validation of the implemented simulator. 

Simulators have been widely used in the industry to measure, analyze and control 

power systems. Currently, there is a wide range of applications where simulators, or more 
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generally, solution calculators, are being used. These include steady-state power flow 

problems, optimal power flows, transient and steady-state stability analysis and short 

circuit studies [3]. 

Each application has requirements on accuracy that dictate the complexity of the 

models used within their respective simulators. In turn, the complexity of the calculations 

dictates the speed at which the calculations can be performed, neatly dividing the 

applications into two groups. Simulations that can be performed in real-time or faster can 

be used in on-line applications, that is, have the potential to be used to control the power 

system itself. Simulations that take longer than real-time, while still highly useful, are 

used in off-line applications where the results can be applied to the power system with 

some latency. This latency can be on the order of minutes, hours, days or months, 

depending on the calculation and its application. 

The purpose of limiting this simulator to the study of markets and AGC stems 

from the desired requirement of real-time simulation, coupled with the compromise 

between model complexity and calculation time. Power systems contain a wide range of 

time constants stemming from the different components of electrical power systems, 

primarily generation, load and protection. By identifying and eliminating portions of the 

system model not required to simulate the desired result complexity and, therefore, 

calculation time can be reduced. 

Protection systems and electromagnetic transients operate at timescales orders of 

magnitude faster than that of the deliberate generation and load changes associated with 

markets and AGC. During a contingency such as a short circuit, protection systems 

should operate to isolate the fault, typically within hundreds of milliseconds. Once the 

fault is extinguished, the protection system will either be open or closed. 

If the protection is closed, the system is at its original state and the simulation can 

continue as if the fault never occurred. A limitation to that statement is loss of angular 

stability in which the fault causes a generator to lose synchronism and be taken offline. 

The magnitude and potential negative results of such an occurrence are dealt with in 

dedicated stability studies. For the purposes of market and AGC simulation the 

assumption is that either the generator recovers and the system is stable or if taken offline 

the resulting system configuration is once again stable and a reserve market or AGC 
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operates to replace the generation over a longer timescale, within the capabilities of the 

simulator being described. 

In the case that the protection system is open after the fault, the power system is, 

therefore, in a reconfigured state and the simulator is required to reflect the change in the 

topology of the system. This requires a modification to the system model itself and can be 

accomplished through a second simulation using a ‘new’ power system model. Once 

again, transient stability in the transition between the two models is addressed using 

different tools. The assumption is that the system maintains stability and recovers using a 

market or AGC based system of some form. The question of power system dynamics is 

further addressed below. 

Individual loads can operate quickly, although when aggregated tend to become 

quite predictable within a few percent of peak demand. The simulator should be able to 

reflect changes in load, although once again at a timescale much larger than that of the 

protection, and within the timescale of the capabilities of a market or AGC. In the case 

that a large portion of load is lost, (the probable case when dealing with large changes in 

load) a market or AGC would once again operate to modify generation over a longer 

timescale within the capabilities of the simulator. 

To summarize, a simulator for the purposes of studying the operation of markets 

or AGC schemes should recognize and be capable of handling relatively slow changes in 

generation, load, voltage and frequency. Discontinuities such as the operation of 

protection devices, major contingencies, forced outages, loss of transmission or load and 

similar are assumed to leave the system in a stable state where a market or AGC can act 

to find the long term equilibrium point. The transients associated with such 

discontinuities are contained and dealt with in the larger field of power system stability, 

which has other tools for use in its analysis. 

1.3 Overview 

1.3.1 Purpose of Power System Simulation 

Power system simulators, state estimators and economic optimal power flow 

calculators are core to the reliability of modern electricity systems and are used to predict 

and control the state of every major electricity jurisdiction. The prevalent operational 
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model utilizes a centralized system, where Supervisory Control and Data Acquisition 

(SCADA) information from across the jurisdiction is transmitted to one or more Grid 

Control Centres (GCC), often owned and operated by the Independent System Operator 

(ISO). At the GCC, high powered computers perform complex mathematical calculations 

to determine the current state of the system and any control actions required to maintain 

stability. In [4], a detailed breakdown is given of the hierarchy and levels of control 

required to ensure this stability, including a number of both local and wide area controls. 

To summarize, local controls typically operate to maintain protection at the load, 

generation and protection component level, while wide area controls operate to maintain 

the stability of the system as a whole. 

In order to properly control the power system, the ISO needs to know the current 

state of the system. Based on the current state of the system, decisions are made as to 

what actions will be required to ensure stability over the near-term time frame, i.e. 

minutes to hours. 

1.3.2 The Power Flow Calculation 

The basis for many of the calculations integral to the stability of the system is the 

Power Flow (PF). Given the physical characteristics of the power system, as well as 

inputs regarding generation and load, the PF calculates the voltages on every bus in the 

power system, as well as the required real and reactive power levels required to balance 

supply and demand and keep voltages near nominal values. The calculated values can be 

compared to actual measurements in order to verify the state of the system, and the 

calculated power levels can be used to dispatch actual generation across the electrical 

jurisdiction. The decision as to which generation is dispatched is often made using market 

economics, constrained by physical system metrics such as system congestion and 

security. 

Since the power flow is a simulated version of the power system, alternate (i.e. 

theoretical) values can be used as inputs to provide operators with estimates of the 

potential state of the power system under hypothesized conditions. This is an extremely 

useful analysis for contingency planning, such as generator forced outages, transmission 

line failures and rapid load changes. These potential system states are put into the PF to 
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estimate the condition of the power system after such changes. System operators can 

make decisions that ensure a stable system taking into account the current state of the 

system, as well as potential system configurations after hypothetical system disturbances. 

The power flow is a static method, providing a snapshot of the power system at 

any given moment in time. In its basic form it does not contain any time based 

information and does not provide any information regarding the dynamics of the power 

system. Additional tools for such purposes are available to system operators but are 

outside the scope of the current discussion. 

The power flow is a highly used and valued tool in the system operator’s toolkit, 

therefore there has been significant research into reducing the time required to perform 

the calculation and obtain the results. Industrial grade systems largely use the Gauss-

Seidel and Newton-Raphson algorithms, as well as a number of modifications to, and 

variations of, these algorithms. Due to the mathematical nature of the methods, the speed 

with which the solution can be obtained is highly coupled with the method of hardware 

and software implementation. These methods are introduced and discussed in depth in 

Chapter 2 - Literature Survey. 

1.3.3 Required Modifications to the Power Flow 

The power flow is a tool used to find steady-state system voltages and required 

real and reactive power outputs. Alternatively, the application of power system 

simulation attempts to find the state of the system, based on the generation and load 

inputs. The state of generation and load are functions of their own respective or central 

control systems. 

In other words, ISOs want to know what generation dispatch orders are required 

in order to stabilize the system and, therefore, use the power flow calculation to obtain 

that information. The application of the power flow calculation to power system 

simulation requires that the ‘control and dispatch’ mechanism be removed from the 

algorithm and dealt with separately. 

In the case of real power, if generation and load are not in balance, then the PF 

provides the required dispatch in order to balance the system. In simulation, the 
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imbalance manifests itself as a frequency deviation, upon which some as-yet undefined 

control system would act to correct the imbalance. 

This is also true for reactive power output. The PF calculates required reactive 

power to maintain a desired (pre-set) bus voltage. In simulation, the bus voltage is largely 

a function of the reactive output of the generator at that bus. The duty of maintaining the 

desired bus voltage lies with the as-yet undefined control system. 

The PF will therefore be modified as required and referred to as the Raw Power 

Flow (RPF). Raw implies the removal of the control aspect of the power flow algorithm. 

RPF provides the solution to the bus voltages, as well as a value known as the mismatch. 

With the control aspect removed, the RPF no longer attempts to balance the system, and 

the resulting error manifests itself in the mismatch value. It is this value that will further 

be used in the dynamic calculations. Inputs to the RPF are limited to the actual generation 

and load without any predefined voltages, save the reference bus. 

To summarize, the goal is to identify what the system wants to do given the 

inputs, as opposed to what needs to be done to get the system to the desired operating 

state. That function is left to the control systems, often markets and AGC schemes in the 

case of real power or direct closed loop control systems in the case of reactive power. 

1.3.4 Adding System Dynamics 

The power flow is a static algorithm providing a snapshot of the state of the 

system. Under the assumption that the simulator is restricted to slow system dynamics, it 

is possible to utilize the power flow to provide a large number of successive snapshots, 

each slightly different from the previous to provide a time based simulation. An analogy 

would be a film or television broadcast, which is a series of static frames which when 

played successively provide the sensation of movement. Such modelling concepts are 

described in [5] and applied to voltage stability analysis. The method allows for higher 

computational efficiency by using an equilibrium model for the network while providing 

the level of accuracy required for the events under study. 

The concept contains two issues to overcome in order to be practically 

implemented. The first being the large number of calculations required to perform the PF 
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and the second being the PF does not contain any information regarding the frequency, a 

key indicator of power system state. 

In order to provide a time varying simulation in a reasonable amount of time, the 

speed at which the PF is performed must be increased. There are two primary techniques 

described in this thesis that attempt to provide this functionality, both encapsulated within 

the method of calculation and its associated implementation. The first is the use of a long-

ago discarded method for finding the power flow solution, the Jacobi method. The second 

lies in the use of recent advances in parallel computing technology. 

Once a single power flow calculation can be performed in a short enough time to 

provide fast successive ‘frames’, the required system dynamics must be added to the 

simulator, i.e. the frequency component. Turning to the area of transient generator 

stability provides a suitable tool, the generator swing equation. Certain modifications are 

made in order to apply the equation to a time based simulation. 

The novelty in this implementation of a power system simulator is implementing 

a neglected numerical method on a recently available hardware platform. This allows for 

fast computation time such that the steady-state power flow calculation can be used as the 

foundation for a dynamic real-time power system simulator. 

1.3.5 Generator and Load Models 

While the focus of the thesis is the development of a power system simulator, it 

would not be possible to test the simulator without the inclusion of generator and load 

models. For the purposes of preliminary testing the models developed were basic, in 

order to focus development efforts on the simulator. 

Load models are constant power, both real and reactive. It is expected that when 

used in further research or simulations, the load models will be further developed to 

include sensitivity to voltage and frequency changes, elasticity to power prices, typical 

changes in load level over time as well as stochastic changes to reflect short term 

fluctuations. 

Each generator is modeled as a simple rotating mass with variable real output 

power. The frequency of the system is calculated using the rotational inertia of the entire 

system, which is obtained through the summation of the rotational inertia constants of 
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each of the generators. A variation of Newton’s Second Law uses the system inertia and 

real power imbalance to calculate the system frequency. 

Since perfect power balance is improbable, each generator model contains a 

control system that varies real power output according to frequency, known as droop 

control. The generator(s) reduce output linearly if the frequency is above 60Hz, and 

increase output linearly if the frequency drops below 60Hz. 

Similar to load models, when the simulator is to be used for further research and 

simulation, the generator models would be further developed to include transient 

dynamics, market based generation set-points and voltage control. 

1.3.6 Validation 

With the solution algorithm and equations defined, the hardware and software 

implementation complete, and generator and load models designed and implemented, the 

task turns to validating the results to ensure that the simulator produces reliable output. 

Academic and industry grade power flow programs are readily available and can 

be used to provide third party results against which to compare the simulator results. In 

order to place both systems on the same level, comparisons are only made to the 

simulator once it reaches steady-state values after a disturbance. If the two steady-state 

results match, the simulator will be considered to be producing accurate results. 

For the purposes of validating the dynamic calculations, the equation is rather 

rudimentary and literature has shown that similar approximations have been implemented 

for use in other areas of study. A series of manual calculations given the same inputs for 

comparison should be sufficient to ensure numerical accuracy and validate the results. 

1.3.7 Results 

Design metrics for considering the operation of the simulator a success are 

described in Chapter 3 - Theory. To summarize, the simulator will use generation and 

load power levels as inputs, perform a single power flow calculation in less than 0.033 

seconds and provide system voltages and frequency as outputs. The system size is that of 

typical power systems in the 3000 bus range. 
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In order to test the performance of the simulator, a number of potential scenarios 

are developed and tested. By comparing the scenarios, the effectiveness of each portion 

of the simulator can be estimated. 

To measure dynamic response, three scenarios are used. The first is two step 

changes in generation, the second a slow continuous ramp of generation to observe 

response to a constant change, and the final scenario two generation ramps in different 

directions. As loads are considered to be constant power, the simulations will not include 

changes in load levels. The ability to vary load will be developed in more advanced load 

models as described previously. 

In order to measure the success of the parallel Jacobi implementation, the 

simulator is run using larger systems with different numbers of processors. Small systems 

do not require enough computations in order to be able to take advantage of parallel 

processing, and are of little practical significance. 
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Chapter 2. 
Literature Survey 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The literature survey begins with a general review of power system simulation 

with the purpose of identifying and justifying the scope of the simulator under 

development. After reviewing the major categories of simulation currently in use, the 

desired level of approximation and the inputs and outputs are selected. 

The second section of the survey focuses on parallel processing implementations 

of power flow algorithms, which are inherently faster than serial algorithms. The three 

algorithms for solving the power flow problem are Newton-Raphson, Gauss-Seidel and 

Jacobi. The survey reviews the state of research for parallel implementation of each 

algorithm and assesses the potential maximum speedup using current parallel processing 

technology. 

The final section presents a paper that provides an example of the type of 

simulation decided upon in the balance of the survey. While not identical to the proposed 

implementation, the paper does illustrate a method for modifying the power flow to 

include the dynamics required for market and AGC simulation as described in the first 

section. 
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2.1 Power System Simulation 

Power system operators and planners use a wide range of tools to study and 

control electrical power systems. The majority of power system tools fall into one of two 

major categories, those used to analyze a spectrum of possibilities for a given system or 

event, and those used simulate a given sequence of events or the state of a system. Each 

has different implementations and objectives. 

Examples of tools that analyze spectrums of possibilities include the continuation 

power flow for voltage stability and bifurcation analysis for voltage and angular stability. 

To generalize, such tools give the user an indication of where the system is, and how far a 

certain variable can be changed before the system becomes unstable. The purpose of the 

simulator being designed is to perform a time based simulation using markets or AGC as 

the control system. Therefore, the use of such tools to examine the potential stability 

consequences resulting from the operation of the market and/or AGC under test would be 

an interesting exercise, but are irrelevant to the design of a time varying simulator. 

Tools that simulate events or states typically fall into one of four categories, 

steady-state, long term dynamics, transient conditions, and fast transients. Each category 

requires different levels of accuracy to obtain the desired result. This is reflected in the 

complexity and level of abstraction in the mathematical models used. 

2.1.1 Fast Transient Simulation 

Fast transients are the most complex of the four categories and use full models for 

all the components in the system under study. The component models take into account 

all the electrical and physical properties of the device, whose equations reflect all 

electromagnetic transients with time constants in the millisecond range and below. 

Examples of such simulations include lightning strikes, capacitor switching 

overvoltage, and fault and circuit switching transients. In many cases such events are 

damped rather quickly and have little lasting effect on the power system in the long term, 

provided that protection systems have not operated, stability is maintained and no 

damage to the devices has occurred. 
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While highly accurate [6], such simulations require significant computing power 

to perform in a reasonable timeframe [7]. Such systems are generally known to be quite 

expensive. 

For the purposes of simulating a market or AGC, a number of assumptions are 

made to simplify the calculation, one of which is occurrences such as those listed above 

can be ignored. For this reason, the use of the fast transient level of simulation would be 

overkill for the application and would only serve to intensify the computation, increase 

the calculation time, and/or require additional hardware to attain the design metrics. 

While cost is not strictly a design metric, optimizing the cost to benefit ratio is an 

overarching goal in most activities. 

2.1.2 Transient Simulation 

The next level of simulation is that of transients. Examples include generator 

speed control, electromechanical oscillations and primary voltage control. The system 

model used in such studies includes individual models for each component, with larger 

mathematical abstraction and, therefore, less accuracy than used in fast transient studies. 

Electrical phenomena with time constants less than 0.1s, such as travelling waves 

on transmission lines or switching transients, are ignored or considered to be 

instantaneous [8]. By abstracting such phenomenon the models are simplified, resulting 

in sets of differential equations describing the simplified electromechanical 

characteristics of the components. The calculations required to perform such simulations 

are still quite complex, although much simpler than fast transient analysis. Note that 

transient models are also utilized in bifurcation analysis as described earlier [9]. 

While the action of market control or AGC will produce slight generator 

oscillations and other transient phenomenon, an assumption is made that the changes 

occur on a timescale much longer than the damping time of such events and can therefore 

be ignored. In addition, it is assumed that the transient phenomenon are in fact transient 

and do not lead to system instability. The stability of the system after such control actions 

is another matter dealt and with in stability studies. 
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2.1.3 Long Term Dynamic Simulation 

Long term dynamic simulation reflects slowly changing conditions corresponding 

to normal system operation. This includes normal variations in load, ramping due to 

generation dispatch, automatic generation control, and voltage and frequency regulation 

activities. 

The system and component models are significantly less complex than either form 

of transient simulation. The primary assumption is that of ‘tied-rotors’, that is, there is a 

single system frequency and no generator oscillations. While the frequency can change, it 

does so uniformly around the system. 

The models for generation take into account the output set points, limits and 

delays, but much (if not all) of the transient dynamics are removed depending on the 

purpose of the simulation [10]. Load models can vary widely, from simple constant 

power to time, frequency and voltage dependant. Once again, the nature and complexity 

of the model is largely defined by the objectives of the simulation. 

Long term dynamics are adequate for simulating the actions of markets and 

automatic generation control [11]. It is assumed that the system is in a stable operating 

condition and that generation and load will change but not affect system stability. The use 

of power flow based simulators is often used in stability studies as is discussed in [5]. 

Such functionality is a possible avenue for further development, although outside the 

scope of the use of the simulator described in this thesis. 

2.1.4 Steady-state Simulation 

In steady-state, it is assumed that all the variables are constant. Under this 

assumption, one can remove all the dynamic portions of the system and component 

models. This greatly simplifies the calculations required to obtain the solution and 

increases the speed at which the solution can be found. Examples of such tools include 

the power flow and optimal power flow calculations. 

For the purposes of market and AGC simulation, steady-state techniques do not 

provide the dynamics required to observe the desired phenomenon of varying voltages 

and frequency. Fortunately, the network models for steady-state power flow calculations 

are the same as that used in long term dynamic simulations [12]. The dynamics come as a 
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result of changing the models of the generators and loads to provide variable output and 

include frequency and voltage deviations. 

2.1.5 Simulator Scope 

Of the four levels of simulation, only long term dynamics are of interest in market 

and AGC studies. The goal of this thesis is then to take the power flow method that 

normally resides in the steady-state category and modify it to fall into the long term 

dynamics category. The other two categories provide significantly more accuracy than 

required at the cost of calculation time. 

The simulator will utilize the power flow method to calculate the system voltages 

and the active power balance. Using the residual power balance, the frequency can be 

calculated using dynamic generator models operating under the ‘tied-rotor’ assumption. 

2.2 Parallel Power Flow Algorithms 

Power flow has been used extensively in academic and industry settings. It is a 

powerful tool used to calculate the voltages given generation and load inputs. Its typical 

use is to estimate the state of an electrical system given partial state information. Grid 

control centres use it as the first operational program when performing the calculations 

and operations required in finding the dispatch orders required to ensure steady-state 

system stability. As well, the power flow algorithm is an integral part of a number of 

other calculations such as voltage stability analysis and continuation power flows, 

security constrained optimal power flows and system optimization. 

The amount of literature on the power flow is large but falls into a relatively small 

number of varieties. The method in which the calculation is performed can be split into 

six major headings using two criteria, the solution algorithm and the solution 

implementation. The three primary algorithms used to find the solution are the Jacobi, 

Gauss-Seidel and Newton-Raphson algorithms, each of which has various serial and 

parallel implementations. 

As these are mathematical computations, the method of implementation plays a 

large part in determining the computational efficiency, and therefore the computation 



 

 16

time of the algorithm. Due to the important nature of the power flow calculation, a 

significant amount of research has been performed in order to accelerate the computation. 

The first digital power flow calculators were based on computers that had only 

one processor. Thus, serial algorithms and techniques were developed in order to reduce 

the number of computations and memory accesses required to perform the calculations. 

There are a number of methods in which this can be accomplished. 

Since the relevant matrices are quite sparse, there are a number of mathematical 

and computational methods available in order to reduce their storage requirements (i.e. 

not storing large quantities of zeros) as well as removing the large numbers of 

multiplications of values by zero. In the case of the Jacobi and Gauss-Seidel algorithms, 

pre-processing and ordering techniques help to obtain these efficiencies. In the case of the 

Newton-Raphson algorithm, the largest computational portion consists of calculating and 

decomposing the Jacobian using sparse matrix techniques. Due to its sparseness there are 

a number of mathematical and computational techniques that assist in reducing the 

number of computations required. 

There is extensive literature dealing with serial algorithms but parallel processing 

has made such significant advances in accelerating the algorithms to the extent that, for 

the purposes of this discussion serial algorithms will be omitted and the focus will remain 

on implementation of the three algorithms, keeping in mind that many methods for 

improving performance are standard in the field of matrix computation, and many have 

been incorporated into both serial and parallel implementations. 

With the decrease in hardware costs and the development of faster inter-processor 

communication, the next major advance in the calculation of the power flow solution 

came in the form of parallel processing techniques, with the specific techniques for 

parallelization of each algorithm taking different forms due to inherent differences in 

their formulation. All three techniques attempt to solve the same set of equations or some 

mathematical rearrangement thereof, the power flow equations: 
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Where:  N is the number of buses 
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  k refers to an individual bus 

  S, V and Y are complex numbers 

In [13], an in depth explanation is provided of the intricacies of parallel 

processing with application to a number of power system related problems. The focus 

here is on the portion regarding the power flow problem. 

2.2.1 Parallel Newton-Raphson Algorithms 

Newton-Raphson is currently the industry choice for solving the power flow 

problem. The algorithm involves iteratively performing the following process: 
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Where J1, J2, J3 and J4 constitute the Jacobian matrix based on the partial derivatives of 

P and Q with respect to V and δ. The most computationally intensive portion of the 

algorithm is constructing, calculating and decomposing the Jacobian using sparse matrix 

techniques, and limits the ability for the algorithm to be highly parallelizable. 

A number of papers investigate accelerating the NR algorithm by parallelizing 

various portions. It was attempted to omit variations on the NR algorithm such as fast 

decoupled and DC power flow. These techniques are approximations and could 

potentially introduce significant error into the final solutions, causing the simulator to 

operate improperly. As a significant portion of the body of literature focuses on 

approximate algorithms for performing power flow calculations, a number of the papers 

investigated are done so under the assumption that the techniques may possibly be valid 

for application to the full NR algorithm. 
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In [13] the author describes the portions of the algorithm which can be performed 

in parallel, as well as some of the theoretical limitations to this process. A number of 

algorithms exampled in this paper attempt to apply mathematical re-ordering in order to 

find parallelism in an inherently sequential algorithm. While this does improve 

performance, it has inherent limitations as stated. 

There are a number of papers that directly address the problem of NR 

parallelization and describe the difficulties in depth. In addition, the papers provide 

potential solutions. 

In [14], the author utilizes re-ordering as mentioned above. The paper describes in 

depth the application of LU factorization to the matrices in solving non-linear systems of 

equations, as well as methods to find parallelization in the process. The implementation 

allows for a speed-up of 13-20 times the original calculation speed. 

In [15], the author provides a method to parallelize totally the Newton power flow 

process on a distributed memory architecture with message passing between the 

computing nodes. This is a misleading statement, as the NR algorithm has inherent 

coupling between portions of the calculation. The statement should more accurately be 

phrased as the author has found a method to identify all steps of the NR method in a 

parallel manner, although within every step there are limitations to the amount of the 

algorithm that can be performed in parallel. The speedups are up to 6 times the original 

single processor calculation speed. 

A good paper with which to draw a parallel is [16]. It uses the NR algorithm with 

a different technique applied, that of the Generalized Minimal Residual method 

(GMRes). Using this methodology, speed ups of twice the previous paper were attained. 

The final paper in the NR category is [17], which focuses on transient simulation. 

While this is not the calculation being performed in this thesis, it nonetheless performs 

similar calculations and the results may provide insight. The algorithm is still the NR 

using successive over-relaxation. The parallelization method utilizes a ‘travelling 

window’, which means that portions of the next iteration can begin once portions of the 

current iteration are complete. This is not a powerful parallelization technique as the 

theoretical maximum parallelization is not great compared to inherently parallel 



 

 19

algorithms, and the potential number of parallel processors is quite low. As in previous 

papers, speed up was in the range of 12 times the original speed. 

Note that it is difficult to compare the papers above in terms of absolute time, as 

the systems under test were not necessarily the same. This is a significant drawback in 

comparing calculation speeds as few papers in the literature utilize a standard test system. 

2.2.2 Parallel Gauss-Seidel Algorithms 

Moving to the Gauss-Seidel algorithms, we return to [13]. The blanket statement 

by the author is that, to paraphrase, the GS algorithm is not suitable for parallel 

processing however variations exist which are. The GS algorithm requires the following 

calculation to be performed repeatedly until the system converges. 
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It can be seen in the structure of formulation that the calculation of the present 

voltage has dependence on a portion of the voltages, namely those between 1 and k. It is 

this portion of the GS algorithm that limits its ability to be a fully parallel algorithm. 

The first example of an attempt to find parallel components of the GS algorithm is 

contained in [18]. This paper does a thorough review of previous GS algorithms and 

addresses the bottlenecks in computation. The first method for finding parallel portions is 

known as colouring, or ensuring that portions of the calculation sent to each processor do 

not have relationships with portions sent to other processors. This is similar to the re-

arranging method applied to the NR algorithm. Once again, these are procedures for 

finding available parallelism in an inherently sequential algorithm. This leaves us with 

speed ups on larger systems of approximately 9 times. 

The next paper [19] provides another example of an ordering technique. The 

method of rearranging the calculation in order to find parallelism is repeated, this time 

with a two-step system instead of the colouring technique utilized in the previous 

example. This allows the author to attain speed ups of approximately 12 times, similar to 

the balance of the papers described. 
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2.2.3 Parallel Jacobi Algorithms 

The final of the three primary power flow algorithms is the Jacobi, a variation, or 

more properly, a simplification of, the GS algorithm. As is shown, the formulation is 

almost identical, with the dependency between rows removed by the use of voltage 

values from the previous iteration only. 
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This can be re-written as: 
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As the formulation shows, for every bus k of N buses, the calculation does not 

depend on any other bus during the same iteration. The caveat, and the primary reason 

that the Jacobi algorithm has fallen to the wayside in recent years, is that it has more 

difficulty converging than the GS.  

The concept of parallelising the Jacobi algorithm was first attempted long ago. In 

[20], the author utilizes complex mathematical methods in order to find the Eigenvalues 

of a matrix. While not directly applicable to the power flow, the paper shows the power 

of parallelization in the Jacobi algorithm. 

Another example of the utilization of Jacobi to find Eigenvalues is described in 

[21]. The author provides a method for partitioning the problem and in some cases 

utilizes as many as 256 processors, the first example of highly parallel execution. While 

speed up values are not provided the calculation is that of Eigenvalues and, therefore, not 

directly applicable to our application. 

An example of parallel Jacobi to the power flow problem is discussed in [22]. 

While the title indicates that a Gauss-Seidel algorithm is being utilized, further 

investigation shows that the algorithm is in fact the Jacobi algorithm. This paper 

describes a novel method of using dedicated hardware for performing a number of the 

calculations. A Field Programmable Gate Array (FPGA) is implemented to perform the 

complex math required to solve the problem. In addition, the author performs 
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optimisation in order to gain efficiency in the parallelisation of the complex calculations 

themselves, which often have additional parallelism internally. For example, the 

multiplication of two complex numbers consists of four parallel multiplications, followed 

by a parallel addition and subtraction: 

ad) + j(bc + bd) - (ac  =  jd) + (c jb) + (a   (2.9) 

The paper continues to describe the speed up of approximately 5 times, which 

falls below the speed up achieved by the parallel NR and GS algorithms described 

previously. With the additional iterations required for the Jacobi algorithm, it appears that 

the implementation does not provide significant gains. This is addressed by the author, 

stating that the comparison is between a 1.5GHz processor versus a 100MHz FPGA. If a 

1.5GHz FPGA hardware solution could be found, the speedup would be on the order of 

5x(1500/100), or 75 times. This would provide significant speed up over other 

algorithms. 

Given the advances of parallel computing hardware and software, it was decided 

that the potential for the Jacobi algorithm outweigh the potential for the NR or GS 

algorithms, without the advancement of the complex mathematical methods and their 

implementation on both hardware and software. The natural parallelism inherent to the 

Jacobi algorithm allows simple and effective implementation on parallel hardware, and it 

seems that the potential speed up is limited by hardware technology. Since the publishing 

of the previous paper in 1996, a number of new technologies have emerged in the area of 

high performance parallel computing. These technologies will be discussed in Chapter 4 - 

Implementation. 

2.2.4 Example of Dynamic Parallel Power Flow 

Only one paper was found that attempted to provide a simplified dynamic model 

utilizing a similar method as the one developed for this thesis, although the 

implementation focused on using one of the dishonest NR algorithms known as normal 

fast decoupled NR power flow. 

In [23], the author performs a complex variation of the power flow (referred to in 

the paper as a load flow) and breaks the problem down into three portions, the load, the 

transmission losses, and the generation/load imbalance. By using participation factors of 
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the individual generators and assigning portions to each, the imbalance is distributed 

across the generators, and referred to as the net accelerating or decelerating power. 

The author states that using standard power flow techniques, the power imbalance 

would manifest itself at the reference bus, and potentially result in incorrect results for 

system imbalance. This may be true and the practice of distributing the imbalance could 

provide greater accuracy, but the complexity of the solution may also outweigh any 

additional accuracy. In addition, a single slack generator is the standard implementation 

for power flow solutions to find the required slack generator output. If such an 

implementation is utilized in industry with great success, it is interesting that the author 

believes it would not work for the calculation of system imbalance. 

The paper is a good attempt to add dynamics to the power flow, although fails to 

actually utilize the power imbalance to calculate the system dynamics, that is, the 

frequency. 

From the results of the literature survey, it is concluded that this thesis will utilize 

the Jacobi power flow solution algorithm to perform a sequence of snapshots of a 

dynamic power system, using power imbalance as described above to calculate deviations 

in frequency between the snapshots. The process will thereby produce a discrete time 

power system simulator that uses generation and load as inputs to produce bus voltages 

and a system wide frequency as outputs. As mentioned previously transient phenomena 

are the realm of transient and fast transient power system simulation and, therefore, not 

part of the design criterion. 
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Chapter 3. 
Theory 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

As described in Chapter 1 - Introduction, the main objective of this thesis is to 

develop a real-time power system simulator used in the investigation of market designs 

and AGC schemes. 

In order to attain the main objectives, the simulator is required to calculate the 

voltages and frequency of the simulated system at every time step. While the generation 

and load levels are also required, these are considered inputs to the simulator and the 

models of each are not intrinsic to the simulator itself. 

This chapter describes the mathematical theory and thought process used during 

the development of the simulator. It begins with modifications performed to the standard 

Jacobi power flow algorithm and reasons for doing so. The second section describes the 

addition of system dynamics. The third and final section discusses areas for possible 

future improvement to the simulator. 

3.1 Standard Jacobi Power Flow Algorithm 

From the results of the preceding literature survey, it was decided that the Jacobi 

algorithm would be implemented due to the potential of using recent advances in parallel 

processing technology to increase the speed of calculation. 
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The increase in calculation speed is required as typical large scale power flow 

calculations may take as long as a few seconds. If the purpose of the simulator is to 

simulate the market and AGC, then the time step used in the simulation must be 

significantly smaller then the events under observation. From a system perspective, 

changes in load and generation occur on a longer term timeframe such as on the order 

seconds to minutes. With this in mind, it would be reasonable to state that the simulator 

must have time steps on the order of less than one second. 

If the goal of the simulator is to be able to provide real-time performance, the 

desired time step is selected to be less than 1/30, or 0.033, seconds. This decision results 

from the video industry, where such a refresh rate allows the human brain to visualize a 

sequence of stationary frames as motion without any visual motion artifacts. While not 

important for a numerical solution, this becomes important in the case of real-time 

visualization. Note that this is a goal for perfect visualization and not reaching the full 

refresh rate does not indicate failure of the system. Refresh rates much slower than 0.033 

seconds are typical in real-time power system simulations. 

In order to ensure that the simulator can attain the 0.033 seconds refresh rate all 

actual simulations referred to in Chapter 5 - Results are done using a time step of 0.01 

seconds, increasing the calculation rate by three times. 

The normal use of a power flow solution is to find the state of an electrical system 

given the inputs of generation and load. Typically, the algorithm also finds the real power 

generation required at the slack bus such that the system is balanced in steady-state, as 

well as the reactive power generation required in order to hold the voltage at certain 

buses within limits. In short, a power system under normal steady-state operation 

typically meets the following criteria: 

1) The generation must equal the load plus all losses. 

2) Bus voltage magnitudes should remain close to rated values. 

3) Generators operate within specified real and reactive power limits. 

4) Transmission lines and transformers are not overloaded. 
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Standard power flow algorithms calculate the complex nodal voltages for each 

bus in a power system under study. Once complete, the real and reactive power flows can 

be calculated. 

In large power systems, input data is normally given in terms of real and reactive 

powers instead of impedances and/or currents. For that reason, the system of equations 

becomes non-linear and requires a numerical solution method in order to obtain the 

solution. 

The system of equations required to be solved for the power flow are as follows. 

First, the real and reactive powers at any given bus k are defined as the difference 

between the generation and load at the bus: 

LkGkk PPP −=   (3.1) 

LkGkk QQQ −=  (3.2) 

In a typical power flow simulator, the buses are divided into one of three types, 

swing, load and voltage, also referred to as the reference, PQ and PV buses. 

There is only one swing bus and is used as the voltage reference bus. At this bus, 

the voltage magnitude and angle are fixed and do not change during the solution process. 

This is required in order to obtain meaningful results. Without the inclusion of a 

reference voltage angle the entire system of equations would be under-constrained and 

contain an extra degree of freedom. Holding one of the buses at a constant voltage angle 

provides the system with a voltage phasor reference. 

Another name for the reference bus is the swing bus. In standard power flow 

calculations, the swing bus contains the swing generator. In power flow studies, the loads 

and desired generator set points are typically known in advance and used within the 

power flow. What is unknown is the losses and imbalance in the system. For this reason, 

the real power output of the generator at the reference bus is allowed to change (i.e. 

swing) and absorb the losses and imbalance to produce a balanced steady-state solution 

for the system. At this bus, the algorithm will calculate Pk and Qk, or the real and reactive 

powers. 

At load buses, Pk and Qk are given as inputs and the algorithm calculates the 

complex voltage, that is, the voltage magnitude (V) and angle (δ). 
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Buses with generators or other sources of controllable reactive power (Q) are 

considered to be PV buses. At these buses, the bus voltage magnitude is held constant 

and the algorithm solves for Qk and the voltage angle. 

The three types of buses and their parameters are listed in Table 3.1. 

Table 3.1 - Standard Power Flow Bus Types 

Bus Type Given Solved 

Swing (Reference) V δ P Q 

Load (PQ) P Q V δ 

Voltage (PV) P V Q δ 

 

In order to be able to calculate the power flow solution, the physical 

characteristics of the system are required. This is given in the Ybus matrix, which 

contains the admittances of every static device on the grid. This includes transmission 

lines as well as any series or shunt admittances. The Ybus matrix is typically symmetric, 

although may be unsymmetrical if certain devices are present within the system, an 

example being phase-shifting transformers. 

The admittance model used for transmission lines is the π model. Using this 

model, short, medium and long steady-state models can be incorporated into the 

simulator, as well as passive shunt and series devices. As noted in the literature survey, 

steady-state and long term dynamic network models are identical. Devices such as 

synchronous condensers would be modeled as generators and are therefore outside the 

scope of this discussion. 

With the Ybus matrix defied, the nodal equations for the network are determined: 

VYI Bus=    (3.3) 
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Which results in the power flow equations for a general system: 
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In many power system simulators the Gauss-Seidel or Newton-Raphson 

algorithms would be applied, but in this implementation the Jacobi iterative substitution 

algorithm is applied to obtain the following: 
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Where:  N is the number of buses 

  k refers to an individual bus 

  S, V and Y are complex numbers 

When computing the power flow calculations, there is one instance of the above formula 

for every bus in the power system. For example, a 2000 bus system would have 2000 

equations, labelled ( )11 +iV  to ( )12000 +iV . Each of the equations is independent of each 

other during a single iteration and can be calculated simultaneously. As will be shown in 

Chapter 4 - Implementation, the efficiency of the Jacobi algorithm on parallel processing 

hardware is the ability to compute every equation simultaneously. In theory, the example 

2000 bus system could use 2000 processors to complete the entire calculation in the same 

time as a single calculation. 

The voltages are iteratively calculated until the stopping criterion is met. Often, 

the stopping criterion is the mismatch, calculated using the following formula. 
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Simply put, the mismatch for a bus is the difference between the known and 

calculated complex powers at the bus. If there is a significant difference between the two, 

then the system has yet to converge. Normally, the stopping criterion is that the 

magnitude of the mismatch on every bus must be below a desired threshold. 

The standard power flow solution includes a number of additional steps in order 

to deal with occurrences such as real and reactive power limits on generators, but for the 
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purposes of this thesis the discussion of standard power flow calculation algorithms is 

concluded, and the development of the power flow system under discussion begins. 

3.2 Raw Jacobi Power Flow 

The goal of the thesis is to develop a simulator and not a power flow calculator, 

and therefore requires a number of modifications to the PF that must be made in order to 

suit the application. 

The first is the embedded ‘control systems’ within the algorithm. The standard 

algorithm actively changes the output of the real and reactive power set points of certain 

generators at the reference and PV buses. 

At the reference bus the power flow algorithm maintains the voltage of the bus to 

the desired value. In order to allow the required degrees of freedom in the equations, it 

allows P and Q to change. As the goal is to modify the power flow algorithm for the 

purposes of simulation, having the swing generator modify its output based on the results 

of a calculation is not realistic. For this reason the constant voltage magnitude and angle 

criteria is maintained, although the portion which calculates the real and reactive powers 

is removed. In essence the swing bus is being modified into a load bus, but maintaining 

the voltage reference portion. 

At first glance, it may seem that removing the variable generation at the slack bus 

would result in removing a degree of freedom from the system of equations, thereby 

over-constraining them. In fact, the swing bus power values come from reducing another 

portion of the calculation, the mismatch at the reference bus, to zero. By constraining the 

power and removing the mismatch constraint on the reference bus, the over-constraint on 

the system of equations is relieved. At the completion of the calculation, the mismatch at 

the reference bus will not be zero, and reflects the generation/load imbalance in the 

power system. This value is later used in the dynamic portion of the simulation to 

calculate the frequency deviation. 

This discussion holds for the balance of the voltage constrained buses (PV) where 

standard power flow algorithms modify the reactive power output of a generator or 

synchronous condenser to obtain the desired bus voltage. As a simulation, not a power 

flow calculation, is being performed it is desired that the bus voltage reflect the actual 
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reactive output of the generator. Therefore, all buses on the power system are considered 

to be load (PQ) buses and therefore have set real and reactive power levels. As such, the 

duty of regulating the generator reactive power output falls onto the voltage controller, 

part of the generator or grid control system and therefore outside the scope of the 

simulator. The modified list of bus types is given in Table 3.2. 

Table 3.2 - Raw Jacobi Power Flow Bus Types 

Bus Type Given Solved 

Reference V δ Mismatch 

Load (PQ) P Q V δ 

 

With the power flow portion of the simulator complete, the development of the 

dynamic portion of the simulator can begin. 

3.3 System Dynamics 

As stated in the previous section, the power flow was modified to remove the 

slack bus concept, resulting in a residual mismatch at the reference bus. Numerically, this 

residual is equivalent to the amount that the slack generator would have modified its 

output to allow the system to converge. 

In this section, a method is described to provide the simulator with dynamic 

response through the addition of frequency. As described in the introduction and 

literature survey, generator oscillations and fast dynamics will be omitted. 

The fundamental equation describing a rotating machine is the swing equation. 
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Where:  H is the normalized generator rotational inertia constant 

  ωsyn is the synchronous frequency of the system 

  ωp.u.(t) is the per unit system frequency at time t 

  pp.u. are the per unit mechanical, electrical and accelerating powers 
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This equation is typically used in studying the motion of synchronous machine 

rotors in transient generator stability studies. Similar equations could be used to study 

inter-generator dynamics and oscillations. For the purpose of long term dynamic 

simulation the equation is modified slightly. 

The H in the swing equation relates to the rotational inertia of the generator in 

question. As stated in the literature survey, long term dynamic studies operate under the 

‘tied-rotor’ assumption, neglecting inter-generator oscillations and the entire system 

contains only a single frequency. Therefore, H is used to reflect the rotational inertia 

constant of the entire system. The method for obtaining this value is to simply sum the H 

constants of each of the generators together [24]. 

The accelerating power refers to the system wide imbalance between generation 

and load, inclusive of any losses. From the results of the modified power flow, the 

reference bus real power mismatch provides this value. This is an approximation as the 

imbalance in a physical power system does not manifest itself at a single bus, but is rather 

spread out among the generators in the system. For the purposes of coarse system control 

such as markets and AGC, such an approximation makes little difference in the results 

and, as described in the literature survey, is often used in power flow calculations. 

Admittedly, dividing the imbalance among the generators and removing the tied-rotor 

assumption is an area for further development. This would allow for a greater accuracy in 

calculating the imbalance as viewed from a system perspective as opposed to the 

perspective of the reference bus, as well as allow for the simulator to simulate inter-

generator oscillations and local variations in frequency. 

For discrete time simulations, the use of full differential equations is not required. 

The equation is modified removing the derivatives and replacing them with division. 

( )1..
)()(2

Busup
syn

Sre
t
ttH

∆=
∆

∆ωω
ω

 (3.10)   and rearranging for ∆ω(t), 

( ){ }
)(2

)(
..

1

tH
tSre

t
up

Bussyn

ω
ω

ω
∆∆

=∆   (3.11) 



 

 31

By applying the equation at the end of every raw power flow calculation, the 

simulator will be able to modify the frequency of the system and reflect the required 

dynamics. 

In order for the generators to change their real power output to halt frequency 

deviations due to real power imbalance, each is modeled with basic droop control. Droop 

control uses frequency as the input to increase or decrease generator output accordingly. 

With frequency above nominal, the droop controller will reduce the generators output 

linearly with the magnitude of the frequency deviation as shown in Figure 3.1. 

The slope of the line in Figure 1 dictates the magnitude to which the generators 

output will be changed with respect to frequency and is denoted the droop regulation 

constant, R. The values of R used in the generators models for the simulations can be 

found in Appendices A, B and C for the 5, 14 and 30 bus models, respectively. 

 

Droop Control

-10%

-5%

0%

5%

10%

59.9 59.95 60 60.05 60.1

Frequency (Hz)

Po
w

er
 (%

 M
W

 C
ha

ng
e)

 
Figure 3.1 - Generator Droop Control Characteristics 

 



 

 32

Chapter 4. 
Implementation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The previous chapter introduced the Jacobi algorithm and the modifications 

implemented to the algorithm with the intent of meeting the design requirements. The 

formulation of the algorithm lends itself naturally to parallel processing as each of the 

equations are independent of each other during each iteration. 

While it is true that other algorithms have faster rates of convergence, only the 

Jacobi has such potential utilizing recent advances in parallel processing technology. If 

the parallelisation can be performed to a great extent, the increased number of iterations 

may be outweighed by decreased time per iteration. 

This chapter introduces and discusses the hardware and software implementations 

of the parallel Jacobi simulator. The first section includes a discussion of the hardware 

originally chosen for the implementation, as well as a reasonable substitute eventually 

chosen as the desired hardware was unavailable. The second section explains the method 

of software implementation by introducing the three stage approach used to ensure 

accuracy. 
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4.1 Hardware Implementation 

In the industry of high performance computing, parallel processing has 

ubiquitously taken over as the dominant method for solving large complex problems [25]. 

While the specific implementations differ based on the nature of the problem, the basic 

unit of computation used in such massively parallel machines is the multi-core 

microprocessor. 

Moore’s Law (or more accurately, the popular culture version of it) has continued 

to be proven correct as the ‘floating point operations per second’ (flops) of 

microprocessors increases. This has, however, not been due to increasing clock 

frequencies as it was in the past. It has been primarily due to the emergence of another 

type of processor, the Graphics Processing Unit (GPU) [26]. 

4.1.1 Graphics Processing Units 

The general trend for GPU design has been increasing the simultaneous number 

of calculations the processor can perform. This functionality stems directly from the 

mathematical requirements of graphics processing, which are embarrassingly parallel 

problems [27]. A significant portion of the calculations required to display an image 

consist of large vector and matrix manipulations, often requiring the same calculation 

performed on a large number of values. These calculations can be performed in a serial 

fashion, but due to their independence from each other, can be performed in parallel. 

Current versions of graphics processors have up to 240 processing cores, allowing 

for 240 simultaneous independent calculations. In addition, vendors are developing 

platforms which contain multiple chips. For example, the NVIDIA Tesla Series will 

release the S1070 in Fall of 2008. The unit occupies 1U in a standard computer rack 

mount enclosure and contains four GPU’s with a total of 960 cores, capable of up to 4 

teraflops. Multiple units can be stacked together and chained to provide large numbers of 

simultaneous calculations [28]. 

From a computing perspective, the ability to perform a large number of 

simultaneous calculations requires that the processing core be able to obtain the data it 

requires with low latency, otherwise clock cycles are wasted as the processor sits idle 

waiting for data. For this reason GPUs have a different architecture than typical general 
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purpose processors. The main design changes consist of locating greater amounts of high 

speed memory closer to the cores, reducing the memory latency, and increasing the size 

of the pipelines between the off-chip memory, on-chip memory and processing cores 

[29]. 

4.1.2 Equivalent Processing Architectures 

Unfortunately, at the time of implementation for the simulator for this thesis, no 

GPU based machines were available. Therefore, other architectures were investigated in 

order to find a substitute that possesses similar computing characteristics. The goal was to 

implement the simulator on an architecture that reflects many of the same characteristics 

with the intent that the hypothesis of decreased calculation time could be achieved. In 

order to find a viable substitute, the characteristics of the GPU based architecture were 

reviewed and the most important aspects selected. 

In parallel computing, the primary objective is to speed up the computation time 

of a process by finding available parallelism, and using multiple processing cores to 

perform parts of the calculation simultaneously. The theoretical maximum speed up is 

linear with the number of processors, that is, in a infinitely parallelisable program, 

doubling the number of processors would half the computation time. While theoretically 

accurate, there are a number of real world reasons this does not occur. 

The primary reason for this is communication time between processors. When 

comparing the time of moving data from high speed memory located on the processor 

itself with the time of moving information from local memory or across even the highest 

speed networks, the difference between the three can be orders of magnitude. For this 

reason, a large part of the optimization involved in parallel programming is finding the 

optimal balance between available parallelism and communication delays. 

The GPU implementation desired consists of a large number of processors on the 

same chip, with local memory available for moving information between the processing 

cores. Similar systems were developed before the emergence of the GPU and are known 

as Shared Memory Processors (SMP). While not on the same chip, SMP systems use a 

number of processors located in the same machine and share relatively high speed local 
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memory. In this hardware implementation the largest part of the communication delay, 

the use of an external network, is removed. 

The Shared Hierarchical Academic Research Computing Network (SharcNet) is a 

consortium of academic institutions that share high performance computing platforms. 

On this network is a shared memory system with 128 cores and 256GB of memory. 

Given the same number of processors as currently available GPUs, with little 

communication overhead compared to cluster systems using network connections, it was 

deemed that this machine was the closest in functionality that was available for the 

purpose of system implementation, it was therefore originally chosen as the 

implementation platform for the simulator. 

A portion of the way through the software development for the parallel 

implementation, another available machine was found with greater similarities to the 

GPU implementation desired. 

It consisted of a dual processor quad core Intel Xeon machine. In total, the 

simulation would have access to eight processing cores. With four cores having high 

speed access to shared, on-chip memory, the implementation should perform better than 

on the SharcNet SMP machine. At this point, software implementation was directed to 

continue on the Xeon machine. Fortunately, little code modification was required as the 

utilized parallel programming language, OpenMP, is a widely recognized standard for 

parallel programming. 

It is important to note that even the SMP and Xeon implementation still fall 

victim to significant processor-memory latency issues. The difference between using on-

chip and off-chip memory can be two orders of magnitude in typical processors [30]. 

Therefore there is a possibility that the results of the Xeon simulations would still be 

significantly slower than those of a GPU based implementation. 

4.2 General Software Implementation 

Once the hardware platform was decided, the process of implementing the 

software to simulate the algorithm needed to be performed. Due to a lack of familiarity 

with parallel programming and the possibility of computational error, it was decided that 
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a three staged process for development with multiple system models would be used to 

ensure accuracy and validate the results. 

The first stage was the use of third party software to produce verifiable power 

flow results. The second was a serial processing version of the simulator, and the third a 

parallel processing implementation. The three electrical system models used were a 5 

[31], 14 [31] and 30 [32] bus system. Diagrams of the systems can be found in 

Appendices A, B and C respectively. In addition, once the parallel system was verified, 

two larger systems were used to observe the operation of the parallel simulator under 

large system scenarios. The results of the three implementations and discussion are found 

in Chapter 5 - Results and Discussion. 

4.2.1 Third Party Power Flow Verification 

The third party software chosen was PowerWorld Corporation’s PowerWorld 

Simulator Version 8.0, Glover and Sarma Edition, a highly functional academic and 

industrial grade power flow calculator. The three test systems were implemented and 

simulated. The results were not dynamic simulations, but instead, sets of individual 

power flow solutions, i.e. snapshots of the systems at certain points in time. Under 

steady-state conditions, the power flow solutions should coincide with the results 

produced by both the serial and parallel implementations of the simulator. 

4.2.2 Serial Equivalent Implementation 

The second implementation of the simulator was developed in Microsoft Visual 

Basic 2005 on a standard PC using a single processor. Using the same algorithm and 

processing each of the Jacobi equations in a serial fashion instead of in parallel should 

theoretically produce identical solutions. 

Since the only difference between the two implementations is the sequence of 

calculations, it was expected that the results will not only be numerically equal, but the 

number of iterations should be identical as well. Having the two implementations agree 

should provide a high degree of confidence that the parallel simulation is performing as 

expected. 
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4.2.3 Parallel Implementation 

The final implementation was performed in C++ with OpenMP multiprocessor 

extensions in order to take advantage of the multiple cores on the Xeon machine. The 

parallel implementation is considered the final version used to run simulations. In 

addition, timing analyses were performed to validate the potential for speedup using the 

parallel Jacobi and dynamic simulation concepts. 

As mentioned in the first section, the hardware on which the simulator was 

implemented was not the desired hardware but had similar characteristics. As parallel 

hardware has a number of different forms, often the method of software implementation 

changes with the hardware. Fortunately, the method of parallel software implementation 

for both the GPU and Xeon machines are quite similar. The largest difference between 

the two is the level of parallelism involved. The GPU implementation has a much higher 

level and the internal hardware architecture is optimized for such calculations. 

In the programming language being used (C++ with OpenMP), the user implicitly 

states the processes that can be performed in parallel, specifies the number of processors 

to be used, and the program complies. Since each processor only has 4 processing cores, 

the amount of work dedicated to a single core will be approximately 25% of the entire 

processor workload. 

With an NVIDIA GPU implementation using C++ with CUDA parallel 

programming extensions, a similar process is performed, although the processor itself has 

in excess of 128 processing cores per processor, instead of the 4 available on the Xeon. 

As was shown in Chapter 3 - Theory, since the Jacobi is an embarrassingly parallel 

algorithm its efficiency stems from the ability to perform each equation in parallel. For 

larger systems of thousands of buses, the GPU implementation could perform 128 of the 

calculations simultaneously instead of the 4 on the Xeon. 

With the ability to process over 128 calculations simultaneously using on-chip 

memory, it is expected that the GPU implementation will show significantly less delays 

due to off-chip memory access latency. For this reason, it is once again stated that there is 

a possibility that the results of the Xeon simulations would still be significantly slower 

than those of a GPU based implementation. 



 

 38

Chapter 5. 
Results and Discussion 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The chapter begins with the process used to validate the simulator to ensure 

accuracy. The development and validation process used a three stage approach, with third 

party power flow software being used to validate the serial implementation and the serial 

implementation being used to validate the parallel implementation. An analysis is 

provided on the accuracy of the implemented simulators. 

The second section provides and discusses a number of simulations performed 

using the parallel implementation. Two large scale systems are simulated to gauge the 

performance of the simulator on larger systems. Results are presented and a discussion is 

provided to interpret the results. 

The third section discusses the outcome of the simulations and attempts to analyze 

any discrepancies or divergences from the original hypotheses. As well, the section 

compares the resultant simulator to the original design scope in an effort to gauge the 

successfulness of the implementation. Finally, the discussion turns to areas for 

improvement that could be pursued in order to attain the desired performance. 
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5.1 Simulator Validation 

To ensure accuracy of the final simulator, a three stage approach was taken in 

implementation. The first stage consisted of a steady-state simulation in a verifiable 

industry-used software package. The second was simulation in the serial implementation, 

third followed by simulation in the parallel implementation. The three models used for 

the validation procedure were 5, 14 and 30 bus systems. The details of each system can 

be found in Appendices A, B and C respectively. 

5.1.1 Establishing the Baseline Values 

The first step of validation was to input the systems into the PowerWorld 

simulator to establish the baseline conditions. For each of the three systems, the 

PowerWorld simulator was used to find the steady-state equilibrium conditions. Since 

PowerWorld uses the standard power flow algorithm, the input values were the 

generation levels and reference bus voltage. PowerWorld then found the unknown 

voltages and slack bus powers required to meet system equilibrium. As the amount of 

information regarding the details of the systems is lengthy, it has been omitted here with 

full details found in Appendix D. 

The resulting equilibrium PowerWorld generation values were used as inputs to 

the serial implementation of the simulator. Although PowerWorld and the simulator 

perform different calculations to find different variables, the systems are identical and 

should therefore produce the same results. 

The serial simulator was provided with the reference bus voltage and all the 

generation and load values. The resulting solution was extremely close to that of 

PowerWorld, with the largest error in the initial condition simulations being 0.01% of the 

PowerWorld results. 

5.1.2 Validating Steady-state Values 

With the initial condition comparison complete, the serial simulator was subjected 

to a disturbance to vary the generation and voltage levels from the initial conditions. 

Once the simulator completed its reaction to the disturbances and came to the new 
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steady-state equilibrium, it was subjected to a second disturbance and once again came to 

equilibrium. 

The disturbances were an increase of real power generation at bus 1 of 1.0pu at 

time t=5 seconds, followed by a reduction of generation at bus 1 of 0.5pu at time t=20 

seconds. The result of the serial 5 bus simulation is shown in Figure 5.1. 

The voltages and generation levels at each steady-state equilibrium point were 

used as inputs to PowerWorld to compare the accuracy of the solutions after a 

disturbance. Once again it was found that the simulator voltages were within 0.01% of 

the PowerWorld equivalent values. 

For the real power comparison, the results were the same as voltage, in that both 

systems came to the same results with less than 0.01% deviation. The major deviation 

was found to be in the reactive power comparison. 

As the simulator no longer has a slack generator to relieve any mismatch in real or 

reactive power mismatch, the reference bus is left with residual mismatch at the end of 

the raw power flow algorithm. The real portion is used to calculate the system frequency 

change, which moves the generation control system (market or AGC, in this case droop 

control) to modify real power output to compensate. Note that there are no limits on the 

reactive power output at the reference bus. 

 
Figure 5.1 - System Disturbances and Steady-state Points Used for Comparison 
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5.1.3 Validating System Dynamics 

Satisfied that the steady-state values of the simulation to this point were accurate, 

the procedure moved to validate the dynamic portion of the simulation. Long term 

dynamic simulations work under the base assumption that all the generators move in 

synchronism with a single system frequency, referred to as the ‘tied-rotor’ assumption. 

Under this assumption, calculation of system frequency is performed using the 

swing equation which describes the acceleration and deceleration of generators under 

mechanical input and electrical output imbalances. It is based on Newton’s Second Law 

with modifications for the purposes of using power system inputs such as system 

frequency, normalized generator inertia constants, and per unit powers. 

Three scenarios were simulated on each system to validate the simulator 

dynamics using the modified swing equation. A sample scenario is shown in Figure 5.2. 

In all scenarios the systems were allowed to come to equilibrium after an imbalance in 

initial conditions of the generators. The initial conditions are described in the generator 

files (Gx.txt) of Appendices A, B and C. The following sequence of steps was followed: 

 

Scenario 1 - Impulse Test 

• At time t=5 seconds, bus 1 real power generation increases by 1.0pu. 

• The system is allowed to settle for 15 seconds until time t=20 seconds. 

• At time t=20 seconds, bus 2 real power generation decreases by 0.5pu. 

• The system is allowed to settle for 20 seconds until time t=40 seconds. 

• Simulation completes at time t=40 seconds. 

 

Scenario 2 - Slow Ramp Test 

• At time t=5 seconds, bus 1 real power generation increases by 0.0001pu per time 

step of 0.01s, i.e. bus 1 real power generation increases at a rate of 0.01pu/second. 

• The ramp continues until time t=25 seconds, at which the generation increase 

ceases and the system is allowed to settle until time t=40 seconds. 

• Simulation completes at time t=40 seconds. 
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Scenario 3 - Ramp Test 

• At time t=5 seconds, bus 1 real power generation increases by 0.0005pu per time 

step of 0.01s, i.e. bus 1 real power generation increases at a rate of 0.05pu/second. 

• The ramp continues until time t=10 seconds, at which the generation increase 

ceases and the system is allowed to settle until time t=10 seconds. 

• At time t=10 seconds, bus 1 real power generation decreases by 0.001pu per time 

step of 0.01s, i.e. bus 1 real power generation increases at a rate of 0.1pu/second. 

• The ramp continues until time t=30 seconds, at which the generation decrease 

ceases and the system is allowed to settle until time t=40 seconds. 

• Simulation completes at time t=40 seconds. 

 

Each of the three scenarios was chosen to investigate a different aspect of the 

simulator’s ability. The impulse scenario was used to observe system response to step 

changes in generation. The slow ramp scenario was used to observe the system response 

to a long term ramp with the intent to have the droop control eventually equal the 

generator ramping. The ramp scenario was used to observe the system response to faster 

ramps of generation in different directions. 

 
Figure 5.2 - Ramping Dynamic Sampling Points 
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At the points indicated on Figure 5.2 (in addition to points on the other scenarios), 

the real power mismatch values were taken from the simulation results and the frequency 

deviations were calculated manually to ensure that the simulation results were correct. It 

was found that the frequency deviations for the times given were indeed identical and 

therefore proved the integrity of the calculation. The full results of the calculations can be 

found in Appendix E. 

Having completed validation of both the steady-state and dynamic portions of the 

serial simulator, the implementation is considered to operate properly and can be used to 

validate the operation of the parallel implementation. 

5.1.4 Validating the Parallel Implementation 

Once the serial simulator was validated, it was used as the benchmark for the 

parallel implementation. Using the three system models of 5, 14 and 30 buses and the 

three scenarios for each, the output of the parallel implementation was compared to the 

serial version in order to compare accuracy. 
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Figure 5.3 - Serial / Parallel Frequency Comparison 
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Figure 5.4 - Serial / Parallel Iteration Comparison 

 

The three scenarios were simulated using the Xeon parallel processing 

implementation. Figure 5.3 and Figure 5.4 show sample results obtained for the 30 bus 

impulse scenario. 

Note that on Figure 5.4 the scale has been altered in order to increase the 

resolution. The Jacobi algorithm requires a large number of iterations in the first time 

step in order to converge from a flat start (voltage of magnitude 1 and angle 0) to the first 

solution. In the small systems described, this was on the order of one to five hundred 

iterations. This is an initial condition issue and once the system is solved initially, the 

values from the previous time step are used as the starting point for the next time step. 

With little dynamics occurring in the system, it often converges in a single iteration. With 

large changes in the system, such as in the impulse scenario, the number of iterations is 

seen to increase from 20 to 50 iterations. 

Visually, all of the simulations appear to be almost identical. From a numerical 

perspective, virtually all of the parallel calculations are within 0.1% of their serial 

equivalents. The balance of the values have rather large percentage differences, although 

they occur during or just after the generation changes applied during the scenarios. 
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Further observation indicates that these significant deviations may be a result of a 

time step offset. As an example, in the serial implementation the step increase in 

generation may occur at time t=5 seconds, that is, at the beginning of the t=5 second time 

step. In the parallel implementation the step increase may occur at the end of the t=5 

second time step, that is, at the beginning of the t=5.01 time step. 
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Figure 5.5 - Serial Parallel Mismatch Relationship 

 

From a percentage perspective, the deviations may be numerically significant but 

there is a much more important relationship between the values, correlation. By plotting 

the same data points from both simulations against each other on the same graph should 

show a linear relationship between the two. Any outliers should be readily visible. An 

example of one such graph is given in Figure 5.5. 

It can be seen that the significant majority of the data sets have a strict 

relationship. The three points that lie on the y-axis are examples of the time step offset 

described. They occur at the time at which the impulses are applied. 

As the simulator is used for long term dynamic studies in real-time, such minute 

discrepancies are of little significant interest and do not materially affect the results. 

Constant offsets of 0.01 seconds are trivial in real-time simulation scenarios that may last 
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tens of minutes and where the stimuli and their associated responses are measured in 

second to minutes. A number of additional serial / parallel result relationships were 

studied and came to similar results. 

In terms of meeting the functional objectives of power system simulation, the 

simulator is considered validated. That is, the results of all the simulations have come to 

nearly identical results and exhibit nearly identical behaviour during the simulation of 

long term dynamics in a power system. 

5.2 Parallel Simulator Timing Analysis 

With a validated long term dynamic power system simulator, a performance 

analysis can be performed. The primary goal of the thesis is to be able to implement a 

real-time power system simulator, with time steps of less than 0.033 seconds. This should 

be true for a number of system sizes, such that the simulator is scalable for use in real 

world power system studies. For the actual simulations, time steps of 0.01 seconds were 

used in order to ensure that the simulator could achieve or surpass the required goal. 

This section performs a number of simulations using the parallel Xeon 

implementation. Different systems are simulated using anywhere from 1 to 8 processing 

cores. Comparisons are made with respect to system size and number of cores used. 

The 5, 14 and 30 bus test systems were considered too small to be of any 

computational significance to the parallel processing implementation. Additional systems 

were developed that contained 100, 500, 1000 and 2000 buses. As the version of 

PowerWorld being used to generate the Ybus matrices was limited to 30 buses, a random 

power system generator was developed to create larger systems. A description of the 

program is included in the following section, with the timing analysis following. 

5.2.1 Synthesis of Large Systems 

The models used for the 5, 14 and 30 bus systems were originally obtained as 

IEEE Common Format files and imported into the PowerWorld software package. The 

version of PowerWorld is a limited version meant for academic purposes. While the 

software remains full functional, it is limited to the simulation of systems of 40 buses or 

less. The full version is capable of over 60,000. 
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Since PowerWorld was used to provide the Ybus matrix, system sizes greater than 

40 buses were not able to be imported to PowerWorld or their associated Ybus matrices 

exported for use within the simulator. In order to test the performance characteristics of 

the parallel simulator with greater system sizes, a program was developed in order to 

produce random electrical systems. 

 

In order to produce a random system, the following information is required: 

1) The number of buses in the system. 

2) The network layout in the form of the Ybus matrix. 

3) The location and power output of generators. 

4) The normalized rotational inertia constant (H) of each generator. 

5) The droop characteristics (R) of each generator. 

6) The location and demand of all the loads. 

 

In the random system generator developed the only user defined value is the 

number of buses, the balance of the information is calculated using randomly chosen 

values with limits. For the systems used in the testing of the simulator, the following 

system design parameters were implemented. 

For the layout of the network, it was decided that approximately 2% of the buses 

would be connected to another bus through a transmission line. For every possible 

connection a random number between 1 and 0 was chosen. If the number was 0.02 or 

less, a randomly chosen admittance was added to the Ybus matrix. The value of the 

admittance was a randomly chosen value within typical limits of actual transmission lines 

as shown in Table 5.1. This procedure was repeated until the upper triangular portion of 

the Ybus matrix was filled in. 

Once the random procedure was complete, the program went through the system 

to ensure that no electrical islands were produced during the random process. If an island 

was found, a random bus in the island was connected through a transmission line to a 

random bus in the island that contained the reference bus. This ensured that all the buses 

were part of a single electrical network. 
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Once the upper triangular portion of the Ybus matrix was complete, the diagonal 

values were calculated using the upper triangular portion and then the upper triangular 

portion was symmetrically copied to the lower triangular portion. 

Generators were randomly scattered throughout the system with a generator to 

bus ratio of 1 to 5, i.e. one generator for every 5 buses. The power output and H constants 

of the generators were chosen randomly within limits, as shown in Table 5.2. The droop 

control constant, R, was chosen such that all generators could participate equally in 

responding to frequency deviations. 

Loads were assigned to every bus, with randomly assigned values between the 

limits as shown in Table 5.2. 

Table 5.1 - Transmission Line Characteristics 

 Ymax(re) Ymin(re) Ymax(im) Ymin(im) 

Transmission Line -25 -1 25 1 

 

Table 5.2 - Transmission Line Characteristics 

Component Pmax Pmin Qmax Qmin Hmax Hmin 

Generator 50 10 50 0 3 1 

Load 100 1 50 1 - - 

5.2.2 Large System Timing Analysis 

Each of the four large systems was simulated on the parallel Xeon implementation 

using 1 to 8 processing cores. Each simulation consisted of 40 seconds of simulation, 

with time steps of 0.01s. Therefore, the results are the time required to perform 4000 

sequential power flows for the system size given, as well as the frequency calculation in 

between each power flow. 

The result of each set of simulations is presented in Figures 5.6 to 5.9. Each figure 

contains two sets of data, User and Real. The Real line refers to the actual time taken for 

the simulation to complete, taken from a human’s perspective sitting at the simulator. The 

User line refers to the total time taken by all processors to complete the simulation, that 

is, the sum of each processors computation time. The performance of the simulator is 

solely gauged on the Real time results. 
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Figure 5.6 - 100 Bus Parallel Timing Comparison 

 

 
Figure 5.7 - 500 Bus Parallel Timing Comparison 
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From observation, it can be see that for the 100 and 500 bus systems the best 

performance is obtained from the use of a single processing core. This is entirely 

attributed to the large communication delays between the processing cores. This is 

largely seen in the change from a single to dual processing cores. Once the largely 

constant communication delay is introduced, the use of more cores once again decreases 

the simulation time as more operations are being done simultaneously. The fact remains 

that the simulator cannot achieve the peak performance obtained from a single core. 

 

 
Figure 5.8 - 1000 Bus Parallel Timing Comparison 

 

When moving to larger systems, there are significantly more calculations to be 

performed within a single iteration of the Jacobi power flow algorithm. For this reason, 

the use of multiple cores can outweigh the communication delays between cores. This is 

evident in the simulation results of the 1000 and 2000 bus systems of Figures 5.8 and 5.9. 

As cores are added the processing time decreases in larger systems, but there is a 

point at which adding cores produces diminishing returns. This eventually results in no 

additional timing gains with more cores. 
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From the results of the timing analysis, it appears that larger systems can take 

advantage of more cores. This is exhibited in Figure 5.10 that shows the simulation time 

per bus. For the larger 2000 bus system, the simulation time per bus continues to decrease 

as the number of cores is increased. Figure 5.11 shows the relationship between the 

number of buses and the effect of adding cores. Using a single core the computation 

times increase in what seems to be an exponential manner. As cores are increased, the 

effect is to flatten out the graph, although more simulations of larger systems would be 

required in order to fully describe the true effect on the results. 

 

 
Figure 5.9 - 2000 Bus Parallel Timing Comparison 

 
Regarding the original design metric of achieving real-time performance, it 

appears that the implementation does not quite meet the objective. In each of the large 

system simulations, the simulation time was 40 seconds with the impulse scenario under 

test. In the case of the 100, 500 and 1000 bus systems, the simulator managed to achieve 

the goal with a wide margin. In the 2000 bus simulation, the 8 cores version achieved a 

time of approximately 55 seconds, 15 seconds past the real time deadline. 
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Figure 5.10 - Simulation Time per Bus 
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Figure 5.11 - Computation Time Increase 
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5.3 Discussion and Future Potential 

The simulator has been validated, simulations performed and timing analysis 

completed. This section includes a discussion of observations made during the process, as 

well as possible explanation for the observations made. 

5.3.1 Theoretical Limits of the Jacobi Algorithm 

The Jacobi is an inherently embarrassingly parallel algorithm. The bulk of the 

computations are the calculation of the updated voltages and resulting bus mismatches 

during each iteration. For example, in a 2000 bus system there are 2000 independent 

voltage equations, one for each bus, and 2000 independent mismatch equations. In a 

theoretical implementation which does not include any communication delays, the 

number of serial computations to be performed could be brought down from 4000 (2000 

voltage and 2000 mismatch) to only 2. In this respect the Jacobi algorithm is potentially 

very powerful if the correct parallel implementation can be found. 

In current technology, the most powerful parallel processing technology for 

embarrassingly parallel algorithms is that of the GPU. The architecture is specifically 

designed and optimized for such calculations. Unfortunately, the technology was not 

available for the implementation of the simulator and a substitute technology was used. 

From the results of the larger simulations, it was shown that inter-processor 

communication delays resulted in decreased performance. At the same time, it was 

generally shown that the Jacobi algorithm has potential for accelerating power flows. 

5.3.2 Reduction in Jacobi Iterations 

The largest drawback to the Jacobi algorithm lies in the large number of iterations 

required to solve the problem. In standard power flow applications the calculations are 

normally performed from a flat start, that is, a voltage of magnitude 1 and angle 0. This is 

shown in the initial iterations required during the first time step. In the systems simulated, 

this ranged from 500 for the smaller systems, to thousands for the larger systems. 

As this thesis focuses on a simulator and not a power flow calculator, there is one 

major benefit that acts to increase the performance of the Jacobi algorithm. At the end of 

each time step, the next cycle of the Jacobi algorithm has a reasonably good estimate of 
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the voltages in the next iteration. Long term dynamics are typically slow moving and 

therefore the system state does not typically make large changes. This has the effect of 

significantly reducing the number of iterations required in order to obtain convergence. If 

iteration count is the largest drawback of the algorithm, then it has been effectively 

negated when Jacobi is used to continuously simulate power systems. 

This effect was described briefly in the parallel validation section. In the 30 bus 

system the initial iteration count was over 500. During portions of the simulation when 

little dynamics were occurring, the system often converged in only a single iteration. 

During severe changes such as an impulse increase in generation, the iteration count 

never exceeded 25. 

It is expected that this feature will be of great benefit when simulating large 

systems where the differences between time steps are relatively small. If the number of 

simultaneous equations calculated can be increased and the iteration count reduced, the 

Jacobi algorithm can prove to be a powerful tool in power system simulation. 

5.3.3 Additional Parallelism and Optimizations 

In the timing analysis it was observed that as the number of processors increased, 

the additional benefits of parallelism showed diminishing return. This was primarily due 

to the nature of the hardware being utilized to implement the algorithm. As stated, the 

available parallelism in Jacobi is quite high from a theoretical standpoint, and that the 

GPU implementation could potentially harness these efficiencies. 

In addition to the parallel nature of the Jacobi algorithm, there is significant 

parallelism available within the complex math required to perform the calculations. As 

shown in the literature survey, complex operations can be broken down into simpler real 

number multiplications and additions, many of which can be performed simultaneously. 

The nature of the GPU allows for this level of parallelism to be performed highly 

efficiently. 

Another available level of parallelism available is that of the voltage and 

mismatch equations themselves. The summation terms in both the voltage and mismatch 

equations consist of a number of independent complex multiplications that can be 

performed simultaneously. 
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When considering the Jacobi algorithm as a whole, it is observed that the new 

voltages are calculated, updated, and then the mismatch values calculated. It can be seen 

that the summation of the mismatch calculation is the same as the summation of the 

following voltage calculation, save the n=k term. By isolating the mismatch summation 

and reusing the calculation could effectively cut the computation time in half. 

Such fine grained parallel optimizations require the correct hardware in order to 

be able to produce significant efficiency increases and could potentially be met using 

current GPU technology. 



 

 56

Chapter 6. 
Conclusions and Future Work 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Market based generation dispatch is becoming the industry norm in advanced 

electrical jurisdictions. Due to the continuous evolution of markets and their potential 

impacts on system operation, studies are performed from economic and social 

perspectives in order to gauge the effects of any changes before implementation into live 

systems. In addition, it is essential to verify the effect of changes in market design on 

power systems from a technical perspective. 

6.1 Conclusions 

The main objective of this thesis is to develop a real-time power system simulator 

used in the investigation of market designs and AGC schemes. The scope of this thesis is 

the mathematical algorithms used in the simulator, hardware and software 

implementation, and validation of the implemented simulator. 

Market and AGC studies operate in the long term dynamic time scale, with time 

constants varying from seconds to minutes. For this reason the simulator is restricted to 

these timescales, and operates under the ‘tied-rotor’ assumption. The maximum time-step 

was defined to be 0.033 seconds in order to allow for video quality refresh rates, although 

time steps of 0.01 seconds were used for the actual simulations. 
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A literature survey was performed to gauge the status of long term dynamic 

simulators, as well as the specific implementation desired for this thesis. It was found 

that, to the best of the author’s knowledge, there have been no Jacobi based parallel 

processing implementations of a long term dynamic power system simulator. 

The simulator is based on a modified version of the Jacobi power flow solution 

algorithm. The slack generator was removed to provide a generation load imbalance for 

the dynamic portion of the simulator. By performing a number of power flow calculations 

in quick succession, the resulting sequence provides the sensation of a fluid simulation. 

As the power flow is a static algorithm, dynamics were added to the simulator 

using a variation of the generator swing equation. The reference bus mismatch is used in 

the equation to calculate the frequency deviation for every time step. 

A number of hardware platforms were considered for use, with the GPU based 

systems being the optimal system. Unfortunately, none were available at the time of 

development, and a substitute system with similar qualities was found. 

The development and validation was done using a three stage process. The first 

was the use of a third party commercial software package for verification purposes. The 

second was the development of a serial version of the simulator, and finally the parallel 

implementation. 

The third party software produced steady-state results against which the serial 

implementation was compared for numerical accuracy. The dynamics of the serial 

implementation were compared to hand calculations in order to verify their accuracy. The 

accuracy of the steady-state simulations was high. 

With the serial implementation validated, it was used as a benchmark for the 

parallel implementation. It was found that the simulations were not identical, but 

correlated such that the parallel simulator was considered to be an accurate representation 

of a dynamic power system. 

A number of large systems were synthesized using a proprietary program. The 

large systems were used to test the performance of the simulator to see if it managed to 

meet the original performance specification. It was found that smaller systems did not 

take advantage of the parallel processing implementation. For larger systems significant 

gains were apparent. 
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From the timing analysis, it was hypothesized that a GPU hardware 

implementation could achieve significant performance gains over the Xeon multi-core 

processing architecture used for the parallel implementation. 

In conclusion, the simulator achieved the basic functionality goals, but failed to 

meet the ultimate performance goals. Achieving the stated performance goals is 

addressed in the following section. 

6.2 Future Work 

The primary advancement that could be implemented is the use of a GPU based 

hardware platform. With the highly parallel nature of both the Jacobi algorithm and 

GPU’s, it is believed that the simulator could make significant performance gains. 

With the level of parallelism available in such hardware, a number of algorithm 

optimizations could be implemented as well. Examples include parallelizing the 

calculation of the summations within the voltages and mismatches and breaking down the 

complex mathematics into fundamental operations. 

Beyond the concepts mentioned within the thesis, there are additional avenues for 

developing the simulator. During the literature survey, a paper suggested the concept of 

distributing mismatch in order to gain accuracy for the frequency calculation. While the 

implementation of the distributed mismatch in the paper was highly complex and ‘after-

the-fact’, there is a possibility of having the Jacobi power flow algorithm converge such 

that the mismatch is distributed upon convergence. This would be a major modification 

and would require additional information from the generators in terms of their 

participation in the mismatch. 

Additional functionality could also be found in providing a better modelling of the 

voltage controls such as PV buses and reactive power limits on the generator models. In 

addition, the simulator here is for simple power networks and the addition of additional 

controls such as transformer tap changers and phase shifters should be added in order to 

be able to better represent and simulate actual power systems. 
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Appendix A - 5 Bus Power System Model 
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5 Bus System Diagram 
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5 Bus System Simulator Input Files 

Bx.txt 
 
Bus BusID Y(re) Y(im) VRef(re) VRef(im)
1 B1 3.729 -49.7203 1 0 
2 B2 2.6783 -28.459 1 0 
3 B3 7.458 -99.4406 1 0 
4 B4 11.9219 -147.959 1 0 
5 B5 9.0856 -108.578 1 0 

 
Tx.txt 
 
Bus1 Bus2 Y(re) Y(im) 
1 5 -3.729 49.7203 
2 4 -0.8928 9.9197 
2 5 -1.7855 19.8393 
3 4 -7.458 99.4406 
4 2 -0.8928 9.9197 
4 3 -7.458 99.4406 
4 5 -3.5711 39.6786 
5 1 -3.729 49.7203 
5 2 -1.7855 19.8393 
5 4 -3.5711 39.6786 

 
Gx.txt 
 
Bus GenID P Q PMax H %Reg 
1 G1 394.84 114.29 500   942.5 0.0005
3 G3 520 337.48 700 1696.5 0.0005

 
Lx.txt 
 
Bus LoadID P Q 
2 L2 800 280 
3 L3 80 40 
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Appendix B - 14 Bus System Model 
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14 Bus System Diagram 
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14 Bus System Simulator Input Files 

Bx.txt 
 
Bus BusID Y(re) Y(im) VRef(re) VRef(im)
1 Bus1 6.025 -19.4471 1.06 0 
2 Bus2 9.5213 -30.2721 1 0 
3 Bus3 3.121 -9.8224 1 0 
4 Bus4 10.513 -38.6542 1 0 
5 Bus5 9.568 -35.5336 1 0 
6 Bus6 6.5799 -17.3407 1 0 
7 Bus7 0 -19.549 1 0 
8 Bus8 0 -5.677 1 0 
9 Bus9 5.3261 -24.0925 1 0 
10 Bus10 5.7829 -14.7683 1 0 
11 Bus11 3.8359 -8.497 1 0 
12 Bus12 4.015 -5.4279 1 0 
13 Bus13 6.7249 -10.6697 1 0 
14 Bus14 2.561 -5.344 1 0 

 
Tx.txt 
 
Bus1 Bus2 Y(re) Y(im) 
1 2 -4.9991 15.2631 
1 5 -1.0259 4.235 
2 1 -4.9991 15.2631 
2 3 -1.135 4.7819 
2 4 -1.686 5.1158 
2 5 -1.7011 5.1939 
3 2 -1.135 4.7819 
3 4 -1.986 5.0688 
4 2 -1.686 5.1158 
4 3 -1.986 5.0688 
4 5 -6.841 21.5786 
4 7 0 4.8895 
4 9 0 1.8555 
5 1 -1.0259 4.235 
5 2 -1.7011 5.1939 
5 4 -6.841 21.5786 
5 6 0 4.2574 
6 5 0 4.2574 
6 11 -1.955 4.0941 
6 12 -1.526 3.176 
6 13 -3.0989 6.1028 
7 4 0 4.8895 
7 8 0 5.677 
7 9 0 9.0901 
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8 7 0 5.677 
9 4 0 1.8555 
9 7 0 9.0901 
9 10 -3.902 10.3654 
9 14 -1.424 3.0291 
10 9 -3.902 10.3654 
10 11 -1.8809 4.4029 
11 6 -1.955 4.0941 
11 10 -1.8809 4.4029 
12 6 -1.526 3.176 
12 13 -2.489 2.252 
13 6 -3.0989 6.1028 
13 12 -2.489 2.252 
13 14 -1.137 2.315 
14 9 -1.424 3.0291 
14 13 -1.137 2.315 

 
Gx.txt 
 
Bus GenID P Q PMax H %Reg 
1 G1 232.38 -27.61 250 1319.5 0.0005 
2 G2 40 50 50 1394.9 0.0005 
3 G3 0 28 50 1583.4 0 
6 G6 0 11.1 50 1470.3 0 
8 G8 0 20.5 50 1508.0 0 

 
Lx.txt 
 
Bus LoadID P Q 
1 Load1 0 0 
2 Load2 21.7 12.7 
3 Load3 94.2 19 
4 Load4 47.8 -3.9 
5 Load5 7.6 1.6 
6 Load6 11.2 7.5 
9 Load9 29.5 16.6 
9 Null9 0 0 
10 Load10 9 5.8 
11 Load11 3.5 1.8 
12 Load12 6.1 1.6 
13 Load13 13.5 5.8 
14 Load14 14.9 5 
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Appendix C - 30 Bus System Model 
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30 Bus System Diagram 
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30 Bus System Simulator Input Files 

Bx.txt 
 
Bus BusID Y(re) Y(im) VRef(re) VRef(im)
1 Bus1 6.7655 -21.2316 1.06 0 
2 Bus2 9.7523 -30.6487 1 0 
3 Bus3 9.7363 -29.1379 1 0 
4 Bus4 16.3141 -55.5094 1 0 
5 Bus5 4.09 -12.1906 1 0 
6 Bus6 22.3416 -82.8291 1 0 
7 Bus7 6.5442 -18.4567 1 0 
8 Bus8 7.7333 -26.5275 1 0 
9 Bus9 0 -18.7063 1 0 
10 Bus10 13.4621 -41.3838 1 0 
11 Bus11 0 -4.8077 1 0 
12 Bus12 6.574 -24.4242 1 0 
13 Bus13 0 -7.1429 1 0 
14 Bus14 4.0175 -5.4243 1 0 
15 Bus15 9.3655 -16.0116 1 0 
16 Bus16 3.2711 -8.9451 1 0 
17 Bus17 5.2751 -15.1582 1 0 
18 Bus18 4.8865 -9.9062 1 0 
19 Bus19 8.958 -17.9835 1 0 
20 Bus20 7.6672 -15.7501 1 0 
21 Bus21 21.8765 -45.1084 1 0 
22 Bus22 21.9345 -43.4829 1 0 
23 Bus23 3.4298 -6.9653 1 0 
24 Bus24 5.3118 -9.1883 1 0 
25 Bus25 4.4957 -7.865 1 0 
26 Bus26 1.2165 -1.8171 1 0 
27 Bus27 3.6523 -9.4604 1 0 
28 Bus28 5.8068 -22.6715 1 0 
29 Bus29 1.9076 -3.6044 1 0 
30 Bus30 1.5995 -3.0173 1 0 

 
Tx.txt 
 
Bus1 Bus2 Y(re) Y(im) 
1 1 6.7655 -21.2316
1 2 -5.2246 15.6467 
1 3 -1.5409 5.6317 
2 1 -5.2246 15.6467 
2 2 9.7523 -30.6487
2 4 -1.7055 5.1974 
2 5 -1.136 4.7725 
2 6 -1.6861 5.1165 
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3 1 -1.5409 5.6317 
3 3 9.7363 -29.1379
3 4 -8.1954 23.5309 
4 2 -1.7055 5.1974 
4 3 -8.1954 23.5309 
4 4 16.3141 -55.5094
4 6 -6.4131 22.3112 
4 12 0 4.1913 
5 2 -1.136 4.7725 
5 5 4.09 -12.1906
5 7 -2.954 7.4493 
6 2 -1.6861 5.1165 
6 4 -6.4131 22.3112 
6 6 22.3416 -82.8291
6 7 -3.5902 11.0261 
6 8 -6.2893 22.0126 
6 9 0 4.9158 
6 10 0 1.8561 
6 28 -4.3628 15.4636 
7 5 -2.954 7.4493 
7 6 -3.5902 11.0261 
7 7 6.5442 -18.4567
8 6 -6.2893 22.0126 
8 8 7.7333 -26.5275
8 28 -1.444 4.5408 
9 6 0 4.9158 
9 9 0 -18.7063
9 10 0 9.0909 
9 11 0 4.8077 
10 6 0 1.8561 
10 9 0 9.0909 
10 10 13.4621 -41.3838
10 17 -3.956 10.3174 
10 20 -1.7848 3.9854 
10 21 -5.1019 10.9807 
10 22 -2.6193 5.4008 
11 9 0 4.8077 
11 11 0 -4.8077 
12 4 0 4.1913 
12 12 6.574 -24.4242
12 13 0 7.1429 
12 14 -1.5266 3.1734 
12 15 -3.0954 6.0973 
12 16 -1.952 4.1044 
13 12 0 7.1429 
13 13 0 -7.1429 
14 12 -1.5266 3.1734 
14 14 4.0175 -5.4243 
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14 15 -2.491 2.2509 
15 12 -3.0954 6.0973 
15 14 -2.491 2.2509 
15 15 9.3655 -16.0116
15 18 -1.8108 3.6874 
15 23 -1.9683 3.9761 
16 12 -1.952 4.1044 
16 16 3.2711 -8.9451 
16 17 -1.3191 4.8408 
17 10 -3.956 10.3174 
17 16 -1.3191 4.8408 
17 17 5.2751 -15.1582
18 15 -1.8108 3.6874 
18 18 4.8865 -9.9062 
18 19 -3.0757 6.2188 
19 18 -3.0757 6.2188 
19 19 8.958 -17.9835
19 20 -5.8824 11.7647 
20 10 -1.7848 3.9854 
20 19 -5.8824 11.7647 
20 20 7.6672 -15.7501
21 10 -5.1019 10.9807 
21 21 21.8765 -45.1084
21 22 -16.7746 34.1277 
22 10 -2.6193 5.4008 
22 21 -16.7746 34.1277 
22 22 21.9345 -43.4829
22 24 -2.5405 3.9544 
23 15 -1.9683 3.9761 
23 23 3.4298 -6.9653 
23 24 -1.4614 2.9892 
24 22 -2.5405 3.9544 
24 23 -1.4614 2.9892 
24 24 5.3118 -9.1883 
24 25 -1.3099 2.2876 
25 24 -1.3099 2.2876 
25 25 4.4957 -7.865 
25 26 -1.2165 1.8171 
25 27 -1.9693 3.7602 
26 25 -1.2165 1.8171 
26 26 1.2165 -1.8171 
27 25 -1.9693 3.7602 
27 27 3.6523 -9.4604 
27 28 0 2.6087 
27 29 -0.9955 1.881 
27 30 -0.6875 1.294 
28 6 -4.3628 15.4636 
28 8 -1.444 4.5408 
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28 27 0 2.6087 
28 28 5.8068 -22.6715
29 27 -0.9955 1.881 
29 29 1.9076 -3.6044 
29 30 -0.9121 1.7234 
30 27 -0.6875 1.294 
30 29 -0.9121 1.7234 
30 30 1.5995 -3.0173 

 
Gx.txt 
 
Name GenID P Q PMax H %Reg 
1 GlenLyn 260.93 -17.22 350   942.5 0.0005
2 Claytor 40 50 50 1319.5 0.0005
5 Fieldale 0 37 50   565.5 0 
8 Reusens 0 37.3 50   377.0 0 
11 Roanoke 0 16.2 50   942.5 0 
13 Hancock 0 10.6 50   754.0 0 

 
Lx.txt 
 
Bus LoadID P Q 
2 Claytor 21.7 12.7 
3 Kumis 2.4 1.2 
4 Hancock 7.6 1.6 
5 Fieldale 94.2 19 
7 Blaine 22.8 10.9 
8 Reusens 30 30 
10 Roanoke 5.8 2 
12 Hancock 11.2 7.5 
14 Bus14 6.2 1.6 
15 Bus15 8.2 2.5 
16 Bus16 3.5 1.8 
17 Bus17 9 5.8 
18 Bus18 3.2 0.9 
19 Bus19 9.5 3.4 
20 Bus20 2.2 0.7 
21 Bus21 17.5 11.2 
23 Bus23 3.2 1.6 
24 Bus24 8.7 6.7 
26 Bus26 3.5 2.3 
29 Bus29 2.4 0.9 
30 Bus30 10.6 1.9 
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Appendix D - PowerWorld and Serial Results 
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5 Bus System - Results Comparison 
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14 Bus System Results Comparison 
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30 Bus System - Results Comparison 
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Appendix E - Dynamic Serial Simulation 
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5 Bus System Validation 
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14 Bus System Validation 
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30 Bus System Validation 

 


