
Bluenose II:
Towards Faster Design and

Verification of Pipelined Circuits

by

Ca Bol Chan

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2008

c© Ca Bol Chan 2008

I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

The huge demand for electronic devices has driven semiconductor companies
to create better products in terms of area, speed, power etc. and to deliver them
to market faster. Delay to market can result in lost opportunities. The length
of the design cycle directly affects the time to market. However, inadequate time
for design and verification can cause bugs that will cause further delays to market
and correcting the error after manufacturing is very expensive. A bug in an ASIC
found after fabrication requires respinning the mask at a cost of several million
dollars. Even as the pressure to reduce the length of the design cycles grows, the
size and complexity of digital hardware circuits have increased, which puts even
greater pressure on design and verification productivity. Pipelining is one opti-
mization technique which has contributed to the increased complexity in hardware
design. Pipeline increases throughput by overlapping the execution of instructions.
It is a challenge to design and verify pipelines because the specification is written
to describe how instructions are executed in sequence while there can be multiple
instructions being executed in a pipeline at one time. The overlapping of instruc-
tions adds further complexity to the hardware in the form of hazards which arise
from resource conflicts, data dependencies or speculation of parcels due to branch
instructions.

To address these issues, we present PipeNet , a metamodel for describing hard-
ware design at a higher level of abstraction and Bluenose II, a graphical tool for
manipulating a PipeNet model. PipeNet is based on a pipeline model in a formal
pipeline verification framework. The pipeline model contains arbiters, flow-control
state machines, datapath and data-routing. The designer describes the pipeline
design using PipeNet . Based on the PipeNet model, Bluenose II generates synthe-
sizable VHDL code and a HOL verification script. Bluenose II’s ability to generate
HOL scripts turns the HOL theorem prover into Bluenose II’s external verification
environment. A direct connection to HOL is implemented in the form of a console
to display results from HOL directly in Bluenose II. The data structures that repre-
sent PipeNet are evaluated for their extensibility to accommodate future changes.
Finally, a case study based on an implementation of a two-wide superscalar 32-bit
RISC integer pipeline is conducted to examine the quality of the generated codes
and the entire design process in Bluenose II. The generation of VHDL code is
improved over that provided in Bluenose I, Bluenose II’s predecessor.

iii

Acknowledgements

A heartfelt thanks to Professor Mark Aagaard who not only gave me the opportu-
nity to experience firsthand what research is all about but also the opportunity to
work with a great supervisor. He is always full of encouragement (when I did not
do a good job), patience (when I did not know how to do the job), and motivation
(for his students to strive to do the best possible job!)

I would also like to thank Vlad Ciubotariou for helping me out with his Eclipse
expertise.

Thanks to all the friends who have helped me along the way. Non-technical help is
equally important in the completion of this thesis.

I thank my parents and my brother for their unconditional love and support which
have allowed me to reach this point in my life.

iv

To my mom, dad and brother

v

Contents

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Overview of Pipelines . 2

1.2 Research Overview . 3

1.3 Thesis Statement and Contributions 4

1.4 Thesis Outline . 4

2 Background 6

2.1 A Pipeline Model . 6

2.2 Model Driven Development . 10

2.3 Eclipse Graphical Modeling Framework 11

2.4 The HOL Theorem Prover . 14

2.5 Bluenose I . 15

2.6 Related Work . 16

2.7 Summary . 20

3 Pipeline Design with Bluenose II 21

3.1 Overview . 21

3.2 PipeNet . 22

3.3 Design Flow in Bluenose II . 26

3.4 User Interface . 27

3.4.1 Reducing Clutter . 28

3.4.2 Changes from Bluenose I . 29

vi

3.5 VHDL PipeLib . 29

3.5.1 Changes from Bluenose I . 29

3.6 VHDL Generation . 36

3.6.1 Conversion Function Templates 38

3.6.2 Changes from Bluenose I . 40

3.7 Summary . 43

4 Pipeline Verification with Bluenose II 44

4.1 HOL PipeLib . 45

4.2 HOL Generation . 48

4.3 HOL Console . 53

4.4 Summary . 54

5 Bluenose II Core 55

5.1 Data Structures . 55

5.1.1 Block . 56

5.1.2 Connection . 56

5.2 Implementation . 59

5.2.1 Java Generation . 60

5.2.2 Customization . 61

5.3 Summary . 63

6 Case Study 64

6.1 The OpenRISC Design . 64

6.2 Observations . 69

6.3 Performance Comparison . 70

6.3.1 Speed and Area . 70

6.3.2 Code Quality . 71

6.4 Summary . 74

7 Conclusions and Future Work 76

7.1 Conclusions . 76

7.2 Future Work . 77

Appendix 80

vii

A DiffAdd Code Generated by Bluenose I 80

B Reference Model Testbench 82

C Generated HOL Script Based on OR1200-BNv3 84

Glossary of Terms 87

References 88

viii

List of Tables

2.1 Pipe stage components . 8

2.2 Description of instantiations of Arbiter 8

2.3 Description of instantiations of MkR/A 9

3.1 Description of main modules in Bluenose II 23

3.2 Lines of code for the DiffAdd project 43

5.1 Attributes of the Block class . 59

5.2 Attributes of the Connection class 59

6.1 Stage instantiation parameters for OR1200-BNv3 67

6.2 Performance Comparison . 71

6.3 Lines of code for the OpenRISC project 74

ix

List of Figures

2.1 Aagaard’s pipeline stage decomposition 7

2.2 Overview of the Graphical Modeling Framework 12

2.3 Basic steps for developing a graphical editor with the Graphical Mod-
eling Framework . 13

2.4 Relationship between (meta)models 13

3.1 The main modules of Bluenose II 23

3.2 PipeNet . 24

3.3 Bluenose II screenshot with labels 27

3.4 A tree view of a Bluenose II pipeline model 37

3.5 Conversion functions for a stage . 39

3.6 The diffAdd entity . 41

4.1 Two-issue superscalar pipeline with numbers denoting stage order
and signal types . 52

4.2 Bluenose II with HOL console . 53

4.3 HOL console . 54

5.1 Simplified class diagram for the pipeline metamodel 57

5.2 Comparison between connection and signal 58

6.1 OR1200-BNv3 . 66

6.2 Critical path of OR1200-BNv2 . 72

6.3 Critical path of OR1200-BNv3 . 73

x

Chapter 1

Introduction

Without looking at the statistics, it is not hard to tell that the use of electronic
devices has greatly increased. Headlines such as “Worldwide PC processor market
hits record levels of unit shipments again” [1], “Cell phone sales hit 1 billion mark”
[2] and “1 million iPhone 3Gs sold in 3 days” [3] are not uncommon these days.
The huge consumer appetite for electronic devices was made more evident when
an article described them as physical nourishment to college students [4]. Semi-
conductor companies are competing to fulfill this increasing demand by creating
better products in terms of area, speed, power etc. and delivering them to the
market faster.

Delay to market can result in lost opportunities. The length of the design
cycle directly affects the time to market. However, inadequate time for design and
verification can cause bugs that will cause further delays to market and correcting
the error after manufacturing is very expensive. A bug in an ASIC found after
fabrication requires respinning the mask at a cost of several million dollars. Even as
the pressure to reduce the length of the design cycles grows, the size and complexity
of digital hardware circuits have increased, which puts even greater pressure on
design and verification productivity.

Driven by the demand for better (smaller, faster etc.) products, highly advanced
architectural ideas are developed which result in more complex designs. An exam-
ple is pipelining which increases the throughput at the price of increased design
and verification complexity. In the last 15 years, designs have grown in size and
complexity by 1 to 2 orders of magnitude. Many hardware intellectual property
(IP) blocks today are larger than an entire chip back then [5]. Engineers were
reported working on multiple projects at once although the average size of a de-
sign team has grown [6]. An engineer can write only so many lines of code a day;
therefore, in the face of increasing size and complexity in hardware design, each
line has to be worth “more” than before. More “value” can be added to the code
in several ways. One way is to raise the level of abstraction so a line in a high-level
hardware description language can be synthesized into more lines of code at the
register transfer level (RTL). Another way is to incorporate verification into the

1

design process to achieve “first-time-right” functional correctness in a shorter time.
Such are the motivations for the Bluenose II project. Bluenose II aims to increase
designer productivity and reduce verification effort by raising design abstraction,
focusing on pipelined circuits in particular.

With these goals in mind, we take a more detailed look at pipelines and explain
why it is a challenge to design and verify them. Following that, we present the
research overview, thesis statement and research contributions. The chapter is
ended with an outline of the major sections in this thesis.

1.1 Overview of Pipelines

Pipelining is an optimization technique in hardware design that overlaps the exe-
cution of instructions. A hardware pipeline can be viewed as an assembly line for
instructions. Each pipeline stage processes an instruction and passes the instruc-
tion to the next stage. This process occurs in all pipeline stages simultaneously,
thus allowing multiple instructions to be processed concurrently. An advantage of a
pipelined design is the increase of throughput since each instruction gets processed
sooner compared to a non-pipelined design in which each instruction has to wait
for the previous one to finish. However, the overlapping of instructions adds com-
plexity to the hardware in the form of hazards. Three types of hazards are present
in pipelined designs. Structural hazards arise from resource conflicts among over-
lapped execution of instructions. Data hazards are caused by data dependencies
between overlapping instructions. Finally, control hazards deal with speculation
of parcels due to branch instructions. These concepts are explained in depth by
Hennessy and Patterson in [7]. Many design complexities arise from trying to re-
solve these hazards properly. And to verify that these complex pipelined designs
are correct further adds to the overall challenge.

Even without these complexities, a pipelined implementation by itself is hard to
verify formally. The challenge stems from the fact that the specification is written
to describe how instructions are executed in sequence while there can be multi-
ple instructions being executed in a pipeline at one time. Many techniques have
been developed to verify a pipelined implementation against its non pipelined spec-
ification. A well-known correctness statement known as Burch-Dill flushing was
proposed in [8]. For small scale designs, e.g., in-order pipelines with a small depth,
Burch-Dill flushing can be fully automated. For realistic designs like Intel’s Core
microarchitecture which has 14 stages with out-of-order execution [9], Burch-Dill
flushing suffers from the state explosion problem as do other model checking tech-
niques. Many other formal verification techniques have been developed since then
and applied in the industry. Although companies reported that formal verification
has led to the discovery of subtle design bugs [10], it is still not widely adopted
since formal verification requires specialized expertise which most designers do not
have.

2

In view of these challenges, Aagaard developed a pipeline verification framework
which structures and simplifies the proof of the pipelining circuitry for structural
hazards [11]. The framework provides a stage template which consists of a set
of components and techniques for how to verify these components. By mapping
a pipeline design into these components, the verification is in effect divided into
smaller tasks. It was recognized that in addition to easing the verification effort, a
designer can also use these components to design a pipeline. From this realization,
Higgins created Bluenose I [12]. Bluenose I demonstrated that the stage template
from Aagaard’s verification framework could be applied to pipeline design [12]. It
showed that the stage template used in combination with a graphical user inter-
face simplified the design and verification of pipelines. Building on the work of
Bluenose I, Bluenose II is created, which is the topic of this thesis.

1.2 Research Overview

Bluenose II continues in the direction taken by its predecessor to increase automa-
tion in pipeline design and verification. One particular area that we explore in this
thesis is the model driven development methodology. We examine the applicability
of the methodology not only to the development of Bluenose II but also to the
pipeline design process. For this, we created a pipeline metamodel called PipeNet
based on Aagaard’s stage template. A metamodel is literally a model that describes
another model. Since a model represents concepts from a domain, the metamodel
for that model provides a modeling language for that domain. Consequently, a
metamodel can also be considered a domain specific language [13].

We use Eclipse and its modeling plugins to build Bluenose II based on PipeNet .
Bluenose II can be viewed as a domain specific tool for instantiating and configur-
ing the PipeNet metamodel. In turn, the designer creates a pipeline model using
the PipeNet “language”. The PipeNet language should be expressive enough to
capture all the relevant characteristics of a pipeline design. The effectiveness can
be evaluated by the ease to generate codes. If the metamodel is not expressive
enough, it will be difficult to retrieve or derive information needed for code gen-
eration. Bluenose II generates synthesizable VHDL code and a HOL verification
script based on the pipeline model entered by the designer. The data structures
that represent PipeNet are then evaluated for their extensibility to accommodate
future changes. Finally, a case study based on the OpenRISC architecture [14, 15]
is conducted to examine the quality of the generated codes and the entire design
process in Bluenose II. Ultimately, Bluenose II should pave the road to faster design
and verification of pipelined circuit that was started in Bluenose I.

3

1.3 Thesis Statement and Contributions

In this thesis, we propose that not only can model driven development be applied to
the development of a tool for pipeline design, it can also be applied to the pipeline
design process. The pipeline metamodel, which forms the basis of Bluenose II, can
capture all the relevant characteristics of a pipeline design. This is demonstrated
through the ease to generate codes from the pipeline model instantiated from the
metamodel. Harnessing the power of Eclipse’s modeling framework and its code
generation facility, Bluenose II is a full featured environment for pipeline design and
verification. Altogether, Bluenose II improves upon the work started by Bluenose I
and paves the road to faster design and verification of pipelined circuits.

This work makes the following contributions to the area of hardware design and
verification.

• We create PipeNet , a pipeline metamodel, which is suitable for capturing
pipeline designs.

• Extensible data structures that implement PipeNet are developed.

• We develop Bluenose II which implements the PipeNet data structures in
Eclipse with full-featured user interface. Bluenose II is developed using the
model driven engineering approach. We show how a designer can apply the
same approach to pipeline design using Bluenose II.

• The generation of VHDL code is improved over that provided in Bluenose I
in terms of conciseness.

• We enhance the Bluenose tool with the HOL generation feature for verifica-
tion. A direct connection from Eclipse to HOL in the form of a console in
Eclipse is implemented. The HOL console displays HOL’s output directly in
Bluenose II.

1.4 Thesis Outline

The remainder of the thesis is organized as follows.

• Chapter 2 introduces the pipeline model and provides details on the technolo-
gies used in Bluenose II. Related work is also described in this chapter.

• Chapter 3 outlines the design flow in Bluenose II and the implementation of
design related features.

• Chapter 4 describes HOL related modules which are used in pipeline verifi-
cation.

4

• Chapter 5 presents the data structures and discusses some implementation
issues that arose in the development of Bluenose II.

• Chapter 6 provides the results of a case study based on an implementation of
a two-wide superscalar 32-bit RISC integer pipeline in Bluenose II.

• Chapter 7 contains the conclusions of the thesis and directions for future
work.

5

Chapter 2

Background

In the previous chapter, we discussed the challenges in the design and verification
of pipelined circuits; we also gave an overview of Bluenose II, a design and verifi-
cation tool for the pipelines. This chapter gives the background that will help in
understanding the inner working and philosophy of Bluenose II.

The pipeline model which Bluenose II is based on is presented in Section 2.1.
The model driven development approach that we took to develop Bluenose II is
discussed in Section 2.2. The Eclipse Graphical Modeling Framework and the HOL
theorem proving system, which were used in the development of Bluenose II, are
described in Section 2.3 and Section 2.4 respectively. Bluenose I, the predecessor
to Bluenose II, is discussed in Section 2.5. Finally, we relate and contrast our work
to others in Section 2.6.

2.1 A Pipeline Model

Aagaard’s solution (modified by Higgins in [12]) to the design complexity is to
view a pipeline as a system of stages that follows a request/accept protocol [11].
Instructions are treated as parcels and are transfered from one stage to the next
based on this protocol. In order for a pipeline stage to send a parcel, it first sends
a request to the next stage. The stage will only send the parcel upon the receipt
of an accept signal from the next stage. The receiving stage sends an accept signal
when it has received a request and when it is ready to accept a parcel. Aagaard
defined a variety of instantiations of this request/accept protocol that allows for
efficient implementations in many pipelines.

The decision to request or accept is decentralized and distributed to the stages
themselves. The transferring of parcels and the decision-making are coordinated
by the components inside each stage. These components are shown in Figure 2.1.
Table 2.1 describes the role and the number of instances allowed in a stage for
each component. The first group of components (Interface Prev and Interface
Next) make up the interface of the stage for transferring parcels. One instance of

6

Interface Prev (Interface Next) is needed per incoming (outgoing) signal to (from) a
stage. The second group of components (Register and Datapath) form the datapath
of the stage. One instance of Register is required per incoming signal that needs to
be registered, while the datapath of a stage is encapsulated in one Datapath. The
components in the third group together act as the control center for the stage. Since
each stage needs only one “control center”, only one instance of each component
in this group is allowed. The interface and datapath components are placed on the
left of Figure 2.1 and the control components on the right.

��������� ���	
��� ������ ��������������� ������
����� ���!��" ��#�$���%���������� &��
'���� ��������� &����(����

)���* +�,* -��*
... ..

)���/ +�,/ -��/

... ...

...
Figure 2.1: Aagaard’s pipeline stage decomposition

There are different instantiations for Arbiter and MkR/A that a designer can
choose from. The set of instantiations allows a designer to design pipelines with
different behaviours. The choice for Arbiter depends on the number of upstream
pipeline stages that are connected to the stage containing the Arbiter and the
expected request behaviour. The choice for MkR/A is based on the behaviour of
the Datapath of the containing stage, and the request and accept behavoiurs of the
upstream and downstream stages respectively. Descriptions of each instantiation
of Arbiter and MkR/A are given in Table 2.2 and Table 2.3.

Higgins provided mathematical descriptions of the instantiations in [12]. The
definition of General MkR/A is reproduced in Definition 2.1 as an example. All

7

Table 2.1: Pipe stage components
Component Description Cardinality
Interface Prev Receives datapath values from the neigh-

boring stages
1 to many

Interface Next Sends datapath values from the neighbor-
ing stages

1 to many

Register Pipe stage register 0 to many
Datapath Pipe stage datapath 1
Arbiter Arbitrates requests from the upstream

pipe stages
1

MkRA Keeps track of the state of the pipeline
stage

1

Interface Next Re-
q/Acc

Monitors the request and accept signals
from downstream pipe stages

1

Table 2.2: Description of instantiations of Arbiter
Degenerate : There is only one input, so forwards the request directly.
Exclusive : There is more than one input, but there will be at most one

request at any time.
StaticPriority : There is more than one input and there may be more than

one request at a time. The request with the highest priority is
forwarded.

input and output signals are prefixed with i and o ; the rest are internal signals.
The signals in parentheses are logical groupings of the input and output signals
according to their usage. They also represent the interface of General MkR/A. The
description is quantified over time and the time is indicated with the subscripts. The
“∧” and “∨” operators represent the logical AND and OR of two signals respectively.
The conjunction of the signal assignments is indicated by the “&” symbol. Together
these signal assignments make up the definition of General MkR/A.

Definition 2.1: General MkR/A

mkReqAccGeneral(i reqP, o accP)(o reqN, i accN)

(i maskP, i maskN, i abort, i loopMstrReq) ≡
∃ reqP, accN, reqN, accP . ∀ t .
reqP(t) = i reqP(t) ∧ i maskP(t) &

accN(t) = (i accN(t) ∨ i loopMstrReq(t)) ∧ i maskN(t) &

reqN(t+1) = [reqP(t) ∨ (reqN(t) ∧ ¬accN(t) ∧ ¬i abort(t))] ∧ ¬i reset(t) &

accP(t) = accN(t) ∨ ¬reqN(t) ∨ i abort(t) &

o reqN(t) = reqN(t) ∧ i maskN(t) ∧ i abort(t) &

o accP(t) = accP(t) ∧ i maskP(t)

8

Table 2.3: Description of instantiations of MkR/A
Degenerate : This instantiation of MkR/A assumes that there is a request

from the previous stage in every clock cycle and the next stage
always accepts. In other words, the Degenerate MkR/A sends
an accept signal to the previous stage and a request to the next
stage in every clock cycle.

General : There is a unit delay through the current stage. There may or
may not be a new request from a previous stage and the next
stage may or may not accept.

MultiDelay : The current stage may take multiple cycles to process a parcel.
There may or may not be a new request from a previous stage
and the next stage may or may not accept.

UnitDelay : There is a unit delay through the current stage. There may or
may not be a new request from a previous stage and the next
stage always accepts.

ZeroDelay : There is zero delay through the current stage. This instantiation
of MkR/A merely connects the request (accept) signal from (to)
the previous stage to (from) the next stage.

The request/accept protocol, components and their instantiations are derived
from Aagaard’s pipeline verification framework for structural hazards [11]. In Aa-
gaard’s framework, the instantiations of the components characterize the pipelining
circuitry that is to be verified. The framework provides a verification strategy based
on these components. Therefore, mapping the pipeline design into these compo-
nents eases the task of verification.

The request/accept protocol, components and their instantiations together form
a template of a pipeline stage. The designer instantiates and configures the template
for each stage in the pipeline to describe the overall structure and behaviour of the
pipeline. The benefits of using this stage template are as follows:

1. The behaviours of these components are in terms familiar to pipeline designers
therefore the learning curve is less daunting.

2. The components encapsulate and abstract away the low level mechanisms
used in hardware to stall stages and to route parcels from one stage to the
next.

3. The encapsulation of details also means that the structure of the pipeline
is available at the same time as the designer completes the design of the
behaviour of the pipeline.

4. The components which implement the request/accept protocol allow the de-
signer to create pipelines that handle structural hazards correctly.

9

5. The mapping between the pipeline model and Aagaard’s verification frame-
work allows the designer to design for verification.

This conceptual model is the foundation of Bluenose II. From it, a metamodel
which we named PipeNet , is created to be used in Bluenose II. Using Bluenose II,
the designer describes the pipeline design in PipeNet and the pipeline model cre-
ated from PipeNet allows the design to be reasoned about. PipeNet is described
further in Section 3.2. The model leads us to take advantage of the model driven
development approach. Model driven development and metamodels are explained
in Section 2.2.

2.2 Model Driven Development

There are different standards and methodologies for model driven development
(MDD) [16, 17]. Each has its own terminology but in generic terms, model driven
development is an approach to develop software or any other system by using a
model or models which abstract some concepts of the problem domain. We focus our
discussion of model driven development to the scope of Model Driven Architecture
(MDA), a framework proposed by the Object Management Group (OMG) [17].

MDA supports model driven development by providing standards to define and
transform models. An application is first specified using one or more Platform
Independent Models (PIM). As its name implies, the model is independent from
platform details such as a programming language. The model’s independence allows
it to be transformed into different Platform Specific Models (PSM). It may take
multiple transformations to map a high level model to executable code for a given
platform [13]. Therefore, the role of a model, whether it is a PIM or a PSM,
is relative to the other models. For example, a C++ program is a PSM to the
Unified Modeling Language (UML) model that it implements, but it is a PIM to
the corresponding assembly code which is executed on specific processors. Model, be
it PIM or PSM, is specified with the modeling constructs defined in its metamodel.
A model is an instantiation of its metamodel. A metamodel is just like any other
model that abstracts the concepts in a domain, except the domain of a metamodel is
another model. Therefore, the concept of a metamodel is also relative to the model
that it is being related to. A model can be a metamodel to another model, while
it itself conforms to another metamodel. This “chain” of models is also referred to
as meta-layers or metalevels [18]. In the previous example of UML, C++ and the
assembly language, there are three layers. Since a model represents the concepts
from a domain, the metamodel for that model provides a modeling language for
that domain. In this way, a metamodel can also be considered a domain specific
language (DSL).

A DSL provides the syntax to express ideas in a particular domain. A DSL
offers the following benefits:

10

• The specialized notation provides domain specific abstraction. The layer of
abstraction provides the ability to capture an idea in the domain more con-
cisely.

• A DSL allows its user to identify and communicate ideas that are too abstract
to express in a general purpose programming language.

• The domain information captured by the language coupled with domain
knowledge enables domain specific error checking and optimization. This
leads to the creation of domain intelligence tools that provide support to
facilitate domain specific activities.

To illustrate the benefits of a DSL, consider the example of a database query lan-
guage which is a DSL for a structured collection of data. A table in the database
query language is known to refer to a set of data that is organized in rows and
columns. The database query languages also provide the syntaxes to describe op-
erations on a database such as creating and removing a table. Domain abstractions
such as rows, columns, and table creation make up a language for describing the
organization and manipulation of data. A DSL is not confined to text and to be
standalone; it can also be visual or embedded in another programming language
[13].

In MDA, models or metamodels have to be expressed in a Meta-Object Facil-
ity (MOF) based language [17]. MOF is an OMG standard for defining modeling
languages. A benefit of expressing a model in a MOF-based modeling language
is that the model can be transformed and manipulated by MOF-compliant tools
[18]. The Eclipse Modeling Framework (EMF), part of the Eclipse Graphical Mod-
eling Framework (GMF) that we used to develop Bluenose II, is compatible with a
subset of the MOF metamodel called the Essential Meta-Object Facility (EMOF)
metamodel. EMF can be thought of as a EMOF tool for defining metamodels. It
has the generative functionality to produce a set of Java classes for the metamodel
based on its specification. To distinguish from the EMOF metamodel, the core
metamodel in EMF is called Ecore [19]. EMF is discussed further in Section 2.3.

We adopted the model driven development approach to harness the generative
functionality of EMF and GMF. The generative functionality of these Eclipse plug-
ins allows us to focus on implementing features for manipulating the pipeline model
instead of basic editor functionalities like file management. GMF is discussed in
Section 2.3.

2.3 Eclipse Graphical Modeling Framework

Eclipse is an open source integrated development environment. It was originally
created by IBM and has evolved into a platform supported by an open source com-
munity [20]. Eclipse can be customized and extended through plug-ins. Bluenose II

11

runs on the Eclipse platform as a plug-in. Bluenose II was implemented also using
other Eclipse plug-ins; an important one is GMF.

GMF is a model driven tool set for developing graphical editors. It includes a
generative component for generating the graphical editor and a runtime infrastruc-
ture which provides services to the graphical editor during runtime [21]. GMF is
based on two other plug-ins: EMF and the Eclipse Graphical Editing Framework
(GEF). GMF integrates the modeling functionalities of EMF into the model-view-
controller architecture of GEF. The model-view-controller architecture is a design
pattern that decouples the model from the view so that more than one view can
be implemented to display the data of the model. An overview of GMF is shown
in Figure 2.2.

generateGMF Tools Graphical

Editor

GMF

Runtime

EMF

Runtime

GEF

Runtime

dependencies

Metamodel

Specification

input

Figure 2.2: Overview of the Graphical Modeling Framework

The basic steps for developing a graphical editor with GMF are illustrated in
Figure 2.3. The developer first develops the domain model, graphical definitions and
tooling definitions. The domain model defines the abstract syntax of the modeling
language that will be available in the graphical editor. It is expressed using the
Ecore metamodel. The graphical definitions describe the graphical elements (e.g.,
figures and connectors) that will appear in the editor. The tooling definitions
specify tools (e.g., palette and toolbars) that will be available in the editor. These
models are fit together in the mapping model such that the graphical elements are
linked to the concrete aspect of the domain model and tools in the editor. The
mapping model is transformed into a generator model which contains modifiable
code generation parameters (e.g., plug-in name). Finally, the diagram code (Java
code) for the editor plug-in is generated from the generator model. The generated
plug-in reuses components from the GMF runtime infrastructure and runs on the
Eclipse platform. The editor persists the data which represent the models created
by the end user, in XML Metadata Interchange (XMI), a standard also defined by
OMG [21].

12

Generator

Model

Domain

Model

Graphical

Definition

Tooling

Definition

Mapping

Model

Diagram

Plug-in

Developer

define

define

define

generate

with GMF

generate

with GMFdefine

Figure 2.3: Basic steps for developing a graphical editor with the Graphical Mod-
eling Framework

We are involved in the model driven development field both as a modeler and
a model user. We used the Ecore metamodel to specify PipeNet , a pipeline meta-
model. In turn, the pipeline designer uses PipeNet to describe the pipeline design.
The relationship between these models is shown in Figure 2.4. We used GMF to
develop Bluenose II, a graphical editor to manipulate the pipeline model. GMF’s
generative functionality and the reusability of its runtime components allow us to
derive the benefit of adopting the model driven development approach.

Metamodel

(Ecore)

PipeNet

Pipeline

Model

Conforms to

Conforms to

Conforms to

Figure 2.4: Relationship between (meta)models

13

2.4 The HOL Theorem Prover

Formal verification involves proving that the implementation satisfies the specifica-
tion using mathematical reasoning. One formal verification approach is logic infer-
ence. The specification, implementation and their relation are expressed in some
type of logic. The verification then becomes proving a theorem in that specific logic
[22]. Theorem provers are used to keep track of this type of proofs. Other benefits
of the theorem prover are explained as part of the description of HOL. Bluenose II
generates a HOL script to enable the verification of pipeline designs.

The HOL system is a theorem prover for the theory that it is named after, higher
order logic. In higher order logics, functions can take functions as arguments, and
quantifiers can range over functions [23]. Therefore, higher order logic supports
modeling a digital system as a relation between its input and output signals and
models a signal as a time-to-value function. The signal function, when given a time,
returns the state of the signal. With this in mind, HOL was originally created for
hardware verification at the register transfer level, modified from the Cambridge
LCF (Logic for Computable Functions) system. LCF-style theorem provers have
terms from the typed λ-calculus and formulae from predicate calculus [24].

Some benefits of using theorem provers like HOL are that the system keeps track
of the proof, ensures the proof’s soundness, automates the proof when possible and
allows extensibility. In LCF-style theorem provers, a small core of axioms and
inference rules are encoded. New theorems can only be constructed by applying a
sequence of inference rules on the axioms, thereby ensuring soundness of the proof
— if the system proved something is true, then it really is true. Furthermore, since
theorems are represented as an abstract data type, strict type checking prevents
any violation of the soundness of the system. The HOL system supports both
forward and goal oriented proofs. A step in a forward proof can only be derived
with the rules of inference from results of other proofs, namely theorems, previous
steps in the proof, or axioms. In a goal oriented proof, the proof goal is decomposed
into subgoals with tactics or tacticals which are combinations of tactics. A tactic
matches a goal or a subgoal with an axiom or a proven theorem. A goal is solved
when there are no more subgoals to be proven; the goal itself or all of its subgoals
are matched with axioms or theorems. Proven theorems can be stored in theories
for future use [23].

The extensibility of HOL is enabled by the separation of the meta language
and object language. HOL is written in the programming language ML (Meta
Language) which is a functional language, designed by the same creator as the
original LCF system. ML is strictly typed to implement type checking. The sepa-
ration of the meta language (ML) and object language (HOL) allows the logic to
be extended. New proof procedures can be developed through ML and theories
can be added to HOL. HOL supports the development of application specific tools
[23] — in this case, the application specific constructs become the object language
and HOL becomes the meta language. There is research to embed hardware de-
scription languages into formal logics to give formal semantics to these languages

14

[24]. Lastly, HOL can be extended by dynamic loading and calling of external C
functions, a feature provided by ML [25]. This allows HOL to harness the power
of other verification tools.

HOL is used in hardware verification to model specifications and implementa-
tions. An implementation can then be reasoned about with HOL. For example, an
implementation can be proven to conform to a specification, and if the specification
can be proven to satisfy a property then we can say the implementation also sat-
isfies the property. To facilitate pipeline verification in HOL, we have established
a connection between Bluenose II and the HOL system, and from HOL to other
verification tools. Bluenose II generates HOL script based on the pipeline design
entered by the user. The user can then reason about the design with HOL and
its extensions. In this thesis, we focus on the connection between Bluenose II and
HOL because the Bluenose II connections from HOL to external tools are not fully
mature.

2.5 Bluenose I

Bluenose I is the predecessor to Bluenose II. Bluenose II builds on the same math-
ematical model (described in Section 2.1) as Bluenose I. As the main purpose of
both tools is to provide a means to manipulate the mathematical model, they have
the components that a designer uses to build a pipeline. However, many differ-
ences exist between these two tools in how the designer uses and manipulates the
components.

The language of implementation is one reason for the differences. Bluenose I
was implemented in Moscow ML, which is a functional language [25]. Bluenose II
was implemented in Java, which supports the object-oriented paradigm. Another
reason for the differences was the different approach to the development of the two
tools. The model driven development approach was adopted for the development
of Bluenose II as described in Section 2.2. This has led to the definition of a more
explicit pipeline model, which is described in Section 3.2. This explicit pipeline
model did not exist in Bluenose I.

The verification task is delegated to third party tools in both Bluenose I and
Bluenose II. Bluenose I generates queries for Cadence FormalCheck, a commer-
cial model-checking tool. The queries are used to assert certain properties in the
pipeline design. On the other hand, Bluenose II generates a HOL script that mod-
els the user’s pipeline design. The designer can then reason about the pipeline
design in HOL. We have chosen to integrate HOL and Bluenose II because HOL
offers a general purpose verification environment which can be extended with other
verification tools.

Some features in Bluenose I are improved in Bluenose II. More basic editor
functionalities such as file management are enabled in Bluenose II due to the
Eclipse platform and its plug-ins. The VHDL code generation is also improved

15

in Bluenose II. The differences between Bluenose II and Bluenose I listed in this
section are an overview. The specific changes between Bluenose II and Bluenose I
are discussed in detail in corresponding sections.

2.6 Related Work

Due to the enormous amount of detail in the register transfer level (RTL) of hard-
ware design, many languages and tools have been created to raise the level of ab-
straction to different degrees. The abstraction increases the designer’s productivity
by showing only the details of interest. The abstraction level where system design
and verification are carried out is also known as the electronic system level (ESL)
[5]. These languages and tools model different aspects of the hardware architec-
ture ranging from the behaviour to the structure. They also represent the models
in different ways, from visual to textual. Although they all serve the purpose of
capturing certain aspects of the architecture, some are meant only for simulat-
ing functionalities, some for design space exploration and some generate RTL that
produces hardware with comparable performance as the hand-written RTL. In the
latter case, these tools are also called high-level synthesis (HLS) tools. In this
section, we discuss a subset of this work most related to Bluenose II and PipeNet .

The block based approach taken by Bluenose II is employed by many commercial
and academic tools, be they graphical or textual. They include Mentor Graphics’
HDL Designer [26], Altera’s Quartus II [27] and the X language [28], to name a
few. This is not surprising as hardware designers often used blocks as a high level
representation to describe and visualize different entities and their relationship to
each other. In Bluenose II, the purpose of the blocks is more than just to hide the
details, the blocks represent elements in the PipeNet model and their identities are
used for different types of analysis. In this model driven development aspect, MCF
[29] and MMV [30] are very similar to Bluenose II.

The Metamodeling-driven Component Composition Framework (MCF) is devel-
oped by Mathailkutty et al. to harness the power of a metamodel based framework
to create system-level models [29]. In MCF, the user creates a design by instantiat-
ing, configuring and connecting components which represent SystemC intellectual
property (IP) cores. MCF then checks for inconsistencies in the model and gen-
erates the appropriate glue-logic for the components. The Metamodeling Based
Microprocessor Validation Environment (MMV) is also developed by Mathailkutty
et al. [30]. MMV is a validation environment based on metamodeling. In MMV,
the user models the design at the system level and continually refines it to a lower
abstraction. The user specifies the models in each abstraction level using the respec-
tive MMV metamodels. MMV then generates code for specific validation targets
based on the translators customized by the user.

A metamodel is characterized by the domain concepts that it can express. The
MCF metamodel allows the modeling of system-level components for design space

16

exploration. On the other hand, the MMV metamodel is intended for micropro-
cessor validation and provides specialized elements such as Pipeline, Stages and
instruction registers. While PipeNet focuses on the modeling of pipelines, it can
also be used to describe system-level components. Furthermore, PipeNet is in-
tended to be used in both design and verification. There appears to be no direct
mapping between the MCF and MMV metamodels.

Bluenose II, MCF and MMV are similar in a number of ways. The tools pro-
mote model driven development. MCF and MMV are both built on a metamodeling
framework called the Generic Modeling Environment (GME) [31] which is much like
GMF to Bluenose II. GME, like GMF, is a toolkit for creating visual domain specific
languages. Instead of Ecore, the metamodel is specified in UML [32]. The compo-
nent model of GME is built upon Microsoft’s technology; therefore, although Java
access is available, its primary languages of integration are C++ and Visual Basic.
The metamodels in these tools impose structural constraints on the construction of
the model. MCF and MMV enforce additional constraints on the static semantics
of the model by checking the model against rules specified in the Object Constraint
Language (OCL) [33]. As GMF has built-in support for OCL and other validation
facilities, our future work includes providing additional validation in Bluenose II to
guide the designer in the modeling process.

The differences between Bluenose II, MCF and MMV are as follows. The in-
fluence of SystemC can be seen in the metamodel used by MCF. For example, the
type Argument is used in MCF for representing arguments in a function call at
transaction level in SystemC. Although the design of Bluenose II’s PipeNet is in-
spired by some constructs in VHDL, we are confident that the concepts in PipeNet
are universal to hardware design languages. The models specified in PipeNet are
independent of implementation language. As a result, we can easily implement a
generator that walks through the model and outputs a different language. The
HOL generator in Bluenose II is an example of one such generator. It is not clear
whether MCF can easily be extended to support other languages or not. In this re-
gard, MMV is more similar to Bluenose II, since it stresses a language-independent
representation to enable multi-target code generation.

Type mismatch between ports in a connection is handled differently between
Bluenose II and MCF. Bluenose II generates a conversion function template for
the designer to implement when a type mismatch is encountered. MCF labels any
type mismatch as a type conflict that needs to be fixed. Furthermore, MCF only
supports a fixed set of C++ and SystemC types and does not support composite
and user defined types. On the contrary, composite and user defined types are used
extensively in Bluenose II. Type handling in Bluenose II is discussed in detail in
Section 3.6.

Besides its use in the specification of other domain specific languages such as
the ones used in MCF and MMV, the direct application of UML in ESL design
has also been studied by Mueller et al. [34]. The UML notation defines a set of
diagrams that are used to describe the structure or behaviour of a system [32].

17

Not all of UML’s modeling capabilities are useful in hardware design. Most tools
support a subset of UML that is applicable to the respective domains that are being
modeled. A tool may further customize UML for its domain through profiling. From
the perspective of a metamodel designer, using a DSL design tool such as GMF
may be more straightforward than creating UML profiles and defining constraints
on them.

Architecture description languages (ADL) have been used for fast prototyping,
design verification as well as hardware synthesis [35, 36]. An ADL models the
structure, behaviour or both of a hardware architecture. Mishra et al. used the
EXPRESSION ADL to capture the structure and behaviour of processor architec-
tures [35]. The EXPRESSION ADL allows the user to model processor specific
elements such as a pipeline connection and datapath which transfer instruction
and data respectively. EXPRESSION has a Lisp like syntax. The structure is
specified as a net-list while the behaviour is captured through the description of
the instruction set. The mapping between the structure and the behaviour is also
captured in EXPRESSION. From the description in EXPRESSION, its associated
tools generate a software toolkit which includes architecture-sensitive compiler and
simulator. The software toolkit facilitates the design space exploration. However,
there is no support for RTL generation from EXPRESSION. Although the pipeline
modeling capabilities between PipeNet and EXPRESSION are similar, EXPRES-
SION focuses on processor design while PipeNet and Bluenose II have a broader
scope that covers general hardware design. PipeNet has a tighter link with the
actual implementation (each block in the model is associated with an implementa-
tion) than EXPRESSION. In this regard, the nML ADL which has been extended
by Target Compiler Technologies [36] is more similar to PipeNet . This version of
nML can be used for hardware synthesis. It is in our future work to provide sim-
ulation support for PipeNet similar to the one for EXPRESSION by connecting
Bluenose II to third party tools.

The X language describes the structure of the system and is used in the Auto-
Pipe framework. The framework facilitates the exploration of a design space which
may include heterogeneous devices such as processors and FPGAs [28]. X supports
a hierarchical description of blocks. In X, a block may be directly tied to an imple-
mentation which may be specified in C and/or VHDL. The Auto-Pipe framework
generates code for communication between blocks which are written in either C or
VHDL. On the other hand, Bluenose II provides the designer a library of specialized
blocks to describe the control circuitry of the hardware and generates VHDL code
based on the structure described with PipeNet . Although the Auto-Pipe frame-
work supports the description of the pipeline topology, this support is limited to
the description of the connectivity of the components.

Bluespec is a high level language based on guarded actions [37]. Its approach is
referred to as operation-centric which contrasts the RTL description which is state-
centric. The behaviour of the hardware is specified through a set of rules which
change the states of the hardware when their conditions are met. The application of
each rule is assumed to be atomic. The operation-centric model underlying Bluespec

18

nondeterministically selects one of these enabled rules to execute in one step. As a
result, a sequence of atomic application of state transition rules is produced. This
atomic and sequential execution semantics allows the designer to specify each rule
as if the rest of the system were frozen. While this model eases the verification of
the design, its literal translation will create an extremely slow hardware. A special
compiler is used to synthesize an RTL description which allows non-conflicting rules
to execute in parallel. In other words, it generates the arbitration and control logic
to coordinate access to shared resources. Bluespec has Haskell-like syntax and
Haskell’s functional language features are leveraged. Bluespec requires the user to
design hardware with a different mindset [38]. In the initial design, the Bluespec
can be translated directly from the instruction set architecture manual. However,
the time gained may be offset by the time spent to optimize the design through
manipulating the rules to generate RTL with competitive performance. PipeNet is
different from Bluespec in a number of ways. PipeNet offers the designer a library
of components to describe the arbitration and control logic. The structures and
behaviours of these components are well understood.

Ptolemy II is a modeling tool that has a long history [39]. It supports a rich
set of computation models. It is especially designed to handle the composition of
heterogeneous models. Embedded system is an example where multiple models are
often needed to describe its total behaviour. Although these models of computation
can be used to specify hardware and pipeline design and RTL can be generated from
these models, typical hardware engineers may not be familiar with their syntaxes
and semantics. On the other hand, the PipeNet model is intuitive to designers
because it is expressed in terms of hardware and pipeline concepts.

The frameworks described in this section automate different aspects of the de-
sign and verification processes. At one end of the spectrum, the glue logic be-
tween the structural components are generated automatically (MCF and the X
language); at the other end of the spectrum, almost the entire design is auto-
matically generated from the instruction set architecture (Bluespec). Bluenose II
strikes a middle ground between the glue logic auto-generation and full design au-
tomation. In Bluenose II, the datapath implementation has to be provided by the
designer and the control circuitry is built with the components selected from a li-
brary provided by Bluenose II, called PipeLib. These components correspond to
the ones described in Section 2.1. These components not only describe the struc-
ture of the pipeline, they also describe its behaviour. The ability to characterize a
pipeline with the components is not present in the frameworks that automate the
generation of glue logic. The components provided by these frameworks generally
represent hardware components such as the splitter in MCF which is synthesized
into a multiplexer in RTL. Another advantage of Bluenose II’s “middle” approach
is that it is easier for the designer to predict the hardware that will get generated
from the model. Reusable hardware components from PipeLib provide tight links
between the model and the implementation (but the model remains implementation
independent). This knowledge helps the designer to optimize the performance if
needed. Our case study (Section 6.3.1) indicated that the performance of the code

19

generated by Bluenose II is comparable to that of the handcrafted code.

2.7 Summary

In this chapter, we presented the pipeline model used in Bluenose II which is based
on Aagaard’s verification framework. We introduced the Model Driven Architecture
(MDA), a model driven development framework proposed by the Object Manage-
ment Group (OMG). In the process, we explained related concepts such as meta-
model and domain specific language. The model driven development approach was
adopted through the use of Eclipse Graphical Modeling Framework (GMF). Follow-
ing the description of GMF, we described HOL, a high order logic theorem prover
that was connected to Bluenose II to be used as a verification environment. Lastly,
we related and contrasted Bluenose II to related work after a comparison with its
predecessor, Bluenose I.

In the rest of this thesis, we describe how pipeline design and verification are
carried out in Bluenose II and how their respective features were implemented
(Chapter 3 and Chapter 4). These features were implemented using data structures
that represent the pipeline model. These data structures and their implementation
are detailed in Chapter 5. Finally, a case study based on the implementation of
an OpenRISC processor is presented in Chapter 6 to demonstrate the value of
Bluenose II.

20

Chapter 3

Pipeline Design with Bluenose II

Traditionally, pipeline designs are sketched out in block diagrams with blocks rep-
resenting pipeline stages and arrows representing different types of connections.
The design is then refined and implemented using hardware description languages
(HDLs) such as VHDL and Verilog. The design described in a hardware descrip-
tion language is then simulated, synthesized, placed and routed, and analyzed for
timing. Depending on the methodology, verification on the design may happen at
different points of the design flow. Under time-to-market pressure, it is important
to not only get the designs out quickly but also to get the correct designs. An
incorrect design will not only cost millions of dollars to respin or recall, it will also
damage the company’s reputation. This chapter will show how Bluenose II helps
designer to quickly produce pipeline designs that are functionally correct.

The chapter is organized as follows: An overview of Bluenose II is given in Sec-
tion 3.1. Section 3.2 describes PipeNet , the pipeline metamodel used in Bluenose II.
Section 3.3 puts the different modules of Bluenose II in the context of the design
flow. The rest of the chapter is devoted to the details of the individual modules
in Bluenose II. Section 3.4 describes the graphical user interface of Bluenose II.
PipeLib, a cell library used in VHDL code, is presented in Section 3.5 which leads
to the discussion of the process of generating VHDL code in Section 3.6.

3.1 Overview

The mathematical model of pipeline described in Section 2.1 guides the pipeline
designers in their designs by providing them a template for control circuitry (how
the parcels are requested and accepted in each pipeline stage); thereby allowing the
designers to focus on the datapath and reducing the design time overall. Bluenose II
takes a step further by taking the design and generates the corresponding VHDL
code and verification scripts.

Continuing Bluenose I’s effort to simplify the creation of pipelined circuits,
Bluenose II aims to improve upon the subgoals set by Bluenose I [12].

21

1. The tool should provide a pipeline designer with a quick, easy and intuitive
approach to manipulate the mathematical model described in Section 2.1.
This translates to a tool that allows a pipeline designer to quickly and easily
create and modify the design of a pipeline.

2. The tool should be able to generate synthesizable VHDL code from the user’s
pipeline design. The user should not need to edit the generated code before
using the next standard tool in the design flow process.

3. The generated VHDL code should not suffer any significant decrease in per-
formance (or increase in area) when compared to a custom pipelined circuit.

4. The tool should allow the user to describe a wide range of pipelined circuits.

5. The tool should provide the user with a convenient, logical, and efficient
manner to resolve pipeline hazards.

We will see how these goals are met in Bluenose II as we describe the different
modules in the following sections. Figure 3.1 shows the modules that make up
Bluenose II. Table 3.1 describes the specific functionality performed by each module.
Since HOL scripts are used in the pipeline verification, the HOL generation module
is described in Section 4.2. As we present the modules, we will also discuss the
improvement in Bluenose II from Bluenose I. To put the modules in the context of
the design flow, Section 3.3 describes the typical design flow in Bluenose II.

3.2 PipeNet

PipeNet is a pipeline metamodel for structural hazards based on Aagaard’s veri-
fication framework [11]. Figure 3.2 shows a simplified version of PipeNet in class
diagram notation. The operations of the classes are not shown. The numbers on
the two ends of each relationship (composition or association) indicate the numbers
of instances of each class that are allowed to participate in the relationship. For
example, a PipeStage object must have only one Arbiter but it can have zero or
more instances of Register . The multiplicities of instances of each class in all the re-
lationships are based on the pipeline model from Aagaard’s verification framework
as explained in Section 2.1.

A pipeline model in PipeNet starts with a Pipeline element. A Pipeline consists
of PipeStages, MemoryArrays and Custom Blocks. Each PipeStage is composed
of components that describe its datapath and control circuitry. The Datapath of a
PipeStage may include a Pipeline element to describe a hierarchical pipeline design.
All the elements in PipeNet contain Ports and Generics. Each connection between
two Ports is represented by a Connection element. Connections are not explicit in
Aagaard’s pipeline model. The decision to model connection this way is discussed
in Section 5.1.

22

PipeLib (VHDL)

PipeLib (HOL)

Graphical

User

Interface

HOL

Script

Bluenose

Core

HOL

Generation

VHDL

Generation

VHDL

Parser

VHDL

Code

HOL and

Extensions

Simulator

and

Synthesizer

Legend

Third Party

Tool

Bluenose

Module

Figure 3.1: The main modules of Bluenose II

Table 3.1: Description of main modules in Bluenose II

Bluenose Core Contains the main data structures and the functions for
manipulating those data structures. Interacts with all
other modules.

VHDL Parser Third party parser included in the Signs plug-in [40]. It is
used by Bluenose II to parse a VHDL entity and convert
it into the internal data structures used by the core. The
Signs module also provides an VHDL editor used by the
graphical user interface to display VHDL code. Discussion
on the Signs module will be limited to where it is due.

VHDL Generation Converts a Bluenose pipeline into synthesizable VHDL
code.

Simulator and Syn-
thesizer

External tools for simulating and synthesizing the VHDL
code.

PipeLib (VHDL
and HOL)

A set of libraries written in VHDL and HOL, based on the
representation of Section 2.1, used during the VHDL code
and HOL generation process.

HOL Generation Converts a Bluenose pipeline into HOL script.
HOL and
Extensions

The high order logic theorem prover and connections to
other verification tools through HOL.

Graphical User In-
terface

The graphical interface through which the user interacts
with Bluenose II. Pipeline design is saved from and loaded
into the graphical interface.

23

+name

+vhdlId

+implFiles

Pipeline

+name

+vhdlId

+implFiles

PipeStage

1

0..*

+name

+portType

+direction

Port

+name

+genericType

+value

Generic

1

0..*

+name

+vhdlId

+implFiles

+arbiterType

Arbiter

+name

+vhdlId

+implFiles

+mkRAType

MkRA

+name

+vhdlId

+implFiles

InterfaceNext

+name

+vhdlId

+implFiles

InterfacePrev

+name

+vhdlId

+implFiles

InterfaceNextReqAcc

+name

+vhdlId

+implFiles

Datapath

1

1 1
1..* 1..* 1

1

Connection

+src

1

+outgoingConnections

0..*

+name

+vhdlId

+implFiles

MemoryArray

1
0..*

+dst

1

0..*

+incomingConnections

1 1

1 1
1

1

1

0..*

1 1
1 1 1

1

1

1

1

1

PipeNet

0..1

0..1

Legend

Container

Class

Item

A B+A's role in B

Composition

Relationship

Association

+name

+vhdlId

+implFiles

CustomBlock

0..*

1 1

1

0..*

+name

+vhdlId

+implFiles

Register

0..*

1 1

<Operations>

<Attributes>

1

0..1

Figure 3.2: PipeNet

24

A well defined pipeline metamodel provides enough structure and constraints
that there is benefit and enough freedom for designers to create the pipelines that
they want. The pipeline metamodel was implicit in Bluenose I. For example, it was
implied that a composition of Aagaard’s framework parameters such as Arbiter and
MkR/A represents a pipeline stage and the composition of the stages represents
a pipeline. The implicit pipeline metamodel in Bluenose I can be considered a
prototype of PipeNet . Higgins showed that the implicit pipeline metamodel used
in combination with a graphical user interface simplified the design and verification
of pipelines [12].

By identifying and making explicit the important elements in the pipeline meta-
model, we capture information that we can use to reason about the design. For
example, PipeNet shows that a PipeStage contains only one Arbiter or conversely,
a PipeStage with more than one Arbiter is not allowed in the pipeline model.
Constraints beyond the ones captured by the metamodel can be added through
languages like OCL [33] if the metamodel is expressed in a MOF-based language.
An example is the constraint of not allowing more than one connection to the
PipeStage when a Degenerate Arbiter is selected. This is possible because we can
identify PipeStage and Arbiter in the model. In addition to making Pipeline and
PipeStage explicit, we added MemoryArray and Custom Block , which did not exist
in Bluenose I, to further increase the expressiveness of PipeNet . Although there
is no mathematical model or standard implementation file associated with these
blocks, we want to enforce the differentiation between the different types of blocks
(memory, pipeline stage and components) as a guide towards a correct pipeline
design.

While it is important for the pipeline metamodel to capture the constraints
that are present in a pipeline, it should also be expressive enough for the designers
to create the design that they want. Aagaard was able to characterize a number
of commercial microprocessors with his verification framework which PipeNet is
based on [11]. By transitivity, this indicates PipeNet ’s capability to express new
designs. Furthermore, Higgins created a reasonably complex pipeline [12] with the
“PipeNet prototype” so we expect that PipeNet can be used to express a wide
range of pipelines. In addition to pipelined circuits, PipeNet ’s hierarchical block
design should be able to support circuits of other topologies, since any circuit can
be described with blocks and connections between blocks. This hierarchical block
design is inspired by the modular nature of the mathematical model.

As explained in Section 2.2, since a model represents the concepts from a do-
main, therefore the metamodel for that model provides a modeling language for
that domain. In this way, a metamodel can also be considered a domain specific
language (DSL). In the case of PipeNet , it is a language for describing the struc-
ture and behaviour of a pipelined circuit. Benefits that are associated with domain
specific languages such as domain specific error checking, can be gained with a tool
designed for PipeNet , that is Bluenose II. Through PipeNet and Bluenose II, we
offer a means to manipulate the mathematical model described in Section 2.1. In
the rest of this chapter, we will describe the pipeline design process with PipeNet

25

in Bluenose II.

3.3 Design Flow in Bluenose II

This section outlines the design flow of Bluenose II. As we list the major steps, we
also name the associated modules to show how they fit in the broader scheme of
things.

Before the pipeline designer uses Bluenose II, we expect her to have already
partitioned the work into pipeline stages and to have an understanding of the
behaviour of each pipeline stage, e.g., an input signal from one stage has priority
over one from another stage.

Graphical User Interface: Through the palette on the graphical interface (shown
in Figure 3.3), Bluenose II provides a library of components from which the designer
selects, drags and drops onto the diagram editor. A stage template with standard
components is also provided to the designer through the palette. After the designer
has placed the pipeline stages and components on the diagram editor, she then
connects them through their ports. The behaviours of the elements (e.g., type of
Arbiter) in the pipeline model are configured through the Property View of the
graphical interface. The designer can save the diagram at any time during the
process of the design capture. For the Datapath component, the designer has to
associate an implementation written in VHDL with the component by setting its
Impl Files property. This can be done in two ways. The designer can set the Impl
Files property of the Datapath component with the VHDL file in the Property
View. Or, the VHDL file can be dragged from the package explorer (shown on the
left of Figure 3.3) and dropped onto the Datapath component directly.

VHDL Parser : When a VHDL file is dragged and dropped onto a component,
the VHDL entity is automatically parsed by the VHDL Parser to extract the
generics and ports for the component. The port type information is also extracted
in this step while the port types for the standard components (MkR/A, Arbiter
etc.) are pre-defined. The VHDL Parser comes from a third party plug-in called
Signs [40], Bluenose II extracts information from the resulting abstract syntax tree.

VHDL Generation and HOL Generation: The last steps are to generate VHDL
and verification scripts from the pipeline model. During the generation processes,
standard components are instantiated from the respective PipeLib’s. The graphical
user interface displays VHDL code in the VHDL editor provided by the Signs plug-
in, which has features like syntax highlighting [40].

In the following sections, we will discuss the individual modules in details.

26

Property View

Diagram
 Editor Outline View

Palette

Figure 3.3: Bluenose II screenshot with labels

3.4 User Interface

In this section, we give an overview of the user interface and discuss some of the
strategies that we employed to make it user friendly. Refer to Figure 3.3 for the
different graphical interface parts mentioned in this section.

Essentially, we want to make Bluenose II a tool that allows the designer to visu-
alize and manipulate graphically the mathematical model described in Section 2.1.
PipeNet provides the syntax to describe the mathematical model and Bluenose II
implemented this syntax. In Bluenose II, graphical representations of the elements
in PipeNet are selected from a palette. The pipeline designer creates her pipeline de-
sign by creating pipeline stages, dragging and dropping components from a palette,
configuring the components and finally connecting the individual components and
stages through the ports.

User friendly features are implemented in Bluenose II’s user interface to speed
up the design process. In addition to the components mentioned in Section 3.2, the
palette also provides a pipeline stage template which contains standard components
and connections. The graphical interface also provides a means for the designer to
edit component properties, for example, to select the type of an Arbiter . The
behaviour of a pipeline stage can be easily modified through changing the types of
its components. The ease of modifying the behaviour of a pipeline stage facilitates

27

design exploration.

We aim to make Bluenose II’s graphical interface as intuitive as possible to
make it easier to capture the designer’s intent. The use of block and arrow figures
to represent pipeline stages and various kinds of connection is natural to pipeline
designers. The block representation of the components also abstracts away low level
mechanisms. For example, at the design entry phase, it is enough to understand
the purpose of a StaticPriority Arbiter instead of its detailed implementation. Fur-
thermore, we made an effort to create a graphical representation that resembles a
hardware schematic so a Bluenose model can double as a design document.

We also strive to develop Bluenose II into a “full-featured” graphical editor
with features such as saving and loading designs, file management, save to image,
zoom in/out etc. that designers expect from commercial visual development tools.
We have harnessed third party tools (the Eclipse platform, GMF’s graphical editor
code generation and Signs) to provide and implement these functionalities while we
focus on designing the pipeline metamodel and implementing the pipeline logic and
Bluenose core. Development with these tools and the implementation of Bluenose
core are discussed in Chapter 5.

3.4.1 Reducing Clutter

The design area (diagram editor) of Bluenose II by default shows a flattened view of
the pipeline with all the stages and all the components inside them. This approach
has both an advantage and a disadvantage. The advantage is that the designer
can view the entire design without traversing the different hierarchies, the disad-
vantage is that the design area becomes cluttered, especially with all the ports and
connections between components and stages. We improved the clutter by reducing
connections with the use of VHDL record types, which led to changes in PipeLib
(Section 3.5) and the VHDL generation (Section 3.6).

Essentially, each connection in the Bluenose II model represents a signal as-
signment. By grouping stage inputs/outputs into record types, they are now only
represented as one connection in the Bluenose II model. The use of VHDL record
types has led to some challenges in the VHDL generation which is described in
Section 3.6. The use of record type has led to some desirable side-effects such has
the ease in updating stage inputs and outputs. Instead of creating a new port and
a new connection (or removing a port and a connection) in the Bluenose II model,
the designer only has to add the new input/output as an element in the record type
definition and modify the conversion function (described in Section 3.6), which in-
volves only a few lines of VHDL. We have also built in various features to allow
graphical abstraction to “hide” the clutter when it is not needed. Designer can
collapse the compartment of a block to abstract away the children blocks when
they want to only see the high level view of the pipeline. Designer can also see the
high level view of the pipeline in the outline view.

28

3.4.2 Changes from Bluenose I

The graphical user interface has undergone significant changes from Bluenose I.
Although both Bluenose I and Bluenose II use hierarchical blocks to represent
pipelines, Bluenose II has a flattened view of the pipeline whereas in Bluenose I,
hardware designer has to traverse through the hierarchies to view the different
levels of abstraction, from the view of an entire pipeline to the content of individ-
ual pipeline stages. Similarly, the connection in Bluenose II represents individual
signal/port assignment whereas in Bluenose I, a connection between two blocks
(component to component, pipeline stage to component, stage to stage) represents
all the signal/port assignments between the two blocks. These changes are applied
with the reasoning that if no information is lost in the representation, we opt for
the simpler implementation. The “flattened” view in Bluenose II can be cluttered
in more complex design so we have implemented different ways for user to abstract
lower level details and make use of VHDL record types as described in previous
section.

In our effort to make Bluenose II into a “full-featured” graphical editor, we have
added more graphical user interface features that did not exist in Bluenose I, such
as file management, save to image (for printing), zoom in/out, auto-placement of
blocks, auto-routing of connections etc. We have also incorporated the VHDL editor
from Signs into Bluenose II with user friendly features such as syntax highlighting
for viewing VHDL codes.

3.5 VHDL PipeLib

In this section, we present PipeLib (VHDL) and discuss the changes that we made
to the original version for it to work with the updated user interface.

PipeLib is a library of the components described in Section 2.1 written in VHDL.
It was created by Higgins to be used with Bluenose I [12]. These components are
instantiated in the VHDL code generated by Bluenose I according to the user’s de-
sign. Different types of the same component have the same VHDL entity declaration
(hence the same port interface list) but different VHDL architecture bodies. This
allows the hardware designer to make changes to the stage’s behaviour by simply
changing the type of the component without having to change the wiring/connec-
tions. This is made possible by keeping the interfaces of the components of the
same type (e.g., a Degenerate Arbiter is the same type as a StaticPriority Arbiter)
the same. Bluenose II has reused the implementation of most of the components
in the library except for a few changes described in the following section.

3.5.1 Changes from Bluenose I

The original PipeLib uses generics to make the components more customizable.
Generics act as placeholders in the entity declaration and architecture body to

29

allow the specification of values such as the widths of the array signals and ports to
be delayed until the instantiation of the entity. While it is relatively straightforward
to calculate and specify these values with the original components, it requires some
thought to be used with VHDL record types (Section 3.4.1). In the rest of this
section, we describe the original components and explain why it is more difficult
to calculate and specify values for generic constants when VHDL record types are
involved.

In Bluenose I and the original PipeLib, all the signals and port are of the
standard-logic vector type (std logic vector), an array type for a vector of standard-
logic values. Therefore, using the values of generic constants to calculate the size
of any array is straightforward. For each pipeline stage, the designer only has to
specify the number of inputs, the number of outputs and the data width. These
values are then passed to the generics of the components. Therefore during the
VHDL generation, the instantiation of the components inside a pipeline stage is
fully automated.

The original Interface Prev component shown in Listing 3.1 is an example of
how generics are used to specify the sizes of array ports and the values for gener-
ate parameters. The number of inputs to the stage containing the Interface Prev
and the data width (line 3 and 4) are passed to the component and the signals
of appropriate sizes and appropriate structure are generated (lines 6-8, 15 etc.).
Generics allow the components in PipeLib to be re-used for different data widths
and numbers of inputs and outputs.

Listing 3.1: VHDL code for Interface Prev component

1 entity interfaceP is
2 generic (
3 numInputs : Integer := 1;
4 wordSize : Integer := 1);
5 port (
6 i_data : in std_logic_vector(((numInputs*wordSize)-1) downto 0);
7 i_select: in std_logic_vector((numInputs-1) downto 0);
8 o_data : out std_logic_vector((wordSize-1) downto 0));
9 end interfaceP;

10
11 architecture main of interfaceP is
12 signal data_and : std_logic_vector(((numInputs*wordSize)-1) downto 0);
13 signal data_or : std_logic_vector(((numInputs*wordSize)-1) downto 0);
14 begin -- main

15 single: if numInputs = 1 generate
16 o_data <= i_data;
17 end generate single;
18
19 dual: if numInputs = 2 generate
20 o_data <= i_data((wordSize-1) downto 0)
21 when i_select(0) = ’1’ else

30

22 i_data(((2*wordSize)-1) downto wordSize);
23 end generate dual;
24
25 multiple: if numInputs > 2 generate
26 gen1: for i in 0 to (numInputs-1) generate
27 gen2: for j in 0 to (wordSize-1) generate
28 data_and(i*wordSize + j) <= i_data(i*wordSize + j) and i_select(i)

;
29 end generate gen2;
30 end generate gen1;
31 gen3: for i in 0 to (numInputs-1) generate
32 gen4: if i /= 0 generate
33 data_or((((i+1)*wordSize)-1) downto (i*wordSize)) <=
34 getArrayElement(data_or, i-1, wordSize) or
35 getArrayElement(data_and, i, wordSize);
36 end generate gen4;
37 gen5: if i = 0 generate
38 data_or(((wordSize)-1) downto 0)<=getArrayElement(data_and,i,

wordSize);
39 end generate gen5;
40 end generate gen3;
41 o_data <= getArrayElement(data_or, numInputs-1, wordSize);
42 end generate multiple;
43 end main;

With the use of user defined record types in Bluenose II, we are faced with two
problems:

1. We can no longer directly connect the stage inputs/outputs (in user defined
record types) to the standard PipeLib components (ports in std logic vector).
Connecting these ports together will cause type conflicts. The original PipeLib
uses std logic vector because the VHDL generation module of Bluenose I
transforms all the ports and connections into std logic vectors.

2. Each stage input/output is now an element in a record type as opposed to
individual signals as in Bluenose I. PipeLib components such as Interface
Prev , Register and Interface Next used to be instantiated per stage input
or output; the sizes of their array ports and signals could be specified easily
using the values of generic constants. For Bluenose II, we have to consider
whether a modification to PipeLib is required.

Our solution is to auto-generate type conversion function templates for the
designer to implement and we modified the PipeLib components to use constrained
multi-dimensional arrays. The conversion functions are for converting between
the user defined record types and the types used in the PipeLib components. The
generation of conversion function templates is discussed in Section 3.6. As described

31

below, we arrived at the decision to use constrained multi-dimensional arrays from
a series of discoveries in the hardware description language.

Multi-dimensional Array vs. Array of Arrays

The use of VHDL record types has prompted a modification of PipeLib. Upon
a closer look, it was observed that the logics of most of the components could
remain the same. It was the entity declarations of the components that required
modification in order to be connected to signals of user defined record types without
conflict. To be more specific, the port types in the entity declarations had to be
made compatible with the user defined record types. When deciding on the right
port type, there were two points that we kept in mind:

1. The re-design of the PipeLib components should simplify their implementa-
tion.

2. With the original design of PipeLib, the designer has to enter only three
values for each pipeline stage (data width, number of inputs and number of
outputs). The new design should not require the designer to enter more values
than three or do any extra work.

A reason that it is more difficult to calculate values such as the data width when
user defined VHDL record types are involved is simply that, we cannot predict
how the user is going to define the record type. Therefore, we began by trying
unconstrained array ports since this type of port takes on the size of the signal
assigned to it. In a VHDL entity declaration, the sizes of array ports do not
necessarily have to be constrained. It is legal to have an unconstrained array port in
the entity declaration; the size is to be determined by the signal associated with the
port during the instantiation. Listing 3.2 shows an example where unconstrained
array ports (line 3 and 4) are associated with constrained array signals (line 14 and
15). The standard-logic vector type (std logic vector) is an array type for a vector
of standard-logic elements.

Listing 3.2: Unconstrained array ports in the entity declaration and instantiation

1 entity unconstrainedEntity is
2 port (
3 i_data : in std_logic_vector;
4 o_data : out std_logic_vector;
5 end unconstrainedEntity;
6 ...
7 -- within another architecture

8 signal data_in : std_logic_vector(31 downto 0);
9 signal data_out : std_logic_vector(7 downto 0);

10 begin
11 ...

32

12 -- Unconstrained ports take on the sizes of the array signals

13 ue : entity work.unconstrainedEntity
14 port map(i_data => data_in,
15 o_data => data_out);
16 ...

Originally we thought the record types would automatically be flattened into
std logic vectors during the elaboration (much like the struct data type in the
C programming language). Therefore, we made the array ports in the PipeLib
components unconstrained and expected that they would simply take on the sizes
of the flattened record types. It turned out that record types are not automatically
flattened even if all the elements inside them are std logic vectors. We solved this
problem by generating the conversion function templates, as a result we can assume
that signals associated with the inputs (outputs) of the PipeLib components will be
converted from (to) the user defined record types into (from) the types used by the
PipeLib components. A type conversion function is a subprogram in VHDL that
converts its input of a certain type into another type. We generate a conversion
function template complete with the parameter and return type so that the designer
only has to fill out the body of the function. The generation of conversion function
template is detailed in Section 3.6.

In the original PipeLib, all the components were implemented using std logic
vectors which is an one-dimensional array of standard-logic values(std logic). For
certain components in PipeLib, using two-dimensional arrays might simplify their
designs. Interface Prev is an example of a component which may benefit from
two-dimensional arrays. Interface Prev is essentially a multiplexer for selecting
a stage input when there is more than one upstream stage connected to the stage
containing the Interface Prev (see Figure 2.1). In Interface Prev , a two-dimensional
array can be used to access each stage input as an element instead of calculating the
indexes of each bit in the one-dimensional array as shown in Listing 3.1. A reason
that all the components were implemented with one-dimensional arrays was simply
that, multi-dimensional arrays were not supported by the synthesizer used during
the development of Bluenose I. During this re-design of PipeLib components, we
wanted to exploit the features of the synthesizer that were available to us. This led
us to investigate the similarities and differences between multi-dimensional arrays
and arrays of arrays.

Although conceptually, the structures of a multi-dimensional array and an array
of arrays are similar, declarations and the ways elements are accessed are very
different for the two array types. A multi-dimensional array type is declared by
specifying a list of index ranges. One or more indexes in a multi-dimensional array
type can remain unconstrained during declaration, whereas the type of the element
of an (constrained or unconstrained) array type cannot be an unconstrained array
type [41]. However, elements cannot be sliced in multi-dimensional arrays as in
arrays of arrays. The elements in a multi-dimensional array can only be accessed
element by element, with all indexes specified. Listing 3.3 and Listing 3.4 illustrate

33

the differences between the two array types. In both listings, the VHDL syntax for
type declaration is shown, so is the syntax to access elements 6 to 2 in row 1 in the
arbitrary arrays.

Listing 3.3: VHDL code for multi-dimensional array

-- Array type declared by specifying a list of index ranges

-- One or more indexes can remain unconstrained during declaration

type matrix_type is array (natural range <>, natural range <>) of
std_logic;

...
signal matrix : matrix_type(255 downto 0, 7 downto 0);
signal temp : std_logic_vector(4 downto 0);
...
-- Slicing not supported

-- Elements can only be accessed one by one, with all indexes specified

temp(0) <= matrix(1,2);
temp(1) <= matrix(1,3);
...
temp(4) <= matrix(1,6);

Listing 3.4: VHDL code for array of arrays

-- The element of an array type cannot be an unconstrained array type

-- Shown here, although the outer array type can be unconstrained, its

element type must be constrained

type two_d_array_type is array (natural range <>) of std_logic_vector(7
downto 0);

...
signal two_d_array : two_d_array_type(255 downto 0);
signal temp : std_logic_vector(4 downto 0);
...
-- Slicing supported

temp <= two_d_array(1)(6 downto 2);

In summary, there were three choices for the port types of the PipeLib compo-
nents: unconstrained multi-dimensional array, constrained multi-dimensional array
and constrained array of arrays. The advantages and disadvantages of each type
are further analyzed below.

A disadvantage with multi-dimensional array is that we cannot access consecu-
tive elements as a slice. An advantage is that we do not have to specify the index
ranges if the multi-dimensional array is unconstrained. As a result, the designer
does not have to enter any values for the generic constants. The unconstrained
array ports in the PipeLib components can simply take on the sizes of the signals
associated with the ports during the components’ instantiation. This further au-
tomates the pipeline design process. However with the array ports unconstrained,
if the ports were not assigned properly, these errors might not be detected during

34

elaboration. These errors may go undetected because the sizes of the signal and
the port are not checked and the port simply takes on the size of the signal. These
errors can be caused by the misunderstanding of how the ports should be assigned.
It was our experience that an error was only caught during simulation when the
hardware did not behave as expected.

With the use of array of arrays, if the signals associated with the ports in the
instantiation were of different sizes than the formal ports, the analyzer will signal
the error early in the design process (i.e., during elaboration), making it easier to
correct. As suggested by Ashenden, whenever the sizes of different array ports of an
entity are related, generic constants should be considered to enforce the constraint
[42].

Based on our experience with unconstrained types, we conclude that constrained
types provide more error checking than unconstrained types. The errors also make
it easier to locate the sources of some problems (e.g., a signal being assigned to
the port was not instantiated with the correct size) while these problems may go
unnoticed with an unconstrained type. However, we still need to decide which
constrained type to use, constrained multi-dimensional array or array of arrays.
We return to the second objective of the re-design of PipeLib components: the new
design should not require the designer to enter more values than three or do any
extra work.

An implementation that uses the constrained multi-dimensional array type and
one that uses the array of arrays type will most likely require the same generic
constants (number of inputs, number of outputs and data width of one element).
However, the multi-dimensional array type provides more flexibility. We can leave
the index ranges of the multi-dimensional array type unconstrained during the type
definition and constrain these ranges accordingly for each port that uses the array
type in the entity declarations of the components. For the array of arrays type, the
range of the element type must be specified during the type definition.

Based on the analysis, we decided to use constrained multi-dimensional array
types for the ports of the PipeLib components. Listing 3.5 shows a code frag-
ment of the new implementation of Interface Prev (in contrast to Listing 3.1).
std logic matrix in line 6 is our implementation of a two-dimensional array type
based on the constrained multi-dimensional array type. We implemented a utility
function, to std logic vector (lines 16 and 20), to be used with the custom two-
dimensional array type to access a “slice” of the array. The function helps us to
achieve the same simplicity as using the array of arrays type.

Listing 3.5: Revised VHDL code for Interface Prev component

1 entity interfaceP is
2 generic (
3 numInputs : integer := 1;
4 dataSize : integer := 8);
5 port (

35

6 i_data : in std_logic_matrix((numInputs-1) downto 0, (dataSize-1)
downto 0);

7 i_select: in std_logic_vector((numInputs-1) downto 0);
8 o_data : out std_logic_vector((dataSize-1) downto 0));
9 end interfaceP;

10
11 architecture main of interfaceP is
12 signal data_and : std_logic_vector(((numInputs*dataSize)-1) downto 0);
13 signal data_or : std_logic_vector(((numInputs*dataSize)-1) downto 0);
14 begin -- main

15 single: if numInputs = 1 generate
16 o_data <= to_std_logic_vector(i_data, 0);
17 end generate single;
18
19 dual: if numInputs = 2 generate
20 o_data <= to_std_logic_vector(i_data, 0) when i_select(0) = ’1’ else
21 to_std_logic_vector(i_data, 1);
22 end generate dual;
23 ...

In this section, we presented PipeLib, a library of components written in VHDL
based on the ones in Aagaard’s pipeline model. The types used in the original
PipeLib components are likely incompatible with the record types defined by the
user in Bluenose II. As part of the effort to resolve the type conflicts, we rewrote
the PipeLib components to use constrained multi-dimensional arrays. Although we
did not eliminate the use of generics through our choice of array types as we had
hoped, we eliminated the need for the designer to manually specify the values for
the generics by using VHDL attributes. The technique is described in Section 3.6.

3.6 VHDL Generation

Bluenose II generates VHDL code based on the pipeline design entered by the
designer. The VHDL generation functionality aims to integrate Bluenose II into
existing design flows. The user first designs the pipeline and generates the corre-
sponding VHDL code in Bluenose II, then uses any simulation and synthesis tools
that she is familiar with to simulate and synthesize the design. This section out-
lines the VHDL code generation process and highlights the improvement in the
generated VHDL code.

A pipeline model created in Bluenose II conforms to PipeNet . The model can be
viewed as a tree with each node representing a block (pipeline, stage, memory array
or component). Children of a parent node represent blocks that are instantiated
in the block represented by the parent node. In other words, a parent block is
implemented by its children blocks. A “leaf block” is a block that does not have

36

any children because it has already been associated with an implementation (VHDL
files). A tree view of a Bluenose II pipeline model is illustrated in Figure 3.4.

The VHDL generation module performs a depth-first traversal of the tree. It
starts at the root of the pipeline model which is the pipeline block, then it keeps
expanding the first child block in the list of children blocks that it encounters (in
the case of the pipeline block, the children blocks can be pipeline stages, mem-
ory arrays and custom blocks) until it reaches a leaf block. Since a leaf block is
associated with an implementation, there is no need to generate entity declara-
tions or architecture bodies for these blocks. All there is to do with these blocks
is to instantiate their associated entities in the enclosing architecture bodies when
the processing backtracks to their parent blocks. In turn, when the processing re-
turns to a parent block, entity declaration and architecture body are generated for
the block in addition to its instantiation in its enclosing architecture bodies. The
pseudo-code in Listing 3.6 shows the logic of the VHDL generation module. The
VHDL generation module performs a depth-first traversal of the hierarchical blocks
in the design recursively.

Pipeline

Memory

Array

... ...

Pipeline

Stage 0

Arbiter

Pipeline

Stage 1

MkRA
Interface

Prev
Arbiter MkRA

...

Figure 3.4: A tree view of a Bluenose II pipeline model

Listing 3.6: Pseudo-code for VHDL generation

generateVHDL(currentBlock)
{
// getChildrenBlk returns a list of the children blocks in currentBlock

// childrenBlockList is empty if currentBlock is a leaf block

childrenBlockList = getChildrenBlk(currentBlock);

if(childrenBlockList is not empty)
{
for each childBlock in childrenBlockList
{
generateVHDL(childBlock); //recursive function

}

37

// Generate entity declaration for currentBlock

traverse all the ports of currentBlock to generate entity declaration
for currentBlock;

// Generate architecture body for currentBlock

Instantiate all the signals based on the connections between children
blocks;

Instantiate all the children blocks and assign signals to their ports
;

}
}

The choice of the traversal algorithm is inherited from the previous version of
the VHDL generation module. The earlier version of the module generated only
one file that included all the VHDL code. For the VHDL file to be synthesizable,
entities have to be defined (with entity declaration and architecture body) before
they can be instantiated in another enclosing architecture body. In other words, the
children blocks have to be declared before they can be instantiated in the parent
block. The current version of the VHDL generation module generates one file per
block (except “leaf block”). Therefore, it can be implemented with either breadth-
first or depth-first traversal. For the rest of the discussion, we will only refer to the
implementation with depth-first traversal.

3.6.1 Conversion Function Templates

During the generation of component instantiations and signal assignments, if the
port types of the source and destination ports are different, a conversion function
template is added to the generated VHDL library file for the designer to implement.
Interfacing the stage input which is a user defined record type with the PipeLib
components whose ports have pre-defined types, is an example where the types of
the source and destination ports are different (Section 3.5). The conversion function
templates allow us to auto-generate the VHDL code without knowing the content
of the user defined record types. The designer does not have to edit the generated
VHDL which can be error prone. The designer should already be familiar with the
record types that she defined so implementing the conversion functions should not
pose any problems. Figure 3.5 shows a stage with the components inside. The port
names and their types (shown as component name.port name: port type) “along”
the chain of components enclosed in the box on the left of the stage are shown on
the leftmost of Figure 3.5. An arrow between two port indicates that the port types
of the source and destination ports are different and require a conversion function.
On the other hand, an equal sign indicates that the two ports types are the same
and conversion function is not necessary. It can be seen that type clashes between
the source and destination ports are common in a typical stage.

Listing 3.7 illustrates an example of a conversion function for converting from a
record array type to a multi-dimensional array type. Bluenose II users will usually

38

encounter this type of conversion functions in their designs. To transform an array
of record type elements into a constrained two-dimensional array, the designer would
generally need the following:

1. another conversion function to convert the array of record type elements into
a std logic vector (which constitutes a row in the two-dimensional array) (line
5 and 10 in Listing 3.7)

2. nested loops to assign values from the std logic vector to elements in the two-
dimensional array (lines 7 to 12) since slicing of a multi-dimensional array is
not supported as explained in Section 3.5

3. VHDL attributes to specify the widths of the signals in the function so they
are scalable and do not have to be hard-coded (lines 5, 7 and 8)

Figure 3.5: Conversion functions for a stage

39

Listing 3.7: Function for converting from record array type to multi-dimensional
array type

1 function to_std_logic_matrix (
2 input_vec : fetch_input_vector)
3 return std_logic_matrix
4 is
5 variable temp_matrix : std_logic_matrix(input_vec’range,

to_std_logic_vector(input_vec(0))’range);
6 begin --to_std_logic_matrix

7 for vec_slice_index in temp_matrix’range(1) loop
8 for vec_bit_index in temp_matrix’range(2) loop
9 temp_matrix(vec_slice_index, vec_bit_index) :=

10 to_std_logic_vector(input_vec(vec_slice_index))(vec_bit_index);
11 end loop; -- vec_bit_index

12 end loop; -- vec_slice_index

13 return temp_matrix;
14 end to_std_logic_matrix;

Conversion functions are used to automate the specification of values for the
generics in the VHDL generation. To eliminate the need for designers to manu-
ally specify values for the generics, the VHDL generation module automatically
generates VHDL attributes. As mentioned in Section 3.5, some of the PipeLib
components use the values associated with the generic constants to constrain the
sizes of their array ports and internal array signals. We assign the correct values by
passing attributes such as array length as arguments to the generics in the generic
association lists in the component instantiation statements. If the signals to which
the attributes are applied are not std logic vectors, the signal is first converted into
a std logic vector using the user defined conversion function. An example of generic
values computed using conversion functions and attributes is shown in Listing 3.8
where if0 o nPC and if0 o if0 are a record and an array of record respectively.

Listing 3.8: Generic map in entity declaration

if0_inst : entity work.if0
generic map (
numInputs => 2,
numOutputs => 1,
dataSize_in => to_std_logic_vector(if0_o_nPC)’length,
dataSize_out => to_std_logic_vector(if0_o_if0(0))’length

)
...

3.6.2 Changes from Bluenose I

Besides the additional use of various VHDL features (record type, conversion func-
tions and attributes), the VHDL code generated by Bluenose II is made more

40

concise than the code generated by Bluenose I in a number of ways. To illustrate
the difference in the generated codes between Bluenose I and Bluenose II, code
fragments from the same design are excerpted in Listing A.1 (in Appendix A) and
Listing 3.9 respectively. The design is a three-stage pipeline which takes the abso-
lute difference between two inputs and adds it to the third input, that is |i1−i2|+i3.
The design results in an entity named diffAdd. A simplified block diagram of diffAdd
is shown in Figure 3.6.

stage_sub_inst

stage_neg_inst

stage_add_inst

diffAdd

Figure 3.6: The diffAdd entity

The codes generated by Bluenose I and Bluenose II differ in the following ways:

1. Bluenose II generates VHDL in the VHDL-93 syntax while Bluenose I in
VHDL-87.

The VHDL-93 standard does not require components to be declared before
their instantiation. Component declaration like the one in lines 3 to 19 in
Listing A.1 is omitted. The VHDL-93 syntax of component instantiation is
slightly different from the VHDL-87 syntax (contrast line 34 in Listing A.1
with line 9 in Listing 3.9).

2. Indirect signal assignments are eliminated in the VHDL code generated by
Bluenose II.

In Bluenose I, a signal is created for and assigned to each port (both input
and output) of the instantiated component (lines 21 to 30 and lines 37 to 46
in Listing A.1). Ports are connected by assigning their respective signals to

41

each other (lines 51 to 62 in Listing A.1). In Bluenose II, signals are created
only for the output ports of the components (lines 3 to 5 in Listing 3.9).
Ports are connected by associating these signals to the input ports of the
components in the port maps of the corresponding component instantiations
(lines 16 to 23 in Listing 3.9) In contrast to Bluenose I, Bluenose II generates
signal assignments only for connections between the component ports and the
ports of the enclosing architecture (line 26 in Listing 3.9).

Listing 3.9: DiffAdd code generated by Bluenose II

1 architecture main of diffAdd is
2 ...
3 signal stage_neg_inst_accP: std_logic_vector((1-1) downto 0);
4 signal stage_neg_inst_reqN: std_logic_vector((1-1) downto 0);
5 signal stage_neg_inst_stage_neg_out: stage_sub_out_vector(0 downto 0);
6 ...
7 begin
8 ...
9 stage_neg_inst : entity work.stage_neg(main)

10 generic map (numInputs => 1,
11 numOutputs => 1,
12 dataSize_in => to_std_logic_vector(stage_sub_inst_stage_sub_out(0))’

length,
13 dataSize_out => to_std_logic_vector(stage_neg_inst_stage_neg_out(0))’

length
14)
15 port map (
16 clk => clk,
17 reset => reset,
18 reqP(0) => stage_sub_inst_reqN(0),
19 accP => stage_neg_inst_accP,
20 reqN => stage_neg_inst_reqN,
21 accN(0) => stage_add_inst_accP(0),
22 stage_neg_in(0) => stage_sub_inst_stage_sub_out(0),
23 stage_neg_out => stage_neg_inst_stage_neg_out
24);
25 ...
26 accP <= stage_sub_inst_accP;
27 ...
28 end main;

The overall result of these changes from Bluenose I is that the VHDL code
generated by Bluenose II is more concise and readable. Table 3.2 compares the
numbers of lines of code for diffAdd generated in Bluenose I and Bluenose II. As
seen in Table 3.2, the amount of newly generated code is reduced by more than
half.

42

Table 3.2: Lines of code for the DiffAdd project
Category Bluenose I Bluenose II
Generated 1031 457
PipeLib components 423 427
Datapath in all stages 65 68
User defined library N/A 164

(108 of which were generated)

We presented the VHDL generation module in this section. Continuing the
theme of reducing clutter from Section 3.4.1, Bluenose II generates VHDL code
that is more concise and therefore easier to “trace”. Bluenose II’s VHDL generation
module supports VHDL record types by generating conversion function templates.
By using an updated VHDL standard and removing indirect signal assignments,
Bluenose II is able to generate concise VHDL code from the design.

3.7 Summary

In this chapter, we presented PipeNet , the pipeline metamodel that Bluenose II
is based on. The different modules in Bluenose II that contribute to the pipeline
design are discussed. The Graphical User Interface provides user an interface to
interact with Bluenose II and a visual presentation of the pipeline model. To
reduce the clutter in the graphical interface, we reduce the number of connections
that need to be shown by using VHDL record types. A signal of VHDL record type
is used to group individual signals together so they can be shown as one connection.
Users only define record types for datapath signals and not the control signals. We
also presented PipeLib in this chapter. PipeLib is a library of components based
on Aagaard’s pipeline model written in VHDL. The components are reused in the
VHDL code generated by Bluenose II. Bluenose II’s VHDL generation module
supports VHDL record types by generating conversion function templates. The
readability of the VHDL code generated by Bluenose II is significantly improved
from the one generated by Bluenose I. By using an updated VHDL standard and
removing indirect signal assignments, Bluenose II is able to generate concise VHDL
code from the design.

In the following chapter, we discuss pipeline verification with Bluenose II. In
particular, we will describe the HOL script generation module.

43

Chapter 4

Pipeline Verification with
Bluenose II

The HOL theorem prover is used in hardware verification to model specifications
and implementations so they can be reasoned about. In HOL, a digital system is
modeled as a relation between its input and output signals and a signal is modeled
as a time-to-value function. The goal of Bluenose II’s HOL generation module is
to generate a script in HOL syntax that describes the user’s pipeline design. The
generated script declares stage and pipeline definitions which are essentially com-
positions of functions from the HOL libraries and the HOL version of PipeLib. The
user can then run the script in HOL and reason about the design in HOL and its
extension. As mentioned in Section 2.4, HOL can be extended with other verifica-
tion tools by calling the functions provided by these tools. In essence, Bluenose II’s
ability to generate HOL scripts turns HOL into Bluenose II’s external verification
environment.

Although formal verification with the use of tools such as HOL has led to the
discovery of subtle design bugs, it is still not widely adopted because it requires
specialized expertise which most designers do not have. Our ultimate goal is to
fully automate the pipeline verification process with Bluenose II. The goal is for
Bluenose II to generate a HOL script complete with all the functions and commands
needed for verification in addition to the pipeline model which we describe below.
Before we achieve full verification automation, we also strive to make the interaction
with HOL from Bluenose II as intuitive to designers as possible. As a first step to
that end, we develop the HOL console, a direction connection between HOL and
Bluenose II.

In this chapter, we first describe how to model stages and pipelines using func-
tions from PipeLib in Section 4.1. We then outline the generation of the HOL
script in Section 4.2. Section 4.3 discusses the HOL console, a direct connection
from Bluenose II to HOL.

44

4.1 HOL PipeLib

The HOL version of PipeLib was written by Aagaard. Similar to the VHDL ver-
sion of PipeLib, the purpose of the HOL version is to create a library of reusable
definitions of the PipeNet components. The user as well as the HOL generation
module reuse these definitions in the construction of the pipeline definition. In
addition, PipeLib provides a stage function which takes component instantiations,
datapath, stage inputs and outputs as arguments. The function saves the user the
trouble of “connecting” the internal signals of a pipeline stage.

Listing 4.1 shows the definition of the stage function. As shown in line 2 in
Listing 4.1, the stage function takes the options for Arbiter and MkR/A (arb opt

and mkra opts), the Datapath definition (dp), the reset signal, and stage input
and output signals (xPclP and xPclN). The options for Arbiter and MkR/A are
provided by PipeLib while the Datapath definition is specified by the designer. The
result of HOL’s evaluation of the stage function is shown in Listing 4.2.

Listing 4.1: Stage definition in HOL

1 Define
2 ‘ stage arb_opt mkra_opts dp reset xPclP xPclN =
3 intern pclP selP pclN selN zDataP .
4 begin_ckt
5 ARB arb_opt (vec_map pcl_to_req xPclP) selP;
6 INTP xPclP selP pclP;
7 MKRA_GENL mkra_opts reset (pclP.req) (pclP.acc) (pclN.req) (pclN.acc

);
8 REG [] (pclP.data) zDataP;
9 dp zDataP (pclN.data) selN;

10 INTN pclN selN xPclN
11 end_ckt
12 ‘;

Listing 4.2: HOL’s evaluation of stage definition

1 Definition has been stored under "stage_def".
2 > val it =
3 |- !(arb_opt :arb_options)
4 (mkra_opts :(mkReqAcc_option # bool signal) list)
5 (dp :’a signal -> ’b signal -> bool vector signal -> ckt)
6 (reset :bool signal) (xPclP :(’a, bool, bool) pcl vector signal)
7 (xPclN :(’b, bool, bool) pcl vector signal).
8 stage arb_opt mkra_opts dp reset xPclP xPclN =
9 ...

10 begin_ckt
11 ARB arb_opt
12 (vec_map (pcl_to_req :(’a, bool, bool) pcl -> bool) xPclP :
13 bool vector signal) selP;

45

14 INTP xPclP selP pclP;
15 MKRA_GENL mkra_opts reset pclP.req pclP.acc pclN.req pclN.acc

;
16 REG ([] :(reg_opt # ’a reg_opt_ty) list) pclP.data zDataP;
17 dp zDataP pclN.data selN;
18 INTN pclN selN xPclN
19 end_ckt : thm

Listing 4.2 shows that each variable is associated with a type. These types
are inferred by the HOL type checker from their contexts. For example, the type
checker might have deduced the type of xPclP ((’a, bool, bool) pcl vector

signal) from INTP (line 6 in Listing 4.1). INTP is a function defined in PipeLib
for modeling Interface Prev which takes a parcel vector and a select signal, and
returns the selected parcel. INTP has the type of

(’a, bool, bool) pcl vector signal -> bool vector signal -> (’a, bool,
bool) pcl signal -> ckt

where (’a, bool, bool) pcl vector signal is the type of the parcel vector,
bool vector signal is the type of the select signal, (’a, bool, bool) pcl

signal is the type of the selected parcel and ckt is the type of the expression.

If there is not enough information for the type checker to resolve the types of all
variables, the type checker then assigns the variable with a type variable which has
a polymorphic type. Variables and functions that contain the same type variables
in the same definition have the same types. All the type checking rules apply. The
definition shown in Listing 4.2 has two type variables, ’a and ’b.

When used in a pipeline definition, the stage input and output signals in each
stage definition allow us to specify how the stages are connected to each other.
Any external signal can be specified as a parameter to the function and this applies
to the datapath function, stage function and pipeline function. The order of the
parameters has to be respected when the function is used. Line 2 in Listing 4.3
is an example of how the stage function is used. stage sub is the name of the
function, exclusive arb is the instantiation for Arbiter , [] indicates that the
default options are to be used for MkR/A and SUB is the Datapath that is defined
as an uninterpreted function in line 1 of Listing 4.3. Uninterpreted functions are
discussed below.

To discuss how the Datapath function is specified, we need to first describe un-
interpreted functions and uninterpreted types. Uninterpreted functions and types
can be thought of as placeholders for the actual functions and types where they will
be used. An uninterpreted function is declared as a constant with a name and type
and an uninterpreted type is declared with a new type constructor. They constrain
and help the type checker to determine the types of other variables in the same
expression. Since the implementation of the Datapath component is provided by
the user in Bluenose II, the Datapath function will also have to be defined by the

46

user in HOL. Before the actual Datapath function is implemented, an uninterpreted
function is declared and used in the definition of the stage. Similarly, the content
or the HOL type of a stage parcel is analogous to the record type used in the VHDL
generation. The type is defined by the user and unknown to Bluenose II. In this
case, an uninterpreted type is used in place of the actual parcel type until it is
defined. The declarations of uninterpreted functions and uninterpreted types are
explained below with an example.

Listing 4.3 shows a HOL script that describes the pipeline shown in Figure 3.6.
The HOL script defines a pipeline function and the associated stage functions.
An uninterpreted function is declared with the new constant function. The new

constant function installs a constant with the specified name and type in the
current theory so the constant can be used later [43]. The type of the uninterpreted
function shown in line 1, 3 and 5 in Listing 4.3 is chosen so that it conforms
to the type of the Datapath function as inferred from the stage definition. The
inferred type of the Datapath function is shown in line 17 in Listing 4.2. Similarly,
an uninterpreted type is is declared with the new type function. The new type

function declares a type constructor in the current theory with the specified name
and number of parameters. An uninterpreted type is declared in line 7 in Listing 4.3.

Listing 4.3: Definition of the diffAdd pipeline and its stages

1 new_constant("SUB", Type‘:’a signal -> ’b signal -> bool vector signal ->
ckt‘);

2 Define ‘stage_sub = stage exclusive_arb [] (SUB)‘;
3 new_constant("NEG", Type‘:’a signal -> ’b signal -> bool vector signal ->

ckt‘);
4 Define ‘stage_neg = stage exclusive_arb [] (NEG)‘;
5 new_constant("ADD", Type‘:’a signal -> ’b signal -> bool vector signal ->

ckt‘);
6 Define ‘stage_add = stage static_arb [] (ADD)‘;
7 new_type("uninterpreted_intern_type_1",0);
8 Define
9 ‘ diffAdd reset pclP pclN =

10 intern
11 pcl_sub_neg:(uninterpreted_intern_type_1, bool, bool) pcl signal
12 pcl_sub_add:(uninterpreted_intern_type_1, bool, bool) pcl signal
13 pcl_neg_add:(uninterpreted_intern_type_1, bool, bool) pcl signal
14 .
15 begin_ckt
16 stage_sub reset [& pclP &] [& pcl_sub_neg; pcl_sub_add &];
17 stage_neg reset [& pcl_sub_neg &] [& pcl_neg_add &];
18 stage_add reset [& pcl_sub_add; pcl_neg_add &] [& pclN &]
19 end_ckt
20 ‘;

The job of the HOL generation module is to generate a script with the definitions
of stage and pipeline functions and the declarations of the necessary uninterpreted

47

functions and uninterpreted types. The definitions together describe the designer’s
pipeline model in higher order logic. The HOL generation module is detailed in
Section 4.2.

4.2 HOL Generation

As mentioned in the previous section, uninterpreted functions and uninterpreted
types are used as placeholders in the definitions of the stage functions. Therefore,
they need to be declared before they are used. The HOL scripts generated by
Bluenose II have the structure shown in Listing 4.4.

Listing 4.4: HOL script structure

Declaration of datapath (uninterpreted) function for datapath0
Declaration of stage function for stage0 which contains datapath0

Declaration of datapath (uninterpreted) function for datapath1
Declaration of stage function for stage1 which contains datapath1
...

Declarations of all the uninterpreted types that will be used in the
pipeline definition

Declarations of all the conversion functions that will be used in the
pipeline definition

Declaration of the pipeline definition using the functions declared
previously

Special care has to be taken when generating a Datapath function — declaring
a constant with a name that has already been declared previously, even with the
same type, will cause the “out-of-date” exception in HOL. This may happen if two
stages use the same Datapath in the pipeline model since the VHDL ID property
(name of VHDL entity) of the block is used as the name of the constant. The
uninterpreted function of a Datapath is only declared if it has not been declared
previously. Listing 4.5 shows a high-level view of the logic in the HOL generation
module.

Listing 4.5: Pseudo-code for HOL generation

generateHOL()
{
for each pipeline stage
{
generate datapath definition if it is not already generated
generate stage definition

}

48

generate pipeline definition
}

Uninterpreted Types

One of the challenges in implementing the HOL generation module is the gener-
ation and assignment of the uninterpreted types. The uninterpreted types in the
generated HOL script are used to guide the HOL type checker in inferring the types
of the input and output signals. In particular, the types of all the input signals to
a stage have to be identical and the types of the output signals must be identical
to each other. Where the types of the signals conflict, we need to convert the type
using a conversion function. Unlike the VHDL generation where port types are
supplied by the user, the HOL generation module needs to deduce the uninter-
preted types from the structure of the pipeline. An overview of the logic to assign
uninterpreted types is shown in the pseudo-code in Listing 4.6. The details of each
step are described below.

Listing 4.6: Pseudo-code for generating and assigning uninterpreted types

1 /* 1. Generate a stage map that keeps track of the order of the stages in

the pipeline. */

2 /* 2. For each connection, determine its type number and wrap it in a

conversion function if needed */

3 for each connection between stages {
4 if (source stage placement number < destination stage placement number)

{
5 type number = source stage placement number;
6 } else if (source stage placement number == destination stage placement

number) {
7 if (the source stage has connection to stages that have bigger

placement number) {
8 /* This is a connection between stages that are placed at the same

position in the pipeline(s). The source stage also outputs to

other downstream stages. */

9 type number = source stage placement number;
10 signal needs to be wrapped in a conversion function that converts

the output type of the source stage to the type specified by the
type number before passing it to destination stage;

11 } else {
12 /* Output of source stage either loops back as an input to the same

stage. Or, the source stage ONLY outputs to destination stages

that are placed at the same position as the source stage. */

13 type number = source stage placement number - 1;
14 }
15 } else {

49

16 // source stage placement number > destination stage placement number

17 type number = source stage placement number;
18 signal needs to be wrapped in a conversion function that converts the

output type of the source stage to the type specified by the type
number before passing it to destination stage;

19 }
20
21 Save any new type that is assigned;
22 }

The first step is to generate a stage map that keeps track of the order of the
stages in the pipeline. Although the code generated by EMF provides a method to
get all the stages in a pipeline, the list of stages is not sorted in any order. A stage
map is implemented as a hash map that associates the stages with their placements
in the pipeline. Given a stage, the stage map returns the placement of the stage
in the pipeline. The hash map data structure is used because it provides efficient
lookup operation. This Java implementation of hash map provides constant-time
performance for the lookup operation [44]. Other data structures such as lists
involve traversing the whole data structure to find the stage of interest.

The stage map is created by first finding the stages that do not have any previous
stages in the pipeline (these are assumed to be the first stages in the pipeline) then
traversing along the stage connections. During the traversal, “placement numbers”
are assigned to the stages. Figure 4.1 shows the order of the stages (the number
after the colon on the block) of a two-wide superscalar pipeline after the traversal.
The smaller the number, the earlier the corresponding stage is in the pipeline.

After the order of the stages is determined, we generate the uninterpreted types
and assign them to signals that will be passed to the stage inputs and outputs. Since
the types of all the input (output) signals to (from) one stage have to agree with
each other, the type of a signal may agree with the types of the output signals of the
source stage and not with the types of the input signals of the destination stage. In
that case, we also need to generate an uninterpreted function that converts one type
to another and wrap it around the signal before passing it to the input of the destina-
tion stage. To automate the generation and assignment of uninterpreted types, the
names of all the types take the form UNINTERPRETED INTERN TYPE number where
the number distinguishes the type. The task of generating and assigning the unin-
terpreted type then becomes determining the right type number.

In a trivial pipeline, all the stages output to their downstream stages (e.g.,
no self loop). The type of the input signals of a stage is one smaller than its
placement number and the type of its output signals is the same as its placement
number. Since the pipeline is trivial in the sense of parcel flow, the type of the
output signals of the source stage is the same as the type of the input signals of the
destination stage in a connection. For the non-trivial cases, we have to determine
the type of the signal connecting the two stages and whether a conversion function
is needed.

50

To determine the number for an uninterpreted type for a signal, we look at the
source stage and destination stage that are connected by the signal. There are three
scenarios, the source stage placement number can be smaller than, equal to or larger
than the destination stage placement number. The first scenario where the source
stage placement number is smaller than the destination stage placement number
is the trivial case mentioned above. In this case, the source stage output signals
have the same type as the destination stage input signals. The type of the signal
is assigned the placement number of the source stage (line 4 and 5 in Listing 4.6).
An example of the first scenario is illustrated in Figure 4.1 where stage Fetch 1 is
connected to Decode 1. All the outputs of the Fetch 1 stage have type 1 and so do
all the inputs of the Decode 1 stage. The “type” of a signal is shown beside the
signal in Figure 4.1.

The second scenario, where the source stage and the destination stage have
the same placement number, may happen for two reasons. One reason is a self
loop where the source and destination are the same stage; the other reason is a
connection between two stages that are placed at the same position in the pipeline
(or pipelines in a superscalar pipeline). The type of the signal depends on which
of these reasons is the cause of the condition. If the condition is caused by a
self loop or by the connection of a source stage that outputs only to destination
stages that are placed at the same position as the source stage, then the type of
the signal is one smaller that the placement number of the source stage (line 11
to 14 in Listing 4.6). The reason for this is, if the source stage does not output
to other downstream stages, then there is no reason to create a separate type for
its output. On the other hand, if the condition is caused by a connection between
two stages that are placed at the same position in the pipeline (or pipelines) and
the source stage outputs to other downstream stages, then the type of the signal
is the same as the placement number of the source stage. The signal is “wrapped”
in a conversion function when passed to the input of the destination stage (line 7
to 10 in Listing 4.6). The two possible causes for the second scenario are shown in
Figure 4.1 where one of the outputs of the ALU stage loops back as an input to
the same stage and Decode 1 is connected to Decode 0.

Finally, a possible cause for the third scenario where the source stage placement
number is larger than the destination stage is a bypass path from a stage that is
placed later in the pipeline to a stage that is placed earlier in the pipeline. In this
case, the type of the signal is the same as the placement number of the source stage
and the signal is “wrapped” in a conversion function when passed to the input of
the destination stage (line 15 to 18 in Listing 4.6).

In the last step of the uninterpreted type assignment, if a type is created in the
assignment, it is saved into a list. We traverse this list to generate type declarations
before the types are used in the pipeline definition. The generated HOL script based
on the structure illustrated in Figure 4.1 is shown in Listing C.1 in Appendix C.

51

Fetch 0 : 1 Fetch 1 : 1

Decode 0 : 2 Decode 1 : 2

Branch : 3

ALU : 3

Write-back 0 :

4

Load / Store :

3

Write-back 1 :

4

00

1 1

1

2 -> 1

2 22
2

2

2

2

2

3 3

4 4

Figure 4.1: Two-issue superscalar pipeline with numbers denoting stage order and
signal types

52

4.3 HOL Console

As a step towards a full-featured integrated development environment for pipeline
design and verification, we implemented a direct connection to HOL. We are able
to display results from HOL as a console in Eclipse. Figure 4.2 is a screen capture
of Bluenose II with the HOL console at the bottom. Figure 4.3 zooms in on the
HOL console of the screen capture. A brief description of the implementation is
provided below.

Figure 4.2: Bluenose II with HOL console

The HOL console is implemented by running HOL using Java’s Runtime class’s
exec() method [44]. The output and error streams of the HOL process are passed
to the HOL console in separate threads so they can be handled simultaneously.
The HOL console is implemented as an extension to Eclipse’s console factories
(org.eclipse.ui.console.consoleFactories). Although Java and Eclipse are
cross-platform, since HOL is run as a process on the operating system, the HOL
console is subjected to HOL’s availability on an operating system. HOL is currently
available on Unix systems and Windows. However, there are differences running
HOL between the two systems. For example, dynamic linking in HOL is unavailable
on Windows. It is in our future work to further investigate these issues so pipeline
verification with HOL in Bluenose II will be more seamless to the users.

53

Figure 4.3: HOL console

4.4 Summary

In this chapter, we described how the HOL version of PipeLib is used to describe
a pipeline design. The HOL version of PipeLib provides a library of reusable def-
initions of the PipeNet components. Bluenose II’s HOL generation module gener-
ates script with HOL commands and functions from PipeLib to describe the user’s
pipeline design. The user can then run the script in HOL to reason about the
design. A script is made up of four parts: declarations of uninterpreted functions
that act as placeholders for Datapath, stage definitions that contain these Datapath
functions, declarations of uninterpreted types that represent the parcels, and lastly,
the composition of the stage definitions and the uninterpreted types to form the
pipeline definition. The generation and assignment of uninterpreted types is one
of the challenges in the implementation of the HOL generation module. The algo-
rithm was described in this chapter. Finally, the HOL console, a direct connection
between Bluenose II and HOL, was presented. It is in our future work to further
incorporate HOL as Bluenose II’s external verification environment.

54

Chapter 5

Bluenose II Core

The pipeline metamodel, PipeNet , is appropriate for describing pipelined circuits.
However, it needs to be represented by appropriate data structures in the core of
Bluenose II in order to be efficiently manipulated. The Bluenose II core contains
the main data structures and the methods for manipulating these data structures.
The core interacts with all the other modules as shown in Figure 3.1. These data
structures are generated by GMF from the developer-defined domain model.

As mentioned in Section 2.3, the developer defines a domain model that de-
scribes the abstract syntax of the modeling language that will be available in the
graphical editor. In our case, PipeNet is the modeling language. The abstract
syntax for PipeNet is a metamodel that PipeNet conforms to. For each class in the
domain model, GMF generates a Java interface and a corresponding implementa-
tion class. The generated code also contains methods that are needed to manipulate
these model classes. These model classes make up the data structures that are used
in the core of Bluenose II. In this chapter, we describe these data structures and
how they are implemented and used.

Section 5.1 describes the data structures in Bluenose II. Section 5.2 outlines the
implementation of the Bluenose II core.

5.1 Data Structures

While we can enter PipeNet directly as the domain model to GMF or other model-
driven development tools, there will be a lot of redundancies in the generated data
structures. For example, all the components in PipeNet share a few properties (e.g.,
name, see Figure 3.2). If a new component is added to PipeNet , it would be tedious
to add these properties to the new component. Taking this into consideration,
the overall PipeNet metamodel is represented as hierarchical blocks and directed
connections in the domain model definition. The objects in PipeNet , from the
atomic components to the pipeline itself, are specializations of the generic Block
class. The simplified class diagram in Figure 5.1 illustrates the concept. The

55

block-based approach promotes reuse and extensibility and the traversal algorithm
described in Section 3.6 can be easily implemented using this structure.

As seen in Figure 5.1, Block and Connection are fundamental data structures in
Bluenose II. All the other pipeline model elements derive from them. For the rest
of this chapter, the class identifiers (e.g., Block and Connection) can refer to either
the actual class or an object which is an instantiation of a class. The concept that
a class identifier represents depends on the context.

5.1.1 Block

In addition to the influence from Bluenose I, the modularity of Aagaard’s pipeline
model and the structural hierarchy of VHDL have inspired the design of the data
structures used in the Bluenose II core. Upon examining the VHDL code of a
pipeline, we observed that the pipeline is a component and it contains pipeline
stages which are themselves components and they in turn contain other compo-
nents. The structural hierarchy is achieved through a series of component instan-
tiations; a component is instantiated in the enclosing architecture body, which is
instantiated in another enclosing architecture body. This observation led us to the
creation of a generic Block class which in modeling terms, has a composition rela-
tionship with itself. The self-composition relationship is represented by the arrow
looping back to itself in Figure 5.1. This indicates that a Block object can con-
tain other Block objects. All the components in the pipeline model derive from
the Block class. The composition relationship also means that the items are de-
stroyed along with their container (see legend in Figure 5.1) when their container
is destroyed. It makes sense to model the pipeline this way because most of the
elements have no meaning when they are considered on their own or outside their
container. An example is a PipeStage which alone serves no purpose without its
Pipeline container. Like VHDL, the components are connected to other compo-
nents through their ports. The lists of Port and Generic objects are contained in
the parent Block object’s BlkInterface, which is analogous to the entity declaration
statement in VHDL. Although these parts of the PipeNet metamodel were inspired
by VHDL, we are confident that PipeNet is generic enough to capture a wide range
of hardware designs. So far the classes that we have discussed are structurally sim-
ilar to their corresponding VHDL constructs, but the Connection class is unlike its
VHDL counterpart.

5.1.2 Connection

Connections are not explicit in Aagaard’s pipeline model and they are implied by
signal assignments in VHDL. We model the connection between two ports as the
Connection class with source (src) and destination (dst) attributes. Therefore,
the src and dst objects can be reached with the accessor functions (i.e., get and
set methods) of the Connection object. Although the point-to-point connection

56

+name

+vhdlId

+implFiles

Block

+Parent 1

+Child

0..*

Pipeline

PipeStage

1

0..*

BlkInterface

1
1

Port

Generic

1 0..*

1

0..*

-arbiterType

Arbiter

-mkRAType

MkRA InterfaceNext InterfacePrev InterfaceNextReqAcc Datapath

1

1 1 1 1 1 1

Connection

+src

1

+outgoingConnections0..*
MemoryArray

0..*

+dst 1

0..*

+incomingConnections

Legend

*

Container

A +A's role in B

Composition

Relationship

Association

CustomBlock

0..*

0..*

SuperClass
Inheritance

SubClass

B

Item

Register

0..*

Class

<Operations>

<Attributes>

1

0..1

Figure 5.1: Simplified class diagram for the pipeline metamodel

57

allows us to capture the same wiring information as a signal in VHDL, there is a
subtle difference between the models represented by the Connection class and a
signal. A signal can drive multiple receivers in VHDL. From the signal identifier
alone (without doing a search in the VHDL source code), we cannot tell what its
receivers (ports or other signals) are. On the other hand, there is always a source
and destination associated with a Connection. Figure 5.2 illustrates the difference
between the two models. On the right hand side of Figure 5.2, the signal port A sig
which serves as an intermediate value from port A, drives port B, port C, and
port D. On the left hand side of Figure 5.2, each directed edge shows a Connection
(connA B, connA C and connA D) with a source and destination.

Connection Signal

port_A

port_D

port_C

port_B

connA_C

co
nn
A
_B

connA_D

port_A port_C

port_B

port_D

port_A_sig

Figure 5.2: Comparison between connection and signal

The question is why not simply model the structure and/or behaviour of VHDL
signal more closely like Block and BlkInterface to VHDL entity and entity decla-
ration? There were a few factors that led us to the decision to model the wiring
between two components as Connection:

• We were influenced by the way connection was drawn in Bluenose I. All the
connections, from stage connections to port connections, were point-to-point.

• The point-to-point connection model was used in many examples in GMF
literature. This is an assurance that there will be a lot of references for its
implementation if we run into problems.

• We predicted that the graphical implementation of the routing style shown
on the right hand side of Figure 5.2 would be more difficult.

These factors are from the developer’s point of view. From the user’s perspec-
tive, we predict that the level of ease to express in either model will be similar.
However, Bluenose II’s intention is not only to capture user’s design but to also
guide the user in the design process. It is possible that the different connection

58

models may influence the designer in how she perceives the wiring between multi-
ple blocks and lead to different designs. Future exploration of different connection
models is needed to evaluate and compare the expressiveness of the models.

Based on the domain analysis, we identified the common properties among the
different objects in the PipeNet metamodel. We assigned these properties to the
Block and Connection classes so other classes that specialize them will automati-
cally inherit these properties as well. The properties for Block and Connection are
shown in Table 5.1 and Table 5.2 respectively.

Table 5.1: Attributes of the Block class

Name : Equivalent to instance label of an entity in VHDL
VhdlID : Equivalent to entity name in VHDL
BlkInterface : Equivalent to entity declaration in VHDL, contains a list

of ports and generics (objects)
ImplFiles : Contains the list of files that are associated with this

block
Properties : Contains a list of custom properties and their values (for

future expansion)

Table 5.2: Attributes of the Connection class

Name : Optional attribute, used for identifying the connection
Src : Points to a port on the source block
SrcSlice : Equivalent to the range on the array port in VHDL, used

to indicate the slice of the array port on the source block
that is connected

Dst : Points to a port on the destination block
DstSlice : Used to indicate the slice of the array port on the desti-

nation block that is connected

In this section, we presented the data structure used in the core of Bluenose II.
The two fundamental classes are the Block and Connection classes. We embedded
this information in our domain model along with PipeNet so that GMF will generate
the desired data structures. Details on how the domain model is specified and other
implementation issues are documented in Section 5.2.

5.2 Implementation

Bluenose II makes use of GMF, an Eclipse plug-in, to harness the benefits of model
driven development and more specifically the framework’s generative functionality.

59

This section outlines the implementation with Eclipse and GMF.

5.2.1 Java Generation

As mentioned in Sectcion 2.3, part of the first step in developing a graphical ed-
itor with GMF is to define the domain model. The Ecore metamodel is used to
specify the domain model. There are a few ways to define an Ecore model that
are accepted by the EMF plugin. EMF generates the Java code for the domain
model used by GMF. We have chosen annotated Java to input our domain model
as its syntax is the most familiar to us [19]. As its name implies, the domain model
is specified by annotating Java with model information. To be specific, the de-
veloper provides partially complete Java interfaces that are annotated with model
information. Normally, the EMF generator generates full Java interfaces based on
the model definition (defined in other ways) and annotates the code with model
information. By providing the partially complete Java interface, we are effectively
guiding the EMF code generation process.

Listing 5.1 shows an excerpt of the model definition of the Block class in anno-
tated Java. As the EMF generator parses the Java interface, the @model tag (line
1, 4, 9 etc.) signifies to the generator that the construct that follows corresponds
to a model element and requires generation. The @model tag can also be used to
carry additional model information for the element. Line 14 is an example of a con-
tainment specification which describes the composition relationship as explained in
Section 5.1. Attributes and references for a model are specified as get methods
in the corresponding model class annotated with the @model tags (line 6, 11, 16
etc.). The EMF generator completes the interface with the model information and
generates the corresponding implementation code for the model.

Listing 5.1: Model definition of the Block class in annotated Java

1 @model
2 public interface Block extends End {
3 /**

4 * @model

5 */

6 String getName();
7
8 /**

9 * @model

10 */

11 String getVhdlId();
12
13 /**

14 * @model containment="true"

15 */

16 BlkInterface getBlkInterface();
17

60

18 /**

19 * @model dataType="ca.uwaterloo.watform.bluenose2.File"

20 */

21 EList getImplFiles();
22
23 /**

24 * @model mapType="ca.uwaterloo.watform.bluenose2.

EStringToStringMapEntry" keyType="java.lang.String" valueType="java

.lang.String"

25 */

26 EMap getProperties();
27 ...

As mentioned above, the EMF generator also annotates the generated code
with model information. Specifically, each generated portion is annotated with the
@generated tag. The annotation allows the EMF generator to distinguish between
the code that it generated and the user’s changes. As a result, the developer can
modify the domain model as explained above or edit the generated code directly.
The EMF generator will not modify user’s addition to the code if the @generated

tag is removed or its value is changed (e.g., @generated NOT). Otherwise, the EMF
generator will overwrite the change.

The code generated from the domain model is only responsible for monitoring
the states of the model objects while their graphical representation are being ma-
nipulated in the graphical editor. The rest of the code for the graphical editor
is based on the graphical definition, tooling definition, and the mapping model as
explained in Section 2.3. These definitions all have to be provided by the developer.

Since the time when the graphical and tooling models were first defined, signif-
icant customization has been made to the generated diagram code and the models
have not been updated at the same time as these changes were applied. For exam-
ple, out of convenience, some graphical definitions were added to the code manually
instead of being added to the definition and re-generated. Therefore, these accu-
mulated changes are in conflict with the old graphical and tooling definitions. Since
then, we have stopped generating diagram code from these definitions. We main-
tain and modify the diagram code directly. Although we have not encountered
any problems where we needed up-to-date graphical and tooling models, it may be
worth spending the time on aligning these models with the code as they provide
clear pictures of the graphical definitions and tools implemented in Bluenose II.
These models may also serve as documentation.

5.2.2 Customization

GMF is made up of two components, the toolset for generating code of the graphical
editor and the runtime infrastructure that the graphical editor uses. In the previous

61

section, we described the use of the GMF tools. In this section, we will discuss how
the runtime infrastructure affects the development of Bluenose II.

Although a GMF generated graphical editor is intended to be customized, it
is not as easy as plug and play. There is a steep learning curve of the internal
working of the runtime infrastructure before functionally correct customizations
can be made. As an example of this process, the implementation of a feature to
update a Generic object automatically after the creation of a port connection is
discussed below.

As mentioned in Section 3.6, we wanted to eliminate the need for designer to
enter values for generics. Besides using some of the features in VHDL as men-
tioned in Section 3.6, the values of some of these generics can be deduced from
the pipeline model, two of these are the numInputs and numOutputs generics. nu-
mInputs and numOutputs should be equal respectively to the numbers of upstream
pipeline stages and downstream stages that are connected to the stage to which
these generics belong. The values of these generics are used in the calculations of
the widths of array ports and signals inside the block. A pipeline stage receives
requests from its upstream pipeline stages and accept signals from its downstream
stages through the ports, reqP and accN respectively. Therefore, with our point-
to-point connection model, the numbers of incoming connections to the reqP and
accN ports can be used as the values for the numInputs and numOutputs generics.

The issue of generating the right values for numInputs and numOutputs arose
originally in the implementation of the VHDL generation module. We wanted to
generate VHDL with the right values for the generics without user input. Therefore,
our first attempt was to address the issue in the VHDL generation module. Since the
VHDL generation module traverses all the blocks and connections, we can update
numInputs and numOutputs in all the PipeStage objects during the traversal. The
values of numInputs and numOutputs in a PipeStage can be set to the number
of connections which have the corresponding reqP and accN ports as destinations.
This approach is a simple solution because we are familiar with the implementation
of the VHDL generation module and its logic; therefore, it will not be difficult
for us to modify the traversal to include the code to get the numbers of incoming
connections and update the generics. However, this approach also has the following
problems:

1. Implementing this feature as part of the VHDL generation means that the
generics will only be updated when the VHDL generation module is run. The
user may be confused when she sees the old values of the generics.

2. Coupling this feature with the VHDL generation functionality may make it
difficult to modify the VHDL generation module in the future.

This is an example of the issue that we are faced with very often during the
development of Bluenose II — a trade-off between elegance and ease of implementa-
tion. In this case, the first problem affects the ease of use in Bluenose II significantly

62

so we opted for a more complex solution. To illustrate the intricacy of GMF as well
as the general steps involved in working with the core of Bluenose II, an explanation
of the implementation is given below.

Our goal is to implement the feature to automatically update the value of a
Generic object after a port connection is created. When an object in the model is
created, it is configured by its corresponding EditHelper. While an EditHelper class
specifies the base editing commands for a corresponding object, an EditHelperAdvice
class specifies the commands to execute before and after the commands contributed
by the corresponding EditHelper. These commands can be viewed as the pre- and
post-processing of the base editing commands provided by the EditHelper. Knowing
these, we implement the Generic update feature by specifying a “post-processing”
command in an EditHelperAdvice class that acts on the Connection class. The
“post-processing” command gets executed after a Connection object is created and
edited by its EditHelper. Specifically, the “post-processing” command updates the
numInputs or numOutputs generics of the Block containing the destination port of
the Connection if the destination port is a reqP or accN port respectively. This is
possible because we can access the object being edited, in this case, a Connection
object. The destination of a Connection object can be accessed through a getter

method since the destination is an attribute of the Connection class as explained
in Section 5.1.2. Through the destination Port object, the containing Block and
consequently its Generic objects can be accessed through methods provided by
GMF to access the container of a model object. GMF is an intricate infrastructure.
This example is only one among many features that we implemented in Bluenose II.

5.3 Summary

In this chapter, we described the data structures used in Bluenose II. The Block and
Connection classes are the building blocks for the pipeline. All the other pipeline
elements inherit from Block or Connection. We then outlined the procedure to gen-
erate the Java code for Bluenose II with GMF. In particular, we explained how we
specified the domain model with annotated Java. An example of the customization
of the generated diagram code was given to illustrate the intricacy of the GMF
runtime infrastructure.

63

Chapter 6

Case Study

To evaluate Bluenose II’s functionalities, we have chosen to construct in Bluenose II
the OpenRISC 1200 (OR1200) [15] implementation that is based on the OpenRISC
1000 (OR1000) instruction architecture [14]. In particular, we replicated Higgins’
design, OR1200-BNv2 (OR1200, Bluenose design, version 2). Following the naming
convention, the new version of the design is named OR1200-BNv3. A major rea-
son we have chosen to implement OR1200, specifically Higgins’ design, is that we
can use OR1200-BNv2 as a reference to evaluate different aspects of Bluenose II.
Furthermore, as noted by Higgins, the level of complexity and the amount of work
required to construct OR1200 are suitable for the size of the case study [12]. The
design is complex enough to illustrate pipelining issues and we have access to the
datapath components.

We first discuss the design of OR1200-BNv2 and OR1200-BNv3 in Section 6.1.
Observations from the construction of OR1200-BNv3 are noted in Section 6.2. In
Section 6.3, we compare the performance of OR1200-BNv3 to that of OR1200-
BNv2.

6.1 The OpenRISC Design

OR1200 specifies an implementation of a subset of the OpenRISC 1000 (OR1000)
instruction architecture [15]. OR1000 is an architecture for a family of open-source,
synthesizable RISC microprocessor cores [14]. The OR1200 is a 32-bit RISC integer
pipeline with a Harvard microarchitecture. The OR1200 has the following features:

1. Branch delay slot (one cycle) to keep pipeline as full as possible

2. Conditional branch and unconditional jump instructions

3. Separate execution unit for load and store operations so they do not stall the
pipeline unless there is a data dependency

64

4. Arithmetic instructions, compare instructions, logical instructions, rotate and
shift instructions

5. In-order completion

Higgins’ implementation of OR1200, OR1200-BNv2, is slightly different from
the specification in order to highlight Bluenose I’s features with reasonable amount
of effort. OR1200-BNv2 are different from the original specification at the following
points:

1. OR1200-BNv2 is a two-wide superscalar integer pipeline instead of the 5 stage
scalar pipeline as defined in the specification of OR1200

2. Exception handling is not implemented

3. Only the flag and carry supervision registers and four general-purpose 32-bit
registers were implemented

4. Shifting requires two cycles instead of one

5. Multiplication requires five cycles instead of three

The purpose of the case study is to compare the generated codes by Bluenose I
and Bluenose II, and the original and modified PipeLib; therefore, we made few
changes to the design. This means that we reused entities from OR1200-BNv2 as
much as possible and kept the overall structure of the pipeline. The only major
difference between OR1200-BNv2 and OR1200-BNv3 is the use of record types in
OR1200-BNv3. Stage inputs and outputs and some related signals are grouped
together respectively instead of being passed from one component to another as
individual signals. Figure 6.1 shows an overview of OR1200-BNv3. The config-
uration of each stage is shown in Table 6.1. The reasons for the choices of the
instantiations will be discussed as we describe the implementation of some of the
features of the design. Although the main focus of our case study is not the design
of OR1200, the implementation of some of the features are worth mentioning and
they are described next in Section 6.1.

OR1200-BNv3 Design Overview

A list of the features and their implementation are given below. The MkR/A
instantiations and Arbiter instantiations used in the pipeline are summarized after
the list.

• Alternate paths for parcel flow allow one or two new instructions to be fetched
in every clock cycle. Instead of stalling both fetching stages when the target
of one fetching stage is not ready, the Dispatch + Control unit increments the

65

Fetch 0

OR1200-BNv3

Fetch 1

Decode 0 Decode 1

Branch

ALU

Write-back 0

Load / Store

Write-back 1

Dispatch +

Control

Figure 6.1: OR1200-BNv3

66

Table 6.1: Stage instantiation parameters for OR1200-BNv3
Stage Arbiter Type MkR/A Type Interface Next Re-

q/Acc Type

Fetch 0 Degenerate ZeroDelay + abort Priority
Fetch 1 Degenerate ZeroDelay + abort Standard
Decode 0 StaticPriority General + maskN Standard
Decode 1 StaticPriority General + maskN Priority
Branch StaticPriority ZeroDelay Standard
ALU StaticPriority MultiDelay + maskN

+ loopMstrReq
Standard

Load/Store StaticPriority MultiDelay + maskN Standard
Write-back 0 Degenerate UnitDelay Standard
Write-back 1 Degenerate UnitDelay Standard

program counter by one instead of two which results in the parcel in Fetch
1 being dropped and re-fetched into Fetch 0 and a new parcel being fetched
into Fetch 1 . Consequently, two consecutive instructions are fetched in every
clock cycle. This is made possible by the alternate paths for parcel flow from
Fetch 0 and Decode 1 as shown in Figure 6.1. In the event that Decode 0 is
stalled and Decode 1 has a bubble, Fetch 0 can send its parcel to Decode 1 .
Similarly, if the target of Decode 1 is not available and Decode 0 is free to
accept a request, Decode 1 can send its parcel to Decode 0 .

This topology is implemented by selecting the Priority Interface Next Req/Acc
in Fetch 0 and Decode 1 and the StaticPriority Arbiter in Decode 0 and
Decode 1 . The Priority Interface Next Req/Acc allows the stage to send a
request to a backup stage when the desired targets are not available; while
the StaticPriority Arbiter allows the stage to accept a request with higher
priority. To Decode 1 , Fetch 0 has a higher priority than Fetch 1 and to
Decode 0 , Decode 1 has a higher priority than Fetch 0 .

• Special care needs to be taken in implementing the branch instruction in a su-
perscalar pipeline. The branch instruction is handled as follows: In the event
that a branch is taken, the instruction in Fetch 1 is discarded while the in-
struction in Fetch 0 may or may not be discarded. Discarding the instruction
in Fetch 0 or not depends on where the branch instruction was processed. If
the branch instruction comes from Decode 1 , then the instruction in Fetch 0
is from the branch delay slot. An instruction from the branch delay slot needs
to be executed and cannot be discarded. On the other hand if the branch
instruction comes from Decode 0 then the instruction from its branch delay
slot is already in Decode 1 ; therefore, the instruction in Fetch 0 is discarded.
The discarding logic is implemented as a Custom Block external to the stages
and it controls the abort signals to the MkR/As in Fetch 0 and Fetch 1 .

• Read after write hazards are resolved by stalling the decoding stages when

67

data dependency is detected. If the instruction in the ALU or LSU stage
writes to the same register that the decoding stage reads from, then the
instruction in the decoding stage is prevented to leave. This is achieved by
de-asserting the signal to the maskN port on the MkR/A in the decoding
stage until the source register and destination register are not the same. As
a result, all the request and accept signals to and from the next stage will be
de-asserted until the data dependency no longer exists.

• In-order completion is ensured by preventing a parcel to leave a stage by de-
asserting the maskN signal to the stage’s MkR/A. maskN to MkR/A in Decode
1 is de-asserted when Decode 0 is not accepting any request from its previous
stages. This is to maintain in-order completion by preventing the instruction
in Decode 1 to leave the stage before the instruction in Decode 0 leaves Decode
0 . Similarly, the order of completion in the instructions that enter ALU and
Load/Store are maintained by the assertion of the signals to the respective
maskN ports. A state machine accounts for the variable latencies in the two
stages and determines when a parcel is allowed to leave the stage to enter the
write-back stage. The state machine controls the individual maskN signals to
control the flow of parcels in the two stages. The state machine is implemented
as a Custom Block external to the stages.

• To demonstrate Bluenose II’s capability to handle loops, the shift operation
which has a latency of two clock cycles is implemented as an external loop to
the ALU stage. Upon a shift instruction, ALU sends a request to itself. The
request also drives the loopMstrReq port on the MkR/A. The loopMstrReq
signal tells the MkR/A to accept the request even though the “next” stage
which is ALU itself, has not accepted the current request. The loopMstrReq
signal in MkR/A is used to break the deadlock caused by a request loop.
ALU ’s request to itself has the highest priority over the other stage inputs,
with the StaticPriority Arbiter selected, ALU executes the shift instruction
properly.

Here we briefly summarize the selection of MkR/A instantiations in all the
stages. The ZeroDelay instantiation of MkR/A was selected for Fetch 0 , Fetch 1 ,
and Branch since these stages are combinational (they do not have registers). As
mentioned above, the interfaces of MkR/As in Fetch 0 and Fetch 1 also include
the abort ports as inputs. The General instantiation of MkR/A was selected for
Decode 0 and Decode 1 as their next stages do not always accept their requests.
The maskN ports on these MkR/As are driven by logic that resolves read after write
hazards. The MkR/As in ALU and Load/Store are of the MultiDelay instantiation
since these stages may take multiple clock cycles to process the instructions. Their
maskN ports are driven by logic that maintains in-order completion between the
two stages. In addition to the maskN port, the inputs to MkR/A in ALU also
include the loopMstrReq signal to handle request that originates from ALU itself.

A summary of the selection of Arbiter instantiation in all the stages is presented
here. Since Fetch 0 , Fetch 1 , Write-back 0 and Write-back 1 each has only one

68

stage input, the Degenerate Arbiter is selected for these stages. On the other hand,
Decode 0 , Decode 1 , Branch, ALU and Load/Store may receive multiple requests
which have different priorities; therefore, the StaticPriority Arbiter is selected in
these stages.

6.2 Observations

In this section, we discuss the observations made during the construction of OR1200-
BNv3 in Bluenose II, both as a user and as a tool developer.

Building on the Eclipse platform, Bluenose II inherits some common editor
features such files management, save to image, cut-and-paste, undo etc.. These
features are accessed in the same ways as in popular editors (e.g., a user can copy
a selected block by pressing the control and c keys together). For example, a
stage can be copied by selecting the stage then holding the control and C keys
together, which is a common editor key sequence for copying. As a result, navigation
around Bluenose II is intuitive. The cut-and-paste feature is particularly useful in
constructing a superscalar pipeline where some stages are copies of or very similar
to other stages. These stages can be configured just once then copied and pasted as
a new stage in the pipeline. Connection routing is also built into Eclipse graphical
editor but the functionality needs to be adjusted (in code) to return a look that
is more like a schematic for the purpose of Bluenose II. In addition, the VHDL
editor from the Signs plugin added the convenience of editing VHDL directly from
Bluenose II. The ability to directly edit VHDL as well as some convenience features
like connection routing did not exist in Bluenose I.

During the construction of OR1200-BNv3, we identified areas that can be
improved. Although the use of record types has simplified connections, graphi-
cally connections are still in need of improvement. As mentioned in Section 6.1,
there were some logics that were implemented and encapsulated in various Custom
Blocks. A few blocks appear a number of times in the pipeline. We are going to
analyze these blocks and decide which of the following scenarios these blocks fit
into:

1. the logic is related to some existing PipeLib components and it should be
incorporated into them.

2. the logic occurs in many other pipelines and should be included as a new
component in PipeLib.

3. the occurrences of the logic are infrequent or the logic is specific to only one
pipeline so it should remain as a Custom Block .

One such block that we have identified is the stage valid block. It has appeared
in several stages in OR1200-BNv3. Its output is true if the request to next stage

69

has been accepted. This logic is closely related to the functionality of and uses
the same signals as MkR/A. Therefore, the logic of the stage valid block will be
incorporated into MkR/A.

As tool developers, we observed that the development in Java on Eclipse is also a
strength of the tool. Although it takes a steep learning curve to learn to customize
the GMF generated code and interact with the GMF and Eclipse runtime, once
mastered, a lot of features can be easily inherited and extended. For example, in
the event that a new block is added to PipeNet , the new block can inherit from the
Block class to inherit its properties. As mentioned earlier, a lot of common editing
features are already built into the Eclipse platform which saves the developers the
tedious but non-trivial work of implementing these features.

6.3 Performance Comparison

6.3.1 Speed and Area

To compare the performance of the codes generated by Bluenose I and Bluenose II,
both set of codes were synthesized with Mentor Graphics’ Precision [41] with Al-
tera’s Stratix II set as the target technology. The speed and area information
obtained from both sets of codes were then compared. A reference model style
testbench was written to compare the behaviours of OR1200-BNv2 and OR1200-
BNv3. The two designs were simulated and their program counters and write-back
values were compared clock cycle by clock cycle. The code for the testbench is
included in Appendix B.

Table 6.2 summarizes the speeds and areas of OR1200-BNv2 and OR1200-BNv3.
OR1200-BNv3 is faster than OR1200-BNv2 by 11 MHz, uses 82 fewer look up tables
(LUT) and 31 more registers. To understand the gain in speed, the critical paths of
the two designs were examined. The timing reports of the two designs indicate that
that both critical paths have the same source and destination nodes. Although the
beginnings and the ends of the two critical paths are the same, the one in OR1200-
BNv2 seems to involve more cells that the one from OR1200-BNv3. Figure 6.2 and
Figure 6.3 show the critical paths of OR1200-BNv2 and OR1200-BNv3 respectively.
The figures were created in the Gatevision PRO graphical netlist analyzer [45] by
extracting and tracing the cells on the critical paths as reported by the timing
analysis. The bold lines with arrows on the figures were drawn to show the paths.
The numbers on Figure 6.2 indicate the order of the paths. There are two types of
blocks in these figures and they are boolean gates and hierarchical blocks. Boolean
gates are identified with the names prefixed with “ix” shown at the top of the
blocks. Hierarchical blocks contain other gates. The timing analysis specifies which
of the gates in the hierarchical blocks are on the critical path but some of them are
abstracted away by the hierarchical blocks in the figures.

A possible cause for the gain in speed and LUT in OR1200-BNv3 may be the
code and design clean-up in OR1200-BNv2 as we ported it into Bluenose II. For

70

example, unread signals and their assignments were removed. In both OR1200-
BNv2 and OR1200-BNv3, only the instructions in the fetching stages are discarded
in the event that a branch is taken. In OR1200-BNv2, an abort signal is passed into
the Decode 1 stage even though it was not read inside the stage. In OR1200-BNv3,
the abort signal is removed from the inputs of Decode 1 . The probability that this
kind of code clean-up is the cause for the gain may be unlikely since unread signals
are “optimized away” by the synthesizer. More time is needed to understand the
critical paths.

As a preliminary analysis, it is enough to know that the newly generated code
performs as well as or better than the original code. In the future, the design of
OR1200-BNv2 should be refactored the same way OR1200-BNv3 was and their per-
formance re-evaluated. Finally, the increase in the number of registers in OR1200-
BNv3 may be attributed to the use of record types. Synthesizer decomposes the
elements in a record into individual signals. The elements that are not used in
one stage are still passed to that stage if the whole record is passed. For example,
the element for immediate data for load/store instruction (lsu imm) in the record
type for the output of the decoding stages (decode output type) is only relevant
to Load/Store. However, the decoding stages also output to ALU . The lsu imm is
simply not accessed in ALU .

Table 6.2: Performance Comparison
Speed Area

OR1200-BNv2 60.62 MHz 2633 LUTs, 650 registers
OR1200-BNv3 71.63 MHz 2551 LUTs, 681 registers

Higgins compared the code generated by Bluenose I to code that was hand-
crafted, both sets of codes implemented OR1200-BNv2 [12]. Higgins’ tests showed
that there was no significant performance degradation in the code generated by
Bluenose I. Since we do not have access to the handcrafted code, we are not able
to directly compare that to the code generated by Bluenose II. However, since the
performances of the codes generated by Bluenose II and Bluenose I are similar, we
safely conclude that the performance of the code generated by Bluenose II is also
comparable to the handcrafted code. Since OR1200-BNv2 and OR1200-BNv3 are
reasonably complex, we expect that this result can be generalized for other pipeline
designs as well. Future work may include implementation of other designs both
manually and through Bluenose II and a more thorough analysis.

6.3.2 Code Quality

As mentioned in Section 3.6, the VHDL code generated by Bluenose II is made more
concise than the code generated by Bluenose I through the use of record types and
syntax from the VHDL-93 standard. Although the number of lines of generated
code does not directly indicate the readability of the code, generally the fewer lines

71

Figure 6.2: Critical path of OR1200-BNv2

72

Figure 6.3: Critical path of OR1200-BNv3

73

the easier to peruse. Here we compared the numbers of lines of generated code as
well as written codes to give a general idea of the conciseness of the codes.

In OR1200-BNv2, custom MultiDelay MkR/A blocks were used instead of the
standard ones from PipeLib. In Bluenose II, it is important to identify the MkR/A
component (e.g., for HOL generation) in the model; therefore, we used the standard
MultiDelay MkR/A and extract the extra logic from OR1200-BNv2’s custom Multi-
Delay MkR/A block into custom blocks. Consequently, the number of lines of code
from PipeLib for OR1200-BNv3 is higher with the standard MultiDelay MkR/A.
Secondly, Bluenose I does not have blocks that represent memory arrays; therefore,
the generated code for the top level of the design had to be wrapped within another
entity that included memory arrays for data and instruction caches. The number
of lines of this extra code is included as custom code for OR1200-BNv3.

Table 6.3: Lines of code for the OpenRISC project

Category Bluenose I Bluenose II
Generated 4672 1589
PipeLib components 563 586
Datapath and other
custom code

3445 3647
(228 of which were generated)

Finally, Bluenose II was able to successfully generate HOL script based on the
OR1200-BNv3 design and the script is included in Appendix C.

6.4 Summary

A case study based on the implementation of Higgins’ modification of OR1200
(OR1200-BNv2) was presented in this chapter. Higgins’ design is a two-wide super-
scalar 32-bit RISC integer pipeline. Following the naming convention, the pipeline
implemented in Bluenose II is named OR1200-BNv3. Features of the pipeline design
were described. During the construction of OR1200-BNv3 in Bluenose II, we ob-
served that the basic editor features were improved in Bluenose II from Bluenose I.
We also identified some Custom Blocks that appeared a few times in the pipeline
which can be incorporated into some of the PipeLib components. As tool developer,
we noted that the hierarchical block design of the PipeNet is highly extensible. A
comparison of the performance of the codes generated by Bluenose I and Bluenose II
was made. The speed of OR1200-BNv3 was 11 MHz faster than that of OR1200-
BNv2 while it uses 82 fewer LUTs and 31 more registers. It is suspected that the
design clean up such as the removal of unused signals from OR1200-BNv2 from
OR1200-BNv3 has caused the slight improvement in speed and area. The increase
in register is suspected to be caused by the use of record types. Record types force
signals that are used in one stage but not another to be passed and registered. The
qualities of the generated codes by Bluenose I and Bluenose II were also compared.

74

Bluenose II generated significantly fewer lines of codes and consequently improved
the conciseness of the code.

75

Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, we presented Bluenose II, a graphical tool for the design and verifica-
tion of pipelined circuits. Bluenose II builds on the work of Bluenose I. Bluenose I
demonstrated that the pipeline model from Aagaard’s verification framework could
be applied to pipeline design. Pipeline design and verification were also simpli-
fied by combining the pipeline model with a graphical user interface. Although
Bluenose I is based on a pipeline model, the model was not explicit or clearly
defined in Bluenose I. The pipeline model served as a guideline in the design of
Bluenose I and did not play a fundamental role in its development. In this work,
we gave form to this implicit pipeline model and developed PipeNet . PipeNet is
not only used to drive the development of Bluenose II, it is also used to drive the
pipeline design process. The hierarchical design of PipeNet matches the structure of
the hardware and appeals to the intuition of the designer. Furthermore, PipeNet ’s
connection to Aagaard’s verification framework means that a PipeNet model can
take advantage of the framework’s verification capabilities.

Bluenose II is developed as a plug-in that runs on the Eclipse platform. This
allows Bluenose II to inherit basic editor functionalities from Eclipse and more im-
portantly, it allows Bluenose II to be developed with Eclipse’s GMF. GMF is a
model driven development tool that generates graphical editors from user-defined
models. We developed Bluenose II by specifying the PipeNet metamodel to GMF
then customizing the graphical editor code generated by GMF. The PipeNet meta-
model can be viewed as the abstract syntax of PipeNet . Its hierarchical block and
connection design can accommodate future extensions to PipeNet . The VHDL and
HOL generation modules were developed by extending the code generated by GMF.
Bluenose II’s VHDL generation module is modified to handle user-defined record
types

The end product is a tool that allows the designer to use PipeNet to describe a
pipeline design then generate VHDL code and HOL script from the pipeline model.

76

The HOL generation functionality allows HOL to be used as an external verification
environment to Bluenose II. We also presented the HOL console which is a step
towards integrating this external verification environment into Bluenose II.

We demonstrated the usefulness of Bluenose II and PipeNet in a case study
based on OR1200-BNv3, an implementation of Higgins’ design, OR1200-BNv2.
The case study was chosen so that we could use OR1200-BNv2 as a reference to
evaluate different aspects of Bluenose II. The performance of the generated VHDL
code by Bluenose II is slightly better than that of Bluenose I, in terms of speed
and area. In addition, the readability of the generated code by Bluenose II is also
improved.

Based on the observations and analysis in the thesis, the following conclusions
are drawn:

• The model driven approach can be applied to both the development of the
pipeline design tool and pipeline design itself.

• PipeNet , the pipeline metamodel that was the driver of the Bluenose II devel-
opment and the pipeline design process, captures the relevant characteristics
of pipeline design. This is demonstrated by the ease to generate VHDL code
and HOL script from the model described in PipeNet .

• Bluenose II is an improvement from Bluenose I in terms of the basic editor
functionalities and the quality of the generated VHDL code.

• Bluenose II leads to faster design and verification of pipelined circuit by in-
creasing the designer’s productivity.

7.2 Future Work

Bluenose II is an ongoing project. During its development, we noted several areas
of improvement which we left for future work due to time constraint and they are
listed below.

• Provide additional validation

Additional validation to a PipeNet model can be provided in two ways. One
way is to specify more constraints on PipeNet to guide the designer in the
modeling process. Currently, PipeNet only describes the structural con-
straints on a pipeline model (e.g., number of Arbiter allowed in a PipeStage).
Constraints to enforce the legal semantics of a pipeline model still need to be
added to PipeNet . An example of such a constraint is “if a stage has more
than one input, then the Degenerate Arbiter must not be selected for that
stage”. The second way to add validation to a PipeNet model is to let the
designer write their own constraints on the model. The second way requires

77

us to provide a feature in Bluenose II that not only allows the designer to en-
ter additional constraints but to also check the pipeline model with the user
defined constraints. This additional validation can be specified with OCL
[33], which is supported by EMF.

• Connect to third party tools to harness their design and verification capabil-
ities

We envision Bluenose II to be an integrated development environment for
the design and verification of pipelined circuits. The design and verification
functionalities of Bluenose II can be extended by harnessing the design and
verification capabilities of other tools. This can be done in two ways. One
is to integrate these tools into Bluenose II either at source code level or as
an external process as we demonstrated through the Signs plug-in and HOL.
The second way is to generate code or script in formats that are supported by
these tools so the code or script can be exported to these tools. An example
of this is the HOL script generation. As described in the thesis, Signs’ VHDL
parser has been integrated into Bluenose II. Thanks to the Signs plug-in,
the designer can also view and edit VHDL code directly in Bluenose II with
VHDL specific support such as syntax highlighting. Signs’ functionality is not
limited to parsing VHDL, it also provides a VHDL simulator. Bluenose II
may be able to provide simulation support using this simulator. The HOL
console is a step towards a seamless connection between HOL and Bluenose II.
HOL itself can be connected to other tools by dynamic loading and calling
of external C functions. By integrating HOL into Bluenose II, we are also
connecting to HOL’s extensions. There are also many other tools that pro-
vide Java application programming interfaces (API) to allow access to their
functionalities which may be useful in pipeline design and verification.

• Implement other generators

Closely related to the previous point, by implementing generators to trans-
form the PipeNet model to other languages, we can integrate Bluenose II into
existing design flow or tool chain that supports the languages. Furthermore,
a refactoring of the Java code may speed up the implementation of new gen-
erators. For example, the code for the traversal of the PipeNet model in the
VHDL generation module may be reused in other generators.

• Extend PipeNet and explore its potentials

There are three directions of the development of PipeNet . The first is to
apply PipeNet outside Bluenose II. The popularity of a modeling language
can be a validation of the language’s quality. Similar to the first direction,
the second direction is to show PipeNet ’s capability to represent different
hardware designs. So far, we have only shown the use of PipeNet in describing
a microprocessor pipeline design. More case studies can be conducted to
show PipeNet ’s capability to express other designs. The third direction is to
extend PipeNet to describe other aspects of pipeline design. PipeNet allows

78

the designer to describe the structure of the design with hierarchical blocks.
It may be extended or augmented by other models to describe other aspects
such as the algorithm implemented in the hardware design, control hazards
and data hazards. Using different models to represent different aspects of
a system is not a new idea [13]. UML has different diagrams to represent
different views of a system. Lessons may be drawn from other modeling
languages such as UML.

• Develop better graphical representation

A visually pleasing graphical user interface can potentially increase the de-
signer’s productivity. We made an effort to create a graphical representa-
tion that resembles a hardware schematic. A complex design involves many
connections which can clutter the design area. A large design with all the
components and connections can also be difficult to navigate. These issues
need to be addressed otherwise Bluenose II can be rendered useless for a large
and complex design. The use of VHDL record type and collapsible blocks are
the first steps towards reducing “graphical clutter”. We are currently inves-
tigating the idea of the abstract connection which is a graphical abstraction
that “hides” other connections or present a group of related connections as
one when the designer toggles on the feature. An abstract connection may
be used to represent concepts such as the parcel flow in the pipeline.

• Conduct more case studies

More case studies can be conducted to validate Bluenose II’s usefulness. Com-
parison between the generated code and hand written code on the same design
will be useful to evaluate PipeNet ’s ease of use and the performance of the
generated code. A designer’s productivity is not increased if she can write
code faster than create a pipeline model. On the other hand, it is not useful if
the performance of the generated code is poor, even if the designer can quickly
specify the pipeline model. It will also be worthwhile to implement some of
the designs in related work (Section 2.6) to evaluate Bluenose II against other
tools.

79

Appendix A

DiffAdd Code Generated by
Bluenose I

Listing A.1: DiffAdd code generated by Bluenose I

1 architecture main of diffAdd is
2 ...
3 component stage_neg
4 generic (
5 ...
6);
7 port (
8 clk: in std_logic;
9 reset: in std_logic;

10 reqP: in std_logic_vector((numInputs-1) downto 0);
11 accP: out std_logic_vector((numInputs-1) downto 0);
12 reqN: out std_logic_vector((numOutputs-1) downto 0);
13 accN: in std_logic_vector((numOutputs-1) downto 0);
14 i_d: in std_logic_vector((wordSize_i_d*numInputs-1) downto 0);
15 o_n: out std_logic_vector((wordSize_o_n*numOutputs-1) downto 0);
16 i3: in std_logic_vector((wordSize_i3*numInputs-1) downto 0);
17 o3: out std_logic_vector((wordSize_o3*numOutputs-1) downto 0)
18);
19 end component;
20
21 signal stage_neg_clk: std_logic;
22 signal stage_neg_reset: std_logic;
23 signal stage_neg_reqP: std_logic_vector((1-1) downto 0);
24 signal stage_neg_accP: std_logic_vector((1-1) downto 0);
25 signal stage_neg_reqN: std_logic_vector((1-1) downto 0);
26 signal stage_neg_accN: std_logic_vector((1-1) downto 0);
27 signal stage_neg_i_d: std_logic_vector((dpWidth*1-1) downto 0);
28 signal stage_neg_o_n: std_logic_vector((dpWidth*1-1) downto 0);
29 signal stage_neg_i3: std_logic_vector((dpWidth*1-1) downto 0);

80

30 signal stage_neg_o3: std_logic_vector((dpWidth*1-1) downto 0);
31 ...
32 begin
33 ...
34 stage_neg_inst : stage_neg
35 generic map (1, 1, dpWidth, dpWidth, dpWidth, dpWidth, dpWidth)
36 port map (
37 clk => stage_neg_clk,
38 reset => stage_neg_reset,
39 reqP => stage_neg_reqP,
40 accP => stage_neg_accP,
41 reqN => stage_neg_reqN,
42 accN => stage_neg_accN,
43 i_d => stage_neg_i_d,
44 o_n => stage_neg_o_n,
45 i3 => stage_neg_i3,
46 o3 => stage_neg_o3
47);
48 ...
49 accP(0) <= stage_sub_accP(0);
50 ...
51 stage_neg_clk <= clk;
52 stage_neg_reset <= reset;
53 ...
54 stage_add_reqP(0 downto 0) <= stage_neg_reqN(0 downto 0);
55 stage_neg_accN(0 downto 0) <= stage_add_accP(0 downto 0);
56 stage_add_i_dn(0 downto 0) <= stage_neg_o_n(0 downto 0);
57 stage_add_i3(0 downto 0) <= stage_neg_o3(0 downto 0);
58 ...
59 stage_neg_reqP(0 downto 0) <= stage_sub_reqN(0 downto 0);
60 stage_sub_accN(0 downto 0) <= stage_neg_accP(0 downto 0);
61 stage_neg_i_d(0 downto 0) <= stage_sub_o_d(0 downto 0);
62 stage_neg_i3(0 downto 0) <= stage_sub_o3(0 downto 0);
63
64 end main;

81

Appendix B

Reference Model Testbench

library ieee;
use ieee.std_logic_1164.all;
use work.types_pkg.all;
library jason_lib;
use jason_lib.all;

entity openrisc_tb is
end openrisc_tb;

architecture main of openrisc_tb is

signal clock, reset : std_logic :=
’0’;

signal o_pc : fetch_input_vector(1
downto 0);

signal o_regfile_write0,
o_regfile_write1 :
regfile_write_input_type;

signal ref_pc0, ref_pc1 :
std_logic_vector(31 downto 0);

signal o_reg_we0, o_reg_we1,
o_flag : std_logic;

signal o_reg_wdata0, o_reg_wdata1
: std_logic_vector(31 downto
0);

signal ok_pc0, ok_pc1 : std_logic;
signal ok_reg_wdata0,

ok_reg_wdata1 : std_logic;

begin -- main

uut : entity work.openrisc

port map(
clock => clock,
reset => reset,
o_pc => o_pc,
o_regfile_write0 =>

o_regfile_write0,
o_regfile_write1 =>

o_regfile_write1);

ref : entity jason_lib.
openrisc_top

port map (
clock => clock,
reset => reset,
o_pc(63 downto 32) => ref_pc1,
o_pc(31 downto 0) => ref_pc0,
o_reg_wdata0 => o_reg_wdata0,
o_reg_wdata1 => o_reg_wdata1,
o_reg_we0 => o_reg_we0,
o_reg_we1 => o_reg_we1,
o_flag => o_flag);

clockProc: process
begin -- process

wait for 10 ns;
clock <= not clock;

end process;

resetProc: process
begin -- process

reset <= ’0’;
wait for 35 ns;

82

reset <= ’1’;
wait for 40 ns;
reset <= ’0’;
wait;

end process;

check_pc0 : process
begin
wait until rising_edge(clock);
if(ref_pc0 = o_pc(0).i_pc) then
ok_pc0 <= ’1’;

else
ok_pc0 <= ’0’;

end if;
end process;

check_pc1 : process
begin
wait until rising_edge(clock);
if (ref_pc1 = o_pc(1).i_pc) then
ok_pc1 <= ’1’;

else
ok_pc1 <= ’0’;

end if;
end process;

check_reg_wdata0 : process
begin
wait until rising_edge(clock);
if (o_reg_wdata0 =

o_regfile_write0.i_wdata)
then

ok_reg_wdata0 <= ’1’;
else
ok_reg_wdata0 <= ’0’;

end if;
end process;

check_reg_wdata1 : process
begin
wait until rising_edge(clock);
if (o_reg_wdata1 =

o_regfile_write1.i_wdata)
then

ok_reg_wdata1 <= ’1’;
else
ok_reg_wdata1 <= ’0’;

end if;
end process;

end main;

83

Appendix C

Generated HOL Script Based on
OR1200-BNv3

Listing C.1: Generated HOL Script Based on OR1200-BNv3

1 new_constant("FETCH", Type‘:’c signal -> ’d signal -> ’a signal -> ’b
signal -> bool vector signal -> ckt‘);

2 Define ‘if0 O_ICACHE I_ICACHE = stage exclusive_arb [(discard_opt,CONST T
)] (FETCH O_ICACHE I_ICACHE)‘;

3 Define ‘if1 O_ICACHE I_ICACHE = stage exclusive_arb [(discard_opt,CONST T
)] (FETCH O_ICACHE I_ICACHE)‘;

4 new_constant("DECODE", Type‘:’c signal -> ’d signal -> ’a signal -> ’b
signal -> bool vector signal -> ckt‘);

5 Define ‘id0 O_REGFILE_READ I_REGFILE_READ = stage static_arb [(
enableReqN_opt,CONST F)] (DECODE O_REGFILE_READ I_REGFILE_READ)‘;

6 new_constant("BRANCH", Type‘:’c signal -> ’d signal -> ’e signal -> ’f
signal -> ’a signal -> ’b signal -> bool vector signal -> ckt‘);

7 Define ‘br0 I_VALID O_ISTAKEN O_TARGETPC I_FLAG = stage static_arb [] (
BRANCH I_VALID O_ISTAKEN O_TARGETPC I_FLAG)‘;

8 new_constant("ALU", Type‘:’c signal -> ’d signal -> ’e signal -> ’f
signal -> ’g signal -> ’h signal -> ’i signal -> ’j signal -> ’k
signal -> ’a signal -> ’b signal -> bool vector signal -> ckt‘);

9 Define ‘alu_stage I_CLK I_RESET I_VALID I_CARRY I_START O_FINISHED
O_STALL O_ALU_LOOP O_REGFILE_SR = stage static_arb [(enableReqN_opt,
CONST F)] (ALU I_CLK I_RESET I_VALID I_CARRY I_START O_FINISHED
O_STALL O_ALU_LOOP O_REGFILE_SR)‘;

10 new_constant("LSU", Type‘:’c signal -> ’d signal -> ’e signal -> ’f
signal -> ’g signal -> ’h signal -> ’i signal -> ’a signal -> ’b
signal -> bool vector signal -> ckt‘);

11 Define ‘lsu_stage I_CLOCK I_RESET I_DCACHE O_DCACHE I_START O_FINISHED
O_STALL = stage static_arb [(enableReqN_opt,CONST F)] (LSU I_CLOCK
I_RESET I_DCACHE O_DCACHE I_START O_FINISHED O_STALL)‘;

12 new_constant("WB", Type‘:’c signal -> ’a signal -> ’b signal -> bool
vector signal -> ckt‘);

84

13 Define ‘wb0 I_VALID = stage exclusive_arb [] (WB I_VALID)‘;
14 Define ‘id1 O_REGFILE_READ I_REGFILE_READ = stage static_arb [(

enableReqN_opt,CONST F)] (DECODE O_REGFILE_READ I_REGFILE_READ)‘;
15 Define ‘wb1 I_VALID = stage exclusive_arb [] (WB I_VALID)‘;
16 new_type("uninterpreted_intern_type_1",0);
17 new_type("uninterpreted_intern_type_2",0);
18 new_type("uninterpreted_intern_type_3",0);
19 new_constant("two_to_one", Type‘:(uninterpreted_intern_type_2, bool, bool

) pcl signal -> (uninterpreted_intern_type_1, bool, bool) pcl signal‘)
;

20 Define
21 ‘ openrisc reset pclP pclN if0_O_ICACHE if0_I_ICACHE if1_O_ICACHE

if1_I_ICACHE id0_O_REGFILE_READ id0_I_REGFILE_READ br0_I_VALID
br0_O_ISTAKEN br0_O_TARGETPC br0_I_FLAG alu_stage_I_CLK
alu_stage_I_RESET alu_stage_I_VALID alu_stage_I_CARRY
alu_stage_I_START alu_stage_O_FINISHED alu_stage_O_STALL
alu_stage_O_ALU_LOOP alu_stage_O_REGFILE_SR lsu_stage_I_CLOCK
lsu_stage_I_RESET lsu_stage_I_DCACHE lsu_stage_O_DCACHE
lsu_stage_I_START lsu_stage_O_FINISHED lsu_stage_O_STALL wb0_I_VALID
id1_O_REGFILE_READ id1_I_REGFILE_READ wb1_I_VALID =

22 intern pcl_if0_id0:(uninterpreted_intern_type_1, bool, bool) pcl signal
23 pcl_if0_id1:(uninterpreted_intern_type_1, bool, bool) pcl signal
24 pcl_if1_id1:(uninterpreted_intern_type_1, bool, bool) pcl signal
25 pcl_id1_id0:(uninterpreted_intern_type_2, bool, bool) pcl signal
26 pcl_id0_br0:(uninterpreted_intern_type_2, bool, bool) pcl signal
27 pcl_id0_alu_stage:(uninterpreted_intern_type_2, bool, bool) pcl signal
28 pcl_id0_lsu_stage:(uninterpreted_intern_type_2, bool, bool) pcl signal
29 pcl_id1_br0:(uninterpreted_intern_type_2, bool, bool) pcl signal
30 pcl_br0_alu_stage:(uninterpreted_intern_type_2, bool, bool) pcl signal
31 pcl_alu_stage_alu_stage:(uninterpreted_intern_type_2, bool, bool) pcl

signal
32 pcl_id1_alu_stage:(uninterpreted_intern_type_2, bool, bool) pcl signal
33 pcl_alu_stage_id0:(uninterpreted_intern_type_3, bool, bool) pcl signal
34 pcl_alu_stage_id1:(uninterpreted_intern_type_3, bool, bool) pcl signal
35 pcl_alu_stage_wb0:(uninterpreted_intern_type_3, bool, bool) pcl signal
36 pcl_id1_lsu_stage:(uninterpreted_intern_type_2, bool, bool) pcl signal
37 pcl_lsu_stage_id1:(uninterpreted_intern_type_3, bool, bool) pcl signal
38 pcl_lsu_stage_id0:(uninterpreted_intern_type_3, bool, bool) pcl signal
39 pcl_lsu_stage_wb1:(uninterpreted_intern_type_3, bool, bool) pcl signal
40 .
41 begin_ckt
42 if0 if0_O_ICACHE if0_I_ICACHE reset [& pclP &] [& pcl_if0_id0;

pcl_if0_id1 &];
43 if1 if1_O_ICACHE if1_I_ICACHE reset [& pclP &] [& pcl_if1_id1 &];
44 id0 id0_O_REGFILE_READ id0_I_REGFILE_READ reset [& pcl_if0_id0; (

two_to_one pcl_id1_id0) &] [& pcl_id0_br0; pcl_id0_alu_stage;
pcl_id0_lsu_stage &];

85

45 br0 br0_I_VALID br0_O_ISTAKEN br0_O_TARGETPC br0_I_FLAG reset [&
pcl_id0_br0; pcl_id1_br0 &] [& pcl_br0_alu_stage &];

46 alu_stage alu_stage_I_CLK alu_stage_I_RESET alu_stage_I_VALID
alu_stage_I_CARRY alu_stage_I_START alu_stage_O_FINISHED
alu_stage_O_STALL alu_stage_O_ALU_LOOP alu_stage_O_REGFILE_SR
reset [& pcl_alu_stage_alu_stage; pcl_id0_alu_stage;
pcl_br0_alu_stage; pcl_id1_alu_stage &] [& pcl_alu_stage_id0;
pcl_alu_stage_id1; pcl_alu_stage_wb0 &];

47 lsu_stage lsu_stage_I_CLOCK lsu_stage_I_RESET lsu_stage_I_DCACHE
lsu_stage_O_DCACHE lsu_stage_I_START lsu_stage_O_FINISHED
lsu_stage_O_STALL reset [& pcl_id1_lsu_stage; pcl_id0_lsu_stage &]
[& pcl_lsu_stage_id1; pcl_lsu_stage_id0; pcl_lsu_stage_wb1 &];

48 wb0 wb0_I_VALID reset [& pcl_alu_stage_wb0 &] [& pclN &];
49 id1 id1_O_REGFILE_READ id1_I_REGFILE_READ reset [& pcl_if0_id1;

pcl_if1_id1 &] [& pcl_id1_alu_stage; pcl_id1_id0; pcl_id1_br0;
pcl_id1_lsu_stage &];

50 wb1 wb1_I_VALID reset [& pcl_lsu_stage_wb1 &] [& pclN &]
51 end_ckt
52 ‘;

86

Glossary of Terms

ASIC Application Specific Integrated Circuit

DSL Domain Specific Language

EMF Eclipse Modeling Framework

GEF Eclipse Graphical Editing Framework

GMF Eclipse Graphical Modeling Framework

HOL In this thesis, HOL refers to the HOL theorem prover which stands for Higher
Order Logic.

MDA Model Driven Architecture, a framework proposed by the Object Manage-
ment Group

OMG Object Management Group

PIM Platform Independent Model

PSM Platform Specific Model

RTL Register Transfer Level

87

References

[1] E. Mah, “Worldwide PC processor market hits record levels of unit ship-
ments again in 4q07, says IDC,” DIGITIMES, January 22, 2008. http:

//www.digitimes.com/mobos/a20080122PR202.html (current as of July 15,
2008). 1

[2] M. Reardon, “Cell phone sales hit 1 billion mark,” CNET News Blog, February
2008. http://news.cnet.com/8301-10784_3-9881022-7.html (current as of
July 15, 2008). 1

[3] C. Sorensen, “1 million iPhone 3Gs sold in 3 days,” thestar.com, July 15, 2008.
http://www.thestar.com/Business/article/460175 (current as of July 16,
2008). 1

[4] D. L. Walker, “The longest day,” Washington Post Magazine, p. W20, Au-
gust 5, 2007. http://www.washingtonpost.com/wp-dyn/content/article/

2007/08/01/AR2007080101720_2.html (current as of July 16, 2008). 1

[5] M. McNamara, “ESL handoff: closer than you think,” Embedded.com, July 8,
2008. http://www.embedded.com/design/208803191 (current as of July 12,
2008). 1, 16

[6] L. Wirbel, “Embedded designers on tighter schedules, juggling multiple
projects in 2008,” EE Times, July 3, 2008. http://www.eetimes.com/miu/

showArticle.jhtml?articleID=208802378&pgno=1 (current as of July 15,
2008). 1

[7] D. A. Patterson and J. L. Hennessy, Computer Architecture: A Quantitative
Approach. Morgan Kaufmann Publishers, Inc., 1990. 2

[8] J. R. Burch and D. L. Dill, “Automatic verification of pipelined micro-
processors control,” in Proceedings of the sixth International Conference on
Computer-Aided Verification CAV (David L. Dill, ed.), vol. 818, (Stanford,
California, USA), pp. 68–80, Springer-Verlag, 1994. 2

[9] I. Gavrichenkov, “Getting ready to meet Intel Core 2 Duo: Core microar-
chitecture unleashed,” X-bit labs, June 29, 2006. http://www.xbitlabs.

com/articles/cpu/display/core2duo-preview.html (current as of July 16,
2008). 2

88

http://www.digitimes.com/mobos/a20080122PR202.html
http://www.digitimes.com/mobos/a20080122PR202.html
http://news.cnet.com/8301-10784_3-9881022-7.html
http://www.thestar.com/Business/article/460175
http://www.washingtonpost.com/wp-dyn/content/article/2007/08/01/AR2007080101720_2.html
http://www.washingtonpost.com/wp-dyn/content/article/2007/08/01/AR2007080101720_2.html
http://www.embedded.com/design/208803191
http://www.eetimes.com/miu/showArticle.jhtml?articleID=208802378&pgno=1
http://www.eetimes.com/miu/showArticle.jhtml?articleID=208802378&pgno=1
http://www.xbitlabs.com/articles/cpu/display/core2duo-preview.html
http://www.xbitlabs.com/articles/cpu/display/core2duo-preview.html

[10] N. Mokhoff, “Intel, Motorola report formal verification gains,” EE Times, June
21, 2001. http://www.eetimes.com/story/OEG20010621S0080 (current as of
July 16, 2008). 2

[11] M. Aagaard and M. Leeser, “Reasoning about pipelines with structural haz-
ards,” in TPCD ’94: Proceedings of the Second International Conference on
Theorem Provers in Circuit Design - Theory, Practice and Experience, (Lon-
don, UK), pp. 13–32, Springer-Verlag, 1994. 3, 6, 9, 22, 25

[12] J. Higgins, “Simplifying the design and verification of pipelined circuits,” Mas-
ter’s thesis, University of Waterloo, 2004. 3, 6, 7, 21, 25, 29, 64, 71

[13] K. Czarnecki, “Overview of generative software development,” in Unconven-
tional Programming Paradigms, International Workshop UPP 2004, Le Mont
Saint Michel, France, September 15-17, 2004, Revised Selected and Invited
Papers, pp. 326–341, 2004. 3, 10, 11, 79

[14] OpenCores, OpenRISC 1000 Architecture Manual, April 2006. Rev 1.3. 3, 64

[15] D. Lampret, OpenRISC 1200 IP Core Specification. OpenCores, Sep 2001.
Rev. 0.7. 3, 64

[16] S. W. Ambler and R. Jeffries, Agile modeling: effective practices for extreme
programming and the unified process. New York, NY, USA: John Wiley &
Sons, Inc., 2002. 10

[17] J. Mukerji and J. Miller, Technical Guide to Model Driven Architecture: The
MDA Guide. Object Management Group, Inc., v1.0.1 ed., 2003. http://www.
omg.org/cgi-bin/doc?omg/03-06-01 (current as of Mar. 23, 2008). 10, 11

[18] Object Management Group, Inc., Meta Object Facility (MOF) Core Specifica-
tion, v2.0 ed., January 2006. http://www.omg.org/spec/MOF/2.0/ (current
as of July 13, 2008). 10, 11

[19] “The Eclipse Modeling Framework (EMF) overview,” 2005. http:

//help.eclipse.org/ganymede/index.jsp?topic=/org.eclipse.emf.

doc/references/overview/EMF.html (current as of Mar. 9, 2008). 11, 60

[20] “The eclipse development platform.” http://www.eclipse.org (current as of
Mar. 9, 2008). 11

[21] “Graphical modeling framework.” http://www.eclipse.org/gmf (current as
of Mar. 9, 2008). 12

[22] C. Kern and M. R. Greenstreet, “Formal verification in hardware design: a
survey,” ACM Trans. Des. Autom. Electron. Syst., vol. 4, no. 2, pp. 123–193,
1999. 14

89

http://www.eetimes.com/story/OEG20010621S0080
http://www.omg.org/cgi-bin/doc?omg/03-06-01
http://www.omg.org/cgi-bin/doc?omg/03-06-01
http://www.omg.org/spec/MOF/2.0/
http://help.eclipse.org/ganymede/index.jsp?topic=/org.eclipse.emf.doc/references/overview/EMF.html
http://help.eclipse.org/ganymede/index.jsp?topic=/org.eclipse.emf.doc/references/overview/EMF.html
http://help.eclipse.org/ganymede/index.jsp?topic=/org.eclipse.emf.doc/references/overview/EMF.html
http://www.eclipse.org
http://www.eclipse.org/gmf

[23] M. J. C. Gordon and T. F. Melham, eds., Introduction to HOL: a theorem
proving environment for higher order logic. New York, NY, USA: Cambridge
University Press, 1993. HOL4 website: http://hol.sourceforge.net. 14

[24] M. Gordon, “From LCF to HOL: a short history,” Proof, language, and inter-
action: essays in honour of Robin Milner, pp. 169–185, 2000. 14, 15

[25] P. Sestoft, Moscow ML Library Manual. Moscow ML, 2000. 15

[26] Mentor Graphics Corporation, “HDL designer.” http://www.mentor.com/

products/fpga_pld/hdl_design/hdl_designer_series/ (current as of July
12, 2008). 16

[27] Altera, “Quartus II.” http://www.altera.com/products/software/

products/quartus2/qts-index.html (current as of July 12, 2008). 16

[28] M. Franklin, E. Tyson, J. Buckley, P. Crowley, and J. Maschmeyer, “Auto-pipe
and the X language: a pipeline design tool and description language,” Parallel
and Distributed Processing Symposium, 2006. IPDPS 2006. 20th International,
pp. 10 pp.–, April 2006. 16, 18

[29] D. A. Mathaikutty and S. K. Shukla, “MCF: A metamodeling-based com-
ponent composition frameworkcomposing SystemC IPs for executable system
models,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 16, pp. 792–805, July 2008. 16

[30] D. Mathaikutty, S. Kodakara, A. Dingankar, S. Shukla, and D. Lilja, “MMV:
A metamodeling based microprocessor validation environment,” IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, vol. 16, pp. 339–352,
April 2008. 16

[31] “The generic modeling environment.” http://www.isis.vanderbilt.edu/

projects/gme/ (current as of July 5, 2008). 17

[32] Object Management Group, Inc., UML Specification, v2.1.2 ed., November
2007. http://www.omg.org/spec/UML/Current (current as of July 13, 2008).
17

[33] Object Management Group, Inc., Object Constraint Language Specification,
v2.0 ed., May 2006. http://www.omg.org/technology/documents/formal/

ocl.htm (current as of July 13, 2008). 17, 25, 78

[34] W. Mueller, A. Rosti, S. Bocchio, E. Riccobene, P. Scandurra, W. Dehaene,
and Y. Vanderperren, “UML for ESL design - basic principles, tools, and ap-
plications,” IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pp. 73–80, Nov. 2006. 17

90

http://www.mentor.com/products/fpga_pld/hdl_design/hdl_designer_series/
http://www.mentor.com/products/fpga_pld/hdl_design/hdl_designer_series/
http://www.altera.com/products/software/products/quartus2/qts-index.html
http://www.altera.com/products/software/products/quartus2/qts-index.html
http://www.isis.vanderbilt.edu/projects/gme/
http://www.isis.vanderbilt.edu/projects/gme/
http://www.omg.org/spec/UML/Current
http://www.omg.org/technology/documents/formal/ocl.htm
http://www.omg.org/technology/documents/formal/ocl.htm

[35] P. Mishra, A. Shrivastava, and N. Dutt, “Architecture description language
(ADL)-driven software toolkit generation for architectural exploration of pro-
grammable SOCs,” ACM Trans. Des. Autom. Electron. Syst., vol. 11, no. 3,
pp. 626–658, 2006. 18

[36] Target Compiler Technologies, “What is nML?.” http://www.retarget.com/

products/whatisnml.php (current as of July 14, 2008). 18

[37] J. Hoe and Arvind, “Operation-centric hardware description and synthesis,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, vol. 23, pp. 1277–1288, Sept. 2004. 18

[38] N. Dave, “Designing a reorder buffer in Bluespec,” Formal Methods and Models
for Co-Design, 2004. MEMOCODE ’04. Proceedings. Second ACM and IEEE
International Conference on, pp. 93–102, June 2004. 19

[39] C. Brooks, E. A. Lee, X. Liu, S. Neuendorffer, Y. Zhao, and H. Zheng, “Het-
erogeneous concurrent modeling and design in java (volume 1: Introduction to
Ptolemy II),” Tech. Rep. UCB/EECS-2008-28, EECS Department, University
of California, Berkeley, Apr 2008. 19

[40] G. Bartsch, Signs - VHDL Hardware Developement. Institut fuer Technische
Informatik. http://www.iti.uni-stuttgart.de/~bartscgr/signs/wiki/

index.php/Main_Page (current as of Mar. 6, 2008). 23, 26

[41] Mentor Graphics Corporation, Precision RTL Synthesis Style Guide, release
2004c update1 ed., February 2005. 33, 70

[42] P. J. Ashenden, The Designer’s Guide to VHDL. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2001. 35

[43] HOL Reference Page. http://hol.sourceforge.net/

kananaskis-4-helpdocs/help/HOLindex.html (current as of July 23,
2008). 47

[44] Sun Microsystems, Inc., JavaTM 2 Platform Standard Edition 5.0 API Spec-
ification, 2004. http://java.sun.com/j2se/1.5.0/docs/api/ (current July
23, 2008). 50, 53

[45] Concept Engineering, Gate/SpiceVision Documentation, 2.8.1 ed., 2005. 70

91

http://www.retarget.com/products/whatisnml.php
http://www.retarget.com/products/whatisnml.php
http://www.iti.uni-stuttgart.de/~bartscgr/signs/wiki/index.php/Main_Page
http://www.iti.uni-stuttgart.de/~bartscgr/signs/wiki/index.php/Main_Page
http://hol.sourceforge.net/kananaskis-4-helpdocs/help/HOLindex.html
http://hol.sourceforge.net/kananaskis-4-helpdocs/help/HOLindex.html
http://java.sun.com/j2se/1.5.0/docs/api/

	List of Tables
	List of Figures
	Introduction
	Overview of Pipelines
	Research Overview
	Thesis Statement and Contributions
	Thesis Outline

	Background
	A Pipeline Model
	Model Driven Development
	Eclipse Graphical Modeling Framework
	The HOL Theorem Prover
	Bluenose I
	Related Work
	Summary

	Pipeline Design with Bluenose II
	Overview
	PipeNet
	Design Flow in Bluenose II
	User Interface
	Reducing Clutter
	Changes from Bluenose I

	VHDL PipeLib
	Changes from Bluenose I

	VHDL Generation
	Conversion Function Templates
	Changes from Bluenose I

	Summary

	Pipeline Verification with Bluenose II
	HOL PipeLib
	HOL Generation
	HOL Console
	Summary

	Bluenose II Core
	Data Structures
	Block
	Connection

	Implementation
	Java Generation
	Customization

	Summary

	Case Study
	The OpenRISC Design
	Observations
	Performance Comparison
	Speed and Area
	Code Quality

	Summary

	Conclusions and Future Work
	Conclusions
	Future Work

	Appendix
	DiffAdd Code Generated by Bluenose I
	Reference Model Testbench
	Generated HOL Script Based on OR1200-BNv3
	Glossary of Terms
	References

