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Abstract

Over the past few years, there has been a renewed interest in the consensus problem for
ensembles of partitions. Recent work is primarily motivated by the developments in the area of
combining multiple supervised learners. Unlike the consensus of supervised classifications, the
consensus of data partitions is a challenging problem due to the lack of globally defined cluster
labels and to the inherent difficulty of data clustering as an unsupervised learning problem.
Moreover, the true number of clusters may be unknown. A fundamental goal of consensus methods
for partitions is to obtain an optimal summary of an ensemble and to discover a cluster structure
with accuracy and robustness exceeding those of the individual ensemble partitions.

The quality of the consensus partitions highly depends on the ensemble generation mechanism
and on the suitability of the consensus method for combining the generated ensemble. Typically,
consensus methods derive an ensemble representation that is used as the basis for extracting the
consensus partition. Most ensemble representations circumvent the labeling problem. On the
other hand, voting-based methods establish direct parallels with consensus methods for super-
vised classifications, by seeking an optimal relabeling of the ensemble partitions and deriving an
ensemble representation consisting of a central aggregated partition. An important element of the
voting-based aggregation problem is the pairwise relabeling of an ensemble partition with respect
to a representative partition of the ensemble, which is refered to here as the voting problem. The
voting problem is commonly formulated as a weighted bipartite matching problem.

In this dissertation, a general theoretical framework for the voting problem as a multi-response
regression problem is proposed. The problem is formulated as seeking to estimate the uncertain-
ties associated with the assignments of the objects to the representative clusters, given their
assignments to the clusters of an ensemble partition. A new voting scheme, referred to as cumu-
lative voting, is derived as a special instance of the proposed regression formulation corresponding
to fitting a linear model by least squares estimation. The proposed formulation reveals the close

relationships between the underlying loss functions of the cumulative voting and bipartite match-



ing schemes. A useful feature of the proposed framework is that it can be applied to model
substantial variability between partitions, such as a variable number of clusters.

A general aggregation algorithm with variants corresponding to cumulative voting and bipar-
tite matching is applied and a simulation-based analysis is presented to compare the suitability of
each scheme to different ensemble generation mechanisms. The bipartite matching is found to be
more suitable than cumulative voting for a particular generation model, whereby each ensemble
partition is generated as a noisy permutation of an underlying labeling, according to a probability
of error. For ensembles with a variable number of clusters, it is proposed that the aggregated
partition be viewed as an estimated distributional representation of the ensemble, on the basis of
which, a criterion may be defined to seek an optimally compressed consensus partition.

The properties and features of the proposed cumulative voting scheme are studied. In par-
ticular, the relationship between cumulative voting and the well-known co-association matrix is
highlighted. Furthermore, an adaptive aggregation algorithm that is suited for the cumulative
voting scheme is proposed. The algorithm aims at selecting the initial reference partition and the
aggregation sequence of the ensemble partitions the loss of mutual information associated with
the aggregated partition is minimized. In order to subsequently extract the final consensus par-
tition, an efficient agglomerative algorithm is developed. The algorithm merges the aggregated
clusters such that the maximum amount of information is preserved. Furthermore, it allows the
optimal number of consensus clusters to be estimated.

An empirical study using several artificial and real-world datasets demonstrates that the
proposed cumulative voting scheme leads to discovering substantially more accurate consensus
partitions compared to bipartite matching, in the case of ensembles with a relatively large or a
variable number of clusters. Compared to other recent consensus methods, the proposed method
is found to be comparable with or better than the best performing methods. Moreover, accurate
estimates of the true number of clusters are often achieved using cumulative voting, whereas
consistently poor estimates are achieved based on bipartite matching. The empirical evidence

demonstrates that the bipartite matching scheme is not suitable for these types of ensembles.

vi



Acknowledgments

I wish to start by expressing my deep gratitude to God for the wonder that can endlessly
inspire interest and a quest for knowledge.

My aspiration to pursue this research could not have become a reality without the valuable
contributions of a number of supportive people, for whom I will always be grateful.

I am grateful to my supervisor, Prof. Mohamed Kamel, for introducing me to an interest-
ing research area that crosses the boundaries of several disciplines and for patiently fostering my
development as a researcher. I sincerely thank him for his committment to giving me advice, sup-
port, and encouragement; for his valuable insights and feedback; and for his constant dedication
to discussing this research.

I am grateful to Prof. Hugh Chipman for his insightful teaching of Statistical Learning, and
for kindly accepting to serve on my committee, despite the difficult logistics due his move to
Acadia University, early on in my program. I wish to thank him for the time he took to meet
with me during his visits to Waterloo, for the numerous comments and suggestions he gave me,
and for a useful discussion on the multi-response regression formulation proposed in this thesis.

I am grateful to the ECE members of my committee: Prof. Otman Basir and Prof. William
Bishop, and to my external examiner Prof. Ludmila Kuncheva for their insightful feedback and
suggestions on the thesis. I also wish to sincerely thank Prof. Bishop for offering many useful
comments on the writing of the thesis.

I am thankful for the financial support of the Natural Sciences and Engineering Research
Council (NSERC) of Canada, the Ontario Graduate Scholarship (OGS) program, the Faculty of
Engineering and the Graduate Studies Office at the University of Waterloo, and the Learning
Objects Repository Network (LORNET).

I am grateful to my husband Ossama El Badawy, an alumni of the Pattern Analysis and
Machine Intelligence research group, for the numerous discussions I had with him and the technical

help he gave me, and for his amazing support and encouragment of my research work.

vii



I am grateful to Douglas Harder for the knowledge and skills I gained by working with him as
a teaching assistant during several semesters of my Ph.D. program. His knowledge and tireless
dedication will always be very inspiring.

I am also grateful to Prof. Paul Fieguth for his insightful teaching of Pattern Recognition.

I wish to thank the member and alumni of the PAMI group. I am especially thankful for
the useful discussions and memorable interactions during my PhD years with Moataz El Ayadi,
Masoud Makrehchi, Khaled Hammouda, Shady Shehata, Abbas Ahmadi, Yanmin Sun, Rozita
Dara, Kong Wai-Kin Adams, Yu Sun, Ali Ahmed, and Ibrahim El-Rube.

I am thankful to the administrative staff for their great help during my program. In particular,
I wish to thank Wendy Boles, Lisa Hendel, Heidi Campbell, Sue Havitz, and Karen Critchley.

I wish to thank my father-in-law for his support and his motivating interest in science.

I am grateful to my mother and father; their great support and their pride and joy in my
humble accomplishments is very generous.

I am indebted to my daughter Sarah for enduring my long working days and nights.

viii



Dedication

To Ossama and Sarah.

X






Contents

List of Tables

List of Figures

1 Introduction

2

1.1
1.2
1.3
1.4
1.5

Data Clustering
Consensus of Partitions
Contributions
Notations

Thesis Organization

Review of Related Work

2.1 Early Literature

2.2

2.1.1
2.1.2

Review of Recent Consensus Methods

221
2.2.2
2.2.3
2.24

Introduction . . . . . . . .. ...

Classical Approaches to Reconciling Partitions . . . . . . ..

Consensus Methods: A Taxonomy . . ... .. ........

Similarity-Based Consensus Methods . . . . . . .. ... ...

Consensus Based On A Categorical Feature-Space

Consensus Via Voting-Based Aggregation . . ... ... ...

xi

XV



2.3 Ensemble Generation Techniques . . . . . . . .. . ... .. ... L. 27

2.4 Analysis of Consensus Partitions . . . . . .. .. ... ... L. 29
Voting-Based Partition Aggregation 33
3.1 A New Framework for the Voting Problem . . . . . . ... ... .. ... ... ... 33
3.1.1 General Formulation . . . . . . ... .. ... 35
3.1.2 Cumulative Voting . . . . . . . . . . . 36
3.1.3 Bipartite Matching . . . . . . .. .. .o L 38
3.1.4 Tlustrative Example . . . . . . . .. ..o Lo 40
3.2 Voting-Based Aggregation . . . . . ... ... 42
3.2.1 Formulation . . . . . . ... 42
3.2.2 Algorithm . . . . . . . .. e 43
3.3 Simulation-Based Analysis . . . . . . . . ... 45
3.3.1 Partition Generation Models . . . . . . . . ... ... .. L. 45
3.3.2 Simulation Results . . . . .. .. ... 48
3.4 DISCusSiOn . . . . ... e e e 54
On The Cumulative Voting Scheme 57
4.1 Properties of Cumulative Voting . . . . . . . . .. .. oL 57
4.1.1 Unanimity Rule. . . . . . . . ..o o 57
4.1.2 Relation to Co-Association Matrix . . . . . ... ... ... ... ... .. 58
4.1.3 Preserving Class Distribution . . . . . . .. ... ... 0L, 62
4.2 Maximizing Information Content . . . . . . . . ... ... oL 64
4.2.1 Rationale . . . . . . . . 64
4.2.2 Adaptive Algorithm . . . . . . ... 66
4.2.3 Simulation Results . . . . . . . .. 67

xii



5 Compression of Aggregated Representation 73

5.1 Theoretical Basis . . . . . . . .. . e 73
5.1.1 The Information-Bottleneck Method . . . . . . . ... . ... ... ..... 74
5.1.2  Mutual Information and Jensen-Shannon Divergence . . . . . . .. .. ... 75

5.2 Efficient Agglomerative Algorithm . . . . . ... ... ... ... ... .. 7
5.2.1 Formulation . . . . . . ... 77
5.2.2  Optimal Partition Estimation . . . . . . . . ... ... ... .. ... ..., 79

5.3 Empirical Study . . . .. ..o 80
5.3.1 Consensus Algorithms . . . . . . ... ... L oo 81
5.3.2 DataSets . . . . . . . 82
5.3.3 Ensemble Generation Technique . . .. .. ... ... ... .. ....... 85
5.3.4 Performance Evaluation . . . . ... ... ... ... ... .. 85
5.3.5  Results for Artificial Datasets . . . . . . . . . .. ... .. L. 87
5.3.6 Results for Real Datasets . . . . . . ... ... ... ... ... ... .. 93

5.4 SUMMATY .« . . o v vt e e e e 97
54.1 Results Summary . . . . . . ... Lo 98
5.4.2 Conclusion . . . . . . . L e 99

6 Conclusions 108

6.1 The Voting-Based Consensus Problem . . . . . .. .. .. .. ... ... ...... 108

6.2 Contributions . . . . . . . . L 109
6.2.1 A New Formulation for the Voting Problem . . . . ... .. .. ... ... .. 109
6.2.2 A study of the Properties of Cumulative Voting . . . . . .. ... ... ... 110
6.2.3 Compression of Aggregated Representation . . . . .. .. ... ... .... 111
6.2.4 Computational Efficiency . . . . . . ... ... o 0oL 112

6.3 Future Work . . . . . . L 113
6.3.1 Multi-Response Regression Formulation . . . . . .. ... ... ... .... 113

xiii



6.3.2 Application in Bioinformatics . .

6.3.3 Application to Model-Based Cluster Ensembles . . . . . ... .. ... ...

6.3.4 Consensus Clustering Validation

Bibliography

Xiv

115



List of Tables

5.1 Characteristics of the datasets and ARI values for the k-means (mean + std). . . . 83

5.2  Summary of experimental results based on the ARI measure. . . . ... ... ... 107

Xv






List of Figures

2.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3

5.1
5.2
9.3
5.4
5.5

A taxonomy of consensus clustering methods based on the aggregate representation

of the ensemble partitions. Several recent consensus algorithms are identified. . . .

Voting loss using MSE? and Err for uniform partitions with k; = 2 and k; = 25.
Voting loss using MSE’ and Err’ for non-uniform partitions. . . . . . . .. .. ...

MSE versus p¢ for uniform ensembles with k; =2 and k; =15. . . . . .. ... ..

(0%

Err* versus p¢

for uniform ensembles with k; = 2, for different values for pi. . . . .

(0%

¢ for uniform ensembles with k; = 15 for different values for pt. . . . .

Err* versus p
MSE and Err* for ensembles with a random number of clusters. . . . . . . . . . ..

MSE and Err* for ensembles with a random cluster label distribution. . . . . . . .

I(C; X) and MSE for cVote and Ada-cVote. . . . . ... .. ... .........
Err* for ensembles with k; = 15, where pt,p® € [0,0.5] . . . . ... .. ... .. ..
I(C; X) and MSE for bVote and Ada-bVote. . . . ... ... ... .........

Artificial datasets. Each cluster indicated by a distinct symbol. . . . . . . ... ..
Results for the 2D2K dataset with pre-determined k = 2 and k; € [6,20] . . . . . .
Results for the 2D2K dataset with k; € [6,20], where k is estimated. . . . . .. ..
Results for the 8D5K dataset with pre-determined k£ =5 and k; € [10,30] . . . . .
Results for the 8D5K dataset with k; € [10,30], where k is estimated. . . . . . . . .

xvii



5.6

9.7

5.8

2.9

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
0.22
5.23
5.24
9.25

Results for the four Gauss dataset with pre-determined k = 4 and k; € [10,20] . . .
Results for the four Gauss dataset with k; € [10,20], where k is estimated. . . . . .
Results for the easy doughnut dataset with pre-determined k£ = 2 and k; € [6,12]
Results for the easy doughnut dataset with k; € [6,12], where k is estimated.
Results for the difficult doughnut dataset with pre-determined k& = 2 and k; € [6, 12]
Results for the difficult doughnut dataset with k; € [6,12], where k is estimated.
Results for the two Gauss dataset with pre-determined k = 2 and k; € [8, 16]
Results for the two Gauss dataset with k; € [6, 18], where k is estimated. . . . . . .
Results for the breast cancer dataset with pre-determined k = 2 and k; € [6,12] .
Results for the breast cancer dataset with k; € [6,12], where k is estimated. . . . .
Results for the breast cancer dataset with pre-determined k =2 and k; =15 . . .
Results for the breast cancer dataset with k; = 15, where k is estimated. . . . . . .
Results for the optical digits dataset with pre-determined k& = 10 and k; € [15,30] .
Results for the optical digits dataset with k; € [15, 30], where k is estimated. . . .
Results for the optical digits dataset with pre-determined k£ = 10 and k; = 30 . .
Results for the optical digits dataset with k; = 30, where k is estimated. . . . . . .
Results for the Yahoo! dataset with pre-determined k = 6 and k; € [12,24] . . . . .
Results for the Yahoo! dataset with k; € [12,24], where k is estimated. . . . . . . .
Results for the Yahoo! dataset with pre-determined £k =6 and k; =24, Vi . . . . .

Results for the Yahoo! dataset with k; = 24, Vi, where k is estimated. . . . . . . .

xviii

92
93
94
95

97
98

. 100

101

. 102

102
103

. 103
. 104

104



Chapter 1

Introduction

This introductory chapter begins with an overview of the data clustering problem, in Sec. 1.1,
where the issues leading to the idea of seeking a consensus clustering are highlighted. In Sec.
1.2, the problem of reconciling an ensemble of partitions is introduced, and a distinct class of
consensus methods referred to as voting-based methods is emphasized. In Sec. 1.4, some general
notations are presented. The contributions of the thesis are outlined in Sec. 1.3, and in Sec. 1.5,

the thesis organization is summarized.

1.1 Data Clustering

The goal of data clustering is the discovery of a meaningful and consistent cluster structure for
a given collection of data objects, where the objects are typically described by a number of input
descriptor variables. The data objects are also known as data samples or observations, and the
set of input variables is also known as the feature space. Data clustering addresses a fundamental
problem in exploratory data analysis, where the basic idea is to identify natural groups in a
dataset by assigning the objects that are inherently similar to the same cluster and those that

are inherently dissimilar to different clusters. The problem has a been extensively studied for



several decades in the areas of pattern recognition, machine learning, applied statistics, as well
as in communications and information theory [1-9]. The problem arises in numerous fields of
applications including data mining, document clustering, bio-informatics, image analysis and
segmentation, data compression, and data classification.

Data clustering is also known as unsupervised learning. The term “unsupervised” is given
in contrast with the related supervised learning problem, whereby a training (learning) dataset,
which includes a target output variable for the objects, is available and used to train/learn a
predictive model. The predictive model can then be used to predict the value of the output
variable for new samples with unknown or missing values of the output variable. KEssentially,
supervised learning seeks to specify a mathematical model that best represents the relationship
between the input (descriptor) variables and an output response variable, possibly based on
a presumed functional form such as linear, quadratic, specific probability functions, or other
non-parametric models. It is important to note that supervised learning is a general term that
encompasses not only the problem of learning a categorical (class) variable, but also the problem
of learning a numerical output variable or multiple output variables. In particular, learning
a numerical output variable corresponds to the classical regression problem [10]. Learning a
categorical variable is known as data classification.

In a data clustering problem, all the available data objects are unlabeled, and one is seeking
the extraction of an output categorical variable whose values depend on the input variables.
Finding the model that best fits the data can shed light on the natural relationships between the
objects and on the underlying population model. A clustering solution for a set of n data objects
corresponds to a partition of the n objects into k clusters, such that each object is assigned a
symbolic cluster label, where usually k < n. A clustering may also correspond to a hierarchical
sequence of partitions, referred to as a dendrogram, where k takes sequential values in {n,...,1},
corresponding to each level of the hierarchy. The true or meaningful number of clusters in the
data may be unknown, in which case, the problem of determining an optimal number of clusters

for the data needs to be addressed.



Generally, data clustering represents a challenging combinatorial optimization problem. The
number of ways of partitioning a set of n objects into k non-empty clusters is a Stirling set number
of the second kind, which is of the order k" /k! [9]. Thus, it is computationally intractable for large
problem sizes to exhaustively examine all possible clustering solutions. For solving a clustering
problem, a criterion is defined, and approximation or local search algorithms are devised to find
a clustering solution that best fits the data, based on the presumed clustering model. Multiple
different solutions are possible. Moreover, the inherent difficulty of the clustering problem is not
only due to the computational aspects and to the fact that different local optima are possible.
It is also the unsupervised nature of data clustering and the possible lack of knowledge of the
true number of clusters, that makes it particularly difficult. Clustering algorithms often lead to
a successful discovery of optimal cluster structures, if the data fit well to the presumed model.
However, if the data is not correctly modeled by the specified criterion, the discovered cluster
structures are generally inadequate.

As increasingly complex and large data are common in current applications, it is more prob-
lematic to select a clustering criterion that leads to extracting meaningful cluster structures.
Clusters may have complex shapes, highly unbalanced sizes, different densities, and possible over-
laps. Furthermore, most current data collections have high dimensional feature spaces, where in
some cases, the number of features can be thousands or tens of thousands, as in the case text
and micro-array data. Such very high dimensionality leads to the problem known as the curse of
dimensionality, where cluster structures are hidden in the huge feature space.

To overcome the inherent difficulties of data clustering and deal with a variety of challenging
data, complex clustering criteria in conjunction with computationally fast algorithms are required.
In particular, the design of consensus methods that produce a consensus clustering for a generated
ensemble of partitions represents a promising direction. It provides an advanced step for the
underlying learning task where an ensemble instead of an individual learner is employed in search
for a consistent cluster structure reflected by a consensus partition. Furthermore, complex cluster

structures may be viewed as being composed of combinations of simpler or partial structures.



1.2 Consensus of Partitions

The multiplicity of clustering solutions for a given dataset is an issue that has long been known in
the data clustering literature. The consensus of multiple data partitions was investigated within a
body of research that addressed the problem of comparison and consensus of data classifications
[11-15]. An overview of related work in this early literature is presented in Ch. 2. In this work,
the term “classifications” refers to a wide variety of categorization structures including partitions,
dendrograms, n-trees, ordered trees, phylogenetic trees, unrooted trees, and graphs, and the
consensus problem was addressed for various types of structures. Applications included taxonomic
and systematic research, bio-mathematics, and quantitative social sciences [16]. Traditionally,
the consensus problem for partitions has been studied in the fields of discrete mathematics and
theoretical computer science, classification and numerical taxonomy, and applied mathematics
in humanities and quantitative sociology. Classical approaches to the consensus problem for
partitions are categorized as axiomatic, constructive, and combinatorial optimization methods
[15].

During the past few years, there has been a renewed interest in the problem of combining an
ensemble of partitions, also known as a cluster ensemble. Emerging interest in the problem of
generating and combining cluster ensembles is primarily motivated by the advances in the related
area of combining multiple supervised classifications. This area has been mainly developed in
the fields of machine learning, applied statistics, and pattern recognition. An array of classi-
fier ensemble methods was developed including bagging [17], boosting [18], randomized decision
forests [19,20], additive logistic regression [21], and the random subspace method [20].

Cluster ensembles have been investigated for achieving various objectives such as improving
clustering accuracy over a single data clustering, allowing the discovery of arbitrarily-shaped clus-
ter structures [22-27], reducing the instability of a clustering algorithm due to noise, outliers [2§],
or to randomized algorithms [22], reusing pre-existing clusterings (knowledge reuse) [29], ex-

ploring random feature subspaces [29,30] or random projections [30] for high dimensional data,



exploiting weak clusterings such as splitting the data with random hyperplanes [30], estimation
of confidence in cluster assignments for individual observations [31], and clustering in distributed
environments including feature or object distributed clustering [29]. Combination of cluster en-
sembles have been investigated for several application domains such as cluster analysis for gene
expression data [31], distributed data mining [29,32], and image segmentation [28].

A fundamental goal of consensus methods for cluster ensembles is to find a consensus parti-
tion that optimally summarizes an ensemble and reveals a cluster structure with accuracy and
robustness exceeding the individual ensemble partitions. In the case of supervised learning, the
design of combination rules is relatively simple. For instance, aggregation can be directly ap-
plied [17]. In regression, the aggregation can be obtained by simple averaging of the individual
learners. For classifiers, the aggregation may be obtained via plurality voting; the assignments of
the data objects to classes by individual classifiers are viewed as votes, and aggregated vote ratios
may be used to assign objects to their highest voted class. However, the aggregation of multiple
partitions is a challenging problem [33,34]. Unlike classifiers, different clusters are distinguished
by arbitrary symbols rather than globally defined class labels, usually numbered as {1,...,k}.
That is, all k! permutations of the cluster labels for a given partition represent the same parti-
tion. Furthermore, the ensemble partitions can have a variable number of clusters. This lack of
pre-defined classes in the data, or the number thereof, causes a relabeling problem, in addition
to the problem of finding an optimal number of clusters.

It is noted that a consensus method typically derives an internal data representation from the
ensemble of partitions, which is referred to here as an ensemble representation. It is on the basis
of the ensemble representation that the optimal consensus partition is determined. The following
ensemble representations appear in recent work. Proximity-based representations were consid-
ered including the co-association matrix [25, 29,31, 35-37] and the graph-based representations
proposed in [29]. A categorical feature-space representation, where each variable corresponds to
an ensemble partition was considered in [38]. In [39], we considered a distributional data repre-

sentation, reflecting the uncertainties associated with the assignment of the data objects to a set



of reference clusters, as input to a subsequent information-theoretic clustering algorithm.

In fact, the consensus problem can itself be viewed as a clustering problem, whereby the data
partitioning is based on the representation derived from the ensemble. Recent consensus methods
may be roughly classified into proximity-based methods such as [25,29,31,40], methods based on
a (categorical) feature-space representation of the objects [38,41], and methods based on voting
(ensemble relabeling) as in [28,31,33,39,42,43]. This categorization is elaborated on in Ch. 2.

The first two types of consensus methods derive an ensemble representation that side-steps
the relabeling problem. On the other hand, voting-based consensus methods, seek to establish
a parallel approach to the aggregation of supervised learners [17, 18, 21], by searching for an
optimal relabeling of the ensemble partitions. The ensemble relabeling enables the computation
of an aggregated partition. That is, unlike other consensus methods, voting-based methods derive
an ensemble representation consisting of a central aggregated partition.

As pointed out in [33,34], the problem of relabeling and aggregating an ensemble of partitions
is computationally challenging as it requires the simultaneous optimization of relabeling the
ensemble partitions with respect to the representative (aggregated) partition of the ensemble and
of the aggregated partition with respect to the ensemble partitions. Several efficient algorithms
are proposed in recent literature [28,31,33,39,42,43|, as detailed in Ch. 3. An important element
of the ensemble relabeling problem is the pairwise (partial) relabeling of the ensemble partitions,
referred to here as the wvoting problem. The problem addresses the optimal relabeling of each
ensemble partition with respect to a representative partition of the ensemble. It is commonly
formulated as a weighted bipartite matching problem [28,31,33,42,43].

Note that the term “voting” essentially refers to the assignment of representative cluster labels
to the data objects, as derived from an ensemble partition. The common bipartite matching
scheme corresponds to permuting the cluster labels of an ensemble partition to optimally match
the labels of the representative partition. That is, it corresponds to a binary one-to-one relabeling

and hence it is also referred to here as a binary voting.



1.3 Contributions

In what follows is an overview of the contributions of this dissertation.

1. A general theoretical framework for the voting problem as a multi-response regression prob-
lem is proposed, whereby the relabeling of an ensemble partition is formulated as the prob-
lem of estimating the uncertainties associated with the assignments of the object to repre-

sentative clusters, given their assignments to the clusters of an ensemble partition.

e A new voting scheme, referred to as cumulative voting, is derived as a special instance
of the proposed regression formulation, which corresponds to fitting a linear model by

least squares estimation.

e An iterative aggregation algorithm referred to as Vote is applied as a general algorithm,
with variants referred to as cVote and bVote, corresponding to cumulative voting
and bipartite matching, respectively. A simulation-based analysis is conducted to
compare cVote and bVote, demonstrating that bVote is more suitable than cVote
for a particular partition generation model considered in [43], whereby the ensemble
partitions are generally uniform, with equal number of clusters, and are generated as

noisy permutations of an underlying labeling, according to a probability of error.

e For other types of ensembles, such as ensembles with a variable number of clusters, it
is proposed that the consensus partition be considered at multiple granularities (i.e.,
number of clusters) and a principled information-theoretic approach be applied for

extracting an optimally summarized consensus partition.
2. A study of the properties of the proposed cumulative voting scheme is presented.

e A relationship is derived between cumulative voting and the co-association matrix,
which is a fundamental aggregated representation for partition ensembles. To describe

this relation, an un-normalized variant of the cumulative voting scheme is defined.



e An entropy preserving property for the cumulative voting scheme is noted. This
property is utilized to introduce an adaptive aggregation algorithm referred to as
Ada-cVote. Unlike the Vote algorithm, which randomly selects the initial reference
partition and considers the ensemble partitions in a random order, Ada-cVote selects
the initial reference partition and the aggregation sequence of the ensemble partitions
such that the loss in the mutual information associated with the estimated aggregated

distribution is minimized. This leads to a more “informative” aggregated partition.

3. For ensembles with a relatively large and variable number of clusters, an interpretation of
the aggregated partition as a distributional representation of the ensemble is proposed. The
aggregated partition is considered the most granular consensus partition available (consist-

ing of k clusters), and consensus partitions at coarser levels are sought.

e An efficient agglomerative algorithm is proposed for extracting a hierarchy of consensus
partitions, each representing an optimally compressed k-cluster summary of the ag-
gregated representation that preserves the maximum amount of relevant information,
where k € {k,...,1}. Furthermore, an approach to estimating an optimal number of

consensus clusters is applied.

e The proposed algorithm, which applies the Jensen-Shannon divergence and the average
link hierarchical clustering (referred to as JS-Alink), is applied in conjunction with
Ada-cVote to give an overall two-stage consensus algorithm referred to as ACV. When
ACYV is used with a pre-determined number of consensus clusters k, it is referred to
as ACV-k. To compare the cumulative voting scheme with bipartite matching, the
JS-ALink algorithm is also applied in conjunction with bVote to give another variant
of a two-stage consensus algorithm referred to as BV. Also, when BV is given a desired

number of consensus clusters, it is referred to as BV-k.

e An important advantage of the proposed voting-based consensus method is that it is



computationally more efficiency than co-association based methods. It is characterized
by a linear complexity in the number of data objects O(n), whereas co-association

based methods are O(n?).

4. An empirical study is conducted using several artificial and real-world datasets with various
characteristics and difficulties, including a text data characterized by a very high dimen-
sional feature space. Furthermore, several recent consensus algorithms are applied for a
comparative evaluation. An ensemble generation technique that produces partitions with a
variable and relatively large number of clusters is adopted. Empirical evidence is presented
demonstrating that the ACV-k algorithm can find substantially more accurate consensus
partitions compared to BV-k, and is either comparable or better than the winner(s) among
all other consensus algorithms. Furthermore, accurate estimates of the optimal number of
clusters are often achieved using ACV, whereas consistently poor estimates are achieved
using BV. The empirical results demonstrates that the bipartite matching is not suitable

for this type of ensemble, whereas cumulative voting can be successful.

1.4 Notations

The following general convention is used. Scalars are written in lowercase letters. Vectors are
denoted by boldface lowercase letters, and matrices are denoted by boldface uppercase case letters.
The transpose of a matrix U is denoted by UT. Random variables are denoted by uppercase
letters. Sets are denoted by capital calligraphic letters, whereas members of a set are denoted
by lowercase letters. A set of data objects is written as X = {z1,...,2,}, where x; denotes the
label of a member of X'. It is noted that, at the ensemble generation phase, each data object is
a point in NP represented by the vector x;. However, in the consensus phase, the objects are not
dealt with in their feature space representation. Instead, they are viewed as members of the set

X. The set of cluster labels is denoted as C = {cy, ..., c;}. The discrete random variables taking
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values in X and C are denoted by X and C. The conditional distribution p(c|z) is defined for the

discrete variables C' and X and is estimated through the aggregation of the ensemble.

1.5 Thesis Organization

The thesis is organized as follows. In Ch. 2, a review of related work on consensus methods for
partitions is presented. In Ch. 3, the proposed framework and the cumulative voting scheme are
described, the voting-based aggregation problem for partitions is addressed, and a preliminary
simulation-based analysis is presented to compare the aggregation based cumulative voting versus
bipartite matching. In Ch. 4, the properties and features of the proposed cumulative voting
scheme are studied, and an adaptive aggregation algorithm is introduced. In Ch. 5, the problem
of extracting an optimally compressed summary of the aggregated representation of the ensemble
is addressed and an empirical study is presented to validate the proposed consensus algorithms

based on cumulative voting. Finally, the conclusions and future directions are outlined in Ch. 6.



Chapter 2

Review of Related Work

In this chapter, a review of related work on consensus methods for partitions is presented. The
idea of consensus is a general multi-disciplinary topic that been extended to the area of reconciling
partitions early on. A brief overview of early literature is outlined in Sec. 2.1. However, an in-
depth review of the multi-disciplinary work on consensus theory is outside the scope this thesis.
The interested reader is referred to a recent book on the theory of consensus in group choice and
bio-mathematics by Day and McMorris [16].

During the past few years, interest re-emerged in the consensus clustering problem for a
partition ensemble. Recent work has been primarily motivated by the preceding advances in the
area of combining multiple supervised classifications. A detailed review of the relatively mature
area of combining multiple classifiers is beyond the scope of this thesis. The interested reader is
referred to a recent book by Kuncheva [44]. In Sec. 2.2, a taxonomy and a survey of recently
developed consensus methods for partitions is presented. Furthermore, the different ensemble
generation mechanisms that have been developed in recent work are discussed in Sec. 2.3, and

an overview of some analytical studies for cluster ensembles is presented in Sec. 2.4.

11
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2.1 Early Literature

This section presents a brief chronology of the consensus problem and an outline of early work

on consensus of partitions.

2.1.1 Introduction

Originally, the consensus problem arose in the social sciences where it addresses the aggregation of
a set of individual preferences into a single social preference. In this context, consensus methods
can be traced back to the late eighteenth century to the works of Borda and Condorcet who
formulated voting methods and developed voting systems known as the Borda count method, in
1770, and the Condorcet method, in 1785, respectively.

In the second half of the twentieth century, the advances in what is referred to as the theory
of consensus, and its extension to other scientific disciplines, were motivated by Arrow’s theorem
introduced in his 1951 Ph.D. thesis (which later contributed to his 1972 Nobel Prize in Economics)
[16]. Arrow introduced an axiomatic paradigm in group choice, where the goal is to aggregate a
set of individual rankings into a single group ranking. He established the impossibility of existence
of a consensus rule that satisfies a set of reasonable fairness axioms. This contradictory result was
used to achieve the plurality rule and other non-dictatorial rules through appropriate weakening
of the axioms [16].

While Arrow’s work was in the area of social choice theory, dealing with the aggregation of
models of preferences, the aggregation of other models, including classification models such as
partitions, phylogenetic trees, and different tree and graph structures, was a general problem
arising in other areas of science and technology, such as taxonomic and systematic research and
bio-mathematics [16]. Hence, Arrow’s results were extended to the aggregation of classification
models. In 1975, Mirkin [11] introduced an impossibility theorem for reconciling partitions of a
set. Interest in the problem of consensus classifications grew steadily. In 1986, a special issue

of the journal of classification investigated methodologies for the comparison and consensus of
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classifications [14].

The problem of reconciling partitions was defined as the problem of finding a consensus
partition that summarizes a profile or a family of partitions in some meaningful sense [15]. Let
X = {x1,...,x,} denotes a set of data objects and let a profile of partitions be denoted as
P = {m1,...,m}, where m; is a member of P, and b is the cardinality of the P, b = |P|. Barthélemy
and Leclerc [15] point out that a consensus problem arises when we have one of the following
cases. (1) There are b partitioning methods providing approximations of the desired classification,
(2) a profile consists of b categorical variables C',..., C® describing the set of data objects and
leading to a search for a partition that is closest to the profile, in the sense of the statistical idea
of a central value, or (3) there is a profile representing partitions from measurements at times
t,t+1,...,t+b— 1, where in such a case, the notion of a moving consensus corresponds to a

smoothing of the series of partitions (or categorical variables).

2.1.2 Classical Approaches to Reconciling Partitions

In addressing the problem of reconciling partitions, three overlapping approaches were developed
early on [15], as described below. The third approach, being the most related to current research

on cluster ensembles, is elaborated upon.

1. The first, designated as aziomatic [11,45-47], is related to Arrow’s approach and is con-
cerned with deriving possibility /impossibility theorems on the existence and uniqueness of

consensus partitions satisfying specific conditions.

2. The second, designated as constructive, specifies rules for constructing a consensus, such as
the Pareto rule, also known as the strict consensus rule, whereby two objects occur together

in a consensus if and only if they occur together in all the individual partitions.

3. The third approach, designated as combinatorial optimization, considers a criterion mea-

suring the remoteness R(m, P) of any partition 7 of X’ to the given profile P, and defines
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the optimal consensus partition as the partition solution of the problem in Eq. 2.1, where

IT represents the set of all possible partitions of X.

min R(m, P) (2.1)

mell

The approach is related to the notion of a central value in statistics, and goes back to
Régnier [48], who used the term partitions centrales and considered the sum of the squared
distances, as an optimization criterion. Régnier formulates the problem of finding a central
partition [48], defined as a partition with maximum similarity to the input partitions. For

each partition 7* of the objects, an n x n boolean matrix M! = [m! ] is defined, where

ol
Z'. =

jg
two partitions 7' and 7" is defined as d(M?, M") = > i1 Z;l:l(mé- g — mj,)?. For a profile

m 1 if objects j and g belong to the same cluster of partition 7¢. The distance between
of b partitions, an aggregate matrix is defined as M = Z;’Zl M. The central partition
is defined as the partition 7% with corresponding boolean matrix M* that minimizes the
criterion S2°_, d(M*, M?). Régnier [48] also presented a theoretical study of the convergence

of central partitions based on a metric and a probability measure on the space of partitions.

Barthelemy and Leclerc [15] note that, in general, any distance function d on II may be
considered, where the remoteness of 7w to P, as given in Eq. 2.2, is defined as the sum of
the distances in the median case, or the sum of the squares of the distances, in the center

case as in [48]. Various metrics on partitions were studied in [49, 50].

b

min 2 d(m, ") (2.2)

The method is referred to as the median procedure for partitions [15,51]. For a given distance
function d, the procedure is referred to as the d-median procedure, and the solution of the
problem in Eq. 2.2 is referred to as the d-median partition. The problem is viewed as a clique

partitioning problem and the algorithmic approaches are classified into four classes: exact
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methods (such as branch and bound, which is suitable for only very small n), relaxation

methods, hill climbing heuristics, and meta-heuristics [15].

2.2 Review of Recent Consensus Methods

In this section, recent consensus clustering methods are organized into distinct classes, and a
survey is presented. It is noted that a primary design element of a consensus clustering algorithm
is the aggregate representation that is constructed for the ensemble of partitions. In other words, a
consensus method generally derives an aggregate representation of the ensemble, which is used as
the basis for extracting a consensus clustering. Hence, a general taxonomy of consensus methods
can be developed according to the different types of their aggregate ensemble representations.
An overview and a schematic diagram of the proposed taxonomy is presented in Sec. 2.2.1, and

detailed descriptions are given in Secs. 2.2.2, 2.2.3, and 2.2.4.

2.2.1 Consensus Methods: A Taxonomy

Three main types of aggregated representations can be identified in recent consensus methods,
where in turn, each representation can be further sub-divided into other subtypes or according
to the specific ways in which it is used to extract a consensus clustering. Figure. 2.1 depicts
the proposed taxonomy, with many recent consensus algorithms being identified, including the
algorithms proposed in this thesis. As shown in Fig. 2.1, one major class consists of consensus
methods that induce a similarity-based structure from a given ensemble. A second class include
methods that view the ensemble partitions in a categorical feature-space representation. Finally,
a third class consists of methods that derive a voting-based aggregated partition, which is a soft
partition, to represent a given ensemble.

A similarity-based structure can be subdivided into different subtypes, as follows. One basic
structure represents pairwise similarities between each pair of data objects. This structure corre-

sponds to an undirected graph where nodes represent objects and edges are weighted according to
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Consensus Clustering

Methods Based on Methods Based on a Voting-Based
Similarity Structures Categorical Feature- Space Methods
| | |
- . Multinomial Mixture  Category Utility/ Voting Viewed as Voting Viewed as
Graph/ Co-association Matrix Hypergraph  Meta-graph  yjoqe| for Catgeorical QMI Optimization ~ Bipartite Matching Multi-Response
Clustering (QMI) (Voting/ bVote) Regression
| (EM) (cVote)
| | | |
Hierarchical Graph Partitioning of a Non-Negative. Hypergraph Meta-graph Neighbor Clusters Information Adaptive
Partitioning Partitioning  Shared Nearest Matrix Partitioning Partitioning Merging Procedure  Compression Information
(EAC) (CSPA)  Neighbor Graph  Factorization (HGPA) (MCLA) (VMA) (BV/ BV-K) Compression
(WSnnG) (PLA) (ACV/ ACV-K)

Figure 2.1: A taxonomy of consensus clustering methods based on the aggregate representation

of the ensemble partitions. Several recent consensus algorithms are identified.

a defined measure of similarity. The graph can generally be represented by an n xn adjacency ma-
trix. In the context of cluster ensembles, this adjacency matrix is also known as a co-association
matrix, where similarities reflect the frequency of co-occurrence of each pair of objects in the same
cluster throughout the ensemble. The co-association matrix has been utilized in a number of dif-
ferent ways to extract a consensus partition. For instance, a hierarchical linkage-based clustering
is applied in the evidence accumulation clustering (EAC) algorithms [25]. Additionally, a graph
partitioning algorithm referred to as cluster-based similarity partitioning algorithm (CSPA) is
proposed in [29]. Furthermore, an approach based on constructing a weighted shared nearest
neighbors graph (WSnnG) from the co-association values is developed in [26]. Moreover, a prob-
abilistic label aggregation algorithm (PLA) is introduced in [37], which is based on non-negative
matrix factorization [52] of the normalized co-association matrix.

A second similarity-based structure proposed in [29] is a hypergraph, where an edge represents
multi-way similarity connecting multiple objects, instead of a pair. A consensus clustering is
obtained by applying a hypergraph partitioning algorithm (HGPA) [29]. Additionally, a meta-
graph similarity structure is proposed in [29] where edges represent similarity relations between

pairs of clusters, rather than objects. In this case, (meta)-graph partitioning is applied to find a
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consensus partition as given by the meta-clustering algorithm (MCLA) [29].

In a categorical feature representation of the objects, each feature corresponds to an ensemble
clustering represented as a labeling vector. Methods based on this representation are as follows.
A statistical model-based clustering using a mixture of multinomial distributions was proposed
in [41], where a consensus partition is computed as a solution to the corresponding maximum
likelihood problem using the EM algorithm. An alternative approach is proposed in [38], where
the category utility function is defined as the criterion for the categorical clustering problem. The
criterion is shown to be equivalent to the quadratic mutual information and the classical intra-
class variance criteria. A consensus partition is extracted by transforming the categorical variables
into standardized numerical variables and by applying the k-means algorithm as a mean-squared
error algorithm [38]. The consensus algorithm is referred to as QMI.

It is noted that for methods based on similarity structures or on a categorical feature-space
representation, the ensemble re-labeling problem is circumvented. Contrarily, when deriving a
voting-based aggregated partition, the ensemble re-labeling problem is directly addressed. Voting-
based consensus methods constitute the main focus of this dissertation. The ensemble re-labeling
is a difficult problem. It is generally attacked via pairwise relabeling. The pairwise relabeling
if also referred to here as the voting problem. It has been commonly formulated as a bipar-
tite matching problem [28,31,33,42,43]. A voting-based aggregation algorithm where bipartite
matching is applied (e.g. Voting [33]) is referred to here as bVote. When the ensemble partitions
are optimally relabeled, an aggregated partition can be computed by averaging. A consensus par-
tition can be obtained by assigning each object to its most voted cluster. If the desired number
of consensus clusters is smaller than the number of aggregated clusters, a merging of cluster can
be applied as described in the voting-merging algorithm (VMA) proposed in [53].

An alternative approach for addressing the voting problem, which is proposed in this thesis,
uses a probabilistic scheme as introduced in [39], and is referred to as cumulative voting. A voting-
based aggregation algorithm where cumulative voting is applied is referred to here as cVote. As

explained in Chapter 3, the cumulative voting scheme can be viewed a special instance of a
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more general framework whereby the voting problem is formulated as a multi-response regression
problem. The consensus can be obtained by assigning each object to its most likely cluster. If
the desired number of consensus clusters is smaller than the number of aggregated clusters, the
aggregated partition can be viewed as a stochastic representation where information theoretic
principles can be applied to extract a compressed consensus partition as described in [39], and
later in this thesis. The information theoretic algorithms identified as BV, BV-k, ACV, and
ACV-k in Fig. 2.1 will be described in detail in later chapters.

2.2.2 Similarity-Based Consensus Methods

Consensus methods that derive its primary aggregated representation as a similarity structure

are described below in further details.

Graph/ Co-Association Matrix

The co-association matrix is a fundamental similarity-based representation that is similar to that
used by Régnier [48], in the early literature on consensus partitions. One of its major advantages
is that the labeling problem is circumvented, whereas a major disadvantage is the quadratic com-
putational complexity in the number of objects O(n?) of co-association-based consensus methods,
which makes it unattractive for very large datasets.

In [22-25], Fred and Jain propose an evidence accumulation clustering (EAC) as a co-association
based consensus method. Each partition is viewed as an independent evidence on the pairwise
objects co-associations, and the co-association matrix is viewed as the outcome of a voting (or
evidence gathering) mechanism. The consensus partition is extracted by applying a hierarchi-
cal agglomerative clustering algorithm on the co-association matrix such as the single-link and
average-link algorithms. To determine the natural number of clusters for a dataset, the notion of
a cluster lifetime is defined as the range of threshold values on the dendrogram that correspond

to a k-cluster partition. It is computed as the difference between the minimum threshold value
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that corresponds to a k-partition and that which corresponds to a k — 1-partition. The optimal
number of clusters is the one with the longest cluster lifetime [25].

Dudoit and Fridlyand [31] develop bagging procedures for data clustering inspired by bagging
in supervised learning [17]. One of their methods, referred to as “BaggClust2”, is based on
computing a dissimilarity matrix from the frequencies of co-occurrence (co-association) of each
pair of objects in the same cluster. Subsequently, the dissimilarity matrix is used as input to a
clustering method to extract the consensus partition. The Partitioning Around Medoids (PAM)
clustering method of Kaufman and Rousseeuw [54] is used in [31].

Strehl and Ghosh [29] define the normalized mutual information (NMI) as a measure of
agreement or similarity between two partitions. The optimal consensus partition is defined as
the partition that maximizes the average normalized mutual information (ANMI) with the input
partitions. To extract the consensus partition, different graph-based methods were introduced,
where the graph partitioning algorithms of Karypis and Kumar [55,56] were applied. The CSPA
algorithm in [29] uses a graph structure that corresponds to a co-association matrix, where objects
represent the graph nodes, and undirected edges are weighted by the co-association values. The
graph partitioning algorithm METIS [55,56] is applied to extract the consensus partition.

Monti, Tamayo, Mesirov, and Golub [40] construct a consensus matrix, similar to a co-
association matrix. The matrix is used to aggregate the results of multiple random restarts of a
clustering algorithm (such as k-means, model-based Bayesian clustering, or SOM) in conjunction
with either bootstrap samples of the dataset or gene resampling (on gene expression data). The
consensus matrix is also used as a visualization tool, by arranging it so that items belonging to
the same cluster are adjacent to each other. Furthermore, a color gradient is associated to the
0-1 range of real numbers, so that white corresponds to 0, and dark red corresponds to 1. So, a
matrix corresponding to a perfect consensus will be characterized by red blocks along the diago-
nal, on a white background. To find the number of clusters k& that best fits the data, a consensus
matrix is constructed for each k = {2,3,..., knax}, where the ensemble partitions are generated

with & clusters each. The best number of clusters corresponds to the “cleanest” matrix (which
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is a matrix containing mostly 0’s or 1’s). They propose a measure referred to as a consensus
distribution which is computed based on the consensus matrix to help determine the number of
clusters. When the best k is determined, the hierarchical average linkage clustering algorithm is
applied on the corresponding consensus matrix and the k-cluster partition is extracted.

Ayad and Kamel [26,57] derive a graph representation referred to as Weighted Shared Nearest
Neighbor Graph (WSnnG) from the co-association matrix. They use an approach to defining
similarity introduced by Jarvis and Patrick in [58], and extended in [59]. Nodes of the WSnnG
correspond to objects and edges are weighted according to the shared nearest neighbor similarity.
Nodes are also weighted according to a measure derived from the shared nearest neighbors, and
node weights are used to determine cluster sizes. The WSnnG is then partitioned using the
METIS algorithm [55,56]. In [57], an approach to pruning the WSnnG is presented.

Ayad, Basir, and Kamel [27] develop a method that uses a co-association matrix. The rows
of the co-association matrix are normalized to represent association distributions for the objects.
For a given number of clusters k, k cluster prototypes are selected from the set of association
distributions based on entropy maximization of the selected prototypes and maximization of the
generalized Jensen Shannon (JS) divergence among the selected prototypes. These distributions
are then grouped by minimizing their JS divergences to the selected prototypes. By aggregating
the grouped distributions (by averaging), empirical cluster conditional probability distributions
are computed, and objects are assigned to their most probable clusters.

Fern and Brodley [35] aggregate an ensemble of soft partitions generated by applying the
EM algorithm [60, 61] on random projections [62-65] of the data. For each data object, EM
generates the soft clustering p(cﬂxj, ), for I = 1,..., k, representing the probability that object
x; belongs to each cluster under the model 6 of a mixture of k& Gaussians in the projected space.
Corresponding to the i-th soft clustering, a similarity matrix P? between pairs of objects is
computed, where each entry represents the probability that a pair of objects z; and x4 belongs to
the same cluster under model 6, which is calculated as pé-g = Zle p(ci|zj,0)p(ci|zy,6). In order

to aggregate an ensemble, the values of pé-g are averaged, resulting in an aggregated similarity
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matrix P estimating the probability that each pair of objects belongs to the same cluster. The
complete-link agglomerative clustering algorithm is then applied to obtain a k-cluster partition.

Lange and Buhmann [37] present an approach based on a non-negative matrix factorization
[52] of the aggregated (and normalized) co-association matrix representing the joint probability
p(x;,24) of observing two objects in the same cluster. The matrix is factorized to obtain estimates
for class-posteriors and class-likelihoods. The EM algorithm [60] is used to optimize the log-
likelihood of the model referred to as Probabilistic Label Aggregation.

Hypergraph and Meta-graph Structures

Strehl and Ghosh [29] present heuristic partitioning algorithm for two types of similarity-based
structures. The first is a hypergraph where nodes represent the data objects and hyperedges
connect the member of a cluster. The second is meta-graph where clusters of objects are viewed
as the nodes of an undirected graph (or meta-graph) and edges are weighted using the binary
Jaccard measure, as the ratio of the intersection to the union of each pair of clusters.

It is noted that in [29], the mutual information is defined as a measure of “agreement” (or
similarity) between partitions. Specifically, the mutual information measures the statistical infor-
mation shared between two distributions, where partitions are represented as probability distribu-
tions of corresponding categorical variables. An average normalized mutual information (ANMI)
criterion was introduced to measure the average amount of statistical information shared between
a partition and the ensemble. The optimal consensus partition is defined as the partition that
maximizes the ANMI criterion.

Let C* and C" denote the random variables describing the partitions 7% and 7", consisting of
k; and k, clusters, respectively. The distribution p(c?) is given by p(c}) = %; for 1 ={1,...,k;},
where n; denotes the number of objects assigned to cluster c? according to partition 7. Let
I(C* CT") denote the mutual information between C* and C”, and H(C") denote the Shannon

entropy of C*. I(C% C") is a metric but has no upper bound. To obtain a measure with a 0 to 1
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range, a normalized mutual information NMI measure is defined in [29] as,

I(C*,Cm)

NMI(C?, C") = . (2.3)
H(C*)H(CT)
The ANMI criterion is given by,
L b
ANMI = - Z 1(C,CY (2.4)

where C is the random variable associated with any partition of X', w € II. The optimal consensus
partition is that which maximizes the ANMI criterion.

To extract the consensus partition, Strehl and Ghosh [29] propose three heuristic algorithms
based on the graph-partitioning algorithms in [55,56]. Unlike the CSPA algorithm described ear-
lier, a Hyper Graph Partitioning Algorithm (HGPA), and Meta CLustering Algorithm (MCLA)
represent computationally more efficient alternatives. It is noted that these algorithms do not
explicitly evaluate the ANMI criterion but are applied as effective heuristic algorithms.

In the case of the HGPA algorithm, the maximum mutual information objective is approxi-
mated by with a constrained minimum cut objective. The cluster ensemble problem is viewed as
a hypergraph partitioning problem where hyperedges represent clusters and the objective is to
cut a minimal number of hyperedges for obtaining k£ unconnected components of approximately
the same size. Hence, the approach is suited for data with balanced cluster sizes.

In case of the MCLA algorithm, a meta-graph is constructed and partitioned, resulting in a

clustering of clusters. Each object is then assigned to its most associated meta-cluster.

2.2.3 Consensus Based On A Categorical Feature-Space

Topchy, Jain and Punch [38,41] present a probabilistic model of consensus using a finite mixture
of multinomial distributions in a space of clusterings, viewed as categorical variables. The cluster
labels y; for the object x; are modeled as random variables drawn from a probability distribution

representing a mixture of multi-variate components. A maximum likelihood estimation problem
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is formulated, where the most fitting mixture density is obtained by maximizing the likelihood
function. In this approach, the EM algorithm [60,61] is applied, leading to a consensus partition.

In another approach, Topchy et al. [30, 38] point out that the objective function used by
Strehl and Ghosh [29] is based on the classical Shannon definition of mutual information. On
the other hand, by considering another information-theoretic definition of entropy, the mutual
information criterion becomes equivalent to the category utility function introduced by Gluck and
Corter [66]. In the context of partition ensembles, the category utility function U (m, 7;) measures
the agreement between two partitions as the difference between the expected number of labels
of partition 7’ that can be correctly predicted with the knowledge of m and without it [38]. It is
given by,

k k; ki

Ulm,mi) =Y pleq) Y p(cileg)* =Y p(ef) (2.5)

q=1 =1 =1

N

The overall utility of a partition with respect to the ensemble partitions is defined as the sum

of the pairwise utilities, given by,

b

U(r,P) = ZU(W,?Ti). (2.6)

i=1
By considering the generalized entropy H*(C'), where lim,_,; H*(C) = — E];:l p(cq) log p(cq),
the generalized mutual information can be defined [38], where, in particular, the quadratic mutual

information I?(m, ") becomes,

I*(m,7%) = 2U (, 7%). (2.7)

Based on Mirkin’s proof in [67], maximizing the partition utility defined in Eq. 2.6 is equivalent
to minimizing the squared error clustering criterion, for a fixed number of clusters k in 7. Hence,
the minimum quadratic mutual information criterion is also equivalent to the classical intra-cluster

minimum variance. So, the categorical variables representing the partition are standardized
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in [30,38], to transform them to quantitative variables, and a minimum squared error clustering
algorithm (the k-means) is applied to extract the consensus partition. The consensus algorithm

is referred to as the quadratic mutual information algorithm (QMTI).

2.2.4 Consensus Via Voting-Based Aggregation

In seeking to establish a parallel approach to the aggregation of supervised classifiers [17,18,21],
a distinct class of consensus methods for partitions, referred to as voting-based methods, was
developed as proposed in [28,31,33,39,42,43]. Unlike other consensus methods described earlier,
voting-based methods do not avoid the so-called cluster label correspondence problem. Instead,
they search for an optimal relabeling and aggregation of the ensemble partitions. Typically, an
aggregated partition is computed by averaging the relabeled ensemble partitions with respect to
a representative partition, referred to as a reference partition.

An important element of voting-based aggregation is the optimal relabeling of an ensemble
partition with respect to a representative partition of the ensemble. This element defines what
we refer to as the pairwise relabeling or the voting problem. The problem is commonly viewed as
a weighted bipartite matching problem, where one looks for an optimal cluster label permutation
for each ensemble partition to maximize its labeling agreement with respect to a representative
labeling [28,31,33,42,43].

Dimitriadou, Weingessel, and Hornik [33] note that solving the voting-based aggregation prob-
lem requires the simultaneous optimization of the partitions relabeling with respect to the repre-
sentative (aggregated) partition and of finding the aggregated partition that optimally represent
the ensemble partitions. Hornik [34] further notes that finding the optimally permuted partitions
represents a multi-dimensional assignment problem (MAP), which unlike the bipartite matching
problem that corresponds to a linear sum assignment problem (LSAP), is NP-hard, with branch-
and-bound approaches being computationally infeasible for typical ensemble sizes (b > 20).

Dimitriadou et al. [33] consider fuzzy ensembles and present a theoretical derivation of an
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efficient algorithm that iteratively finds the bipartite matching solution which minimizes the
mean squared error of the relabeled partition with respect to a representative partition. The
algorithm was applied on partitions with a fixed number of clusters in [33] and is referred to as
“Voting”. We refer to it here as “bVote” in reference to bipartite matching as the underlying
formulation of the voting problem. For partitions with a variable number of clusters, empty
(dummy) clusters are added to the partition with fewer clusters in order to compute the bipartite
matching solution. After the aggregated partition is computed, if it is required to obtain a smaller
number of clusters, “neighboring” clusters may be merged based on a similarity measure, so as to
get the desired number of clusters [33]. The voting-merging algorithm is referred to as VMA [53].

Gordon and Vichi [42] presented methods for fitting a fuzzy consensus partition to a set of
hard or fuzzy partitions. A weighted least-squares objective function is used, where weights
allow the ensemble partitions to have different degrees of importance. Classes are permuted so
as to establish the correspondence between the classes of the profile, and those of the consensus
partition, by solving a cost assignment problem. As in [33], to match two partitions with different
numbers of clusters, dummy clusters are introduced into the matching cost matrix so that a binary
k; x k; permutation matrix is computed by solving the corresponding assignment problem. To
aggregate an ensemble, an algorithm that iterates between two steps is described. In one step,
optimal relabelings for the ensemble partitions are determined by optimally matching their cluster
labels with the current reference partition, where the initial reference is randomly generated, and
in the second step, the reference partition is updated as the (weighted) average of the current
relabeled ensemble partitions.

Dudoit and Fridlyand [31] present a bagging procedure (“BaggClust1”) in which the bipartite
matching solution is computed for each bootstrap clustering with respect to a pre-clustering of the
objects. It is assumed the ensemble partitions have a fixed number of clusters which is equal to
the number of clusters of the original clustering representing the reference partition. The number
of clusters is also equal to the desired number of consensus clusters. The consensus partition is

obtained by assigning a bagged cluster label for each object by plurality voting (i.e., by taking
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the majority cluster label for each object). Furthermore, the proportions of votes in favor of the
bagged cluster labels reflect the confidence of cluster assignments for the objects.

Fischer and Buhmann [28] present a voting-based aggregation algorithm similar to the iterative
algorithm in [33]. It is applied in [28] on hard ensembles based on bootstrap resampling. It is
assumed that all ensemble partitions have the same number of clusters, which is equal to the
target number of clusters in the consensus clustering. At each iteration, the best cluster label
permutation is determined by solving a corresponding weighted bipartite matching problem,
maximizing the empirical cluster assignment probabilities estimated from the previous relabeling.
The final consensus partitions is determined based on a maximum likelihood mapping function.
In [28], it is argued that the iterative algorithm is better that the fixed-reference aggregation
algorithm “BaggClust1” [31], as the latter would be sensitive to a poor reference partition.

In [39], we introduced the idea of cumulative voting as a new solution for the relabeling
problem of a given clustering with k; clusters with respect to a reference clustering with kg
clusters, where k; and ky may be unequal. Cumulative voting is a type of rated voting that is
related to ranked types of voting such as the Borda count. Instead of binary one-to-one votes,
numeric values (ratings) are computed for each option (i.e. reference cluster), such that they
sum up to a pre-specified total. Note that the term “cumulative” refers to the property that
the computed vote weights for each voting cluster (i.e., each cluster of an ensemble partition)
must add up to a pre-specified value. An un-normalized cumulative voting was developed scheme
where ratings must sum up to the size of the voting cluster. Based on viewing each partition
as a categorical variable, we also developed a normalized cumulative voting scheme was also
developed, where votes are weighted according to the conditional probability of each reference
cluster, given a cluster of an ensemble partition. In this case, the vote weights must sum to
1. A fixed-reference aggregation algorithm was applied and a new adaptive algorithm was also
proposed for aggregating an ensemble in a particular order according to a proposed criterion that
maximizes the average amount of information. Furthermore, the problem of extracting an optimal

consensus partition with a fewer number of clusters than the ensemble partitions is formulated
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as the problem of finding a compressed summary of the estimated distributional representation
of the ensemble that preserves maximum relevant information [39,68]. Based on the information
bottleneck formulation of Tishby, Pereira and Bialek [8], an efficient agglomerative algorithm
which minimizes the Jensen-Shannon divergence within the cluster is proposed for estimating a

compressed consensus partition.

2.3 Ensemble Generation Techniques

The nature and optimality of the consensus solution for a partition ensemble depend not only on
the devised combination method, but also on the ensemble generation mechanism which produces
the ensemble partitions. In fact, the thesis demonstrates for voting-based methods, that the
quality of obtained consensus solution highly depends on the suitability of the consensus method
to combining the type of generated ensemble. Several ensemble generation techniques for partition
ensembles have been considered in recent literature as described below.

Strehl and Ghosh [29] considered selecting a portfolio of clustering methods, where a number
of different methods in conjunction with different distance/similarity measures are applied to
generate multiple clustering solutions for a given dataset. Furthermore, they considered object-
distributed and feature-distributed ensembles as a means for addressing distributed data mining
problems. Object-distributed ensembles address the problem of clustering data consisting of ei-
ther a very large number of objects or of data-subsets that are stored in different sites with
possible privacy constraints, and where a global clustering solution is desired. On the other
hand, feature-distributed ensembles address the problem of clustering data characterized by very
high dimensional feature spaces. Random feature subspaces are generated and the data is parti-
tioned in each subspace. It is noted that, in the case of supervised learning, a random subspace
method [20] was investigated for improving classifiers’ accuracy by constructing decision forests
in randomly chosen subspaces. Feature-distributed ensembles can be useful for dealing with very

high dimensional datasets by representing the data in multiple spaces of reduced dimensionality.
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Fern and Brodley [35] generate partition ensembles based on random projections of the data.
Random projections correspond to a transformation method that can improve the clustering
quality for high dimensional data [62-65]. High dimensionality represents a challenging issue in
data clustering. It leads to a problem known as the curse of dimensionality where the vectorial
representation of the data becomes too sparse, leading to the inability to find structure in the
data. Furthermore, the presence of irrelevant and noisy features can lead to misleading clustering
solutions. The application of random projections in [35], in conjunction with the EM clustering (of
Gaussian mixtures) is motivated by Dasgupta’s result [69], which shows that random projections
can change the shape of highly eccentric clusters to be more spherical.

Bootstrap resampling of the original data represents another fundamental ensemble genera-
tion technique, where each bootstrap sample of the data is partitioned to produce an ensemble
of different partitions. The approach was considered in several studies such as Leisch [70], Du-
doit and Fridlyand [31], Fischer and Buhmann [28], Minaei-Bidgoli, Topchy, and Punch [71],
and Ayad and Kamel [72]. It represents a scheme similar to bagging [17] for combining predic-
tors. Resampling methods are well established approaches for obtaining accurate estimates of
data statistics [71]. In particular, bootstrap resampling is a general method of sampling with
replacement that was shown to improve the accuracy and reliability of predictions, which are
typically combined by averaging (when predicting a numerical outcome) or via plurality voting
(when predicting a categorical outcome). Monti et al. [40] also considered bootstrap resampling
in conjunction with multiple random restarts of clustering algorithms (such as k-means, model-
based Bayesian clustering, or SOM). They also considered ensemble based on random restarts of
these algorithms in conjunction with gene resampling, for gene expression data.

Since clustering algorithms are typically devised as randomized search algorithms, the result-
ing clustering solutions depend on the applied randomization, such as the selection of the random
initial seeds for k-means algorithm. This dependency on random restarts motivates another type
of ensemble generation techniques where each ensemble partition corresponds to a solution for

a random restart. Fred and Jain [24] considered this ensemble generation technique in conjunc-
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tion with the k-means algorithm to improve the stability of clustering solutions. Dimitriadou et
al. [33] and Gordon et al. [42] apply several runs of a fuzzy clustering algorithm such as the the
fuzzy c-means (FCM) to generate the ensemble partitions.

The approach in [24], based on the k-means algorithm, is further extended by generating an
overproduced numbers of clusters [25,36]. That is, each ensemble partition consists of a relatively
large number of clusters compared to the desired or suspected number of true clusters. This
overproduction of clusters creates a split-and-merge scheme where the ensemble consists of fine-
resolution partitions whereas the consensus partition is a coarser partition reflecting the global
cluster structure of the data. To induce more diversity among the ensemble partitions, the number
of overproduced clusters is randomly selected for each ensemble partition in [36,73].

Topchy, Jain, and Punch [30] proposed the generation of weak partitions using two different
techniques. In the first, the partitions are generated based on random one-dimensional projections
of the original feature space. In the second technique, partitions are generated by splitting the
data using a number of random hyperplanes. That is, the random hyperplanes dissect the d-
dimensional space of the data, and objects separated by the hyperplanes are assigned to different
clusters. When only one hyperplane is used, the data is splitted into two clusters. The idea of
weak partitions is to seek the combination of simple and cheaply computed partitions rather than
complex ones. It is noted that, in the case of supervised learning, weak classifiers were considered

in the boosting method introduced in [18], where substantial gains in accuracy were achieved.

2.4 Analysis of Consensus Partitions

A substantial amount of theoretical analysis was developed in the early work on consensus of
classification models in the areas of discrete mathematics, theoretical computer science [15,48,48],
and pattern recognition [46]. For instance, Barthelemy and Leclerc [15] studied the properties of
the median procedure for partitions and compared it with axiomatic and constructive approaches.

The median partition problem was shown to be NP-Complete [15], and heuristic algorithms for
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finding approximate solutions were studied. Régnier [48] studied the convergence properties of
central partitions. Neumann and Norton [46] show that an appropriate consensus partition of a
given profile is not a single partition but is one that should lie in a consensus interval, where the
extremes of this interval are characterized axiomatically. Thus, they show that any reasonable
consensus function must take its values in this interval.

Recent consensus methodologies are typically validated empirically. The accuracy and stabil-
ity of the obtained consensus partitions are evaluted on artificial and real datasets and compared
with the individual partitions of the ensemble or with other consensus algorithms. Kuncheva
and Vetrov [73] study the empirical relationship between the stability and accuracy of consensus
partitions with respect to the number of clusters, for the k-means algorithm. They observe that
the relationship highly depends on the data set, with the correlation varying from nearly +1 to
nearly -1. They introduce a combined stability index as the sum of the pairwise individual and
ensemble stabilities. The correlation of the new index with the ensemble accuracy was found to
be more consistent, and was used to determine the number of clusters. In [74], Hadjitodorov,
Kuncheva, and Todorova study the relation between the diversity of the ensemble and quality of
the consensus partition. They found that ensembles with a moderate level of diversity lead to
more accurate consensus partitions. Building upon this finding, a procedure for generating and
selecting ensembles with median diversity is presented.

In [43], Topchy et al., consider the theoretical validation of cluster ensembles and present
a formal analysis of the convergence properties of consensus partitions. The analysis considers
two approaches to the consensus problem. The first is based on a stochastic partition generation
model and a voting-based consensus method. In the voting-based method, the pairwise relabel-
ing problem is formulated as a bipartite matching problem and solved using Kuhn’s Hungarian
method. Then, the plurality voting rule is applied to determine the consensus partition. The
number of clusters is assumed to be fixed. Further details of this approach are given in Ch. 3.
The second approach considers the properties of the mean partition with respect to a metric on

the space of partitions. In both cases, the consensus solution is shown to converge to the under-
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lying generating clustering (which is assumed to represent the true clustering), as the number
of partitions in the ensemble increases, assuming that each partition gives a better than random

clustering compared to the underlying clustering.






Chapter 3

Voting-Based Partition Aggregation

In this chapter, a new framework for the voting problem is defined in Sec. 3.1. The voting-based
aggregation problem and a general iterative algorithm are described in Sec. 3.2. A simulation-
based analysis is presented in Sec. 3.3, for comparing the cumulative voting and bipartite match-
ing schemes. Finally, possible interpretations of the aggregated partition are discussed in Sec.

3.4.

3.1 A New Framework for the Voting Problem

Recall from Ch. 1 that voting-based consensus methods [28,31,33,39,42,43] derive an ensemble
representation consisting of a central aggregated partition by seeking an optimal relabeling of the
ensemble partitions. In general, the optimal relabeling of the ensemble partitions is addressed
through a pairwise relabeling of each ensemble partition with respect to a representative partition,
where the pairwise relabeling problem is also referred to here as the voting problem. Each cluster

4

of a given ensemble partition is viewed as a “voter” that votes for the representative clusters
according to a defined voting .

Let X denote a set of n data objects, and let a partition of X into k clusters be represented by

33
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an n X k stochastic matrix U, with a row for each object, and a column for each cluster, such that

k
Z ujq = 1, Vj. In general, U may represent a hard partition with u;, € {0,1} or a soft partition
q=1
with uj, € [0,1]. To obtain a hard from a soft partition, u;, is set to 1, for r = argmaxu;q, and
q

ujq = 0 otherwise. A hard partition is also represented by a labeling n-vector y.

Let U = {U* ?:1 denote an ensemble of partitions. The voting-based aggregation problem
is concerned with searching for an optimal relabeling of the ensemble partition and for a central
aggregated partition denoted as U that summarizes the ensemble partitions.

Note that, in principle, the proposed cumulative voting scheme and the bipartite matching
scheme are applicable to both hard and soft ensembles. In fact, the bipartite matching scheme
has already been studied for hard ensembles in [28,31,43] and for soft ensembles in [33,42]. Basic
modifications required for applying cumulative voting to soft ensembles are described in [39].
However, for simplicity and a focused analysis, only hard ensembles are considered here as input.

The aggregated partition is a soft partition, as computed using either the cumulative voting
or bipartite matching schemes. Note that “soft” is a general term that is used in the literature
either to describe a partition obtained using a statistical model-based clustering algorithm that
maximizes the likelihood function [75,76], where u;, reflects the uncertainty about the associated
classification of each data object, or to describe a partition obtained using a clustering algorithm
that optimizes a fuzzy objective function [77,78], where u;, reflects a fuzzy membership value. In
this thesis, the aggregated partition is viewed as a soft partition in a statistical sense. Specifically,
it is obtained via least-squares estimation.

In this section, a general formulation of the voting problem is proposed in Sec. 3.1.1. The
cumulative voting and bipartite matching formulations are described in Sec. 3.1.2 and 3.1.3,
respectively. In Sec. 3.1.4, an illustrative example is given to highlight the characteristics of the

two different voting formulations.
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3.1.1 General Formulation

Voting is viewed as the problem of estimating the assignments of the objects to representative
clusters C0 = {c(l),...,cgo}, given their assignments to the clusters of an ensemble partition
Ct={c,... ,c}'ﬂ_}, such that the estimation errors compared to the representative partition U
are minimized. Let the random vectors C? = (C’{C}%) and C° = (C?...C,go) denote the
clusters of U’ and UY, respectively, where each variable Cg is considered to take real values in
[0, 1], such that 22021 ug-)q = 1. That is, U" is a soft partition. The voting problem can be viewed
as seeking a function of U?, ¥/(U?), that establishes a relationship between {C;}f;l and {C’g }7;0:17
such that a loss function L*(U°,9?(U?)) is minimized, where L¢ is referred to here as the voting

(or pairwise relabeling) loss. The function L*(U° 9¢(U")) penalizes the errors in the estimated

values of 9¢(U?) compared to UY. The problem of finding 9?(U?) is given by Eq. 3.1.

in LY(U°, 9¢(UY). 3.1
19{1(15}) (U",9"(U")) (3.1)

The above formulation of the voting problem is equivalent to a regression problem (supervised
learning with numerical output variable(s)). Specifically, it corresponds to a multiple regression
problem with multiple output (response) variables {Cg}f;o:l and multiple input (predictor) vari-
ables {Cll}f;l Based on this formulation, the regression function ¥(U?), which may be referred
to as the voting (or relabeling) function, estimates the conditional expectation of C? given C*,
E(C°|C"), and is a vector function, ¢*(U") = (93 (U"), ..., ¥}, (U")) [10].

Let £ denotes the i-th learning set corresponding to the partition pair U? and U, and
consisting of the vectors {(ué-, u?-)};?:l, where ué- is the jth row vector of U’ and represents a k;
input vector, and ug-) is the j-th row vector of UY and represents a ko output “target” vector.
The goal is to use L' to estimate ¥¢(U?). In the voting problem, it is only the learning but not
the generalizing (prediction) aspect of regression that is applied.

The proposed framework generalizes the bipartite matching scheme, which establishes binary

one-to-one relationships between two sets of clusters, by exploring the idea of a soft relabeling (or
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soft voting) and addressing the problem of establishing real-valued many-to-many relationships
between the clusters of a given partition and the clusters of a representative partition. An
important feature of the proposed framework is its added flexibility, which makes suitable for
modeling complex relations arising from substantial variability between partitions, such as a
variable number of clusters. An illustrative example is given in Sec. 3.1.4. Note that in the case
of bipartite matching, empty (dummy) clusters need to be added to the partition with a smaller
number of clusters as proposed in [33,42], or the ensemble must be constrained to partitions
with a fixed number of clusters that is also equal to the desired number of consensus clusters as
in [28,31,43].

It is noted that, in a regression problem, the form of the function ¥¢(U?), that underlies
the relationship between the input and output variables, is generally unknown [10]. Below, the

regression model underlying the cumulative voting scheme introduced in [39] is derived.

3.1.2 Cumulative Voting

In [39], two types of cumulative voting are investigated; the normalized and un-normalized
schemes. The term “cumulative” refers to the property that the computed vote weights for
each variable Cg must add up to a pre-specified value. In the case of the normalized scheme, the
sum must be 1, and in the case of the un-normalized scheme, the sum must be equal to the size
of the voting cluster. In this chapter, the focus is on the normalized scheme. More details on the
un-normalized scheme are given in Ch. 4, where its close relationship with the co-association ma-
trix representation for partition ensembles is outlined. Whenever the term “cumulative voting”
is used in the thesis, it refers to the normalized scheme.

The cumulative voting scheme represents a simple but reasonable regression method. It
corresponds to fitting a linear model by least squares. It is considered reasonable for its minimal
assumptions about the underlying model of the data. Assuming a linear model for each output

variable, ¥*(U") is written in matrix notation as,
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9'(UY) = U'WY, (3.2)
where W' is a k; x ko matrix of coefficients denoted as wfq.
Let V¢ = 9¢(U"), which is a n x kg matrix. To fit the linear model in Eq. 3.2 to the learning

set L', the coeflicients W* are estimated to minimize the mean squared errors, as given in Eq.

3.3:

i iyt i LT R i \2
LY(U°, 9(U%) = MSE! (U, 9 (UY)) = EZZ(U%—%) , (3.3)
j=1¢=1
which is written in matrix notation as follows,
MSE! (U, 9 (U%)) = —tr[(U° — U'W?) T (U° — U'WY)]. (3.4)

n
The solution is obtained by differentiating with respect to W* and is given by Eq. 3.5. The
estimated partition Vi is given by Vi = U'W¢.

wi = (o)) v, (3.5)

It is easy to see that the normalized scheme in [39] corresponds to the linear model with least
squares fit, as defined above in Eqgs. 3.2 and 3.3 by noting that, for hard ensemble partitions, the
term (UiTUi) in Eq. 3.5 is a diagonal matrix, and hence Eq. 3.5 gives the same expression for

the coefficients as computed in [39], which is given by,

o 1
iy = 7 2. Wig» (3.6)
l. je{1,...,n}: u;lzl

where n; denotes the number of objects assigned to cluster c%, and ﬁéq = ﬁ)fq if uél =1, and

0 otherwise. If U is also a hard partition, then w;'q = Zlq where nfq is the number of objects

79
l.

assigned to clusters cf and ¢,. Note that one would have a hard reference partition if the applied
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aggregation algorithm follows a fixed-reference approach, whereby an initial reference partition is
used as a common representative partition for all the ensemble partitions and remains unchanged
throughout the aggregation process. In this thesis, a fixed-reference approach is not considered.
Instead, an iterative aggregation approach is adopted.

ko the estimated values 9% must sum

Based on the constraint on the output variables {C’g Yoot i

to 1, E]qm:l @éq = 1. Note that one may consider C” as a categorical variable with kg categories,
{c(l), .. 7020}‘ Based on the squared error loss estimation, the estimate Vi of the conditional
expectation can be viewed as an estimate of the posterior probability E(C°|C?) = Pr(C|C?) [10].
Classifying to the most probable class Vi = arg maxoeco Pr(cg\Ci) gives the Bayes classifier,
with the Bayes rate as the error rate [10]. Hence, this rate gives a lower bound on the achievable
error rate for a relabeling 9¢(U?), based on least squares loss. The error rate is denoted here as

Err’ (U, 9*(U?)), which can be computed by considering C? as a categorical variable. That is, it

is computed in the special case where the voting problem is viewed as a classification problem.

3.1.3 Bipartite Matching

A combinatorial optimization problem with a constrained least squares objective underlies the
bipartite matching scheme as described in [33,42] and as given below in Eq. 3.7. It is not
a regression problem, but can be expressed in the same framework as follows. Suppose that
k; = kg = k, otherwise, dummy clusters may be added to the partition with the lower number
of clusters. Let the V¢ = 9/(U?) be defined as a column (cluster) permutation of partition U?,
which can be written as V! = U'W*, where W' is a k x k permutation matrix. The problem is
to find W that minimizes MSE!(U?, 9(U?)) subject to constraints on wfq as defined in Eq. 3.7.
It is also known as a linear sum assignment problem, LSAP, or a weighted bipartite matching

problem [34].
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min 1303 (1

wi 1¢=1
ToIm e (3.7)
Subject to Zwliq = waq =1, where wliq =0orl.
=1

The optimal solution for the problem in Eq. 3.7 is obtained using Kuhn’s Hungarian method
[33]. Since the bipartite matching scheme minimizes the same loss function as cumulative voting,
but as a consequence of the additional constraints as given in Eq. 3.7, the MSE? achievable using
the bipartite matching is bounded from below by the MSE? achievable using cumulative voting.

The minimization problem in Eq. 3.7 is equivalent to the constrained maximization of
tr(GiTWi) [33], where G! is the contingency matrix of U’ and U’, G = U U0, Unlike
cumulative voting, the estimated partition V? is a hard partition, when U’ is hard. In the case
of hard ensemble partitions, the problem is equivalent to minimizing the probability of error p!

subject to the constraints defined in Eq. 3.7, where pl, is given by,

Z Z qu wlq (3.8)

l 1 g=1
If both U? and U° are hard partitions, the constrained error rate Err’(U°,9(U?)) is mini-

mized, which is given by,

k
Err = % Z Z wlq (3.9)

=1 g=1
where n§q is the number of objects assigned to clusters cf and 02.
Again, due to the additional constraints, the error rate achievable using the bipartite matching
is bounded from below by the error rate achievable using cumulative voting when the latter is

followed by classifying to the most probable class.
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3.1.4 Illustrative Example

Consider a set of ten data objects X = {x1, x9, x3, 24, T5, T6, T7, T3, Tg, T10}. Suppose a reference
partition U® and an ensemble partition U? are given as follows, where U partitions the objects

into kg = 5 clusters, whereas U’ partitions them into k; = 2 clusters.

10000 10
10000 10
01 00 0 10
0100 0 10

e I P
000 1 0 0 1
000 01 0 1
00100 0 1
00010 0 1
0000 1] 0 1|

Relabeling U’ based on cumulative voting gives a coefficient matrix W and a relabeled

partition V? as follows:

0.5 0.5 0 0 0
0.5 0.5 0 0 0
0.5 0.5 0 0 0
0.5 0.5 0 0 0
0.3333 0.3333 0.3333
0.3333 0.3333 0.3333
0.3333 0.3333 0.3333
0.3333 0.3333 0.3333
0.3333 0.3333 0.3333
0.3333 0.3333 0.3333

| 05 05 0 0 0

Wi = , and Vi=
0 0 0.3333 0.3333 0.3333

o o o o o o
o O O o o o

That is, in the case of cumulative voting, the uncertainties associated with assigning the

objects belonging to cluster 1 of U’ to each of the five clusters of UY are given by first four rows
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of V. This soft assignment reflects the fact that the objects belonging to cluster 1 of U’ are
divided equally among the first two clusters of U°. Similarly, equal probabilities of assigning the
objects belonging to cluster 2 of U’ to each of the last three reference clusters are reflected in the
last six rows of V.

Based on bipartite matching, relabeling U? gives a permutation matrix W? and a relabeled

partition V? as follows:

1 0 0 0 O
1 0 0 0 O
- - 1 0 0 0 O
1 0 0 0 O
1 0 0 0 O
0 0 1 0 O
) ) 0 0 1 0 0
W'=|[(0 1 0 0 0], and V'=
0 0 1 0 0
00 0 1 0
0 0 1 0 0
0 0 0 0 1
- - 0 0 1 0 0
0 0 1 0 0
L0 0 1 0 0|

For the bipartite matching scheme, the objects belonging to cluster 1 of U’ are simply assigned
to reference clusters 1, and no objects are assigned to reference cluster 2. Similarly the objects
of cluster 2 of U’ are assigned to reference clusters 3, and no objects are assigned to cluster 4
or 5. The relabeling requires three empty clusters to be created. Unlike the cumulative voting
scheme, the assignment of the data objects ignores the fact that each cluster of U’ is equally
divided between more than one reference cluster.

In this thesis, we show evidence that the bipartite matching scheme can be more desirable
compared to cumulative voting for a particular type of ensemble. This is demonstrated by the
simulation-based analysis of uniform ensembles presented in this chapter. However, the fact that
cumulative voting reflects more closely the uncertainty associated with the relabeling makes it
more desirable for another type of ensemble, as demonstrated by the empirical evidence presented

in Ch. 5.
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3.2 Voting-Based Aggregation

In this section, the problem of optimally relabeling and aggregating an ensemble is presented. A
general voting-based aggregation algorithm presented in [28,33] is applied, in conjunction with

each of the cumulative voting and bipartite matching schemes.

3.2.1 Formulation

The problem is to estimate a central partition U that minimizes the overall loss L(U; {U'}%_,) =

LS | Li(U,U'), where L'(U,U’) = ﬁn(lgl,) LY(U,9"(UY), as given by Eq. 3.10.

o IR e i
min L(U; UL, ... UY = min 1911?11}%) 5 Zz; L'(U,9(U")). (3.10)
Using the least squares objective for the aggregated partition, with respect to the ensemble
partitions, the aggregation problem is written as,
b
min MSE(U; U!, ... U%) = min min 12 MSE!(U, ¥ (U")) (3.11)
U U 9i(Ui) b —

As noted in [33], the aggregation problem in Eq. 3.11 is computationally challenging as
it requires the simultaneous optimization of ¥¢(U?) with respect to U (minimization over the
space of ¥°(U")) and of the aggregated partition (minimization over the space of U). The values
of ¥(U%) depend on U, and vice versa. For fixed 9*(U?), the optimal U is the soft partition
computed as the average %Z?Zl ¥1(U?%). Hornik [34] notes that finding the optimally permuted
partitions, in a global sense, represents a multi-dimensional assignment problem (MAP), which
unlike LSAP, is NP-hard, with branch-and-bound approaches being computationally intractable
for typical ensemble sizes (b > 20). An efficient voting-based aggregation algorithm derived in [33]
is adopted, as detailed in Sec. 3.2.2.

As a last observation on the formulation of the voting-based aggregation problem, it is noted

that one can use the probability of error as the optimization criterion for the cumulative vot-
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ing scheme, by classifying to the most likely class, as discussed in Sec. 3.1. In this case, the
aggregation problem given in 3.10 is written as follows.
1 b
min p.(U; U', ... U’ = min min - (U, 94(U"° 3.12
i p.( )= iy 32 #H(0.0/(0) (312)
However, our study focuses on investigating the effect of soft re-labeling of the ensemble

partitions and on the optimality and usefulness of the aggregated partition in this case.

3.2.2 Algorithm

Several voting-based aggregation algorithms, which are computationally efficient, are described
in recent literature [28,31,33,39,42,43]. The simplest type of algorithms follows the approach
described in [31,43], in conjunction with the bipartite matching scheme, and in one of the algo-
rithms in [39], in conjunction with cumulative voting. In this approach, a single common reference
partition UY is selected. Then, {U?}Y_, are optimally re-labeled with respect to U°. This is fol-
lowed by computing U by averaging the relabeled partitions. As observed in [28], the drawback
of this algorithm is its high dependency on the selected (fixed) reference UY. However, it is noted
that this algorithm represents a suitable approach if the ensemble partitions are known to be
uniform. For instance, in the case of the stochastic partition generation model described in [43],
where all the ensemble partitions are generated as noisy permutations of an underlying clustering,
according to a probability of error, it is shown in that the aggregated partition converges to the
underlying clustering, as presented in [43].

In [42], an algorithm that iterates between two steps is described. In one step, {¢/(U?)}_,
are determined by optimally matching {Ui}ﬁ’:]L to the current U where the initial UY is ran-
domly generated, and in the second step, U is updated as the (weighted) average of the current
{94 (UY) 2?:1. The algorithm converges to at least a local minimum, and as any approximation
algorithm, cannot be guaranteed to find global optimal solutions [42]. It is argued, however, that

by using a large number of random initializations and keeping the best solution, the chance of
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obtaining a global minimum increases, and if the same values of the aggregated partition are
repeatedly obtained as the local optimal solution, one can have higher confidence that the global
optimal solution has been found [42].

Dimitriadou et al. [33] present a theoretical derivation of another iterative algorithm to find an
approximate solution for the aggregation problem in Eq. 3.11. The algorithm works as follows.
An initial reference is set as UY = U!. Then, at each step 4, for i € {2,...,b}, the locally
optimal re-labeling ¥¢(U?) with respect to the current reference partition is computed, and U°
is re-computed as the weighted average of the last U? and ¥?(U?), such that the re-computed
reference represents the average of the partitions relabeled thus far (at step i/b). Similar greedy
approximation algorithms were also described in [28,39]. It is noted that for this algorithm,
the obtained solution U depends on the ordering of the partitions, and the initial reference UP.
The algorithm can be enhanced by running several passes with random initialization and random
order of the partitions, and keeping the best solution [34].

In this chapter, the enhanced iterative algorithm described in Algorithm 1 is applied, as a
general voting-based aggregation algorithm, which is referred to as Vote. Specific variants of
Vote based on cumulative and bipartite voting are referred to as cVote and bVote, respectively.
Several passes can be performed by running Vote multiple times with random ordering of the
ensemble partitions, and keeping the best solution achieved so far (i.e. U with lowest value of
MSE(U,U) is kept). A comparison of the two scheme is presented in Sec. 3.3.

Suppose that U consists of partitions with a variable number of clusters k;. When cVote is
applied, the number of clusters ko of U° remains fixed throughout the iterations. Thus, k = ko,
where k denotes the number of clusters in U. On the other hand, when bVote is applied, kg can

change, and the obtained value of k is given by, k = mz%}g k;, after b iterations.
=1
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Algorithm 1 Vote
Function U = Vote(U)

—_

: Randomly select a partition U? € I/ and assign to U°
2: fori=1tobdo

3:  For cVote, compute W* as given by Eq. 3.5.
For bVote, compute W' by finding the bipartite matching solution to Eq. 3.7.
4 Vi=UW!
5. U= ij—ilUO + %Vi
6: end for
7. U="1U".

3.3 Simulation-Based Analysis

The simulation presented in this section illustrates some basic theoretical results and provides
a preliminary analysis of the aggregated partition based on each voting scheme, using several
partition generation models. The generation models are described in Sec. 3.3.1, and simulation

results are presented in Sec. 3.3.2.

3.3.1 Partition Generation Models

As pointed out earlier, a stochastic model for partition generation was considered in [43] for
proving the convergence properties of partition ensembles based on the bipartite matching scheme,
in conjunction with plurality voting. In this model, ensemble members {y*}’_, are generated as
noisy permutations of an underlying labeling y* that is considered to represent the true clustering.
The model reflects a relatively uniform ensemble where each labeling vector y* contains random
errors, with probability pl = p. Vi, whereas y* is otherwise identical to y®, modulo cluster label
permutation, with k; = k,, Vi. When applying the bipartite matching scheme in conjunction with
plurality voting, the aggregated partition U was shown to converge to y®, as the ensemble size

increases, and assuming that each ensemble partition gives a better than random clustering result
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compared to y® [43]. The partition generation model in [43] is simulated and further extended.

Furthermore, alternative models for generating non-uniform ensembles are considered.

Generation of Uniform Partitions

The model considered in [43] is based on an underlying cluster structure viewed as the true
clustering. Let y® be a clustering with k, clusters which may be generated as a random labeling
vector of size n with entries taking value in the set of labels {cy, ..., ¢, }. To generate an ensemble,
b labeling vectors {yi}é’:]L are generated such that each y’ is a noisy permutation of y®. Noise
is induced with a probability of random error p = p. Vi, as follows. For each i € {1,...,b} and
each j € {1,...,n}, y; is set to be equal to y$, with probability (1 — p.), or make it acquire an
incorrect label y; € {ci,...,c, } such that y; # y; with probability pe, where all ky — 1 incorrect
labels are equiprobable, with probability p./(k, — 1) for each label. This is followed by applying
a random permutation on each y* by drawing a permutation of the labels {cq}lgil from the set
of all possible k,! permutations, with uniform probability.

It is important to note that the convergence of U to y? is significant when y® represents the
true clustering. Otherwise, U can be said to converge to a clustering that is as accurate as y®
compared to the true clustering. To illustrate this, consider that y® represents a noisy labeling
compared to some possible true clustering y* with probability of error denoted as p&. Then,
U can be compared to y* by extracting a hard partition from U and measuring the error rate
denoted Err*, for different values of p&. It is noted that, in this model, it is assumed that k* = k,,

whereas in reality, the true number of clusters may be different or unknown.

Generation of Non-Uniform Partitions

As possible alternatives to generating ensembles of uniform partitions, one may consider two dif-
ferent types of non-uniform ensembles. In the first, partitions with a variable number of clusters

are generated. In the second, the ensemble partitions have the same number of clusters, but a
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variable cluster label distribution. For the first ensemble type, a set of b labelings {yi}é’:]L with
a number of clusters {ki}ﬁ’:l are generated as random n-vectors with entries of y* taking value
in {1,...,k;}, where k; is randomly selected in a range [kmin, kmax]- In the second, a number of
clusters {k;}?_, = k is assumed, and a set of b labelings {y?}?_, are generated, each as an n-vector
with a randomly-generated distribution over the cluster labels ¢} € {1,...,k}, where the proba-
bility of each class Pei is generated as follows. Sampling weights hf € [Amin, Pmax] are randomly
generated, followed by a normalization to get the class probabilities as Pei = h% / Zle ht.

In both non-uniform partition generation models, each vector y* is re-arranged so that the
first n} entries, 3! ... yffi , are assigned to the first cluster cf = 1, the next n} entries are assigned
to the second cluster cé = 2, and so on. The ordering of the labeling vectors serves to induce
relationships among the ensemble partitions.

In the case of uniform partitions, the variability among the ensemble partitions is due to
random errors, whereas in the case of non-uniform ensembles, it is due to other factors such as
a variable number of clusters, or a variable class distribution. Unlike uniform partitions, there
is no underlying labeling from which the ensemble partitions are directly generated. Therefore,
it is not clear how to determine a labeling which can be considered as a possible true clustering,
or to assume a true number of clusters. In particular, the evaluation of U compared to possible
true clusterings is not as straightforward as in the case of the ensemble generation model in [43].

Based on the introduced voting framework, one computes the uncertainty about the assign-
ment of each data object to a set of clusters described by the random variables {Cg }]qm:l. These
variables are specified based on the initial reference partition. Thus, as a starting point in the
simulation-based analysis, it is assumed that the initial reference partition represents the desired
labeling y®, which in turn may represent a noisy replicate of a possible true clustering denoted
as y*. Then, U is compared to y* by evaluating Err* for different values of p2.

However, considering that the initial reference partition is simply selected at random, a better
way to deal with this issue is required for a conclusive analysis. A principled information-theoretic

approach is approach. Instead of considering the aggregated partition as directly representing
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the consensus partition, it can be viewed as an aggregated distributional representation of the
ensemble, on the basis of which, an optimal consensus partition may be sought and extracted.
This view is further developed in Ch. 5, where the problem of extracting a compressed summary
of the ensemble is formulated based on considering U as an ensemble representation. An empirical

analysis on artificial and real datasets is presented to validate the proposed method.

3.3.2 Simulation Results

The experimental setup is described below, followed by the voting and aggregation results.

Parameters setup

The following default values are used in the simulations reported in this chapter. The number
of runs per any setting is 25, and the distribution of the measured quantities is reported using
box-plots or error bars. The value of n is set to 500 and the ensemble size is b = 25. The range
for the generated class distributions is pil € [0.1,0.5] (the lower limit ensures that no empty
classes are generated, and the upper limit ensures that the data objects do not get assigned to

one cluster).

Voting Results

First, the results of the voting loss are presented as measured by the MSE’ and Err’ defined in
Sec. 3.1 for a given estimated partition V? with respect to a specified reference partition U°. To
compute Err’ for the cumulative voting scheme, V? is converted to a hard partition. Note that
for the voting results, no aggregation is performed. That is, the voting results only reflect the
values of the voting loss functions.

For the voting results, the experiments are conducted as follows. A set of 25 partitions are
generated, and one is picked at random and designated as a common reference U°. Then, each of

the remaining partitions is optimally relabeled with respect to U, using cumulative voting and
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bipartite matching. Figure 3.1 illustrates the voting errors for uniform partitions with k; = 2 and
k; = 25, and Figure 3.2 shows the voting errors for non-uniform partitions. As pointed out in
Sec. 3.1, the cumulative voting scheme always leads to MSE! and Err’ that are equal to or less
than those achieved using bipartite matching. The voting results illustrate the difference between

the two schemes for different types of ensembles and different error measures.
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Figure 3.1: Voting loss using MSE? and Err’ for uniform partitions with k; = 2 and k; = 25.

Aggregation Results

It is noted that the aggregation results illustrate the sensitivity of Vote to random ordering of
the partitions and random selection of the initial reference U?; each run corresponds to one pass

over the Vote algorithm. In real clustering problems, however, one should choose U with lowest
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Figure 3.2: Voting loss using MSE? and Err® for non-uniform partitions.

MSE over all passes.

Figure 3.3 shows the MSE(U; U, ..., U%) defined as given by Eq. 3.11 between U and the
optimally re-labeled partitions ¥¢(U?) with respect to U, versus p’, for uniform ensembles with
ki =2 and k; = 15. It is noted that the MSE is not only significantly lower in the case of cVote
compared to bVote, but as p’ increases, the MSE drops in the case of cVote (except for ensembles
of identical partitions at p. = 0), while it increases in the case of bVote.

Note that as pl increases, the rate of random errors among the ensemble partitions increases,
which explains the increasing MSE using bVote. However, for cVote, as p! increases, the un-
certainties about the assignments of the data objects increase in the estimated partition ¥?(U?)
and the re-computed reference UY, at each iteration i. As the estimated cluster conditional dis-

tributions for UY approach uniform distributions, they also approach uniform distributions for
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Figure 3.3: MSE versus p!, for uniform ensembles with k; = 2 and k; = 15.

¥ (U?) and for U. In such case, the result is that MSE approaches zero. As MSE — 0, the hard
clustering corresponding to U takes arbitrary values. Thus, it doesn’t converge to y*, unlike the
case for bVote, where errors tend to cancel each other.

The results presented in Fig. 3.4 and 3.5 confirm the explanation discussed above. The error
rate Err* of U compared to a range of possible true clusterings y*, versus the probability of
error p¢ of y® compared to y*, is plotted for uniform ensembles with k; = 2 (Fig. 3.4) and
with k; = 15 (Fig 3.5) for different values of p’. First, as pointed out earlier in Sec. 3.3.1 for

bVote, U is generally as good as the underlying labeling y® compared to y*, as indicated by
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Figure 3.4: Err* versus p& for uniform ensembles with k; = 2, for different values for pt.

the approximate equality line between Err* and p2, when values of pl correspond to better than
random clusterings y’ compared to y*. Second, it is noted that cVote converges to the same
clustering as bVote at low values of p!, but as p’ starts to increase, the increased uncertainty
causes U to diverge from the underlying clustering, and eventually fails in capturing a cluster
structure for the data. Hence, it is concluded that for this type of ensemble, bVote is a more
suitable relabeling scheme than cVote. However, it is assumed here that k., = k, but in general,
the true number of clusters may be different or unknown. Such a case is further investigated in

Ch. 5.
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Figures 3.6 and 3.7 show the MSE and corresponding Err* for non-uniform partitions. Sig-

nificantly lower MSE values are obtained using cVote compared to bVote. However, the MSE

values are not too low to cause cVote to produce arbitrary partitions compared to the initial

reference partition U, as indicated by Err*. In fact, lower Err* values are obtained in this case

with cVote compared to bVote, which indicates that U better approximates the cluster structure

of U, where U is considered here as a noisy replicate of y*. Again, note that these results are

based on a particular value of k, = kg, whereas in real situations, k, may be different or unknown.

When k* # kg, further analysis is required to study the usefulness of U based on each scheme.
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Figure 3.6: MSE and Err* for ensembles with a random number of clusters.

3.4 Discussion

It is important to note that the aggregated partition U is optimized as a representation of the
ensemble partitions (as given by Eq. 3.11); however, it does not necessarily reflect an accurate
cluster structure for the dataset. Interpreting U as a coherent and global cluster structure for
the data depends on the nature of the ensemble partitions and also on the properties of the
aggregation method. For instance, for ensembles of uniform partitions, U is best viewed as an
approximately optimal partition for the data, when the bipartite matching scheme is applied.

On the other hand, when each ensemble partition consists of a randomly selected number of
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clusters, and when the true number of clusters is unknown, it is likely that U does not directly

represent an optimal cluster structure for X.
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Instead, it may be considered as an optimized

distributional representation, where the objects are characterized by the estimated conditional

distribution p(c’|x). Hence, distributional clustering can be applied to find optimal partitionings

of the data. In distribution clustering, objects are grouped by comparing their histograms using

divergence measures [6]. The problem is generalized by Tishby et al. [8] who introduced a method
referred to as the information bottleneck method.

In Ch. 5 the view of U as a distributional data representation is developed further. An

efficient agglomerative algorithm based on the information bottleneck formulation is proposed.
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Specifically, if the desired (or meaningful) number of consensus clusters is smaller than the number
of clusters in the aggregated partition, the following definition of an optimal consensus partition
is proposed. It is defined as the most compressed summary of the aggregated distributional
representation such that maximum amount of relevant information about the data is preserved.
The proposed algorithm minimizes the average Jensen-Shannon divergence within the consensus
clusters and is applied, as described in Ch. 5, for obtaining a consensus partition, for either an

estimated or a pre-determined number of clusters, based on each voting scheme.



Chapter 4

On The Cumulative Voting Scheme

This chapter consists of two main sections. In Sec. 4.1, the properties of the cumulative voting
scheme are investigated. In Sec. 4.2, a heuristic variant of the cVote algorithm is derived.
The proposed algorithm seeks to maximize the mutual information associated with the empirical
aggregated distribution, through adaptivity to the given ensemble partitions. It is referred to
as Ada-cVote. Unlike cVote, it is characterized by the invariability of the obtained aggregated

partition to the order of the ensemble partitions and the initialization of the reference partition.
4.1 Properties of Cumulative Voting
The following are notable properties of the cumulative voting schemes.

4.1.1 Unanimity Rule

It is essential for a voting-based aggregation algorithm to satisfy the unanimity rule, defined
as follows. Whenever the input is an ensemble of identical partitions, modulo cluster label
permutation, the output aggregated partition should also be identical to the ensemble partitions.

The aggregation based on the proposed cumulative voting scheme satisfies this requirement.

57
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Given two identical partitions U? and U?, the coefficient matrix W computed using Eq.
3.5 constitutes a binary permutation matrix, and the estimated partition is given by V¢ = U,
representing a perfect zero-error re-labeling of U’ with respect to UY. Therefore, the averaged
aggregated partition is also identical to the input partitions.

The condition of unanimity is also known as a perfect consensus [40]. In this case, the
aggregated partition is perfectly certain, where the estimated probabilities are either 0 or 1. Note
that the aggregation results in Sec. 3.3.2, for all uniform partitions with p¢ = 0, illustrate this

property using the cVote algorithm as well as the bVote algorithm.

4.1.2 Relation to Co-Association Matrix

Consider the co-association matrix representation of data partitions [22,29,31], denoted here by
M. It is a n x n matrix where each entry mgy, can be viewed as a vote on the co-occurrence of
data objects x4, and zj,. Given an ensemble partition U?, a corresponding co-association matrix

M’ is given by,

M = U'U" (4.1)

The aggregated co-association matrix of an ensemble, denoted by M is given by,

b

1 ,

M=- M’ 4.2
b;—l (4.2)

Consider the relabeled partition Vi = 9(U?) computed using Eq. 3.2, where W* is computed
based on the cumulative voting scheme. The partition V* can also be written as given by 4.3,

lth

where D(U") denotes a k; x k; diagonal matrix whose ['" diagonal element is equal to 1/n}.

Vi = (U DU U U (4.3)
The product (UiD(Ui)UiT) is a n xn doubly stochastic matrix that represents the normalized

co-association matrix representation of U’ and is denoted here as M. Each entry ﬁ’L;h is the
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inverse of the cluster size to which the objects x4 and x;, belong. That is, for a pair of objects
Tg,Th € Cli (i.e., for objects assigned cluster label c%), the corresponding entry is given by ﬁzgh =
1/ nf, reflecting that objects that are members of a large cluster are less likely to co-occur together

in the same cluster than objects belonging to a small cluster. According to Eq. 4.3, the entries

0

of V? represent the dot products of the row vectors of M and the vectors u;,. However, note

that it is computationally cheaper to compute V* using Eq. 3.2 instead of 4.3.

Example 1.
Consider a reference partition U? and an ensemble partition U?, as given below. Using the
cumulative voting scheme, the values of W' (as given by Eq. 3.5), V' (as given by Eq. 3.2), and

the corresponding matrix M are as given below.

10 0 0 1 0 0
1 0 0 0 1 0 0
01 00 1 0 0
01 0 0 . 01 0
uo = Ul =
00 1 0 01 0
00 1 0 0 0 1
00 0 1 0 0 1
0 0 0 1| Lo 0 1]
[ 0.6667 0.3333 0 o
0.6667 0.3333 0 0
0.6667 0.3333 0 0
0.6667 0.3333 0 0
. A 0 0.5000  0.5000 0
Wi = 0 0.5000  0.5000 0 Vi=
0 0.5000  0.5000 0
0 0 0.3333  0.6667
0 0 0.3333  0.6667
0 0 0.3333  0.6667
o0 0 0.3333  0.6667 |
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[ 0.3333 0.3333  0.3333 0 0 0 0 0
0.3333 0.3333 0.3333 0 0 0 0 0
0.3333 0.3333 0.3333 0 0 0 0 0
N — 0 0 0 0.5000 0.5000 0 0 0
0 0 0 0.5000 0.5000 0 0 0

0 0 0 0 0 0.3333 0.3333 0.3333

0 0 0 0 0 0.3333 0.3333 0.3333

L 0 0 0 0 0 0.3333 0.3333 0.3333 |

Given the relationship outlined above between the co-association matrix and the cumulative
voting scheme, a variant of the cumulative voting scheme can be derived such that, in a special
case, it gives an aggregated partition U that is equal to the aggregated co-association matrix M.
It turns out that this is easily obtained by simple modifications to the original cumulative voting
scheme and to the aggregation algorithm applied in Ch. 3. First, instead of the normalization
to 1, the rows of W' should be constrained to sum to n} Thus, an un-normalized cumulative

voting scheme is developed where the voting problem in 3.4 is written as follows.

1 y y
min —tr[(U° — U'W) " (U° — U'W?)]
Wt n
W (4.4)
Subject to Zwl’q =nj.
g=1
That is, the problem corresponds to fitting a linear model by the least squares method, where
one is estimating the occurrence frequencies of the objects in the representative clusters, which
are described by the output variables C° = {CY, ... ’Cl(c)o}’
The solution is given by W' = U U° and an estimated co-occurrence matrix of the data
objects and the reference clusters, denoted as Vi is given by Vi = U'W'. Note that V' is
equivalently expressed as given in Eq. 4.5, where the product UTUl = M. However, computing

Vi as given above is computationally cheaper compared to Eq. 4.5, which requires O(kok;n?)

instead of O(kok;n).
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Vi = (U'uhue (4.5)

As for the aggregation algorithm, in order to obtain U = M, the following modifications are
required. First, a fixed-reference approach should be applied, instead of the iterative approach of
the Vote algorithm where the reference partition is updated at each step. Second, the reference
partitions should be the n identity matrix I,, (which corresponds to the n-partition of singleton
clusters). Under these special conditions, the aggregated representation obtained using the un-
normalized cumulative scheme is nothing but the well-known co-association matrix M.
Example 2.

Considering U? and U? as given in Example 1, W* and Vi are given as follows.

Wi=

o O N
[ R
= = O
N O O
<
Il

e e e = = =)
N NN O O O O O

o O O O O N N N
O O O = o=

The voting-based aggregation algorithm implementing the un-normalized fixed-reference cu-
mulative voting scheme is presented in Algorithm 2, and is referred to as URef-cVote. The al-
gorithm estimates the joint distribution p(c, z), which is represented by the matrix U, and then
uses it to compute the marginal probabilities p(z;) and the conditional distributions p(c®|z;),
where p(c°|z;) represent the soft aggregated partition U.

Note that the un-normalized scheme is described here for the purpose of highlighting the
relationship between the cumulative voting scheme, in general, and the co-association matrix,

which is a fundamental ensemble representation. However, the analysis presented throughout
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Algorithm 2 URef-cVote
Function U = URef-cVote(!)

1: Randomly select a partition from U as a reference U°
U =0, U = 0 {Initialize two ko x n matrices U and U}.
for i =1 to b do

wi=u"u’.

Vi = U'W¢?

end for
n ko

EE»» N}

i=1 j=1 g=1
b

N 1 NIPEEN
8 U= ~ Z V' {U represents the empirical joint distribution p(c?,z)}
i=1
9: for j =1tondo
ko s
10: ij :Zqozlqu .
11: @ =u;/P,, {each row vector @, of U represents the distribution p(c®|z;)}

12: end for

the thesis is focused on the normalized scheme. In [39], empirical results for the un-normalized

cumulative voting scheme are presented.

4.1.3 Preserving Class Distribution

Consider the random variables {C?}?_,, defined over the cluster labels of each ensemble partition
{U}?_,, with probability distribution p(c}) = n{/n (assuming hard ensemble partitions). The
optimally relabeled partition V? computed with respect to a given reference partition U, using
the cumulative voting scheme described in Ch. 3, is a soft partition that is viewed as representing

a conditional probability distribution p*(c’|z), where the random variable C° is defined over

k

the initial reference clusters {02 q

Y., and X is defined over the objects x € X. Suppose that
the simplifying assumption that the marginal probabilities p(x;) = %, Vj is made. The joint

distribution p*(c®, x), based on p’(c’|x), can be computed using Bayes rule. Let p(c’) represent
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the class distribution based on the reference partition. The class distribution p*(c®) computed

based on V? is given by:

n

Zpi<c2, zj) = Zpi(cg\ﬂﬁj)P(ﬂﬁj)

= (4.6)
Zp O|Cl - ZP 0|Cl = p( O)'

That is, the class distribution of the reference clusters is preserved by the optimally relabeled
partitions based on the cumulative voting scheme, pi(c(q)) = p(cg), Yq.

Furthermore, consider the aggregated partition U computed using the cumulative voting
scheme as described by the cVote algorithm in Algorithm 1, which represents the empirical
probability distribution p(c’|z). Since U is computed by averaging {V¢}’_,, then, it follows
that the probability distribution p(c?) is equal to the class priors of the initial reference clusters,
B() = p(c0), Ya.

This means that the selection of the initial reference for the cumulative voting scheme can
be used not only to specify the number of aggregated clusters k = kg, but also their probability
distribution p(c”). The usefulness of this property is further investigated in the following section.
Specifically, this property is utilized to introduce a new variant of the cVote algorithm. The
new algorithm has several advantages over the basic cVote algorithm. First, it maximizes the
amount of information in the aggregated distributional representation of the data. Secondly, the
aggregated partition becomes invariant to the ordering of the ensemble partitions and to the
initial reference, thus, eliminating the random variations in the cVote algorithm.

It is noted that, unlike the normalized cumulative voting scheme, the un-normalized scheme
does not lead to preserving the prior probabilities of the reference classes. Note that in the case of
the un-normalized scheme, the distribution p(x) is obtained as described by the URef-cVote algo-
rithm. The objects are not considered equiprobable, instead, their probabilities are proportional

to the relative sizes of the aggregated clusters.
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4.2 Maximizing Information Content

In this section, the proposed aggregation algorithm is presented, followed by simulation results.

4.2.1 Rationale

The Shannon entropy H(C') associated with the random variable C' defined over the cluster labels
of a partition U measures the average amount of information content associated with C' and is
defined as a function of its distribution p(c) as follows [79], H(C) = =3 - p(c)logp(c). A
consequence of the property of preserving class priors for the cumulative voting scheme, the
entropies associated with the class distributions for V¢ and for U are both equal to that of the
initially selected reference partition UP.

For an ensemble partition U’ the value of the entropy H(C®) depends on the number of
clusters k; and the relative cluster sizes. For partitions with approximately equal-sized clusters,
H(C?) = logy(k;). The trivial partition of n singleton clusters has the maximum entropy among
all possible partitions, with H(C?) = log,(n), while the partition with one n-sized cluster has
zero entropy.

The mutual information I(C;X) associated with a partition U, measures the amount of

information that the random variable C' contains about X, and vice-versa, and is defined as,

1C;x) =33 ple, ) log %, (4.7)

and can also be written as,

1(C;X) = H(C)— H(C|X). (4.8)

For a hard ensemble partition U?, it is noted that I(C% X) = H(C"), since the value of C? is
completely determined by the value of X (i.e., H(C*|X) = 0).
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Let p(c|z) denote the aggregated distribution represented by U, i.e., p(c|z) = p(c’|x), and let
I(C; X) denote the corresponding mutual information between C = C°, and X. It follows that,
H(C) = H(C"), and from Eq. 4.8, it is noted that I(C; X) is bounded from above by H(C).
Hence, I(C; X) < H(CY).

Therefore, it follows that the initially selected reference partition for the cVote algorithm
determines the following measures: the entropy associated with the aggregated clusters, the initial
value of the mutual information I(C%; X), and the upper bound on the amount of information
that random variable C' contains about X, as computed based on p(c|z). This result motivates
the introduction of a selection criterion for the initial reference partition based on the mutual
information I(C% X), or equivalently H(C?) for hard partitions. Hence, the initial reference

partition is selected as given by Eq. 4.9.

U° = arg max I(C%; X) = arg max H(C") (4.9)
Urel Urel

Furthermore, the aggregation can be further improved if the iterative algorithm cVote greedily
selects at each aggregation step 7 the ensemble partition that keeps the mutual information
I2(C% X) as close as possible to I? ;(C?% X), where I?(C% X) and I? ;(C? X) are associated
with the reference partitions computed at step ¢ and step i — 1, and representing the distributions
denoted here by p?(c°|z) and p? ,(c°|z), respectively. This greedy aggregation sequence limits
the loss in I(C; X) for the aggregated partition, unlike the random aggregation sequence of the
cVote algorithm, which can lead to arbitrary losses in I?(C% X) and in I(C; X), in turn.

Note that pY(c?,z) is the average of the relabeled partitions up to the i-th iteration, as

described in Algorithm 1, which is given as follows,

P Plz) =71 pig (Pla) + 92 (), (4.10)

where v; = %, and vp = %

The mutual information I?(C? X) is also written in terms of the Kullback-Leibler divergence
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[79] D(.|.), (ak.a. relative entropy), between the joint p?(c®,z) and the product distribution

p()p() as:

(0% X) = D(p(", 2)|lp(<”)p(z)). (4.11)

Since p(c’) and p(z) remain constant for the cumulative voting scheme, the goal is to select
U’ that leads to p'(c’|x) being as close as possible to p{ ;(c°|x) (weighted by 71 and ~2). That
is, U’ should be selected such that the divergence between p'(c®|x) and p? ,(c°|x) is minimized.

A heuristic algorithm that seeks to minimize the divergence criterion is proposed. The algo-
rithm works by choosing at each aggregation step i, the ensemble partition U’ that maximizes
I(C% X), or equivalently H(C?), for hard ensembles. It saves computational time as the entropies
can be computed once for each partition, prior to aggregating, rather than computing, at each
step i, the divergences between the current reference and all the remaining partitions, after rela-
beling. Furthermore, the simplified criterion represents a reasonable heuristic given the ensemble
generation mechanism that is considered in this thesis. In the experimental study presented in
Ch. 5, the adopted ensemble generation mechanism is as follows. The same base algorithm
(the k-means), with a randomly selected number of clusters, is applied to generate the ensemble
partitions. Therefore, the closer the values of I(C% X) or H(C?), the more similar the cluster
structures of U?, and hence, one can obtain the least amount of information loss, or equivalently,

minimum divergence from the current reference distribution is obtained.

4.2.2 Adaptive Algorithm

The proposed algorithm is referred to as adaptive cumulative voting, (Ada-cVote), in reference
to its “adaptivity” to a given ensemble of partitions, in such a way as to minimize the loss in the
resulting mutual information. The algorithm incorporates the selection criterion for the initial
reference partition as given by Eq. 4.9 as well as the greedy selection of the subsequent partitions

U’ at each aggregation step i = {2,...,b}, so as to preserve maximum amount of information.
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This is simply achieved in the proposed heuristic algorithm by sorting the ensemble partitions in
descending order of their entropies, H(C?), select the first partition as the initial reference and
then aggregate the remaining partitions in the sorted order.

An important feature that is achieved as a by-product of the proposed adaptive algorithm is
that the aggregated partition becomes invariant of the order of the input partitions and of the
initial partition, unlike the Vote algorithm. This invariability is a generally desirable property for
an aggregation algorithm and it also saves the extra computations required to enhance the cVote
algorithm by performing multiple passes. The steps of the Ada-cVote algorithm are outlined in

Algorithm 3.

Algorithm 3 Ada-cVote
Function U = I-cVote(U)

1: Re-order U, s.t. U? are sorted in decreasing order of I(C*%; X) (= H(C"?) for hard partitions)
Assign U' to UP.
for i =2 to b do
Compute W' as given by Eq. 3.5.
Vi — U'Wi
U0 = =00 4 1ve
end for

U =U".

4.2.3 Simulation Results

In this section, cVote and Ada-cVote are compared for the partition generation models de-
scribed in Ch. 3. The two algorithms are compared by evaluating the obtained I(C;X) and
MSE(U; {U;}b_,) for the aggregated partitions. Furthermore, the error rates Err* are compared
in the case of uniform ensembles to investigate if the adaptive aggregation may reduce the error
rate for cVote, which tends to perform poorly for this type of ensemble, especially as p! increases

(as observed in Ch. 3). Finally, the adaptive aggregation is applied to the bipartite matching
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scheme and a comparison of the corresponding bVote and Ada-bVote algorithms is performed,
where the latter is similar to Ada-cVote. The different is that bipartite matching is being applied
for pairwise relabeling, in place of cumulative voting.

Figure 4.1 shows I(C;X) and MSE for two instances of non uniform ensembles and one
uniform ensemble. The first non-uniform ensemble has a randomly selected k; in an arbitrary
range, k; € [10,30], and the second has randomly generated class distributions pf:l with k; = 6, Vi.
The uniform ensemble has k; = 15 and a probability of error p. = 0.3, Vi. The simulation results
consistently show higher I(C; X) values with Ada-cVote, for the different types of ensembles. It
is also noted that Ada-cVote leads to increased MSE values. This increase indicates lower levels
of uncertainties (i.e., crisper probabilities) in the aggregated partition, which can help regulate
the instabilities of the cVote algorithm noted in Ch 3, particularly as p! increases, in the case of
uniform ensembles. This hypothesis is checked by the experimental results reported in Fig. 4.2.

Figure 4.2 shows the Err* in the case of uniform ensembles with k; = 15 and where p. and
pd are varied in [0,0.5]. The results show that Ada-cVote indeed leads to lower error rates
Err* compared to cVote with respect to possible true partitions U*. That is, the adaptive
aggregation improves the convergence properties of the aggregated partition compared to the
underlying generating labeling. However, the bVote algorithm remains a winner, when the results
are compared to the corresponding ensemble presented in Ch. 3, in Fig. 3.5.

Figure 4.3 shows I(C;X) and MSE for the same ensembles considered above, but for the
bVote and Ada-bVote algorithms. Unlike Ada-cVote, it is noted that the adaptive aggregation
does not have a similar effect on the aggregated partitions for the bipartite matching scheme.
Notably, in the case of uniform ensembles, the results are identical with and without the adaptive
aggregation. For non-uniform ensembles, there isn’t any clear increase in [(C; X) and MSE
as observed in the case of cumulative voting, instead, the results are comparable. Hence, the
empirical evidence suggests that the adaptive aggregation is best suited for cumulative voting
rather than bipartite matching.

The difference in the effect of the adaptive aggregation on each scheme can be explained by



69

2.8

2.6

I(C:X)

2.4

2.2

0.04

0.035

0.03

0.02

0.015

0.01

ki 010, 30]
i
+
|
1
cVote Ada-cVote
ki 0 [10, 30]
i
1
cVote Ada-cVote

1.2

1.1

I(C:X)

0.9

0.8

0.035
0.03

0
g 0.025
0.02

0.015

i _
Rand pcl, ki =6
L
|
|
i
cVote Ada-cVote
i _
Rand pcl, ki =6
-
|
L
n
i
cVote Ada-cVote

0.15

I(C;X)

0.1

0.05

12

10

MSE

— i _
ki =15, P, = 0.3

s

cVote Ada-cVote

cVote Ada-cVote

Figure 4.1: I(C; X) and MSE for cVote and Ada-cVote.

the class-preserving property which is the basis for introducing the adaptive scheme and which

characterizes only the cumulative voting scheme. Furthermore, it is noted that the cumulative

voting alters the structure of the ensemble partition by estimating the uncertainties about the

assignments of the data objects so as to best match the current representative partition, whereas,

the bipartite matching simply permutes the cluster labels of the ensemble partition. Hence, the

criterion for generating a particular aggregation sequence for the ensemble partitions can lead to

a marked effect on the aggregated partition, only in the case of cumulative voting.
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Chapter 5

Compression of Aggregated

Representation

The goal of this chapter is to further develop the idea of considering the aggregated partition
as an optimized distributional representation of the ensemble and apply a principled information
theoretic approach to extracting a coherent and global cluster structure for the data. In Sec.
5.1, the theoretical basis is presented. In Sec. 5.2, a computationally efficient approximation
algorithm is proposed, which is based on the introduced theoretical basis for finding an optimally
compressed consensus partition. Furthermore, an approach to estimating an optimal number of
clusters is presented. In Sec. 5.3, an empirical study is presented for validating the proposed

consensus method. Finally, a summary is presented in Sec. 5.4.

5.1 Theoretical Basis

The theoretical considerations underlying the proposed consensus extraction algorithm are dis-

cussed in this section.

73
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5.1.1 The Information-Bottleneck Method

Consider the distributional representation of the data as given by the aggregated partition U,
which represents the empirical probability distribution p(c|z), where C'is defined here as a random
variable over a set of clusters ¢, € C, and X is the random variable defined over the space of data
objects z; € X. Assuming that p(z) = %, Va, the joint distribution p(c,z) can be computed
using the Bayes rule. The number of clusters k in U will be simply denoted here as k.

Clustering of distributional data, referred to as distributional clustering, was investigated by
Pereira et al. [80], for clustering of words according to their distribution in particular syntactic
contexts, where words are represented by the relative frequency distributions of contexts in which
they appear. The relative entropy [79] between the distributions, which is also known as the
Kullback-Leibler divergence, is used as the similarity measure for clustering. The problem is
generalized by Tishby et al. [8] who introduced a method referred to as the Information Bottleneck
(IB) method.

The IB method of Tishby et. al. [8] defines a principle that deals with the extraction of an
efficient representation of relevant information. It is applicable in a variety of learning problems
and provides an approach for quantifying the notion of relevant information. Given the joint
statistics of two random variables, say X and C, one searches for a relevant quantization to
compress X as much as possible while capturing as much information as possible about C, which
is designated as the relevance variable. Since compression leads to loss of information compared
to the original data, a trade-off is sought between compressing the representation and preserving
relevant information. This is viewed as passing the mutual information between the two random
variables through a “bottleneck” formed by compact representations of X [8].

That is, given p(x,c) as input, one looks for a compressed representation of X, denoted X ,
that maximizes the amount of information about C' in X, while maximizing the compression of
X. The amount of information about C' in X is measured by the mutual information I(X;C).

Slonim and Tishby [81] describe the problem as that of finding a mapping p(Z|x) that mini-
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mizes the lossy coding length of X via X, I(X; X), under a constraint on the mutual information
to the relevance variable I(X;C). The problem is formulated as a minimization of the following

Lagrangian [8],

Lp(E|z)] = I(X; X) — BI(X; 0), (5.1)

where 3 is the Lagrangian multiplier. At 8 = 0, one gets the most compression, mapping all
x € X to a single element Z, and as # — oo, the most detailed representation is obtained [8].
Dhillon et al. [82] used an information-theoretic formulation similar to the IB method and
proposed a criterion based on the generalized Jensen-Shannon divergence [83] for word cluster-
ing. They developed a divisive algorithm that minimizes the within-cluster Jensen-Shannon (JS)

divergence while simultaneously maximizing the between cluster JS divergence.

5.1.2 Mutual Information and Jensen-Shannon Divergence

Slonim and Tishby present in [81] a decision-theoretic interpretation of the information bottleneck
method. Consider a decision problem with &k classes C' = {c1,...,¢}, with prior probabilities
{p(c;)}, and class conditional distributions p(x|c;) (where p(x|c;) is written here as pc,(z)). The

generalized JS divergence [83] of k class distributions is defined as given by Eq. 5.2.

k

k
ISpe, (Pes (2), -+, pe (2)) = H( Y pler)pe, () = Y plei) H(pe, () (5.2)
i=1

i=1
where H(p(x)) is the Shannon entropy, also written as H(X). The JS divergence between two
distributions is symmetric, bounded, non-negative and equal to zero when pe, (z) = pc, (), Vci, ;.
Slonim et al. [81] observe that, in a decision theoretic problem, the JS divergence can be

written as,

ISpe, (Per (2), -+ pe, (w)) = H(X) — H(X|C) = I(X;C) (5:3)
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That is, the JS divergence of the conditional distributions is equal to the mutual information
between the object space X and the class space C'. Therefore, constraining the JS divergence is
equivalent to constraining the mutual information.

Lin [83] shows that the Bayes probability of error given by 5.4, is bounded from above and
below by the JS divergence of the class conditional distributions p(x|c;), as given by Eq. 5.5.

Prisses(err) = 3 p(a)(1 — max p(cile) (5.4
reX
T (€)= 38y, (0 () < Prigelern) < 5(H(C) =38, e(@). (55)

That is, bounds on the Bayesian probability of error are obtained by constraining the JS
divergence [81]. This motivates an approach to the information bottleneck problem proposed
in [81] that is based on a greedy bottom-up merging, referred to as Agglomerative Information
Bottleneck algorithm (abbreviated here by AIB). Given as input p(z, ¢), the algorithm computes
a hierarchy of m-partitions of X, denoted here as X,,, for 1 < m < n. At each step, a greedy
merge of components of the current partition that minimizes the loss of mutual information
is performed, which is achieved by merging the components with the minimum JS divergence
between the corresponding conditional distributions (p(c|z)). The algorithm further provides
a measure of efficiency [ (f(m;X ) whereby the quality of each X,, partition is defined as the
fraction of the mutual information between C and X that X,, captures. The result is a curve
of I(Xm,X)/I(C,X) versus m. The loss in mutual information §(m), at each merging step is

given as 0(m) = I(Xm;XI)(_C{%m’“X). A drop in §(m) indicates that a meaningful value for m was

reached and that further merging results in significant loss of mutual information. The algorithm

has a complexity of O(n?).



7

5.2 Efficient Agglomerative Algorithm

In this section, the proposed algorithm for the extraction of a consensus partition based on the

aggregated distributional representation of the ensemble is described.

5.2.1 Formulation

Consider the problem of extracting an optimal partition U with k clusters, based on the esti-
mated probability distribution p(c|x), as given by the aggregated partition U. This problem is
formulated as the converse of the IB problem defined in Sec. 5.1.1 and addressed in Sec. 5.1.2.
Specifically, one seeks a compressed representation of the random variable C' (instead of X)), de-
noted C, that maximizes the amount of information about X in C, T (C~’, X), while maximizing
the compression of C'. This leads to limiting the search for U to values of k such that 1 < k < k,
rather than 1 < k < n, where k < n. The proposed formulation allows us to develop an ag-
glomerative JS divergence based algorithm that is computationally more efficient than the AIB
algorithm. The algorithm draws on the theoretical considerations presented earlier, while having
a linear computational complexity in n.

Note that for a O(n?) computational cost, one can use co-association-based consensus algo-
rithms, which provide a simpler and competitive approach compared to voting-based consensus
methods. So, one of the main advantages of the proposed method is the linear complexity in
n, which makes it attractive for clustering problems with a large number of data objects. The
limitation is that the possible number of clusters for the sought partition U is assumed to be not
larger than the number of clusters of the aggregated partition.

Consider the conditional distributions p.,(x) = p(z|c;), and prior probabilities p(c;). Let a

pair of distributions be denoted as p,(z), and p.,(z), VI,q € {1,...,k}, | # ¢, with priors p(¢;)

p(c) ey
s 4 By = SeTren

The JS divergence between two distributions pe, (v) and pc, () is given by [83],

and p(cq), respectively. Let the weights 3 and [, be given by §; =
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IS (pe,(€), Pey (%)) = H(Bipe, () + Bgpe, (x)) — BiH (pe, (2)) — By H (pe, (2))- (5.6)

The proposed algorithm follows an agglomerative greedy approach, where the distributions
{p(z|c)} are merged incrementally at each step. Note that unlike the AIB algorithm, which merges
the distributions {p(c|x)}, the cost of computing the JS divergences for {p(x|c)} is O(n), using the
proposed algorithm. So, to further cut down the computation time, JSg is computed between each
pair of the k distributions, producing k(k —1)/2 divergences. The computed pairwise divergences
are then used as input to a hierarchical algorithm with a suitable objective. The group average
(average link) is uses, which, at each merging step, minimizes the average pairwise divergences
between the members’ distributions of the merged clusters.

The proposed algorithm starts with a k-partition where each distribution p(z|c;) € {p(x|e;)}r_,
is assigned to a singleton cluster. It produces a hierarchy of k-partitions, for 1 < k < k, each
corresponding to the compressed representation of X and a k-class variable denoted here by C'];.
At a given level k of the hierarchy, let S, and S}, denote any two clusters of distributions, with
cardinalities |Sy| and |Sy|, respectively. That is, a cluster Sy is assigned a number S; > 1 of
distributions {p(z|c]) ii"ﬁ. The cost function minimized by the average link algorithm is written

as given by Eq. 5.7.

|Sgish\ X 2 ISslald) plaler). (5.7)

p(z[c])€Sq p(x|ct)ES),

By minimizing the average JS divergence within the cluster, at each merging step, the algo-
rithm approximately minimizes loss of mutual information I(C; X) as shown in [81]. Furthermore,
minimization of the classification error is achieved as a result of the bounds established in [83],
as outlined above.

Like the AIB algorithm, a measure of efficiency of the obtained representations at each level
of the hierarchy can be defined to estimate an optimal number of clusters. The defined measure

is described below.
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5.2.2 Optimal Partition Estimation

Given the hierarchical partitioning obtained by the agglomerative algorithm, one may be inter-
ested in extracting a partition U with a pre-specified number of clusters, or also in estimating an
optimal number of clusters, where 2 < k< k. First, the computation of the partition Ij, given
that k& has been determined (either estimated or pre-specified) is outlined. Then, the proposed
approach for estimating an optimal number of clusters is described.

Given a value for I;:, the dendrogram is cut at I;‘, and the l%—partition is obtained as follows.
Let {Sg}§:1 denote the clusters of merged distributions at level k of the hierarchy. The priors

for the k classes, denoted by {p(éi)}f“':l are computed as follows:

pE) =Y. p(d). (5.8)
1<1<|S,|

The joint distributions {p((z,¢)}¥_, are computed as given by Eq. 5.9

pla &)= Y plald)p(c) (5.9)

1<I<] 8y

Using 5.9, U is obtained as the estimated conditional distribution p(¢|z), and a hard labeling
§j can be obtained by assigning each z € X to its most likely cluster ¢ € C.

As for estimating an optimal value for k, the idea of a k-cluster lifetime described in [25] is
applied on the merging JS divergence thresholds. Specifically, the optimal k is defined as the
number of clusters with the longest lifetime, where the lifetime of each k is defined as the range
of distance threshold values that lead to a l;:—partition solution. It is computed as the difference
between the minimum and maximum distances that lead to merging the input patterns into k
clusters. In other words, the lifetime of k is the difference between the merging distance leading
to a k-partition and that leading to a (l% — 1)-partition in the obtained dendrogram.

The proposed agglomerative algorithm, referred to as JS-ALink, is outlined in Algorithm 4.

It takes as input the estimated distribution p(c,z) based on the aggregated partition U and
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computes a hierarchy of l;:—partitions as described above. There is an option to specify a value
for 12:, where k < k. If no value of k is given as input, the algorithm estimates the optimal k
corresponding to the most efficient partition of the data which preserves the maximum amount

of relevant information, as discussed in the theoretical basis presented earlier in this chapter.

Algorithm 4 The JS-ALink Algorithm
Function U = JS-ALink(p(c, z), [k])

1: Compute JSg divergence between each pair of the distributions {p(x|c;)}¥_, using Eq. 5.6
Apply the hierarchical average link algorithm on the list of @ JSp divergences.
if k is Not specified then
Find k with longest lifetime
end if

Estimate U Using Eqgs. 5.8 and 5.9

5.3 Empirical Study

To validate the proposed cumulative voting algorithm Ada-cVote in conjunction with the agglom-
erative JS-Alink algorithm, experimental results on artificial and real datasets are presented.
Furthermore, the JS-ALink algorithm is applied in conjunction with the bVote algorithm in or-
der to compare the two voting schemes. In both cases, the algorithms are evaluated for extracting
a partition with a pre-determined number of clusters and for estimating an optimal number of
clusters and a corresponding partition.

Moreover, the performance of the voting-based algorithms is compared with several recent
consensus algorithms using external and internal measures. Sec. 5.3.1 outlines the consensus
algorithms used in the comparative evaluation. Sec. 5.3.2 presents a description of the datasets.
The ensemble generation mechanism is described in Sec. 5.3.3. In Sec. 5.3.4, the adopted
performance evaluation measures are defined. The experimental results are presented in Sec.

5.3.5 for artificial datasets and in Sec. 5.3.6 for real datasets. Finally, in Sec. 5.4, a summary of
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the empirical study is presented.

5.3.1 Consensus Algorithms

The Ada-cVote combined with the JS-Alink algorithm is abbreviated by ACV (Adaptive Cu-
mulative Voting), in the case where the optimal number of clusters k is being estimated. On the
other hand, when the number of clusters is pre-determined, the combined algorithms are denoted
as ACV-k. Similarly, when applying the bVote with the JS-Alink algorithm, the consensus al-
gorithm is abbreviated by BV (Binary/Bipartite Voting), in the case where k is being estimated.
When £ is pre-determined, it is abbreviated by BV-k.

The other consensus algorithms applied in the comparative evaluation are described below.

All of the algorithms have been implemented using MATLAB.

e The evidence accumulation consensus (EAC) algorithms [25], where each of the hierarchi-
cal single link and average link algorithms are applied on the co-association matrix. The
corresponding algorithms are referred to as EAC-S and EAC-A for the single and average
link, respectively. The EAC algorithms were implemented as follows. The co-association
matrix is computed and a distance function (1 — co-association ratio) is calculated and used

as input for the hierarchical algorithms.

e The graph-based algorithms: CSPA, HGPA, and MCLA [29]. The implementation provided

at the authors’ website! was used.

e The quadratic mutual information algorithm, QMI [30,38]. The algorithm was implemented
as specified by the authors. A standardization is applied to transform the cluster labels
into quantitative features by replacing the i-th partition by k; binary features. Then, each

binary feature is standardized to a zero mean. The k-means algorithm is applied on the

"http://www.strehl.com/
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transformed data to find the consensus clustering (10 runs for the k-means algorithm are

performed and clustering with minimum mean squared error is selected).

5.3.2 Data Sets
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Figure 5.1: Artificial datasets. Each cluster indicated by a distinct symbol.

Table 5.1 summarizes the characteristics of the datasets used in the experiments, along with
the accuracy as measured by the adjusted Rand Index [13] for the k-means algorithm (or spherical

k-means for text data) compared to the true clustering, where k is set to the true number of
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clusters. The mean and standard deviation (std) over 25 runs are shown.

Two-dimensional plots of the artificial datasets are shown in Fig. 5.1, where the 8D5k dataset
is projected onto the first two principal components, whereas the four Gauss, easy doughnut,
and difficult doughnut datasets are plotted against the first two dimensions. Below are further

description of the datasets.

Table 5.1: Characteristics of the datasets and ARI values for the k-means (mean =+ std).

Dataset n d k Class k-means
distribution ARI
Artificial Datasets
2D2K 1000 2 2 50% each 0.92 £0.00
8D5K 1000 8 5 20% each 0.86 £ 0.16
Four Gauss 400 12 4 25% each 0.81 +£0.21
Easy doughnut 300 12 2 50% each 0.15+0.02
Difficult doughnut | 300 12 2 50% each 0.15 £ 0.01
Two Gauss 300 2 2 33%-67% 0.81 £+ 0.00
Real Datasets
Breast cancer 683 9 2 65%-35% 0.84 £+ 0.00
Optical digits 500 64 10 ~ 10% each 0.60 £+ 0.05
Yahoo! 2340 | 1458 6 ~ 6-59-21-5-6-3% | 0.42 £ 0.08

For the artificial data, five datasets that were generated and used in previous related work

are used, and one additional dataset is designed. They are described as follows.

e The 2D2K and 8D5K datasets? were generated in [29]. The 2D2K consists two 2-dimensional
Gaussian clusters with 500 points each. The clusters have different means and equal variance
and they slightly overlap. The 8D5K consists of 1000 points generated from 5 8-d Gaussian
distributions (200 points each). Clusters have the same variance, and means were drawn

from a uniform distribution within the unit hypercube [29].

e The Four Gauss, easy doughnut, and difficult doughnut datasets® were generated in [36] .

2Datasets available at http://www.strehl.com/
SMATLAB functions for generating the datasets are available from http://www.informatics.bangor.ac.uk/ kuncheva,/
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They are 12-d, where the first 2 dimensions are meaningful, while the remaining 10 consist

of uniformly generated random noise.

e The Two Gauss dataset is a mixture of two Gaussian clusters with unbalanced sizes (100

and 200 points), different means and covariance matrices, and a slight overlap.
For the real data, the following publicly available datasets are used:

e The Wisconsin breast cancer dataset [84] is available from the UCI machine learning repos-
itory. It consists of 683 patterns (after the removal of patterns with missing values) in 9
integer-valued dimensions with values in [1,10]. The dataset contains 2 classes with 444

designated as benign and 239 as malignant samples.

e The optical recognition of handwritten digits (optical digits) dataset is available from the
UCI machine learning repository. A random sample of size 500 patterns is generated from
the training set. Patterns are described by 64 integer-valued features in [0, 16]. The data

has 10 classes representing each digit, which are approximately equal sized.

e The Yahoo! dataset?. It consists of 2340 documents parsed from Yahoo! news web-pages. It
has 6 classes: business, entertainment, health, politics, sports, and technology. The dataset
has a high dimensionality, and the problem is compounded by highly unbalanced class
sizes. There is also an alternative classification for this dataset which consists of 20 classes,
whereby the Entertainment class is subdivided as follows; no sub-category, art, cable, cul-
ture, film, industry, media, multimedia, music, online, people, review, stage, television,
variety. That is, 15 out of 20 classes are subclasses of the superclass “Entertainment”. The
subgroups are as small as 9 documents per class. In addition, there are subgroups desig-

“no subcategory” and “variety” which doesn’t indicate classes with a consistent

nated as
content. Other subgroups have labels that indicate some similar content. Hence, the 6-class

categorization is considered the true clustering.

“Data available at http://ftp.cs.umn.edu/dept/users/boley/PDDPdata/doc-K/
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5.3.3 Ensemble Generation Technique

The ensemble generation techniques proposed in [25,36] are applied here. The ensembles consist
of partitions with overproduced clusters (i.e., k; is larger than the desired or suspected number
of clusters). Furthermore, ensembles where the number of overproduced clusters is randomly
selected for each partition [25,36] are also generated. In this case, k; is generated randomly in
a range [kmin, kmax] that is specified as input. This strategy induces higher variability among
the ensemble partitions. In general, the range [kmin, kmax] can be varied in a search for stable
consensus partitions for each dataset. In the experiments, ki, is usually selected as a multiple
of the desired number of clusters, and k. is set to any relatively larger value.

The k-means algorithm with Euclidean distance (or with the cosine measure in the case of
text data) is applied as the base clustering algorithm. By default, b = 25, and the number of runs
per any setting is 25. For the bVote algorithm, 10 passes over the algorithm are performed and
the aggregated partition U with the minimum MSE value is used subsequently in conjunction
with the JS-ALink algorithm. For datasets with sizes n < 1000, all consensus algorithms outlined
earlier are applied. However, for larger datasets, co-association based algorithms with quadratic
complexity in n are excluded.

Note that for ensembles with k; constant for all ¢ and equal to the desired number of clusters
in the consensus partition, and where the partitions are generally uniform (i.e., they are generated
using the same base clustering algorithm), the simulation-based analysis demonstrated that the
bipartite matching scheme is more suitable than the cumulative voting scheme. Therefore, the
focus in the empirical analysis presented in this chapter is on the alternative ensemble generation

mechanisms described above.

5.3.4 Performance Evaluation

To evaluate the quality of the consensus partition extracted by the different consensus algorithms,

one external and one internal evaluation measure are used, both of which are widely applied in
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the data clustering literature. For the external measure, the adjusted Rand index (ARI) [13] is
used as a measure of agreement between the extracted partition and the true clustering for the
dataset, which is available externally. For the internal measure, the Average Normalized Mutual
Information (ANMI) defined in [29] between the hard consensus partition and members of the
ensemble {U?}Y_, is used. The normalized mutual information NMI is a pairwise measure of the
statistical information shared between two different clusterings represented as categorical random
variables.

The ARI measure is computed as follows. Let the true partition be denoted by U*, and let
U denote the extracted consensus partition (after conversion to a hard partition, in the case
of voting-based algorithms). Let nj, denote the number of objects that are in both the [-th
cluster of U*, and the ¢-th cluster of U. Let n; and n.q denote the number of objects in the

[-th cluster of U* and the g-th cluster of Ij, respectively. The general form of the index is given

b index - expected index
Y “mazimum index - expected index*

The expected value of ARI is zero and its maximum value is 1.
Hence, there is a wide range of values that the ARI index can take compared to measures taking
values between 0 and 1, thus increasing the sensitivity of the index [13]. The ARI takes the value

0 when the index equals its expected value. It is defined as given below in Eq. 5.10.

£, () - | S8 5, 09)]/6)
S, 00| - [S s, 0]/

The ANMI measure is defined as follows. Let nfq denote the number of objects that are in

ARI =

(5.10)

both the I-th cluster of U?, and the ¢-th cluster of Ij, while nf., and n 4 denote the number of
objects in the l-th cluster of U?, and the ¢-th cluster of U, respectively. The NMI is defined
between Ij, and U’ below in Eq. 5.11, and the ANMI is given by Eq. 5.12.
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NMI(U, U?) = (5.11)
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ANMI(U; {U}_)) = : > NMI(U,UY) (5.12)
=1

For each experimental setting for a given dataset, the results are presented in two figures as
follows. In the first figure, the results for the consensus partition with a pre-determined number
of clusters are presented, where the distributions of the obtained ARI and ANMI values are shown
as box-plots for ACV-k, BV-k, EAC-S, EAC-A, CSPA, HGPA, MCLA, and QMI. The second
figure shows the results for the voting-based consensus algorithms, when an optimal number of
clusters is estimated based on computed lifetimes. Specifically, the distributions of the ARI and
ANMI for ACV versus BV are plotted, as well as pareto charts depicting the estimated k values
drawn as bars in descending order of the number of times each value is estimated in 25 runs.
The right vertical axis of a pareto chart shows the cumulative percentage of the total number of

occurrences of k. The first 95% of the cumulative distribution is displayed.

5.3.5 Results for Artificial Datasets

The results for the 2D2K dataset, where ensembles are generated with a variable number of
clusters k; € [6,20], are shown in Fig. 5.2 for a pre-determined number of clusters £ = 2 and in
Fig. 5.3 where an estimated value for k is computed.

As observed from Figs. 5.2 and 5.3, the ACV-k and ACV algorithms extract highly accurate
partitions, as indicated by the ARI values and the estimated %k values. The ARI results for
ACV-k and ACV are significantly higher than BV-k, EAC-S, HGPA, QMI, and BV, and they are
comparable with the most accurate consensus algorithms, which in this case are EAC-A, CSPA,
and MCLA. Furthermore, it is noted that estimates of k are perfect as indicated by the pareto
chart in Fig. 5.3 for ACV (k = 2 is estimated in 100% of the runs). On the other hand, k is
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Figure 5.2: Results for the 2D2K dataset with pre-determined k = 2 and k; € [6, 20]

quite poorly estimated using the BV algorithm. Notably, large values for k are estimated using
BV, indicating an inability to extract the global cluster structure inherent in the data. It is
further noted that while the ANMI results are consistent with the ARI results in Fig. 5.2, they
are inconsistent in Fig. 5.3. The high ANMI values for BV appear to be an effect of its large
estimated k values. In [25], it is observed that the NMI criterion is biased toward the average
number of clusters in ensemble partitions, and that maximizing it is effective only under the
assumption that the number of clusters in the consensus partition is known.

Comparing the ARI results of the different consensus algorithms versus the single k-means
with k& = 2 (Table 5.1), It is noted that a few consensus algorithms (BV-k, EAC-S, HGPA, and
QMI) extract a consensus partition that is significantly less accurate than that obtained using
the single k-means. In other words, combining the k-means partitions with random k; using
these algorithms doesn’t lead to discovering the global cluster structure of the data that the same

base algorithm reveals when k is set to the true number of clusters. As for the other consensus
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Figure 5.3: Results for the 2D2K dataset with k; € [6,20], where k is estimated.

algorithms (ACV-k, EAC-A, CSPA, and MCLA), they are comparable with the single k-means,
which successfully extracts the cluster structure of the 2D2K dataset.

The results for the 8D5K dataset, where ensembles are generated with k; € [10, 30], are shown
in Fig. 5.4 for a pre-determined number of clusters k = 5 and in Fig. 5.5 where an estimated
value for k is computed using each of the voting-based consensus algorithms.

For pre-determined k& = 5, all the consensus algorithms give perfect (or almost perfect) ARI
results for the 8D5K dataset. The results are more stable compared to the single k-means.

As for the results with estimated &, the BV algorithm is not stable. Estimates of k are perfect
for the ACV algorithm as indicated by the pareto chart in Fig. 5.5 (k =5 is estimated in 100%
of the runs). On the other hand, correct k = 5 is estimated in approximately 50% of the runs for
the BV algorithm, with other estimated values being generally quite large. The ANMI results

are consistent with the ARI results, except again for BV versus ACV, as noted before.
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Figure 5.4: Results for the 8D5K dataset with pre-determined k& = 5 and k; € [10, 30]

The results for the four Gauss dataset, where ensembles are generated with k; € [10,20],
are shown in Fig. 5.6 for a pre-determined number of clusters £ = 4 and in Fig. 5.7 where an
estimated value for k is computed.

The results are similar to the 8D5k dataset. All the consensus algorithms give perfect ARI
results, which are also more stable compared to the single k-means with £k = 4. However, it
noted that unlike BV-k, the ARI results for BV are not stable, and generally much less accurate.
Estimates of k using the ACV algorithm are perfect as indicated by the pareto chart in Fig. 5.7
(k = 4 is estimated in 100% of the runs), whereas correct k = 4 is estimated in approximately
40% of the runs for the BV algorithm, with remaining estimated values being relatively large.
The same observation about the ANMI results is noted, which is consistent with the previous
datasets.

The results for the easy doughnut dataset, where ensembles are generated with k; € [6,12],

are shown in Fig. 5.8 for a pre-determined number of clusters £ = 2 and in Fig. 5.9 where an
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Figure 5.5: Results for the 8D5K dataset with k; € [10,30], where k is estimated.

estimated value for k is computed.

The dataset has a spiral cluster structure that the k-means algorithm is not capable of dis-
covering. This k-means failure is reflected by the ARI values in Table 5.1.

As observed in Fig. 5.8, all consensus algorithms, except BV-k, lead to consensus partitions
with perfect accuracy as indicated by the ARI results for the easy doughnut dataset. Furthermore,
estimates of k are perfect for the ACV algorithm, where k = 2 is estimated in 96% of the runs,
as observed in Fig. 5.9. However, the true £k = 2 is never correctly estimated using the BV
algorithm, and consensus partitions with low-accuracy are obtained. Estimated values of k are
again relatively large, and the same observation about the ANMI results is noted, which is again
consistent with the previous datasets.

The results for the difficult doughnut dataset, where ensembles are generated with k; € [6,12],

are shown in Fig. 5.10 for a pre-determined number of clusters k = 2 and in Fig. 5.11 where an
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Figure 5.6: Results for the four Gauss dataset with pre-determined k = 4 and k; € [10, 20]

estimated value for k is computed.

The dataset has a spiral but more difficult cluster structure than the previous dataset due to
less separation between the clusters. The k-means algorithm fails in discovering the true partition,
as reflected by the ARI values in Table 5.1.

As observed in Fig. 5.10, all consensus algorithms, except BV-k, lead to consensus parti-
tions with very high accuracy. Furthermore, estimated partitions using the ACV algorithm are
considerably more accurate compared to the BV algorithm. Correct estimates of k for the ACV
algorithm are achieved in 48% of the runs, which is a lower percentage compared to other datasets
with easier cluster structures. One the other hand, for the BV algorithm, it is noted that in none
of the runs was the true k = 2 correctly estimated.

Figures 5.12 and 5.13 show the results for the two Gauss dataset where ensembles are generated
with a variable number of clusters k; € [8,16], when a pre-determined number of clusters k = 2

is given, and when an estimated value for k is sought, respectively.



93

0.9
0.8
0.7

ARI

0.6
0.5
0.4

ACV

# of times each k is estimated using ACV

25

20

15

10

Figure 5.7: Results for the four Gauss dataset with k; € [10,20], where k is estimated.

BV

ANMI

100%

80%

60%

40%

20%

0%

0.745

0.735

0.725

0.72

},44
k“‘

ACV BV

# of times each k is estimated using BV

25

20

100%

80%

60%

40%

20%

0%

The consensus partitions obtained using the ACV-k algorithm are significantly more accurate

compared to all other consensus algorithms. On the other hand, BV-k performs quite poorly in

this case. The true cluster structure of the two Gauss dataset is relatively difficult to extract. It

is noted that correct estimates of k for the ACV algorithm are achieved in 52% of the runs. For

the BV algorithm, estimated values of k£ are again generally large, and in none of runs was the

true k = 2 correctly estimated.

5.3.6 Results for Real Datasets

The results for the breast cancer dataset, where ensembles are generated with k; € [6,12], are

presented in Fig. 5.14 for a pre-determined number of clusters £k = 2 and in Fig. 5.15 where

an estimated value for k£ is computed. Furthermore, results for ensembles with k; = 15, Vi are

shown in Figs. 5.16 and 5.17.
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Figure 5.8: Results for the easy doughnut dataset with pre-determined k = 2 and k; € [6, 12]

As observed in Fig. 5.14, the quality of the consensus partitions obtained using ACV-k and
ACV is better than that obtained using all other consensus algorithms, where the improvement
is substantial in most cases. Furthermore, the true number of clusters is correctly estimated as
observed in Fig. 5.15. On the other hand, BV and BV-k perform quite poorly.

Moreover, as observed in Figs. 5.16 and 5.17, the consensus partitions obtained using ACV and
ACV-k are as accurate and robust as EAC-A and substantially better than all other consensus
algorithms. The estimated number of clusters are also quite accurate, whereas BV and BV-k
perform relatively poorly. Notably, the number of estimated clusters using BV is almost always
equal to k;. This result indicates that when k; is fixed, the bipartite matching scheme causes the
aggregation to be tied to this value, unlike the cumulative voting scheme, which is more effective
in enabling the global cluster structures to be discovered.

The results for the optical digits dataset, where ensembles are generated with k; € [15,30],

are presented in Fig. 5.18 for a pre-determined number of clusters k = 10 and in Fig. 5.19 where
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Figure 5.9: Results for the easy doughnut dataset with k; € [6,12], where k is estimated.

an estimated value for k£ is computed. Furthermore, results for ensembles with k; = 30, Vi are
shown in Figs. 5.20 and 5.21.

As observed in Fig. 5.18, the quality of the consensus partitions obtained using ACV-k is
comparable with the best performing consensus algorithms and is better than the single k-means
with & = 10 (Table 5.1). Furthermore, the estimated number of clusters are close to 10 using
ACV, where also relatively accurate consensus partitions are estimated as noted from the ARI
values in Fig. 5.19. On the other hand, BV and BV-k are less accurate and estimated cluster
structure is quite fragmented as noted from the large estimates for the number of clusters.

Furthermore, as observed in Figs. 5.20 and 5.21, the results are consistent with the case of
ensembles with a variable number of clusters. It is again noted that BV leads only to solutions
with estimated number of clusters equals to k; (which is 30 in this case). These results demonstrate

the limitations of the bipartite matching scheme with this type of ensemble.
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Figure 5.10: Results for the difficult doughnut dataset with pre-determined k = 2 and k; € [6, 12]

The results for the yahoo! dataset, where ensembles are generated with k; € [12,24], are
presented in Fig. 5.22 for a pre-determined number of clusters k£ = 6 and in Fig. 5.23 where
an estimated value for k£ is computed. Furthermore, results for ensembles with k; = 24, Vi are
shown in Figs. 5.24 and 5.25.

It is noted that for the yahoo! dataset, only the O(n) algorithms are applied, whereas
the O(n?) consensus algorithms are excluded as they are computationally burdensome for large
datasets. Furthermore, previous results on smaller datasets do not suggest that significant gains
in accuracy may be anticipated compared to ACV-k. It is noted that ACV-k is generally com-
petitive compared to EAC-A, which is one of the most consistently well-performing algorithms.

As observed in Fig. 5.22, the accuracy of the obtained consensus partitions using ACV-k
is substantially better than that obtained using all other consensus algorithms, as indicated by
the ARI measure. The ACV-k algorithm also achieves significant accuracy gains over the single

k-means algorithm.
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Figure 5.11: Results for the difficult doughnut dataset with k; € [6,12], where k is estimated.

As for the ACV algorithm, gains in accuracy are still achieved in the estimated consensus
partition as indicated in Fig. 5.24. However, the exact number of clusters is quite difficult to
determine for the yahoo! dataset. Estimated values using ACV reflect that the global cluster
structure is detected to some extent, whereas the results using BV appear to be poor as indicated
by observing the ARI values and the estimated number of clusters.

Furthermore, the results in Fig. 5.24 show that the performance of the ACV-k algorithm ex-
ceeds all other consensus algorithms. Estimated values using ACV show that reasonably accurate
results are achievable, whereas the BV algorithm leads to a substantially less accurate solution

with the estimated number of consensus clusters exclusively limited to k = 24 clusters.

5.4 Summary

In this section, a summary of the empirical study and the conclusions are presented.
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Figure 5.12: Results for the two Gauss dataset with pre-determined k = 2 and k; € [8, 16]

5.4.1 Results Summary

Table 5.2 summarizes the empirical results for all the experiments reported in this chapter. The
summary is based on the accuracy of the consensus partitions as measured by the ARI. The table
highlights the winners between the voting-based consensus algorithms ACV versus BV, ACV-k
versus BV-k, as well as the overall winner among all consensus algorithms for pre-determined k,
including ACV-k and BV-k. If several consensus algorithms have a comparable performance (as
indicated by their corresponding boxplots), a list of winners is given.

For all the ensembles generated in the empirical study, it is noted that each of the proposed
ACV and ACV-k algorithms wins over BV and BV-k, respectively, almost always. Furthermore,

the ACV-k is always the overall winner or one of the overall winners, as noted in Table 5.2.
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5.4.2 Conclusion

In this chapter, partition ensembles were generated using the k-means algorithm, where the
number of clusters k; per ensemble partition is larger than desired or anticipated for the consensus
partition, and also where it is randomly selected. The aggregated partition using the cumulative
voting and bipartite matching schemes is viewed as an aggregated distributional representation for
the ensemble. An efficient approximation algorithm is developed from an information-theoretic
basis to search for the most compressed summary of the aggregated distribution that preserves
the maximum amount of information and to reveal a global and cohesive consensus partition.
The information theoretic algorithm, referred to as JS-Alink, is applied in conjunction with each
of the Ada-cVote and the bVote algorithms.

Furthermore, an approach to estimating an optimal number of clusters for the data was

applied. The approach is based on the idea of a cluster lifetime as measured from a generated
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Figure 5.14: Results for the breast cancer dataset with pre-determined k = 2 and k; € [6, 12]

hierarchy of k-partitions. The application of each of the aggregation algorithms Ada-cVote and
bVote with the JS-Alink, in addition to whether the approach to estimating £ is applied or a
pre-determined k is given, lead to defining the consensus algorithms abbreviated as ACV-k, ACV,
BV-k, and BV.

An empirical study was conducted to validate the proposed algorithms. A comparative eval-
uation of the different voting schemes and several recent consensus algorithms was presented.
A number of artificial and real-world datasets with different levels and types of difficulties were
used in the study. Experimental results demonstrate that the cumulative voting scheme is sub-
stantially more suitable than the bipartite matching for the types of cluster ensembles considered
here, when used in conjunction with the JS-Alink algorithm. Furthermore, the results of the
ACV-k algorithm were either comparable to or better than other recent consensus algorithms.
In some case, substantial improvements were achieved over other consensus algorithms. On the

other hand, BV-k performed poorly, in general.
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Figure 5.15: Results for the breast cancer dataset with k; € [6,12], where k is estimated.

Moreover, it was demonstrated that accurate estimates of the true number of clusters can be
often achieved using ACV. Poor estimates of the number of clusters are consistently observed
when the bipartite matching scheme is applied. The estimated number of clusters using BV
are generally large, and the global cluster structure of the data is not revealed. In the case of
ensembles with a large but fixed k;, it is consistently noted that BV leads to solutions with the
same number of clusters k = k;. In this case, the BV algorithm does not lead to solutions beyond

that determined by the individual ensemble partitions.
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Figure 5.16:

Figure 5.17: Results for the breast cancer dataset with k; = 15, where k

Results for the breast cancer dataset with pre-determined k
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Figure 5.18: Results for the optical digits dataset with pre-determined k = 10 and k; € [15, 30]
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Figure 5.19: Results for the optical digits dataset with k; € [15,30], where k is estimated.
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Figure 5.20: Results for the optical digits dataset with pre-determined k£ = 10 and k; = 30
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Figure 5.22: Results for the Yahoo! dataset with pre-determined k = 6 and k; € [12, 24]
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Table 5.2: Summary of experimental results based on the ARI measure.

Dataset [kmin, kmax] | ACV/BV | ACV-k/BV-k | Overall
Winner Winner Winner
2D2K [6,20] ACV ACV-k CSPA, MCLA, EAC-A, ACV-k
SD5K [10, 30] ACV ACV-k, BV-k | All
Four Gauss [10, 20] ACV ACV-k, BV-k All
Easy doughnut [6,12] ACV ACV-k All except BV-k
Difficult doughnut | [6,12] ACV ACV-k All except BV-k
Two Gauss [6, 18] ACV ACV-k ACV-k
Breast cancer [6,12] ACV ACV-k ACV-k, EAC-A
Breast cancer (15, 15] ACV ACV-k ACV-k, EAC-A
Optical digits [15, 30] ACV ACV-k HGPA, EAC-A, MCLA, ACV-k, CSPA
Optical digits [30, 30] ACV ACV-k HGPA, EAC-A, CSPA, ACV-k, MCLA
Yahoo! [12, 24] ACV ACV-k ACV-k
Yahoo! [24, 24] ACV ACV-k ACV-k




Chapter 6

Conclusions

6.1 The Voting-Based Consensus Problem

The basic goal of reconciling an ensemble of partitions is to obtain a consensus partition that
optimally summarizes an ensemble. For consensus partitions to be useful, they should reveal
cluster structures for the data with improved accuracy and stability compared to the individual
ensemble partitions. As demonstrated in this dissertation, the quality of the obtained consensus
solutions highly depends on the ensemble generation mechanism and on the suitability of the
consensus method for effectively combining the generated ensemble. Hence, it is important to
examine the effectiveness of consensus methods against different partition generation techniques.

Typically, consensus methods for partitions derive an ensemble representation that is sub-
sequently used as the basis for extracting an optimal consensus partition. In most cases, the
derived representation sidesteps the relabeling problem. On the other hand, voting-based con-
sensus methods [28, 31, 33, 39, 42, 43] represent a distinct class of consensus methods, whereby
direct parallels with the aggregation of supervised learners [17,18,21] are sought. Specifically,
voting-based methods derive an ensemble representation consisting of a central aggregated par-

tition, by directly addressing the ensemble relabeling problem.
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Unlike the aggregation of supervised classifications, the voting-based aggregation of parti-
tions requires the simultaneous optimization of relabeling the ensemble partitions with respect
to the sought (aggregated) partition and of the aggregated partition with respect to the rela-
beled ensemble partitions [33]. The optimal relabeling of multiple partitions corresponds to a
multi-dimensional assignment problem (MAP), which unlike the pairwise relabeling problem, is
NP-hard [34]. Several efficient algorithms are proposed in recent work [28,31,33,39,42,43].

An important element of the voting-based aggregation problem is the pairwise relabeling of an
ensemble partition with respect to a representative partition. The pairwise relabeling is referred
to as the voting problem. The voting problem is commonly formulated as a weighted bipartite
matching problem [28,31,33,42,43], which is a combinatorial optimization problem, that is also
known as the linear sum assignment problem. Based on this formulation, one looks for an optimal
cluster label permutation for each ensemble partition such that a constrained loss with respect to
a representative partition is minimized. The general measure for the relabeling loss is the mean
squared error, which is equivalent to the probability of error in the case of hard ensembles, and to
the misclassifcation rate, in the case of a hard representative partition. The solution is obtained
using Kuhn’s Hungarian method, which is O(k%). In the case of unequal numbers of clusters,

empty clusters are added to the partition with fewer clusters.

6.2 Contributions

A summary of the contributions is presented in this section.

6.2.1 A New Formulation for the Voting Problem

A general formulation for the voting problem as a multi-response regression problem was intro-
duced and the cumulative voting scheme was proposed as a special instance that corresponds to
fitting a linear model by least squares estimation. Due to the additional constraints in the bipar-

tite matching formulation of the voting problem, the achievable loss based on bipartite matching
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is bounded from below by the achievable loss based on cumulative voting. The general formula-
tion offers more flexibility in defining voting schemes that can be applied to model substantial
variability between partitions, such as a variable number of clusters.

For the ensemble aggregation, a general iterative algorithm (Vote) was applied, with variants
corresponding to cumulative voting (cVote) and bipartite matching (bVote). The convergence
properties of the aggregated partition based on the bipartite matching scheme in conjunction
with plurality voting was formally established in [43] for a particular partition generation model.
A simulation-based analysis was presented. It demonstrated that bVote is more suitable than
cVote for this model, which corresponds to uniform partitions where each is generated as a noisy
permutation of an underlying labeling, according to a probability of error. For other types of
generation models, such as partitions with a variable number of clusters, the aggregated partition
was viewed as a distributional representation and define a criterion for extracting an optimally
compressed consensus partition based on the estimated aggregated distribution.

It is noted that the aggregated solution using the Vote algorithm depends on the initially
selected reference partition and on the order in which the ensemble partitions are aggregated.
However, because of the suitability of bVote to ensembles of uniform partitions, the aggregated
partitions are stable and they converge to the underlying labeling used to generate the ensemble.
On the other hand, the aggregated solutions using cVote are unstable, when the probability of

error increases, indicating its unsuitability for this type of ensemble.

6.2.2 A study of the Properties of Cumulative Voting
Relation to Co-Association Based Consensus

The properties of the proposed cumulative voting scheme were investigated. In particular, the re-
lationship between cumulative voting and the co-association matrix was derived. The relationship
is outlined by defining an un-normalized cumulative voting scheme. A fixed-reference aggregation

algorithm referred to as URef-cVote is developed in conjunction with the un-normalized scheme.
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In the special case where the reference partition corresponds to the partition of n singleton clusters
represented by the n identity matrix I,,, the aggregated partition computed using URef-cVote is
the co-association matrix. For the un-normalized cumulative voting scheme, the underlying loss
is a least squares objective function with a constraint on the estimated co-occurrence values of

the objects and the representative clusters to sum up to the size of the voting clusters.

Adaptive Aggregation

A notable property of the cumulative voting scheme is that when the data objects are assumed
to be sampled uniformly at random, the class distribution associated with the reference partition
are preserved in the relabeled ensemble partitions as well as the aggregated partition. Based
on this property, a criterion was defined for selecting the initial reference and the aggregation
sequence of the ensemble partition so as to minimize the loss of mutual information associated
with the estimated aggregated distribution. The Ada-cVote algorithm was developed as an
adaptive aggregation algorithm for the cumulative voting scheme. Instead of considering the
ensemble partitions in a random order as in the case of the Vote algorithm, Ada-cVote aims at
selecting the initial reference partition according to the defined criterion. An important feature
of the Ada-cVote algorithm is that the obtained aggregated partition is invariant to the order
of the ensemble partitions and the initial reference, unlike cVote. Experimental evidence was
presented, showing that the adaptivity feature is only effective with cVote, but not when applied

with bVote.
6.2.3 Compression of Aggregated Representation

Efficient Algorithm

The ensemble generation mechanisms proposed in [25,36] were applied, where for each ensemble
partition, the number of clusters k; is larger than desired or anticipated, or when it is randomly

selected. For this type of ensemble, a principled information theoretic approach was proposed
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for extracting a consensus partition that represents a global and cohesive cluster structure for
the data. The JS-Alink algorithm was developed as an efficient agglomerative algorithm that is
based on the information bottleneck formulation of Tishby et al. [8]. The algorithm minimizes
the Jensen-Shannon divergence within the merged cluster, or equivalently, it minimizes the loss
in mutual information associated the distributional representation of the data that is due to
compressing the representation. Furthermore, an approach was applied for estimating an optimal
number of clusters based on the idea of a cluster lifetime proposed in [25], which is measured

from a generated hierarchy of k-partitions.

Empirical Validation

Several artificial and real-world datasets were used. They are characterized by various challenges,
including a large text data with very high dimensionality. Consistent evidence demonstrates that
the cumulative voting scheme is substantially more suitable for this type of ensemble than the
bipartite matching scheme. Furthermore, the consensus partitions obtained using the proposed
consensus method are either comparable with or better than those obtained using several recent
consensus algorithms. Moreover, accurate estimates of the true number of clusters are often
achieved using the cumulative voting scheme, whereas consistently poor estimates are achieved
based on bipartite matching. The results provide consistent evidence on the unsuitability of the

bipartite matching scheme for this type of ensemble.

6.2.4 Computational Efficiency

Overall, the proposed voting-based consensus method, implemented by the ACV and ACV-k
algorithms, is computationally efficient. The O(n?) complexity is avoided at each stage. Further-
more, competitively accurate and stable results are consistently achieved consistently, compared
to other consensus methods, for ensembles with randomly selected number of clusters. Thus, the

proposed consensus method offers a computationally more efficient alternative for co-association
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based methods. The computational complexity is O(k?nb), where k < n. The bipartite match-
ing based consensus method is O(k®nb). Table ?? summarizes the computational complexity of
the different consensus algorithms. The HGPA is O(nkb), MCLA is O(nk?*b?), QMI is O(nkb),
co-association-based consensus functions with single and average link are O(n?b), and the graph-

based CSPA algorithm is O(n%kb) [25,38]

6.3 Future Work

This thesis opens several future research directions for voting-based consensus clustering. A few

interesting directions are highlighted in this section.

6.3.1 Multi-Response Regression Formulation

The regression formulation introduced in this thesis for the voting problem can be further devel-
oped to create and analyze new voting schemes. In the cumulative voting scheme, it is assumed
that a linear model is suitable for describing the relationship between each ensemble partition
and the reference partition. The form of the regression function that underlies the relationship

between the input and output variables can be further investigated by exploring other models.

6.3.2 Application in Bioinformatics

DNA micro-array technology provides the means for measuring the expression levels of tens of
thousands of genes, simultaneously, for a given experimental sample. It has the potential to
help further the understanding of biological processes and to introduce important applications in
pharmaceutical and clinical research [85]. Gene expression data is usually represented as a data
matrix of genes versus samples, where each entry represents the expression level of a gene for a
given sample. Data clustering of gene expression matrices aims at finding relevant groupings, such
as groups of genes with similar functionality, and at extracting gene structures and biologically

meaningful information.
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The difficulties of the data clustering task for the micro-arrays makes the application of
cluster ensemble methods particularly interesting. In fact, similarity-based consensus algorithms
as well as voting algorithms based on bipartite matching have been successfully applied in on gene
expression micro-array data [31,40]. Hence, the extension of the voting-based consensus clustering
algorithms proposed in this thesis to the cluster analysis of bioinformatics data represents an

interesting future direction.

6.3.3 Application to Model-Based Cluster Ensembles

Finite mixture models represent a principled statistical approach to cluster analysis [5]. In model-
based clustering, data are represented by a mixture model, where each component probability
distribution in the mixture corresponds to a cluster. The EM algorithm for maximum likelihood
is applied to determine a partition solution [75,76]. The proposed framework and the introduced
cumulative voting-based aggregation can be applied for estimating the cluster conditional proba-
bility distribution and a consensus partition for a model-based cluster ensemble. Such application

represents an interesting future direction.

6.3.4 Consensus Clustering Validation

The accuracy and robustness of the computed voting-based consensus partitions depend on the
input partitions and the effectiveness of the voting scheme in leading to a relevant consensus
clustering. Several design issues are at play, including the selection of the base clustering al-
gorithm and the setup of the ensemble parameters, such as the number of clusters k; of the
ensemble partitions and the ensemble size. For improper values of the ensemble parameters, the
consensus method leads to a clustering solution that is inadequate for the dataset. An in-depth
investigation of validation methods for the extracted consensus cluster structures is an important
future research direction. The validation seeks to evaluates the consensus tendency in order to

determine values of the design parameters that best fits a particular dataset.
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