
Voting-Based Consensus of Data Partitions

by

Hanan G. Ayad

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2008© Hanan G. Ayad 2008





Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including

any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Hanan G. Ayad

iii





Abstract

Over the past few years, there has been a renewed interest in the consensus problem for

ensembles of partitions. Recent work is primarily motivated by the developments in the area of

combining multiple supervised learners. Unlike the consensus of supervised classifications, the

consensus of data partitions is a challenging problem due to the lack of globally defined cluster

labels and to the inherent difficulty of data clustering as an unsupervised learning problem.

Moreover, the true number of clusters may be unknown. A fundamental goal of consensus methods

for partitions is to obtain an optimal summary of an ensemble and to discover a cluster structure

with accuracy and robustness exceeding those of the individual ensemble partitions.

The quality of the consensus partitions highly depends on the ensemble generation mechanism

and on the suitability of the consensus method for combining the generated ensemble. Typically,

consensus methods derive an ensemble representation that is used as the basis for extracting the

consensus partition. Most ensemble representations circumvent the labeling problem. On the

other hand, voting-based methods establish direct parallels with consensus methods for super-

vised classifications, by seeking an optimal relabeling of the ensemble partitions and deriving an

ensemble representation consisting of a central aggregated partition. An important element of the

voting-based aggregation problem is the pairwise relabeling of an ensemble partition with respect

to a representative partition of the ensemble, which is refered to here as the voting problem. The

voting problem is commonly formulated as a weighted bipartite matching problem.

In this dissertation, a general theoretical framework for the voting problem as a multi-response

regression problem is proposed. The problem is formulated as seeking to estimate the uncertain-

ties associated with the assignments of the objects to the representative clusters, given their

assignments to the clusters of an ensemble partition. A new voting scheme, referred to as cumu-

lative voting, is derived as a special instance of the proposed regression formulation corresponding

to fitting a linear model by least squares estimation. The proposed formulation reveals the close

relationships between the underlying loss functions of the cumulative voting and bipartite match-

v



ing schemes. A useful feature of the proposed framework is that it can be applied to model

substantial variability between partitions, such as a variable number of clusters.

A general aggregation algorithm with variants corresponding to cumulative voting and bipar-

tite matching is applied and a simulation-based analysis is presented to compare the suitability of

each scheme to different ensemble generation mechanisms. The bipartite matching is found to be

more suitable than cumulative voting for a particular generation model, whereby each ensemble

partition is generated as a noisy permutation of an underlying labeling, according to a probability

of error. For ensembles with a variable number of clusters, it is proposed that the aggregated

partition be viewed as an estimated distributional representation of the ensemble, on the basis of

which, a criterion may be defined to seek an optimally compressed consensus partition.

The properties and features of the proposed cumulative voting scheme are studied. In par-

ticular, the relationship between cumulative voting and the well-known co-association matrix is

highlighted. Furthermore, an adaptive aggregation algorithm that is suited for the cumulative

voting scheme is proposed. The algorithm aims at selecting the initial reference partition and the

aggregation sequence of the ensemble partitions the loss of mutual information associated with

the aggregated partition is minimized. In order to subsequently extract the final consensus par-

tition, an efficient agglomerative algorithm is developed. The algorithm merges the aggregated

clusters such that the maximum amount of information is preserved. Furthermore, it allows the

optimal number of consensus clusters to be estimated.

An empirical study using several artificial and real-world datasets demonstrates that the

proposed cumulative voting scheme leads to discovering substantially more accurate consensus

partitions compared to bipartite matching, in the case of ensembles with a relatively large or a

variable number of clusters. Compared to other recent consensus methods, the proposed method

is found to be comparable with or better than the best performing methods. Moreover, accurate

estimates of the true number of clusters are often achieved using cumulative voting, whereas

consistently poor estimates are achieved based on bipartite matching. The empirical evidence

demonstrates that the bipartite matching scheme is not suitable for these types of ensembles.

vi



Acknowledgments

I wish to start by expressing my deep gratitude to God for the wonder that can endlessly

inspire interest and a quest for knowledge.

My aspiration to pursue this research could not have become a reality without the valuable

contributions of a number of supportive people, for whom I will always be grateful.

I am grateful to my supervisor, Prof. Mohamed Kamel, for introducing me to an interest-

ing research area that crosses the boundaries of several disciplines and for patiently fostering my

development as a researcher. I sincerely thank him for his committment to giving me advice, sup-

port, and encouragement; for his valuable insights and feedback; and for his constant dedication

to discussing this research.

I am grateful to Prof. Hugh Chipman for his insightful teaching of Statistical Learning, and

for kindly accepting to serve on my committee, despite the difficult logistics due his move to

Acadia University, early on in my program. I wish to thank him for the time he took to meet

with me during his visits to Waterloo, for the numerous comments and suggestions he gave me,

and for a useful discussion on the multi-response regression formulation proposed in this thesis.

I am grateful to the ECE members of my committee: Prof. Otman Basir and Prof. William

Bishop, and to my external examiner Prof. Ludmila Kuncheva for their insightful feedback and

suggestions on the thesis. I also wish to sincerely thank Prof. Bishop for offering many useful

comments on the writing of the thesis.

I am thankful for the financial support of the Natural Sciences and Engineering Research

Council (NSERC) of Canada, the Ontario Graduate Scholarship (OGS) program, the Faculty of

Engineering and the Graduate Studies Office at the University of Waterloo, and the Learning

Objects Repository Network (LORNET).

I am grateful to my husband Ossama El Badawy, an alumni of the Pattern Analysis and

Machine Intelligence research group, for the numerous discussions I had with him and the technical

help he gave me, and for his amazing support and encouragment of my research work.

vii



I am grateful to Douglas Harder for the knowledge and skills I gained by working with him as

a teaching assistant during several semesters of my Ph.D. program. His knowledge and tireless

dedication will always be very inspiring.

I am also grateful to Prof. Paul Fieguth for his insightful teaching of Pattern Recognition.

I wish to thank the member and alumni of the PAMI group. I am especially thankful for

the useful discussions and memorable interactions during my PhD years with Moataz El Ayadi,

Masoud Makrehchi, Khaled Hammouda, Shady Shehata, Abbas Ahmadi, Yanmin Sun, Rozita

Dara, Kong Wai-Kin Adams, Yu Sun, Ali Ahmed, and Ibrahim El-Rube.

I am thankful to the administrative staff for their great help during my program. In particular,

I wish to thank Wendy Boles, Lisa Hendel, Heidi Campbell, Sue Havitz, and Karen Critchley.

I wish to thank my father-in-law for his support and his motivating interest in science.

I am grateful to my mother and father; their great support and their pride and joy in my

humble accomplishments is very generous.

I am indebted to my daughter Sarah for enduring my long working days and nights.

viii



Dedication

To Ossama and Sarah.

ix





Contents

List of Tables xv

List of Figures xviii

1 Introduction 1

1.1 Data Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Consensus of Partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Review of Related Work 11

2.1 Early Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Classical Approaches to Reconciling Partitions . . . . . . . . . . . . . . . . 13

2.2 Review of Recent Consensus Methods . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Consensus Methods: A Taxonomy . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Similarity-Based Consensus Methods . . . . . . . . . . . . . . . . . . . . . . 18

2.2.3 Consensus Based On A Categorical Feature-Space . . . . . . . . . . . . . . 22

2.2.4 Consensus Via Voting-Based Aggregation . . . . . . . . . . . . . . . . . . . 24

xi



2.3 Ensemble Generation Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Analysis of Consensus Partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Voting-Based Partition Aggregation 33

3.1 A New Framework for the Voting Problem . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 General Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.2 Cumulative Voting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.3 Bipartite Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.4 Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Voting-Based Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Simulation-Based Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.1 Partition Generation Models . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 On The Cumulative Voting Scheme 57

4.1 Properties of Cumulative Voting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.1 Unanimity Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.2 Relation to Co-Association Matrix . . . . . . . . . . . . . . . . . . . . . . . 58

4.1.3 Preserving Class Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Maximizing Information Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.1 Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.2 Adaptive Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

xii



5 Compression of Aggregated Representation 73

5.1 Theoretical Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.1.1 The Information-Bottleneck Method . . . . . . . . . . . . . . . . . . . . . . 74

5.1.2 Mutual Information and Jensen-Shannon Divergence . . . . . . . . . . . . . 75

5.2 Efficient Agglomerative Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.2 Optimal Partition Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3 Empirical Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3.1 Consensus Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3.2 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3.3 Ensemble Generation Technique . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3.5 Results for Artificial Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3.6 Results for Real Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4.1 Results Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6 Conclusions 108

6.1 The Voting-Based Consensus Problem . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2.1 A New Formulation for the Voting Problem . . . . . . . . . . . . . . . . . . 109

6.2.2 A study of the Properties of Cumulative Voting . . . . . . . . . . . . . . . . 110

6.2.3 Compression of Aggregated Representation . . . . . . . . . . . . . . . . . . 111

6.2.4 Computational Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.3.1 Multi-Response Regression Formulation . . . . . . . . . . . . . . . . . . . . 113

xiii



6.3.2 Application in Bioinformatics . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.3.3 Application to Model-Based Cluster Ensembles . . . . . . . . . . . . . . . . 114

6.3.4 Consensus Clustering Validation . . . . . . . . . . . . . . . . . . . . . . . . 114

Bibliography 115

xiv



List of Tables

5.1 Characteristics of the datasets and ARI values for the k-means (mean ± std). . . . 83

5.2 Summary of experimental results based on the ARI measure. . . . . . . . . . . . . 107

xv





List of Figures

2.1 A taxonomy of consensus clustering methods based on the aggregate representation

of the ensemble partitions. Several recent consensus algorithms are identified. . . . 16

3.1 Voting loss using MSEi and Erri for uniform partitions with ki = 2 and ki = 25. . 49

3.2 Voting loss using MSEi and Erri for non-uniform partitions. . . . . . . . . . . . . . 50

3.3 MSE versus pi
e for uniform ensembles with ki = 2 and ki = 15. . . . . . . . . . . . 51

3.4 Err∗ versus pα
e for uniform ensembles with ki = 2, for different values for pi

e. . . . . 52

3.5 Err∗ versus pα
e for uniform ensembles with ki = 15 for different values for pi

e. . . . . 53

3.6 MSE and Err∗ for ensembles with a random number of clusters. . . . . . . . . . . . 54

3.7 MSE and Err∗ for ensembles with a random cluster label distribution. . . . . . . . 55

4.1 I(C;X) and MSE for cVote and Ada-cVote. . . . . . . . . . . . . . . . . . . . . . 69

4.2 Err∗ for ensembles with ki = 15, where pi
e, p

α
e ∈ [0, 0.5] . . . . . . . . . . . . . . . . 70

4.3 I(C;X) and MSE for bVote and Ada-bVote. . . . . . . . . . . . . . . . . . . . . . 71

5.1 Artificial datasets. Each cluster indicated by a distinct symbol. . . . . . . . . . . . 82

5.2 Results for the 2D2K dataset with pre-determined k = 2 and ki ∈ [6, 20] . . . . . . 88

5.3 Results for the 2D2K dataset with ki ∈ [6, 20], where k is estimated. . . . . . . . . 89

5.4 Results for the 8D5K dataset with pre-determined k = 5 and ki ∈ [10, 30] . . . . . 90

5.5 Results for the 8D5K dataset with ki ∈ [10, 30], where k is estimated. . . . . . . . . 91

xvii



5.6 Results for the four Gauss dataset with pre-determined k = 4 and ki ∈ [10, 20] . . . 92

5.7 Results for the four Gauss dataset with ki ∈ [10, 20], where k is estimated. . . . . . 93

5.8 Results for the easy doughnut dataset with pre-determined k = 2 and ki ∈ [6, 12] . 94

5.9 Results for the easy doughnut dataset with ki ∈ [6, 12], where k is estimated. . . . 95

5.10 Results for the difficult doughnut dataset with pre-determined k = 2 and ki ∈ [6, 12] 96

5.11 Results for the difficult doughnut dataset with ki ∈ [6, 12], where k is estimated. . 97

5.12 Results for the two Gauss dataset with pre-determined k = 2 and ki ∈ [8, 16] . . . 98

5.13 Results for the two Gauss dataset with ki ∈ [6, 18], where k is estimated. . . . . . . 99

5.14 Results for the breast cancer dataset with pre-determined k = 2 and ki ∈ [6, 12] . . 100

5.15 Results for the breast cancer dataset with ki ∈ [6, 12], where k is estimated. . . . . 101

5.16 Results for the breast cancer dataset with pre-determined k = 2 and ki = 15 . . . . 102

5.17 Results for the breast cancer dataset with ki = 15, where k is estimated. . . . . . . 102

5.18 Results for the optical digits dataset with pre-determined k = 10 and ki ∈ [15, 30] . 103

5.19 Results for the optical digits dataset with ki ∈ [15, 30], where k is estimated. . . . . 103

5.20 Results for the optical digits dataset with pre-determined k = 10 and ki = 30 . . . 104

5.21 Results for the optical digits dataset with ki = 30, where k is estimated. . . . . . . 104

5.22 Results for the Yahoo! dataset with pre-determined k = 6 and ki ∈ [12, 24] . . . . . 105

5.23 Results for the Yahoo! dataset with ki ∈ [12, 24], where k is estimated. . . . . . . . 105

5.24 Results for the Yahoo! dataset with pre-determined k = 6 and ki = 24, ∀i . . . . . 106

5.25 Results for the Yahoo! dataset with ki = 24, ∀i, where k is estimated. . . . . . . . 106

xviii



Chapter 1

Introduction

This introductory chapter begins with an overview of the data clustering problem, in Sec. 1.1,

where the issues leading to the idea of seeking a consensus clustering are highlighted. In Sec.

1.2, the problem of reconciling an ensemble of partitions is introduced, and a distinct class of

consensus methods referred to as voting-based methods is emphasized. In Sec. 1.4, some general

notations are presented. The contributions of the thesis are outlined in Sec. 1.3, and in Sec. 1.5,

the thesis organization is summarized.

1.1 Data Clustering

The goal of data clustering is the discovery of a meaningful and consistent cluster structure for

a given collection of data objects, where the objects are typically described by a number of input

descriptor variables. The data objects are also known as data samples or observations, and the

set of input variables is also known as the feature space. Data clustering addresses a fundamental

problem in exploratory data analysis, where the basic idea is to identify natural groups in a

dataset by assigning the objects that are inherently similar to the same cluster and those that

are inherently dissimilar to different clusters. The problem has a been extensively studied for

1



2

several decades in the areas of pattern recognition, machine learning, applied statistics, as well

as in communications and information theory [1–9]. The problem arises in numerous fields of

applications including data mining, document clustering, bio-informatics, image analysis and

segmentation, data compression, and data classification.

Data clustering is also known as unsupervised learning. The term “unsupervised” is given

in contrast with the related supervised learning problem, whereby a training (learning) dataset,

which includes a target output variable for the objects, is available and used to train/learn a

predictive model. The predictive model can then be used to predict the value of the output

variable for new samples with unknown or missing values of the output variable. Essentially,

supervised learning seeks to specify a mathematical model that best represents the relationship

between the input (descriptor) variables and an output response variable, possibly based on

a presumed functional form such as linear, quadratic, specific probability functions, or other

non-parametric models. It is important to note that supervised learning is a general term that

encompasses not only the problem of learning a categorical (class) variable, but also the problem

of learning a numerical output variable or multiple output variables. In particular, learning

a numerical output variable corresponds to the classical regression problem [10]. Learning a

categorical variable is known as data classification.

In a data clustering problem, all the available data objects are unlabeled, and one is seeking

the extraction of an output categorical variable whose values depend on the input variables.

Finding the model that best fits the data can shed light on the natural relationships between the

objects and on the underlying population model. A clustering solution for a set of n data objects

corresponds to a partition of the n objects into k clusters, such that each object is assigned a

symbolic cluster label, where usually k ≪ n. A clustering may also correspond to a hierarchical

sequence of partitions, referred to as a dendrogram, where k takes sequential values in {n, . . . , 1},

corresponding to each level of the hierarchy. The true or meaningful number of clusters in the

data may be unknown, in which case, the problem of determining an optimal number of clusters

for the data needs to be addressed.



3

Generally, data clustering represents a challenging combinatorial optimization problem. The

number of ways of partitioning a set of n objects into k non-empty clusters is a Stirling set number

of the second kind, which is of the order kn/k! [9]. Thus, it is computationally intractable for large

problem sizes to exhaustively examine all possible clustering solutions. For solving a clustering

problem, a criterion is defined, and approximation or local search algorithms are devised to find

a clustering solution that best fits the data, based on the presumed clustering model. Multiple

different solutions are possible. Moreover, the inherent difficulty of the clustering problem is not

only due to the computational aspects and to the fact that different local optima are possible.

It is also the unsupervised nature of data clustering and the possible lack of knowledge of the

true number of clusters, that makes it particularly difficult. Clustering algorithms often lead to

a successful discovery of optimal cluster structures, if the data fit well to the presumed model.

However, if the data is not correctly modeled by the specified criterion, the discovered cluster

structures are generally inadequate.

As increasingly complex and large data are common in current applications, it is more prob-

lematic to select a clustering criterion that leads to extracting meaningful cluster structures.

Clusters may have complex shapes, highly unbalanced sizes, different densities, and possible over-

laps. Furthermore, most current data collections have high dimensional feature spaces, where in

some cases, the number of features can be thousands or tens of thousands, as in the case text

and micro-array data. Such very high dimensionality leads to the problem known as the curse of

dimensionality, where cluster structures are hidden in the huge feature space.

To overcome the inherent difficulties of data clustering and deal with a variety of challenging

data, complex clustering criteria in conjunction with computationally fast algorithms are required.

In particular, the design of consensus methods that produce a consensus clustering for a generated

ensemble of partitions represents a promising direction. It provides an advanced step for the

underlying learning task where an ensemble instead of an individual learner is employed in search

for a consistent cluster structure reflected by a consensus partition. Furthermore, complex cluster

structures may be viewed as being composed of combinations of simpler or partial structures.



4

1.2 Consensus of Partitions

The multiplicity of clustering solutions for a given dataset is an issue that has long been known in

the data clustering literature. The consensus of multiple data partitions was investigated within a

body of research that addressed the problem of comparison and consensus of data classifications

[11–15]. An overview of related work in this early literature is presented in Ch. 2. In this work,

the term “classifications” refers to a wide variety of categorization structures including partitions,

dendrograms, n-trees, ordered trees, phylogenetic trees, unrooted trees, and graphs, and the

consensus problem was addressed for various types of structures. Applications included taxonomic

and systematic research, bio-mathematics, and quantitative social sciences [16]. Traditionally,

the consensus problem for partitions has been studied in the fields of discrete mathematics and

theoretical computer science, classification and numerical taxonomy, and applied mathematics

in humanities and quantitative sociology. Classical approaches to the consensus problem for

partitions are categorized as axiomatic, constructive, and combinatorial optimization methods

[15].

During the past few years, there has been a renewed interest in the problem of combining an

ensemble of partitions, also known as a cluster ensemble. Emerging interest in the problem of

generating and combining cluster ensembles is primarily motivated by the advances in the related

area of combining multiple supervised classifications. This area has been mainly developed in

the fields of machine learning, applied statistics, and pattern recognition. An array of classi-

fier ensemble methods was developed including bagging [17], boosting [18], randomized decision

forests [19,20], additive logistic regression [21], and the random subspace method [20].

Cluster ensembles have been investigated for achieving various objectives such as improving

clustering accuracy over a single data clustering, allowing the discovery of arbitrarily-shaped clus-

ter structures [22–27], reducing the instability of a clustering algorithm due to noise, outliers [28],

or to randomized algorithms [22], reusing pre-existing clusterings (knowledge reuse) [29], ex-

ploring random feature subspaces [29, 30] or random projections [30] for high dimensional data,



5

exploiting weak clusterings such as splitting the data with random hyperplanes [30], estimation

of confidence in cluster assignments for individual observations [31], and clustering in distributed

environments including feature or object distributed clustering [29]. Combination of cluster en-

sembles have been investigated for several application domains such as cluster analysis for gene

expression data [31], distributed data mining [29,32], and image segmentation [28].

A fundamental goal of consensus methods for cluster ensembles is to find a consensus parti-

tion that optimally summarizes an ensemble and reveals a cluster structure with accuracy and

robustness exceeding the individual ensemble partitions. In the case of supervised learning, the

design of combination rules is relatively simple. For instance, aggregation can be directly ap-

plied [17]. In regression, the aggregation can be obtained by simple averaging of the individual

learners. For classifiers, the aggregation may be obtained via plurality voting; the assignments of

the data objects to classes by individual classifiers are viewed as votes, and aggregated vote ratios

may be used to assign objects to their highest voted class. However, the aggregation of multiple

partitions is a challenging problem [33,34]. Unlike classifiers, different clusters are distinguished

by arbitrary symbols rather than globally defined class labels, usually numbered as {1, . . . , k}.

That is, all k! permutations of the cluster labels for a given partition represent the same parti-

tion. Furthermore, the ensemble partitions can have a variable number of clusters. This lack of

pre-defined classes in the data, or the number thereof, causes a relabeling problem, in addition

to the problem of finding an optimal number of clusters.

It is noted that a consensus method typically derives an internal data representation from the

ensemble of partitions, which is referred to here as an ensemble representation. It is on the basis

of the ensemble representation that the optimal consensus partition is determined. The following

ensemble representations appear in recent work. Proximity-based representations were consid-

ered including the co-association matrix [25, 29, 31, 35–37] and the graph-based representations

proposed in [29]. A categorical feature-space representation, where each variable corresponds to

an ensemble partition was considered in [38]. In [39], we considered a distributional data repre-

sentation, reflecting the uncertainties associated with the assignment of the data objects to a set



6

of reference clusters, as input to a subsequent information-theoretic clustering algorithm.

In fact, the consensus problem can itself be viewed as a clustering problem, whereby the data

partitioning is based on the representation derived from the ensemble. Recent consensus methods

may be roughly classified into proximity-based methods such as [25,29,31,40], methods based on

a (categorical) feature-space representation of the objects [38,41], and methods based on voting

(ensemble relabeling) as in [28,31,33,39,42,43]. This categorization is elaborated on in Ch. 2.

The first two types of consensus methods derive an ensemble representation that side-steps

the relabeling problem. On the other hand, voting-based consensus methods, seek to establish

a parallel approach to the aggregation of supervised learners [17, 18, 21], by searching for an

optimal relabeling of the ensemble partitions. The ensemble relabeling enables the computation

of an aggregated partition. That is, unlike other consensus methods, voting-based methods derive

an ensemble representation consisting of a central aggregated partition.

As pointed out in [33,34], the problem of relabeling and aggregating an ensemble of partitions

is computationally challenging as it requires the simultaneous optimization of relabeling the

ensemble partitions with respect to the representative (aggregated) partition of the ensemble and

of the aggregated partition with respect to the ensemble partitions. Several efficient algorithms

are proposed in recent literature [28,31,33,39,42,43], as detailed in Ch. 3. An important element

of the ensemble relabeling problem is the pairwise (partial) relabeling of the ensemble partitions,

referred to here as the voting problem. The problem addresses the optimal relabeling of each

ensemble partition with respect to a representative partition of the ensemble. It is commonly

formulated as a weighted bipartite matching problem [28,31,33,42,43].

Note that the term “voting” essentially refers to the assignment of representative cluster labels

to the data objects, as derived from an ensemble partition. The common bipartite matching

scheme corresponds to permuting the cluster labels of an ensemble partition to optimally match

the labels of the representative partition. That is, it corresponds to a binary one-to-one relabeling

and hence it is also referred to here as a binary voting.



7

1.3 Contributions

In what follows is an overview of the contributions of this dissertation.

1. A general theoretical framework for the voting problem as a multi-response regression prob-

lem is proposed, whereby the relabeling of an ensemble partition is formulated as the prob-

lem of estimating the uncertainties associated with the assignments of the object to repre-

sentative clusters, given their assignments to the clusters of an ensemble partition.� A new voting scheme, referred to as cumulative voting, is derived as a special instance

of the proposed regression formulation, which corresponds to fitting a linear model by

least squares estimation.� An iterative aggregation algorithm referred to as Vote is applied as a general algorithm,

with variants referred to as cVote and bVote, corresponding to cumulative voting

and bipartite matching, respectively. A simulation-based analysis is conducted to

compare cVote and bVote, demonstrating that bVote is more suitable than cVote

for a particular partition generation model considered in [43], whereby the ensemble

partitions are generally uniform, with equal number of clusters, and are generated as

noisy permutations of an underlying labeling, according to a probability of error.� For other types of ensembles, such as ensembles with a variable number of clusters, it

is proposed that the consensus partition be considered at multiple granularities (i.e.,

number of clusters) and a principled information-theoretic approach be applied for

extracting an optimally summarized consensus partition.

2. A study of the properties of the proposed cumulative voting scheme is presented.� A relationship is derived between cumulative voting and the co-association matrix,

which is a fundamental aggregated representation for partition ensembles. To describe

this relation, an un-normalized variant of the cumulative voting scheme is defined.



8 � An entropy preserving property for the cumulative voting scheme is noted. This

property is utilized to introduce an adaptive aggregation algorithm referred to as

Ada-cVote. Unlike the Vote algorithm, which randomly selects the initial reference

partition and considers the ensemble partitions in a random order, Ada-cVote selects

the initial reference partition and the aggregation sequence of the ensemble partitions

such that the loss in the mutual information associated with the estimated aggregated

distribution is minimized. This leads to a more “informative” aggregated partition.

3. For ensembles with a relatively large and variable number of clusters, an interpretation of

the aggregated partition as a distributional representation of the ensemble is proposed. The

aggregated partition is considered the most granular consensus partition available (consist-

ing of k̄ clusters), and consensus partitions at coarser levels are sought.� An efficient agglomerative algorithm is proposed for extracting a hierarchy of consensus

partitions, each representing an optimally compressed k-cluster summary of the ag-

gregated representation that preserves the maximum amount of relevant information,

where k ∈ {k̄, . . . , 1}. Furthermore, an approach to estimating an optimal number of

consensus clusters is applied.� The proposed algorithm, which applies the Jensen-Shannon divergence and the average

link hierarchical clustering (referred to as JS-Alink), is applied in conjunction with

Ada-cVote to give an overall two-stage consensus algorithm referred to as ACV. When

ACV is used with a pre-determined number of consensus clusters k, it is referred to

as ACV-k. To compare the cumulative voting scheme with bipartite matching, the

JS-ALink algorithm is also applied in conjunction with bVote to give another variant

of a two-stage consensus algorithm referred to as BV. Also, when BV is given a desired

number of consensus clusters, it is referred to as BV-k.� An important advantage of the proposed voting-based consensus method is that it is



9

computationally more efficiency than co-association based methods. It is characterized

by a linear complexity in the number of data objects O(n), whereas co-association

based methods are O(n2).

4. An empirical study is conducted using several artificial and real-world datasets with various

characteristics and difficulties, including a text data characterized by a very high dimen-

sional feature space. Furthermore, several recent consensus algorithms are applied for a

comparative evaluation. An ensemble generation technique that produces partitions with a

variable and relatively large number of clusters is adopted. Empirical evidence is presented

demonstrating that the ACV-k algorithm can find substantially more accurate consensus

partitions compared to BV-k, and is either comparable or better than the winner(s) among

all other consensus algorithms. Furthermore, accurate estimates of the optimal number of

clusters are often achieved using ACV, whereas consistently poor estimates are achieved

using BV. The empirical results demonstrates that the bipartite matching is not suitable

for this type of ensemble, whereas cumulative voting can be successful.

1.4 Notations

The following general convention is used. Scalars are written in lowercase letters. Vectors are

denoted by boldface lowercase letters, and matrices are denoted by boldface uppercase case letters.

The transpose of a matrix U is denoted by UT . Random variables are denoted by uppercase

letters. Sets are denoted by capital calligraphic letters, whereas members of a set are denoted

by lowercase letters. A set of data objects is written as X = {x1, . . . , xn}, where xj denotes the

label of a member of X . It is noted that, at the ensemble generation phase, each data object is

a point in ℜp represented by the vector xj . However, in the consensus phase, the objects are not

dealt with in their feature space representation. Instead, they are viewed as members of the set

X . The set of cluster labels is denoted as C = {c1, . . . , ck}. The discrete random variables taking



10

values in X and C are denoted by X and C. The conditional distribution p(c|x) is defined for the

discrete variables C and X and is estimated through the aggregation of the ensemble.

1.5 Thesis Organization

The thesis is organized as follows. In Ch. 2, a review of related work on consensus methods for

partitions is presented. In Ch. 3, the proposed framework and the cumulative voting scheme are

described, the voting-based aggregation problem for partitions is addressed, and a preliminary

simulation-based analysis is presented to compare the aggregation based cumulative voting versus

bipartite matching. In Ch. 4, the properties and features of the proposed cumulative voting

scheme are studied, and an adaptive aggregation algorithm is introduced. In Ch. 5, the problem

of extracting an optimally compressed summary of the aggregated representation of the ensemble

is addressed and an empirical study is presented to validate the proposed consensus algorithms

based on cumulative voting. Finally, the conclusions and future directions are outlined in Ch. 6.



Chapter 2

Review of Related Work

In this chapter, a review of related work on consensus methods for partitions is presented. The

idea of consensus is a general multi-disciplinary topic that been extended to the area of reconciling

partitions early on. A brief overview of early literature is outlined in Sec. 2.1. However, an in-

depth review of the multi-disciplinary work on consensus theory is outside the scope this thesis.

The interested reader is referred to a recent book on the theory of consensus in group choice and

bio-mathematics by Day and McMorris [16].

During the past few years, interest re-emerged in the consensus clustering problem for a

partition ensemble. Recent work has been primarily motivated by the preceding advances in the

area of combining multiple supervised classifications. A detailed review of the relatively mature

area of combining multiple classifiers is beyond the scope of this thesis. The interested reader is

referred to a recent book by Kuncheva [44]. In Sec. 2.2, a taxonomy and a survey of recently

developed consensus methods for partitions is presented. Furthermore, the different ensemble

generation mechanisms that have been developed in recent work are discussed in Sec. 2.3, and

an overview of some analytical studies for cluster ensembles is presented in Sec. 2.4.

11



12

2.1 Early Literature

This section presents a brief chronology of the consensus problem and an outline of early work

on consensus of partitions.

2.1.1 Introduction

Originally, the consensus problem arose in the social sciences where it addresses the aggregation of

a set of individual preferences into a single social preference. In this context, consensus methods

can be traced back to the late eighteenth century to the works of Borda and Condorcet who

formulated voting methods and developed voting systems known as the Borda count method, in

1770, and the Condorcet method, in 1785, respectively.

In the second half of the twentieth century, the advances in what is referred to as the theory

of consensus, and its extension to other scientific disciplines, were motivated by Arrow’s theorem

introduced in his 1951 Ph.D. thesis (which later contributed to his 1972 Nobel Prize in Economics)

[16]. Arrow introduced an axiomatic paradigm in group choice, where the goal is to aggregate a

set of individual rankings into a single group ranking. He established the impossibility of existence

of a consensus rule that satisfies a set of reasonable fairness axioms. This contradictory result was

used to achieve the plurality rule and other non-dictatorial rules through appropriate weakening

of the axioms [16].

While Arrow’s work was in the area of social choice theory, dealing with the aggregation of

models of preferences, the aggregation of other models, including classification models such as

partitions, phylogenetic trees, and different tree and graph structures, was a general problem

arising in other areas of science and technology, such as taxonomic and systematic research and

bio-mathematics [16]. Hence, Arrow’s results were extended to the aggregation of classification

models. In 1975, Mirkin [11] introduced an impossibility theorem for reconciling partitions of a

set. Interest in the problem of consensus classifications grew steadily. In 1986, a special issue

of the journal of classification investigated methodologies for the comparison and consensus of



13

classifications [14].

The problem of reconciling partitions was defined as the problem of finding a consensus

partition that summarizes a profile or a family of partitions in some meaningful sense [15]. Let

X = {x1, . . . , xn} denotes a set of data objects and let a profile of partitions be denoted as

P = {π1, . . . , πb}, where πi is a member of P, and b is the cardinality of the P, b = |P|. Barthélemy

and Leclerc [15] point out that a consensus problem arises when we have one of the following

cases. (1) There are b partitioning methods providing approximations of the desired classification,

(2) a profile consists of b categorical variables C1, . . . , Cb describing the set of data objects and

leading to a search for a partition that is closest to the profile, in the sense of the statistical idea

of a central value, or (3) there is a profile representing partitions from measurements at times

t, t + 1, . . . , t + b − 1, where in such a case, the notion of a moving consensus corresponds to a

smoothing of the series of partitions (or categorical variables).

2.1.2 Classical Approaches to Reconciling Partitions

In addressing the problem of reconciling partitions, three overlapping approaches were developed

early on [15], as described below. The third approach, being the most related to current research

on cluster ensembles, is elaborated upon.

1. The first, designated as axiomatic [11, 45–47], is related to Arrow’s approach and is con-

cerned with deriving possibility/impossibility theorems on the existence and uniqueness of

consensus partitions satisfying specific conditions.

2. The second, designated as constructive, specifies rules for constructing a consensus, such as

the Pareto rule, also known as the strict consensus rule, whereby two objects occur together

in a consensus if and only if they occur together in all the individual partitions.

3. The third approach, designated as combinatorial optimization, considers a criterion mea-

suring the remoteness R(π,P) of any partition π of X to the given profile P, and defines



14

the optimal consensus partition as the partition solution of the problem in Eq. 2.1, where

Π represents the set of all possible partitions of X .

min
π∈Π

R(π,P) (2.1)

The approach is related to the notion of a central value in statistics, and goes back to

Régnier [48], who used the term partitions centrales and considered the sum of the squared

distances, as an optimization criterion. Régnier formulates the problem of finding a central

partition [48], defined as a partition with maximum similarity to the input partitions. For

each partition πi of the objects, an n × n boolean matrix Mi = [mi
jg] is defined, where

mi
jg = 1 if objects j and g belong to the same cluster of partition πi. The distance between

two partitions πi and πr is defined as d(Mi,Mr) =
∑n

j=1

∑n
g=1(m

i
jg − mr

jg)
2. For a profile

of b partitions, an aggregate matrix is defined as M =
∑b

i=1 Mi. The central partition

is defined as the partition π∗ with corresponding boolean matrix M∗ that minimizes the

criterion
∑b

i=1 d(M∗,Mi). Régnier [48] also presented a theoretical study of the convergence

of central partitions based on a metric and a probability measure on the space of partitions.

Barthelemy and Leclerc [15] note that, in general, any distance function d on Π may be

considered, where the remoteness of π to P, as given in Eq. 2.2, is defined as the sum of

the distances in the median case, or the sum of the squares of the distances, in the center

case as in [48]. Various metrics on partitions were studied in [49,50].

min
π∈Π

b∑

i=1

d(π, πi) (2.2)

The method is referred to as the median procedure for partitions [15,51]. For a given distance

function d, the procedure is referred to as the d-median procedure, and the solution of the

problem in Eq. 2.2 is referred to as the d-median partition. The problem is viewed as a clique

partitioning problem and the algorithmic approaches are classified into four classes: exact



15

methods (such as branch and bound, which is suitable for only very small n), relaxation

methods, hill climbing heuristics, and meta-heuristics [15].

2.2 Review of Recent Consensus Methods

In this section, recent consensus clustering methods are organized into distinct classes, and a

survey is presented. It is noted that a primary design element of a consensus clustering algorithm

is the aggregate representation that is constructed for the ensemble of partitions. In other words, a

consensus method generally derives an aggregate representation of the ensemble, which is used as

the basis for extracting a consensus clustering. Hence, a general taxonomy of consensus methods

can be developed according to the different types of their aggregate ensemble representations.

An overview and a schematic diagram of the proposed taxonomy is presented in Sec. 2.2.1, and

detailed descriptions are given in Secs. 2.2.2, 2.2.3, and 2.2.4.

2.2.1 Consensus Methods: A Taxonomy

Three main types of aggregated representations can be identified in recent consensus methods,

where in turn, each representation can be further sub-divided into other subtypes or according

to the specific ways in which it is used to extract a consensus clustering. Figure. 2.1 depicts

the proposed taxonomy, with many recent consensus algorithms being identified, including the

algorithms proposed in this thesis. As shown in Fig. 2.1, one major class consists of consensus

methods that induce a similarity-based structure from a given ensemble. A second class include

methods that view the ensemble partitions in a categorical feature-space representation. Finally,

a third class consists of methods that derive a voting-based aggregated partition, which is a soft

partition, to represent a given ensemble.

A similarity-based structure can be subdivided into different subtypes, as follows. One basic

structure represents pairwise similarities between each pair of data objects. This structure corre-

sponds to an undirected graph where nodes represent objects and edges are weighted according to



16

Consensus Clustering

Methods Based on 
Similarity Structures

Methods Based on a 
Categorical Feature- Space

Voting-Based
Methods 

Graph/ Co-association Matrix Meta-graphHypergraph

Hierarchical 
Partitioning

(EAC)

Graph 
Partitioning

(CSPA)

Multinomial Mixture 
Model for Catgeorical 

Clustering
(EM)

Category Utility/ 
QMI Optimization

(QMI)

Hypergraph 
Partitioning

(HGPA)

Meta-graph 
Partitioning

(MCLA)

Voting Viewed as 
Bipartite Matching 

(Voting/ bVote)

Voting Viewed as 
Multi-Response 

Regression
(cVote)

Neighbor Clusters 
Merging Procedure

(VMA)

Information 
Compression

(BV/ BV-k)

Adaptive 
Information 

Compression
(ACV/ ACV-k)

Partitioning of a 
Shared Nearest 
Neighbor Graph 

(WSnnG)

Non-Negative. 
Matrix 

Factorization 
(PLA)

Figure 2.1: A taxonomy of consensus clustering methods based on the aggregate representation

of the ensemble partitions. Several recent consensus algorithms are identified.

a defined measure of similarity. The graph can generally be represented by an n×n adjacency ma-

trix. In the context of cluster ensembles, this adjacency matrix is also known as a co-association

matrix, where similarities reflect the frequency of co-occurrence of each pair of objects in the same

cluster throughout the ensemble. The co-association matrix has been utilized in a number of dif-

ferent ways to extract a consensus partition. For instance, a hierarchical linkage-based clustering

is applied in the evidence accumulation clustering (EAC) algorithms [25]. Additionally, a graph

partitioning algorithm referred to as cluster-based similarity partitioning algorithm (CSPA) is

proposed in [29]. Furthermore, an approach based on constructing a weighted shared nearest

neighbors graph (WSnnG) from the co-association values is developed in [26]. Moreover, a prob-

abilistic label aggregation algorithm (PLA) is introduced in [37], which is based on non-negative

matrix factorization [52] of the normalized co-association matrix.

A second similarity-based structure proposed in [29] is a hypergraph, where an edge represents

multi-way similarity connecting multiple objects, instead of a pair. A consensus clustering is

obtained by applying a hypergraph partitioning algorithm (HGPA) [29]. Additionally, a meta-

graph similarity structure is proposed in [29] where edges represent similarity relations between

pairs of clusters, rather than objects. In this case, (meta)-graph partitioning is applied to find a



17

consensus partition as given by the meta-clustering algorithm (MCLA) [29].

In a categorical feature representation of the objects, each feature corresponds to an ensemble

clustering represented as a labeling vector. Methods based on this representation are as follows.

A statistical model-based clustering using a mixture of multinomial distributions was proposed

in [41], where a consensus partition is computed as a solution to the corresponding maximum

likelihood problem using the EM algorithm. An alternative approach is proposed in [38], where

the category utility function is defined as the criterion for the categorical clustering problem. The

criterion is shown to be equivalent to the quadratic mutual information and the classical intra-

class variance criteria. A consensus partition is extracted by transforming the categorical variables

into standardized numerical variables and by applying the k-means algorithm as a mean-squared

error algorithm [38]. The consensus algorithm is referred to as QMI.

It is noted that for methods based on similarity structures or on a categorical feature-space

representation, the ensemble re-labeling problem is circumvented. Contrarily, when deriving a

voting-based aggregated partition, the ensemble re-labeling problem is directly addressed. Voting-

based consensus methods constitute the main focus of this dissertation. The ensemble re-labeling

is a difficult problem. It is generally attacked via pairwise relabeling. The pairwise relabeling

if also referred to here as the voting problem. It has been commonly formulated as a bipar-

tite matching problem [28, 31, 33, 42, 43]. A voting-based aggregation algorithm where bipartite

matching is applied (e.g. Voting [33]) is referred to here as bVote. When the ensemble partitions

are optimally relabeled, an aggregated partition can be computed by averaging. A consensus par-

tition can be obtained by assigning each object to its most voted cluster. If the desired number

of consensus clusters is smaller than the number of aggregated clusters, a merging of cluster can

be applied as described in the voting-merging algorithm (VMA) proposed in [53].

An alternative approach for addressing the voting problem, which is proposed in this thesis,

uses a probabilistic scheme as introduced in [39], and is referred to as cumulative voting. A voting-

based aggregation algorithm where cumulative voting is applied is referred to here as cVote. As

explained in Chapter 3, the cumulative voting scheme can be viewed a special instance of a



18

more general framework whereby the voting problem is formulated as a multi-response regression

problem. The consensus can be obtained by assigning each object to its most likely cluster. If

the desired number of consensus clusters is smaller than the number of aggregated clusters, the

aggregated partition can be viewed as a stochastic representation where information theoretic

principles can be applied to extract a compressed consensus partition as described in [39], and

later in this thesis. The information theoretic algorithms identified as BV, BV-k, ACV, and

ACV-k in Fig. 2.1 will be described in detail in later chapters.

2.2.2 Similarity-Based Consensus Methods

Consensus methods that derive its primary aggregated representation as a similarity structure

are described below in further details.

Graph/ Co-Association Matrix

The co-association matrix is a fundamental similarity-based representation that is similar to that

used by Régnier [48], in the early literature on consensus partitions. One of its major advantages

is that the labeling problem is circumvented, whereas a major disadvantage is the quadratic com-

putational complexity in the number of objects O(n2) of co-association-based consensus methods,

which makes it unattractive for very large datasets.

In [22–25], Fred and Jain propose an evidence accumulation clustering (EAC) as a co-association

based consensus method. Each partition is viewed as an independent evidence on the pairwise

objects co-associations, and the co-association matrix is viewed as the outcome of a voting (or

evidence gathering) mechanism. The consensus partition is extracted by applying a hierarchi-

cal agglomerative clustering algorithm on the co-association matrix such as the single-link and

average-link algorithms. To determine the natural number of clusters for a dataset, the notion of

a cluster lifetime is defined as the range of threshold values on the dendrogram that correspond

to a k-cluster partition. It is computed as the difference between the minimum threshold value



19

that corresponds to a k-partition and that which corresponds to a k − 1-partition. The optimal

number of clusters is the one with the longest cluster lifetime [25].

Dudoit and Fridlyand [31] develop bagging procedures for data clustering inspired by bagging

in supervised learning [17]. One of their methods, referred to as “BaggClust2”, is based on

computing a dissimilarity matrix from the frequencies of co-occurrence (co-association) of each

pair of objects in the same cluster. Subsequently, the dissimilarity matrix is used as input to a

clustering method to extract the consensus partition. The Partitioning Around Medoids (PAM)

clustering method of Kaufman and Rousseeuw [54] is used in [31].

Strehl and Ghosh [29] define the normalized mutual information (NMI) as a measure of

agreement or similarity between two partitions. The optimal consensus partition is defined as

the partition that maximizes the average normalized mutual information (ANMI) with the input

partitions. To extract the consensus partition, different graph-based methods were introduced,

where the graph partitioning algorithms of Karypis and Kumar [55,56] were applied. The CSPA

algorithm in [29] uses a graph structure that corresponds to a co-association matrix, where objects

represent the graph nodes, and undirected edges are weighted by the co-association values. The

graph partitioning algorithm METIS [55,56] is applied to extract the consensus partition.

Monti, Tamayo, Mesirov, and Golub [40] construct a consensus matrix, similar to a co-

association matrix. The matrix is used to aggregate the results of multiple random restarts of a

clustering algorithm (such as k-means, model-based Bayesian clustering, or SOM) in conjunction

with either bootstrap samples of the dataset or gene resampling (on gene expression data). The

consensus matrix is also used as a visualization tool, by arranging it so that items belonging to

the same cluster are adjacent to each other. Furthermore, a color gradient is associated to the

0-1 range of real numbers, so that white corresponds to 0, and dark red corresponds to 1. So, a

matrix corresponding to a perfect consensus will be characterized by red blocks along the diago-

nal, on a white background. To find the number of clusters k that best fits the data, a consensus

matrix is constructed for each k = {2, 3, . . . , kmax}, where the ensemble partitions are generated

with k clusters each. The best number of clusters corresponds to the “cleanest” matrix (which



20

is a matrix containing mostly 0’s or 1’s). They propose a measure referred to as a consensus

distribution which is computed based on the consensus matrix to help determine the number of

clusters. When the best k is determined, the hierarchical average linkage clustering algorithm is

applied on the corresponding consensus matrix and the k-cluster partition is extracted.

Ayad and Kamel [26,57] derive a graph representation referred to as Weighted Shared Nearest

Neighbor Graph (WSnnG) from the co-association matrix. They use an approach to defining

similarity introduced by Jarvis and Patrick in [58], and extended in [59]. Nodes of the WSnnG

correspond to objects and edges are weighted according to the shared nearest neighbor similarity.

Nodes are also weighted according to a measure derived from the shared nearest neighbors, and

node weights are used to determine cluster sizes. The WSnnG is then partitioned using the

METIS algorithm [55,56]. In [57], an approach to pruning the WSnnG is presented.

Ayad, Basir, and Kamel [27] develop a method that uses a co-association matrix. The rows

of the co-association matrix are normalized to represent association distributions for the objects.

For a given number of clusters k, k cluster prototypes are selected from the set of association

distributions based on entropy maximization of the selected prototypes and maximization of the

generalized Jensen Shannon (JS) divergence among the selected prototypes. These distributions

are then grouped by minimizing their JS divergences to the selected prototypes. By aggregating

the grouped distributions (by averaging), empirical cluster conditional probability distributions

are computed, and objects are assigned to their most probable clusters.

Fern and Brodley [35] aggregate an ensemble of soft partitions generated by applying the

EM algorithm [60, 61] on random projections [62–65] of the data. For each data object, EM

generates the soft clustering p(ci
l|xj , θ), for l = 1, . . . , k, representing the probability that object

xj belongs to each cluster under the model θ of a mixture of k Gaussians in the projected space.

Corresponding to the i-th soft clustering, a similarity matrix Pi between pairs of objects is

computed, where each entry represents the probability that a pair of objects xj and xg belongs to

the same cluster under model θ, which is calculated as pi
jg =

∑k
l=1 p(ci

l |xj , θ)p(ci
l|xg, θ). In order

to aggregate an ensemble, the values of pi
jg are averaged, resulting in an aggregated similarity



21

matrix P estimating the probability that each pair of objects belongs to the same cluster. The

complete-link agglomerative clustering algorithm is then applied to obtain a k-cluster partition.

Lange and Buhmann [37] present an approach based on a non-negative matrix factorization

[52] of the aggregated (and normalized) co-association matrix representing the joint probability

p(xj , xg) of observing two objects in the same cluster. The matrix is factorized to obtain estimates

for class-posteriors and class-likelihoods. The EM algorithm [60] is used to optimize the log-

likelihood of the model referred to as Probabilistic Label Aggregation.

Hypergraph and Meta-graph Structures

Strehl and Ghosh [29] present heuristic partitioning algorithm for two types of similarity-based

structures. The first is a hypergraph where nodes represent the data objects and hyperedges

connect the member of a cluster. The second is meta-graph where clusters of objects are viewed

as the nodes of an undirected graph (or meta-graph) and edges are weighted using the binary

Jaccard measure, as the ratio of the intersection to the union of each pair of clusters.

It is noted that in [29], the mutual information is defined as a measure of “agreement” (or

similarity) between partitions. Specifically, the mutual information measures the statistical infor-

mation shared between two distributions, where partitions are represented as probability distribu-

tions of corresponding categorical variables. An average normalized mutual information (ANMI)

criterion was introduced to measure the average amount of statistical information shared between

a partition and the ensemble. The optimal consensus partition is defined as the partition that

maximizes the ANMI criterion.

Let Ci and Cr denote the random variables describing the partitions πi and πr, consisting of

ki and kr clusters, respectively. The distribution p(ci) is given by p(ci
l) =

ni
l

n
for l = {1, . . . , ki},

where ni
l denotes the number of objects assigned to cluster ci

l according to partition πi. Let

I(Ci, Cr) denote the mutual information between Ci and Cr, and H(Ci) denote the Shannon

entropy of Ci. I(Ci, Cr) is a metric but has no upper bound. To obtain a measure with a 0 to 1



22

range, a normalized mutual information NMI measure is defined in [29] as,

NMI(Ci, Cr) =
I(Ci, Cr)√
H(Ci)H(Cr)

(2.3)

The ANMI criterion is given by,

ANMI =
1

b

b∑

i=1

NMI(C,Ci) (2.4)

where C is the random variable associated with any partition of X , π ∈ Π. The optimal consensus

partition is that which maximizes the ANMI criterion.

To extract the consensus partition, Strehl and Ghosh [29] propose three heuristic algorithms

based on the graph-partitioning algorithms in [55,56]. Unlike the CSPA algorithm described ear-

lier, a Hyper Graph Partitioning Algorithm (HGPA), and Meta CLustering Algorithm (MCLA)

represent computationally more efficient alternatives. It is noted that these algorithms do not

explicitly evaluate the ANMI criterion but are applied as effective heuristic algorithms.

In the case of the HGPA algorithm, the maximum mutual information objective is approxi-

mated by with a constrained minimum cut objective. The cluster ensemble problem is viewed as

a hypergraph partitioning problem where hyperedges represent clusters and the objective is to

cut a minimal number of hyperedges for obtaining k unconnected components of approximately

the same size. Hence, the approach is suited for data with balanced cluster sizes.

In case of the MCLA algorithm, a meta-graph is constructed and partitioned, resulting in a

clustering of clusters. Each object is then assigned to its most associated meta-cluster.

2.2.3 Consensus Based On A Categorical Feature-Space

Topchy, Jain and Punch [38,41] present a probabilistic model of consensus using a finite mixture

of multinomial distributions in a space of clusterings, viewed as categorical variables. The cluster

labels yj for the object xj are modeled as random variables drawn from a probability distribution

representing a mixture of multi-variate components. A maximum likelihood estimation problem



23

is formulated, where the most fitting mixture density is obtained by maximizing the likelihood

function. In this approach, the EM algorithm [60,61] is applied, leading to a consensus partition.

In another approach, Topchy et al. [30, 38] point out that the objective function used by

Strehl and Ghosh [29] is based on the classical Shannon definition of mutual information. On

the other hand, by considering another information-theoretic definition of entropy, the mutual

information criterion becomes equivalent to the category utility function introduced by Gluck and

Corter [66]. In the context of partition ensembles, the category utility function U(π, πi) measures

the agreement between two partitions as the difference between the expected number of labels

of partition πi that can be correctly predicted with the knowledge of π and without it [38]. It is

given by,

U(π, πi) =

k∑

q=1

p(cq)

ki∑

l=1

p(ci
l |cq)

2 −

ki∑

l=1

p(ci
l) (2.5)

The overall utility of a partition with respect to the ensemble partitions is defined as the sum

of the pairwise utilities, given by,

U(π,P) =
b∑

i=1

U(π, πi). (2.6)

By considering the generalized entropy Hs(C), where lims→1 Hs(C) = −
∑k

q=1 p(cq) log p(cq),

the generalized mutual information can be defined [38], where, in particular, the quadratic mutual

information I2(π, πi) becomes,

I2(π, πi) = 2U(π, πi). (2.7)

Based on Mirkin’s proof in [67], maximizing the partition utility defined in Eq. 2.6 is equivalent

to minimizing the squared error clustering criterion, for a fixed number of clusters k in π. Hence,

the minimum quadratic mutual information criterion is also equivalent to the classical intra-cluster

minimum variance. So, the categorical variables representing the partition are standardized



24

in [30,38], to transform them to quantitative variables, and a minimum squared error clustering

algorithm (the k-means) is applied to extract the consensus partition. The consensus algorithm

is referred to as the quadratic mutual information algorithm (QMI).

2.2.4 Consensus Via Voting-Based Aggregation

In seeking to establish a parallel approach to the aggregation of supervised classifiers [17,18,21],

a distinct class of consensus methods for partitions, referred to as voting-based methods, was

developed as proposed in [28,31,33,39,42,43]. Unlike other consensus methods described earlier,

voting-based methods do not avoid the so-called cluster label correspondence problem. Instead,

they search for an optimal relabeling and aggregation of the ensemble partitions. Typically, an

aggregated partition is computed by averaging the relabeled ensemble partitions with respect to

a representative partition, referred to as a reference partition.

An important element of voting-based aggregation is the optimal relabeling of an ensemble

partition with respect to a representative partition of the ensemble. This element defines what

we refer to as the pairwise relabeling or the voting problem. The problem is commonly viewed as

a weighted bipartite matching problem, where one looks for an optimal cluster label permutation

for each ensemble partition to maximize its labeling agreement with respect to a representative

labeling [28,31,33,42,43].

Dimitriadou, Weingessel, and Hornik [33] note that solving the voting-based aggregation prob-

lem requires the simultaneous optimization of the partitions relabeling with respect to the repre-

sentative (aggregated) partition and of finding the aggregated partition that optimally represent

the ensemble partitions. Hornik [34] further notes that finding the optimally permuted partitions

represents a multi-dimensional assignment problem (MAP), which unlike the bipartite matching

problem that corresponds to a linear sum assignment problem (LSAP), is NP-hard, with branch-

and-bound approaches being computationally infeasible for typical ensemble sizes (b ≥ 20).

Dimitriadou et al. [33] consider fuzzy ensembles and present a theoretical derivation of an



25

efficient algorithm that iteratively finds the bipartite matching solution which minimizes the

mean squared error of the relabeled partition with respect to a representative partition. The

algorithm was applied on partitions with a fixed number of clusters in [33] and is referred to as

“Voting”. We refer to it here as “bVote” in reference to bipartite matching as the underlying

formulation of the voting problem. For partitions with a variable number of clusters, empty

(dummy) clusters are added to the partition with fewer clusters in order to compute the bipartite

matching solution. After the aggregated partition is computed, if it is required to obtain a smaller

number of clusters, “neighboring” clusters may be merged based on a similarity measure, so as to

get the desired number of clusters [33]. The voting-merging algorithm is referred to as VMA [53].

Gordon and Vichi [42] presented methods for fitting a fuzzy consensus partition to a set of

hard or fuzzy partitions. A weighted least-squares objective function is used, where weights

allow the ensemble partitions to have different degrees of importance. Classes are permuted so

as to establish the correspondence between the classes of the profile, and those of the consensus

partition, by solving a cost assignment problem. As in [33], to match two partitions with different

numbers of clusters, dummy clusters are introduced into the matching cost matrix so that a binary

ki × ki permutation matrix is computed by solving the corresponding assignment problem. To

aggregate an ensemble, an algorithm that iterates between two steps is described. In one step,

optimal relabelings for the ensemble partitions are determined by optimally matching their cluster

labels with the current reference partition, where the initial reference is randomly generated, and

in the second step, the reference partition is updated as the (weighted) average of the current

relabeled ensemble partitions.

Dudoit and Fridlyand [31] present a bagging procedure (“BaggClust1”) in which the bipartite

matching solution is computed for each bootstrap clustering with respect to a pre-clustering of the

objects. It is assumed the ensemble partitions have a fixed number of clusters which is equal to

the number of clusters of the original clustering representing the reference partition. The number

of clusters is also equal to the desired number of consensus clusters. The consensus partition is

obtained by assigning a bagged cluster label for each object by plurality voting (i.e., by taking



26

the majority cluster label for each object). Furthermore, the proportions of votes in favor of the

bagged cluster labels reflect the confidence of cluster assignments for the objects.

Fischer and Buhmann [28] present a voting-based aggregation algorithm similar to the iterative

algorithm in [33]. It is applied in [28] on hard ensembles based on bootstrap resampling. It is

assumed that all ensemble partitions have the same number of clusters, which is equal to the

target number of clusters in the consensus clustering. At each iteration, the best cluster label

permutation is determined by solving a corresponding weighted bipartite matching problem,

maximizing the empirical cluster assignment probabilities estimated from the previous relabeling.

The final consensus partitions is determined based on a maximum likelihood mapping function.

In [28], it is argued that the iterative algorithm is better that the fixed-reference aggregation

algorithm “BaggClust1” [31], as the latter would be sensitive to a poor reference partition.

In [39], we introduced the idea of cumulative voting as a new solution for the relabeling

problem of a given clustering with ki clusters with respect to a reference clustering with k0

clusters, where ki and k0 may be unequal. Cumulative voting is a type of rated voting that is

related to ranked types of voting such as the Borda count. Instead of binary one-to-one votes,

numeric values (ratings) are computed for each option (i.e. reference cluster), such that they

sum up to a pre-specified total. Note that the term “cumulative” refers to the property that

the computed vote weights for each voting cluster (i.e., each cluster of an ensemble partition)

must add up to a pre-specified value. An un-normalized cumulative voting was developed scheme

where ratings must sum up to the size of the voting cluster. Based on viewing each partition

as a categorical variable, we also developed a normalized cumulative voting scheme was also

developed, where votes are weighted according to the conditional probability of each reference

cluster, given a cluster of an ensemble partition. In this case, the vote weights must sum to

1. A fixed-reference aggregation algorithm was applied and a new adaptive algorithm was also

proposed for aggregating an ensemble in a particular order according to a proposed criterion that

maximizes the average amount of information. Furthermore, the problem of extracting an optimal

consensus partition with a fewer number of clusters than the ensemble partitions is formulated



27

as the problem of finding a compressed summary of the estimated distributional representation

of the ensemble that preserves maximum relevant information [39,68]. Based on the information

bottleneck formulation of Tishby, Pereira and Bialek [8], an efficient agglomerative algorithm

which minimizes the Jensen-Shannon divergence within the cluster is proposed for estimating a

compressed consensus partition.

2.3 Ensemble Generation Techniques

The nature and optimality of the consensus solution for a partition ensemble depend not only on

the devised combination method, but also on the ensemble generation mechanism which produces

the ensemble partitions. In fact, the thesis demonstrates for voting-based methods, that the

quality of obtained consensus solution highly depends on the suitability of the consensus method

to combining the type of generated ensemble. Several ensemble generation techniques for partition

ensembles have been considered in recent literature as described below.

Strehl and Ghosh [29] considered selecting a portfolio of clustering methods, where a number

of different methods in conjunction with different distance/similarity measures are applied to

generate multiple clustering solutions for a given dataset. Furthermore, they considered object-

distributed and feature-distributed ensembles as a means for addressing distributed data mining

problems. Object-distributed ensembles address the problem of clustering data consisting of ei-

ther a very large number of objects or of data-subsets that are stored in different sites with

possible privacy constraints, and where a global clustering solution is desired. On the other

hand, feature-distributed ensembles address the problem of clustering data characterized by very

high dimensional feature spaces. Random feature subspaces are generated and the data is parti-

tioned in each subspace. It is noted that, in the case of supervised learning, a random subspace

method [20] was investigated for improving classifiers’ accuracy by constructing decision forests

in randomly chosen subspaces. Feature-distributed ensembles can be useful for dealing with very

high dimensional datasets by representing the data in multiple spaces of reduced dimensionality.



28

Fern and Brodley [35] generate partition ensembles based on random projections of the data.

Random projections correspond to a transformation method that can improve the clustering

quality for high dimensional data [62–65]. High dimensionality represents a challenging issue in

data clustering. It leads to a problem known as the curse of dimensionality where the vectorial

representation of the data becomes too sparse, leading to the inability to find structure in the

data. Furthermore, the presence of irrelevant and noisy features can lead to misleading clustering

solutions. The application of random projections in [35], in conjunction with the EM clustering (of

Gaussian mixtures) is motivated by Dasgupta’s result [69], which shows that random projections

can change the shape of highly eccentric clusters to be more spherical.

Bootstrap resampling of the original data represents another fundamental ensemble genera-

tion technique, where each bootstrap sample of the data is partitioned to produce an ensemble

of different partitions. The approach was considered in several studies such as Leisch [70], Du-

doit and Fridlyand [31], Fischer and Buhmann [28], Minaei-Bidgoli, Topchy, and Punch [71],

and Ayad and Kamel [72]. It represents a scheme similar to bagging [17] for combining predic-

tors. Resampling methods are well established approaches for obtaining accurate estimates of

data statistics [71]. In particular, bootstrap resampling is a general method of sampling with

replacement that was shown to improve the accuracy and reliability of predictions, which are

typically combined by averaging (when predicting a numerical outcome) or via plurality voting

(when predicting a categorical outcome). Monti et al. [40] also considered bootstrap resampling

in conjunction with multiple random restarts of clustering algorithms (such as k-means, model-

based Bayesian clustering, or SOM). They also considered ensemble based on random restarts of

these algorithms in conjunction with gene resampling, for gene expression data.

Since clustering algorithms are typically devised as randomized search algorithms, the result-

ing clustering solutions depend on the applied randomization, such as the selection of the random

initial seeds for k-means algorithm. This dependency on random restarts motivates another type

of ensemble generation techniques where each ensemble partition corresponds to a solution for

a random restart. Fred and Jain [24] considered this ensemble generation technique in conjunc-



29

tion with the k-means algorithm to improve the stability of clustering solutions. Dimitriadou et

al. [33] and Gordon et al. [42] apply several runs of a fuzzy clustering algorithm such as the the

fuzzy c-means (FCM) to generate the ensemble partitions.

The approach in [24], based on the k-means algorithm, is further extended by generating an

overproduced numbers of clusters [25,36]. That is, each ensemble partition consists of a relatively

large number of clusters compared to the desired or suspected number of true clusters. This

overproduction of clusters creates a split-and-merge scheme where the ensemble consists of fine-

resolution partitions whereas the consensus partition is a coarser partition reflecting the global

cluster structure of the data. To induce more diversity among the ensemble partitions, the number

of overproduced clusters is randomly selected for each ensemble partition in [36,73].

Topchy, Jain, and Punch [30] proposed the generation of weak partitions using two different

techniques. In the first, the partitions are generated based on random one-dimensional projections

of the original feature space. In the second technique, partitions are generated by splitting the

data using a number of random hyperplanes. That is, the random hyperplanes dissect the d-

dimensional space of the data, and objects separated by the hyperplanes are assigned to different

clusters. When only one hyperplane is used, the data is splitted into two clusters. The idea of

weak partitions is to seek the combination of simple and cheaply computed partitions rather than

complex ones. It is noted that, in the case of supervised learning, weak classifiers were considered

in the boosting method introduced in [18], where substantial gains in accuracy were achieved.

2.4 Analysis of Consensus Partitions

A substantial amount of theoretical analysis was developed in the early work on consensus of

classification models in the areas of discrete mathematics, theoretical computer science [15,48,48],

and pattern recognition [46]. For instance, Barthelemy and Leclerc [15] studied the properties of

the median procedure for partitions and compared it with axiomatic and constructive approaches.

The median partition problem was shown to be NP-Complete [15], and heuristic algorithms for



30

finding approximate solutions were studied. Régnier [48] studied the convergence properties of

central partitions. Neumann and Norton [46] show that an appropriate consensus partition of a

given profile is not a single partition but is one that should lie in a consensus interval, where the

extremes of this interval are characterized axiomatically. Thus, they show that any reasonable

consensus function must take its values in this interval.

Recent consensus methodologies are typically validated empirically. The accuracy and stabil-

ity of the obtained consensus partitions are evaluted on artificial and real datasets and compared

with the individual partitions of the ensemble or with other consensus algorithms. Kuncheva

and Vetrov [73] study the empirical relationship between the stability and accuracy of consensus

partitions with respect to the number of clusters, for the k-means algorithm. They observe that

the relationship highly depends on the data set, with the correlation varying from nearly +1 to

nearly -1. They introduce a combined stability index as the sum of the pairwise individual and

ensemble stabilities. The correlation of the new index with the ensemble accuracy was found to

be more consistent, and was used to determine the number of clusters. In [74], Hadjitodorov,

Kuncheva, and Todorova study the relation between the diversity of the ensemble and quality of

the consensus partition. They found that ensembles with a moderate level of diversity lead to

more accurate consensus partitions. Building upon this finding, a procedure for generating and

selecting ensembles with median diversity is presented.

In [43], Topchy et al., consider the theoretical validation of cluster ensembles and present

a formal analysis of the convergence properties of consensus partitions. The analysis considers

two approaches to the consensus problem. The first is based on a stochastic partition generation

model and a voting-based consensus method. In the voting-based method, the pairwise relabel-

ing problem is formulated as a bipartite matching problem and solved using Kuhn’s Hungarian

method. Then, the plurality voting rule is applied to determine the consensus partition. The

number of clusters is assumed to be fixed. Further details of this approach are given in Ch. 3.

The second approach considers the properties of the mean partition with respect to a metric on

the space of partitions. In both cases, the consensus solution is shown to converge to the under-



31

lying generating clustering (which is assumed to represent the true clustering), as the number

of partitions in the ensemble increases, assuming that each partition gives a better than random

clustering compared to the underlying clustering.





Chapter 3

Voting-Based Partition Aggregation

In this chapter, a new framework for the voting problem is defined in Sec. 3.1. The voting-based

aggregation problem and a general iterative algorithm are described in Sec. 3.2. A simulation-

based analysis is presented in Sec. 3.3, for comparing the cumulative voting and bipartite match-

ing schemes. Finally, possible interpretations of the aggregated partition are discussed in Sec.

3.4.

3.1 A New Framework for the Voting Problem

Recall from Ch. 1 that voting-based consensus methods [28,31,33,39,42, 43] derive an ensemble

representation consisting of a central aggregated partition by seeking an optimal relabeling of the

ensemble partitions. In general, the optimal relabeling of the ensemble partitions is addressed

through a pairwise relabeling of each ensemble partition with respect to a representative partition,

where the pairwise relabeling problem is also referred to here as the voting problem. Each cluster

of a given ensemble partition is viewed as a “voter” that votes for the representative clusters

according to a defined voting .

Let X denote a set of n data objects, and let a partition of X into k clusters be represented by

33



34

an n×k stochastic matrix U, with a row for each object, and a column for each cluster, such that
k∑

q=1

ujq = 1, ∀j. In general, U may represent a hard partition with ujq ∈ {0, 1} or a soft partition

with ujq ∈ [0, 1]. To obtain a hard from a soft partition, ujr is set to 1, for r = arg max
q

ujq, and

ujq = 0 otherwise. A hard partition is also represented by a labeling n-vector y.

Let U = {Ui}b
i=1 denote an ensemble of partitions. The voting-based aggregation problem

is concerned with searching for an optimal relabeling of the ensemble partition and for a central

aggregated partition denoted as Ū that summarizes the ensemble partitions.

Note that, in principle, the proposed cumulative voting scheme and the bipartite matching

scheme are applicable to both hard and soft ensembles. In fact, the bipartite matching scheme

has already been studied for hard ensembles in [28,31,43] and for soft ensembles in [33,42]. Basic

modifications required for applying cumulative voting to soft ensembles are described in [39].

However, for simplicity and a focused analysis, only hard ensembles are considered here as input.

The aggregated partition is a soft partition, as computed using either the cumulative voting

or bipartite matching schemes. Note that “soft” is a general term that is used in the literature

either to describe a partition obtained using a statistical model-based clustering algorithm that

maximizes the likelihood function [75,76], where ujq reflects the uncertainty about the associated

classification of each data object, or to describe a partition obtained using a clustering algorithm

that optimizes a fuzzy objective function [77,78], where ujq reflects a fuzzy membership value. In

this thesis, the aggregated partition is viewed as a soft partition in a statistical sense. Specifically,

it is obtained via least-squares estimation.

In this section, a general formulation of the voting problem is proposed in Sec. 3.1.1. The

cumulative voting and bipartite matching formulations are described in Sec. 3.1.2 and 3.1.3,

respectively. In Sec. 3.1.4, an illustrative example is given to highlight the characteristics of the

two different voting formulations.



35

3.1.1 General Formulation

Voting is viewed as the problem of estimating the assignments of the objects to representative

clusters C0 = {c0
1, . . . , c

0
k0
}, given their assignments to the clusters of an ensemble partition

Ci = {ci
1, . . . , c

i
ki
}, such that the estimation errors compared to the representative partition U0

are minimized. Let the random vectors Ci = (Ci
1 . . . Ci

ki
) and C0 = (C0

1 . . . C0
k0

) denote the

clusters of Ui and U0, respectively, where each variable C0
q is considered to take real values in

[0, 1], such that
∑k0

q=1 u0
jq = 1. That is, U0 is a soft partition. The voting problem can be viewed

as seeking a function of Ui, ϑi(Ui), that establishes a relationship between {Ci
l }

ki

l=1 and {C0
q }

k0

q=1,

such that a loss function Li(U0, ϑi(Ui)) is minimized, where Li is referred to here as the voting

(or pairwise relabeling) loss. The function Li(U0, ϑi(Ui)) penalizes the errors in the estimated

values of ϑi(Ui) compared to U0. The problem of finding ϑi(Ui) is given by Eq. 3.1.

min
ϑi(Ui)

Li(U0, ϑi(Ui)). (3.1)

The above formulation of the voting problem is equivalent to a regression problem (supervised

learning with numerical output variable(s)). Specifically, it corresponds to a multiple regression

problem with multiple output (response) variables {C0
q }

k0

q=1 and multiple input (predictor) vari-

ables {Ci
l }

ki

l=1. Based on this formulation, the regression function ϑi(Ui), which may be referred

to as the voting (or relabeling) function, estimates the conditional expectation of C0 given Ci,

E(C0|Ci), and is a vector function, ϑi(Ui) = (ϑi
1(U

i), ..., ϑi
k0

(Ui)) [10].

Let Li denotes the i-th learning set corresponding to the partition pair Ui and U0, and

consisting of the vectors {(ui
j ,u

0
j )}

n
j=1, where ui

j is the jth row vector of Ui and represents a ki

input vector, and u0
j is the j-th row vector of U0 and represents a k0 output “target” vector.

The goal is to use Li to estimate ϑi(Ui). In the voting problem, it is only the learning but not

the generalizing (prediction) aspect of regression that is applied.

The proposed framework generalizes the bipartite matching scheme, which establishes binary

one-to-one relationships between two sets of clusters, by exploring the idea of a soft relabeling (or



36

soft voting) and addressing the problem of establishing real-valued many-to-many relationships

between the clusters of a given partition and the clusters of a representative partition. An

important feature of the proposed framework is its added flexibility, which makes suitable for

modeling complex relations arising from substantial variability between partitions, such as a

variable number of clusters. An illustrative example is given in Sec. 3.1.4. Note that in the case

of bipartite matching, empty (dummy) clusters need to be added to the partition with a smaller

number of clusters as proposed in [33, 42], or the ensemble must be constrained to partitions

with a fixed number of clusters that is also equal to the desired number of consensus clusters as

in [28,31,43].

It is noted that, in a regression problem, the form of the function ϑi(Ui), that underlies

the relationship between the input and output variables, is generally unknown [10]. Below, the

regression model underlying the cumulative voting scheme introduced in [39] is derived.

3.1.2 Cumulative Voting

In [39], two types of cumulative voting are investigated; the normalized and un-normalized

schemes. The term “cumulative” refers to the property that the computed vote weights for

each variable C0
q must add up to a pre-specified value. In the case of the normalized scheme, the

sum must be 1, and in the case of the un-normalized scheme, the sum must be equal to the size

of the voting cluster. In this chapter, the focus is on the normalized scheme. More details on the

un-normalized scheme are given in Ch. 4, where its close relationship with the co-association ma-

trix representation for partition ensembles is outlined. Whenever the term “cumulative voting”

is used in the thesis, it refers to the normalized scheme.

The cumulative voting scheme represents a simple but reasonable regression method. It

corresponds to fitting a linear model by least squares. It is considered reasonable for its minimal

assumptions about the underlying model of the data. Assuming a linear model for each output

variable, ϑi(Ui) is written in matrix notation as,



37

ϑi(Ui) = UiWi, (3.2)

where Wi is a ki × k0 matrix of coefficients denoted as wi
lq.

Let Vi = ϑi(Ui), which is a n × k0 matrix. To fit the linear model in Eq. 3.2 to the learning

set Li, the coefficients Wi are estimated to minimize the mean squared errors, as given in Eq.

3.3:

Li(U0, ϑi(Ui)) = MSEi(U0, ϑi(Ui)) =
1

n

n∑

j=1

k0∑

q=1

(
u0

jq − vi
jq

)2
, (3.3)

which is written in matrix notation as follows,

MSEi(U0, ϑi(Ui)) =
1

n
tr[

(
U0 − UiWi

)T (
U0 −UiWi

)
]. (3.4)

The solution is obtained by differentiating with respect to Wi and is given by Eq. 3.5. The

estimated partition V̂i is given by V̂i = UiŴi.

Ŵi =
(
UiTUi

)−1
UiTU0. (3.5)

It is easy to see that the normalized scheme in [39] corresponds to the linear model with least

squares fit, as defined above in Eqs. 3.2 and 3.3 by noting that, for hard ensemble partitions, the

term (UiTUi) in Eq. 3.5 is a diagonal matrix, and hence Eq. 3.5 gives the same expression for

the coefficients as computed in [39], which is given by,

ŵi
lq =

1

ni
l.

∑

j∈{1,...,n} : ui
jl

=1

u0
jq, (3.6)

where ni
l. denotes the number of objects assigned to cluster ci

l , and v̂i
jq = ŵi

lq if ui
jl = 1, and

0 otherwise. If U0 is also a hard partition, then ŵi
lq =

ni
lq

ni
l.

, where ni
lq is the number of objects

assigned to clusters ci
l and cq. Note that one would have a hard reference partition if the applied



38

aggregation algorithm follows a fixed-reference approach, whereby an initial reference partition is

used as a common representative partition for all the ensemble partitions and remains unchanged

throughout the aggregation process. In this thesis, a fixed-reference approach is not considered.

Instead, an iterative aggregation approach is adopted.

Based on the constraint on the output variables {C0
q }

k0

q=1, the estimated values v̂i
jq must sum

to 1,
∑k0

q=1 v̂i
jq = 1. Note that one may consider C0 as a categorical variable with k0 categories,

{c0
1, . . . , c

0
k0
}. Based on the squared error loss estimation, the estimate V̂i of the conditional

expectation can be viewed as an estimate of the posterior probability E(C0|Ci) = Pr(C0|Ci) [10].

Classifying to the most probable class V̂i = arg maxc0q∈C0 Pr(c0
q |C

i) gives the Bayes classifier,

with the Bayes rate as the error rate [10]. Hence, this rate gives a lower bound on the achievable

error rate for a relabeling ϑi(Ui), based on least squares loss. The error rate is denoted here as

Erri(U0, ϑi(Ui)), which can be computed by considering C0 as a categorical variable. That is, it

is computed in the special case where the voting problem is viewed as a classification problem.

3.1.3 Bipartite Matching

A combinatorial optimization problem with a constrained least squares objective underlies the

bipartite matching scheme as described in [33, 42] and as given below in Eq. 3.7. It is not

a regression problem, but can be expressed in the same framework as follows. Suppose that

ki = k0 = k, otherwise, dummy clusters may be added to the partition with the lower number

of clusters. Let the Vi = ϑi(Ui) be defined as a column (cluster) permutation of partition Ui,

which can be written as Vi = UiWi, where Wi is a k × k permutation matrix. The problem is

to find Wi that minimizes MSEi(U0, ϑi(Ui)) subject to constraints on wi
lq as defined in Eq. 3.7.

It is also known as a linear sum assignment problem, LSAP, or a weighted bipartite matching

problem [34].



39

min
wi

lq

1

n

n∑

j=1

k∑

q=1

(
u0

jq − vi
jq

)2

Subject to
k∑

l=1

wi
lq =

k∑

q=1

wi
lq = 1, where wi

lq = 0 or 1.

(3.7)

The optimal solution for the problem in Eq. 3.7 is obtained using Kuhn’s Hungarian method

[33]. Since the bipartite matching scheme minimizes the same loss function as cumulative voting,

but as a consequence of the additional constraints as given in Eq. 3.7, the MSEi achievable using

the bipartite matching is bounded from below by the MSEi achievable using cumulative voting.

The minimization problem in Eq. 3.7 is equivalent to the constrained maximization of

tr(GiTWi) [33], where Gi is the contingency matrix of Ui and U0, Gi = UiTU0. Unlike

cumulative voting, the estimated partition Vi is a hard partition, when Ui is hard. In the case

of hard ensemble partitions, the problem is equivalent to minimizing the probability of error pi
e

subject to the constraints defined in Eq. 3.7, where pi
e is given by,

pi
e =

1

n

k∑

l=1

k∑

q=1

gi
lq(1 − wi

lq). (3.8)

If both Ui and U0 are hard partitions, the constrained error rate Erri(U0, ϑi(Ui)) is mini-

mized, which is given by,

Erri =
1

n

k∑

l=1

k∑

q=1

ni
lq(1 − wi

lq), (3.9)

where ni
lq is the number of objects assigned to clusters ci

l and c0
q .

Again, due to the additional constraints, the error rate achievable using the bipartite matching

is bounded from below by the error rate achievable using cumulative voting when the latter is

followed by classifying to the most probable class.



40

3.1.4 Illustrative Example

Consider a set of ten data objects X = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10}. Suppose a reference

partition U0 and an ensemble partition Ui are given as follows, where U0 partitions the objects

into k0 = 5 clusters, whereas Ui partitions them into ki = 2 clusters.

U0 =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

, and Ui =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1 0

1 0

1 0

1 0

0 1

0 1

0 1

0 1

0 1

0 1

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

.

Relabeling Ui based on cumulative voting gives a coefficient matrix Wi and a relabeled

partition Vi as follows:

Wi =

2

4

0.5 0.5 0 0 0

0 0 0.3333 0.3333 0.3333

3

5 , and Vi =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0.5 0.5 0 0 0

0.5 0.5 0 0 0

0.5 0.5 0 0 0

0.5 0.5 0 0 0

0 0 0.3333 0.3333 0.3333

0 0 0.3333 0.3333 0.3333

0 0 0.3333 0.3333 0.3333

0 0 0.3333 0.3333 0.3333

0 0 0.3333 0.3333 0.3333

0 0 0.3333 0.3333 0.3333

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

.

That is, in the case of cumulative voting, the uncertainties associated with assigning the

objects belonging to cluster 1 of Ui to each of the five clusters of U0 are given by first four rows



41

of Vi. This soft assignment reflects the fact that the objects belonging to cluster 1 of Ui are

divided equally among the first two clusters of U0. Similarly, equal probabilities of assigning the

objects belonging to cluster 2 of Ui to each of the last three reference clusters are reflected in the

last six rows of Vi.

Based on bipartite matching, relabeling Ui gives a permutation matrix Wi and a relabeled

partition Vi as follows:

Wi =

2

6

6

6

6

6

6

6

6

6

4

1 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 0 0 1 0

0 0 0 0 1

3

7

7

7

7

7

7

7

7

7

5

, and Vi =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

.

For the bipartite matching scheme, the objects belonging to cluster 1 of Ui are simply assigned

to reference clusters 1, and no objects are assigned to reference cluster 2. Similarly the objects

of cluster 2 of Ui are assigned to reference clusters 3, and no objects are assigned to cluster 4

or 5. The relabeling requires three empty clusters to be created. Unlike the cumulative voting

scheme, the assignment of the data objects ignores the fact that each cluster of Ui is equally

divided between more than one reference cluster.

In this thesis, we show evidence that the bipartite matching scheme can be more desirable

compared to cumulative voting for a particular type of ensemble. This is demonstrated by the

simulation-based analysis of uniform ensembles presented in this chapter. However, the fact that

cumulative voting reflects more closely the uncertainty associated with the relabeling makes it

more desirable for another type of ensemble, as demonstrated by the empirical evidence presented

in Ch. 5.



42

3.2 Voting-Based Aggregation

In this section, the problem of optimally relabeling and aggregating an ensemble is presented. A

general voting-based aggregation algorithm presented in [28, 33] is applied, in conjunction with

each of the cumulative voting and bipartite matching schemes.

3.2.1 Formulation

The problem is to estimate a central partition Ū that minimizes the overall loss L(Ū; {Ui}b
i=1) =

1
b

∑b
i=1 Li(Ū,Ui), where Li(Ū,Ui) = min

ϑi(Ui)
Li(Ū, ϑi(Ui)), as given by Eq. 3.10.

min
Ū

L(Ū;U1, . . .Ub) = min
Ū

min
ϑi(Ui)

1

b

b∑

i=1

Li(Ū, ϑi(Ui)). (3.10)

Using the least squares objective for the aggregated partition, with respect to the ensemble

partitions, the aggregation problem is written as,

min
Ū

MSE(Ū;U1, . . . Ub) = min
Ū

min
ϑi(Ui)

1

b

b∑

i=1

MSEi(Ū, ϑi(Ui)) (3.11)

As noted in [33], the aggregation problem in Eq. 3.11 is computationally challenging as

it requires the simultaneous optimization of ϑi(Ui) with respect to Ū (minimization over the

space of ϑi(Ui)) and of the aggregated partition (minimization over the space of Ū). The values

of ϑi(Ui) depend on Ū, and vice versa. For fixed ϑi(Ui), the optimal Ū is the soft partition

computed as the average 1
b

∑b
i=1 ϑi(Ui). Hornik [34] notes that finding the optimally permuted

partitions, in a global sense, represents a multi-dimensional assignment problem (MAP), which

unlike LSAP, is NP-hard, with branch-and-bound approaches being computationally intractable

for typical ensemble sizes (b ≥ 20). An efficient voting-based aggregation algorithm derived in [33]

is adopted, as detailed in Sec. 3.2.2.

As a last observation on the formulation of the voting-based aggregation problem, it is noted

that one can use the probability of error as the optimization criterion for the cumulative vot-



43

ing scheme, by classifying to the most likely class, as discussed in Sec. 3.1. In this case, the

aggregation problem given in 3.10 is written as follows.

min
Ū

pe(Ū;U1, . . . Ub) = min
Ū

min
ϑi(Ui)

1

b

b∑

i=1

pi
e(Ū, ϑi(Ui)) (3.12)

However, our study focuses on investigating the effect of soft re-labeling of the ensemble

partitions and on the optimality and usefulness of the aggregated partition in this case.

3.2.2 Algorithm

Several voting-based aggregation algorithms, which are computationally efficient, are described

in recent literature [28, 31, 33, 39, 42, 43]. The simplest type of algorithms follows the approach

described in [31, 43], in conjunction with the bipartite matching scheme, and in one of the algo-

rithms in [39], in conjunction with cumulative voting. In this approach, a single common reference

partition U0 is selected. Then, {Ui}b
i=1 are optimally re-labeled with respect to U0. This is fol-

lowed by computing Ū by averaging the relabeled partitions. As observed in [28], the drawback

of this algorithm is its high dependency on the selected (fixed) reference U0. However, it is noted

that this algorithm represents a suitable approach if the ensemble partitions are known to be

uniform. For instance, in the case of the stochastic partition generation model described in [43],

where all the ensemble partitions are generated as noisy permutations of an underlying clustering,

according to a probability of error, it is shown in that the aggregated partition converges to the

underlying clustering, as presented in [43].

In [42], an algorithm that iterates between two steps is described. In one step, {ϑi(Ui)}b
i=1

are determined by optimally matching {Ui}b
i=1 to the current U0, where the initial U0 is ran-

domly generated, and in the second step, U0 is updated as the (weighted) average of the current

{ϑi(Ui)}b
i=1. The algorithm converges to at least a local minimum, and as any approximation

algorithm, cannot be guaranteed to find global optimal solutions [42]. It is argued, however, that

by using a large number of random initializations and keeping the best solution, the chance of



44

obtaining a global minimum increases, and if the same values of the aggregated partition are

repeatedly obtained as the local optimal solution, one can have higher confidence that the global

optimal solution has been found [42].

Dimitriadou et al. [33] present a theoretical derivation of another iterative algorithm to find an

approximate solution for the aggregation problem in Eq. 3.11. The algorithm works as follows.

An initial reference is set as U0 = U1. Then, at each step i, for i ∈ {2, . . . , b}, the locally

optimal re-labeling ϑi(Ui) with respect to the current reference partition is computed, and U0

is re-computed as the weighted average of the last U0 and ϑi(Ui), such that the re-computed

reference represents the average of the partitions relabeled thus far (at step i/b). Similar greedy

approximation algorithms were also described in [28, 39]. It is noted that for this algorithm,

the obtained solution Ū depends on the ordering of the partitions, and the initial reference U0.

The algorithm can be enhanced by running several passes with random initialization and random

order of the partitions, and keeping the best solution [34].

In this chapter, the enhanced iterative algorithm described in Algorithm 1 is applied, as a

general voting-based aggregation algorithm, which is referred to as Vote. Specific variants of

Vote based on cumulative and bipartite voting are referred to as cVote and bVote, respectively.

Several passes can be performed by running Vote multiple times with random ordering of the

ensemble partitions, and keeping the best solution achieved so far (i.e. Ū with lowest value of

MSE(Ū,U) is kept). A comparison of the two scheme is presented in Sec. 3.3.

Suppose that U consists of partitions with a variable number of clusters ki. When cVote is

applied, the number of clusters k0 of U0 remains fixed throughout the iterations. Thus, k̄ = k0,

where k̄ denotes the number of clusters in Ū. On the other hand, when bVote is applied, k0 can

change, and the obtained value of k̄ is given by, k̄ = max
i=1:b

ki, after b iterations.



45

Algorithm 1 Vote

Function Ū = Vote(U)

1: Randomly select a partition Ui ∈ U and assign to U0

2: for i = 1 to b do

3: For cVote, compute Wi as given by Eq. 3.5.

For bVote, compute Wi by finding the bipartite matching solution to Eq. 3.7.

4: Vi = UiWi

5: U0 = i−1
i

U0 + 1
i
Vi

6: end for

7: Ū = U0.

3.3 Simulation-Based Analysis

The simulation presented in this section illustrates some basic theoretical results and provides

a preliminary analysis of the aggregated partition based on each voting scheme, using several

partition generation models. The generation models are described in Sec. 3.3.1, and simulation

results are presented in Sec. 3.3.2.

3.3.1 Partition Generation Models

As pointed out earlier, a stochastic model for partition generation was considered in [43] for

proving the convergence properties of partition ensembles based on the bipartite matching scheme,

in conjunction with plurality voting. In this model, ensemble members {yi}b
i=1 are generated as

noisy permutations of an underlying labeling yα that is considered to represent the true clustering.

The model reflects a relatively uniform ensemble where each labeling vector yi contains random

errors, with probability pi
e = pe ∀i, whereas yi is otherwise identical to yα, modulo cluster label

permutation, with ki = kα,∀i. When applying the bipartite matching scheme in conjunction with

plurality voting, the aggregated partition Ū was shown to converge to yα, as the ensemble size

increases, and assuming that each ensemble partition gives a better than random clustering result



46

compared to yα [43]. The partition generation model in [43] is simulated and further extended.

Furthermore, alternative models for generating non-uniform ensembles are considered.

Generation of Uniform Partitions

The model considered in [43] is based on an underlying cluster structure viewed as the true

clustering. Let yα be a clustering with kα clusters which may be generated as a random labeling

vector of size n with entries taking value in the set of labels {c1, . . . , ckα
}. To generate an ensemble,

b labeling vectors {yi}b
i=1 are generated such that each yi is a noisy permutation of yα. Noise

is induced with a probability of random error pi
e = pe ∀i, as follows. For each i ∈ {1, . . . , b} and

each j ∈ {1, . . . , n}, yi
j is set to be equal to yα

j , with probability (1 − pe), or make it acquire an

incorrect label yi
j ∈ {c1, . . . , ckα

} such that yi
j 6= yα

j with probability pe, where all kα −1 incorrect

labels are equiprobable, with probability pe/(kα − 1) for each label. This is followed by applying

a random permutation on each yi by drawing a permutation of the labels {cq}
kα

q=1 from the set

of all possible kα! permutations, with uniform probability.

It is important to note that the convergence of Ū to yα is significant when yα represents the

true clustering. Otherwise, Ū can be said to converge to a clustering that is as accurate as yα

compared to the true clustering. To illustrate this, consider that yα represents a noisy labeling

compared to some possible true clustering y∗ with probability of error denoted as pα
e . Then,

Ū can be compared to y∗ by extracting a hard partition from Ū and measuring the error rate

denoted Err∗, for different values of pα
e . It is noted that, in this model, it is assumed that k∗ = kα,

whereas in reality, the true number of clusters may be different or unknown.

Generation of Non-Uniform Partitions

As possible alternatives to generating ensembles of uniform partitions, one may consider two dif-

ferent types of non-uniform ensembles. In the first, partitions with a variable number of clusters

are generated. In the second, the ensemble partitions have the same number of clusters, but a



47

variable cluster label distribution. For the first ensemble type, a set of b labelings {yi}b
i=1 with

a number of clusters {ki}
b
i=1 are generated as random n-vectors with entries of yi taking value

in {1, . . . , ki}, where ki is randomly selected in a range [kmin, kmax]. In the second, a number of

clusters {ki}
b
i=1 = k is assumed, and a set of b labelings {yi}b

i=1 are generated, each as an n-vector

with a randomly-generated distribution over the cluster labels ci
l ∈ {1, . . . , k}, where the proba-

bility of each class pci
l

is generated as follows. Sampling weights hi
l ∈ [hmin, hmax] are randomly

generated, followed by a normalization to get the class probabilities as pci
l
= hi

l/
∑k

r=1 hi
r.

In both non-uniform partition generation models, each vector yi is re-arranged so that the

first ni
1 entries, yi

1 . . . yi
ni

1

, are assigned to the first cluster ci
l = 1, the next ni

2 entries are assigned

to the second cluster ci
l = 2, and so on. The ordering of the labeling vectors serves to induce

relationships among the ensemble partitions.

In the case of uniform partitions, the variability among the ensemble partitions is due to

random errors, whereas in the case of non-uniform ensembles, it is due to other factors such as

a variable number of clusters, or a variable class distribution. Unlike uniform partitions, there

is no underlying labeling from which the ensemble partitions are directly generated. Therefore,

it is not clear how to determine a labeling which can be considered as a possible true clustering,

or to assume a true number of clusters. In particular, the evaluation of Ū compared to possible

true clusterings is not as straightforward as in the case of the ensemble generation model in [43].

Based on the introduced voting framework, one computes the uncertainty about the assign-

ment of each data object to a set of clusters described by the random variables {C0
q }

k0

q=1. These

variables are specified based on the initial reference partition. Thus, as a starting point in the

simulation-based analysis, it is assumed that the initial reference partition represents the desired

labeling yα, which in turn may represent a noisy replicate of a possible true clustering denoted

as y∗. Then, Ū is compared to y∗ by evaluating Err∗ for different values of pα
e .

However, considering that the initial reference partition is simply selected at random, a better

way to deal with this issue is required for a conclusive analysis. A principled information-theoretic

approach is approach. Instead of considering the aggregated partition as directly representing



48

the consensus partition, it can be viewed as an aggregated distributional representation of the

ensemble, on the basis of which, an optimal consensus partition may be sought and extracted.

This view is further developed in Ch. 5, where the problem of extracting a compressed summary

of the ensemble is formulated based on considering Ū as an ensemble representation. An empirical

analysis on artificial and real datasets is presented to validate the proposed method.

3.3.2 Simulation Results

The experimental setup is described below, followed by the voting and aggregation results.

Parameters setup

The following default values are used in the simulations reported in this chapter. The number

of runs per any setting is 25, and the distribution of the measured quantities is reported using

box-plots or error bars. The value of n is set to 500 and the ensemble size is b = 25. The range

for the generated class distributions is pi
cl

∈ [0.1, 0.5] (the lower limit ensures that no empty

classes are generated, and the upper limit ensures that the data objects do not get assigned to

one cluster).

Voting Results

First, the results of the voting loss are presented as measured by the MSEi and Erri defined in

Sec. 3.1 for a given estimated partition Vi with respect to a specified reference partition U0. To

compute Erri for the cumulative voting scheme, Vi is converted to a hard partition. Note that

for the voting results, no aggregation is performed. That is, the voting results only reflect the

values of the voting loss functions.

For the voting results, the experiments are conducted as follows. A set of 25 partitions are

generated, and one is picked at random and designated as a common reference U0. Then, each of

the remaining partitions is optimally relabeled with respect to U0, using cumulative voting and



49

bipartite matching. Figure 3.1 illustrates the voting errors for uniform partitions with ki = 2 and

ki = 25, and Figure 3.2 shows the voting errors for non-uniform partitions. As pointed out in

Sec. 3.1, the cumulative voting scheme always leads to MSEi and Erri that are equal to or less

than those achieved using bipartite matching. The voting results illustrate the difference between

the two schemes for different types of ensembles and different error measures.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

M
S

E
i

pi
e

k
i
 = 2, ∀  i

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

pi
e

E
rr

i

k
i
 = 2, ∀  i

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

pi
e

M
S

E
i

k
i
 = 25, ∀  i

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

pi
e

E
rr

i

k
i
 = 25, ∀  i

 

 

Cumulative Voting
Bipartite Matching

Figure 3.1: Voting loss using MSEi and Erri for uniform partitions with ki = 2 and ki = 25.

Aggregation Results

It is noted that the aggregation results illustrate the sensitivity of Vote to random ordering of

the partitions and random selection of the initial reference U0; each run corresponds to one pass

over the Vote algorithm. In real clustering problems, however, one should choose Ū with lowest



50

Cum. Vote Bip. Match
0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
S

E
i

k
i
 ∈  [10, 20]

Cum. Vote Bip. Match
0.15

0.2

0.25

0.3

0.35

0.4

E
rr

i

k
i
 ∈  [10, 20]

Cum. Vote Bip. Match
0.2

0.4

0.6

0.8

M
S

E
i

Rand pi
c

l

, k
i
 = 12

Cum. Vote Bip. Match

0.2

0.25

0.3

0.35

0.4

0.45

E
rr

i

Rand pi
c

l

, k
i
 = 12

Figure 3.2: Voting loss using MSEi and Erri for non-uniform partitions.

MSE over all passes.

Figure 3.3 shows the MSE(Ū;U1, . . . ,Ub) defined as given by Eq. 3.11 between Ū and the

optimally re-labeled partitions ϑi(Ui) with respect to Ū, versus pi
e, for uniform ensembles with

ki = 2 and ki = 15. It is noted that the MSE is not only significantly lower in the case of cVote

compared to bVote, but as pi
e increases, the MSE drops in the case of cVote (except for ensembles

of identical partitions at pi
e = 0), while it increases in the case of bVote.

Note that as pi
e increases, the rate of random errors among the ensemble partitions increases,

which explains the increasing MSE using bVote. However, for cVote, as pi
e increases, the un-

certainties about the assignments of the data objects increase in the estimated partition ϑi(Ui)

and the re-computed reference U0, at each iteration i. As the estimated cluster conditional dis-

tributions for U0 approach uniform distributions, they also approach uniform distributions for



51

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

5

10

15
x 10

−3

M
S

E

pi
e

cVote, k
i
 = 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

M
S

E

pi
e

bVote, k
i
 = 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.01

0.02

0.03

0.04

M
S

E

pi
e

cVote, k
i
 = 15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

M
S

E

pi
e

bVote, k
i
 = 15

Figure 3.3: MSE versus pi
e for uniform ensembles with ki = 2 and ki = 15.

ϑi(Ui) and for Ū. In such case, the result is that MSE approaches zero. As MSE → 0, the hard

clustering corresponding to Ū takes arbitrary values. Thus, it doesn’t converge to y∗, unlike the

case for bVote, where errors tend to cancel each other.

The results presented in Fig. 3.4 and 3.5 confirm the explanation discussed above. The error

rate Err∗ of Ū compared to a range of possible true clusterings y∗, versus the probability of

error pα
e of yα compared to y∗, is plotted for uniform ensembles with ki = 2 (Fig. 3.4) and

with ki = 15 (Fig 3.5) for different values of pi
e. First, as pointed out earlier in Sec. 3.3.1 for

bVote, Ū is generally as good as the underlying labeling yα compared to y∗, as indicated by



52

0 0.2 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

pα
e

E
rr

*

pi
e
 = 0

0 0.2 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

pα
e

E
rr

*

pi
e
 = 0.1

0 0.2 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

pα
e

E
rr

*

pi
e
 = 0.2

0 0.2 0.4
0

0.1

0.2

0.3

0.4

0.5

pα
e

E
rr

*

pi
e
 = 0.3

0 0.2 0.4
0

0.1

0.2

0.3

0.4

0.5

pα
e

E
rr

*
pi

e
 = 0.4

0 0.2 0.4
0

0.1

0.2

0.3

0.4

0.5

pα
e

E
rr

*

pi
e
 = 0.5

 

 

cVote
bVote

Figure 3.4: Err∗ versus pα
e for uniform ensembles with ki = 2, for different values for pi

e.

the approximate equality line between Err∗ and pα
e , when values of pi

e correspond to better than

random clusterings yi compared to yα. Second, it is noted that cVote converges to the same

clustering as bVote at low values of pi
e, but as pi

e starts to increase, the increased uncertainty

causes Ū to diverge from the underlying clustering, and eventually fails in capturing a cluster

structure for the data. Hence, it is concluded that for this type of ensemble, bVote is a more

suitable relabeling scheme than cVote. However, it is assumed here that k∗ = kα, but in general,

the true number of clusters may be different or unknown. Such a case is further investigated in

Ch. 5.



53

0 0.5 1
0

0.2

0.4

0.6

0.8

1

p
e
α

E
rr

*

pi
e
 = 0

0 0.5 1
0

0.2

0.4

0.6

0.8

1

p
e
α

E
rr

*

pi
e
 = 0.1

0 0.5 1
0

0.2

0.4

0.6

0.8

1

p
e
α

E
rr

*

pi
e
 = 0.2

0 0.5 1
0

0.2

0.4

0.6

0.8

1

p
e
α

E
rr

*

pi
e
 = 0.3

0 0.5 1
0

0.2

0.4

0.6

0.8

1

p
e
α

E
rr

*
pi

e
 = 0.4

0 0.5 1
0

0.2

0.4

0.6

0.8

1

p
e
α

E
rr

*

pi
e
 = 0.5

 

 

cVote
bVote

Figure 3.5: Err∗ versus pα
e for uniform ensembles with ki = 15 for different values for pi

e.

Figures 3.6 and 3.7 show the MSE and corresponding Err∗ for non-uniform partitions. Sig-

nificantly lower MSE values are obtained using cVote compared to bVote. However, the MSE

values are not too low to cause cVote to produce arbitrary partitions compared to the initial

reference partition U0, as indicated by Err∗. In fact, lower Err∗ values are obtained in this case

with cVote compared to bVote, which indicates that Ū better approximates the cluster structure

of U0, where U0 is considered here as a noisy replicate of y∗. Again, note that these results are

based on a particular value of k∗ = k0, whereas in real situations, k∗ may be different or unknown.

When k∗ 6= k0, further analysis is required to study the usefulness of Ū based on each scheme.



54

cVote bVote
0

0.1

0.2

0.3

0.4

M
S

E

k
i
 ∈  [5, 25]

cVote bVote
0

0.1

0.2

0.3

0.4

M
S

E

k
i
 ∈  [4, 18]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

k
i
 ∈  [5, 25]

pα
e

E
rr

*

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

k
i
 ∈  [4, 18]

pα
e

E
rr

*

 

 

cVote
bVote

Figure 3.6: MSE and Err∗ for ensembles with a random number of clusters.

3.4 Discussion

It is important to note that the aggregated partition Ū is optimized as a representation of the

ensemble partitions (as given by Eq. 3.11); however, it does not necessarily reflect an accurate

cluster structure for the dataset. Interpreting Ū as a coherent and global cluster structure for

the data depends on the nature of the ensemble partitions and also on the properties of the

aggregation method. For instance, for ensembles of uniform partitions, Ū is best viewed as an

approximately optimal partition for the data, when the bipartite matching scheme is applied.

On the other hand, when each ensemble partition consists of a randomly selected number of



55

cVote bVote
0

0.1

0.2

0.3

0.4

M
S

E

Rand pi
c

l

, k
i
 = 10

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

pα
e

E
rr

*

Rand pi
c

l

, k
i
 = 10

cVote bVote
0

0.1

0.2

0.3

0.4

M
S

E

Rand pi
c

l

, k
i
 = 25

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

pα
e

E
rr

*

Rand pi
c

l

, k
i
 = 25

 

 

cVote
bVote

Figure 3.7: MSE and Err∗ for ensembles with a random cluster label distribution.

clusters, and when the true number of clusters is unknown, it is likely that Ū does not directly

represent an optimal cluster structure for X . Instead, it may be considered as an optimized

distributional representation, where the objects are characterized by the estimated conditional

distribution p(c0|x). Hence, distributional clustering can be applied to find optimal partitionings

of the data. In distribution clustering, objects are grouped by comparing their histograms using

divergence measures [6]. The problem is generalized by Tishby et al. [8] who introduced a method

referred to as the information bottleneck method.

In Ch. 5 the view of Ū as a distributional data representation is developed further. An

efficient agglomerative algorithm based on the information bottleneck formulation is proposed.



56

Specifically, if the desired (or meaningful) number of consensus clusters is smaller than the number

of clusters in the aggregated partition, the following definition of an optimal consensus partition

is proposed. It is defined as the most compressed summary of the aggregated distributional

representation such that maximum amount of relevant information about the data is preserved.

The proposed algorithm minimizes the average Jensen-Shannon divergence within the consensus

clusters and is applied, as described in Ch. 5, for obtaining a consensus partition, for either an

estimated or a pre-determined number of clusters, based on each voting scheme.



Chapter 4

On The Cumulative Voting Scheme

This chapter consists of two main sections. In Sec. 4.1, the properties of the cumulative voting

scheme are investigated. In Sec. 4.2, a heuristic variant of the cVote algorithm is derived.

The proposed algorithm seeks to maximize the mutual information associated with the empirical

aggregated distribution, through adaptivity to the given ensemble partitions. It is referred to

as Ada-cVote. Unlike cVote, it is characterized by the invariability of the obtained aggregated

partition to the order of the ensemble partitions and the initialization of the reference partition.

4.1 Properties of Cumulative Voting

The following are notable properties of the cumulative voting schemes.

4.1.1 Unanimity Rule

It is essential for a voting-based aggregation algorithm to satisfy the unanimity rule, defined

as follows. Whenever the input is an ensemble of identical partitions, modulo cluster label

permutation, the output aggregated partition should also be identical to the ensemble partitions.

The aggregation based on the proposed cumulative voting scheme satisfies this requirement.

57



58

Given two identical partitions U0 and Ui, the coefficient matrix Wi computed using Eq.

3.5 constitutes a binary permutation matrix, and the estimated partition is given by Vi = U0,

representing a perfect zero-error re-labeling of Ui with respect to U0. Therefore, the averaged

aggregated partition is also identical to the input partitions.

The condition of unanimity is also known as a perfect consensus [40]. In this case, the

aggregated partition is perfectly certain, where the estimated probabilities are either 0 or 1. Note

that the aggregation results in Sec. 3.3.2, for all uniform partitions with pi
e = 0, illustrate this

property using the cVote algorithm as well as the bVote algorithm.

4.1.2 Relation to Co-Association Matrix

Consider the co-association matrix representation of data partitions [22,29,31], denoted here by

M. It is a n × n matrix where each entry mgh can be viewed as a vote on the co-occurrence of

data objects xg and xh. Given an ensemble partition Ui, a corresponding co-association matrix

Mi is given by,

Mi = UiUiT (4.1)

The aggregated co-association matrix of an ensemble, denoted by M̄ is given by,

M̄ =
1

b

b∑

i=1

Mi (4.2)

Consider the relabeled partition Vi = ϑi(Ui) computed using Eq. 3.2, where Wi is computed

based on the cumulative voting scheme. The partition Vi can also be written as given by 4.3,

where D(Ui) denotes a ki × ki diagonal matrix whose lth diagonal element is equal to 1/ni
l .

Vi =
(
UiD(Ui)UiT

)
U0 (4.3)

The product (UiD(Ui)UiT ) is a n×n doubly stochastic matrix that represents the normalized

co-association matrix representation of Ui and is denoted here as M̃i. Each entry m̃i
gh is the



59

inverse of the cluster size to which the objects xg and xh belong. That is, for a pair of objects

xg, xh ∈ Ci
l (i.e., for objects assigned cluster label ci

l), the corresponding entry is given by m̃i
gh =

1/ni
l , reflecting that objects that are members of a large cluster are less likely to co-occur together

in the same cluster than objects belonging to a small cluster. According to Eq. 4.3, the entries

of Vi represent the dot products of the row vectors of M̃i and the vectors u0
.q. However, note

that it is computationally cheaper to compute Vi using Eq. 3.2 instead of 4.3.

Example 1.

Consider a reference partition U0 and an ensemble partition Ui, as given below. Using the

cumulative voting scheme, the values of Wi (as given by Eq. 3.5), Vi (as given by Eq. 3.2), and

the corresponding matrix M̃i are as given below.

U0 =

2
666666666666666664

1 0 0 0

1 0 0 0

0 1 0 0

0 1 0 0

0 0 1 0

0 0 1 0

0 0 0 1

0 0 0 1

3
777777777777777775

Ui =

2
666666666666666664

1 0 0

1 0 0

1 0 0

0 1 0

0 1 0

0 0 1

0 0 1

0 0 1

3
777777777777777775

W
i =

2
6664

0.6667 0.3333 0 0

0 0.5000 0.5000 0

0 0 0.3333 0.6667

3
7775 V

i =

2
666666666666666664

0.6667 0.3333 0 0

0.6667 0.3333 0 0

0.6667 0.3333 0 0

0 0.5000 0.5000 0

0 0.5000 0.5000 0

0 0 0.3333 0.6667

0 0 0.3333 0.6667

0 0 0.3333 0.6667

3
777777777777777775



60

fMi =

2
666666666666666664

0.3333 0.3333 0.3333 0 0 0 0 0

0.3333 0.3333 0.3333 0 0 0 0 0

0.3333 0.3333 0.3333 0 0 0 0 0

0 0 0 0.5000 0.5000 0 0 0

0 0 0 0.5000 0.5000 0 0 0

0 0 0 0 0 0.3333 0.3333 0.3333

0 0 0 0 0 0.3333 0.3333 0.3333

0 0 0 0 0 0.3333 0.3333 0.3333

3
777777777777777775

Given the relationship outlined above between the co-association matrix and the cumulative

voting scheme, a variant of the cumulative voting scheme can be derived such that, in a special

case, it gives an aggregated partition Ū that is equal to the aggregated co-association matrix M̄.

It turns out that this is easily obtained by simple modifications to the original cumulative voting

scheme and to the aggregation algorithm applied in Ch. 3. First, instead of the normalization

to 1, the rows of Wi should be constrained to sum to ni
l. Thus, an un-normalized cumulative

voting scheme is developed where the voting problem in 3.4 is written as follows.

min
Wi

1

n
tr[

(
U0 − UiWi

)T (
U0 − UiWi

)
]

Subject to

k0∑

q=1

wi
lq = ni

l.
(4.4)

That is, the problem corresponds to fitting a linear model by the least squares method, where

one is estimating the occurrence frequencies of the objects in the representative clusters, which

are described by the output variables C0 = {C0
1 , . . . , C0

k0
}.

The solution is given by Wi = UiTU0 and an estimated co-occurrence matrix of the data

objects and the reference clusters, denoted as V̀i is given by V̀i = UiWi. Note that V̀i is

equivalently expressed as given in Eq. 4.5, where the product UiTUi = Mi. However, computing

V̀i as given above is computationally cheaper compared to Eq. 4.5, which requires O(k0kin
2)

instead of O(k0kin).



61

V̀i =
(
UiUiT

)
U0 (4.5)

As for the aggregation algorithm, in order to obtain Ū = M̄, the following modifications are

required. First, a fixed-reference approach should be applied, instead of the iterative approach of

the Vote algorithm where the reference partition is updated at each step. Second, the reference

partitions should be the n identity matrix In (which corresponds to the n-partition of singleton

clusters). Under these special conditions, the aggregated representation obtained using the un-

normalized cumulative scheme is nothing but the well-known co-association matrix M̄.

Example 2.

Considering U0 and Ui as given in Example 1, Wi and V̀i are given as follows.

W
i =

2
6664

2 1 0 0

0 1 1 0

0 0 1 2

3
7775 V̀

i =

2
666666666666666664

2 1 0 0

2 1 0 0

2 1 0 0

0 1 1 0

0 1 1 0

0 0 1 2

0 0 1 2

0 0 1 2

3
777777777777777775

The voting-based aggregation algorithm implementing the un-normalized fixed-reference cu-

mulative voting scheme is presented in Algorithm 2, and is referred to as URef-cVote. The al-

gorithm estimates the joint distribution p(c0, x), which is represented by the matrix Ù, and then

uses it to compute the marginal probabilities p(xj) and the conditional distributions p(c0|xj),

where p(c0|xj) represent the soft aggregated partition Ū.

Note that the un-normalized scheme is described here for the purpose of highlighting the

relationship between the cumulative voting scheme, in general, and the co-association matrix,

which is a fundamental ensemble representation. However, the analysis presented throughout



62

Algorithm 2 URef-cVote

Function Ū = URef-cVote(U)

1: Randomly select a partition from U as a reference U0

2: Ù = 0, Ū = 0 {Initialize two k0 × n matrices Ù and Ū}.

3: for i = 1 to b do

4: Wi = UiTU0 .

5: V̀i = UiWi

6: end for

7: N =

b∑

i=1

n∑

j=1

k0∑

q=1

v̀i
jq

8: Ù =
1

N

b∑

i=1

V̀i {Ù represents the empirical joint distribution p(c0, x)}

9: for j = 1 to n do

10: Pxj
=

∑k0

q=1 ùqj .

11: ūj = ùj/Pxj
{each row vector ūj of Ū represents the distribution p(c0|xj)}

12: end for

the thesis is focused on the normalized scheme. In [39], empirical results for the un-normalized

cumulative voting scheme are presented.

4.1.3 Preserving Class Distribution

Consider the random variables {Ci}b
i=1, defined over the cluster labels of each ensemble partition

{Ui}b
i=1, with probability distribution p(ci

l) = ni
l/n (assuming hard ensemble partitions). The

optimally relabeled partition Vi computed with respect to a given reference partition U0, using

the cumulative voting scheme described in Ch. 3, is a soft partition that is viewed as representing

a conditional probability distribution pi(c0|x), where the random variable C0 is defined over

the initial reference clusters {c0
q}

k0

q=1, and X is defined over the objects x ∈ X . Suppose that

the simplifying assumption that the marginal probabilities p(xi) = 1
n
, ∀j is made. The joint

distribution pi(c0, x), based on pi(c0|x), can be computed using Bayes rule. Let p(c0) represent



63

the class distribution based on the reference partition. The class distribution pi(c0) computed

based on Vi is given by:

pi(c0
q) =

n∑

j=1

pi(c0
q , xj) =

n∑

j=1

pi(c0
q |xj)p(xj)

=

ki∑

l=1

p(c0
q|c

i
l)

ni
l

n
=

ki∑

l=1

p(c0
q |c

i
l) p(ci

l) = p(c0
q).

(4.6)

That is, the class distribution of the reference clusters is preserved by the optimally relabeled

partitions based on the cumulative voting scheme, pi(c0
q) = p(c0

q), ∀q.

Furthermore, consider the aggregated partition Ū computed using the cumulative voting

scheme as described by the cVote algorithm in Algorithm 1, which represents the empirical

probability distribution p̄(c0|x). Since Ū is computed by averaging {Vi}b
i=1, then, it follows

that the probability distribution p̄(c0) is equal to the class priors of the initial reference clusters,

p̄(c0
q) = p(c0

q),∀q.

This means that the selection of the initial reference for the cumulative voting scheme can

be used not only to specify the number of aggregated clusters k̄ = k0, but also their probability

distribution p̄(c0). The usefulness of this property is further investigated in the following section.

Specifically, this property is utilized to introduce a new variant of the cVote algorithm. The

new algorithm has several advantages over the basic cVote algorithm. First, it maximizes the

amount of information in the aggregated distributional representation of the data. Secondly, the

aggregated partition becomes invariant to the ordering of the ensemble partitions and to the

initial reference, thus, eliminating the random variations in the cVote algorithm.

It is noted that, unlike the normalized cumulative voting scheme, the un-normalized scheme

does not lead to preserving the prior probabilities of the reference classes. Note that in the case of

the un-normalized scheme, the distribution p(x) is obtained as described by the URef-cVote algo-

rithm. The objects are not considered equiprobable, instead, their probabilities are proportional

to the relative sizes of the aggregated clusters.



64

4.2 Maximizing Information Content

In this section, the proposed aggregation algorithm is presented, followed by simulation results.

4.2.1 Rationale

The Shannon entropy H(C) associated with the random variable C defined over the cluster labels

of a partition U measures the average amount of information content associated with C and is

defined as a function of its distribution p(c) as follows [79], H(C) = −
∑

c∈C p(c) log p(c). A

consequence of the property of preserving class priors for the cumulative voting scheme, the

entropies associated with the class distributions for Vi and for Ū are both equal to that of the

initially selected reference partition U0.

For an ensemble partition Ui, the value of the entropy H(Ci) depends on the number of

clusters ki and the relative cluster sizes. For partitions with approximately equal-sized clusters,

H(Ci) ≈ log2(ki). The trivial partition of n singleton clusters has the maximum entropy among

all possible partitions, with H(Ci) = log2(n), while the partition with one n-sized cluster has

zero entropy.

The mutual information I(C;X) associated with a partition U, measures the amount of

information that the random variable C contains about X, and vice-versa, and is defined as,

I(C;X) =
∑

c

∑

x

p(c, x) log
p(c, x)

p(c)p(x)
, (4.7)

and can also be written as,

I(C;X) = H(C) − H(C|X). (4.8)

For a hard ensemble partition Ui, it is noted that I(Ci;X) = H(Ci), since the value of Ci is

completely determined by the value of X (i.e., H(Ci|X) = 0).



65

Let p(c|x) denote the aggregated distribution represented by Ū, i.e., p(c|x) = p̄(c0|x), and let

I(C;X) denote the corresponding mutual information between C = C0, and X. It follows that,

H(C) = H(C0), and from Eq. 4.8, it is noted that I(C;X) is bounded from above by H(C).

Hence, I(C;X) ≤ H(C0).

Therefore, it follows that the initially selected reference partition for the cVote algorithm

determines the following measures: the entropy associated with the aggregated clusters, the initial

value of the mutual information I(C0;X), and the upper bound on the amount of information

that random variable C contains about X, as computed based on p(c|x). This result motivates

the introduction of a selection criterion for the initial reference partition based on the mutual

information I(Ci;X), or equivalently H(Ci) for hard partitions. Hence, the initial reference

partition is selected as given by Eq. 4.9.

U0 = arg max
Ui∈U

I(Ci;X) ≡ arg max
Ui∈U

H(Ci) (4.9)

Furthermore, the aggregation can be further improved if the iterative algorithm cVote greedily

selects at each aggregation step i the ensemble partition that keeps the mutual information

I0
i (C0;X) as close as possible to I0

i−1(C
0;X), where I0

i (C0;X) and I0
i−1(C

0;X) are associated

with the reference partitions computed at step i and step i−1, and representing the distributions

denoted here by p0
i (c

0|x) and p0
i−1(c

0|x), respectively. This greedy aggregation sequence limits

the loss in I(C;X) for the aggregated partition, unlike the random aggregation sequence of the

cVote algorithm, which can lead to arbitrary losses in I0
i (C0;X) and in I(C;X), in turn.

Note that p0
i (c

0, x) is the average of the relabeled partitions up to the i-th iteration, as

described in Algorithm 1, which is given as follows,

p0
i (c

0|x) = γ1 p0
i−1(c

0|x) + γ2 pi(c0|x), (4.10)

where γ1 = i−1
i

, and γ2 = 1
i

The mutual information I0
i (C0;X) is also written in terms of the Kullback-Leibler divergence



66

[79] D(.‖.), (a.k.a. relative entropy), between the joint p0
i (c

0, x) and the product distribution

p(c0)p(x) as:

I0
i (C0;X) = D(p0

i (c
0, x)‖p(c0)p(x)). (4.11)

Since p(c0) and p(x) remain constant for the cumulative voting scheme, the goal is to select

Ui that leads to pi(c0|x) being as close as possible to p0
i−1(c

0|x) (weighted by γ1 and γ2). That

is, Ui should be selected such that the divergence between pi(c0|x) and p0
i−1(c

0|x) is minimized.

A heuristic algorithm that seeks to minimize the divergence criterion is proposed. The algo-

rithm works by choosing at each aggregation step i, the ensemble partition Ui that maximizes

I(Ci;X), or equivalently H(Ci), for hard ensembles. It saves computational time as the entropies

can be computed once for each partition, prior to aggregating, rather than computing, at each

step i, the divergences between the current reference and all the remaining partitions, after rela-

beling. Furthermore, the simplified criterion represents a reasonable heuristic given the ensemble

generation mechanism that is considered in this thesis. In the experimental study presented in

Ch. 5, the adopted ensemble generation mechanism is as follows. The same base algorithm

(the k-means), with a randomly selected number of clusters, is applied to generate the ensemble

partitions. Therefore, the closer the values of I(Ci;X) or H(Ci), the more similar the cluster

structures of Ui, and hence, one can obtain the least amount of information loss, or equivalently,

minimum divergence from the current reference distribution is obtained.

4.2.2 Adaptive Algorithm

The proposed algorithm is referred to as adaptive cumulative voting, (Ada-cVote), in reference

to its “adaptivity” to a given ensemble of partitions, in such a way as to minimize the loss in the

resulting mutual information. The algorithm incorporates the selection criterion for the initial

reference partition as given by Eq. 4.9 as well as the greedy selection of the subsequent partitions

Ui, at each aggregation step i = {2, . . . , b}, so as to preserve maximum amount of information.



67

This is simply achieved in the proposed heuristic algorithm by sorting the ensemble partitions in

descending order of their entropies, H(Ci), select the first partition as the initial reference and

then aggregate the remaining partitions in the sorted order.

An important feature that is achieved as a by-product of the proposed adaptive algorithm is

that the aggregated partition becomes invariant of the order of the input partitions and of the

initial partition, unlike the Vote algorithm. This invariability is a generally desirable property for

an aggregation algorithm and it also saves the extra computations required to enhance the cVote

algorithm by performing multiple passes. The steps of the Ada-cVote algorithm are outlined in

Algorithm 3.

Algorithm 3 Ada-cVote

Function Ū = I-cVote(U)

1: Re-order U , s.t. Ui are sorted in decreasing order of I(Ci; X) (≡ H(Ci) for hard partitions)

2: Assign U1 to U0.

3: for i = 2 to b do

4: Compute Wi as given by Eq. 3.5.

5: Vi = UiWi

6: U0 = i−1
i

U0 + 1
i
Vi

7: end for

8: Ū = U0.

4.2.3 Simulation Results

In this section, cVote and Ada-cVote are compared for the partition generation models de-

scribed in Ch. 3. The two algorithms are compared by evaluating the obtained I(C;X) and

MSE(Ū; {Ui}
b
i=1) for the aggregated partitions. Furthermore, the error rates Err∗ are compared

in the case of uniform ensembles to investigate if the adaptive aggregation may reduce the error

rate for cVote, which tends to perform poorly for this type of ensemble, especially as pi
e increases

(as observed in Ch. 3). Finally, the adaptive aggregation is applied to the bipartite matching



68

scheme and a comparison of the corresponding bVote and Ada-bVote algorithms is performed,

where the latter is similar to Ada-cVote. The different is that bipartite matching is being applied

for pairwise relabeling, in place of cumulative voting.

Figure 4.1 shows I(C;X) and MSE for two instances of non uniform ensembles and one

uniform ensemble. The first non-uniform ensemble has a randomly selected ki in an arbitrary

range, ki ∈ [10, 30], and the second has randomly generated class distributions pi
cl

with ki = 6, ∀i.

The uniform ensemble has ki = 15 and a probability of error pi
e = 0.3, ∀i. The simulation results

consistently show higher I(C;X) values with Ada-cVote, for the different types of ensembles. It

is also noted that Ada-cVote leads to increased MSE values. This increase indicates lower levels

of uncertainties (i.e., crisper probabilities) in the aggregated partition, which can help regulate

the instabilities of the cVote algorithm noted in Ch 3, particularly as pi
e increases, in the case of

uniform ensembles. This hypothesis is checked by the experimental results reported in Fig. 4.2.

Figure 4.2 shows the Err∗ in the case of uniform ensembles with ki = 15 and where pi
e and

pα
e are varied in [0, 0.5]. The results show that Ada-cVote indeed leads to lower error rates

Err∗ compared to cVote with respect to possible true partitions U∗. That is, the adaptive

aggregation improves the convergence properties of the aggregated partition compared to the

underlying generating labeling. However, the bVote algorithm remains a winner, when the results

are compared to the corresponding ensemble presented in Ch. 3, in Fig. 3.5.

Figure 4.3 shows I(C;X) and MSE for the same ensembles considered above, but for the

bVote and Ada-bVote algorithms. Unlike Ada-cVote, it is noted that the adaptive aggregation

does not have a similar effect on the aggregated partitions for the bipartite matching scheme.

Notably, in the case of uniform ensembles, the results are identical with and without the adaptive

aggregation. For non-uniform ensembles, there isn’t any clear increase in I(C;X) and MSE

as observed in the case of cumulative voting, instead, the results are comparable. Hence, the

empirical evidence suggests that the adaptive aggregation is best suited for cumulative voting

rather than bipartite matching.

The difference in the effect of the adaptive aggregation on each scheme can be explained by



69

cVote Ada−cVote
2.2

2.4

2.6

2.8

3

I(
C

;X
)

k
i
 ∈  [10, 30]

cVote Ada−cVote

0.8

0.9

1

1.1

1.2

I(
C

;X
)

Rand pi
c

l

, k
i
 = 6

cVote Ada−cVote

0.05

0.1

0.15

I(
C

;X
)

k
i
 = 15, pi

e
 = 0.3

cVote Ada−cVote
0.01

0.015

0.02

0.025

0.03

0.035

0.04

M
S

E

k
i
 ∈  [10, 30]

cVote Ada−cVote

0.015

0.02

0.025

0.03

0.035

M
S

E
Rand pi

c
l

, k
i
 = 6

cVote Ada−cVote

2

4

6

8

10

12

x 10
−3

M
S

E

k
i
 = 15, pi

e
 = 0.3

Figure 4.1: I(C;X) and MSE for cVote and Ada-cVote.

the class-preserving property which is the basis for introducing the adaptive scheme and which

characterizes only the cumulative voting scheme. Furthermore, it is noted that the cumulative

voting alters the structure of the ensemble partition by estimating the uncertainties about the

assignments of the data objects so as to best match the current representative partition, whereas,

the bipartite matching simply permutes the cluster labels of the ensemble partition. Hence, the

criterion for generating a particular aggregation sequence for the ensemble partitions can lead to

a marked effect on the aggregated partition, only in the case of cumulative voting.



70

0 0.2 0.4
0

0.2

0.4

0.6

0.8

pα
e

E
rr

*

pi
e
 = 0

 

 

0 0.2 0.4
0

0.2

0.4

0.6

0.8

pα
e

E
rr

*

pi
e
 = 0.1

0 0.2 0.4
−0.2

0

0.2

0.4

0.6

pα
e

E
rr

*

pi
e
 = 0.2

0 0.2 0.4
−0.2

0

0.2

0.4

0.6

pα
e

E
rr

*

pi
e
 = 0.3

0 0.2 0.4
0

0.2

0.4

0.6

0.8

pα
e

E
rr

*

pi
e
 = 0.4

0 0.2 0.4
0.4

0.5

0.6

0.7

0.8

0.9

pα
e

E
rr

*

pi
e
 = 0.5

cVote
Ada−cVote

Figure 4.2: Err∗ for ensembles with ki = 15, where pi
e, p

α
e ∈ [0, 0.5]



71

bVote Ada−bVote

3.4

3.5

3.6

3.7

3.8

I(
C

;X
)

k
i
 ∈  [10, 30]

bVote Ada−bVote

0.38

0.4

0.42

0.44

0.46

M
S

E

k
i
 ∈  [10, 30]

bVote Ada−bVote
1.55

1.6

1.65

1.7

1.75

1.8

1.85

I(
C

;X
)

Rand pi
c

l

, k
i
 = 6

bVote Ada−bVote

0.32

0.34

0.36

0.38

0.4

M
S

E

Rand pi
c

l

, k
i
 = 6

bVote Ada−bVote

2.27

2.28

2.29

2.3

2.31

I(
C

;X
)

k
i
 = 15, pi

e
 = 0.3

bVote Ada−bVote

0.478

0.48

0.482

0.484

0.486

0.488

0.49
M

S
E

k
i
 = 15, pi

e
 = 0.3

Figure 4.3: I(C;X) and MSE for bVote and Ada-bVote.





Chapter 5

Compression of Aggregated

Representation

The goal of this chapter is to further develop the idea of considering the aggregated partition

as an optimized distributional representation of the ensemble and apply a principled information

theoretic approach to extracting a coherent and global cluster structure for the data. In Sec.

5.1, the theoretical basis is presented. In Sec. 5.2, a computationally efficient approximation

algorithm is proposed, which is based on the introduced theoretical basis for finding an optimally

compressed consensus partition. Furthermore, an approach to estimating an optimal number of

clusters is presented. In Sec. 5.3, an empirical study is presented for validating the proposed

consensus method. Finally, a summary is presented in Sec. 5.4.

5.1 Theoretical Basis

The theoretical considerations underlying the proposed consensus extraction algorithm are dis-

cussed in this section.

73



74

5.1.1 The Information-Bottleneck Method

Consider the distributional representation of the data as given by the aggregated partition Ū,

which represents the empirical probability distribution p(c|x), where C is defined here as a random

variable over a set of clusters cq ∈ C, and X is the random variable defined over the space of data

objects xj ∈ X. Assuming that p(x) = 1
n
, ∀x, the joint distribution p(c, x) can be computed

using the Bayes rule. The number of clusters k̄ in Ū will be simply denoted here as k.

Clustering of distributional data, referred to as distributional clustering, was investigated by

Pereira et al. [80], for clustering of words according to their distribution in particular syntactic

contexts, where words are represented by the relative frequency distributions of contexts in which

they appear. The relative entropy [79] between the distributions, which is also known as the

Kullback-Leibler divergence, is used as the similarity measure for clustering. The problem is

generalized by Tishby et al. [8] who introduced a method referred to as the Information Bottleneck

(IB) method.

The IB method of Tishby et. al. [8] defines a principle that deals with the extraction of an

efficient representation of relevant information. It is applicable in a variety of learning problems

and provides an approach for quantifying the notion of relevant information. Given the joint

statistics of two random variables, say X and C, one searches for a relevant quantization to

compress X as much as possible while capturing as much information as possible about C, which

is designated as the relevance variable. Since compression leads to loss of information compared

to the original data, a trade-off is sought between compressing the representation and preserving

relevant information. This is viewed as passing the mutual information between the two random

variables through a “bottleneck” formed by compact representations of X̃ [8].

That is, given p(x, c) as input, one looks for a compressed representation of X, denoted X̃ ,

that maximizes the amount of information about C in X̃, while maximizing the compression of

X. The amount of information about C in X̃ is measured by the mutual information I(X̃ ;C).

Slonim and Tishby [81] describe the problem as that of finding a mapping p(x̃|x) that mini-



75

mizes the lossy coding length of X via X̃ , I(X; X̃), under a constraint on the mutual information

to the relevance variable I(X̃ ;C). The problem is formulated as a minimization of the following

Lagrangian [8],

L[p(x̃|x)] = I(X̃ ;X) − βI(X̃ ;C), (5.1)

where β is the Lagrangian multiplier. At β = 0, one gets the most compression, mapping all

x ∈ X to a single element x̃, and as β → ∞, the most detailed representation is obtained [8].

Dhillon et al. [82] used an information-theoretic formulation similar to the IB method and

proposed a criterion based on the generalized Jensen-Shannon divergence [83] for word cluster-

ing. They developed a divisive algorithm that minimizes the within-cluster Jensen-Shannon (JS)

divergence while simultaneously maximizing the between cluster JS divergence.

5.1.2 Mutual Information and Jensen-Shannon Divergence

Slonim and Tishby present in [81] a decision-theoretic interpretation of the information bottleneck

method. Consider a decision problem with k classes C = {c1, . . . , ck}, with prior probabilities

{p(ci)}, and class conditional distributions p(x|ci) (where p(x|ci) is written here as pci
(x)). The

generalized JS divergence [83] of k class distributions is defined as given by Eq. 5.2.

JSpci

(
pc1(x), . . . , pck

(x)
)

= H
( k∑

i=1

p(ci)pci
(x)

)
−

k∑

i=1

p(ci)H(pci
(x)) (5.2)

where H(p(x)) is the Shannon entropy, also written as H(X). The JS divergence between two

distributions is symmetric, bounded, non-negative and equal to zero when pci
(x) = pcj

(x), ∀ci, cj .

Slonim et al. [81] observe that, in a decision theoretic problem, the JS divergence can be

written as,

JSpci

(
pc1(x), . . . , pck

(x)
)

= H(X) − H(X|C) = I(X;C) (5.3)



76

That is, the JS divergence of the conditional distributions is equal to the mutual information

between the object space X and the class space C. Therefore, constraining the JS divergence is

equivalent to constraining the mutual information.

Lin [83] shows that the Bayes probability of error given by 5.4, is bounded from above and

below by the JS divergence of the class conditional distributions p(x|ci), as given by Eq. 5.5.

PrBayes(err) =
∑

x∈X

p(x)(1 − max
i

p(ci|x)) (5.4)

1

4(k − 1)
(H(C) − JSpci

(pci
(x))2 ≤ PrBayes(err) ≤

1

2
(H(C) − JSpci

(pci
(x)). (5.5)

That is, bounds on the Bayesian probability of error are obtained by constraining the JS

divergence [81]. This motivates an approach to the information bottleneck problem proposed

in [81] that is based on a greedy bottom-up merging, referred to as Agglomerative Information

Bottleneck algorithm (abbreviated here by AIB). Given as input p(x, c), the algorithm computes

a hierarchy of m-partitions of X, denoted here as X̃m, for 1 ≤ m ≤ n. At each step, a greedy

merge of components of the current partition that minimizes the loss of mutual information

is performed, which is achieved by merging the components with the minimum JS divergence

between the corresponding conditional distributions (p(c|x̃)). The algorithm further provides

a measure of efficiency I(X̃m;X) whereby the quality of each X̃m partition is defined as the

fraction of the mutual information between C and X that X̃m captures. The result is a curve

of I(X̃m,X)/I(C,X) versus m. The loss in mutual information δ(m), at each merging step is

given as δ(m) = I(X̃m;X)−I(X̃m−1;X)
I(C;X) . A drop in δ(m) indicates that a meaningful value for m was

reached and that further merging results in significant loss of mutual information. The algorithm

has a complexity of O(n2).



77

5.2 Efficient Agglomerative Algorithm

In this section, the proposed algorithm for the extraction of a consensus partition based on the

aggregated distributional representation of the ensemble is described.

5.2.1 Formulation

Consider the problem of extracting an optimal partition Û with k̂ clusters, based on the esti-

mated probability distribution p(c|x), as given by the aggregated partition Ū. This problem is

formulated as the converse of the IB problem defined in Sec. 5.1.1 and addressed in Sec. 5.1.2.

Specifically, one seeks a compressed representation of the random variable C (instead of X), de-

noted C̃, that maximizes the amount of information about X in C̃, I(C̃;X), while maximizing

the compression of C. This leads to limiting the search for Û to values of k̂ such that 1 ≤ k̂ ≤ k,

rather than 1 ≤ k̂ ≤ n, where k ≪ n. The proposed formulation allows us to develop an ag-

glomerative JS divergence based algorithm that is computationally more efficient than the AIB

algorithm. The algorithm draws on the theoretical considerations presented earlier, while having

a linear computational complexity in n.

Note that for a O(n2) computational cost, one can use co-association-based consensus algo-

rithms, which provide a simpler and competitive approach compared to voting-based consensus

methods. So, one of the main advantages of the proposed method is the linear complexity in

n, which makes it attractive for clustering problems with a large number of data objects. The

limitation is that the possible number of clusters for the sought partition Û is assumed to be not

larger than the number of clusters of the aggregated partition.

Consider the conditional distributions pci
(x) = p(x|ci), and prior probabilities p(ci). Let a

pair of distributions be denoted as pcl
(x), and pcq(x), ∀l, q ∈ {1, . . . , k}, l 6= q, with priors p(cl)

and p(cq), respectively. Let the weights βl and βq be given by βl = p(cl)
p(cl)+p(cq) , and βq =

p(cq)
p(cl)+p(cq) .

The JS divergence between two distributions pcl
(x) and pcq(x) is given by [83],



78

JSβ(pcl
(x), pcq(x)) = H(βlpcl

(x) + βqpcq(x)) − βlH(pcl
(x)) − βqH(pcq(x)). (5.6)

The proposed algorithm follows an agglomerative greedy approach, where the distributions

{p(x|c)} are merged incrementally at each step. Note that unlike the AIB algorithm, which merges

the distributions {p(c|x)}, the cost of computing the JS divergences for {p(x|c)} is O(n), using the

proposed algorithm. So, to further cut down the computation time, JSβ is computed between each

pair of the k distributions, producing k(k−1)/2 divergences. The computed pairwise divergences

are then used as input to a hierarchical algorithm with a suitable objective. The group average

(average link) is uses, which, at each merging step, minimizes the average pairwise divergences

between the members’ distributions of the merged clusters.

The proposed algorithm starts with a k-partition where each distribution p(x|ci) ∈ {p(x|ci)}
k
i=1

is assigned to a singleton cluster. It produces a hierarchy of k̃-partitions, for 1 ≤ k̃ ≤ k, each

corresponding to the compressed representation of X and a k̃-class variable denoted here by C̃
k̃
.

At a given level k̃ of the hierarchy, let Sg and Sh denote any two clusters of distributions, with

cardinalities |Sg| and |Sh|, respectively. That is, a cluster Sg is assigned a number Sg ≥ 1 of

distributions {p(x|cg
l )}

|Sg|
l=1 . The cost function minimized by the average link algorithm is written

as given by Eq. 5.7.

1

|Sg||Sh|

∑

p(x|cg

l
)∈Sg

∑

p(x|ch
r )∈Sh

JSβ(p(x|cg
l ), p(x|ch

r )). (5.7)

By minimizing the average JS divergence within the cluster, at each merging step, the algo-

rithm approximately minimizes loss of mutual information I(C̃;X) as shown in [81]. Furthermore,

minimization of the classification error is achieved as a result of the bounds established in [83],

as outlined above.

Like the AIB algorithm, a measure of efficiency of the obtained representations at each level

of the hierarchy can be defined to estimate an optimal number of clusters. The defined measure

is described below.



79

5.2.2 Optimal Partition Estimation

Given the hierarchical partitioning obtained by the agglomerative algorithm, one may be inter-

ested in extracting a partition Û with a pre-specified number of clusters, or also in estimating an

optimal number of clusters, where 2 ≤ k̂ ≤ k. First, the computation of the partition Û, given

that k̂ has been determined (either estimated or pre-specified) is outlined. Then, the proposed

approach for estimating an optimal number of clusters is described.

Given a value for k̂, the dendrogram is cut at k̂, and the k̂-partition is obtained as follows.

Let {Sg}
k̂
g=1 denote the clusters of merged distributions at level k̂ of the hierarchy. The priors

for the k̂ classes, denoted by {p(c̃i)}
k̂
i=1 are computed as follows:

p̂(c̃i) =
∑

1≤l≤|Sg|

p(cg
l ). (5.8)

The joint distributions {p((x, c̃i)}
k̂
i=1 are computed as given by Eq. 5.9

p̂(x, c̃i) =
∑

1≤l≤|Sg|

p(x|cg
l )p(cg

l ) (5.9)

Using 5.9, Û is obtained as the estimated conditional distribution p(c̃|x), and a hard labeling

ŷ can be obtained by assigning each x ∈ X to its most likely cluster c̃ ∈ C̃.

As for estimating an optimal value for k̂, the idea of a k̃-cluster lifetime described in [25] is

applied on the merging JS divergence thresholds. Specifically, the optimal k̂ is defined as the

number of clusters with the longest lifetime, where the lifetime of each k̃ is defined as the range

of distance threshold values that lead to a k̃-partition solution. It is computed as the difference

between the minimum and maximum distances that lead to merging the input patterns into k̃

clusters. In other words, the lifetime of k̃ is the difference between the merging distance leading

to a k̃-partition and that leading to a (k̃ − 1)-partition in the obtained dendrogram.

The proposed agglomerative algorithm, referred to as JS-ALink, is outlined in Algorithm 4.

It takes as input the estimated distribution p(c, x) based on the aggregated partition Ū and



80

computes a hierarchy of k̃-partitions as described above. There is an option to specify a value

for k̂, where k̂ < k. If no value of k̂ is given as input, the algorithm estimates the optimal k̂

corresponding to the most efficient partition of the data which preserves the maximum amount

of relevant information, as discussed in the theoretical basis presented earlier in this chapter.

Algorithm 4 The JS-ALink Algorithm

Function Û = JS-ALink(p(c, x), [k̂])

1: Compute JSβ divergence between each pair of the distributions {p(x|ci)}
k
i=1 using Eq. 5.6

2: Apply the hierarchical average link algorithm on the list of k(k−1)
2 JSβ divergences.

3: if k̂ is Not specified then

4: Find k̂ with longest lifetime

5: end if

6: Estimate Û Using Eqs. 5.8 and 5.9

5.3 Empirical Study

To validate the proposed cumulative voting algorithm Ada-cVote in conjunction with the agglom-

erative JS-Alink algorithm, experimental results on artificial and real datasets are presented.

Furthermore, the JS-ALink algorithm is applied in conjunction with the bVote algorithm in or-

der to compare the two voting schemes. In both cases, the algorithms are evaluated for extracting

a partition with a pre-determined number of clusters and for estimating an optimal number of

clusters and a corresponding partition.

Moreover, the performance of the voting-based algorithms is compared with several recent

consensus algorithms using external and internal measures. Sec. 5.3.1 outlines the consensus

algorithms used in the comparative evaluation. Sec. 5.3.2 presents a description of the datasets.

The ensemble generation mechanism is described in Sec. 5.3.3. In Sec. 5.3.4, the adopted

performance evaluation measures are defined. The experimental results are presented in Sec.

5.3.5 for artificial datasets and in Sec. 5.3.6 for real datasets. Finally, in Sec. 5.4, a summary of



81

the empirical study is presented.

5.3.1 Consensus Algorithms

The Ada-cVote combined with the JS-Alink algorithm is abbreviated by ACV (Adaptive Cu-

mulative Voting), in the case where the optimal number of clusters k̂ is being estimated. On the

other hand, when the number of clusters is pre-determined, the combined algorithms are denoted

as ACV-k. Similarly, when applying the bVote with the JS-Alink algorithm, the consensus al-

gorithm is abbreviated by BV (Binary/Bipartite Voting), in the case where k̂ is being estimated.

When k̂ is pre-determined, it is abbreviated by BV-k.

The other consensus algorithms applied in the comparative evaluation are described below.

All of the algorithms have been implemented using MATLAB.� The evidence accumulation consensus (EAC) algorithms [25], where each of the hierarchi-

cal single link and average link algorithms are applied on the co-association matrix. The

corresponding algorithms are referred to as EAC-S and EAC-A for the single and average

link, respectively. The EAC algorithms were implemented as follows. The co-association

matrix is computed and a distance function (1−co-association ratio) is calculated and used

as input for the hierarchical algorithms.� The graph-based algorithms: CSPA, HGPA, and MCLA [29]. The implementation provided

at the authors’ website1 was used.� The quadratic mutual information algorithm, QMI [30,38]. The algorithm was implemented

as specified by the authors. A standardization is applied to transform the cluster labels

into quantitative features by replacing the i-th partition by ki binary features. Then, each

binary feature is standardized to a zero mean. The k-means algorithm is applied on the

1http://www.strehl.com/



82

transformed data to find the consensus clustering (10 runs for the k-means algorithm are

performed and clustering with minimum mean squared error is selected).

5.3.2 Data Sets

−0.5 0 0.5
−0.2

0

0.2

0.4

0.6

0.8

d
1

d 2

2D2K

 

 

−5 0 5 10
−10

−5

0

5

10

d
1

d 2

Four−Gauss

−10 0 10
−10

−5

0

5

10

d
1

d 2

Easy−doughnut

−10 0 10
−10

−5

0

5

10

d
1

d 2

Difficult−doughnut

−10 0 10
−10

−5

0

5

10

d
1

d 2

Two−Gauss

−1 0 1
−1

−0.5

0

0.5

1

PC
1

P
C

2

8D5K

Figure 5.1: Artificial datasets. Each cluster indicated by a distinct symbol.

Table 5.1 summarizes the characteristics of the datasets used in the experiments, along with

the accuracy as measured by the adjusted Rand Index [13] for the k-means algorithm (or spherical

k-means for text data) compared to the true clustering, where k is set to the true number of



83

clusters. The mean and standard deviation (std) over 25 runs are shown.

Two-dimensional plots of the artificial datasets are shown in Fig. 5.1, where the 8D5k dataset

is projected onto the first two principal components, whereas the four Gauss, easy doughnut,

and difficult doughnut datasets are plotted against the first two dimensions. Below are further

description of the datasets.

Table 5.1: Characteristics of the datasets and ARI values for the k-means (mean ± std).

Dataset n d k Class k-means

distribution ARI

Artificial Datasets

2D2K 1000 2 2 50% each 0.92 ± 0.00

8D5K 1000 8 5 20% each 0.86 ± 0.16

Four Gauss 400 12 4 25% each 0.81 ± 0.21

Easy doughnut 300 12 2 50% each 0.15 ± 0.02

Difficult doughnut 300 12 2 50% each 0.15 ± 0.01

Two Gauss 300 2 2 33%-67% 0.81 ± 0.00

Real Datasets

Breast cancer 683 9 2 65%-35% 0.84 ± 0.00

Optical digits 500 64 10 ∼ 10% each 0.60 ± 0.05

Yahoo! 2340 1458 6 ∼ 6-59-21-5-6-3% 0.42 ± 0.08

For the artificial data, five datasets that were generated and used in previous related work

are used, and one additional dataset is designed. They are described as follows.� The 2D2K and 8D5K datasets2 were generated in [29]. The 2D2K consists two 2-dimensional

Gaussian clusters with 500 points each. The clusters have different means and equal variance

and they slightly overlap. The 8D5K consists of 1000 points generated from 5 8-d Gaussian

distributions (200 points each). Clusters have the same variance, and means were drawn

from a uniform distribution within the unit hypercube [29].� The Four Gauss, easy doughnut, and difficult doughnut datasets3 were generated in [36] .

2Datasets available at http://www.strehl.com/
3MATLAB functions for generating the datasets are available from http://www.informatics.bangor.ac.uk/˜kuncheva/



84

They are 12-d, where the first 2 dimensions are meaningful, while the remaining 10 consist

of uniformly generated random noise.� The Two Gauss dataset is a mixture of two Gaussian clusters with unbalanced sizes (100

and 200 points), different means and covariance matrices, and a slight overlap.

For the real data, the following publicly available datasets are used:� The Wisconsin breast cancer dataset [84] is available from the UCI machine learning repos-

itory. It consists of 683 patterns (after the removal of patterns with missing values) in 9

integer-valued dimensions with values in [1, 10]. The dataset contains 2 classes with 444

designated as benign and 239 as malignant samples.� The optical recognition of handwritten digits (optical digits) dataset is available from the

UCI machine learning repository. A random sample of size 500 patterns is generated from

the training set. Patterns are described by 64 integer-valued features in [0, 16]. The data

has 10 classes representing each digit, which are approximately equal sized.� The Yahoo! dataset4. It consists of 2340 documents parsed from Yahoo! news web-pages. It

has 6 classes: business, entertainment, health, politics, sports, and technology. The dataset

has a high dimensionality, and the problem is compounded by highly unbalanced class

sizes. There is also an alternative classification for this dataset which consists of 20 classes,

whereby the Entertainment class is subdivided as follows; no sub-category, art, cable, cul-

ture, film, industry, media, multimedia, music, online, people, review, stage, television,

variety. That is, 15 out of 20 classes are subclasses of the superclass “Entertainment”. The

subgroups are as small as 9 documents per class. In addition, there are subgroups desig-

nated as “no subcategory” and “variety” which doesn’t indicate classes with a consistent

content. Other subgroups have labels that indicate some similar content. Hence, the 6-class

categorization is considered the true clustering.

4Data available at http://ftp.cs.umn.edu/dept/users/boley/PDDPdata/doc-K/



85

5.3.3 Ensemble Generation Technique

The ensemble generation techniques proposed in [25,36] are applied here. The ensembles consist

of partitions with overproduced clusters (i.e., ki is larger than the desired or suspected number

of clusters). Furthermore, ensembles where the number of overproduced clusters is randomly

selected for each partition [25, 36] are also generated. In this case, ki is generated randomly in

a range [kmin, kmax] that is specified as input. This strategy induces higher variability among

the ensemble partitions. In general, the range [kmin, kmax] can be varied in a search for stable

consensus partitions for each dataset. In the experiments, kmin is usually selected as a multiple

of the desired number of clusters, and kmax is set to any relatively larger value.

The k-means algorithm with Euclidean distance (or with the cosine measure in the case of

text data) is applied as the base clustering algorithm. By default, b = 25, and the number of runs

per any setting is 25. For the bVote algorithm, 10 passes over the algorithm are performed and

the aggregated partition Ū with the minimum MSE value is used subsequently in conjunction

with the JS-ALink algorithm. For datasets with sizes n ≤ 1000, all consensus algorithms outlined

earlier are applied. However, for larger datasets, co-association based algorithms with quadratic

complexity in n are excluded.

Note that for ensembles with ki constant for all i and equal to the desired number of clusters

in the consensus partition, and where the partitions are generally uniform (i.e., they are generated

using the same base clustering algorithm), the simulation-based analysis demonstrated that the

bipartite matching scheme is more suitable than the cumulative voting scheme. Therefore, the

focus in the empirical analysis presented in this chapter is on the alternative ensemble generation

mechanisms described above.

5.3.4 Performance Evaluation

To evaluate the quality of the consensus partition extracted by the different consensus algorithms,

one external and one internal evaluation measure are used, both of which are widely applied in



86

the data clustering literature. For the external measure, the adjusted Rand index (ARI) [13] is

used as a measure of agreement between the extracted partition and the true clustering for the

dataset, which is available externally. For the internal measure, the Average Normalized Mutual

Information (ANMI) defined in [29] between the hard consensus partition and members of the

ensemble {Ui}b
i=1 is used. The normalized mutual information NMI is a pairwise measure of the

statistical information shared between two different clusterings represented as categorical random

variables.

The ARI measure is computed as follows. Let the true partition be denoted by U∗, and let

Û denote the extracted consensus partition (after conversion to a hard partition, in the case

of voting-based algorithms). Let nlq denote the number of objects that are in both the l-th

cluster of U∗, and the q-th cluster of Û. Let nl. and n.q denote the number of objects in the

l-th cluster of U∗ and the q-th cluster of Û, respectively. The general form of the index is given

by index - expected index
maximum index - expected index

. The expected value of ARI is zero and its maximum value is 1.

Hence, there is a wide range of values that the ARI index can take compared to measures taking

values between 0 and 1, thus increasing the sensitivity of the index [13]. The ARI takes the value

0 when the index equals its expected value. It is defined as given below in Eq. 5.10.

ARI =

∑
l,q

(
nlq

2

)
−

[∑
l

(
nl.

2

) ∑
q

(
n.q

2

)]
/
(
n
2

)

1
2

[∑
l

(
nl.

2

) ∑
q

(
n.q

2

)]
−

[∑
l

(
nl.

2

)∑
q

(
n.q

2

)]
/
(
n
2

) . (5.10)

The ANMI measure is defined as follows. Let ni
lq denote the number of objects that are in

both the l-th cluster of Ui, and the q-th cluster of Û, while ni
l., and n.q denote the number of

objects in the l-th cluster of Ui, and the q-th cluster of Û, respectively. The NMI is defined

between Û, and Ui below in Eq. 5.11, and the ANMI is given by Eq. 5.12.



87

NMI(Û,Ui) =

∑ki

l=1

∑k̂
q=1 ni

lq log

(
n×ni

lq

ni
l.
×n.q

)

√(∑ki

l=1 ni
l. log

ni
l.

n

)(∑k̂
q=1 n.q log

n.q

n

) (5.11)

ANMI(Û; {Ui}b
i=1) =

1

b

b∑

i=1

NMI(Û,Ui) (5.12)

For each experimental setting for a given dataset, the results are presented in two figures as

follows. In the first figure, the results for the consensus partition with a pre-determined number

of clusters are presented, where the distributions of the obtained ARI and ANMI values are shown

as box-plots for ACV-k, BV-k, EAC-S, EAC-A, CSPA, HGPA, MCLA, and QMI. The second

figure shows the results for the voting-based consensus algorithms, when an optimal number of

clusters is estimated based on computed lifetimes. Specifically, the distributions of the ARI and

ANMI for ACV versus BV are plotted, as well as pareto charts depicting the estimated k̂ values

drawn as bars in descending order of the number of times each value is estimated in 25 runs.

The right vertical axis of a pareto chart shows the cumulative percentage of the total number of

occurrences of k̂. The first 95% of the cumulative distribution is displayed.

5.3.5 Results for Artificial Datasets

The results for the 2D2K dataset, where ensembles are generated with a variable number of

clusters ki ∈ [6, 20], are shown in Fig. 5.2 for a pre-determined number of clusters k = 2 and in

Fig. 5.3 where an estimated value for k is computed.

As observed from Figs. 5.2 and 5.3, the ACV-k and ACV algorithms extract highly accurate

partitions, as indicated by the ARI values and the estimated k values. The ARI results for

ACV-k and ACV are significantly higher than BV-k, EAC-S, HGPA, QMI, and BV, and they are

comparable with the most accurate consensus algorithms, which in this case are EAC-A, CSPA,

and MCLA. Furthermore, it is noted that estimates of k are perfect as indicated by the pareto

chart in Fig. 5.3 for ACV (k = 2 is estimated in 100% of the runs). On the other hand, k is



88

ACV−k BV−k EAC−S EAC−A CSPA HGPA MCLA QMI

0

0.2

0.4

0.6

0.8

1

A
R

I

ACV−k BV−k EAC−S EAC−A CSPA HGPA MCLA QMI

0

0.1

0.2

0.3

0.4

0.5

A
N

M
I

Figure 5.2: Results for the 2D2K dataset with pre-determined k = 2 and ki ∈ [6, 20]

quite poorly estimated using the BV algorithm. Notably, large values for k are estimated using

BV, indicating an inability to extract the global cluster structure inherent in the data. It is

further noted that while the ANMI results are consistent with the ARI results in Fig. 5.2, they

are inconsistent in Fig. 5.3. The high ANMI values for BV appear to be an effect of its large

estimated k values. In [25], it is observed that the NMI criterion is biased toward the average

number of clusters in ensemble partitions, and that maximizing it is effective only under the

assumption that the number of clusters in the consensus partition is known.

Comparing the ARI results of the different consensus algorithms versus the single k-means

with k = 2 (Table 5.1), It is noted that a few consensus algorithms (BV-k, EAC-S, HGPA, and

QMI) extract a consensus partition that is significantly less accurate than that obtained using

the single k-means. In other words, combining the k-means partitions with random ki using

these algorithms doesn’t lead to discovering the global cluster structure of the data that the same

base algorithm reveals when k is set to the true number of clusters. As for the other consensus



89

ACV BV

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
R

I

ACV BV

0.5

0.55

0.6

0.65

0.7

0.75

A
N

M
I

 2
0

5

10

15

20

25

0%

20%

40%

60%

80%

100%
# of times each k is estimated using ACV

20 18 19 17 14  9 16 15 13 12
0

5

10

15

20

25

0%

20%

40%

60%

80%

100%
# of times each k is estimated using BV

Figure 5.3: Results for the 2D2K dataset with ki ∈ [6, 20], where k is estimated.

algorithms (ACV-k, EAC-A, CSPA, and MCLA), they are comparable with the single k-means,

which successfully extracts the cluster structure of the 2D2K dataset.

The results for the 8D5K dataset, where ensembles are generated with ki ∈ [10, 30], are shown

in Fig. 5.4 for a pre-determined number of clusters k = 5 and in Fig. 5.5 where an estimated

value for k is computed using each of the voting-based consensus algorithms.

For pre-determined k = 5, all the consensus algorithms give perfect (or almost perfect) ARI

results for the 8D5K dataset. The results are more stable compared to the single k-means.

As for the results with estimated k, the BV algorithm is not stable. Estimates of k are perfect

for the ACV algorithm as indicated by the pareto chart in Fig. 5.5 (k = 5 is estimated in 100%

of the runs). On the other hand, correct k = 5 is estimated in approximately 50% of the runs for

the BV algorithm, with other estimated values being generally quite large. The ANMI results

are consistent with the ARI results, except again for BV versus ACV, as noted before.



90

ACV−k BV−k EAC−S EAC−A CSPA HGPA MCLA QMI

0.75

0.8

0.85

0.9

0.95

1

A
R

I

ACV−k BV−k EAC−S EAC−A CSPA HGPA MCLA QMI

0.68

0.7

0.72

0.74

0.76

A
N

M
I

Figure 5.4: Results for the 8D5K dataset with pre-determined k = 5 and ki ∈ [10, 30]

The results for the four Gauss dataset, where ensembles are generated with ki ∈ [10, 20],

are shown in Fig. 5.6 for a pre-determined number of clusters k = 4 and in Fig. 5.7 where an

estimated value for k is computed.

The results are similar to the 8D5k dataset. All the consensus algorithms give perfect ARI

results, which are also more stable compared to the single k-means with k = 4. However, it

noted that unlike BV-k, the ARI results for BV are not stable, and generally much less accurate.

Estimates of k using the ACV algorithm are perfect as indicated by the pareto chart in Fig. 5.7

(k = 4 is estimated in 100% of the runs), whereas correct k = 4 is estimated in approximately

40% of the runs for the BV algorithm, with remaining estimated values being relatively large.

The same observation about the ANMI results is noted, which is consistent with the previous

datasets.

The results for the easy doughnut dataset, where ensembles are generated with ki ∈ [6, 12],

are shown in Fig. 5.8 for a pre-determined number of clusters k = 2 and in Fig. 5.9 where an



91

ACV BV

0.4

0.5

0.6

0.7

0.8

0.9

1

A
R

I

ACV BV

0.7

0.72

0.74

0.76

A
N

M
I

 5
0

5

10

15

20

25

0%

20%

40%

60%

80%

100%
# of times each k is estimated using ACV

 5 30 29 28 27  7
0

5

10

15

20

25

0%

20%

40%

60%

80%

100%
# of times each k is estimated using BV

Figure 5.5: Results for the 8D5K dataset with ki ∈ [10, 30], where k is estimated.

estimated value for k is computed.

The dataset has a spiral cluster structure that the k-means algorithm is not capable of dis-

covering. This k-means failure is reflected by the ARI values in Table 5.1.

As observed in Fig. 5.8, all consensus algorithms, except BV-k, lead to consensus partitions

with perfect accuracy as indicated by the ARI results for the easy doughnut dataset. Furthermore,

estimates of k are perfect for the ACV algorithm, where k = 2 is estimated in 96% of the runs,

as observed in Fig. 5.9. However, the true k = 2 is never correctly estimated using the BV

algorithm, and consensus partitions with low-accuracy are obtained. Estimated values of k are

again relatively large, and the same observation about the ANMI results is noted, which is again

consistent with the previous datasets.

The results for the difficult doughnut dataset, where ensembles are generated with ki ∈ [6, 12],

are shown in Fig. 5.10 for a pre-determined number of clusters k = 2 and in Fig. 5.11 where an



92

ACV−k BV−k EAC−S EAC−A CSPA HGPA MCLA QMI
0.7

0.75

0.8

0.85

0.9

0.95

1

A
R

I

ACV−k BV−k EAC−S EAC−A CSPA HGPA MCLA QMI

0.64

0.66

0.68

0.7

0.72

0.74

A
N

M
I

Figure 5.6: Results for the four Gauss dataset with pre-determined k = 4 and ki ∈ [10, 20]

estimated value for k is computed.

The dataset has a spiral but more difficult cluster structure than the previous dataset due to

less separation between the clusters. The k-means algorithm fails in discovering the true partition,

as reflected by the ARI values in Table 5.1.

As observed in Fig. 5.10, all consensus algorithms, except BV-k, lead to consensus parti-

tions with very high accuracy. Furthermore, estimated partitions using the ACV algorithm are

considerably more accurate compared to the BV algorithm. Correct estimates of k for the ACV

algorithm are achieved in 48% of the runs, which is a lower percentage compared to other datasets

with easier cluster structures. One the other hand, for the BV algorithm, it is noted that in none

of the runs was the true k = 2 correctly estimated.

Figures 5.12 and 5.13 show the results for the two Gauss dataset where ensembles are generated

with a variable number of clusters ki ∈ [8, 16], when a pre-determined number of clusters k = 2

is given, and when an estimated value for k is sought, respectively.



93

ACV BV

0.4

0.5

0.6

0.7

0.8

0.9

1

A
R

I

ACV BV

0.72

0.725

0.73

0.735

0.74

0.745

A
N

M
I

 4
0

5

10

15

20

25

0%

20%

40%

60%

80%

100%
# of times each k is estimated using ACV

 4 20 19 18
0

5

10

15

20

25
# of times each k is estimated using BV

0%

20%

40%

60%

80%

100%

Figure 5.7: Results for the four Gauss dataset with ki ∈ [10, 20], where k is estimated.

The consensus partitions obtained using the ACV-k algorithm are significantly more accurate

compared to all other consensus algorithms. On the other hand, BV-k performs quite poorly in

this case. The true cluster structure of the two Gauss dataset is relatively difficult to extract. It

is noted that correct estimates of k for the ACV algorithm are achieved in 52% of the runs. For

the BV algorithm, estimated values of k are again generally large, and in none of runs was the

true k = 2 correctly estimated.

5.3.6 Results for Real Datasets

The results for the breast cancer dataset, where ensembles are generated with ki ∈ [6, 12], are

presented in Fig. 5.14 for a pre-determined number of clusters k = 2 and in Fig. 5.15 where

an estimated value for k is computed. Furthermore, results for ensembles with ki = 15, ∀i are

shown in Figs. 5.16 and 5.17.



94

ACV−k BV−k EAC−S EAC−A CSPA HGPA MCLA QMI
0

0.2

0.4

0.6

0.8

1

A
R

I

ACV−k BV−k EAC−S EAC−A CSPA HGPA MCLA QMI
0.25

0.3

0.35

0.4

0.45

0.5

0.55

A
N

M
I

Figure 5.8: Results for the easy doughnut dataset with pre-determined k = 2 and ki ∈ [6, 12]

As observed in Fig. 5.14, the quality of the consensus partitions obtained using ACV-k and

ACV is better than that obtained using all other consensus algorithms, where the improvement

is substantial in most cases. Furthermore, the true number of clusters is correctly estimated as

observed in Fig. 5.15. On the other hand, BV and BV-k perform quite poorly.

Moreover, as observed in Figs. 5.16 and 5.17, the consensus partitions obtained using ACV and

ACV-k are as accurate and robust as EAC-A and substantially better than all other consensus

algorithms. The estimated number of clusters are also quite accurate, whereas BV and BV-k

perform relatively poorly. Notably, the number of estimated clusters using BV is almost always

equal to ki. This result indicates that when ki is fixed, the bipartite matching scheme causes the

aggregation to be tied to this value, unlike the cumulative voting scheme, which is more effective

in enabling the global cluster structures to be discovered.

The results for the optical digits dataset, where ensembles are generated with ki ∈ [15, 30],

are presented in Fig. 5.18 for a pre-determined number of clusters k = 10 and in Fig. 5.19 where



95

ACV BV
0.2

0.4

0.6

0.8

1

A
R

I

ACV BV
0.55

0.6

0.65

0.7

0.75

0.8

A
N

M
I

 2
0

5

10

15

20

25

0%

20%

40%

60%

80%

100%
# of times each k is estimated using ACV

12 11  5
0

5

10

15

20

25

0%

20%

40%

60%

80%

100%
# of times each k is estimated using BV

Figure 5.9: Results for the easy doughnut dataset with ki ∈ [6, 12], where k is estimated.

an estimated value for k is computed. Furthermore, results for ensembles with ki = 30, ∀i are

shown in Figs. 5.20 and 5.21.

As observed in Fig. 5.18, the quality of the consensus partitions obtained using ACV-k is

comparable with the best performing consensus algorithms and is better than the single k-means

with k = 10 (Table 5.1). Furthermore, the estimated number of clusters are close to 10 using

ACV, where also relatively accurate consensus partitions are estimated as noted from the ARI

values in Fig. 5.19. On the other hand, BV and BV-k are less accurate and estimated cluster

structure is quite fragmented as noted from the large estimates for the number of clusters.

Furthermore, as observed in Figs. 5.20 and 5.21, the results are consistent with the case of

ensembles with a variable number of clusters. It is again noted that BV leads only to solutions

with estimated number of clusters equals to ki (which is 30 in this case). These results demonstrate

the limitations of the bipartite matching scheme with this type of ensemble.



96

ACV−k BV−k EAC−S EAC−A CSPA HGPA MCLA QMI
0

0.2

0.4

0.6

0.8

1

A
R

I

ACV−k BV−k EAC−S EAC−A CSPA HGPA MCLA QMI

0.3

0.35

0.4

0.45

0.5

0.55

0.6

A
N

M
I

Figure 5.10: Results for the difficult doughnut dataset with pre-determined k = 2 and ki ∈ [6, 12]

The results for the yahoo! dataset, where ensembles are generated with ki ∈ [12, 24], are

presented in Fig. 5.22 for a pre-determined number of clusters k = 6 and in Fig. 5.23 where

an estimated value for k is computed. Furthermore, results for ensembles with ki = 24, ∀i are

shown in Figs. 5.24 and 5.25.

It is noted that for the yahoo! dataset, only the O(n) algorithms are applied, whereas

the O(n2) consensus algorithms are excluded as they are computationally burdensome for large

datasets. Furthermore, previous results on smaller datasets do not suggest that significant gains

in accuracy may be anticipated compared to ACV-k. It is noted that ACV-k is generally com-

petitive compared to EAC-A, which is one of the most consistently well-performing algorithms.

As observed in Fig. 5.22, the accuracy of the obtained consensus partitions using ACV-k

is substantially better than that obtained using all other consensus algorithms, as indicated by

the ARI measure. The ACV-k algorithm also achieves significant accuracy gains over the single

k-means algorithm.



97

ACV BV

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
R

I

ACV BV

0.6

0.65

0.7

0.75

A
N

M
I

 2  6  7  5  4
0

5

10

15

20

25

0%

20%

40%

60%

80%

100%
# of times each k is estimated using ACV

12  6  7  4 10
0

5

10

15

20

25

0%

20%

40%

60%

80%

100%
# of times each k is estimated using BV

Figure 5.11: Results for the difficult doughnut dataset with ki ∈ [6, 12], where k is estimated.

As for the ACV algorithm, gains in accuracy are still achieved in the estimated consensus

partition as indicated in Fig. 5.24. However, the exact number of clusters is quite difficult to

determine for the yahoo! dataset. Estimated values using ACV reflect that the global cluster

structure is detected to some extent, whereas the results using BV appear to be poor as indicated

by observing the ARI values and the estimated number of clusters.

Furthermore, the results in Fig. 5.24 show that the performance of the ACV-k algorithm ex-

ceeds all other consensus algorithms. Estimated values using ACV show that reasonably accurate

results are achievable, whereas the BV algorithm leads to a substantially less accurate solution

with the estimated number of consensus clusters exclusively limited to k = 24 clusters.

5.4 Summary

In this section, a summary of the empirical study and the conclusions are presented.



98

ACV−k BV−k EAC−S EAC−A CSPA HGPA MCLA QMI

0

0.2

0.4

0.6

0.8

A
R

I

ACV−k BV−k EAC−S EAC−A CSPA HGPA MCLA QMI

0.25

0.3

0.35

0.4

0.45

0.5

A
N

M
I

Figure 5.12: Results for the two Gauss dataset with pre-determined k = 2 and ki ∈ [8, 16]

5.4.1 Results Summary

Table 5.2 summarizes the empirical results for all the experiments reported in this chapter. The

summary is based on the accuracy of the consensus partitions as measured by the ARI. The table

highlights the winners between the voting-based consensus algorithms ACV versus BV, ACV-k

versus BV-k, as well as the overall winner among all consensus algorithms for pre-determined k,

including ACV-k and BV-k. If several consensus algorithms have a comparable performance (as

indicated by their corresponding boxplots), a list of winners is given.

For all the ensembles generated in the empirical study, it is noted that each of the proposed

ACV and ACV-k algorithms wins over BV and BV-k, respectively, almost always. Furthermore,

the ACV-k is always the overall winner or one of the overall winners, as noted in Table 5.2.



99

ACV BV
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
R

I

ACV BV

0.5

0.6

0.7

0.8

A
N

M
I

 2  4  3 10  7
0

5

10

15

20

25

0%

20%

40%

60%

80%

100%
# of times each k is estimated using ACV

16 15 14 11 12 10
0

5

10

15

20

25

0%

20%

40%

60%

80%

100%
# of times each k is estimated using BV

Figure 5.13: Results for the two Gauss dataset with ki ∈ [6, 18], where k is estimated.

5.4.2 Conclusion

In this chapter, partition ensembles were generated using the k-means algorithm, where the

number of clusters ki per ensemble partition is larger than desired or anticipated for the consensus

partition, and also where it is randomly selected. The aggregated partition using the cumulative

voting and bipartite matching schemes is viewed as an aggregated distributional representation for

the ensemble. An efficient approximation algorithm is developed from an information-theoretic

basis to search for the most compressed summary of the aggregated distribution that preserves

the maximum amount of information and to reveal a global and cohesive consensus partition.

The information theoretic algorithm, referred to as JS-Alink, is applied in conjunction with each

of the Ada-cVote and the bVote algorithms.

Furthermore, an approach to estimating an optimal number of clusters for the data was

applied. The approach is based on the idea of a cluster lifetime as measured from a generated



100

ACV−k BV−k EAC−S EAC−A CSPA HGPA MCLA QMI

0

0.2

0.4

0.6

0.8

A
R

I

ACV−k BV−k EAC−S EAC−A CSPA HGPA MCLA QMI
0

0.1

0.2

0.3

0.4

0.5

0.6

A
N

M
I

Figure 5.14: Results for the breast cancer dataset with pre-determined k = 2 and ki ∈ [6, 12]

hierarchy of k-partitions. The application of each of the aggregation algorithms Ada-cVote and

bVote with the JS-Alink, in addition to whether the approach to estimating k is applied or a

pre-determined k is given, lead to defining the consensus algorithms abbreviated as ACV-k, ACV,

BV-k, and BV.

An empirical study was conducted to validate the proposed algorithms. A comparative eval-

uation of the different voting schemes and several recent consensus algorithms was presented.

A number of artificial and real-world datasets with different levels and types of difficulties were

used in the study. Experimental results demonstrate that the cumulative voting scheme is sub-

stantially more suitable than the bipartite matching for the types of cluster ensembles considered

here, when used in conjunction with the JS-Alink algorithm. Furthermore, the results of the

ACV-k algorithm were either comparable to or better than other recent consensus algorithms.

In some case, substantial improvements were achieved over other consensus algorithms. On the

other hand, BV-k performed poorly, in general.



101

ACV BV
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
R

I

ACV BV

0.55

0.6

0.65

0.7

0.75

0.8

A
N

M
I

 2
0

5

10

15

20

25

0%

20%

40%

60%

80%

100%
# of times each k is estimated using ACV

12 11  7  6  5 10  9  8
0

5

10

15

20

25

0%

20%

40%

60%

80%

100%
# of times each k is estimated using BV

Figure 5.15: Results for the breast cancer dataset with ki ∈ [6, 12], where k is estimated.

Moreover, it was demonstrated that accurate estimates of the true number of clusters can be

often achieved using ACV. Poor estimates of the number of clusters are consistently observed

when the bipartite matching scheme is applied. The estimated number of clusters using BV

are generally large, and the global cluster structure of the data is not revealed. In the case of

ensembles with a large but fixed ki, it is consistently noted that BV leads to solutions with the

same number of clusters k = ki. In this case, the BV algorithm does not lead to solutions beyond

that determined by the individual ensemble partitions.



102

ACV−k BV−k EAC−S EAC−A CSPA HGPA MCLA QMI

0

0.2

0.4

0.6

0.8

A
R

I

ACV−k BV−k EAC−S EAC−A CSPA HGPA MCLA QMI

0.1

0.2

0.3

0.4

0.5

A
N

M
I

Figure 5.16: Results for the breast cancer dataset with pre-determined k = 2 and ki = 15

ACV BV

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
R

I

ACV BV

0.5

0.55

0.6

0.65

0.7

0.75

0.8

V
al

ue
s

 2  8  4
0

5

10

15

20

25

0%

20%

40%

60%

80%

100%
# of times each k is estimated using ACV

15
0

5

10

15

20

25

0%

20%

40%

60%

80%

100%
# of times each k is estimated using BV

Figure 5.17: Results for the breast cancer dataset with ki = 15, where k is estimated.



103

ACV−k BV−k EAC−S EAC−A CSPA HGPA MCLA QMI
0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
R

I

ACV−k BV−k EAC−S EAC−A CSPA HGPA MCLA QMI

0.6

0.65

0.7

0.75

0.8

A
N

M
I

Figure 5.18: Results for the optical digits dataset with pre-determined k = 10 and ki ∈ [15, 30]

ACV BV

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
R

I

ACV BV

0.5

0.6

0.7

0.8

A
N

M
I

12 13 14 11 10  9  8
0

5

10

15

20

25

0%

20%

40%

60%

80%

100%
# of times each k is estimated using ACV

30 29 28 26
0

5

10

15

20

25

0%

20%

40%

60%

80%

100%
# of times each k is estimated using BV

Figure 5.19: Results for the optical digits dataset with ki ∈ [15, 30], where k is estimated.



104

ACV−k BV−k EAC−S EAC−A CSPA HGPA MCLA QMI

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
R

I

ACV−k BV−k EAC−S EAC−A CSPA HGPA MCLA QMI

0.6

0.65

0.7

0.75

0.8

A
N

M
I

Figure 5.20: Results for the optical digits dataset with pre-determined k = 10 and ki = 30

ACV BV
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

A
R

I

ACV BV

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

A
N

M
I

13 12 11 15 14 10  9
0

5

10

15

20

25

0%

20%

40%

60%

80%

100%
# of times each k is estimated using ACV

30
0

5

10

15

20

25

0%

20%

40%

60%

80%

100%
# of times each k is estimated using BV

Figure 5.21: Results for the optical digits dataset with ki = 30, where k is estimated.



105

ACV−k BV−k HGPA MCLA QMI

0

0.2

0.4

0.6

0.8

A
R

I

ACV−k BV−k HGPA MCLA QMI

0.2

0.3

0.4

0.5

0.6

A
N

M
I

Figure 5.22: Results for the Yahoo! dataset with pre-determined k = 6 and ki ∈ [12, 24]

ACV BV

0.2

0.3

0.4

0.5

0.6

0.7

A
R

I

ACV BV

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

A
N

M
I

 9  3  2 10  8  7  4
0

2

4

6

8

10

0%

20%

40%

60%

80%

100%
# of times each k is estimated using ACV

23 22 21 19 17 12
0

2

4

6

8

10

0%

20%

40%

60%

80%

100%
# of times each k is estimated using BV

Figure 5.23: Results for the Yahoo! dataset with ki ∈ [12, 24], where k is estimated.



106

ACV−k BV−k HGPA MCLA QMI

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
R

I

ACV−k BV−k HGPA MCLA QMI

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

A
N

M
I

Figure 5.24: Results for the Yahoo! dataset with pre-determined k = 6 and ki = 24, ∀i

ACV BV

0.2

0.3

0.4

0.5

0.6

A
R

I

ACV BV
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

A
N

M
I

10  8  3 13 12 11  9
0

2

4

6

8

10

0%

20%

40%

60%

80%

100%
# of times each k is estimated using ACV

24
0

2

4

6

8

10

0%

20%

40%

60%

80%

100%
# of times each k is estimated using BV

Figure 5.25: Results for the Yahoo! dataset with ki = 24, ∀i, where k is estimated.



107

Table 5.2: Summary of experimental results based on the ARI measure.

Dataset [kmin, kmax] ACV/BV ACV-k/BV-k Overall

Winner Winner Winner

2D2K [6, 20] ACV ACV-k CSPA, MCLA, EAC-A, ACV-k

8D5K [10, 30] ACV ACV-k, BV-k All

Four Gauss [10, 20] ACV ACV-k, BV-k All

Easy doughnut [6, 12] ACV ACV-k All except BV-k

Difficult doughnut [6, 12] ACV ACV-k All except BV-k

Two Gauss [6, 18] ACV ACV-k ACV-k

Breast cancer [6, 12] ACV ACV-k ACV-k, EAC-A

Breast cancer [15, 15] ACV ACV-k ACV-k, EAC-A

Optical digits [15, 30] ACV ACV-k HGPA, EAC-A, MCLA, ACV-k, CSPA

Optical digits [30, 30] ACV ACV-k HGPA, EAC-A, CSPA, ACV-k, MCLA

Yahoo! [12, 24] ACV ACV-k ACV-k

Yahoo! [24, 24] ACV ACV-k ACV-k



Chapter 6

Conclusions

6.1 The Voting-Based Consensus Problem

The basic goal of reconciling an ensemble of partitions is to obtain a consensus partition that

optimally summarizes an ensemble. For consensus partitions to be useful, they should reveal

cluster structures for the data with improved accuracy and stability compared to the individual

ensemble partitions. As demonstrated in this dissertation, the quality of the obtained consensus

solutions highly depends on the ensemble generation mechanism and on the suitability of the

consensus method for effectively combining the generated ensemble. Hence, it is important to

examine the effectiveness of consensus methods against different partition generation techniques.

Typically, consensus methods for partitions derive an ensemble representation that is sub-

sequently used as the basis for extracting an optimal consensus partition. In most cases, the

derived representation sidesteps the relabeling problem. On the other hand, voting-based con-

sensus methods [28, 31, 33, 39, 42, 43] represent a distinct class of consensus methods, whereby

direct parallels with the aggregation of supervised learners [17, 18, 21] are sought. Specifically,

voting-based methods derive an ensemble representation consisting of a central aggregated par-

tition, by directly addressing the ensemble relabeling problem.

108



109

Unlike the aggregation of supervised classifications, the voting-based aggregation of parti-

tions requires the simultaneous optimization of relabeling the ensemble partitions with respect

to the sought (aggregated) partition and of the aggregated partition with respect to the rela-

beled ensemble partitions [33]. The optimal relabeling of multiple partitions corresponds to a

multi-dimensional assignment problem (MAP), which unlike the pairwise relabeling problem, is

NP-hard [34]. Several efficient algorithms are proposed in recent work [28,31,33,39,42,43].

An important element of the voting-based aggregation problem is the pairwise relabeling of an

ensemble partition with respect to a representative partition. The pairwise relabeling is referred

to as the voting problem. The voting problem is commonly formulated as a weighted bipartite

matching problem [28,31,33,42,43], which is a combinatorial optimization problem, that is also

known as the linear sum assignment problem. Based on this formulation, one looks for an optimal

cluster label permutation for each ensemble partition such that a constrained loss with respect to

a representative partition is minimized. The general measure for the relabeling loss is the mean

squared error, which is equivalent to the probability of error in the case of hard ensembles, and to

the misclassifcation rate, in the case of a hard representative partition. The solution is obtained

using Kuhn’s Hungarian method, which is O(k3). In the case of unequal numbers of clusters,

empty clusters are added to the partition with fewer clusters.

6.2 Contributions

A summary of the contributions is presented in this section.

6.2.1 A New Formulation for the Voting Problem

A general formulation for the voting problem as a multi-response regression problem was intro-

duced and the cumulative voting scheme was proposed as a special instance that corresponds to

fitting a linear model by least squares estimation. Due to the additional constraints in the bipar-

tite matching formulation of the voting problem, the achievable loss based on bipartite matching



110

is bounded from below by the achievable loss based on cumulative voting. The general formula-

tion offers more flexibility in defining voting schemes that can be applied to model substantial

variability between partitions, such as a variable number of clusters.

For the ensemble aggregation, a general iterative algorithm (Vote) was applied, with variants

corresponding to cumulative voting (cVote) and bipartite matching (bVote). The convergence

properties of the aggregated partition based on the bipartite matching scheme in conjunction

with plurality voting was formally established in [43] for a particular partition generation model.

A simulation-based analysis was presented. It demonstrated that bVote is more suitable than

cVote for this model, which corresponds to uniform partitions where each is generated as a noisy

permutation of an underlying labeling, according to a probability of error. For other types of

generation models, such as partitions with a variable number of clusters, the aggregated partition

was viewed as a distributional representation and define a criterion for extracting an optimally

compressed consensus partition based on the estimated aggregated distribution.

It is noted that the aggregated solution using the Vote algorithm depends on the initially

selected reference partition and on the order in which the ensemble partitions are aggregated.

However, because of the suitability of bVote to ensembles of uniform partitions, the aggregated

partitions are stable and they converge to the underlying labeling used to generate the ensemble.

On the other hand, the aggregated solutions using cVote are unstable, when the probability of

error increases, indicating its unsuitability for this type of ensemble.

6.2.2 A study of the Properties of Cumulative Voting

Relation to Co-Association Based Consensus

The properties of the proposed cumulative voting scheme were investigated. In particular, the re-

lationship between cumulative voting and the co-association matrix was derived. The relationship

is outlined by defining an un-normalized cumulative voting scheme. A fixed-reference aggregation

algorithm referred to as URef-cVote is developed in conjunction with the un-normalized scheme.



111

In the special case where the reference partition corresponds to the partition of n singleton clusters

represented by the n identity matrix In, the aggregated partition computed using URef-cVote is

the co-association matrix. For the un-normalized cumulative voting scheme, the underlying loss

is a least squares objective function with a constraint on the estimated co-occurrence values of

the objects and the representative clusters to sum up to the size of the voting clusters.

Adaptive Aggregation

A notable property of the cumulative voting scheme is that when the data objects are assumed

to be sampled uniformly at random, the class distribution associated with the reference partition

are preserved in the relabeled ensemble partitions as well as the aggregated partition. Based

on this property, a criterion was defined for selecting the initial reference and the aggregation

sequence of the ensemble partition so as to minimize the loss of mutual information associated

with the estimated aggregated distribution. The Ada-cVote algorithm was developed as an

adaptive aggregation algorithm for the cumulative voting scheme. Instead of considering the

ensemble partitions in a random order as in the case of the Vote algorithm, Ada-cVote aims at

selecting the initial reference partition according to the defined criterion. An important feature

of the Ada-cVote algorithm is that the obtained aggregated partition is invariant to the order

of the ensemble partitions and the initial reference, unlike cVote. Experimental evidence was

presented, showing that the adaptivity feature is only effective with cVote, but not when applied

with bVote.

6.2.3 Compression of Aggregated Representation

Efficient Algorithm

The ensemble generation mechanisms proposed in [25,36] were applied, where for each ensemble

partition, the number of clusters ki is larger than desired or anticipated, or when it is randomly

selected. For this type of ensemble, a principled information theoretic approach was proposed



112

for extracting a consensus partition that represents a global and cohesive cluster structure for

the data. The JS-Alink algorithm was developed as an efficient agglomerative algorithm that is

based on the information bottleneck formulation of Tishby et al. [8]. The algorithm minimizes

the Jensen-Shannon divergence within the merged cluster, or equivalently, it minimizes the loss

in mutual information associated the distributional representation of the data that is due to

compressing the representation. Furthermore, an approach was applied for estimating an optimal

number of clusters based on the idea of a cluster lifetime proposed in [25], which is measured

from a generated hierarchy of k-partitions.

Empirical Validation

Several artificial and real-world datasets were used. They are characterized by various challenges,

including a large text data with very high dimensionality. Consistent evidence demonstrates that

the cumulative voting scheme is substantially more suitable for this type of ensemble than the

bipartite matching scheme. Furthermore, the consensus partitions obtained using the proposed

consensus method are either comparable with or better than those obtained using several recent

consensus algorithms. Moreover, accurate estimates of the true number of clusters are often

achieved using the cumulative voting scheme, whereas consistently poor estimates are achieved

based on bipartite matching. The results provide consistent evidence on the unsuitability of the

bipartite matching scheme for this type of ensemble.

6.2.4 Computational Efficiency

Overall, the proposed voting-based consensus method, implemented by the ACV and ACV-k

algorithms, is computationally efficient. The O(n2) complexity is avoided at each stage. Further-

more, competitively accurate and stable results are consistently achieved consistently, compared

to other consensus methods, for ensembles with randomly selected number of clusters. Thus, the

proposed consensus method offers a computationally more efficient alternative for co-association



113

based methods. The computational complexity is O(k2nb), where k ≪ n. The bipartite match-

ing based consensus method is O(k3nb). Table ?? summarizes the computational complexity of

the different consensus algorithms. The HGPA is O(nkb), MCLA is O(nk2b2), QMI is O(nkb),

co-association-based consensus functions with single and average link are O(n2b), and the graph-

based CSPA algorithm is O(n2kb) [25,38]

6.3 Future Work

This thesis opens several future research directions for voting-based consensus clustering. A few

interesting directions are highlighted in this section.

6.3.1 Multi-Response Regression Formulation

The regression formulation introduced in this thesis for the voting problem can be further devel-

oped to create and analyze new voting schemes. In the cumulative voting scheme, it is assumed

that a linear model is suitable for describing the relationship between each ensemble partition

and the reference partition. The form of the regression function that underlies the relationship

between the input and output variables can be further investigated by exploring other models.

6.3.2 Application in Bioinformatics

DNA micro-array technology provides the means for measuring the expression levels of tens of

thousands of genes, simultaneously, for a given experimental sample. It has the potential to

help further the understanding of biological processes and to introduce important applications in

pharmaceutical and clinical research [85]. Gene expression data is usually represented as a data

matrix of genes versus samples, where each entry represents the expression level of a gene for a

given sample. Data clustering of gene expression matrices aims at finding relevant groupings, such

as groups of genes with similar functionality, and at extracting gene structures and biologically

meaningful information.



114

The difficulties of the data clustering task for the micro-arrays makes the application of

cluster ensemble methods particularly interesting. In fact, similarity-based consensus algorithms

as well as voting algorithms based on bipartite matching have been successfully applied in on gene

expression micro-array data [31,40]. Hence, the extension of the voting-based consensus clustering

algorithms proposed in this thesis to the cluster analysis of bioinformatics data represents an

interesting future direction.

6.3.3 Application to Model-Based Cluster Ensembles

Finite mixture models represent a principled statistical approach to cluster analysis [5]. In model-

based clustering, data are represented by a mixture model, where each component probability

distribution in the mixture corresponds to a cluster. The EM algorithm for maximum likelihood

is applied to determine a partition solution [75,76]. The proposed framework and the introduced

cumulative voting-based aggregation can be applied for estimating the cluster conditional proba-

bility distribution and a consensus partition for a model-based cluster ensemble. Such application

represents an interesting future direction.

6.3.4 Consensus Clustering Validation

The accuracy and robustness of the computed voting-based consensus partitions depend on the

input partitions and the effectiveness of the voting scheme in leading to a relevant consensus

clustering. Several design issues are at play, including the selection of the base clustering al-

gorithm and the setup of the ensemble parameters, such as the number of clusters ki of the

ensemble partitions and the ensemble size. For improper values of the ensemble parameters, the

consensus method leads to a clustering solution that is inadequate for the dataset. An in-depth

investigation of validation methods for the extracted consensus cluster structures is an important

future research direction. The validation seeks to evaluates the consensus tendency in order to

determine values of the design parameters that best fits a particular dataset.



Bibliography

[1] J.A. Hartigan. Clustering Algorithms. Wiley, 1975.

[2] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice Hall, 1988.

[3] L. Kaufman and P.J. Rousseeuw. Finding Groups in Data. Wiley, 1990.

[4] A.K. Jain, M.N Murty, and P.J. Flynn. Data clustering: A review. ACM Computing Surveys,

31(3):264–323, September 1999.

[5] C. Fraley and A. E. Raftery. Model-based clustering, discriminant analysis, and density

estimation. Technical report, University of Washington, October 2000.

[6] J. M. Buhmann. Data clustering and learning. In M. Arbib, editor, Handbook of Brain

Theory and Neural Networks. MIT Press., 2002.

[7] J. Kleinberg. An impossibility theorem for clustering. In Proceedings of Advances in Neural

Information Processing Systems (NIPS), 2002.

[8] N. Tishby, F. Pereira, and W. Bialek. The information bottleneck method. In Proceedings

of the 37-th Annual Allerton Conference on Communication, Control and Computing, pages

368–377, 1999.

[9] Elena D. Cristofor. Information-Theoretic Methods In Clustering. PhD thesis, University of

Massachusetts, 2002.

115



116

[10] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data

mining, Inference and Prediction. Springer, 2001.

[11] B. G. Mirkin. On the problem of reconciling partitions. In H M Blalock, A. Aganbegian,

F. M. Borodkin, R. Boudon, and V Capecchi, editors, Quatitative Sociology: International

Perspectives on Mathematical and Statistical Modeling, Quantitative Studies in Social Rela-

tions, pages 441–449. Academic Press, 1975.

[12] S. Régnier. Etudes sur le polyèdre des partitions. Mathmatiques et Sciences Humaines,

82:85–111, 1983.

[13] P. Arabie L. Hubert. Comparing partitions. Journal of Classification, 2:193–218, 1985.

[14] W. H. E. Day. Foreword: Comparison and consensus of classifications. Journal of Classifi-

cation, 3:183–185, 1986.

[15] J.-P. Barthlemy and B. Leclerc. The median procedure for partitions. In Partitioning

Data Sets, volume 19 of DIMACS Series in Discrete Mathematics and Theoretical Computer

Science, pages 3–33, 1995.

[16] William H. E. Day and F. R. McMorris. Axiomatic Consensus Theory in Group Choice and

Biomathematics, volume 39 of SIAM Frontier in Applied Mathematics. Society for Industrial

and Applied Mathematics, 2003.

[17] Leo Breiman. Bagging predictors. Machine Learning Journal, 26(2):123–140, 1996.

[18] Yaov Freund and Robert E. Schapire. A decision-theoretic generalization of on-line and an

application to boosting. Journal of Computer and System Sciences, 55(1):119–139, 1995.

[19] L. Breiman. Random forests. Machine Learning Journal, 45:5–32, 2001.

[20] T.K. Ho. The random subspace method for constructing decision forests. IEEE transactions

on Pattern Analysis and Machine Intelligence, 20:832–844, 1998.



117

[21] J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view of

boosting. The Annals of Statistics, 28:337–407, 2000.

[22] A. Fred. Finding consistent clusters in data partitions. In Josef Kittler and Fabio Roli, edi-

tors, Multiple Classifier Systems, 3rd International Workshop on Muliple Classifier Systems

MCS 2001, LNCS 2096, pages 309–318. Springer, 2001.

[23] A. Fred and A.K. Jain. Data clustering using evidence accumulation. In Proceedings of the

16th International Conference on Pattern Recognition. ICPR 2002, volume 4, pages 276–280,

Quebec City, Quebec, Canada, August 2002.

[24] A. Fred and A.K. Jain. Evidence accumulation clustering based on the k-means algorithm. In

T.Caelli, A. Amin, R. Duin, M. Kamel, and D. de Ridder, editors, Structural, Syntactic, and

Statistical Pattern Recognition, volume LNCS 2396, pages 442–451. Springer-Verlag, 2002.

[25] A. Fred and A.K. Jain. Combining multiple clusterings using evidence accumulation. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 27(6):835–850, 2005.

[26] H. G. Ayad and M. S. Kamel. Finding natural clusters using multi-clusterer combiner based

on shared nearest neighbors. In Multiple Classifier Systems: Fourth International Workshop,

MCS 2003, UK, Proceedings., pages 166–175, 2003.

[27] H. G. Ayad, O. Basir, and M. S. Kamel. A probabilistic model using information theoretic

measures for cluster ensembles. In Multiple Classifier Systems: Fifth International Workshop,

MCS 2004, Cagliari, Italy, Proceedings., pages 144–153, 2004.

[28] B. Fischer and J.M. Buhmann. Bagging for path-based clustering. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 25(11):1411–1415, 2003.

[29] A. Strehl and J. Ghosh. Cluster ensembles - a knowledge reuse framework for combining

multiple partitions. Journal of Machine Learning Research (JMLR), 3:583–617, December

2002.



118

[30] A. Topchy, A.K. Jain, and W. Punch. Combining multiple weak clusterings. In IEEE Intl.

Conf. on Data Mining 2003, Proceedings, pages 331–338, Melbourne, Fl., November 2003.

[31] S. Dudoit and J. Fridlyand. Bagging to improve the accuracy of a clustering procedure.

Bioinformatics, 19(9):1090–1099, 2003.

[32] S. Merugu and J. Ghosh. Privacy-preserving distributed clustering using generative models.

In IEEE Int’l Conf. on Data Mining (ICDM03), pages 211–218, Melbourne, FL, Nov 2003.

AAAI/MIT Press.

[33] Evgenia Dimitriadou, Andreas Weingessel, and Kurt Hornik. A combination scheme for

fuzzy clustering. International Journal of Pattern Recognition and Artificial Intelligence,

16(7):901–912, 2002.

[34] Kurt Hornik. A clue for cluster ensembles. Technical report, Department of Statistics and

Mathematics Wirtschaftsuniversitt Wien, May 2005.

[35] X. Z. Fern and C. E. Brodley. Random projection for high dimensional data clustering: A

cluster ensemble approach. In 20th International Conference on Machine Learning, Proceed-

ings, pages 186–193, Washington, DC., 2003.

[36] L. I. Kuncheva and S.T. Hadjitodorov. Using diversity in cluster ensembles. In IEEE

International Conference on Systems, Man and Cybernetics, Proceedings, pages 1214–1219,

The Hague, The Netherlands., 2004.

[37] T Lange and J. M. Buhmann. Combining partitions by probabilistic label aggregation. In

KDD ’05: Proceedings of the eleventh ACM SIGKDD international conference on Knowledge

discovery in data mining, pages 147–156. ACM, 2005.

[38] A. Topchy, A.K. Jain, and W. Punch. Clustering ensembles: Models of consensus and weak

partitions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(12):1866–

1881, 2005.



119

[39] H. G. Ayad and M. S. Kamel. Cumulative voting consensus method for partitions with a vari-

able number of clusters. IEEE Transactions on Pattern Analysis and Machine Intelligence,

30(1):160–173, January 2008.

[40] S. Monti, P. Tamayo, J. Mesirov, and T. Golub. Consensus clustering: A resampling based

method for class discovery and visualization of gene expression microarray data. Machine

Learning Journal, 52(1-2):91–118, 2003.

[41] A. Topchy, A.K. Jain, and W. Punch. A mixture model of clustering ensembles. In SIAM

Conf. on Data Mining, pages 379–390, April 2004.

[42] A. D. Gordon and M. Vichi. Fuzzy partition models for fitting a set of partitions. Psychome-

trika, 66(2):229–248, 2001.

[43] A. Topchy, M. Law, A.K. Jain, and A. Fred. Analysis of consensus partition in clustering

ensemble. In IEEE Intl. Conf. on Data Mining 2004, Proceedings, pages 225–232, Brighton,

UK, 2004.

[44] L. I. Kuncheva. Combining Pattern Classifiers: Methods and Algorithms. Wiley, 2004.

[45] B. Leclerc. Efficient and binary consensus functions on transitively valued relations. Math-

ematical Social Sciences, 8:45–61, 1984.

[46] D. A. Neumann and V. Norton. Clustering and isolation in the consensus problem for

partitions. Journal of Classification, 3(2):281–297, 1986.

[47] B. Monjardet. Arrowian characterization of latticial federation consensus functions. Mathe-

matical Social Sciences, 20:51–71, 1990.

[48] S. Régnier. Sur quelques aspect mathématique des problèmes de classification automatique,

ICC Bull. 4:175-191, 1965, repr. Mathématiques et Sciences Humaines, 82:13–29, 1983.



120

[49] P. Arabie and S. A. Boorman. Multidimensional scaling of measures of distances between

partitions. Journal of Math. Psychol., 17:31–63, 1973.

[50] W.H.E Day. The complexity of computing metric distances between partitions. Math. Soc.

Sci., 1:269–287, 1981.

[51] J. P. Barthélemy and B. Monjardet. The median procedure in cluster analysis and social

choice theory. Mathematical Social Sciences, 1:235–268, 1981.

[52] Daniel D. Lee and H. Sebastian Seung. Algorithms for non-negative matrix factorization. In

NIPS, pages 556–562, 2000.

[53] Evgenia Dimitriadou, Andreas Weingessel, and Kurt Hornik. Voting-merging: An ensemble

method for clustering. In Georg Dorffner, Horst Bischof, and Kurt Hornik, editors, Artificial

Neural Networks-ICANN 2001, pages 217–224, Vienna, Austria, August 2001. Springer.

[54] L. Kaufman and P.J. Rousseeuw. Finding Groups in Data: An Introduction to Cluster

Analysis. Wiley, New York, 1990.

[55] George Karypis and Vipin Kumar. Multilevel algorithms for multi-constraint graph parti-

tioning. In Conference on High Performance Networking and Computing. Proceedings of the

1998 ACM/IEEE conference on Supercomputing, San Jose, CA, 1998.

[56] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for partition-

ing irregular graphs. Technical Report TR 95-035, Department of Computer Science and

Engineering, University of Minnesota, 1995.

[57] H. G. Ayad and M. S. Kamel. Refined shared nearest neighbors graph for combining multiple

data clusterings. In The 5th International Symposium on Intelligent Data Analysis IDA 2003.

Berlin, Germany, Proceedings. LNCS. Springer., 2003.



121

[58] R.A. Jarvis and E.A. Patrick. Clustering using a similarity measure based on shared nearest

neighbors. IEEE Transactions on Computers, C-22(11):1025–1034, November 1973.

[59] L. Ertoz, M. Steinbach, and V. Kumar. A new shared nearest neighbor clustering algorithm

and its applications. In Workshop on Clustering High Dimensional Data and its Applications

at 2nd SIAM International Conference on Data Mining, Arlington, VA, 2002.

[60] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood for incomplete data

via the em algorithm (with discussion). Journal of the Royal Statistical Society, Series B,

39:1–38, 1977.

[61] G. J. McLachlan and Krishnan T. The EM Algorithm and Extensions. Wiley, 1997.

[62] Christos H. Papadimitriou, Hisao Tamaki, Prabhakar Raghavan, and Santosh Vempala.

Latent semantic indexing: A probabilistic analysis. In ACM Conference on Principles of

Database Systems (PODS), pages 159–168, Seattle, 1998.

[63] Samuel Kaski. Dimensionality reduction by random mapping: Fast similarity computation

for clustering. In Proceedings of IJCNN’98, International Joint Conference on Neural Net-

works, volume 1, pages 413–418. IEEE Service Center, Piscataway, NJ, 1998.

[64] Dimitris Achlioptas. Database-friendly random projections. In Symposium on Principles of

Database Systems, 2001.

[65] Ella Bingham and Heikki Mannila. Random projection in dimensionality reduction: appli-

cations to image and text data. In Knowledge Discovery and Data Mining, pages 245–250,

2001.

[66] M.A. Gluck and J.E. Corter. Information, uncertainty, and the utility of categories. In

Proceedings of the Seventh Annual Conference of the Cognitive Science Society, pages 283–

287, 1985.



122

[67] B. Mirkin. Reinterpreting the category utility function. Machine Learning, 45(2):219–228,

2001.

[68] H. G. Ayad and M. S. Kamel. On voting-based consensus of partitions. IEEE Transactions

on Pattern Analysis and Machine Intelligence. Under Review.

[69] Sanjoy Dasgupta. Experiments with random projection. In UAI ’00: Proceedings of the 16th

Conference in Uncertainty in Artificial Intelligence, pages 143–151, Stanford University,

Stanford, California, USA, 2000.

[70] F. Leisch. Bagged clustering, 1999.

[71] B. Minaei, A. Topchy, and W. Punch. Ensembles of partitions via data resampling. In

IEEE Intl. Conf. on Information Technology: Coding and Computing, ITCC04, Proceedings,

volume 2, pages 188–192, Las Vegas, April 2004.

[72] H. G. Ayad and M. S. Kamel. Cluster-based cumulative ensembles. In Multiple Classifier

Systems: Sixth International Workshop, MCS 2005, Seaside, CA, USA, Proceedings., pages

236–245, 2005.

[73] L. I. Kuncheva and D. P. Vetrov. Evaluation of stability of k-means cluster ensembles

with respect to random initialization. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 28(11):1798–1808, November 2006.

[74] Stefan Todorov Hadjitodorov, Ludmila I. Kuncheva, and Ludmila P. Todorova. Moderate

diversity for better cluster ensembles. Information Fusion, 7(3):264–275, 2006.

[75] J. D. Banfield and A. E. Raftery. Model-based gaussian and non-gaussian clustering. Bio-

metrics, 49(3):803821, 1993.



123

[76] C. Fraley and A.E. Raftery. How many clusters? which clustering method? answers via

model-based cluster analysis. Technical Report 329, Department of Statistics, University of

Washington, 1995.

[77] J.C. Dunn. A fuzzy relative of the isodata process and its use in detecting compact well-

separated clusters. Journal of Cybernetics, 3:32–57, 1973.

[78] J.C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, New

York, 1981.

[79] T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley & Sons, New

York, USA, 1991.

[80] Fernando Pereira, Naftali Tishby, and Lillian Lee. Distributional clustering of English words.

In 31st Annual Meeting of the ACL, pages 183–190, 1993.

[81] Noam Slonim and Naftali Tishby. Agglomerative information bottleneck. In NIPS, pages

617–623, 1999.

[82] Inderjit S. Dhillon, Subramanyam Mallela, and Rahul Kumar. A divisive information-

theoretic feature clustering algorithm for text classification. Journal of Machine Learning

Research, 3:1265–1287, 2003.

[83] J. Lin. Divergence measures based on the shannon entropy. IEEE Transactions on Infor-

mation Theory, 37(1):145–151, 1995.

[84] William H. Wolberg and O.L. Mangasarian. Multisurface method of pattern separation for

medical diagnosis applied to breast cytology. In Proceedings of the National Academy of

Sciences, volume 87, pages 9193–9196, U.S.A., December 1990.

[85] P. Baldi and G. W. Hatfield. DNA Microarrays and Gene Expression. From Experiments to

Data Analysis and Modelling. Cambridge University Press, 2002.


