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Abstract 

The major contributions of this thesis are: a new discriminative training algorithm. 

new discriminative feature selection and extraction algorithms, and a new image 

segmentation algorithm used for feature extraction fkom speech spectrogram. 

In the first part of this thesis, a new misclassification measure and a disaimi- 

native training algorithm are proposed. The misdassification measure is a srnooth 

representation of classification probability of error and can be made as dose as pos- 

sible to this probability by varying its parameters. The training algorithm indirectly 

minimizes the probability of error by minimizing the misdassification measare. A 

new discriminative training algorithm for speech segmentation based on another 

misclassification measme is also introduced. 

In the second part of this thesis, a feature selection and a feature extraction 

algorithm are proposed. The proposed algorithms allow the dimensionality of fea- 

tare space to be decreased, while trying to maintain a class separability measare. 

This nicastue is the niWcla9sZcation measure of a &&er b d t  in the higher di- 

mensional space. The featnre selection and extraction algorit hms determine the 

maximum change in the misdassification measnre (or indirectly the maximum loss 

in probability of correct classification) for the feature vectors presented in the lower 

dimensional space. The algorithm h d  the best subset of features and an opti- 

mam orthogonal linear mapping More applying feahire selection that minimises 

the maximum change in the misdassification measure. 

In the third part of this thesis, several dgorithms for feature extraction fkom 

speech spectrograms are proposed. Some of these s i g o r i t h  hst segment the spec- 



trogram using a new self-organizing image segmentation algorit hm. This algorit hm 

segments the spectrogram into two classes of object and background. where pixels 

of each class have common characteristics. The algorithm iteratively minimizes a 

defined segmentation measure in the spectrogram image. Moreover, pixels with 

lower likelihood of belonging to object or background classes are adjnsted less in 

each iteration. delaying their segmentation until more image information is a d -  

able. The resulting features are the inputs to the proposed feature selection and 

extraction algorit hms. 

Some speaker independent isolated word speech recognition experiments are &O 

carried out in this thesis which validate the proposed algorithms. 
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Chapter 1 

Introduction 

The object of speech recognition is to provide a system that enables a human to 

communicate to a computer via speech signal. Fig. 1.1 shows a block diagram of a 

typical speech recognition system. The input speech signal is k s t  passed throngh 

a feattue selection and extraction block to reduce its rednndant information for 

the purpose of speech recognition. Idedy, the representation of the signal shotdd 

be minimal while containing all the sdicient information for recognition purpose. 

The reduced feature set is then passed throngh a classifier whose output is either a 

Figure 1.1: A speech recognition system 
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sequence of phonemes or words. Finally. at the language processing stage. sentences 

corresponding to the speech utterances are provided using word. phrase or sentence 

models. 

The fundamental diffidty of speech recognition is the high variability of speech 

signais. Based on a priori knowledge. the speech waveform is a band-limited signal. 

The bandwidth of speech can be limited to 1 - 6kHz without reducing its percep 

tual chsracteristics significantly. Even by only considering this limited a prion 

knowledge. a large number of samples is s tiU required to represent speech signal. 

The speech signal is generated by the movement of the artidatory apparatus 

which modulates the air pressure to generate speech. Although speech signal has 

energy and information in the frequency domain ap to several Eh. its pattern 

does not significantly change in intervals of more than lOms because of the slow 

movement of articulators. The speech signal is also produced by hamans in a way 

that is easily recognizable by the haman recognition system. 

The speech signal contains information that is not u s a  for recognition pur- 

poses such as the identity of the speaker, the speaker's emotional state, speaking 

rate. etc. h o ,  the chatacteristics of a given utterance can differ significantly for 

different occurrence of the utterance. Such ciifferences are also recognizable for 

human listenas, but they are not aseful for the purpose of recognition. Fig. 1.2 

shows the spectrogams (short time Fourier transformations) [40] of the word zero 

produced by a female and a male speaker, respectively. There is an eevident sim- 

ilarity in the appearance of the patterns. Havever, the patterns have distinctive 

differences as it may also be heard in the soand of these utterances. 

In general, if the pdonnance of classifiers is inadeqaate, new featnre~ should 

be added. Increasing the number of features requires an inrreae in the nnmber of 
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0.2 0.4 0.6 0.8 1 
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Figure 1.2: Word zero nttered by (a) a f d e  speaker (b) a male speaiker 
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mode1 parameters. Such an increase will reduce the performance of the classifier 

beyond a cert a h  limit due to three factors: lack of enough training data, improper 

choice of models. and lack of an appropriate training algorithm. Featnre selection 

and extraction can alleviate t hese design problems. Also. feature selection and 

extraction are appealing for real tirne speech recognition. as they can highly reduce 

the dimensionality of the feature space. and thereby reduce the computational 

costs. Moreover, each feature can usudy be evaluated independently of others 

using parallel processors. 

Ideally. the design of feature selection and extraction algorithms should be based 

on mirllmizing the probability of cl&sification error. In this case, the design of 

feature selection and extraction c a ~ o t  be separated from the design of the classifier. 

An ideal feature extractor is nothing other than an ideal classifier. The design 

~ c u l t i e s  of feature selection and extraction based on minimiaing the probability 

of error are the same as the aforementioned difficdties for the design of classifiers. 

Therefore, a snboptimal solution for the design of feature selection or extraction is 

usudy selected. 

There are two practical ways to carry out the feature extraction and selection 

ta&. One is based on using human judgment to rely on hisiha a ption'ltnowledge 

of the classification problem to extract or select features. The other one is to define 

a dass separability measure in lieu of probability of error. For feature extraction, 

a paramehic structure can be defined (again based on a pn'on knowledge of the 

problem)? and the parameters can be found to maaimize the dass separability 

measure. For featnre selection in this case, a set of features should be selected that 

maximizes the dass separability measure. Both of these approaches are exercised 

in t his t hesis . 

The overd proposed recognition system is shom in Fig. 1.3. Here, a broad cat- 
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Classifier with rn 
1 discriminative training ' 
I i 

Y 

Ciassifia with 

discriminativc training / dkrimimnre training , 

Figure 1.3: The overall classification system 

egory of speech classes is fist identified at the root of the tree, and then a detailed 

classification is carried out, depending on the results of the broad classification. 

In each category. the speech events are represented in a more diseriminative na- 

t use using the feature selection and extrac tion blocks. Moreover, grester emphasis 

is placed to find classifier parameters that reduce the classincation error using a 

diseriminative training algorithm. 

The organization of this thesis is as foIIows. In Chapter 1, a new misclasdication 

measure and a new diseriminative training aigorithm dong with a new fona of 

classifier for speech recognition are introduced. The training algorithm fin& the 

mode1 parameters that reduce the misclassification measme. This algorithm has 

a l m  cornplexity compared to other simiiar discriminative training a l g o r i t h  

snch as the one introduced by Juang et ai. [23]. The rniscl;rssification measme 
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io also used as a rneasure of performance for the feature selection and extraction 

algorithms presented later in Chapter 3. Also. in this Chapter, a new discriminative 

segmentation algorit hm ia introduced. In this aigorithm. mode1 parameters are 

trained for the purpose of segmentation to find the distinctive characteristics of 

speech utterances within a word. The segmentation algorithm can dso use the 

feat ure extraction and selec tion algorit hms. This greatly reduces the compnt ational 

cost of segmentation and improves its performance. 

Ln Chapter 3. the proposed feature selection and extraction algorithms are de- 

scribed. The feature selection and extraction techniques d o w  the dimensionality of 

data to be decreased, while tryuig to keep the &criminative information content 

of the remaining features for the purpose of classification ta&. In the proposed 

feature selection and extraction processes, a dassifier is first designed in the higher 

dimemional space. The form of this dassifier and its misclass~cation measure are 

adap ted to make the feature extraction algorit hm feasible. The feature selection 

and extraction aigorithms can provide the maximum change in the misclassification 

measare if the classifier is b d t  in a lower dimensional space for the extracted or 

selected features. 

The preliminary selection of acoustic meamements is made based on the a 

priori knowledge of speech by extracting features from speech spectrograms. IR 

practice. an expert spectrogram reader can dassify speech utterances with a high 

acmacy rate. In Chapter 4, the information that is asudy nsed in speetrogram 

reading experiments is measured nsing a new image segmentation technique. In 

thk algorithm, the spectrogram is f i s t  segmented into two classes of object and 

background. The object and background classes coasist of pixels having common 

characteristics snch as regions that c m  be assoaated to fomants. For each pixel, 

the a postenon' probabilities of belonging to each class are estimated based on the 
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knowledge about the shape and the intensity characteristics of each clas. Using 

snch knowledge, a new self-organizing image segmentation algorithm is introduced. 

This algorithm minimizes a defmed segmentation measure in the image. The seg- 

mentation measure is a function of the a posteriori probability of pixels. and is 

minimum for any segmented image (having zero or one for the a postenoR prob- 

abilities). The algorithm iteratively adjusts the probabilities of pixels to rednce 

this measure. Pixels that are less likely to belong to object or background classes 

are adjusted less in each iteration, delaying their segmentation until more image 

information is a d a b l e .  

In Chapter 5. some speaker independent isolated word speech recognition exper- 

iment s are provided. The experimental results validate the proposed algorithms. 

Findy, in Chap t a  6. sammary and conclusion of the t hesis is provided. 



Chapter 2 

'lraining crit eria 

2.1 Introduction 

Bayes decision theory [l?] [15] is a fandamental theory in classification. It is opti- 

mum in terms of minimizing the probability of classification error. In Bayes theory, 

class Ci for an input sample X is selected if the a postetion' probability of that 

class, P(CilX) ,  is maximum among ail the possible classes. Therefore. classifiers 

can be b d t  by estimating the a poste7-h-i probability of each dass on the input 

domain. Kowever. we have 

Cornidering Bayes decision d e ,  we only need to estimate the a p h w i  probability 

P(Ci)? and the conditional probability P(XICi), of each dass Ci since P ( X )  is the 

same among all classes. Estimates of the conditional probabilities are asaally pr* 

vided by assnming that each class Ci is generated by a pmametric probability mode1 

with the parameterset of A. That means, we choose P(XI&) to modd P(XICi). In 
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this case. model parameters Ai can be estimated based on the maximum likelihood 

criterion. where we rnaximize 

over ail the samples X1. ,Y2. . . . . Xu of the training set of dass Ci (assuming inde- 

pendence between training sarnples). 

Considering the Bayes deeision theory. only an accurate estimate of the a pos- 

teriori probabilities around the decision sarface is required to b d d  an optimum 

classifier. Therefore. more emphasis can be placed for estimating the parametas 

of the models to estimate the a postenori probabilities accurately in more critical 

regions of the feature space (around the decision boudaries). Since the exact de- 

cision boundaries are not known, approxhate boudaries are first estimated using 

estimates of a poste7i07-i probabilities (based on msucimum likelihood training). and 

then misclassification measares representing the degree of ambiguity about the clas- 

sification of each input are dehed and minimized. The misclassification mesure 

con place more emphasis on regions closer to deusion boundaries. This approach 

for finding the model parameters, is referred to as discriminative training. Com- 

pared to the maximum likelihood approach, the cost of training is nsnally higher. 

However, the mode1 parameters are usudy bet ta  esthated for the objective of 

minimizing the error rate. 

When the assumptions about the parametric probability models are correct 

or classes are distinctively separated in the featare space. maximum iikelihood 

training can perform w d .  On the other hand, if we have poor models for the 

underlying probability distributions and the dasses are not distinctively separated, 

the discriminative trainhg shodd be selected when the compotatîond costs can be 

a h d e d .  
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IR this chapter. different classifier design approaches are reviewed and a new 

approach for the design of classifiers is introduced with an emphasis on models 

suited for speech recognition. Also. a new segmentation aigorithm for speech seg- 

mentation is introduced. This algorithm can h d  model parameters to disthctively 

characterize the clifferences within a speech unit such as word. 

2.2 Minimum risk and error criteria 

Suppose. for an input X. class Ci is selected. If X indeed belongs to class Cj 

and if a loss of Z(CilCj. X) can be associated to such a decision. the expected loss 

associated with selecting dass Ci can be written as [15] 

This expected loss is usually refmed to as conditional rUk. The overd risk c m  

where C(X) is the class selected for a given observation X. It is dear fkom the 

above defmition that for m;niminng the ovedl  risk, one shodd select the dass 

with the minimum conditional risk for a given observation X. 

If the conditional risk for a correct selection is assarned to be one and for an 

incorrect selection zero, the overd nsk can be interpreted as the probability of error 

and the optimnm selection is the class with the highest a poste&oRprobability, since 

the conditional risk can be written 8s 



To b d d  up a classifier. one may estimate the conditional risks or the a posterion 

probabilities of different classes depending upon having minimum risk or minimum 

error rate as the criterion, respectively. 

Anot ber common approach to build a classifier is to use disrriminant fimctions in 

lieu of the a p0~teR07-i probabilities. In this case. a discriminant function g;(X; &), 

with free parameters is associated to each dass Ci. The dass Ci is selected (in 

a similar way as in Bayes classifiers) when it has the highest gi(X; &) among d 

classes, i. e., when 

gi(X: &) > g j ( X ;  Aj) V j  # i- ( 2 4  

The optimum Bayes classifier can be achieved by selecting gj(X; & ) = - P(Ci JX). 

However. the choice of optimum discriminant hc t ions  is not unique. For example. 

they can be multiplied by a positive constant, added by a constant or even replaced 

by f (gi(X; A)), where f ( m )  is a monotonic function, without changing the probabil- 

ity of error. Considerhg Eq. (2. l), the following discriminant fanction also resnlrs 

in the optimum classifier for minimum error rate niterion: 

The discriminant fnnctions do not necessdy need to be monotonic ftlnctions of a 

posteriori probabilities to r e d t  in optimum classification. The only requirement 

is that the ineqnality (2.6) resdts in the same classification as Bayes inequality for 

e v q  point in space. The approach that is awdy selected is to make the discrimi- 

nant fanctions be dose to monotonic fnnctions of the a posteriori pzobabilities only 

in the regions close to estimates of decision bonndaries. 

There are different ways to estimate the parameters of the discriminant h c -  

tions. Assume the discriminmt fiinctions are limited between zero and one. One 
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criterion is based on minimizing a mean Jquare e n o r  hinction over the feature space 

defined as 

where 6(9) is one if the statement -8" is tme and zero otherwise, P ( X .  Ck) is the 

joint probability of class Ck and input X, and M is the number of classes. It cm 

be shown that the above error 

de t ail) 

also be written as ( s e  [36] for more 

+ P(Ci lX) [ l -  P ( G I X ) ] f l *  (2.9) 

As can be seen h m  the above equation. the global minimum of the error is 

achieved when 

gi(x; A) = P(CilX). (2.10) 

That means. if the parametric form of the discriminant hinctions are consistent 

with the trne a posteriori probability functions of different classes, this criterion 

can result in the minimum error rate. In this kraining algorithm, the error may 

decrease dnring the course of training, bat the probability of error may increase 

at the same t h e .  Note that o d y  the giobd minimum of the error fnnction is 

an optimum solution. This is an important drawback as the training algorithm is 

asually trapped in the local minimm of the enor function. 

The above shortcoming of training algorithm is addressed by Minimum Clasri- 

fication E m r  algorithm (MCE) proposed by Jnang et al., [23], [26], [46]. In this 

algorithm, a misdassification measare is first dehed for any input 

measare the degree of performance of the classifier. A commm form 

cation measnre is defined as 
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where gi(*) is the discriminant function of the correct class. X is the set of model 

parameters and q is a positive nnmber. A cost hnction (a monotonie function of 

h ( = ) )  is defined as ~ ( c k ( X ;  A)) ,  where ( is a positive nnmber and 7(2) is a sigmoid 

function defined as 

This cost fnnction is defined to place less emphasis on regions having high 

misclassification measure, that is. regions having less degree of ambiguity about 

their dass mernbership. Moreover, it can make the training algorithm feasible as 

the misclassification meamre is limited for any input sample. We can minimire the 

expected cost in the domain X in a similar way as risk theory to find the model 

parameters. That is to minimize 

However , the classification error rate can be written as 

Comparing Eq. (2.13) and Eq. (2.14), we can see that the difference is only in the 

second 6(-) term of Eq. (2.14) and the 7(-1 term of Eq. (2.13). One can make these 

two terms as close as possible to each other by varying the value of parameters 6 
and t) [23]. By increasing 7, we approach to maq gj (X;  Ai) for the second term in 

Eq. (XII), and then by inaeasing c, we approach to one for a wrong classification 

and to zero for a correct classification. Theidore, the minimization of the overall 

cost fnaction (Eq. (2.13)) is consistent with minimization of error rate, as the 

defined error fimction is indeed a smooth representation of the error rate. 

The minimisation of the defined -or fanction 4 nsnally carried out asing a 

steepest descent algorithm which h d s  a local m.bîmum of the enor firnction. As 
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was discassed earlier. the defined cost huiction places a greater emphasis on more 

accurately estimating the a postenon probabilities (or their monotonic hc t ions )  

aroiind the decision boundaries. This emphasis can only be meaninghil if a good 

approximation of initial model parameters or decision boundaries exists. If this is 

not the case. the chance of being trapped in an undesirable local minimum may 

increase since a wrong cost has been initidy associated with regions of space. 

The initial approximation of model parameters is nsually provided by initializing 

the discriminant functions gi(X: &)'s, by log(P(XJ&)) (assuming equal a priori 

probability for Merent classes), where A's have already been estimated based on 

maximum likelihoo d cri t erion . 

2.3 A new misclassification measure 

As mentioned before, the essence of disrriminative training c m  be interpreted as 

properly modeling the a posterion' probability b c t i o n s  (or their monotonic h c -  

tions) in the neighborhood of decision surface. The maximum likelihood criterion 

can provide esthates of the decision boadaries. Therefbre, one c m  use snch 

boandaries, and place a proper emphasis on different regions of space. In the MCE 

training algorithm proposed in (231 , the parametric form of discriminant fandions 

of each clam is defined as log(P(CàlX)), and its parameters are initialized asing 

mBlLimum UeIihood training algorithm. Heree, the parametric form of discrimi- 

nant fanctions is defined as a h c t i o n  of the parametric form of the a posterioR 

probabilities of all dasses. The form of discrimina~t fanctions is defined to be 
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where M is the number of classes. e2 is a positive constant, and r i j ( X :  A )  is defined 

as 

.ij(X; A) = log P(CiIX) - log P(CjIX) ,  (2.16) 

and r(-) is a sigmoid function and is defined as in Eq. (2.12). Note that the use of 

~ ( 9 )  function place less emphasis on regions of space that are far fiom the decision 

boundaries. If we assume eqaal a priori probabilities. we have 

If P(Ci(X) is maximum among all dasses, then g i (X;  A) is maximum for dl 

classes and vice versa, since each term of Eq. (2.15) is greater than a correspondhg 

term of the discriminant functions of other classes, i.e., if P(CilX) is maximum 

among ad classes, then 

where Cc is a class other than Ci and Cj. h o .  we have 

Therefore, we have 

Clearly, for the minimum error rate criterion, one shodd select the class having 

the highest gi( - )  or P(CilX). The motivation behiod the selection of this form of 

disrriminant hctions will be more clarified when state models and feature extrac- 

tion and sdedion dgonthms are presented ia this thesis. 

In a similar way as in the MCE algorithm, a misdassiiication measure k(X; A) 

for each class i can be defined as 
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where 
1 M - 2  

O M = - +  
2 2 ( M - 1 ) '  

A cost fûnction I; can also be defined as 

The above cost function is aIso a smooth representation of probability of error. 

If& >> O and & > > 0. for a correct classificationo li is close to zero and for a wrong 

classification, li is close to one. If a correct classification is made, gi is maximum and 

is close to 1. That implies hi is negative since 112 + (M - 2 ) / 2 ( M  - 1) < 1. Negative 

hi means li approaches to zero as 6 becomes large. If a wrong ciassification is made, 

gk(X;  A) of a dass k 0th- than class i is maximum. It implies that P ( f i / X )  is 

maximum, and it can be concluded that 

and from here hi becomes positive and therefore li approaches to one if & is large. 

Now, consider the overd loss 

Comparing the above cost fanction and the probability of error as in Eq. (2.14), 

it can be concluded that the overd cost can be made as dose as possible to the 

probability of =or, and minimiration of overall cost is consistent with minimization 

of error probability. 

Since the distribution of training data is nsnally unknown, the overall misclas- 

sincation measate dehed in Eq. (2.25) is estknated by an empirical average cost. 

Consider the set of input samp1es is X1,X2,* - O ,  XU, - - -JU. W e  can minimbe 



where C(XY) gives the class to which the input sample XU belongs. The model 

parameters can also be found to miïiimize the overd rnisclassification measme over 

the space. i.e.. the following cost function can also be selected 

and the fdowing overall cost should be minimized 

Sm = C C S(C(Y) = C&(XU; A). 
U i 

One common approach for minimizing the overall misclassikation is to use the 

s teepest gradient descent algorit hm. According to this algorith,  the parameters 

are adjusted in proportion to the negative gradient of the misclassification measme. 

The model parameters can be npdated using 

where a is the leanllng rate and C is the iteration number. 

In the following , we try to partly explain the motivation behind the selection of 

the form of discriminant fimctions. Consider two dasses that can be modeled by 

Gaussian probability distribution with tied diagonal covariance rnatrix (Bi = Xj = 

C) and the mean Mi and Mi for dass i and j respectively. Also, assume eqnal a 

peon' probabilities for the two classes. Therefore, for a point Xo = [x!, . . . , xn], we 

have 

P(XOI&) = 
- - 

where ~k is the kth diagonal element of X, is the kth element of Mi, and z~ is 

the kth dement of Xo. 

The decision bonndary between the two dasses is a hyper-plane. Fig. 2.1 shows 

such a boundary. In this figure, C& is the distance of an input sampIe Xo fiom the 
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Figure 2.1: Two typical classes and their corresponding hyper-plane decision boundary 

decision boandary, dl and d2 are the distances of the input sarnple fiom the mean 

of different classes Ml and -M2 respectively. and a0 is the distance of the two means. 

The decision boundary has the FoUowing eqaation (see Fig. 2.1): 

where 

and the associated mischsification messare wodd be 

I k(xo; A) = -? (&q(Xo;  A)) + 5. 

However. we can easily see that 
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Figure 2.2: State mode1 

where a* is the distance between the mean of the two classes norrnalized by co- 

variance values, do is the distance of Xo from the decision boundary, and qo is 1 if 

,Yo belongs to the correct clsss and - 1 othenvise. These values, 4 and ao, can be 

and 

No te t hat the direction perpendidar to the decision hyper-plane id only important 

for classification. & and a0 (and consequently tr,(Xo; A)) and the misclassification 

measure hi remain the same if this direction is preserved. In practice, decision 

boudaries can be estimated by several hyper-planes. As it will be seen in the next 

chapter. the directions perpendicular to these hyper-planes can eventnally defme 

the feature space for classification. 

2.3.1 State models and discriminative training 

The speech signal is not a memoryless signal. This is mainly a r e d t  of the articda- 

tory constraints imposed in generating speech soands and the phonetic constraints 

imposed by language models. Hidden Markov Models (HMM's) [42], [Ml, [19] are 

simple yet scient in modeling this chmaderistic of speech signal. 
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Consider a Markov model (see Fig. 2.3) with a state transition probability 

matrix A = [a,]: where a, is the probability of making a transition from state s to 

state r. Also. consider the initial state probability mat& II = [T.]. where ~r. is the 

initial state probability of state s. Let b , (X t )  be the probability density function 

governing the observation Xt (each observation is actuaily a feature vector extracted 

fkom speech frame) produced by state S. Let q, = si:. . . . s~ be a possible seqnence 

of states. The density function of an input X produced by a Markov model can be 

defined as the following equation 

The optimnm state durations for Eq. (2.38) can be found wing Viterbi algorithm 

as described in [42]. 

To estimate the model parameters A, the model likelihood score shotdd be max- 

imized. This c m  be achieved based on the Baum-Welch algorithm [42] or the 

segmental k-means algonthm [22]. The second approach uses Eq. (2.38) for the 

likelihood score. This algorithm is more attractive as it has a lowa compatationd 

cost while having similar performances as Banm-Welch algorithm. This algorithm 

has two steps: the segmentation step and estimation step. In the segmentation 

step, the state darations that m&e the overd likelihood are foand. In the 

estimation step, the model parameters (A) are d imated  using statistical charac- 

teristics of the duster sets fonnd in segmentation. These two steps of segmentation 

and estimation are repeated for severd iterations until the change in the average 

Itkelihood probabilities of input samples in the training set becomes small. For 

more detaüs of the algorithm. the reader is refkrred to [22]. Several dgorithms 
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have &O been proposed in Iiterature for finding the parameters of hidden Markov 

models based on discriminant training criterion. Ln [l!: Bah1 et al. use maximum 

mutual information as the criteria. Juang et al. [38], [23]. [21j, [4], [26] minimize 

a misclassification measure to find the model parameters. 

Another practical issue in RMM0s is that the initial state probabilities and the 

transitional state probabilities are not important factors in classüication decisions 

or in segmentation decisions of the Viterbi algorithm. This is due to lack of dis- 

criminative capability of such parameters (241. The transitional probabilities also 

inherently model the duration of stay in each state of the model by 

This assumption about the state durations imposed by transitional probabilities 

is inappropriate for h o s t  any speech event [24]. 

Semi-Markov models [43] try to address this shortcornhg of Markov models by 

introdudng a distribution model for probability of s tay in each state. The models 

that are adopted for discriminant functions of speech classes are based on similar 

rnodels to semi-Markov models with Gaussian state distributions. In the following, 

t hese models are introduced . 

Consider a semi-Markov model with S states (Fig. 2.2), where the states take 

the duration sequence d = dl, ..., ds, respectively, that is the model stays in state 

1 for dl h e s .  etc. Let X = XI, ..., XT be the observed b e s  for the modeled 

token having total length T = di + ... + ds. The free parameters used to train 

the model are conected as A = (M, Ç), where M is the mean and E is covariance 

mahix for the continuous output densities assouated with the states. 

Let b8(Xtj be a Ganssîan probabaty density goveming the observation Xt pro- 

duced while the model is in state s. Observations are rnodeled as conditionally 



independent and identically distributed given the state. Duration of stay in each 

state is modeled by a uniform distribution having a minirnum duration of dm'" and 

a maximum of Pa. Let Dm = (e.. . . ,6;? . . . c) be a possible set for duration 

of stay in state 1 to s, where 6;" be the duration of stay in state t. The density of 

observation can be expressed as the following equation: 

Viterbi beam algorithm (3.11 is a practical way to c d d a t e  Eq. (2.41). In this 

algorithm, oniy a maximum of N best path up to each frame of t h e  is considered. 

N is referred to beam size. In HMM's, cdculating the best state sequence has a 

problem size of O(S X T), where S is the number of states in the modd and T is 

the duration of input sample. In the Viterbi beam algorithm used for calculation 

of Eq. (2.41). the problem size is of the order of O($, X T), where Sa is the 

average beam size. This increased computational cost is a disadvantage of semi- 

Markov models over HMM's. Howeva? as it will be s m  in the next section, model 

parameters can be trained to properly model the differences within states of the 

model. As a resnlt , the maximum size of beam can be rednced in this algorithm. 

In the proposed algorithm, the state daratiomi are found using a disaiminant 

segmentation algorithm described in the following section. Therefore, the model 

parameters only need to be estimated usiag the statistid characteristics of the 

segmented input tokens. After the models are trained, they are used to initial- 

ize the discriminant functions before applying the discriminative training. The 
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discriminant function of each class is defined as 

where is a positive constant. It is also known that 

and 

where N(-) is dehed as in Eq. (2.30)? and Mf and Ci are the mean and covariance 

of the state selected at time t for input vector Xt in the model of class i. 

Here, diagonal shared covariance matrices are used and the following approxi- 

mation is applied 

l09(P(X 

whese T& is 

for the state parameters selected for dass i and j at time fiame t (ofjk is the kth 

element of the shared covariance between state i and j ) .  Please note that if & is 
small enou& we are in the linear portion of the sigmoid bction,  and therdore by 

applying the nonlinearity irnposed by 7(*) y we wil l  not have a different classification 

r e d t  other than that of maximum likelïhood. In practice, nmdy the pedonnmce 

is slightly better, as the nonlinearity of sigmoid fnnction c m  limit the &ect of an 

input vector Xt in the overd deasion making. Althongh initidy the dBss with 

maximum P(XI&) r d t s  in maximum gi(X; A), this may not be the case aRer 

training of model parameters k g  discriminmt training aiporithm. 
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The empirical overall cost function that should be minimized for a set of input 

samples XL, . . . . Xu is defined as foilows: 

Using steepest descent algorithm. the adjustment of mean parameters is as 

follows : 

where 

and 

and 

and 
&rij(Xo; xi) 

&ni 
In the experiments reported in this thesis, the mean patameters are only adjusted. 

As can be seen fiom the above equations, the training algorithm is very similar to 

the training algorithm of LVQ2.1 [29] [28] [30]. Here, the terms y (1 - y) , w(1 - w) .  

v( l  - v )  play the role of the window region in LVQ2.1 algorithm. Compared to MCE 

algorithm [21], the cost of caldating the derivative of the overd cost fanction is 

lower resdting in fastn training tirne. 
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2.4 Discriminant segmentation 

For traditionai speech recognition systems using Hidden Markov Models, the o p  

timum segmentation is to find the sequence of states that maxirnizes the overd 

likelihood of an input sample produced by the Markov model. This strategy ha9 

some advantages and disadvantages. The main advantage is that the same model is 

used for segmentation and classification. The disadvantage of this strategy appears 

when we study the clifferences of more confusing classes of speech. Such classes 

of speech often Wer in a limited number of featnres within a lùnited number of 

fiames. These frames usually are not assigned to a separate state using the max- 

imum likelihood segmentation, as t hey cannot produce a significant change in the 

overd likelihood. As a result, the statistical characteristics of such regions do not 

change the statistics of their associated states signtficantly. As a resnlt: the overd 

classification is no t afTec ted by these regions. 

Another problem appears when mode1 parameters are trained using discriminant 

training. In this case, the model parameters are trained to minimine the defined 

overall cost fùnctions. Therefore, such parameters are not valid to estimate the 

liikelihood models anymore. Since in the Viterbi segmentation. the optimum choice 

of state durations that maximizes the overd likelihood are selected, the newly 

trained parameters cannot be used to do the segmentation task. Therefore, the 

task of segmentation and classification shotdd be camied out by cliffixent modeis. 

If we carefirlly examine the segmentation ta&. we notice that it is nothing more 

than a dassificatîon problem. In segmentation, we have to classify or select the best 

path firom a set of possible paths. The maximum likelihood segmentation selects 

the path that has the highest likelihood. Sbdarly, we can associate discrrirninant 

fanetions to each path and select the path having the highest discriminant fanction 
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value. Also. simila to discriminant training algorithm desaibed in the previous 

sections, misclassification measures can be defined and discriminant training algo- 

nthm can be applied for training of segmentation models. Discriminant training 

can only focns on the acoustic Merences within a class which is a rednced das- 

sification problem. As it will be seen in the next chapter, a feature extraction 

algonthm can also be applied for segmentation purpose that can greatly reduce the 

computational cost of discriminative segmentation. 

Here. we define a discriminant fnnction for any &en path. The path is selected 

such that its discriminant function is ma,ximum. To initialize mode1 parameters, 

each input sample is &st hand segmented and the parameters of the state models 

are initialized using the statistical characteristics of their associated segmented 

regions. 

Consider a path qu = sf, . . . sr, .  . . ,sa, where s: is the state that input XU has 

stayed in at time fiame t. The discriminant function of this path is defined as 

where J is the number of states in the modd and, 

If q' = {si: . . . s;, . . . , s+) is a path that mai9mizes P(XUIX) over d possible 

choices of pl and if & is s m d  enough that we are in the h e m  portion of the 

s i p i d  fiuiction, then q* &O maximizes g(XU;q) over all possible choices of q. 

This can be proved as follows: Let assume that qm = {s?, . . , sr ,  . . . , sp) is a 

path 0th- than q*, then we have 
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then, we have 

and we have 

and by considering that y(.) is a monotonie function and €1 is s m d  enough, we 

Here, for the training of model parameters, we minimine the misclassification mea- 

sure of the best paths in the training set. If we have a set of input training tokens 

X1 . . . . Xu with their corresponding best paths ql? . . . ? qu, we rninimi+e the follow- 

ing cost bct ion  

Note that the optimum state darations should be foand using the Viterbi beam 

search to reduce the compntationd cost. However, due to diseriminant ability of 

the model, s m d  sizes of beam results in almost perfect segmentation. In my ex- 

perkents. the m;ucimnm beam size was selected to be 50. Alsot note that the 

computational costs can be reduced using the featare selection and extraction aC 

gorithrns proposed in the following chapter. 



2.5 Summary 

A new discriminant training algorithm dong with a new form of state models for 

the design of speech classifiers was introduced in this chapter. The training algo- 

n t  hm f i s  t hi t ializes the mode1 paramet ers using s tatis tical char acteris tics of the 

training set. Then. model parameters are adjus ted nsing a discriminative training 

algorithm by minimizing a dehed  misclassification measure. The misdarsi&ation 

measure is a smooth version of probability of error. Therefore, the probabïiity of 

error is indirectly minimized. A new discriminant segmentation algorithm was also 

introduced. Discriminant b c t i o n s  were associated to each possible path of the 

state model and the model parameters were trained to emphasis on the differences 

of states within speech anits such as word. 
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Feat ure select ion and extraction 

Introduction 

Feature extraction is a preprocessing mechanism to rednce the dimensionality of 

data by mapping the original measurements into more disaiminative features. The 

proper choice of the mapping fimctions depends on a priori knowledge of data and 

in practice, nsndy heuristic techniques are used for this selection. A completdy 

optimal feature extractas cm never br anything but aa optimal clasaifier. In oeha 

words, if the minimum error rate criterion is onr objective, the design of mapping 

fanctions cannot be separated from the design of the ciassifier. Examples of sach 

systems can be seen in literature in [4], [45], [35], [31], [5], [33]. It is nsrially 

hard to achieve the objective of minimum error rate criterion, m d y  due to high 

dimensionality of feature space. Therefore, dass separability measnres are defined 

and optimized instead of error rate criterion to measnre the disaiminative power 

of new feature set. 

Generally, if the perfomance of a dassiûer is inadeqaate, we wodd like to add 
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new features. in particdm those features that are more effective for the classification 

of more conhsing classes. The performance of the classifier should increase if an 

optimum classifier can be b d t  up in the new feature space. The worse thing is that 

the optimum classifier ignores the new features. In practice. beyond a certain point, 

inclusion of new features leads to worse performance of classifier. The basic source 

of the problem can be traced to the fact that we usually use a parametric classifier 

to mode1 the optimum classifier. Such a classifier requires more free parametas 

to model the higher dimensional input space. When the models are estimating a 

posteriori pro babili ties ( at leas t around the decision bonndaries ) , the increase in 

the number of model parameters usudy resdts in an increase in the mismatch 

of models and tnie a posteriori probabilities. When the number of parameters is 

inaeased, the chance of finding the optimum set of parametas is also decreased. 

Moreova, we require a higher nnmber of sampie data to estimate the inaeased 

number of parameters. resulting in another possible source of error. 

Feature selection is an approach to alleviate these design problems. Here, we 

select a sabset of k features fiom n possible candidate featares. In practice, a linear 

transformation of the feature space before or d e r  feature selection can nwally 

improve the performance of the classrsifier considerably. This method is an example 

of feature extraction The optimum solutions (reducing the =or rate) for featnre 

selection or extraction are hard to find. Thedore. instead of reducing the error 

rate, some predefined discriminative measure in data is maxkked. 

There are several attempts in literatare to design a discriminative feature ex- 

tradion [4], [5], [31]. Various techniques have also been txsed to jointly train the 

parametric form feature extraction and dassifier [45], [3], [12], [35], [33], [8], [7], [9]. 

My approach to the problem is to u e  the classifier b d t  in the higher dimen- 

siond space, and use its misclassification m e m e  as an estimator of the discrimi- 
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nation ability of different directions in the feature space. Althongh such a classifier 

cannot be a solution for the classiîxcation problem. it can provide certain usefd 

information on the informativeness of different directions in the space. In this 

chapter. we first review some related work for feature seleetion and extraction, and 

then describe our proposed algorithm. 

3.2 Related works 

A dassical method to reduce the dimensionality of data is a technique known as 

Karhunen-loeve expansion (KGexpansion) or principal cornponent anolysis [15]. 

Consider an dimension4 randorn vector 2. This veetor can be represented by 

n orthogonal basis vector di without any =or. In KL-expansion, we represent 
-0 

the n-dimensional input vector 2 by an m-dimensional estimate zm. Here, the 

estimate is fomd sach that the mean-squared of the magaitade clifference of these 

two vectors is minim;zed. That is, to m;nimize 

It can be shown that this estimate shodd be evalaated as follows (see [l?] for more 

and Bi's are the eigenvectors of the covariance mat& of 2, Ex, sorted to the order 

of their conesponding eigenvalues &, where the largest one is SI. In this case, the 
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error cm be shown to be (see [15]) 

n 

The normalized d u e  of eigenvalues can be defined as 

Based on the acceptable level of error or the normalized value of eigenvalueq one 

can select the dimensionality of the new feature space. The KLtransform has 

three attractive properties. First, it can order the importance of each direction 

in representing 2 using the value of its corresponding eigendues. Second. the - 
cova.riance matrix of 2 is diagonal. Thîrd, the transfomation is optimum in terms 

of minimizing the mean-squared error dehed in (3.1) over all choices of orthogonal 

transformations. 

The disadvantage of asing the KLexpansion in pattern recognition is that this 

transformation is only appropriate in terms of representing the data not in terms 

of minim;xing the dassüication error or maicimiziog a class separability measure. 

Another disadvantage of this algorithm may appear in calcnlating the covariance 

rnatrix: since we reqnire an increased namber of sample data when the dimension- 

ality of the input space is increased. 

Another common approach for feature extraction is based on f i n h g  a linear 

rnapping A of the n dimensional measarement space, and then sded m featares snch 

that a measare of discrimination ability is maxixnized. Fisher's lin- discriminant 

method [15] is an example of this approach, where we ky to maxi.mize 



CH.4PTER 3. FEATURE SELECTION AND EXTRACTION 33 

where Cb and C, are the between-class and within-dass scatter matrices, respec- 

tively, and are defined as 

I 

where P(Ci) ,  A& and Ci are the a prion probability. mean and covariance matrix 

of class Ci, respectively. A& is the mean of all classes. i. e., 

Fisher's algorithm finds the linear mapping A fiom the n dimensional space to the 

K - 1 dimensional space where K is the number of classes. It can be shown that 

the optimum solution for this criterion can be obtained by solving a generalized 

eigenvec tor problem 

ZB.& = A&ii.i? 

where 6 are colnmns of A corresponding to k - 1 nonzero eigenvalues of &. The 

reader is referred to [15] for more detail. The basic shortcoming in asing sach 

criterion is that the dass separability measure used in Eq. (3.6) is not optimum 

for ail dassification problems. There are certain practical cases where this criterion 

does not perform wd. For example, when the mean of a dass is very different 

fkom the mean of otha  dasses, that c h s  will then be dominant in caldating 

the between class scatta matria, and therefore undermining the feature extraction 

method. Moreover, the tme estimation of the criterion may not be very accurate 

when the dimensionality of the feature space is increased due to possible lack of 

enough training data. 

C. Lee et a[. use decision boudaries estimated in the higha din;ensional space 

to h d  the importance of different directions in the feature space [32]. They first 
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Figure 3.1: A simple counter example for Lee's algorithm 

define the following feature rnatrix 

where N(z) is the unit normal vector to the decision bomdary at point z, p ( z )  

is the probability density fnnction of x, K = Jsp(z)&,  and S is the decision 

botmdary. They daim that if this matrix has zero eigenmhes, the direction of their 

correspondhg eigenvectors do not have any us& information in the classification 

task. They fixther generalize the algorithm and try to sort different direction based 

on the eigenvalnes of the feature mat& 

It can be seen that the above daim is not valid in some practîcal cases where 

p ( z )  = O on the decision bonndary. Fig. 3.1 is sach an example. Here, we assume 

the distribution of data is d o m  within each circle for each class and it is zero 

elsewhere. Following the above algo&hm, we can see that the featnre matM 

has a zero eigenvalue a d  that the zero e î g d u e  corresponds to the direction 
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pardel  to line di. That means the direction perpendicular to such a line can 

only be considered for classification without having any increase in error rate. As 

can be seen from the figure, th& direction will resdt in an inaease in error rate. 

Moreover, p(x) is introduced in Eq. (3.11) to place a weight on regions having 

a higher concentration of data. Snch emphasis is simply not valid. In fact, every 

point in space should provide a share in feature selection or extraction as each point 

has a share in the probability of error. 

My proposed approach for feature extraction and selection that wi. be pre- 

sented in the next section waa motivated by the above approach. In the proposed 

approach. decision boundaries are approxhated by several hyper-planes. The di& 

ference in calculating the similarity matrix is in the weighting factors p ( x )  . These 

weighting factors are replaced by the misclassification measnre of each point. Also 

the integration is carried out over the whole space not just over the decision bound- 

artles. 

As mentioned before. one can directly select a sabset of features without d e  

ing any t rdonnat ion .  This approach is rather interesting mainly because of its 

reduced compnt ational cost in bnilding the classifier aft er the selection of appropri- 

ate features. Moreover. feature selection can diminate irrele~nt information ( i .e.  

noise in general). Here, some meagates of class separability are also used instead 

of probability of a o r  to evaluate the importance of different features. Probabil- 

ity distances are examples of such m e m e s .  These measures d o w  d a t i o n  of 

disaiminative power of each feature between two classes only. The followings are 

some 

8 

examples of them 1151: 

Bha t t acharyya's distance 
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Divergence 

In another algorithm, mutual information between features and the classes is used 

to order different feature. This mutual information is defmed as [ll][2] 

P ( X ,  Ci) 

i 
la* 

Mutual information measures the amonnt by which the knowledge provided by a 

feature decreases the ~certainty about that dss. Therefore, the most informative 

feature can be found nsing the above measme. GeneraUy? the nth selected feature? 

should be the one mairimzing 

P(Xn, Ci) I (C:  xn~x1.. 9 xn-1) = /  ci; xnIx,. xn-~) log[ I ~ X .  
i X  P ( X J P ( C i )  

The computational cost and the inereased nnmber of reqnired sample data to calcu- 

late the above mntud information rnakes the above algorithm practically infeasible, 

w hen the dimensionali ty incteases. 

3.3 The proposed algorithm 

If the decision boundary is a hyper-plane, the directions pardel to sach a hyper- 

plane do not contain any usefnl information for the purpose of classification. There- 

fore, we can use the direction perpendicular to such hyper-plane only, withorit 

changing the recognition enor rate. However, the decision bomdaries in practice 

are not usudy hyper-planes and such absohtely redandant directions do not ex&. 

However. decision bonndaries can be estimated nsing a conection of hypa-planea. 

As we will see in th% sectiono the perpendidar directions to sach hypa-planes, 
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if properly weighted? can provide us u s a  information about the importance of 

different directions in the space. 

Here, linear orthogonal transforms are found that can map the higher dimen- 

sional space before applying feature extraction. It is shown that in the lower di- 

mensional space. at least a model can be build that its misdassification measure 

(or indirectly the probability of =or) is close to that of the model in the higher 

dimensional space. Indeed, an uppa-botmd can be foand in the maximum change 

of misclassification measure. The desired transform is the one that minimiRa this 

upper-bound. It is dso shown that a subset of featnres can be selected that mini- 

mizes the npper-bound. 

Assume that the model is ikst trained in the higher dimensional space based 

on the discriminative training criterion explained in Section 2.3. Also assume that 

f i e r  the linear transformation 9, ody the first m-dimension of a vector are used - 
in the new space for its representation. Snch a vector is shown by V .  That is 

and, 

The sqnared error in representing can be defined as 

Here, it is shown that if the model and input are transformed to a Iowa dimen- 

sional space, the change in the overd misdagsification messare is borinded. 

The cost fnndion of an input XU for dass i was defined as (see Chapter 2) 
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Figure 3.2: Sigmoid fnnction 

Let as define, 

Also consider i ,  W and Iiij as the estimation of y, w and R : ~  in the 1ower dimensional 

space, respectiveiy. Considering Fig. 3.2, and the convexity of the sigrnoid fanction, 

it can be written that 
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However. it can easily be shown that 

7(x)(1 - ~ ( x ) )  < 0.25 Vx. 

T herefore. 

and 

In the following. an upper boand for Ir(Ulrij) - 1 is found. 

As it was seen in Section 2.3.1. rtj = 4atq t .  where dt is the distance of input 

vector Xt fkom its corresponding boundary hyper-plane, at is the distance of of 

the pair of codebooks selected for input Xt , qt is 1 if the input vector is correctly 

classified and -1 otherwise. 

Consider the paralle1 vectors 4 IV', at gt, and dtaLqr)Nt in the feature space, 

where Nt is the unit normal vector of the decision hyper-plane in the direction of 

correct class associated to input vector Xt. The lengths of the fhst m-dimension of 

4fit and at& fier the transformation are shown by 4 and &, respectively. Since 

the vectors a& and r ( q t ~ ) N t  are pardd to each other, we c m  have 

and 
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where 

Considering & > O and O 5 7 )  1 1 

In a same way 

i i t  = (1  - r p a t .  

T herefor e 

(1 - 7 ) d t ~  = cirat. 

Considering the convexity of ~ ( & d & ~ q ~ )  when qt = 1. 

It can easily be shown that 

T herefore 

or 



CHAPTER 3. FEATURE SELECTlON AND EXTRACTION 

Considering G &at is positive. 

which results 

The first term is dominant when c2(7((&tt)zt) < 0.18. By evaluating the denom- 

inator with the highest value of c3(r(&t&at)~?t), we can write: 

Combining the above h o  inequalities, 

Combining the ineqnalities (3.25)-(3.28) with the above inequality, it cari be con- 

clnded that the change in misclassification meagare can be written as 
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The above bound shows that the loss in iilisclassification measure is bounded by 

the loss in representing the vec tors perpendiealar to decision hyper-planes weighted 
ri idtarqtl 

b' ( - ' T u  ) Based on K-L expansion technique, such vectors can be best pre- 

sented if the columns of transformation are the eigenvectors of the covariance rnatrix 

of these vectors sorted by the valne of their corresponding eigenvalues. 

Note that one can also select a subset of features without having any transfor- 

mation by minimiRing the apper bound over all possible subset of features. This 

can be done by sorting different directions by maPmizing the average length of the 

projection of vectors ( '(" $Y'~')  Nt ) in Meren t direction. 

As it was shown above, minimization of the maximum change in overd misclas- 

sification meastue using feature selection or extraction requires proper representa- 

tion of a set of vectors 7(hc&atP1)& calcnlated for every f i m e  of the input samples 

of the training set. Therfore, one can partition this set depending on selection of 

states in different models and fhd a proper transformation for each partition. 

The above feature selection and extraction strategy can also be applied for the 

segmentation dgorithm described in the previous chap ter. Considering Eq. (2.53) : 

and by going through s M i s z  steps as hding the boand in Eq. (3.49), it can be 

seen that the maximum change in evaluating discriminative funetions of each path 

is bouoded 

where 1qt is the rinit normal vector for the hyper-plane associated to state sr and 

s j .  %y considehg snch a bottnd, feature selection or extraction can be done by 
7(€1+*.1 - 

properly presenting the vectors ' Nt in the new space. Such representation 

can &O be state dependent. Featnre selection and extraction is appealing for the 



CHAPTER 3. FE;ITURE SELECTlON ALW EXTRACTION 

segmentation algorithm to reduce the additionai cost of segmentation imposed by 

using semi-hlarkov models. 

Summary 

It was shown in this chapter that for the given state model described in previous 

chapta, after an orthogonal transfom. the dimensionality of the space can be 

reduced. It was also shown that by asing such traosform, the maximum change in 

misclassification measure of the models trained in the higher dimensional space has 

an upper-botmd. The upper bound can be mhimized by properly representing the 

vectors perpendicular to decision hyper-planes weighted by the share of the input 

vectors in the overd misclassification measure. The proper representation of such 

vectors is an easy task using KL-expansion algorithm. Feature selection is also 

possible b y projecting such vect ors in different directions of space and selecting 

the directions having a higher accumdated projection. The proposed algorithm 

can &O be applied to the discriminant segmentation algorithm described in the 

previous chapter. Since the clifferences within speech u n i t s  such as word is less 

c~mplicated~ the reqaired namba of features in practice is very s m d  (5 features in 

the experiments reported in chapter 5). It was also discassed that feature selection 

and extraction can be implemented depending on state of the model. 



Chapter 4 

Feature extraction using 

spectrogram 

Introduction 

The speech spectrogram is a  thedependent Fourier representation of speech signal. 

To calculate the speech spectrogram, the speech signal is &st H d g - w i n d o w e d  

with a window size of about 4 0 ~ .  The resdting signal is then zem-padded and 

its Fast Fourier Transform is taken. The Hamming-window is then moved forward 

(about 10ms) and the same process is repeated. 

Experts can use spectrogram and dassify words or phonemes fiom a spoken 

sentences with a high accaracy rate [4O], (271, [16], [18], [37], [48]. It is one of the 

objectives of this thesis to properly measure the features that are naed by these 

experts. One of the most important featmes is the position of resonant fiequenues 

or formats in the spectrogram and th& dative movements, the atistence of 

voiâng information in the signal, and the distribution of energy patterns in the 
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spectrogram. 

To extract features fiom the spectrogram, the Mage is first segmented into two 

homogeneous regions of object and background. each having similar diaracteriskics. 

The object class is associated to regions having the desired features. For example. 

the object class can be the regions associated to resonance fiequenues. 

Exis ting segmentation algorit hms inclnde amplitude thresholding, component 

labeling, boundary-based approaches, region-based approaches, template matching 

and texture segmentation. An overview of the existing dgorithms can be f o u d  

in [6] and (201. In the following section, a new self-organizing image segmentation 

algori t hm is introdnced. 

4.2 A new self-organizing image segmentation al- 

gorit hm 

The overall goal of this aigorithm is to segment images consisting of an object and 

a background. In particular, a selfsrganipng segmentation algorithm is presented 

that can segment the image bwed on a prion'knowledge ofobject and backgronnd 

charac teris tics. These characteris tics indude the knowledge about the intensity 

of pixels in object and background dasses and the shape of these classes. Based 

on Bayes decision theory, the optimum segmentation, in temur of minimizing the 

probability of segmentation =or, is to deude in f a m  of objed for each image pixel 

( j )  if the a posteTion'probability of that pixel belonging to object (O) is greater 

than that of background clam (B) piven the input image (1). That is if 



CHAPTER 4. FEATURE EXTRACTION IISING SPECTROGRAM 46 

A common segmentation shategy is then to estimate the above o posteRori proba- 

bilities using parametric stochastic models for object and background classes [10], 

[13], [39], (471, and [25]. However. such methods rely on urrrealistic assumptions 

made in the selection of their stochastic models. Moreover. it is usudy hard to 

find the optimnm set of mode1 parameters. As a resdt, the parametric estimation 

of the a posten07-i probabilities does not usuaily result in accurate segmentation. 

However , t hese es timates can provide some information on the degree of confidence 

in making segmentation decisions by considering th& doseness to one or zero. 

The proposed algorithm uses sach confidence information provided by estirnates 

of a posterion probabilities dong with a priori knowledge about the object shape. 

Here, the value of each pixel's a posteriori probabilities is iteratively adjusted where 

less ambiguous ones are adjusted more in each iteration in hope of h d h g  a bet- 

ter estimate of the a posteriori probabilities for other pixels in the next iterations. 

Note that the a poste7ion' probabilities are functions of the valne of other pixel's 

a posteriori probabilities in the image (nsndy the neighboring ph&). To avoid 

instabïiity in sach adjastments, an error function is &O defined as a measure of 

overd segmentation of output image pixels. This error fanction is minimum for 

anp binary image (with pixels having probabilities of zero or one). The adjnst 

ment strategy &O reduces this error fnnction, theteby leadhg to s higher degree 

of segmentation. The a postetioci probabilities are initidy estimated nsing the 

intensities of image pixels and the knowledge of the object shape. Af'ter this initial 

estimation is found, the a poste~o7-iprobabilities are adjusted naing the a poste7-ion 

probabilities of other pixels and the knowledge of the object shape. 

The initial estirnate of P( j E O (1) can be provided as 

where oj is the i n t e d e  of pixel j ,  h( j ,  k) is a constant depending on pixels j and 
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k. D is a set of neighboring pixels ( induchg node j ) ?  O is the object dass and I 

is the given image. After this initial estimate of pj. these probabilities are adjusted 

dnring the segmentation phase using 

where d ( j ,  I r )  is a weighting factor that shodd be selected based on the shape of 

objects, p is the estimate of a posteriori probability of pixel kt t is the iteration 

number, and a is a positive constant. Here. it is assnmed that d ( j ,  k) = d(k,  j ) .  

This adjas tment s trat egy adjns ts image pixel's pro babilities i teratively, where less 

arnbiguoas pixels are adjasted more in each iteration. The above adjastments wiü 

also resdt in a more segmented image after each iteration. If we carefidly examine 

the above training strategy we notice that it also minimizes the following error 

fanction for which any binary image (having a posterion probabilities of zero or 

one) is a global minimum: 

This can be shown by taking the derivative of E with respect to pj and assnming 

that d ( j .  k) = d(k,  j ) .  

Considering that a is a positive constant, and by comparing Eq. (4.5) and (4.3), 

we can conclade that the adjastment algorithm reduces the enor fnnction defined 

in Eq. (4.4) as the adjnstment is in the negative direction of the derivative of the 

deihed -or fimction. In sommary, the end prodnct is a self-orgaxking algorithm 

descsibed as foUows: 
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a Calculate an estimate of a posteriori probability of image pixels belonghg to 

ob ject or background classes based on their intensity and the shape of object . 

Select a proper d ( j .  k) (weighting coefficients of the defined measare) based 

on the shape of the objects. Also, select a learning rate (a) and adjast 

the estimate of probabilities iteratively using the following equations antil a 

desired segmentation level is achieved at the output image 

and keep O p! 5 1. 

Aho. one shodd note that the change in the probability of node j ,  cansed by a 

neighboring pixel k is limited to qd( j ,  I r ) .  prohibiting the system fkom excessive 

smoothing. 

4.2.1 Formant segmentation 

Here, formant regions are refered to regions that have high energy and are dose 

to the resonant fkeqnencies of speech signd. Correct identification of snch regions 

can play an essential role in any speech recognition system. To segment the image 

into these two regions. the fonowing approximation was made 

Pij = o i j ~  (4.7) 

where i refers to horizontal position of a pixel in the image and j refers to its vertical 

position. Mer ,;bis initial estimation, the probability of each pkd is estimated 
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Figure 4.1: The filter that is used for format features (frequency range of esch spectre 

gram contains 200 pixels for spectrograms up to 6KHz) 

where d ( j )  is gîven as in Fig. 4.1, 1 and J define the size of neighboring pixels. In 

these experiments, spectrogram images have 200 pixels in the frequency direction 

and 1 pixel every lm8 of tirne domain. For these images, I = 11 and J = 9. a was 

selected 0.2 and the segmentation was carried out for 10 iterations. The resdting 

segmented images of the words /nine/, /one/, /zero/, and their corresponding 

segmented images for different iterations are shown in Fig .4.2- 4.10. Pleôse compare 

the clifference of the words /one/ and /nine/ in the t h e  domain between O.3sec 

and 0.4sec of both words for the segmented images and the original spectrogram 

images. It is indeed these regions that cm play a signifîcant role in clas&cation of 

the two words. 
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 
Time (sec) 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 O.@ 1 1.1 
fime (sec) 

Figure 4.2: Rogress of segmentation of word nine in Merent iterations, fkom top to 
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 
Time (sec) 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 
Time (sec) 

Figure 4.3: Progress of segmentation d word nine in different itemtions, nom top to 
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 t .l 
Tirne (sec) 

Tîme (sec) 

Figure 4.4: Progress of segmentation of nord nine in dinerent iteratiomt top to 

button, iteration number: 6,7,8 
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0.1 0 2  0.3 0.4 0.5 0.6 0.7 0.8 0.9 
Tirne (sec) 

Figure 4.5: Progress of segmentation of word one in different iterations, fkom top to 

button: otiginal spectrrun, iteration nuniber 1,2 
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
Tirne (sec) 

0.1 0 2  0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
Time (sec) 

Figme 4.6: Rogress of segmentation of nord one in cliffient iterrrtions, fiom top to 

bntton, iteration n- 3,4,5 
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Figure 4.7: Progres of segmentation of word one in dinerat itexations, fiom top to 

button, iteration nmnber: 6,7,8 
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Figure 4.8: Progress of segmentation of nord pero in Merent ifetations, &om top to 

button: original spectrogram, iteration number 1, and 2 
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0.2 0.4 0.6 0.8 1 12 
Time (sec) 

Figure 4.9: Progress of segmentation of word zero in diBiirent iterations, nom top to 

button: iteration namber 3,4, and 5 
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0.2 0.4 0.6 0.8 1 1 2  
Time (sec) 

Figure 4.10: Pmgress of segmentation of nord zero in different iterations, fiom top to 

button: iteration n u m k  6,7, and 8 
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Figure 4.11: The filter that is d for voicing featura, (esch tame represent Z O m s )  

4.2.2 Voicing feat mes 

By voicing regions, we refer to regions of spectrogram that show a pend line pattern 

having higher energy in a large portion of fiequencies for a short period of time. To 

extract voicing information, we estimate the a p p r h a t e  probabilities as follows: 

whae h(i)  is defined as in Fig. 4.11. The adjtrstment of the probabilities are done 

In our errperiment I = 1 and J = 11. Fig. 4.12 shows the r d t i n g  images for part 

of the spectcogram image d word /zero/. Fig. 4.13 shows the r d t i n g  segxnented 

image for part of the word /ti/. 
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0.25 0.3 0.35 0.4 0.46 0.5 0.6 
TIme (sec) 

Figure 4.12: Segmentecl voiüng regions found using part of the spectrogram of the word 

/zero/: (a) original spectrogram of part of the word /zero/ (b) segmentecl regions 
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(b) 

Figure 4.13: Segmented voicing regions found using part of the spectrogram of the word 

/ti/: (a) past of the original spectrogram @) the corraponding w e n t e d  regions 
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Figure 4.14: Center of gravity of the ob je& of the segmented image of Fig. 4.10 

4.2.3 Rising and falling formats 

One of the features that is very important for speech recognition is to know if the 

formant frequencies are inueasing or decreasing. To find that , first the center of 

gravity for a window of size IxJ was caldated as follows: 

I J  
Mj = C C j pi-m, j-n (4.11) 

&-I j=-J 

and 

In these experiments, I = 4 and J = 8. Then, the points that their center of 

grsvity are closer to th& position were selected. Fig. 4.14 shows the resulting 

image from the segmented image of Fig. 4.10. To find if the fonnants are upnsing 

or dom-f&g, the best regression line that can be passed through esch point in 

a window of size 2 M 1  was calmhted. We separate the points with positive and 

negative slopes of the regression line into diff't images. Fig. 4.15 and 4.16 show 

the r d t i n g  images for the segment image of Fig. 4.10. 
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0 2  0.4 0.6 0.8 1 1.2 
Time (sec) 

Figure 4.15: Uprising features found from the segmented image in Fig. 4.14 

0.2 0.4 0.6 0.8 1 1.2 
?ime (sec) 

Figure 4.16: Falling formant found nom the segmented image in Fig. 4.15 
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Figure 4.17: Local energy found fiom the spectrogram in Fig. 4.8 

4.2.4 Energy feat ures 

Another set of features are the smooth version of spectrogram. The spectrogram 

image is averaged over a window of 15x5. Fig. 4.17 shows the resulting image of the 

spectrogram image of Fig. 4.8. A smooth version of voiQng images over a whdow 

of 20x8 was also cdcnlated. The r d t i n g  image for the spectrognun shown in 4.17 

is shown in Fig. 4.18. 

4.2.5 Overall energy 

Overd energy of signal over a window of 25 h e s  were also calcnlated as a single 

featnre. 
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Figure 4.18: (a)Voicing image of the spectrogram in Fig. 4.8(b) its corresponding local 

energy image 
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Figure 4.19: The filter that is used for extracthg features from segmented images 

After the feature images are caldated, 14 features per frarne were extracted using 

overlapping flters shown in Fig. 4.19. 

4.3 Summary 

A self-organizing algorithm for segmentation of spectrogram images was proposed. 

The algorithm fist calculates the estimates of the a pos t e rh i  probabüities of each 

pixel for object and background classes, and then itesatively adjasts these probabil- 

ities to reduce a defined segmentation m e m e .  Pixels that are las Iikely to belong 

to object or background classes are adjasted legs in each iteration, debyîng th& 

segmentation untü more image information is amilable. Experiments showed that 

the algorithm can be applied to successfidly segment formant and voicing regions in 

the spectrogram image. Other sets of features were &O calculated which include: 

nprising and down-fsuing formant featates, local energy of spedrogram and local 

energy of segmented voicing images. h m  each image, and for each fiame 14 fe* 

tnres were caldated ushg overlapping filters. These fatures are the ptllnary set 

of features as the input to orir recognition system. 



Chapter 5 

Experimental results 

5.1 Data base 

For the experimental tests. a corpus of isolated spoken words was selected. This cor- 

pus was designed and conected at Texas Inst~ments (TI) in 1980 cded TI46 [14], (441. 

The materid contained on this data base was recorded in a low noise environment. 

The TI46 corpus contains 16 speakers: 8 males and 8 fernales. There are 46 

words per speaker. They are: nnmbers: ZERO to NINE, Engüsh letters: A to Z 

and the words: ENTER, ERASE, GO, HELP, NO, RUBOUT, REPEAT, STOP, 

START, YES. In ail the expaiments reported here, 4 samples were used per each 

speaker in the training set resdting i~ a total of 64 samp1es for each word, and 12 

samples per speaker were selected for each word of test set resdting in 192 samples 

per word. 



5.2 Segmentation experiments 

For any input sample. dl the set of images discussed in the previous chapter are 

computed. From each set of images. 14 f e a t m  are extracted using the @ter b d s  

shown in Fig. 4.19. There are 6 images resulting in 84 features and 1 total energy 

feature. which results in 85 feature in total for each input. 

Bared on a priori knowledge of important regions of speech words using spectre 

gram reading experiences, a state model for each word was designed. The training 

set of corpus was then band segmented. Appendix A shows an example of each 

word and its corresponding state model and segmented regions. 

For each word, three models are used for training and testing. These models 

are cailed: statisticai model. segmentation model. and discriminant classification 

model. For the statistical model, the parameters are trained nsing the statistical 

characteristics of segmented regions of each word. The segmentation model is nsed 

for the segmentation of each word and the discriminant dassification model is used 

for dis-ant training of model parameters. 

After the s tatistical model paramet ers are es timated, the segmentation model 

parameters are initialized with the parameters of the statistical models. There 

are two phases for the discriminant segmentation training algorithm. In the first 

phase, the model parameters were trained for 10 iterations. In these experiments, 

& = 0.01, = 0.5, and the leamhg rate a: = 0.1. After tbis training phase, only 

10 directions were selected using our proposed featare seledion algorithm. Fig. 5.1 

shows a typicd progress of overall cost h c t i o n  for the word /zero/ during this 

training phase. Fig. 5.2 shows the ac-dative projection of r ( ~ ~ a t q t ) N t  fot a 

typical state of the model versas the namber of directions that c m  be used. Note 

that the direction nmbers are sorted based on th& importance. In the second 
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Figure 5.1: The progress of overd misdassiflcation measure duting the first phase of 

segmentation training for word /zero/ 

Figure 5.2: The accumuiative projection of 7(<l&atqt)& for a a i c d  state of the mode1 

a e r  the nrst phase of segmentation training for word /zero/ 



Figure 5.3: The progress of ovaaii misclassification measme during the second phase of 

segmentation training for word /zero/ 

phase of segmentation training, the training of model paramet ers was continned, 

but this t h e  only 10 directions per state was used. The training continued for 10 

more iterations. Fig. 5.3 shows the progress of overail cost daririg training for word 

/zero/. Mer  the second training phase, an orthogonal transforms for each state 

is caldated and the dimensionality of input is mapped to only 5 directions. The 

redting models were ased for segmentation of input samples. Fig. 5.4 compares 

the segmentation of the word /eight/ done before training with hand and the seg- 

mentation resdts of segmentation model of /eight/. In practice, the segmentation 

resdt by models usady oatperform that of hand segmentation, as the models have 

a better estimate of overd statistical characteristics of each state. 

After the segmentation models are trained, all the words in training set are 

segmented by the segmentation modeh of ail daases using Viterbi beam dgorithm. 
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. .- . 
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Figure 5.4: (a) Hand segmenteci regions of word /eight/ More training@) the w e n t e d  

regions resuited nom the segmentation mode1 
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Figure 5.5: The progress of overd cost function during the first ph- of discriminant 

training for word /B/ 

The mrtlàmnm beam size of 50 was selected in this algorithm. The r d t i n g  se- 

qnences was then recored in the data base for later refaences. 

5.3 Training of discriminant classification models 

The training phase of discriminant dsssitication mod& starts by initiaking the 

models by the statistical models. Again, a similar procedure as in segmentation 

training phase was carried ont. Fkst, the model péuameters were trained for 50 

itaations using the disaiminant training algorith, and then the feahire selection 

algorithm was applied. At th& stage only 20 feattues out of 85 features were 

selected for each state. Again the training was continued foi 20 iterations and then 

the fatme extraction algorithm wss applied to t r d o r m  the 20 fatnres to extract 
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Figare 5.6: The progress of overail cost huiction during the second phase ofdiscirimin~t 

training for nord /B/ 
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Table 5.1: Recognition result on training set using the statistical model in the 

higher dimensional space 

10 featnres per state. Fig. 5.5 and Fig. 5.6 show the progress of overall cost during 

each phase of training. For cornparison, the input features were mapped using K G  

expansion dgorit hm t O 20 dimensions and the s t atis tical model and discriminative 

dassification mode1 were trained. The following reports on the resdts. 

Here, the result of classification on the confnsing set /bi/, /di/, /gi/, /pi/. and 

/ti/ are reported. Table 5.1 and 5.2 show the recognition resdts for the statistical 

model (in the higher dimensionai space) on training and test sets. respectively. Ta- 

ble 5.3 and 5.4 shows the resuits for the discriminant training algorithm and f i er  

redudion of dimensionality on the training and test sets, respectively. Table 5.5 

and 5.6 show the resnlts of statistical model in the reduced featare set on training 

and test sets, respectively. Table 5.7 and 5.8 show the r d t s  of discriminative dae 

sification model in the reduced feahire set on training and test sets, respectively. As 

can be v d e d  by the redts,  discriminant training and feahire extraction methods 

can improve the recognition rate of these confasing dasses whüe having a reduced 

set of parameters for the chsifiers and mach lower compntationaI CO&. 



1 b / d ( g / p 1 t 1 recognition rate 1 

1 average recognition rate 1 76.72% 1 

Table 5.2: Recognition resdt on test set asing the statis tical mode1 in the higher 

dimensiond space 

1 average recognition rate 1 92.19% 1 

Table 5.3: Recognition resdt on train set aRer discriminant training and redaction 

of dimensionality (the proposed approach) 
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1 average recognition rate 1 86.25% 1 

Table 5.4: Recognition resdt on test set &er discriminant training and rednction 

of dimensionality (the proposed approach) 

/ b 

Table 5.5: Recognition resdt on training set for the redaced dimensionality fond 

by KGexpansion algorithm and by training the statistical modd 
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22 1 b 105 

g 

O 

p 1 t ' recognition rate 

1 1 0 class0=82.03% 
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1 average recognition rate 1 78.91% 1 

b 

Table 5.6: Recognition resdt on test set for the redaced dimensionality foand by 

KL-expansion algorithm and by training the statistical model 

b 

92 

1 average recognition rate 1 94.06% 1 

I 

b 

d 

Table 5.7: Recognition r d t  on training set for the redaced dirnensionality fo-d 

by KGqansion algorithm and by training the disahinative modd 
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b d / g 1 p 1 t recognition rate 

Table 5.8: Recognition result on test set for the reduced dhensionality found by 

KL-expansion algorithm and by training the discrirninative model 

The next set of experiments were carried out on digits /zero/ to /nine/. Table 5.9 

and 5.10 show the recognition resdts for the statistical model (in the higher dimen- 

sional space) on training and test sets, respectively. Table 5.11 and 5.12 shows the 

resdts for the discriminant training aigorithm and after reduction of dimensionality 

on the training and test sets, respectively. Table 5.13 and 5.14 show the resdts of 

statisticd model in the reduced feature set on training and test sets, respectively. 

Table 5.15 and 5.16 show the resdts of discriminative classification model in the 

reduced feature set on training and test sets, respectively. This set of experiments 

&O validate the improved performance of the proposed algorithm. 



average recognition rate 1 90.16% 1 
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Table 5.9: Recognition resuit on training set using the statistical madel in the 

higher dimensional space 
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I average recognition rate 1 88.49% 

Table 5.10: Recognition result on test set nsing the statistical model in the higher 

dimensional space 
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1 average recognition rate 1 99.38% 1 

Table 5.11: Recognition r e d t  on train set fier discnminaat training and rednction 

of dimensionality (the proposed approach) 
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Table 5.12: Recognition tes& on test set &er discriminant training aad rednction 

of dimensionality (the proposed approach) 
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I average recognition rate 1 94.69% / 
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Table 5.13: Recognition resdt on training set for the redaced dimensionality fonnd 

by KL-expansion algorithm and by training the statistical model 
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! average recognition rate ( 94.01% 1 
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Table 5.14: Recognition resdt on test set for the reduced dimensionality foand by 

KGexpansion algorithm and by trainhg the statistical model 
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Table 5.15: Recognition result on training set for the rednced dimensiona1it-y fonnd 

by KGexpansion algorithm and by training the discriminative mode1 
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average recognition rate 1 95.36% 1 C 

Table 5.16: Recognition resdt on test set for the reduced dimensionslity fomd by 

KL-expansion algorithm and by training the disaiminative model 
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Chapter 6 

Summary and conclusion 

The motivations behind this thesis were inspired based on the following kkee facts. 

First. speech signal is prodnced by our articulatory apparatus which has inherent 

physical constraints in the production mechanism, snd as a r e d t  statistical con- 

straints are imposed in the pattern of speech. Second, speech anits sach as words 

or sentences are produced by human in a way that they caa be recognizable by 

haman recognition system. Third, although speech u i t s  may have a high degree 

of variability in their patterns, their differences are more easily measurable when 

compared with each other painvise. 

Most of the featares extracted in this thesis use speech spectrogram. Based 

on speech spectrogram reading experiences, speech iinits that sotmd differentIy, 

have measurable differences in th& spectsogram patterns. In this thesis, 1 tried to 

meastue such differences with emphasis on those features that are more important 

in the dassification of more confasing chses asing image processing techniques. 

Macting discriminative featnres from spectrogfam for different speech units 

redts  in a large dimensionality of input vector for each fiame of speech. This 
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is due to the fact that features that may be good for a classification task, may 

not be good for othei classification tasks. As a result of high dimensionality of 

input space, design of classifiers becomes difficdt mainly due to three factors: Iack 

of enongh training data, improper choice of models, and lads of an appropriate 

training algorithm. It may also be computationally impractical for real tirne speech 

recognition to build classifiers in higher dimensional space (if the classifiers can not 

be implernented asing pardel processors). Design of featare selection and feature 

extraction based on minimiking the probability of error is &O a difficult problem 

for the same aforementioned reason for the design of classifiers. 

Instead of minimizing the probability of error, the proposed featare selection 

and extraction algorithms use a classifier trained in the higher dimensional space 

as a measare of dass separability. This was achieved by introduction of a new 

form of dassifiers for speech recognition dong with a new discriminative training 

algorithm. In the training algorithm. hs t  a new form of misdassification measrue 

was defined, and then this meastue was minhized over the training set. The mis- 

classification measure was shown to be a smooth version of probability of error. It 

was shown that the change in the misclassification measure (or indîrectly the prob- 

ab* of correct classification) for the proposed featare selection and extraction 

algorithms was bonnded. It was &O shown that such a b o u d  codd be minimirad. 

This was achieved by properly presenting vectors perpendidar to deusion hyper- 

planes weighted by th& share of misclassification m a u r e  in the lower dimensional 

space. This in turn redted in the proposed state dependent featare selection and 

extraction algori t hm. 

It was &O shown tkough speaker independent erperiments that dassification 

of confuskg classes can be much better achieved by the proposed algorithm. A h ,  

it was shown that classification can be achieved in a low dini,extsional space with 
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bet ter classification rate. 

This thesis also suggests that the problem of speech recognition should be partly 

addressed in the feature selection and extraction stages. The algorithms proposed 

here can be practically implemented using pardel processors and the compntations 

left for classifiers are highly reduced. This suggests that increasing the paraDe1 

processing ability of cornputers is more important and economicaily cheaper than 

increasing their speed for the pnrpose of speech recognition. 

6.0.1 Contributions 

The contribution of this thesis are as follows: 

a Introdaction of a new discriminative training algorithm for the design of 

speech dassSers with emphasis on a speafically designed state model. 

e Introduction of a new discriminative segmentation algorithm for segmentation 

of speech uttexances to states of the proposed model. 

0 Introduction of a new featnre sdection and extraction algorithm based on 

minimiaing the misclassification meastue of classifiers b d t  in higher dimen- 

sional space. 

Introduction of a new ~ ~ o r g a a i p n g  image segmentation algorithm for fw 

tare extraction from speech spectrogram. 



Appendix A 

State models 

In this appendix state models nsed in the experiments are shown. We also provide a 

sample of spectrogram of each word and its corresponding hand segmented regions. 
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Figure A.1: (a) A sample of segmentad word /zero/ (b) state mode1 of word /=O/ 
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I OS1 1 silence I 
voice bar ody I 

1 2 1  voice bar + fiction of /z/ 1 
1 3 1 voice bar + f i t i o n  of /z/ + F2 + F3 1 

vowel /i/ as in /zero/ 

( 5 1 transition /i/ to /ri, F2 going down 1 

1 7 1 F3 going np, transition /r/ to /O/ 1 
6 

1 9 1  FI and F2 in /O/ present I 

/r/ F3 low 

1 10 1 whisper mode of /O/ 1 

I 

/ 12 / fiction of /z/ withoat voice bar 1 
1 13 1 Mction of /s/ withoiit voice bar + F2 + F3 1 

Table A.1: Important featues associated to states of mode1 /zero/ 
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(b) 

Figure A.2: (a) A sample of segmenteci word /one/ (b) state model of word /one/ 



APPENDLX A. STATE MODELS 

I 03 I silence I 
1 1 1  F1 +F2 low in /w/ 1 
1 2 1  F1 +F2 low + F3 in /w/ 1 
1 3 1 F1 low + F2 high + F3 (transition /w/ to ln/) 1 

r 5  r ln/ aith voice bar ody 

1 9 1  voice bar I 

6 

7 

Table A.2: Important fe8tures asmatecl to states of mode1 /one/ 

/n/ + aspiration 

/a/ in whisper mode 



APPENDLX A. STATE MODELS 

0.1 0 2  0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
Tirne (sec) 

Figure A.3: (a) A sarnple of segmenteci word /tao/ (b) state model of word /tao/ 

1 5 1 /O/, F1 +F2, F3 not preaent 1 

1 

2 

3 

4 

- - 

Table A.3: Important fatures d a t e d  to states of model /*O/ 

pend line 

aspiration of /t/ with high energy 

aspiration of /t/ with Ion energy 

transition of /t/ to /O/ (F2 hi&) 
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0.5 0.6 
Time (sec) 

(4 

Figure A.4: (a) A samp1e of segmentecl word /thne/ (b) date model of  word /thme/ 
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0, 7 silence 

1 

2 

1 4 1 transition of /r/ to Ji/, F2 and F3 going ~p 1 

/th/ aspiration +F2 + F3 
-P 

F2 and F3 going dom, transition of /th/ to /r/ 

3 

1- 1 voice bar 

/r/ F3 low 

1 8 1 /th/ aspiration, F2 and F3 not present 1 
Table A.4: Important features asoaated to states of mode1 / t h e /  
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0.2 0.4 0.6 0.8 
nme (sec) 

(b) 

Figure A.5: (a) A sample of segmentad word /four/ (b) date mode1 of word /four/ 

silence 

/O/, F2 ~OW, F3 hi& I 

/r/ , F3 low 1 
voice bar 1 

1 6 1  whisper mode of voice bar 1 
pp 

Table A.5: Important feattues associateci to States of modei /four/ 



APPENDIX A. STATE MODELS 

0.4 0.6 0.8 1 
Time (sec) 

Figure A.6: (a) A sampie of segmented word /fire/ (b) state model of word /five/ 

1 4 1 transition of lep to /v/, F3 going do- 1 

2 

3 

1 5 1  voice bar in /v/ 1 

1-1 
transition of /aa/ to /ey/, F3 going up 

1 6 1  silence I 

Table A.6: Important featnes associateci to States of model /five/ 
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0 2  0.4 0.6 0.8 
Time (sec) 

(b) 

Figure A.7: (a) A sarnple of segmenteci word /six/ (b) state modeï of word /six/ 

I 0, 4, 8 1 silence I 
fiidion of /s/ high fiequenues only 

1 2 1 fiction of /8/ high and low fieqnencies F2, F3 present 1 
1 1 /il in six, F2 and F3 join 1 

-- -- - - - 

Table A.?: Important featares 8880Ciated to States of model /sir/ 

6 

7 

tnction of /s/ high fiequenues 

firiction of /s/ low fieequencies 
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0.1 0 2  0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
Time (sec) 

(b) 

Figure A.8: (a) A sample of segmenteci word /smn/ (b) state mode1 of word /mm/ 
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1 2 1 fiction of /s/ high and low fiequencies 

1 4 1 /v/ with pattern as in low energy /e/ 

1 5 1  transition of /e/ to /v/ 

1 7 1  ln/ voice bar only 

T F / / n i c e  bar and aspiration 

1 9 1  whisper mode of voice bar 

1 11 1 /v/ with pattern of voice bar 

[ 12 1 /v/ with patteni of friction as in If/ 

Table A.8: Important feattues associateci to states of mode1 /seyen/ 
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Figure A.9: (a) A sampie of segmenteci word /eight/ (b) sitate modal of word /eight/ 
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silence I 
/e/ with low energy I 

1 3 1  /ey/ F2 going down I 
1 4 1  voice bar 1 
1 6 1  pend  line I 
1 7 1 aspiration of /t/ with high and low energy 1 
1 8 1 aspiration of /t/ with Ion energy only 1 

Table A.9: Important features assoaated to states of mode1 /eight/ 
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Figure A.10: (a) A sarnple of segmentad word /nine/ (b) state model of word /nine/ 
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silence 

1 2 1 transition of /n/ and /aa/, F1 and F2 are distanced 

1 6  1 voice bar 

7 

8 

/n/ with aspiration 

/n/ aspiration only 

Table A.lO: Important features associatecl to states of mode1 /nin 
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Time (sec) 

(4 

Figure A. 11: (a) A sample of segmentecl word /bi/ (b) state mode1 of word /bi/ 
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0, 8 

1 

2 

1 4 1 transition of /b/ to /if, F2 and F3 moving np 1 

silence 

voice bar 

pend line 

3 aspiration of /b/ 

1 7 1  /il in whisper mode 1 

5 

6 

- 

Table A.11: Important features Msociated to states of mode1 /bi/ 

/il 
/il with weak F2 
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(b) 

Figure A.12: (a) A sample of sepenteci nord /di/ (b) state mode1 of word /di/ 
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I O , 8 1  
'I 

silence 

1 

2 

voice bar 

p e n d  line 

3 
-- 

aspiration of /dl 

4 

Table A.12: Important features ~ c i s t e d  to states of mode1 /di/ 

transition of Id/ to /il, F2 and F3 movhg up 

6 

7 

/i/ with weak F2 

/il in whisper mode 
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0.4 0.5 
lime (sec) 

(b) 

Figure A. 13: (a) A sample of segmented word /pi/ (b) state modei of word /pi/ 

I o d  silence I 
1 i 1 aspiration of high energy in loa fiquacies 1 

/il with weak F2 1 

Table A. 13: Important fitutes associatecl to states of modd /pi/ 
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O. 1 0 2  0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
Time (sec) 

(b) 

Figure A.14: (a) A sample of segmenteci word /ti/ (b) state model of word /ti/ 

silence 

p d  line 

1 2 1 aspiration of /t/ 1 

1 5 1 ooice bar 1 
4 

Table A.14: Important featares associateci to states of model /ti/ 

/il with weak F2 
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