
Lower Bounds and Derandomization

by

Jaffer Gardezi

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2008

c©Jaffer Gardezi 2008

Declaration

I hereby declare that I am the sole author of this thesis. This is a true
copy of the thesis, including any required final revisions, as accepted by my
examiners.

I understand that my thesis may be made electronically available to the
public.

Jaffer Gardezi

ii

Abstract

A major open problem in complexity theory is to determine whether ran-
domized complexity classes such as BPP, MA, and AM have any nontrivial
derandomization. This thesis investigates the derandomization of two ran-
domized versions of the polynomial hierarchy, AMΣi and MAΣi. The ex-
istence of a nontrivial derandomization of MAΣi is shown to be equivalent
to a polynomial size Σi-oracle circuit lower bound for ΣEXP

i+1 , the ith level of
the exponential hierarchy, for i ≥ 0. This extends an analogous result of
Impagliazzo et. al. concerning MA [10]. This equivalence is used to show
that such a derandomization exists for all except at most one level of this
hierarchy. Concerning AMΣi, a tradeoff is derived between derandomiza-
tions of this hierarchy and of BPP. Also, it is shown that previously known
tradeoffs between derandomizations of AM and deterministic simulations of
nondeterministic time generalize to AMΣi.

iii

Acknowledgements

I would like to thank my supervisor, Jonathan Buss, and my thesis read-
ers, Alex López-Ortiz and Prabhakar Ragde.

iv

Contents

1 Introduction . 1

1.1 Randomized Computation . 1

1.2 Randomized Polynomial Hierarchy . 4

1.3 Derandomization .7

2 Derandomization from Lower Bounds . 10

2.1 The Nisan-Wigderson Theorem . 10

2.2 Hardness Amplification . 15

2.2.1 Random Self-Reduction. .15

2.2.2 Hard-core Sets. .18

2.2.3 The XOR Lemma . 22

3 Derandomization and Probabilistic Polynomial Hierarchies 28

3.1 MAΣi and the Exponential Hierarchy . 28

3.2 Unconditional Derandomization of MAΣi . 38

3.3 A Derandomization Tradeoff . 41

3.3 Randomness and Nondeterminism . 44

4 Conclusion .48

Appendix: Arthur Merlin Games . 49

A Proof of Theorem 1.4 . 49

Bibliograhy .56

v

Chapter 1

Introduction

1.1 Randomized Computation

The goal of complexity theory is to determine the extent to which various re-
sources facilitate computation, and one of the most important such resources
is randomness. A randomized algorithm for a problem is one whose compu-
tation on a given instance of the problem depends on a series of uniformly
generated random bits, and which decides the problem correctly with high
probability taken over these bits. Randomization is used extensively in the
design of algorithms, as it provides simpler and more efficient algorithms for
many problems. For some problems, such as polynomial identity testing, the
only known polynomial time algorithms are probabilistic.

In complexity theory, various classes of decision problems that can be
solved efficiently using randomness are defined. One of the most important of
these classes is BPP, the class of bounded error probabilistic polynomial time
algorithms. BPP is defined as the class of decision problems for which there
exists a polynomial time randomized algorithm with the following property.
The algorithm either accepts or rejects its input with probability taken over
all random bit strings at least 1

2
+ ǫ for some constant error bound ǫ. The

algorithm is defined to accept if it accepts for most random bit strings. More
formally, a language L is in BPP if, for input x, there is a polynomial time
decidable predicate M and an ǫ > 0 such that,

x ∈ L↔ Pr [M (x, y) = 1] >
1

2
+ ǫ (1.1)

x 6∈ L↔ Pr [M (x, y) = 1] <
1

2
− ǫ

where the probability is taken over y ∈ {0, 1}m for m polynomial in |x|.
The importance of BPP arises from the following theorem, which implies

1

that any problem in BPP can be decided correctly in polynomial time with
exponentially low probability of error.

Theorem 1.1 Take L ∈ BPP and let q be any polynomial. Then there exists
a polynomial time decidable predicate M ′ such that

x ∈ L↔ Pr [M ′ (x, y) = 1] > 1− 2−q(n) (1.2)

x 6∈ L↔ Pr [M ′ (x, y) = 1] < 2−q(n)

Proof The following proof is taken from Bovet and Crescenzi [3]. Let A be
the probabilistic algorithm deciding L with error bound ǫ. Define a BPP
algorithm A′ for L as follows. A′ runs A t times for some odd t, and accepts
if A accepts at least t

2
times. The probability that A′ (x) rejects for x ∈ L is

(t−1)
2
∑

i=0

(

t

i

)

(

1

2
+ ǫ

)i (1

2
− ǫ

)t−i

<

(t−1)
2
∑

i=0

(

t

i

)

(

1

2
+ ǫ

)i (1

2
− ǫ

)t−i
(

1
2

+ ǫ
1
2
− ǫ

)
t
2
−i

=

(t−1)
2
∑

i=0

(

t

i

)

(

1

2
+ ǫ

)

t
2
(

1

2
− ǫ

)

t
2

=

(t−1)
2
∑

i=0

(

t

i

)

(

1

4
− ǫ2

)

t
2

=
1

2

(

1

4
− ǫ2

)

t
2

t
∑

i=0

(

t

i

)

=
1

2

(

1

4
− ǫ2

)

t
2

2t

=
1

2

(

1− 4ǫ2
)

t
2 (1.3)

Therefore, A′ accepts x ∈ L with probability at least 1− 1
2
(1− 4ǫ2)

t
2 . For

t ≥
2 (q (n)− 1)

log
(

1
1−4ǫ2

) (1.4)

2

this probability is greater than 1 − 2−q(n). A similar argument shows that,
for t iterations with t satisfying (1.4), the probability that A′ accepts x 6∈ L
is less than 2−q(n). Since t is polynomial in n and A runs in polynomial time,
A′ is polynomial time.

Other important polynomial time randomized complexity classes are RP,
or randomized polynomial time, and ZPP, or zero-error probabilistic polyno-
mial time. These are classes of languages recognized by algorithms satisfying
additional restrictions on their behaviour on any given input. A language
is in RP if there is an algorithm that accepts words in the language with
high probability, and always rejects words not in the language. ZPP is the
class of languages for which there is a randomized algorithm that decides
its input correctly with high probability, and in all other cases returns the
answer “don’t know”.

In addition to randomized versions of deterministic polynomial time, it is
also useful to define randomized extensions of the class NP. NP is the class
of languages for which there exist proofs of membership that can be verified
in P. The class AM of Arthur-Merlin games is defined in terms of a more
elaborate notion of provability: provability via a game between Merlin, an
all-powerful prover, and Arthur, a probabilistic verifier. The game is played
out in a series of alternating Merlin and Arthur rounds, with Merlin trying
to convince Arthur that a word is in a language and Arthur attempting to
verify Merlin’s proof. Merlin wins if he succeeds in convincing Arthur that
the input word is in the language. Both Merlin and Arthur have access to
the game history.

Definition 1.2 A language L is in AM if there is an Arthur-Merlin game
with a constant number of rounds k ≥ 2 in which Arthur moves first such
that

1) For x ∈ L, Merlin wins with probability at least 2
3
.

2) For x 6∈ L, Merlin wins with probability less than 1
3
.

A language L is in MA if there is a two round Arthur-Merlin game in which
Merlin moves first satisfying 1) and 2) above. Note that this definition implies
that MA ⊆ AM , since any language in MA can be decided by a three round
game in which Arthur moves first and does nothing in the initial round.
The reason for the asymmetry of the definition is that, if MA included all

3

constant-round games, it would be identical to AM, since any game in AM
could be simulated by one in MA in which Merlin does nothing in the initial
round.

The class AM contains important problems not known to be contained in
NP, such as the problem of determining whether two graphs are isomorphic
[3].

There is a simpler definition of AM and MA which is often easier to work
with.

Definition 1.3 For any probability distribution D, let Prx∈D [A (x)] denote
the probability of event A when x is chosen from D. Here, the uniform
distribution on a set is represented by the set itself, and when this set is
obvious from the context, it will be omitted.

Theorem 1.4 For L ∈ AM, there exists a polynomial-time decidable predi-
cate M such that

x ∈ L↔ Prz∈{0,1}m [∃y ∈ {0, 1}mM (x, y) = 1] ≥
2

3
(1.5)

x 6∈ L↔ Prz∈{0,1}m [∃y ∈ {0, 1}mM (x, y) = 1] ≤
1

3

where m is polynomial in |x|. Similarly, for L ∈ MA, there exists a polyno-
mial time decidable predicate M such that

x ∈ L↔ ∃y ∈ {0, 1}m
[

Prz∈{0,1}m (M (x, y) = 1) ≥
2

3

]

(1.6)

x 6∈ L↔ ∃y ∈ {0, 1}m
[

Prz∈{0,1}m (M (x, y) = 1) ≤
1

3

]

for m polynomial in |x|. The classes of languages satisfying (1.5) and (1.6)
are denoted BP·NP and NP·BP, respectively. Thus, AM = BP·NP and MA
= NP·BP.

Proof The theorem can be proved by reducing the problem of deciding the
outcome of an Arthur-Merlin game to that of evaluating a quantified boolean
formula with one block of quantifiers for each round of the game. It is then
shown, using various quantifier swapping and substitution rules, that such
formulas reduce to equivalent formulas with two blocks of quantifiers. For
the details, see Appendix A.

4

1.2 Randomized Polynomial Hierarchy

The polynomial hierarchy (PH) is a hierarchy of complexity classes that
generalizes NP.
Definition 1.5 The polynomial hierarchy is the set of complexity classes
denoted by Σi, i ≥ 0, that are defined recursively as follows.

1) Σ0 = P

2) Σi+1 = NPΣi, i ≥ 0

where NPΣi denotes the class of languages decidable by a nondeterministic
polynomial time Turing Machine with an oracle for Σi. The complement of
Σi is denoted by Πi.

A useful alternative characterization of PH is given by the following the-
orem.

Theorem 1.6 A language L is in Σi iff there exists a polynomial time de-
cidable predicate M such that

x ∈ L↔ ∃z1∀z2∃z3 · · ·QiziM (x, z1, z2, ...zi) (1.7)

where zj, 1 ≤ j ≤ i, denotes a string of boolean variables and Qi = ∃
(Qi = ∀) for odd (even) i.

Proof See, for example, [3].

A machine model for PH can be defined based on Theorem 1.6. An al-
ternating Turing Machine (ATM) is a generalization of a nondeterministic
Turing Machine which can evaluate an expression of the form (1.7) in polyno-
mial time. On input x, an ATM nondeterministically guesses a string of bits
in a series of alternating universal and existential phases and then decides x
based on the guessed bits. Those bits guessed in the universal (existential)
phases correspond to the values of the universally (existentially) quantified
variables in (1.7).

Remark Hierarchies analogous to PH can be defined for arbitrary time
bounds f(n) by replacing NP with NTIME(f(n)) in Definition 1.5. In partic-
ular, substituting NEXP for NP in Definition 1.5 gives the exponential hier-
archy (EH), for which the notation ΣEXP

i ≡ NEXPΣi and ΠEXP
i ≡ co-NEXPΣi

5

is used. Such hierarchies satisfy Theorem 1.6 for a QBF of length f(n), and
are decidable by ATM’s with time bound f(n).

The expressions for AM and MA in terms of NP given in Theorem 1.4
suggest a natural generalization based on PH. This thesis is concerned mainly
with the following probabilistic versions of PH.

Definition 1.7 The probabilistic polynomial hierarchy (BPH) is the hier-
archy of complexity classes BP·Σi, i ≥ 1, where BP·Σi is the set of lan-
guages L such that there exists a predicate M decidable in Σi such that, for
m = poly(|x|),

x ∈ L↔ Prz∈{0,1}m [M (x, z)] ≥
2

3

x 6∈ L↔ Prz∈{0,1}m [M (x, z)] ≤
1

3

The proof of Theorem 1.4 relativizes. That is, the collapse of all classes of
k-round Arthur-Merlin games to 2 rounds still holds if Arthur and Merlin are
given an arbitrary oracle. This is because the proofs of Theorems A.4 to A.8
remain valid if the quantified polynomial time decidable predicate is replaced
by a predicate decidable in polynomial time with an oracle. In particular,
the complexity classes AMΣi and MAΣi , can be defined as relativizations of
BP·NP and NP·BP.

Theorem 1.8 BP·Σi−1 = AMΣi , i ≥ 1.

Proof From Theorem 1.4, AM = BP·NP. Therefore,

AMΣi−1 = (BP · NP)Σi−1

= BP · NPΣi−1

= BP · Σi

The second line follows from the fact that a language L ∈ (BP ·NP)Σi−1 can
be decided by first generating all the necessary random bits without using the
oracle and then carrying out the remainder of the computation in NPΣi−1 .

The definition of BPH given in Definition 1.7 is two-sided in the sense
that there is a nonzero probability of error both for inputs in L and for inputs
not in L. BPH has an equivalent one-sided definition for which there is no
error for inputs in L.

6

Theorem 1.9 For L ∈ BP · Σi, there is a predicate M decidable in Σi such
that, for m = poly (|x|),

x ∈ L↔ ∀z ∈ {0, 1}m [M (x, z)]

x 6∈ L↔ Prz∈{0,1}m [M (x, z)] ≤
1

3

Proof This is a trivial generalization of the proof of Theorem A.8 ii).

1.3 Derandomization

To derandomize a probabilistic complexity class is to simulate the class de-
terministically, without randomness. Derandomizing probabilistic complex-
ity classes such as BPP is of considerable practical importance, since real
computers do not have access to truly random bits. By Theorem 1.1, the er-
ror probability of BPP algorithms can be made exponentially small, strongly
suggesting that BPP = P. Despite this, the best known upper bound for
BPP is BPP⊆EXP, which follows from the brute force method of running
the simulated algorithm on all possible strings of random bits.

Currently, the only known nontrivial method for derandomizing random-
ized complexity classes is to use a pseudorandom generator (PRG). Infor-
mally, a PRG is a function that takes as input short random strings of bits,
or seeds, and outputs longer strings that appear random to any probabilistic
algorithm in a given complexity class. The formal definition requires the
concept of a boolean circuit.

Definition 1.10 A circuit is a collection of AND, OR, NOT, and input
gates, connected by input and output lines along which bits are sent between
the gates. All gates have two output lines. The input gates have no input
lines and output the bits of the input to the circuit. The AND, OR, and
NOT gates have one or two input lines and output the result of applying the
associated boolean operation to their input(s). The output of the circuit is
the output of a set of special gates, called the output gates. For any language
A, an A-oracle circuit is a circuit with an additional type of gate called an
oracle gate. The oracle gates have an unbounded number of input lines and
output the response of the oracle to the query given by their input strings.
The size of a circuit C, denoted size(C), is its number of gates.

7

Definition 1.11 A pseudorandom generator (PRG) is a function G : {0, 1}l(n) →
{0, 1}n, n ≥ 1, such that, for any circuit C of size n,

|Pry∈{0,1}n [C(y) = 1]− Prx∈{0,1}l(n) [C(G(x)) = 1] | <
1

n
(1.8)

A PRG allows a more efficient simulation of BPP than the brute force
method, since the algorithm only needs to be simulated using outputs of
the PRG, rather than all bit strings, as the random strings.

Theorem 1.12 [22] If there exists a PRG G : {0, 1}l(n) → {0, 1}n uniformly

computable in DTIME
(

2(l(n))p
)

for some p ≥ 1, then any language L decid-

able by a BPP algorithm in time t(n) can be decided in DTIME
(

2O(l(t2)p)
)

.

Proof The following is a proof of Nisan and Wigderson [22]. Any time t
algorithm A can be simulated by a circuit of size t2 [23]. Therefore, tak-
ing n = t2, the condition (1.8) implies that on any input, the acceptance
probability of the algorithm taken over uniform random strings is within 1

n

of its acceptance probability on outputs of the generator. Algorithm A can
be simulated deterministically by running it on all strings in the range of
G, counting the number of accepting computations, and taking the majority

vote. Since there are 2l(t2) seeds and G is computable in time 2O(l(t2)
p
), the

simulation takes time 2O(l(t2)
p
).

An important special case of Theorem 1.12 is l = O (log n) and p = 1, for
which there is a complete derandomization of BPP, i.e. P = BPP.

It is not known if there exists a PRG that can “stretch” strings of bits suf-
ficiently to allow a nontrivial derandomization of BPP. However, it has been
shown that if there is a function f ∈ DTIME

(

2O(n)
)

that is not computable

by circuits of a certain minimum size, then such a PRG exists [22][11]. For
example, if such an f is not computable by circuits of size 2kn for some
constant k, then there is a PRG G : {0, 1}O(log n) → {0, 1}n computable in
time polynomial in n, and thus P = BPP. The intuitive reason for this is
that a function G : {0, 1}l → {0, 1}n can be constructed from f so that, if
there is an algorithm that can distinguish outputs of G from random, then
such an algorithm can be used to predict the value of f , contradicting the
circuit-hardness of f .

8

Although the circuit lower bound condition for derandomization was a
significant advance, it has so far not led to any unconditional derandomiza-
tion results for standard randomized complexity classes such as BPP, MA,
and AM. For a PRG to be useful for derandomization, it must be efficiently
computable and its outputs must be indistinguishable from random. To sat-
isfy these properties, it must be constructed from a function that is both
uniformly computable within a certain time bound and not computable by
any circuit below a certain size. The standard technique for proving the ex-
istence of such a function is to construct an algorithm that, by evaluating
circuits on its inputs, ensures that, for every circuit in a given set, there is an
input on which the circuit returns a different answer to that returned by the
algorithm. This technique, called diagonalization, works just as well if the
algorithm and the circuits are given access to an arbitrary oracle, and thus
it can only be used to prove results that continue to hold if this modifica-
tion is made. Because there are oracles relative to which no function exists
with the uniform computability and circuit lower bound properties needed
for derandomization, diagonalization is not useful in this case.

One way to circumvent the difficulty in proving derandomization results
via lower bounds is to consider instead derandomization of nonstandard com-
plexity classes such as the probabilistic hierarchies introduced in section 1.2.
In these cases, the greater power of ATM’s relative to deterministic and non-
deterministic machines can be exploited to prove derandomization results via
diagonalization. These results are important because of the relation of these
hierarchies to AM and MA. For example, if it could somehow be proved that
BPH collapses to AM, then derandomization results for AM would follow.

This thesis will investigate the derandomization of the hierarchies AMΣi

and MAΣi . Chapter 2 will summarize the work of other authors in estab-
lishing the corresponence between circuit lower bounds and derandomization.
The purpose of this chapter is to put the results of the thesis in context and
to establish several theorems that will be needed to prove them. The main
contributions of the thesis are contained in Chapter 3. There, it will be
shown that a derandomization of MAΣi is equivalent to circuit lower bounds
for ΣEXP

i , the exponential time version of the polynomial hierarchy. This
extends an equivalence result of Impagliazzo et. al. concerning MA, and the
proof technique used is similar to theirs [10]. This equivalence will be used
together with a diagonalization of Kannan to derive a new unconditional de-
randomization of MAΣi. This diagonalization will also be used to prove a
new set of tradeoffs between derandomizations of the hierarchy AMΣi and of

9

BPP. Chapter 4 will discuss possibilities for further research.

10

Chapter 2

Derandomization from Lower
Bounds

The correspondence between circuit lower bounds for uniformly com-
putable functions and derandomization was established in a series of papers.
It was first proved that a function that cannot be approximated by a cir-
cuit below a certain size can be used to construct a PRG that derandomizes
BPP [22]. A number of later papers developed this result further by showing
that the existence of a function that is only hard to compute, rather than
hard to approximate, is sufficient for derandomization [1][7][9][11]. In this
chapter, we summarize these results, proving several hardness-randomness
tradeoffs that will be used in the following chapter. These tradeoffs are given
in Theorems 2.34, 2.37, 2.38, and 2.39.

2.1 The Nisan-Wigderson Theorem

The Nisan-Wigderson Theorem establishes a range of tradeoffs between de-
terministic simulations of BPP and hardness of approximation of uniformly
computable functions f by nonuniform circuits, with greater circuit hardness
of f implying a more efficient simulation. The theorem is proved by using
f to construct a function G : {0, 1}l(n) → {0, 1}n. If G is not a PRG, then
its output can be distinguished from random by some BPP algorithm. This
algorithm is then used to construct a nonuniform circuit which predicts the
value of f with significantly higher than average probability, contradicting
the hardness of approximation of f . The smaller l is in relation to n, the
harder f must be, since f must “fool” a circuit that is larger relative to its
input size.

The required hardness properties are defined as follows.

11

Definition 2.1 [22] A function f : {0, 1}n → {0, 1} is (ǫ, S)-hard if for any
circuit C of size S,

|Pr [C(x) = f(x)]−
1

2
| <

ǫ

2
(2.1)

for x chosen uniformly from {0, 1}n.

Definition 2.2 [22] Let f : {0, 1}∗ → {0, 1} be a boolean function, and let
fm be the restriction of f to inputs of length m. The hardness of f at m,
Hf(m), is the largest integer hm such that fm is

(

1
hm

, hm

)

-hard.

The Nisan-Wigderson (NW) generator outputs a string of bits which are
the outputs of f evaluated on various subsets of the input to the generator.
These subsets are required to be almost disjoint to allow the output bits to
be as independent as possible.

Definition 2.3 [22] Let M be a 0-1 n× l matrix. Let Si, 1 ≤ i ≤ n, be the
set of column numbers in which a 1 occurs in the ith row. Then M is a (k, m)
design if

|Si| = m ∀ 1 ≤ i ≤ n (2.2)

|Si ∩ Sj| ≤ k ∀ i 6= j (2.3)

Definition 2.4 [22] Let M be an n× l matrix which is a (k, m) design and
take x ∈ {0, 1}l. Let f : {0, 1}m → {0, 1} be a function defined for all m ≥ 1.
Let fM(x) be the n-bit string whose ith bit is obtained by applying f to the
bits of x corresponding to the columns containing a 1 in the ith row of M.
Then the function G : {0, 1}l → {0, 1}n given by G(x) = fM(x) is called a
Nisan-Wigderson (NW) generator.

The following theorem is Lemma 2.4 in Nisan and Wigderson [22].
Theorem 2.5 [22] Let f : {0, 1}m → {0, 1} be a function and let A be a
n × l matrix which is a (log n, m) design. Then there is a constant k such
that, if Hf(m) ≥ kn2 for all m, the NW generator G = fA(x) is a PRG.

Proof The following proof is taken from Nisan and Wigderson [21]. Suppose
for a contradiction that G is not a PRG. Then, from Definition 1.11, there
is a circuit C of size n such that

Prx∈{0,1}l [C(G(x)) = 1]− Pry∈{0,1}n [C(y) = 1] >
1

n
(2.4)

12

Let Ei be the distribution on {0, 1}n for which the first i bits are the first i
bits of G(x) for x chosen uniformly at random from {0, 1}l, and the remaining
bits are chosen uniformly at random. Define

pi = Prz∈Ei
[C(z) = 1] (2.5)

Since, from (2.4), pn − p0 > 1
n
, there must exist a j such that

pj − pj−1 >
1

n2
(2.6)

We define a circuit, D, that predicts the jth bit of the output of the
generator based on the first j − 1 bits. Let yi denote the ith bit of the
generator. D takes as input the first j − 1 bits of G(x) and n − j + 1
random bits rj , ...rn. It computes C (y1, ...yj−1, rj, ...rn), and returns rj if
C (y1, ...yj−1, rj, ...rn) = 1 and r̄j, the complement of rj, otherwise. We now
prove that D has a significantly higher probability of predicting yj correctly
than a random guess. Take z = y1y2 · · · yj−1rj · · · rn. Then

Prz∈Ej−1
[D(z) = yj]

= Prz∈Ej−1
[C(z) = 1 ∩ rj = yj] + Prz∈Ej−1

[C(z) = 0 ∩ rj = ȳj]

= Prz∈Ej−1
[C(z) = 1|rj = yj] Pr (rj = yj) +

Prz∈Ej−1
[C(z) = 0|rj = ȳj] Pr (rj = ȳj)

=
1

2
Prz∈Ej

[C(z) = 1] +
1

2
Prz∈Ej−1

[C(z) = 0|rj = ȳj] (2.7)

A lower bound for the second term in (2.7) can be obtained by noting that

Prz∈Ej−1
[C(z) = 1]

= Prz∈Ej−1
[C(z) = 1 ∩ rj = yj] + Prz∈Ej−1

[C(z) = 1 ∩ rj 6= yj]

= Prz∈Ej−1
[C(z) = 1|rj = yj] Pr (rj = yj) +

Prz∈Ej−1
[C(z) = 1|rj = ȳj] Pr (rj = ȳj)

=
1

2
Prz∈Ej

[C(z) = 1] +
1

2
Prz∈Ej−1

[C(z) = 1|rj = ȳj] (2.8)

and substituting into (2.6):

Prz∈Ej
[C(z) = 1]−

1

2
Prz∈Ej

[C(z) = 1]−

13

1

2
Prz∈Ej−1

[C(z) = 1|rj = ȳj] >
1

n2

Prz∈Ej
[C(z) = 1]− Prz∈Ej−1

[C(z) = 1|rj = ȳj] >
2

n2

1− Prz∈Ej−1
[C(z) = 1|rj = ȳj] > 1 +

2

n2
− Prz∈Ej

[C(z) = 1]

Prz∈Ej−1
[C(z) = 0|rj = ȳj] > 1 +

2

n2
− Prz∈Ej

[C(z) = 1]

Substituting this into (2.7),

Prz∈Ej−1
[D(z) = yi] ≥

1

2
+

1

n2
(2.9)

Clearly, there is a specific set of values of rj , ...rn for which (2.9) holds
when the probability is taken over only the inputs to the generator. Fix-
ing rj, ...rn to these values yields a deterministic circuit D′ with the same
minimum prediction probability.

We now transform D′ to a circuit that predicts yj based on the input to
f . From Definitions 2.3 and 2.4, yj depends on m of the generator input
bits x1, x2, ...xl, which, without loss of generality, can be assumed to be
x1, x2, ...xm. Thus,

yj = f (x1, x2, ...xm) (2.10)

As was the case for the bits rj , ...rn, the bits xm+1, ...xl can be fixed to specific
bits cm+1, ...cl while maintaining the lower bound on the prediction probabil-
ity. When this is done, the resulting circuit satisfies (2.9) with the probability
taken over all values of x1, ...xm. A circuit D′′ can now be constructed which
takes as input x1, ...xm and outputs the value yj with probability at least
1
2

+ 1
n2 . By Definition 2.3, the bits y1, ...yj−1 depend only on log n of the

variables x1, ...xm. Since any boolean function on k bits can be computed by
a circuit of size 2k [6], each of the bits y1, ...yj−1 can be computed by circuits
of size n. The circuit D′′ is obtained from D′ by replacing the gates for
y1, ...yj−1 by these circuits, and introducing new input gates x1, ...xm which
provide inputs to the circuits. Since j ≤ n, the size of D′′ is less than tn2 for
some constant t. Together with the prediction probability, this contradicts
the hardness assumption for f for k = t.

The next two theorems show that the design required by Theorem 2.5
exists and can be efficiently generated.

14

Theorem 2.6 (Lemma 2.5 [22]) For all integers n and m such that log n ≤
m ≤ n, there exists an n × l matrix which is a (log n, m) design with l =
O(m2), and this design is constructible in time polynomial in n.

Theorem 2.7 (Lemma 2.6 [22]) For all integers n and m, where m = C log n
for some constant C, there exists a n× l matrix which is a (log n, m) design
with l = O (C2 log n), and this design is constructible in time polynomial in
n.

Theorems 2.5, 2.6, and 2.7 imply a range of tradeoffs between circuit hardness
of uniformly computable functions and derandomizatons of BPP.

Theorem 2.8 (Theorem 2 [22]) If there exists a function f such that, for all
but finitely many m,

1) f ∈ EXP and Hf(m) ≥ mc for any fixed c,

2) f ∈ EXP and Hf(m) ≥ 2mǫ

for some ǫ > 0, or

3) f ∈ E ≡ DTIME
(

2O(n)
)

and Hf(m) ≥ 2ǫm for some ǫ > 0, respectively

then respectively

1) BPP ⊆
⋂

ǫ>0 DTIME
(

2nǫ
)

2) BPP ⊆ DTIME
(

2(log n)c
)

for some constant c.

3) BPP = P

Proof 1) Let f be a function satisfying hypothesis 1 of the theorem. By
Theorems 2.5 and 2.6, there is a PRG G : l → n with

n2 = O(mc) = O(l
c
2)

n = O(l
c
4)

l = kn
4
c , for some constant k

From Theorem 1.12, any t(n) time BPP algorithm can be simulated in

DTIME

(

2
O

(

t
8p
c

)

)

for some p ≥ 1. For any ǫ > 0, c can be made sufficiently

large to obtain a DTIME
(

2nǫ
)

simulation.

2) The proof is similar to that of 1).

15

3) The proof is similar to that of 1) and 2) except that Theorem 2.7 is used
instead of Theorem 2.6.

A milder derandomization follows if it is assumed that the function f is hard
only for infinitely many, rather than for all but finitely many, input lengths.
For a complexity class C, let io-C denote the set of languages L such that
there exists a language L′ ∈C with L ∩ {0, 1}n = L′ ∩ {0, 1}n for infinitely
many n.

Theorem 2.9 If there exists a function f such that, for infinitely many m,

1) f ∈ EXP and Hf(m) ≥ mc for any fixed c

2) f ∈ EXP and Hf(m) ≥ 2mǫ

for some ǫ > 0, or

3) f ∈ E and Hf(m) ≥ 2ǫm for some ǫ > 0, respectively

then respectively

1) BPP ⊆
⋂

ǫ>0 io-DTIME
(

2nǫ
)

2) BPP ⊆ io−DTIME
(

2(log n)c
)

for some constant c.

3) BPP = io-P

Proof The proof of Theorem 2.8 applies here for all input lengths for which
f satisfies the hardness condition.

2.2 Hardness Amplification

In the last section, it was proved that hardness of approximation, or average-
case hardness, of a function in E is sufficient to construct a PRG and deran-
domize BPP. In work done by a number of different authors, this result was
strengthened to show that all that is required is that this function be hard to
compute, or worst-case hard [1][7][9][11]. The proof uses various “hardness
amplification” theorems which show that a function g ∈ E that possesses the
required average case hardness can be constructed from a worst-case hard
function f ∈ E. The main idea used to construct g is that it is harder
to solve several instances of a problem than to solve a single instance, so
that a function that incorporates the value of a function on many indepen-
dent inputs is harder to compute than the original function. The hardness

16

amplification is carried out in a series of successive phases, each using a dif-
ferent technique to increase the hardness achieved in the previous phase. In
this section, we present this hardness amplification proof, thus showing that
Theorem 2.8 holds with hardness of approximation replaced by hardness of
computation. For simplicity, we focus on the “high end” derandomization
condition Theorem 2.8 3), although the proof can be easily generalized to
show the same result for Theorem 2.8 1) and 2) as well.

2.2.1 Random Self-Reduction

The first step in hardness amplification involves showing that any E-complete
function that is hard to compute also possesses a mild average case hardness.

Definition 2.10 Let f : {0, 1}∗ → {0, 1} be a function. The restriction of f
to inputs of length n is denoted by fn.

Definition 2.11 The term “almost everywhere” (a.e.) will be used to mean
for all but finitely many n. The term “infinitely often” (i.o.) will be used to
mean for infinitely many n.

The following notation is from Impagliazzo and Wigderson [11].
Definition 2.12 Let f : {0, 1}m → {0, 1}n be a function. The worst case
circuit complexity of f , denoted S(f), is the minimum size of a circuit com-
puting f . The success of f for size s, SUCs(f), is the maximum over all
circuits C of size s of Pr[C(x) = f(x)]. In the case n = 1, the advantage of
f for size s, ADVs(f), is defined as Pr [C(x) = f(x)] − Pr [C(x) 6= f(x)] =
[2SUCs(f)− 1]. For a function f : {0, 1}∗ → {0, 1}, expressions involving
S(f), SUCs(f), and ADVs(f) hold for S(fn), SUCs(fn), and ADVs(fn) a.e.

Theorem 2.13 [1] Suppose there is an E-complete function f with S(f) ∈
2Ω(n). Then for some s′ ∈ 2Ω(n),

SUCs′(f) < 1−
1

3n
(2.11)

The proof of Theorem 2.13 uses a property of E-complete functions called
random self-reducibility. This is the property that, if there is a circuit that
computes such a function correctly on most inputs, this circuit can be used
to construct a random circuit that computes the function correctly with high
probability on all inputs. A random circuit is a circuit that inputs a string

17

of random bits. That E-complete functions are random self-reducible follows
from the random self-reducibility of the multilinear extensions over finite
fields of their characteristic functions, to which they are Turing equivalent
[1].

For a boolean function f : {0, 1}n → {0, 1}, a multilinear extension of
f over a field F is a function g : F n → {0, 1} over F that is linear in its
inputs x1, x2, ...xn and agrees with f on {0, 1}n. Every boolean function
on n variables has a unique multilinear extension over any finite field [1].
The multilinear extension of a function f : {0, 1}∗ → {0, 1} is the function
g : F ∗ → F that computes on input of length n the multilinear extension of
fn.

Theorem 2.14 [1] Let f be a function deciding an E-complete language L
and let g be its multilinear extension over a finite field. Then f and g are
polynomial time Turing reducible to each other.

Proof Obviously, f ∈ Pg. We give a polynomial time alternating Turing
machine (ATM) for deciding g with an oracle for f and then show that this
machine can be simulated in PL. The following algorithm is from Babai
et. al. [1]. On input x1, x2, ...xn, the machine first existentially guessses
the value g (x1, ...xn) and the linear function h1 (y) = gn (y, x2, ...xn), and
checks that h1(x1) = gn (x1, ...xn). It then universally guesses t1 ∈ {0, 1},
existentially guesses h2(y) = g (t1, y, x3, ...xn), and checks that h2(x2) =
h1(t1). This process continues for n − 1 steps where, in the ith step, the
machine universally guesses a ti ∈ {0, 1}, existentially guesses hi+1 (y) =
g (t1, t2, ...ti, y, xi+2, ...xn), and checks that hi+1(xi+1) = hi(ti). By the end
of the process, the machine will have verified that the guessed linear func-
tions hi, 1 ≤ i ≤ n, define a multilinear function gn on Zp. In the final
step, the machine verifies that gn is the multilinear extension of fn by query-
ing the oracle for f on t1t2 · · · tn and checking that the answer agrees with
hn (t1, t2, ...tn) = gn (t1, t2, ...tn).

Since L ∈ E, the oracle ATM can be simulated in EXP, and g ∈ Pf now
follows from the fact that EXP⊆ Pf . To see that EXP⊆ Pf , let A ∈EXP
be a language decidable in time 2p(n) for some polynomial p(n). The set A′

consisting of strings x ∈A padded to length p(|x|) is decidable in E. By the
E-completeness of L, there is a polynomial time many-one reduction R from
A′ to L. To decide A, a polynomial-time L-oracle machine pads its input
x to length p(|x|), applies R to the padded string, queries the oracle on the

18

resulting string, and returns the answer.

The following two theorems establish the random self-reducibility of mul-
tilinear extensions of boolean functions over sufficiently large finite fields.

Theorem 2.15 [18] Let f (x1, ...xn) be a polynomial of degree d over a finite
field of size q > d + 1, and let a1, ...ad+1 be any distinct nonzero elements of
the field. Then there are weights w1, w2, ...wd+1 such that

f (x1, ...xn) = Σd+1
i=1 wif (x̃i) (2.12)

where x̃i = (x1 + aiα1, ...xn + aiαn) for arbitrary field elements α1, ...αn.

Theorem 2.16 [1] Let gn be the multilinear extension of a boolean function
on n variables over the field Zp for p a prime greater than n+1. Suppose there
is a circuit C computing gn correctly for all but a fraction 1

3n
of inputs. Then

for some fixed polynomial p(n), there is a random circuit of size p(n)×size(C)
that computes gn correctly with probability greater than 1− 2−n.

Proof The multilinear extension over a field of a boolean function on n
inputs has degree n [1]. Therefore, Theorem 2.15 can be applied to gn to
obtain a random circuit for gn that takes the α′

is as random inputs and uses
C to evaluate gn(x̃i). This circuit computes gn correctly with probability at
least 1 − n+1

3n
≥ 3

5
taken over the random inputs. By the same argument as

was used to prove Theorem 1.1, the success probability can be amplified to
over 1− 2−n. The bound on the size of the resulting circuit follows from the
fact that computing the right-hand side of (2.12) requires a circuit of size a
polynomial times size(C), and amplifying the success probability multiplies
this by a polynomial factor.

Proof (of Theorem 2.13) We prove the contrapositive. Suppose there is
an E-complete function f such that, for any ǫ > 0 and for infinitely many n,
there is a circuit of size 2ǫn satisfying

Pr [C(x) = f(x)] ≥ 1−
1

3n
(2.13)

By the proof of Theorem 2.14, the multilinear extension gn of fn over Zp for
p > n+1 is decidable in polynomial time with a single query to an oracle for
f . For any ǫ′ > 0, a 2ǫ′n size circuit that computes gn correctly on all but a 1

3n

19

fraction of inputs can be constructed using a circuit for fn satisfying (2.13).
By Theorem 2.16, there is a random circuit C ′ of size p(x)2ǫ′n that computes
gn with probability greater than 1 − 2−n. The probability that C ′ fails to
compute gn on some input is less than 2n · 2−n = 1. Therefore, there must
be some random bit string for which C ′ succeeds on all inputs. Hardwiring
this bit string into C ′ gives a circuit that computes g and therefore f . Since
ǫ′ can be made arbitrarily small, S(f) 6∈ 2Ω(n).

2.2.2 Hard-core Sets

The next step in hardness amplification enhances the hardness achieved in
the previous section to a constant error.

Theorem 2.17 [9] Let f ∈ E be a function with SUCs (fn) < 1− 1
16n

for some
s ∈ 2Ω(n). Then there is a function g ∈ E such that SUCs′(n) (gn) < 1− 0.05

16

for some s′ ∈ 2Ω(n).

To achieve this amplification, f is first shown to possess a “hard-core set” on
which it is more difficult to compute than average.

Theorem 2.18 [9] Let f : {0, 1}n → {0, 1} be a function such that SUCs (f) ≤
1− δ. For any ǫ > 0, there is a set S ⊆ {0, 1}n, called a hard-core set, with
|S| ≥ δ2n such that SUCdǫ2δ2s (f) < 1

2
+ 1

2
ǫ, where the success probability is

taken over all x ∈ S and d is a constant.

The function g in Theorem 2.17 is a function of f evaluated on many different
pairwise independent inputs. With significant probability, one of the inputs
on which f is evaluated will be in a hard-core set of f . Roughly speaking,
this implies that g must be hard to compute, since otherwise the value of f on
its hard-core set could be easily derived from the output of g, contradicting
the hardness of f on this set.

The required pairwise independence is achieved using the following theo-
rem.

Theorem 2.19 [9] There exists a polynomial time computable function p :
{0, 1}O(n) → ({0, 1}n)n that outputs a set of n bit strings x1, x2, ...xn that are
pairwise independent. That is, for i 6= j, Pr[xi = a ∩ xj = b] = Pr [xi = a] ·
Pr [xj = b], where the probability is over all O(n) bit inputs to p. Moreover,

20

there is a polynomial time algorithm q that inputs an index i and a value c
for xi and outputs a value of r such that xi = c in p(r).

The hard function will be constructed from the inner product mod 2 of two
vectors r, s ∈ {0, 1}n, denoted 〈r, s〉. The following theorems show how to
compute a bit vector with high probability from its inner product with a
random vector.

Theorem 2.20 [7] Let v ∈ {0, 1}n and let B : {0, 1}n → {0, 1} be a func-
tion such that Prs∈0,1n [B(s) = 〈s, v〉] ≥ 1

2
+ γ. Then there exists a poly(n)

time probabilistic Turing Machine M that, given n as input and B as oracle,
outputs v with probability at least O(γ2).

Theorem 2.21 [9] Let v ∈ {0, 1}n and let B : {0, 1}n → {0, 1} be a func-
tion such that Prs∈0,1n [B(s) = 〈s, v〉] ≥ 0.8. Then there exists a poly(n)
time probabilistic Turing Machine N that, given n as input and B as oracle,
outputs v with probability at least O(γ2).

Proof By running the machine from Theorem 2.20 p(n) times for some
polynomial p, a polynomial size list of strings of length n can be constructed

that contains v with probability 1− (1− γ2)
p(n)

. For each w 6= v in this list,

Pr [B(s) = 〈s, w〉]

≤ Pr [〈s, w〉 = 〈s, v〉] + Pr [B(s) 6= 〈s, v〉]

≤ 0.5 + 0.2

= 0.7

To find v, N uses the oracle for B to find B(s) for q(n) values of s for
some polynomial q, and compares the results to 〈s, w〉 for each w in the list,
recording the number of matches. N then returns a w such that the number
of matches is at least 0.75q(n) if there is such a w, otherwise it returns an
arbitrary w. From Chernoff Bounds [21], N can be made to output v with
probability greater than 1− 2−n.

Theorem 2.22 [9] Let h : {0, 1}O(n) → {0, 1}n be a function. If there is a
circuit C of size g such that Prr,s [C(r, s) = 〈s, h(r)〉] ≥ 1 − γ, then there is
a circuit C ′ of size nO(1)g such that Prr [C ′(r) = h(r)] ≥ 1− 5γ.

21

Proof Let S be the set of r’s on which C outputs 〈s, h(r)〉 with probability
less than 0.8, and let t be the fraction of r’s in S. Then,

0.8t + (1− t) > Pr [C(s, r) = 〈s, h(r)〉]

≥ 1− γ

−0.2t > −γ

t < 5γ

From Theorem 2.21, for any r 6∈ S, there is a probabilistic Turing Machine N
that, given n as input and C(r, s) as oracle, computes h(r) with probability
greater than 1 − 2−n. Arguing as in the proof of Theorem 2.13, there is a
string of random bits for which N computes h(r) correctly for all r 6∈ S. The
required circuit takes r as input and simulates N on n with oracle C(r, s)
using this string, which is hardwired into the circuit.

Theorem 2.17 follows immediately from the next theorem.

Theorem 2.23 [9] Let f ∈ E be a function with SUCs (fn) < 1 − δ for
δ = 1

16n
, where s ∈ 2Ω(n). Let p : {0, 1}O(n) → ({0, 1}n)n be a function

as in Theorem 2.19. Let g (r, t) = 〈t, f(x1)f(x2) · · ·f(xn)〉, where p(r) =
(x1, x2, ...xn). Then SUCs′(g) < 1− 0.05δn for some s′ ∈ 2Ω(n).

Proof By Theorem 2.22, the theorem can be proved by showing that, for
f̄(r) = f(x1)f(x2) · · · f(xn), SUCs1

(

f̄
)

< 1 − 0.25δn for some s1 ∈ 2Ω(n).
Applying Theorem 2.18 with ǫ = 0.2, there is a set H of size δ2n such that,
for some s2 ∈ 2Ω(n), SUCs2(f) < 0.6 on H . Suppose for a contradiction that
for any s ∈ 2Ω(n), there is a circuit C of size s that computes f̄ on all but a
0.25δn fraction of inputs. For any i, the probability that xi ∈ H and for all
j 6= i, xj 6∈ H is given by

Pr (xi ∈ H ∩j 6=i xj 6∈ H)

= Pr (xi ∈ H) Pr (∩j 6=ixj 6∈ H|xi ∈ H)

≥ Pr (xi ∈ H)



1−
∑

j 6=i

Pr (xj ∈ H|xi ∈ H)





= Pr (xi ∈ H)



1−
∑

j 6=i

Pr (xj ∈ H)





= δ (1− nδ)

≥
15

16
δ (2.14)

22

where the third last line follows from pairwise independence. Assume that
there is no i such that, conditioned on this event occurring for i, the prob-
ability that C computes f̄ is at least 2

3
. Since these events are mutually

exclusive, this gives a probability that C fails to compute f̄ of at least
(

1
3

) (

15
16

)

δn > 0.25δn, a contradiction. Therefore, there must be an i such
that, conditioned on xi being the only element in H , the probability that C
fails to compute f̄ is at most 1

3
. From (2.14),

Pr (∩j 6=ixj 6∈ H|xi ∈ H) =
Pr (∩j 6=ixj 6∈ H ∩ xi ∈ H)

Pr (xi ∈ H)

≥
15
16

δ

δ

=
15

16
(2.15)

Consequently,

Pr [C(r) 6= f(r)|xi ∈ H] ≤
1

3
+

1

16
≤ 0.4 (2.16)

A circuit C ′ for f(xi) can be constructed as follows. On input a, C ′ uses the
function q defined in Theorem 2.19 to obtain a value for r such that xi = a in
p(r). It then computes C on this value and outputs the ith bit of the output
of C. Since C can be made size s for any s ∈ 2Ω(n), so can C ′, and by (2.16),
the success probability of C on H is at least 0.6. This contradicts the fact
that SUCs(f) < 0.6 on H for some s ∈ 2Ω(n).

2.2.3 The XOR Lemma

The final phase of hardness amplification increases the constant error ob-
tained in the last section to the exponentially small advantage required by
Theorem 2.8 3). This was done by Impagliazzo and Wigderson using a tech-
nique based on the XOR Lemma, which states that the XOR of several
independent instances of a decision problem is harder to compute than a
single instance of the problem [11].

Theorem 2.24 (The XOR Lemma) [24][19] For g : {0, 1}n → {0, 1}, de-
fine the direct product function g⊕k : ({0, 1}n)k → {0, 1} by g⊕k (x1, x2, ...xk) =
g(x1)⊕ g(x2)⊕ · · · g(xk). Then for any g : {0, 1}n → {0, 1} with SUCs(g) ≤

1− δ, we have ADVs′

(

g⊕k
)

≤ ǫ for k = O
(

− log ǫ
δ

)

, s′ = s (ǫδ)O(1).

23

By applying the XOR Lemma, Theorem 2.17 can be improved to obtain any
constant advantage less than 1

2
by XORing a constant number of instances

of the function g. In particular, taking δ = 0.05
16

and ǫ = 1
3

in Theorem 2.24
and using Theorems 2.13 and 2.17 gives the following Theorem.

Theorem 2.25 If there is an f ∈ E with S(f) ∈ 2Ω(n), then there is a
function g ∈ E with SUCs(g) ≤ 2

3
for some s ∈ 2Ω(n).

The XOR Lemma cannot be used directly to construct a function with
exponentially small advantage, since, taking ǫ = 2−cn and constant δ in The-
orem 2.24 leads to a quadratic increase in the input size of the resulting g⊕k

relative to g. Impagliazzo and Wigderson deal with this problem by deran-
domizing the XOR Lemma [11]. It is shown that the inputs xi in Theorem
2.24 need not be completely independent, but can be generated from a linear
number of bits by a function whose outputs have certain properties. A the-
orem analogous to Theorem 2.24 is proved with random independent inputs
replaced by the output of a direct product generator, defined as follows.

Definition 2.26 (Definition 3 [11]) For any boolean function g : {0, 1}n →
{0, 1}, define g(k) : ({0, 1}n)k → {0, 1}k as g(k) (x1, ...xk) = (g(x1), ...g(xk)).
Let G : {0, 1}m → ({0, 1}n)k be a function. G is an (s, s′, ǫ, δ) direct prod-
uct generator if for every such function g with SUCs(g) < 1 − δ, we have

SUCs′

(

gk ◦G
)

< ǫ.

The next theorem shows how a direct product generator can be used to
derandomize the XOR Lemma.

Theorem 2.27 [7] For f : {0, 1}m → {0, 1}l, if SUCs(f) ≤ δ then for some
s′ = ǫO(1)s and δ = ǫO(1), ADVs′ (f

⊕) ≤ ǫ, where f⊕ : {0, 1}m → {0, 1}
outputs the XOR of the l bits output by f .

Taking f = gk ◦G in Theorem 2.27 gives the following corollary.

Corollary 2.28 Let G : {0, 1}m → ({0, 1}n)k be a (s, s′, ǫ, δ) direct product
generator. Then for every boolean function g with SUCs(g) ≤ 1− δ, there is
a boolean function f with ADVs′′(f) ≤ ǫO(1), where s′′ = ǫO(1)s′.

From Theorem 2.25 and Corollary 2.28, the hardness amplification problem
reduces to finding an efficiently computable (s, s′, ǫ, δ) direct product gener-
ator with s = 2Ω(n), s′ = 2Ω(n), ǫ = 2−Ω(n) and δ = 1

3
that inputs O(n) bits.

Impagliazzo and Wigderson construct such a generator [11].

24

According to Definition 2.26, a direct product generator must have the
property that a lower bound on the success probability of computing gk ◦G
implies a lower bound on the success probability of computing g. Thus, a
function G can be proven to be a direct product generator by showing a way
to compute with high probability the value of a function g from the output
of g⊕k on inputs from G. This can be done provided G satisfies the following
three properties.

Definition 2.30 (Definition 4 [11]) For any polynomial time computable
function G : {0, 1}m → ({0, 1}n)k, G is M-restrictable if there is a polynomial
time computable function h (i, x, α) : [n] × {0, 1}n × {0, 1}m → {0, 1}m,
where [n] denotes the set {1, 2, ...n}, satisfying 1), 2), and 3) below. Let
(x1, x2, ...xk) denote the output of G on input h (i, x, α).

1) For any given i, h (i, x, α) is uniformly distributed in {0, 1}m when X and
α are chosen uniformly at random.

2) xi = x.

3) There is a constant M such that, for any given i, j 6= i, and α, there is a
set S ⊆ {0, 1}n with |S| ≤M such that xj ∈ S for any x.

Definition 2.31 (Definition 5 [11]) A function G : {0, 1}m → ({0, 1}n)k

producing output (x1, ...xk) is (k′, q, δ)-hitting if for any sets H1, ...Hk ⊆
{0, 1}n such that |Hi| ≥ δ2n, we have Pr [|{i|xi ∈ Hi}| < k′] ≤ q.

Definition 2.32 A function G : {0, 1}m → ({0, 1}n)k producing output
(x1, ...xk) is uniform if for every i ∈ [n] the number of inputs r ∈ {0, 1}m

such that xi = a is the same for all a ∈ {0, 1}n.

The following theorem implies that a function with the above properties
is a direct product generator.

Theorem 2.33 (Theorem 15 [11]) Let G(r) : {0, 1}m → ({0, 1}n)k be a

uniform, (ρk, q, δ)-hitting, M-restrictable function, where q > 2
−ρk
3 . Take

s > 2Mnk. Then G is a (s, s′, ǫ, δ) direct product generator, where ǫ =
[

4
(

δ
ρ

)

+ 1
]

q and s′ = q2

n
s− kMn.

Proof Suppose there exists a circuit C of size s′ that computes g(k) ◦G with
success probability ǫ. We construct a family F of probabilistic circuits that
computes g with advantage at least q on most inputs. Denote the output

25

of G by (x1, x2, ...xk). Each circuit C ′ ∈ F has hardwired into it values
I, α0, and g(xi), for all i 6= I, for all values of xi that can be output by
G (h (I, x, α0)) as x ranges over {0, 1}n. By Definition 2.30, there are at
most M such values. On input x, C ′ evaluates g(k) on input G (h (I, x, α0))
using C. It then compares the ith bit output by C for i 6= I to the value of
g(xi) and counts the number t of mismatches. C ′ outputs the I th bit of C
with probability 2−t, and otherwise outputs a random bit.

For any set H ⊆ {0, 1}n with |H| ≥ δ2n, the advantage for computing g
on H taken over all circuits in F , inputs to the circuits, and random strings

used by the circuits is at least p−q−2
−ρk

3 , where p is the success probability
of C conditioned on xI ∈ H for some I. To see this, let b1b2 · · · bk be the
output of C on input r such that G(r) = (x1, x2, ...xk). Let T be the number
of incorrect bits output by C on this input, and let T ′ be the number of
incorrect bits bi for i such that xi ∈ H . Let k′ be the number of xi in H ,
and suppose k′ ≥ ρk. We consider separately the two cases of bI correct
and bI incorrect. By property 1) of Definition 2.30, I is independent of
x1, x2, ...xk, so with probability T ′

k′
, the I th bit is incorrect and t = T − 1.

In this case, C ′ fails by choosing to output the I th bit of C with probability
2−t = 2−T+1. Otherwise, C ′ outputs a random bit and has zero advantage.
With probability 1 − T ′

k′
the I th bit is correct and t = T . In this case, C ′

succeeds by choosing to output the I th bit of C with probability 2−t = 2−T .
Otherwise, C ′ outputs a random bit and has zero advantage. Therefore, the
overall advantage is 2−T

[(

1− T ′

k′

)

− 2T ′

k′

]

= 2−T
(

1− 3T ′

k′

)

. If T ′ ≤ k′

3
, this is

non-negative. If T ′ > k′

3
, then it is at least −2−

ρk
3 .

With probability p, all bits output by C are correct, in which case C ′

outputs the I th bit of C and succeeds with probability 1. In all other cases,

the advantage of C ′ is at least −2
−ρk

3 unless k′ < ρk which, by Definition
2.31, happens with probability at most q. Therefore, the overall advantage

is at least p− q − 2−
ρk
3 .

To derive a lower bound for p, let D be the distribution G(r) for random
r, and let D′ be this distribution conditioned on xI ∈ H for some I. For
any (x1, x2, ...xk), let u be the number of xi in H . The probability of such
a sequence in D′ is u

δk
times its probability in D. To see this, note that the

probability of the sequence in D′ is proportional to u times its probability in
D, since there are u possibilities for I. By the uniformity of G, the expected
value of u in D is δk, so the constant of proportionality must be 1

δk
for D′ to

be a normalized probability distribution. The probability in D that u ≥ ρk

26

and C is correct is at least ǫ−q from the hitting property of G. Therefore, the
probability in D′ that u ≥ ρk and C is correct is at least (ǫ−q)ρ

δ
= 4q, which

is the desired lower bound for p. This gives an advantage for computing g of

at least 4q − q − 2−
ρk
3 = 3q − 2−

ρk
3 ≥ q.

Thus, the success probability for computing g taken over all circuits of
F , inputs, and random choices is at least 1

2
+ q

2
for all sets H with |H| ≥ δ2n.

This implies that the set S of all inputs x such that the success probability
taken over all circuits of F and random choices is less than 1

2
+ q

2
is of size

less than δ2n. Indeed, if this were not true, then a size δ2n subset of S
would be a set that violates the above lower bound on advantage. Define
a random circuit E that, on input x, chooses at random n

q2 circuits from F
and their associated random bits, runs these circuits on x, and outputs the
majority. By the proof of Theorem 1.1, this circuit decides all inputs x with
success probability greater than 1 − 2−n, and so as was done in the proof
of Theorem 2.13, a specific set of random bits can be hardwired into E to
obtain a deterministic circuit that decides g for all x ∈ {0, 1}n\S. This is a
circuit of size (|C|+ kMn) n

q2 = (s′ + kMn) n
q2 = s that computes g on all

but a δ fraction of inputs, so the theorem is proved.

Impagliazzo and Wigderson construct a function G : {0, 1}cn → ({0, 1}n)n

that is a (2Ω(n), 2Ω(n), 2−Ω(n), 1
3
), where c is a constant [11]. This completes

the proof of hardness amplification of functions f ∈ E with exponential size
circuit lower bounds. The same methods can be applied to functions with
subexponential lower bounds, leading to the following stengthened versions
of the hardness-randomness tradeoffs of Theorem 2.8.

Theorem 2.34 If there exists a function f such that, for all but finitely
many n,

1) f ∈ EXP and S(fn) ≥ nk for fixed k

2) f ∈ EXP and S(fn) ≥ 2nǫ

for some ǫ > 0, or

3) f ∈ E and S(fn) ≥ 2ǫn for some ǫ > 0, respectively

then respectively,

1) BPP ⊆ ∩ǫ>0DTIME
(

2nǫ
)

2) BPP ⊆ DTIME
(

2(log n)c
)

for some constant c.

3) BPP = P

An io form of Theorem 2.34 analogous to Theorem 2.9 can also be given.

27

The Nisan-Wigderson and hardness amplification theorems relativize [17].
That is, for any oracle A, an NW-generator that is constructed from an A-
oracle circuit-hard function f produces outputs that cannot be distinguished
from random by A-oracle circuits.

Definition 2.35 A function G : {0, 1}l(n) → {0, 1}n is an A-PRG if for any
A-oracle circuit C of size n with n inputs,

|Prx∈{0,1}l(n) [C(G(x)) = 1]− Pry∈{0,1}n [C(y) = 1] | <
1

n
(2.17)

Definition 2.36 For a boolean function f , HA
f (n) and SA(f) are defined as

in Definitions 2.2 and 2.12 with circuits replaced by A-oracle circuits.

Theorem 2.37 The hardness-randomness tradeoffs of sections 2.1 and 2.2
relativize. In particular, if there exists f such that

1) f ∈ EXP and SA(f) ≥ nk for any fixed k

2) f ∈ E and SA(f) ≥ 2ǫn for some ǫ > 0

then there exists an A-PRG

1) G : {0, 1}n
ǫ

→ {0, 1}n computable in DTIME
(

2nǫ
)

for every ǫ > 0

2) G : {0, 1}O(log n) → {0, 1}n computable in deterministic polynomial time.

It is sometimes useful to consider constructions of PRG’s from functions
that are not necessarily deterministically computable or even uniformly com-
putable. The following theorems deal with this case.

Theorem 2.38 (Theorem 11 [10]) Let A be an oracle. For every ǫ > 0, there

is a polynomial time computable function F : {0, 1}2
nδ

× {0, 1}n
ǫ

→ {0, 1}n

with δ < ǫ and d ∈ N such that, if r is the truth table of an nδ variable
boolean function f : {0, 1}n

δ

→ {0, 1} with SA(fnδ) > nd, then the function
G(s) = F (r, s) is an A-PRG.

Proof For any δ > 0, applying hardness amplification to an f satisfying
the above hardness condition for sufficiently large d results in a function g
such that HA

g (nδ) > kn2 for some constant k. For any ǫ, by a relativization
of Theorem 2.5, the NW generator G : {0, 1}n

ǫ

→ {0, 1}n based on g is an
A-PRG if δ is chosen sufficiently small. By Theorem 2.6, the design for this

28

generator can be constructed in time polynomial in n. Computing G requires
evaluating f on poly(n) inputs. This can be done in time 2nδ

for each input
with access to the truth table of f , by looking up the values.

Theorem 2.39 (Theorem 14 [10]) Let A be any oracle. For every ǫ > 0, there
is a polynomial time computable function F : {0, 1}n

c

×{0, 1}d log(n) → {0, 1}n

with c, d ∈ N such that, if r is the truth table of a c log(n)-variable Boolean
function f : {0, 1}c log n → {0, 1} with SA (fc log n) > nǫc, then Gr (s) = F (r, s)
is an A-PRG.

The proof of Theorem 2.39 is similar to that of Theorem 2.38 and is omitted.

29

Chapter 3

Derandomization and
Probabilistic Polynomial
Hierarchies

This chapter contains the original contributions of the thesis, which in-
clude a number of results concerning the hierarchies MAΣi and AMΣi intro-
duced in Section 1.2. Section 3.1 will derive an equivalence between circuit
lower bounds and derandomization for MAΣi. This is a generalization of a
result of Impagliazzo et al. concerning MA [10]. Using this result and a
diagonalization argument of Kannan, MAΣi will be shown to separate from
NEXPΣi at almost all levels in Section 3.2. Section 3.3 uses the same di-
agonalization to prove a tradeoff between derandomizations of BPP and of
AMΣi . Lu and Impagliazzo et. al. prove various tradeoffs between deter-
ministic simulations of nondeterministic time and derandomizations of AM
[20][10]. Section 3.4 will derive similar tradeoffs for the hierarchy AMΣi.

3.1 MAΣi and the Exponential Hierarchy

The previous chapter derived a set of circuit lower bound conditions for
uniformly computable functions sufficient to derandomize BPP to various
degrees (Theorem 2.34). It is not known if such lower bounds are also a nec-
essary condition for a derandomization of BPP. However, in [12], it is shown
that a specific problem in coRP, Polynomial Identity Testing, cannot be sim-
ulated in ∩ǫ>0NTIME

(

2nǫ
)

unless either NEXP does not have polynomial
size circuits or the permanent of a matrix cannot be computed by polynomial
size arithmetic circuits. Thus, even a mild derandomization of BPP requires
polynomial size circuit lower bounds.

30

In the case of the classes AM and MA of Arthur-Merlin games, it has been
proven that derandomization is equivalent to a polynomial size circuit lower
bound for NEXP [10]. Before stating this result formally, we first introduce
a notation.

Definition 3.1 For any complexity class C, C/poly denotes the class of
languages decidable in C with polynomial advice. That is, L ∈C/poly if
there exist L′ ∈C and an advice string h(n) ∈ {0, 1}p(n) for some polynomial
p such that x ∈ L iff x · h(|x|) ∈ L′, where x · h(|x|) denotes x concatenated
with h(|x|). More generally, C/f(n) denotes the class of languages decidable
in C with f(n) advice.

Theorem 3.2 P/poly is the class of languages decidable by polynomial
size circuits. More generally, PA/poly is the class of languages decidable by
polynomial size A-oracle circuits.

Proof Suppose a language L is decidable by polynomial size circuits. Then
L is decidable by a polynomial time Turing Machine taking the circuit de-
scription as advice, which simulates the circuit on its input and returns the
answer. Conversely, suppose L ∈P/poly. Then L can be decided by hard-
wiring the advice string into the circuit that simulates the polynomial time
Turing Machine for L. The general case follows from a relativization of this
proof.

The following theorem is proved by Impagliazzo et al. [10].

Theorem 3.3 NEXP⊆P/poly ↔ MA = NEXP.

The backward direction of Theorem 3.3 is proved using the hardness-randomness
tradeoffs of Chapter 2. The forward direction is an extension of the following
result of Babai et al. [2].

Theorem 3.4 EXP⊆ P/poly → MA = EXP.

In this section, we extend Theorem 3.3 to show the following result about
the hierarchy MAΣi:

Theorem 3.5 NEXPΣi ⊆ PΣi/poly↔ MAΣi = NEXPΣi, i ≥ 0.

31

The proof of this theorem follows closely that of Theorem 3.3 [10]. As a
consequence of Theorem 3.5, we derive an unconditional derandomization of
almost all levels of MAΣi in the next section.

Babai et al. prove that EXP can be simulated by multi-prover interactive
proof systems. In a multi-prover interactive protocol, a set of all-powerful
machines {P1, P2, ...Pk} (the provers) exchange messages with a probabilistic
polynomial time machine V (the verifier), attempting to convince the verifier
to accept an input string x. The provers are not allowed to communicate
with each other, and cannot read the verifier’s random bits.

Definition 3.6 A language L has a multi-prover interactive proof system
(MIPS) if there is a multi-prover interactive protocol such that

1. If x ∈ L then there exist (honest) provers {P1, P2, ...Pk} such that
Pr (V accepts) > 1− 2−n.

2. If x 6∈ L then for all sets of provers {P ′
1, P

′
2, ...P

′
k}, Pr (V accepts) < 2−n.

EXP can be simulated by a particular type of MIPS with restrictions on the
power of the provers.

Definition 3.7 Let C be a complexity class. A language L has a multi-prover
interactive proof system of complexity C if L has a multi-prover interactive
proof system such that each honest prover Pi is restricted to answering mem-
bership questions for a language Li ∈ C.

Theorem 3.8 [2] For any L ∈ EXP, L has a multi-prover interactive proof
system of complexity EXP.

This property of EXP implies Theorem 3.4. We require a generalization of
this theorem.

Theorem 3.9 If EXP ⊆ PΣi/poly, then EXP = MAΣi, i ≥ 0.

Proof Take L ∈ EXP. By Theorem 3.8, if EXP ⊆ PΣi/poly, L has a MIPS
such that the honest provers are Σi-oracle circuits of polynomial size. The
following is a 2 round Arthur-Merlin protocol for L that uses an oracle for Σi.
On input x, Merlin gives Arthur a set of Σi-oracle circuits and Arthur uses
them to verify in probabilistic polynomial time with the help of the oracle
that x ∈ L. If x 6∈ L, then, from Definition 3.6, x will be rejected with
high probability regardless of what circuits were supplied. If x ∈ L, then,

32

for some set of circuits, x will be accepted with high probability. Therefore,
L ∈ MAΣi .

The following unconditional and implied separations and inclusions are
essentially taken from Impagliazzo et al. [10]. They are adapted to the
current context in some cases by relativizing some of the complexity classes
to Σi. In these cases, we give the necessary adjustments to the proofs of
the theorems from which they were adapted. We indicate the corresponding
theorem in each case.

Definition 3.10 For any oracle A, let SIZEA (f(n)) denote the set of lan-
guages decidable by A-oracle circuits of size at most f(n).

Theorem 3.11 (Theorem 2 [10]) For any fixed c ∈ N , EXP 6⊆ io-SIZEΣi (nc),
i ≥ 0.

Proof The following proof follows that of Theorem 3 in Impagliazzo et al.
[10]. The set S of all Σi oracle circuits of size at most nc has size at most 2kn2c

for some constant k. This is because there are at most 5nc

subsets of gates,
and for each gate, there are n2c ways of connecting its two output lines, giving
an upper bound of 5nc

· n2cnc

= 5nc

· 22c log(n)nc

∈ 2O(n2c) on the number of
circuits. Define L to be the language accepted by the following deterministic
Turing machine M. On input x of length n, M rejects if x is not one of
the first kn2c + 1 strings of length n in lexicographic order. Otherwise, let
{x1, x2, ...xi} be the lexicographically-ordered sequence of the first i strings
of length n with x = xi. Define the set {S0, S1, S2, ...Si} of subsets of S as
follows: S0 = S, and for 1 ≤ j ≤ i, Sj is the set of circuits in Sj−1 that reject
xj if more than half of the circuits in Sj−1 accept xj , otherwise it is the set
of all circuits in Sj−1 that accept xj . M finds the sets S1, ...Si by evaluating
the appropriate circuits on the inputs x1, ...xi. If Si is empty, M rejects x.
Otherwise, it accepts x if Si is the set of all circuits in Si−1 that reject x
and rejects x otherwise. Clearly, L 6∈ io-SIZEΣi (nc). Since the number of
circuits evaluated by M is exponential and each circuit can be evaluated in
exponential time, L ∈ EXP.

Theorem 3.12 (Theorem 3 [10]) For any c ∈ N , EXP 6⊆ io-DTIME
(

2nc
)

/nc.

Proof The proof is the same as that of Theorem 3.11, except that the set
S is now the set of Turing machines that take nc advice and have descrip-
tion size at most n. Since, for sufficiently large n, any Turing machine has

33

a description of length less than n, the algorithm diagonalizes against all
machines with the specified time bound and advice for all but finitely many
n. For the details of the proof, see Impagliazzo et al. [10].

Theorem 3.13 [10] If NEXPΣi−1 ⊆ PΣi−1/poly then NTIME (2n)Σi−1 /n ⊆

SIZEΣi−1

(

nd0

)

for some constant d0, i ≥ 1.

Proof This is Lemma 5 of Impagliazzo et al. relativized to Σi. Their proof
involves reducing a language decidable by a nondeterministic machine with
advice to a language in NEXP decided by a universal Turing machine which,
by assumption, is decidable by a polynomial size circuit. This proof can be
extended to the present case by replacing nondeterministic machines with
alternating Turing machines.

Theorem 3.14 [10] If NEXPΣi−1 = EXP, then

NTIME (2n)Σi−1 /n ⊆ DTIME
(

2nd0
)

/n

for some constant d0, i ≥ 1.

Proof This is Lemma 6 of Impagliazzo et. al. with the nondeterministic
complexity classes relativized to Σi. The proof is similar to that of Theorem
3.13.

Theorem 3.15 (Corollary 8 [10]) If NEXPΣi−1 ⊆ PΣi−1/poly, then EXP 6⊆
io−NTIME (2n)Σi−1 /n, i ≥ 1.

Proof By Theorem 3.13, the hypothesis implies

NTIME (2n)Σi−1 /n ⊆ SIZEΣi−1

(

nd0

)

for some constant d0. If EXP ⊆ io-NTIME (2n)Σi−1 /n, then EXP ⊆ SIZEΣi−1

(

nd0

)

,
contradicting Theorem 3.11.

Theorem 3.16 (Corollary 9 [10]) If NEXPΣi−1 = EXP, then NEXPΣi−1 6⊆
io-NTIME (2n)Σi−1 /n, i ≥ 1.

Proof The hypothesis implies, by Theorem 3.14, that NTIME (2n)Σi−1 /n ⊆

DTIME
(

2nd0
)

/n for some constant d0. If NEXPΣi−1 ⊆ io-NTIME (2n)Σi−1 /n

34

⊆ io-DTIME
(

2nd0
)

/n, then EXP ⊆ io-DTIME
(

2nd0
)

/n, contradicting The-
orem 3.12.

We will also need the following result.

Theorem 3.21 [4] If EXPΣi ⊆ EXP/poly then EXPΣi = EXP, i ≥ 0.

The following results concern the derandomization of the hierarchy MAΣi .
These theorems are proved in Impagliazzo et al. for the corresponding non-
relativized complexity classes [10].

Theorem 3.22 (Theorem 12 [10]) For any i ≥ 0, suppose there is an algo-
rithm A in
NTIME

(

2O(n)
)Σi

that, given 1n as input and a(n) advice, outputs on ev-

ery accepting computational path the truth table of a function f : {0, 1}n →
{0, 1} such that, for all d ∈ N , SΣi(fn) > nd i.o. Then, for every ǫ > 0,

MAΣi ∈ io-NTIME
(

2nǫ
)Σi

/a (nǫ) (3.1)

Proof Take L ∈ MAΣi . By a relativization of Theorem 1.4, there exists a
relation R ∈ PΣi such that

x ∈ L↔ ∃y ∈ {0, 1}m
[

Prz∈{0,1}p [R (x, y, z) = 1] ≥
2

3

]

x 6∈ L↔ ∀y ∈ {0, 1}m
[

Prz∈{0,1}p [R (x, y, z) = 1] ≤
1

3

]

for some m and p which are polynomial in |x|. Allowing unused random bits
if necessary, p can be chosen to be the polynomial time bound for deciding
R. By Theorem 2.38, for every ǫ > 0, for infinitely many n, a Σi-PRG
G : {0, 1}n

ǫ

→ {0, 1}p can be computed in time 2nǫ

given a truth table
of length 2nδ

for some δ < ǫ which is output by A on an accepting path.
The following nondeterministic Σi-oracle machine M decides L for infinitely
many input lengths. On input x of length n, M runs A on 1nδ

using the
appropriate advice. If A rejects, M rejects. Otherwise, M guesses the witness
y and computes R (x, y, z) for each z in the range of G, where G is the Σi-
PRG constructed from the output of A, accepting iff R (x, y, z) = 1 for the

majority of z. Clearly, M runs in NTIME
(

2nǫ
)Σi

/a(nǫ).

35

Theorem 3.23 [10] For i ≥ 0, if EXP 6⊆ PΣi/poly, then ∀ ǫ > 0,

MAΣi ⊆
⋂

ǫ>0

io-NTIME
(

2nǫ
)Σi

(3.2)

Proof Let f ∈ EXP be a function that cannot be simulated by polynomial
size Σi oracle circuits. Then f satisfies condition 1) of Theorem 2.37 with
A = Σi for infinitely many input lengths. The “infinitely often” form of
Theorem 2.37 implies the existence of a generator G : {0, 1}n

ǫ

→ {0, 1}n

that can be used by a nondeterministic Σi-oracle machine to carry out the
required simulation for infinitely many n. In the notation of the proof of
Theorem 3.22, this machine guesses y and accepts if the probability taken
over all outputs z of G that R(x, y, z) = 1 is greater than 1

2
. This can be

checked in time 2nǫ

.

Definition 3.24 [10] For a relation R (x, y) with x ∈ {0, 1}n and y ∈ {0, 1}2
n

,
n ∈ N , let fR (x) denote the boolean function such that

fR (x) = 1↔ ∃y ∈ {0, 1}2
n

[R (x, y) = 1]

Let fR,A,s denote the boolean function such that

fR,A,s (x) = 1↔ ∃y ∈ TA,s (|x|) [R (x, y) = 1]

where TA,s (|x|) is the set of all truth tables of boolean functions f on |x| bits
such that SA(f) < s.

Theorem 3.25 (Lemma 17 [10]) For i ≥ 0, suppose there exists a DTIME
(

2O(n)
)Σi

relation R (x, y) with x ∈ {0, 1}n and y ∈ {0, 1}2
n

, n ∈ N , such that
fR (x) 6= fR,A,s (x) for some x ∈ {0, 1}n for infinitely many n, where A is

any oracle. Then there is a NTIME
(

2O(n)
)Σi

algorithm that, given advice
of length n, for infinitely many n, nondeterministically generates on every
accepting computational path the truth table of a boolean function g on n
variables with SA(g) > s.

Proof If fR (x) 6= fR,A,s (x) then fR (x) = 1 and fR,A,s (x) = 0. Given x as
advice, the algorithm guesses y and accepts and outputs y iff R (x, y) = 1.

Theorem 3.26 [10] For i ≥ 0, if NEXPΣi 6= EXPΣi, then there exists a

DTIME
(

2O(n)
)Σi

relation R (x, y) with x ∈ {0, 1}n and y ∈ {0, 1}2
n

, such

36

that for every fixed d ∈ N, for infinitely many n, there is a x ∈ {0, 1}n such
that fR (x) 6= fR,Σi,nd (x).

Proof Suppose that for every such relation there is a d ∈ N such that,
for all but finitely many n and for x ∈ {0, 1}n, fR (x) = fR,Σi,nd (x). Take

L ∈ NEXPΣi and let 2nk

be the time bound of the nondeterministic Σi oracle
machine that decides L. Consider the language L′ defined as follows: for each
word of length n in L, L′ contains this word padded with 0’s to length nk.
Then there is a relation R as defined in the statement of the Theorem such
that fR (x) = 1 iff x ∈ L′ and fR (x) = fR,Σi,nd (x) for all but finitely many
n for some d. Thus, L′ can be decided in EXPΣi by computing, on input x,
the truth tables, y, of all Σi oracle circuits on n inputs of size at most nd

and checking if R (x, y) = 1 for at least one such y. Since the time bound
for deciding L′ is exponential in the length of the original unpadded strings,
and since L can be reduced to L′ in polynomial time, L ∈ EXPΣi. Thus
NEXPΣi = EXPΣi .

Theorem 3.27 [10] If NEXPΣi 6= EXPΣi , then, for every ǫ > 0, MAΣi ⊆

io-NTIME
(

2nǫ
)Σi

/nǫ.

Proof This follows from Theorems 3.22, 3.25 and 3.26.

Proof (of Theorem 3.5) (→) Suppose

NEXPΣi ⊆ PΣi/poly (3.3)

but

NEXPΣi 6= EXP (3.4)

Inclusion (3.4) implies, from Theorem 3.9, that EXP = MAΣi. It also implies
EXPΣi ⊆ NEXPΣi ⊆ PΣi/poly ⊆ EXP/poly, so by Theorem 3.21, EXPΣi =
EXP. Therefore, from (3.5), NEXPΣi 6= EXPΣi. By Theorem 3.27, ∀ǫ > 0

MAΣi ⊆ io-NTIME
(

2nǫ
)Σi

/nǫ

EXP ⊆ io-NTIME
(

2nǫ
)Σi

/nǫ

⊆ io-NTIME
(

2nǫ
)Σi

/nǫ (3.5)

37

Inclusions (3.4) and (3.6) contradict Theorem 3.15. Therefore, (3.4) implies
NEXPΣi = EXP = MAΣi .

(←) Suppose

NEXPΣi = MAΣi (3.6)

but

NEXPΣi 6⊆ PΣi/poly (3.7)

Assumption (3.7) implies that NEXPΣi = EXP, so EXP 6⊆ PΣi/poly by (3.8).
By Theorem 3.23, this implies

MAΣi ⊆ io-NTIME
(

2nǫ
)Σi

NEXPΣi ⊆ io-NTIME
(

2nǫ
)Σi

⊆ io-NTIME (2n)Σi /n

This contradicts Theorem 3.16, so the theorem is proved.

3.2 Unconditional Derandomization of MAΣi

Theorem 3.3 suggests that finding a nontrivial derandomization of MA is a
difficult problem that will require a new, nonrelativizable proof method. This
is because there is an oracle A such that NEXPA ⊆ PA/poly [8]. However,
relativizable methods do suffice to prove the lower bound of Theorem 3.5 for
nearly all i, leading to the following separation result.

Theorem 3.28 For all but at most one i, MAΣi 6= NEXPΣi, i ≥ 0.

In [14], a diagonzalization argument is used to prove that Σi, i ≥ 2, does
not have nk size circuits for any fixed k. To prove the lower bound required
for Theorem 3.28, we use a scaled-up version of this argument to show that
the exponential hierarchy ΣEXP

i = NEXPΣi defined in section 1.2 has an
exponential size circuit lower bound for i ≥ 4. This is proved by exhibiting
an exponential time ATM that, for any given input length, simulates a circuit
with no equivalent circuit below a certain exponential size. Before describing
this simulation, we show that such a circuit exists.

38

Theorem 3.29 For any ǫ > 0, there is a circuit with n inputs of size 22n

which accepts a subset of {0, 1}n not accepted by any circuit of size 2(1−ǫ)n.

Proof The set {0, 1}n of strings of length n has 22n

subsets. Let sn (f)
denote the number of circuits on n inputs of size at most f . We show that,
for any ǫ > 0, sn

(

2(1−ǫ)n
)

is o
(

22n
)

and so at least one subset of strings
of length n is not accepted by any such circuit for sufficiently large n. For
any ǫ > 0, the number of possible sets of gates for a circuit of size at most
2(1−ǫ)n is bounded above by 42(1−ǫ)n

. Since each gate has two output lines, the
number of ways each gate’s output lines can be connected is at most 22(1−ǫ)n.
Therefore, there are at most 22(1−ǫ)n2(1−ǫ)n

ways of connecting the gates. So,

sn

(

2(1−ǫ)n
)

≤ 42(1−ǫ)n

22(1−ǫ)n2(1−ǫ)n

= 22·2(1−ǫ)n+2(1−ǫ)n2(1−ǫ)n

= 2[2+2(1−ǫ)n]2(1−ǫ)n

∈ O
(

22(1−ǫ′)n
)

for some 0 < ǫ′ < 1

This shows that there is a subset, S, of {0, 1}n that is not accepted by a
2(1−ǫ)n-size circuit for sufficiently large n. On the other hand, each string in
S is accepted by a circuit of size 2n, and there are at most 2n strings in S.
Since a circuit accepting S can be obtained by ORing together the circuits
that accept each string, S is accepted by a circuit of size 2n2n + 2n ≤ 22n.

Theorem 3.30 For any ǫ > 0, there is a function f ∈ ΣEXP
4

⋂

ΠEXP
4 with

S(f) ≥ 2(1−ǫ)n.

Proof Kannan proves that there is a function f ∈ Σ4
⋂

Π4 that does not have
circuits of size O(nk) for any given k by constructing a polynomial length
QBF that simulates a circuit of size n2k+5 that does not have an equivalent
size nk+1 circuit [14]. The proof of Theorem 3.30 is identical except that the
QBF is of exponential length and simulates a circuit of size 22n that has no
equivalent size 2(1−ǫ)n circuit.

Corollary 3.31 ΣEXP
2

⋂

ΠEXP
2 6⊆ P/poly.

Proof If NP ⊆ P/poly, then Σi = Σ2, ∀ i ≥ 2 [15], and by a padding
argument, this implies ΣEXP

i = ΣEXP
2 , ∀ i ≥ 2. The result then follows

39

from Theorem 3.30. If NP 6⊆ P/poly, the result follows from the fact that
NP ⊆ ΣEXP

2

⋂

ΠEXP
2 .

Theorem 3.28 now follows from Theorem 3.5 and the following Theorem of
[4].

Theorem 3.32 [4] There is at most one i ≥ 0 such that NEXPΣi ⊆ PΣi/poly.

Proof Suppose there were two numbers j ≥ 0 and k ≥ 0 with j < k
such that NEXPΣj ⊆ PΣj/poly and NEXPΣk ⊆ PΣk/poly. By Theorem
3.5, NEXPΣj = NEXPΣk = EXP, so NEXPΣk ⊆ PΣj/poly. The proofs of
Theorem 3.30 and Corollary 3.31 relativize, and relativizing Corollary 3.31 to

Σj implies that
(

ΣEXP
2

)Σj

= NEXPNPΣj

= NEXPΣj+1 = ΣEXP
j+2 6⊆ PΣj/poly.

But this implies NEXPΣk 6⊆ PΣj/poly since ΣEXP
j+2 ⊆ ΣEXP

k+1 ≡ NEXPΣk , a
contradiction.

3.3 A Derandomization Tradeoff

While the lower bound NEXP 6⊆ P/poly implies a separation of NEXP and
MA by Theorem 3.3, no explicit nontrivial upper bound has been shown to
follow from this lower bound. A stronger derandomization of AM (and of
MA) follows from a circuit lower bound for NEXP

⋂

co-NEXP. Klivans and
van Melkebeek prove a spectrum of hardness-randomness tradeoffs analogous
to Theorem 2.34 for AM [17]. These tradeoffs are similar to those for BPP
except with circuit lower bounds for deterministic functions replaced by NP-
oracle circuit lower bounds for functions in NEXP

⋂

co-NEXP. The proof uses
an NW generator G based on a function f ∈ NEXP

⋂

co-NEXP satisfying
such a lower bound. By the relativized hardness-randomness tradeoffs of sec-
tion 2.2.3, G is an NP-PRG, and the ith bit of G can be computed nondeter-
ministically by guessing a witness that certifies acceptance or nonacceptance
of f on its input. It follows from Theorem 1.4 that G allows a nontrivial
nondeterministic simulation of AM.

In this section, we generalize the tradeoffs of Klivans and van Melkebeek,
deriving a set of hardness-randomness tradeoffs for AMΣi−1 = BP · Σi. We
also derive an interesting tradeoff between derandomizations of BPP and of
BP · Σi that follows from the hardness randomness tradeoffs. The following
Theorem establishes a Σi-oracle circuit lower bound that implies a complete

40

derandomization of BP · Σi, i.e. BP · Σi = Σi. It is analogous to Theorem
3.13 of Klivans and van Melkebeek [17].

Theorem 3.33 Let ΣE
i and ΠE

i denote the 2O(n)-time analogues of Σi and
Πi, respectively. For i ≥ 1, if there exists a function f ∈ ΣE

i ∩ ΠE
i with

SΣi(f) ∈ 2Ω(n), then BP · Σi = Σi.

Proof Take L ∈ BP · Σi. By Theorem 1.9, there is a relation M ∈ P such
that, for |x| = p and n = poly (p),

x ∈ L↔ ∀y ∈ {0, 1}n [∃z1∀z2 · · ·Qizi (M (x, z1, ...zi, y) = 1)] (3.8)

x 6∈ L↔ Pry∈{0,1}n [∃z1∀z2 · · ·Qizi (M (x, z1, ...zi, y) = 1)] ≤
1

3

Allowing unused random bits if necessary, n can be chosen to be the minimum
size of a circuit computing M . Let f be a function as in Theorem 3.33, and
let ǫ be a constant such that SΣi(f) > 2ǫn. Then SΣi

(

fc log(n)

)

≥ nǫc a.e.,
so there exist c, d ∈ N and a function F as in Theorem 2.39 such that
G(s) = F (r, s) is a Σi-PRG G : {0, 1}d log n → {0, 1}n if r is the truth table of
f on inputs of length c log n. Therefore (3.9) holds with {0, 1}n replaced by
the range of G. Since f ∈ ΣE

i ∩ΠE
i , there are 2O(|x|)-time decidable relations

R0 and R1 such that

f (x) = 0↔ ∃u1∀u2 · · ·Qiui [R0 (x, u1, u2, ...ui) = 1]

f (x) = 1↔ ∃u1∀u2 · · ·Qiui [R1 (x, u1, u2, ...ui) = 1]

for some 2O(|x|) length u1, u2,...ui. Let r (j) denote the jth bit of string r, and
let tj and sj denote the jth string in {0, 1}c log(n) and {0, 1}d log(n), respectively,
in lexicographic order. Then,

x ∈ L↔ ∃r ∈ {0, 1}n
c
[

∧tj∃u
j
1∀u

j
2 · · ·Qiu

j
i

(

Rr(j)

(

tj , u
j
1, u

j
2, ...u

j
i

)

= 1
)

∧sj
∃zj

1 · · ·Qiz
j
i

(

M
(

x, zj
1, ...z

j
i , G (sj)

)

= 1
)]

↔ ∃r∃z1
1 · · · ∃z

nd

1 ∃u
1
1 · · · ∃u

nc

1 ∀z
1
2 · · · ∀z

nd

2 ∀u
1
2 · · · ∀u

nc

2 · · ·

Qiz
1
i · · ·Qiz

nd

i Qiu
1
i · · ·Qiu

nc

i

[(

∧tj Rr(j)

(

tj, u
j
1, u

j
2, ...u

j
i

)

= 1
)

∧sj

(

M
(

x, zj
1, ...z

j
i , G (sj)

)

= 1
)]

(3.9)

The expression in square brackets in (3.10) is decidable in time polynomial
in n. Therefore, L ∈ Σi.

41

The lower bound of Theorem 3.33 cannot be proved using diagonalization,
since it does not relativize [16]. However, if it is assumed that Σi ⊆ P/poly,
then PΣi/poly is the same as P/poly, in which case the diagonalization
method of the previous section suffices to show BP ·Σi = Σi. If this assump-
tion is false, then EXP 6⊆ P/poly, which implies nontrivial derandomizations
of BPP and MA.

Theorem 3.34 If Σi ⊆ P/poly, then there is a function f ∈ ΣE
4

⋂

ΠE
4 such

that SΣi (f) > 2(1−ǫ)n for some ǫ > 0.

Proof If Σi ⊆ P/poly then, in a Σi-oracle circuit of size 2(1−ǫ)n, the Σi-oracle
gates can be replaced by ordinary circuits of size at most 2k(1−ǫ)n for some k
because each gate has at most 2(1−ǫ)n inputs. Take ǫ sufficiently large that
k (1− ǫ) + (1− ǫ) = ǫ′ for some 0 < ǫ′ < 1. A Σi-oracle circuit of size 2(1−ǫ)n

can be computed by an ordinary circuit of size 2ǫ′n. The result now follows
from Theorem 3.30.

Theorem 3.35 [15] If NP ⊆ P/poly, then Σi = Σ2, i ≥ 2.

Theorem 3.36 Either BP ·Σi = Σi ∀i ≥ 2, or BPP ⊆
⋂

ǫ≥0 io-DTIME
(

2nǫ
)

and MA ⊆
⋂

ǫ≥0 io-NTIME
(

2nǫ
)

.

Proof If Σi ⊆ P/poly, then NP ⊆ P/poly, which implies Σi = Σ2 ∀i ≥ 2
by Theorem 3.35. A padding argument shows that this implies ΣE

i = ΣE
2

∀i ≥ 2, so by Theorem 3.34, there is an f ∈ ΣE
2 ∩ΠE

2 with a Σi-oracle circuit
lower bound of 2Ω(n). By Theorem 3.33, this means BP · Σi = Σi for i ≥ 2.
If Σi 6⊆ P/poly, then EXP 6⊆ P/poly, implying BPP ⊆

⋂

ǫ≥0 io-DTIME
(

2nǫ
)

by the io form of Theorem 2.34 and MA ⊆
⋂

ǫ>0 io-NTIME
(

2nǫ
)

by Theorem
3.23.

Other tradeoffs can be derived by, for example, increasing the upper
bound on Σi. This involves a corresponding decrease in the lower bound
on the function f of Theorem 3.34, since there is a greater increase in size
when converting from a Σi-oracle circuit to an ordinary circuit. The result-
ing simulation of BP·Σi is less efficient, because there are more elements in
the range of the generator that must be tested for acceptance. Some of the
tradeoffs that can be proven are shown in Table 3.1. Note that, in cases in
which there is no upper bound of P/poly for Σi, the corresponding tradeoff
holds only for i ≥ 4, since Theorem 3.35 does not apply.

42

Upper Bound for Implied Lower Bound Tradeoff
Σi-complete for f ∈ ΣE

4

⋂

ΠE
4

function f

S(f) ≤ nk for SΣi(f) ∈ 2Ω(n) Either BP · Σi = Σi, i ≥ 2
some k or BPP⊆

⋂

ǫ>0

[

io-DTIME
(

2nǫ
)]

S(f) ≤ 2nǫ

for SΣi(f) ≥ nk for any k Either BP · Σi ⊆

any ǫ > 0
⋂

ǫ>0 NTIME
(

2nǫ
)Σi

, i ≥ 4

or BPP ⊆ io-DTIME
(

2(log n)c
)

for some c

S(fn) ≤ nk io SΣi(fn) ≥ 2(1−ǫ)n Either BP·Σi ⊆ io− Σi, i ≥ 4

for some k for some ǫ > 0, io or BPP ⊆
⋂

ǫ>0 DTIME
(

2nǫ
)

S(fn) ≤ 2nǫ

io SΣi(fn) ≥ nk, io Either BP·Σi ⊆

for any ǫ > 0 for any k
⋂

ǫ>0

[

io-NTIME
(

2nǫ
)Σi
]

, i ≥ 4

or BPP ⊆ DTIME
(

2(log n)c
)

,

for some c

Table 3.1: Derandomization tradeoffs

43

3.4 Randomness and Nondeterminism

The proof of Theorem 3.27 is an example of the “easy witness method”, a
general technique invented by Kabanets for proving tradeoffs between deran-
domizations of randomized complexity classes and deterministic simulations
of nondeterministic time [13]. The idea of the method is that, if every word
in a nondeterministically decidable language has a witness that is “easy” in
the sense that it is the truth table of a small circuit, then the language can
be decided efficiently by a deterministic algorithm by searching over all small
circuits for one whose truth table is the witness for the input. If there is a
nondeterministically decidable language for which this is not the case, then,
given a word that has only “hard” witnesses, the truth tables of functions of
high circuit complexity can be generated nondeterministically and used to
carry out a nontrivial derandomization of a randomized complexity class via
results such as Theorems 2.38 and 2.39.

The easy witness method has been used to prove a number of tradeoffs
involving AM and MA. This has led to several interesting results in deran-
domization, including the derandomization - circuit lower bound equivalence
of Theorem 3.3, a gap theorem for zero-error probabilistic exponential time,
and an upper bound for graph nonisomorphism [10][20]. In this section,
we apply the easy witness method to the hierarchy BP·Σi, proving several
tradeoffs that generalize those proved by Lu and Impagliazzo et. al. for AM
[10][20].

The derandomization algorithm that will be used for BP·Σi is set out in
the following theorem, which is analogous to Theorem 3.22.

Theorem 3.37 Suppose there is a nondeterministic exponential time algo-
rithm A that, on input 1n and given a(n) advice, outputs on every accepting
computational path the truth table of a function f : {0, 1}p → {0, 1}, p > n
with SΣi(fn) ∈ 2Ω(n). Then, for i ≥ 1, BP · Σi = Σi/a(c log n) for some
constant c.

Proof Take L ∈ BP · Σi. By Theorem 1.9, there is a relation M ∈ P such
that, for m = poly(|x|),

x ∈ L↔ ∀y ∈ {0, 1}m [∃z1∀z2 · · ·QiziM (x, y, z1, z2, ...zi)] (3.10)

x 6∈ L↔ Pry∈{0,1}m [∃z1∀z2 · · ·QiziM (x, y, z1, z2, ...zi)] ≤
1

3

44

where Qi = ∃ (∀) for odd (even) i. For any fixed x, the predicate

∃z1∀z2 · · ·QiziM (x, y, z1, z2, ...zi)

is computable by a function f(y) with SΣi(f) a polynomial in n. Allowing

unused random bits if necessary, m can be assumed to be equal to SΣi

(

f|x|
)

.
By Theorem 2.39, for sufficiently large n, for some c, d ∈ N , a Σi-PRG
G : {0, 1}d log n → {0, 1}m can be computed in time nc given a truth table of
length nc output by A on an accepting computation. Let S = {g1, g2, ...g|G|}
be the range of G. Then,

x ∈ L ↔ ∀y ∈ G [∃z1∀z2 · · ·QiziM (x, y, z1, z2, ...zi)]

↔ ∃z1
1∀z

1
2 · · ·Qiz

1
i M

(

x, g1, z
1
1 , z

1
2 , ...z

1
i

)

∧

∃z2
1∀z

2
2 · · ·Qiz

2
i M

(

x, g2, z
2
1 , z

2
2 , ...z

2
i

)

∧

· · · ∃z
|G|
1 ∀z

|G|
2 · · ·Qiz

|G|
i M

(

x, g|G|, z
|G|
1 , z

|G|
2 , ...z

|G|
i

)

↔ ∃z1
1∃z

2
1 · · · ∃z

|G|
1 ∀z

1
2∀z

2
2 · · · ∀z

|G|
2 · · ·Qiz

1
i Qiz

2
i · · ·Qiz

|G|
i

[

M
(

x, g1, z
1
1 , z

1
2 , ...z

1
i

)

∧M
(

x, g2, z
2
1 , z

2
2 , ...z

2
i

)

∧

· · ·M
(

x, g|G|, z
|G|
1 , z

|G|
2 , ...z

|G|
i

)]

(3.11)

The following ATM M decides L in Σi/a(c log n). On input x of length
n, M runs A on 1c log n using the appropriate advice. If A rejects, M rejects.
Otherwise, M constructs G using the output of A and evaluates the predicate
in (3.12).

We now show that the algorithm A in Theorem 3.37 exists unless there is
a subexponential time deterministic simulation of NP for which it is in some
sense difficult to find inputs on which the simulation fails.

Definition 3.38 A nondeterministic refuter is a nondeterministic algorithm
that, on input 1n, outputs a string of length n and either accepts or rejects
on each nondeterministic branch.

Definition 3.39 A nondeterministic refuter distinguishes two languages L
and L′ for length n if, on input 1n, whenever the refuter accepts, it outputs
a string in L∆L′, where L∆L′ is the symmetric difference of L and L′.

Definition 3.40 For any complexity class C, [pseudoFNP] − C
([io-pseudoFNP] − C) is the set of languages L such that there is a language

45

L′ ∈ C such that any polynomial time nondeterministic refuter fails to dis-
tinguish L and L′ for length n a.e. (i.o.).

The following theorem generalizes Theorem 3.1 of Lu [20].

Theorem 3.41 Either NP ⊆
⋂

ǫ>0 [io-pseudoFNP] DTIME
(

2nǫ
)

or BP ·Σi =
Σi for i ≥ 1.

Proof Any language in NP is decidable by a function fM(x), where

fM(x) = 1↔ ∃y ∈ {0, 1}m [M(x, y) = 1] (3.12)

for some polynomial time decidable predicate M(x, y) where m = poly(|x|).
Define TA,s(n) as in Definition 3.24, and define fM,A,s(x) as

fM,A,s(x) = 1↔ ∃y ∈ TA,s(log m) [M(x, y) = 1] (3.13)

For any function f ∈ NP, define a deterministic simulation D that, instead
of evaluating fM(x), evaluates fM,Σi,mδ for some constant δ by searching over

all circuits of size at most mδ. The set TΣi,mδ(log m) contains at most 2m2δ

truth tables. Since an Σi-oracle gate in a circuit of size mδ can be evaluated
in time 2O(mδ), each truth table can be generated in time 2O(mδ). Therefore,
the simulation runs in DTIME(2mcδ

) for some constant c. For any ǫ, δ can
be chosen so that the simulation runs in DTIME(2nǫ

).
If NP 6⊆

⋂

ǫ>0[io-pseudoFNP]DTIME(2nǫ

), there must be a nondeterminis-
tic refuter that, on input 1n, outputs on every accepting computation a string
x of length n for which fM(x) 6= fM,Σi,mδ(x) for some fM ∈ NP and δ > 0,

a.e. Given x, the truth table, y, of a function f ′ with SΣi

(

f ′
log m

)

≥ mδ =

2δ log m, can be generated nondeterministically by guessing y and checking
M(x, y) = 1. Since this takes nondeterministic polynomial time, by Theo-
rem 3.37, BP · Σi = Σi.

Other types of tradeoffs are possible which differ from Theorem 3.41 in
the way in which the algorithm that derandomizes BP · Σi is provided with
the string on which the deterministic simulation of nondeterministic time
fails. In Theorem 3.41, this was done using the nondeterministic refuter.
Another possibility is to provide this information as advice, as was done in
the proof of Theorem 3.27. This gives the following variant.

46

Theorem 3.42 Either NP ⊆
⋂

ǫ>0 io-DTIME
(

2nǫ
)

or BP ·Σi ⊆ Σi/poly for
i ≥ 1.

Proof If NP 6⊆
⋂

ǫ>0 io-DTIME
(

2nǫ
)

, then there exists x ∈ {0, 1}n a.e. such

that fM(x) 6= fM,Σi,mδ(x) for some δ > 0, where fM and fM,Σi,mδ are defined
as in the proof of Theorem 3.41. Define a nondeterministic algorithm A
that on input 1log n and given x as advice, guesses a witness and accepts and
outputs this witness iff it is a witness for x. This witness is the truth table
of a function f on log m bits with SΣi (flog m) ≥ mδ, so by Theorem 3.37,
BP · Σi = Σi/2c log n = Σi/n

c for some constant c.

Using the concatenation of the witnesses for all possible input strings as the
source of hardness eliminates the necessity of knowing the specific string that
has a hard witness. This method is used to derive the following tradeoff in-
volving only standard uniform complexity classes, which generalizes Theorem
19 of Impagliazzo et. al. [10].

Theorem 3.43 Either NE
⋂

coNE ⊆
⋂

ǫ>0 io-DTIME(22ǫn

), or BP · Σi = Σi

for i ≥ 1.

Proof For any L ∈ NE∩coNE, there are DTIME
(

2O(n)
)

decidable relations

M+ and M− and m = 2O(n) such that for x ∈ {0, 1}n,

x ∈ L↔ ∃y ∈ {0, 1}m [M+(x, y) = 1]

x 6∈ L↔ ∃y ∈ {0, 1}m [M−(x, y) = 1]

Define fM+(x) and fM+,A,s(x) as in the proof of Theorem 3.41. If NE
⋂

coNE 6⊆
⋂

ǫ>0 io-DTIME
(

22ǫn
)

, then there is an x ∈ {0, 1}n a.e. such that fM+(x) 6=

fM+,Σi,2ǫn(x). Take {0, 1}n = {x1, x2, ...x2n} and let {y1, ...y2n} ⊆ {0, 1}2
n

be
a set of strings such that M+(xi, yi) = 1 or M−(xi, yi) = 1 for all 1 ≤ i ≤ 2n.
Let Y be the concatenation of the strings {y1, ...y2n}. Then Y can be com-
puted in nondeterministic time 2O(n) and is the truth table of a 2n variable
function f ′ with SΣi(f ′

2n) > 2ǫn. The conclusion now follows from Theorem
3.37.

47

Chapter 4

Conclusion

This thesis investigated the derandomization of two probabilistic poly-
nomial hierarchies, MAΣi and AMΣi. The main results are the equivalence
of circuit lower bounds and derandomization of MAΣi (Theorem 3.5), the
separation of MAΣi and EH at almost all levels (Theorem 3.28), and a set of
tradeoffs between derandomizations of AMΣi and of BPP (Table 3.1).

There are many possibilities for further research in this area. The results
presented here suggest that derandomizations of BPP, MA, and AM could
be proven indirectly by investigating the relationship between MAΣi , AMΣi ,
and EH. It may also be useful to study further the relation between circuit
lower bounds and derandomization. In particular, one could attempt to
find a version of Theorem 3.5 involving AMΣi, or to extend this theorem by
proving a range of derandomization - lower bound equivalences analogous to
the range of hardness - randomness tradeoffs in Theorem 2.34.

48

Appendix A

Proof of Theorem 1.4

We first express a k-round Arthur-Merlin game, denoted AM[k] or MA[k],
as a quantified boolean formula with k alternating blocks of quantifiers. We
then prove that this alternating hierarchy collapses. In [26], the following
notation is used to characterize randomized complexity classes.

Definition A.1 [26] Let ∃+z (M), where M is any quantified boolean ex-
pression and z is a string of boolean variables, denote Prz (M) ≥ 2

3
. Then

(Q1Q2 · · ·Qk/Q
′
1Q

′
2 · · ·Q

′
k), where, for 1 ≤ i ≤ k, Qi, Q

′
i ∈ {∃, ∀, ∃

+}, is
the class of languages L such that there exists a polynomial-time decidable
predicate M with

x ∈ L↔ Q1z1Q2z2 · · ·Qkzk (M) (A.1)

x 6∈ L↔ Q′
1z

′
1Q

′
2z

′
2 · · ·Q

′
kz

′
k (¬M)

where, for example, Qizi denotes a string of quantified boolean variables with
quantifier Qi. For this set of languages to be nonempty, the quantifiers Qi

and Q′
i must satisfy

Q′
1z

′
1Q

′
2z

′
2 · · ·Q

′
kz

′
k (¬M)→ ¬Q1z1Q2z2 · · ·Qkzk (M) (A.2)

Theorem A.2 [26] Let AM[k] (MA[k]) denote the set of languages decidable
by Arthur-Merlin games with k rounds in which Arthur (Merlin) makes the
first move. Then

AM[k] =
(

∃+∃∃+ · · ·/∃+∀∃+ · · ·
)

(A.3)

MA[k] =
(

∃∃+∃ · · ·/∀∃+∀ · · ·
)

(A.4)

where each string of quantifiers in (A.3) and (A.4) contains k quantifiers.

The proof of Theorem A.2 requires a lemma.

49

Lemma A.3 [26] For L ∈ AM (MA), there is an Arthur-Merlin game in
which Arthur’s (Merlin’s) turn comes first such that, for some polynomial
q(n),

1) For x ∈ L, Merlin can convince Arthur to accept x with probability at
least 1− 2−q(n).

2) For x 6∈ L, Merlin cannot convince Arthur to accept with probability
greater than 2−q(n).

Proof The proof is similar to that of Theorem 1.1. Since L ∈AM, there
is a k-round Arthur-Merlin game G satisfying the two properties listed in
Definition 1.2. Consider the k-round Arthur-Merlin game G′ in which Arthur
and Merlin play t copies of the game G in parallel with t given by (1.4).
This is done by performing, in each round of G′, the computations of the
corresponding round of G separately for each of t different game histories
for G. Merlin wins the game G′ iff Merlin wins for more than half of the t
parallel games. G′ satisfies 1) and 2) of Lemma A.3 by the same argument
as in the proof of Theorem 1.1.

Proof (of Theorem A.2) The case k = 2 is straightforward. For example,
for AM[2] the theorem states that, if for the majority of two-round games
Merlin wins (loses), then for the majority of moves of Arthur, Merlin has
(does not have) a winning move.

In general, for any language L ∈AM[k] (or MA[k]), there is a k-round
Arthur-Merlin game G such that, for most sequences of moves of Arthur and
Merlin, Merlin wins on input x ∈ L and loses on input x 6∈ L. To prove
Theorem A.2, we must show that there is an Arthur-Merlin game G′ with
most moves of Arthur in each round in which it is Arthur’s turn leading to
acceptance for x ∈ L and rejection for x 6∈ L. Let s(n) be the number of
possible sequences of moves of Arthur in G for n = |x| and let u(n) be the
minimum number of possible moves of Arthur in any given Arthur round of
G. Let G′ be a game for L satisfying the conditions of Lemma A.3 for some
q(n) to be determined. From the proof of Lemma A.3, Arthur has ts(n)
possible sequences of moves in G′ and at least tu(n) possible moves in any
given round of G′, for t given by (1.4). To ensure that the fraction of possible
moves in any round of G′ leading to a correct decision concerning membership
of x in L is at least 2

3
, q(n) must be chosen so that the number of possible

moves in any Arthur round of G′ must be at least 3 times the number of

50

sequences of moves of Arthur in G′ that lead to an incorrect decision. Thus,
we choose q(n) so that

tu(n)

ts(n)
> 3 · 2−q(n)

u(n)

3s(n)
> 2−q(n)

log
u(n)

3s(n)
> −q(n)

q(n) > log
3s(n)

u(n)
(A.5)

Since s(n) and u(n) are polynomial in n, q(n) can be chosen to be
O(log n). For this choice, G′ runs in time polynomial in n, so the theorem is
proved.

The next theorem shows that the ∀ and ∃+ quantifiers can be swapped in a
QBF.

Theorem A.4 [26] For any polynomial time decidable predicate P ,

∀y∃+zP (x, y, z)→ ∃+C∀y∃z ∈ CP (x, y, z) (A.6)

where y and z are polynomial length strings of boolean variables and C is a
set of strings of length |z| = f(n) of size g(n), n = |x|, for some polynomials
f and g.

Proof Take g(n) = f(n) + 3. The probability taken over all sets C that
¬∀y∃z ∈ C [P (x, y, z)] satisfies

PrC [∃y∀z ∈ C¬ (P (x, y, z))]

≤
∑

y∈{0,1}f(n)

PrC [∀z ∈ C (¬P (x, y, z))]

≤
∑

y∈{0,1}f(n)

(

1

3

)g(n)

= 2f(n)
(

1

3

)f(n)+3

≤
1

3

51

The theorem follows.

Lemma A.5 [25] For P a polynomial time decidable predicate,

∀u∃+vP (x, u, v)→ ∀C∃+v ∧u∈C P (x, u, v) (A.7)

where C is a set of strings of length |u| = f(n) of size g(n), n = |x|.

Proof The following proof is from Zachos and Heller (Lemma 4 [25]). From

Theorem 1.1, it can be assumed that ∀u
[

Prv (P (x, u, v)) ≥ 1− 2−p(n)
]

for
some polynomial p. For any C,

Prv [∨u∈C¬P (x, u, v)] ≤
∑

u∈C

Prv [¬P (x, u, v)]

≤ g (n)
1

2p(n)

≤
1

3

where the last upper bound holds for sufficiently large n. This proves the
lemma.

Theorem A.6 [25] (∃+/∃+) = (∃+∀/∀∃+) = (∀∃+/∃+∀)

Proof We follow the proof of Zachos and Heller (Theorem 5 [25]). Take
L ∈ (∃+/∃+), and let P be a polynomial time decidable predicate such that
x ∈ L↔ ∃+uP (x, u) and x 6∈ L↔ ∃+u¬P (x, u), where |u| = p(|x|). Then,

x ∈ L → ∃+uP (x, u)

→ ∀s∃+uP
(

x, (u + s) mod 2p(|x|)
)

, for s ∈ {0, 1}p(|x|)

→ ∃+C∀s∃u ∈ CP
(

x, (u + s) mod 2p(|x|)
)

, by (A.6)

→ ∃+C∀s ∨u∈C P
(

x, (u + s) mod 2p(|x|)
)

(A.8)

Also,

x 6∈ L → ∃+u¬P (x, u)

→ ∀s∃+u¬P
(

x, (u + s) mod 2p(|x|)
)

, for s ∈ {0, 1}p(|x|)

→ ∀C∃+u ∧s∈C ¬P
(

x, (u + s) mod 2p(|x|)
)

, by (A.7)

→ ∀C∃+u¬ ∨s∈C P
(

x, (u + s) mod 2p(|x|)
)

(A.9)

52

For any fixed set C of strings, the disjuncts in (A.8) and (A.9) are negations
of each other. Also, since C is of polynomial size, these disjuncts can be
decided in polynomial time. Therefore, L ∈ (∃+∀/∀∃+).

Conversely, take L ∈ (∃+∀/∀∃+), and let P be a polynomial time de-
cidable predicate such that x ∈ L → ∃+u∀vP (x, u, v) and x 6∈ L →
∀u∃+v¬P (x, u, v). Then,

x ∈ L→ ∃+ (u, v)P (x, u, v)

x 6∈ L→ ∃+ (u, v)¬P (x, u, v)

Therefore, L ∈ (∃+/∃+). The equality (∃+∀/∀∃+) = (∀∃+/∃+∀) follows from
the fact that (∃+/∃+) is closed under complement.

Theorem A.7 [26] (∃∀/∀∃+) ⊆ (∀∃/∃+∀).

Proof The following proof is from Zachos (Theorem 1 [26]). Take L ∈
(∃∀/∀∃+). Then, for some polynomial time decidable predicate P ,

x 6∈ L → ∀y∃+z¬P (x, y, z) (A.10)

→ ∃+C∀y∃z ∈ C¬P (x, y, z) , by Theorem A.4 (A.11)

→ ∃C∀y∃z ∈ C¬P (x, y, z) (A.12)

→ ∀y∃z¬P (x, y, z) (A.13)

→ ¬∃y∀zP (x, y, z) (A.14)

→ x 6∈ L (A.15)

This shows that the implied expressions in (A.10) to (A.15) are equivalent.
From (A.11)

x 6∈ L ↔ ∃+C∀y∃z ∈ C¬P (x, y, z)

↔ ∃+C∀y¬ [∀z ∈ C (P (x, y, z))]

and from (A.12),

x 6∈ L ↔ ∃C∀y∃z ∈ C¬P (x, y, z)

x 6∈ L ↔ ¬∀C∃y∀z ∈ C [P (x, y, z)]

x ∈ L ↔ ∀C∃y∀z ∈ C [P (x, y, z)]

Since |C| is a polynomial, ∀z ∈ C [P (x, y, z)] is decidable in polynomial time.
Therefore, L ∈ (∀∃/∃+∀).

53

Remark Theorems A.4, A.6, and A.7 generalize to the case where the in-
volved quantifiers are embedded in a larger string of quantifiers. For example,
Theorem A.6 generalizes to (Q1∃

+Q2/Q3∃
+Q4) = (Q1∃

+∀Q2/Q3∀∃
+Q4),

where Q1, Q2, Q3, and Q4 are strings of quantifiers. These generalizations
can be proved using the fact that quantifiers distribute over conjunction and
disjunction.

Theorem A.8 [26] i) (∃∃+/∀∃+) = (∃∀/∀∃+)
ii) (∃+∃/∃+∀) = (∀∃/∃+∀)

Proof i)

(

∃∃+/∀∃+
)

=
(

∃∃+∀/∀∀∃+
)

, by Theorem A.6

⊆
(

∃∃∀/∀∀∃+
)

=
(

∃∀/∀∃+
)

ii)

(

∃+∃/∃+∀
)

=
(

∀∃+∃/∃+∀∀
)

, by Theorem A.6

⊆
(

∀∃∃/∃+∀∀
)

=
(

∀∃/∃+∀
)

The reverse inclusions are obvious.

Proof (of Theorem 1.4) The fact that MA = NP·BP follows from Theorem
A.2, since NP·BP = (∃∃+/∀∃+). To show that AM = BP·NP = (∃+∃/∃+∀),
it is sufficient to show that AM[k + 1] = AM[k] for all k ≥ 2. For k = 3,

AM[3] =
(

∃+∃∃+/∃+∀∃+
)

=
(

∃+∃∃+∀/∃+∀∀∃+
)

, by Theorem A.6

⊆
(

∃+∃∀/∃+∀∃+
)

⊆
(

∃+∀∃/∃+∃+∀
)

, by Theorem A.7

54

=
(

∃+∀∀∃/∀∃+∃+∀
)

, by Theorem A.6

=
(

∃+∀∃/∀∃+∀
)

⊆
(

∃∀∃/∀∃+∀
)

⊆
(

∀∃∃/∃+∀∀
)

, by Theorem A.7

=
(

∀∃/∃+∀
)

=
(

∃+∃/∃+∀
)

, by Theorem A.8 ii)

= AM[2]

It follows from the above and the remark following the proof of Theorem A.7
that AM[k + 1] = AM[k]. Therefore, AM[k] = BP·NP ∀ k.

55

Bibliography

[1] L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. “BPP has Subexpo-
nential Time Simulations unless EXPTIME has Publishable Proofs,” Com-

putational Complexity 3 (1993), 307-318.

[2] L. Babai, L. Fortnow, and C. Lund. “Non-deterministic Exponential
Time has Two-prover Interactive Protocols,” Computational Complexity 1(1)
(1991), 3-40.

[3] D. Bovet and P. Crescenzi. Introduction to the Theory of Complexity.
Toronto: Prentice Hall, 1994.

[4] H. Buhrman, L. Fortnow, and A. Pavan. “Some Results on Derandom-
ization,” Lecture Notes in Computer Science 2607 (2003), 212-222.

[5] H. Buhrman and S. Homer. “Superpolynomial Circuits, almost Sparse
Oracles and the Exponential Hierarchy,” Lecture Notes in Computer Science

652 (1992), 116-127.

[6] D. Du and K. Ko. Theory of Computational Complexity. Toronto: John
Wiley and Sons, 2000.

[7] O. Goldreich and L. A. Levin. “A Hard-core Predicate for all One-way
Functions,” in Proceedings of the Twenty-first Annual ACM Symposium on

Theory of Computing (1989), 25-32.

[8] H. Heller. “On Relativized Exponential and Probabilistic Complexity
Classes,” Information and Control 71 (1986), 231-243.

[9] R. Impagliazzo. “Hard-core Distributions for Somewhat Hard Problems,”
in Proceedings of the 36th Annual Symposium on Foundations of Computer

Science (1995), 538-545.

[10] R. Impagliazzo, V. Kabanets, and A. Wigderson. “In Search of an Easy
Witness: Exponential Time vs. Probabilistic Polynomial Time,” Journal of

Computer and System Sciences 65 (2002), 672-694.

[11] R. Impagliazzo and A. Wigderson. “P = BPP if E Requires Exponen-
tial Circuits: Derandomizing the XOR Lemma,” in Proceedings of the 29th

Annual ACM Symposium on Theory of Computing (1997), 220-229.

[12] V. Kabanets and R. Impagliazzo. “Derandomizing Polynomial Identity
Tests means Proving Circuit Lower Bounds,” Computational Complexity 13
(2004), 1-46.

56

[13] V. Kabanets. “Easiness Assumptions and Hardness Tests: Trading Time
for Zero Error,” Journal of Computer and System Sciences 63(2) (2001), 236-
252.

[14] R. Kannan. “Circuit-size Lower Bounds and Non-reducibility to Sparse
Sets,” Information and Control 55 (1982), 40-56.

[15] R. M. Karp and R. J. Lipton. “Some Connections between Nonuniform
and Uniform Complexity Classes,” in Proceedings of Twelfth Annual ACM

Symposium on Theory of Computing (1980), 302-309.

[16] K. Ko. “Separating and Collapsing Results on the Relativized Proba-
bilistic Polynomial Hierarchy,” Journal of the ACM 37(2) (1990), 415-438.

[17] A. Klivans and D. van Melkebeek. “Graph Nonisomorphism has Subex-
ponential Size Proofs unless the Polynomial-time Hierarchy collapses,” SIAM

Journal on Computing 31(5) (2002), 1501-1526.

[18] R. J. Lipton. “New Directions in Testing,” in J. Feigenbaum and M.
Merritt, editors, Distributed Computing and Cryptography, DIMACS Volume
2 (1989), 191-202.

[19] L. A. Levin. “One-Way Functions and Pseudorandom Generators,”
Combinatorica 7(4) (1987), 357-363.

[20] C. Lu. “Derandomizing Arthur-Merlin Games under Uniform Assump-
tions,” Computational Complexity 10(3) (2001), 247-259.

[21] M. Mitzenmacher and E. Upfal. Probability and Computing. New York:
Cambridge University Press, 2005.

[22] N. Nisan and A. Wigderson. “Hardness vs. Randomness,” Journal of

Computer and System Sciences 49 (1994), 149-167.

[23] M. Sipser. Introdution to the Theory of Computation. Toronto: PWS
Publishing Company, 1997.

[24] A. C. Yao. “Theory and Application of Trapdoor Functions,” in Pro-

ceedings of the 36th Annual Symposium on Foundations of Computer Science

(1982), 80-91.

[25] S. Zachos and H. Heller. “A Decisive Characterization of BPP,” Infor-

mation and Control 69 (1986), 125-135.

[26] S. Zachos and M. Furer. “Probabilistic Quantifiers vs. Distrustful Ad-
versaries,” Lecture Notes in Computer Science 287 (1987), 443-455.

57

