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Abstract

Noise reduction is an open problem and has received considerable attention
in the literature for several decades. Over the last two decades, wavelet based
methods have been applied to the problem of noise reduction and have been shown
to outperform the traditional Wiener filter, Median filter, and modified Lee filter
in terms of root mean squared error (MSE), peak signal noise ratio (PSNR) and
other evaluation methods.

In this research, two approaches for the development of high performance al-
gorithms for de-noising are proposed, both based on soft computing tools, such
as fuzzy logic, neural networks, and genetic algorithms. First, an improved ad-
ditive noise reduction method for digital grey scale nature images, which uses an
interval type-2 fuzzy logic system to shrink wavelet coefficients, is proposed. This
method is an extension of a recently published approach for additive noise reduc-
tion using a type-1 fuzzy logic system based wavelet shrinkage. Unlike the type-1
fuzzy logic system based wavelet shrinkage method, the proposed approach employs
a thresholding filter to adjust the wavelet coefficients according to the linguistic
uncertainty in neighborhood values, inter-scale dependencies and intra-scale cor-
relations of wavelet coefficients at different resolutions by exploiting the interval
type-2 fuzzy set theory. Experimental results show that the proposed approach
can efficiently and rapidly remove additive noise from digital grey scale images.
Objective analysis and visual observations show that the proposed approach out-
performs current fuzzy non-wavelet methods and fuzzy wavelet based methods, and
is comparable with some recent but more complex wavelet methods, such as Hid-
den Markov Model based additive noise de-noising method. The main differences
between the proposed approach and other wavelet shrinkage based approaches and
the main improvements of the proposed approach are also illustrated in this thesis.

Second, another improved method of additive noise reduction is also proposed.
The method is based on fusing the results of different filters using a Fuzzy Neural
Network (FNN). The proposed method combines the advantages of these filters and
has outstanding ability of smoothing out additive noise while preserving details of
an image (e.g. edges and lines) effectively. A Genetic Algorithm (GA) is applied to
choose the optimal parameters of the FNN. The experimental results show that the
proposed method is powerful for removing noise from natural images, and the MSE
of this approach is less, and the PSNR of is higher, than that of any individual
filters which are used for fusion.

Finally, the two proposed approaches are compared with each other from differ-
ent point of views, such as objective analysis in terms of mean squared error(MSE),
peak signal to noise ratio (PSNR), image quality index (IQI) based on quality as-
sessment of distorted images, and Information Theoretic Criterion (ITC) based on
a human vision model, computational cost, universality, and human observation.
The results show that the proposed FNN based algorithm optimized by GA has
the best performance among all testing approaches. Important considerations for
these proposed approaches and future work are discussed.
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Chapter 1

Introduction

The ever-increasing number and variety of digital images generated everyday are be-
coming a major information source in daily life. Examples include natural images,
digital commercial television, magnetic resonance images, as well as geographical
information systems and astronomy. However, when images are created, trans-
mitted and decoded, they are always distorted by different types of noise. Noise
reduction has become a required step for any sophisticated algorithms in computer
vision and image processing. A tradeoff between removing noise and blurring the
image always exists. How to make a balance between denoising and blurring and
obtain clean images has become a big issue in computer vision and image process-
ing. This challenging issue has existed for a long time, yet there is no completely
satisfactory solution.

This research only focuses on noise removal techniques for natural images.

1.1 Background

During the past several decades, considerable research has been done on de-noising.
Different algorithms are used depending on the noise models. Most natural images
are assumed to be corrupted by additive random noise, which usually is modeled
as Gaussian noise.

There are many approaches to deal with additive noise in natural images, such as
average filters and mean filters. Even though linear filters are useful in a wide variety
of applications, there are some situations in which they are not adequate. For
example, linear filters do not take into account any structure in images. Therefore,
linear filters tend to blur sharp edges, destroy lines and other fine image details,
and perform poorly in the presence of noise.

Nonlinear filters, however, can be successfully applied to achieve detail preserv-
ing noise reduction since they adopt the local features of an image. Non-linear
spatial filters employ a low pass filtering on groups of pixels with the assumption
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that the noise occupies the higher region of frequency spectrum. Low-pass filters
will not only smooth away noise but also blur edges in images while the high-pass
filters can make edges even sharper and improve the spatial resolution but will also
amplify the noisy background.

Over the last two decades, wavelets have captured researchers’ attention in im-
age denoising due to their properties. Wavelets capability of extracting detailed
spatial-frequency information is the main reason for this investigation. This prop-
erty promises a possibility for better discrimination between the noise and the real
data. Successful exploitation of the wavelet transform might minimize the blur-
ring effect or even overcome it completely. Diverse algorithms for noise removal
in the wavelet domain were introduced. Most existing denoising algorithms based
on wavelets focus on exploiting the advantages of their multiresolution structure to
capture more detailed information, or building wavelet coefficient statistical mod-
els to represent inter-scale dependencies and intra-scale correlations. It can not be
denied that these algorithms can provide better performance than those algorithms
using single layer wavelets and treating wavelet coefficients as independent.

However, as the complexities of the wavelet coefficient statistical models in-
crease, the denoising performance is not improved as much as it is expected. Fur-
thermore, the time and computational cost of building and training these statistical
models are increasing rapidly. In recent years, researchers introduced artificial in-
telligence to wavelet based denoising methods since some soft computing tools, such
as Neural Network and Fuzzy Logic, have the capabilities of learning and describ-
ing uncertainties. Although some new approaches have been proposed [56, 62],
the advantages of artificial intelligence have not been fully utilized. This research
presents two novel wavelet based approaches that used soft computing tools. Two
proposed denoising algorithms exploit attractive features of several existing algo-
rithms, provide adaptation to natural images with different textures, and ensure
an appropriate trade-off between noise suppression and detail preservation.

1.2 Thesis Outline

This thesis contains six chapters.

Chapter 2 provides background information, a literature survey on noise re-
duction, and mechanisms used to evaluate denoising algorithms. Chapter 3 and 4
introduce the proposed algorithms for removing additive noise. Chapter 5 is the
concluding chapter. Details of the chapters are briefly described here.

• Chapter 2: Foundation of Denoising

This chapter investigates additive noise models and includes an in-depth lit-
erature survey of denoising related research work. Desirable features and
complexities of denoising algorithms are discussed. Common mechanisms
used to evaluate the performance of denoising algorithms are introduced. A
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new image quality assessment method, from the human point of view, is also
introduced.

• Chapter 3: Type II Fuzzy Set Based Wavelet Shrinkage

This chapter gives a brief introduction to the soft computing tools used in
this research, such as fuzzy logic theory. Concepts of fuzzy logic theory are
explained. A popular form of a fuzzy logic theory, a type-2 fuzzy set, is briefly
introduced. Finally, this chapter proposes a new denoising algorithm that
combines the attractive features of several existing wavelet based algorithms
and adapts the threshold using an interval type-2 fuzzy set. The design
procedure for an interval type-2 fuzzy set based algorithm is outlined.

• Chapter 4: Genetic Algorithm and Fuzzy Neural Network Based
Algorithm

This chapter briefly introduces artificial neural networks and genetic algo-
rithms. The basic elements of neural networks are explained. The back prop-
agation (BP) network and continuous genetic algorithm are briefly described.
A new method of removing noise based on fusing the results of different fil-
ters using a Fuzzy Neural Network (FNN) is proposed. A Genetic Algorithm
(GA) is applied to choose the optimal parameters of the FNN. The GA aims
to optimize the parameters of fuzzy models for FNN.

• Chapter 5: Performance of Proposed Algorithms

Comparing with traditional filters and state-of-the-art denoising algorithms,
this chapter mainly evaluates the performance of the proposed denoising algo-
rithms from different aspects, such as objective assessment of image quality,
computational cost, and universality of the proposed algorithms. Numerical
analysis and graphs of results are shown in this chapter.

• Chapter 6: Conclusion and Future Work

This chapter concludes that the proposed algorithms perform better than
traditional filters and state-of-the-art denoising algorithms in terms of the
chosen evaluation tools, such as mean squared error(MSE), peak signal to
noise ratio (PSNR), image quality index (IQI), and Information Theoretic
Criterion (ITC). Several major areas of future research are also listed in this
chapter.
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Chapter 2

Foundation of Denoising

As discussed in Chapter 1, it is difficult to get rid of noise while preserving details
of images at the same time. To ensure an appropriate trade-off between noise
suppression and detail preservation, proper image and noise models should be built
and suitable filters should be designed. In this chapter, common additive noise
models, various image denoising methods, the state of the art in wavelet based
algorithms and performance evaluation methods are introduced.

2.1 Image and Noise Models

Many of the current denoising techniques are based on assumptions of noise models.
In reality, assumptions may not always hold true due to the varied nature and
sources of noise. An ideal denoising procedure requires a priori knowledge of the
noise; while a practical procedure may not have the required information about
the variance of the noise or the noise models. Thus, in practice, most of the
algorithms estimate the variance of noise and assume the noise models to compare
the performance with different algorithms.

While there have been many assumed additive noise models, only those relevant
to this thesis, such as impulse noise models and Gaussian noise models, are discussed
below.

2.1.1 Impulse Noise Models

Impulsive noise can be caused by coding or decoding errors, transient noise, errors in
analog-to-digital conversion, etc. The properties of spikes, including their statistical
characteristics, also vary depending on the situation at hand. The amplitudes of
spikes can be different at different image regions. Sometimes, impulsive noise can
corrupt separate lines, columns or fragments of images. However, a priori knowledge
of spike properties is limited. In order to design image denoising algorithms under
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the presence of this type of noise, some general models of the spikes should be
assumed.

Impulse noise is a type of additive noise. The properties of impulsive noise
are usually determined by the amplitude of spike A and the probability of spike
occurrence pr. In many current impulse noise models for images, corrupted pixels
are often replaced with values equal to or near the maximum or minimum intensity
values of the allowable dynamic range. For example, salt-and-pepper impulsive
noise typically corresponds to fixed values near 0(minimum) or 255 (maximum,for
an 8-bit image). In this thesis, a more general noise model in which a noisy pixel
is taken as an arbitrary value in the dynamic range according to some underlying
probability distribution is introduced. Let O(i, j) and A(i, j) denote the intensity
value of the original and the noisy image at position (i, j), respectively. Then, for
an impulse noise model with error probability pr is described as:

A(x) =

{
O(i, j) 1− pr
η(i, j) pr

where η(i, j) is an identically distributed, independent random process with an
arbitrary underlying probability density function [7].

Recently, it has been shown that a type of α-stable distribution can approximate
impulse noise more accurately than other models [37]. The parameter α controls
the degree of impulsiveness which increases as α decreases. The Gaussian (α = 2)
and the Cauchy (α = 1) distributions are the only symmetric α-stable distributions
that have closed-form probability density functions.

A symmetric α-stable (SαS) random variable is described by its characteristic
function:

φ(t) = exp(jθt− γ | t |α)

where j is the imaginary unit, θ is the location parameter (centrality), γ is the
dispersion of the distribution and α ∈ [0, 2], which controls the heaviness of the
tails, and it is the characteristic exponent. More information about the α-stable
noise model can be found in [37].

2.1.2 Gaussian Noise Model

A type of noise which occurs in all recorded images to a certain extent is detector
noise. This type of noise is due to the discrete nature of radiation, i.e. the fact that
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each imaging system is recording an image by counting photons. Allowing some
assumptions (which are valid for many applications), this noise can be modeled
with an independent, additive model, where the noise n(i, j) has a µ mean Gaussian
distribution described by its standard deviation (σ), or variance. This means that
each pixel in the noisy image is the sum of the true pixel value and a random,
Gaussian distributed noise value. The 1-D Gaussian distribution has the density
function,

G(x) =
1√
2πσ

e
(x−µ)2

2σ2

where σ is the standard deviation of the distribution, and µ is the expectation of
the distribution.

2.1.3 Mixed Noise Model

Mixed noise can cause significant difficulties for filtering, image interpretation, and
restoration. Different types of noise require the use of different filtering approaches.
Therefore, the algorithms of mixed noise removal are often based on hybrid struc-
tures using fuzzy and adaptive methods of processing [61, 67, 78].

Let us consider the following typical model with additive noise and spikes,

g(i, j) =

{
f(i, j) + n(i, j) with probability 1− pr
Aimp(i, j) with probability pr

where n(i, j) denotes the additive noise value for the ij− th pixel, and Aimp(i, j) is
the amplitude of a spike, which may occur in the ij − th pixel with probability Pr.

2.2 Classification of Denoising Methods

There are two basic approaches to image denoising, spatial domain filtering methods
and transform domain filtering methods [50].

2.2.1 Spatial Domain Denoising Methods

A traditional way to remove noise from image data is to employ spatial filters. Two
typical methods in the spatial domain are:
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• Linear Filtering

Most classical linear image processing techniques are based on the assump-
tion that images are stationary. Even though linear filters are useful in a wide
variety of applications, there are some situations in which they are not ade-
quate. For instance, linear filters may involve image processing applications
where both edge enhancement and noise reduction are desired. Usually edge
enhancement can be considered as a high-pass filtering operation, while noise
reduction is most often achieved using low-pass filtering operations. How-
ever, linear shift-invariant (LSI) filters do not take into account any structure
in images. Therefore, the degree of smoothing is the same over all parts of
an image and will cause the loss of some detailed information of the image.
However, it is known that people are less sensitive to noise in more detailed
regions of an image [29]. If the filter can smooth less in these regions than in
the less detailed regions, it will preserve the detailed information of the im-
ages while smoothing out noise. Conventionally, linear shift invariant filters
do not adapt to image content.

• Non-linear Filtering

Nonlinear filters modify the value of each pixel in an image based on the
value returned by a nonlinear function that depends on the neighboring pix-
els. Nonlinear filters are mostly used for noise removal and edge detection.
For example, the traditional nonlinear filter is the median filter. It can ef-
ficiently decrease additive noise, especially impulsive noise. There are also
many improved median filters, such as the weighted median filter [75], center
weighted median filters [12], detail preserving median based filters [1], the
multilevel hybrid median filter [65], etc. However, they do not get rid of all
additive noise and blur edges to some degree.

2.2.2 Transform Domain Filtering

According to the choice of the “analysis function” [66], the transform domain fil-
tering methods can be classified into the following two categories.

• Spatial-Frequency Filtering

Spatial-Frequency Filtering refers to low pass filters using Fast Fourier Trans-
form (FFT). In frequency smoothing methods [29] the removal of the noise
is achieved by designing a frequency domain filter and adapting a cut-off
frequency to distinguish the noise components from the useful signal in the
frequency domain. These methods are time consuming and depend on the
cut-off frequency and the filter function behavior. Furthermore, they may
produce frequency artifacts in the processed image.
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• Wavelet domain

As mentioned above, noise is usually concentrated in high frequency com-
ponents of the signal, which correspond to small detail size when perform-
ing a wavelet analysis. Therefore, removing some high frequency (small de-
tail components), which may be distorted by noise, is a denoising process
in the wavelet domain. Many investigations have been made into additive
noise suppression in images using wavelet transforms. Filtering operations in
the wavelet domain can be categorized into wavelet thresholding, statistical
wavelet coefficient model and undecimated wavelet domain transform based
methods.

2.3 State of the Art Methods of Denoising

Since the pioneering work [19] of D. L. Donoho and his collaborators for certain
noise models by thresholding, which removes the noise without disturbing important
signal features, much of the early work has been done on wavelet noise removal
based on thresholding the Discrete Wavelet Transform (DWT) coefficients of an
image and then reconstructing it [18, 20, 33]. Researchers have designed different
methods to compute the parameters for the thresholding of wavelet coefficients. In
addition, Undecimated Wavelet Transform, Multiwavelets, Bayesian and Markov
Models based on wavelet transform are also employed for noise deduction. Based on
these techniques, wavelet domain denoising methods are classified into the following
four categories.

2.3.1 Wavelet Thresholding

The simplicity of wavelet thresholding makes it a popular approach for denoising.
In its most basic form, this technique operates in the orthogonal wavelet domain,
each coefficient compares to a threshold. If the coefficient is smaller than the
threshold it is set to zero, otherwise, it is kept or modified. A systematic theory was
developed mainly by Donoho and Johnstone [18, 19, 20, 33]. They have shown that
various wavelet thresholding schemes for denoising have near optimal properties in
the minimax sense and perform well in image denoising. An extensive review of
wavelet thresholding in image processing can be found in [31].

• Non Adaptive Thresholding

Most methods for estimating the threshold assume additive white Gaussian
noise (AWGN) and an orthogonal wavelet transform. Among those, best
known is the universal threshold of Donoho and Johnstone [19].

Tuniver = σn
√

2 log(n) (2.1)

8



where σn is the estimate of the standard deviation of additive white noise
and n is the total number of the wavelet coefficients in a given detail image.
At different resolution scales, the threshold differs only in the constant factor
that is related to the number of the coefficients in a given subband.

The threshold shown in Equation 2.1 is non-adaptive universal threshold,
which depends only on the number of data points. It has a tendency of
reaching the best performance in terms of MSE when the number of pixels
reaches infinity. It is known to yield overly smoothed images because its
threshold choice can be large due to its dependence on the number of pixels
in the image [19].

• Adaptive Thresholding

To achieve a better denoising performance by thresholding, many strategies
have been introduced to make the threshold adaptive.

Based on the wavelet shrinkage denoising theory proposed by D.L. Donoho, a
new thresholding function, SURE (Stein’s Unbiased Risk Estimate) shrinkage,
is presented in [21]. Unlike traditional hard thresholding, SURE shrinkage
has an infinite-order continuous derivatives. By using the new thresholding
function, a new adaptive shrinkage method is presented based on SURE. It
is very effective in adaptively finding the optimal solution in the least mean
square error (LMSE) sense. In addition, SURE is also exploited to build a new
estimator for arbitrary multichannel images embedded in Gaussian noise [8].
The SURE based algorithms perform better than VISUShrink (or universal
thresholding) also proposed by by D.L. Donoho [19].

In addition, BayesShrink [16, 58, 59] minimizes the Bayesian risk estimator
function assuming a generalized Gaussian prior and thus yielding a data adap-
tive threshold. Generally speaking, BayesShrink outperforms SUREShrink [19].

It can be concluded that a good threshold should properly be chosen so that most
coefficients below the threshold are noise and values above the threshold are signals
of interest.

2.3.2 Denoising by Wavelet Coefficient Statistical Model

This category of approaches focuses on some more interesting and appealing prop-
erties of the Wavelet Transform such as multiscale dependency between the wavelet
coefficients, local correlation between neighborhood coefficients. It aims at building
proper models for image data by use of the wavelet transform. A fundamental re-
view of statistical properties of wavelet coefficients can be found in [2, 3, 4, 9]. The
following two popular techniques exploit the statistical properties of the wavelet
coefficients based on a probabilistic model.
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• Marginal Probabilistic Model

A number of researchers have developed homogeneous local probability mod-
els for images in the wavelet domain. Specifically, the marginal distributions
of wavelet coefficients are highly kurtotic, and usually have a marked peak
at zero and heavy tails [10]. The Gaussian mixture model (GMM) [52, 71]
and the generalized Gaussian distribution (GGD) [51] are commonly used to
model the wavelet coefficients distribution. Although GGD is more accurate,
GMM is simpler to use. In [55], a statistical model is built for images decom-
posed in an over complete wavelet pyramid. Each coefficient of the pyramid is
modeled as the product of two independent random variables: an element of
a Gaussian random field, and a hidden multiplier with a marginal log-normal
prior. The latter modulates the local variance of the coefficients. In [57], a
bivariate maximum a posteriori (MAP) estimator which relies on a mixture of
bivariate Laplacian models is introduced. This model not only is bivariate but
also is a mixture and therefore, it is possible to capture the heavy-tailed na-
ture of the data as well as the interscale dependencies of wavelet coefficients.
Cheng et al [13] developed an example-based image denoising algorithm. In
this algorithm, image denoising is formulated as a regression problem, which
is then solved using support vector regression (SVR). Using noisy images as
training sets, SVR models are developed. The models can then be used to
denoise different images corrupted by random noise at different levels.

• Joint Probabilistic Model

Usually, Hidden Markov Models (HMM) [28, 40, 63, 73] are efficient in cap-
turing inter-scale dependencies, whereas Markov Random Field(MRF) [15,
36, 53, 54], models are more efficient to capture intrascale correlations.

However, most of the improvements of wavelet domain HMMs only focus on
how to impose an additional dependency structure on the original wavelet
domain HMMs to capture the additional dependencies among wavelet coef-
ficients. Besides this, existing methods do not fully consider the effects of
noise in high frequency subbands of wavelet transforms. Some simple algo-
rithms of wavelet domain HMMs, such as dividing the subband of wavelet
coefficients into blocks, can not be carried out smoothly in a noisy image.
Recently, many approaches combined with other statistic models have been
proposed. For example, in [40], in order to reduce the effects of image noise
and provide powerful tractable probabilistic image models, trained templates
are built, which are constructed in the subband of scaling coefficients, then
these trained templates are applied to wavelet domain HMM. In [73], Yang
et al combined local Gaussian mixture model (LGMM) and HMMs in frame-
domain and proposed a Local Contextual hidden Markov model based on
frame-domain and a corresponding training algorithm. This model exploits
the local statistics of coefficients so that it can effectively capture correla-
tion of wavelet frame coefficients. Moreover, in [28], Ichir et al designed a
Bayesian estimation framework using three different models: the independent
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Gaussian mixture model, the hidden Markov tree model, and the contextual
hidden Markov field model. Each is expressed by the posterior laws. Ap-
propriate Markov chain Monte Carlo algorithms perform unsupervised joint
blind separation of the sources and denoising procedures.

Pizurica [53] models local spatial interactions of the wavelet coefficients with a
MRF. An iterative updating technique known as iterated conditional modes
(ICM) is applied to estimate the binary masks containing the positions of
those wavelet coefficients that represent the useful signal in each subband.
In [54], a novel anisotropic MRF prior model is proposed. It combines three
criteria for distinguishing supposedly useful coefficients from noise: coefficient
magnitudes, their evolution across scales and spatial clustering of large co-
efficients near image edges. In [83], an adaptive multiwavelet thresholding
algorithm (AMT) is proposed. This algorithm can automatically determine
the wavelet shrinkage thresholding in the multiwavelet domain without a pri-
ori knowledge of an image, for instance, the variance of image noise.

In addition, Bui et al applied a hidden Markov tree model to account for the
inter-scale, inter-direction, and inter-location dependency [26]. In [23], the
interscale dependencies between the coefficients are captured using a hidden
Markov tree model. The combined spatial and interscale model gives improve-
ments over hidden Markov models for white noise. However, all approaches
mentioned above need to estimate the required parameters which sometimes
are hard to obtain. In [35], a hierarchical, nonparametric statistical model is
introduced for wavelet representations of natural images. Extending previ-
ous work on Gaussian scale mixtures, wavelet coefficients are marginally dis-
tributed according to infinite, Dirichlet process mixtures. A hidden Markov
tree is then used to couple the mixture assignments at neighboring nodes.
Via a Monte Carlo learning algorithm, the resulting hierarchical Dirichlet
process hidden Markov tree (HDP-HMT) model automatically adapts to the
complexity of different images and wavelet bases.

2.3.3 Denoising by Undecimated Wavelet Transform

The discrete transform is very efficient. Its only drawback is that it is not translation
invariant. Translations of the original signal lead to different wavelet coefficients,
this may cause visual artifacts such as pseudo-Gibbs phenomenon [50]. To overcome
these artifacts and get complete information of the analyzed signal the undecimated
discrete wavelet transform (UDWT) is introduced. Since it does not decimate the
signal, it produces more precise information for frequency localization. From the
computational point of view the undecimated wavelet transform has larger storage
space requirements and involves more computations. With the increase of the speed
and storage of computers, this issue does not affect computational cost too much.

Mignotte proposes an image denoising algorithm using shrinkage of undecimated
wavelet coefficients [49]. It is reported that the algorithm yields improvements in
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terms of image quality and lower mean square error, especially when the image is
corrupted by strong additive white Gaussian noise. In [85], a novel wavelet filtering
method by spatial correlation thresholding based on UDWT is presented. This
algorithm multiples two adjacent wavelet scales with some relative translations to
line up the edges, and presents a new threshold related to spatial correlation that
preserves edges well while greatly reducing noise.

2.3.4 Denoising by Combined Techniques

Generally speaking, wavelet coefficient statistical model based algorithms outper-
form thresholding based algorithms. However, with the complexity of statistical
models, the computational cost rises rapidly. In order to get better results without
increasing the computational cost too much, many approaches have been introduced
by combining the existing algorithms. For instance, in [55] and [82], a parametric
solution for FIR Wiener filtering in the wavelet domain is introduced. This solu-
tion takes into account the colored nature of signal and noise in a UDWT, and is
adaptively trained via a simple context model. The combined Wiener filter offers
impressive denoising performance at modest computational complexity. In [17],
the Wiener filter and wavelet shrinkage are combined. This approach builds a new
thresholding function based on the wavelet shrinkage to overcome the shortcom-
ings of the discontinuous function in hard thresholding and the permanent bias
in soft thresholding. The image noise is filtered out while the edges are well pre-
served. In [79], a particle filter with wavelet shrinkage are combined to achieve
robust performance against inhomogeneous noise mixtures. The particle filter acts
to suppress outlier-rich components of the noise while the wavelet domain shrinkage
attenuates any remaining, less heavily tailed noise components. The combined algo-
rithm demonstrates excellent rejection of salt-and-pepper noise mixed with additive
white Gaussian noise (AWGN). In [69], the Lee filter is extended to the wavelet
transform domain. This algorithm is effective for multiscale image denoising.

Furthermore, some algorithms combine soft computing tools to gain better re-
sults. A simple but efficient new fuzzy wavelet shrinkage method [62] can be seen as
a fuzzy variant of a recently published probabilistic shrinkage method [52] for reduc-
ing adaptive Gaussian noise from digital greyscale images. The proposed method
can efficiently and rapidly reduce additive Gaussian noise from digital greyscale im-
ages, outperforms current fuzzy non-wavelet methods, and is comparable with some
recent but more complex wavelet methods [2, 5, 24, 52]. In [56], a novel algorithm
based on soft thresholding of wavelet coefficients using an interval type II fuzzy
system is developed for reducing speckle noise in Optical Coherence Tomography
images. All combined algorithms attain better results than any one of the former
algorithms.

In addition, the idea of image fusion is also exploited to improve the denoising
results. For example, Ma et al proposed an algorithm based on fusing curvelets
and wavelets in 2007 [41]. The Curvelets denoising approach has been widely used
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in many fields for its ability to obtain high quality images. The main drawback of
curvelets denoising algorithms is that they cause artifacts in denoised images. Ma’s
algorithm performs pixel fusion of the denoised images by curvelets and wavelets
approaches. Firstly the denoised results of curvelets and hidden Markov tree based
wavelets are calculated. Then image regions are analyzed with quadtree decompo-
sition. Finally the result is obtained by fusing the weighted pixels of the denoised
images by curvelets and wavelets based approaches. These authors then introduced
a fuzzy theory to this fusion process, so the local properties of the fuzzy windows are
estimated. Image fusion is applied to the curvelets and wavelets denoised images
where the weights are decided by local properties.

There are also many image fusion based denoising algorithms in the wavelet
domain. For example, an algorithm based on the multiwavelet transform and data
fusion is proposed in [86], and another algorithm based on the pixel domain and
wavelet domain is presented for fusing and denoising of noisy multifocus images [84].

2.4 Performance Evaluation in Image Denoising

How to fully evaluate the performance of denoising algorithms is also a challeng-
ing task. Objective image quality measures play important roles in various image
processing applications. Basically, there are two types of objective quality or dis-
tortion assessment approaches. The first is mathematically defined measures, such
as mean squared error (MSE) and peak signal to noise ratio (PSNR). The second
considers human visual system (HVS) characteristics in an attempt to incorporate
perceptual quality measures.

In practice, however, the HVS is more tolerant to a certain amount of noise
than to a reduced sharpness. Moreover, the visual quality is highly subjective [6],
and difficult to express objectively. In addition, the HVS is also highly intoler-
ant to various artifacts, like “blips” and “bumps” in the reconstructed image [18].
The importance of avoiding those artifacts is also meaningful. For instance, in
certain applications (like astronomy, or medicine) such artifacts may cause wrong
data interpretations. Unfortunately, none of these complicated objective metrics in
the literature have shown any clear advantage over simple mathematical measures
such as MSE and PSNR under strict test conditions and different image distortion
environments.

To evaluate the proposed algorithms in this thesis, four objective assessment
tools, MSE, PSNR, Image Quality Index(IQI) and Information Theoretic Criterion
(ITC), will be applied to obtain fair and complete performance evaluation.

These four image quality assessment methods are briefly introduced as follows:

• Mean Squared Error (MSE)

The ultimate objective of image denoising is to produce an estimation f̂i of
the noise-free image fi , which approximates it best, under given evaluation
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criteria. As in any estimation problem, an important objective goal is to
minimize the error of the result as compared to the uncorrupted data. In this
respect, a common criterion is minimizing the mean squared error (MSE),

MSE =
1

N

N∑
i=1

(fi − f̂i)2 (2.2)

• Peak Signal to Noise Ratio (PSNR)

In image processing, another common performance measurement is the peak
signal to noise ratio (PSNR), which is for grey scale images defined in dB as

PSNR = 20log10
255√
MSE

(2.3)

• Image Quality Index (IQI)

Wang proposes an index [70] which is designed by modeling any image dis-
tortion as a combination of three factors: loss of correlation, luminance dis-
tortion, and contrast distortion. Although the new index is mathematically
defined and does not explicitly employ the human visual system model, ex-
periments on various image distortion types show that it exhibits surprising
consistency with subjective quality measurement.

The definition of the new quality of index [70]:

Let X = xi|i = 1, 2, ..., N and Y = yi|i = 1, 2, ..., N be the original and tested
images respectively, so the quality index is defined as:

Q =
4σxyx̄ȳ

(σ2
x + σ2

y)(x̄
2 + ȳ2)

(2.4)

where,

x̄ =
1

N

N∑
i=1

xi

ȳ =
1

N

N∑
i=1

yi

σ2
x =

1

N − 1

N∑
i=1

(xi − x̄)2

σ2
y =

1

N − 1

N∑
i=1

(yi − ȳ)2

σxy =
1

N − 1

N∑
i=1

(xi − x̄)(yi − ȳ)
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It also can be rewritten as,

Q =
σxy
σxσy

× 2xy

x2 + y2 ×
2σxσy
σ2
x + σ2

y

(2.5)

This quality index models any distortion as a combination of three different
factors: loss of correlation, luminance distortion, and contrast distortion.
This can be observed in Equation 2.5: the first component is the correlation
coefficient between X and Y, which measures the degree of linear correlation
between X and Y . The range of Q is [−1, 1]. The best value is 1 which means
that the tested image is exactly equal to the original image.

• Information Theoretic Criterion (ITC)

As discussed above, objective performance evaluation methods treat an im-
age simply as a matrix of numbers. They do not reflect exactly the human
perception of images. Since the visual quality of images is also important
for evaluating the performance of denoising algorithms, an assessment tool
based on the HVS is needed to make a full evaluation of the performance of
denoising algorithms.

Zhang and Jernigan propose an information theoretic criterion (ITC) based
on natural scene statistics [80]. By using Gaussian scale mixture model in
an information theoretic framework, an algorithm is designed to compute the
minimum perceptual information contained in the images from the HVS point
of view, and evaluates the image quality in the form of entropy.

The ITC is defined as,

ITC =
min |D{I(X;Y |z)}

H(X|z)

where min |D{I(X;Y |z)} is the information fidelity criterion that quantifies
the statistical information shared between the source and the distorted im-
ages. H(X|z) is defined as the conditional entropy of the perceptual informa-
tion contained in the image.

The ITC ranges from 0 to 1. When X, Y has no relationship, ITC = 0;
when Y = X, ITC = 1, which means that the test image is exactly equal to
the original image.

For the details, please refer to [80].

2.5 Summary

This chapter investigates additive noise models and includes an in-depth litera-
ture survey of denoising based on wavelets. Desirable features and complexities of
denoising algorithms are discussed.
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In addition, it explains common mechanisms used to evaluate the performance
of denoising algorithms. A method that incorporate a basic model of the HVS, for
performance evaluation of denoising algorithms, is introduced.

According to the current literature, denoising algorithms based on wavelet trans-
form are the best choice for achieving the desired denoising performance. However,
the computational complexity must also be considered. Thresholding techniques
used with the Discrete Wavelet Transform are the simplest to implement. UDWT
and Multiwavelets improve the performance at the expense of computation. HMM
based methods seem to be promising but also are complex. Finally, universality of
algorithms also needs to be considered. A universal denoising algorithm is a dream
of researchers, Although there is no universal method. In this study, the denoised
results of the proposed algorithms and existing algorithms are compared under dif-
ferent noise models and variances by means of the evaluation methods introduced
above.

It can be expected that future research will focus on building robust statistical
models of non-orthogonal wavelet coefficients based on their intra scale and inter
scale correlations by employing soft computing tools. Such models combined with
soft computing tools can be effectively used for image denoising. The following
chapter introduces an algorithm based on the combination of wavelet and a soft
computing tool, interval type-2 fuzzy sets.
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Chapter 3

Interval Type-2 Fuzzy Set Based
Wavelet Shrinkage

This chapter starts with an overview of the basic concepts of wavelets and fuzzy
sets. These can be found in many books and papers at different levels of exposition.
Two standard books include: C. S. Burrus’s book “Introduction to wavelets
and wavelet transforms: a primer” [10] and Jyh-Shing Jang’s book “Neuro-
fuzzy and soft computing: a computational approach to learning and ma-
chine intelligence” [30]. Some application books include: Karray’s book “Soft
computing and intelligent systems design: theory, tools, and applica-
tions” [34], Ruano’s book “Intelligent control systems using computational
intelligence techniques” [60], Stark’s book “Wavelets and Signal Processing:
An Application-Based Introduction” [66], J. M. Mende’s book “Uncertain
Rule-Based Fuzzy Logic Systems: Introduction and New Directions”[45],
and Maarten’s book “Noise reduction by wavelet thresholding” [31]. Intro-
ductory papers include: Zadeh’s paper [77], Mendel’s papers [46, 47, 48]. More
technical ones are Stefan Schulte’s paper [62], and Puvanathasan’s paper [56]. Af-
ter the overview, an improved denoising algorithm combining type II fuzzy sets and
wavelet shrinkage is presented.

3.1 Introduction to wavelet representation

To understand why wavelets are useful for signal processing, consider some basic
concepts:

3.1.1 Wavelet Concept and Its Transforms

Wavelets are functions that are wave-like but localized. These functions oscillate
like a wave in a limited portion of time or space. Wavelets can analyze a signal or
an image in detail according to scale. One chooses a particular wavelet, stretches it
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to meet a given scale and shifts it to find the specific location, while investigating
its correlations with the analyzed signal. This analysis is similar to observing
the displayed signal from various distances. The signal correlations with wavelets
are that large scales reveal coarse features, while small scales discover fine signal
structures. It is often said that the wavelet analysis can see both the forest and the
trees. In such a scanning through a signal, the scale and the position can change
continuously (continuous wavelet transform) or in discrete steps (discrete wavelet
transform).

From an engineering point of view, discrete wavelet analysis is a two channel
digital filter bank (composed of lowpass and highpass filters), iterated on the low-
pass output. The lowpass filtering yields an approximation of a signal (at a given
scale), while the highpass (more precisely, bandpass) filtering yields the details that
constitute the difference between the two successive approximations. A family of
wavelets is then associated with the bandpass, and a family of scaling functions with
the lowpass filters. The detailed concept explanations can be found in [10, 44]. In
this thesis, only the general aspects of discrete wavelet transform are addressed.
Furthermore, the representation of two-dimensional images are discussed.

• Definition of discrete wavelet transform(DWT) [10]

The idea is to express a signal as a superposition of two sorts of elements:
scaling functions and wavelets. The scaling functions represent the signal with
a lower resolution approximation (lowpass filters) while the wavelets represent
the resulting difference components (highpass filters). Both scaling functions
and wavelets are weighted and shifted as necessary to exactly represent the
signal. A typical representation is the so-called discrete wavelet transform
(DWT):

f(t) =
∑
k

c(k)ϕk(t) +
∞∑
j=0

∞∑
k=−∞

d(j, k)ψj,k(t) (3.1)

or, more specifically revealing the nature of the shifted components,

f(t) =
∑
k

cj0(k)2j0/2ϕ(2j0/2t− k) +
∑
k

∞∑
j=j0

dj(k)2j/2ψ(2jt− k) (3.2)

Where, ϕ(t) is the scaling function, ψ(t) is the wavelet. The index j repre-
sents the scale (coarse to fine resolutions) with j0 as the coarsest, or lowest
resolution level of the representation. Both scaling functions and wavelets are
compressed along the time axis by a factor of 2 as the index j is increased
by 1. The index k represents the translations. cj0(k) are the approximation
coefficients, and dj(k) are the difference coefficients. The first sum provides
a low resolution, or coarse scale representation, of the signal. The second
sum provides the difference components which are across all scales or reso-
lutions and necessary to construct the signal and not contained in the low
resolution coarse approximation. The simplest case, the Haar Wavelet Sys-
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tem, is examined in Stark’s book [66]. Figure 3.1 plots the Haar scaling and
wavelet functions and Figure 3.2 shows the two level wavelet decomposition
and reconstruction of the cameraman image.

The scaling function and wavelet must be chosen such that the set of com-
pressed, shifted components comprise a basis with which to represent the
signals of interest.

Figure 3.1: The Haar wavelet and scaling functions [66]

Figure 3.2: Haar wavelet decomposition. Left: Original image. Right: Result of
the 2-step-DWT

In order to form a basis with which to represent signals, the scaling function
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and wavelet must satisfy a pair of recursion equations [44]:

ϕ(t) =
∑
n

s(n)
√

2ϕ(2t− n) (3.3)

ψ(t) =
∑
n

w(n)
√

2ϕ(2t− n) (3.4)

Both simply require that the component at a lower resolution be representable
by the scaling function compressed and shifted at the next higher resolution.
The scaling function coefficients are s(n)and the wavelet coefficients are w(n).
If the wavelets are to be orthogonal over integer translations, and the wavelets
are to span the space of the difference components, the coefficients must be
related through

w(n) = (−1)n s(1− n)

or, if s(n) is of finite length N (even),

w(n) = (−1)n s(N − 1− n)

.

From the recursion equation 3.3 and 3.4, the expressions 3.5 and 3.6 for the
approximation coefficients and the difference coefficients can be derived at
one resolution level in terms of those at the next higher scale [10]:

cj(k) =
∑
m

s(m− 2k)cj+1(m) (3.5)

dj(k) =
∑
m

w(m− 2k)cj+1(m) (3.6)

Thus, wavelet coefficients can be calculated recursively from scale to scale,
which yields the complexity of O(N), where N is the length of the data to be
transformed. Based on Equation 3.5 and 3.6, the DWT can be implemented
by filter banks shown as in Figures 3.3 and 3.4. In addition, Figure 3.5 illus-
trates the arrangement of approximation and difference or detail coefficients
for the 2-D discrete wavelet transform.

• Definition of Undecimated Wavelet Transform(UDWT)

Decimation of the wavelet coefficients is an intrinsic property of the discrete
wavelet transform (DWT). The decimation step removes every other of the
coefficients of the present level. Thus the computation of the wavelet trans-
form is faster and more compact in terms of storage space. More importantly,
the transformed signal can be perfectly reconstructed from the remaining co-
efficients. Unfortunately, the decimation causes shift variance of the wavelet
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Figure 3.3: Block diagram of the 1-D discrete wavelet transform. cA1 and cD1 are
the approximation and detail coefficients at the first, or highest resolution level [32].

Figure 3.4: Block diagram of the 2-D discrete wavelet transform. cA1, cH1, cV1
and cD1 are the approximation, horizontal, vertical and detail coefficients at the
first, or highest resolution level [32]

transform. A formal definition of shift variance was proposed by Simon-
delli [64]: shift variance means small shifts in the input signal can cause
major variations in the distribution of energy between coefficients at different
scales. Simply speaking, the shift variance means that the DWTs of a signal
and its shifted version are not the same (see Figure 3.6).
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Figure 3.5: Arrangement of approximation (cA2) and difference or detail coefficients
for the 2-D discrete wavelet transform. cH1, cV1, and cD1 are the highest resolution
horizontal, vertical, and diagonal detail coefficients [32].

Shift invariance has been shown many times, such as [14, 54]. In order to
achieve shift invariance, researches have created several other wavelet trans-
form algorithms. One type of these transforms is known as the undecimated
wavelet transform (UDWT) of the dyadic filter tree [42].

In an undecimated wavelet transform, a signal is represented with the same
number of wavelet coefficients at each scale. These coefficients are samples
of the continuous wavelet transform at all integer locations at each dyadic
scale function: ϕk(t) in Equation 3.1. Such an overcomplete representation
results from decomposing a signal into a family of wavelets: 2j/2ψ(2jt − k)
in Equation 3.2. Now the wavelets are not linearly independent, they do not
constitute a basis but a frame.

An undecimated wavelet transform approaches translation invariance, and is
also called the Stationary Wavelet Transform. It is computed with the à trous
algorithm [43]

Figure 3.7 shows the difference between the decimated wavelet transform and
the undecimated wavelet transform(1-D).

Figure 3.8 indicates a ’db2’ undecimated wavelet decomposition. Comparing
to Figure 3.2, it can be observed that the undecimated wavelet transform
yields an increased amount of information about the transformed image com-
pared to the DWT. The number of the wavelet coefficients does not shrink
between the transform levels. The additional information is useful for better
analysis and understanding of image properties. For instance, in image de-
noising applications the discrimination between the noise and real data can
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Figure 3.6: The discrete wavelet transform lacks shift-invariance. The upper row
indicates a sample signal (left, blue) and the same signal right-shifted by one sample
point (right, red). The lower row shows the DWTs of the signals from the upper
row. There is a big difference between the DWT coefficients. Obviously, the two
signals in the lower row are not shifted versions of each other.

be improved. Much information is especially important when statistical ap-
proaches are used for analyzing the wavelet coefficients. The drawbacks of
the UDWT are higher computational and memory cost as well as redundancy
in the coefficients.

3.1.2 Wavelet Shrinkage Based Image Denoising

Wavelet shrinkage [18] is a denoising technique based on the idea of threshold-
ing every single wavelet coefficient of the signal. Wavelet coefficients having small
absolute value are presumed to encode mostly noise and very fine details of the
image. Conversely, the important information is encoded by the coefficients hav-
ing large absolute value. Removing the small absolute value coefficients and then
reconstructing the image should produce an image with less noise. The wavelet
shrinkage approach can be summarized as follows:
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(a) Decimated wavelet transform

(b) Undecimated wavelet transform

Figure 3.7: Decimated and undecimated wavelet transforms [32]. Note in (a), there
are down-sampling and up-sampling units, but absent in (b)

1. Apply the wavelet transform to an image.

2. Estimate a threshold value.

3. Remove the coefficients that are smaller than the threshold.

4. Reconstruct the image using the thresholded coefficients.

One challenge in wavelet shrinkage or thresholding approaches is to find an
appropriate threshold value. In 1994, Donoho and Johnstone [19] proposed a
universal thresholding, and its result is an effective, non-linear, edge preserving
smoothing operation. Since then, more sophisticated methods, such as spatially
adaptive thresholding methods, have been designed to distinguish coefficients asso-
ciated with image texture from those associated with noise. An extensive review of
wavelet thresholding in image denoising is in [31].

Another open question in wavelet shrinkage algorithms is how to apply the
threshold. Two standard thresholding methods are: hard-thresholding, (“keep or
kill”), and soft-thresholding (“shrink or kill”) [31]. In both cases, the coefficients
that are below a certain threshold are set to zero.
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Figure 3.8: ’db2’ undecimated wavelet decomposition. An example of the redun-
dant wavelet frame decomposition in four resolution levels. From left to right are
images in approximation, horizontal, vertical, and diagonal subbands, respectively.

• Hard Thresholding

Hard thresholding methods zero the coefficients that are smaller than the
threshold and leave the remaining ones unchanged.

Thare(w) =

{
0 if |w| ≤ T

w if |w| > T
(3.7)

• Soft Thresholding

In soft thresholding, the magnitudes of the coefficients above threshold are
reduced by an amount equal to the value of the threshold

Tsoft(w) =

{
0 if |w| ≤ T

sgn(w)(|w| − T ) if |w| > T
(3.8)
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• How to Apply a Threshold

In both hard or soft thresholding methods, each wavelet coefficient is multi-
plied by a given shrinkage factor γ, which is a function of the magnitude of
the coefficient, refer to Figure 3.9).

Figure 3.9: Shrinkage factors that multiply the wavelet coefficients in (a) hard-
thresholding and (b) soft-thresholding.

As discussed in Chapter 2, wavelet thresholding is a popular approach for noise
suppression due to its simplicity. A vast literature has emerged recently on im-
age denoising via wavelet thresholding or shrinkage that was first introduced by
Donoho and Johnstone [19]. The most well-known thresholds include universal [19]
and Sure [20] proposed by Donoho and Johnstone, Bayes by Chang [11], and fuzzy
shrinkage proposed by Schulte [62]. According to the literature, BayesShrink is de-
rived in a Bayesian framework, and outperforms SureShrink most of the time. How-
ever, the generalized likelihood ratio of GGD is not always realistic. FuzzyShrink-
age, instead of estimating the likelihood ratios for these measurements, imposes on
them fuzzy membership functions. A fuzzy shrinkage factor will also express how
likely a coefficient is“ a signal of interest, and the process is accomplished by using
the appropriate fuzzy norms and co-norms as opposed to the Bayesian formalism
and probabilities [62]. In this study, a new shrinkage method is proposed, which
is based the soft thresholding and considers the inter and intra-scale persistence.
An interval type-2 fuzzy set (IT2 FS) is employed in this method. The detailed
algorithm is discussed in Section 3.3.

3.1.3 Noise Variance Estimation

According to the experience of denoising, obtaining the noise variance is a key
for any sophisticated denoising algorithms. In some cases, the value of the input
noise variance σ is known, or can be measured based on information other than the
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distorted data. If images have no information about the noise variance, it must be
estimated from the input data. Wavelet based methods commonly use the highest
frequency subband of the decomposition for this purpose. In the DWT of an image,
the cH1 subband contains mainly noise. A robust estimation of noise variance σ̂ is
obtained by a median measurement, which is highly insensitive to isolated outliers
of potentially high amplitudes. In [19], it is proposed,

σ̂n =
median(|cH1|)

0.6745
(3.9)

The estimate in Equation 3.9 is commonly used in image denoising [16, 56, 62]
and it is used in this thesis as well. Figure 3.10 shows that the noise estimated
method used in this study is satisfactory by comparing the estimated noise vari-
ances with the true noise variances added to images, when the added noise is pure
Gaussian noise.

Figure 3.10: Noise Estimation. The result is almost a straight line with a 45-degree
angle to both x- and y- axis. It means that the estimated noise variances are
approximately equal to the actual noise variances.

3.2 Introduction to Fuzzy Set

Since fuzzy set theory was introduced by Zadeh about four decades ago [77], fuzzy
sets have been applied to a variety of applications, ranging from control engineer-
ing, qualitative modeling, pattern recognition, signal/image processing, information
processing, machine intelligence, decision making, management, finance, medicine,
motor industry, robotics, and so on. This section presents the basic concepts of
fuzzy sets.
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3.2.1 Type-1 Fuzzy Set

In this subsection, brief descriptions about the fuzzy set theory which is applied in
this thesis are given.

• Definition of Type-1 Fuzzy Set

Generally, a fuzzy set type-1 (T1 FS) is defined as a collection of ordered
pairs and can be expressed by the following notation [34],

A = {(x, µA(x)) |x ∈ X }

Where µA(x) is called the membership function (MF) for fuzzy set A. The
MF maps each element of X to a membership value between 0 and 1. The
value indicates the degree of the elements belonging to the fuzzy set. Larger
values denote higher degrees of memberships.

• Fuzzy Membership Function

In practice, a type-1 fuzzy set can be completely characterized by its Mem-
bership Function (MF). The more convenient and concise way to define a T1
MF is to express it as a mathematical formula. For example, the symmetric
Gaussian function is given by:

F (x;σ, c) = exp(−(x− c)2

2σ2
)

The symmetric Gaussian function is illustrated in figure 3.11

where x is the variable in the intensity domain (usually, it is the gray level
between 0 and 255), and σ and c are the parameters which determine the
shape of a Gaussian function. The range [−σ, σ] is called the fuzzy region,
where c is usually set as the mid-point of [−σ, σ], but it is not necessary. If
c is defined as the mid-point between [−σ, σ], then it is called the symmetric
Gaussian function. In this thesis, the symmetric Gaussian function is one
of the membership functions used to transform an image from the intensity
domain into the fuzzy domain. The selection of membership function depends
on the application. The S-function, Z-function, and Bell-function are most
commonly used, and these membership functions can be found in [34].

3.2.2 Fuzzy Set Type II

Although Zadeh introduced type-2(T2) FSs in 1975, very little literature was pub-
lished about them until in the middle of nineties. T2 FSs are described by MFs
that are characterized by more parameters than these for T1 FSs. Hence, T2 FSs
provide more freedom for researchers to design a fuzzy logic system (FLS), and
have the potential to outperform T1 FSs, especially in uncertain environments [48].
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Figure 3.11: The symmetric Gaussian function

• Definition of A Type-2 Fuzzy Set [45]

A T2 FS Â is defined by a T2 membership function µÂ(x, µ), where x ∈ X
and µ ∈ Jx ⊆ [0, 1],

Â = {((x, µ), µÂ(x, µ))|∀x ∈ X, ∀µ ∈ Jx ⊆ [0, 1]}

In which 0 ≤ µÂ(x, µ) ≤ 1. Â can also be expressed in the usual notation of
fuzzy sets as

Â =

∫
x∈X

∫
µ∈Jx

µÂ(x, µ)

(x, µ)
, Jx ⊆ [0, 1]

Where the double integral denotes the union over all x and µ. In order to
define a T2 FS, one can define a T1 FS and assign upper and lower member-
ship degrees to each element to construct the footprint of uncertainty. See
the shading area in Figure 3.12. Therefore, a more practical definition for a
T2 FS can be given as follows,

Â = {(x, µU(x), µL(x))|∀x ∈ X,µL(x) ≤ µ(x) ≤ µU(x), µ ∈ [0, 1]}

For details, please refer to [45, 68].

• Fuzzy Membership Function

One convenient way to visualize a T2 FS membership function is to plot its
footprint of uncertainty (FOU) on the 2-D domain of the T2 FS. The heights
of a T2 MF (its secondary grades) sit atop its FOU. In Figure 3.12, if a
set of Gaussian MFs is filled in (as implied by the shading area), then the
FOU is obtained. Assume that the standard deviation of Gaussian primary

29



MF is known with perfect certainty, but its mean, m, is uncertain and varies
anywhere in the interval from m1 to m2. Suppose the weighting (possibilities)
of each FM is uniform, a uniform shading area over the entire FOU can be
observed in Figure 3.12. Due to the uniform weighting, this T2 FS is called
an Interval T2 FS (IT2 FS) [48].

In this study, T2 FSs are applied for wavelet coefficient thresholding. The
reasons are these: (1)In most situation, T2 FSs outperforms T1 FSs, espe-
cially in uncertain environments. (2) T2 FSs have more freedom for designing
a FLS [47].

Figure 3.12: FOU of a Gaussian primary MF. Its mean varies in the interval
[m1,m2] and its standard deviation is a constant [48].

3.3 Type-2 Fuzzy Set Based Wavelet Shrinkage

Algorithm

The IT2 FS theory, introduced above, provides a powerful technique to represent
uncertainty and process human knowledge represented as fuzzy if-then rules. Like
a T1 FLS, a T2 FLS based image denoising process also has four main stages: (1)
image fuzzification, (2) modification of membership values, (3) fuzzy type reduction
and (4)image defuzzification [45, 48]. The key of the process lies in the second and
third steps. After the image data are transformed from the input plane to the fuzzy
membership plane (fuzzification), appropriate fuzzy techniques, such as fuzzy rules,
modify the membership values. Then proper fuzzy type reduction methods, such
as the center-of-sets type reduction method, degrade the T2 FLS to a T1 FLS. The
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main advantages of the proposed algorithm are: (1) the complexity of the method is
lower than the HMM based ones [23], (2) removal of some artifacts by using UDWT,
(3) addition of new fuzzy rules, correlation of interscale information to improve the
noise reduction performance, (4) performance is better than Sure, Bayes, T1 fuzzy
shrinkage, and HMM based methods. This point is shown in Chapter 5.

3.3.1 Definition of Membership Function and A Fuzzy Rule

A noisy image can be represented by the following equation in the spatial domain,

f(i, j) = y(i, j) + n(i, j) (3.10)

where f(i, j), y(i, j), and n(i, j) are the noisy image, original image, and noise re-
spectively. Due to the linearity of the wavelet transform, additive noise in the image
domain remains additive in the transform domain as well. Therefore, Equation 3.10
can be modeled as the following,

ws,d(i, j) = ys,d(i, j) + ns,d(i, j) (3.11)

where ws,d(i, j),ys,d(i, j), and ns,d(i, j) are wavelet coefficients of the noisy image,
original image and noise respectively at the scale s and orientation d ∈ {V,H,D}.

Since wavelet coefficients are statistically dependent because of two properties of
the wavelet transform of natural images: (1) large coefficients will reproduce across
the scales (interscale dependencies), (2) if a coefficient is large or small, some of the
neighboring coefficients are also likely to be large or small (intrascale dependencies)
[62].

In this statement, there are some linguistic ambiguities, such as words “large or
small”. How “large or small” is “large or small”?

IT2 FSs are a better way to represent the ambiguity. In this study, firstly, three
notations, ws,d(i, j), xs,d(i, j) and cs,d(i, j), are assigned to the wavelet coefficient,
the neighborhood value, and the correlation map respectively at location (i, j).
ws,d(i, j) is calculated by UDWT, xs,d(i, j) is calculated by the following equation
introduced in [62]:

xs,d(i, j) =

(
K∑

m=−K

K∑
n=−K

|ws,d(i+m, j + n)|)− |ws,d(i, j)|

(2K + 1)2 − 1

In this study, a hierarchical correlation map value cs,d(i, j), which considers both the
correlation between neighboring coefficients (intra-scale) and correlation between
two adjacent levels (inter-scale), can be calculated using equation 3.12, modified
from [56]. In the generated correlation map, large values indicate position of edges
in the original image, and zero valued coefficients correspond to smooth areas which
are noise regions [39]. This leads to the following statement used to build a fuzzy
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rule: at position (i, j), if the correlation map value is large, then the coefficient at
(i, j) represents fine image structures of interest almost certainly and should not
be set to zero; while a correlation map value close to zero indicates an area which
needs to be smoothed due to noise [56].

cs,d(i, j) =
√

inters,d(i, j)× intras,d(i, j) (3.12)

inters,d(i, j) =

√√√√√ K∑
m=−K

K∑
n=−K

|ws,d(i+m, j + n)× ws+1,d(i+m, j + n)|

2K

intras,d(i, j) =

√√√√ K∏
m=−K

K∏
n=−K

|ws,d(i+m, j + n)|

Secondly, define appropriate IT2 FSs to represent these variables. IT2 FS A
associates with the large magnitude wavelet coefficient |ws,d(i, j)| , IT2 FS B as-
sociates with the large neighborhood values |xs,d(i, j)| , and IT2 FS C associates
with the large correlation map values |cs,d(i, j)|. The sigmoid MFs , µA, µB and
µC , are chosen to represent the three IT2 FSs respectively. In Figure 3.13, the
shaded regions in the figures correspond to the areas where the uncertainty lies and
determines if the coefficient is noisy or not. The general equation for a sigmoid MF
is given in Equation 3.13 with two parameters, its center c and its width w.

µ(x) =
1

1 + e
−(x−c)
w

(3.13)

Equation 3.13 indicates the proposed algorithm depends on two parameters:
center c and width w. Obviously, the IT2 FMs change at each scale s and each
orientation d. It is known that, in image denoising, it is important that a filtering
algorithm should adapt to the noise variances [62]. Therefore, in this study, the
parameters c and w are chosen based on the experiments for a better performance
in terms of PSNR.

According to Gupta’s paper [25], the center c is calculated by:

c =
√

log(Ls)×
σ̂n

2

σ̂l

And the local noise standard deviation σ̂l, of the subband is calculate by
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σ̂l =

√√√√max((
1

n2

n∑
i,j=1

Y 2
ij − σ̂2

n), 0)

where Yij ∈ CH1, n× n is the size of subband.

Based on the experiment, the width w is equal to the standard deviation of
estimated noise.

The upper and lower MFs are determined as Equations 3.14, 3.15 and 3.16.

µupperA =
1

1 + e
−(x−c+σ̂n)

w

and µlowerA =
1

1 + e
−(x−c−σ̂n)

w

(3.14)

µupperB =
1

1 + e
−(x−c+σ̂n)

1.5×w

and µlowerB =
1

1 + e
−(x−c−σ̂n)

1.5×w

(3.15)

µupperC =
1

1 + e
−(x−c+σ̂n)

0.5×w

and µlowerC =
1

1 + e
−(x−c−σ̂n)

0.5×w

(3.16)

where w = σ̂n, which is estimated by Equation 3.9.

Figure 3.13: Interval Type II Fuzzy Membership functions for the fuzzy vari-
ables. Left: large magnitude wavelet coefficient, and Middle: large neighborhood
value.Right: Large correlation map value

Thirdly, fuzzy rules are linguistic IF-THEN constructions that have the general
form “IF A THEN B”, where A and B are (collections of) propositions containing
linguistic variables. A is called the premise or antecedent and B is the consequence
of the rule. In Fuzzy Rule 1 we can distinguish two linguistic variables for the con-
sequent: large wavelet coefficients |ws,d(i, j)|, large neighborhood values |xs,d(i, j)|
and large correlation map value |cs,d(i, j)|. All linguistic terms are modeled as IT2
FSs discussed above.

A designed T2 FLS rule for this proposed algorithm,
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IF |xs,d(i, j)| is a large variable

AND |ws,d(i, j)| is a large coefficient

AND cs,d(i, j) is a large correlation map value

OR |xs,d(i, j)| is a large variable

THEN ws,d(i, j) is a signal of interest

3.3.2 Fuzzy Inference Engine and Defuzzification

Inferring the IT2 FLS Rule discussed in subsection 3.3.1 can be considered as an
intersection and a union of three fuzzy sets. The intersection A ∩ B ∩ C of three
fuzzy sets A, B and C is generally specified as a t-norm; while the union A ∪B of
two fuzzy sets A and B is specified as a co-norm. In fuzzy logic, t-norms (roughly
the equivalent of AND operations) and co-norms (roughly the equivalent of OR
operations) are used to represent the intersection of three fuzzy sets and the union of
two fuzzy sets, respectively. Other well known t-norms together with their dual co-
norms are introduced in [45]. From all possible t-norms and co-norms, the product
and the probabilistic sum are chosen to represent AND and OR, respectively.

t-norm product of three IT2 FSs are calculated by equation 3.17 and 3.18

δuppers,d (i, j) = µupperA (|ws,d(i, j)|) · µupperB (|xs,d(i, j)|) · µupperC (|cs,d(i, j)|) (3.17)

δlowers,d (i, j) = µlowerA (|ws,d(i, j)|) · µlowerB (|xs,d(i, j)|) · µlowerC (|cs,d(i, j)|) (3.18)

The results are used as new IT2 FSs to calculate the fuzzy value by applying
the probabilistic sums.

βuppers,d (i, j) = δuppers,d (i, j) + µupperB (|xs,d(i, j)|)− δuppers,d (i, j) · µupperB (|xs,d(i, j)|) (3.19)

βlowers,d (i, j) = δlowers,d (i, j) + µlowerB (|xs,d(i, j)|)− δlowers,d (i, j) · µlowerB (|xs,d(i, j)|) (3.20)

As can be seen in equation 3.17 and 3.18, there are two consequences for the rules
each corresponding to the upper and lower limit. These consequences represent the
degree by which the wavelet coefficient should be shrunk. The subsection 3.3.3
explains how to shrink the wavelet coefficients of a noisy image.

3.3.3 Output of Algorithm

The shrinkage rule of the proposed method for scale s, direction d and position
(i, j) is calculated as follows:
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ŷs,d(i, j) = γ(ws,d(i, j), xs,d(i, j), cs,d(i, j)) · ws,d(i, j) (3.21)

with ys,d(i, j) the shrink output coefficient for scale s, direction d and position
(i, j) and where γ(ws,d(i, j), xs,d(i, j), cs,d(i, j)) (simplified as γs,d(i, j), calculated
by equation 3.22) is the degree of activation of the fuzzy Rule for the wavelet
coefficient ws,d(i, j). This value indicates the membership degree of the interesting
signal for the wavelet coefficient ws,d(i, j) in the designed IT2 FLS.

γs,d(i, j) =
βuppers,d (i, j) + βlowers,d (i, j)

2
(3.22)

3.3.4 Algorithm

As discussed above, the complete IT2 FLS based wavelet shrinkage algorithm is
summarized as following,

• Step 1: Fuzzification

Choose the proper image features, each corresponding to a linguistic vari-
able. Each feature is then fuzzified by their appropriate Membership Func-
tion (MF). In this study, wavelet coefficient ws,d(i, j), neighborhood value
xs,d(i, j), and correlation value cs,d(i, j) are chosen to represent image fea-
tures. The sigmoid IT2 FMs are exploited to fuzzify these three fuzzy sets.
For details refer to subsection 3.3.1.

• Step 2: Fuzzy Rule Building

Build knowledge-based fuzzy if-then rules. Utilizing the fuzzy variables to
represent the image features, fuzzy rules are obtained. In this study, only one
fuzzy rule is built:

IF (|xs,d(i, j)| is a large variable

AND |ws,d(i, j)| is a large coefficient

AND cs,d(i, j) is a large correlation map value

OR |xs,d(i, j)| is a large variable

THEN ws,d(i, j) is a signal of interest

• Step 3: Fuzzy Inference Engine (Rule Firing)

For each rule, the fuzzified inputs are combined and a rule strength is ob-
tained. This rule strength is used as the consequence of the rule [45]. In this
study, the strength of the rule built in Step 2 is computed by equation 3.17
and 3.18. Once the consequences from various rules have been obtained, they
are combined to obtain an output distribution range. In this study, only one
fuzzy rule is being used. In general, the probabilistic sum conorm is used to
combine various rules.
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• Step 4: Type Reduction and Defuzzification

A value representing the scaling factor for the wavelet coefficient at (i, j)
is obtained by fuzzy type reducing and defuzzifying the output. There are
more than one approach to defuzzify the output distribution [45]. The one
employed in this study is the center-of-sets type reduction, the average of the
upper and lower value is utilized,

γs,d(i, j) =
βuppers,d (i, j) + βlowers,d (i, j)

2
(3.23)

Finally, reconstructing the shrunk coefficients ŷs,d(i, j) by using reverse UDWT,
the denoised image is obtained.

Now, a new coefficient can be obtained at position (i, j) by applying Equa-
tion 3.23 to Equation 3.21, which has been reduced of noise. The filtering is
performed at each scale of the wavelet domain and for each of the three detail
coefficients d ∈ {H, V,D}.

• Step 5: Reconstruction

Once all the coefficients have been found, applying the inverse 2D-UDWT to
an input nature image will result in a denoised final image.

3.4 Summary

This chapter has investigated the possibilities of a soft computing tool, interval
type-2 fuzzy logic system (IT2 FLS), to improve the results of a wavelet thresholding
procedure. This IT2 FLS is designed for the application to image noise reduction
and it combines three objectives:

• capturing the correlations in wavelet coefficients of each subband. Since there
is no perfect model for the correlations, an interval type-2 fuzzy set is designed
for describing the intra-correlations.

• the correlations in wavelet coefficients of the same scale is also important.
Another interval type-2 fuzzy set is applied to represent the inter-correlations.

• a wavelet coefficient itself must also be considered. Therefore the third inter-
val type-2 fuzzy set is assigned to the local wavelet coefficients.

After designing this algorithm carefully, it is expected that this algorithm suc-
ceeds in finding more noisy coefficients. In Chapter 5, the performance of noise
reduction of this algorithm will be discussed.
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Chapter 4

Genetic Algorithm and Fuzzy
Neural Network Based Algorithm

This algorithm is an extension of the concept of image fusion. Originally, image
fusion deals with combining different sources of information for intelligent systems.
The information is signals delivered by different sensors and images from various
modalities.

In recent years, the image fusion concept has been applied to image denoising.
For example, in [41] and [22], two denoised images of curvelets and wavelets are
fused to keep high image quality and remove artifacts. In [81], a fusion technol-
ogy based on neural networks is presented. To solve trade-offs between the noise
attenuation and the detail preservation in image denoising, this technology fuses
the results of the multilevel FIR-median hybrid filter (MFMHF) and the median
filter. A feature-level image fusion scheme is introduced in [84]. In this scheme, the
features are captured by segmenting source images, and then fusion strategies are
implemented according to the contributions of the related features on the images.

In summary, no matter what kind of image fusion schemes, the main idea of
these fusion schemes is to preserve the detailed information and eliminate the noise
of images. In this chapter, a new fusing algorithm based on two filtered images,
hidden Markov tree based wavelets (detail preservation) and type-2 fuzzy logic
system based undecimated wavelets (noise attenuation), is proposed. The image
fusion scheme is based on a fuzzy neural network (FNN), and a modified genetic
algorithm is applied to optimize the parameter values of the FNN.

First, this chapter briefly introduces image fusion, fuzzy neural network, and
genetic algorithm. It then discusses the proposed FNN algorithm.

4.1 Brief Introduction to Image Fusion

The goal of image fusion is to produce a single image from a set of input images.
The fused image should have more complete information which is more useful for
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human or machine perception. It has two main advantages: improving reliability
(by redundant information) and improving capability (by complementary infor-
mation) without introducing artifacts or inconsistencies which will distract human
observers or the following processing. The second advantage is very useful for image
denoising since some wavelet transform based denoising algorithms cause artifacts
while removing the noise.

4.2 Brief Introduction to Artificial Neural Net-

works

An artificial Neural Network (ANN) is a computing tool of artificial intelligence
(AI) (others include fuzzy logic, genetic algorithms, and expert systems). “An
ANN is a massively parallel distributed processor that stores experimental knowl-
edge, and this knowledge is acquired by a learning process and is stored in the form
of parameters of the ANN” [34]. It has the properties of a parallel distributed ar-
chitecture, learning and generalizing, fault tolerance, nonlinearity, and adaptivity.
The learning process in ANNs can be unsupervised or supervised. In an unsuper-
vised learning process, an ANN extracts the features from the input data based
on a predetermined performance measurement. In supervised learning, an ANN is
fed with the input patterns and the desired output patterns. The parameters of
the ANN are adapted such that an input pattern results in the desired pattern at
the output of the ANN [30]. The neural network built in the study is based on
supervised learning.

4.2.1 Structure of ANNs

Similar to the structure of the brain, ANNs also consist of “neurons” and “connec-
tors”. Several architectures of ANNs have been developed, and generally they all
have the same components. In a feed-forward ANN, neurons are aligned in rows,
called layers. Each neuron in a layer is connected to all neurons of the preceding
and succeeding layer [30].

Artificial neural networks can be classified according to the structure that they
exhibit. The popular neural networks are: feed forward neural network, radial
basis function (RBF) network, Kohonen self-organizing network, and Hopfield net-
work [34].

Figure 4.1 represents the structure of a multi-layered feed forward network.
The neurons in this ANN model are grouped in layers which are connected to the
direction of the passing signal (from left to right in this case). There are no lateral
connections within each layer and also no feed backward connections within the
network. The best-known ANN of this type is the perceptron network [34], which
is the structure of the neural network applied to this thesis.
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Figure 4.1: Structure of a multi-layered feed forward network [30].

Since ANNs are nonlinear, applying neural networks in modeling nonlinear sys-
tems has received extensive attention in the last several decades. Due to the excel-
lent performance of ANNs in modeling nonlinear relationship among a large number
of variables, interests in ANNs among researchers has been growing for many years.

In the past decade, most applications of neural networks were based on the
back propagation network (BP) algorithm that uses the gradient-descent method
to minimize an error function. The BP algorithm is more suitable than an analytical
approach for solving the problems which need to predict the output of a complex and
nonlinear physical system to its inputs [34]. Since the generalization capability of
BP neural networks is low for solving highly nonlinear function mapping problems,
the BP algorithm has been considerably improved during the last few years [38, 72].

4.2.2 Back Propagation Learning Algorithm (BPL)

The following is the BP algorithm which is applied to the fuzzy neural network
(FNN) in this thesis. The seven steps involved in the back propagation learning
algorithm of a given neural network are briefly given below, for details, please refer
to [34]:

• Step 1: Initialization

The weights and thresholds are initialized to preset values or small random
values.

• Step 2: Data Selection

An appropriate data set is selected for the training of the network. The data
set should include input(s) and output(s) to the network which should cover
the whole horizontal data space. Assume (x(k), t(k)) are the input-output
pair of vectors used for training of the neural network.
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• Step 3: Forward Propagation

For any iteration k, forward the kth input from the input layer and propagate
it all the way through the network to the output layer. Calculate tot

(l)
i and

o
(l)
i = f(tot

(l)
i ) for all the neurons in all layers.

tot
(l)
i : the sum of all signals reaching node (i) at hidden layer (l) coming from

previous layer (l − 1).

o
(l)
i : the output of the jth neuron at layer (l−1) ( the one located just before

layer l).

• Step 4: Error Calculation

Update the total error value by using E = E+E(k) and calculate the gradient
δLi for the neurons of the output layer L by using the following equation,

δ
(L)
i = (ti − o(L)

i )(f ′(tot
(L)
i )) for l ≺ L (4.1)

• Step 5: Back propagation

Update the weights according to,

∆w
(l)
ij = ηδ

(l−1)
i o

(l−1)
j for l ≺ L

using equation 4.1, and proceeding backward using,

δ
(l)
i = f ′(tot

(l)
i )

nl∑
p=1

δ(l+1)
p w

(l+1)
pi for l ≺ L

• Step 6: Epoch Training

Repeat the whole process starting from step 2 until all training data are
passed through the process once. One epoch training is completed once all
exemplars (training data) have been used.

• Step 7: Error validation

Cumulative error E in the output layer is checked with the maximum tolerable
error Emax. The network is said to be trained if E < Emax; otherwise the
training process should continue for another epoch, and the process is repeated
till the error condition: E < Emax is satisfied.

4.3 Fuzzy Neural Networks

As discussed in Chapter 3, section 3.2, a fuzzy model provides a mechanism to
represent and manipulate uncertainty within an image. Section 4.2 shows that an

40



ANN models a nonlinear system whose performance can be measured by efficiency
and accuracy [34]. Therefore, both a FLS and an ANN are a powerful computing
tool in AI.

However, both of these soft computing tools have some limitations. For instance,
in a fuzzy logic system, a set of simple “if-then” rules usually represent behaviors
of a given system. However, these rules are unable to tackle knowledge stored
in the form of numerical data. Furthermore, the extraction of “if-then” rules is
very tedious or even impossible to attain for the data sets with large numbers of
patterns. The problem becomes more challenging when the knowledge about a
system is stored in both forms: linguistic (fuzzy sets) and numerical (data sets).
On the other hand, neural networks are unable to explicitly represent knowledge.
For instance, it is difficult for a neural network to explicitly quantize the meaning
of weights among the nodes once it has been trained. In addition, it is hard to
incorporate additional knowledge into the system without retraining the neural
network. It is even more difficult to extract the representation of knowledge from
the linguistic data patterns [34].

To overcome the limitations of both fuzzy and neural systems, researchers have
proposed incorporating fuzzy logic reasoning within a learning architecture of neu-
ral networks [74]. A lot of research has tackled the issues of constructing neural
networks using fuzzy neurons. The integration of fuzzy logic systems with neural
networks reduces the limitations of fuzzy systems in terms of lack of learning while
strengthening the neural network features in terms of explicit knowledge represen-
tation.

4.3.1 Architecture of Proposed Fuzzy Neural Network

In this study, a Fuzzy Neural Network (FNN) is built for fusing the filtered images.
The FNN architecture is a standard back-propagation (BP) neural network with
fuzzy sets applied to the input layer. A fuzzy layer is added between the input
layer and the hidden layer of the BP network to represent linguistic uncertainty
of being fused images. The BP network is used to train the FNN to get optimal
fusing results. The structure of the proposed FNN is illustrated in Figure 4.2.

The proposed FNN has four layers inspired by [81], the input layer, the fuzzy
layer, the hidden layer, and the output layer. In the input layer there are two
neurons i1 and i2. i1 and i2 are matrices which represent the intensity value of each
pixel within the input images.
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Figure 4.2: The structure of the proposed FNN

4.3.2 Fuzzy Membership Function of Each Neuron

Each neuron of the input layer is mapped to six neurons with the membership
function defined as follows,

Ijk =
1

1 + exp(− ij−mk
sk

)
when k = 1, 2 j = 1, 2 (4.2)

Ijk = exp

(
−
(
ij −mk

sk

)2
)

when k = 3, 4 j = 1, 2 (4.3)

Ijk = 1− 1

1 + exp(− ij−mk
sk

)
when k = 5, 6 j = 1, 2 (4.4)

where ij is the jth input neuron, Ijk is the result of the kth fuzzy neuron fusing
the number jth input neuron. mk and the sk are the parameters of the FNN which
will be optimized by the Genetic Algorithm (GA).

4.4 Brief Introduction to Genetic Algorithm

The least squares based optimization of a back propagation network can be trapped
in a local minimum of a nonlinear objective function because it is derivative based.
Genetic algorithms (GAs) are derivative-free, stochastic optimization methods, and
therefore are less likely to get trapped [34].

Actually, GAs are general purpose search algorithms. A genetic algorithm likes
mimics the evolution of populations. First, different possible solutions to a problem
are generated. They are tested for their performance, that is, how good a solution
is in terms of a cost function. A fraction of the good solutions is selected, and the
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Figure 4.3: Fuzzy Membership functions of fuzzy neurons. (a) Fuzzy membership
function 4.2. (b) Fuzzy membership function 4.3. (c) Fuzzy membership func-
tion 4.4
.

others are eliminated (survival of the fittest). Then the selected solutions undergo
the processes of reproduction, crossover, and mutation to create a new generation
of possible solutions, which is expected to perform better than the previous gen-
eration. Finally, production and evaluation of new generations is repeated until
convergence. Such an algorithm searches for a solution from a broad spectrum of
possible solutions, rather than where the results would normally be expected [30].
The robust part of GAs is their ability to exploit the information accumulated
about an initially unknown search space in order to bias subsequent searches into
useful subspaces. The key feature of GAs is offering a valid approach to problems
requiring effective search techniques, especially in large, complex, and unknown
search spaces. The penalty is the high computational cost.

In this study, a modified GA is used to optimize the parameters of the fuzzy
neural network created in this thesis.

4.4.1 Procedures for Implementing the Genetic Algorithm

The brief introduction of the GA implementing procedure is listed as follows. It
is modified from [34] for optimization of the parameters of the FNN employed in
the proposed algorithm. The cost function, which is used to test the solutions
generated in each iteration, is replaced by the FNN introduced in section 4.3.

• Step 1: initialize the variables which the GA needs, such as population
size and the mutation rate, and the initial population ( a set of solutions
represented by chromosomes. ).

• Step 2: perform the following steps until the redefined condition is achieved:

– evaluate the FNN for each chromosome

– select a new generation
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– calculate the total fitness of the population

– calculate the probability of selection for each chromosome

– calculate a cumulative probability for each chromosome

– generate a random float number r ∈ [0, 1]

– make sure that r is located in between [0, 1]

– apply genetic operators (crossover, mutation)

– choose the new offspring as the current population

• Step 3: Go back to step 2 if the optimization requirement is not attained

The process of implementing this GA is summarized in the flowchart diagram
(see Figure 4.4). For the detailed information about the search process, please
refer to [27].

4.4.2 Flowchart of GA

The flowchart of the modified GA is shown in Figure 4.4. In the flowchart, training
FNN replaces the cost function which is used in common GAs.

4.5 Summary

This chapter has investigated the possibilities of exploiting soft computing tools,
FNN and GA, to improve the performance of noise reduction in images. There are
three objectives:

First, a neural network is designed for fusing two filtered images. With the
purpose of achieving a better result, a fuzzy layer is added between the input layer
and the hidden layer of the neural network.

Second, a modified genetic algorithm is applied the to find optimal parameters
for this fuzzy neural network.

Third, a better result by fusing filtered images to make a trade-off between edge
preservation and noise suppression is expected.

The performance of this proposed algorithm, GA-FNN, will be demonstrated
and discussed in Chapter 5.
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Figure 4.4: The data flowchart of the genetic algorithm modified from [27].
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Chapter 5

Performance of Proposed
Algorithms

Complete evaluation of the performance of an algorithm is challenging. Generally,
it includes the quality of denoised images, computational cost, and universality of
the denoising algorithms. As discussed in Chapter 2, there are many methods to
assess the quality of denoised images. However, there is no single method which
assesses the quality of denoised images fully and precisely. Some are objective
methods which exploit mathematics to assess the quality of images; some are based
on the Human Vision System (HVS), which attempt to assess the image quality
subjectively with objective numbers. However, since the HVS is highly subjective,
it is hard to represent with objective numbers. So far there has been no HVS model
which describes the real HVS precisely.

In this study, both mathematical and HVS based methods, such as MSE, PSNR,
image quality index (IQI) and information theoretic criterion (ITC) are exploited.
Although those methods can not provide a full and complete assessment of the
denoised image quality, they are sufficient for comparing the denoising results with
other denoising approaches. In this thesis, traditional denoising methods, such as
median filter, and the state of the art methods, such as VisuShrinkage (VisuS)
with soft thresholding [18, 19, 20], BayesShrinkage (BayesS) [11, 59] and Type-
1 FuzzyShrinkage (T1 FShrink) [62], Hidden Markov Tree (HMT), are used to
compare with the proposed algorithms, Type-2 Fuzzy Shrink (T2 FShrink) and
GA based FNN (GA-FNN). In addition, the proposed algorithms are also evaluated
from different points of view, such as the computational cost and universality, in
order to get a full and complete evaluation of the denoising performance.

5.1 Test Image Selection

As mentioned in Chapter 1, in this study, only natural images are involved. The
purpose of choosing images for testing is to investigate the performance of different
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denoising approaches—-how they remove the noise while preserving the detailed
information, such as edges and lines, of these images. In order to achieve a thorough
evaluation of the proposed algorithms, a set of standard test images are chosen from
a popular image database, the USC-SIPI Image Database (University of Southern
California). Those images are digital image files used across different institutions to
test image denoising algorithms. Therefore, different algorithms can be compared
using the same standard test images. The test images used in this study are chosen
from Volume 3: Miscellaneous. For example, image lena, Baboon, and etc., are
selected for testing the algorithms. These images are listed below in Figure 5.1.

5.2 Image Quality Assessment

To show the results of different approaches and compare the quality of filtered
images, different kinds of noise were added to the test images. The first experiment
was done only on Gaussian noise, and the second experiment was on a mixed noise
model with Gaussian and impulsive noise. All simulations were implemented with
the computer language of MATLAB on a Pentium IV personal computer (1.6 GHz,
512MB).

5.2.1 Image Quality Assessment for Pure Gaussian Noise

In this section, the results of the test images distorted by pure Gaussian noise are
demonstrated and discussed.

• Test Process

In this experiment, Gaussian Noise with variance values ranging from 0.01
to 0.1 are added to the test images shown in Figure 5.1. To obtain a thor-
ough evaluation of the proposed algorithms, comparisons are made among (1)
traditional filter, (2) well-known wavelet-based algorithms, and (3) recently
developed fuzzy shrinkage method. More precisely, the algorithms selected
for comparison are,

1. Traditional Filter Median filter

2. Wavelet-Based Algorithms VisuShrinkage(VisuShrink) [18, 19, 20].
BayesShrinkage (BayesShrink) [11, 59]. Hidden Markov Tree(HMT) al-
gorithm [23].

3. Fuzzy Set Based Algorithm FuzzyShrinkage (T1 FShrink) [62]
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(a) Test Image “lena” (b) Test Image “man”

(c) Test Image “house” (d) Test Image “lake”

(e) Test Image “pepper” (f) Test Image “baboon”

Figure 5.1: The Test Images. The first row represents natural images of human
beings, one has relative clear background (left), another has a quite complicated
background (right). The second row indicates a house with many straight lines
(left) and a natural scene (right). In the third row, one image has many curve
edges (left) and another has a lot of fine hair (right) which may be considered as
noise by denoising algorithms. (Courtesy of Signal and Image Processing Institute,
University of Southern California.)
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• Conditions of Implementation In this study, specific test conditions are
set to compare the results.

1. The stationary discrete wavelet transform with Daubechies wavelets (db4),
four resolution scales and neighborhood of size 9 × 9 (K = 4), are em-
ployed to test all algorithms for result comparisons.

2. The feedforward backpropagation network is a built-in “newff” network
in MatLab. The min and max values for all input elements are 0 and 1;
Transfer function of ith layer is “tansig”; Backpropagation network train-
ing function is “trainlm”; Backpropagation weight/bias learning function
is “learngdm”; Performance function is “mse”.

3. The parameters for GA to optimize the parameters of the FNN: popu-
lation size is 20; mutation rate is 0.1; fraction of population kept: 0.5;
maximum number of iterations: 10; cost function is in terms of PSNR.

4. The best parameters are obtained under condition 3. Filtered “baboon”
images by HMT and T1 FShrink algorithms are chosen to achieve the
best parameters.

In order to achieve a clear and full comparison of the performance of all
algorithms, the experiments are carried out for those six test images, see
Figure 5.1, each of them has the size 256× 256.

• Observation and Discussion

1. Results of Image “lena”

In Figure 5.2, it can be observed that median, VisuShrink and BayesShrink
filters preserve the edges in “lena” but do not remove noise completely.
T1 FShrink and HMT do better job than the former three algorithms.
However, there are some artifacts in the filtered image of T1 FShrink al-
gorithm. This proves the statement (Refer to Chapter 3) that the prop-
erties of the single scale discrete wavelet transform and the shift variant
of DWT can cause the artifacts. T2 FShrink, solves this problem using
multilevel stationary DWT. But T2 FShrink smooths the edges in im-
ages a little more than HMT and T1 FShrink do. GA-FNN outperforms
all other algorithms. These observations can be viewed in the filtered
edge intensity profile of pure Gaussian noise model, Figure 5.14.

In addition, from the performance of all algorithms assessed by differ-
ent tools (see Figure 5.3), combined with the performance at specific
noise variance values: 0.01, 0.05, 0.1( see Table 5.1, 5.2, 5.3), it can be
concluded that GA-FNN and T2 FShrink algorithms perform the best
among those algorithms in terms of MSE, PSNR, IQI, and ITC at most
of the noise variance values, especially when the noise variance value is
larger.
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(a) Original Image (b) Noisy Image (c) Median Filter

(d) VisuShrink (e) BayesShrink (f) Hidden Markov Tree

(g) T1 FShrink (h) T2 FShrink (i) GA-FNN

Figure 5.2: Results of “lena” with Gaussian noise variance 0.05. From the point
of human vision, median, VisuShrink and BayesShrink filters do not remove noise
completely. T1 FShrink causes some artifacts. T2 FShrink and GA-FNN outper-
forms other algorithms, but T2 FShrink smooths the edges more.
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(a) Result Assessed by MSE (b) Result Assessed by PSNR

(c) Result Assessed by IQI (d) Result Assessed by ITC

Figure 5.3: Performance of removing pure Gaussian noise (image “lena”). It can
be observed that GA-FNN and T2 FShrink algorithms perform the best among
those algorithms in terms of MSE, PSNR, IQI, and ITC, especially when the noise
variance value is larger.
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Table 5.1: Results of Image “lena” with Gaussian noise variance 0.01

var = 0.01 MSE PSNR IQI ITC

Noisy 0.01014 19.9713 0.429 0.1741
Median 0.003462 24.6125 0.543 0.1802
VisuS 0.004033 23.9536 0.536 0.1982
BayesS 0.003764 24.2513 0.545 0.1963
HMT 0.002371 26.2645 0.6253 0.2034

T1 FShrink 0.002254 26.4923 0.6242 0.2391
T2 FShrink 0.002916 25.9536 0.6219 0.2413
GA-FNN 0.000905 30.4342 0.6463 0.2823

Table 5.2: Results of Image “lena” with Gaussian noise variance 0.05

var = 0.05 MSE PSNR IQI ITC

Noisy 0.05032 12.9823 0.2152 0.06693
Median 0.01073 19.6914 0.3719 0.06732
VisuS 0.01429 18.4291 0.3489 0.07722
BayesS 0.01431 18.4323 0.3492 0.07714
HMT 0.00557 22.5384 0.4574 0.07414

T1 FShrink 0.007523 21.2426 0.4269 0.0935
T2 FShrink 0.005933 22.2725 0.4592 0.09913
GA-FNN 0.002094 26.7926 0.4791 0.1299

Table 5.3: Results of Image “lena” with Gaussian noise variance 0.1

var = 0.1 MSE PSNR IQI ITC

Noisy 0.10051 9.97923 0.1415 0.03953
Median 0.01935 17.1329 0.2899 0.03703
VisuS 0.02675 15.7264 0.2691 0.04583
BayesS 0.02675 15.7263 0.2691 0.04583
HMT 0.00808 20.9242 0.3756 0.04331

T1 FShrink 0.01255 19.0143 0.3441 0.06254
T2 FShrink 0.006743 21.7123 0.4224 0.08239
GA-FNN 0.002728 25.6414 0.4256 0.07012

In above Table 5.1, 5.2, and 5.3, the proposed algorithms and the best
two results in terms of MSE, PSNR, IQI and ITC are underlined.
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2. Results of Image “man”

The performance of all test algorithms at the noise variance 0.05 is illus-
trated in Figure 5.4. Subjectively, these results show that median filter,
VisuShrink and BayesShrink preserve the edges in “man” but do not
remove noise completely. T1 FShrink and HMT do better job but still
causes some artifacts in the filtered image of T1 FShrink. T2 FShrink
solves this problem using multilevel stationary DWT. But T2 FShrink
smooths the edges in the image a little more than HMT does, GA-FNN
algorithm outperforms all the algorithms. All observations can be proved
in the filtered edge intensity profile of pure Gaussian noise model, Fig-
ure 5.14.

Furthermore, from the thorough assessment by diverse mathematical
analysis, see Figure 5.5, and the performance at specific noise vari-
ances:0.01, 0.05, 0.1 illustrated in Table 5.4, 5.5, and 5.6, the following
observations can be attained: GA-FNN performs the best among those
algorithms in terms of MSE, PSNR, and IQI at different noise level; T2
FShrink outperforms other algorithms in terms of ITC at any noise lev-
els, and both of them perform better than other algorithms at higher
noise levels in terms of mathematical assessment tools.

In summary, the proposed algorithms perform the best in natural im-
ages with human beings, especially in images distorted by higher level
Gaussian noise.

3. Results of Image “house”

The performance of all test algorithms at the noise variance 0.05 is illus-
trated in Figure 5.6. From these results, it can be observed that median
filter, VisuShrink and BayesShrink preserve the edges in “house” but do
not remove noise completely. T1 FShrink and HMT do better job than
the former three algorithms, especially HMT obtains a better result at
lower noise level (See Table 5.7). However, T1 FShrink still causes the
artifacts in the image. T2 FShrink, remove more noise but smooths the
edges in “house” image a little more than HMT does, GA-FNN out-
performs the all the algorithms. All observations can be perceived in
Figure 5.14.

From the fully mathematical analysis results in Figure 5.7, and the per-
formance at specific noise variances:0.01, 0.05, 0.1 shown in Table 5.7, 5.8,
and 5.9, the following observations can be attained, GA-FNN performs
the best among those algorithms in terms of MSE, PSNR, IQI, and ITC
at most of noise levels; T2 FShrink outperforms other algorithms in
terms of MSE, PSNR, IQI, and ITC at higher noise levels, but slightly
worse than HMT at lower noise levels in terms of MSE, PSNR, and IQI,
see Figure 5.7.
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(a) Original Image (b) Noisy Image (c) Median Filter

(d) VisuShrink (e) BayesShrink (f) Hidden Markov Tree

(g) T1 FShrink (h) T2 FShrink (i) GA-FNN

Figure 5.4: Results of “man” with Gaussian noise variance 0.05. From the point
of human vision, median, VisuShrink and BayesShrink filters do not remove noise
completely. T1 FShrink causes some artifacts. T2 FShrink and GA-FNN outper-
forms other algorithms, but T2 FShrink smooths the edges more.
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(a) Result Assessed by MSE (b) Result Assessed by PSNR

(c) Result Assessed by IQI (d) Result Assessed by ITC

Figure 5.5: Performance of removing pure Gaussian noise (image “man”). GA-
FNN performs the best among those algorithms in terms of MSE, PSNR, and IQI
at different noise levels; T2 FShrink outperforms other algorithms in terms of ITC
at different noise levels, and both of them perform better than other algorithms at
higher noise levels in terms of mathematical assessment tools.
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Table 5.4: Results of Image “man” with Gaussian noise variance 0.01

var = 0.01 MSE PSNR IQI ITC

Noisy 0.010057 19.9753 0.5423 0.2780
Median 0.005459 22.6287 0.5639 0.2492
VisuS 0.005836 22.3386 0.5861 0.2981
BayesS 0.004942 23.0614 0.6187 0.2936
HMT 0.003566 24.4776 0.6567 0.2706

T1 FShrink 0.003294 24.8230 0.6708 0.3177
T2 FShrink 0.004643 23.3325 0.6101 0.3296
GA-FNN 0.003380 24.7110 0.6621 0.2841

Table 5.5: Results of Image “man” with Gaussian noise variance 0.05

var = 0.05 MSE PSNR IQI ITC

Noisy 0.05019 12.9938 0.2657 0.1250
Median 0.01261 18.9933 0.3905 0.1221
VisuS 0.01606 17.9423 0.3858 0.1395
BayesS 0.01601 17.9565 0.3872 0.1393
HMT 0.007678 21.1476 0.4656 0.1154

T1 FShrink 0.009229 20.3487 0.4555 0.1564
T2 FShrink 0.008123 20.9026 0.4214 0.1785

GA-FNN 0.006964 21.5715 0.4718 0.1198

Table 5.6: Results of Image “man” with Gaussian noise variance 0.1

var = 0.1 MSE PSNR IQI ITC

Noisy 0.09979 10.0091 0.1722 0.07251
Median 0.02126 16.7235 0.3064 0.07014
VisuS 0.02887 15.3955 0.2882 0.08314
BayesS 0.02888 15.3947 0.2884 0.08304
HMT 0.01009 19.9597 0.3859 0.04885

T1 FShrink 0.01584 18.0029 0.3512 0.06920
T2 FShrink 0.009898 20.0446 0.3448 0.08659

GA-FNN 0.008878 20.5170 0.3944 0.07403

In Table 5.4, 5.5, and 5.6 the proposed algorithms and the best two
results are underlined.
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(a) Original Image (b) Noisy Image (c) Median Filter

(d) VisuShrink (e) BayesShrink (f) Hidden Markov Tree

(g) T1 FShrink (h) T2 FShrink (i) GA-FNN

Figure 5.6: Results of “house” with Gaussian noise variance 0.05. From the point
of human vision, median, VisuShrink and BayesShrink filters do not remove noise
completely. T1 FShrink causes some artifacts. T2 FShrink and GA-FNN outper-
forms other algorithms, but T2 FShrink smooths the edges more.
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(a) Result Assessed by MSE (b) Result Assessed by PSNR

(c) Result Assessed by IQI (d) Result Assessed by ITC

Figure 5.7: Performance of removing pure Gaussian noise (image “house”). GA-
FNN performs the best among those algorithms in terms of MSE, PSNR, IQI, and
ITC at most noise levels; T2 FShrink outperforms other algorithms in terms of
MSE, PSNR, IQI, and ITC at higher noise levels, but slightly worse than HMT at
lower noise levels in terms of MSE, PSNR, and IQI.
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Table 5.7: Results of Image “house” with Gaussian noise variance 0.01

var = 0.01 MSE PSNR IQI ITC

Noisy 0.010108 19.9536 0.2762 0.1911
Median 0.002474 26.0659 0.3473 0.2077
VisuS 0.003186 24.9676 0.3497 0.2289
BayesS 0.003145 25.0243 0.3537 0.2257
HMT 0.001556 28.0804 0.4040 0.2757

T1 FShrink 0.001666 27.7837 0.3991 0.3077
T2 FShrink 0.001844 27.3433 0.3985 0.3173
GA-FNN 0.000900 30.4574 0.4173 0.4075

Table 5.8: Results of Image “house” with Gaussian noise variance 0.05

var = 0.05 MSE PSNR IQI ITC

Noisy 0.05004 13.0065 0.1417 0.07974
Median 0.00955 20.2002 0.2430 0.08610
VisuS 0.01338 18.7339 0.2289 0.09594
BayesS 0.01338 18.7341 0.2290 0.09586
HMT 0.003701 24.3170 0.2926 0.1183

T1 FShrink 0.006211 22.0687 0.2754 0.1322
T2 FShrink 0.003534 2.4518 0.3021 0.1826
GA-FNN 0.002237 2.6504 0.3126 0.1734

Table 5.9: Results of Image “house” with Gaussian noise variance 0.1

var = 0.1 MSE PSNR IQI ITC

Noisy 0.1003 9.98783 0.09261 0.04784
Median 0.0180 17.4358 0.1936 0.05252
VisuS 0.0263 15.7970 0.1769 0.05706
BayesS 0.0263 15.7932 0.1769 0.05695
HMT 0.00532 22.7395 0.2568 0.07964

T1 FShrink 0.01206 19.1867 0.2197 0.08285
T2 FShrink 0.004522 23.4464 0.2640 0.1294
GA-FNN 0.003061 25.1415 0.2662 0.1378

In above Table 5.7, 5.8, and 5.9, the proposed algorithms and the best
two results in terms of MSE, PSNR, IQI and ITC are underlined.
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4. Results of Image “lake”

From the filtered results shown in Figure 5.8, it can be observed that
median filter, VisuShrink and BayesShrink preserve the edges in “lake”
but do not remove noise completely, T1 FShrink and HMT do better job
than the former three algorithms. However, there are also some artifacts
in the filtered image of T1 FShrink algorithm. GA-FNN algorithm per-
forms the best, but T2 FShrink seems to smooth the edges in the image
a little more than HMT does. In the filtered edge intensity profile of
pure Gaussian noise model, Figure 5.14, all observations can be clearly
noticed.

In addition, from the completely image quality assessment in Figure 5.9
and specific mathematical analysis results at the noise variances:0.01,
0.05, 0.1 in Table 5.10, 5.11, and 5.12, the following observations can
be attained: GA-FNN performs the best in terms of MSE, PSNR, and
IQI at different noise levels; T2 FShrink outperforms other algorithms in
terms of ITC at any noise levels; T2 FShrink performs better at higher
noise levels than other algorithms except GA-FNN.

In summary, T2 FShrink and GA-FNN algorithms perform better than
any other algorithms in the natural images with straight lines and com-
plex natural scene in terms of MSE, PSNR, IQI, and ITC.

5. Results of Image “pepper”

From filtered results in Figure 5.10, it can be observed that GA-FNN
and T2 FShrink algorithms perform the better than other algorithms,
and there are also some artifacts in the filtered image of T1 FShrink al-
gorithm. In the intuitive edge intensity profile of filtered images, see
Figure 5.14, it can be perceived that median filter, VisuShrink and
BayesShrink preserve the edges in “pepper” but do not remove noise
completely. T1 FShrink and HMT do better job than the former three
algorithms. T2 FShrink smooths the edges in the image a little more
than T1 FShrink and HMT do. GA-FNN outperforms the best.

Furthermore, from the completely image quality assessment in Figure 5.11
and the mathematical analysis results at selected noise variances: 0.01,
0.05, 0.1 in Table 5.13, 5.14, and 5.15, the following observations can be
attained: GA-FNN performs the best among those algorithms in terms
of PSNR at any noise levels; T2 FShrink outperforms other algorithms
in terms of ITC at any noise levels; and T2 FShrink performs better at
higher noise levels than other algorithms except GA-FNN.
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(a) Original Image (b) Noisy Image (c) Median Filter

(d) VisuShrink (e) BayesShrink (f) Hidden Markov Tree

(g) T1 FShrink (h) T2 FShrink (i) GA-FNN

Figure 5.8: Results of “lake” with Gaussian noise variance 0.05. From the point
of human vision, median, VisuShrink and BayesShrink filters do not remove noise
completely. T1 FShrink causes some artifacts. T2 FShrink and GA-FNN outper-
forms other algorithms, but T2 FShrink smooths the edges more.
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(a) Result Assessed by MSE (b) Result Assessed by PSNR

(c) Result Assessed by IQI (d) Result Assessed by ITC

Figure 5.9: Performance of removing pure Gaussian noise (image “lake”). It can
be observed that GA-FNN performs the best in terms of MSE, PSNR, and IQI
at different noise level; T2 FShrink outperforms other algorithms in terms of ITC
at any noise level; T2 FShrink performs better at higher noise level than other
algorithms except GA-FNN.
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Table 5.10: Results of Image “lake” with Gaussian noise variance 0.01

var = 0.01 MSE PSNR IQI ITC

Noisy 0.010061 19.9734 0.5234 0.2834
Median 0.005413 22.6653 0.5704 0.2401
VisuS 0.005577 22.5363 0.5855 0.3042
BayesS 0.004713 23.2666 0.6069 0.3014
HMT 0.003471 24.5958 0.6496 0.2896

T1 FShrink 0.003253 24.8770 0.6527 0.3352
T2 FShrink 0.004285 23.6801 0.6337 0.3287
GA-FNN 0.002417 2.6167 0.6581 0.3322

Table 5.11: Results of Image “lake” with Gaussian noise variance 0.05

var = 0.05 MSE PSNR IQI ITC

Noisy 0.04989 13.0192 0.2930 0.1287
Median 0.01254 19.0173 0.4255 0.1178
VisuS 0.01574 18.0230 0.4201 0.1435
BayesS 0.01568 18.0456 0.4215 0.1433
HMT 0.00805 20.9434 0.4789 0.1276

T1 FShrink 0.00962 20.1668 0.4632 0.1578
T2 FShrink 0.008684 20.6129 0.4684 0.1793
GA-FNN 0.005646 22.4829 0.4941 0.1448

Table 5.12: Results of Image “lake” with Gaussian noise variance 0.1

var = 0.1 MSE PSNR IQI ITC

Noisy 0.1007 9.96899 0.2014 0.0832
Median 0.0214 16.6934 0.3471 0.0776
VisuS 0.0285 15.4469 0.3344 0.0953
BayesS 0.0286 15.4425 0.3349 0.0950
HMT 0.0111 19.5368 0.4056 0.0825

T1 FShrink 0.0161 17.9293 0.3833 0.1058
T2 FShrink 0.0104 19.8400 0.4105 0.1288
GA-FNN 0.0077 21.1235 0.4172 0.1113

In Table 5.10, 5.11, and 5.12, the proposed algorithms and two best
results are underlined in terms of MSE, PSNR, IQI, and ITC.
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(a) Original Image (b) Noisy Image (c) Median Filter

(d) VisuShrink (e) BayesShrink (f) Hidden Markov Tree

(g) T1 FShrink (h) T2 FShrink (i) GA-FNN

Figure 5.10: Results of “pepper” with Gaussian noise variance 0.05. From the
point of human vision, median, VisuShrink and BayesShrink filters do not remove
noise completely. T1 FShrink causes some artifacts. T2 FShrink and GA-FNN
outperforms other algorithms, but T2 FShrink smooths the edges more.
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(a) Result Assessed by MSE (b) Result Assessed by PSNR

(c) Result Assessed by IQI (d) Result Assessed by ITC

Figure 5.11: Performance of removing pure Gaussian noise (image “pepper”). It
can be observed that GA-FNN performs the best among those algorithms in terms
of PSNR at any noise level; T2 FShrink outperforms other algorithms in terms of
ITC at any noise level; and T2 FShrink performs better at higher noise level than
other algorithms except GA-FNN.
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Table 5.13: Results of Image “pepper” with Gaussian noise variance 0.01

var = 0.01 MSE PSNR IQI ITC

Noisy 0.009899 20.0443 0.4323 0.2913
Median 0.002972 25.2701 0.5831 0.2966
VisuS 0.003730 24.2831 0.5628 0.3316
BayesS 0.003537 24.5138 0.5676 0.3290
HMT 0.002230 26.5173 0.6516 0.3315

T1 FShrink 0.00205 26.8906 0.6485 0.3745
T2 FShrink 0.002202 26.5715 0.6729 0.3990
GA-FNN 0.001477 28.3074 0.6771 0.3747

Table 5.14: Results of Image “pepper” with Gaussian noise variance 0.05

var = 0.05 MSE PSNR IQI ITC

Noisy 0.04960 13.0451 0.2178 0.1393
Median 0.01016 19.9296 0.3917 0.1423
VisuS 0.01375 18.6157 0.3625 0.1600
BayesS 0.01376 18.6140 0.3628 0.1597
HMT 0.00522 22.8248 0.4952 0.1516

T1 FShrink 0.00729 21.3731 0.4475 0.1799
T2 FShrink 0.00501 23.0030 0.5339 0.1987
GA-FNN 0.00362 24.4098 0.5238 0.1920

Table 5.15: Results of Image “pepper” with Gaussian noise variance 0.1

var = 0.1 MSE PSNR IQI ITC

Noisy 0.10059 9.97428 0.1448 0.08402
Median 0.01933 17.1375 0.3057 0.08380
VisuS 0.02686 15.7095 0.2755 0.09753
BayesS 0.02686 15.7088 0.2756 0.09752
HMT 0.00756 21.2157 0.4165 0.08781

T1 FShrink 0.01264 18.9834 0.3624 0.12111
T2 FShrink 0.006144 22.1156 0.4869 0.14654
GA-FNN 0.004810 23.1786 0.4743 0.12913

In Table 5.13, 5.14, and 5.15, the proposed algorithms and two best
results, in terms of MSE, PSNR, IQI, and ITC, are underlined.
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(a) Original Image (b) Noisy Image (c) Median Filter

(d) VisuShrink (e) BayesShrink (f) Hidden Markov Tree

(g) T1 FShrink (h) T2 FShrink (i) GA-FNN

Figure 5.12: Results of “baboon” with Gaussian noise variance 0.05. From the
point of human vision, median, VisuShrink and BayesShrink filters do not remove
noise completely. T1 FShrink causes some artifacts. T2 FShrink and GA-FNN
outperforms other algorithms, but T2 FShrink smooths the edges more.
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(a) Result Assessed by MSE (b) Result Assessed by PSNR

(c) Result Assessed by IQI (d) Result Assessed by ITC

Figure 5.13: Performance of removing pure Gaussian noise (image “baboon”). It
can be observed that GA-FNN performs the best among those algorithms in terms
of MSE and PSNR at at any noise level; T2 FShrink does not perform well in terms
of MSE, PSNR, IQI and ITC.
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Table 5.16: Results of Image “baboon” with Gaussian noise variance 0.01

var = 0.01 MSE PSNR IQI ITC

Noisy 0.009967 20.0142 0.6541 0.2527
Median 0.012862 18.9069 0.4341 0.1775
VisuS 0.011006 19.5835 0.5310 0.2396
BayesS 0.007766 21.0983 0.6407 0.2404
HMT 0.005715 22.4297 0.6650 0.2073

T1 FShrink 0.005683 22.4540 0.6774 0.2434
T2 FShrink 0.01346 21.7085 0.3328 0.2310
GA-FNN 0.004033 23.9434 0.6829 0.2453

Table 5.17: Results of Image “baboon” with Gaussian noise variance 0.05

var = 0.05 MSE PSNR IQI ITC

Noisy 0.04973 13.0334 0.3424 0.1021
Median 0.01968 17.0594 0.3180 0.0825
VisuS 0.02139 16.6987 0.3610 0.1061
BayesS 0.02086 16.8066 0.3771 0.1056
HMT 0.01197 19.2175 0.4191 0.06587

T1 FShrink 0.01555 18.0827 0.2245 0.0861
T2 FShrink 0.01303 18.8511 0.4435 0.1046
GA-FNN 0.008735 20.5875 0.4295 0.07811

Table 5.18: Results of Image “baboon” with Gaussian noise variance 0.1

var = 0.1 MSE PSNR IQI ITC

Noisy 0.10069 9.97015 0.2244 0.05843
Median 0.02845 15.4588 0.2463 0.04836
VisuS 0.03439 14.6358 0.2761 0.06241
BayesS 0.03429 14.6479 0.2802 0.06229
HMT 0.01446 18.3978 0.3440 0.03881

T1 FShrink 0.01916 17.1751 0.3419 0.06302
T2 FShrink 0.01696 17.7058 0.1534 0.04290
GA-FNN 0.01056 19.7631 0.3178 0.02989

In Table 5.16, 5.17, and 5.18, the proposed algorithms and two best
results, in terms of MSE, PSNR, IQI, and ITC, are underlined.
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(a) Original Image (b) Noisy Image (c) Median Filter

(d) VisuShrink (e) BayesShrink (f) Hidden Markov Tree

(g) T1 FShrink (h) T2 FShrink (i) GA-FNN

Figure 5.14: Filtered edge intensity profile of pure Gaussian noise model (noise vari-
ance 0.05). Comparing the proposed T2 FShrink (h) with HMT (f), the proposed
T2 FShrink algorithm smooths the edges more. But the proposed GA-FNN (i)
solves this problem since it combines the characters of HMT (f) and T2 FShrink (h).
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6. Results of Image “baboon”

From the results in Figure 5.12, it can be observed that median fil-
ter, VisuShrink and BayesShrink preserve the edges in “baboon” but
do not remove noise completely. T1 FShrink and HMT perform better
than the former three algorithms. However, T1 FShrink algorithm still
causes some artifacts in the filtered image. T2 FShrink solves this prob-
lem using multilevel stationary DWT. But T2 FShrink blurs the edges
in the image. GA-FNN outperforms the best among those algorithms.
For intuitive observations, see Figure 5.14, the edge intensity profile of
filtered images shows that T2 FShrink algorithm removes much noise
but smooth the edges in images; GA-FNN algorithm performs better
than other algorithms.

Additionally, the full image quality assessment in Figure 5.13 and the
mathematical analysis results at selected noise variances: 0.01, 0.05, 0.1
in Table 5.16, 5.17, and 5.18 indicate that GA-FNN performs the best
among those algorithms in terms of MSE and PSNR at at any noise
level; T2 FShrink does not perform well in terms of MSE, PSNR, IQI
and ITC.

In summary, GA-FNN, T2 FShrink and other algorithms perform worse
when denoising the images with fine hair, such as “baboon” image in
terms of MSE, PSNR, IQI and ITC, especially, T2 FShrink algorithms is
sensitive to this kind of images. The reason is that animal hair is rather
noise-like. It is hard for denoising algorithms to determine whether a
pixel on the image is noisy or hairy. However, GA-FNN and T2 FShrink
algorithms perform better than any other algorithms in the natural im-
ages with curve edges, such as “pepper” image.

5.2.2 Quality Assessment of Images with Mixed Noise

In this section, the performance of all algorithms is evaluated when denoising images
with mixed noise models, such as Gaussian Noise and impulsive noise.

• Test Process

In this experiment, Gaussian noise and impulsive noise, both with variance
values ranging from 0.01 to 0.1, are added to the test images used in pure
Gaussian noise model discussed in Section 5.2.1. In order to obtain a thor-
ough evaluation of the performance, comparisons are made among the same
algorithms used in Section 5.2.1.
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• Conditions of Implementation

All implementation conditions are the same as those in testing pure Gaussian
noise model. For details, please refer to Section 5.2.1.

• Observation and Discussion

1. Results of Image “lena”

Subjectively, the results in Figure 5.15 show that median filter, Vis-
uShrink and BayesShrink preserve the edges in “lena” but do not remove
noise completely. T1 FShrink and HMT perform better than the former
three algorithms. However, T1 FShrink algorithm causes some artifacts
in the filtered image. T2 FShrink solves this problem using multilevel
stationary DWT. But T2 FShrink blurs the edges in the image. GA-FNN
performs the best among those algorithms. For intuitive observations,
see Figure 5.27, the edge intensity profile of filtered images shows that
T2 FShrink algorithm removes much noise but smooths the edges in
images; GA-FNN algorithm performs better than other algorithms.

Additionally, the full image quality assessment in Figure 5.16 and the
mathematical analysis of the mixed noise model at the selected noise
variances: 0.01, 0.05, 0.1 in Table 5.19, 5.20, and 5.21 indicate that T2
FShrink and GA-FNN algorithms outperform other algorithms at any
noise levels in terms of MSE, PSNR, IQI and ITC.

2. Results of Image “man”

Subjectively, the results in Figure 5.17 and Figure 5.27 show that T2
FShrink and GA-FNN algorithms outperform other algorithms. T2
FShrink blurs the edges in the image. T1 FShrink algorithm still causes
artifacts. In the edge intensity profile of filtered images (see Figure 5.27),
the observations can be summarized: median filter, VisuShrink and
BayesShrink, T1 FShrink and HMT do not remove the noise completely;
T2 FShrink removes much noise but smooths the edges of the image;
GA-FNN performs the best.

Furthermore, the full image quality assessment in Figure 5.18 and the
mathematical analysis of the mixed noise model at the selected noise
variances: 0.01, 0.05, 0.1 in Table 5.22, 5.23, and 5.24 demonstrate
that T2 FShrink and GA-FNN outperform other algorithms in terms
of MSE and PSNR at diverse noise variances of the mixed noise. GA-
FNN performs best in terms of IQI. However, in terms of ITC, there is
no algorithm always performs the best at any noise levels.

In summary, T2 FShrink and GA-FNN perform better than other algo-
rithms when denoising the mixed noise model, especially when images
have a stationary background. For example, image “lena”.
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(a) Original Image (b) Noisy Image (c) Median Filter

(d) VisuShrink (e) BayesShrink (f) Hidden Markov Tree

(g) T1 FShrink (h) T2 FShrink (i) GA-FNN

Figure 5.15: Results of “lena” with Gaussian and Impulsive Noise (Both noise
variance are 0.05 ). T2 FShrink and GA-FNN outperforms other algorithms. But
T2 FShrink blurs the edges in the image.
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Table 5.19: Results of Image “lena” with Gaussian and Impulsive Noise (Both
variances are 0.01.)

var = 0.01 MSE PSNR IQI ITC

Noisy 0.01236 19.0790 0.4019 0.1653
Median 0.00354 24.5142 0.5430 0.1773
VisuS 0.00469 23.2872 0.5095 0.1870
BayesS 0.00481 23.1798 0.5115 0.1790
HMT 0.00350 24.5559 0.5549 0.1791

T1 FShrink 0.00401 23.9732 0.5595 0.2095
T2 FShrink 0.00316 25.0025 0.5972 0.2377
GA-FNN 0.00109 29.6154 0.6128 0.2377

Table 5.20: Results of Image “lena” with Gaussian and Impulsive Noise (Both
variances are 0.05.)

var = 0.05 MSE PSNR IQI ITC

Noisy 0.05475 12.6162 0.1935 0.05813
Median 0.01157 19.3685 0.3612 0.06468
VisuS 0.01625 17.8918 0.3181 0.06719
BayesS 0.01635 17.8639 0.3185 0.06652
HMT 0.00816 20.8806 0.3863 0.05528

T1 FShrink 0.01085 19.6446 0.3627 0.07699
T2 FShrink 0.00721 21.4227 0.4226 0.09367
GA-FNN 0.00252 25.9800 0.4468 0.1065

Table 5.21: Results of Image “lena” with Gaussian and Impulsive Noise (Both
variance are 0.1.)

var = 0.1 MSE PSNR IQI ITC

Noisy 0.09421 10.2591 0.1226 0.02190
Median 0.02281 16.4178 0.2654 0.02629
VisuS 0.02780 15.5599 0.2328 0.02509
BayesS 0.02780 15.5594 0.2329 0.02509
HMT 0.01252 19.0248 0.2992 0.01771

T1 FShrink 0.01609 17.9355 0.2756 0.02583
T2 FShrink 0.01070 19.7047 0.3544 0.04416
GA-FNN 0.00363 24.4000 0.3558 0.04198

In Table 5.19, 5.20, and 5.21, the proposed algorithms and two best
results, in terms of MSE, PSNR, IQI, and ITC, are underlined.

74



(a) Result Assessed by MSE (b) Result Assessed by PSNR

(c) Result Assessed by IQI (d) Result Assessed by ITC

Figure 5.16: Performance of removing mixed noise model (image “lena”). T2
FShrink and GA-FNN algorithms outperform other algorithms at any noise level
in terms of MSE, PSNR, IQI and ITC.
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(a) Original Image (b) Noisy Image (c) Median Filter

(d) VisuShrink (e) BayesShrink (f) Hidden Markov Tree

(g) T1 FShrink (h) T2 FShrink (i) GA-FNN

Figure 5.17: Results of “man” with Gaussian and Impulsive Noise (Both noise vari-
ance are 0.05). T2 FShrink and GA-FNN algorithms outperform other algorithms.
T2 FShrink blurs the edges in the image.
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(a) Result Assessed by MSE (b) Result Assessed by PSNR

(c) Result Assessed by IQI (d) Result Assessed by ITC

Figure 5.18: Performance of removing mixed noise model (image “man”). T2
FShrink and GA-FNN outperform other algorithms in terms of MSE and PSNR at
diverse noise variances of the mixed noise. GA-FNN performs best in terms of IQI.
However, in terms of ITC, there is no algorithm always performs the best at any
noise levels.
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Table 5.22: Results of Image “man” with Gaussian and Impulsive Noise (Both
variance are 0.01)

var = 0.01 MSE PSNR IQI ITC

Noisy 0.01201 1.9205 0.5116 0.2485
Median 0.00547 2.2623 0.5616 0.2534
VisuS 0.00652 2.1858 0.5576 0.2686
BayesS 0.00618 2.2091 0.5868 0.2565
HMT 0.00499 23.0176 0.6014 0.2314

T1 FShrink 0.00545 22.6367 0.59881 0.2672
T2 FShrink 0.00510 22.9224 0.5830 0.3009
GA-FNN 0.00386 24.1315 0.6358 0.2710

Table 5.23: Results of Image “man” with Gaussian and Impulsive Noise (Both
variance are 0.05.)

var = 0.05 MSE PSNR IQI ITC

Noisy 0.05432 12.6506 0.2295 0.0910
Median 0.01337 18.7394 0.3773 0.1052
VisuS 0.01922 17.1621 0.3348 0.1009
BayesS 0.01947 17.1059 0.3380 0.0988
HMT 0.01270 18.9625 0.3607 0.0550

T1 FShrink 0.01436 18.4271 0.3660 0.0937
T2 FShrink 0.01073 19.6942 0.3706 0.1064
GA-FNN 0.00853 20.6922 0.4160 0.1113

Table 5.24: Results of Image “man” with Gaussian and Impulsive Noise (Both
variance are 0.1.)

var = 0.1 MSE PSNR IQI ITC

Noisy 0.09380 10.2778 0.1459 0.04277
Median 0.02348 16.2920 0.2838 0.06396
VisuS 0.03135 15.0376 0.2436 0.04740
BayesS 0.03135 15.0376 0.2437 0.04741
HMT 0.01726 17.6304 0.2251 0.00731

T1 FShrink 0.02034 16.9165 0.2768 0.03049
T2 FShrink 0.01700 1.7697 0.2828 0.01410
GA-FNN 0.01083 19.6524 0.3287 0.03445

In Table 5.22, 5.23, and 5.24, the proposed algorithms and two best
results, in terms of MSE, PSNR, IQI, and ITC, are underlined.
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3. Results of Image “house”

In Figure 5.19, it can be observed that T2 FShrink and GA-FNN algo-
rithms outperform other algorithms in removing the mixed noise, but
T2 FShrink blurs the edges in the image more. T1 FShrink algorithm
still causes artifacts. In the edge intensity profile of filtered images (see
Figure 5.27), the observations can be summarized: median filter, Vis-
uShrink and BayesShrink, T1 FShrink and HMT do not remove the noise
completely; T2 FShrink removes much noise but smooths the edges of
the image; GA-FNN performs the best.

In addition, the thorough image quality assessment in Figure 5.20 and
the mathematical analysis of the mixed noise model at the selected noise
variances: 0.01, 0.05, 0.1 in Table 5.25, 5.26, and 5.27 show that T2
FShrink and GA-FNN algorithms outperform other algorithms in terms
of MSE, PSNR, IQI, and ITC at most noise levels.

4. Results of Image “lake”

Subjectively, the results in Figure 5.21 show that T1 FShrink algorithm
still causes artifacts. T2 FShrink and GA-FNN algorithms outperform
other algorithms in removing the mixed noise, but T2 FShrink blurs
the edges in the image more. The observations from the edge intensity
profile of filtered images, see Figure 5.27 can be perceived: median filter,
VisuShrink and BayesShrink, T1 FShrink and HMT do not remove the
noise completely; T2 FShrink removes much noise but smooths the edges
of the image; GA-FNN performs the best.

Additionally, the complete image quality assessment in Figure 5.22 and
the mathematical analysis of the mixed noise model at the selected noise
variances: 0.01, 0.05, 0.1 in Table 5.28, 5.29, and 5.30 indicate that T2
FShrink and GA-FNN algorithms outperform other algorithms in terms
of MSE and PSNR and perform better than other algorithms when the
mixed noise level is lower in terms of IQI and ITC.

In summary, through the analysis from different points of view, in terms
of four assessment tools, T2 FShrink and GA-FNN algorithms perform
better than other algorithms when they remove the mixed noise from the
natural scene images with simple background, such as “house” image.
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(a) Original Image (b) Noisy Image (c) Median Filter

(d) VisuShrink (e) BayesShrink (f) Hidden Markov Tree

(g) T1 FShrink (h) T2 FShrink (i) GA-FNN

Figure 5.19: Results of “house” with Gaussian and Impulsive Noise (Both noise
variance are 0.05). T2 FShrink and GA-FNN algorithms outperform other algo-
rithms in removing the mixed noise, but T2 FShrink blurs the edges in the image
more.
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(a) Result Assessed by MSE (b) Result Assessed by PSNR

(c) Result Assessed by IQI (d) Result Assessed by ITC

Figure 5.20: Performance of removing mixed noise model (image “house”). T2
FShrink and GA-FNN algorithms outperform other algorithms in terms of MSE,
PSNR, IQI, and ITC at most noise levels.
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Table 5.25: Results of Image “house” with Gaussian and Impulsive Noise (Both
variance are 0.01.)

var = 0.01 MSE PSNR IQI ITC

Noisy 0.01254 19.0184 0.2610 0.1672
Median 0.00251 25.9954 0.3478 0.2157
VisuS 0.00382 24.1797 0.3354 0.2008
BayesS 0.00419 23.7811 0.3370 0.1879
HMT 0.00269 25.7081 0.3586 0.2157

T1 FShrink 0.00338 24.7152 0.3636 0.2370
T2 FShrink 0.00202 26.9369 0.3854 0.2819
GA-FNN 0.00106 29.7557 0.4000 0.3895

Table 5.26: Results of Image “house” with Gaussian and Impulsive Noise (Both
variance are 0.05.)

var = 0.05 MSE PSNR IQI ITC

Noisy 0.05441 12.6433 0.1254 0.06002
Median 0.01050 19.7891 0.2329 0.08042
VisuS 0.01481 18.2937 0.2104 0.07191
BayesS 0.01488 18.2735 0.2104 0.07171
HMT 0.00619 22.0831 0.2490 0.07228

T1 FShrink 0.00867 20.6217 0.2417 0.09379
T2 FShrink 0.00451 23.4607 0.2733 0.1485
GA-FNN 0.00277 25.5760 0.2813 0.1534

Table 5.27: Results of Image “house” with Gaussian and Impulsive Noise (Both
variance are 0.1)

var = 0.1 MSE PSNR IQI ITC

Noisy 0.09409 10.2647 0.0808 0.03276
Median 0.02215 16.5451 0.1763 0.04547
VisuS 0.02653 15.7610 0.1576 0.03981
BayesS 0.02654 15.7604 0.1576 0.03978
HMT 0.00889 20.2470 0.1979 0.02854

T1 FShrink 0.01300 18.8602 0.1895 0.04789
T2 FShrink 0.00945 20.5127 0.1469 0.04867
GA-FNN 0.00391 24.0778 0.2270 0.10171

In Table 5.25, 5.26, and 5.27, the proposed algorithms and two best
results, in terms of MSE, PSNR, IQI, and ITC, are underlined.
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(a) Original Image (b) Noisy Image (c) Median Filter

(d) VisuShrink (e) BayesShrink (f) Hidden Markov Tree

(g) T1 FShrink (h) T2 FShrink (i) GA-FNN

Figure 5.21: Results of “lake” with Gaussian and Impulsive Noise (Both noise vari-
ance are 0.05). T2 FShrink and GA-FNN algorithms outperform other algorithms.
T2 FShrink blurs the edges in the image.
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(a) Result Assessed by MSE (b) Result Assessed by PSNR

(c) Result Assessed by IQI (d) Result Assessed by ITC

Figure 5.22: Performance of removing mixed noise model (image “lake”). T2
FShrink and GA-FNN algorithms outperform other algorithms in terms of MSE
and PSNR and perform better than other algorithms when the mixed noise level is
lower in terms of IQI and ITC.
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Table 5.28: Results of Image “lake” with Gaussian and Impulsive Noise (Both
variance are 0.01.)

var = 0.01 MSE PSNR IQI ITC

Noisy 0.01236 19.0785 0.4972 0.2512
Median 0.00540 22.6743 0.5661 0.2412
VisuS 0.00621 22.0681 0.5627 0.2692
BayesS 0.00583 22.3445 0.5786 0.2602
HMT 0.00466 23.3143 0.6001 0.2616

T1 FShrink 0.00518 22.8548 0.6020 0.2808
T2 FShrink 0.00459 23.3790 0.6095 0.3072
GA-FNN 0.00282 25.5039 0.6372 0.2967

Table 5.29: Results of Image “lake” with Gaussian and Impulsive Noise (Both
variance are 0.05.)

var = 0.05 MSE PSNR IQI ITC

Noisy 0.05156 12.8771 0.2667 0.0998
Median 0.01366 18.6464 0.4057 0.1137
VisuS 0.01719 17.6476 0.3863 0.1120
BayesS 0.01736 17.6045 0.3880 0.1102
HMT 0.01175 19.2986 0.4048 0.0761

T1 FShrink 0.01287 18.9056 0.4031 0.1095
T2 FShrink 0.01098 19.5941 0.4078 0.1317
GA-FNN 0.00676 21.6988 0.4553 0.1387

Table 5.30: Results of Image “lake” with Gaussian and Impulsive Noise (Both
variance are 0.1.)

var = 0.1 MSE PSNR IQI ITC

Noisy 0.09113 10.4034 0.1791 0.05237
Median 0.02360 16.2712 0.3235 0.07906
VisuS 0.03024 15.1942 0.2937 0.05918
BayesS 0.03032 15.1829 0.2939 0.05899
HMT 0.01832 17.3716 0.3020 0.01856

T1 FShrink 0.02132 16.7129 0.3092 0.04870
T2 FShrink 0.01613 17.9225 0.3238 0.06195
GA-FNN 0.00926 20.3330 0.3572 0.07822

In Table 5.28, 5.29, and 5.30, the proposed algorithms and two best
results, in terms of MSE, PSNR, IQI, and ITC, are underlined.
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5. Results of Image “pepper”

In Figure 5.23, it can be observed that T1 FShrink algorithm still causes
artifacts. T2 FShrink and GA-FNN algorithms outperform other algo-
rithms in removing the mixed noise, but T2 FShrink blurs the edges
in the image more. The observations from the edge intensity profile
of filtered images, see Figure 5.27, can be perceived: median filter, Vis-
uShrink and BayesShrink, T1 FShrink and HMT do not remove the noise
completely; T2 FShrink removes much noise but smooths the edges of
the image; GA-FNN performs the best.

Furthermore, the full image quality assessment in Figure 5.24 and the
mathematical analysis of the mixed noise model at the selected noise
variances: 0.01, 0.05, 0.1 in Table 5.31, 5.32, and 5.33 show that T2
FShrink and GA-FNN algorithms outperform other algorithms at any
noise levels in terms of MSE, PSNR, and IQI, and also perform better
at low noise levels in terms of ITC.

6. Results of Image “baboon”

In Figure 5.25, it can be noticed that T1 FShrink algorithm still causes
artifacts. T2 FShrink and GA-FNN algorithms outperform other algo-
rithms in removing the mixed noise, but T2 FShrink blurs the edges in
the image more. From the edge intensity profile of filtered images, see
Figure 5.27, the observations can be perceived: median filter, VisuShrink
and BayesShrink, T1 FShrink and HMT do not remove the noise com-
pletely; T2 FShrink removes much noise but smooths the edges of the
image; GA-FNN performs the best.

In addition, the thorough image quality assessment in Figure 5.26 and
the mathematical analysis of the mixed noise model at the selected noise
variances: 0.01, 0.05, 0.1 in Table 5.34, 5.35, and 5.36 indicate that GA-
FNN outperforms other algorithms in terms of MSE and PSNR. T2
FShrink performs better than other algorithms at low noise levels in
terms of ITC.

In summary, no algorithm performs better than others in terms of four
assessment tools when denoising the images with fine hair, such as “ba-
boon” image. T2 FShrink algorithm is sensitive to this kind of images.
The reason is that animal hair is rather noise-like. It is hard for de-
noising algorithms to determine whether a pixel on the image is noisy
or hairy. However, GA-FNN and T2 FShrink algorithms perform better
than any other algorithms in the natural images with curve edges, such
as “pepper” image.
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(a) Original Image (b) Noisy Image (c) Median Filter

(d) VisuShrink (e) BayesShrink (f) Hidden Markov Tree

(g) T1 FShrink (h) T2 FShrink (i) GA-FNN

Figure 5.23: Results of “pepper” with Gaussian and Impulsive Noise (Both noise
variance are 0.05). T2 FShrink and GA-FNN algorithms outperform other algo-
rithms in removing the mixed noise, but T2 FShrink blurs the edges in the image
more.
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(a) Result Assessed by MSE (b) Result Assessed by PSNR

(c) Result Assessed by IQI (d) Result Assessed by ITC

Figure 5.24: Performance of removing mixed noise model(image “pepper”). T2
FShrink and GA-FNN algorithms outperform other algorithms at any noise levels
in terms of MSE, PSNR, and IQI, and also perform better at low noise levels in
terms of ITC.
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Table 5.31: Results of Image “pepper” with Gaussian and Impulsive Noise (Both
variance are 0.01.)

var = 0.01 MSE PSNR IQI ITC

Noisy 0.01235 19.0840 0.4060 0.2607
Median 0.00299 25.2429 0.5885 0.2895
VisuS 0.00433 23.6325 0.5393 0.2979
BayesS 0.00465 23.3228 0.5338 0.2846
HMT 0.00346 24.6077 0.5778 0.2800

T1 FShrink 0.00395 24.0386 0.5846 0.3130
T2 FShrink 0.00247 2.6070 0.6497 0.3523
GA-FNN 0.00179 2.7448 0.6477 0.3568

Table 5.32: Results of Image “pepper” with Gaussian and Impulsive Noise (Both
variance are 0.05.)

var = 0.05 MSE PSNR IQI ITC

Noisy 0.05439 12.6450 0.1921 0.1120
Median 0.01127 19.4814 0.3797 0.1406
VisuS 0.01577 18.0226 0.3297 0.1315
BayesS 0.01585 17.9997 0.3295 0.1306
HMT 0.00835 20.7836 0.4059 0.0878

T1 FShrink 0.01036 19.8441 0.3834 0.1329
T2 FShrink 0.00658 21.8148 0.4852 0.1628
GA-FNN 0.00447 23.4941 0.4789 0.1522

Table 5.33: Results of Image “pepper” with Gaussian and Impulsive Noise (Both
variance are 0.1.)

var = 0.1 MSE PSNR IQI ITC

Noisy 0.09380 10.2777 0.1234 0.05393
Median 0.02271 16.4374 0.2815 0.07856
VisuS 0.02757 15.5951 0.2423 0.06308
BayesS 0.02758 15.5933 0.2423 0.06305
HMT 0.01264 18.9821 0.3397 0.02029

T1 FShrink 0.01655 17.8122 0.2936 0.05375
T2 FShrink 0.01258 19.0005 0.3554 0.02705
GA-FNN 0.00688 21.6212 0.3707 0.04852

In Table 5.31, 5.32, and 5.33, the proposed algorithms and two best results, in
terms of MSE, PSNR, IQI, and ITC, are underlined.
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(a) Original Image (b) Noisy Image (c) Median Filter

(d) VisuShrink (e) BayesShrink (f) Hidden Markov Tree

(g) T1 FShrink (h) T2 FShrink (i) GA-FNN

Figure 5.25: Results of “baboon” with Gaussian and Impulsive Noise (Both noise
variance are 0.05). T2 FShrink and GA-FNN algorithms outperform other algo-
rithms in removing the mixed noise, but T2 FShrink blurs the edges in the image
more.
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(a) Result Assessed by MSE (b) Result Assessed by PSNR

(c) Result Assessed by IQI (d) Result Assessed by ITC

Figure 5.26: Performance of removing mixed noise model (image “baboon”). GA-
FNN outperforms other algorithms in terms of MSE and PSNR. T2 FShrink per-
forms better than other algorithms at low noise levels in terms of ITC.
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Table 5.34: Results of Image “baboon” with Gaussian and Impulsive Noise (Both
variance are 0.01.)

var = 0.01 MSE PSNR IQI ITC

Noisy 0.01255 19.0138 0.6187 0.2259
Median 0.01304 18.8472 0.4328 0.1844
VisuS 0.01173 19.3088 0.5118 0.2191
BayesS 0.00892 20.4982 0.6087 0.2165
HMT 0.00659 21.8072 0.6366 0.1770

T1 FShrink 0.01350 18.6967 0.3420 0.2398
T2 FShrink 0.00719 21.4298 0.6234 0.2125
GA-FNN 0.00458 23.3826 0.6520 0.2218

Table 5.35: Results of Image “baboon” with Gaussian and Impulsive Noise (Both
variance are 0.05.)

var = 0.05 MSE PSNR IQI ITC

Noisy 0.05542 12.5637 0.2973 0.08739
Median 0.02126 16.7238 0.2911 0.08189
VisuS 0.02304 16.3752 0.3180 0.09320
BayesS 0.02273 16.4339 0.3288 0.09259
HMT 0.01388 18.5768 0.3554 0.05580

T1 FShrink 0.01714 17.6598 0.1447 0.04562
T2 FShrink 0.01551 18.0940 0.3779 0.08256
GA-FNN 0.00979 20.0924 0.3706 0.08093

Table 5.36: Results of Image “baboon” with Gaussian and Impulsive Noise (Both
variance are 0.1.)

var = 0.1 MSE PSNR IQI ITC

Noisy 0.09468 10.2372 0.1916 0.04619
Median 0.03283 14.8372 0.2217 0.05036
VisuS 0.03403 14.6816 0.2364 0.04950
BayesS 0.03402 14.6821 0.2365 0.04951
HMT 0.01818 17.4023 0.2116 0.01168

T1 FShrink 0.02070 16.8399 0.2646 0.03780
T2 FShrink 0.01884 17.2482 0.1274 0.01866
GA-FNN 0.01184 19.2652 0.2595 0.01318

In Table 5.34, 5.35, and 5.36, the proposed algorithms and two best results, in
terms of MSE, PSNR, IQI, and ITC, are underlined.
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(a) Original Image (b) Noisy Image (c) Median Filter

(d) VisuShrink (e) BayesShrink (f) Hidden Markov Tree

(g) T1 FShrink (h) T2 FShrink (i) GA-FNN

Figure 5.27: Filtered edge intensity profile of mixed additive noise model, variance
both are 0.05. Comparing the proposed T2 FShrink (h) with HMT (f), the proposed
algorithm T2 FShrink smooths the edges a little more. But the proposed GA-
FNN (i) solves this problem since it combines the advantages of HMT (f) and T2
FShrink (h), which are preserving edges and removing noise respectively.
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5.2.3 Computational Cost

To fully and completely evaluate the performance of the denoising algorithms, it is
not adequate if only the quality of filtered images is assessed. Computing expense
is also an important criteria, especially in a real time system. The following figures
show the comparison of the computational cost between the proposed algorithms
and other algorithms. Since some algorithms are partially coded in C language,
such as T1 FShrink, the comparison may not be complete. However it still can
provide a rough impression of the computing cost of all algorithms.

(a) Computational cost without GA-FNN

(b) Computational cost with GA-FNN

Figure 5.28: Comparison of computational cost. It can be observed that the pro-
posed GA-FNN has the highest computational expense.
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5.2.4 Universality

From the conclusion obtained in Section 5.2.1 and 5.2.2, the main advantages and
drawbacks of T2 FShrink and GA-FNN are list as follows,

• GA-FNN algorithm performs best in terms of MSE, PSNR, IQI and ITC in
most cases but it has the highest computing expense.

• T2 FShrink algorithm is much faster than GA-FNN and also faster than
hidden Markov Tree based algorithm, see Figure 5.28(a) and 5.28(b), however,
it smooths some details in the image, especially when denoising the images
with fine contents, such as animal hair.

In summary, to design a denoising algorithm which always performs the best
no matter dealing with what images is a dream of researchers. However, from the
results of the performance of the proposed algorithms and the comparisons with
other algorithms, it can be concluded that no algorithm is perfect in practice so far.
Therefore, it is practical in the real world, if attaining a better result is critical,
GA-FNN algorithm would be a good choice; if the denoising speed is of greater
concern, then T2 FShrink algorithm will be a better choice.

5.3 Summary

In Section 5.2.1 and 5.2.2, the performance of denoising the pure Gaussian noise
and the mixed noise of all algorithms are demonstrated and comparisons are made
among them. In Section 5.2.3, the computational cost of the proposed algorithms
is investigated. In Section 5.2.4, the universality of the proposed algorithms is
evaluated. Based on the results and discussion, conclusions are made in this section.

5.3.1 Performance of Removing Pure Gaussian Noise

Based on the comparison and discussion in Section 5.2.1, the following conclusions
can be made,

1. When dealing with human, natural scene images with simple background, the
proposed GA-FNN and T2 FShrink algorithms outperform HMT, T1 FShrink,
BayesShirnk, VisuShrink, and median filters in terms of MSE, PSNR, IQI and
ITC, especially at higher noise levels.

2. The proposed GA-FNN always performs the best in term of all assessment
tools while has the highest computing cost 5.28(b). T2 FShrink algorithm
performs better at higher noise level with the fast computing speed. However
it smooths the edges more. These conclusions can be verified by the intuitive
graph of edge intensity profile in Figure 5.14.
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3. No algorithm performs better than the others in terms of all assessment tools
when denoising an image with fine contents, such as fine hair, see Figure 5.13.
T2 FShrink algorithm is more sensitive to this type of images.

5.3.2 Performance for Removing Mixed Additive Noise

Based on observations in Section 5.2.2, the performance of proposed algorithms in
dealing with mixed additive noise can be summarized here.

1. When dealing with human, natural scene images with simple background,
the proposed GA-FNN and T2 FShrink algorithms outperform HMT, T1
FuzzyShrink, BayesShrink and VisuShrink, in terms of MSE, PSNR, IQI,
and ITC. However the proposed T2 FShrink algorithm performs slightly worse
than hidden markov tree based algorithm when denoising an image with fine
content, such as fine hair.

2. The proposed GA-FNN always performs the best in term of all assessment
tools while has the highest computing cost 5.28(b). T2 FShrink algorithm
performs better at lower noise level with the fast computing speed. However
it smooths the edges more. These conclusions can be verified by the intuitive
graph of edge intensity profile in Figure 5.27.

3. No algorithm performs better than the others in terms of all assessment tools
when denoising the image with fine contents, such as fine hair, see Figure 5.26.
T2 FShrink algorithm is more sensitive to this type of images.
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Chapter 6

Conclusion and Future Work

In this thesis, wavelet shrinkage based image denoising using soft computing is ad-
dressed. First, a current survey of the state-of-the-art denoising algorithms and
motivation of this thesis are described. Second, interpretations and illustrative ex-
planations of wavelets are presented. Third, two new wavelet shrinkage based image
denoising algorithms are proposed. Fourth, the comparisons among all algorithms
are demonstrated and the performances are evaluated in terms of four assessment
tools, MSE, PSNR, IQI, and ITC. In this chapter, the conclusions are summarized.

6.1 Conclusion and Discussion

As presented and summarized in Chapter 5, the proposed T2 FShrink and GA-FNN
perform better than other algorithms in terms of MSE, PSNR, IQI, and ITC in most
cases. This section summarizes the discussion and outlines the main conclusions.

1. Natural Images with Human Beings

From the results of “lena” image in Figure 5.3 and 5.16, it can be observed
that T2 FShrink and GA-FNN perform better when dealing with mixed noise
model in terms of MSE, PSNR, IQI, and ITC. From the observations of “man”
image in Figure 5.5 and 5.18, it still can be noticed that T2 FShrink and
GA-FNN algorithms perform better when dealing with mixed noise model in
terms of MSE, PSNR, IQI, and ITC. Therefore, it can be concluded that T2
FShrink and GA-FNN algorithms outperform other algorithms when denois-
ing Natural Images with human beings, no matter what noise models.

2. Natural Images with Straight Lines and Scenes

From the observations of “house” image in Figure 5.7 and 5.20, it can be seen
that T2 FShrink and GA-FNN perform better when dealing with mixed noise
model in terms of MSE, PSNR, IQI, and ITC. In “lake” image, see Figure 5.9
and 5.22, it can be perceived that T2 FShrink and GA-FNN perform better
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when dealing with mixed noise model in terms of MSE, PSNR, IQI, and ITC.
Therefore, it can be concluded that T2 FShrink and GA-FNN algorithms
outperform other algorithms when denoising Natural Images with Straight
Lines and Scenes, no matter what noise models.

3. Natural Images with Curve Edges and Fine Structure

From the observations of “pepper” image in Figure 5.11 and 5.24, it can be
seen that T2 FShrink and GA-FNN perform better when dealing with mixed
noise model in terms of MSE, PSNR, IQI, and ITC, especially at lower noise
levels. From the results of “baboon” image in Figure 5.13 and 5.26, it is
hard to observe whether T2 FShrink and GA-FNN perform better or not
when dealing with different noise models. The reason is that, when image
content includes fine details such as animal hair, denoising algorithms can
not determine if a region is noisy or fine detail properly. Therefore, it can
be concluded that the proposed algorithms perform better in natural images
with curve edges no matter what noise models. Like other algorithms, T2
FShrink and GA-FNN do not perform very well in dealing with images with
fine structure, such as animal hair.

4. Efficiency of Proposed Algorithms

Based on the discussion in Section 5.2.3, the proposed GA-FNN algorithm
outperforms other algorithms but its computing cost is the highest. Another
propose algorithm T2 FShrink works much faster than GA-FNN does. This
can be viewed in Figure 5.28(a) and 5.28(b).

5. Universality of Proposed Algorithms

Based on the discussion in Section 5.2.4, the proposed GA-FNN algorithm
outperforms other algorithms in different images, types of noise, and noise
variances. Therefore, it has the most universality among these algorithms.

Generally speaking, the proposed algorithms outperform other algorithms in
terms of MSE, PSNR, IQI and ITC in most cases. Suggestions to improve the
proposed algorithms to overcome their drawbacks will be discussed in Section 6.2.

6.2 Main Areas of Future Work

As discussed in Chapter 4 and 5, both T2 FShrink and GA-FNN algorithms are
related to automatic thresholding process, and the threshold calculation is highly
related to the noise estimation. Some future work on T2 FShrink and GA-FNN
algorithms will improve their performance.

• Noise Estimation
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As discussed in Chapter 4, the threshold is a key to wavelet shrinkage based
denoising algorithms, and its calculation is based on the noise estimation. If
the noise estimation is not precise, attaining a better denoising will be very
difficult. In this thesis, the noise model is known, so the noise estimation
method exploited in this study works well. However, if the noise model is un-
known, the method of the noise estimation needs to be modified. In addition,
in order to obtain a precise noise estimation at different resolution scales, the
noise at subbands may also need to be concerned [76].

• Parameter Optimization

Although both proposed algorithms perform better than other algorithms,
their performance still can be improved by optimizing some parameters. For
instance, for the T2 FShrink algorithm, a genetic algorithm can also be ap-
plied to select the optimal widths and centers of the type-2 fuzzy membership
functions for achieving better denoising results.

• Computational Cost Reduction

As concluded in Chapter 5, GA-FNN algorithm performs the best among all
algorithms. However, this algorithm has a higher computing cost. Since the
built-in fuzzy neural network is applied to GA-FNN algorithm, it shows many
figures when training the network. One convenient way to reduce the comput-
ing time is to code the training process in C language. Another method to de-
crease the time cost is to employ Self-Generating Neural Networks (SGNNs).
These neural networks are self-organizing neural networks, whose network
structures and parameters do not need to be set by users, and its learning
process needs no iteration. It would be worth investigating whether SGNNs
are able to perform as well with reduced computational complexity.
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