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Abstract 

This research work presents a new methodology for the simultaneous design and 

control of chemical processes. One of the most computationally demanding tasks in the 

integration of process control and process design is the search for worst case scenarios that 

result in maximal output variability or in process variables being at their constraint limits. 

The key idea in the current work is to find these worst scenarios by using tools borrowed 

from robust control theory. To apply these tools, the closed-loop dynamic behaviour of the 

process to be designed is represented as a robust model. Accordingly, the process is 

mathematically described by a nominal linear model with uncertain model parameters that 

vary within identified ranges of values. These robust models, obtained from closed-loop 

identification, are used in the present method to test the robust stability of the process and to 

estimate bounds on the worst deviations in process variables in response to external 

disturbances.  

The first approach proposed to integrate process design and process control made use of 

robust tools that are based on the Quadratic Lyapunov Function (QLF). These tests require 

the identification of an uncertain state space model that is used to evaluate the process 

asymptotic stability and to estimate a bound (γ) on the random-mean squares (RMS) gain of 

the model output variability. This last bound is used to assess the worst-case process 

variability and to evaluate bounds on the deviations in process variables that are to be kept 

within constraints. Then, these robustness tests are embedded within an optimization problem 

that seeks for the optimal design and controller tuning parameters that minimize a user-

specified cost function. Since the value of γ is a bound on one standard deviation of the 

model output variability, larger multiples of this value, e.g. 2γ, 3γ, were used to provide more 

realistic bounds on the worst deviations in process variables. This methodology (γ-based) 

was applied to the simultaneous design and control of a mixing tank process. Although this 

approach resulted in conservative designs, it posed a nonlinear constrained optimization 

problem that required less computational effort than that required by a Dynamic 

Programming approach which had been the main method previously reported in the 

literature.  
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While the γ-based robust performance criterion provides a random-mean squares measure of 

the variability, it does not provide information on the worst possible deviation.  In order to 

search for the worst deviation, the present work proposed a new robust variability measure 

based on the Structured Singular Value (SSV) analysis, also known as the μ-analysis. The 

calculation of this measure also returns the critical time-dependent profile in the disturbance 

that generates the maximum model output error. This robust measure is based on robust finite 

impulse response (FIR) closed-loop models that are directly identified from simulations of 

the full nonlinear dynamic model of the process. As in the γ-based approach, the 

simultaneous design and control of the mixing tank problem was considered using this new 

μ-based methodology. Comparisons between the γ-based and the μ-based strategies were 

discussed. Also, the computational time required to assess the worst-case process variability 

by the proposed μ-based method was compared to that required by a Dynamic Programming 

approach. Similarly, the expected computational burden required by this new μ-based robust 

variability measure to estimate the worst-case variability for large-scale processes was 

assessed. The results show that this new robust variability tool is computationally efficient 

and it can be potentially implemented to achieve the simultaneous design and control of 

chemical plants. 

Finally, the Structured Singular Value-based (μ-based) methodology was used to perform the 

simultaneous design and control of the Tennessee Eastman (TE) process. Although this 

chemical process has been widely studied in the Process Systems Engineering (PSE) area, the 

integration of design and control of this process has not been previously studied. The 

problem is challenging since it is open-loop unstable and exhibits a highly nonlinear dynamic 

behaviour. To assess the contributions of different sections of the TE plant to the overall 

costs, two optimization scenarios were considered. The first scenario considered only the 

reactor’s section of the TE process whereas the second scenario analyzed the complete TE 

plant.  

To study the interactions between design and control in the reactor’s section of the plant, the 

effect of different parameters on the resulting design and control schemes were analyzed. For 

this scenario, an alternative calculation of the variability was considered whereby this 

variability was obtained from numerical simulations of the worst disturbance instead 
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of using the analytical μ-based bound. Comparisons between the analytical bound based 

strategy and the simulation based strategy were discussed. Additionally, a comparison of the 

computational effort required by the present solution strategy and that required by a Dynamic 

Programming based approach was conducted.  

Subsequently, the topic of parameter uncertainty was investigated. Specifically, uncertainty 

in the reaction rate coefficient was considered in the analysis of the TE problem. 

Accordingly, the optimization problem was expanded to account for a set of different values 

of the reaction rate constant. Due to the complexity associated with the second scenario, the 

effect of uncertainty in the reaction constant was only studied for the first scenario 

corresponding to the optimization of the reactor section.  

The results obtained from this research project show that Dynamic Programming requires a 

CPU time that is almost two orders of magnitude larger than that required by the 

methodology proposed here. Likewise, the consideration of uncertainty in a physical 

parameter within the analysis, such as the reaction rate constant in the Tennessee Eastman 

problem, was shown to dramatically increase the computational load when compared to the 

case in which there is no process parametric uncertainty in the analysis. 

 In general, the integration of design and control within the analysis resulted in a plant that is 

more economically attractive than that specified by solely optimizing the controllers but 

leaving the design of the different units fixed. This result is particularly relevant for this 

research work since it justifies the need for conducting simultaneous process design and 

control of chemical processes. Although the application of the robust tools resulted in 

conservative designs, the method has been shown to be an efficient computational tool for 

simultaneous design and control of chemical plants. 
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1. Introduction 

Chemical processes are nonlinear dynamic systems continuously affected by external 

disturbances and parametric uncertainties leading to process variability. Although control 

algorithms can be used to reduce variability, process design decisions may also have a large 

impact on the closed-loop dynamic behaviour, e.g. a larger valve would provide a wider 

range for the controller action such that it would help to reduce process variability and keep 

the process on specification. Chemical plants have been traditionally designed based on 

steady-state calculations and process synthesis heuristics that takes process controllability 

into account only after the process design variables have been determined. Thus, the process 

controllability and flexibility aspects have been generally treated independently. This 

sequential design approach is often inadequate since process controllability and flexibility 

may largely affect each other.  

Based on the above, it has been proposed to simultaneously optimize the design and control 

strategy of chemical processes. Thus, the system’s dynamic closed-loop performance is 

analyzed together with the system’s design and control related degrees of freedom to 

determine the system’s optimal operating state and the process units’ capacity. This problem 

is non-trivial since it involves addressing trade-offs between conflicting design and control 

objectives. The problem has different aspects such as control structure selection, process 

synthesis analysis, process parametric uncertainty and the worst-case scenario assessment. At 

present there is no unified framework to address all these aspects at once. Instead, several 

methodologies that focus one part of the problem while ignoring the others have been 

reported in the literature. The latest reported methodologies have formulated this problem 

within a dynamic programming framework. Although this approach may cover many aspects 

of the problem, the computational effort required by this method is significant and it is the 

main barrier to its implementation for large problems.  

This work presents a new approach to integrate design and control that alleviates some of the 

intensive computational burden required by dynamic programming based approaches. The 

core of the method is based on the application of robust control tools to estimate bounds on 

the stability, the dynamic operability, the controllability, the resiliency and the feasibility of 



the process to de designed. The application of these tools results in a nonlinear optimization 

problem that is significantly easier to solve than the dynamic programming based 

formulations. A key idea in this work is to propose a formulation that provides a feasible 

asymptotically stable design, while meeting the proposed process’s production and 

operational constraints in the face of any magnitude bounded external perturbations and 

process parametric uncertainty.  

The methodology is based on a cost function that is defined in terms of process variables that 

can be physically measured. The capital and operating cost functions are used to determine 

the process steady-state economics. The capital cost is directly related to the process unit 

capacities whereas the operating cost is related to utility and process streams costs. In 

addition to these costs, the dynamic deviations of the process variables with respect to a 

nominal operating condition are also assigned a cost that is added as an additional term into 

the cost function. Different approaches have been used to measure the dynamic deviations in 

the process variables referred heretofore as the process variability. The controllability index-

based methodologies have omitted the process variability related cost within the problem’s 

cost function but have considered a controllability related constraint within the analysis. 

Similarly, the dynamic programming-based approaches have traditionally used an index 

performance weighted cost function that does not have a clear assignable economic cost. In 

contrast with previous work in this research, a worst-case process variability function is 

defined that assigns an explicit dollar value to the process variability. This variability 

function, specified in terms on the available process measurements, is estimated based on 

robust control performance tools that have been previously proposed in the literature for the 

design of robust controllers. 

The proposed methodology has been tested with different case studies. Initially, a simple 

case study that involves a mixing tank process was used to analyze the advantages and 

disadvantages of the proposed approach. Then, to demonstrate the applicability of the 

proposed strategy to large scale processes, the methodology was applied to the simultaneous 

design and control of the Tennessee Eastman process. 
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Finally, several studies were conducted to determine the computational burden required by 

the proposed methodology. These studies included a comparison between the CPU times 

required by the proposed methodology versus that required by a dynamic programming-

based approach.  

1.1 Research objectives and novelties 

Based on the above discussion, the research objective proposed in this project is to develop a 

methodology that performs the simultaneous design and control of chemical processes under 

the effect of magnitude-bounded external perturbations and process parametric uncertainties. 

The novelty in this new methodology is the application of robust control tools to test the 

process asymptotic stability and to estimate bounds on the process dynamic performance. To 

apply the robustness tests, the closed-loop process dynamic behaviour must be represented as 

a robust (uncertain) model. Thus, a key preliminary step in this work is to develop a 

systematic procedure to obtain uncertain model descriptions that are accurate representations 

of the closed-loop transient behaviour.  

The use of robust control tools permits the calculation of analytical bounds on the process 

variability thus bypassing the need for dynamic optimizations. Therefore, the resulting 

methodology formulation is expected to require less computational effort than those 

approaches that formulates the design and control problem as a dynamic optimization 

problem.  The reduced computational load expected with the present methodology is 

especially critical for solving large-scale chemical processes.  

On the other hand, the application of a robust modelling approach may potentially lead to 

conservative designs. Accordingly, studies were conducted in this research work to assess the 

conservatism of the results. These studies included comparisons between the resulting design 

and control schemes obtained by the proposed strategy and the solutions found by dynamic 

programming-based methodologies. 

Finally, there are a number of controller algorithms that can be considered for the control of 

process variables such as PID, MPC (Model Predictive Control) and IMC (Internal Model 

Control). Accordingly, an additional important objective of the present work was to 
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formulate a methodology that will be able to accommodate any one of these controller 

algorithms into the resulting optimization problems. 

1.2 Research approach 

The proposed general methodology consists in applying a robust stability test along with the 

calculation of robust performance bounds to simultaneously optimize the design and control 

of dynamic systems facing external magnitude-bounded disturbances and process parametric 

uncertainty. The stability test is used to ensure that the process final design is asymptotically 

stable in the presence of any magnitude-bounded disturbance and process parametric 

uncertainty. Similarly, the robust performance tests were used to establish bounds on the 

process operational constraints, the production constraints and the worst-case process 

variability function, used to determine the process variability cost.  

The present work used two different criteria to formulate the robust stability and performance 

tests. The first approach made use of the concept of a Quadratic Lyapunov Function (QLF) to 

test the process asymptotic stability and to estimate bounds on the process constraints and the 

worst-case process variability function. These robustness tests were formulated assuming that 

an uncertain state-space model that describes the closed-loop process dynamic behaviour can 

be identified from the full nonlinear dynamic model of the process. Thus, the full closed-loop 

nonlinear dynamic process model is represented here as a nominal linear state space model 

with uncertain model parameters that are known to be within identified ranges of values. The 

combination of the nominal linear model and the uncertainty description is referred to as a 

robust (uncertain) state space model. The procedure to obtain such uncertain model as well as 

the method to determine the bounds on the state-space model parameters are presented in this 

work. Then a QLF-based robust performance test is used to estimate a bound on the random-

mean squares (RMS) gain of a robust model (γ-approach), i.e. a bound on the model output 

error’s variance. 

Since the worst case scenario is related to a maximal possible deviation rather than to a mean 

squares deviation as calculated by the γ-approach mentioned above, an alternative second 

robust performance metric was sought. Accordingly, a robust performance test based on the 

Structured Singular Value problem (μ-approach) was used to calculate a bound of the 
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maximal deviation to replace the RMS-based bounds discussed above. To apply this test, the 

closed-loop model of the process was represented by the interconnection of a matrix 

representing the identified nominal linear model and the magnitudes of the disturbances and 

model uncertainties and a perturbation matrix that takes into account all the sources of 

uncertainties in the system. The bounds obtained from the application of this robust 

performance test were also used to evaluate the problem’s constraints. The proposed 

calculation of the μ-based robust performance test is based on a robust finite impulse 

response (FIR) model of the closed-loop process dynamic behaviour. Each of the impulse 

response coefficients of this model is defined by a nominal value and corresponding lower 

and upper bounds to represent the uncertainty in the model parameter. The optimization 

problem to be solved for the calculation of the bound on the largest input/output variability is 

convex, i.e. a global maximum is always obtained. With similar robust performance tests it is 

also possible to calculate the critical disturbance realizations that produce the largest 

deviation in the robust FIR model output errors. Then, the maximal deviations in the process 

variables corresponding to the calculated critical disturbance can be obtained either from the 

μ-based analytical bound calculation or from simulations of the critical disturbance with the 

full nonlinear dynamic model of the process. It is expected that the later calculation method 

will produce less conservative designs but at the expense of larger computational time. 

To ensure closed-loop operability, a robust stability test based on the SSV problem was also 

developed and integrated into the optimization problem. Accordingly, when using the μ-

based formulation both stability and performance are addressed with the same robust FIR 

model ensuring consistency in the calculations. 

1.3 Research work contributions 

The current PhD research thesis has resulted in the following contributions: 

1. The development of a basic simultaneous process design and control methodology that 

applies robust control tools to test the process asymptotic stability and to estimate bounds 

on the worst-case process variability and the problems’ feasibility constraints. 
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2. The development of a novel methodology to tackle the simultaneous design and control 

for large-scale processes. This methodology has been shown to significantly reduce the 

computational burden as compared to dynamic optimization based methodologies. 

3. The development of a novel μ-based robust performance test that estimates a bound on 

the largest model output error’s variability. A by-product of this test is the critical 

disturbance profile that produces the largest calculated output variability. 

4. Insight regarding the advantages or disadvantages of using different robust control tools 

to attain the simultaneous design and control of chemical processes. 

5. Insight regarding the design of the Tennessee Eastman process used as an example of an 

integrated chemical plant. 

1.4 Outline of the work 

The thesis is organized in 6 chapters as follows:  

Chapter 1 presents an overview of the research work that was performed. The objectives, 

novelties and the contributions of this project are discussed in this chapter.  

Chapter 2 provides a literature review of the subjects that are relevant for this project. First 

the current available simultaneous design and control methodologies that have been reported 

in the literature are summarized. Subsequently, a review is included on general robust control 

related concepts and calculations including uncertain model structures, Linear Matrix 

Inequalities (LMI’s), Quadratic Lyapunov Functions (QLF) and on the Structured Singular 

Value problem (μ-analysis). An overview of the current techniques available for closed-loop 

identification is presented at the end of this chapter.  

In chapter 3, a methodology based on a QLF (Quadratic Lyapunov Function) concept is 

introduced for the simultaneous design and control of chemical processes. The key idea in 

this strategy is to represent the process dynamic behaviour as a robust state-space models that 

can be used to test the process stability and to estimate bounds on the input/output RMS gain. 

The procedure to identify robust state-space models from simulations, the robust stability 
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criterion, and the use of the robust RMS test (γ-approach) to formulate the worst-case process 

variability function and to evaluate the process constraints are explicitly presented in this 

chapter. Then, the methodology for simultaneous optimization of design and control based on 

the robust bounds discussed above is presented. To test the proposed methodology, the 

simultaneous design and control of a mixing tank process is considered in this chapter. 

Comparisons between the results obtained from the proposed methodology and those 

obtained by a dynamic programming-based methodology are also shown followed by a study 

conducted to determine the computational burden of the two compared techniques.  

Chapter 4 discusses a simultaneous design and control methodology that applies a SSV-based 

robust performance criterion. This novel robustness test estimates a bound on the largest 

model output error’s variability. Thus, this μ-based performance criterion can be used instead 

of the γ-based performance criterion within the methodology’s formulation presented in 

chapter 3. The formulation of this new robust performance test, its application to a simple 

robust state-space model and the reformulation of the methodology’s mathematical 

formulation in terms of this new performance criterion are presented in this chapter. The 

reformulated methodology was tested on the simultaneous design and control of the mixing 

tank process, previously introduced in chapter 3. The results obtained by this new 

methodology’s formulation and those obtained by the QLF-based methodology and by a 

dynamic programming-based methodology are discussed followed by a comparison of the 

computational requirements for the two techniques.  

Chapter 5 extends the methodology presented in chapter 4 to the design and control of large-

scale processes. The formulation of more parsimonious μ-based robust stability test and 

additional simplifications made to reduce the methodology’s computational load are initially 

discussed. Then, the methodology was tested on the Tennessee Eastman process. The process 

flow-sheet philosophy and the control structure used to regulate this plant’s dynamic 

behaviour are explained in this chapter. The methodology was first applied to the 

simultaneous design and control of the reactor section of the plant. The effect of adding 

disturbances, the use of different initial guesses on the methodology’s optimization problem, 

the use of the critical disturbance vector to attain the design, comparisons with an optimal 

control problem and the effect of process parametric uncertainty were also analyzed and 
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discussed. Subsequently, a comparison of the CPU time required by the present method to 

that required by a dynamic programming-approach methodology is presented. The 

methodology was then applied to study the effects of multiple disturbances when the 

complete plant was considered within the analysis. The results obtained from this study as 

well as comparisons to those obtained when only the reactor section was considered in the 

analysis are presented at the end of this chapter. 

Finally, chapter 6 presents the conclusions obtained from the present research work and 

outlines the areas for future research work. 
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2. Literature Review 

The aim of this work is to develop a new methodology that performs the integration 

of design and control for dynamic systems under parametric uncertainty and external 

disturbances. The novelty in this approach consists in the application of robust stability and 

variability measures to find the process optimal design. To estimate the aforementioned 

measures, linear models with uncertain model parameters are needed. Accordingly, 

mathematical tools and methods traditionally used for robust control design and system 

identification are extensively used in this work and consequently they will be reviewed in 

this chapter. 

This chapter initially presents a discussion on the previous approaches proposed to perform 

the simultaneous design and control of dynamical systems and then it revises the concepts 

and mathematical methods that are relevant for this work. The chapter is organized as 

follows: Section 2.1 presents a review on the current approaches that has been proposed to 

formulate the integration of design and control problem. In Section 2.2, the concepts and 

formulations from robust control theory that are relevant for this study are introduced; model 

uncertainty descriptions and the concepts of Linear Matrix Inequalities (LMI’s), Lyapunov 

functions, and Singular Structured Value (SSV) are reviewed on this section. Section 2.3 

presents a brief review on systems identification. The least-squares method, the design of 

suitable input signals for identification and other important guidelines for experimental 

design are also discussed in this section. 

2.1 Integration of process design and control 

Chemical processes are inherent dynamic systems that are continuously subjected to the 

effect of perturbations. These perturbations may be of two types: unmeasured disturbances 

entering the process and unmeasured changes in process parameters or operating conditions 

over time. The later type of perturbation will be referred to heretofore as process parameter 

uncertainty. Designers of chemical processes must take into account these process 

perturbations and uncertainties in order to provide realistic designs of the plant.  
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In the past, process design has been performed using an approach that involves a set of 

sequential steps. The earlier steps of the design are devoted to process synthesis analysis and 

to determine the process operating conditions that optimize the process steady-state 

economics. Both process synthesis and operating conditions calculation steps are performed 

at steady-state assuming that a controller can be designed and implemented into the process 

to keep it on target and within its feasible region. Following these design steps, process 

design parameters, i.e. process unit’s capacities, valve sizes and process operating conditions 

are specified. The last stage of the design in this sequential approach typically consists of a 

controllability analysis and the design of a regulatory algorithm that would keep the process 

on specification.  

The sequential design strategy outlined above have been often found to be unreliable since 

the assumptions made on the earlier stages may not be completely satisfied at the later stages 

of the dynamic control design. Often, the process closed-loop performance may not be 

satisfactory in the presence of external disturbances since the controller’s range of operation 

is limited by design specifications such as control valve sizes that were fixed at the earlier 

stages of the design. Also, there is no guarantee that process operating conditions that 

optimize a steady-state based cost-function will still be optimal when there is process 

variability due to disturbances and parametric uncertainties affecting the system. In extreme 

situations, process design decisions made on the earlier design stages may result in a process 

that is very difficult or impossible to control. For instance, the control actions required to 

reject disturbances may drive the process to an undesirable operating condition that could put 

at risk the plant’s safety, e.g. thermal runaway in a catalytic reactor. Shiskey1 presents 

examples that describe uncontrollable systems that were designed with the traditional 

sequential approach. 

Following the discussion above, it can be concluded that the interaction between design 

specifications and the process dynamic characteristics have a profound effect on the process’ 

optimal dynamic performance. Thus, while the process steady-state economics is used to 

calculate design parameters for an idealized plant that is not subject to dynamic 

perturbations, these design parameters determine the process dynamic characteristics and 

performance. Dynamic performance of processes has been quantified in the past by different 
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concepts. For example, the process ability to move between different operating conditions 

has been referred to as switchability whereas the ability to reject disturbances has been 

referred to as process resiliency. On the other hand, the controllability concept has been used 

to describe and quantify the ability of a process to keep variables at target and to meet 

products specifications by reducing variability.  

To remain competitive, low cost integrated plants with tighter process constraints and 

stringent environmental regulations need to be designed. To achieve this goal, the 

interactions between process dynamic effects and design specifications may be analyzed 

together in the earlier stages of the process design. The area of design that combines steady-

state design and dynamic control considerations into one optimization step has been referred 

to in the literature as integration of design and control. Thus, when referring to design and 

control, the design word refers to decisions regarding flowsheet synthesis and nominal 

operating conditions based on steady-state models whereas the word control refers to the 

design of controllers that result in optimal closed loop dynamic performance. 

The task of performing both design and control simultaneously as per the above definitions is 

not straightforward since optimizing both may require a trade-off between conflicting 

objectives. For example, while process units with small hold up may be calculated based on 

steady-state capital cost considerations, larger unit’s capacities will be often required for 

proper disturbance rejection. Similarly, steady-state design could be used to specify the 

narrowest range of operability in the process operating conditions to minimize the system’s 

operating cost whereas corrective actions performed by the control algorithm may require a 

wider range of operability in the process variables to achieve the desired process dynamic 

performance. Luyben2 discusses typical chemical processes in which inherent conflicts 

between these two objectives occur. Moreover, process flexibility, i.e. the ability to remain 

feasible in the presence of external perturbations or process uncertainties, must be guaranteed 

for both the process steady-state and transient behaviour. Thus, a dynamic flexibility analysis 

should be conducted within the design to define the process feasible region that can 

accommodate the effects of process parameter uncertainties and any possible time-dependent 

unmeasured disturbance profile. To this regard, one of the most challenging tasks in the 

integration of both activities is the definition of the critical time-dependent profile in the 
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perturbations along with the process parameter uncertainty’s steady-state value that generates 

the largest deviation in the system. This condition, to be referred heretofore as the worst-case 

scenario, is not easily identifiable and is computationally demanding. In addition, a stability 

analysis should also be taken into account within the design optimization problem to ensure 

stability both at steady state and during transients.  

To guarantee that the process meets a suitable dynamic performance criterion, a 

controllability analysis is needed. Such controllability analysis may consider the selection of 

a suitable control structure for the process under study as well as the specification of the 

tuning parameters for the selected control algorithm. Although the dynamic behaviour may 

be used as an indicator of performance, it is clearly desirable to correlate the system closed-

loop dynamics with an economic cost. However, the definition of a controllability cost 

function is not simple because often the relationship between controllability and process 

economics is not obvious and is problem dependent. 

Due to the complexity associated with this problem, there are not general approaches in the 

literature that address the integration of design and control. Instead, several methodologies 

have been proposed to solve partial aspects of the integration of design and control problem. 

The methods reported in the literature vary in their level of complexity and in the 

assumptions and simplification made to solve the resulting optimization problem. In general, 

most of the methodologies focus on some aspects of the problem, e.g. process flexibility and 

controllability, while ignoring others, e.g. process stability. Perkins3 provides a 

comprehensive review of the first methods that were proposed to solve this problem whereas 

Seferlis and Georgiadis4 reviews in detail the recent contributions and new techniques that 

have emerged in the integration of design and control field. 

Several classifications can be made to sort the current methodologies that have been 

published in the literature. In the present work, the methods are classified based on the 

method used to assess the process dynamic performance. Accordingly, the approaches taken 

to address the simultaneous design and control of chemical processes can be classified as 

follows: 1) Controllability index approach, 2) Dynamic programming approach and 3) 
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Robust approach. The following subsections present each of these approaches and outline the 

contributions that have been done in that area. 

2.1.1 Controllability index-based approach 

The basic idea of this approach is to made use of a controllability index to quantify the 

process closed-loop dynamic performance. Studies based on this approach have usually used 

an economic cost function that is defined as the combination of the process steady-state 

economics and an economic cost correlated with a controllability index. To measure the 

process economics at steady-state, the traditional capital and operating cost functions have 

been used. Controllability indicators such as the relative gain array5, the condition number6, 

the disturbance condition number7 or the integral error criterion 8 have been used to measure 

the process dynamic performance. The studies that use this approach can be considered as the 

first attempts to solve the integration of design and control problem. The majority of these 

studies have used steady-state models or linear dynamic models to represent the process 

dynamic behaviour.  

Lenhoff and Morari9 proposed a Lagrangian function-based bounding technique to evaluate 

process synthesis, process design and control in a heat-integrated distillation columns. In this 

method, the process dynamic performance was measured using the weighted mean squared 

error criterion, obtained from simulations of the system under different scenarios. Palazoglu 

and Arkun10 proposed a multi-objective function-based methodology that applies a Singular 

Value Decomposition (SDV) technique. The method measures the process closed-loop 

dynamic performance to improve the dynamic operability of the system by considering the 

process design aspects. A key feature in this work is the inclusion of process uncertainty 

within the problem formulation; however, the SDV-based robust controllability indices are 

only considered as inequality constraints within the formulation and do not appear in the 

economic cost function to be optimized. The same authors extended their previous work to 

incorporate process operability uncertainty within the design and control problem11. The 

revised method formulates the problem as a two-stage optimization: the lower level 

optimization solves the feasibility and operability problem for a given robust index while the 

upper level optimization seeks for the design parameters that optimize the cost function. 
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Since the robust dynamic performance appears as inequality constraint in the inner 

optimization problem, the design and control problem is solved for a user-defined robust 

performance index value. Thus, this method generates alternative designs for each robust 

index performance value tested. Luyben and Floudas12 proposed a formulation based on a 

mixed-integer nonlinear optimization programming (MINLP) to integrate process synthesis, 

process design and control within one single optimization problem. The method defines a 

cost function based on the process steady-state economics and considers different open-loop 

controllability measures, such as relative gain array and the condition number, as constraints 

within the optimization problem formulation. A pareto-optimal analysis is used to show the 

advantages/disadvantages of different design alternatives. In this study, only steady-state 

models are used to describe the process behaviour. Alhammadi and Romagnoli13 proposed an 

step-by-step integrated framework that incorporates economical, environmental, heat 

integration and controllability aspects of the process to be designed. Although the method 

uses the full process dynamic model to analyze heat integration, only steady-state 

controllability indicators are used to measure the process dynamic performance. Also, 

process resiliency is explicitly not considered in the problem formulation. The methodology 

was applied to a heat exchanger network (HEN) in which steady-state controllability 

measures such as relative gain array and condition number were employed to measure the 

process dynamic performance. Brengel and Seider14 developed a coordinated design 

optimization strategy to address the process design and control problem by simultaneously 

solving a process design optimization problem and a Model Predictive Control (MPC) 

nonlinear optimization problem. In this work, the integral of the squared error (ISE) was used 

as controllability measure. This ISE is estimated from the simulation of the complete process 

dynamic model under different scenarios. Also, the mathematical framework of this method 

was developed by considering an MPC controller as the regulatory algorithm. Accordingly, 

this strategy offers two key advantages: 1) it uses the complete process dynamic model, and 

2) model-based controllers such as MPC can be defined within the design strategy to control 

the system.  

Although the methodologies described above provided an approximation of the simultaneous 

design and control problem, these strategies are limited by the fact that the economic cost 

resulting from product variability under closed-loop dynamic conditions is not strictly 
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considered in the process economic function. In most of the cases, the controllability 

indicators were set as constraints within the problem formulation or even considered in the 

cost function by making use of weighted functions that were selected ad hoc and are not 

based on their relative effect on the overall costs. Apart from Brengel and Seider14, these 

methodologies represent the process dynamic behaviour as steady-state models or linear 

dynamic models which limits its applicability to those systems that exhibit approximate 

linear behaviour. This assumption of linearity implies that the range of process operability for 

which the analysis is valid is limited to a small neighbourhood of a nominal steady state. 

Thus, due to the problem formulation, i.e. the use of multi-objective cost function, and to the 

linearity assumptions, the application of the above strategies to simultaneously design and 

control chemical processes generally results in a suboptimal design. 

2.1.2 Dynamic programming approach 

Due to the limitations of the controllability index-based approach, a set of methodologies 

based on dynamic programming have been proposed. Instead of using steady-state or matrix 

measures as process variability indicators, this approach is based on the evaluation of a single 

economic index objective function that measures the process overall closed loop 

performance. To evaluate this objective function, the process dynamic behaviour is usually 

analyzed for a pre-specified time horizon. In contrast with the controllability index based 

method, this approach uses a comprehensive process nonlinear dynamic model within a 

dynamic optimization problem. One of the key advantages of this approach is that process 

uncertainty and external time-dependent perturbations can be rigorously accounted for within 

the problem formulation. Thus, it is possible to identify the scenario that, for a given set of 

nominal operating conditions, produces the largest process output error. Then, the process 

design and control problem is solved based on the predicted worst-case scenario.  

The popularity of this approach has increased due to advances in dynamic programming 

algorithms and the increasing computing power available to researchers and practitioners in 

this area. Perkins and Walsh15 proposed a dynamic worst-case based design method that 

considers process design and control structure selection. The method takes into account 

process uncertainty and a pre-specified time-dependent profile in the disturbances. The 

 15



process dynamic performance is quantified based on the response in process variables due to 

changes in the disturbances and to given process parameter uncertainty values. The control 

structure selection problem is posed as a mixed-integer optimal control problem. Due to a-

priori specification of the disturbance profile, alternative designs are often obtained from this 

method. Mohideen et al.16 introduced the basis of a conceptual design framework to 

simultaneously design and control dynamic systems in the presence of process parameter 

uncertainty and disturbances. The problem is mathematically formulated as a mixed-integer 

stochastic optimization problem. This optimization is solved by an iterative decomposition 

procedure that is composed of the solution of a multi-period design and control problem that 

gives a set of design and control tuning parameters, followed by the solution of a dynamic 

feasibility problem17 which specifies critical realizations of the uncertain parameters and the 

disturbance. These critical profiles are then used in the multi-period problem to define a new 

set of design and control parameters. Integer decisions appear in the problem to account for 

the control structure selection problem. The concept of matrix measures were presented and 

incorporated within the proposed framework18 to account for process stability in the presence 

of uncertainty realizations and time-dependent disturbances. The algorithm framework 

proposed by Mohideen et al. is complex and computationally demanding even when a small 

number of process units are considered in the design. To circumvent this shortcoming, 

Bansal et al.19 proposed a different solution procedure based on a variant-2 of the generalized 

Benders Decomposition (v2-GBD) technique for MINLP. This method was applied to 

simultaneously design a distillation column. In this case study, process parameter uncertainty 

and external disturbances changes are assumed to be a mix of slow and fast sinusoidal 

variations with bounded frequency and amplitude. This method has also been applied to 

simultaneously design and control a double effect distillation column20, a high purity 

industrial distillation system21, and a multi-component mixed-integer distillation column 

model22. In addition, Sakizlis et al.23 incorporated the concept of parametric programming 

within the conceptual design framework proposed by Bansal et al.19. The parametric 

programming algorithm proposed in this work can be used to incorporate advanced control 

techniques within the design and control problem. The method systematically maps the 

optimal control actions developed by the model-based controller in the space of the state 

measurements. Thus, a simple explicit state feedback controller is derived that moves off-line 
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the embedded on-line control optimization problem. Consequently, the simultaneous design 

and control methodology proposed in this work allows the use of advanced on-line 

optimization controllers such as MPC. Similarly, Schweiger and Floudas24 proposed a 

systematic approach that considers a steady-state process economic function combined with a 

controllability related index, i.e. ISE, embedded within a multi-objective mixed-integer 

optimal control optimization problem. Due to the complexity associated with the formal 

solution of the problem, the ε-constrained method is used to avoid the formal solution of a 

multi-objective problem, i.e. a controllability criterion have to be defined a-priori and added 

as an inequality constraint within the optimization problem. In addition, the optimal control 

problem is parameterized to reduce the problem to a finite dimension. This method results in 

a suboptimal design since the combination of integer flow-sheet decisions with pareto-

optimal solutions generates a large set of alternative designs that can differ drastically one 

from another. Bahri et al.25 used the idea that a system should be moved away from the 

optimal steady-state operating condition in order to satisfy dynamic constraints. This concept 

is referred to in the literature as the back-off approach. The distance between the optimal 

steady state operating point and the operating point at which all the process constraints are 

satisfied is used in this work as a flexibility measure. The resulting design is obtained from 

the iterative solution of a two-stage optimization problem: in the high level optimization 

stage a dynamic MINLP algorithm is used to calculate design and control parameters 

whereas in the lower level optimization stage a dynamic NLP algorithm is used to find 

critical disturbance time profiles that may lead to constraints violations. The integer decisions 

that appear in the upper level optimization problem are used for flow-sheet synthesis and 

control structure selection. Kookos and Perkins26 applied the back-off approach to perform 

design and control structure selection for dynamic systems under the effect of uncertainty 

and fast disturbances given as sinusoidal variations with bounded frequency and amplitude. 

The algorithm proposes the iterative solution of two nested optimization problems: the outer 

loop consists of a mixed-integer steady-state optimization problem that includes an inequality 

constraint that determines the steady-state operation to a dynamic performance bound. The 

solution of this outer loop optimization generates steady-state design parameters and an 

optimal control structure along with the corresponding controller’s tuning parameters. Then, 

in the inner loop, the solution of an optimal control problem that takes into account the 
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process dynamics is performed and a corresponding new dynamic performance bound is 

obtained. This iterative procedure continues until no further improvements can be made in 

the outer optimization problem, i.e. the inequality constraint based on the steady-state and the 

dynamic performance index cannot be satisfied. Swartz27 developed a systematic framework 

that considers the application of the control Q-parameterization within the design and control 

problem. The methodology is posed as a multi-period optimization problem because it 

considers the case of bounded parametric uncertainty and pre-specified time-dependent 

disturbances. Although the Q-parameterization is applicable to linear control problems only, 

the proposed mathematical description also imposes path constraints that account for the 

process nonlinear dynamic behaviour.  

Although the dynamic programming-based methodologies outlined above solves the 

integration of design and control problem with realistic scenarios and on the basis of rigorous 

nonlinear dynamic models, the complexity associated with the optimization problem and 

their corresponding implementation within the proposed iterative solution procedures are key 

drawbacks of these methodologies. Furthermore, the computational burden associated with 

the solution of these problems is enormous, even when only a small number of process units 

are considered in the analysis. Thus, the curse of dimensionality associated with dynamic 

programming-based methods make these methods impractical for tackling real industrial 

problems. Although new approaches have emerged in the recent years to alleviate the 

computational burden involved in dynamic programming28, no application of these 

approaches to the design and control problem have been reported in the literature. With 

regards to the cost functions used in the studies reported in this section, they have generally 

used a set of weighted terms that represent variables such as the system operability or the 

environmental impact of the plant, that do not have a clear assignable economic cost as in the 

case of capital and operating costs. In addition, apart from Mohideen et al.18 and Sakizlis et 

al.23 the studies reviewed in this section do not explicitly consider system stability, i.e. the 

controller tuning parameters, obtained from the solution of the proposed optimization 

problem, could potentially result in a closed loop unstable process.  
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2.1.3 Robust approach 

Due to the difficulties associated to the dynamic programming approach, new approaches 

have been proposed in recent years to deal with the simultaneous design and control of 

dynamic systems. Instead of using the full nonlinear process model, these methods estimate 

bounds on the process flexibility, stability and controllability problem. Thus, the 

computationally demanding task of solving a dynamic optimization problem is reduced to a 

nonlinear programming optimization problem.  

The bounds on these methods are obtained by using mathematical tools commonly used in 

the control design area. Chawankul et al.29 proposed a single economic cost function that 

accounts for the process steady-state economics and a variability cost term, obtained from 

robust control measures. The key idea is to approximate the full nonlinear dynamic model by 

a nominal linear model with model uncertainty that accounts for the difference between the 

nominal linear model and the full nonlinear model behaviour. The linear nominal models are 

First Order plus Time Delay (FOPDT). The robust models complemented with model 

uncertainty are used to estimate bounds over the process variability and stability. This robust 

control theory-based method has also been applied to the simultaneous design and control of 

a binary distillation column using MPC as the control algorithm30. The main drawback of this 

methodology is that it is limited to sinusoidal disturbances at one given frequency. Gerhard et 

al.31 have explored the space of the uncertain parameters to build critical boundaries over the 

region process stability and feasibility. The method, based on constructive nonlinear 

dynamics32, establishes robust measures based on a minimal distance between the uncertain 

parameter space region and the critical boundaries. Since this method uses the complete 

nonlinear process model, it requires the iterative solution of a nonlinear constrained 

optimization problem combined with the numerical integration of the process model. This 

formulation has been applied to simultaneously design and control the reaction section of the 

hydrodealkylation of toluene33. Although the method requires a priori knowledge of the 

parametric uncertainty dynamics, exogenous disturbances have not been considered yet 

within the analysis. However, this technique may have potential to treat more complex and 

realistic scenarios.  
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From the computational point of view, the above formulations require less effort than 

dynamic programming-based descriptions. On the other hand the use of bounds as flexibility 

and controllability measures may result in suboptimal designs. Also, the fact that 

disturbances are not strictly treated as time-varying perturbations imposes restrictions on the 

resulting design. 

2.2 Robust control theory 

The approach to integration of control and design taken in the current thesis is based on 

mathematical tools that have been commonly used for the design of robust controllers. 

Therefore, the current section will briefly review the robust control techniques that will be 

used later in this work.  

Control algorithms are designed to guarantee system’s stability and performance. Often, the 

controller is tuned based on the process model and closed-loop simulations. Since the process 

model rarely captures all the variations that may possibly occur during the system’s 

operation, the mathematical model of the process is only a simplified version of the true 

process behaviour. Consequently, there is no guarantee that the control law developed for 

this system would provide the desired stability and performance on the real system. If model 

inaccuracies, usually referred to as model uncertainty or plant/model mismatch, are 

considerable, then the controller actions can be such that it may drive the system to 

instability. Thus, it is desirable to design a control algorithm that is insensitive to model 

uncertainty effects, that is, the control algorithm must be robust. To guarantee process 

stability and a given level of process variability in the presence of model uncertainty, a robust 

stability (RS) and robust performance (RP) analysis are performed to test the controller’s 

ability to remain stable and provide good performance in the presence of the different sources 

of uncertainties that arise on a physical system.  

To perform such analyses, the process model must consider process uncertainties in their 

structure. Thus, the mathematical representation of the physical models varies according to 

the form in which the uncertainties appear in this model and to the way these uncertainties 

are quantified within the model. There are two main analytical tools that can be used to 

measure RS and RP. On one hand, the RS and RP problem can be formulated as convex 
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optimization problems that require the evaluation of Lyapunov functions-based Linear 

Matrix Inequalities (LMI’s). This computationally efficient tool is suitable for those models 

that can be represented as uncertain state space models. On the other hand, there are physical 

models that are best described by the combination of a nominal model and a perturbation 

block that accounts for all the sources of uncertainties in the system. For this model 

representation, i.e. linear time-invariant model supplemented with linear-fractional 

uncertainty, it is more convenient and efficient to use Structured Singular Value (SSV) as the 

synthesis tool to study RS and RP. 

The above concepts constitute the basic tools used in this work to attain the simultaneous 

design and control of dynamic systems in the presence of process uncertainties and external 

perturbations. Therefore, the rest of this section is dedicated to review the aforementioned 

concepts. Section 2.2.1 reviews the different structures that can be used to represent uncertain 

model. In Section 2.2.2, the LMI’s theory and the LMI’s standard problems are introduced. 

Then, Section 2.2.3 revises the background related to Lyapunov theory. In Section 2.2.4, the 

concept of Structured Singular Value (SSV) and its potential use to measure process 

variability is discussed. 

2.2.1 Model Uncertainty Representation 

Uncertain dynamical models are fundamental in robust control theory. These models are 

based on parameters which actual or true values are not exactly known but they lay within a 

known range of values. Traditionally, robust controllers are designed based on a linear 

dynamic model, which describes the process dynamics around a nominal steady-state 

operating point, complemented with uncertainty in model parameters, which accounts for the 

differences between the nominal linear model and the actual process behaviour. These 

models are usually referred to as robust models or uncertain models. 

Uncertainty can be classified into two classes: 

Parametric Uncertainty: it refers to the uncertainty that is directly related to the system’s 

physical parameters, i.e. structured uncertainty. This class of uncertainty can be 

mathematically represented as follows: 
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 iii aa + θ=  (2.1) 

where ia  and θi denote the parameter’s nominal value and the corresponding uncertainty 

region for the parameter ai. In general, ia

],[

 and θi define a range of values that the parameter ai 

can take at any time during the systems dynamic operation. In chemical processes, the 

uncertain parameter θi is commonly described in terms of two extreme values, that is, 

 (2.2)  min,max, iiiθ = θ θ

where θi,max and θi,min respectively represent the upper and lower bounds that delimits the 

uncertainty region for each uncertain parameter, ai. If θ=[θ1,θ2,…,θn] represents the vector of 

all the individual sources of structured uncertainty around a given system, then each 

combination of θi’s define a vertex of an hyperrectangle, usually called the parameter box, 

that encloses all the parameter space uncertain region ℜ . To illustrate the above, consider a 

system with two uncertain parameters defined as in (

n

2

2.1) and (2.2). As it is shown in Figure 

2.1, each vertex, (black circles) represent particular combinations between the lower and 

upper limits of each of the uncertain parameters, e.g. (θ1,min, θ2,max) Thus, the set of all the 

vertexes in Figure 2.1 generate a rectangle (shaded area enclosed by dashed lines) which 

delimits the uncertain parameter space feasible region, i.e. parameter box in ℜ .  

This type of uncertainty arises due to imperfect knowledge of process physical parameters 

and model parameters that are in error due to process nonlinearities following changes in the 

operating conditions. Although there are other parametric uncertainty descriptions available 

in the literature, e.g. bounds on the rate of variation and polytopic parameter space 

representations34, the uncertain parameter representation given in (2.2) is relevant for this 

work since the robust process model used to test RS and RP will be defined in terms of this 

description. 
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max,2θ

min,2θ

 

Figure 2.1 Parameter box for two uncertain parameters. 

Dynamic Uncertainty: This type of uncertainty description is used when the system’s 

dynamic behaviour is so complex that the individual sources of uncertainty cannot be easily 

identified. Then, all the sources of uncertainty that generate this behaviour are lumped into 

one single perturbation block within the model structure. Accordingly, this type of 

uncertainty description is also referred to as unstructured uncertainty. Dynamic uncertainty is 

often associated with the fact that the process behaviour at high frequencies is not accurately 

measured or the system’s response to changes in the operating conditions is highly nonlinear. 

In principle, any mathematical model of a physical system contains is prone to this type of 

model uncertainty since models are only an approximated representation of the true physical 

system. 

This source of uncertainty represents the physical process G as a nominal process model (G
(

) 

complemented with a perturbation block (L) that accounts for the dynamic uncertainty. 

Depending on the locations of the unstructured uncertainty in the closed-loop system, four 

single perturbations are used to quantify this class of uncertainty: additive uncertainty (LA), 

multiplicative output uncertainty (LO), multiplicative input uncertainty (LI), and inverse 

multiplicative output uncertainty (LE). Their corresponding mathematical descriptions are as 

follows: 

min,1θ max,1θ
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Figure 2.2 illustrates the interconnections between each of these perturbations blocks and the 

closed-loop nominal model for each one of the uncertainty descriptions. The magnitude of 

the perturbation block in (2.3) may be defined in terms of bounds obtained from different 

matrix measures. For example a perturbation block may be estimated as follows35: 

( ) 1, max ≤ΔΔ= iiiiL σδ  (2.4) 

where Δi is a normalized perturbation block bounded in terms of its singular values, i.e., the 

maximum singular value of Δi has to be less than or equal to the unity, and δi is a scalar 

weight on Δi.  

One of the limitations associated with the description shown in (2.3) is that the bounds used 

to represent uncertainty in the model may be considerably larger than the real uncertainty. 

Hence, models that consider in its structure this uncertainty description produce controllers 

with significant conservatism. 

 

Figure 2.2 Unstructured uncertainty description. 
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In general, robust controllers are designed with process models that consider a combination 

of parametric and dynamic uncertainty within its structure. The selection of the model’s 

mathematical representation is thus determined by the uncertainty descriptions and the 

synthesis tool to be used to design the control algorithm. Most of the uncertain models used 

in robust control theory are based on linear differential inclusions36 given as follows:  

 0xxxx Ω =∈ )0(,&  (2.5) 

where Ω is a subset in  and x is the system’s state. Every trajectory in (nxn

xxxAx

ℜ 2.5) satisfies: 

 0= =)0(,)(t

)()(,)( ttt CoAAxAx

&  (2.6) 

where A(t)∈Ω contains the uncertain or time-varying coefficients of the uncertain linear 

system. It should be noticed that the uncertainty associated with A(t) defines an infinite 

number of solutions of equation (2.6). Thus, a relaxed version of (2.6) based on the 

Relaxation Theorem36 has been proposed for studying these systems as follows: 

 = ∈&

)()( tt ACoA

 (2.7) 

The above confirms that A(t) is a convex set for every trajectory x and t if ⊇ . 

This means that every trajectory in (2.6) is also a trajectory of the relaxed equations’ set 

(2.7). This important approximation of the original problem is relevant for model uncertainty 

representation since it allows the nonlinear or time varying model behaviour to be described 

by a finite set of linear models. The above results can be expanded to consider continuous 

state space models as follows: 

  (2.8) 
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The above definition constitutes the general representation used in this work to represent an 

uncertain state space dynamic model. This definition can then be used to formulate different 

model representations.  

A special case of (2.8) is when the state space model is a linear time-invariant model, i.e. the 

coefficients of the state space matrices do not depend affinely on any uncertain or time-

varying parameter. In this case, the set Ω is made of one single matrix as follows: 

  (2.10) 
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On the other hand, if the model coefficients are defined as bounded parameters like (2.2), 

then the set Ω can be described as a polytope, i.e. a convex hull formed with the extreme 

values of the model’s coefficients. This can be mathematically described as follows36: 
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where the jth vertex of the polytope represents an LTI system formed with a particular 

combination of the extreme values of the state space matrices coefficients. Thus, the 

uncertain model shown in (2.8) is described as a finite set of LTI systems. This class of 

model representation is widely used to analyze RS and RP with Linear Matrix Inequalities 

(LMI’s). 

More generally, uncertain model representation with both parametric and dynamic 

uncertainty can be defined in terms of a norm-bound differential inclusion. In this case, the 

general model description presented in (2.8) is modified as follows: 
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where , with nqxnqℜ→ℜΔ +: 1)( ≤tΔ  for all time t and represents a normalized perturbation 

block as defined in (2.4). Figure 2.3 shows a schematic representation of the system (2.12). 

As shown, this system is described by an LTI nominal system M, with input u, output y and 

a time-varying feedback matrix Δ with input p and output q, respectively. This model 

representation is also referred to as a linear fractional model. For this system, the set Ω is 

defined as follows36: 
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Thus, Ω denotes a convex set with the image of the unit ball under a linear fractional 

mapping. 

u y 
q p 

 

Figure 2.3 Linear Fractional Model 

This model representation is more generic since the structure of the uncertain block Δ can 

consider multiple sources of uncertainty located in different sections in the closed loop 

system (see Figure 2.2) where each element of the uncertain block can be associated with a 

particular source of uncertainty in the system. Due to the flexibility of this representation, 

different uncertain model representations can be posed as linear fractional models, e.g. an 

uncertain polytope state space model can be reformulated as a linear fractional model. As it is 

shown on Section 2.2.4, linear fractional models are essential to study RS and RP with the 

Structured Singular Value (SSV) based analysis. 
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2.2.2 Linear Matrix Inequalities (LMI’s) 

Linear matrix inequalities play a key role within the robust control theory framework; they 

have emerged as a computationally efficient tool to address a wide variety of matrix variables 

problems that appear in systems and control theory. Instead of applying the classical 

approach to solve the matrix variable problem, i.e. analytical or frequency domain-based 

methods, the problem is reformulated as convex (or quasiconvex) optimization problems that 

are subject to a finite set of matrix inequalities that are linear (or affine) with respect to the 

original set of matrix variables. Due to the recent developments in interior-point optimization 

methods, convex optimization problems involving LMI’s are now tractable and can be 

efficiently solved with a relatively high accuracy34.  

There are several factors that make LMI’s a powerful computational tool:  

• Many complex control system problems that involve several matrix variables with 

different structures can be formulated in terms of a linear matrix variable problem. 

• The LMI formulation can be exactly solved by the use of convex optimization 

algorithms, referred to as LMI-solvers. 

• LMI techniques are an alternative solution to those problems with multiple constraints 

and objectives for which the classical analytical methods either fail or have numerical 

difficulties in finding a solution. 

Therefore, LMI’s formulations have been used to treat a wide variety of robust control 

problems. The most typical LMI applications in control design problems includes the 

following: robust H∞ control 37-38, robust H2 control39, gain-scheduled controller design40, 

robust model predictive control41, and robust stability and performance of linear time-

invariant systems42. A more comprehensive review that presents the control-theoretic 

problems that can be solved with LMI techniques is presented by Boyd et al.36. 

The general form of a linear matrix inequality is given as: 
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where  are the design variables and  are symmetric matrices that are 

given. The inequality sign ‘>’ indicates that the smallest eigenvalue of F(x) is positive, i.e. 

F(x) is positive definite. This LMI is convex on x, that is, since F(x1)>0 and F(x2)>0, then it 

follows that F ; thus the feasible set in (

x ℜ∈ ii ℜ∈= FF

2.14) is a convex subset of ℜ . 

Although (2.14) does not have a formal analytical solution, it can be solved numerically with 

the guarantee of finding a solution set, when one exists, that is convex in the design 

variables.  

The numerical solution of an LMI is a binary decision problem, i.e. the answer to an LMI 

problem is either yes or no. For example, the formulation in (2.14) can be used to determine 

if a given system is asymptotically stable, the solution in this case is either yes or no. In other 

cases, the LMI problem is formulated in terms of a real positive parameter α, and it is desired 

to measure a property of the system due to changes in this parameter, i.e. the problem is 

formulated so as to find the largest value of α for which the LMI problem has a feasible 

solution. Typically, this requires an iterative solution on α and therefore, the binary decision 

problem has to be solved as many times as the number of iterations required for convergence. 

On the other hand, most of the control systems problems are formulated as F(x)<0 and 

F(x)<G(x). These constraints are only special cases of the general representation shown in 

(2.14) since they can be rewritten as –F(x)>0 and G(x)-F(x)>0, respectively. 

The three basic LMI problems that are frequently solved for control systems design are the 

following: 

LMI feasibility problem (FP).– The goal in this problem is to find a set of values in the 

design variables,xsol, such that they satisfy a given linear matrix inequality problem. For 

example, given the LMI formulation in (2.14), the corresponding feasibility problem can be 

defined as follows: find the feasible set in the matrix variables values such that F(xsol)>0 

holds. An alternative solution to this problem is to find that xsol is an empty set which 

corresponds to the case that the proposed LMI problem is infeasible. It should be noted that 
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the feasible solution set is not being optimized, i.e. this problem only specifies if the LMI is 

stable or not but it does not provide measures of how far (or close) the LMI formulation is 

from instability or stability. 

LMI eigenvalue problem (EVP).– This problem deals with the minimization of the 

maximum eigenvalue of a matrix (χ) that depends affinely on a variable and that is subject to 

LMI’s constraints as follows: 

  (2.15) 
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where A and B are symmetric matrices that depend affinely on the design variable x. This 

problem can be reformulated in different equivalent forms36; e.g., it can be rewritten in terms 

of a linear scalar function ϑ  that depends affinely on x and that is subject to LMI constraints 

as follows: 
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The above formulation is also known as the linear objective minimization problem. In this 

type of problem, an objective function is to be minimized (or maximized) such that it 

satisfies a given set of LMI’s. Due to its flexibility, this generic problem is often used in 

control theory to design controllers which formulation is based on LMI’s. In most of the 

cases, the function ϑ  measures a particular property of the system of interest. 

LMI generalized eigenvalue problem (GEVP).- This is a general formulation of the 

previous problem. In this case, the eigenvalues are subject to a pair of matrices that affinely 

depend on the design variables x. Thus, the GEVP can be posed as follows: 
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where A, B and C have the same properties as the matrix A in (2.15). By inspection of 

(2.17), it is noticed that the constraints are convex and the objective function is quasiconvex. 

Accordingly, the GEVP solution requires quasiconvex programming. This means that for a 

feasible x1, x2 and 0 θ , the following inequality holds36: 
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where χmax(A(x),B(x)) represents the largest generalized eigenvalue of the term χA(x)-B(x) 
with B>0. Although the GEVP is not convex, the algorithms used to solve this problem are 

computationally efficient and similar to those used for both the feasibility and the eigenvalue 

problems presented above.  

A special class of problems that use the LMI-framework are Lyapunov method-based 

problems. These methods, widely used in control theory to establish the stability and the 

performance of a given control system, are reviewed in the following section.  

2.2.3 Lyapunov functions for robust stability and robust performance. 

In 1892, Lypunov43 published the first theoretical work that discuss the basic notions of 

stability in nonlinear systems. In this work, Lyapuvov proposed two approaches to study the 

stability of a given control system. The first approach is based on the idea that a nonlinear 

system may behave as a linear system around an infinitesimal nominal steady-state operating 

point. This approach referred to as the linearization method, examines the local stability of a 

nonlinear system around an equilibrium point by approximating the nonlinear model into a 

linear model. Because all physical systems exhibit nonlinear behaviour, the linearization 

method is only helpful for establishing stability of a system in an infinitesimal 
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neighbourhood of an operation point for which the behaviour is approximately linear. 

Consequently, finite bounds in the nominal operating conditions for which local stability is 

valid cannot be explicitly calculated by using the linearization concept and they highly 

depend on the physical system’s degree of nonlinearity. Moreover, most of the physical 

systems are subject to perturbations which may drive the system outward the nominal 

operating region, in which case the concept of local stability is not valid any longer. These 

restrictions on the linearization method motivated the necessity to propose a second approach 

that does not require an assumption of linearity and it is referred to as Lyapunov’s direct 

method. 

Lyapunov’s direct method determines the stability properties of a nonlinear system by 

constructing a scalar “energy-like” function (Lyapunov function) for the system and 

examining how this function develops in the time domain. Unlike the linearization method, 

the direct method is not restricted to local motion, that is, it determines the stability of the 

physical system globally. The direct method is based on a fundamental physical 

observation44:  

“If the total energy of a mechanical (or electrical) system is continuously 

dissipated, then the system, whether linear or nonlinear, must eventually settle down 

to an equilibrium point.” 

To demonstrate the previous statement, the following autonomous system can be considered: 

)(xf=x&  (2.19)  

To study global stability on a physical system, the direct method requires the definition of a 

Lyapunov function, V(x), such that it is positive definite with continuous partial derivatives, 

and it decreases along every nonzero state trajectory of (2.19). Then, the equilibrium at the 

origin of the system (2.19) is globally asymptotically stable if44: 

• V(x) is positive definite. 

• )(xV&  is negative definite. 

 32



• ∞→∞→ xV asx)(  

The fundamental limitation with this approach is that there is not a formal procedure to 

obtain V(x) for a particular system. Thus different structures can be used as Lyapunov 

functions to test the global stability and this may lead to different results according to the 

particular choice of these functions. To circumvent this shortcoming, general Lyapunov 

functions have proposed for different type of systems. The most common function used as a 

candidate to test the global stability and performance in linear systems is a Quadratic 

function. Given , a quadratic Lyapunov function (QLF) that is related to the states 

of the system is defined as follows36: 

xAx )(t=&

T= )  (2.20) ()()( ttx PxxV

where P is a given symmetric positive definite matrix that is also known as the Lyapunov 

matrix. This matrix is basis-independent, that is, it does not depend on the system’s 

parameters. 

The definition shown in (2.20) is fundamental for this work since closed-loop process 

stability and process variability are measured in terms of this quadratic function. Therefore, 

the robust stability and robust performance criteria are defined as convex optimization 

problems that are subject to LMIs constraints, i.e. FP and EVP. These particular tests are 

presented in more detail in chapter 3. 

2.2.4 Structured Singular Value (SSV) analysis  

LMI’s is an efficient tool to analyze models with a reduced number of structured 

uncertainties since the computational burden associated with these problems grows 

exponentially as the number of uncertain parameters considered in the model structure 

increases. To deal with this issue, the uncertainties that appear on different sections of the 

system are lumped together in order to avoid an increase in the dimensionality of the 

problem. This is generally done by increasing the uncertain model coefficient’s range of 

values considered for analysis. This remedy partially alleviates the computational burden at 

the expense of having a model with uncertainty descriptions that are larger than the true 
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uncertainty. Consequently, the RS and RP measures obtained with these models are expected 

to be conservative. These facts restrict the use of LMI’s as a robust analysis tool. 

The Structured Singular Value (SSV)45 based approach strictly addresses RS and RP in 

MIMO processes with several sources of uncertainties, e.g. structured or unstructured 

uncertainty, appearing in different sections of the closed loop system. This matrix function, 

denoted by SSV or μ, is based on the generalization of the singular value and the spectral 

radius for constant matrices. This technique requires the system’s dynamic behaviour to be 

represented as an uncertain linear fractional model, see Section 2.2.1. Considering the linear 

fractional model description given in Figure 2.3 the matrix  represents all the LTI 

models which parameters are perfectly known. This matrix is generally formulated by 

combining the process linear model, the controller and the scalar weights or bounds on the 

uncertain model parameters. The input variable, u, accounts for all the possible exogenous 

perturbations that may affect the system, e.g. disturbances, set points and measurement noise, 

whereas the variable y, groups all the system’s outputs. The perturbation block Δ  
considers in its structure the interconnections between the different sources of uncertainties 

and the nominal plant M. The structure of Δ is problem specific and depends on the number 

of blocks to be considered in the system, their types and dimensions. The type blocks can be 

either repeated scalar blocks, i.e. structured uncertainty, or full blocks, i.e. unstructured 

uncertainty. The generic definition of the matrix Δ is as follows46: 

nxnCM ∈

nxnC∈

[ ]{ }jj xmm

fs

j C∈Δ,ifrssrdiag CII ∈ΔΔ=Δ :,,,,, 111 δδδ KK  (2.21)  

Where the subscripts s and f are nonnegative integers that specify the number of repeated 

scalar and full blocks, respectively. Similarly, the subscripts r1,…,rs and m1,…,mf specify the 

dimensions of each block, e.g. the first repeated scalar block is of dimensions r1xr1 whereas 

the jth full block is of dimensions mjxmj, respectively. For consistency, 

 nmr
j ji i =+ ∑∑ == 11

 (2.22) 

Each of the blocks in (2.21) is often bounded as in equation (2.4): 
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{ ( ) }1: max = Δ ∈ σ Δ ≤ΔΔ

}

 (2.23) 

Based on the above definitions, the structured singular value problem, μΔ(M), is defined as 

follows45: 

 ( ) ( ) ( ){ 0det,:min
:

max =−∈ΔΔ
=

MΔIΔ
MΔ σ

μ 1  (2.24) 

if no Δ exists such that it makes I-MΔ singular, then μΔ(M):=0. 

Thus, μΔ(M) can be viewed as a measure of the smallest structure Δ that causes instability in 

the system. From (2.24) it follows that: 

( ) ( )MΔM
ΔΔ μ

∈Δ
= ρmax:  (2.25) 

where ρ stands for the spectral radius. Thus, μΔ(M) is a generalization of the spectral radius , 

ρ(M), and the maximum singular value, σmax(M).  

Although definition (2.24) represents a formal mathematical definition of the structured 

singular value function, this definition is not used explicitly for the estimation of μ since it 

poses a complex optimization problem. To circumvent this issue, upper bounds for the SSV 

are generally sought. For example, for the case where the uncertain block is defined as a 

single repeated scalar block, i.e. { }CIΔ = ∈δ δ:
nxnCΔ =

, then μΔ(M)= ρ(M). On the other hand, if the 

perturbation block is described by a full block, i.e. , then μΔ(M)= σmax(M). Then, for 

the general representation given in (2.21) and the μ definition (2.24) it follows that: 

( ) )()( MMM  (2.26)  ρ ≤ maxΔμ ≤ σ

Although these limits do not represent tight descriptions for μ, they can be reformulated by 

considering transformations on the nominal plant M that are insensitive to μΔ(M) but do 

affect ρ and σmax. To do this, the following scaling matrices are defined: 
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If for any Q∈Q, D ∈ D , and Δ∈Δ, then Q*∈Q, QΔ∈Δ, ΔQ∈Δ, and the following 

equalities hold: 

( ) ( ) 
DD

QQ
Δ=Δ

=Δ=Δ )(Δmaxmaxmaxσ σ σ  (2.28) 

Therefore, for all Q∈Q and D ∈ D , it can be stated that: 

 )()()()( === DMDQQMMQ ΔΔΔΔ μμμμ 1−  (2.29) 

Consequently, inequality (2.26) can be reformulated as follows45: 

 )(inf)(max)()(max max∈∈Δ∈
≤=≤ DMDΔMMQM

DΔΔQ
σρμρ

DQ

1−  (2.30) 

where the above upper and lower limits represent tighter bounds on μ than those presented in 

(2.26). Although the lower bound is always equal to the function μ45, its corresponding 

optimization problem is not convex, i.e., it is subject to local solutions and a global solution 

may not be found. On the other hand, the upper bound can be reformulated as follows47: 

 
0DMDM0D

0IDMDMD0D

DMD0DMΔ

<−>∃⇔

<−>∃⇔

<>∃⇐<
−−

222

2121
max

*:
*:

)(:)(

β

β

βσβμ −1

 (2.31) 

where β2 is an scalar and M* is the conjugate of M. The matrix 2D  can be redefined as 

follows: 

 { }0,: >=∈= PPPPDP 2 T

<− 2β

 (2.32) 

Consequently, the last inequality in (2.31) is equivalent to: 

  (2.33) 0PPMM *
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This last expression is an LMI which eigenvalues depend affinely on the pair of matrices P 

which can be viewed as a Lyapunov function weighting matrix, and M is based, as explained 

above, on the nominal linear model of the plant. Thus, the calculation of the SSV can be 

formulated according to (2.33) as a Generalized Eigenvalue Problem (GEVP) that was 

reviewed in the previous subsection. Thus, since the upper bound in (2.30) is redefined as a 

convex LMI, the global minimum to this problem can be found. The drawback of this 

calculation is that the upper bound is not always equal to μ though it usually provides a good 

approximation to its actual value. For uncertain blocks satisfying 2s+f ≤ 3, the upper bound is 

always equal to μ, whereas for blocks that satisfies 2s+f > 3, there are matrices for which the 

function μ is less than the infimum (inf). More details about the relationship between μ and 

its upper bound are given by Packard and Doyle48. 

The most widespread use of the function μ is for testing the robustness of a given system. 

The robust stability test expressed in terms of μ can be formulated as follows49: 

Consider the linear fractional model shown in Figure 2.3. Assume that the nominal model 

 is stable and that the perturbation block Δ has been defined as in (nxnCM ⊂

qp xnnC⊂

1)(

2.21). Then the 

system in Figure 2.3 is stable for all perturbations Δ  if and only if: 

MΔ <μ  (2.34) 

where the superscripts nq and nq denotes the number of inputs and outputs between the 

nominal plant M and the uncertain block Δ, respectively. 

The μ-based robust performance test is defined in terms of the worst-case random mean 

squares (RMS) gain from the input u to the output y in the presence of uncertainties Δ. To 

derive such a test, an additional uncertain block has been added to the system presented in 

Figure 2.3; this structure has been interconnected with the system’s inputs and outputs as it is 

shown in Figure 2.4. The new uncertain block (Δp) takes into account the external 

perturbations affecting the system’s outputs. As it is shown in Figure 2.4, the two uncertain 

blocks can be combined to form a single uncertain block. Assume that the nominal plant can 

be partitioned as follows: 
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then, the transfer matrix from input u to output y in Figure 2.4 can be defined as follows: 

( )uΔMy F , u=  (2.36)  

where  is a linear fractional model defined as: ( )F ΔM,

( )

u

( ) 1−

( )

12112122, MΔMIΔMMΔM −+= uuuF  (2.37)  

 

Figure 2.4 Block diagram structure for robust performance. 

Based on the above definitions, the robust performance condition can now be stated as 

follows: 

 ( )( )

uΔ

1,sup, max <=
∞ uu FF ΔMΔM σ  (2.38) 

This criteria can also be expressed in terms of the function μ as follows49: 

The nominally stable system M subjected to the block diagonal uncertainty, satisfies the 

robust performance condition ( ) 1, <
∞uF ΔM

1)(sup

 if and only if: 

 <MΔ p
μ  (2.39) 
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This is a very useful property in structured singular value analysis since it shows that the 

robust performance test is equivalent to the robust stability test given by equation (2.34) with 

an augmented perturbation block Δp. Accordingly, the robust performance criteria (2.39) can 

also be stated as follows: 

 { } 1)(, <= ΔΔΔ pudiag Mμ  (2.40) 

In general, the performance uncertain block is defined as a complex full block. With regards 

to computation of the function μ in (2.39), upper and lower bounds for this problem are 

estimated using the definitions given in (2.33) and (2.30), respectively. A more 

comprehensive review on the definition and properties of the function μ can be found 

elsewhere45-47. 

The SSV (μ) method is fundamental for the present work since it is used as the computational 

tool to evaluate a new robust performance criterion. This performance measure can be also 

used to determine the time-dependent critical profile in the external perturbations such that 

will cause the largest process output deviation with respect to a nominal operating point. This 

worst-case disturbance analysis is formulated as a linear fractional model with the general 

interconnection structure shown in Figure 2.4. The formal mathematical description of this 

robust performance criterion is presented in chapter 4. 

2.3 Model identification 

The robust control tools reviewed in the previous section require that the process will be 

modelled by robust models given by a nominal linear model supplemented with a suitable 

uncertainty description. Thus, a key component of the present work is the identification of 

these nominal linear models, and their corresponding uncertainty descriptions, from 

simulation results produced with the full nonlinear model of the process under study. 

This section presents a brief review on systems identification concepts that has been used in 

this work to model the dynamic behaviour of the system under the effect of external 

perturbations and parametric uncertainties.  
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To be able to estimate robust stability and robust performance measures, it is necessary first 

to build an uncertain dynamic model that takes into account the process transient behaviour 

in the presence of uncertainties and external perturbations. Model uncertainty is usually 

described in terms of linear dynamic models complemented with uncertain model 

coefficients. Linear models are estimated under the assumption that the system behaves 

linearly around an infinitesimal neighbourhood of a nominal steady-state operating point. 

Although this description has limitations, they have been widely used in robust control theory 

because its structure is simple and there are well-known methods for the identification of 

models under this assumption. There are two basic approaches that can be used to obtain 

linear dynamic models:  

1.-Linearization. - This approach estimates analytically or numerically a linear dynamic 

model from the system’s rigorous mathematical mechanistic model. A key advantage 

associated with this method is that the model coefficients have a physical meaning. Thus, 

insight regarding the process transient behaviour can be easily obtained from this type of 

models. On the other hand, this method may be suitable for simple process models but it is 

generally impractical and computationally demanding for process models that involves many 

equations with many model parameters. When computed numerically, this method requires 

the evaluation of the Jacobian matrix which is computationally expensive for large-scale 

systems. 

2.-Identification. - The second approach consists of performing a set of experiments 

(simulations) on the full nonlinear dynamic process model. These experiments usually 

involve an informative input signal that is used to simulate the process transient behaviour of 

a signal of interest, i.e. output signal. The input/output values recorded from the experiment 

are then used by an identification technique to infer a linear dynamic model. This method is 

relatively easier to implement and it offers the advantage that complex process dynamic 

behaviour can be characterized by simple low-order linear models. For example, the transient 

behaviour of a distillation column can be characterized by a set of simple FOPDT models. 

Furthermore, systems identification for linear dynamic models is a mature area that provides 

reliable solutions to the empirical modelling problem. 
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The ARMA (Auto-regressive Moving Average) discrete model structure, the most commonly 

used model structure in system identification, is given as follows: 

 )()1()()1()( mtybtubntyatyaty −11 mn+ + − = − + +−+ KK  (2.41) 

where y is a signal of interest and u is the input signal, a1,…,an, and b1,…,bm, represent the 

model parameters, and the subscripts n and m denote the order of the polynomial for the 

input and output, respectively. It should be noticed that n>m has to be satisfied for physical 

causality. 

This basic linear dynamic model description can be transformed to other alternative model 

structures. For example, taking the Laplace Transformon both sides in (2.41) yields8: 
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where q-1 is the unit delay operator and G(q) represents the transfer function model that 

relates the signal y to the input u, i.e. = , respectively. The LTI in (2.41) can 

also be represented as a state space model:  

kkk

kkk

DuCxy +=
BuAxx =+1 +

  (2.43) 

where  represents the system’s state space vector. The state space matrices 

may take different representations for the same linear dynamic model. Assuming that 
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The above state space matrices description is known as the observer canonical form of a state 

space model50. 

The above linear dynamic model’s representations are considered parametric models since 

the system’s behaviour is represented by a fixed number of model’s coefficients. 

Alternatively, a linear system can also be described in terms of its response due to specific 

input signals. Thus, the LTI model in (2.41) can also be represented in the form of an impulse 

response (FIR) model: 

  (2.45) ( )∫ −=
0

)()( τττ dkTugkTy
∞

where k is the sampling instant and T is the sampling period, these two elements specifies the 

time t in the discrete domain, i.e. t=kT, with k=1,2,…∞ and T equal to a constant value. After 

algebraic manipulations, it can be shown that (2.45) is equivalent to the following 

convolution model: 

[ ] )()()(
1

tuqkgty
k

k∑∞ −
=

=  (2.46)  

where the function g(k) represents the impulse-response coefficients or equivalently the 

output’s response at time interval k to a unit pulse in the input signal u.  

For the purpose of regression, the model in (2.41) can be written in the following compact 

form: 

( )T

[ ]T

ψtty ϕ=)(  (2.47)  

where ψ represents the model’s coefficients and the function φ(t), known as thew regression 

vector, has the following structure: 

  (2.48) mtutuntytyt )(,),1(),(,),1()( −−−−−−= KKϕ

To determine the model coefficients’ values, it is necessary first to define a cost function 

such that it minimizes the differences between the actual linear system’s response and the 

predicted linear model as per the following objective function:  
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where ZN is the input/output data set that is used for model identification and has been 

recorded from the identification experiment, ξ represents the errors between the actual 

system, y(t), and the predicted model,  and ( )ξl  is a criterion used to reduce the errors in 

the predicted model. The choice of ( )ξl  is user-defined and it specifies the prediction-error 

identification method that is used to perform the model-identification. Many descriptions for 

this criterion has been proposed51 where the most common and practical definition is to 

consider ( )ξl  of a quadratic norm as follows: 

 ( ) 2

2
ξ1  (2.50) ξ =l

Using this choice, the cost function can be defined as follows: 
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 (2.51) 

This last expression is referred to as the least-squares method. A key feature in this criterion 

is that the description for the function ( )ξl  is quadratic with respect to the linear model 

coefficients ψ and consequently (2.51) can be solved analytically as follows51: 
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 (2.52) )

where ψ̂  represents the model coefficients’ estimates. The expression  means the 

minimizing argument, i.e. the value in the set  that minimizes the cost function. By 

inspecting (2.52), one can imply that the least-squares estimates 

minarg

ψ

ψ̂  are obtained by the 

solution of a single algebraic equation that only requires information about the input/output 
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data arranged in the regression vector φ(t). Let assume that the true physical system is 

defined as follows: 

 )  (2.53) ()()( 0 tetty += ψϕT

)(te

N

where ψ0 represents the true values of the linear system’s coefficients and  is defined as a 

set of independent random variables with mean zero values, i.e. e(t) has white-noise 

properties. The error in the parameter estimates can be defined as follows: 

 ∑
=

−=−=
t

tetNR
1

1
0 )()()(ˆ~ ϕψψψ  (2.54) 

~ → 0Thus, to obtain an unbiased least-squares estimation, i.e. ψ , it is required that51: 

  (2.55) 0)()()(~
1

1 == ∑
=

−

t

tEetNRE ϕψ
N

T 1

where the term E denotes a mathematical expectation. Based on the above definition, the 

covariance matrix of the error associated with the parameter estimates is defined as follows: 

 vNREPN )(~ ~ −== ψψ  (2.56) 

where the function v is the covariance matrix of the measurement noise e(t) and represents 

the noise variance associated with the data set ZN. From the above expression it is clear that 

the errors in the parameter estimates only depend on the system’s input properties R(N) and 

the noise level v. The covariance matrix of R(N) is defined as follows:  

 )(lim NR
N

R
N ∞→

=
1  (2.57) 

Given that R  is not singular; the covariance matrix of the parameter estimates is 

approximately given by51:  

 1−= R
N

PN
v  (2.58) 
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thus,  as , and therefore 0→P ∞→NN ψ̂  converge to ψ0. The following conclusions can be 

drawn from (2.58): 

• For oψψ →ˆ , R must be non-singular. 

• The parameters approach to their true values at a rate N1 . 

• The covariance does not depend on input and noise signal’s shapes, only on their 

corresponding variance properties. 

• The covariance matrix is sensitive to the signal to noise ratio. 

• For the least-squares to be consistent,  

 0)()( ==∗ tetEf ϕ  (2.59) 

The condition in (2.59) is valid only if e(t) is white noise, i.e. . This means that 

the actual values of the noise are independent from their past values; thus, the noise 

variance is represented as an identity matrix of proper dimensions. 

0)( =tEe

From equation (2.56), it is desired to have R  such that 0→R 1− ; thus, a key factor that 

determines the quality in the parameter estimation is related to the input u used to generate 

the data set ZN. Therefore, input-signal selection and design play a key role in systems 

identification. The input signals are selected based on factors such as the system’s 

constraints, the identification method, and the class of model that is desired to obtain. A 

measure of the quality of the input signal is given by the crest factor function51:  
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In principle, it is desired to have an input signal that have a small crest factor, which is 

achieved for binary, symmetric signals: u ut = ±)( . The smallest crest factor value is the 
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unity which corresponds to the maximum input power. In general, there are four test signals 

that are widely used in parameter estimation: 

Filtered white noise.- This signal is generated by passing a white noise signal through a 

stable linear filter. A key advantage with this input is that it can be designed such that its 

power spectrum is bounded; i.e. it has specific frequency content. This is done by a proper 

design of the filter’s parameters, i.e. the filter’s time constant. On the other hand, this signal 

is expected to have large crest factors due to its asymmetry.  

Random Binary Signal (RBN).- It is defined as a random signal that it can only take two 

extreme values. This signal’s crest factor is thus ideal, Cr=1, at the expense of having a 

wider power spectrum range, i.e its frequency content may not be concentrated within the 

bandwidth relevant for the system to be identifed.  

Multiple Sinusoids Signal.- The signal is described as a sum of sinusoids:  

  (2.61) ∑
=

+=
i

iii tatu
1

)cos()( ςϖ
o

where o, ai, iς  and iϖ  are adjustable parameters that can generate in principle a sinusoid 

signal with a very specific frequency content. As in the filtered white-noise case, the crest 

factor for this signal can be large. For specific amplitude, ai, and assuming that all the 

sinusoids are in phase, the squared amplitude is (oa2) and thus or 2=

QpR =

C ; i.e.  the crest factor 

is large when o is large. 

Pseudo Random Binary Signal (PRBS).- It is a two state deterministic signal with white 

noise like properties. This signal is characterized by the maximum length sequence, Q, and 

its sample period or switching time (p). These parameters determines the input signal’s 

period, i.e. . To make good use of this signal’s properties, the PRBNS has to be 

repeated R times. This is the reason why this signal is referred to as a Pseudo deterministic 

signal. The maximum length of the sequence (Q) is determined by factors such as the 

system’s settling time. The PRBNS have approximately the same properties as white noise 

when it is used with a maximum length sequence. Such signals have maximum power for a 
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given amplitude and minimum crest factor, which are desirable properties for a candidate 

input signal to be used for identification. This signal is widely used to identify non-

parametric models such as finite impulse response (FIR) models or step response models. 

Due to the form in which this signal is generated, the PRBNS contains equal power at all 

frequencies. Often, it is desired to design an input signal that excites the system in a 

particular frequency range. For example, for control purposes, it is often desirable to design 

controllers based on experiments around the crossover frequency. To circumvent this 

problem, PRBNS can be filtered by sampling faster, that is, given a PRBNS, a new signal can 

be constructed by taking K samples over each switching time π of the original signal. The 

new signal will thus be constant for at least K samples. This will increase the sampling 

frequency and reduce the original signal’s high frequency content. Typical guidelines for 

choosing K, also known as the clock period, is to let K to be 2.5 times the bandwidth to be 

covered by the signal or to sample 10 times faster than the bandwidth of the system to be 

identified51. 

Since the data collected for identification is in discrete form an incorrect sample time can 

lead to design a controller that in principle provide stability and performance but when it is 

connected to the physical system can generate poor performance or even instability. Thus, 

the sampling time must be carefully chosen when designing an experiment for model 

identification. Although there is no systematic way to define the best sampling time for a 

given system, there exist guiding criteria to choose an appropriate sampling period52: 

• Choose 
3
minτ

≈T , where minτ is the system’s smallest time constant of interest. 

• Choose 010 fs = , where sf is the sampling frequency and 0f  is the cut-off frequency of 

the system. 

f

• Choose 
20100
setset tT ≤ , where tset is the system’s settling time. t

≤

System identification tools, and particularly the least-squares estimation, are central in this 

work. As it is shown in the next chapters, robust models, which are used to measure the 
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system’s stability and performance, are obtained based on least-squares identification. 

Accordingly, the properties associated with the identification of a linear model using a 

quadratic norm criterion are widely exploited in this work to establish bounds on the 

predicted model’s parameters. 

In summary, this chapter has presented the methods, concepts and mathematical theory that 

are relevant for the current research work. In the first section, the current methodologies 

available to perform the integration of design and control were discussed and classified based 

on the key ideas that were used in the different approaches. Three main groups of 

methodologies were identified: controllability index-based approach, dynamic programming 

approach and robust approach. The second section presented a review on robust control 

theory. To design robust controllers, uncertain models are needed to measure robust stability 

and variability. Consequently the second section of this review chapter presented the 

different forms that uncertainty descriptions can be formulated and the form in which they 

are included in the models. Also, Lyapunov function methods were presented since they are 

central in robust control theory. In addition, two mathematical techniques for solving robust 

control problems were presented in this section: Linear Matrix Inequalities (LMI’s) and 

Structured Singular Value (μ) analysis. The first technique is suitable for uncertain state 

space-based models while linear fractional uncertain models are best suitable for the μ 

analysis framework. The models used to robustly design the dynamic system can be obtained 

from closed-loop identification. Thus, the last section of this chapter have presented the 

different model representations, the basic algorithm for least-square identification, which is 

the most preferred method used for identification, the different types of input signals 

available for identification, and guidelines for an appropriate sampling time. The next chapter 

presents the basic methodology formulation that is proposed in this research work to 

simultaneously design and control dynamic systems. 
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3. Simultaneous Design and Control of Chemical Processes: A 
Quadratic Lyapunov Function Approach 

The methodologies that are available for performing the integration of design and 

control have been based on a dynamic programming approach or on robust measures-based 

approach. The first set of methods searches for the disturbance and uncertainties realizations 

that generate the largest process variability by using the complete process nonlinear dynamic 

model. As it was stated in Section 2.2.2, the computational burden associated with the 

dynamic programming approach is extremely high, even with today’s computer hardware 

which rules out its application to solve large problems. On the other hand, the latter 

methodologies estimate bounds on the process’ stability and performance using a simpler 

representation of the process nonlinear dynamic behaviour. However, the reported robust 

approaches considered particular disturbance profiles and consequently, they do not 

guarantee that the resulting design is valid for other disturbance and uncertainties profiles. 

This chapter presents the basic mathematical formulation that has been proposed to 

circumvent the limitations related to the previous methodologies. The key idea in this method 

is to represent the system’s closed-loop nonlinear behaviour as an uncertain state space 

model where the model parameter values lie within ranges of values. The proposed 

methodology applies a robust stability test along with robust performance criteria based on a 

Quadratic Lyapunov Function (see Section 2.2.3). Thus, Linear Matrix Inequalities (LMI’s) 

are included as constraints within the mathematical formulation. The new methodology was 

applied to the simultaneous design and control of a mixing tank process. This case study was 

also used to compare the computational burden required by the present method and that 

required by a dynamic programming approach. 

This chapter is organized as follows: Section 3.1 presents the mathematical formulation 

proposed to integrate design and control on chemical processes. In Section 3.2, a case study, 

used to test the new methodology, is presented. The results obtained by this method as well 

as comparisons with another methodology are also discussed in this section. Section 3.3 
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presents a comparison, for the tank case study, of the computational times required by the 

present method and a methodology that uses dynamic optimization. 

3.1 Conceptual Mathematical Formulation 

This section describes in detail the methodology proposed to integrate process design and 

process control for systems under uncertainty and disturbances. The next paragraphs define 

the notation used throughout the chapter. 

The variables used in the proposed method are classified as follows: 1-input variables (h), 2-

output variables (w), 3-controller tuning parameters (λ), 4-design variables (d) and 5-

constants (c). The input variables h are partitioned as follows: 

[ ]ικh , =  (3.1) 

where κ represents the set of variables that can be adjusted to perform on-line control 

whereas ι denotes the set of unmeasured perturbations that may affect the process during its 

normal operation. The set of variables κ can be divided as follows: 

[ ]puκ , =  (3.2) 

where u denotes the set of manipulated variables used by the control algorithm to reject the 

perturbations ι whereas p represents the remaining set of parameters that are kept constant 

during plant operation and which values are obtained from optimization. To simplify the 

analysis, the unmeasured perturbation variables ι are partitioned as follows: 

[ ]υωι ,=  (3.3)  

where ω denotes a set of unmeasured perturbations that change very infrequently in the time 

domain, to be referred heretofore as process parameter uncertainty. This type of parameter 

uncertainty is considered to account for variables that remain at a particular steady-state for 

long periods of time. However, different steady-state values are considered for these 

variables in the optimization problem. Thus, the variations in time of these parameters are 

ignored in this analysis since they will occur very infrequently during the process normal 
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operation. For example, the production rate of a chemical unit may be kept constant for long 

periods of time but the plant have to be designed for different possible production rates. On 

the other hand, υ represents the set of unmeasured perturbations whose values change rapidly 

in the time domain and are defined from heretofore as disturbances. The process output 

variables are classified as follows: 

[ ]www olcl ,=  (3.4)  

where wcl refers to the set of output variables that are controlled in closed-loop by a 

controller whereas wol are the remaining set of output variables that are not controlled. It is 

assumed that the variables κ, ι, w and λ can take on values that fluctuate between a lower and 

an upper bound.  

The simultaneous design and control problem can be conceptualized as follows:  

FunctionCost  Minimize

  (3.5) 

.Constrainty Feasibilit Process
,Constrainty VariabilitOutput  Process

,ConstraintStability  Process
Equations, Algorithm Control

Equations, Model Process
s.t.

The constraints in (3.5) have to be satisfied for the process entire period of operation and for 

any possible realization of the disturbances υ and the process parameter uncertainty ω, 

respectively. 

3.1.1 Cost Function 

The cost function (CF) is formulated as the combination of the process capital and operating 

costs that are calculated based on steady state information, and a variability cost, which takes 

into account the dynamic behaviour of the process to be designed. This is mathematically 

expressed as: 

 ( ) ( ) ( )ddd VCOPCCCF φφφ ,,,,,,,,,,,,,,,, λdcwpudcwpudcwpu ++=  (3.6) 
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where the annualized capital cost (CC), the operating cost (OP) and the variability cost (VC) 

are functions of the nominal steady-state values of the available manipulated variables ( u ) 

and output variables ( w ), the value of the remain set of parameters that are not used for 

control (p), the design variables (d), and a process variability function (φd), respectively. In 

addition, the variability cost term is also a function of the controller tuning parameters (λ). 

The plant’s capital and operating costs are usually estimated from cost correlations which 

depend on the design variables of the system. In many chemical processes, the design 

variables are usually expressed as a function of other process variables, e.g. process 

manipulated variables, which are continuously changing in time. Therefore, the design 

variables not only depend on the nominal values of those variables but also on their 

variability with respect to their specified nominal value, i.e. the design variables also depend 

on the process dynamics. Consequently, the capital and operating costs functions are also 

functions of the process variability (φd) as shown in (3.6). 

For example, when the design of a distillation column is considered, the number of trays in 

the column is related to the reflux ratio. Often, the reflux ratio is manipulated for control 

purposes, i.e. its value changes with time. Thus, the total number of trays will be estimated 

based on the nominal reflux ratio obtained from steady-state calculations, plus the variability 

in reflux with respect to the nominal value. 

To assess the variability cost, it is necessary to first measure the process variability and to 

assign a cost to it. The process variability function (φd) is process specific and depends on 

factors such as the goals to be attained by the design, the process inputs and outputs and the 

nature of the process itself. The assignment of a specific economic value to the process 

variability function also depends on such factors. For example, if the goal is to design a 

process to keep the property of a product on target, then the cost is related to the deviations in 

this property with respect to the target and the corresponding quality degradation or quality 

improvement. On the other hand, if the sole objective is to design a system that can 

successfully accommodate the effect of magnitude-bounded disturbances entering the 

process, then the variability cost may be directly associated with the size of the unit to be 

designed. For example, the capital cost of a storage tank will be a function of the design 
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variable at a nominal value, i.e. the steady-state volume, plus a measure of the variations of 

this variable with respect to the nominal value, e.g. the changes in volume, occurring due to 

imperfect control. 

3.1.2 Process Model Equations and Control Algorithm 

It is assumed in this work that a closed-loop nonlinear dynamic process model is available 

for simulations. For both case studies, full nonlinear simulation models based on mass and 

energy balances were available. Similarly, the control structure used to control the system is 

also assumed to be known a priori. 

To develop the simultaneous flexibility and controllability analysis, the dynamic 

optimization-based methodologies have used the complete nonlinear dynamic model of the 

system to represent the process behaviour. This requires the numerical solution of a dynamic 

optimization problem, which may involve, even for chemical processes with a small number 

of units, rigorous mathematical calculations and an extensive computational time. This fact 

represents a limitation towards the application of these methodologies to the simultaneous 

design and control of chemical processes composed of several process units. 

A key idea in this work is to represent the closed-loop nonlinear dynamic model of the 

process as a nominal closed-loop state space model complemented with uncertainty in the 

model parameters. This implies that each of the elements of the state space matrices is 

bounded between extreme values. The set of uncertain values are defined as model parameter 

uncertainty (θ). This type of uncertainty should be distinguished from the process parameter 

uncertainty (ω) defined above that is related to uncertainty in the process physical 

parameters. The uncertainty values in the model parameters are used to capture the 

differences between the nominal linear state space model and the actual process behaviour 

and they are consequently related to the process nonlinearities due to the changes in the 

disturbances υ. Thus, the robust model is mathematically represented as follows: 

( ) ( )υBxAx
( ) ( )υDxCy DC

BA

θθ
θ

+=
+ θ=&

 (3.7)  
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where the matrix A(θA) has the following structure: 
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  (3.8) 

The remaining state space matrices defined in (3.7) are posed as in (3.8). The uncertain state 

space model given in (3.7) corresponds to a continuous affine parameter-dependent polytope 

type model. The formal polytope model description has been given in equation (2.11). The 

uncertain model parameters are defined as in (2.1), that is: 

[ ]),(),( , jiAijjiAijij aaa θθ −+=  (3.9)  

where it has been assumed that the amplitude of the uncertainty region associated with each 

element of the state space matrices is symmetric, i.e.  

 ),(),(),( maxmin jiAjiAjiA θθθ ==  (3.10) 

The model coefficient description shown in (3.9) corresponds to a parameter that ranges 

between two extreme values. The input in (3.7) is the magnitude-bounded disturbance υ that 

affects the process during its normal operation; the model output (y) can be either a closed-

loop process output variable (wcl) or an open-loop process output variable (wol).  

This type of model, also referred heretofore as robust model, can be obtained from 

identification of the closed-loop process nonlinear dynamic model as follows:  

i) Based on the process open-loop time constant estimated from open-loop simulations of 

the process, an excitation signal is designed to simulate the process closed loop nonlinear 

transient behaviour. The input to this model is the disturbance υ that affects the process 

outputs y. Thus, an excitation signal is imposed on the input using the actual lower and 

upper bounds specified for this variable, i.e., υl and υu.  
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ii) The process is simulated under closed-loop. The input/output data collected from 

simulation is used to fit a continuous linear transfer function model applying the least-

squares method that has been explained in Section 2.3.  

iii) The model is initially identified in transfer function form (see equation 2.42) and then is 

transformed into a state space canonical form by using the transformation of transfer 

function to a canonical state space model that has been explained in Section 2.3 and given 

by equation (2.44). The resulting linear model is complemented with model parameter 

uncertainty to capture the process nonlinearities. The information obtained from the 

covariance matrix, estimated from least-squares identification, is used as an 

approximation to describe the uncertainty region associated with each model parameter.  

Although the above procedure applies a least-squares method to generate a robust state space 

model, the present methodology is not restricted to this identification criterion since there are 

other methods available for closed-loop identification of continuous state space models51.  

It should be noticed that the only input used to generate the data set for identification is the 

disturbance set (υ). Thus, the robust model specified in (3.7) is only valid within a small 

neighbourhood of the nominal operating state, specified by nominal values in the 

manipulated variables to be used by the control algorithms and the process outputs, u  and w , 

d for fixed values in the adjustable variables (p), the design variables (d), the controller 

tuning parameters (λ) and the process parameter uncertainty (ω).  

an

The uncertain model description given above can be used to test robustness in the system to 

be designed. As it has been shown in Section 2.2.2, uncertain state space models like (3.7) 

are suitable for the LMI’s framework; therefore, robust measures based on a Quadratic 

Lyapunov Function (QLF) can be developed to estimate bounds on the process asymptotic 

stability margins and output variability. This approach is expected to reduce the 

computational time since long and expensive simulations of the full nonlinear model required 

by dynamic programming approaches are avoided. 

In addition, robust models like (3.7) can also be generated to describe the dynamic behaviour 

of the manipulated variables (u) with respect to changes in the disturbance variables (υ). 
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Then, using these models that have u as an output, bounds over the variability in u can be 

estimated with this model to test constraints on the manipulated variables used by the control 

algorithms. 

3.1.3 Process Stability 

To ensure process asymptotic stability, this approach applies a robust stability criterion based 

on a Quadratic Lyapunov Function, V(x), which has been defined in Section 2.2.3.  

Given a QLF: V(x) = xTPx, with x being the robust model’s states, the uncertain state space 

model described in (3.7) is asymptotically stable if and only if the following condition is 

satisfied42: 

( ) ( )T

}
T

0PAPA <+ AA θθ  (3.11)  

where P is a symmetric positive definite Lyapunov matrix and A(θA) is the A state space 

matrix given in (3.7), which uncertain parameters (θA) are bounded between pre-specified 

values. The objective in this problem is to find a matrix P such that satisifies the above 

inequality for all the possible combination in uncertain state space matrix A(θA). Inequality 

(3.11) cannot be solved directly since it places an infinite number of inequalities 

corresponding to all the possible values of the uncertain model parameters. However, due to 

the convexity of the condition 3.11 with respect to the model parameter uncertainty terms, 

this condition can be satisfied for all possible parameter values by testing only, the extreme 

values of each of the elements of the A state space matrix. These extreme values are used to 

form a polytope (see equation 2.11), usually referred to as the uncertain parameter box. Each 

vertex of the uncertain parameter box is specified by a particular combination of the extreme 

values of the parameters θΑ of the matrix A. Therefore, the stability test can be reduced to a 

finite set of Linear Matrix Inequalities (LMI’s) defined as follows: 

  (3.12) 
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where m denotes the set of 2r vertexes specified by the extreme values of the A state space 

matrix uncertain elements. The set of LMI’s given in (3.12) is used in the present 

methodology to test the system’s asymptotic stability. This implies that the resulting design 

obtained by this approach is guarantee to be asymptotically stable despite any bounded 

realization in ω and υ. 

3.1.4 Process Output Variability 

One of the key problems faced when integrating design and control is the assessment of the 

critical time-dependent profiles in the perturbation variables that produces the largest 

variability in the process output. This condition, referred to as the worst-case variability 

scenario, has been estimated by the most recently reported methodologies from the full 

numerical solution of dynamic optimization problems which is computationally intensive. 

Instead, in the present approach, a QLF is used together with the robust model specified in 

(3.7) to compute a norm-based bound on the process output error’s variance. 

Assume that there exists a QLF:  with and a parameter PxxxV =)( T TPP0P => , 0≥γ such 

that: 

 0)0(, allfor  )( =≥ 0xV Vx

2 TT&

ff tt

∞→t

 (3.13) 

  (3.14) υγ , allfor  0)()()()()( ytttt <−+ υυyyxV

Inequality (3.13) has to be satisfied for all cases for which there is no external perturbations 

(υ=0), i.e. the free response of the system, whereas inequality (3.14) has to be satisfied for all 

time t along any nonzero closed-loop trajectory of the system (3.7). Integrating (3.14) from 0 

to tf in combination with the fact that inequality (3.13) is satisfied when the disturbances are 

removed yields: 

  (3.15) ∫∫ <− TT dtttdttt
00

2 )()()()( 0υυyy γ

After taking the limit  inequality (f 3.15) is rewritten as follows: 
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2

2

υ
y

>γ  (3.16) 

where y  and υ  represent the Euclidean norm of the model output errors and the 

disturbances affecting the process, respectively. The result obtained in (3.16) implies that γ is 

an upper bound on the 2-norm gain of the model output in the presence of external 

disturbances and consequently, this norm can be used to measure the system’s closed loop 

variability. In order to compute γ, inequality (3.14) can be rewritten in a matrix quadratic 

form by expanding the quadratic function term V(x) and using the robust model given in 

(3.7). Thus, it can be shown that (3.14) is equivalent to the following set of linear matrix 

inequalities36: 
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Similarly to the stability test described before, inequality (3.17) involves an infinite set of 

linear matrix inequalities since each element of the state space matrices is given by an 

infinite set of values bounded by a lower and an upper bound. To circumvent this condition, 

the same approach used in the process stability analysis is also applied in the computation of 

γ, i.e., an uncertain parameter box is created using only the extreme values of the uncertain 

model parameters of the state space matrices specified in (3.7) and then inequality (3.17) is 

reduced to the following set of LMI’s: 

  (3.18) 
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where  is the set of the 2q vertices of the uncertain parameter box that represents all the 

possible combinations between each of the upper and lower bounds of the elements of the 
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state matrices given in (3.7). Accordingly, inequality (3.17) is reduced to a set of 2q linear 

matrix inequalities. To compute γ, it is required to find the smallest value in this parameter 

such that (3.18) holds with P being a symmetric positive definite matrix. This problem is 

formulated as follows: 

  (3.19) 

PP0P

000
0I0
000

IDC
DPB
CPBPAPA

P

=>

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
<

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

+

T

ll

T
l

T
l

T
lll

T
l

ss
sIs
ssss

ts

,

 
)()(

)()(
)()()()(

..

min

2

2

γ

γ

Problem (3.19) corresponds to a generalized eigenvalue problem (GEVP) or it can also be 

reformulated as a eigenvalue problem (EVP) where the formal definitions of GEVP and EVP 

have been given in Section 2.2.2.The solution in (3.19) provide the value of the parameter γ 

which is an upper bound on the largest input/output root-mean squares (RMS) gain of the 

robust model given in (3.7). The computation of γ from (3.19) can be easily performed using 

the current available off-the-shelf LMI-solvers such as the MATLAB’s LMI Toolbox 34. 

Inequality (3.16) can be expanded to obtain the following formulation: 

 2
0
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2
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i
i

t

y∑
=>

N

 (3.20) 

where δυ denotes the rate of change on υ and tf represents a time horizon ( ∞→ft ). 

Inequality (3.20) specifies that γ provides a bound on the standard deviation of the model 

output variability. However, the worst-case scenario calculation requires the specification of 

a bound over the maximum variability in the model output (y). For a normal distribution, one 

standard deviation indicates that approximately 68.26% of the data lies within this value, i.e. 

the process output values will remain within the value specified by γ at least 68.26% of the 

time horizon, tf. Base on this assumption, higher multiple values of γ may be used to estimate 

a more realistic bound on the maximum model output error, that is, 
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 γn=Η  (3.21) 

where Н represents a bound on the process output variability based on the multiples of the 

parameter γ to be used in the design and n is an integer number referred to as the number of 

multiples of the variability index to be used within the analysis. The integer parameter n is 

specified by the user to guarantee that a certain percentage of the output values will lie within 

the bounds given by H.  

The previous analysis specifies a bound on the worst process output error based on the robust 

model (3.7), which in turn was generated around a nominal operating point and at a fixed 

value of the process parameter uncertainty ω. Thus, one must search for the value in ω that 

drives the model output variable y to its largest variation. Accordingly, the QLF-based worst-

case scenario formulation is defined as follows: 

 ( )dd
ul

Η
≤≤

,,,,,,max λdcwpu
ωωω

φ  (3.22) 

Where Ηd denotes an upper bound over the process output variability and is directly related 

to the process variability φd. The function φd is problem specific and it also depends, as 

indicated in equation 3.22 and as illustrated later in the case study, on the manipulated 

variables u, the adjustable variables p, the process outputs w, the constant parameters, c, the 

design variables, d, and the controller tuning parameters λ. To solve (3.22), identification of 

a closed-loop robust model of the structure given by (3.7) is performed around different 

process parameter uncertainty values (ω) while the remaining process variables (u, p, w, c, d, 

and λ) are fixed to specific values. Problem (3.22) also requires the computation of (3.21) 

and (3.19) for each ω tested but this calculation is very simple and can be performed rapidly. 

The optimization problem posed in (3.22) could be reduced to a single calculation of φd if the 

process parameter uncertainty were also considered as an input in the robust model (3.7); i.e., 

υ and ω would be considered as the external inputs that generate the process dynamic 

simulation outputs that are used to perform the closed-loop identification. This approach 

would take into account the transients in ω and would also eliminate the necessity to 

compute (3.22), but it would potentially lead to the identification of a robust model with 
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larger uncertainty, that could potentially cause the final design to be more conservative. 

Thus, although solving for (3.22) requires the systems identification at every ω tested it 

involves a simpler identification problem as compared with the approach that considers ω as 

a disturbance. Moreover the uncertain model parameters of the identified model are expected 

to lie within a small neighbourhood of the nominal point around which the identification is 

done due to closed-loop operation.  

Based on the knowledge of the maximum process variability, a cost can be assigned to 

quantify the economic impact of the process variability in the cost function specified in (3.6) 

as illustrated later in the case study. 

3.1.5 Process Feasibility 

Process feasibility requires that all the time dependent process variables, e.g. the manipulated 

variables u, must remain within pre-specified bounds in the presence of changes in the 

perturbation variables, i.e. υ and ω. To guarantee process feasibility, the present work applies 

the same approach used to assess the worst-case scenario, i.e. an upper bound on the largest 

input/output RMS gain is computed based on the closed-loop identification of a robust model 

with the structure (3.7). The output of this model is the variable that it is desired to keep in 

between bounds, e.g. the manipulated variables should be kept in between the saturation 

limits of the actuator. In this case, the model has to be identified from the disturbance 

variables υ to any process variable (g) that is required to remain within bounds. Then, the 

largest variability in this variable is estimated by solving (3.19) and (3.21) respectively. 

Thus, the feasibility condition for each process variable is given as follows: 

 ρ≤Η±
≤≤ ul

g
ωωω '

max g  (3.23) 

where ρ are the input limits and g  represents the nominal value of the process variable that 

has to remain within the specified bounds, e.g., the nominal value of the manipulated variable 

( u ) used by the controller or the set point of an output variable ( clw

'

). It should be noticed 

that the process parameter uncertainty value ω that produces the maximum variability in 

(3.22) may not be same as in (3.23). Hence, ω  in inequality 3.23 represents the process 
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parameter uncertainty that produces the maximum variation in g which values ranges 

between a lower and an upper bound, denoted as ωl and ωu, respectively. In addition, the 

parameter Нg denotes a bound on the variability in g due to changes in υ and is computed 

from (3.21). 

3.1.6 Optimization Problem and Solution Strategy 

The cost function given in (3.6), the process stability test (3.12), the worst-case scenario 

calculation (3.22) and the process feasibility constraint (3.23) are combined together in the 

present approach to achieve the simultaneous design and control of dynamic systems under 

uncertainty and disturbances. Therefore, the conceptual simultaneous design and control 

optimization problem outlined in (3.5) is mathematically expressed as follows: 
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Although the process model equations and the control algorithms equations do not explicitly 

appear within the mathematical formulation, they are implicitly considered through the use of 

the identified robust model. For example, the robust stability criterion is based on the robust 

model matrix A(mk), whereas the process output variability and process feasibility bounds, 

Нd, and Нg respectively, are obtained by using the robust model as explained above.  

The resulting optimization problem stated in (3.24) corresponds to a nonlinear constrained 

optimization problem. The algorithm proposed to solve this problem can be summarized in 

the following steps: 
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Step 0 (Initialization).- Given the process flowsheet, the control algorithm and the pairing 

between the manipulated variables and the controlled variables, specify initial nominal values 

for the manipulated variables to be used by the controller ( u ), the output variables that are 

not being controlled ( olw ) and for the set point of the output variables that are under control 

( clw ). Also, specify initial values for the controller tuning parameters (λ) and the remaining 

set of adjustable variables that are kept at a constant value during the entire period of 

operation (p) and the design variables (d). For simplicity, these variables are lumped into the 

vector η and lower and upper bounds are assumed for each of the variables in this vector , 

i.e., ηl and ηu, respectively. Also, an initial value for the process parameter uncertainty ω is 

specified. 

At each iteration k: 

Identification of a state space model with uncertain model coefficients.- In order to solve 

problem (3.24), the complete process nonlinear model and the selected control structure are 

used to identify a robust state space model around a nominal operating condition, specified 

by the values in η and ω, respectively. The input data used to perform the identification 

process consists of a Pseudo Random Binary Noise Signal (PRBNS) on the disturbance 

variables (υ) which is designed based on the process dominant time constant and the lower 

and upper bounds specified for this variable. The required properties of the input excitation 

signal have been specified in Section 2.3. Then, this signal is used to simulate the closed-loop 

behaviour of the system to be designed. The input/output data collected from this simulation 

are used to identify a linear transfer function model using the least squares criterion51 and 

then, a state space realization is performed on the identified transfer function to obtain a 

canonical linear state space model. The process nonlinear behaviour in the presence of 

perturbations υ is captured by using uncertainty terms (θ) with respect to the linear state 

space nominal model parameters as it is shown in (3.8). The values of θ are obtained from 

the covariance matrix generated during the linear parameter estimation of the linear transfer 

function model (see Section 2.3). The application of this procedure generates a robust model 

such of the structure given in (3.7). 
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Model Validation.-The use of the elements of the covariance matrix as bounds of the 

parameter estimates of the nominal state space model is a practical approximation based on 

the assumption of normal distribution of parameter values. On the other hand, since the 

residuals between the closed-loop nonlinear system and the corresponding identified linear 

model are deterministic, the parameters may not be normally distributed. Asymptotic 

normality is obtained for infinite number of data points since the input signal used for 

identification is a PRBNS with white noise-like properties51. In the current study, although 

the number of points for identification is large, it is not infinite. Therefore, the parameters 

may not be normally distributed and the variance may not be an accurate bound. Thus, to test 

that the identified robust state space model captures the systems closed-loop dynamics and it 

is sufficiently inclusive to calculate a bound on the variability index, γ, a model validation 

step may be performed. For each closed-loop identification, this step consists in comparing 

the index γ calculated from the simulation of the nonlinear system using (3.16) to the 

analytical bound of γ calculated from (3.19) and (3.21). Since the calculation of γ considers 

models that are made of all the possible combinations of the uncertain model parameter 

values, θ, considered in the construction of the robust model given by (3.7), it was expected 

that the resulting analytical bound is sufficient to bound the γ obtained from the simulation of 

the nonlinear system. This was fully corroborated in the case study presented in Section 3.2. 

If the test is satisfied, the optimization proceeds to the next step. Otherwise, one can increase 

the uncertainty bounds on each of the robust model parameters by multiplying the covariance 

matrix estimated by a factor until this test is satisfied. However, this never occurred in the 

case studies presented in this work. 

Step 1 (Worst-case scenario).- Given the process variability function φd and the nominal 

operating conditions specified by η, find the critical value in the process parameter 

uncertainty ω that produces the maximum variability in the process (3.22). At this stage, a 

different robust model such as (3.7) has to be identified for each ω tested. Once problem 

(3.22) is solved, a cost can be assigned to the process variability to evaluate the impact of the 

process variability on the cost function (3.6). 
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Step 2 (Process stability test).- Given the critical value in ω obtained from the previous step 

and with the nominal operating conditions fixed (η), compute inequality (3.12) to evaluate 

the process asymptotic closed-loop stability.  

Step 3 (Process Feasibility).- Compute problem (3.23) to verify that the process variables of 

the system to be designed are within the pre-specified bounds. At this stage, the identification 

of the robust model such as (3.7) has to be generated for each '  tested.  ω

Step 4 (Objective function evaluation).- Using the information given in the previous steps, 

calculate the capital, operating and variability cost of the system to be designed (3.6). If the 

process constraints specified in (3.24) are satisfied and the difference in the cost function 

value between the previous and the actual iteration lies within a specific tolerance, then 

STOP, and optimal solution has been found; otherwise, set k=k+1, redefine the values in η 

according to the selected optimization algorithm and return to step 1. 

Although the present methodology attempts to optimally design chemical processes by 

integrating process design and control, there are a series of issues considered in its 

development that require further clarification. Problem (3.24) assumes that the process 

flowsheet and the control structure are defined a priori; thus, the process and control 

synthesis problem are not considered within the mathematical formulation presented above. 

However, the present approach can be expanded by embedding problem (3.24) into an 

optimization problem that searches for an optimal control structure and optimal flow sheet by 

adding integer decisions within the formulation. This would obviously increase the design 

degrees of freedom at the expense of solving a more complex optimization problem and the 

optimization problem will then be formulated as a mixed-integer nonlinear programme 

(MINLP). 

As mentioned above, it is assumed that the process variables in the system to be designed 

follow a normal distribution function. Hence, the value of the integer parameter n in (3.21) 

can be chosen to capture certain percentage of the variability. Although a normal distribution 

was assumed, the present methodology is not restricted to this choice and other types of 

distributions can be used for the assessment of the worst-case scenario and the process 

feasibility requirement. Regarding the selection of the value for n in (3.21), the parameter γ is 
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computed based on a state space model with uncertainty in the model parameters. 

Consequently, the value of γ tends to be conservative and so does the design. As it is shown 

in chapter 4, a robustness test based on a Singular Structure Value analysis (μ) has been 

developed to estimate a 1-norm bound on the maximum model output variability, i.e., 

)(max ty . 

Furthermore, it is assumed in this approach that the process parameter uncertainty and the 

disturbance have a uniform probability, i.e., the probability of occurrence of a given value is 

the same as for all the values considered within the specified bounds. This assumption is 

made to ensure that, for the process entire period of operation, the final design can 

successfully reject any time-dependent magnitude bounded perturbations υ when the process 

is operated around different steady-state values of ω without exceeding the process 

constraints specified in (3.24). 

The optimization problems solved in the present work were based on decentralized PID 

control strategies. However, the methodology presented above is not restricted to this type of 

control strategy and it could be extended for use with model based controllers. If model 

based controllers are used as the control algorithm, then the complete open-loop process 

model needs to be identified first and represented as a linear transfer function model. The 

identification may be performed as per the following steps:  

i) Based on the time constant of the open-loop process, a PRBNS is designed for the 

disturbance which is assumed to be the input into this process. This signal is used to 

simulate the process open-loop behaviour. The data recorded from this simulation is used 

to identify a linear transfer function model using a suitable prediction error method51, e.g. 

the least-squares criterion. 

ii) The identified transfer function model could then be used to either estimate the controller 

tuning parameters, by using the internal model control method (IMC), or as the internal 

process model for model predictive control algorithm (MPC). 

After the closed-loop model with the model-based controller is identified, the optimization 

problem is formulated as per the same steps presented above. The calculation of the 
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variability index γ for a model predictive controller (MPC) has been shown in a work related 

to the design of gain-scheduled controllers53. However, using model-based controllers would 

be generally more tedious because it requires the identification of the process open-loop 

model for use as the internal model of the model-based algorithm. 

3.2 Case Study: mixing tank Process 

The methodology presented in the previous section was applied to the simultaneous design 

and control of a mixing tank process that was previously studied by Mohideen et al.16. This 

problem was selected as a case study because its dynamics are described by two relatively 

simple nonlinear equations. However, the integration of design and control of this system has 

been still identified as a challenging task for dynamic programming-based methods since a 

bounded disturbance and a process parameter uncertainty is considered within the system’s 

design. Thus, the resulting design parameters are required to keep variables at their set points 

despite any possible combination of the process parameter uncertainty and the disturbance 

while maintaining the process operation within the feasible region.  

Figure 3.1 presents the mixing tank process flowsheet. The system consists of a hot and a 

cold stream mixed in a stirred tank. The hot stream flow rate, Fh, and temperature, Th, are 

time-varying variables due to variations in the hot feed flow rate, Fh and the hot stream 

temperature Th. The flow rate Fh, is assumed, based on the problem presented in the 

literature, to change very infrequently in time and therefore it is considered in this work as an 

unmeasured perturbation that remains at a steady state value for long periods of time. Then, 

as per the definitions given in the previous sections, Fh is assumed to be a process parameter 

uncertainty (ω). On the other hand, the temperature of the hot stream, Th, is assumed to be an 

unmeasured perturbation that exhibits fast-varying changes between extreme values; 

consequently, Th is considered in the design to be an external time varying disturbance (υ). 

The temperature in the cold stream, Tc, is a constant (c) during the entire period of operation. 

The cold stream flow rate, Fc, and the stem position of the valve located at the outlet, z, are 

the candidates manipulated variables for this process (κ). These variables can be set either to 

a constant value for the entire period of operation and they will be treated as a design 

variable p or they will be determined by the controller and they will be treated accordingly as 
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a manipulated variable u. The mixing tank’s hold up, V(t), and the outlet temperature, T(t), 

are state variables (w) that describe the process behaviour at any time t and it is assumed that 

they can be measured on-line. The tank’s outlet flow rate is assumed to be a nonlinear 

function of mixing tank’s hold up, i.e. ( ) VzVF =

 

. In addition, the tank is assumed to be 

well stirred and the density of the fluid is assumed constant for the entire period of operation. 

Table 3.1 shows the process model and the ranges of values considered for the different 

variables defining the process. 

V

T

Th  Tc 

Fh  Fc 

F,T  

z

Hot Process Stream 

ld Process Stream Co

 

Figure 3.1 mixing tank process 

The objective is to minimize the tank’s cost such that, the values of the controller tuning 

parameters (λ) and the available manipulated variables (Fc and z) can ensure process stability 

and feasibility for any time evolutions in the process hot stream (Fh and Th) at any time t. The 

tank’s total cost is directly proportional to the tank’s final size or volume. For this case study, 

the capital cost is assumed to be equal to the total volume of the tank at steady state plus a 

variability in volume around that steady state, i.e. the variability in volume accounts for the 

tank’s hold up variations due to the effect of disturbances entering the process and the 

imperfect rejection of these disturbances by the controller. The nominal or steady state 

volume depends on factors such as the nominal feed flow rates (Fc) and temperature (Tc) of 

the cold stream whereas the variability with respect to this nominal volume depends on both, 

the nominal volume around which the variability is estimated and the controller tuning 

parameters that determines the process closed loop dynamic performance. The operating 
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costs for this system are assumed to be zero. Thus, the cost function used to simultaneously 

design the mixing tank process is given by: 

( )V
nomd VV Η+=  (3.25)  

where Vd denotes the tank’s total size, Vnom represents the tank’s volume at a steady state 

condition and НV represents a bound on the tank’s hold up variability due to the external 

disturbances.  

Table 3.1 Process model and data for the mixing tank process. 

mixing tank process model 
( ) ( TTFTTF

dt
dTV

VzFF
dt
dV

cchh

ch

−+−=

−+=

)
 

Disturbance variable (υ) 350 K≤ Th≤ 390 K 

Process parameter uncertainty (ω) 0.05 m3/hr≤ Fh≤ 0.15 m3/hr 

State variables (y) V(t)≥0.9 m3, 300 K≤ T(t)≤ 370 K 

Available manipulated variables (κ) 0.0015 m3/hr≤ Fc≤ 2.0 m3/hr, 0 ≤ z≤ 1.0 

Constant variables (c) Tc=298 K 

Two different scenarios are considered: Scenario I-Temperature control only and Scenario II-

Simultaneous control of temperature and volume. These two scenarios are described in the 

following subsections. 

3.2.1 Scenario I-Temperature control only 

The first strategy proposed for the design of this process is to use a proportional-integral (PI) 

controller to maintain the tank’s outlet temperature T(t) within the specified bounds by 

manipulating the flow rate of the cold stream, Fc. This controller will make the necessary 

adjustments on Fc to reject the perturbations in the hot process stream (Fh and Th) entering 

the process. In this case, the tank’s hold up, V(t), is not controlled and the stem position, z, 

remains at a fixed value, to be specified from optimization, for the entire period of operation. 

Thus, the design is expected to result in a larger volume to the one expected to be obtained 

for Scenario II where both the tank’s temperature and volume are being simultaneously 

controlled.  
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For the purpose of formulating the closed loop system in state space form, the state space 

form of a PI controller is used as follows: 

 
( )TTTnomcc
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eKcFF
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 (3.26) 

where KcT and τIT are the PI controller tuning parameters that form the vector λ, Fc,nom 

represents the nominal value in Fc ( u ), ξT denotes the controller’s state and eT denotes the 

error between the set point, Tsp, and the actual tank’s temperature as follows: 

( )tTTe spT −=  (3.27) 

The mixing tank process model equations given in Table 3.1 are combined with (3.26) and 

(3.27) to simulate the process closed-loop dynamic behaviour. Since the sole objective for 

this process is to minimize the tank’s total cost subject to process constraints, the process 

variability function (φd) is equal to the tank’s total volume, Vd which is given by equation 

(3.25). Thus, the worst-case scenario for this process is estimated as follows (see problem 

3.22): 
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where НV is estimated from (3.21) and (3.19), respectively. To compute the value of γV, it is 

necessary first to estimate a state space model with model parameter uncertainty (3.7) from 

the disturbance variable, Th, to the output variable, V(t). This model is identified from 

input/output data recorded from the actual closed-loop process model equations following the 

procedure explained in Section 3.1.6.  

To guarantee that the outlet temperature remains within its upper and lower bounds at any 

time t, the problem in (3.23) is reformulated as follows: 

  (3.29) 
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where Tl and Tu represent respectively the lower and upper bounds for the tank’s outlet 

temperature. To calculate НT, a robust model of the structure of (3.7) has to be identified 

from Th to T(t) for every Fh tested by following the procedure detailed in Section 3.1.6. 

Expressions similar to (3.29) can be derived to test the constraints on the manipulated 

variable, Fc, and on the tank’s minimum hold up. The integer parameter n required to 

calculate Н in problems (3.28)-(3.29) and the process feasibility constraints were set to unity 

corresponding to one sigma in the normal distributions. Furthermore, to ensure process 

stability, robust models from Th to V(t) and T(t) are obtained using the Fh values obtained 

from the solution of problems (3.28) and (3.29), respectively.  

The mathematical formulation used to design the mixing tank when only one PI controller for 

temperature control is given in (3.30). The decision variables specified Scenario I’s 

formulation are the controller gain, KcT, the controller integral time, τIT, the stem position of 

the valve at the outlet, z, and the tank’s temperature set point, Tsp. Although the process 

model equations and the control algorithm equations are not explicitly shown in (3.30), they 

appear in the form of robust models, identified from the simulation of the process closed-

loop model equations, and used to measure the process stability, variability and feasibility. 

To illustrate that the above problem has a feasible search space, a graphical solution was 

obtained for which the controller’s tuning parameters (KcT and τIT), specified as decision 

variables in (3.30), were set to be constant and equal to -30 K*hr/m3 and 5 hr respectively. 

The remaining set of decision variables shown in the above optimization problem, i.e. the 

stem position (z) and the tank’s temperature set point (Tsp), were assumed to be the decision 

variables for this simplified case.  

Figure 3.2 shows a contour plot of the cost function values (3.25) obtained for a specific 

range of values of the decision variables (z and Tsp). This Figure also shows the active 

constraints for the range of values selected for the decision variables. The area enclosed by 

the active constraints, shown as dashed lines in Figure 3.2, represents the active feasible 

search space where the optimal solution lies. According to this figure the two active 

constraints defining the feasible region are the minimum volume constraint and the 
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maximum cold-feed flow rate constraint, specified in the problem formulation (3.30), 

respectively.  
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 (3.30)  

The graphic solution for the simplified case shown in Figure 3.2 is not practical for the case 

where all variables including the controller tuning parameters are considered or optimization. 

Accordingly, the full optimization problem shown in (3.30) was solved in MATLAB® using 

Sequential Quadratic Programming (SQP) as the optimization algorithm54-55. The results 

obtained from this calculation are shown in Table 3.2. The resulting relative large volume 

obtained for this scenario was somewhat expected since the tank’s hold up is not being 

controlled. Furthermore, the other potential manipulated variable in the process, z, is kept at a 

constant value for the entire period of operation whereas it could be effectively used for 

volume control V(t) as shown later for Scenario II.  
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Figure 3.2 Feasibility region, Scenario I. 

Table 3.2 Mixing tank’s design, Scenario I, QLF-based methodology 

Variables Solution 

Vd = (Vnom+HV) 37.70 m3 

z 0.3343 

Tsp 304.68 K 

Fc,nom 1.4652 m3/hr 

KCT -37.78 

τIT 5.7225 hr 

To test the results obtained by the present methodology, the full nonlinear process model 

(Table 3.1) and the controller equations (3.26) and (3.27) were used to simulate the mixing 

tank’s design for more than 1 year of operation. The process dynamics were generated using 

the hot stream temperature profile shown in Figure 3.3 with the hot feed flow rate, Fh, fixed 

to a steady-state value for the entire period of simulation. For this case study, the design was 

simulated for each of the hot feed flow rate extreme values, i.e., for the first simulation, Fh 

was fixed to 0.15 m3/hr whereas for the last simulation, Fh was fixed to 0.05 m3/hr, 

respectively. The results of these simulations are shown in Figure 3.4 through Figure 3.6. 

Specifically, Figure 3.4 shows that the tank’s actual hold up never exceeds the tank’s total 

 73



size, Vd. Similarly, Figure 3.5 and Figure 3.6 show that the outlet temperature and the cold 

feed flow rate fluctuate between their extreme limits. Thus, the design obtained by this 

approach remains stable and within the specified feasible region for many different changes 

in the flow rates and temperature values of the process hot stream.  
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Figure 3.3 Hot stream temperature profile used to simulate the design. 
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Figure 3.4 Mixing tank’s actual volume, Scenario I.  

Top graph: Fh at 0.15 m3/hr. Bottom graph: Fh at 0.05 m3/hr. 
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Figure 3.5 Mixing tank’s actual temperature, Scenario I. 

Top graph: Fh at 0.15 m3/hr. Bottom graph: Fh at 0.05 m3/hr. 
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Figure 3.6 Cold feed flow rate’s actual values, Scenario I. 

Top graph: Fh at 0.15 m3/hr. Bottom graph: Fh at 0.05 m3/hr. 
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3.2.2 Scenario II-Simultaneous Control of Temperature and Volume 

In this scenario the optimization problem is solved using a control strategy whereby both the 

tank’s volume and temperature are under closed-loop control. Thus, an additional PI 

controller that controls the tank’s volume by adjusting the stem position of the valve at the 

outlet, z, was added to the temperature control used in Scenario I. 

The equations that describe the performance of the additional PI controller are given by: 
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 (3.31) 

where KcV and τIV are the PI controller tuning parameters that controls the tank’s hold up, 

znom, represents the nominal value in z, ξV denotes the controller’s state and eV denotes the 

feedback error between the set point for the tank’s volume, Vsp, and the actual tank’s hold up: 

 )spV −=  (3.32) 

Thus, the closed-loop dynamics for this system are described by the process model equations 

shown in Table 3.1 and the controller equations, specified in (3.26), (3.27), (3.31) and (3.32), 

respectively. The process maximum variability was calculated using (3.28). In this case 

however, the nominal tank’s hold up (Vnom) is redefined as the tank’s volume set point (Vsp) 

since this output variable is now controlled by a PI controller. Also, the stem position, z, now 

becomes a manipulated variable (u) to control the tank’s volume at its desired set point. 

Accordingly, constraints on the variable z must be included in the analysis to ensure that it 

remains within bounds as follows, 

  (3.33) 
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To compute Нz, a robust model like (3.7) that relates the disturbance Th to z for every Fh 

tested, is identified. The process constraints defined for Scenario I and inequalities (3.33) 

represent the feasibility problem specified for Scenario II. As in Scenario I, the integer 
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parameter n required to compute the different variabilities (Н’s) related to the feasibility 

constraints was initially set to the unity but it was increased later to analyze its effect. In 

addition, the process stability test is performed using the same approach used in Scenario I. 

The QLF-based (γ-based) methodology developed in this research work was applied to 

simultaneously design and control the mixing tank process when both state variables, V(t) 

and T(t), are under closed-loop control. The mathematical formulation defined for Scenario II 

is given in (3.34). The decision variables specified for this problem are the controllers’ gain, 

KcT and KcV, the controllers’ integral time, τIT and τIV, and the set points of the tank’s 

temperature and volume, Tsp and Vsp, respectively. As in Scenario I, the proposed 

optimization problem posed for Scenario II was implemented in MATLAB® using 

Sequential Quadratic Programming (SQP) as the optimization algorithm54-55. The results 

obtained for this problem are shown in Table 3.3 ( γ=Η ). 

Table 3.3 Mixing tank’s design, Scenario II and Mohideen et al.16’s design 

Design Variables Solution 
(Н=γ) 

Solution 
(Н=2γ) 

Solution Mohideeen 

Vd (m3) 0.9253 1.0462 1.0 

Vsp (m3) 0.9153 1.0001 -- 

znom 0.4740 0.5973 -- 

Tsp (K) 321.81 316.07 360.0 

Fc,nom (m3/hr) 0.3035 0.4476 0.035 

KcT -21.8402 -27.5806 -0.005 

KcV -24.5018 -12.5709 -- 

τIT (hr) 2.3702 4.0201 5.0 

τIV (hr) 1.9506 1.9805 -- 

Since the tank’s hold up is maintained at a specified set point by a control algorithm, the 

variability in the mixing tank process was significantly reduced in comparison with Scenario 

I. Consequently, the tank’s total size required to reject the disturbances in the process hot 

stream is smaller than the design obtained in Scenario I.  
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  (3.34) 

The design obtained for Scenario II was simulated for more than 1 year of operation using 

the complete process model and the controller equations specified above. As in Scenario I, 

two simulations were carried out: the first one with the hot feed flow rate fixed to its upper 

value and the last one with the same variable fixed to its lower value. The hot stream 

temperature profile shown in Figure 3.3 was used for both simulations. Figure 3.7 shows the 
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simulated tank’s hold up. This Figure shows that when Fh is kept constant at its upper value, 

the actual tank’s hold up is very close to the maximum volume obtained by the optimization. 

This result can be explained by the selection made on the value of the integer parameter n, 

used to estimate a bound on the different variability’s around the mixing tank process (НV, 

НT, НFc, and Нz). As mentioned earlier in this chapter, this integer number specifies the 

multiples of the parameter γ to be used in the simultaneous design calculations.  
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Figure 3.7 Mixing tank’s actual volume, Scenario II (Н=γ).  

Top graph: Fh at 0.15 m3/hr. Bottom graph: Fh at 0.05 m3/hr. 

Based on the results shown in Table 3.3 ( γ=Η ), setting n=1 may not sufficient to cope with 

the hot process stream variations since in that case the bound is expected to account for only 

68.26% of the process variability. Therefore, the simultaneous design calculations for 

Scenario II were redone by setting the process variabilities НV, НT, НFc, and Нz, to be equal to 

twice the value of the corresponding bounds γ’s (n=2). Table 3.3 shows the results obtained 

following this calculation ( γ2=Η ) where as expected, the tank’s total size is slightly larger 
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than the value obtained when the integer number n was set to the unity. The resulting design 

was simulated using the complete process closed-loop nonlinear model and the hot stream 

temperature profile shown in Figure 3.3. Figure 3.8 shows that, when γ2=Η , the tank’s 

actual hold up remains within the limits specified by the resulting design. Thus, the current 

value of the parameter n ensures that the resulting design obtained for this process can 

accommodate, within the design’s feasible region, the perturbations that may occur in the 

process hot stream. Figure 3.9 through Figure 3.11 show that the rest of the mixing tank 

process variables, T(t), Fc, and z, are also kept within the pre-specified limits for the selected 

period of operation. 
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Figure 3.8 Mixing tank’s actual volume, Scenario II (Н=2γ).  

Top graph: Fh at 0.15 m3/hr. Bottom graph: Fh at 0.05 m3/hr. 
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Figure 3.9 mixing tank’s actual temperature, Scenario II (Н=2γ). 

Top graph: Fh at 0.15 m3/hr. Bottom graph: Fh at 0.05 m3/hr. 
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Figure 3.10 Cold feed flow rate’s actual values, Scenario II (Н=2γ). 

Top graph: Fh at 0.15 m3/hr. Bottom graph: Fh at 0.05 m3/hr. 
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Figure 3.11 Valve constant’s actual values, Scenario II (Н=2γ). 

Top graph: Fh at 0.15 m3/hr. Bottom graph: Fh at 0.05 m3/hr. 

Since Mohideen et al.16 proposed a dynamic programming approach to solve the same 

mixing tank problem considered above, it was of interest to conduct a comparison between 

their results to the results by using the robust modelling and design approach proposed in this 

research work. Table 3.3 shows the results obtained when Mohideen’s methodology was 

applied to the mixing tank process. These authors solved this problem applying a mixed 

integer stochastic dynamic optimization-based approach. Although their design resulted in a 

slightly smaller tank and only one PI-controller was used to control T(t) by manipulating Fc, 

the stem position of the outlet valve, z, was manipulated based on a nonlinear stochastic 

dynamic optimization to accommodate the changes in Fh for only 30 hours of operation. 

Since the bounds calculated in the robust approach are applicable to an infinite time horizon, 

a full fair comparison between Mohideen’s approach and the robust model approach 

proposed in this thesis is not possible. Clearly, the calculation of bounds along an infinite 

time horizon has a more practical value than a design applicable for a finite time horizon 
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only. However, it should be pointed out that Mohideen et al.16 solved the finite time horizon 

problem to illustrate the analytical steps of their approach rather than promoting the 

practicality of their design. 

The solution proposed in this work also differs from Mohideen’s solution from the point of 

view of the control strategies used to regulate the process. For example, in the second 

scenario, a PI controller is considered for the mixing tank’s volume control by manipulating z 

whereas Mohideen search for the optimal changes in z based on the assumption that the hot 

stream flow rate changes are known and are available for the optimization algorithm. 

Although the volume obtained for Scenario II by the proposed robust model based strategy is 

larger than Mohideen’s and the bounds on the process variables were relaxed to account for 

the steady-state condition, the implementation of the designs obtained by the present 

approach is very simple and practical since the controller does not require measurements of 

the hot stream flow rate Fh, that it strictly treated as unmeasured perturbations.  

In the present case study, the hot feed flow rate, Fh, was assumed to be an unmeasured 

perturbation that remains at a steady-state value for long periods of time and consequently it 

was treated as a process parameter uncertainty (ω). Therefore, its transients were ignored in 

the present analysis. The dynamics of this perturbation could have been taken into account if 

Fh would have been considered as a disturbance. However, treating ω as a disturbance may 

have resulted in larger uncertainty values and consequently, more conservative designs. 

3.3 Expected Computational Burden 

One of the key motivations to use a robust model based strategy was to reduce the 

computational effort that is required for finding an optimal design. Therefore, to assess the 

computational advantages of the proposed method, it was compared on the basis of 

computation time with a dynamic programming based method. In this regard, a single 

calculation of variability has been solved for the mixing tank process using both strategies. 

Since the variability calculation based on closed-loop identification is the core of the 

proposed method, it makes sense to compare the present method to other strategies on the 

basis of this single calculation of variability that has to be repeated many times during the 

optimization.  
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For the present method, a variability calculation for the mixing tank process is obtained from 

the solution of problem (3.28) for a given value of the hot feed flow rate (Fh). The solution of 

this problem provides an infinite time-horizon bound on the tank’s volume variance around a 

nominal operation point, specified by the nominal value of cold feed flow rate (Fc), the stem 

position of the valve at the outlet (z), the cold stream temperature (Tc) and the controller’s 

gain and integral time (KcV and τIV). The nominal values for the above variables have been 

taken from the solution of Scenario I, shown in Table 3.2. The process parameter uncertainty 

in this system (Fh) was set to a specific value, Fh=0.15 m3/hr. The tank’s nominal volume and 

temperature (Vnom and Tnom) are calculated from the steady-state solution of the process 

model equations.  

The procedure to estimate the worst variability applying the current methodology has been 

explained in Section 3.1.6 and is defined specifically for Scenario I as follows: 
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Similarly, the dynamic optimization formulation used to solve same problem is as follows: 
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As it is shown in the above description, the complete closed-loop mixing tank model is used 

to seek for the profile in the hot stream temperature, Th, which produces the largest variation 

in the tank’s volume within a finite time horizon, tf. The decision variable in this problem is a 

vector composed of the hot stream temperature values at each sampling period i that are used 

as inputs to the process model equations. The problem shown described by the set of 

equations (3.36) was coded in MATLAB®. Sequential Quadratic Programming (SQP) was 

used as the optimization method to solve this problem. Similarly, the MATLAB built-in 

function ODE23s was used to integrate the process model differential equations56. For each 

new set of decision variables chosen by the SQP algorithm, the process model differential 

equations were solved applying the following procedure:  

i) Using the first element of the vector of the hot stream temperature values, initial values 

for the tank’s volume and temperature are calculated from the steady-state solution of the 

process model equations; the initial values of the controller states are set to zero.  
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ii) At the ith sampling period, the model differential equations are integrated from the 

previous sampling period ith until the next (i+1)th using a modified version of the 

Rosenbrock method56, the ith element of the vector of hot stream temperature values is 

kept constant for this period of integration. The values of the tank’s volume and 

temperature and the controller states obtained for the (i+1)th sampling period are recorded 

and used as initial values for the next period of integration. Also, the (i+1)th element of 

the hot stream temperature values is used and kept constant for the next period of 

integration.  

iii) This procedure is repeated until the finite time horizon tf is reached. Once completed, the 

tank’s maximum volume variability is sought from the solution of the differential 

equations at each sampling period i. Since this value represents the problem’s objective 

function to be maximized, it is used by the optimization algorithm to choose a new set of 

hot stream temperature values.  

As in the proposed method, the nominal values for the process variables (Fc, Tc, z, KcT and 

τIT) and the process parameter uncertainty Fh were also taken from the solution of Scenario I, 

shown in Table 3.2. 

To test the computational burden, the problems shown in (3.35) and (3.36) were solved on a 

Pentium 4, 3.01GHz with 1.5GB of RAM. The ratio of the CPU time (seconds) was 

approximately 27.42:329.20 in favour of the present methodology, i.e. the proposed 

methodology is more than 12 times faster than dynamic optimization. Similarly, the problems 

posed for Scenario II were also solved using both strategies. For this case, the CPU time ratio 

was approximately 18.94:183.12 in favour also of the present approach. These results show 

that the computational demands for the proposed method are much less than for dynamic 

programming-based methods. Also, these results can be seen as a potential advantage of the 

proposed method to simultaneously design and control large-scale processes. To this regard, 

the formulation proposed for Scenario I was used to provide an estimate of the expected 

computational burden when more than one variability calculation is to be performed with the 

present method. To obtain these results, four different cases were considered: 

i) Worst-variability calculation (3.35). 
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ii) Worst-variability calculation (3.35) and minimum volume constraint as specified in 

problem (3.30). 

iii) Worst-variability calculation (3.35), minimum volume constraint and maximum 

temperature constraint as specified in problem (3.30). 

iv) Worst-variability calculation (3.35), minimum volume constraint and maximum and 

minimum temperature constraints as specified in problem (3.30). 

In all the cases, the CPU time was recorded. Figure 3.12 shows the CPU time used by the 

present methodology when the number of variability calculations is increased. As shown, the 

CPU time is approximately proportional to the number of variables for which the worst 

variability is calculated. This may be used as an indicator of the expected computational 

requirement when the present methodology is applied to simultaneously design and control 

large-scale processes with a large number of variables that should be optimized or kept 

within limits. 
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Figure 3.12 CPU time as a function of the number of variables. 
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In summary, this chapter has presented a Quadratic Lyapunov function-based approach to 

integrate process design and control for dynamic systems under uncertainty and disturbances. 

This method (γ-based) is based on the closed loop identification of a robust state space model 

from the complete process nonlinear model. The uncertain parameters that appear in the 

robust model capture the process nonlinearities due to the changes in the disturbance 

variables. The identified robust model is used to evaluate the robustness in the design. The 

tests determine a bound on the standard deviation of the robust models output. Then, 

multiples of the calculated bound are used to measure process variability and feasibility. 

Also, process asymptotic stability is strictly enforced by considering a robust stability 

constraint within the methodology framework.  

The present method was applied to the integration of design and control of a mixing tank 

problem using two different control strategies. Near violations of constraints were found for 

the Scenario II when only one standard deviation is considered for variability calculations 

(H=γ). These violations were eliminated by considering two standard deviations in the 

calculations of variability (H=2γ). In the next chapter, a new technique to estimate a bound 

on the largest output error, instead of the output error’s variance considered in this chapter, is 

presented and incorporated within the methodology framework.  

Additionally, an analysis of the computational burden was performed on the proposed 

method and compared to a dynamic programming-based variability calculation. The results 

show that the present method is an order of magnitude faster than dynamic programming. 

This result makes the proposed method computationally attractive and justifies its application 

to the simultaneous design and control large-scale processes. 
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4. Worst-case Variability Estimation for the Simultaneous Design 
and Control of Dynamic Systems: A SSV analysis Approach. 

Although the methodology presented in the previous chapter is computationally 

efficient, the robust variability index (γ) used to evaluate process variability and process 

feasibility only provides a bound on the process output error’s variance. This means that γ 

only gives an estimation of the process output variability in average sense and it may not 

consider the cases when a particular perturbation profile may produce, at a specific time t, a 

large deviation that cannot be captured by this index. Thus, as explained in the previous 

chapter, multiples of this index are needed to guarantee that the resulting design satisfies the 

process constraints and process variability restrictions. Consequently, a set of optimization 

runs using different multiples of γ may be needed to obtain a design that completely satisfies 

the process specification and constraints.  

This chapter introduces a new robust measure that provides a bound on the largest output 

error with respect to a set point and the critical time-dependent profile in the disturbance 

variables (υ) that produces this deviation from a given normal operation point. This measure, 

based on a Singular Structured Value (SSV) test, μ-analysis, is used to estimate the worst-

case process variability scenario and to test the feasibility constraints considered in the 

process to be designed. Accordingly, the methodology presented in chapter 3 is reformulated 

by incorporating this new robustness test in the method’s mathematical formulation.  

This chapter is organized as follows: Section 4.1 introduces the new robust variability 

measure that has been proposed to evaluate the worst-case output variability. Based on the 

new robustness tests, Section 4.2 presents the new mathematical formulation and the iterative 

procedure proposed to address the integration of design and control problem. In Section 4.3, 

the new methodology description is applied to the simultaneous design and control of the 

mixing tank process that was previously studied in Section 3.2. Comparisons between the γ-

based methodology, Mohideen’s methodology16 and the μ analysis-based (μ-based) 

methodology introduced in Section 4.2 are also discussed in this section. In addition, Section 
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4.4 presents the analysis made on the computational burden required by the μ-based method 

presented in Section 4.2 and those required by a dynamic programming-based methodology. 

4.1 Robust variability measure 

A key obstacle for integrating design and control is the search for the time-dependent 

disturbance profile that produces the largest variability in the system. This condition is the 

most numerical demanding task to perform within the optimization problem to achieve 

simultaneous design and control of a system. The goal is to find the critical time-dependent 

profile in the disturbance variables (υ) that produces the largest variability of the output 

variable, y. This can be mathematically expressed as follows: 

 )(max ty
q υ∈υ

 (4.1) 

This optimization problem does not have a formal analytical solution. The current integration 

of design and control methodologies reported in the literature has circumvented this problem 

by using two approaches:  

i) The profile that produces the largest variability is assumed to be known a priori. That is, 

the disturbance dynamics are specified by a time-dependent function that does not 

necessarily represent the disturbance’s critical transient behaviour. This limits the 

resulting design since there is no guarantee that other disturbance realizations may 

produce process constraints violations, e.g. Brengel and seider14, Swartz27, Gerhard et 

al.33. 

ii) The critical disturbance profile is estimated by dynamic programming. In this case, a 

search in the disturbance profile for a pre-specified time horizon is performed such that it 

produces the maximum variation in the process output variables. Although this strategy is 

general and has been the traditional approach followed for the worst-case scenario 

estimation, it requires an intensive computational effort. Thus, its application to large-

scale processes is often limited by this fact, e.g. Mohideen et al.16, Bansal et al.20, Sakizlis 

et al.23. 
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In the current research work, a new robustness measure that estimates a bound on the largest 

deviation of a process variable at any time t has been developed. The computation of the 

largest variability at the end of a batch crystallization process has been calculated in a 

previous study applying a Mixed SSV approach57. The present work expands upon that work 

by proposing a calculation of the variability for a continuous process over a predetermined 

time horizon. In principle, the calculation for continuous processes should be done for an 

infinite time horizon. Instead, a practical approximation consists of limiting the calculation to 

the output’s settling time, N.  

To evaluate the largest variability in a process variable, the continuous robust model given in 

(3.7), which describes the relationship between the disturbances and the output variable, is 

used to generate a discrete robust finite impulse response (FIR) model between these two 

variables as follows: 

  (4.2) ( ) ( )[ ] Njijhijhjy
q i

qiqqiq ≤≤−+−= ∑∑
= =

0;)(
1 0

δυδδυ
m j

This model, equivalent to the impulse response convolution model shown in (2.45), provides 

a complete characterization of the system’s closed-loop dynamic behaviour. Since more than 

one disturbance can affect the process, the disturbance υ is defined as follows: 

{ })()()(),( tttt qqqq υυυυ ≤≤=υ ul  (4.3)  

Where υq(t) denotes the value of the disturbance q at time t. For simplicity, this variable will 

be denoted as υq. The vector υ has dimensions mx1, with m being the number of disturbances 

affecting the process. Based on the definition for υ, a maximal change (δυq) with respect to 

the mean value is defined for each disturbance q using the upper and lower bounds specified 

in (4.3) as follows:  
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qq
q

υυ
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ul

 (4.4) 

Following (4.2), the nominal values and the uncertainties of the impulse response coefficients 

relating the output y to the disturbance υq, hiq and δhiq are respectively defined as follows: 
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where  and  represent the upper and lower bounds of the output variable y at each 

time step i for each disturbance υq. 

iqh iqh

The procedure to obtain (4.2) from (3.7) is illustrated in Figure 4.1 and is described as 

follows: A unit pulse is is imposed on each υq to simulate the robust state space model (3.7). 

Since the simulation of the robust state space model would require an infinite number of 

runs, due to the uncertain state space matrices, the relaxation theorem principle given in 

equation (2.7) is applied to reduce the uncertain state space model to a finite set of FIR 

models. This means that only the vertexes of the uncertain parameter box formed with the 

extreme values of each of the models uncertain parameters shown in (3.7) are used to limit 

the calculation to a finite set of responses, i.e. the robust model (3.7) is assumed to be a 

polytopic model. Since the simulation of a continuos state space model to a unit pulse will 

produce an infinite number of impulse response coefficients, each of the state space models 

considered in the polytope is discretized using a First Order Hold (FOH) to obtain a finite 

number of impulse response coefficients. As shown in Figure 4.1, the impulse response 

coefficients’ lower and upper bounds,  and , are obtained from the search of the 

minimum and maximum values among the family of impulse response coefficients at each 

time interval i. Then, the impulse response coefficients’ nominal and uncertain values are 

calculated from (4.5). 

 

Figure 4.1 Illustrative procedure to obtain a robust FIR model. 
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Since the discrete robust FIR model (4.2) also represents the process closed-loop nonlinear 

dynamic behaviour from υ to y, the problem given by equation (4.1) can be reformulated as 

follows: 

 ( ) ( )[ ]∑∑
= =

∈
−+−

q i
qiqqiq ijhijh

q 1 0
max δυδδυ
δυ δυ

m j

 (4.6) 

Following the approach proposed by Nagy and Braatz57, problem (4.1) can be rewritten in 

terms of the Mixed SSV (μ) for which upper and lower bounds for the output variable y can 

be estimated for a prediction horizon of N intervals. For any real k: 
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The concept of the SSV analysis (μ) was presented in Section 2.2.4. Similarly, Figure 2.4 

shows a graphical interpretation of the μ structure. Following (4.7), the largest output error of 

y at any time interval i along a time horizon of N intervals can then be found from the 

solution of a skewed-μ problem as follows58: 

  (4.8) 
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where the perturbation block Δ used in the μ-analysis has the following structure: 
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where the α’s and β’s are real scalars values obtained from the solution of the μ-analysis 

defined in the RHS of (4.7). These values define the time-dependent critical disturbance 

profile. In addition, δc in (4.9) is a complex scalar column vector of length N+1. The 

interconnection matrix M used in (4.8) has the following structure: 
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where each of the matrices specified in (4.11) is defined as follows: 
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where the elements of B are defined as follows: 

  (4.17) ( ) ( )
⎪
⎩

⎪
⎨

⎧

⎩
⎨
⎧

+−++−+=
+=

= ∑ ∑−

= =

otherwise
lNlNj

Ni
ifkB i

l

N

lji

0
12,,12,,1

1,,3,2,1
1

1 1, KK

K

From (4.17), B has dimensions ( ) ( )( )∑ =
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l
lNN

1
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( ) (1

. The matrix B1 in (4.16) 

consists of the first −×− NN

( )
 rows and columns of matrix B; likewise, Bp in (4.16) 

consists of the first ( )pNpN −×−

)( jy Nj

 rows and columns of B. An example for the 

construction of the interconnection matrix M for a simple SISO problem for a 3 steps-

horizon FIR model is given in Appendix A. 

The perturbation matrix shown in (4.9) takes into account the uncertainty associated with the 

maximal change of the disturbance variables (Δr1) and the impulse response coefficients 

(Δr2), respectively. The last N rows of the interconnection matrix (4.11) correspond to the 

different values of  along the time horizon defined between ≤≤0 . 

The problem defined in (4.8) is the robust measure test that is used to estimate a bound on the 

largest process output variability with respect to a nominal steady-state operating condition. 

The solution to (4.8) given in terms of the scalars α’s and β’s in (4.10) also provides the 

worst-disturbance vector δυ that produces such extreme deviation, i.e. the critical time-

dependent disturbance profile is also obtained from this calculation. 

To illustrate the application of the robust variability measure introduced in this section, the 

following robust state space model is considered: 
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To evaluate the robust measure defined in (4.8), the model in (3.7) must be transformed into 

a robust FIR model following the procedure described above, i.e. a unit pulse is used to 

simulate the robust model (4.18). Since the robust state space model parameters are 

uncertain, only the extreme values of the uncertain model parameters are used to generate a 

family of linear impulse response models. Similarly, each of the resulting linear state space 

models is discretized with a FOH to generate a finite number of impulse response 

coefficients. Thus, the system shown in (4.18) produces a set of eight linear impulse models 

shown in Figure 4.2. The impulse response coefficient’s nominal values with their 

corresponding  uncertainty bounds, hiq and δhiq respectively, are obtained from the search of 

the minimum and maximum values among the set of impulse response coefficients at each 

time interval. Given hiq, δhiq and the maximum change in the input, δυ, set to unity for this 

illustrative example, i.e. 1<δυ , the interconnection matrix M given in (4.11) and the 

structure of the perturbation matrix Δ shown in (4.9) can be constructed for this problem. 

Thus, the formulation presented in (4.8) can be applied to estimate a bound on the largest 

variability for model output y. This problem was formulated in MATLAB® using Sequential 

Quadratic Programming55-54. 

Figure 4.3 shows the critical time-dependent profile in the input variable υ that produces the 

largest variation in the model output, y, obtained from the solution of problem (4.8). This 

profile is not intuitive and a significant computational effort would have been required for 

finding it from trial and error simulations. To test the bound obtained from (4.8) for this 

system (k=14.3602), the worst-case input profile is used to simulate the robust state space 

model given in (4.18). Figure 4.4 shows the results of such simulations. To be consistent with 

the analysis, the extreme values specified for the uncertain model parameters are used to 

generate a finite set of system’s responses as per the procedure described above. As it is 

shown in Figure 4.4, the different combinations of the actual system’s responses do not 

exceed the bound that has been estimated by this technique. Since the uncertainty structure 

considered in this problem only has one decision variable, which it is also the parameter to be 
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maximized (k), then a graphical method can also be used to find the bound. Figure 4.5 shows 

the feasible region in which the maximum value for the parameter k is sought. As also shown 

in Figure 4.5, the constraint that appears in equation (4.8), i.e. μΔ(M)≥k, delimits the feasible 

search space for this problem. Figure 4.5 also shows that this problem only has one single 

solution. The convexity in this problem is due to the particular structure defined for the 

matrices M and Δ and it does not depend on the uncertain state space model parameters. 

Thus, a global maximum is always obtained from the solution of (4.8). This property of 

problem (4.8) is relevant since the worst-case variability is usually obtained from dynamic 

programming that is subject to local solutions. 
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Figure 4.2 Illustrative example: Impulse response model. 
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Figure 4.3 Illustrative example: Worst-case disturbance profile. 
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Figure 4.4 Illustrative example: Worst-case process output variability. 
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Figure 4.5 Illustrative example: Feasible region. 

4.2 Simultaneous design and control methodology upgraded 

The robust measure introduced in the previous section can be used to estimate a bound on the 

process output variability and to test the process feasibility constraints considered in the 

process to be designed. Thus, the mathematical description presented in (3.24) has to be 

modified accordingly. The next subsections present the new formulation that has been 

incorporated within the methodology framework to evaluate the worst-case process 

variability scenario and to test the process feasibility. 

4.2.1 Assessment of the worst-case process variability scenario 

The robust variability measure proposed in (4.8) requires the identification of a robust FIR 

model which can be obtained from a robust state space model of the closed loop system. As it 

is pointed out in Section 3.1.2, the uncertain model (3.7) is only valid in the vicinity of a 

specified operating state, defined by a nominal steady-state value in the manipulated 

variables to be used by the control algorithms, u , and the output variables, w , and for a fixed 

value in the adjustable variables (p), the design variables (d), the controller tuning 
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parameters (λ) and the process parameter uncertainty (ω). Thus, the solution to (4.8) only 

provides a bound on the process output’s largest variability in a neighbourhood of the 

operating state. The vectors u , w , p, d and λ are considered to be decision variables in the 

methodology’s formulation. On the other hand, ω is assumed to be an uncertain parameter 

which true value is unknown but it ranges between extreme values and it remains at a 

constant value for long periods of time. Therefore, one must search for the critical profile in 

the disturbance δυ, which is the input in (3.7) and (4.2), and the corresponding steady-state 

value in ω that produces the largest error in y.  

The methodology presented in chapter 3 estimates the largest process variability error based 

on a QLF according to the problem given by equation (3.22). This problem is now 

reformulated in terms of the new robust variability measure as follows: 

( )dd
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ts
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..

,,,,,,max

 (4.19)  

where the superscript d is only used to indicate that this calculation referrers to the worst-

case process variability scenario. The solution to (3.22) provides a bound on the largest 

process variability (φd) and the critical time-dependent profiles of δυ and ω that produces 

such condition. Solving (3.22) requires the identification of a system like (3.7) and (4.2) for 

every ω tested. However, the identification process is simple and, most importantly, the 

identified models are expected to have small model uncertainties since the process is 

identified in closed-loop and it consequently remains in a small neighbourhood of the 

nominal operating point.  

Once problem (3.22) is being solved, a cost can be assigned to the maximum process 

variability in order to quantify its economic impact on the operation at an operating state 

defined by u , w , p, d and λ. This cost, referred to as the process variability cost, appears in 

the methodology’s cost function defined in (3.6). 
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4.2.2 Process Feasibility 

Process feasibility requires that the manipulated variables u or the process output variables w 

must remain within specified bounds despite any combination of υ and ω. The largest 

variability in u or w can be obtained by using the approach proposed in the previous section 

to solve the worst-case process variability scenario. Thus, problems (4.8) and (3.22) can be 

rewritten in terms of u and w as follows: 
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where ρ1 and ρ2 are the corresponding input limits and u  and w  are the nominal steady state 

values of the manipulated variable and the process output variable, respectively. The terms u  

d an w  have been considered as decision variables in the methodology’s optimization 

problem. In addition, the matrices Mu, Mw and Δu, Δw are the corresponding interconnection 

and perturbation matrices for each variable and are defined as in (4.9) and (4.11), 

respectively.  

To evaluate (3.23), it is necessary to obtain robust state space models, and consequently 

robust FIR models, that relate the effect of the disturbance υ to the particular u and w that are 

to be kept within bounds. The apostrophes used to denote the process parameter uncertainty 

in equation (3.23) are only used to indicate the fact that critical realizations in υ and ω are 

particular for every process variable, i.e., the worst-case profile for u  may not be the same as 

for w . Thus, the optimization problems posed in (3.23) must be solved for each process 

variable that must remain within constraints.  

Since the problems posed in (3.23) provides a bound on the worst-case variability in u , w  

or any other process variable that it is desired to keep within bounds, the process feasibility 

test given in (3.23), which was defined in terms of QLF, is replaced by (3.23) to account for 

the largest variability on a variable that is subject to constraints. 
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4.2.3 Mathematical Formulation of the Methodology 

Based on the descriptions given above, the basic mathematical formulation presented in 

(3.24) is modified to account for the new robust worst-case variability measure within the 

methodology. Accordingly, the process output variability and process feasibility problems 

specified in (3.22) and (3.23) are replaced within the methodology’s formulation by problems 

(4.19) and (4.20), respectively. Following these modifications the optimization problem 

proposed to perform the simultaneous design and control of chemical processes under 

external perturbations and process parameter uncertainty given in (3.24) is reformulated as 

follows: 
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 (4.21) 

The above formulation corresponds to a constrained nonlinear optimization problem. Within 

this formulation the process stability test remains the same as in (3.24). Similarly, the process 

model equations and the control algorithm equations are not explicitly shown in (4.21) but 

they are implicitly considered in the form of robust state space models, which are used for 

the worst-case process variability calculation and the process stability and feasibility tests. It 

should be emphasized that although the overall problem is a constrained nonlinear 

optimization with many possible minima, the calculations of the bounds based on the 

structured singular value index are convex and have a global minimum. 
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The iterative procedure proposed to solve (4.21) is similar to that described in Section 3.1.6 

for the basic methodology formulation. The only change that must be considered for solving 

(4.21) is the identification of a robust FIR model like (4.2), needed to estimate the worst-case 

process variability and to test process feasibility. These models are obtained from the robust 

state space models (3.7) using the procedure outlined in Section 4.1 and illustrated in Figure 

4.1. 

Similar to the assumed for the γ-based methodology formulation presented in the previous 

chapter, the mathematical description specified in (4.21) assumes that the process flowsheet 

and the control structure have been fixed a priori. This logically limits the degrees of freedom 

in the system and thus the process optimal design. However, the present approach can be 

expanded to consider those analyses within the design by embedding (4.21) into a control 

structure and flowsheet selection algorithm. Although a better design may be obtained, the 

complexity and the computational time involved in the estimation of the design are increased 

since integer variables would have to be added to the formulation. This has not been 

considered in the present work and it is left for future studies. 

4.3 Testing the μ-based methodology: mixing tank process revisited 

The methodology presented in the last section was applied to the simultaneous design and 

control of the mixing tank process, which was also used to test the γ–based methodology (see 

Section 3.2). This process was chosen because its process model is relatively simple and the 

resulting design parameters obtained by the μ-based method can be compared to those 

obtained by the γ–based methodology and dynamic programming-based methodology 

proposed by Mohideen et al.16. 

The mixing tank process flowsheet philosophy has been explained in Section 3.2 and it is 

schematically represented in Figure 3.1. Likewise, the process model and the operating 

parameter values for this system are given in Table 3.1. 

The design goals proposed for this case study are the same as in Section 3.2, that is, to seek 

for the nominal steady-state values in the manipulated variables used for control, u , and the 

process outputs, w , the values in the design variables (d), the manually adjustable variables 
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(p), and the controller tuning parameters (λ) that minimize the tank’s total cost function. The 

resulting design must remain asymptotically stable and within constraints in the presence of 

magnitude bounded changes in the hot stream flow rate, Fh, and temperature, Th, considered 

as a process parameter uncertainty (ω) and a disturbance (υ), respectively.  

As in Section 3.2, the two PI-based control schemes that were used to test the γ–based 

methodology are also used here to test the μ-based methodology. The scenarios are: Scenario 

I-Temperature control and Scenario II-Temperature and volume control. The results of the 

application of the methodology to these scenarios are presented in the following sub-sections. 

4.3.1 Scenario I-Temperature control 

The first control scheme proposed to the simultaneous design and control of the mixing tank 

process consists in controlling the tank’s temperature using a Proportional-Integral (PI) 

controller. This controller would make the necessary adjustments in the cold feed flow rate, 

Fc, to maintain the tank’s temperature, T(t), within its pre-specified bounds despite any 

variations that may occur in the process hot stream, i.e. Fh and Th. In addition, the tank’s 

volume is not being controlled and the other potential variable that can be used for control 

purposes, the stem position of the valve at the outlet, z, is assumed to be manually adjusted 

and accordingly is viewed as a system parameter (p). 

Cost function.- Since the single design goal is to minimize the tank’s total cost, the cost 

function for this system can be directly estimated from the tank’s final size or volume, Vd. 

Also, since bounded disturbances and process parametric uncertainty are assumed to be 

affecting the process, the tank’s final volume is based on a nominal steady state volume plus 

the variability of this variable due to the effect of the unmeasured perturbations entering the 

process. Consequently, the capital cost for this process is defined as the total volume of the 

tank that is equal to the steady state value plus the maximum variability in volume, that is:  

( )V
nomd kVV +=  (4.22)  

The nominal or steady state volume Vnom depends on factors such as the outlet valve’s stem 

position, z, and tank’s nominal temperature, T(t), whereas the variability with respect to this 
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nominal volume (kV) depends on both, the nominal volume around which the maximum 

variability is estimated and the controller tuning parameters that determine the process closed 

loop dynamic performance. Vd denotes the tank’s total size and it is considered the design 

variable (d) for this problem. The term Vnom represents the tank’s nominal volume at a steady 

state condition; since the design goals do not specify a value for this term, it is considered as 

an optimization variable within Scenario-I’s formulation. The term kV represents a bound on 

the tank’s volume maximum variability due to the process closed-loop dynamic performance. 

Due to the design goals specifications outlined above for this particular case study, the 

capital cost given by (4.22) is also equal to the process variability function, φd, which 

maximum can be estimated from the problem defined in (4.19). In other more general cases 

such as the Tennessee Eastman problem, the capital cost function is different from the 

process variability function.  

Closed-loop Process Model.- The process model equations shown in Table 3.1 and the 

control algorithm equations given in (3.26) and (3.27) represent the closed-loop nonlinear 

model equations specified for Scenario I. These equations are used to simulate the mixing 

tank process dynamic behaviour due to changes in the hot stream temperature, Th, and around 

a given steady-state value of the hot stream flow rate, Fh. The input/output data collected 

from this simulation is then used to estimate robust state space models of the type given by 

(3.7). Then, as explained in the previous section, the robust performance and process 

feasibility tests require the transformation of the continuous uncertain state space model into 

a discrete robust FIR model. Since the design goals only specifies an operating range for the 

tank’s temperature, i.e. no set point has been defined for this variable, the tank’s temperature 

set point, Tsp, is treated as a decision variable in the optimization problem defined for 

Scenario I. 

Process Stability.- The robust stability criterion used by the present method has been given in 

(3.12). To evaluate the asymptotic stability at a given operating state, robust models from Th 

to the state variables, V(t) and T(t), have to be identified. The procedure used to identify such 

models has been given in Section 3.1.2 and Section 3.1.6, respectively.  
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Worst-case process variability scenario.- The process variability function for Scenario I has 

been defined in (4.22). To estimate the cost associated with the process closed-loop dynamic 

performance, it is required to calculate the maximum expected variability in the process. This 

condition is estimated for Scenario I using the robust variability measure introduced in 

Section 4.1 and that has been incorporated within the worst-case variability formulation as 

shown in (4.19). Accordingly, the worst-case process variability search for Scenario I can be 

stated as follows: 
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 (4.23)  

where the term kV provides an upper bound on the maximum volume variability with respect 

to a nominal steady state volume denoted by Vnom. The evaluation of the inner maximization 

problem on the parameter kV in (4.23) requires the identification of a discrete robust FIR 

model. Thus, robust state space models in the form of (3.7) have to be identified first from Th 

to V(t) for each hot feed flow rate (Fh) tested and at a given operating state. Then, this family 

of linear state space models are simulated and discretized to obtain a discrete robust FIR 

model (4.2) following the procedure outlined in Section 4.1 and illustrated in Figure 4.1.  

Process Feasibility.- To guarantee that the tank’s temperature remains within the specified 

upper and lower pre-specified bounds for the entire period of operation, the same approach 

considered to determine the largest process variability in the tank’s volume is used to test 

compliance with the process feasibility constraints. Thus, problem (4.20) is rewritten in terms 

of the temperature in the tank as follows: 
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where Tl and Tu represents the lower and upper limits defined for the tank’s temperature 

given in Table 3.1.  

To solve the maximization problem specified in (4.24), discrete robust FIR models like the 

ones described by equation (4.2) are needed for each Fh tested at a given operating state. To 

obtain such models, a robust state space model like (3.7) must be identified first from the 

process hot stream temperature Th to the tank’s temperature T(t). Then, the uncertain state 

space model is simulated and discretized following the procedure outlined in Section 4.1 to 

obtain the robust convolution model description shown in (4.2).Similar expressions to (4.24) 

are derived to evaluate the rest of the process constraints defined for Scenario I, i.e. 

constraints on the cold feed flow rate (Fc) and the tank’s minimal allowed volume. Based on 

the above descriptions, the overall optimization problem defined in (4.21) is stated for 

Scenario I in (4.25). The decision variables for this problem are the PI controller tuning 

parameters, KcT and τIT, the temperature set point, Tsp, and the outlet valve’s stem position, z. 

The tank’s nominal volume and the nominal cold feed flow rate, Vnom and Fc,nom, are obtained 

from the steady state solution of the process model equations for each new set η tested. The 

optimization problem shown in (4.25) was coded and executed in MATLAB® using 

Sequential Quadratic Programming55-54. The resulting design parameters are shown in 4.1. 

The results show that tank’s total volume necessary to accommodate the constraints and the 

variability in level is relatively large. The final tank’s size was expected since the state 

variable, V(t), is not under closed-loop control. 

Table 4.1 mixing tank’s design, Scenario I, μ-based methodology. 

Variables Solution 

Vd  33.77 m3 

Z 0.3398 

Tsp 305.25 K 

Fc,nom 1.3390 m3/hr 

KcT -0.6764 

τIT 7.13 hr 
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 (4.25) 

The resulting design obtained from this formulation can be compared to that obtained from 

the QLF formulation given in Table 3.2. As it is shown, although the present formulation 

estimates a bound on the largest error for each process variable considered in the 

formulation, it results in a smaller tank’s size than in the case in which a bound on the 

variables error’s variance is used as a robustness test for variability and feasibility, i.e. using 

the γ-based methodology presented in the previous chapter. This indicates that the μ-based 

robust variability measure, introduced in this chapter provides a tighter bound than those 

obtained by the variability index γ, i.e. it provides a less conservative measure. 
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It is has been reported in the literature that the γ calculation based on the QLF may produce 

conservative bounds59-61. The problem proposed for the estimation of γ shown in (3.19) must 

search for a single matrix weighting matrix P that satisfies all the LMI constraints that 

appears due to all the possible combinations between the extreme values of the uncertain 

state space model parameters. The γ index provides, for all these combinations, a bound 

according to inequality (3.14) given in chapter 3. According to this inequality, the bound 

must be satisfied for all the possible rate of changes of the Lyapunov function  

represented by the derivative term in that inequality.  

)(xV

)(xV

On the other hand, the μ-based robust variability measure is not subject to the computation of 

an additional independent function like the Lyapunov matrix P needed in the γ calculation 

and does not depend on the possible rates of change of the  with time. Thus, it is 

expected that this measure provides a tighter bound on the output error’s largest variability. 

To summarize, the addition of the system-independent Lyapunov matrix P within the robust 

variability calculation adds conservatism in the solution of the robust variability problem.  

To test the optimization results and the compliance with the process constraints, the resulting 

design values shown in Table 4.1 were used to simulate the process dynamic behaviour for 

more than 1 year of operation. As in the γ-based methodology test, the profile shown in 

Figure 3.3 was also used to represent the disturbance dynamic behaviour (Th) with the hot 

feed flow rate (Fh) fixed to each one of its extreme values shown in Table 3.1. The process 

was simulated using the process closed-loop nonlinear dynamic model equations shown in 

problem (4.25).Figure 4.6 through Figure 4.8 present the results of this simulation. As 

shown, the tank’s actual volume never exceeds the tank’s total size, Vd, obtained by the 

present method, whereas the tank’s temperature, T(t), and the cold feed flow rate, Fc, vary 

within the limits specified for these variables. Therefore it can be concluded that the resulting 

design obtained by this approach remains stable and feasible in the presence of any bounded 

disturbance profile in Th and when the system is operated around different values of the 

process parameter uncertainty, Fh. 
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Figure 4.6 Tank’s actual volume, Scenario I, μ-based methodology. 

Top graph Top graph: Fh at 0.15 m3/hr. Bottom graph: Fh at 0.05 m3/hr. 
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Figure 4.7 Tank’s actual temperature, Scenario I, μ-based methodology. 

Top graph Top graph: Fh at 0.15 m3/hr. Bottom graph: Fh at 0.05 m3/hr. 
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Figure 4.8 Cold Feed Flow rate’s actual values, Scenario I, μ-based methodology. 

Top graph Top graph: Fh at 0.15 m3/hr. Bottom graph: Fh at 0.05 m3/hr. 

4.3.2 Scenario II-Temperature and Volume control 

For this scenario, a second PI controller is incorporated within the process control scheme to 

regulate the tank’s hold up variations in addition to the PI controller used to control 

temperature in Scenario I. The added volume controller makes adjustments in the stem 

position of the outlet valve, z, to attenuate the effect of the perturbations, Th and Fh, on the 

tank’s volume, V(t). The closed-loop process model for Scenario II is defined by the process 

model and the control equations for temperature control shown in (4.25) together with the 

control equations for volume control given by (3.31) and (3.32). In this case however, the 

term Vnom shown in (4.25) is replaced by Vsp to indicate that the tank’s volume under closed-

loop control around a set point of volume to be obtained from the solution of the optimization 

problem. On the other hand, the outlet valve’s stem position, z, becomes a manipulated 

variable to be used for control. Hence, constraints on this variable must be added to the 

methodology formulation to ensure that its variations are kept within the limits specified for 

this variable.  
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Thereby, Scenario I’s formulation given in (4.25) is expanded to account for the controller 

equations for volume control and the constraints on the outlet valve’s stem position. The 

mathematical formulation defined for Scenario II is given in problem (4.26). The decision 

variables for this problem are the controller tuning parameters, KcT, τIT, KcV, τIV, and the 

controllers’ set points, Tsp and Vsp. 

To evaluate the robustness tests specified in (4.26), robust state space models must be 

identified between the disturbance variable, Th, to both controlled variables, i.e. the tank’s 

volume and temperature, V(t) and T(t), and the manipulated variables, i.e. the cold feed flow 

rate, Fc, and the outlet valve’s stem position, z. These models are obtained from the 

simulation of the process closed-loop nonlinear dynamic model around a nominal operating 

state and for each Fh value tested by the inner optimization problems specified in (4.26). As 

in Scenario I, the values of Fc,nom and znom must satisfy the process model steady-state 

equations for each new set of values of η tested. Problem (4.26) was also solved in 

MATLAB® using SQP 54-55. The results obtained for this optimization problem are shown in 

Table 4.2. Due to fact that this scenario adds a controller to regulate the variations in the 

tank’s volume, the variability on this variable was as expected largely reduced. Thus, the 

tank’s minimum volume required to successfully reject the process hot stream perturbations 

is logically much smaller than the tank’s volume obtained by Scenario I.  

Table 4.2 mixing tank’s design, Scenario II, μ-based methodology 

Design Variables Solution 

Vd (m3) 0.9278 

Vsp (m3) 0.9133 

Tsp (K) 335.68 

znom 0.2998 

Fc,nom (m3/hr) 0.1366 

KcT (K-hr/m3) -1.7122 

KcV (m3) -16.3809 

τIT (hr) 8.01 

τIV (hr) 3.99 
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To test the results shown in Table 4.2, the design accomplished by the μ-based method was 

simulated for more than 1 year of operation using the closed-loop process model equations 

shown in (4.26). As in Scenario I, the hot stream temperature variations are represented by 

the time-dependent profile shown in Figure 3.3. The simulations were carried out assuming 

that the process hot stream flow rate, Fh, is constant and equal to either one of its extreme 

values. Figure 4.9 through Figure 4.12 show the results of these simulations. As shown in 

Figure 4.9, the tank’s total volume, Vd, is never exceeded by the tank’s actual volume. Also, 

Figure 4.10 through Figure 3.11 show that process constraints defined in (4.26) are within the 

pre-specified limits despite the time-varying profile in Th and for any given fixed value of Fh 

within the pre-specified range of this variable. 
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Figure 4.9 Mixing tank’s actual volume, Scenario II, μ-based methodology.  

Top graph: Fh at 0.15 m3/hr. Bottom graph: Fh at 0.05 m3/hr. 
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Figure 4.10 Mixing tank’s actual temperature, Scenario II, μ-based methodology. 

Top graph: Fh at 0.15 m3/hr. Bottom graph: Fh at 0.05 m3/hr. 
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Figure 4.11 Cold feed flow rate’s actual values, Scenario II, μ-based methodology. 

Top graph: Fh at 0.15 m3/hr. Bottom graph: Fh at 0.05 m3/hr. 
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Figure 4.12 Valve constant’s actual values, Scenario II, μ-based methodology. 

Top graph: Fh at 0.15 m3/hr. Bottom graph: Fh at 0.05 m3/hr. 

Table 3.3 lists the design variables’ values obtained when the γ-based methodology was 

applied to Scenario II. This Table shows that for this scenario the design obtained when H= γ 

is slightly smaller than that obtained by the μ-based method. As it shown in the simulation 

results shown in Figure 3.7, the design obtained when H= γ does not completely satisfies the 

tank’s hold up constraints. This confirms the fact that the γ-based variability calculation only 

guarantees a bound on the output error’s variance and not on the output error’s largest 

variability. On the other hand, Figure 4.9 shows that the design parameters specified from the 

μ-based method never violates the tank’s hold up at any time t. Therefore, the bounds 

specified from the μ-based robust measure provide more accurate bounds for the tank’s hold 

up maximum variability. Clearly, when twice of the γ values are considered in the γ-based 

methodology’s formulation (H= 2γ) the resulting design is more conservative than that 

obtained by the μ-based method. 
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In addition, it is interesting to notice that the tank’s total volume attained by the μ-based 

method is smaller than the design obtained by Mohideen et al.16 given in Table 3.3. This is 

partly related to the fact that the bounds were slightly relaxed, to account for the steady-state 

operation, as compared to Mohidden’s work. Thus, it was not possible to satisfy the original 

bounds proposed by Mohideen with the present method. However, the present method only 

requires conventional PI control algorithms whereas Mohideen’s approach requires on-line 

optimization and a priori knowledge of the parameter uncertainty profile. Also, the 

robustness measures implemented in the present methodology guarantees that the attained 

design is robustly stable and valid for an infinite time horizon in the presence of 

perturbations in the hot stream whereas Mohideen’s problem addressed a problem occurring 

in a finite time horizon of 30 hours. 

4.4 Computational requirements by the modified method 

From the optimization point of view, the use of the robust variability bound proposed in this 

research work avoids the task of solving dynamic optimization problems, as used in the most 

recent methodologies4,23. In this section, the computational effort required for the μ-based 

methodology to find a solution was compared to the computation required for solving the 

problem with dynamic programming.  

To test the required computational effort, the calculation of the worst process variability for a 

given process parameter uncertainty value has been solved for the mixing tank process. This 

variability calculation represents the core of the μ-based method since it has to be repeated 

several times during the solution of the proposed optimization problem (4.21). Thus, it is 

logical to compare the present approach to other strategies, such as dynamic programming, 

on the basis of this single calculation. 

The μ-based method assesses the maximum variability in a variable and for a given ω from 

problem (4.8). This single calculation was performed to estimate the worst-case process 

variability for both scenarios and for a given values in the operating states and Fh. For 

Scenario I, the outcome of this calculation returns a bound on the tank’s volume maximum 

variability around a nominal operation point, specified by the tank’s temperature set point 
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(Tsp), the stem position of the valve at the outlet, z, the cold stream temperature, Tc, and the 

controller’s gain and integral time, KcT and τIT. The nominal values for the above variables 

were taken from the solution of Scenario I (see Table 4.1). For the purpose of this 

comparison, the process parameter uncertainty in the mixing tank process, Fh, was set to a 

specific value, i.e. Fh=0.15 m3/hr. The tank’s nominal volume, Vnom, and nominal cold feed 

flow rate, Fc,nom, were estimated from the steady-state solution of the process model 

equations shown in (4.25). The worst-case process variability calculation was coded and 

solved for both scenarios in MATLAB®. 

For comparison, the worst-case process variability calculation was also performed using 

dynamic programming. In this case, the complete nonlinear closed-loop process model of the 

mixing tank is used to seek for the profile in the hot stream temperature, Th, which produces 

the largest process variability in the tank’s volume within a finite time horizon, tf. The 

decision variable in this problem is a vector composed of the hot stream temperature values 

at each time step, i, used as input into the process model equations. This problem has been 

defined for Scenario I in (3.36). This formulation was programmed and executed in 

MATLAB® using SQP54-55. Likewise, the process model differential equations were 

integrated using the MATLAB built-in function ODE23s which applies a modified version of 

the Rosenbrock method56. The iterative procedure followed to solve such problem has been 

given in Section 3.3. As in the μ-based method, the values used for Tsp, Tc, z, KcT and τIT 

were taken from Table 4.1 whereas Fh was set to 0.15 m3/hr.  

The worst-case process variability problem formulated with the μ-based method and dynamic 

programming were solved on a Pentium 4, 3.01GHz workstation with 1.5GB of RAM. 

Figure 4.13 shows the CPU time required by both strategies as a function of the number of 

sampling instants (i) used in dynamic optimization. The same sampling instants were also 

used by the proposed method to describe the discrete robust FIR model, i.e., the number of 

impulse response coefficients (hiq and δhiq) needed to compute (4.8). As shown in Figure 

4.13, the CPU time is directly proportional to the number of sampling instants used in both 

strategies. This is an expected result since more calculations have to be performed at the 

expense of having a more accurate result. 
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Figure 4.13 CPU time comparisons. 

Figure 4.13 also shows that the proposed method estimates the worst-case process variability 

from 3 to 6 times faster than dynamic optimization for Scenario I whereas for Scenario II this 

relation is from 6 to 16 in favour of the μ-based method. The difference in the speed on the 

calculations between the two approaches can be explained as follows: dynamic programming 

requires the stepwise numerical integration of the process model equations, i.e., the (i+1)th 

sampling instant calculations are based on the calculations performed at the ith time step. 

Thus, the solution of the actual sampling instant depends on the calculations performed at the 

previous time step. On the other hand, the skewed-µ method used to compute (4.8) treats 

each input independently (Δ in 4.9), that is, for each k tested in (4.8), a bound is obtained for 

all the inputs in just one single step calculation rather than the recursive approach needed by 

dynamic programming. The drawback of the μ-based method lies in the fact that the solution 

to (4.8) would provide a bound rather than the true worst output variability as obtained by 

dynamic programming. However, the solution to (4.8) would also provide, for a given ω, the 

critical profile in υ that generate the largest output variability. Consequently, this profile 

could be used to simulate the process transient behaviour using the complete process 
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nonlinear model to obtain the actual largest output variability. This approach will be 

explained in detail in chapter 5, Section 5.3.3 and Section 5.3.4. 

Moreover, for this particular problem, i.e. the worst-case process variability estimation, the 

dynamic programming based method could potentially provide a local solution rather than 

the global optimum whereas the problem formulated in (4.8) is not subject to local solutions 

since it has been shown that the µ–based bound is convex45, i.e., the solution obtained from 

(4.8) is a global maximum (see the example at the end of Section 4.1). 

The above results show that the μ-based approach presented in this work highly reduces the 

computational effort required to assess the simultaneous design and control problem over the 

traditional approach that uses dynamic programming. Also, these results show the potential 

of the present method to tackle the simultaneous design and control for large scale processes. 

To estimate the increase of the computational effort when dealing with increasingly larger 

models, the expected computational burden required to assess the worst-case process 

variability for more than one variable was also analyzed. This was done by measuring the 

computational time required to estimate the variability for an increasing number of 

constraints considered in the optimization problems for Scenario I (4.25) and Scenario II 

(4.26), respectively. The procedure followed to obtain the nominal values was the same as in 

the estimation of the tank’s volume maximum variability, explained at the beginning of this 

section. As shown in Figure 4.14, the CPU time is directly proportional to the number of 

variables included in the calculations. In addition, Figure 4.14 also shows the computational 

time required by the γ-based methodology. Although the computational times for the γ-based 

and the μ-based methods are similar, the γ-based methodology becomes more 

computationally demanding when the number of variables considered in the formulation is 

increased. Although these results may be case specific, they may be used as an approximate 

indicator of the expected computational burden requirement when the present methodology is 

applied to simultaneously design and control a large-scale processes. 
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Figure 4.14 CPU time as a function of the number of variables. 

In summary, this chapter have presented a new robust measure that can be used to estimate a 

bound on the maximum variability in a variable. This robust variability test has been used by 

the current research work to estimate the worst-case process variability scenario and to test 

process feasibility. This robust measure has replaced the γ-based variability calculations 

within the methodology formulation. The core of the method is based on the mathematical 

representation of the process closed loop nonlinear dynamic model as a robust state space 

model. Then, this model is transformed to a discrete robust FIR model to obtain bounds on 

the process worst-case variability and to test process feasibility.  

The μ-based mathematical formulation was applied to the simultaneous design and control of 

the mixing tank process that was also used as a case study to evaluate the γ-based 

methodology described in the previous chapter. The results indicate that the Quadratic 

Lyapunov Function tends to produce conservative designs for this system.  
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Although dynamic programming-based methodologies do not generate a conservative design, 

larger computational times are required to solve this type of optimization problems, even in 

the case of simple processes such as the mixing tank process. The μ-based method avoids the 

solution of a dynamic optimization problem by proposing robustness measures to obtain 

bounds on the process output and constrained variables. Although the resulting design would 

tend to be slightly conservative due to the adopted robust modelling approach, the proposed 

μ-based method is based on a nonlinear constrained optimization problem which requires less 

computational effort than dynamic programming. Consequently, the proposed methodology 

offers potential for the simultaneous design and control of large scale systems. The next 

chapter discuss the application of the μ-based methodology to the simultaneous design and 

control of a large-scale system: the Tennessee Eastman Process. 
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5. Simultaneous Design and Control Methodology for Large-Scale 
Processes 

One of the key objectives proposed in this research is to develop a robust control tool-

based methodology that can be applied to the simultaneous design and control of large-scale 

processes. The previous chapters presented two robust control-based approaches to the 

simultaneous design and control of dynamic systems under external perturbations and 

process parametric uncertainty. The first methodology applies a Quadratic Lyapunov 

Function-based approach to define robust stability and variability tests (γ-based method) 

whereas the second methodology estimates the worst-case variability scenario from a 

Singular Structured Value-based robustness test (μ-based method). Both γ-based and the μ-

based method have only been tested on a relatively simple case study involving a mixing 

tank process under closed-loop control. 

This chapter presents a comprehensive methodology that has been proposed to attain the 

simultaneous design and control of chemical plants that involve several numbers of units. 

Although the γ-based and μ-based methodologies could be both applied to the design and 

control of chemical processes, the μ-based methodology was chosen as the basic metric of 

the design methodology due to the fact that, as discussed in the previous chapter, it provides 

a tighter bound on the maximal deviations of the process variables. Since reducing 

computation times is a must when dealing with complex process operations the μ-based 

methodology was further modified to provide better estimates of bounds and to reduce the 

speed in the calculations. To test the proposed methodology, a process model that simulates 

the dynamic behaviour of a chemical plant was required. Among the different chemical 

process models that are available in the open literature, the Tennessee Eastman (TE) process 

model62 was chosen since a full simulator of the process was available and the process 

involves a number of interconnected units making it an ideal ground for testing the 

computational burden of the proposed methodology. Although the controllability of this 

process has been widely studied, the design of the TE plant and the interactions between 

design and control has not been previously addressed. Thus, it is a suitable candidate to apply 

the methodology proposed in this research work. 
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This chapter is organized as follows: Section 5.1 presents the methodology’s mathematical 

formulation that has been proposed to simultaneously design and control chemical plants. 

Section 5.2 introduces the Tennessee Eastman process and the control strategy that was used 

to stabilize the process dynamic behaviour. Section 5.3 presents the simultaneous design and 

control of the reactor section of the TE plant, i.e. only the parameters that directly affect the 

reactor’s operation are considered in the analysis in this section. The effect of external 

perturbations, the selection of the initial conditions for the optimization problem, 

comparisons of the proposed method with a dynamic programming approach to the problem, 

and the effect of process parameter uncertainty are also discussed in this section. In Section 

5.4, the complete set of parameters specified for this plant are used to simultaneously design 

and control the TE process. This scenario was solved under the effect of external 

perturbations. 

5.1 Methodology for large-scale systems 

The previous chapter presented a methodology that uses a QLF-based robust test to evaluate 

the system’s asymptotic stability and a μ-based robust performance test to estimate bounds 

on the worst-case system’s variability and process feasibility. The robust stability test 

requires the closed-loop identification of a robust state space model whereas the worst-case 

variability and process feasibility tests require the transformation of such model into a robust 

finite impulse response (FIR) model (see Section 4.1). Thus, the method ends up using two 

different uncertain model structures to represent the same input/output closed-loop dynamic 

behaviour. Although this approach could be used to simultaneously design and control 

chemical processes, there are a series of issues that may be considered when applying this 

methodology to large-scale systems: 

i) The μ-based methodology has proven to be efficient when it was applied to the 

simultaneous design and control of a mixing tank process (see Section 3.2). In this case 

study, the closed-loop identification of the robust state space models was simple and fast 

since the closed-loop process model, as described for Scenario II, consisted of 4 ordinary 

differential equations (ODE’s), 2 algebraic equations (AE’s) and 7 process model 

parameters. On the other hand, the chemical plant’s dynamic behaviour is usually 
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represented by a large number of ordinary differential and algebraic nonlinear equations 

that contain hundreds of process model parameters. Therefore, it is expected that the 

robust state space model’s parameter estimation for large scale systems will be a difficult 

and computationally demanding step since higher order models will be required.  

ii) Although the robust state space model is identified in closed-loop, it is expected that the 

chemical plant will exhibit a higher degree of nonlinearity. Thus, model parameters with 

large uncertainty descriptions will obviously produce more conservatism in the resulting 

design. 

iii) As mentioned in Section 4.3.1, the Quadratic Lyapunov Function used in this work 

generally produced a conservative result. The conservatism was partially due to the 

presence of the Lyapunov function rate of change in the condition used to calculate a 

bound on variability. The robust stability test used in the μ-based methodology is based 

on the same Lyapunov function’s rate of change (see Problem 4.21). Thus, the use of this 

stability test may produce misleading results. That is, due to the conservatism of this test, 

one may conclude that a given robust state space model is not asymptotically stable while 

in principle all the eigenvalues of the A state space matrix have negative real parts. In 

addition, based on the computational effort to calculate this robust stability test for simple 

system, it is expected that the Quadratic Lyapunov Function-based robust stability test 

with higher order models will require a significant amount of computational time. 

iv) The use of two different uncertain model structures to represent the same input/output 

dynamic behaviour adds unnecessary computational load within the methodology. In the 

case of a low order robust state space model, the transformation to its corresponding 

discrete robust FIR model is performed rapidly but a significant amount of computational 

time will be often required to convert higher order robust state space models into the 

robust FIR models. 

v) The μ-based robust variability measure introduced in Section 4.1 requires the repeated 

computation of a μ problem. The dimensions of the interconnection and perturbations 

matrices, M and Δ, given in problem (4.8) determine the computational load required to 

solve such problem. The sizes of M and Δ are determined by the number of impulse 
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response coefficients and the number of external perturbations considered in the analysis. 

Thus, it is expected that the μ calculation will become computationally demanding when 

this test is applied to systems that require a large set of impulse response coefficients to 

characterize the input/output behaviour and that are subject to many external 

perturbations. 

To address these issues, the following subsections present further modifications that were 

performed to the μ-based methodology to account for the simultaneous design and control of 

large-scale systems.  

5.1.1 Closed-loop identification of a robust FIR model 

It is proposed that the closed-loop dynamic behaviour of the chemical process will be directly 

identified from input and output values as a robust FIR model thus eliminating the need for 

identifying a closed-loop robust state space model. The Robust FIR model has been defined 

in Section 4.1 as follows: 

  (5.1) ( ) ( )[ ] Njijhijhjy
q i

qiqqiq ≤≤−+−= ∑∑
= =

0;)(
1 0

δυδδυ
m j

This model will be directly estimated from closed-loop identification as per the following 

steps: 

a) Design a PRBNS for each disturbance (υq) considered in the analysis. The PRBNS’s 

maximum length sequence and switching time can be determined from the closed-

loop system’s settling time and time constant. The amplitude of the PRBNS must be 

defined in terms of the lower and upper bounds specified for the disturbance, i.e., l
qυ  

and u
qυ . Also, depending on the computational tools available, repeat the PRBNS 

sequence as many times as possible to improve the quality of the model parameter’s 

estimates. 

b) Simulate the closed-loop system’s output response (y) using the PRBNS specified for 

each disturbance.  
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c) The input/output data recorded from this simulation, i.e. δυq and y, is used to fit a 

linear impulse response model applying the least-squares method51. The number of 

model parameters, i.e. impulse response coefficients, needed to correctly describe the 

system dynamics is determined from the system’s closed-loop settling time specified 

above.  

d) The least squares criterion applied for the identification of the linear impulse response 

model also produce an estimate the covariance matrix of the parameter estimates. The 

parameter estimates’ variance is used by the proposed methodology as an 

approximation to describe the system’s nonlinearities due to the changes in υq, i.e., 

the elements of the covariance matrix are assumed to be the equal to the uncertainty 

bounds for the model parameters. Correspondingly, each impulse response model 

parameter is described by a nominal value (hiq) complemented with model parameter 

uncertainty (δhiq). 

The above procedure is repeated for each disturbance (υq) and for each process variable (y) 

that is considered in the analysis. One of the advantages of using robust the FIR models is 

that they are output response models that require information of current inputs and outputs 

and past inputs but do not require information of previous outputs. Thus, the number of 

parameters for the input is determined by the output’s settling time, N, i.e. 

 whereas there are no parameters to be estimated for past values of the 

output (y). Accordingly, the determination of the model order is done systematically 

according to the settling time and does not require the use of computationally expensive 

model structure selection algorithms.  

],,,[ 21 Nqqqq hhhh K=

In summary, the direct identification of the robust FIR model is expected to reduce the 

conservatism of the bound estimated from the μ-based robust variability test and will also 

increase the speed in the methodology’s calculations since the model transformation step 

from state space to FIR form discussed in chapter 4 is eliminated and consequently, the 

robust FIR model identification is performed fast. 
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5.1.2 Robust stability test for large-scale systems 

As shown in Figure 2.4, the robust performance test for the SSV analysis (equation 2.40) also 

takes into account the system’s input/output stability. This indicates that for a stable 

input/output system a finite bound on the system’s dynamic performance is obtained. 

Accordingly, very large values of variability obtained from the SSV performance calculation 

for a finite time horizon, are an indication of system’s instability. In principle, the system’s 

asymptotic stability can be tested using the robust stability criterion presented in problem 

(3.12). However, this requires the identification of a robust state space model at each 

iteration step which can be computationally expensive for large-scale systems. Instead, the 

present method uses a practical approximation step to determine whether a current set of 

decision variables (η in problem 4.21) define an operating state in the system that is stable or 

not. This method consists in performing the robust stability test (3.12) only when the 

computation of the skewed-mu analysis (problem 4.8) produced a bound on the worst-case 

output variability that is sufficiently large when compared to the bound estimated with the set 

of decision variables used in the previous iteration step. From preliminary testing of the 

variability bounds obtained for stable and unstable systems, it was concluded that the robust 

stability test must be performed only when the bound estimated with the current set of 

decision variables (ηk) is approximately 2 orders of magnitude larger than the bound obtained 

with the previous set of decision variables (ηk-1). When this occurs, the identification of a 

robust state space model around that particular operating state (ηk) must be estimated and the 

system is tested for stability as per inequality (3.12). The above approach was implemented 

and tested in the simultaneous design and control of the Tennessee Eastman process.  

5.1.3 Reduction of the computational load in the robust variability test 

The μ-based robust variability test introduced in Section 4.1 requires the specification of the 

interconnection and perturbation matrices, M and Δ, as per equations (4.11) and (4.9) 

respectively. The last N rows of the matrix M accounts for the different values of the output y 

at each sampling instant j. The last row of M that corresponds to the prediction of the output 

at time interval N, the settling time of the process, contains the full set of impulse response 

coefficients and its corresponding uncertainty values (see equations 4.13 and 4.14 
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respectively) of the robust FIR model. Since the critical disturbance profile for which the 

maximal variability occurs between time 0 and time interval N can be expressed by the 

combination of the contributions of all the coefficients of the FIR model and their 

corresponding uncertainty bound, it is possible to simplify the problem formulation. The 

simplification consists in reformulating the problem by considering only those rows and 

columns in the interconnection matrix M that contain all the maximum changes in the 

disturbance variables (δυq), the nominal values of the impulse response coefficients (hiq) and 

its corresponding uncertainty values (δhiq). Accordingly, the matrices that define the structure 

of M in (4.11), i.e. Wq (4.12), Rq (4.13), Hq (4.14), S (4.15) and T (4.16), are reduced as 

follows: 

[ ])()()1()0( Np qqqqq δυ δυδυ KK δυ=W  (5.2) 

[ ]qNqpqqq ,,,1,0 hhhh δ δδ KK δ=R  (5.3) 

[ ]qNqpqqq ,,,1,0 KK hhhh=H  (5.4)  

( ) mqfordiag KK ,1,,, == TTS

kI

 (5.5) 

 NN ,=T  (5.6) 

Similarly, the matrices Δr1 and Δr2 defined in (4.10) and used to specify the perturbation 

matrix structure Δ are reduced as follows: 

[ ]
][ Nr

Nr

ββ
 

αα
,,12

11

K

K

=
,,=

Δ
Δ

( )1212 +×+ NN

 (5.7) 

Following this reformulation of the problem, the resulting dimensions of the reduced M and 

Δ are ( ) . Due to this simplification, the computational time to solve the μ 

calculation in (4.8) is significantly reduced. Table 5.1 shows the CPU time required to 

compute a particular μ problem using the expanded and reduced structure of the matrices M 

and Δ. The Table shows that the computational demands increases as the number of impulse 

response (IR) coefficients considered in the analysis are increased. However, the 
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computational requirements for the expanded M and Δ μ-based calculation grows 

exponentially whereas the reduced M and Δ-based μ calculation grows in a linear fashion. 

Figure 5.1 shows the CPU time ratio between the reduced and the expanded M and Δ 

structures used to solve the μ problem in (4.8). As shown, the ratio decreases exponentially 

as the number of IR parameters considered in the μ computation is increased. Thus, it is 

expected that the computational burden associated with the reduced M and Δ-based μ 

calculation is less sensitive to the number of IR coefficients considered in this calculation. In 

addition, Table 5.1 also shows the worst-case output variability bound (k) obtained from (4.8) 

indicating that both the expanded and reduced M and Δ structures provided the same result. 

Thus, it is expected that the μ-based robust variability test is not affected by the 

reformulation of the problem. 

Table 5.1 CPU time comparison for the μ calculation. 

Reduced M and Δ Expanded M and Δ Number of  
IR Coefficients CPU time (sec) k CPU time (sec) k 

10 0.0469 3.5771 0.5938 3.5771 

20 0.0625 4.9068 2.3438 4.9068 

30 0.0938 5.9216 25.7656 5.9216 

40 0.1001 6.7740 153.7500 6.7740 

50 0.1250 7.5177 858.8438 7.5177 

5.1.4 Mathematical formulation and algorithm 

The modifications discussed in the previous subsections were applied to the μ-based 

methodology formulation defined in (4.21). Thus, the optimization problem that has been 

proposed to the simultaneous design and control of chemical plants is presented in (5.8). This 

formulation is different from (4.21) because the robust stability test is only performed when 

the worst-case output variability bounds between two subsequent iterations differ by 2 orders 

of magnitude and the matrices Md, Δd, Mg, and Δg are constructed from the vectors and 

matrices specified in (5.2)-(5.7), respectively. Although the closed-loop process model 

equations identified at each step of the optimal solution search are not explicitly shown in 

(5.8), they are implicitly considered in the evaluations of the asymptotic stability, process 

feasibility and the worst-case process variability. 
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Figure 5.1 CPU time ratio for the μ calculation. 
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The algorithm to solve problem (5.8) is schematically given in Figure 5.2 and summarized by 

the following steps: 
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Step 0 (Initialization). Provide initial guesses for the vector η• and the process parameter 

uncertainty ω•. Also, specify the lower and upper bounds for these variables and the 

disturbance variables, i.e. ηl, ηu, ωl, ωu, υl and υu, respectively. 

At each iteration k: 

Step 1 (Worst-case process variability scenario). Given the process variability function φd 

and the current values in the optimization variables, ηk, find the critical realizations in the 

disturbance variables υ and the nominal values in the process parameter uncertainty ω that 

generates the maximum process variability in the system. To solve the worst-case process 

variability problem defined in (5.8), it is necessary to perform the closed-loop identification 

of a robust FIR model for each ω tested. The procedure to obtain such robust model was 

explained in Section 5.1.1. In this step, the robust FIR model must be identified from the 

disturbance υ to those process variables that define φd, i.e. yd. 

Step 2 (Robust stability test). The bounds estimated in the previous step are compared to 

those obtained in the previous iteration (k-1). If the difference between these two bounds is of 

2 orders of magnitude, i.e. 11 ε≥− −k
d

k
d kk , then the robust stability test must be performed 

to guarantee the system’s stability. To apply the robust stability test (3.12), a robust state 

space model must be identified around the current set of decision variables (ηk) and at the 

given process parameter uncertainty (ω) obtained from the previous step. The procedure to 

estimate a robust state space model has been outlined in Section 3.1.2. If the difference 

between the bounds is less than 2 orders of magnitude, the present analysis considers that the 

system is stable at the specified operating state defined by ηk and ω, i.e. the robust stability 

test is not performed at this iteration. 

Step 3 (Robust feasibility test). Given ηk, estimate the critical profiles in υ and the steady-

state values in ω that produces the largest variability in the process variables (g) that are to be 

maintained within pre-selected bounds. To evaluate the robust feasibility test given in (5.8), 

robust FIR models must be identified from the disturbance variables υ to the process variable 

g for each ω tested.  
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Figure 5.2 Flow sheet diagram of the proposed methodology 
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Step 4 (Cost function evaluation). The current ηk and the value for φd obtained from Step 1 

are used to estimate the capital, operating and variability costs of the chemical process. If the 

constraints specified in (5.8) and the optimization stopping criterion are satisfied, 

i.e. ε≤− −1kk ηη

*ηη

, then STOP, an optimal design has been found and the values of the 

optimization variable in the kth iteration becomes the solution for this problem, i.e. =k

1+= k

Product)()()()( →

. 

Otherwise proceed to the next step. 

Step 5 (Reset). Set k , redefine the values in ηk according to the optimization 

algorithm that is used to solve problem (5.8) and go back to Step 1. 

5.2 The Tennessee Eastman Process 

The Tennessee Eastman (TE) process62 is an industrial challenging problem that has been 

widely used to test topics related to process systems engineering. The process involves five 

major process units: a reactor, a product condenser, a flash separator, a recycle compressor 

and a product stripper. The process consists of four gaseous components (A, C, D and E) that 

react, in the presence of one inert component (B), to form two liquid products (G and H) and 

one by-product (F). The reactions that occur in this process are: 

+

 

productBy)(2)(3
productBy)()()(

Product)()()()(

−→
−→+

→++
+ liqGgDgCgA

liqFgD
liqFgEgA
liqHgEgCgA

 (5.9) 

The four reactions are defined as irreversible exothermic reactions. The reactions rates are 

temperature-dependent and are described by Arrhenius-like functions. The first reaction 

specified in (5.9) has the highest activation energy in the system and thus it is more 

sensitivity to temperature changes. In addition, the reactions are approximately first order 

with respect to the reactant concentrations. 

Based on the market demands and capacity limitations, the production targets specified for 

this process are given by the products’ mass ratios and flow rates. Accordingly, several 

modes of operation are defined for this process summarized in Table 5.2. As shown in this 
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Table, the modes of operations are determined by the desired mix in the products G and H. 

Mode 1 of operation is referred to as the base case since it is the most common one. The 

production rates for modes 4, 5 and 6 were not specified by Downs and Vogel62. 

Table 5.2 Modes of operation of the TE plant 

Mode G/H mass ratio Production rate G*/H* (kg/hr) 

1 50/50 7038/7038 

2 10/90 1408/12669 

3 90/10 10000/1111 

4 50/50 Maximum production rate 

5 10/90 Maximum production rate 

6 90/10 Maximum production rate 

The TE plant’s process flow sheet is shown in Figure 5.3. Pure reactants A, D and E are fed 

to the reactor unit together with a mixture of gaseous components that comes from the 

recycle stream (stream 8 in Figure 5.3). The components react inside the reactor to form the 

liquid products G and H. The gas phase reactions are catalyzed by a non-volatile catalyst 

dissolved in the liquid phase. The reactor has an internal cooling bundle for removing the 

heat of reaction. The products leave the reactor, along with the unreacted components, in a 

vapour phase. The reactor’s outlet stream is passed through a partial condenser. The products 

from the condenser are a vapour mixture of products and unreacted gaseous reactants. The 

volatile and non-volatile gas mixture components are separated in a flash unit. The 

noncondensed components are recycled back to the reactor’s feed stream through a 

centrifugal compressor. Additionally, a purge stream (stream 9 in Figure 5.3) is used to 

remove the excess of the inert component (B) and the by-product (F) from the system. The 

liquid collected in the separator is pumped to a stripper column to separate the remaining 

unreacted components from the products. To achieve separation, the solvent used in this 

process unit is a mixture of reactant A and C, which are fed to the process through the 

stripper base, indicated as stream C in Figure 5.3. The vapour stream from the stripper is 

mixed with the recycle stream. The liquid stream at the bottom of the striper is reheated using 

steam to refine the liquid products. The products G and H exit the stripper (stream 11 in 

Figure 5.3) and are separated in a downstream refining section that has not been included in 

the TE problem.  
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Figure 5.3 The Tennessee Eastman process 
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Downs and Vogel62 specified for this problem 41 available measurements and 12 

manipulated variables that can be potentially used for control. Also, six process operational 

constraints were specified for this problem. These constraints are primarily used to protect 

the process units, i.e. reactor, flash separator and stripper, from an undesired event, e.g. the 

gas in the reactor exceeding its maximum allowed working pressure. Likewise, the 

substances’ physical properties and a steady-state analysis of the base case mode of operation 

(mode 1) were also provided for this problem. Appendix B lists the process measurements, 

the manipulated variables, the process constraints and the physical properties specified for 

this system. Furthermore, products variability restrictions were also specified for this process. 

According to Downs and Vogel62 flow rate changes in the products stream (stream 11 in 

Figure 5.3) greater than ±5% with significant frequency content in the range 8-16 h-1 and 

fluctuations exceeding ±5 mol% in the product G in the products stream with significant 

frequency content in the range 6-10h-1 are particularly harmful for this process. 

where the vector x represent the process states variables, y is the vector that describes the 

available measurement outputs and u are the available manipulated variables. The vectors x, 

y and u are of lengths 50, 41 and 12, respectively. Following (5.10), the vector f is an implicit 

nonlinear function that models the mass and energy balances in the reactor, the recycle 

stream, the flash unit and the stripper column. Similarly, h is also an implicit nonlinear 

function that relates the process states to the available measured outputs. To provide more 

realistic plant behaviour, the output measurements are corrupted by Gaussian measurement 

noise (ε) included in the function h. For control purposes, a set of 20 process disturbances (υ) 

were also included in the TE process model. Each disturbance affects the process operation 

in a different form. In addition, a process operating cost function was also provided for the 

 

In order to provide a tool that can be used to test a wide variety of process systems 

engineering problems, the Downs and Vogel62 made available a mechanistic model-based 

code that simulates the open-loop transient operation of this process. The process model 

equations in the TE code are formulated in the following state space form: 
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basic operating mode. Appendix B shows the TE code provided by Downs and Vogel 62 to 

simulate the TE plant’s dynamic behaviour. Additionally, Appendix B includes the 

disturbance set and the operating costs specified for the TE process. Further details about this 

process can be found in Downs and Vogel62. 

The present research work chose the Tennessee Eastman process as a case study to test the 

simultaneous design and control methodology presented in Section 5.1. This process was 

selected for the following reasons: 

i) It is a benchmark problem that has been widely studied by the process systems 

engineering community.  

ii) Although more than 100 publications have used this process as a case study, the 

integration of process design and control has not been addressed for this process. 

iii) The TE process is open-loop unstable, that is, open-loop simulations of this plant reach it 

shutdown limits within an hour. Therefore, a regulatory control strategy has to be used 

for stability reason, i.e. open loop operation is not possible. 

iv) The process exhibits a complex dynamic behaviour with a high degree of interaction 

between the process variables. Similarly, the plant contains a recycle stream that 

introduces natural positive feedback into the process leading to further control challenges. 

For example, this effect may produce non-minimum phase behaviour that can seriously 

affect the process stability. 

Due to these facts, the Tennessee Eastman process is a suitable and challenging candidate to 

test the proposed methodology for the simultaneous design and control of large-scale 

systems.  

The methodology’s formulation presented in (5.8) requires the specification of the process 

flowsheet and a suitable control structure that stabilizes the process. For simplicity the 

process flowsheet synthesis and control structure selection problem have not been considered 

in the present analysis. Thus the TE process flowsheet originally proposed by Downs and 

Vogel62 is assumed for the analysis. Since the TE process is a challenging process control 
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problem, several control strategies have been reported in the literature for this particular 

process63-71. Each strategy present different control objectives and control configurations. To 

assess the integration of design and control of the TE process the present research work 

chose the decentralized control strategy proposed by Ricker63. This control strategy was 

chosen because it can attenuate almost all the disturbances expected for the TE process. Also, 

a Simulink® code provided by Ricker63 is available to simulate the plant’s closed-loop 

transient behaviour. Although Ricker’s control structure was developed for the plant’s six 

modes of operation, only the base case operating mode was considered in the present 

analysis. The production targets specified for the base case are given in Table 5.2. 

Figure 5.4 shows the decentralized control strategy proposed by Ricker63. As shown, this 

control configuration requires 17 PI controllers and 2 PI override controllers (not shown in 

Figure 5.4) to stabilize the plant. This control configuration was designed based on process 

heuristics. Similarly, the PI controllers’ tuning parameters were specified based on the insight 

gained from the plant’s dynamic simulations.  

The plant’s overall dynamic performance is determined by a production rate control 

mechanism developed for this process. This method uses a ratio control-like configuration on 

the inlet and outlet streams’ flow rate to regulate the product’s production rate. Figure 5.5 

shows the ratio control structure designed for this control strategy. The production index (Fp) 

is given in percentage form where at the base case 100 % corresponds to a production rate of 

23 m3/hr. The set point for the flow controllers are obtained from: 

  (5.11) Fpry ii =poset int

where ri is the current signal ratio for stream i obtained from the controllers’ output signal 

according to the configuration shown in Figure 5.4. The control configurations for the liquid 

level control on the reactor, the flash separator and the stripper column, temperature control 

on the reactor and separator, the control of the chemical inventories and the product 

composition control were designed based on process heuristics combined with the production 

rate ratio control mechanism shown in Figure 5.5. Further details about this control 

configuration are given in Ricker63. 
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Figure 5.4 Decentralized control structure proposed by Ricker63. 
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Figure 5.5 Ratio control configuration 

Table 5.3 lists the PI control loops characteristics including the controller tuning parameters 

values and the set point values specified for the base case mode of operation63. As shown in 

Table 5.3, the plant has nine adjustable set points that can be potentially used for 

optimization. Likewise, the PI controller constants together with the parameters that specify 

the equipment sizes, i.e. reactor, separator and stripper capacities, can be also used for 

optimization. Thus, there are 46 variables that can be potentially specified as decision 

variables for the simultaneous design and control of the TE problem. In addition, the present 

control configuration assumes the agitator speed to be 100% and the compressor recycle 

valve and the stripper steam valve to 0% of opening. Thus, the present research work 

considered those variables as constants parameters.  

The objective defined for this problem is to find the values in the set points, the controllers 

tuning parameters and the equipment size’s parameters that simultaneously minimize the 

annualized cost of the TE process at the base case mode of operation. The resulting design 

must ensure process stability and process feasibility at any time t in the presence of 

magnitude-bounded disturbances and at any given steady-state value in the process parameter 

uncertainty. 

Base on the above, two scenarios were proposed to study the simultaneous design and control 

of the TE process. The first scenario considers only the design of the reactor whereas the 

second scenario takes into account the design of the reactor, the flash separator and the 
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stripper column. The details of each scenario and the resulting designs obtained by the 

present method are discussed in the following Sections.  

Table 5.3 Control loops characteristics for the strategy shown in Figure 5.4 

Controllers’ 
parameters Loop Controlled variable Manipulated variable 

Set point 
(Base case value) 

Kc τI(min) 

1 A feed rate (stream 1) A feed flow (stream 1) r1xFp 0.01 0.001 

2 D feed rate (stream 2) D feed flow (stream2) r2xFp 1.6x10-6 0.001 

3 E feed rate (stream 3) E feed flow (stream 3) r3xFp 1.8x10-6 0.001 

4 C feed rate (stream 4) C feed flow (stream 4) r4xFp 0.003 0.001 

5 Purge rate (stream 9) Purge valve (stream 9) r5xFp 0.01 0.001 

6 Sep. Liq. rate (str. 10) Sep. pot Liq. flow (stream 
10) r6xFp 4x10-4 0.001 

7 Strip. Liq. rate (str. 11) Strip. Liq. flow (stream 
11) r7xFp 4x10-4 0.001 

8 Production rate Production index (Fp) Production set point 
(22.89 m3/hr) 3.2 120 

9 Stripper liquid level Ratio in loop 7 (r7) 
Strip. level set point 
(50 %) -2x10-4 200 

10 Separator liquid level Ratio in loop 6 (r6) 
Sep. level set point 
(50 %) -1x10-3 200 

11 Reactor liquid level Setpoint of loop 17 (l17) 
Reac. level set point 
(65 %) 0.8 60 

12 Reactor pressure Ratio in loop 5 (r5) 
Reactor pressure 
(2800 kPa) 

-1x10-4 20 

13 Mol % G in stream 11 Ratio in loop 2 (r2) and 3 
(r3) 

Mol % G set point 
(53.83 %) -0.4 100 

14 yA Ratio in loop 1 (r1) 
yA set point 
(63.1373 %) 

2x10-4 60 

15 yAC Ratio in loop 4 (r4) 
yAC set point 
(51 %) 

3x10-4 120 

16 Reactor temperature Reactor coolant valve Reac. temp. set point 
(122.9 °C) -8.0 7.5 

17 Separator temperature Condenser coolant valve l17 -4 15 

18* Maximum react. Press. Production index (Fp) Production set point 2.0x10-6 0.001 

19* Reactor level override Recycle valve Reac. level set point 1.0x10-6 1.0x10-5 
          * Override loops not shown in Figure 5.4 
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5.3 Simultaneous design and control of the TE process: Scenario I-Reactor’s 

design only 

In this scenario, only design changes in the reactor section of the TE process were considered 

in the analysis. Thus, the only equipment that is to be designed in this scenario is the 

reactor’s capacity. This process unit was chosen because the reactions that produce products 

G and H take place in this unit. Besides, the TE process is open-loop unstable because of the 

reactions’ sensitivity to temperature. Thus, the smallest change in the reactor’ temperature 

causes an imbalance in the reaction that produces G (see 5.9) leading to quick changes in 

composition of the components in the reactor’s gas phase. This causes a sudden increment in 

the reactor’s pressure which destabilizes other sections of the plant and that eventually may 

result in the plant’s shut down. Therefore, it is expected that the reactor’s operation play a 

key role in the overall operation and have a significant influence on the plant’s stability and 

performance. 

Accordingly, only the controller tuning parameters that are related to the reactor were 

considered in the analysis: the reactor pressure, level and temperature controllers listed as 

loops 12, 11and 16 in Table 5.3, respectively and the control that regulates the purge losses 

denoted as loop 5 in Table 5.3. The rest of the controllers tuning parameters were set to the 

values specified in Table 5.3. Similarly, the set points for the reactor pressure, level and 

temperature controllers and the set point for the production rate controller were defined as 

optimization variables within the analysis. The rest of the set points were set to their defaults 

values shown in Table 5.3. In summary, 13 decision variables were specified for this scenario 

and are collectively denoted as the vector η. 

TE process cost function.- 

For the present study, the sizes of the reactor, the flash unit and the stripper column were 

used to specify the TE process capital cost. The capacities specified by Downs and Vogel62 

for each process unit are: 1,300 ft3 for the reactor, 3,500 ft3 for the flash unit and 156.5 ft3 for 

the stripper column, respectively. Since Downs and Vogel did not provide any additional 

information regarding the equipment sizes, the present work assumed that the three process 

units are vertical cylindrical vessels made of carbon steel with a length/diameter ratio of 4. 
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Hence, the bare-module cost, in 1982 USD, for each process unit can be expressed as 

follows72: 

 ( )( )21.2
, ln36.2ln55.1282.195946 PPDC unitBM +−=  (5.12) 

where D is the vessel’s diameter in meters and P is the pressure in bars. Assuming that the 

plant was built in 1992, the TE process annualized capital cost function is defined as follows: 

( )( )CCCrCC ++=

( )( )

315360,,, stripBMsepBMreacBM  (5.13)  

where r is the desired return on investment. This parameter was set to 20 %/yr which is a 

typical value for this factor72. Since the present scenario only consider redesign of the 

reactor, the bare module costs for the flash unit and the stripper column were fixed to a 

constant value according to their capacity specifications. Thus, the present scenario only 

requires the changes in plant’s capital cost due to changes in the reactor capacity. 

The operating cost function for the plant’s base case mode of operation was defined as 

follows62: 

( )( )
( )( ) ( )( )ratesteamtssteamworkcompressortscompressor

rateproducttsstreamproductratepurgetspurgeOP
coscos

coscos
++

+=
 (5.14)  

where OP represents the TE process operating costs in $/h. The molar costs for each 

component, which are used to estimate the purge costs and the product stream costs, the 

compressor costs and the steam costs in the stripper section are given in Appendix B, Table 

B.6. The purge rate, production rate, steam rate and compressor work are obtained from the 

steady-sate solution of the TE process model equations. Appendix B shows the procedure to 

obtain the operating cost at the base case using the data provided by Downs and Vogel62.  

The capital and operating costs given in (5.13) and (5.14) determine the plant’s steady-state 

costs. To assign an economic value to the process dynamic performance, the present work 

specified a process variability function (φd in 4.21) for the process. The TE process dynamic 

performance is measured in terms of the base case production target values given in Table 

5.2. The process variability function for each product is defined as the deviations in the 

 144



products’ mass flow rates with respect to their target values. To ensure that the products meet 

the production mass flow rate demands (G* and H*) at all time, the nominal values of the 

products mass flow rate (Ğ and H
(

) have to be specified above its targets values. Thus, the 

fluctuations in the products’ mass flow rates due to external perturbations and parametric 

uncertainties are expected to be above the targets at all times. To measure the products 

variability with respect to their nominal values, bounds on the largest deviation in the 

products mass flow rates (kG and kH) are estimated using (4.8) and the interconnection and 

perturbation matrices structures (M and Δ) presented in Section 5.1.3. Figure 5.6 illustrate 

the fluctuations in the process variability for one of the products and the corresponding target 

that is imposed as a lower bound in the calculations. As shown by this Figure, the process 

variability function for each product has a physical meaning. That is, the variability in 

product G (φG) is specified as the difference between the ideal case flow rate where the plant 

is operating at steady-state and at the products’ target values (G*) and the true products’ flow 

rates obtained when external perturbations and parametric uncertainties are affecting the 

process (Ğ, kG). Thus, the variability function for products G and H are defined as follows: 

  (5.15) 
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where ω represents the process parameter uncertainty and the matrices MG, MH, ΔG and ΔH 

are the corresponding interconnection and perturbations matrices used in the μ analysis to 

estimate bounds on the products’ worst-case variability (kG and kH). These matrices are 

formulated according to the expressions developed in Section 5.1.3. 

The functions shown in (5.15) represent the process variability function used in the present 

research work to measure the TE process dynamic performance. These functions are used to 

calculate the additional amount of products’ mass flow rate (kg/h) that must be produced to 

remain within the production specs. Then, a cost is assigned to this excess in product’s mass 

flow rate. 
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Figure 5.6 Process variability for product G 

Accordingly, the variability cost function for the TE process is defined as follows: 

  (5.16) HG
HG cpcpVC ϕϕ +=

where VC is the process variability cost expressed in $/h. The terms cpG and cpH are the costs 

of producing products G and H, respectively. The values of cpG and cpH are given in 

Appendix B, Table B.6. In addition, φG and φH represent the products variability estimated 

from (5.15). 

Based on the above descriptions, the TE process annualized cost function is defined as 

follows: 

 ( )VCOPCCCFTE ++= 8760  (5.17) 

where CC, OP and VC are the capital, operating and variability cost functions that has been 

defined in (5.13), (5.14) and (5.16), respectively. The numerical coefficient in (5.17) is a 

conversion factor used to represent the TE cost function in dollars per year. 

Robust closed-loop TE process model.- 

The key idea in the present research work is to represent the process closed-loop nonlinear 

dynamic behaviour as a nominal linear model complemented with uncertain model 

parameters, i.e. a robust closed-loop model. As it was mentioned in Section 5.1.1, the closed-

time

Ğ φG 

G* 
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loop process model for a large-scale system is represented by a discrete robust FIR model 

(4.2). The TE process’ robust FIR models were identified following the procedure explained 

in Section 5.1.1. The closed-loop TE process model provided by Ricker63 was used to 

simulate the plant’s dynamic behaviour around a nominal operating state specified by values 

in the scenario’s decision variables (η). The data collected from the simulations was used to 

identify the robust FIR models. These models are used by the present methodology to test 

process stability and to estimate bounds on the worst-case process variability and process 

feasibility. To accomplish these calculations a set of robust FIR process models must be 

identified from each of the disturbances considered in the analysis to the specific variable 

that is to be tested for process stability, worst variability or process feasibility. The closed-

loop TE process model consist of 41 available measurements, 9 set points, from which 6 are 

also process available measurements, and 12 manipulated variables, out of which 3 were 

fixed to a constant value by Ricker’s control strategy, i.e., agitator speed, recycle valve and 

stripper’s steam valve. Thus, a total of 53 robust FIR models have to be identified for each 

new set of values in η tested by the optimization algorithm. For accurate identification of the 

robust FIR models, all the available process measurements were assumed to be continuous. 

TE process stability.- 

The stability of the TE process was evaluated according to the procedure outlined in Section 

5.1.2 and Section 5.1.4. 

TE process worst-case variability.- 

The expressions φG and φH in (5.15) represent the worst-case process variability functions 

specified for the TE process. To estimate φG and φH, it is necessary to define robust FIR 

models from each disturbance (υ) to the products’ mass flow rates (G and H). If n  

represents the number of disturbances considered in the analysis, then  robust FIR 

models of the type given in (

υ

υn×2

4.2) have to be identified when the system is operated around 

the current decision variables values (η) and for each process parameter uncertainty values 

(ω) that is tested by the optimization. The robust FIR nominal and uncertain model 

parameters, i.e. hiq and δhiq, in conjunction with the deviations in the selected disturbances 
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(δυq) are then used to define the interconnection and perturbation matrices MG, MH, ΔG and 

ΔH specified in (5.15). The structure of the matrices M and Δ was defined in (4.11) and (5.2)-

(5.6) and (4.9) and (5.7), respectively. The solutions of the inner optimization problems 

described in (5.15) return bounds over the largest deviation in the G and H’s mass flow rate 

(kG and kH) with respect to G
(

 and H
(

 and at a certain value of the parametric uncertainty ω. 

Moreover, the nominal values for the products’ mass flow rates (G
(

and H
(

) are determined 

from the current values in the vectors η, ω and the steady state solution of the TE process 

model equations in (5.13). In addition, the production rate targets for the base case mode of 

operation are given in Table 5.2. 

The evaluation in (5.15) returns a bound on the products’ mass flow rate (kg/h). Also, the 

functions specified in (5.15) return the critical time-dependent profile in υ, obtained from the 

μ analysis, and the nominal steady-state value in ω that produces the maximum variability in 

G and H. These critical profiles in υ and ω can then be used to simulate the TE process 

model to estimate the actual maximum variability in the products’ mass flow rate. This 

approach, where the worst calculated disturbance is used as input to the actual model 

equations to compute the maximal output variability, will be compared in Section 5.3.3 to the 

results obtained by using the bounds on the output variability based on the µ approach. 

TE process feasibility.- 

As shown in (5.11), the present methodology applies the formulation given in (4.20) to 

ensure that the TE process constraints are satisfied. The interconnection and perturbation 

matrices shown in (4.20) were defined in (4.9) and (4.11) and are constructed from the 

matrices specified in (5.2)-(5.7). As in the worst-case process variability scenario, the 

nominal values of the process variables to be evaluated are obtained from the current values 

specified for η and ω combined with the TE process model’s steady-state solution. 

Table 5.2 specifies that the base case operation mode requires a 50:50 mass ratio between 

products G and H. Thus, mass ratio constraints for the process products are included in the 

problem formulation as follows: 
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where xmG and xmH are the component’s mass fractions in the products stream (stream 11 in 

Figure 5.4). The values for xmG and xmH are determined from the current decision variables 

values (η) and the steady-state solution of the mass and energy balances equations specified 

for the TE process. As shown in (5.18), the products’ mass ratio constraints were relaxed by 

allowing a 2 percent deviation from their targets values. This was done to enlarge the 

problem’s feasible search space. 

According to Figure 5.6, the process variability function (5.15) was defined as the difference 

between the maximum deviations in the products’ flow rates with respect to a nominal value 

and their corresponding base case target values. The outcome in (5.15) provides the amount 

in kg/h that must be produced in excess to satisfy the production specs but it does not 

guarantee that the products’ mass flow rates variability may violate the productions target 

values. Thus, constraints on the minimum products’ mass flow rate variability were included 

in the analysis. These constraints were formulated using the robust feasibility test description 

given in (5.8), that is: 
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These inequalities ensure that the resulting design meets the production targets at all times in 

the presence of disturbances and parametric uncertainty. It should be noted that the worst-

case profiles found for υ and ω from the process variability function evaluation in (5.15) are 

the same used for the constraints posed in (5.19). Therefore, these constraints are evaluated 

using only the final values obtained from (5.15) for kG, kH,
(

and H
(

, i.e. it is not necessary to 

solve the maximizations of kG and kH within the parenthesis in equation (5.19). 
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In Section 5.2, products variability constraints for the TE process were specified. To account 

for these fluctuations in the products stream, the following constraints have been added to the 

problem formulation: 

  (5.20) 
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The first constraint ensures that the mass flow rate variability in the products stream is ±5% 

of the nominal production mass flow rate (G
(

and H
(

) whereas the second constraint indicates 

that the product G’s mol fraction at the outlet (stream 11 in Figure 5.4) cannot deviate ±5 

mol% G of its set point value ( Gx( ). To evaluate the quality constraint in G, robust FIR 

models have to be identified from the disturbance to the G’s mole fraction (xG) in the 

products stream. As shown in Table 5.3, the mole fraction of G has been specified as a set 

point by the decentralized control structure. Thus, xG may be a decision variable which value 

may be obtained from optimization. However, xG was not considered as a decision variable 

for this scenario and thus its set point value was set to the value shown in Table 5.3. 

In addition to the products variability constraints, the TE problem also considers six process 

operability constraints that protect the three major process units from exceptional critical 

events. The pressure, temperature and liquid level operability ranges for the reactor, separator 

and stripper column are shown in Table B.3, Appendix B. Since the reactor is the only 

equipment designed in this scenario, robust feasibility tests formulated as shown in (5.8) 

were included in the problem formulation to account for the reactor’s process operational 

constraints as follows: 
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  (5.21) 
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The variables rP
(

, rL
(

 and rT
(

 are the reactor pressure, liquid level and temperature set points, 

respectively. As in (5.18), the minimum liquid level allowed in the reactor was reduced from 

50% to 30% to enlarge the problem’s feasible region. To evaluate (5.21), robust FIR models 

from each disturbance (υ) to Pr, Lr and Tr, are required. The procedure to obtain such models 

was given in Section 5.1.1. Moreover, the values for rP
(

, rL
(

 and Tr

(
 are determined from 

optimization, i.e. they are included in the decision variables vector η specified for this 

scenario.  

The constraints shown in (5.18)-(5.21) represent the process feasibility constraints that were 

considered in the present scenario. It should be noted from (5.19)-(5.21) that constraints with 

the same process parameter uncertainty subscript (ωj) can be evaluated simultaneously, i.e. 

there is no need to re-calculate the bounds (k) for each constraint since they all have a 

common worst-case scenario as defined by the same values of υ and ω. On the other hand, 

each problem with a different ωj must be solved independently. 

Optimization problem for Scenario I.- 

The mathematical formulation presented in (5.8) was applied to perform the simultaneous 

design and control of the TE process when only changes in the reactor’s capacity are 

considered. Thus, the annualized cost function (5.17), the worst-case process variability 

(5.15) and the process feasibility constraints (5.18)-(5.21) specified above for the TE 

problem are combined into one optimization problem as follows:  
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The vector of decision variables η is composed of the reactor’s design capacity (ft3), the PI 

controller tuning parameters (Kc and τI) of loops 5, 11, 12, 16 and the set points for the loops 

8, 11, 12 and 16, listed in Table 5.3 respectively. The TE process model equations together 

with the 17 PI controller equations describe the closed-loop TE process model, represented 

here by closed-loop robust FIR models. These robust models are used to test process 

variability and process constraints using the robust variability tests presented above. 

Although is not explicitly shown in (5.22), the bounds obtained for the worst-case scenario 

between subsequent iterations are used to determine if it is necessary to evaluate the system’s 

stability at the current iteration point according to the procedure outlined in Section 5.1.2. 

The procedure followed to solve (5.22) was presented in Section 5.1.4. Also, the problem 

was solved using the MATLAB’s Optimization Toolbox solvers available for nonlinear 

constrained optimization problems55. The present work used the function ‘fmincon’ to solve 

the optimization problem (5.22). This function uses the Sequential Quadratic Programming 

(SQP) as the solution algorithm. This function implements a BFGS-based Quasi-Newton 

approximation for the Hessian estimation of the problem’s Lagrangian function54. The 

Hessian and the first derivative of the Lagrangian function are used to pose a quadratic 

programming sub-problem for each new set of decision variables (η in 5.22) tested. This 

quadratic problem is solved using an active set strategy73 that returns the search direction that 
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is expected to minimize the problem’s Lagrangian function. The new search direction vector 

is relaxed by a step length parameter determined from a merit function74. The new estimates 

in the decision variables set is obtained from a line search using the current decision 

variables values, the current set direction vector and its corresponding step length parameter. 

Further details about the implementation of the SQP optimization strategy in MATLAB can 

be found in elsewhere54-55. 

The formulation posed for Scenario I in (5.22) represents a challenging computationally 

intensive optimization problem. Depending on the values specified for the vector η, one 

complete cost function evaluation that includes the process constraints evaluation and the 

stability check requires a CPU time of approximately 12,600 seconds. In order to provide an 

insight with respect to the design and control trade offs for this plant, the present work 

simplified the formulation presented in (5.22) by relaxing the process parameter uncertainty 

definition specified for this scenario. Also, the current research work analyzed the TE plant’s 

simultaneous design and control under different assumptions and using different solution 

strategies. Therefore, the following subsections discuss the simplifications made to Scenario 

I’s formulation shown in (5.22) and present the different design and control schemes 

obtained for each one of the scenarios studied in this research work. 

5.3.1 Effect of external perturbations 

The design and controller tuning parameters obtained from the application of the current 

methodology to a large-scale process are only valid for the set of bounded disturbances 

variables and bounded process parameter uncertainty specified in the problem. Since the 

problem was significantly more complex than the examples solved in the previous chapters, a 

first step for the study of the TE plant consisted of studying the effect of adding disturbances 

into the design and control problem and assuming that all the process parameters’ true values 

are perfectly known. Thus, the process parameter uncertainty (ω) was not included in this 

first phase of the analysis. This last assumption simplifies Scenario I’s problem specified in 

(5.22) because all the maximization problems specified for ω are removed from the 

formulation. Accordingly, the worst-case process variability function defined in (5.22) is 

specified for the present analysis as follows: 
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The remaining of the functions that include the variable ω in (5.22) are redefined as in 

(5.23).This simplification clearly reduces the necessary calculations. For instance, the present 

analysis approximately required only 420 seconds of CPU time to perform one complete 

function evaluation whereas the formulation in (5.22) required 3.5 hours of CPU time to 

perform the same calculation. Thus, the removal of ω from the analysis greatly reduces the 

computational burden associated with Scenario I’s calculations. 

5.3.1.1 Scenario I-A: Changes in the A feed composition, stream 4 

As it was pointed out in Section 5.2, a set of 20 process disturbances have been specified for 

the TE process. The present work selected as a disturbance for this process random variations 

in the A, B, and C feed composition in stream 4 (see Figure 5.4), listed as idv-8 in Table B.5, 

Appendix B. This disturbance was selected because it is considered as one of the most 

difficult disturbance to reject by using the decentralized control strategy63. Table 5.4 shows 

the disturbance specifications used for the present analysis. Although the components’ rates 

of change appear to be small, they have a significant effect on the products’ flow rate 

variability as it will be shown later on this subsection. To study the disturbances effects only 

on the simultaneous design and control of the TE process, Scenario I’s optimization problem 

(5.22) was initially solved considering only changes in the A and C feed composition of 

stream 4 while maintaining the B composition constant and equal to its nominal value. To 

avoid confusion, this problem is referred from heretofore as Scenario I-A. 

Table 5.4 Disturbance specifications 

Component Nominal value Lower bound (υl) Upper bound (υu) Rate of change (δυ) 

A 0.485 0.475 0.495 ±0.01 

B 0.005 0.002 0.008 ±0.003 

C 0.510 0.480 0.540 ±0.03 
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To satisfy stream 4’s mole fraction balance, the sum of the mole fractions of the components 

A, B and C in this stream has to be equal to the unity. Since component B was assumed 

constant, specifying one component’s mole fraction also specifies the other. Thus, the present 

analysis assumed a magnitude bounded random variation in component’s A mole fraction as 

the sole external perturbation affecting this process. Clearly, the changes in the C mol 

fraction composition due to the random variations in the A mol fraction are also included in 

the analysis since they are also affecting the plant’s dynamic behaviour. 

Therefore, the original Scenario I’s optimization problem presented in (5.22) was reduced, 

following the assumptions presented above, to the formulation shown in (5.24).  

Since only one disturbance is included in the analysis, i.e. nυ=1, 2 robust FIR models have to 

be identified between υA to the products’ mass flow rate variability G and H to estimate the 

worst-case process variability in terms of the variability in the resulting production rates. 

Similarly, 4 robust FIR models are required to evaluate the process constraints specified for 

Scenario I-A. Consequently, a total of 6 robust FIR models have to be obtained for the 

complete evaluation of Scenario I-A’s optimization problem specified in (5.24). These 

models are obtained following the procedure outlined in Section 5.1.1. As discussed earlier, 

the robust FIR models are only valid around an operating state determined by the steady-state 

solution of the TE process model equations and by the decision variables vector η, which 

values are updated by the optimization algorithm. Scenario I-A was programmed in 

MATLAB® and solved using the built-in function fmincon available in the MATLAB’s 

Optimization toolbox55. The optimization was initialized using the current reactor’s design 

capacity (1,300 ft3) and the values given in Table 5.3 for the remaining decision variables 

specified in η. In addition, the upper and lower values specified for Scenario I-A’s decision 

variables (ηu and ηl) are given in Table 5.7. These values were obtained from the simulation 

of the closed-loop TE process.  
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Table 5.5 summarizes the decision variables values and the plant’s costs obtained from the 

optimization of Scenario I-A’s formulation. As shown in this Table, the resulting reactor’s 

design capacity is larger than the reactor capacity currently specified for the TE process. The 

resulting design shows that the operating costs are significantly larger than the annualized 

capital costs. This result still matches the situation for the current design of the process. For 

example, the TE plant specified by Ricker’s design63 has a capital and an operating cost of 

0.087 MM$/yr and 0.999 MM$/yr, respectively. Although the present scenario specified a 

plant that have a higher annualized capital cost, the plant’s steady-state costs, i.e. capital are 

operating costs, were reduced by 2.2 % if compared to the costs specified by Ricker’s design. 
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Therefore, scenario I-A’s design and control scheme presents a more economically attractive 

design than that specified by Ricker. Furthermore, the results obtained for this scenario show 

that TE process economics is predominantly dominated by the operational costs since they 

represent 60% of the plant’s annualized costs specified for Scenario I-A. This idea will be 

corroborated with the results obtained from the scenarios proposed in the next subsections. 

Table 5.5 Design parameters, Scenario I-A 

Variables Specification 

Reactor’s design capacity (ft3) 2972.40 

Reactor’s pressure set point (KPa) 2600.00 

Reactor’s liquid level set point (%) 63.20 

Reactor’s temperature set point (°C) 117.00 

Production set point (m3/hr) 23.11 

  

Costs breakdowns (MM$/yr)  

Annualized Capital Cost 0.1066 

Operating Cost 0.9554 

Variability Cost 0.6193 

Plant’s Annualized Cost (MM$/yr) 1.6813 

To validate Scenario I-A’s design, the final decision variables values were used to simulate 

the TE process dynamic behaviour. The input to this simulation was the A feed composition 

in stream 4 (υA), that is the disturbance considered in this scenario. The time-dependent 

profile used to describe the disturbance behaviour is shown in Figure 5.7 and corresponds to 

the critical profile that produces the maximum variability in product H. The critical profile in 

υA was obtained from the evaluation of the worst-case process variability for product H at the 

optimal solution, defined in (5.23) for Scenario I-A. This profile corresponds to the situation 

where the minimum mass flow rate constraint for product H specified in the problem’s 

formulation is active at the optimal solution. Thus, it is expected that changes in this process 

variable may produce constraint violations. 

As shown in Figure 5.8, Scenario I-A’s optimal design parameters satisfies the products 

specifications even when the process is subject to the critical time profile in υA that produces 

the maximum deviation in product H’s mass flow rate with respect to its set point. As shown 
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in this Figure, the actual product H’s variability is near the minimum products limit, i.e. the 

smallest difference between the product’s actual value and its bound is about 0.6% of the 

product specification (7038 kg/hr). This corroborates the idea that the use of robust FIR 

models provides tight descriptions of the TE process dynamic behaviour resulting in only a 

slightly conservative design. This Figure also illustrates that the allowed products’ mass flow 

rate variability (red dashed lines) is satisfied for the worst-case disturbance profile. Similarly, 

Figure 5.9 and Figure 5.10 show that the resulting design parameters also satisfy the products 

variability constraints and the reactor operational constraints included in Scenario I-A’s 

optimization problem. Therefore, the simulations have corroborated that the simultaneous 

design and control methodology applied to the reactor section of the TE process generates a 

design and control scheme that is robustly stable and feasible in the presence of critical 

disturbance realizations. 
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Figure 5.7 Critical disturbance profile, Scenario I-A 
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Figure 5.8 Products mass flow rates, Scenario I-A 
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Figure 5.9 Products variability constraints, Scenario I-A 
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Figure 5.10 Reactor operational constraints, Scenario I-A 

5.3.1.2 Scenario I-AB: Changes in the A and B feed composition, stream 4 

As discussed in the previous section the mol fraction of component B remained constant 

during Scenario I-A’s analysis. To study the effect of additional disturbances on the 

simultaneous design and control problem, this second scenario considers the simultaneous 

design and control of the TE process reactor by considering changes in both A and B feed 

composition in stream 4. This disturbance is also assumed to be a random magnitude 

bounded variation in the component B’s mole fraction (υB). The nominal mol fraction value 

and the upper and lower mole fraction limits specified for component B are given in Table 

5.4. As in the previous scenario perfect knowledge of the process parameters’ true values was 

assumed and the same set (η) of values used for Scenario I-A was used in the current 

scenario. This new scenario is referred heretofore as Scenario I-AB.  

Since the present scenario only considers the addition of a second disturbance, the 

formulation specified for Scenario I-AB is the same as that proposed for Scenario I-A given 

in (5.24). In this case however, there are two disturbances affecting the process, i.e. nυ=2 in 

(5.24). Thus, 4 robust FIR models have to be identified from the disturbance set (υA and υB) 
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to the products’ mass flow rate variability G and H to estimate the worst-case process 

variability in the products and 8 robust FIR models are required to evaluate the process 

constraints. Accordingly, a total 12 closed loop robust models have to be identified during 

each step of the optimization search to completely evaluate (5.24) when two disturbances are 

included in the study. Thus, the addition of disturbances in the analysis does not change the 

problem’s formulation but it increases the optimization problem’s curse of dimensionality. 

As in Scenario I-A, the problem formulated for Scenario I-AB was coded in MATLAB® and 

solved using Sequential Quadratic Programming-based function fmincon available in the 

MATLAB’s Optimization toolbox55. The initial guesses for Scenario I-AB’s optimization 

problem were the same as for Scenario I-A, i.e. the reactor’s design capacity was initially set 

to 1,300 ft3 whereas the controller tuning parameters values for loops 5, 11, 12 and 16 and 

the set point values for loops 8, 11, 12 and 17 were set to the values shown in Table 5.3. A 

summary of the resulting design parameters obtained from the optimization of Scenario I-

AB’s formulation is given in Table 5.6. The results show that the plant’s costs increased. 

This result was expected since the addition of disturbances within the analysis impact the 

process economics. In this particular case study, it is necessary to increase the plant’s 

annualized cost by approximately 12% to account for the B composition’s variability in 

stream 4.  

The results obtained for this scenario corroborate the idea that the operating costs dominate 

the TE process economics. Particularly, the purge losses accounts for approximately 65% of 

the process operational costs (see equation B.1, Appendix B). The novelty of the current 

optimization reside on the result that the reactor’s capacity should be further increased to 

allow for a larger storage of the systems’ reactants. Consequently, the operational costs can 

be reduced since the purge losses are diminished. According to Table 5.6, Scenario I-AB’s 

solution specified a reactor’s size that is approximately 130% larger than the current reactor’s 

design capacity. Although this represents an increase in the plant’s capital costs, Scenario I-

AB’s solution set the plant’s steady-state cost to 0.684 MM$/yr that is approximately 37% 

more economical than Ricker’s design (1.086 MM$/yr). Therefore, it is logical to increase 

the reactor’s size, and thus the corresponding capital costs, since this increase results in a 

reduction, by approximately 42%, of the process operational costs. 
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Table 5.6 Design parameters, Scenario I-AB 

Variables Specification 

Reactor’s design capacity (ft3) 3000.00 

Reactor’s pressure set point (KPa) 2711.00 

Reactor’s liquid level set point (%) 47.02 

Reactor’s temperature set point (°C) 117.16 

Production set point (m3/hr) 23.22 

  

Costs breakdowns (MM$/yr)  

Annualized Capital Cost 0.1069 

Operating Cost 0.5767 

Variability Cost 1.2271 

Plant’s Annualized Cost (MM$/yr) 1.9107 

As in Scenario I-A, the reactor size obtained by the present scenario is larger than the current 

design specification. Also, the reactor specified for Scenario I-AB is slightly larger than that 

obtained from Scenario I-A. On the other hand, the specified reactor pressure set point is 

approximately 4% higher than the set point that was specified by Scenario I-A for this 

process variable while the reactor liquid level set point obtained for Scenario I-AB is 

approximately 26% below the set point specified from Scenario I-A’s optimization. These 

results indicate that the omission of disturbances that significantly affects the process 

economics can result in design and control schemes that in practice may not completely 

satisfy the production goals and process constraints.  

The solution obtained from Scenario I-AB’s optimization problem was tested with closed-

loop TE process model’s simulations. The inputs to the process models were the disturbances 

selected for this analysis, i.e. the A and B feed compositions (υA and υB) in stream 4. The 

critical profiles imposed on both inputs corresponded to the situation where the minimum 

mass flow rate constraint for product G is active at the optimal solution. Thus, it was 

reasonable to test the TE process using these disturbance realizations since they were 

expected to drive the system to its feasibility limits. Figure 5.11 shows the disturbance 

profiles used to validate Scenario I-AB’s design. It should be noticed that the disturbance 
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realizations obtained for Scenario I-AB (Figure 5.11) are different than those obtained for 

Scenario I-A (Figure 5.7). 

Figure 5.12 illustrate the products mass flow rate variability when the TE process is 

simulated with stream 4’s feed composition profiles shown in Figure 5.11. As shown in the 

Figure, product G’s mass flow rate is very close to its production targets but it always 

remained above that specification. The profile for the product G’s mass flow rate shown in 

Figure 5.12 is expected to be the worst-case deviation for this product. Likewise, Figure 5.13 

illustrates that the variability in the production rate and the quality in product G remain 

within the operating ranges specified in Scenario I-AB’s optimization problem. In addition, 

Figure 5.14 shows that the reactor operates within the operational constraints specified for 

this process unit in Scenario I-AB’s formulation. Thus the simulations corroborated that the 

design parameters’ values obtained from Scenario I-AB’s optimization achieve the process 

production targets while keeping the process operational conditions within their pre-specified 

constraints. 
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Figure 5.11 Disturbance profiles, Scenario I-AB 
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Figure 5.12 Products mass flow rates, Scenario I-AB 
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Figure 5.13 Products variability constraints, Scenario I-AB 
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Figure 5.14 Reactor operational constraints, Scenario I-AB 

5.3.2 Effect of the initial conditions 

As discussed in the previous sections, the formulation shown in (5.24) was solved using the 

MATLAB’s function fmincon that uses SQP as the iterative solution method. Since the 

formulation posed in (5.24) is a nonlinear constrained optimization problem and the 

problem’s functions are not strictly quadratic, it is expected that the solutions obtained for 

this problem are local solutions only. Moreover, the SQP algorithm is a gradient-based 

method that highly depends on the initial guess for non-convex problems. Thus, different 

initial conditions may lead to different solutions. 

Based on the above discussion, this section presents the design and control schemes obtained 

when Scenario I-AB’s optimization problem was initialized from different starting points. To 

conduct this test the optimization problem (5.24) was solved using different initial values for 

the decision variable vector (η). Table 5.7 shows the decision variables specified for Scenario 

I-AB and the set of initial values used to solve Scenario I-AB’s mathematical formulation. 

The first set of values (η1•) corresponds to the values specified by Ricker’s decentralized 
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control strategy 63. In the second set of initial values (η2•), the reactor’s design capacity initial 

value and the reactor and production rate set points values were set to their corresponding 

upper values (ηu in 5.24) whereas the controller tuning parameter values were defined as in 

η1•. The third set of initial values (η3•) fixed all the decision variable values to their upper 

values. Similarly, the forth starting point vector (η4•) set the reactor’s design capacity and the 

reactor and production rate set points to their lower values (ηl in 5.24) whereas the controller 

tuning parameters’ initial values were defined as in η1•. The fifth set of initial conditions 

(η5•) specified the decision variable vector to their lower values. The results obtained from 

the previous tests stated that different combinations in the reactor’s design capacity and 

reactor and production set points may produce a similar plant cost. Thus, the bounds and the 

worst-case variability observed from the previous tests on these decision variables were used 

to define the sixth and the seventh vector of decision variables values (η6• and η7•). In 

addition, the values specified for ηl and ηu were obtained from simulations of the TE process’ 

closed-loop behaviour. 

Table 5.7 Initial starting points, Scenario I-AB 

Decision variables (η) η1• η2• η3• (ηu) η4• η5• (ηl) η6• η7• 

Reactor’s design capacity (ft3) 1300.0 3000.0 3000.0 1000.0 1000.0 3000.0 1000.0 

Reactor’s pressure set point (KPa) 2800.0 2900.0 2900.0 2600.0 2600.0 2884.0 2600.0 

Reactor’s liquid level set point (%) 65.0 70.0 70.0 38.0 38.0 40.0 70.0 

Reactor’s temperature set point (°C) 122.9 125.0 125.0 117.0 117.0 118.0 125.0 

Production set point (m3/hr) 22.89 24.0 24.0 21.0 21.0 23.1 21.0 

Kc, purge valve (loop 5) 0.01 0.01 0.10 0.01 0.005 0.01 0.01 

τI, purge valve (loop 5) 0.001 0.001 0.001 0.001 5x10-4 0.001 0.001 

Kc, reactor liquid level(loop 11) 0.8 0.8 1.5 0.8 0.6 0.8 0.8 

τI, reactor liquid level (loop 11) 60.0 60.0 80.0 60.0 60.0 60.0 60.0 

Kc, reactor pressure (loop 12) -1x10-4 -1x10-4 -5x10-5 -1x10-4 -1x10-3 -1x10-4 -1x10-4 

τI, reactor pressure (loop 12) 20.0 20.0 60.0 20.0 15.0 20.0 20.0 

Kc, reactor temperature (loop 16) -8.0 -8.0 -1.0 -8.0 -13.0 -8.0 -8.0 

τI, reactor temperature (loop 16) 7.5 7.5 15.0 7.5 5.0 7.5 7.5 

Table 5.8 presents the final decision variables values obtained by solving Scenario I-AB’s 

optimization problem with the set of initial points specified in Table 5.7. As shown in Table 
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5.8, each initial guess lead to a different optimal solution. However, the results show that 

some consistent trends and correlations can be found between the different optimal solutions.  

Table 5.8 Effect of the starting point on the solution, Scenario I-AB 

 η1* η2* η3* η4* η5* η6* η7* 

Decision 
variables (η)        

Reactor’s 
design capacity 
(ft3) 

3000.0 2286.4 3000.0 2414.1 2919.4 2828.4 1903.9 

Reactor’s 
pressure set 
point (KPa) 

2711.0 2892.6 2797.9 2859.4 2600.0 2885.2 2854.7 

Reactor’s liquid 
level set point 
(%) 

47.0 65.4 70.0 53.5 58.9 59.1 56.0 

Reactor’s 
temperature  
set point (°C) 

117.2 121.4 123.9 120.3 120.9 123.9 122.1 

Production set 
point (m3/hr) 23.2 23.6 23.6 23.3 23.4 23.5 23.4 

Kc, purge valve 
(loop 5) 3.45E-02 9.89E-02 3.92E-02 4.58E-02 2.88E-02 9.57E-02 7.83E-02 

τI, purge valve  
(loop 5) 

9.75E-04 3.55E-03 9.11E-03 7.48E-03 1.92E-03 9.49E-03 6.58E-04 

Kc, reactor 
liquid level 
(loop 11) 

1.44 0.63 0.60 1.49 1.48 1.48 1.42 

τI, reactor liquid 
level (loop 11) 77.33 67.63 75.57 64.11 61.25 78.55 65.35 

Kc, reactor 
pressure (loop 
12) 

-2.22E-04 -9.31E-04 -8.87E-04 -8.07E-04 -6.65E-04 -6.71E-04 -1.16E-04 

τI, reactor 
pressure (loop 
12) 

54.03 33.30 15.00 59.60 27.27 56.06 37.95 

Kc, reactor 
temperature  
(loop 16) 

-1.50 -12.89 -7.24 -7.43 -18.18 -8.76 -4.14 

τI, reactor 
temperature  
(loop 16) 

15.00 14.76 9.03 7.17 14.13 13.38 1.67 
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Table 5.8 continues 

 η1* η2* η3* η4* η5* η6* η7* 

Constraintsa evaluated at η*        

Constraint 1 -
0.0142 -0.0138 -0.0146 -0.0142 -0.0145 -0.0146 -0.0132 

Constraint 2 -
0.0058 -0.0062 -0.0055 -0.0059 -0.0056 -0.0055 -0.0068 

Constraint 3 -
0.0158 -0.0154 -0.0159 -0.0126 -0.0137 -0.0125 -0.0195 

Constraint 4 -
0.0036 

-
64.1930 

-
28.3100 -0.3665 -3.2143 -0.0124 -

26.6240 

Constraint 5 -
0.5575 

-
24.7380 

-
43.4590 

-
27.4110 

-
34.7430 

-
49.5570 

-
52.3469 

Constraint 6 -
401.66 -327.49 -347.59 -429.68 -431.97 -403.94 -396.75 

Constraint 7 -4.39 -4.29 -4.46 -4.43 -4.46 -4.52 -4.31 

Constraint 8 -
178.73 -1.07 -43.92 -30.19 -292.22 -7.06 -30.71 

Constraint 9 -51.00 -30.26 -25.84 -44.88 -39.73 -39.34 -42.37 

Constraint 10 -15.04 -31.05 -35.84 -21.91 -27.44 -27.53 -24.30 

Constraint 11 -32.70 -28.62 -26.05 -29.64 -29.07 -26.04 -27.89 

        

Cost breakdowns (MM$/yr)        

Annualized Capital Cost 0.1069  0.0988  0.1069  0.1003  0.1060  0.1050  0.0943  

Operating Cost 0.5767  0.6475  0.6816  0.6162  0.6655  0.6616  0.7108  

Variability Cost 1.2271  1.7162  1.5981  1.1714  1.1837  1.3222  1.3025  

Plant’s Annualized Cost 
(MM$/yr) 1.9107  2.4624  2.3867  1.8878  1.9553  2.0888  2.1076  

      a The constraints are listed according to order in which they appear in problem (5.24). 
 

From the steady-state point of view, it was consistently found that the reactor should operate 

at a high pressure since the products are produced at a higher reaction rate and the purge 

losses are diminished. This same effect is observed when the liquid level in the reactor is set 

to a lower value. Therefore, two different combinations of the liquid level in the reactor and 

the reactor’s pressure can in principle satisfy the same production specs. Similarly, setting 

the nominal reactor temperature to a lower value improves the selectivity of the reactions that 

produce the products G and H over the reactions that produce the by-product F (see equations 

5.9). Moreover, the reactor’s design capacity determines the amount of available raw 
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material that can be stored on this unit to produce the products. Therefore, it is desired to 

have a reactor with a large capacity that operates at steady-state at the highest possible 

working pressure with the minimum liquid volume and at the lowest possible working 

temperature. However, the process operational constraints do not allow the system to operate 

at this ideal steady-state condition. Moreover, the disturbances affecting the system generate 

process variability.  

Consequently, combinations (trade-offs) between the reactor’s design capacity (process 

design), the reactor’s nominal operating point (process operability) and the controllers’ 

tuning parameters (process control) are sought that minimize the plant’s cost function and 

satisfies the production goals and the variability and steady-state constraints specified for this 

problem.  

Based on the above, it was expected that although each starting point will lead to a different 

solution due to the non-convexity of the problem, the solutions will have a similar annualized 

cost. However, the results in Table 5.8 show a discrepancy in the plant’s costs of about 23%. 

This variation proves that Scenario I-AB’s optimization problem has local minima. Apart 

from the steady-state constraints (constraints 1-3 in Table 5.8), the variability constraints for 

which a bound is determined, which are equivalent to the path constraints imposed in a 

dynamic optimization framework, play a key role in defining the best solution to this 

particular problem. 

From Table 5.8, the solution given resulting from the initial guess η4* resulted in the minimal 

annualized costs but the solutions corresponding to the initial starting points η1*, η5* and η6* 

resulted in very similar small plant’s annualized costs. The constraint that is active at the 

solution is the same for initial guesses η1*, η4*,η5* and η6* , and it corresponds to the 

minimum allowed mass flow rate for product G (constraint 4 in Table 5.8). This constraint 

directly determines the plant’s variability cost (see 5.15 and 5.16) and thus it directly affects 

the overall plant’s annualized cost. Thus, it is expected that this constraint causes the cost 

function to be at its minimum value and it cannot be further minimized because this would 

result in a constraint violation. Consequently, the solutions for which an active constraint is 

directly involved in the process cost function are more likely to be near-optimal solutions. 
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One can notice from Table 5.8 that the solutions that have the highest plant’s costs are those 

for which the active constraint are more related to the reactor’s operation rather than to the 

process cost function.  

According to Table 5.8, the solution that resulted in the lowest annualized cost was η4*. To 

validate the design, simulations of the closed-loop system were performed using as inputs the 

critical profiles in υA and υB (disturbances) that produced the largest variability in product G, 

which is the active constraint at the solution. Figure 5.15 shows the disturbance profile used 

to simulate the resulting design. It should be noted that these profiles are somehow similar to 

those obtained for η1* shown in Figure 5.11. As shown in Table 5.8, the solution η1* 

specified an annualized cost only 1.20% higher than that obtained from η4*. However, the 

resulting design parameters obtained from η1* and η4* are somewhat different. This supports 

the fact that different combinations between the reactor’s design capacity (process design), 

the reactor’s nominal operating point in terms of pressure, temperature, and liquid level 

(process operability) and the controller tuning parameters (process control) may result in a 

similar annualized cost for this process. Furthermore, Figure 5.16, Figure 5.17 and Figure 

5.18 show that η4*’s corresponding design parameters satisfy the production goals, the 

process variability constraints and the reactor’s operational constraints specified for this 

problem. Thus, for any magnitude bounded perturbations  υA and υB, the design and control 

scheme specified by η4* is asymptotically stable, keeps the process within their 

corresponding operational constraints and satisfies at all times the base case production 

targets specified for the TE process. The rest of the solution sets shown in Table 5.8 were 

validated in the same fashion. 

5.3.3 An alternative solution strategy, Scenario I-ABsim 

As discussed earlier, the robust performance calculation given by (4.8) provides both a bound 

on the output’s largest variability and the corresponding profile in the perturbation variables 

that generates such maximal deviation. Scenario I-A and Scenario I-AB have used the bound 

(k) obtained from this calculation to represent the output’s variability. Although the resulting 

design parameters obtained for both scenarios satisfy the design and control goals, the use of 

an analytical bound on the output variability may usually leads to conservative results.  
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Figure 5.15 Disturbance profiles, Scenario I-AB (η4*) 
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Figure 5.16 Products mass flow rates, Scenario I-AB (η4*) 
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Figure 5.17 Products variability constraints, Scenario I-AB (η4*) 
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Figure 5.18 Reactor operational constraints, Scenario I-AB (η4*) 
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To reduce the conservatism in the solution, the critical profile in the disturbance that 

generates the output’s maximum variability can be used to simulate the closed-loop TE 

process. In this way an alternative solution to the robust variability calculation is to look for 

the output’s actual largest variability with respect to a nominal value from numerical 

simulations instead of using the analytical bound on the variability. Although this alternative 

approach increases the computational load since a simulation have to be run for each robust 

variability constraint specified in the problem it is expected that it will reduce the 

conservatism in the solution. 

Therefore, Scenario I-AB’s problem stated in (5.24) and with the modifications explained in 

Section 5.3.1.2 was solved using the approach outlined above. For this particular problem, it 

was necessary to solve six robust performance functions of the type given by (4.8) to 

evaluate the robust variability constraints shown in (5.24). Thus, for each new set of decision 

variables values (η) tested by the optimization algorithm, six critical profiles in υA and υB are 

obtained from (4.8) and are used to simulate the TE process. Then, the maximum output 

variability that corresponds to each critical profile is obtained directly from these numerical 

simulations. For clarity, this new problem will be referred heretofore as Scenario I-ABsim. 

This problem was executed in MATLAB® using the Sequential Quadratic Programming-

based function fmincon that is available in the MATLAB’s Optimization toolbox55. For 

comparison purposes, the initial guess that provided the plant’s minimum annualized cost for 

Scenario I-AB (η4• in Table 5.7) was used to initialize Scenario I-ABsim’s optimization 

problem.  

Table 5.9 summarizes the solution obtained from this problem. As shown, the plant’s 

annualized cost is approximately 10% less than the cost obtained for the design and control 

scheme specified by η4*. It should be noted from Table 5.7 and Table 5.9 that the major cost 

savings came from variability cost. These results were expected since Scenario I-AB 

represented the output’s variability by an analytical bound, which is potentially conservative, 

whereas Scenario I-ABsim takes the actual maximum variability values as the output’s 

variability. Thus, the variability cost function was estimated in Scenario I-ABsim considering 

the actual deviations in the products G and H mass flow rates respectively. Similarly, the 

constraints stated in Scenario I-ABsim’s optimization problem are evaluated more accurately 
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by using numerical simulation results. Although Scenario I-ABsim’s solution specified a 

larger reactor capacity and a higher steady-state normal operating points for the reactor liquid 

level and temperature, which resulted in an increase of the capital and operating costs, this 

design and control scheme resulted in a significantly smaller product’s mass flow rate 

variability at the outlet as compared to the result based on the analytical bound, which 

significantly reduced the process variability cost. The major disadvantage in using 

simulations to calculate the variability is that the computation times increase significantly as 

shown in the following section. 

Table 5.9 Alternative solution strategy, Scenario I-ABsim 

Decision variables (η) Specification 

Reactor’s design capacity (ft3) 2972.8 

Reactor’s pressure set point (KPa) 2856.2 

Reactor’s liquid level set point (%) 70.0 

Reactor’s temperature set point (°C) 124.92 

Production set point (m3/hr) 23.4 

Kc, purge valve (loop 5) 6.86E-02 

τI, purge valve (loop 5) 5.00E-04 

Kc, reactor liquid level(loop 11) 1.13 

τI, reactor liquid level (loop 11) 78.60 

Kc, reactor pressure (loop 12) -8.21E-04 

τI, reactor pressure (loop 12) 16.34 

Kc, reactor temperature (loop 16) -19.38 

τI, reactor temperature (loop 16) 4.15 

  

Cost breakdowns (MM$/yr)  

Annualized Capital Cost 0.1066 

Operating Cost 0.6966 

Variability Cost 0.8945 

Plant’s Annualized Cost (MM$/yr) 1.6977 

The design parameters obtained by this solution strategy was validated by simulating the TE 

process with the specifications shown in Table 5.9. Figure 5.19 shows the disturbance 

profiles that were used to simulate the design. These realizations correspond to the critical 

profiles in the mol % of A and B in stream 4 that produced the largest variability in product 
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G’s mass flow rate at the solution. Although any of the critical profiles that were estimated at 

the solution could have been used to validate the present design, the constraint related to the 

product G’s mass flow rate was chosen as the validation scenario since this constraint is 

active at the solution. This is corroborated in Figure 5.20 where the actual maximum 

deviation in product G’s mass flow rate is equivalent to the minimum allowed product’s flow 

rate. The other set of critical profiles calculated at the solution point were also tested in the 

same fashion but no constraint violations were observed. 

5.3.4 Comparison to a Dynamic Programming approach 

One of the goals pursued by the present methodology consists of reducing the computational 

effort associated with the solution of the simultaneous design and control of chemical 

processes. To estimate the computational advantages of the proposed approach, the present 

research work reformulated the problem presented in the previous subsection as a dynamic 

optimization problem. Accordingly, the μ-analysis problems that were used to estimate the 

worst-case process variability and the process feasibility constraints in (5.24) are replaced by 

dynamic optimization problems. Each dynamic programming problem searches for the 

critical values in the vector of disturbances υA and υB that produces the maximum deviation 

of a given output with respect to a nominal value specified by the vector η. The disturbance 

vectors υA and υB consists as before of the values of the mole fraction of components A and 

B in stream 4, i.e. υA and υB, at each sampling period i from time=0 to a pre-specified final 

time tf. Thus, for each set of values in vector η and for each realization in the disturbance 

vectors υA and υB tested by the optimization algorithm, the TE process model equations and 

the controller algorithm equations specified for this process are used to simulate the closed-

loop dynamic behaviour of this process. Then, the maximum or largest variability in one 

particular output is sought from the simulation results.  

Based on the above descriptions, Scenario I-AB’s optimization problem shown in (5.24) was 

reformulated as a dynamic optimization problem. This formulation is given in (5.25) and will 

be referred heretofore as Scenario I-DP. 
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Figure 5.19 Disturbance profiles, Scenario I-ABsim 
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Figure 5.20 Products mass flow rates, Scenario I-ABsim 
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As shown, the decision variables for each dynamic programming (DP) problem are the 

values at each sampling period i of the disturbance vectors selected for this problem, i.e. υA 

and υB. It should be noted that the outer optimization problem is a nonlinear optimization 

problem since the vector of decision variables η is time independent. Therefore, the problem 

 177



shown in (5.25) can be solved in MATLAB®. Sequential Quadratic Programming (SQP) was 

used as the optimization method to solve this problem. Each of the dynamic optimization 

problems posed in (5.25) was solved in MATLAB applying the following procedure:  

1. Given a set of values for the vector η and the critical realizations in the disturbance 

vectors υA and υB, simulate the closed-loop dynamic behaviour of the TE process using 

the process model equations and the controller algorithm equations specified for this 

system. 

2. The maximum or largest variability in one particular output is sought from the simulation 

results. Since this value represents the problem’s objective function to be maximized, it is 

used by the optimization algorithm to choose a new set of critical values for the 

disturbance vectors. Go back to step 1. 

3. This procedure is repeated until a stopping criterion is met. 

It should be noticed that in this approach, for computation reasons, the stability of the control 

loops is not explicitly assessed. Since the models are nonlinear such stability checks will 

require the formulation of multiple Lyapunov-stability calculations that will result in 

prohibitive computation times. 

Scenario I-DP was solved using a sampling period (i) of 0.2 hrs and a finite time horizon (tf) 

of 25 hours. Thus, each disturbance vector (υA and υB) is composed of 125 elements that are 

the decision variables for each of the DP problems posed in (5.25). The optimization problem 

was initialized using the same starting point that resulted in the lowest annual cost in 

Scenario I-AB, i.e. η4• in Table 5.7.  

To illustrate the computational loads required by the solution methods proposed in this work 

and the dynamic programming approach, the CPU time required to evaluate the cost function 

and the constraints imposed on each of these optimization problems was recorded. Figure 

5.21 shows the computational time required to compute the first 100 function evaluations of 

Scenario I-AB, Scenario I-ABsim and Scenario I-DP, respectively. The Figure shows that the 

dynamic programming approach requires a CPU execution time of almost 2 orders of 

magnitude larger as compared to the CPU execution times required by the solution strategies 
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proposed in this work. On average, Scenario I-AB and Scenario I-ABsim required a CPU 

time of 157 and 296 seconds respectively to completely evaluate problem (5.24) whereas 

Scenario I-DP needed 12,710 seconds to perform the same calculation. These results in a 

CPU time ratio of 1:2:81 in favour of the scenarios that applied the methodology proposed in 

this research work showing that the computational effort dramatically increased when 

dynamic programming is applied to solve a simultaneous design and control problem. These 

results agreed with the results shown in Section 3.3 and Section 4.4 in which the solution of a 

worst-case variability problem via dynamic programming required a larger computational 

time than that needed by the approach proposed in this research work. 
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Figure 5.21 Computational burden required by the solution strategies: CPU time for one 

function evaluation as a function of the number of the completed function evaluations 
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The CPU time required by Scenario I-DP to compute the first 100 function evaluations was 

approximately 1.2710x106 seconds, i.e. 15 days approximately. Due to time limitations, the 

final optimization results for Scenario I-DP were not available at the time that this thesis was 

written. However, it is expected that the use of a dynamic programming approach will be less 

conservative and consequently it will produce a design with lower annual costs than those 

obtained for Scenario I-AB and Scenario I-ABsim. However, each one of the dynamic 

programming problems posed in (5.25) to calculate variability could potentially provide a 

local solution rather than the global optimum. On the other hand the robust variability 

problems formulated in (5.24) were shown in Section 4.1 to be convex and consequently 

result in a global optimum.  

5.3.5 Comparison to Ricker’s design parameters and optimal control problem 

Table 5.3 presented the design parameters that Ricker defined for the TE plant’s 

decentralized control structure63. Since the design goals specified by Ricker and the 

simultaneous design and control goals proposed in the present analysis are different, a 

complete comparison between the two approaches is not available. On one hand, Ricker’s 

strategy fixed the sizes of the TE process units to its current values, i.e. it only studied the 

controllability and resiliency of the plant. Similarly, the specifications for the controller 

tuning parameters and the process unit’s nominal operating set points given in Table 5.3 were 

obtained only from simulations and process heuristics. Moreover, production goals specified 

in Table 5.2 for each operation mode are only satisfied in an average sense, i.e. the design 

parameters specified by Ricker’s strategy meet the production goals at steady-state only. This 

means that when disturbances are affecting the process, the products specifications at the 

outlet may not be satisfied at all times. On the other hand, the present work considered 

changes in the size of the reactor, determined the design and tuning control parameters from 

a systematic method and imposed constraints on the problem to satisfy at all time the base 

case production targets in the presence of disturbances. 

Figure 5.22 shows the products’ mass flow rate variability when the critical profiles shown in 

Figure 5.19 were used as inputs to simulate the TE process with the design parameters 

specified by Ricker given in Table 5.3. This Figure also shows the plant’s costs specified by 
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Ricker’s design63. Although Ricker’s plant is 6.6% more economical than the plant specified 

with Scenario I-ABsim (see Table 5.9), both products do not satisfy the minimum products’ 

mass flow rate specification. As shown in Figure 5.22, products G and H are below their 

production targets 53% and 52% of the time respectively. Thus, Ricker’s design cannot 

guarantee a minimum production specification. However, it should be noted that Ricker 

specified the design parameters to satisfy his own design goals that were different than those 

proposed in this case study. Although the present methodology was defined to consider the 

simultaneous design and control of a plant, it can also be adapted to solve an optimal control 

problem by means of setting the equipment’s capacities to a fixed value. For comparison 

purposes, the present research work solved an optimal control problem for the TE plant 

designed by Ricker assuming that the reactor’s capacity was fixed to its original value equal 

to 1,300ft3. 
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Figure 5.22 Products’ variability, Ricker’s design parameters. 

Based on the above, the alternative solution strategy presented in the Section 5.3.3 was 

applied to solve this optimcal control problem. The only change that has to be made with 

respect to Scenario I-ABsim problem is that the reactor design capacity, specified as an 

optimization variable, is defined as a fixed parameter for the optimal control problem. Thus, 
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the vector η in (5.24) is composed of 12 of decision variables for this problem instead of 13 

that were specified for Scenario I-ABsim and the optimization will only determine the values 

in the reactor’s operability parameters (process operability) and in the controller tuning 

parameters (process control) that minimize the TE cost function shown in (5.24). As in the 

previous scenarios, this problem was solved using the MATLAB® tools. In addition, this 

optimization problem was initialized with the specifications given in Table 5.3, which 

correspond to the design parameter values specified by Ricker’s strategy.  

Table 5.10 presents the solution obtained from the optimal control problem, with the 

reactor’s capacity fixed to 1,300 ft3. The process operability and controllability parameters 

presented in Table 5.10 defined a plant with an annual cost that is approximately 11.54% 

higher than annual cost of the plant obtained by Scenario I-ABsim shown in Table 5.9. Thus, 

a more economically attractive design was obtained when both process design and process 

control, were performed simultaneously as in scenario I-ABsim. This highlights the fact that 

the interactions between design and control must be taken into account at the earlier stages of 

the design since they significantly affect the plant’s economics. For this particular problem, 

the simultaneous design and control problem (Scenario I-ABsim) defined a plant which 

annual cost is $221,300 less than that obtained from the optimal control problem only. The 

major savings resulting from the simultaneous design and control approach comes from the 

operating costs, i.e. $178,000/yr. These results support the idea presented in Section 5.3.2 

that different combinations or trade-offs between the reactor’s design capacity and the 

process operability and controllability parameters can lead to significant costs savings. 

Figure 5.23 shows the critical profiles in the mol% of components A, B and C in stream 4 

that were used as inputs to simulate the TE plant using the results shown in Table 5.10. These 

profiles correspond to the realizations that produced the largest variability in product H, 

which is the active constraint at the solution point. As shown in Figure 5.24 the profile is 

bounding the minimum product H’s mass flow rate variability constraint. The rest of the 

process constraints specified for the optimal control problem were also satisfied at all time, 

e.g. reactor’s operability constraints.  
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Table 5.10 Solution, Optimal control problem 

Decision variables (η) Specification 

Reactor’s pressure set point (KPa) 2893.83 

Reactor’s liquid level set point (%) 38.16 

Reactor’s temperature set point (°C) 125.0 

Production set point (m3/hr) 23.32 

Kc, purge valve (loop 5) 1.76E-02 

τI, purge valve (loop 5) 7.74E-04 

Kc, reactor liquid level(loop 11) 1.5 

τI, reactor liquid level (loop 11) 75.63 

Kc, reactor pressure (loop 12) -1E-03 

τI, reactor pressure (loop 12) 59.52 

Kc, reactor temperature (loop 16) -8.42 

τI, reactor temperature (loop 16) 15 

  

Cost breakdowns (MM$/yr)  

Annualized Capital Cost 0.0869 

Operating Cost 0.8742 

Variability Cost 0.9578 

Plant’s Annualized Cost (MM$/yr) 1.9190 
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Figure 5.23 Disturbance profiles, optimal control problem 
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Figure 5.24 Products mass flow rates, optimal control problem 

5.3.6 Effect of process parameter uncertainty 

One of the key simplifications made on Scenario I-A, Scenario I-AB and Scenario I-ABsim 

is that the process parameters’ true values were assumed to be known a-priori. Accordingly 

the formulation of these optimization problems did not include in the analysis uncertain 

process parameters (ω). As it was mentioned at the beginning of Section 5.3, the addition of 

process parameter uncertainty in the simultaneous design and control problem dramatically 

increase the computational load. This is because the robust variability function (4.8) must be 

solved for each ω tested and for each process variable that is evaluated with this function. 

The computational time associated with this calculation can be significantly reduced if the 

process parameter uncertainty (ω) is treated as a disturbance (υ) with low and high frequency 

contents. However, treating ω as an additional disturbance may result in additional 

conservatism since the transients in ω are ignored when it is considered as a parametric 

uncertainty whereas they will be have to be taken into account if ω were treated as a 

disturbance. An alternative approximate solution to this problem is to treat ω as a discrete 

parameter, i.e., the uncertain process parameter can only be assigned a set of finite number 
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of values defined within the bounds specified for this parameter. However, this approach 

cannot guarantee that a value in this parameter that differs from the specific values 

considered in the set, may produce a larger deviation than any of the values in the set. This 

will be case if the plant’s cost function is highly nonlinear to changes in this parameter. 

The second approach explained above was used to solve Scenario I discussed earlier in this 

chapter. Although Downs and Vogel62 specified a set of disturbances for this process, they 

did not specify a process parametric uncertainty as defined in this work. Therefore, the 

present work specifically investigated the effect of uncertainty in the pre-exponential term of 

the second reaction specified in (5.9). According to the TE process model provided by 

Downs and Vogel62, the reaction rate equation associated with the second reaction was 

defined as follows: 

 EBA
act

PPP
RT

AArr 3735.01544.1

Re

21exp)2( ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= β  (5.26) 

where β is a constant parameter equal to the unity, R is the universal gas constant, PA, PB and 

PE are the partial pressures of components A, B and E in the reactor and TReact is the reactor’s 

temperature, respectively. Similarly, A2 is the activation energy coefficient set to 20,000 and 

A1 is the pre-exponential term, assumed to be an uncertain parameter for this problem, which 

is defined as follows: 

 111 AnomAA δ±=  (5.27) 

where A1nom is the term’s nominal value equal to 3.00094014 and δA1 is the uncertainty 

associated with this parameter. To investigate the effect of this uncertainty, the current 

analysis assumed the following set of values: 

[ ]4.0,2.0,0,2.0,4.01 =A − −δ  (5.28)  

Accordingly, the coefficient A1 can only take five values according to the descriptions given 

above for this parameter. The values specified for δA1 were obtained from simulation of the 

TE process using the design parameter specifications shown in Table 5.3.  Based on the 
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simulations, a change of ± 33% was observed in the second reaction rate with respect to its 

nominal value (δA1=0) .Similarly, the plant’s cost function (5.17) varied from 16% to 22% for 

this set of uncertain values. Thus, it is expected that the set of values specified in (5.28) will 

significantly affect the plant’s design. 

The disturbances considered for this problem were the same as in Scenario I-AB, i.e., random 

magnitude-bounded variations in the mole fraction of components A and B in stream 4, i.e. 

υA and υB, respectively. The nominal mol fraction values and the upper and lower mole 

fraction limits specified for each component are given in Table 5.4. 

Based on the above descriptions, Scenario I’s problem (5.22) was reformulated to attain the 

simultaneous design and control of the reactor section of the TE process under the effect of a 

discrete process parameter uncertainty and external perturbations. This problem, referred 

heretofore as Scenario I-ABω, is presented in (5.29). The roman number subscript in A1 in 

this formulation is used to denote that the critical disturbance profile in υA and υB that 

produce the worst-case variability for each robust variability problem posed in (5.29) may be 

different from each other. This formulation considers that two disturbances are affecting the 

process, i.e. nυ is set to 2 in (5.29). To estimate the worst-case process variability problem 

posed in (5.29), 4 robust FIR models between the disturbance set (υA and υB) and the 

products’ mass flow rate variability G and H must be identified at each discrete uncertain 

value A1j tested by the optimization. This same procedure was applied to evaluate the process 

constraints considered in Scenario I-ABω’s problem.  

Due to the computational burden associated with this problem, the approach used to solve 

Scenario I-AB was also applied to solve this problem. That is, the largest variability on each 

output of interest, posed as a robust performance problem in (5.29), is represented as a bound 

(k) obtained from the μ-analysis calculations. In this case, five bounds were obtained for each 

output of interest. Each bound is related to the largest variability in the output corresponding 

to a given value of the set of values assumed to represent the uncertain process parameter A1, 

i.e. A10, A11,…, A15. Then, the largest bound out of the five the bounds calculated for each 

output of interested is used to evaluate this output’s maximal variability.  
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According to (5.29), six robust performance functions must be estimated. Hence, the TE 

process must be simulated for each discrete value specified for the parameter A1 and for each 

output of interest. Thus, for each new set of decision variables values (η) tested by the 

optimization algorithm, 30 simulations of the TE process are required to evaluate the robust 

variability tests posed in (5.29) as compared to only 6 simulations of the TE process that 
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were required to test the same scenario when process parameter uncertainty was ignored., i.e. 

Scenario I-AB. Accordingly, the consideration of one single uncertain process parameter in 

the analysis significantly increases the problem’s curse of dimensionality.Scenario I-AB’s 

optimization problem was executed in MATLAB® using the Sequential Quadratic 

Programming-based function fmincon that is available in the MATLAB’s Optimization 

toolbox55. Problem (5.29) was initialized using the solution that provided the lowest 

annualized cost for Scenario I-AB, i.e. η4* in Table 5.8.  

In order to illustrate the curse of dimensionality when one uncertain process parameter is 

considered in the present analysis, the CPU time needed to compute one function evaluation 

of problem (5.29) was recorded and compared to that needed for Scenario I-AB. Figure 5.25 

shows the execution time of one complete function evaluation after different number of 

function evaluation counts up to the first 100 function evaluations. It is evident from this 

Figure that the addition of an uncertain parameter within the analysis increases the 

computational times by at least one order of magnitude. On average, Scenario I-AB required 

157 seconds to completely evaluate problem (5.24) whereas Scenario I-ABω needed 5,152 

seconds to carry out the same calculation. This results in an average ratio of 1:32 in favour of 

the scenario that did not consider parametric uncertainty, i.e. Scenario I-AB. Thus, it is 

expected that adding a second uncertain parameter within the analysis will result in a ratio of 

about 1:64 with respect to the Scenario I-AB. Although Scenario I-ABω requires a 

significant amount of CPU time, it is expected that solving the same problem using a 

dynamic programming approach will result in even larger computational times.  

Table 5.11 shows the resulting design parameters obtained from the solution of problem 

(5.29). The design specified from this Scenario is approximately 42% more expensive than 

the design that did not consider parametric uncertainty in the formulation, i.e. η4* in Table 

5.8. Thus, a design that considers uncertainty in the value of the pre-exponential term of the 

second reaction, A1 in (5.26), results in an increase of the plant’s annual cost by 1.344 

MM$/yr approximately. It should be noted from Table 5.11 that the uncertain process 

parameter value that produces the largest variability in the outputs according to problem 

(5.29) was not the same for all the constraints. This reinforces the need for solving each 

robust variability test independently. 
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Figure 5.25 Comparison of CPU times with and without parameter uncertainty 

The design obtained from Scenario I-ABω was validated from simulation of the TE process 

using as inputs the value in the uncertain process parameter (A1) and the critical disturbance 

profiles (υA and υB) that produced the largest variability in the quality of component G at the 

product’s stream, i.e. constraint 7 in Table 5.11. As in previous scenarios, this constraint was 

found to be active at the solution point. Figure 5.26 shows the critical disturbance profiles in 

components A, B and C, which combined with an uncertain parameter value of -0.4, 

produces the largest variability in the quality of product G at the products stream, i.e. stream 

11 in Figure 5.4. Similarly, Figure 5.27 shows the results of simulating the design with these 

critical realizations in A1 and υA and υB. Although Figure 5.27 shows that the solution 

specifies a conservative design, the resulting design parameters satisfy at all time the quality 

specifications and the minimum production targets specified for this problem. Likewise, the 

rest of the process constraints posed in problem (5.29) were also satisfied for the critical 

realizations in A1 and υA and υB shown in Figure 5.26. 
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Table 5.11 Design parameters, Scenario I-ABω 

 Specification 

Decision variables (η*)  

Reactor’s design capacity (ft3) 3000.0 

Reactor’s pressure set point (KPa) 2600.0 

Reactor’s liquid level set point (%) 47.4 

Reactor’s temperature set point (°C) 120.2 

Production set point (m3/hr) 23.98 

Kc, purge valve (loop 5) 1.00E-01 

τI, purge valve (loop 5) 5.00E-04 

Kc, reactor liquid level(loop 11) 0.60 

τI, reactor liquid level (loop 11) 77.85 

Kc, reactor pressure (loop 12) -2.18E-04 

τI, reactor pressure (loop 12) 60.00 

Kc, reactor temperature (loop 16) -12.64 

τI, reactor temperature (loop 16) 15.00 

  

Constraintsa / A1@ η*  

Constraint 1 -0.0170/-0.4 

Constraint 2 -0.0062/0.4 

Constraint 3 -0.0113/ 0.4 

Constraint 4 -170.99/0.4 

Constraint 5 -83.695/-0.4 

Constraint 6 -300.15/-0.4 

Constraint 7 -4.16/-0.4 

Constraint 8 -287.22/-0.4 

Constraint 9 -47.41/-0.4 

Constraint 10 -12.15/-0.4 

Constraint 11 -29.78/-0.4 

  

Cost breakdowns (MM$/yr)  

Annualized Capital Cost 0.1070 

Operating Cost 0.8320 

Variability Cost 2.2930 

Plant’s Annualized Cost (MM$/yr) 3.2320 
                                                                   a The constraints are listed according to order they appear in (5.29). 
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Figure 5.26 Disturbance profiles at A1=-0.4, Scenario I-ABω 
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Figure 5.27 Products’ specifications in stream 11, Scenario I-ABω 
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5.4 Simultaneous Design and Control of the Tennessee Eastman Plant 

The analysis made for the previous scenarios only considered changes in the design, 

operability and controllability of the reactor section of the TE process. Although the results 

satisfied the production and quality targets specified for the base case operation of this 

process, the scenarios did not include other sections of the plant that may also impact the 

plant’s annual costs. The results obtained from the previous scenarios showed that the plant’s 

annual cost is dominated by the process variability cost. According to the process variability 

cost formulation given in (5.16), the process variability is directly related to the variations of 

the product’s G and H at the product’s stream, i.e. stream 11 in Figure 5.4. However, the 

previous scenarios considered a set of decision variables (η) that were only related to the 

reactor’s operation. Thus, none of the elements in η was directly related to the process 

variability that is a direct function of the variability in the products. In the previous analysis, 

the design capacities of the flash unit and the stripper column remained fixed at their nominal 

values.  

In contrast to the case studies discussed in the previous sections, the study presented in this 

section proposed the simultaneous design and control of the entire TE plant under the effect 

of external perturbations only. For simplicity, the current scenario assumed that all the 

process parameters’ true values were known a priori, i.e. parametric uncertainty (ω) was not 

explicitly considered in the analysis. This scenario corresponds to Scenario I-A and Scenario 

I-AB presented in Section 5.3.1.1 and Section 5.3.1.2, respectively. The optimization 

problem that describes both scenarios is given in (5.24). Therefore, this problem was used as 

the base formulation to attain the simultaneous design and control of the entire TE plant.  

The vector of decision variables (η) specified for this problem were as follows: 1) the design 

capacity of the reactor, the vapour/liquid separator and the stripper column, 2) the nine 

adjustable set points specified in Table 5.3, i.e. set points for loops 8-16, and 3) the 17 PI 

controllers tuning parameters specified from the decentralized control strategy proposed by 

Ricker. Thus, the proposed optimization problem searches for a solution vector η composed 

of 46 decision variables.  
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The cost function defined in (5.17) was also used by the present analysis to estimate the 

plant’s annual costs. In this case however, the capital cost function (5.13) is a direct function 

of the design capacity of the three process units considered in the analysis, i.e. the reactor, the 

flash separator and the stripper column.  

The process stability test and the worst-case process variability function specified for the 

previous scenarios remained the same for this problem. In addition to the process feasibility 

constraints posed in problem (5.24), the present analysis also considered four additional 

process operational constraints that are related to the maximum and minimum liquid level 

allowed in the flash separator and the stripper column, respectively. These constraints were 

mathematically accounted for by the following inequalities: 
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where fL
(

 and sL
(

 denote the flash separator and the stripper column liquid level set points, 

respectively. These variables were considered as decision variables for this problem and were 

obtained from the optimization. As in the reactor’s liquid level constraints, the minimum 

liquid levels allowed in both the flash and the stripper were decreased from the value of 50% 

suggested by Downs and Vogel62 in the original problem to 30% in order to enlarge the 

problem’s feasible search space. The procedure to evaluate (5.30) was the same used to 

evaluate (5.21), i.e. discrete robust FIR models from each disturbance (υ) to  and  are 

required. The procedure to obtain such models was explained in Section 

fL sL

5.1.1. 

Based on the above descriptions, the corresponding optimization problem was formulated as 

follows:  
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As in the previous scenario, the TE process model equations together with the 17 PI 

controller algorithm equations were used to describe the closed-loop TE process model. 

Closed-loop robust FIR models identified from simulations were used as before to test the 
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process stability, estimate the process variability and evaluate the process constraints as per 

the equations shown in (5.31).  

It should be noticed that the structure of the problem given by (5.34) is similar to that 

proposed to solve Scenario I-A and Scenario I-AB that only considered changes in the 

reactor section, i.e. problem (5.24). Therefore, this same optimization problem can also be 

used to solve the same two scenarios for the entire TE plant. These scenarios were redefined 

as follows:  

1. Scenario II-A: The external perturbation affecting the TE process was assumed to be a 

magnitude- bounded random variation in the mole fraction of component A of stream 4, 

see Figure 5.4. The composition of B in stream 4 was assumed constant and equal to its 

nominal value whereas the composition of C varied according to the stream’s mole 

fraction balance. Since this scenario considered only one disturbance, the parameter nυ in 

(5.31) was correspondingly set to the unity. 

2. Scenario II-AB: The external perturbations affecting the TE process were assumed to be 

magnitude-bounded random variations in the mole fractions of components A and B in 

stream 4, see Figure 5.4. As in Scenario I-A, the variations of C in stream 4 were 

determined from the stream’s mole fraction balance. In this case the parameter nυ in 

(5.31) was set to 2 since two external perturbations were assumed to be affecting the 

process. 

Further details about the description of each scenario were given in Section 5.3.1.1 and 

Section 5.3.1.2, respectively. Similarly, the disturbance’s nominal values and upper and 

lower bounds used in the current scenario were given in Table 5.4.  

Both Scenario II-A and Scenario II-AB were solved in MATLAB® using the built-in 

function fmincon that performs the optimization of nonlinear constrained problems applying 

the Sequential Quadratic Programming (SQP) algorithm55. Scenario II-A’s optimization 

problem was initialized using the solution obtained from Scenario I-A shown in Table 5.5. 

Similarly, the solution that provided with the lowest annualized cost for Scenario I-AB, i.e. 

η4* in Table 5.8, was used as the initial guess for Scenario II-AB’s optimization problem. 
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The decision variables’ upper and lower bounds (ηu and ηl) were estimated from simulations 

of the closed-loop TE process.  

The results obtained for each scenario are summarized in Table 5.12. Scenario II-A defined a 

plant which annual costs are 4.8 % less than that specified by Scenario I-A. On the other 

hand, the design and control scheme defined by Scenario II-AB specified a plant which 

annual costs differ only by 0.5% with respect to those obtained by Scenario I-AB. Although 

both scenarios that considered the entire TE plant produced a more economical plant’s design 

than those obtained for Scenario I-A and Scenario I-AB, the annualized cost savings were not 

significant, i.e. $81,300/yr and $9,800/yr for Scenario II-A and Scenario II-AB, respectively. 

These results suggest that the TE cost function is more sensitive to changes in the parameters 

related to the reactor’s operation, i.e. the vector η specified for Scenario I-A and Scenario II-

AB, than those related to the operation of the stripper and separator, respectively. Therefore, 

it can be concluded that the reactor’s design parameters dominate the TE process’s 

economics. 

From the computational point of view, the addition of more constraints and decision 

variables within the analysis increase the problem’s curse of dimensionality. To evaluate the 

computational load associated with these scenarios, the CPU time required to compute one 

function evaluation was recorded and compared to that obtained for Scenario I-A and 

Scenario I-AB, respectively. Figure 5.28 shows the CPU time required by each scenario to 

compute one entire function evaluations as a function of the completed function evaluations. 

As shown in Figure 5.28, the problems related to the design and control of the complete TE 

plant required a slightly larger computational time that those that considered only the reactor 

section of the TE plant. On average, Scenario I-A and Scenario II-A required a CPU time of 

approximately 45 seconds and 69 seconds, respectively. Similarly, Scenario I-AB and 

Scenario II-AB required an average CPU time of about 157 seconds and 241 seconds, 

respectively. That is, the simultaneous design and control of the entire TE process requires 

approximately 36% more computational time than that needed when only the reactor section 

is considered for optimization. 
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Table 5.12 Results synopsis, Scenario II-A and Scenario II-AB 

Decision variables (η*) Scenario II-A Scenario II-AB 

Process unit’s design capacity (ft3)   

Reactor (Current design:1300 ft3) 3000.00 2759.15 

Flash separator (Current design:3500 ft3) 3351.12 3879.31 

Stripper column (Current design:156.5 ft3) 193.14 100.44 

   

Adjustable set points   

Reactor’s pressure set point (KPa) 2652.92 2858.75 

Reactor’s liquid level set point (%) 51.20 64.04 

Reactor’s temperature set point (°C) 119.60 122.17 

Separator’s liquid level set point (%) 60.00 52.75 

Stripper’s liquid level set point (%) 55.90 58.52 

yA set point (%) 37.20 32.64 

yAC set point (%) 16.47 13.80 

Mol % G set point (% Mol G) 53.88 53.80 

Production set point (m3/hr) 23.31 23.31 

   

Cost breakdowns (MM$/yr)   

Annualized Capital Cost 0.1070 0.1040 

Operating Cost 0.6660 0.6450 

Variability Cost 0.8270 1.1280 

Plant’s Annualized Cost (MM$/yr) 1.6000 1.8780 
                                a The constraints are listed according to order they appear in (5.31). 

The design and control schemes found for Scenario II-A and Scenario II-AB were validated 

by simulating the TE process with the resulting design parameters. The disturbance profiles 

used to validate Scenario II-A’s solution are shown in Figure 5.29. These realizations 

correspond to the critical disturbance profiles in the mole fraction of A, B and C in stream 4 

that produced the largest variability in the product G’s quality. Although any of the critical 

profiles that were estimated at the solution can be used to validate the Scenario II-A, the 

constraint related to the product G’s quality was active at the solution and consequently it 

was chosen to illustrate the validity of the results. Figure 5.30 shows that Scenario II-A’s 

resulting design parameters kept the products quality and mass flow rates above their target 

specifications.  
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Figure 5.28 Comparison of CPU times for different scenarios 

Similarly, Scenario II-AB’s design was also validated from simulation. Figure 5.31 shows 

the disturbance profiles that were used to simulate the TE process design specified by this 

scenario. These profiles correspond to the critical vector that produced the maximum 

deviation in Product H’s flow rate, which was the constraint that was found to be active at the 

solution for this scenario. Figure 5.32 shows that the actual maximum deviation in product 

H’s flow rate of 7038 kg/hr causes this production rate to get closer to its product 

specification. This Figure also shows that the selected disturbance profiles produced large 

variations in the product’s flow rates. The other set of critical profiles calculated at the 

solution point for Scenario II-A and Scenario II-AB were also simulated to show that the 

process operational constraints and the products specifications always remained within their 

target values.  
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Figure 5.29 Disturbance profiles, Scenario II-A 
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Figure 5.30 Products’ specifications in stream 11, Scenario II-A 
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Figure 5.31 Disturbance profiles, Scenario II-AB 
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Figure 5.32 Products’ specifications in stream 11, Scenario II-AB 
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In summary, this chapter presented a novel approach to the simultaneous design and control 

of chemical plants. The key idea in the method is to represent the process closed-loop 

dynamic behaviour between each disturbance and each process variable as a robust finite 

impulse response (FIR) model. This robust model, obtained from closed-loop identification, 

is suitable to test robust performance using a Structured Singular Value (μ analysis) 

approach. The methodology was tested using the Tennessee Eastman (TE) process that has 

been used before as a benchmark process by the process systems engineering community to 

test wide variety of control related problems. Although the controllability of this plant has 

been widely studied, the interactions between design and control have not been previously 

addressed for this system. To apply the methodology, the decentralized control strategy 

proposed by Ricker63 was used to stabilize and control the plant’s transient behaviour. Two 

scenarios were proposed to attain the simultaneous design and control of the TE process. The 

first scenario considered only the reactor section of the plant whereas the second scenario 

analyzed all the sections of the plant. The effect of external perturbations and initial guesses 

on the solution, comparisons to alternative solution strategies, and the effect of parametric 

uncertainty were studied for the first scenario. The second scenario was used to test the effect 

of additional disturbances by comparing the optimal design for one or two external 

perturbations. Due to the robust modelling approach taken by the present methodology, the 

resulting design and control schemes tends to specify a plant that is conservative. Although 

dynamic programming (DP) approach would provide a less conservative design than those 

obtained by the present approach, it was shown the DP approach requires a much higher 

computational effort than this needed by the present methodology. Therefore, the present 

methodology is an effective and practical tool that can be used to solve the simultaneous 

design and control of large-scale processes. 
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6. Conclusions and Future Work 

This research work presented a new methodology that performs the simultaneous 

design and control of chemical processes that are subject to external perturbations and 

process parametric uncertainty. The novelty in this approach is that the nonlinear dynamic 

behaviour of the system was represented here by a linear dynamic model with uncertain 

model parameters whereby each of the model parameters is bounded by two extreme values. 

These uncertain models, referred also to as robust due to their common use for designing 

robust controllers, are obtained from the identification of the closed-loop system around an 

operating state defined by actual values of the system’s closed-loop degrees of freedom. The 

uncertainties in the model parameters capture the system’s nonlinearities due to changes in 

the disturbances at a given uncertain process parameters’ steady-state values. To analyze the 

flexibility, controllability, resiliency and feasibility of the system to be designed, the present 

approach used tools from robust control theory to test the system’s asymptotic stability and to 

estimate bounds on the worst-case process variability and on process variables that are to be 

maintained between constraints, respectively. The inputs to the robustness tests are the robust 

model’s uncertain parameters and the pre-specified bounds on the disturbances and the 

uncertain process parameters that are considered in the analysis. The robustness tests used to 

evaluate robust stability, worst-case process variability and robust performance were 

embedded within an optimization problem that search for the values in the system’s closed-

loop degrees of freedom that minimizes the plant’s predefined cost function. The formulation 

based on the robustness tests results in a nonlinear constrained optimization problem that is 

more computationally efficient than those methodologies that formulate the problem in a 

dynamic programming framework. 

The next sections discuss the concluding remarks on the subjects that are relevant for this 

work and outline the areas of opportunities for future research on the topic. 

6.1 Closed-loop identification of a robust (uncertain) model 

The identification of robust models is central in this research work. The key idea in this work 

is to represent the relationship between a disturbance (input) and a process variable of 
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interest (output) as a linear dynamic model structure with uncertain model parameters, i.e. the 

model parameter values ranges between two extreme values. The linear nominal model can 

be obtained from any of the available closed-loop identification methods, e.g. least-squares 

criterion, whereas the uncertainty associated with each model parameter is determined from 

the covariance matrix obtained from the closed-loop identification.  

Although the process models studied in this work are MIMO models, i.e. the mixing tank 

process and the TE process, the present research work identified individual SISO robust 

models for each input/output relationship. The reasons for individually identifying SISO 

models instead on one MIMO model were: i- the direct identification of a single MIMO 

model for the complete process model resulted in larger computational times than the 

identification of many SISO models and ii- the direct identification of a single model MIMO 

model produced a stable nominal linear model but with large model parameter uncertainty 

descriptions whereby one or more of the models within the family of models described by the 

robust model were unstable. On the other hand, the SISO models were fast to compute and 

resulted in smaller uncertainty regions and better robust stability properties than the ones 

obtained for the overall MIMO model. Thus, it was concluded that the identification of many 

SISO models is preferable to the identification of one MIMO models due to both 

computational efficiency and stability considerations. 

The present work used both uncertain state space (SS) models and robust finite impulse 

response (FIR) models to represent the closed-loop process dynamics between an input and 

output of interest. The state space models were used to calculate RMS-based bounds whereas 

the robust FIR models were used to compute bounds based on the Structured Singular Value 

µ. Generally it was found that the structure of the state space models is more compact and 

requires less uncertain model parameters than a robust FIR model. However, whereas the 

model order selection for the robust SS model is trivial for simple process models such as the 

mixing tank process it may be challenging for cases studies such as the TE process. Although 

the model order selection is performed off-line, this identification step is tedious and time 

consuming since it requires the testing of different model structures for each input/output 

relationship that is considered in the analysis. Also, to use the μ-based robust tools developed 

in this work, the robust SS model needs to be transformed into a robust FIR model, which 
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adds computational load within the analysis. Moreover, the use of high order robust SS 

models was found to increase significantly the computational time.  

On the other hand, the robust FIR model is a non-parametric model usually composed of a 

significantly large number of model parameters, i.e. the number of model parameters 

depends on the operating state at which the model was identified. Although the identification 

step is more computationally demanding than that generally required for low-order robust SS 

model identification, the model order selection for the robust FIR model is trivial since it is 

specified by the PRBNS properties used to simulate the full nonlinear model describing the 

process. Thus, the model order selection step can be avoided. Furthermore, the application of 

the μ-based robust tools is performed faster when the FIR model is identified directly from 

simulations rather than through an intermediate identification of a SS model. Based on the 

above, it was concluded that the use of uncertain SS models should be restricted to those case 

studies that are described by a relatively small number of ODE’s, e.g. mixing tank process, 

whereas robust FIR models are more suitable to represent input-output relations for large 

processes such as the TE process. 

Another important aspect of the identification step is the quantification of the uncertainty in 

the model parameters. This work used the parameters’ variance to describe the uncertainty in 

the model coefficients. This is solely a practical approximation since the elements of the 

covariance matrix are estimated from the deterministic errors between the nominal model 

parameters and the actual input/output values used in the identification. The parameters’ 

variances are expected to converge to their true values as the size of the data set used for 

identification becomes infinite. Thus, very long simulations of the closed-loop process model 

should be conducted to improve the accuracy of the parameters’ variances. To ensure that the 

uncertainty in model coefficients was sufficient to describe the system, a model validation 

step was implemented in chapter 3 whereby at each step of the optimization the calculated 

maximal deviation is checked versus the maximal deviation obtained from the simulation of 

the nonlinear model. Although this step prolongs the optimization, it provides some 

confidence in the uncertainty bounds and in the resulting maximal deviation calculations. 

One key advantage in the use of uncertain models in the current work is that their 
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identification is performed in closed-loop resulting in smaller uncertainty descriptions, as 

compared to open loop models, due to the corrective effect of feedback control.  

The signal used for the identification of the robust model was also found to be important for 

the analysis. The design of the PRBNS used to simulate the process closed-loop dynamic 

behaviour is not trivial. A highly nonlinear model simulated with a PRBNS that was poorly 

designed often resulted in robust FIR models that did not capture the true process dynamic 

behaviour. Consequently, the application of the robustness tests on these model parameters 

was found to produce inaccurate stability and input/output variability results. Therefore, tests 

must be performed off-line to design a PRBNS that captures the process basic characteristics 

such as its time constant and settling time. The dominant time constant of the process is used 

to define the PRBNS’s switching time while the process settling time determines the 

maximum length of the sequence and the period of the input signal (see Section 2.3). For the 

mixing tank problem, the design of the PRBNS was relatively simple since this process 

exhibit a low degree of nonlinearity. In this case, the mixing tank’s time constant and settling 

time were obtained from a single step test. On the other hand, the design of the PRBNS for 

the TE plant was challenging since this was found to be a highly nonlinear open-loop 

unstable process. The PRBNS switching time was selected according to the third sample time 

guideline given in Section 2.3. Thus, the switching time was set to 0.2 hr. which lies between 

1/100 and 1/20 of the process settling time. Similarly, the PRBNS period was selected 

according to the process settling time and the PRBNS switching time previously selected. 

Although other PRBNS designs were tested, the one specified above produced uncertain FIR 

models that were good approximations of the TE closed-loop dynamic behaviour. Moreover, 

since the PRBNS is a deterministic signal with white-noise like properties, multiple repeats 

of the PRBNS sequence must be used to simulate the TE closed-loop process for a successful 

identification of robust FIR models.  

The degree of nonlinearity of the process model to be designed was also found to be critical 

for accurate identification of uncertain models. The application of the least-squares method 

to a data that was generated from the simulation of a stable though highly nonlinear process 

model may result in the identification of an unstable uncertain model. That is, although the 

least-squares nominal parameter estimates corresponded to a stable linear dynamic model, 
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certain combinations between the extreme values of the uncertain model parameters define a 

linear state space model which eigenvalues lies on the right hand side of the imaginary axis. 

Thus, even though the resulting robust model is stable, the discrepancies between the 

identified uncertain model and the true input/output dynamic behaviour may be significant. 

This was the situation when uncertain SS models were used for the identification of a large-

scale process such as the TE process. Therefore, the use of the uncertain SS models is also 

limited by the process model’s degree of nonlinearity. On the other hand, unstable robust FIR 

models were not obtained for the TE problem but the differences between the model and the 

actual input/output behaviour were considerable. This consequently added more 

conservatism into the robust stability and robust performance tests. However, the results 

obtained for the TE process shows that the conservatism in the design and control schemes 

found by the present methodology are within a range (5-10%) that were deemed acceptable 

in view of the computational efficiency as compared to other methods such as dynamic 

programming. 

6.2 Robust stability and performance tools 

The present research work used two different approaches to calculate bounds on the stability, 

dynamic flexibility and feasibility of the system to be designed. The first approach 

considered in this work used a Quadratic Lyapunov Function (QLF) to establish bounds on 

the input/output’s asymptotic stability and random mean square (γ) variability. The second 

approach specified a Structured Singular Value problem (μ-analysis) to estimate bounds on 

the input/output’s stability and worst-case variability. Although the QLF approach and μ-

analysis techniques have been widely used in control systems applications, they have not 

been previously considered for analyzing the system’s dynamic flexibility and feasibility.   

To apply the robustness tests, the input/output process behaviour of the closed loop system 

under consideration must be represented as an uncertain dynamic model. Each approach 

requires a different uncertain model representation, that is, the γ-based criteria require an 

uncertain SS model while the μ-based tests require a robust FIR model, respectively.  

According to the results obtained for the mixing tank process shown in chapters 3 and 4, the 

use of γ-based criteria as a performance measure resulted in a more conservative design than 
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the design and control scheme obtained from the μ-based strategy. The relative conservatism 

of the γ-based approach is mostly due to the fact that this variability test must account for all 

the possible rate of changes in the QLF ( ) as per the derivative term in inequality (3.14) 

that depend on the uncertainty of the SS model parameters. Thus, although the γ-based 

criterion can only provide a bound on the model output error’s variance which is theoretically 

smaller than the maximal possible deviation obtained with the μ-based approach, the γ-based 

approach is ultimately more conservative due to the mathematical formulation of the test.  

)(xV

Due to the limitations presented by the γ-based performance criterion, the present work 

proposed the use of alternative robust stability and performance tools based on μ where the 

robust performance tool provided bounds on the model output’s worst-case variability. This 

test only depends on the uncertain FIR model parameter descriptions and the input’s 

amplitudes. Thus, this worst-case output error bound can be used to test the system’s 

feasibility and the worst-case process variability. This μ-based solution strategy was also 

applied to the simultaneous design and control of the TE process. The results obtained with 

the μ-based analysis shows that the current annual costs of the TE plant can be reduced by 

11% if the plant is redesigned and retuned according to the design and control strategy 

specified by the proposed analysis. 

An additional useful by-product of the μ-based analysis was the calculation of the input’s 

combinations of the disturbances and parametric uncertainties that will result in the largest 

model output error. This generated the option to calculate the maximal output deviation from 

simulations of the full nonlinear dynamic model with the critical input profiles and used 

within the optimization the simulated maximal deviations instead of the μ-based analytical 

bounds. According to the results shown in Section 5.3, the use of the simulated bounds of the 

TE process model with the critical disturbance resulted in a design that has a 10% lower cost 

than that obtained by using the μ-based analytical bounds (see Section 5.3.2 and Section 

5.3.3). However, the estimation of the maximum actual output error from simulation required 

twice the computational time than that required for the estimation of the worst-case output 

bound only. This is because the simulation based approach required an additional simulation 

of the TE process using the critical disturbance profile for each output tested.  
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As it was shown in Section 4.1, the optimization problem based the μ-based performance test 

is convex with respect to the parameter that specifies the worst-case output bound, i.e. k in 

problem (4.8). Thus, a global optimal solution is obtained from this problem. This property is 

advantageous since the estimation of the worst-case output variability have been traditionally 

estimated with a dynamic programming optimization, which not only requires an intensive 

computational effort as shown in Section 5.3.4, but it is also subject to local solutions.  

6.3 Methodology’s formulation 

Although different robustness tests were used during the present research work, the basic 

structure of the optimization problem remained the same. That is, the system’s asymptotic 

stability was tested using a specific robust stability criterion whereas bounds on the process 

operational constraints and the worst-case process variability function were evaluated from 

the robust performance tests. The robustness tests used in this work are based on the QLF 

criteria (γ-based) or the Structured Singular Value approach (μ-based). 

The present work defined a cost function that consisted of capital, operating and process 

variability related costs. The first two cost terms represent the process steady-state economics 

and can be easily estimated from the process data and numerical correlations available in the 

literature. On the other hand, the definition of variability cost function is difficult to obtain 

since it is problem specific and there is no a direct relationship between the process dynamic 

performance and the process economics. Based on the goals to attain by the design, this work 

defined for the case studies variability cost functions that have a physical and related 

economic meaning. That is, a dollar value was actually assigned to the variability that 

reflected for the Tennessee Eastman problem for example an actual loss in production. The 

definition of a physical meaning-based variability cost function is relevant since it provides 

an economic measure of the benefit of feedback control.The use of this variability cost 

function is relatively new since most of the previous design and control methodologies that 

consider a variability cost within their formulation have used physically meaningless 

weighted functions to translate this process measure into a dollar value. The variability costs 

proposed in the current work are somewhat related to the back-off concept used in the 

simultaneous design and control literature by other researchers4,26. The key advantage in the 
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current approach is that the bounds can be computed much faster as compared to the back-off 

calculations conducted in the literature with dynamic programming based algorithms 

The formulation of the optimization problem proposed in this work to perform the 

simultaneous design and control of a chemical processes corresponds to a nonlinear 

constrained optimization problem. Although different algorithms have been reported in the 

literature to address the solution of this class of problems, the present work applied 

Sequential Quadratic Programming (SQP) to solve all the scenarios considered in the case 

studies. This algorithm was selected because it is the traditional method used to solve 

nonlinear constrained optimization problems and the MATLAB’s optimization toolbox has 

made available the built-in function fmincon that uses an SQP method. The advantages or 

disadvantages of using different optimization methods versus SQP were not analyzed in this 

project since this topic was outside the scope of this work. 

The results obtained from the case studies shows that the present methodology provides with 

a conservative design if compared to those obtained from a dynamic programming approach. 

The conservatism comes from the representation of the process closed-loop dynamic 

behaviour as uncertain models, which are used by the robustness tests to determine the 

process stability and to estimate bounds on the problem’s cost function and constraints. 

Therefore, the degree of conservatism in the final design and control scheme depends on the 

accuracy of the uncertain model. On the other hand, the evaluation of the worst-case scenario 

and the process constraints with a dynamic programming approach requires a CPU time that 

is on average one to two orders of magnitude larger that than required by the present 

methodology. The results shows that the application of a dynamic programming 

methodology to a large-scale system such as the TE process results in extremely large 

computational times in the order of months. Moreover, most of the available dynamic 

optimization based methods are also subject to obtain local solutions whereas the calculation 

of the bounds used in this work is convex. Consequently, the methodology proposed in this 

work is a computationally efficient tool that can be realistically applied to the simultaneous 

design and control of large-scale systems.  
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6.4 Future work 

The methodology proposed in this work assumed that the process flowsheet and the control 

structure are defined a priori. That is, the process synthesis and control structure selection 

problem are not addressed by the present method. Thus a clear extension of the present study 

will be to include the problems of control structure and flowsheet selection within the overall 

optimization problem. Obviously, the computational load is expected to increase significantly 

since addressing this problem will require the use of integer decision variables. However, the 

inclusion of the flowsheet and control structure selection within the optimization is expected 

to provide a more economically attractive design than that obtained by the present method.  

Due to the robust modelling approach adopted in this work, the present methodology resulted 

in conservative designs. The conservatism in the solution depends on the differences between 

the uncertain model and the actual process dynamic behaviour, i.e. tighter uncertain model 

descriptions will result in less conservative designs. One key aspect that highly determines 

the conservatism in the uncertain model is the system’s degree of nonlinearity. Since the 

uncertain model structures used in this work are assumed to be linear dynamic models with 

uncertain model coefficients, it is expected that the use of uncertain nonlinear model 

structures are more likely to provide a better process dynamic behaviour description that may 

result in less conservatism designs. Thus, the future use of uncertain nonlinear dynamic 

model structures such as uncertain state-affine models or uncertain Volterra series models to 

capture the transient behaviour of highly nonlinear systems may produce better designs. 

Although these models are expected to provide better process dynamic behaviour 

descriptions their identification may require an intensive computational effort. 

Although each of the robustness tests considered within the methodology’s formulation is 

convex, i.e. a global solution is obtained for each of these tests; the overall optimization 

problem is non-convex. Thus, the SQP method may only provide with a local solution. As it 

was shown in Section 5.3.2, different starting points resulted in different design and control 

solutions. Therefore, the present work suggests the use of global optimization methods that 

can provide for a better search of the variable space. 
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The proposed formulation considered parameters that remain at a given value for large 

periods of time but their true value are not known referred to as process parameters 

uncertainties. To account for this source of process uncertainty, each robustness test was 

embedded within an optimization problem that searches for the value in the uncertain process 

parameter that produces the largest output variability. The computation of this optimization 

problem is performed relatively fast for simple processes such as the mixing tank process but 

it becomes a major computational bottleneck when performed on large-scale systems such as 

the TE process. In Section 5.3.6, the TE process was designed for a finite set of values of the 

process parametric uncertainty. The computational time used to perform the formal 

optimization problem with respect to the process parametric uncertainty required on average 

more than double the time needed to solve the optimization with respect to a finite number of 

values of the process parametric uncertainty. Also, considering a finite set of parameter 

values does not ensure that the design will be able to accommodate values that were not 

included in the selected set. The computational load associated with this problem could be 

alleviated if the uncertain parameter is considered as a disturbance.  

Based on the above discussion, it is recommended to refine the solution strategy when 

uncertain process parameters are considered in the methodology’s formulation. One approach 

that can be followed is to identify robust models that are valid only for a smaller range of 

values in the uncertain process parameter. In this way the uncertain parameter will be treated 

as a disturbance within the formulation but instead of defining a single uncertain model for 

the parameter’s entire range of variation, local uncertain models that cover subsets of the 

parameter’s range of values will be identified. The method to partition the uncertain process 

parameter’s range of values will depend on the system’s degree of nonlinearity, the 

computational resources available and the desired accuracy in the solution. Although this 

approach is still an approximation to the original problem’s formulation, it is expected that it 

will provide a less conservative result than that obtained from a single uncertain model. On 

the other hand, the computational burden will be increased since additional closed-

identifications, and therefore more simulations, will be required.  

Constraints on the process manipulated variables, e.g. valves, are evaluated using the same 

procedure as for the process operational constraints, i.e. bounds on the manipulated 
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variables’ variability are estimated using robust performance tests. In the presence of 

disturbances saturation of the valves may occur. Consequently, the application of the robust 

performance tests on this valve will produce an unrealistic bound, i.e. values that are 

exceeding the valve’s physical limits, e.g. 0-100 % of opening. Consequently, the use of 

robust performance tests to formulate manipulated variable constraints may produce either 

overly conservative designs or optimization problems that in principle have a feasible 

solution but they cannot satisfy this constraint. Robust performance tests based on a random-

mean-squares (RMS) gain criterion (γ-based) might be of use since it estimates a bound on 

the standard deviation of the output (valve)’s variability. However, this test will also produce 

unrealistic bounds if the valve’s operation is constantly reaching its saturation limits. 

Different approaches may be further analyzed to formulate the constraints on the valves. One 

approach is to estimate, from the μ-based robust performance test, the critical disturbance 

profile and obtain from simulation the valve’s maximum variability. Although this approach 

adds computational load within the analysis, it is a more realistic formulation to test the 

valve’s range of operability. A second approach that can be considered is to consider within 

the analysis the design of the valve. Although this may produce an overly large valve design, 

the use of bounds to test the valve’s constraints guarantees that this equipment will not 

saturate for the disturbances and process parametric uncertainty’s amplitudes considered in 

the analysis. A third approach is to formulate the constraints on the valve as a dynamic 

optimization problem. This strategy, somehow similar to the first approach proposed above, 

is expected to require a significant amount of computational time. Consequently, future 

studies must be conducted to determine the advantages or disadvantages of applying one 

approach or the other.  

Since the robust bounds calculated in this work are based on norms of linear operators, 

constraints in the manipulated variables have not been explicitly considered since hard 

constraints can be only represented by nonlinear operators. Thus, the proposed work is 

potentially conservative regarding the input constraints since it is required in the optimization 

that the maximal deviations in manipulated variables will be smaller than the constraints at 

all times. In principle it could be possible to obtain less conservative designs by allowing 

nonlinear controllers such as a constrained MPC or a PID with anti-windup to operate at the 
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input constraint for long periods of time. Future studies should assess whether the bounds 

proposed in this work could be used to deal with hard constrained controllers. 

Finally, the methodology presented in this work can be applied to design and control 

chemical processes that require the use of advanced control techniques such as model-based 

controllers. Since the case studies analyzed here considered only control structures composed 

of feedback controllers, e.g. PI controllers, the present work recommends the application of 

the proposed methodology to cases in which the system is regulated by an advanced control 

technique such as MPC and IMC. 
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Appendix A: Construction of the interconnection matrix (M) for a 
simple SISO problem. 

Consider the case that an output variable y is affected by a single disturbance υ . Also, 

assume that y can be accurately described by the following robust FIR model (see equation 

4.2): 
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where the nominal and uncertain impulse response coefficients ( h andi iδ ) are obtained from 

(4.5) according to the procedure described in Section 4.1. The maximal change of the 

disturbance )(iδυ  is assumed to have the same lower and upper bounds at each sampling 

instant, that is,  

  (A.2) ul i δυδυδυ ≤≤ )(

Thus, 
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Based on above descriptions, the perturbation matrix Δ is defined as a 24 x 24 diagonal 

matrix whereas the interconnection matrix M, of similar dimensions as Δ, can be specified 

according to the matrix definitions given in Section 4.1, that is, 

 219



  (A.4) 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

)3(000
)2(000

0)2(00
)1(000

0)1(00
00)1(0

)0(000
0)0(00
00)0(0

δυ
δυ

δυ
δυ

δυ
δυ

δυ
δυ

δυ

k
k

k
k

k
k

k
k

k

qW

000)0(δυk

  (A.5) 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

3210

210

10

0

000000
0000000
00000000
000000000

hhhh
hhh

hh
h

q

δδδδ
δδδ

δδ
δ

R

  (A.6) 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

0123

012

01

0

000000
0000000
00000000
000000000

hhhh
hhh

hh
h

qH

  (A.7) 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

000000000
000000000
000000000
000000000
000000000
000000000

000000000
000000000
000000000
000000000

k
k

k
k

k
k

k
k

k
k

T

 220



Appendix B: Tennessee Eastman process information 

The following information was taken from Downs and Vogel62. 

Table B.1 Available process measurements 

Variable  
number 

Variable name Base 
case  
value 

Units 

xmeas(1) A feed (stream 1) 0.25052 kscmh 

xmeas(2) D feed (stream 2) 3664.0 kg/h 

xmeas(3) E feed (stream 3) 4509.3 kg/h 

xmeas(4) A and C feed (stream 4) 9.3477 kscmh 

xmeas(5) Recycle flow (stream 8) 26.902 kscmh 

xmeas(6) Reactor feed rate (stream 6) 42.339 kscmh 

xmeas(7) Reactor pressure 2705.0 kPa gauge 

xmeas(8) Reactor level 75.0 % 

xmeas(9) Reactor temperature 120.4 °C 

xmeas(10) Purge rate (stream 9) 0.33712 kscmh 

xmeas(11) Product separator temperature 80.109 °C 

xmeas(12) Product separator level 50.0 % 

xmeas(13) Product separator pressure 2633.7 kPa gauge 

xmeas(14) Product separator underflow 25.16 m3/h 

xmeas(15) Stripper level 50.0 % 

xmeas(16) Stripper pressure 3102.2 kPa gauge 

xmeas(17) Stripper underflow (stream 10) 22.949 m3/h 

xmeas(18) Stripper temperature 65.731 °C 

xmeas(19) Stripper steam flow 230.31 kg/h 

xmeas(20) Compressor work 341.43 kW 

xmeas(21) Reactor cooling water outlet temperature 94.599 °C 

xmeas(22) Separator cooling water outlet temperature 77.297 °C 

xmeas(23) Component A, reactor feed (stream 6) 32.188 mol % 

xmeas(24) Component B, reactor feed (stream 6) 8.8933 mol % 
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Table B.1 Continues 

Variable  
number 

Variable name Base case  
value 

Units 

xmeas(25) Component C, reactor feed (stream 6) 26.383 mol % 

xmeas(26) Component D, reactor feed (stream 6) 6.8820 mol % 

xmeas(27) Component E, reactor feed (stream 6) 18.776 mol % 

xmeas(28) Component F, reactor feed (stream 6) 1.6567 mol % 

xmeas(29) Component A, purge gas (stream 9) 32.958 mol % 

xmeas(30) Component B, purge gas (stream 9) 13.823 mol % 

xmeas(31) Component C, purge gas (stream 9) 23.978 mol % 

xmeas(32) Component D, purge gas (stream 9) 1.2565 mol % 

xmeas(33) Component E, purge gas (stream 9) 18.579 mol % 

xmeas(34) Component F, purge gas (stream 9) 2.2633 mol % 

xmeas(35) Component G, purge gas (stream 9) 4.8436 mol % 

xmeas(36) Component H, purge gas (stream 9) 2.2986 mol % 

xmeas(37) Component D, products (stream 11) 0.01787 mol % 

xmeas(38) Component E, products (stream 11) 0.83570 mol % 

xmeas(39) Component F, products (stream 11) 0.09858 mol % 

xmeas(40) Component G, products (stream 11) 53.724 mol % 

xmeas(41) Component H, products (stream 11) 43.828 mol % 
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Table B.2 Process manipulated variables 

Variable  
number 

Variable name Base 
case  
Value 
(%) 

Low 
limit 

High 
limit 

Units 

xmv(1) D feed flow (stream 2) 63.053 0 5811 kg/h 

xmv(2) E feed (stream 3) 53.980 0 8354 kg/h 

xmv(3) A feed (stream 1) 24.644 0 1.017 kscmh 

xmv(4) A and C feed (stream 4) 61.302 0 15.25 kscmh 

xmv(5) Compressor recycle valve 22.210 0 100 % 

xmv(6) Purge valve (stream 9) 40.064 0 100 % 

xmv(7) Separator pot liquid flow 
(stream 10) 

38.100 0 65.71 m3/h 

xmv(8) Stripper liquid product flow 
(stream 11) 

46.534 0 49.10 m3/h 

xmv(9) Stripper steam valve 47.446 0 100 % 

xmv(10) Reactor cooling water flow 41.106 0 227.1 m3/h 

xmv(11) Condenser cooling water flow 18.114 0 272.6 m3/h 

xmv(12) Agitator speed 50.000 150 250 rpm 
                  Each manipulated variable is specified by setting the corresponding xmv variable to a value between 0 and 100 

 

Table B.3 Process operating constraints 

Normal operating limits Shut down limits Process variable 

Low limit High limit Low limit High limit 

Reactor pressure none 2895 kPa none 3000 kPa 

Reactor level 50% 
(11.8 m3) 

100% 
(21.3 m3) 

2.0 m3 24.0 m3 

Reactor temperature none 150°C none 175°C 

Separator level 30% 
(3.3 m3) 

100% 
(9.0 m3) 

1.0 m3 12.0 m3 

Stripper base level 30% 
(3.5 m3) 

100% 
(6.6 m3) 

1.0 m3 8.0 m3 
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Table B.4 Components’ physical properties (at 100°C) 

Vapour pressure 
constants  

Comp. 
Molecular 
weight 

Liquid  
density 
(kg/m3) 

Liquid heat 
capacity 
(kJ/kg-°C) 

Vapour heat 
capacity 
(kJ/kg-°C) 

Heat of 
vaporization 
(kJ/kg) A B C 

A 2.0 -- -- 14.6 -- -- -- -- 

B 25.4 -- -- 2.04 -- -- -- -- 

C 28.0 -- -- 1.05 -- -- -- -- 

D 32.0 299 7.66 1.85 202 20.81 -1444.0 259 

E 46.0 365 4.17 1.87 372 21.24 -2114.0 266 

F 48.0 328 4.45 2.02 372 21.24 -2114.0 266 

G 62.0 612 2.55 0.712 523 21.32 -2748.0 233 

H 76.0 617 2.45 0.628 486 22.10 -3318.0 250 
          The vapour pressure of each component is estimated from the Antonie equation. 

 

Table B.5 Process disturbances 

Variable  
number 

Process variable Type 

idv(1) A/C feed ratio, B composition constant 
(stream 4) 

Step 

idv(2) B composition, A/C ratio constant (stream 
4) 

Step 

idv (3) D feed temperature (stream 2) Step 

idv (4) Reactor cooling water inlet temperature Step 

idv (5) Condenser cooling water inlet temperature Step 

idv (6) A feed loss (stream 1) Step 

idv (7) C header pressure loos-reduced availability 
(stream 4) 

Step 

idv (8) A,B,C feed composition (stream 4) Random 
variation 

idv (9) D feed temperature (stream 2) Random 
variation 

idv (10) C feed temperature (stream 4) Random 
variation 
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Table B.5 Continues 

Variable  
number 

Process variable Type 

idv (11) Reactor cooling water inlet temperature Random 
variation 

idv (12) Condenser cooling water inlet temperature Random 
variation 

idv (13) Reaction kinetics Slow drift 

idv (14) Reactor cooling water valve Sticking 

idv (15) Condenser cooling water valve Sticking 

idv (16) Unknown Unknown 

idv (17) Unknown Unknown 

idv (18) Unknown Unknown 

idv (19) Unknown Unknown 

idv (20) Unknown Unknown 

 

Table B.6 Process operating breakdown costs 

Component costs Cost ($/kgmol) 

A 2.206 

C 6.177 

D 22.06 

E 14.56 

F 17.89 

G 30.44 

H 22.94 

Compressor costs $ 0.0536/kW-h 

Stripper steam costs $0.0318/kg 

 

Based on the process operating cost function given in (5.14) and the information given in 

Table B.1 and Table B.6, the total operating costs at the base case for the Tennessee Eastman 

process are as follows: 
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Table B.7 Purge losses 

Component 
costs 

Mole 
fraction 

Molar Costs  

A 0.329580 2.206 0.7271 

C 0.239780 6.177 1.4811 

D 0.012565 22.06 0.2773 

E 0.185790 14.56 2.7051 

F 0.022633 17.89 0.4049 

G 0.048436 30.44 1.4745 

H 0.022986 22.94 0.5274 

Costs per kgmol of purge 7.5973 

 

Table B.8 Raw materials in the product’s stream (stream 11) 

Component 
costs 

Mole 
fraction 

Molar Costs  

D 0.00018 22.06 0.0040 

E 0.00836 14.56 0.1217 

F 0.00099 17.89 0.0177 

Costs per kgmol of product 0.1434 

 

( ) ( )
 

( ) ( ) hhkg
kg

kW
hkW

hkgmol
kgmol

hkgmol
kgmol

OP casebase

$6.170/3.230$0318.04.341$0536.0

/37.211$1434.0/099.15$5973.7

=+
−

+

+=
 (0.1) 
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Tennessee Eastman Code provided by Downs and Vogel62 

C 
C               Tennessee Eastman Process Control Test Problem 
C 
C                    James J. Downs and Ernest F. Vogel 
C 
C                  Process and Control Systems Engineering 
C                        Tennessee Eastman Company 
C                              P.O. Box 511 
C                          Kingsport,TN  37662 
C 
C  Reference: 
C    "A Plant-Wide Industrial Process Control Problem" 
C    Presented at the AIChE 1990 Annual Meeting 
C    Industrial Challenge Problems in Process Control,Paper #24a 
C    Chicago,Illinois,November 14,1990 
C 
C  Subroutines: 
C 
C    TEFUNC - Function evaluator to be called by integrator 
C    TEINIT - Initialization 
C    TESUBi - Utility subroutines, i=1,2,..,8 
C 
C 
C  The process simulation has 50 states (NN=50).  If the user wishes to 
C  integrate additional states, NN must be increased accordingly in the 
C  calling program.  The additional states should be appended to the end 
C  of the YY vector, e.g. YY(51),...  The additional derivatives should 
C  be appended to the end of the YP vector, e.g. YP(51),...  To initialize 
C  the new states and to calculate derivatives for them, we suggest 
C  creating new function evaluator and initialization routines as follows. 
C 
C          C----------------------------------------------- 
C          C 
C                SUBROUTINE FUNC(NN,TIME,YY,YP) 
C          C 
C                INTEGER NN 
C                DOUBLE PRECISION TIME, YY(NN), YP(NN) 
C          C 
C          C  Call the function evaluator for the process 
C          C 
C                CALL TEFUNC(NN,TIME,YY,YP) 
C          C 
C          C  Calculate derivatives for additional states 
C          C 
C                YP(51) = .... 
C                YP(52) = .... 
C                   . 
C                   . 
C                   . 
C                YP(NN) = .... 
C          C 
C                RETURN 
C                END 
C          CC          C----------------------------------------------- 
C          C 
C                SUBROUTINE INIT(NN,TIME,YY,YP) 
C          C 
C                INTEGER NN 
C                DOUBLE PRECISION TIME, YY(NN), YP(NN) 
C          C 
C          C  Call the initialization for the process 
C          C 
C                CALL TEINIT(NN,TIME,YY,YP) 
C          C 
C          C  Initialize additional states 
C          C 
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C                YY(51) = .... 
C                YY(52) = .... 
C                   . 
C                   . 
C                   . 
C                YY(NN) = .... 
C          C 
C                RETURN 
C                END 
C          C 
C          C----------------------------------------------- 
C 
C  Differences between the code and its description in the paper: 
C 
C  1.  Subroutine TEINIT has TIME in the argument list.  TEINIT sets TIME 
C      to zero. 
C 
C  2.  There are 8 utility subroutines (TESUBi) rather than 5. 
C 
C  3.  Process disturbances 14 through 20 do NOT need to be used in 
C      conjunction with another disturbance as stated in the paper.  All 
C      disturbances can be used alone or in any combination. 
C 
C 
C  Manipulated Variables 
C 
C    XMV(1)     A Feed Flow (stream 1) 
C    XMV(2)     D Feed Flow (stream 2) 
C    XMV(3)     E Feed Flow (stream 3) 
C    XMV(4)     A and C Feed Flow (stream 4) 
C    XMV(5)     Compressor Recycle Valve 
C    XMV(6)     Purge Valve (stream 9) 
C    XMV(7)     Separator Pot Liquid Flow (stream 10) 
C    XMV(8)     Stripper Liquid Product Flow (stream 11) 
C    XMV(9)     Stripper Steam Valve 
C    XMV(10)    Reactor Cooling Water Flow 
C    XMV(11)    Condenser Cooling Water Flow 
C    XMV(12)    Agitator Speed 
C 
C  Continuous Process Measurements 
C 
C    XMEAS(1)   A Feed  (stream 1)                    kscmh 
C    XMEAS(2)   D Feed  (stream 2)                    kg/hr 
C    XMEAS(3)   E Feed  (stream 3)                    kg/hr 
C    XMEAS(4)   A and C Feed  (stream 4)              kscmh 
C    XMEAS(5)   Recycle Flow  (stream 8)              kscmh 
C    XMEAS(6)   Reactor Feed Rate  (stream 6)         kscmh 
C    XMEAS(7)   Reactor Pressure                      kPa gauge 
C    XMEAS(8)   Reactor Level                         % 
C    XMEAS(9)   Reactor Temperature                   Deg C 
C    XMEAS(10)  Purge Rate (stream 9)                 kscmh 
C    XMEAS(11)  Product Sep Temp                      Deg C 
C    XMEAS(12)  Product Sep Level                     % 
C    XMEAS(13)  Prod Sep Pressure                     kPa gauge 
C    XMEAS(14)  Prod Sep Underflow (stream 10)        m3/hr 
C    XMEAS(15)  Stripper Level                        % 
C    XMEAS(16)  Stripper Pressure                     kPa gauge 
C    XMEAS(17)  Stripper Underflow (stream 11)        m3/hr 
C    XMEAS(18)  Stripper Temperature                  Deg C 
C    XMEAS(19)  Stripper Steam Flow                   kg/hr 
C    XMEAS(20)  Compressor Work                       kW 
C    XMEAS(21)  Reactor Cooling Water Outlet Temp     Deg C 
C    XMEAS(22)  Separator Cooling Water Outlet Temp   Deg C 
C 
C  Sampled Process Measurements 
C 
C    Reactor Feed Analysis (Stream 6) 
C        Sampling Frequency = 0.1 hr 
C        Dead Time = 0.1 hr 
C        Mole % 
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C    XMEAS(23)   Component A 
C    XMEAS(24)   Component B 
C    XMEAS(25)   Component C 
C    XMEAS(26)   Component D 
C    XMEAS(27)   Component E 
C    XMEAS(28)   Component F 
C 
C    Purge Gas Analysis (Stream 9) 
C        Sampling Frequency = 0.1 hr 
C        Dead Time = 0.1 hr 
C        Mole % 
C    XMEAS(29)   Component A 
C    XMEAS(30)   Component B 
C    XMEAS(31)   Component C 
C    XMEAS(32)   Component D 
C    XMEAS(33)   Component E 
C    XMEAS(34)   Component F 
C    XMEAS(35)   Component G 
C    XMEAS(36)   Component H 
C 
C    Product Analysis (Stream 11) 
C        Sampling Frequency = 0.25 hr 
C        Dead Time = 0.25 hr 
C        Mole % 
C    XMEAS(37)   Component D 
C    XMEAS(38)   Component E 
C    XMEAS(39)   Component F 
C    XMEAS(40)   Component G 
C    XMEAS(41)   Component H 
C 
C  Process Disturbances 
C 
C    IDV(1)   A/C Feed Ratio, B Composition Constant (Stream 4)          Step 
C    IDV(2)   B Composition, A/C Ratio Constant (Stream 4)               Step 
C    IDV(3)   D Feed Temperature (Stream 2)                              Step 
C    IDV(4)   Reactor Cooling Water Inlet Temperature                    Step 
C    IDV(5)   Condenser Cooling Water Inlet Temperature                  Step 
C    IDV(6)   A Feed Loss (Stream 1)                                     Step 
C    IDV(7)   C Header Pressure Loss - Reduced Availability (Stream 4)   Step 
C    IDV(8)   A, B, C Feed Composition (Stream 4)            Random Variation 
C    IDV(9)   D Feed Temperature (Stream 2)                  Random Variation 
C    IDV(10)  C Feed Temperature (Stream 4)                  Random Variation 
C    IDV(11)  Reactor Cooling Water Inlet Temperature        Random Variation 
C    IDV(12)  Condenser Cooling Water Inlet Temperature      Random Variation 
C    IDV(13)  Reaction Kinetics                                    Slow Drift 
C    IDV(14)  Reactor Cooling Water Valve                            Sticking 
C    IDV(15)  Condenser Cooling Water Valve                          Sticking 
C    IDV(16)  Unknown 
C    IDV(17)  Unknown 
C    IDV(18)  Unknown 
C    IDV(19)  Unknown 
C    IDV(20)  Unknown 
C 
C 
C============================================================================= 
C 
 
      SUBROUTINE TEFUNC(NN,TIME,YY,YP) 
C 
C       Function Evaluator 
C 
C         Inputs: 
C 
C           NN   = Number of differential equations 
C           Time = Current time(hrs) 
C           YY   = Current state values 
C 
C         Outputs: 
C 
C           YP   = Current derivative values 
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C 
      DOUBLE PRECISION YY(NN),YP(NN) 
 include 'TEcommon.inc' 
      DOUBLE PRECISION 
     .UCLR,UCVR,UTLR,UTVR, 
     .XLR,XVR,ETR,ESR, 
     .TCR,TKR,DLR, 
     .VLR,VVR,VTR, 
     .PTR,PPR, 
     .CRXR,RR,RH, 
     .FWR,TWR,QUR,HWR,UAR, 
     .UCLS,UCVS,UTLS,UTVS, 
     .XLS,XVS,ETS,ESS, 
     .TCS,TKS,DLS, 
     .VLS,VVS,VTS, 
     .PTS,PPS, 
     .FWS,TWS,QUS,HWS, 
     .UCLC,UTLC,XLC, 
     .ETC,ESC,TCC,DLC, 
     .VLC,VTC,QUC, 
     .UCVV,UTVV,XVV, 
     .ETV,ESV,TCV,TKV, 
     .VTV,PTV, 
     .VCV,VRNG,VTAU, 
     .FTM, 
     .FCM,XST,XMWS, 
     .HST,TST,SFR, 
     .CPFLMX,CPPRMX,CPDH, 
     .TCWR,TCWS, 
     .HTR,AGSP, 
     .XDEL,XNS, 
     .TGAS,TPROD,VST 
      INTEGER 
     .IVST 
      COMMON/TEPROC/ 
     .UCLR(8),UCVR(8),UTLR,UTVR, 
     .XLR(8),XVR(8),ETR,ESR, 
     .TCR,TKR,DLR, 
     .VLR,VVR,VTR, 
     .PTR,PPR(8), 
     .CRXR(8),RR(4),RH, 
     .FWR,TWR,QUR,HWR,UAR, 
     .UCLS(8),UCVS(8),UTLS,UTVS, 
     .XLS(8),XVS(8),ETS,ESS, 
     .TCS,TKS,DLS, 
     .VLS,VVS,VTS, 
     .PTS,PPS(8), 
     .FWS,TWS,QUS,HWS, 
     .UCLC(8),UTLC,XLC(8), 
     .ETC,ESC,TCC,DLC, 
     .VLC,VTC,QUC, 
     .UCVV(8),UTVV,XVV(8), 
     .ETV,ESV,TCV,TKV, 
     .VTV,PTV, 
     .VCV(12),VRNG(12),VTAU(12), 
     .FTM(13), 
     .FCM(8,13),XST(8,13),XMWS(13), 
     .HST(13),TST(13),SFR(8), 
     .CPFLMX,CPPRMX,CPDH, 
     .TCWR,TCWS, 
     .HTR(3),AGSP, 
     .XDEL(41),XNS(41), 
     .TGAS,TPROD,VST(12),IVST(12) 
      INTEGER IDVWLK 
      DOUBLE PRECISION 
     .ADIST, 
     .BDIST, 
     .CDIST, 
     .DDIST, 
     .TLAST, 
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     .TNEXT, 
     .HSPAN, 
     .HZERO, 
     .SSPAN, 
     .SZERO, 
     .SPSPAN 
      COMMON/WLK/ 
     .ADIST(12), 
     .BDIST(12), 
     .CDIST(12), 
     .DDIST(12), 
     .TLAST(12), 
     .TNEXT(12), 
     .HSPAN(12), 
     .HZERO(12), 
     .SSPAN(12), 
     .SZERO(12), 
     .SPSPAN(12), 
     .IDVWLK(12) 
      DOUBLE PRECISION 
     .AVP,BVP,CVP, 
     .AH,BH,CH, 
     .AG,BG,CG, 
     .AV, 
     .AD,BD,CD, 
     .XMW 
      COMMON/CONST/ 
     .AVP(8),BVP(8),CVP(8), 
     .AH(8),BH(8),CH(8), 
     .AG(8),BG(8),CG(8), 
     .AV(8), 
     .AD(8),BD(8),CD(8), 
     .XMW(8) 
      INTEGER NN,I 
      DOUBLE PRECISION RG, 
     .VPR, 
     .FIN(8), 
     .TIME, 
     .FLMS, 
     .DLP, 
     .PR, 
     .FLCOEF, 
     .UAS, 
     .UAC, 
     .VOVRL, 
     .UARLEV, 
     .VPOS(12), 
     .XMNS, 
     .XCMP(41), 
     .TMPFAC, 
     .R1F, 
     .R2F, 
     .HWLK, 
     .SWLK, 
     .SPWLK, 
     .TESUB7, 
     .TESUB8 
      DO 500 I=1,20 
      IF(IDV(I).GT.0)THEN 
      IDV(I)=1 
      ELSE 
      IDV(I)=0 
      ENDIF 
 500  CONTINUE 
      IDVWLK(1)=IDV(8) 
      IDVWLK(2)=IDV(8) 
      IDVWLK(3)=IDV(9) 
      IDVWLK(4)=IDV(10) 
      IDVWLK(5)=IDV(11) 
      IDVWLK(6)=IDV(12) 
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      IDVWLK(7)=IDV(13) 
      IDVWLK(8)=IDV(13) 
      IDVWLK(9)=IDV(16) 
      IDVWLK(10)=IDV(17) 
      IDVWLK(11)=IDV(18) 
      IDVWLK(12)=IDV(20) 
      DO 900 I=1,9 
      IF(TIME.GE.TNEXT(I))THEN 
      HWLK=TNEXT(I)-TLAST(I) 
      SWLK=ADIST(I)+HWLK*(BDIST(I)+HWLK* 
     .(CDIST(I)+HWLK*DDIST(I))) 
      SPWLK=BDIST(I)+HWLK* 
     .(2.D0*CDIST(I)+3.D0*HWLK*DDIST(I)) 
      TLAST(I)=TNEXT(I) 
      CALL TESUB5(SWLK,SPWLK,ADIST(I),BDIST(I),CDIST(I), 
     .DDIST(I),TLAST(I),TNEXT(I),HSPAN(I),HZERO(I), 
     .SSPAN(I),SZERO(I),SPSPAN(I),IDVWLK(I)) 
      ENDIF 
  900 CONTINUE 
      DO 910 I=10,12 
      IF(TIME.GE.TNEXT(I))THEN 
      HWLK=TNEXT(I)-TLAST(I) 
      SWLK=ADIST(I)+HWLK*(BDIST(I)+HWLK* 
     .(CDIST(I)+HWLK*DDIST(I))) 
      SPWLK=BDIST(I)+HWLK* 
     .(2.D0*CDIST(I)+3.D0*HWLK*DDIST(I)) 
      TLAST(I)=TNEXT(I) 
      IF(SWLK.GT.0.1D0)THEN 
      ADIST(I)=SWLK 
      BDIST(I)=SPWLK 
      CDIST(I)=-(3.D0*SWLK+0.2D0*SPWLK)/0.01D0 
      DDIST(I)=(2.D0*SWLK+0.1D0*SPWLK)/0.001D0 
      TNEXT(I)=TLAST(I)+0.1D0 
      ELSE 
      ISD=-1 
      HWLK=HSPAN(I)*TESUB7(ISD)+HZERO(I) 
      ADIST(I)=0.D0 
      BDIST(I)=0.D0 
      CDIST(I)=DBLE(IDVWLK(I))/HWLK**2 
      DDIST(I)=0.D0 
      TNEXT(I)=TLAST(I)+HWLK 
      ENDIF 
      ENDIF 
  910 CONTINUE 
      IF(TIME.EQ.0.D0)THEN 
      DO 950 I=1,12 
      ADIST(I)=SZERO(I) 
      BDIST(I)=0.D0 
      CDIST(I)=0.D0 
      DDIST(I)=0.D0 
      TLAST(I)=0.0D0 
      TNEXT(I)=0.1D0 
  950 CONTINUE 
      END IF 
      XST(1,4)=TESUB8(1,TIME)-IDV(1)*0.03D0 
     .-IDV(2)*2.43719D-3 
      XST(2,4)=TESUB8(2,TIME)+IDV(2)*0.005D0 
      XST(3,4)=1.D0-XST(1,4)-XST(2,4) 
      TST(1)=TESUB8(3,TIME)+IDV(3)*5.D0 
      TST(4)=TESUB8(4,TIME) 
      TCWR=TESUB8(5,TIME)+IDV(4)*5.D0 
      TCWS=TESUB8(6,TIME)+IDV(5)*5.D0 
      R1F=TESUB8(7,TIME) 
      R2F=TESUB8(8,TIME) 
      DO 1010 I=1,3 
      UCVR(I)=YY(I) 
      UCVS(I)=YY(I+9) 
      UCLR(I)=0.0 
      UCLS(I)=0.0 
 1010 CONTINUE 
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      DO 1020 I=4,8 
      UCLR(I)=YY(I) 
      UCLS(I)=YY(I+9) 
 1020 CONTINUE 
      DO 1030 I=1,8 
      UCLC(I)=YY(I+18) 
      UCVV(I)=YY(I+27) 
 1030 CONTINUE 
      ETR=YY(9) 
      ETS=YY(18) 
      ETC=YY(27) 
      ETV=YY(36) 
      TWR=YY(37) 
      TWS=YY(38) 
      DO 1035 I=1,12 
      VPOS(I)=YY(I+38) 
 1035 CONTINUE 
      UTLR=0.0 
      UTLS=0.0 
      UTLC=0.0 
      UTVV=0.0 
      DO 1040 I=1,8 
      UTLR=UTLR+UCLR(I) 
      UTLS=UTLS+UCLS(I) 
      UTLC=UTLC+UCLC(I) 
      UTVV=UTVV+UCVV(I) 
 1040 CONTINUE 
      DO 1050 I=1,8 
      XLR(I)=UCLR(I)/UTLR 
      XLS(I)=UCLS(I)/UTLS 
      XLC(I)=UCLC(I)/UTLC 
      XVV(I)=UCVV(I)/UTVV 
 1050 CONTINUE 
      ESR=ETR/UTLR 
      ESS=ETS/UTLS 
      ESC=ETC/UTLC 
      ESV=ETV/UTVV 
      CALL TESUB2(XLR,TCR,ESR,0) 
      TKR=TCR+273.15 
      CALL TESUB2(XLS,TCS,ESS,0) 
      TKS=TCS+273.15 
      CALL TESUB2(XLC,TCC,ESC,0) 
      CALL TESUB2(XVV,TCV,ESV,2) 
      TKV=TCV+273.15 
      CALL TESUB4(XLR,TCR,DLR) 
      CALL TESUB4(XLS,TCS,DLS) 
      CALL TESUB4(XLC,TCC,DLC) 
      VLR=UTLR/DLR 
      VLS=UTLS/DLS 
      VLC=UTLC/DLC 
      VVR=VTR-VLR 
      VVS=VTS-VLS 
      RG=998.9 
      PTR=0.0 
      PTS=0.0 
      DO 1110 I=1,3 
      PPR(I)=UCVR(I)*RG*TKR/VVR 
      PTR=PTR+PPR(I) 
      PPS(I)=UCVS(I)*RG*TKS/VVS 
      PTS=PTS+PPS(I) 
 1110 CONTINUE 
      DO 1120 I=4,8 
      VPR=DEXP(AVP(I)+BVP(I)/(TCR+CVP(I))) 
      PPR(I)=VPR*XLR(I) 
      PTR=PTR+PPR(I) 
      VPR=DEXP(AVP(I)+BVP(I)/(TCS+CVP(I))) 
      PPS(I)=VPR*XLS(I) 
      PTS=PTS+PPS(I) 
 1120 CONTINUE 
      PTV=UTVV*RG*TKV/VTV 
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      DO 1130 I=1,8 
      XVR(I)=PPR(I)/PTR 
      XVS(I)=PPS(I)/PTS 
 1130 CONTINUE 
      UTVR=PTR*VVR/RG/TKR 
      UTVS=PTS*VVS/RG/TKS 
      DO 1140 I=4,8 
      UCVR(I)=UTVR*XVR(I) 
      UCVS(I)=UTVS*XVS(I) 
 1140 CONTINUE 
      RR(1)=DEXP(31.5859536-40000.0/1.987/TKR)*R1F 
      RR(2)=DEXP(3.00094014-20000.0/1.987/TKR)*R2F 
      RR(3)=DEXP(53.4060443-60000.0/1.987/TKR) 
      RR(4)=RR(3)*0.767488334D0 
      IF(PPR(1).GT.0.0.AND.PPR(3).GT.0.0)THEN 
      R1F=PPR(1)**1.1544 
      R2F=PPR(3)**0.3735 
      RR(1)=RR(1)*R1F*R2F*PPR(4) 
      RR(2)=RR(2)*R1F*R2F*PPR(5) 
      ELSE 
      RR(1)=0.0 
      RR(2)=0.0 
      ENDIF 
      RR(3)=RR(3)*PPR(1)*PPR(5) 
      RR(4)=RR(4)*PPR(1)*PPR(4) 
      DO 1200 I=1,4 
      RR(I)=RR(I)*VVR 
 1200 CONTINUE 
      CRXR(1)=-RR(1)-RR(2)-RR(3) 
      CRXR(3)=-RR(1)-RR(2) 
      CRXR(4)=-RR(1)-1.5D0*RR(4) 
      CRXR(5)=-RR(2)-RR(3) 
      CRXR(6)=RR(3)+RR(4) 
      CRXR(7)=RR(1) 
      CRXR(8)=RR(2) 
      RH=RR(1)*HTR(1)+RR(2)*HTR(2) 
      XMWS(1)=0.0 
      XMWS(2)=0.0 
      XMWS(6)=0.0 
      XMWS(8)=0.0 
      XMWS(9)=0.0 
      XMWS(10)=0.0 
      DO 2010 I=1,8 
      XST(I,6)=XVV(I) 
      XST(I,8)=XVR(I) 
      XST(I,9)=XVS(I) 
      XST(I,10)=XVS(I) 
      XST(I,11)=XLS(I) 
      XST(I,13)=XLC(I) 
      XMWS(1)=XMWS(1)+XST(I,1)*XMW(I) 
      XMWS(2)=XMWS(2)+XST(I,2)*XMW(I) 
      XMWS(6)=XMWS(6)+XST(I,6)*XMW(I) 
      XMWS(8)=XMWS(8)+XST(I,8)*XMW(I) 
      XMWS(9)=XMWS(9)+XST(I,9)*XMW(I) 
      XMWS(10)=XMWS(10)+XST(I,10)*XMW(I) 
 2010 CONTINUE 
      TST(6)=TCV 
      TST(8)=TCR 
      TST(9)=TCS 
      TST(10)=TCS 
      TST(11)=TCS 
      TST(13)=TCC 
      CALL TESUB1(XST(1,1),TST(1),HST(1),1) 
      CALL TESUB1(XST(1,2),TST(2),HST(2),1) 
      CALL TESUB1(XST(1,3),TST(3),HST(3),1) 
      CALL TESUB1(XST(1,4),TST(4),HST(4),1) 
      CALL TESUB1(XST(1,6),TST(6),HST(6),1) 
      CALL TESUB1(XST(1,8),TST(8),HST(8),1) 
      CALL TESUB1(XST(1,9),TST(9),HST(9),1) 
      HST(10)=HST(9) 
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      CALL TESUB1(XST(1,11),TST(11),HST(11),0) 
      CALL TESUB1(XST(1,13),TST(13),HST(13),0) 
      FTM(1)=VPOS(1)*VRNG(1)/100.0 
      FTM(2)=VPOS(2)*VRNG(2)/100.0 
      FTM(3)=VPOS(3)*(1.D0-IDV(6))*VRNG(3)/100.0 
      FTM(4)=VPOS(4)*(1.D0-IDV(7)*0.2D0) 
     .*VRNG(4)/100.0+1.D-10 
      FTM(11)=VPOS(7)*VRNG(7)/100.0 
      FTM(13)=VPOS(8)*VRNG(8)/100.0 
      UAC=VPOS(9)*VRNG(9)*(1.D0+TESUB8(9,TIME))/100.0 
      FWR=VPOS(10)*VRNG(10)/100.0 
      FWS=VPOS(11)*VRNG(11)/100.0 
      AGSP=(VPOS(12)+150.0)/100.0 
      DLP=PTV-PTR 
      IF(DLP.LT.0.0)DLP=0.0 
      FLMS=1937.6D0*DSQRT(DLP) 
      FTM(6)=FLMS/XMWS(6) 
      DLP=PTR-PTS 
      IF(DLP.LT.0.0)DLP=0.0 
      FLMS=4574.21D0*DSQRT(DLP) 
     .*(1.D0-0.25D0*TESUB8(12,TIME)) 
      FTM(8)=FLMS/XMWS(8) 
      DLP=PTS-760.0 
      IF(DLP.LT.0.0)DLP=0.0 
      FLMS=VPOS(6)*0.151169D0*DSQRT(DLP) 
      FTM(10)=FLMS/XMWS(10) 
      PR=PTV/PTS 
      IF(PR.LT.1.0)PR=1.0 
      IF(PR.GT.CPPRMX)PR=CPPRMX 
      FLCOEF=CPFLMX/1.197D0 
      FLMS=CPFLMX+FLCOEF*(1.0-PR**3) 
      CPDH=FLMS*(TCS+273.15D0)*1.8D-6*1.9872D0 
     .*(PTV-PTS)/(XMWS(9)*PTS) 
      DLP=PTV-PTS 
      IF(DLP.LT.0.0)DLP=0.0 
      FLMS=FLMS-VPOS(5)*53.349D0*DSQRT(DLP) 
      IF(FLMS.LT.1.D-3)FLMS=1.D-3 
      FTM(9)=FLMS/XMWS(9) 
      HST(9)=HST(9)+CPDH/FTM(9) 
      DO 5020 I=1,8 
      FCM(I,1)=XST(I,1)*FTM(1) 
      FCM(I,2)=XST(I,2)*FTM(2) 
      FCM(I,3)=XST(I,3)*FTM(3) 
      FCM(I,4)=XST(I,4)*FTM(4) 
      FCM(I,6)=XST(I,6)*FTM(6) 
      FCM(I,8)=XST(I,8)*FTM(8) 
      FCM(I,9)=XST(I,9)*FTM(9) 
      FCM(I,10)=XST(I,10)*FTM(10) 
      FCM(I,11)=XST(I,11)*FTM(11) 
      FCM(I,13)=XST(I,13)*FTM(13) 
 5020 CONTINUE 
      IF(FTM(11).GT.0.1)THEN 
      IF(TCC.GT.170.)THEN 
      TMPFAC=TCC-120.262 
      ELSEIF(TCC.LT.5.292)THEN 
      TMPFAC=0.1 
      ELSE 
      TMPFAC=363.744/(177.-TCC)-2.22579488 
      ENDIF 
      VOVRL=FTM(4)/FTM(11)*TMPFAC 
      SFR(4)=8.5010*VOVRL/(1.0+8.5010*VOVRL) 
      SFR(5)=11.402*VOVRL/(1.0+11.402*VOVRL) 
      SFR(6)=11.795*VOVRL/(1.0+11.795*VOVRL) 
      SFR(7)=0.0480*VOVRL/(1.0+0.0480*VOVRL) 
      SFR(8)=0.0242*VOVRL/(1.0+0.0242*VOVRL) 
      ELSE 
      SFR(4)=0.9999 
      SFR(5)=0.999 
      SFR(6)=0.999 
      SFR(7)=0.99 
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      SFR(8)=0.98 
      END IF 
      DO 6010 I=1,8 
      FIN(I)=0.0 
      FIN(I)=FIN(I)+FCM(I,4) 
      FIN(I)=FIN(I)+FCM(I,11) 
 6010 CONTINUE 
      FTM(5)=0.0 
      FTM(12)=0.0 
      DO 6020 I=1,8 
      FCM(I,5)=SFR(I)*FIN(I) 
      FCM(I,12)=FIN(I)-FCM(I,5) 
      FTM(5)=FTM(5)+FCM(I,5) 
      FTM(12)=FTM(12)+FCM(I,12) 
 6020 CONTINUE 
      DO 6030 I=1,8 
      XST(I,5)=FCM(I,5)/FTM(5) 
      XST(I,12)=FCM(I,12)/FTM(12) 
 6030 CONTINUE 
      TST(5)=TCC 
      TST(12)=TCC 
      CALL TESUB1(XST(1,5),TST(5),HST(5),1) 
      CALL TESUB1(XST(1,12),TST(12),HST(12),0) 
      FTM(7)=FTM(6) 
      HST(7)=HST(6) 
      TST(7)=TST(6) 
      DO 6130 I=1,8 
      XST(I,7)=XST(I,6) 
      FCM(I,7)=FCM(I,6) 
 6130 CONTINUE 
      IF(VLR/7.8.GT.50.0)THEN 
      UARLEV=1.0 
      ELSEIF(VLR/7.8.LT.10.0)THEN 
      UARLEV=0.0 
      ELSE 
      UARLEV=0.025*VLR/7.8-0.25 
      ENDIF 
      UAR=UARLEV*(-0.5*AGSP**2 
     .+2.75*AGSP-2.5)*855490.D-6 
      QUR=UAR*(TWR-TCR) 
     .*(1.D0-0.35D0*TESUB8(10,TIME)) 
      UAS=0.404655*(1.0-1.0/(1.0+(FTM(8)/3528.73)**4)) 
      QUS=UAS*(TWS-TST(8)) 
     .*(1.D0-0.25D0*TESUB8(11,TIME)) 
      QUC=0.D0 
      IF(TCC.LT.100.)QUC=UAC*(100.0-TCC) 
      XMEAS(1)=FTM(3)*0.359/35.3145 
      XMEAS(2)=FTM(1)*XMWS(1)*0.454 
      XMEAS(3)=FTM(2)*XMWS(2)*0.454 
      XMEAS(4)=FTM(4)*0.359/35.3145 
      XMEAS(5)=FTM(9)*0.359/35.3145 
      XMEAS(6)=FTM(6)*0.359/35.3145 
      XMEAS(7)=(PTR-760.0)/760.0*101.325 
      XMEAS(8)=(VLR-84.6)/666.7*100.0 
      XMEAS(9)=TCR 
      XMEAS(10)=FTM(10)*0.359/35.3145 
      XMEAS(11)=TCS 
      XMEAS(12)=(VLS-27.5)/290.0*100.0 
      XMEAS(13)=(PTS-760.0)/760.0*101.325 
      XMEAS(14)=FTM(11)/DLS/35.3145 
      XMEAS(15)=(VLC-78.25)/VTC*100.0 
      XMEAS(16)=(PTV-760.0)/760.0*101.325 
      XMEAS(17)=FTM(13)/DLC/35.3145 
      XMEAS(18)=TCC 
      XMEAS(19)=QUC*1.04D3*0.454 
      XMEAS(20)=CPDH*0.0003927D6 
      XMEAS(20)=CPDH*0.29307D3 
      XMEAS(21)=TWR 
      XMEAS(22)=TWS 
      ISD=0 
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      IF(XMEAS(7).GT.3000.0)ISD=1 
      IF(VLR/35.3145.GT.24.0)ISD=1 
      IF(VLR/35.3145.LT.2.0)ISD=1 
      IF(XMEAS(9).GT.175.0)ISD=1 
      IF(VLS/35.3145.GT.12.0)ISD=1 
      IF(VLS/35.3145.LT.1.0)ISD=1 
      IF(VLC/35.3145.GT.8.0)ISD=1 
      IF(VLC/35.3145.LT.1.0)ISD=1 
      IF(TIME.GT.0.0.AND.ISD.EQ.0)THEN 
      DO 6500 I=1,22 
      CALL TESUB6(XNS(I),XMNS) 
      XMEAS(I)=XMEAS(I)+XMNS 
 6500 CONTINUE 
      ENDIF 
      XCMP(23)=XST(1,7)*100.0 
      XCMP(24)=XST(2,7)*100.0 
      XCMP(25)=XST(3,7)*100.0 
      XCMP(26)=XST(4,7)*100.0 
      XCMP(27)=XST(5,7)*100.0 
      XCMP(28)=XST(6,7)*100.0 
      XCMP(29)=XST(1,10)*100.0 
      XCMP(30)=XST(2,10)*100.0 
      XCMP(31)=XST(3,10)*100.0 
      XCMP(32)=XST(4,10)*100.0 
      XCMP(33)=XST(5,10)*100.0 
      XCMP(34)=XST(6,10)*100.0 
      XCMP(35)=XST(7,10)*100.0 
      XCMP(36)=XST(8,10)*100.0 
      XCMP(37)=XST(4,13)*100.0 
      XCMP(38)=XST(5,13)*100.0 
      XCMP(39)=XST(6,13)*100.0 
      XCMP(40)=XST(7,13)*100.0 
      XCMP(41)=XST(8,13)*100.0 
      IF(TIME.EQ.0.D0)THEN 
      DO 7010 I=23,41 
      XDEL(I)=XCMP(I) 
      XMEAS(I)=XCMP(I) 
 7010 CONTINUE 
      TGAS=0.1 
      TPROD=0.25 
      ENDIF 
      IF(TIME.GE.TGAS)THEN 
      DO 7020 I=23,36 
      XMEAS(I)=XDEL(I) 
      CALL TESUB6(XNS(I),XMNS) 
      XMEAS(I)=XMEAS(I)+XMNS 
      XDEL(I)=XCMP(I) 
 7020 CONTINUE 
      TGAS=TGAS+0.1 
      ENDIF 
      IF(TIME.GE.TPROD)THEN 
      DO 7030 I=37,41 
      XMEAS(I)=XDEL(I) 
      CALL TESUB6(XNS(I),XMNS) 
      XMEAS(I)=XMEAS(I)+XMNS 
      XDEL(I)=XCMP(I) 
 7030 CONTINUE 
      TPROD=TPROD+0.25 
      ENDIF 
      DO 9010 I=1,8 
      YP(I)=FCM(I,7)-FCM(I,8)+CRXR(I) 
      YP(I+9)=FCM(I,8)-FCM(I,9)- 
     .FCM(I,10)-FCM(I,11) 
      YP(I+18)=FCM(I,12)-FCM(I,13) 
      YP(I+27)=FCM(I,1)+FCM(I,2)+ 
     .FCM(I,3)+FCM(I,5)+ 
     .FCM(I,9)-FCM(I,6) 
 9010 CONTINUE 
      YP(9)=HST(7)*FTM(7)- 
     .HST(8)*FTM(8)+RH+QUR 
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c  Here is the "correct" version of the separator energy balance: 
 
c YP(18)=HST(8)*FTM(8)- 
c    .(HST(9)*FTM(9)-cpdh)- 
c    .HST(10)*FTM(10)- 
c    .HST(11)*FTM(11)+ 
c    .QUS 
 
c  Here is the original version 
 
      YP(18)=HST(8)*FTM(8)- 
     .HST(9)*FTM(9)- 
     .HST(10)*FTM(10)- 
     .HST(11)*FTM(11)+ 
     .QUS 
 
      YP(27)=HST(4)*FTM(4)+ 
     .HST(11)*FTM(11)- 
     .HST(5)*FTM(5)- 
     .HST(13)*FTM(13)+ 
     .QUC 
      YP(36)=HST(1)*FTM(1)+ 
     .HST(2)*FTM(2)+ 
     .HST(3)*FTM(3)+ 
     .HST(5)*FTM(5)+ 
     .HST(9)*FTM(9)- 
     .HST(6)*FTM(6) 
      YP(37)=(FWR*500.53* 
     .(TCWR-TWR)-QUR*1.D6/1.8)/HWR 
      YP(38)=(FWS*500.53* 
     .(TCWS-TWS)-QUS*1.D6/1.8)/HWS 
      IVST(10)=IDV(14) 
      IVST(11)=IDV(15) 
      IVST(5)=IDV(19) 
      IVST(7)=IDV(19) 
      IVST(8)=IDV(19) 
      IVST(9)=IDV(19) 
      DO 9020 I=1,12 
      IF(TIME.EQ.0.D0 .OR. 
     .DABS(VCV(I)-XMV(I)).GT.VST(I)*IVST(I)) 
     .VCV(I)=XMV(I) 
      IF(VCV(I).LT.0.0)VCV(I)=0.0 
      IF(VCV(I).GT.100.0)VCV(I)=100.0 
      YP(I+38)=(VCV(I)-VPOS(I))/VTAU(I) 
 9020 CONTINUE 
      IF(TIME.GT.0.0 .AND. ISD.NE.0)THEN 
      DO 9030 I=1,NN 
      YP(I)=0.0 
 9030 CONTINUE 
      ENDIF 
      RETURN 
      END 
C 
C============================================================================= 
C 
      SUBROUTINE TEINIT(NN,TIME,YY,YP) 
C 
C       Initialization 
C 
C         Inputs: 
C 
C           NN   = Number of differential equations 
C 
C         Outputs: 
C 
C           Time = Current time(hrs) 
C           YY   = Current state values 
C           YP   = Current derivative values 
C 
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      DOUBLE PRECISION XMEAS,XMV 
      COMMON/PV/XMEAS(41),XMV(12) 
      INTEGER IDV 
      COMMON/DVEC/IDV(20) 
      DOUBLE PRECISION G 
      COMMON/RANDSD/G 
      DOUBLE PRECISION 
     .UCLR,UCVR,UTLR,UTVR, 
     .XLR,XVR,ETR,ESR, 
     .TCR,TKR,DLR, 
     .VLR,VVR,VTR, 
     .PTR,PPR, 
     .CRXR,RR,RH, 
     .FWR,TWR,QUR,HWR,UAR, 
     .UCLS,UCVS,UTLS,UTVS, 
     .XLS,XVS,ETS,ESS, 
     .TCS,TKS,DLS, 
     .VLS,VVS,VTS, 
     .PTS,PPS, 
     .FWS,TWS,QUS,HWS, 
     .UCLC,UTLC,XLC, 
     .ETC,ESC,TCC,DLC, 
     .VLC,VTC,QUC, 
     .UCVV,UTVV,XVV, 
     .ETV,ESV,TCV,TKV, 
     .VTV,PTV, 
     .VCV,VRNG,VTAU, 
     .FTM, 
     .FCM,XST,XMWS, 
     .HST,TST,SFR, 
     .CPFLMX,CPPRMX,CPDH, 
     .TCWR,TCWS, 
     .HTR,AGSP, 
     .XDEL,XNS, 
     .TGAS,TPROD,VST 
      INTEGER 
     .IVST 
      COMMON/TEPROC/ 
     .UCLR(8),UCVR(8),UTLR,UTVR, 
     .XLR(8),XVR(8),ETR,ESR, 
     .TCR,TKR,DLR, 
     .VLR,VVR,VTR, 
     .PTR,PPR(8), 
     .CRXR(8),RR(4),RH, 
     .FWR,TWR,QUR,HWR,UAR, 
     .UCLS(8),UCVS(8),UTLS,UTVS, 
     .XLS(8),XVS(8),ETS,ESS, 
     .TCS,TKS,DLS, 
     .VLS,VVS,VTS, 
     .PTS,PPS(8), 
     .FWS,TWS,QUS,HWS, 
     .UCLC(8),UTLC,XLC(8), 
     .ETC,ESC,TCC,DLC, 
     .VLC,VTC,QUC, 
     .UCVV(8),UTVV,XVV(8), 
     .ETV,ESV,TCV,TKV, 
     .VTV,PTV, 
     .VCV(12),VRNG(12),VTAU(12), 
     .FTM(13), 
     .FCM(8,13),XST(8,13),XMWS(13), 
     .HST(13),TST(13),SFR(8), 
     .CPFLMX,CPPRMX,CPDH, 
     .TCWR,TCWS, 
     .HTR(3),AGSP, 
     .XDEL(41),XNS(41), 
     .TGAS,TPROD,VST(12),IVST(12) 
      INTEGER IDVWLK 
      DOUBLE PRECISION 
     .ADIST, 
     .BDIST, 
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     .CDIST, 
     .DDIST, 
     .TLAST, 
     .TNEXT, 
     .HSPAN, 
     .HZERO, 
     .SSPAN, 
     .SZERO, 
     .SPSPAN 
      COMMON/WLK/ 
     .ADIST(12), 
     .BDIST(12), 
     .CDIST(12), 
     .DDIST(12), 
     .TLAST(12), 
     .TNEXT(12), 
     .HSPAN(12), 
     .HZERO(12), 
     .SSPAN(12), 
     .SZERO(12), 
     .SPSPAN(12), 
     .IDVWLK(12) 
      DOUBLE PRECISION 
     .AVP,BVP,CVP, 
     .AH,BH,CH, 
     .AG,BG,CG, 
     .AV, 
     .AD,BD,CD, 
     .XMW 
      COMMON/CONST/ 
     .AVP(8),BVP(8),CVP(8), 
     .AH(8),BH(8),CH(8), 
     .AG(8),BG(8),CG(8), 
     .AV(8), 
     .AD(8),BD(8),CD(8), 
     .XMW(8) 
      INTEGER I,NN 
      DOUBLE PRECISION YY(NN), 
     .YP(NN), 
     .TIME 
      XMW(1)=2.0 
      XMW(2)=25.4 
      XMW(3)=28.0 
      XMW(4)=32.0 
      XMW(5)=46.0 
      XMW(6)=48.0 
      XMW(7)=62.0 
      XMW(8)=76.0 
      AVP(1)=0.0 
      AVP(2)=0.0 
      AVP(3)=0.0 
      AVP(4)=15.92 
      AVP(5)=16.35 
      AVP(6)=16.35 
      AVP(7)=16.43 
      AVP(8)=17.21 
      BVP(1)=0.0 
      BVP(2)=0.0 
      BVP(3)=0.0 
      BVP(4)=-1444.0 
      BVP(5)=-2114.0 
      BVP(6)=-2114.0 
      BVP(7)=-2748.0 
      BVP(8)=-3318.0 
      CVP(1)=0.0 
      CVP(2)=0.0 
      CVP(3)=0.0 
      CVP(4)=259.0 
      CVP(5)=265.5 
      CVP(6)=265.5 
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      CVP(7)=232.9 
      CVP(8)=249.6 
      AD(1)=1.0 
      AD(2)=1.0 
      AD(3)=1.0 
      AD(4)=23.3 
      AD(5)=33.9 
      AD(6)=32.8 
      AD(7)=49.9 
      AD(8)=50.5 
      BD(1)=0.0 
      BD(2)=0.0 
      BD(3)=0.0 
      BD(4)=-0.0700 
      BD(5)=-0.0957 
      BD(6)=-0.0995 
      BD(7)=-0.0191 
      BD(8)=-0.0541 
      CD(1)=0.0 
      CD(2)=0.0 
      CD(3)=0.0 
      CD(4)=-0.0002 
      CD(5)=-0.000152 
      CD(6)=-0.000233 
      CD(7)=-0.000425 
      CD(8)=-0.000150 
      AH(1)=1.0D-6 
      AH(2)=1.0D-6 
      AH(3)=1.0D-6 
      AH(4)=0.960D-6 
      AH(5)=0.573D-6 
      AH(6)=0.652D-6 
      AH(7)=0.515D-6 
      AH(8)=0.471D-6 
      BH(1)=0.0 
      BH(2)=0.0 
      BH(3)=0.0 
      BH(4)=8.70D-9 
      BH(5)=2.41D-9 
      BH(6)=2.18D-9 
      BH(7)=5.65D-10 
      BH(8)=8.70D-10 
      CH(1)=0.0 
      CH(2)=0.0 
      CH(3)=0.0 
      CH(4)=4.81D-11 
      CH(5)=1.82D-11 
      CH(6)=1.94D-11 
      CH(7)=3.82D-12 
      CH(8)=2.62D-12 
      AV(1)=1.0D-6 
      AV(2)=1.0D-6 
      AV(3)=1.0D-6 
      AV(4)=86.7D-6 
      AV(5)=160.D-6 
      AV(6)=160.D-6 
      AV(7)=225.D-6 
      AV(8)=209.D-6 
      AG(1)=3.411D-6 
      AG(2)=0.3799D-6 
      AG(3)=0.2491D-6 
      AG(4)=0.3567D-6 
      AG(5)=0.3463D-6 
      AG(6)=0.3930D-6 
      AG(7)=0.170D-6 
      AG(8)=0.150D-6 
      BG(1)=7.18D-10 
      BG(2)=1.08D-9 
      BG(3)=1.36D-11 
      BG(4)=8.51D-10 
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      BG(5)=8.96D-10 
      BG(6)=1.02D-9 
      BG(7)=0.D0 
      BG(8)=0.D0 
      CG(1)=6.0D-13 
      CG(2)=-3.98D-13 
      CG(3)=-3.93D-14 
      CG(4)=-3.12D-13 
      CG(5)=-3.27D-13 
      CG(6)=-3.12D-13 
      CG(7)=0.D0 
      CG(8)=0.D0 
      YY(1)=10.40491389 
      YY(2)=4.363996017 
      YY(3)=7.570059737 
      YY(4)=0.4230042431 
      YY(5)=24.15513437 
      YY(6)=2.942597645 
      YY(7)=154.3770655 
      YY(8)=159.1865960 
      YY(9)=2.808522723 
      YY(10)=63.75581199 
      YY(11)=26.74026066 
      YY(12)=46.38532432 
      YY(13)=0.2464521543 
      YY(14)=15.20484404 
      YY(15)=1.852266172 
      YY(16)=52.44639459 
      YY(17)=41.20394008 
      YY(18)=0.5699317760 
      YY(19)=0.4306056376 
      YY(20)=7.9906200783D-03 
      YY(21)=0.9056036089 
      YY(22)=1.6054258216D-02 
      YY(23)=0.7509759687 
      YY(24)=8.8582855955D-02 
      YY(25)=48.27726193 
      YY(26)=39.38459028 
      YY(27)=0.3755297257 
      YY(28)=107.7562698 
      YY(29)=29.77250546 
      YY(30)=88.32481135 
      YY(31)=23.03929507 
      YY(32)=62.85848794 
      YY(33)=5.546318688 
      YY(34)=11.92244772 
      YY(35)=5.555448243 
      YY(36)=0.9218489762 
      YY(37)=94.59927549 
      YY(38)=77.29698353 
      YY(39)=63.05263039 
      YY(40)=53.97970677 
      YY(41)=24.64355755 
      YY(42)=61.30192144 
      YY(43)=22.21000000 
      YY(44)=40.06374673 
      YY(45)=38.10034370 
      YY(46)=46.53415582 
      YY(47)=47.44573456 
      YY(48)=41.10581288 
      YY(49)=18.11349055 
      YY(50)=50.00000000 
      DO 200 I=1,12 
      XMV(I)=YY(I+38) 
      VCV(I)=XMV(I) 
      VST(I)=2.0D0 
      IVST(I)=0 
 200  CONTINUE 
      VRNG(1)=400.00 
      VRNG(2)=400.00 
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      VRNG(3)=100.00 
      VRNG(4)=1500.00 
      VRNG(7)=1500.00 
      VRNG(8)=1000.00 
      VRNG(9)=0.03 
      VRNG(10)=1000. 
      VRNG(11)=1200.0 
      VTR=1300.0 
      VTS=3500.0 
      VTC=156.5 
      VTV=5000.0 
      HTR(1)=0.06899381054D0 
      HTR(2)=0.05D0 
      HWR=7060. 
      HWS=11138. 
      SFR(1)=0.99500 
      SFR(2)=0.99100 
      SFR(3)=0.99000 
      SFR(4)=0.91600 
      SFR(5)=0.93600 
      SFR(6)=0.93800 
      SFR(7)=5.80000D-02 
      SFR(8)=3.01000D-02 
      XST(1,1)=0.0 
      XST(2,1)=0.0001 
      XST(3,1)=0.0 
      XST(4,1)=0.9999 
      XST(5,1)=0.0 
      XST(6,1)=0.0 
      XST(7,1)=0.0 
      XST(8,1)=0.0 
      TST(1)=45. 
      XST(1,2)=0.0 
      XST(2,2)=0.0 
      XST(3,2)=0.0 
      XST(4,2)=0.0 
      XST(5,2)=0.9999 
      XST(6,2)=0.0001 
      XST(7,2)=0.0 
      XST(8,2)=0.0 
      TST(2)=45. 
      XST(1,3)=0.9999 
      XST(2,3)=0.0001 
      XST(3,3)=0.0 
      XST(4,3)=0.0 
      XST(5,3)=0.0 
      XST(6,3)=0.0 
      XST(7,3)=0.0 
      XST(8,3)=0.0 
      TST(3)=45. 
      XST(1,4)=0.4850 
      XST(2,4)=0.0050 
      XST(3,4)=0.5100 
      XST(4,4)=0.0 
      XST(5,4)=0.0 
      XST(6,4)=0.0 
      XST(7,4)=0.0 
      XST(8,4)=0.0 
      TST(4)=45. 
      CPFLMX=280275. 
      CPPRMX=1.3 
      VTAU(1)=8. 
      VTAU(2)=8. 
      VTAU(3)=6. 
      VTAU(4)=9. 
      VTAU(5)=7. 
      VTAU(6)=5. 
      VTAU(7)=5. 
      VTAU(8)=5. 
      VTAU(9)=120. 
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      VTAU(10)=5. 
      VTAU(11)=5. 
      VTAU(12)=5. 
      DO 300 I=1,12 
      VTAU(I)=VTAU(I)/3600. 
 300  CONTINUE 
      G=1431655765.D0 
      XNS(1)=0.0012D0 
      XNS(2)=18.000D0 
      XNS(3)=22.000D0 
      XNS(4)=0.0500D0 
      XNS(5)=0.2000D0 
      XNS(6)=0.2100D0 
      XNS(7)=0.3000D0 
      XNS(8)=0.5000D0 
      XNS(9)=0.0100D0 
      XNS(10)=0.0017D0 
      XNS(11)=0.0100D0 
      XNS(12)=1.0000D0 
      XNS(13)=0.3000D0 
      XNS(14)=0.1250D0 
      XNS(15)=1.0000D0 
      XNS(16)=0.3000D0 
      XNS(17)=0.1150D0 
      XNS(18)=0.0100D0 
      XNS(19)=1.1500D0 
      XNS(20)=0.2000D0 
      XNS(21)=0.0100D0 
      XNS(22)=0.0100D0 
      XNS(23)=0.250D0 
      XNS(24)=0.100D0 
      XNS(25)=0.250D0 
      XNS(26)=0.100D0 
      XNS(27)=0.250D0 
      XNS(28)=0.025D0 
      XNS(29)=0.250D0 
      XNS(30)=0.100D0 
      XNS(31)=0.250D0 
      XNS(32)=0.100D0 
      XNS(33)=0.250D0 
      XNS(34)=0.025D0 
      XNS(35)=0.050D0 
      XNS(36)=0.050D0 
      XNS(37)=0.010D0 
      XNS(38)=0.010D0 
      XNS(39)=0.010D0 
      XNS(40)=0.500D0 
      XNS(41)=0.500D0 
      DO 500 I=1,20 
      IDV(I)=0 
 500  CONTINUE 
      HSPAN(1)=0.2D0 
      HZERO(1)=0.5D0 
      SSPAN(1)=0.03D0 
      SZERO(1)=0.485D0 
      SPSPAN(1)=0.D0 
      HSPAN(2)=0.7D0 
      HZERO(2)=1.0D0 
      SSPAN(2)=.003D0 
      SZERO(2)=.005D0 
      SPSPAN(2)=0.D0 
      HSPAN(3)=0.25D0 
      HZERO(3)=0.5D0 
      SSPAN(3)=10.D0 
      SZERO(3)=45.D0 
      SPSPAN(3)=0.D0 
      HSPAN(4)=0.7D0 
      HZERO(4)=1.0D0 
      SSPAN(4)=10.D0 
      SZERO(4)=45.D0 
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      SPSPAN(4)=0.D0 
      HSPAN(5)=0.15D0 
      HZERO(5)=0.25D0 
      SSPAN(5)=10.D0 
      SZERO(5)=35.D0 
      SPSPAN(5)=0.D0 
      HSPAN(6)=0.15D0 
      HZERO(6)=0.25D0 
      SSPAN(6)=10.D0 
      SZERO(6)=40.D0 
      SPSPAN(6)=0.D0 
      HSPAN(7)=1.D0 
      HZERO(7)=2.D0 
      SSPAN(7)=0.25D0 
      SZERO(7)=1.0D0 
      SPSPAN(7)=0.D0 
      HSPAN(8)=1.D0 
      HZERO(8)=2.D0 
      SSPAN(8)=0.25D0 
      SZERO(8)=1.0D0 
      SPSPAN(8)=0.D0 
      HSPAN(9)=0.4D0 
      HZERO(9)=0.5D0 
      SSPAN(9)=0.25D0 
      SZERO(9)=0.0D0 
      SPSPAN(9)=0.D0 
      HSPAN(10)=1.5D0 
      HZERO(10)=2.0D0 
      SSPAN(10)=0.0D0 
      SZERO(10)=0.0D0 
      SPSPAN(10)=0.D0 
      HSPAN(11)=2.0D0 
      HZERO(11)=3.0D0 
      SSPAN(11)=0.0D0 
      SZERO(11)=0.0D0 
      SPSPAN(11)=0.D0 
      HSPAN(12)=1.5D0 
      HZERO(12)=2.0D0 
      SSPAN(12)=0.0D0 
      SZERO(12)=0.0D0 
      SPSPAN(12)=0.D0 
      DO 550 I=1,12 
      TLAST(I)=0.D0 
      TNEXT(I)=0.1D0 
      ADIST(I)=SZERO(I) 
      BDIST(I)=0.D0 
      CDIST(I)=0.D0 
      DDIST(I)=0.D0 
  550 CONTINUE 
      TIME=0.0 
      CALL TEFUNC(NN,TIME,YY,YP) 
      RETURN 
      END 
C 
C============================================================================= 
C 
      SUBROUTINE TESUB1(Z,T,H,ITY) 
      DOUBLE PRECISION 
     .AVP,BVP,CVP, 
     .AH,BH,CH, 
     .AG,BG,CG, 
     .AV, 
     .AD,BD,CD, 
     .XMW 
      COMMON/CONST/ 
     .AVP(8),BVP(8),CVP(8), 
     .AH(8),BH(8),CH(8), 
     .AG(8),BG(8),CG(8), 
     .AV(8), 
     .AD(8),BD(8),CD(8), 
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     .XMW(8) 
      DOUBLE PRECISION Z(8),R,T,H,HI 
      INTEGER ITY,I 
      IF(ITY.EQ.0)THEN 
      H=0.0D0 
      DO 100 I=1,8 
      HI=T*(AH(I)+BH(I)*T/2.D0+CH(I)*T**2/3.D0) 
      HI=1.8D0*HI 
      H=H+Z(I)*XMW(I)*HI 
 100  CONTINUE 
      ELSE 
      H=0.0D0 
      DO 200 I=1,8 
      HI=T*(AG(I)+BG(I)*T/2.D0+ 
     .CG(I)*T**2/3.D0) 
      HI=1.8D0*HI 
      HI=HI+AV(I) 
      H=H+Z(I)*XMW(I)*HI 
 200  CONTINUE 
      END IF 
      IF(ITY.EQ.2)THEN 
      R=3.57696D0/1.D6 
      H=H-R*(T+273.15) 
      ENDIF 
      RETURN 
      END 
      SUBROUTINE TESUB2(Z,T,H,ITY) 
      DOUBLE PRECISION 
     .AVP,BVP,CVP, 
     .AH,BH,CH, 
     .AG,BG,CG, 
     .AV, 
     .AD,BD,CD, 
     .XMW 
      COMMON/CONST/ 
     .AVP(8),BVP(8),CVP(8), 
     .AH(8),BH(8),CH(8), 
     .AG(8),BG(8),CG(8), 
     .AV(8), 
     .AD(8),BD(8),CD(8), 
     .XMW(8) 
      INTEGER ITY,J 
      DOUBLE PRECISION Z(8),T,H,TIN,HTEST,ERR,DH,DT 
      TIN=T 
      DO 250 J=1,100 
      CALL TESUB1(Z,T,HTEST,ITY) 
      ERR=HTEST-H 
      CALL TESUB3(Z,T,DH,ITY) 
      DT=-ERR/DH 
      T=T+DT 
 250  IF(DABS(DT).LT.1.D-12)GO TO 300 
      T=TIN 
 300  RETURN 
      END 
      SUBROUTINE TESUB3(Z,T,DH,ITY) 
      DOUBLE PRECISION 
     .AVP,BVP,CVP, 
     .AH,BH,CH, 
     .AG,BG,CG, 
     .AV, 
     .AD,BD,CD, 
     .XMW 
      COMMON/CONST/ 
     .AVP(8),BVP(8),CVP(8), 
     .AH(8),BH(8),CH(8), 
     .AG(8),BG(8),CG(8), 
     .AV(8), 
     .AD(8),BD(8),CD(8), 
     .XMW(8) 
      INTEGER ITY,I 
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      DOUBLE PRECISION Z(8),R,T,DH,DHI 
      IF(ITY.EQ.0)THEN 
      DH=0.0D0 
      DO 100 I=1,8 
      DHI=AH(I)+BH(I)*T+CH(I)*T**2 
      DHI=1.8D0*DHI 
      DH=DH+Z(I)*XMW(I)*DHI 
 100  CONTINUE 
      ELSE 
      DH=0.0D0 
      DO 200 I=1,8 
      DHI=AG(I)+BG(I)*T+CG(I)*T**2 
      DHI=1.8D0*DHI 
      DH=DH+Z(I)*XMW(I)*DHI 
 200  CONTINUE 
      END IF 
      IF(ITY.EQ.2)THEN 
      R=3.57696D0/1.D6 
      DH=DH-R 
      ENDIF 
      RETURN 
      END 
      SUBROUTINE TESUB4(X,T,R) 
      DOUBLE PRECISION 
     .AVP,BVP,CVP, 
     .AH,BH,CH, 
     .AG,BG,CG, 
     .AV, 
     .AD,BD,CD, 
     .XMW 
      COMMON/CONST/ 
     .AVP(8),BVP(8),CVP(8), 
     .AH(8),BH(8),CH(8), 
     .AG(8),BG(8),CG(8), 
     .AV(8), 
     .AD(8),BD(8),CD(8), 
     .XMW(8) 
      DOUBLE PRECISION V,R,X(8),T 
      INTEGER I 
      V=0.0 
      DO 10 I=1,8 
      V=V+X(I)*XMW(I)/ 
     .(AD(I)+(BD(I)+CD(I)*T)*T) 
   10 CONTINUE 
      R=1.0/V 
      RETURN 
      END 
      SUBROUTINE TESUB5(S,SP,ADIST,BDIST,CDIST,DDIST,TLAST, 
     .TNEXT,HSPAN,HZERO,SSPAN,SZERO,SPSPAN,IDVFLAG) 
      DOUBLE PRECISION 
     .S, 
     .SP, 
     .H, 
     .S1, 
     .S1P, 
     .ADIST, 
     .BDIST, 
     .CDIST, 
     .DDIST, 
     .TLAST, 
     .TNEXT, 
     .HSPAN, 
     .HZERO, 
     .SSPAN, 
     .SZERO, 
     .SPSPAN, 
     .TESUB7 
      INTEGER  I,IDVFLAG 
      I=-1 
      H=HSPAN*TESUB7(I)+HZERO 
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      S1=SSPAN*TESUB7(I)*IDVFLAG+SZERO 
      S1P=SPSPAN*TESUB7(I)*IDVFLAG 
      ADIST=S 
      BDIST=SP 
      CDIST=(3.D0*(S1-S)-H*(S1P+2.D0*SP))/H**2 
      DDIST=(2.D0*(S-S1)+H*(S1P+SP))/H**3 
      TNEXT=TLAST+H 
      RETURN 
      END 
      SUBROUTINE TESUB6(STD,X) 
      INTEGER I 
      DOUBLE PRECISION STD,X,TESUB7 
      X=0.D0 
 DO I=1,12 
      X=X+TESUB7(I) 
 end do 
 X=(X-6.D0)*STD 
 RETURN 
      END 
      DOUBLE PRECISION FUNCTION TESUB7(I) 
      INTEGER I 
      DOUBLE PRECISION G,DMOD 
      COMMON/RANDSD/G 
      G=DMOD(G*9228907.D0,4294967296.D0) 
      IF(I.GE.0)TESUB7=G/4294967296.D0 
      IF(I.LT.0)TESUB7=2.D0*G/4294967296.D0-1.D0 
      RETURN 
      END 
      DOUBLE PRECISION FUNCTION TESUB8(I,T) 
      INTEGER  I 
      DOUBLE PRECISION  H,T 
      INTEGER IDVWLK 
      DOUBLE PRECISION 
     .ADIST, 
     .BDIST, 
     .CDIST, 
     .DDIST, 
     .TLAST, 
     .TNEXT, 
     .HSPAN, 
     .HZERO, 
     .SSPAN, 
     .SZERO, 
     .SPSPAN 
      COMMON/WLK/ 
     .ADIST(12), 
     .BDIST(12), 
     .CDIST(12), 
     .DDIST(12), 
     .TLAST(12), 
     .TNEXT(12), 
     .HSPAN(12), 
     .HZERO(12), 
     .SSPAN(12), 
     .SZERO(12), 
     .SPSPAN(12), 
     .IDVWLK(12) 
      H=T-TLAST(I) 
      TESUB8=ADIST(I)+H*(BDIST(I)+H*(CDIST(I)+H*DDIST(I))) 
      RETURN 
      END 
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Appendix C: Basic MATLAB codes 

This appendix summarizes the MATLAB codes used in this work. 

Key MATLAB codes for the mixing tank process presented in chapter 3 

 
clc 
clear all 
format long 
warning off all 
%%%%%%% MINIMIZATION OF THE VOLUME %%%%%%%%%%% 
%%%%% Introduding the initial values for Kc,z and Tsp %%%%%%%%% 
load x0 %loads the vectors x0,lb and ub. 
gamma=1; % Multiples of gamma are to be used in the optimization... 
par=[0;x0(3);370;0.1;0;0.15;0;x0(4);gamma;298;0.015;2.0;0.9]; 
options=optimset('largeScale','off','Display','iter','TolX',1e-1,... 
    'TolFun',1e-1,'TolCon',1e-2,'DiffMinChange',0.01,'DiffMaxChange',1,... 
    'MaxFunEvals',300); 
 [xsol,Vd,exitflag,output,lambda,grad,hessian]=fmincon(@(xsol)objfun1... 
     (xsol,par),x0,[],[],[],[],lb,ub,@(xsol)cofun(xsol,par),options); 
 
function f=objfun1(xsol,par) 
  
%%%%%%% OBJECTIVE FUNTION FOR THE MIXING TANK: Vd %%%%%%%%%%% 
OPT=optimset('largeScale','off','MaxTime',720000,'Maxiter',1000,... 
    'MaxFunEvals',1000,'Display','iter','TolFun',1e-3,'TolX',1e-3,... 
    'DiffMaxChange',0.1,'DiffMinChange',1e-3); 
  
[Fhopt Vd]=fmincon(@(Fhopt)Id(Fhopt,xsol,par,1),0.15,[],[],[],[],0.05,0.15,[],OPT); 
f=-Vd; 
  
function fval=Id(xsol,Fh,par,flag) 
  
 
par(6)=Fh; 
par(2)=xsol(3); 
par(7)=-par(6)*(par(3)-xsol(3))/(par(10)-xsol(3)); 
par(1)=((par(6)+par(7))/xsol(2))^2; 
samper=timecon(xsol,par,par(5),1); % 1 for Volume, otherwise it's temperature  
[tout inputs ynon Fc]=equation(xsol,par,2*samper,2); 
in=inputs-par(3); 
out=ynon(:,1)-par(1); 
data=iddata(out,in,par(4)); 
[tmin,gamma]=lmitest(data); 
if flag==1 
    fval=-(par(1)+gamma*20*par(9)); 
else 
    fval=gamma; 
end 
 
function samper=timecon(xsol,par,flag,TV) 
[tout inputs ynon Fc]=equation(xsol,par,1000,1); 
Tinit=(par(6)*350+xsol(3)*par(10))/(xsol(3)+par(6)); 
if TV==1  
    out=ynon(:,1)-par(1); 
else 
    out=ynon(:,2)-Tinit; 
end 
if TV==1 
    kp=out(end)-out(1); 
    kp_t=63.2*kp/100; 
    index=find(out>=kp_t); 
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    samper=tout(index(3)); 
else 
    ymax=max(out); 
    y_settling=3*ymax/100; 
    init=find(out==ymax); 
    out_n=out(init:end); 
    index=find(out_n<=y_settling); 
    taop=0.25*tout(index(3)); 
    index=find(tout>=taop); 
    samper=tout(index(1)); 
end 
 
function [c,ceq]=cofun(xsol,par) 
 
OPT=optimset('largeScale','off','MaxTime',720000,'Maxiter',1000,... 
    'MaxFunEvals',1000,'Display','iter','TolFun',1e-3,'TolX',1e-3,... 
    'DiffMaxChange',0.1,'DiffMinChange',1e-3); 
 
%%% MINIMUM VOLUME CONSTRAIT %%%% 
[Fhopt gminV]=fmincon(@(Fhopt)Id(Fhopt,xsol,par,2),0.05,[],[],[],[],... 
    0.05,0.15,[],OPT); 
par(6)=Fhopt; 
par(2)=xsol(3); 
par(7)=-par(6)*(par(3)-xsol(3))/(par(10)-xsol(3)); 
par(1)=((par(6)+par(7))/xsol(2))^2; 
Vlim=gminV*20*par(9)-par(1)+par(13); 
%%% TEMPERATURE CONSTRAINT %%%% 
[Fhopt gammaT]=fmincon(@(Fhopt)IdT(Fhopt,xsol,par),0.15,[],[],[],[],... 
    0.05,0.15,[],OPT); 
par(6)=Fhopt; 
par(2)=xsol(3); 
par(7)=-par(6)*(par(3)-xsol(3))/(par(10)-xsol(3)); 
par(1)=((par(6)+par(7))/xsol(2))^2; 
upcon=xsol(3)+gammaT*20*par(9)-370; 
lowcon=300-xsol(3)+gammaT*20*par(9); 
%%% FC CONSTRAINT %%% 
[Fhopt gfcmax]=fmincon(@(Fhopt)IdFc(Fhopt,xsol,par,1),0.15,[],[],[],[],... 
    0.05,0.15,[],OPT); 
par(6)=Fhopt; 
par(2)=xsol(3); 
par(7)=-par(6)*(par(3)-xsol(3))/(par(10)-xsol(3)); 
par(1)=((par(6)+par(7))/xsol(2))^2; 
fcmax=par(7)+20*gfcmax*par(9)-par(12); 
  
[Fhopt gfcmin]=fmincon(@(Fhopt)IdFc(Fhopt,xsol,par,2),0.15,[],[],[],[],... 
    0.05,0.15,[],OPT); 
par(6)=Fhopt; 
par(2)=xsol(3); 
par(7)=-par(6)*(par(3)-xsol(3))/(par(10)-xsol(3)); 
par(1)=((par(6)+par(7))/xsol(2))^2; 
fcmin=par(7)+20*gfcmin*par(9)-par(12); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
c=[upcon;lowcon;Vlim;fcmin;fcmax]; 
ceq=[];  
 
function f=IdT(xsol,Fh,par) 
par(6)=Fh; 
par(2)=xsol(3); 
par(7)=-par(6)*(par(3)-xsol(3))/(par(10)-xsol(3)); 
par(1)=((par(6)+par(7))/xsol(2))^2; 
samper=timecon(xsol,par,par(5),0); % 1 for Volume, tepm otherwise 
[tout inputs ynon Fc]=equation(xsol,par,samper,2); 
in=inputs-par(3); 
out=ynon(:,2)-par(2); 
data=iddata(out,in,par(4)); 
[tmin,gammaT]=lmitest(data); 
f=-gammaT; 
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function f=IdFc(xsol,Fh,par,flag) 
  
par(6)=Fh; 
par(2)=xsol(3); 
par(7)=-par(6)*(par(3)-xsol(3))/(par(10)-xsol(3)); 
par(1)=((par(6)+par(7))/xsol(2))^2; 
samper=timecon(xsol,par,par(5),0); % 1 for Volume, otherwise it's temperature  
[tout inputs ynon Fc]=equation(xsol,par,samper,2); 
in=inputs-par(3); 
out=ynon(:,2)-par(2); 
data=iddata(out,in,par(4)); 
[tmin,gammaFc]=lmiperf(xsol,data,par); 
if flag==1 
    f=-gammaFc; 
else 
    f=gammaFc; 
end 
 
function [tmin gamma]=lmitest(data) 
lm=arx(data,[2 2 1]);  
lm=d2c(lm); %lm=pem(data,'sspar','can','dist','none','Ts',0,'init','zero','D',[]); 
kk=length(lm.da); 
da=[lm.da(2:end)' zeros(kk-1,kk-2)]; 
db=lm.db(2:end)'; 
dc=[]; 
dd=[]; 
[boxa mata mata0]=parambox(lm.a,da); 
%%%%% Robust stability test, Lyapunov function: A'*P+P*A<0 %%%%%%%%% 
[ma na]=size(mata); 
[ka la]=size(boxa); 
rowa=ma/ka; 
aux=zeros(rowa,na); 
setlmis([]) 
W=lmivar(1,[rowa 1]); 
for ia=1:la 
    a=0; 
    for r=1:ka 
        for j=1:rowa 
            for o=1:na 
                if mata(j+a,o)==1 
                    aux(j,o)=boxa(r,ia); 
                end 
            end 
        end 
        a=a+rowa; 
    end 
    A=mata0+aux; 
    lmiterm([ia 1 1 W],1,A,'s'); 
end 
lmiterm([la+1 1 1 0],1); 
lmiterm([-la-1 1 1 W],1,1); 
lmistab=getlmis; 
[tmin xfeasp]=feasp(lmistab); 
%%%%%%%%%%%%%%%%%  PERFORMANCE TEST   %%%%%%%%%%%%% 
[boxb matb matb0]=parambox(lm.b(:,1),db); 
[boxc matc matc0]=parambox(lm.c,dc); 
[boxd matd matd0]=parambox(lm.d(:,1),dd); 
[mb nb]=size(matb); 
[kb lb]=size(boxb); 
[mc nc]=size(matc); 
[kc lc]=size(boxc); 
[md nd]=size(matd); 
[kd ld]=size(boxd); 
aux=zeros(rowa,na); 
rowb=mb/kb; 
bux=zeros(rowb,nb); 
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rowc=mc/kc; 
cux=zeros(rowc,nc); 
rowd=md/kd; 
dux=zeros(rowd,nd); 
setlmis([]) 
X=lmivar(1,[rowa 1]); 
Y=lmivar(1,[1 1]); 
Z=lmivar(1,[rowd 1]); 
lmiterm([-1 1 1 X],1,1); 
lmiterm([-2 1 1 0],1); 
lmiterm([-3 1 1 0],1); 
z=4; 
%%%%introducing the First SS matrix 
for ia=1:la 
    a=0; 
    for r=1:ka 
        for j=1:rowa 
            for o=1:na 
                if mata(j+a,o)==1 
                    aux(j,o)=boxa(r,ia); 
                end 
            end 
        end 
        a=a+rowa; 
    end 
    A=mata0+aux; 
    %%%%introducing the second SS matrix 
    for ib=1:lb 
        a=0; 
        for r=1:kb 
            for j=1:rowb 
                for o=1:nb 
                    if matb(j+a,o)==1 
                        bux(j,o)=boxb(r,ib); 
                    end 
                end 
            end 
            a=a+rowb; 
        end 
        B=matb0+bux; 
        %%%%introducing the third SS matrix 
        for ic=1:lc 
            a=0; 
            for r=1:kc 
                for j=1:rowc 
                    for o=1:nc 
                        if matc(j+a,o)==1 
                            cux(j,o)=boxc(r,ic); 
                        end 
                    end 
                end 
                a=a+rowc; 
            end 
            C=matc0+cux; 
            %%%%introducing the fourth SS matrix 
            for id=1:ld 
                a=0; 
                for r=1:kd 
                    for j=1:rowd 
                        for o=1:nd 
                            if matd(j+a,o)==1 
                                dux(j,o)=boxd(r,id); 
                            end 
                        end 
                    end 
                    a=a+rowd; 
                end 
                D=matd0+dux; 
                %%here is where we need to introduce the lmis%%%%% 
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                lmiterm([z 1 1 X],1,A,'s'); 
                lmiterm([z 1 2 X],1,B); 
                lmiterm([z 1 3 0],C'); 
                lmiterm([z 2 2 0],0); 
                lmiterm([z 2 3 0],D'); 
                lmiterm([z 3 3 0],0); 
                lmiterm([-z 1 1 0],0); 
                lmiterm([-z 2 2 Y],1,1); 
                lmiterm([-z 3 3 Z],1,1); 
  
                z=z+1; 
            end 
        end 
    end 
end 
  
lmiterm([z 1 1 Y],1,1); 
lmiterm([-z 1 1 0],1); 
z=z+1; 
lmiterm([z 1 1 Z],1,1); 
lmiterm([-z 1 1 0],1); 
lmiperf=getlmis; 
[gamma xopt]=gevp(lmiperf,2); 

Key MATLAB codes for the mixing tank process chapter 4 

 
clc 
clear all 
format short e 
warning off all 
global kt0 kv0 kfc0 
diary ('initialpoints.txt') 
%%%%%%% MINIMIZATION OF THE VOLUME %%%%%%%%%%% 
load x0 %loads the vectors x0,lb and ub. 
    %%%%%%%%%%%%Initial Conditions for the Tank %%%%%%%%%%%%%% 
    Th=370; 
    sampint=0.1; 
    Fh=0.15; 
    Tc=298.0; 
    fcmin=0.015; 
    fcmax=2.0; 
    vmin=0.90; 
    Fc0=-(Fh*(Th-x0(3)))/(Tc-x0(3)); 
    Vnon=((Fc0+Fh)/x0(2))^2; 
    flag=0.0; % 1 plots in objfun and confun 
    kv0=26.0; %Initial value for k0 in skewmu for V 
    kt0=0.82; %Initial value for k0 in skewmu for T 
    kfc0=0.82; %Initial value for k0 in skewmu for Fc 
    par=[Vnon;x0(3);Th;sampint;flag;Fh;Fc0;x0(4);1.0;Tc;fcmin;fcmax;vmin]; 
    options=optimset('largeScale','off','Display','iter','TolX',1e-1,... 
        'TolFun',1,'TolCon',1e-3,'DiffMinChange',1e-1,'DiffMaxChange',5e-1,'MaxFunEvals',300); 
[xsol,Vd,exitflag,output,lambda,grad,hessian]=fmincon(@(xsol)objfun(xsol,par,lb,ub),x0,[],[],[],[],lb,ub,@(xsol)… 
cofun(xsol,par,lb,ub),options); 
diary off 
 
function f=objfun(xsol,par)  
%%%%%%% OBJECTIVE FUNTION FOR THE MIXING TANK: Vd %%%%%%%%%%% 
OPT=optimset('largeScale','off','MaxTime',720000,'Maxiter',1000,... 
    'MaxFunEvals',1000,'Display','iter','TolFun',1e-3,'TolX',1e-3,... 
    'DiffMaxChange',0.1,'DiffMinChange',1e-3); 
  
[Fhopt Vd]=fmincon(@(Fhopt)Id(Fhopt,xsol,par,1),0.15,[],[],[],[],0.05,0.15,[],OPT); 
f=-Vd; 
 
function fval=Id(xsol,Fh,par,flag) 
par(6)=Fh; 
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par(2)=xsol(3); 
par(7)=-par(6)*(par(3)-xsol(3))/(par(10)-xsol(3)); 
par(1)=((par(6)+par(7))/xsol(2))^2; 
samper=timecon(xsol,par,par(5),1); % 1 for Volume, otherwise it's temperature  
[tout inputs ynon Fc]=equation(xsol,par,2*samper,2); 
in=inputs-par(3); 
out=ynon(:,1)-par(1); 
data=iddata(out,in,par(4)); 
m=arx(data,[2 1 1]); 
[y,msd]=simul(m,in); 
[kv WC]=volume(xsol,msd,par,samper); 
if flag==1 
    fval=par(1)+kv; 
else 
    fval=par(1)-kv; 
end 
 
function [c,ceq]=cofun(xsol,par,lb,ub) 
 
OPT=optimset('largeScale','off','MaxTime',720000,'Maxiter',1000,... 
    'MaxFunEvals',1000,'Display','iter','TolFun',1e-3,'TolX',1e-3,... 
    'DiffMaxChange',0.1,'DiffMinChange',1e-3); 
  
%%% MINIMUM VOLUME CONSTRAIT %%%% 
[Fhopt kminV]=fmincon(@(Fhopt)Id(Fhopt,xsol,par,2),0.05,[],[],[],[],... 
    0.05,0.15,[],OPT); 
par(6)=Fhopt; 
par(2)=xsol(3); 
par(7)=-par(6)*(par(3)-xsol(3))/(par(10)-xsol(3)); 
par(1)=((par(6)+par(7))/xsol(2))^2; 
Vlim=par(13)-kminV; 
  
%%% TEMPERATURE CONSTRAINT %%%% 
[Fhopt kT]=fmincon(@(Fhopt)IdT(Fhopt,xsol,par),0.15,[],[],[],[],... 
    0.05,0.15,[],OPT); 
par(6)=Fhopt; 
par(2)=xsol(3); 
par(7)=-par(6)*(par(3)-xsol(3))/(par(10)-xsol(3)); 
par(1)=((par(6)+par(7))/xsol(2))^2; 
upcon=xsol(3)+kT-370; 
lowcon=300-xsol(3)+kT; 
  
%%% FC CONSTRAINT %%% 
[Fhopt kFc]=fmincon(@(Fhopt)IdFc(Fhopt,xsol,par,1),0.15,[],[],[],[],... 
    0.05,0.15,[],OPT); 
par(6)=Fhopt; 
par(2)=xsol(3); 
par(7)=-par(6)*(par(3)-xsol(3))/(par(10)-xsol(3)); 
par(1)=((par(6)+par(7))/xsol(2))^2; 
fcmax=par(7)+kfc-par(12); 
  
[Fhopt kFc]=fmincon(@(Fhopt)IdFc(Fhopt,xsol,par,2),0.15,[],[],[],[],... 
    0.05,0.15,[],OPT); 
par(6)=Fhopt; 
par(2)=xsol(3); 
par(7)=-par(6)*(par(3)-xsol(3))/(par(10)-xsol(3)); 
par(1)=((par(6)+par(7))/xsol(2))^2; 
fcmin=par(11)-par(7)+kFc; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
c=[upcon;lowcon;Vlim;fcmin;fcmax]; 
ceq=[];  
  
function f=IdT(xsol,Fh,par) 
  
par(6)=Fh; 
par(2)=xsol(3); 
par(7)=-par(6)*(par(3)-xsol(3))/(par(10)-xsol(3)); 
par(1)=((par(6)+par(7))/xsol(2))^2; 
samper=timecon(xsol,par,par(5),0); % 1 for Volume, tepm otherwise 
[tout inputs ynon Fc]=equation(xsol,par,samper,2); 
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in=inputs-par(3); 
out=ynon(:,2)-par(2); 
data=iddata(out,in,par(4)); 
m=arx(data,[2 2 1]); 
[y,msd]=simul(m,in); 
[kT WC]=temperature(xsol,msd,par,samper); 
f=-kT; 
  

 

function f=IdFc(xsol,Fh,par,flag) 
  
par(6)=Fh; 
par(2)=xsol(3); 
par(7)=-par(6)*(par(3)-xsol(3))/(par(10)-xsol(3)); 
par(1)=((par(6)+par(7))/xsol(2))^2; 
samper=timecon(xsol,par,par(5),0); % 1 for Volume, otherwise it's temperature  
[tout inputs ynon Fc]=equation(xsol,par,samper,2); 
in=inputs-par(3); 
out=ynon(:,2)-par(2); 
data=iddata(out,in,par(4)); 
m=arx(data,[2 2 1]); 
[y,msd]=simul(m,in); 
[kFc WCFc]=mv(xsol,msd,par,samper); 
if flag==1 
    f=-kFc; 
else 
    f=kFc; 
end 
 
function [kv WC]=volume(xsol,msd,par,samper) 
  
global kv0 
datpt=30; 
dt=par(4); 
datimp=[]; 
msd=modgen(data,par,xsol); 
for i=1:length(msd) 
    y=[]; 
    mt=d2c(msd{i}); 
    M=zpk(tf([mt.b],[mt.a])); 
    if i==1 
        [y,time]=impulse(M); 
        my=max(y)*0.03; 
        index=find(y>my); 
        Ts=time(index(end)); 
        y=[]; 
        pt=Ts/(dt*datpt); 
    end 
    [sr,time]=step(M,0:dt*pt:Ts); 
    for n=2:length(sr) 
        y(n)=sr(n)-sr(n-1); 
    end 
    if par(5)==1 
        hold on 
        figure(1) 
        plot(time,y,'g--') 
    end 
    datimp=[datimp,y']; 
end 
if par(5)==1 
    hold off 
end 
hii=[]; 
for j=1:length(time) 
    hup=max(datimp(j,:)); 
    hlow=min(datimp(j,:)); 
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    hmean=(hup+hlow)/2; 
    hun=(hup-hlow)/2; 
    hii=[hii;hmean,hun]; 
end 
[kv WC]=skewmod(kv0,hii); 
kv0=kv; 
 
function [kfc WC]=mv(xsol,msd,par,samper) 
 
global kfc0 
Kc=xsol(1); 
Tao=xsol(4); 
c=tf([Kc*Tao Kc],[Tao 0]); 
dt=par(4); 
datpt=30; 
datimp=[]; 
for i=1:length(msd) 
    y=[]; 
    mt=d2c(msd{i}); 
    g=zpk(tf([mt.b],[mt.a])); 
    s=zpk('s'); 
    pole=g.p{:}; 
    M=(g.k*s/((s-pole(1))*(s-pole(2))))*(-c); 
    if i==1 
        [y,time]=impulse(M,samper*6); 
        my=min(y)*0.03; 
        index=find(y>my); 
        Ts=time(index(end)); 
        y=[]; 
        pt=Ts/(dt*datpt); 
    end 
    [sr,time]=step(M,0:dt*pt:Ts); 
    for n=2:length(sr) 
        y(n)=sr(n)-sr(n-1); 
    end 
    if par(5)==1 
        hold on 
        figure(1) 
        plot(time,y,'g--') 
    end 
    datimp=[datimp,y']; 
end 
if par(5)==1 
    hold off 
end 
hii=[]; 
for j=1:length(time) 
    hup=max(datimp(j,:)); 
    hlow=min(datimp(j,:)); 
    hmean=(hup+hlow)/2; 
    hun=(hup-hlow)/2; 
    hii=[hii;hmean,hun]; 
end 
[kfc WC]=skewmod(kfc0,hii); 
kfc0=kfc; 
 
function [kt WC]=temperature(xsol,msd,par,samper) 
 
global kt0 
dt=par(4); 
datpt=30; 
datimp=[]; 
for i=1:length(msd) 
    y=[]; 
    mt=d2c(msd{i}); 
    M=zpk(tf([mt.b],[mt.a])); 
    if i==1 
        [y,time]=impulse(M); 
        my=min(y)*0.03; 
        index=find(y<my); 

 256



        Ts=time(index(end)); 
        y=[]; 
        pt=Ts/(dt*datpt); 
    end 
    [sr,time]=step(M,0:dt*pt:Ts); 
    for n=2:length(sr) 
        y(n)=sr(n)-sr(n-1); 
    end      
    if par(5)==1 
        hold on 
        figure(1) 
        plot(time,y,'g--') 
    end 
    datimp=[datimp,y']; 
end 
if par(5)==1 
    hold off 
end 
hii=[]; 
for j=1:length(time) 
    hup=max(datimp(j,:)); 
    hlow=min(datimp(j,:)); 
    hmean=(hup+hlow)/2; 
    hun=(hup-hlow)/2; 
    hii=[hii;hmean,hun]; 
end 
[kt WC]=skewmod(kt0,hii); 
kt0=kt;     
 
function [k WC2]=skewmod(k0,hi) 
lb2=1e-8; 
up2=10000; 
Th=0.5;%it's assumed that Thnon=370 
w2=0.5*(Th-(-Th))*ones(length(hi(:,1)),1); 
hi(1,1)=1e-5; 
hi(1,2)=1e-5*0.1; 
H=[hi,w2]; 
crmul=3; 
options=optimset('largeScale','off','display','off','maxFunEvals',300); 
[k f exitflag output]=fmincon(@(k) 1/k,k0,[],[],[],[],lb2,up2,... 
    @(k)muk(k,H,1.0,crmul),options); 
[C,delta]=muk(k,H,0.0,crmul); 
Bounds=C(1:2); 
bigrowp=C(3:end); 
[s1 s2]=size(H); 
if crmul<=2   
    m=1; 
    P=1; 
    for j=1:2 
        rowp(m)=bigrowp(P); 
        K=s1+P; 
        rowp(m+1)=bigrowp(K); 
        J=m+1; 
        n=s1-2; 
        for i=1:n 
            K=K+s1-i; 
            rowp(J+i)=bigrowp(K); 
        end 
        P=K+1; 
        m=J+i+1; 
    end 
    r=length(rowp); 
    d1=length(bigrowp(end-s1+1:end)); 
    rowp(r+1:r+d1)=bigrowp(end-s1+1:end); 
else 
    rowp=bigrowp(1:s1); 
end 
if crmul==1 | crmul==3 
    WC2=k*Th*rowp(1:s1); 
    %WC2=k*Th*rowp(s1+1:end-s1); 
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else 
    %WC1=k*Fh*rowp(1:s1); 
    WC2=k*Th*rowp(1:s1); 
end 
 
 
function [c,ceq]=muk(k,H,flag,crmul) 
  
[s1 s2]=size(H); 
  
N1=[]; 
delta=[]; 
%delta1=[]; 
p=s1; 
N2=[]; 
N3=[]; 
  
for i=1:s1 
    J=zeros(s1-i+1,s1); 
    P=zeros(s1,s1-i+1); 
    Q=zeros(s1,s1-i+1); 
    P(i:end,1:end)=diag(H(1:s1-i+1,1)); 
    Q(i:end,1:end)=diag(H(i,2)*ones(s1-i+1,1)); 
    J(1:end,i:end)=k*diag(H(i,3)*ones(s1-i+1,1)); 
    N1=[N1;J]; 
    N2=[N2,P]; 
    N3=[N3,Q]; 
    delta=[delta;-p 0]; 
    p=p-1; 
end 
  
p=1; 
N4=[]; 
for i=1:s1 
    Na=[]; 
    for j=1:s1-i+1 
        R=zeros(s1-i+1,s1-j+1); 
        R(j,p)=k; 
        Na=[Na,R]; 
    end 
    if p==1 
        [m1 m2]=size(Na); 
        N4=[N4;Na]; 
    else 
        [n1 n2]=size(Na); 
        aux=zeros(n1,m2-n2); 
        Na=[Na,aux]; 
        N4=[N4;Na]; 
    end 
    p=p+1; 
end 
  
if crmul==3 
    delta=[-1*ones(s1*2,1),ones(s1*2,1);ones(1,2)]; 
     
    for i=0:length(H)-1 
        H1(i+1,1)=H(end-i,1); 
        H2(i+1,1)=H(end-i,2); 
        H3(i+1,1)=H(end-i,3); 
    end 
      
    M=[zeros(s1,2*s1),k*H3;diag(k*ones(s1,1)),... 
      zeros(s1,s1),zeros(s1,1);H1',H2',1e-4]; 
  %pause 
end 
  
if crmul==2 %crossmultiplication is considered in M 
    delta=[delta;delta;ones(s1,2)]; % including delta performance 
  
    [m1 m2]=size(N4); 
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    M=[zeros(m1,m2*2),N1;... 
        N4,zeros(m1,m2),zeros(size(N1));... 
        N2,N3,diag(1e-4*ones(1,s1))]; 
end 
  
if crmul==1 %crossmultiplication is NOT considered in M 
     
    delta=[delta1;ones(s1,2)]; % including delta performance 
     
    [m1 m2]=size(N2); 
     
    M=[zeros(m2,m2),N1;... 
        N2,diag(1e-4*ones(1,s1))]; 
    %pause 
     
        %M=[zeros(m2,m2*2),N1;... 
        %zeros(m2,m2*2),N5;...  
        %N2,N6,diag(1e-4*ones(1,s1))]; 
end 
  
if flag==1 
    bnds=mussv(M,delta); 
    c=k-bnds(2); 
    ceq=[]; 
else 
    [bnds,muinfo]=mussv(M,delta); 
    [Vdelta,Vsigma,Vlmi]=mussvextract(muinfo); 
    rowp=diag(Vdelta); 
    c=[bnds,rowp']; 
    ceq=Vdelta; 
end 
 

Key MATLAB codes for the TE problem presented chapter 5 

clc 
clear all 
format short e 
warning off all 
t0=cputime; 
global k0 ITER I XN C 
%diary ('iterations.txt') 
%%Initial guesses and bounds:  
load xinit %loads the initial guesses and bounds for each potential dec. variable 
decvar=1:13; % vector that defines which varaibles to be used as dec. variables 
for i=1:length(decvar) 
    x0(i,1)=(X0(decvar(i),1)-X0(decvar(i),3))./abs(X0(decvar(i),3)... 
        -X0(decvar(i),2)); %Initial conditions normalized   
end 
k0=1000*ones(6,1); 
max_iter=10000; %maximum number of function evalutions allowed 
ITER=zeros(28,max_iter); % Variable used to save the values at each iteration 
XN=zeros(length(decvar),max_iter); % Variable used to save the decvar values at each iteration 
I=1; % Index used in ITER 
id=0; %defines if the WC profile is plotted 
options=optimset('largeScale','off','Display','iter','TolX',1e-2,... 
    'TolFun',1e-2,'TolCon',1e-1,'MaxFunEvals',max_iter); 
[xsol Cost exitflag output]=fmincon(@(xsol)CostFunc(xsol,X0,id),x0,... 
    [],[],[],[],zeros(length(x0),1),ones(length(x0),1),@constr,options); 
% diary off 
function h_cost=CostFunc(xsol,X0,id) 
global XN ITER I k0 C 
t0=cputime; 
F=7038; 
Cost=0.22; 
ndist=2; 
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M3=[0 0]; 
M4=M3; 
par_unval=0.0; 
idv8=0; 
idv13=0; 
Mode_1_Init 
Ts_save=0.2; 
amp=[0.01 0.003 0.25 0.25]; 
amp=amp(1:ndist); 
input=[5 6 13 16]; 
input=input(1:length(amp)); 
tss=100; 
l=length(xsol); 
xsol=X0(1:l,3)+xsol.*abs(X0(1:l,3)-X0(1:l,2)); 
XN(:,I)=xsol; 
x=[xsol;X0(l+1:end,1)]; 
le=[127 127]; 
Mi=idinput([le(1) 1 2],'prbs',[0 1],[-1 1]); 
Mi1=idinput([le(2) 1 4],'prbs',[0 1],[-1 1]); 
i=[100 200]; 
tss=100; 
M1=[0 0;i(1)+Ts_save*[0:length(Mi)-1]' amp(1)*Mi;i(1)+Ts_save*length(Mi) 0]; 
M2=[0 0;i(2)+Ts_save*[0:length(Mi1)-1]' amp(2)*Mi1;i(2)+Ts_save*length(Mi1) 0]; 
tend=i(2)+Ts_save*length(Mi1); 
try 
    clear functions 
    sim ('TE_II.mdl',[],simset('SrcWorkspace','current')) 
    ss=find(tout==tss); 
    %%the next test is to ensure that the system reaches a feasible ss 
    pres_dif=abs(simout(ss-1,7)-x(9)); 
    temp_dif=abs(simout(ss-1,9)-x(11)); 
    if pres_dif>0.001*x(9) || temp_dif>0.01*x(11) 
        disp('Warning SS-not reached') 
        fff %if the above is true then catch becomes active 
    end 
    Fg=(4.541*62/100)*simout(:,40).*xmv(:,8); %flow rate of G in stream 11 
    Fh=(4.541*76/100)*simout(:,41).*xmv(:,8); % flow rate of H in stream 11 
    output=[Fg Fh simout(:,7:9) simout(:,40)]; %xmv(:,6) xmv(:,10)]; 
    no_output=min(size(output)); 
    ss_inf=zeros(no_output,1); 
    k=zeros(no_output,1); 
    in_wc=zeros(length(amp),1); 
    for j=1:no_output 
        H=[]; 
        for n=1:length(amp) 
            %n 
            switch n 
                case 1 
                    i=100; 
                    start_sq=1+i/Ts_save; 
                    end_sq=(i+Ts_save*(length(Mi)))/Ts_save; 
                    ss_inf(j)=output(start_sq-1,j); 
                    Op_cost=OpCost(start_sq-1); 
                case 2 
                    i=200; 
                    start_sq=1+i/Ts_save; 
                    end_sq=(i+Ts_save*(length(Mi1)))/Ts_save; 
            end 
            u=simout(start_sq:end_sq,input(n))-simout(start_sq-1,input(n)); 
            yout=output(start_sq:end_sq,j)-output(start_sq-1,j); 
            data=iddata(yout,u/amp(n),Ts_save); 
            model=arx(data,[0 le(n) 0]); 
            my=max(abs(model.b))*0.05; 
            index=find(abs(model.b)>my); 
            hi=model.b(1:index(end)); 
            hun=model.db(1:index(end)); 
            H=[H;hi' hun' ones(length(hi),1)]; 
            in_wc(n)=length(hi); 
        end 
        if k0(j)>10000 

 260



            k0(j)=1000; 
        end 
        options=optimset('largeScale','off','display','off',... 
            'maxFunEvals',1000,'TolFun',1e-2,'TolX',1e-2,'TolCon',1e-3); 
        k(j)=fmincon(@(k) -k,k0(j),[],[],[],[],1e-8,Inf,@(k)muk(k,H),options); 
        if k(j)>10000 
            k0(j)=1000; 
            k(j)=fmincon(@(k) -k,k0(j),[],[],[],[],1e-8,Inf,@(k)muk(k,H),options); 
        end 
        k0(j)=k(j); 
        if id>=1 
            [s1,col]=size(H); 
            delta=[-1*ones(s1*2,1),ones(s1*2,1);ones(1,2)]; %Perturbation matrix 
            M=[zeros(s1,2*s1),k(j)*H(:,end);diag(k(j)*ones(s1,1)),... 
                zeros(s1,s1),zeros(s1,1);H(:,1)',H(:,2)',1e-4]; %Interconection matrix 
            [bnds,minf]=mussv(M,delta,'f'); 
            Vdelta=mussvextract(minf); 
            rowp=diag(Vdelta); 
            for m=1:length(amp) 
                if m==1 
                    Wc=rowp(1:in_wc(m))*k(j)*amp(m); 
                else 
                    Wc=rowp(sum(in_wc(1:m-1))+1:sum(in_wc(1:m)))*k(j)*amp(m); 
                end 
                WC=[0 0;[tss:Ts_save:tss+(in_wc(m)*Ts_save-Ts_save)]' Wc;... 
                    tss+in_wc(m)*Ts_save 0]; 
                eval(['WC',num2str(m),'=WC;']) 
            end 
            idv8=0; 
            idv13=0; 
            M1=WC1; 
            M2=WC2; 
            tend=max([WC1(end,1) WC2(end,1)])+10; 
            try 
                clear functions 
                sim ('TE_sim.mdl',[],simset('SrcWorkspace','current')) 
                Fg_sim=(4.541*62/100)*simout_sim(:,40).*xmv_sim(:,8); %flow rate of G in stream 11 
                Fh_sim=(4.541*76/100)*simout_sim(:,41).*xmv_sim(:,8); % flow rate of H in stream 11 
                output_sim=[Fg_sim Fh_sim simout_sim(:,7:9) simout_sim(:,40)]; %xmv(:,6) xmv(:,10)]; 
                st_sim=1+tss/Ts_save; 
                yout_sim=output_sim(st_sim:end,:); 
                K(1:6,1)=ITER(6:11,id)+output_sim(st_sim-1,:)'; 
                K(1:6,2)=-ITER(6:11,id)+output_sim(st_sim-1,:)';                 
                figure(j+4) 
                subplot(4,2,1) 
                plot(WC1(2:end,1)-tss,WC1(2:end,2)+0.485) 
                xlabel('Time, hrs','FontWeight','Bold') 
                ylabel('Comp. A, % mol','FontWeight','Bold') 
                title('Worst profile Component A, Stream 4','FontWeight', 'Bold') 
                set(gca,'Fontweight','Bold') 
                set(gcf,'Color',[1 1 1]) 
                subplot(4,2,2) 
                plot(WC2(2:end,1)-tss,WC2(2:end,2)+0.005) 
                xlabel('Time, hrs','FontWeight','Bold') 
                ylabel('Comp. B, % mol','FontWeight','Bold') 
                title('Worst profile Component B, Stream 4','FontWeight', 'Bold') 
                set(gca,'Fontweight','Bold') 
                set(gcf,'Color',[1 1 1]) 
                subplot(4,2,3) 
                plot(tout_sim(st_sim:end)-tss,yout_sim(:,1),... 
                    tout_sim(st_sim:end)-tss,F*ones(length(yout_sim),1),'r--')  
                xlabel('Time, hrs','FontWeight','Bold') 
                ylabel('Comp. G, kg/hr','FontWeight','Bold') 
                title('Flowrate Product G, Stream 11', 'FontWeight', 'Bold') 
                set(gca,'Fontweight','Bold') 
                set(gcf,'Color',[1 1 1]) 
                subplot(4,2,4) 
                plot(tout_sim(st_sim:end)-tss,yout_sim(:,2),... 
                    tout_sim(st_sim:end)-tss,F*ones(length(yout_sim),1),'r--') 
                xlabel('Time, hrs','FontWeight','Bold') 
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                ylabel('Comp. H, kg/hr','FontWeight','Bold') 
                title('Flowrate Product H, Stream 11', 'FontWeight', 'Bold') 
                set(gca,'Fontweight','Bold') 
                set(gcf,'Color',[1 1 1]) 
                subplot(4,2,5) 
                plot(tout_sim(st_sim:end)-tss,yout_sim(:,6),... 
                    tout_sim(st_sim:end)-tss,1.05*output_sim(st_sim-1,6)*... 
                    ones(length(yout_sim),1),'r--',... 
                    tout_sim(st_sim:end)-tss,0.95*output_sim(st_sim-1,6)*... 
                    ones(length(yout_sim),1),'r--') 
                xlabel('Time, hrs','FontWeight','Bold') 
                ylabel('% mol G','FontWeight','Bold') 
                Title('Quality in Product G, Stream 11', 'FontWeight', 'Bold') 
                set(gca,'Fontweight','Bold') 
                set(gcf,'Color',[1 1 1]) 
                subplot(4,2,6) 
                plot(tout_sim(st_sim:end)-tss,yout_sim(:,3),... 
                    tout_sim(st_sim:end)-tss,2895*ones(length(yout_sim),1),'r--') %,... 
                xlabel('Time, hrs','FontWeight','Bold') 
                ylabel('Pressure, KPA','FontWeight','Bold') 
                Title('Reactor''s Pressure', 'FontWeight', 'Bold') 
                set(gca,'Fontweight','Bold') 
                set(gcf,'Color',[1 1 1]) 
                subplot(4,2,7) 
                plot(tout_sim(st_sim:end)-tss,yout_sim(:,4),... 
                    tout_sim(st_sim:end)-tss,30*ones(length(yout_sim),1),'r--') %,... 
                xlabel('Time, hrs','FontWeight','Bold') 
                ylabel('Level, %','FontWeight','Bold') 
                Title('Reactor''s Level', 'FontWeight', 'Bold') 
                set(gca,'Fontweight','Bold') 
                set(gcf,'Color',[1 1 1]) 
                subplot(4,2,8) 
                plot(tout_sim(st_sim:end)-tss,yout_sim(:,5),... 
                    tout_sim(st_sim:end)-tss,150*ones(length(yout_sim),1),'r--') %,... 
                xlabel('Time, hrs','FontWeight','Bold') 
                ylabel('Temperature, \circ C','FontWeight','Bold') 
                Title('Reactor''s Temperature', 'FontWeight', 'Bold') 
                set(gca,'Fontweight','Bold') 
                set(gcf,'Color',[1 1 1]) 
            catch 
                disp('Warning: catch active in Te_sim') 
                error=lasterror; 
                disp(error.message) 
            end 
        end 
    end 
     
    C=zeros(10,1); 
    C(1)=ss_inf(1)-1.02*ss_inf(2); %Fg<=1.02Fh 
    C(2)=0.98*ss_inf(2)-ss_inf(1); %Fg>=0.98Fh 
    C(3)=-0.05*(ss_inf(2)+ss_inf(1))+(k(1)+k(2)); %Fg+Fh<=1.05*F 
    C(4)=F-ss_inf(1)+k(1); %Fg>=Fg* 
    C(5)=F-ss_inf(2)+k(2); %Fh>Fh* 
    C(6)=abs(k(6))-5; %plus/minus 5 mol% G 
    C(7)=ss_inf(3)+k(3)-2895; % Max Reac Pressure const 
    C(8)=ss_inf(4)+k(4)-100; % Max Reac Level const 
    C(9)=30-ss_inf(4)+k(4); % Min Reac Level const 
    C(10)=ss_inf(5)+k(5)-150; % Max Reac Temp const 
    if id>=1 
     disp(['Fg<=1.02Fh', num2str(C(1))]) 
     disp(['Fg>=0.98Fh', num2str(C(2))]) 
     disp(['Fg+Fh<=1.05*F', num2str(C(3))]) 
     disp(['Fg>=Fg*', num2str(C(4))]) 
     disp(['Fh>Fh*', num2str(C(5))]) 
     disp(['plus/minus 5 mol% G', num2str(C(6))]) 
     disp(['Max Reac Pressure const', num2str(C(7))]) 
     disp(['Max Reac Level const', num2str(C(7))]) 
     disp(['Min Reac Level const', num2str(C(8))]) 
     disp(['Max Reac Temp const', num2str(C(10))]) 
    end 
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    CCcost=CapCost(x); 
    VarCost=Cost*(ss_inf(1)+k(1)+ss_inf(2)+k(2)-2*F); % Var Cost in $/hr 
    h_cost=CCcost+Op_cost+VarCost; %in $/hr 
    flag=0; 
    if I==1 
        [[ss_inf;k0;k;I] [C;h_cost;CCcost;Op_cost;VarCost;0;0;0;0;0]] 
    end 
catch 
    disp('Warning: catch is active') 
    error=lasterror; 
    disp(error.message) 
    XN(:,I) 
    h_cost=ITER(2,I-1)*1.3; 
    C=abs(ITER(18:27,I-1))*(1.3); 
    flag=1; 
end 
t_iter=cputime-t0; 
if I==1 
    t_iter 
end 
if flag==1 
    vector=[I;h_cost;zeros(15,1);C;t_iter]; 
    flag=0; 
else 
    vector=[I;h_cost;CCcost;Op_cost;VarCost;k;ss_inf;C;t_iter]; 
end 
ITER(1:length(vector),I)=vector; 
I=I+1 
 
function CCcost=CapCost(xsol) 
% This function estimates the Capital Cost investment 
%% Cost Function Specification  
D=2*(((xsol(12)+156.5+3500)*0.028381685)/(8*pi))^(1/3); %Reac Diam. in cubic meters 
L=4*D; %Assuming Equipment's length is 4 times the diameter 
FM=1; % Assuming Carbon steel as the equipment's material. 
P=30; % Maximum pressure for the three pieces of equipments (KPA) 
Cp=1780*(L^0.87)*(D^1.23); 
Cbm=Cp*(2.86+1.694*(FM)*(10.01-7.408*log(P)+1.395*(log(P))^2)); 
Cbm_1992=Cbm*(360/315); 
Ctci=Cbm_1992; 
r=0.2; %return on investment, typically r=20 %/yr 
CCcost=r*Ctci/(24*365); %in $/hr 
 
function [C,ceq]=constr(xsol) 
global C 
ceq=[]; 
 
% Base case initialization 
u0=[63.053, 53.98, 24.644, 61.302, 22.21, 40.064, 38.10, 46.534, 47.446, 41.106, 18.114, 50]; 
     
for i=1:12; 
    iChar=int2str(i); 
    eval(['xmv',iChar,'_0=u0(',iChar,');']) 
end 
  
Fp_0=100; 
  
r1_0=0.251/Fp_0; 
r2_0=3664/Fp_0; 
r3_0=4509/Fp_0; 
r4_0=9.35/Fp_0; 
r5_0=0.337/Fp_0; 
r6_0=25.16/Fp_0; 
r7_0=22.95/Fp_0; 
  
Eadj_0=0; 
SP17_0=80.1; 
Ts_base=0.0005; 
 
function [c,ceq]=muk(k,H) 
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% This function estimates mu given a value for the parameter k. 
[s1,col]=size(H); 
delta=[-1*ones(s1*2,1),ones(s1*2,1);ones(1,2)]; %Perturbation matrix 
M=[zeros(s1,2*s1),k*H(:,end);diag(k*ones(s1,1)),... 
    zeros(s1,s1),zeros(s1,1);H(:,1)',H(:,2)',1e-4]; %Interconection matrix 
 
bnds=mussv(M,delta,'f'); 
c=k-bnds(2); 
ceq=[]; 
return 

Figure C.1 and Figure C.2 present the simulink code used to simulate the TE process. 
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Figure C.1 Main simulink model used to simulate TE process . 
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